
CHAPTER 21

Retaining Walls

21.1 DIFFERENT TYPES (TOP-DOWN,
BOTTOM-UP)

There are many different types of retaining walls, but they
are generally classified into two main categories: bottom-up
walls and top-down walls. Bottom-up walls are walls that
are built before the soil is placed behind the wall. In this
case the backfill is compacted in lifts from the bottom of
the wall to the top of the wall, often with inclusions (e.g.,
metal strips, geosynthetics) being installed on the way up.
Top-down walls are walls that are built in the ground; then the
excavation in front of the wall takes place in stages, most often
with inclusions (e.g., anchors, tiebacks, nails) being installed
through the wall as excavation proceeds. Examples of bottom-
up walls are gravity walls and mechanically stabilized earth
(MSE) walls (Figure 21.1). Examples of top-down walls are
cantilever walls, soil-nailed walls, and anchored walls (also
known as tieback walls).

The design of retaining walls requires calculations regard-
ing:

1. Earth pressure distribution behind the wall
2. Deflection of the wall
3. Drainage issues

The body of knowledge regarding the issue of earth pressure
is much more developed than that on the issue of deflection.
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Figure 21.1 Types of retaining walls.

One of the reasons is that historically, earth pressure theories
came first.

21.2 ACTIVE, AT REST, PASSIVE EARTH
PRESSURE, AND ASSOCIATED DISPLACEMENT

Consider an imaginary wall in a lake. The water pressure uw
on both sides of the wall would be hydrostatic and equal to
γ wz where uw is the water pressure against the wall at depth
z below the water surface, and γ w is the unit weight of water.
As a result, the pressure diagram is triangular and the resultant
is located at two-thirds of the wall height from the top of the
wall. Note that the water pressure is the same in all directions,
including horizontal and vertical, because water has a negli-
gible resistance to shear (the Mohr circle for water is a point).
Now consider an imaginary wall in the ground (Figure 21.2).
The at-rest earth pressure σ oh exists on both sides of the wall.
If you push the wall horizontally, the pressure will increase on
the side that penetrates into the soil up to soil failure (passive
pressure σ ph) and decrease on the other side where the wall
is moving away from the soil down to soil failure (active
pressure σ ah). Note that if you push the wall far enough and if
the soil is strong enough because of true or apparent cohesion,
the pressure may become zero on the side where the wall is
moving away from the soil and a gap opens up.

On the passive side, the soil is pushed away and upward as
a wedge of failing soil forms in front of the wall (Figure 21.3);
as a result, the soil imposes an upward friction force on the
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Figure 21.2 Imaginary wall and earth pressures.
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Figure 21.3 Earth pressures wedges.

wall. On the active side, the soil falls against the wall and
downward as a wedge of failing soil forms behind the wall;
as a result, the soil imposes a downward friction force on the
wall. The passive wedge is much larger than the active wedge
and requires more displacement to be mobilized. This is
why the displacement required to mobilize the passive earth
pressure is larger than the displacement required to mobilize
the active earth pressure. The relationship between the soil
pressure against the wall and the horizontal displacement of
the wall is shown in Figure 21.4.

Now let’s zoom in at the interface between the soil and the
wall as shown in Figure 21.5. The soil particles contact the
wall at several points where forces are transmitted between
the soil and the wall. Between the particle contacts are
the voids in the soil. These voids can be either completely
filled with water (saturated soil) or filled with air and water
(unsaturated soil). In the case of the saturated soil, the water
will exert a pressure uw against the wall. This water stress
can be compression below the groundwater level (GWL) or
tension within the capillary zone above the GWL. The water
stress times the area of wall over which the water acts is the
force transmitted by the water on the wall. The horizontal
force on the wall is the sum of the forces at the particle
contacts and the force contributed by the water stress uw.
Then we divide by the total area and, as in the case of vertical
stress (see section 10.13), the total horizontal stress σ h is
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Figure 21.4 Earth pressure versus wall displacement.
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σ ′
h + uw where σ ′

h is the effective horizontal stress and uw is
the water stress (compression or tension).

If the soil is unsaturated, the horizontal force on the wall
is the sum of the forces at the particle contacts, the forces
transmitted through the water, and the forces transmitted
through the air. If the air is occluded in the water phase and
does not contact the wall, then σ h is still equal to σ ′

h + uw, but
the water phase is more compressible. Air tends to be occluded
when the degree of saturation S is above 85%. If the air is
not occluded (S < 85%), there is a continuous air path to the
ground surface and the air stress is atmospheric or zero gage
pressure. In this case (see section 10.13), the horizontal stress
σ h is σ ′

h + αuw where σ ′
h is the effective horizontal stress, α

is the ratio of the water area in contact with the wall over the
total area, and uw is the water stress (which is in tension in this
case). As pointed out in section 10.13, α can be estimated as
the degree of saturation with a ±30% precision or by Khalili
rule. The effect of the water tension in unsaturated soil will
be to decrease the active horizontal pressure and increase
the passive horizontal pressure compared to the case of the
saturated soil with water in compression. Note that the active
earth pressure and the passive earth pressure correspond to
soil failure. Therefore, they should be thought of as strength
rather than stress.

21.3 EARTH PRESSURE THEORIES

21.3.1 Coulomb Earth Pressure Theory

The earth pressure theories make the general assumption that
the soil is at failure. In that sense, the earth pressures obtained
by using these theories are similar to the concept of ultimate
bearing capacity in foundation engineering; they represent
strengths at failure rather than stresses at working loads.
Coulomb, in 1776, was the first person to work on earth pres-
sures. Charles Augustin de Coulomb was a French physicist
who worked on this topic just before the French Revolution
in the late 1700s, although he is better known for his work
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Figure 21.6 General geometry of the Coulomb soil wedge.

on electromagnetism. To develop his earth pressure theory,
Coulomb made the following assumptions (Figure 21.6):

1. The problem is a plane strain problem
2. The soil has friction (ϕ′) and cohesion (c′)
3. The soil has no water
4. The failure wedge is a rigid body
5. The failure surface and the ground surface are planes
6. The friction coefficient between the wall and the soil

wedge is tanδ

Let’s first calculate the weight of the wedge W per unit
length of wall. The area A of the triangle ABD is:

A = 1

2
BD × AC = 1

2
AD

(
sin (α + β)

sin(ρ − β)

)
× AD sin(180 − α − ρ) (21.1)

Because
AD = H

sin α
(21.2)

then

A = H 2

2sin2α
sin(α + ρ)

(
sin (α + β)

sin(ρ − β)

)
(21.3)

and

W = γH 2

2sin2α
sin(α + ρ)

(
sin (α + β)

sin(ρ − β)

)
(21.4)

In the case of the active earth pressure (Figure 21.7), the
external forces acting on the wedge are the weight W, the
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Figure 21.7 Free body of the active soil wedge.

active force Pa on the wall side AD, and the resultant force R
on the soil side BD.

The force Pa is inclined at an angle δ with the normal to
the wall-soil interface. If the wall does not settle excessively,
the wedge goes down with respect to the wall and the wall
friction acts upward on the wedge (positive δ value for the
active case). The resultant R is inclined at an angle ϕ′ with
the normal to the soil-soil failure plane at the back of the
wedge. Because the wedge goes down with respect to the soil
mass beyond the wedge, the friction force acts upward on the
wedge. We will neglect the cohesion force at this time. Then
the polygon of forces can be drawn (Figure 21.7) and the law
of sines gives:

Pa

sin(ρ − ϕ′)
= W

sin(180 − ρ + ϕ′ − α + δ)
(21.5)

and

Pa = γH 2

2sin2α
sin(α + ρ)

(
sin (α + β)

sin(ρ − β)

)
× sin(ρ − ϕ′)

sin(180 − ρ + ϕ′ − α + δ)
(21.6)

Equation 21.6 shows that Pa is a function of a number of
factors, including the angle ρ which is an unknown variable.
The active earth pressure force will correspond to the value
of ρ that leads to the lowest value of Pa, because that will
be the first value reached as the wall is pulled away from the
soil. Therefore, the ρ value corresponding to the active force
is the one that minimizes Pa. For this we set:

∂Pa

∂ρ
= 0 (21.7)

and solve for ρ as was done in section 11.4.2. The final result
for Pa is:

Pa = γH 2

2

sin2(α + ϕ′)

sin2α sin(α−δ)

⎡⎣1+
√

sin
(
ϕ′ +δ

)
sin(ϕ′ −β)

sin(α−δ) sin(α+β)

⎤⎦2

= 1

2
KaγH 2 (21.8)

and the coefficient of active earth pressure Ka giving the
magnitude of the vector Pa is:

Ka = sin2(α + ϕ′)

sin2α sin(α − δ)

⎡⎣1 +
√

sin
(
ϕ′ + δ

)
sin(ϕ′ − β)

sin(α − δ) sin(α + β)

⎤⎦2

(21.9)
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Note that the direction of the force Pa is not horizontal, but
rather acts at an angle 90—α + δ with the horizontal. The
horizontal component Pah is:

Pah = 1

2
KaγH 2 cos(90 − α + δ) = 1

2
KaγH 2 sin(α − δ)

= 1

2
KahγH 2 (21.10)

Therefore, the coefficient of active earth pressure Kah giving
the horizontal component Pah of the active push Pa is:

Kah = sin2(α + ϕ′)

sin2α

⎡⎣1 +
√

sin
(
ϕ′ + δ

)
sin(ϕ′ − β)

sin(α − δ) sin(α + β)

⎤⎦2 (21.11)

In the simpler case where the backfill is horizontal, the wall
is vertical, and there is no soil-wall friction (conservative),
then β = δ = 0, α = 90◦, and Ka becomes:

Ka = 1 − sin ϕ′

1 + sin ϕ′ (21.12)

In the case of the passive earth pressure (Figure 21.8), the
external forces acting on the wedge are the weight W, the
passive force Pp on the wall side AD, and the resultant force
R on the soil side BD.

The force Pp is inclined at an angle δ with the normal to
the wall-soil interface. As the wall pushes against the wedge,
the wedge goes up with respect to the wall and the wall
friction acts downward on the wedge (positive δ value for the
passive case). The resultant R is inclined at an angle ϕ′ with
the normal to the soil-soil failure plane at the back of the
wedge. Because the wedge goes up with respect to the soil
mass beyond the wedge, the friction force acts downward on
the wedge. We will neglect the cohesion force at this time.
Then the polygon of forces can be drawn (Figure 21.8) and
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Figure 21.8 Free body of the passive soil wedge.

the derivation proceeds as for the active case. In the end, the
equation for Pp is:

Pp = 1

2
KpγH 2 (21.13)

The passive earth pressure coefficient giving the magnitude
of the vector Pp is:

Kp = sin2(α − ϕ′)

sin2α sin(α + δ)

⎡⎣1 −
√

sin
(
ϕ′ + δ

)
sin(ϕ′ + β)

sin(α + δ) sin(α + β)

⎤⎦2

(21.14)
Note that the direction of the force Pp is not horizontal, but

rather acts at an angle α + δ − 90 with the horizontal. The
horizontal component Pph is:

Pph = 1

2
KpγH 2 cos(α + δ − 90) = 1

2
KpγH 2 sin(α + δ)

= 1

2
KphγH 2 (21.15)

Therefore, the coefficient of passive earth pressure Kph giving
the horizontal component Pph of the passive push Pp is:

Kph = sin2(α − ϕ′)

sin2α

⎡⎣1 −
√

sin
(
ϕ′ + δ

)
sin(ϕ′ + β)

sin(α + δ) sin(α + β)

⎤⎦2 (21.16)

In the simpler case where the backfill is horizontal, the wall
is vertical, and there is no soil-wall friction (conservative),
then β = δ = 0, α = 90◦, and Kp becomes:

Kp = 1 + sin ϕ′

1 − sin ϕ′ (21.17)

and the product Ka × Kp is equal to 1.

21.3.2 Rankine Earth Pressure Theory

In 1857, Rankine took a different approach to the same
problem. William J. Rankine was a Scottish civil engi-
neer, physicist, and mathematician. He made the following
assumptions:

1. The problem is a plane strain problem
2. The soil has friction (ϕ′) but no cohesion (c′ = 0)
3. The soil has no water
4. The soil mass is in a state of plastic failure
5. The failure surface and the ground surface are planes
6. There is no friction between the soil and the wall
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Coulomb considered the equilibrium of a rigid body wedge
and reasoned in terms of equilibrium of forces, whereas
Rankine considered the equilibrium of stresses at the element
level in a failing mass. Rankine theory predates the work of
Otto Mohr and the Mohr circle around 1882, but it is easiest
to explain Rankine theory through the use of the Mohr circle,
which will be done in section 21.3.3. The active and passive
earth pressures are as follows (Figures 21.9 and 21.10):

σa = Kaσv = Kaγ z (21.18)

σp = Kpσv = Kpγ z (21.19)

where σ a and σ p are the active and passive earth stresses on
the wall, Ka and Kp are the active and passive coefficients, γ

is the soil unit weight, and z is the depth below the ground
surface. Note that the stress vectors σ a and σ p are parallel to
the ground surface and therefore inclined at an angle β with
the horizontal (Figures 21.9 and 21.10). Rankine obtained the
following expressions for Ka and Kp:

Ka = cos β
cos β −

√
cos2β − cos2ϕ′

cos β +
√

cos2β − cos2ϕ′ (21.20)

Kp = cos β
cos β +

√
cos2β − cos2ϕ′

cos β −
√

cos2β − cos2ϕ′ (21.21)

As can be seen from Eqs. 21.18 and 21.19, the stresses on
the wall increase linearly with z. By integration of these two
equations between 0 and H, the height of the wall, the active
force Pa and the passive force Pp can be obtained and are
given by Eqs. 21.8 and 21.13, but with different expressions
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for Ka and Kp given in Eqs. 21.20 and 21.21. Note also that
the forces Pa and Pp are not horizontal, but rather parallel to
the ground surface, which is at an angle β with the horizontal
(Figures 21.9 and 21.10). The horizontal components Pah and
Pph are:

Pah = 1

2
KaγH 2 cos β = 1

2
KahγH 2 (21.22)

Pph = 1

2
KpγH 2 cos β = 1

2
KphγH 2 (21.23)

Therefore, the coefficient of active earth pressure Kah giving
the horizontal component Pah of the active force Pa and the
coefficient of passive earth pressure Kph giving the horizontal
component Pph of the passive force Pp are:

Kah = cos2β
cos β −

√
cos2β − cos2ϕ′

cos β +
√

cos2β − cos2ϕ′ (21.24)

Kph = cos2β
cos β +

√
cos2β − cos2ϕ′

cos β −
√

cos2β − cos2ϕ′ (21.25)

In the simple case where the backfill is horizontal, then
β = 0, and Ka and Kp become:

Ka = 1 − sin ϕ′

1 + sin ϕ′ (21.26)

Kp = 1 + sin ϕ′

1 − sin ϕ′ (21.27)

So, should we use Coulomb or Rankine earth pressure
coefficients? The Coulomb solution is a limit equilibrium
solution giving upper-bound values because the chosen failure
surface and mechanism is not necessarily the weakest one.
In this context, Coulomb passive earth pressure coefficients
tend to be very optimistic (too large). In contrast, the Rankine
solution is an equilibrium of stresses solution that gives lower-
bound values. Therefore, if a lower bound is conservative,
one could choose Rankine; if an upper bound is conservative,
one could choose Coulomb. Note that for extreme values of
the geometry parameters, it is advisable to use engineering
judgment, as the Ka and Kp values can become unreasonable.
Note also that for the simple case of a vertical wall, no wall
friction, and horizontal backfill, both theories give the same
answers (Eqs. 21.12, 21.17, 21.26, and 21.27). The most
common values vary from 0.25 to 0.40 for Ka and from 2.5
to 4 for Kp.

21.3.3 Earth Pressure Theory by Mohr Circle

Consider an element of soil behind a retaining wall (Figure
21.11). This element is in an at-rest state of stress to start with.
The vertical effective stress is σ ′

ov, the horizontal effective
stress is σ ′

ov, and the corresponding Mohr circle is shown in
Figure 21.11. If the wall is pulled very slightly away from
the soil, the horizontal effective stress will decrease until the
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Figure 21.11 Element of soil and Mohr circle (active case).

Mohr circle touches the failure envelope. At that point the
soil element will be in a state of failure: It will have mobilized
all the shear strength it can offer to support itself, but will
still need σ ′

ah from the wall to avoid collapse. This value σ ′
ah

is the active earth pressure.
From triangle ABD in Figure 21.11, we can write that:

sin ϕ′ = BD

AO + OD
= 0.5(σ ′

ov − σ ′
ah)

c′
tan ϕ′ + 0.5(σ ′

ov + σ ′
ah)

(21.28)

which reduces to:

σ ′
ah = σ ′

ov

(
1 − sin ϕ′

1 + sin ϕ′

)
− 2c′

√
1 − sin ϕ′

1 + sin ϕ′ (21.29)

or:

σ ′
ah = σ ′

ovKa − 2c′√Ka with Ka = 1 − sin ϕ′

1 + sin ϕ′ (21.30)

The direction of the failure lines can be found by using the
Pole method (see section 10.5). The stress point on the Mohr
circle at σ ′

ah corresponds to a stress acting on a vertical plane,
so a vertical line will intersect the circle at two points: the
stress point and the Pole. Because the vertical line is tangent
to the circle, the two points are the same and the Pole is at
point P on Figure 21.11. A line from the Pole to the failure
point B gives the direction of the failure plane on the diagram.
From geometry considerations, the angle of this plane with
the horizontal is equal to 45 + ϕ′/2. Because the entire mass
is at failure, a set of parallel failure lines exists.

Now if the wall is pushed into the soil instead of pulled away
(Figure 21.12), the horizontal effective stress will increase,
pass the value of the vertical effective stress σ ′

ov, and continue

to increase until the Mohr circle touches the failure envelope.
At that point the soil element will be in a state of failure: It
will have mobilized all the shear strength it can offer to resist
the wall push and σ ′

ph will be generated. This value σ ′
ph is the

passive earth pressure. From triangle ABD in Figure 21.12,
we can write that:

sin ϕ′ = BD

AO + OD
= 0.5(σ ′

ph − σ ′
ov)

c′
tan ϕ′ + 0.5(σ ′

ph + σ ′
ov)

(21.31)

which reduces to:

σ ′
ph = σ ′

ov

(
1 + sin ϕ′

1 − sin ϕ′

)
+ 2c′

√
1 + sin ϕ′

1 − sin ϕ′ (21.32)

or

σ ′
ph = σ ′

ovKp + 2c′
√

Kp with Kp = 1 + sin ϕ′

1 − sin ϕ′ (21.33)

The direction of the failure lines can be found by using the
Pole method (see section 10.5). The stress point on the Mohr
circle at σ ′

ph corresponds to a stress acting on a vertical plane,
so a vertical line will intersect the circle at two points: the
stress point and the Pole. Because the vertical line is tangent
to the circle, the two points are the same and the Pole is at
point P on Figure 21.12. A line from the Pole to the failure
point B gives the direction of the failure plane on the diagram.
From geometry considerations, the angle of this plane with
the horizontal is equal to 45 − ϕ′/2. Because the entire mass
is at failure, a set of parallel failure lines exists. The conjugate
failure lines on Figure 21.12 come from the failure point on
the bottom part of the Mohr circle at failure that is not shown
on the figure.
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Figure 21.12 Element of soil and Mohr circle (passive case).
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21.3.4 Water in the Case of Compression Stress
(Saturated)

Up to this point we have calculated the effective horizontal
stress for the active case and the passive case. The wall is
subjected to the total horizontal stress. When the soil next to
the wall is saturated and the water is in compression, the total
active and passive earth pressures become:

σah = σ ′
ovKa − 2c′√Ka + uw (21.34)

σph = σ ′
ovKp + 2c′

√
Kp + uw (21.35)

The water stress uw is obtained as follows:

uw = γwhp (21.36)

where γ w is the unit weight of water, hp is the distance from
the groundwater level to the point considered if there is no
flow, and hp is the pressure head obtained from a flow net if
there is flow.

Note that there is a big difference between the pressure
against a wall that has to retain a soil without water and the
pressure against a wall that has to retain a soil with a water
level at the ground surface. For example, if a wall is 3 m high
and retains a dry sand with a unit weight of 18 kN/m3 and
a friction angle of 30◦, the active earth pressure behind the
bottom of the wall will be:

σah = 3 × 18 × 0.33 = 18 kN/m2 (21.37)

However, if the water rises to the top of the wall, increasing
the unit weight of the soil to 20 kN/m3, and if the water stress
is hydrostatic, the active pressure behind the bottom of the
wall becomes:

σah = (3 × 20 − 3 × 10) × 0.33 + 3 × 10 = 40 kN/m2

(21.38)
As can be seen, the pressure doubles due to the presence of

the water. If we had assumed that no water could be present
and designed the wall for a factor of safety of 2, the wall
would have been close to failure when the water accumulated
behind it. It is extremely important to pay great attention to
water when designing retaining walls.

21.3.5 Water in the Case of Tension Stress
(Unsaturated or Saturated)

If the soil behind the wall is above the groundwater level,
the water is in tension and the soil is either saturated or
unsaturated. In both cases, the water stress uw is negative. This
increases the shear strength of the soil because it increases
the effective stress. Thus, one would expect the active earth
pressure to decrease and the passive earth pressure to increase.
Equations 21.34 and 21.35 become:

σah = σ ′
ovKa − 2c′√Ka + αuw (21.39)

σph = σ ′
ovKp + 2c′

√
Kp + αuw (21.40)

where α is the water area ratio, which can be estimated as
the degree of saturation S or by using the Khalili rule (see
section 10.13). Note that the term αuw is also embedded in
σ ′

ov. Regrouping gives:

σah = σovKa − 2c′√Ka + (1 − Ka)αuw (21.41)

σph = σovKp + 2c′
√

Kp + (1 − Kp)αuw (21.42)

Equations 21.41 and 21.42 show that water tension de-
creases the active earth pressure and increases the passive earth
pressure. However, it is very important to consider if the water
tension used in these equations will always be present or if it
is a seasonal occurrence. Furthermore, it would be uncommon
for the water tension to pull on the wall. In the case of unsat-
urated soils and for earth pressure calculations, it is therefore
prudent to consider that the water stress is equal to zero.

21.3.6 Influence of Surface Loading (Line Load,
Pressure)

Load is often applied at the top of a retaining wall
(Figure 21.13) either during construction (e.g., compaction
rollers) or after construction (e.g., bridge abutment, additional
fill). In the case of a pressure δp that covers the entire
surface area at the top of the retaining wall, the active and
passive earth pressures have an added term Ka
p and Kp
p
respectively. The reason is that the pressure 
p simply adds
to the total stress σ ov.

In the case of a line load Q (kN/m) parallel to the wall
crest and located at a perpendicular distance x from the wall,
the increase in horizontal stress against the wall at a depth z
below the top of the wall can be calculated by:


σh = 4Q

π

x2z

(z2 + x2)2
(21.43)

If the load is a point load P (kN) applied at a perpendicular
distance x from the wall, the maximum increase in horizontal
pressure against the wall at a depth z below the top of the
wall can be calculated by:


σh = P

π(z2 + x2)

(
3x2z(

z2 + x2
)3/2 − (z2 + x2)1/2(1 − 2ν)

(z2 + x2)1/2 + z

)
(21.44)

p (kN / m2)
Q (kN/m) P (kN)

Ka.p or Kp.p

Pressure Line load Point load

∆σh∆σh

Figure 21.13 Horizontal pressures due to surface loading.
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The values obtained from Eqs. 21.43 and 21.44 are added to
both the active earth pressure and the passive earth pressure.
Solutions for other surface loading can be found in the
Canadian Foundation Engineering Manual (2007) and the
AASHTO Bridge Specifications (2007).

21.3.7 General Case and Earth Pressure Profiles

In the general case, the total active and passive earth pressures
are given by:

σah = σ ′
ovKa − 2c′√Ka + 
σh + αuw (21.45)

σph = σ ′
ovKp + 2c′

√
Kp + 
σh + αuw (21.46)

where σ ah is the total active earth pressure on the wall at a
depth z below the top of the wall, σ ′

ov is the vertical effective
stress at depth z, Ka is the coefficient of active earth pressure,

σ h is the earth pressure due to surface loading, c′ is the
effective stress cohesion of the retained soil, α is the water
area ratio, uw is the water stress (tension or compression),
σ ph is the total passive earth pressure on the wall at a depth z
below the top of the wall, and Kp is the coefficient of passive
earth pressure.

These are the equations to use when calculating the active
or passive earth pressure against the wall at a chosen depth z
where σ ′

ov and 
σ h exist. Keep in mind that these pressures
or stresses may not be horizontal if the ground surface is not
horizontal, the back of the wall is not vertical, or the wall
friction is not assumed to be zero. A distinction is made in
this respect between Ka and Kah on the one hand and Kp and
Kph on the other (sections 21.3.1 and 21.3.2).

The next problem is to generate the complete profile of
pressure against the wall versus depth. This is done by
preparing a series of profiles using the following steps:

1. Profile of total vertical stress σ ov versus depth
2. Profile of water stress uw versus depth
3. Profile of water area ratio α versus depth
4. Profile of effective vertical stress (σ ′

ov = σ ov − α uw)
versus depth

5. Profile of effective horizontal stress (σ ′
ah = σ ′

ovKa −
2c′Ka

0.5) versus depth
6. Profile of horizontal stress due to surface loads (
σ ah)

versus depth
7. Profile of total horizontal stress (σ ah = σ ′

ovKa − 2c′Ka
0.5

+ 
σ ah + α uw) versus depth

Figure 21.14 shows an example of the series of profile
steps. The same sequence is followed for the passive earth
pressure profiles.

If the soil is layered, the earth pressure has to be calculated
twice at the depth of the layer boundary: once with the
upper-layer soil parameters and once with the lower-layer
soil parameters. As a result, there is typically a discontinuity
in the earth pressure profile at the boundary between two soil
layers (Figure 21.15).

s9ov s9ov s9ah Dsah saha
Q

uw

Figure 21.14 Series of profiles to generate earth pressure profile
versus depth.

sah1 5 Ka1s9ov 22c1   Ka11auwLayer 1
sand

Layer 2
sand

saH

sah2 5 Ka2s9ov 22c2   Ka21auw

Figure 21.15 Active pressures at a soil layer boundary.

21.4 SPECIAL CASE: UNDRAINED
BEHAVIOR OF FINE-GRAINED SOILS

As discussed in section 15.16, the equations for the undrained
behavior of a fine-grained soil can be obtained from the
effective stress equations by a simple transformation or cor-
respondence principle:

1. Effective unit weight becomes total unit weight

γeff → γt (21.47)

2. Effective stress becomes total stress

σ ′ → σ (21.48)

3. Effective stress cohesion becomes undrained shear
strength

c′ → su (21.49)

4. Effective stress friction angle becomes zero

ϕ′ → 0 (21.50)

Using this transformation on Eqs. 21.45 and 21.46, the
following equations are obtained for the undrained behavior
active and passive earth pressures:

σah = σov − 2su + 
σh (21.51)

σph = σov + 2su + 
σh (21.52)

where su is the undrained shear strength of the soil. These
equations tend to give active earth pressures that are too low
and passive pressures that are too high. One reason is that
they assume that the soil is uniform with no fissures.

These equations should be used with great caution and
proper judgment. For example, imagine that you have to
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design a wall for a clay that has an undrained shear strength
of 100 kPa and a unit weight of 20 kN/m3. Equation 21.51
says that no wall is needed until a depth of 10 m, as the
active earth pressure is negative down to that depth. Now
imagine that this clay has many fissures that are about 0.3
meters apart. The sample you tested was taken from one of
the blocks between fissures and gave 100 kPa for su, but the
soil mass is actually much weaker because of the fissures;
the sample strength is not representative of the mass strength.
If you dug a trench in such a material, it would be very
surprising if you could dig down to 10 meters without a
major collapse before that point. In contrast, if the material
is truly uniform with no fissures (very rare), the theory says
that you could dig to 10 m without support.

21.5 AT-REST EARTH PRESSURE

The at-rest earth pressure is the horizontal stress that exists
in the soil under geostatic stresses and without displacement.
The coefficient of at-rest earth pressure Ko is defined as:

Ko = σ ′
oh

σ ′
ov

(21.53)

where σ ′
ov and σ ′

ov are the horizontal and vertical effective
stresses respectively. Note that Ko is the ratio of the effective
stresses, not the total stresses; also, Ko does not involve the
cohesion c′, whereas the ratios Ka and Kp incorporate c′ in
their definition:

Ka = σ ′
ah

σ ′
ov

+ 2c′√Ka

σ ′
ov

(21.54)

Kp = σ ′
ph

σ ′
ov

− 2c′√Kp

σ ′
ov

(21.55)

Thus, it is theoretically possible for Ko to have values higher
than Kp and lower than Ka. For example, if σ ′

ph = 300 kPa,
σ ′

ov = 100 kPa, and c′ = 20 kPa, and if a high horizontal stress
at rest is locked up tectonically at the value of σ ′

ph, then Kp is
2.4 and Ko is 3.

In elasticity, the ratio of the horizontal stress to the vertical
stress for a condition with no lateral movement (at-rest
condition) is obtained in cylindrical coordinates from:

εh = 1

E
(σ ′

oh − ν(σ ′
ov + σ ′

oh)) = 0 (21.56)

where εh is the horizontal strain, E is a modulus of deformation
of the soil, and ν is Poisson’s ratio. Therefore

Ko = ν

1 − ν
(21.57)

A commonly used value of Poisson’s ratio for a drained
case is 0.33; then Ko is equal to 0.5. However, measured Ko
values have been reported in the range of 0.4 to more than 2.

A value of 2 would require a Poisson’s ratio equal to 0.67,
which is possible for soils that dilate during compression, a
well-known phenomenon. Such high Ko values are found in
cases where high horizontal stresses have developed during
geological events that densify or overconsolidate the soil.
They may also be generated during compaction of shallow
layers.

The coefficient of at-rest earth pressure is very difficult
to measure, essentially because any instrument placed in the
ground to measure Ko will create disturbance and change the
at-rest state of stress. The best measurements are thought to
be possible with a self-boring pressuremeter. However, even
the self-boring pressuremeter creates significant disturbance
due to shearing and side friction upon descent of the probe.
Furthermore, the choice of zero volume of the probe can
significantly affect the value of Ko obtained.

The early part of the preboring pressuremeter test offers
another way to obtain an estimate of the horizontal stress. As
the horizontal pressure applied by the pressuremeter probe on
the borehole wall is increased, it goes through the threshold
of pressure corresponding to the at-rest horizontal pressure.
The curved line that describes the horizontal pressure versus
increase in radius until the elastic portion of the curve is
reached could be used. A construction much like the Cas-
sagrande construction for the preconsolidation pressure in the
consolidation test would be needed, but calibration of such
an idea has not been performed.

The step blade test consists of pushing a series of flat
blades of increasing thickness into the soil while recording the
horizontal stress on each blade. The idea was to extrapolate
the horizontal stresses obtained on each blade back to a
blade with zero thickness so as to find the at-rest horizontal
stress. Although this idea was very clever, unfortunately the
superposition of a penetration event and a lateral expansion
event made the extrapolation unreliable.

One method consists of measuring the water tension de-
veloping in fine-grained soils upon extrusion of saturated
samples. When the saturated sample comes out of the sam-
pling tube, it decompresses and the total stress suddenly
becomes zero—but the sample cannot readily expand be-
cause of the low hydraulic conductivity, and the water goes
into tension to prevent any increase in volume. This results in
a transfer from the mean effective stress to the water tension.

Sample at depth z:

σmean = 1

3
(σ ′

ov + 2σ ′
oh) + uw (21.58)

Sample extruded:

0 = 1

3
(σ ′

ov + 2σ ′
oh) + uw or − uw = 1

3
σ ′

ov(1 + 2Ko)

(21.59)
Equation 21.59 shows that the water tension in the sample

is a function of the horizontal effective stress. Ko can then be
calculated knowing the vertical effective stress.
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A Ko triaxial test can be used to obtain a value of Ko. This
test consists of loading the sample vertically while increasing
the horizontal stress (cell pressure) independently and in such
a way that no lateral deformation will take place. During
the test, the water stress is measured and the ratio between
the horizontal effective stress (cell pressure minus water
stress) and the vertical effective stress gives the Ko value.
Alternatively, consolidometer tests with an instrumented ring
can be used to obtain a value of Ko. The metal ring in which
the sample is placed is instrumented with strain gages to
measure the hoop strain in the metal, thereby giving the hoop
stress that prevents lateral expansion. The radial stress is then
obtained as:

σoh = σθ t

r
(21.60)

where σ oh is the radial or horizontal stress exerted by the soil
on the metal ring that prevents expansion, σ θ is the hoop stress
in the metal obtained from the hoop strain measurements, t
is the thickness of the metal ring, and r is the radius of the
consolidometer. Knowing the vertical stress σ ov imposed on
the sample, and assuming that zero water stress is in the
sample at the end of consolidation, gives data to calculate Ko.
One of the difficulties with this approach is to ensure that the
strain gages are sensitive enough to detect the strain in the
metal ring under the relatively small radial stresses imposed
by the soil.

Many correlations have also been proposed. The first one
may be attributed to Jacky (1944), expressed as:

Ko = 1 − sin ϕ′ (21.61)

This equation was later revised to include the effect of
the overconsolidation ratio (OCR) for uncemented sands and
clays of low to medium sensitivity:

Ko = (1 − sin ϕ′)OCRsin ϕ′
(21.62)

where ϕ′ is the effective stress friction angle of the soil, and
OCR is the overconsolidation ratio, defined as the ratio of the
effective preconsolidation stress σ ′

p over the current effective
vertical stress. For clean quartz sand in chamber tests, Mayne
(2007a, b) proposed:

Ko = 0.192

(
qc

σa

)0.22(
σa

σ ′
ov

)0.31

(OCR)0.27 (21.63)

where qc is the CPT point resistance, σ a is the atmospheric
pressure, σ ′

ov is the vertical effective stress, and OCR is the
overconsolidation ratio.

21.6 EARTH PRESSURE DUE TO COMPACTION

When soil is compacted behind bottom-up walls, the com-
paction process induces horizontal stresses that are higher
than active earth pressures. This has been clearly documented

Roller

Roller

Roller

Figure 21.16 Compaction earth pressure during backfilling.

(Duncan and Seed 1986; Chen and Fang 2008). The com-
paction roller creates high vertical stresses, which in turn
create high horizontal stresses during compaction. Because
the soil does not return to an undeformed state after unloading
(not elastic), and because the soil locks in plastic strains after
unloading, high horizontal stresses remain after the roller
moves on. This horizontal prestressing is actually very bene-
ficial for improving the behavior of pavement base courses.
For retaining walls, this means that designing for the active
earth pressure case may not be prudent. At the same time,
the depth of influence of the roller is limited and after several
lifts of compaction have been completed the high stresses at
depth (Figure 21.16) become smaller than the at-rest stresses
at that depth.

The U.S. Navy (1982) made some recommendations for
earth pressures due to compaction, which, considering more
recent data, lead to the profile shown in Figure 21.17. The
pressure diagram starts at a slope equal to the passive earth
pressure coefficient. From the surface to a depth where the
horizontal pressure reaches the value σ h, the passive earth
pressure profile, Kpγ z, is used. Then the pressure remains
constant at a value of σ h equal to:

σh = L

a + L

√
2Pγ

π
(21.64)

where L is the length of the roller, a is the distance between
the edge of the wall and the closest roller position, P is the

At rest

Passive

P (kN/m)- Roller

d

a

z

sh

Figure 21.17 Wall pressure diagram including compaction
stresses. (After U.S. Navy 1982.)
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line load imposed by the roller (weight of the roller plus the
centrifugal force for vibratory rollers divided by the length
of the roller), and γ is the unit weight of the soil being
compacted. At a depth d, the pressure diagram joins the at-
rest earth pressure profile, Koγ z, which is used beyond that
point. That depth d is therefore equal to (Figure 21.17):

d = L

Ko(a + L)

√
2P

πγ
(21.65)

where Ko is the at-rest earth pressure coefficient.

21.7 EARTH PRESSURES IN SHRINK-SWELL
SOILS

When the backfill of a bottom-up wall or the soil behind a
top-down wall has a high plasticity index (Ip) or swell index
(Is), it is necessary to consider the soil shrink-swell behav-
ior in calculating the pressure diagram. Hong et al. (2010)
studied this issue and made the following recommendation
(Figure 21.18).

Three diagrams come into play in the resultant pressure
diagram (Figure 21.18): the passive earth pressure diagram,
the swell pressure diagram, and the at-rest earth pressure

Passive
pressure

Swell
pressure

At rest
pressure

Water
content

Figure 21.18 Wall pressure diagram including swelling pressure.
(After Hong et al. 2010.)

diagram. Both the passive and at-rest diagrams increase with
depth according to Kp and Ko respectively. The swell pressure
diagram, however, typically decreases with depth because the
overburden pressure increases with depth and limits the swell
pressure.

The pressure diagram starts at a slope equal to the pas-
sive earth pressure coefficient. Although the swell pressure
is higher than the passive pressure within that zone, the soil
fails in shear before it can reach the swell pressure. When the
passive pressure profile reaches the swell pressure profile, the
swell pressure limits the earth pressure against the wall and
the pressure diagram follows the swell pressure profile. When
the swell pressure profile reaches the at-rest pressure profile,
the at-rest pressure is maintained against the wall because the
swell pressure is smaller than that. As a result, the pressure
diagram switches to the at-rest pressure profile. The coeffi-
cients Kp and Ko have been discussed in previous sections.
The swell pressure profile can be obtained by performing
swell tests on samples from the retained soil.

21.8 DISPLACEMENTS

Figure 21.4 showed the general form of the earth pressure
σ h or p vs. displacement y curve. This curve, sometimes
called a P-y curve, represents the plane strain behavior of the
wall at a depth z. Figure 21.19 shows some values coming
from measurement and numerical simulations (Briaud and
Kim 1998). The vertical axis is a generalized earth pressure
coefficient K, which is discussed further in section 21.12, and
the horizontal axis is the horizontal displacement normalized
by the height of the wall.

The amount of movement necessary to generate the active
earth pressure σ ah is ya and the amount of movement neces-
sary to generate the passive earth pressure σ ph is yp. Table
21.1 shows some possible values of ya/H and yp/H (H is the
height of the wall) for different soil types. This means that if
the wall is high, it will take more movement to mobilize the
earth pressure than if the wall is low. The argument in favor
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Figure 21.19 Measured earth pressure coefficient versus normalized displacement of a wall
(Briaud and Kim 1998).
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Table 21.1 Possible Range of Displacement to Generate
Active and Passive Earth Pressures

Soil Type Active, ya/H Passive, yp/H

Loose sand 0.003 to 0.005 0.03 to 0.05
Dense sand 0.001 to 0.002 0.01 to 0.03
Soft clay 0.01 to 0.02 0.03 to 0.05
Stiff clay 0.005 to 0.01 0.01 to 0.03

of this concept is that if the wall is high, the earth pressure
wedge will be large and it will take more movement to com-
pletely fail the wedge of soil behind a high wall compared to
a low wall.

While it is clear that earth pressures depend on movement,
and while it is also clear that predicting movements is impor-
tant, our ability to make such predictions is not as good as our
ability to calculate foundation settlement. Often the design
of walls takes place solely on the basis of earth pressure
distributions (ultimate limit state) rather than a combination
of earth pressures and movements. Nevertheless, the trend
in practice is toward increased inclusion of movement cal-
culations in retaining wall design. Because the intact mass
is the one deforming during such earth pressure problems,
and because the overall strain level is quite small for well-
designed systems, small strain moduli are most useful and
can be obtained from cross hole sonic tests.

21.9 GRAVITY WALLS

Gravity walls are bottom-up walls usually made of reinforced
concrete (Figure 21.20). In the early days they were heavy,
massive blocks (concrete gravity wall), but such systems
were soon replaced by walls that use less concrete weight and
more backfill weight as dead weight to resist the soil push
(cantilever gravity walls). In cantilever gravity walls, the slab
under the retained portion of the backfill is subjected to the
backfill weight, which increases the sliding resistance and
the resistance to overturning. Cantilever gravity walls have
to be heavily reinforced, as a high bending moment develops
at the connection between the slab and the stem. The word
cantilever is also used for a type of top-down wall; this is

Concrete gravity Cantilever gravity

Figure 21.20 Types of gravity walls.

why the word gravity is added to cantilever to designate the
wall shown in Figure 21.20.

The geotechnical design of gravity walls consists of a
number of steps aimed at ensuring the safety (low probability
of failure) and functionality (low probability of intolerable
movements) of the wall. The purpose of the design is to satisfy
the ultimate limit state and the serviceability limit state of
the wall as it is subjected to the earth pressures behind the
wall and in front of the wall. For gravity walls, however, the
serviceability limit state is rarely addressed, as movements
are difficult to estimate and often small. The design steps
include estimating the pressure distribution behind the wall
(active pressure), the pressure distribution in front of the
wall (passive pressure), the resultant active force and its
location, the resultant passive force and its location, the
sliding ultimate limit state, the overturning ultimate limit
state, the bearing capacity ultimate limit state, the slope
stability ultimate limit state, and the settlement serviceability
limit state (rare). Figure 21.21 identifies the possible failure
modes for a gravity wall.

1. Active pressure behind the wall σ ah. For this, the steps
in section 21.3.7 are followed and the profile of total
active earth pressure is prepared. Special earth pressure
conditions, such as compaction stresses, stresses due to
shrink-swell soils, and stresses due to surface loading,
are considered in arriving at the design active pressure
diagram.

2. Passive pressure in front of the wall σ ph. This refers to
any embedded portion of the wall that could generate
a passive resistance. Here again, the steps of section
21.3.7 are followed and the profile of passive earth
pressure is prepared.

3. The resultant active push Pa (kN/m) is calculated
as the area under the active earth pressure diagram
(Figure 21.22):

Pa =
∫ z=H+D

z=0
σah dz =

n∑
i=1

Aai (21.66)

Overturning

Sliding

Bearing 
capacity

Slope

Figure 21.21 Failure modes.
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Figure 21.22 Forces acting on a gravity wall.

where σ ah is the horizontal active earth pressure at
depth z below the top of the wall, H is the height of the
wall, D is the embedded depth, and Aa is the area under
the active earth pressure diagram. If there is more than
one soil layer, Pa is given by the sum of the areas
Aai (corresponding to layer i) under the active pressure
diagram.

4. The resultant passive push Pp (kN/m) is calculated
as the area under the passive earth pressure diagram
(Figure 21.22):

Pp =
∫ z=D

z=0
σph dz =

m∑
i=1

Api (21.67)

where σ ph is the horizontal passive earth pressure at
depth z below the bottom of the wall, H is the height of
the wall, D is the embedded depth, and Ap is the area
under the passive earth pressure diagram. If there is
more than one soil layer, Pp is given by the sum of the
areas Api (corresponding to layer i) under the passive
earth pressure diagram.

5. The point of application of Pa is found by writing that
the moment around a chosen point (often the bottom of
the wall, O in Figure 21.22) created by the active earth
pressure diagram is the same as the moment created
by the resultant Pa:

Paxa =
∫ z=H+D

z=0
σah(H + D − z)dz =

n∑
i=1

Aaiaai

(21.68)
where xa is the moment arm of Pa, and aai is the
moment arm of the individual areas under the pressure
diagram corresponding to Aai. Of course, if the active
earth pressure diagram is a simple triangle, then xa is
0.33(H + D).

6. The point of application of Pp is found by writing that
the moment around a chosen point (often the bottom
of the wall, O in Figure 21.22) created by the passive

earth pressure diagram is the same as the moment
created by the resultant Pp:

Ppxp =
∫ z=D

z=0
σph(D − z)dz =

n∑
i=1

Apiapi (21.69)

where xp is the moment arm of Pp, and api is the
moment arm of the individual areas under the pressure
diagram corresponding to Api. Of course, if the passive
earth pressure diagram is a simple triangle, then xp is
0.33D.

7. Sliding ultimate limit state is checked by evaluating
the following equation:

γ1Pa1 + γ2Pa2 ≤ ϕ1W tan δ + ϕ2Pp (21.70)

where γ 1 is the load factor associated with the active
push Pa1 due to soil weight, γ 2 is the load factor
associated with the active push Pa2 due to surcharge,
ϕ1 is the resistance factor for the resistance to sliding
due to soil weight, ϕ2 is the resistance factor for the
resistance to sliding due to the passive earth pressure
in front of the wall, and δ is the friction angle for the
interface between the bottom of the wall and the soil
on which it rests. The angle δ is usually taken as equal
to the friction angle ϕ′ of the soil for rough interfaces.
The load factor γ 1 is typically taken as 1.5, and γ 2
as 1.75. The resistance factor for the sliding resistance
due to the weight of the wall is in the range of 0.8
to 0.9, whereas the resistance factor for the sliding
resistance due to the passive earth pressure is usually
around 0.5.

8. Overturning ultimate limit state is checked by eval-
uating the following equation related to the moment
around the front of the wall (point M in Figure 21.22):

γ1Pa1xa1 + γ2Pa2xa2 ≤ ϕ1Wxw + ϕ2Ppxp (21.71)

where γ a1, γ a2, Pa1, and Pa2 are as defined in step 7;
xa1, xa2, and xp are the moment arms of the forces
Pa1, Pa2 and Pp respectively; ϕ1 and ϕ2 are the same
resistance factors as in step 7; W is the weight of
the wall, and xw is the corresponding moment arm.
The values of the load and resistance factors for this
ultimate limit state are the same as the values for step 7.

9. Bearing capacity ultimate limit state is checked as a
shallow foundation subjected to the combination of W,
Pa, and Pp (see section 17.4). This combination leads
to the case of an inclined, eccentric load.

10. Slope ultimate limit state is checked in the same way as
a slope with a wall loading the soil surface (see Chapter
19). The load and resistance factors were presented in
section 19.2.

11. Serviceability limit state is usually not addressed in
current practice.
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The following comments may be made on the movement of
gravity walls. For gravity walls founded on competent soil, the
movement usually takes place by rotation around the bottom
of the wall (point O in Figure 21.22). Most of the horizontal
movement tends to occur during construction and corresponds
to the order of magnitude given in Table 21.1 for the active
case. Note that the main source of horizontal movement comes
from rotation of the base under the overturning moment.
Indeed, if the sliding ultimate limit state is satisfied, sliding
movement should be very small. Vertical settlement of the
wall will occur if the downdrag from the backfill and the high
stresses under the front edge of the wall due to the applied
moment compress the soil under the wall. Because this
compression is uneven, with more settlement under the front
edge, the wall will rotate with more horizontal movement
at the top. To this extent, the settlement factors giving the
settlement at the center and at the edge of the foundation
(see section 17.7 on the load settlement curve approach) can
be used to infer the rotation and movement of the wall. In
that respect it is useful to study the case of a foundation
subjected to a line load Q (kN/m) and an overturning moment
M (kN.m/m) (Figure 21.23). The eccentricity e of the load Q
is given by:

e = M

Q
(21.72)

The pressure diagram under the foundation is shown in
Figure 21.23. The maximum pressure pmax and minimum
pressure pmin under the foundation with a width B are given
by:

pmax = Q

B

(
1 + 6e

B

)
(21.73)
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Figure 21.23 Pressure under a gravity wall.

pmin = Q

B

(
1 − 6e

B

)
(21.74)

Equation 21.74 indicates that pmin becomes zero when the
eccentricity becomes equal to B/6. If pmin becomes zero, the
instability of the wall is more likely, as the foundation cannot
develop tensile resistance to overcome further increase in
eccentricity. As long as the point of application of the resultant
stays within a distance of B/6 from the axis of symmetry,
the wall is more likely to be stable and experience limited
movement. This is called the rule of the middle third as e
can be ± B/6. Note that the wall can also move in the other
direction (more horizontal movement at the bottom of the
wall) if a slope stability problem exists.

21.10 MECHANICALLY STABILIZED EARTH
WALLS

Mechanically stabilized earth (MSE) walls are bottom-up
walls made mostly of soil with some reinforcement. Henri
Vidal, a French engineer, is credited with inventing rein-
forced earth in 1957. This technology is to geotechnical
engineering what reinforced concrete is to structural engi-
neering. It consists of placing inclusions in the soil to give
it significant tensile strength. These walls were called re-
inforced earth walls in the beginning and are now called
mechanically stabilized earth walls (MSE walls). An MSE
wall is built by placing a layer of soil (say, 0.7 m thick), then
a layer of reinforcement, then a layer of soil, then a layer
of reinforcement, and so on until the desired wall height is
reached (Figure 21.24). Panels are placed in front of and
attached to the reinforcement for esthetic purposes and to
retain any soil that might fall between reinforcement layers
close to the front. The pressure on the panels is very small, as
most of the earth pressure is taken up by the reinforcement.
The reinforcement can be galvanized steel strips, steel grids,
or geosynthetics. The success of MSE walls is due to their
lower cost compared to cantilever gravity walls, particularly
for very high walls (Figure 21.25). Indeed, MSE walls built
to 50 meters in height have performed very well.

The design of MSE walls includes an external stability
design and an internal stability design.

21.10.1 External Stability

For this case, the MSE wall is considered to be a gravity
wall consisting of the front panels, the reinforcement, and
the soil between the reinforcement. This reinforced soil mass
(ABCD in Figure 21.24) is the gravity wall and has to satisfy
the design criterion of a gravity wall outlined in section 21.9.
These include the sliding ultimate limit state, the overturning
ultimate limit state, the bearing capacity ultimate limit state,
the slope stability ultimate limit state, and the settlement
serviceability limit state (rare). The design steps are identical
to the steps detailed in section 21.9.
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Figure 21.24 MSE wall. (Courtesy of The Reinforced Earth Company.)
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Figure 21.25 Cost of bottom-up walls (After Koerner and Soong
2001.)

21.10.2 Internal Stability

Pull-out capacity and yield of the reinforcement are the two
aspects of internal stability of an MSE wall. Let’s address
pull-out capacity first.

Pull-Out Design

This design consideration ensures that the load in the rein-
forcement will not be high enough to pull the reinforcement
out of the soil. An understanding of the load distribution in the
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Figure 21.26 Load in the reinforcement.

reinforcement is necessary. Figure 21.26 shows the variation
of the tension load T (kN) in the reinforcement as a function
of the distance from the front of the wall.

At the wall facing, the load T in the reinforcement is very
small, and then it increases as the instability of the wedge
of soil near the wall is transferred to the tension T (kN) in
the reinforcement. At a distance Lmax from the front, the
tension T reaches a maximum Tmax. Beyond Tmax, the tension
decreases as the load is transferred to the stable soil mass
and reaches zero at a certain distance from the front. The
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true embedment or anchoring length La available to resist the
active pressure force against the wall is L − Lmax where L
is the total length of the reinforcement. The design requires
knowledge of Lmax, which is to be ignored in the length
required to resist Tmax. Lmax is given in Figure 21.26; as can
be seen for rigid inclusions, it is equal to 0.3 H in the top half
of the wall and decreases to zero at the bottom of the wall. For
flexible inclusions (geosynthetics), it is taken as the width of
the active wedge. These recommendations are partially based
on measurement and simulation data.

The force Tmax is calculated as follows:

Tmax = svshσh (21.75)

where Tmax is the maximum line load (kN) to be resisted
by the layer of reinforcement at depth z, sv is the vertical
spacing between reinforcement layers at depth z, sh is the
horizontal spacing between reinforcement inclusions at depth
z, and σ h is the total horizontal stress at depth z. The stress
σ h is calculated as:

σh = krσov + 
σh (21.76)

where kr is a coefficient of earth pressure defined in Figure
21.27 as a function of Ka. The reason that kr is higher than Ka
for rigid inclusions is that during compaction of the backfill,
the rigid inclusions (e.g., steel strips) can lock in higher
horizontal stresses. Flexible inclusions (geosynthetics) do not
lock in additional compaction stresses. As a result, kr is equal
to Ka for flexible inclusions.

Now that we have calculated the load Tmax, we need to find
the length of reinforcement that will safely carry this load
without pulling out of the soil. The pull-out capacity Tpullout
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Figure 21.27 Earth pressure coefficient for load in the
reinforcement.

(kN) of the reinforcement inclusion is given by:

Tpull out = 2fmaxbLa (21.77)

where fmax is the maximum shear stress that can be developed
on both sides of the interface between the reinforcement and
the soil, b is the width of the inclusion, and La is the anchoring
length beyond Lmax, the width of the active failure zone. The
shear stress fmax is evaluated as follows:

fmax = F ∗σ ′
vα (21.78)

where F* is the friction factor given in Figure 21.28; σ′
v is the

vertical effective stress on the reinforcement; and α is a scale
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factor taken as 1 for steel reinforcement, 0.8 for geogrids,
and 0.6 for geotextiles. Note that although the recommended
F* values can be as high as 2 at the ground surface, values
of F* much higher than 2 have been measured. The reason
the coefficient of friction may be higher than 1 is that a
combination of friction and bearing capacity is involved in
the sliding-out of the reinforcement. The bearing capacity
component comes from the protruding ribs for strips and
from the transverse bars for grids.

Then the ultimate limit state for pull-out must be satisfied:

γ1Tmax 1 + γ2Tmax 2 = φTpull out (21.79)

where γ 1 is the load factor for the active earth pressure due
to soil weight (γ 1 = 1.35), γ 2 is the load factor for the active
earth pressure due to any surcharge on top of the wall (γ 2
= 1.50), ϕ is the resistance factor (ϕ = 0.9), Tmax1 is the
part of the load in the reinforcement due to the soil weight,
Tmax2 is the part of the load in the reinforcement due to
any surcharge on top of the wall, and Tpullout is the pull-out
resistance calculated in Eq. 21.77. The required safe length
La of the reinforcement is given by:

La = (γ1krσ
′
ov + γ2
σh)svsh

2ϕF ∗ σ ′
ovαb

(21.80)

The total length L of the reinforcement is largest at the top
of the wall, but because it is common practice to keep the
reinforcement length L constant, L is given by:

L = La + Lmax = (γ1krσ
′
ov + γ2
σh)svsh

2ϕF ∗ σ ′
ovαb

+ 0.3H

(21.81)
In the simple case, where kr = Ka = 0.33, there is no

surcharge, sv and sh are 0.75 m, F* is 1, α is 1, and b is
0.05 m, then the length La is 2.8 m and independent of the
wall height H. The reason is that the vertical stress contributes
equally to the load and the resistance. The total length of
reinforcement is L = 2.8 + 0.3H, where H is the height of the
wall. For a 7 m high wall (common case of an overpass), L
is approximately 0.7H, which is a common recommendation.
For higher walls, the 0.7 H rule is conservative, and for
smaller walls a minimum of about 3 m reinforcement length
is imposed.

Yield of the Reinforcement Design

We need to make sure that the reinforcement can safely carry
the load Tmax without yielding or rupturing. For this, we write
the ultimate limit state as:

γ1Tmax 1 + γ2Tmax 2 = φTyield (21.82)

where γ 1 is the load factor for the active earth pressure due
to soil weight (γ 1 = 1.35), γ 2 is the load factor for the active
earth pressure due to any surcharge on top of the wall (γ 2 =
1.50), ϕ is the resistance factor (ϕ = 0.75 for strips, 0.65 for

Table 21.2 Characteristics of
Nonaggressive Soils for Corrosion

pH 5 to 10
Resistivity >3000 Ohm.cm
Chlorides <100 ppm
Sulfates <200 ppm
Organic content <1%

(After AASHTO 2007.)

grids, and 0.9 for geosynthetics), Tmax1 is the part of the load
in the reinforcement due to the soil weight, Tmax2 is the part
of the load in the reinforcement due to any surcharge on top
of the wall, and Tyield is the load corresponding to the yield
strength of the reinforcement. Tyield for steel reinforcement is
given by:

Tyield = σyieldA (21.83)

where σ yield is the yield strength of the reinforcement and A
is the cross-sectional area.

For geosynthetics, see section 27.6.2. For steel reinforce-
ment, one issue is corrosion. This is addressed by using a
thickness larger than required by the ultimate limit state for
yield. Corrosion rates for nonaggressive soils are in the range
of 0.005 to 0.015 mm/yr (AASHTO 2007). This means that
a 1 mm excess thickness corresponds to a typical 75-year de-
sign life. Nonaggressive soils are recommended for backfill
and are defined in Table 21.2.

Movement

The movement of MSE walls is not typically calculated. If
necessary, the settlement should be checked according to the
procedures outlined in sections 17.7 and 17.8 and discussed
in section 21.9, design step 11. The maximum horizontal
movement 
max of MSE walls during construction can be
estimated for normal conditions and little or no surcharge as
follows:

For rigid inclusions 
max = 0.004Hδr (21.84)

For flexible inclusions 
max = 0.013Hδr (21.85)

where H is the height of the wall and δr is given in Figure
21.29.

21.11 CANTILEVER TOP-DOWN WALLS

Cantilever walls are top-down walls, though they are some-
times confused with cantilever gravity walls. They are made,
for example, of bored piles drilled side by side or sheet pile Z
sections driven side by side (Figures 21.30 and 21.31). They
can be used to retain soil up to a height of about 7 m; beyond
that height anchored walls are more economical. The design
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Figure 21.30 Cantilever top-down wall.

of such walls consists of satisfying the ultimate limit state
(safety) and the serviceability limit state (limited movement).
The parameters to be selected in the design are the depth
of embedment D and the section of the wall to resist the
maximum bending moment.

21.11.1 Depth of Embedment and Pressure Diagram

The pressure diagram is the first step. It is assumed that the
wall will move into the excavation by an amount sufficient
to generate the active earth pressure behind the wall, and that
part of the passive earth pressure will be generated in front of
the wall to resist the push (Figure 21.32). Of course, both the
active push and the passive resistance depend on the depth of
embedment D.

In the simplest case (no water, no surcharge, one uniform
soil with no cohesion), the active push Pa (kN/m) is:

Pa = 1

2
Kaγ (H + D)2 (21.86)

where Ka is the active earth pressure coefficient, γ is the unit
weight of the retained soil, H is the excavation height, and D
is the depth of embedment. On the passive side, the passive

pressure diagram is truncated at a depth where the passive
pressure reaches half of the passive pressure at the embed-
ment depth. This is done to acknowledge that the movement
decreases with depth and may not be sufficient to generate the
complete passive pressure at depth. This assumption brings
into play the concept of both safety and serviceability, al-
though it does not address that concept directly. As a result,
the mobilized passive resistance Ppm is given by:

Ppm = 3

8
KpγD2 (21.87)

The point of application of Pa and Ppm are at a distance Xa
and Xpm from the bottom of the wall respectively:

Xa = 1

3
(H + D) (21.88)

Xpm = 7

18
D (21.89)

Now we might be tempted to write horizontal equilibrium
and we would find a depth D. The problem is that, even
if we satisfied Pa = Ppm, the wall still could not be in
moment equilibrium. For moment equilibrium to be satisfied,
a force R is necessary at the bottom of the wall, and comes
from the deflection pattern (Figure 21.32). By writing moment
equilibrium around the bottom of the wall, we get the equation
that leads to the value of D:

PaXa − PpmXpm = 0 (21.90)

or
D = H(

7

8

Kp

Ka

)0.33

− 1

(21.91)

For a common ratio of Kp/Ka equal to 10, then:

D ≈ H (21.92)

This result shows that cantilever walls need an embedment
at least equal to the excavation height. More detailed analysis
shows that D = 1.2H is more appropriate as a minimum
for a uniform soil. Of course, more complex soil layering,
surcharge, and water conditions will lead to a different result.

21.11.2 Displacement of the Wall, Bending Moment,
and P-y Curves

The calculations shown in section 21.11.1 can give an estimate
of the embedment depth D. Then the horizontal displacement
of the wall and bending moment profile in the wall can be
calculated by using a P-y curve analysis (see sections 18.6.8
and 11.4.4). The parameter P represents the load on the wall
at depth z and the parameter y represents the horizontal deflec-
tion of the wall from the unloaded position. In the P-y curve
analysis, a repeatable width of wall, usually one meter width,
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Plan view

Plan view

Figure 21.31 Bored piles and sheet pile cantilever walls. (d: Courtesy of Associated Pacific
Constructors, Inc.)
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Figure 21.32 Simple approach for cantilever walls.

is simulated as a structural member and the soil mass is sim-
ulated by a series of nonlinear springs (P-y curves) tied to the
wall and describing the response of the soil to the wall deflec-
tion. The first step in this analysis problem is to discretize the
wall into elements (Figure 21.33); a minimum of 10 elements
is recommended. The input to the problem includes.

1. Length of the wall (excavation height H plus depth of
embedment D).

2. Length of the elements (
H < (H + D)/10).

3. Bending stiffness EI of the wall (E modulus of elasticity,
I moment of inertia) for the cross section corresponding
to the repeatable wall section. This is usually a one meter
width for continuous walls or the section tributary to
one pile if a line of pile is involved.

4. P-y curves as a function of depth (one curve at each
node).

The governing differential equation (GDE) and its finite
difference method (FDM) solution are described in section

Node
numbers

22

n 2 1

n 1 1

Dh

n 1 2

n

21
0
1
2

Figure 21.33 Cantilever wall discretized into elements.
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Figure 21.34 P-y curves for a cantilever top-down wall.

11.5.2 with a solved example. The P-y curves are constructed
as follows (Figure 21.34). Above the excavation level in the
retained soil zone, the soil is on only one side of the wall and
the P-y curve is as shown in Figure 21.34. In that zone, if
the wall moves toward the soil (y < 0), the P value increases
from the Po value corresponding to the at-rest earth pressure
to the Pp value corresponding to the passive earth pressure
when a displacement yp is reached. In all cases the P values
are given by:

P = σh × b × 
h (21.93)

where σ h is the horizontal stress (obtained as discussed in
the previous sections in this chapter), 
h is the wall element
length (vertical), and b is the width of the repeatable section
(horizontal). The displacement yp can be estimated by using
Table 21.1. In the retained soil zone, the soil pushes in the
chosen positive direction; therefore P is positive. In that zone
also, if the wall moves away from the soil, the P value
decreases from the Po value corresponding to the at-rest earth
pressure to the Pa value corresponding to the active earth
pressure. The soil still pushes in the positive direction.

Below the excavation level, the soil is on both sides of the
wall and there are two P-y curves: one for the retained soil
side (Side 1 in Figure 21.34) and one for the retaining soil
side (Side 2 in Figure 21.34). The P-y curve on Side 1 is
similar to the one above the excavation except that the values
of P are higher, because the depth is larger. The P-y curve
on Side 2 is prepared as follows. If the wall moves toward
Side 1 (y < 0), the magnitude of the P value decreases from
the Po value corresponding to the at-rest earth pressure to the
Pa value corresponding to the active earth pressure. Because
the soil pushes in a direction opposite to the chosen positive
direction, P is negative. If the wall moves toward Side 2
(y > 0), the magnitude of the P value increases from the Po
value corresponding to the at-rest earth pressure to the Pp
value corresponding to the passive earth pressure. Because
the soil pushes in a direction opposite to the chosen positive
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Figure 21.35 Combining P-y curves below the excavation level.

direction, P is negative. The net P-y curve for the zone below
the excavation level is constructed by combining the two
curves for Side 1 and Side 2 (Figure 21.35).

Note that this P-y curve preparation is done for each node
along the discretized wall. Then a finite difference program
or spreadsheet is used and the solution gives the following
parameters as a function of depth: wall deflection y(z), slope
of the wall y′(z), bending moment in the wall M(z), shear
force in the wall V(z), and pressure on the wall p(z). Sample
outputs are shown in Figures 21.36 and 21.37. The deflection
profile predicted by this method tends to underpredict the
deflections observed in practice. The reason is that the mass
movement of the retained soil is not included in the P-y
curve in a theoretically sound manner. However, the bending
moment profile predicted by this method and the maximum
bending moment for design are much more consistently reli-
able than any hand calculation based on an assumed pressure
distribution, such as shown in Figure 21.32 (Briaud and Kim
1998). For improved prediction of deflections including mass
movement, the finite element method should be used; never-
theless, a problem remains concerning the quality of the input
parameters and the selection of the soil model.

21.12 ANCHORED WALLS AND STRUTTED
WALLS

Anchored walls (or tieback walls) and strutted walls are top-
down walls (Figure 21.38). The wall portion may be a solid
concrete wall built by the slurry wall method, a sheet pile
wall, a bored pile wall, a deep soil mixing wall, or a soldier
pile and lagging wall, to name a few. Concrete slurry walls
are built by excavating the soil one rectangular panel at a time
with a clamshell rig and under slurry if necessary, lowering
the reinforcing cage into the slurry-filled hole, and placing
the concrete in liquid paste through a tremie (tube that goes
to the bottom of the hole) from the bottom of the panel to
the top while displacing the slurry out of the rectangular hole
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et al. 1983).

(Figure 21.38). Bored pile walls and sheet pile walls were
discussed in section 21.11. In this section they are anchored
to be able to retain larger depth of soil. Deep soil mixing
walls are like bored pile walls except that the bored piles
are drilled by mixing the soil with about 20% cement; the
resulting piles are not as strong, but they are less expensive.
Soldier pile and lagging walls are constructed by driving or
drilling piles in line on a 2 to 3 meter spacing and excavating
in front of this line of piles while placing wood lagging to
retain the soil between piles. Anchored and strutted walls are

very convenient in tight settings like urban areas because they
do not require much space for construction. On the one hand,
struts clutter the excavation; on the other hand, anchors may
hit underground utility lines.

The design of anchored walls and strutted walls includes
many parts, with the main ones being estimating the pressure
distribution behind the wall, calculating the anchor or strut
loads, calculating the maximum bending moment in the
wall, estimating the horizontal and vertical movements, and
calculating the necessary length of anchors.

21.12.1 Pressure Distribution

Consider the pressure distribution behind a cantilever top-
down retaining wall with the active pressure on the retained
side (Figure 21.32). If you install an anchor within the
excavated depth to hold the wall back, and if you stress
that anchor in tension, the anchor head (plate) is going to
press against the wall while you pull on the tendon, thereby
increasing the local pressure (Figure 21.39). As a result, the
pressure behind the anchor will be higher than the active
pressure and will correspond to the prestressing load of the
anchor or the strut.

It is very common to stress all the anchors to the same
load, so that the pressure behind the wall in the retained soil
depth (above excavation level) is nearly constant and equal
to the sum of the anchor loads divided by the retained soil
area. This is what led Terzaghi et al. (1996) to recommend a
constant pressure diagram for strutted walls. Based on full-
scale measurements, they recommended pressure diagrams
for sand, for soft to medium clays, and for stiff fissured clays
(Figure 21.40). The maximum total pressure σ h is as follows:

For sands σh = 0.65K0σ
′
ov + uw (21.94)

For soft to medium clays σh = γ H − 4 msu (21.95)

For stiff fissured clay σh = 0.2γ H to 0.4γ H + uw(?)

(21.96)

where Ka is the coefficient of earth pressure at rest, σ ′
ov is the

effective vertical stress on the retained soil (sand) side at the
bottom of the excavation, γ is the total unit weight of the
clay, H is the height of the excavation, su is the clay undrained
shear strength, and m is a parameter that depends on the depth
of the soft to medium clay layer below the excavation. It is
taken as equal to 1 if the soft to medium clay layer stops at
the bottom of the excavation, and as equal to 0.4 if the clay
layer goes much deeper than the bottom of the excavation.
Note that for sand, the analysis is an effective stress analysis
and the water pressure must be added if water is present. For
soft to medium clay, the analysis is an undrained analysis
and the water pressure is included in γ H. For stiff fissured
clays, the coefficient 0.2 would correspond to less fissured
clays and 0.4 to more fissured clays. Also, if the fissures are
large enough that water will exert pressure on the wall, the
water pressure must be added.
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(d) Deep soil mixing wall (e) Soldier pile and lagging wall (f) Strutted wall

(a) Slurry wall digging the wall (b) Slurry wall lowering cage (c) Slurry wall final with anchors

(g)

Figure 21.38 Various anchored and strutted wall techniques. (a, b, c, d: Courtesy of Nicholson
Construction; e, f, g: Courtesy of Schnabel Foundation Company.)

21.12.2 Pressure vs. Movement

Briaud and Kim (1998) collected a number of full-scale
case histories on anchored walls and performed numerical
simulations. For the case histories, the anchor loads were
known, as were the horizontal deflections of the wall. The
mean pressure σ h behind the wall was calculated as the ratio
of the sum of the individual anchor loads Fi divided by the
total wall area A of soil retained by the anchors:

σh =

n∑
i=1

Fi

A
(21.97)

The mean pressure σ h behind the wall was associated
with the horizontal movement at the top of the wall utop
and the mean horizontal deflection umean. Note that one case
history led to more than one combination of pressure and
displacement, as the construction sequence included several
excavation levels and several anchor installations. The earth
pressure coefficient K was calculated as the ratio of the mean
pressure σ h over the vertical effective stress behind the wall
at the bottom of the excavation:

K = σh

σ ′
ov(at z = H)

(21.98)
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Figure 21.39 Influence of anchor stressing on pressure diagram.

Figure 21.41 shows the range of values of K versus utop/H
and K versus umean/H.

Terzaghi and Peck’s earth pressure value of 0.65Kaγ H for
strutted excavations in sand leads to a K value of 0.21 if
the friction angle is 30◦ (Ka = 0.33). For a K value of 0.21,
Figure 21.41 gives a range of utop/H from 0.002 to 0.0045
and umean/H from 0.0015 to 0.0035. However, in the case of
anchored walls, the engineer can choose the wall deflection
by choosing the anchor loads. Indeed, if the anchor loads
are very high, the wall could actually move back and go
into passive resistance. In contrast, if the anchor loads are

very low, there will be a lot of wall deflection toward the
excavation. Figure 21.41 helps the engineer to select a K
factor that will generate a targeted amount of wall movement.
It appears that a K value of about 0.4 will lead to minimal
displacements. For a given wall height H and for a chosen
horizontal displacement utop or umean, the total earth pressure
σ h at depth z is calculated according to:

σh = Kσ ′
ov(at z = H) + uw (21.99)

where K is read on Figure 21.41 at the corresponding relative
displacement, σ ′

ov is the vertical effective stress at the bottom
of the wall, and uw is the water pressure at depth z. Note that
the term Kσ ′

ov is a constant independent of depth, whereas uw
increases with depth (Figure 21.42).

21.12.3 Base Instability

In the case of clays, one concern is an inverted bearing
capacity failure. In the case of sands, the concern is a loss
of effective stress and the development of a quick condition
at the bottom of the excavation. In clays, the bottom of the
excavation may be unstable if the soil is not strong enough
to sustain the lack of overburden on the excavated side. The
factor of safety F against base instability is (Figure 21.43):

F = Ncsu

σov(at z = H)
(21.100)

where Nc is a bearing capacity factor for a strip footing (Figure
17.7), su is the undrained shear strength, and σ ov(at z = H) is
the vertical total stress behind the bottom of the wall.

Sands Soft to medium
clays

Stiff fissured
clays

H

0.65Kas9ov

s9ov

uw

0.75H

0.25H 0.25H

0.50H

0.25H

gH-4mSu 0.2gH to 0.4gH

Figure 21.40 Pressure distribution for strutted walls. (After Terzaghi et al. 1996.)
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21.12.4 Movement of Wall and Ground Surface

The general shape of the deformed wall and adjacent ground
surface has two components (Figure 21.44): a cantilever
movement and a movement associated with deep deforma-
tions. The first one is associated with the lack of lateral
support leading to the soil mass leaning into the excavation,
and the second with the slope stability/bearing capacity type
of deformation deeper in the soil mass. Predicting these dis-
placements is not simple. Peck (1969) collected data on the
movement of the ground surface near excavations and pre-
sented it in a very useful fashion (Figure 21.45). Peck divided
the behavior according to soil type and to the value of the
factor of safety F against base instability. He showed that the

maximum settlement of the top of the wall can reach 0.01 H
for excavations in sand or in soft to hard clay, it can reach
0.02 H for soft clays when F is larger than 1.3, and it can
be larger than 0.02 H for soft clays when F is less than 1.3.
Regarding the lateral extent over which the ground surface
would be depressed, Peck found that it could be up to 2 H for
excavations in sand or in soft to hard clay, it could be up to 4
H for soft clays when F is larger than 1.3, and larger than 4
H for soft clays when F is less than 1.3.

Clough and O’Rourke (1990) collected additional data and
revised Peck’s plots accordingly (Figure 21.46). In their work,
Clough and O’Rourke also proposed a method to predict the
maximum lateral movement of the wall depending on the
relative stiffness L of the wall and the factor of safety F

(a) Cantiliver movement
curve 1

(b) Deep inward movement
curve 2

(c) Cumulative movement
curve 3

Horizontal
displacement

Vertical
displacement

Figure 21.44 Components of excavation movements.
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against base instability (Figure 21.47). The relative stiffness
L(m) is defined as:

L = EI

γ h4
(21.101)

where E is the modulus of elasticity of the wall material, I
is its moment of inertia around the bending moment axis, γ

is the unit weight of the soil, and h is the average vertical
distance between anchors. For a given case, the relative
stiffness L and the factor of safety for base instability are
defined, the correct curve on Figure 21.47 is selected, and
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movement. (After Clough and O’Rourke 1990)

the corresponding ratio between the maximum horizontal
deflection and the excavation height is read on the vertical
axis. In general, the vertical and horizontal displacements
of excavations are on the same order of magnitude unless
the soil is very dilatant or collapsible. Some of the ways to
decrease movements are to place the first anchor as shallow
and as early as reasonably possible and to use high anchor
loads (K = 0.4 in Figure 21.41).

21.12.5 Anchors

Anchors can be constructed in different ways, but the most
common way (Figure 21.48) is to drill a hole through the
wall when the anchor depth is reached, insert a rod or
multiple-strand cable in the open hole with centralizers, fill
the hole with grout, wait for the grout to set, then tension the
anchor, subject it to a proof test, and then lock the anchor
at the design load. Sometimes a second injection of grout is
performed through tubes left in place during the first injection
to increase the anchor capacity. The rod or strand is in a bond-
breaking sheath from the anchor head to a certain distance
called the tendon unbonded length Lu. The sheath stops at Lu;
the rest of the rod or strand is barren and is called the tendon
bond anchor length Lb. The length of the anchor in the active
wedge is called the discounted anchor length Ld. The rest
of the anchor is called the anchor bond length La. The total
length of the anchor is Lt:

Lt = Lu + Lb = Ld + La (21.102)

The length Ld is taken as the length of the anchor within
the active wedge behind the wall (Figure 21.48). An example
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Unbondedlength (L
u)

Sheath

Figure 21.48 Anchor or tieback.

of load distribution in the anchor under tension is shown
in Figure 21.49. A long unbonded length is best for an-
chors in tension because it maximizes the length of grout in
compression (Briaud et al. 1998).

The design of anchors or tiebacks has two parts: calculating
the anchor loads and calculating the required anchor capacity
and associated length. The anchor load is determined by using
the tributary method. Once the pressure diagram is obtained
(Figure 21.42), the horizontal component Ahi of the load in
anchor i is obtained by using the part of the pressure diagram
tributary to anchor i. For example, the tributary area of the
pressure diagram in Figure 21.42 for anchor 2 is CKLE. The
expression is:

Ahi = pi

(
hi

2
+ hi+1

2

)
sh (21.103)

where Ahi is the horizontal component of the anchor load Ai,
pi is the mean pressure behind the wall within the tributary
depth, hi is the anchor spacing above anchor i, hi+1 is the
anchor spacing below anchor i, and sh is the anchor spacing
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Figure 21.49 Example of load distribution in an anchor (Briaud et al. 1998).
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Ground surface
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Figure 21.50 Anchor load components.

in the horizontal direction. Equation 21.103 applies to all
anchor loads except the top anchor, where it becomes:

Ah1 = p1

(
h1 + h2

2

)
sh (21.104)

Often the anchor is not horizontal, but rather inclined at an
angle α to the horizontal (15◦ to 30◦). Thus, the anchor load
Ai is (Figure 21.50):

Ai = Ahi

cos α
(21.105)

Once the anchor load is determined, the anchor resistance
and length can be calculated. The LRFD equation gives:

γA1 = ϕR1 (21.106)

where γ is the load factor (γ = 1.35), Ai is the anchor load, ϕ
is the resistance factor, and Ri is the ultimate resistance of the
anchor. If anchors are not proof tested, then ϕ is between 0.35
and 0.45. However, all anchors are usually proof tested and
therefore there is little uncertainty as to the anchor capacity;
in that case a resistance factor close to 1 can be used.

Once Ri is obtained, the length of anchor necessary to
obtain Ri is calculated. The design is very similar to the case
of a pile in tension, and Ri is given by:

Ri = πDLafmax = FmaxLa (21.107)

where D is the diameter of the anchor, La is the anchor bond
length, fmax is the shear strength of the soil-grout interface,
and Fmax is the maximum load that can be resisted per unit
length of anchor. The parameter fmax is estimated as follows
for various soils:

For sand and gravel fmax = αsσ
′
ov with αs from Table 21.3

(21.108)

For silts and clays fmax = αcsu with αc from Figure 21.51
(21.109)

Tables 21.4, 21.5, and 21.6 present some presumptive
values of fmax as recommended by AASHTO (2007). Fur-
thermore, the values of Fmax in Table 21.7 can be used for
anchors satisfying the following criteria:

• Diameter between 150 to 200 mm
• Grout pressure of about 1000 kPa

Table 21.3 Values of αs Anchorage Factor for Sand and
Gravel

Relative Density

Soil Type Loose Medium Dense

Silt 0.1 0.4 1.0
Fine sand 0.2 0.6 1.5
Medium sand 0.5 1.2 2.0
Coarse sand, gravel 1.0 2.0 3.0

(Canadian Foundation Manual 2007.)
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Figure 21.51 α factor for grouted anchors in clay (Briaud et al.
1998).

• Center-to-center spacing vertically and horizontally
larger than 4 anchor diameter D

Design rules based on pressuremeter data for calculating
the ultimate resistance of anchors also exist (Briaud 1992).
These rules, established by the LCPC in France, make a
distinction between several construction techniques for the
anchors.

Typically, all anchors are tested after installation and curing
time. These tests include proof tests, performance tests, creep
tests, and 70-day load-hold tests (Briaud et al. 1998). The
proof test is the most common and consists of increasing
the load in steps up to 1.33 times the design load. In the
United States, anchors are accepted if the creep movement
at that load is less than 2 mm per log cycle of time. This
creep movement is due to the creep in the steel tendon, the
progressive cracking of the grout in tension, and the creep of
the soil in shear. The loading history for the proof test and
the result of a test are shown in Figure 21.52.

21.12.6 Embedment Depth and Downdrag

Another issue to be addressed is the embedment depth below
the excavation level. You might think that the anchored wall
would not need much embedment, since the anchors hold
the soil back. The following reasoning shows the danger of
having very little embedment (Briaud and Lim 1999).
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Table 21.4 Presumptive fmax Values for Fine-Grained Soils

Shear Strength of
Anchor Type Shear Strength of Soil Soil-Grout Interface
(Grout Pressure) Soil Type su (kPa) fmax (kPa)

Gravity grouted
anchors (< 350 kPa)

Silt-clay mixtures Stiff to very stiff
50 to 200 kPa

30 to 70 kPa

Pressure grouted
anchors (350 to

High-plasticity clay Stiff (50 to 120 kPa)
Very stiff (120 to 200 kPa)

30 to 100 kPa
70 to 170 kPa

2800 kPa) Medium-plasticity
clay

Stiff (50 to 120 kPa)
Very stiff (120 to 200 kPa)

100 to 250 kPa
140 to 350 kPa

Medium-plasticity sandy silt Very stiff (120 to 200 kPa 280 to 380 kPa

(After AASHTO 2007)
Table 21.5 Presumptive fmax Values for Coarse-Grained Soils

Relative Density and Shear Strength of
Anchor Type SPT N Value Soil-Grout Interface
(Grout Pressure) Soil Type N (blows/0.3 m) fmax (kPa)

Gravity grouted
anchors (< 350 kPa)

Sand or sand/gravel
mixtures

Medium dense to dense
(N = 10 to 50)

70 to 140 kPa

Pressure grouted anchors
(350 to 2800 kPa)

Fine to medium sand Medium dense to dense
(N = 10 to 50)

80 to 380 kPa

Medium to coarse
sand with gravel

Medium to dense
(N = 10 to 30)
Dense to very dense
(N = 30—50+)

110 to 670 kPa
250 to 950 kPa

Silty sand 170 to 400 kPa

Sandy gravel Medium dense to dense
(N = 10 to 40)
Dense to very dense
(N = 40 to 50+)

210 to 1400 kPa
280 to 1400 kPa

Glacial till Dense (N = 30 to 50) 300 to 520 kPa

(After AASHTO 2007)

Table 21.6 Presumptive fmax Values for Rock

Shear Strength of
Rock Type Soil-Grout Interface

Soft shale 200 to 800 kPa
Weathered sandstone 700 to 800 kPa
Sandstone 800 to 1700 kPa
Slate and hard shale 800 to 1400 kPa
Soft limestone 1000 to 1400 kPa
Dolomite limestone 1400 to 2100 kPa
Granite or basalt 1700 to 3100 kPa

(After AASHTO 2007)

When the excavation takes place, the soil mass behind the
wall tends to move toward the excavation and downward
(Figure 21.53). The downward movement drags the wall
down, and if the embedment is insufficient, the downward
movement can be significant. Even if the anchors are per-
forming well, the wall can rotate; indeed, the anchors keep
the soil from moving horizontally but not vertically. This
rotation will generate horizontal movement as well. There-
fore, to minimize horizontal movement, it is necessary to
have well-designed anchors and a well-designed embedment
depth to resist downdrag and the vertical component of the
anchor loads.

The embedment depth must also resist the unbalanced
lateral load from the bottom of the pressure diagram. This is
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Table 21.7 Values of Anchor Load Transfer Capacity

Soil or Rock Type Strength (SPT N Values) Estimated Load Transfer (kN/m)

Sand and gravel Loose (N = 4 to 10)
Medium (N = 10 to 30)
Dense (N = 30 to 50)

145
210
290

Sand Loose (N = 4 to 10)
Medium (N = 10 to 30)
Dense (N = 30 to 50)

100
145
190

Sand and silt Loose (N = 4 to 10)
Medium (N = 10 to 30)
Dense (N = 30 to 50)

75
100
130

Low-plasticity silt and clay Stiff (N = 10 to 20)
Hard (N = 20 to 40)

30
60

Soft shale 145
Slate and hard shale 360
Soft limestone 430
Sandstone 430
Dolomite limestone 580
Granite or basalt 730

(Canadian Foundation Engineering Manual 2007; FHWA 1984)
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Figure 21.52 Loading history for an anchor proof test
(Briaud et al. 1998).

area GMNH in Figure 21.42. The depth of embedment for
lateral resistance is obtained by designing the bottom part of
the wall (GHI in Figure 21.42) to resist the pressure from
areas GMNH and HOPI with the factored passive resistance
SHIQR. This design follows the approach described for the

Ground level

Excavation 

level

CompressionTension

Anchor head
movement

Vertical
settlement

u
u

Horizontal movement
due to settlement

Mass 
movement

Figure 21.53 Downdrag creates horizontal movement
(Briaud and Kim 1998).

cantilever top-down wall. As a guide, the depth of embedment
required for lateral resistance is on the order of 1.5 times the
distance GH. The downdrag design requirement may be
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Figure 21.55 Anchor P-y curve (Briaud and Kim 1998).

larger (see section 18.6). Note that two cases occur for the
embedment depth: the case where the wall is continuous
below the excavation level (e.g., slurry wall, sheet pile wall),
and the case where only a row of piles exists below the
excavation level (e.g., soldier pile and lagging wall). The
depth of embedment of a system using a row of piles will
have to be larger than that of a continuous wall system.

21.12.7 P-y Curve Approach and FEM Approach

The P–y curve approach described in section 21.11 is also
applicable to anchored walls, and represents the best way to
obtain the bending moment versus depth profile for the wall
(Briaud and Kim 1998). In the process of preparing the P-y
curves, it is possible to follow the construction sequence as
shown in Figure 21.54. The anchors must have their separate
P-y curves, as shown in Figure 21.55. A sample result for
the P-y curve approach is shown in Figure 21.56. This is a
comparison between the P-y curve predictions and the ac-
tual measurement for a full-scale instrumented wall at Texas
A&M University (Figure 21.57). The P-y curve approach is
not as reliable for predicting movements as it is for predict-
ing bending moments. For better movement predictions, the
FEM is preferred, provided quality soil parameters are ob-
tained and a realistic soil model is selected (Briaud and Lim
1999).

Figure 21.58 shows a sample result for the FEM approach.
This is a comparison of the FEM predictions with the same
full-scale wall at Texas A&M University (Figure 21.57).
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Figure 21.56 Predicted and measured result for the P-y curve method (Briaud and Kim 1998).

The predictions from the P-y curve approach and the FEM
approach can be compared (Figure 21.56 and 21.58).

21.13 SOIL NAIL WALLS

Soil nail walls are top-down walls reinforced with rigid
inclusions. They are to the top-down walls what MSE walls
are to the bottom-up walls. Soil nails are rigid inclusions that
are built much like anchors, by drilling a 100 to 300 mm
diameter hole, inserting a steel bar with centralizers in the
open hole, and backfilling the hole with grout. Unlike anchors,
however, they are not posttensioned. The load in the nail
develops as the soil mass deforms. The spacing between soil
nails is typically quite a bit smaller than the spacing between
anchors. Whereas all anchors and tiebacks are load tested,
only a small percentage of soil nails are load tested. Soil nail
walls are particularly suited for cases where the soil can stand
unsupported for a height of 1 to 2 m long enough to place a
row of nails (a few hours) and where the drill hole can stand
open long enough for nail insertion and grouting. The front of
the wall is typically covered with shotcrete to a thickness of
100 to 200 mm projected over a reinforcement mesh. Figures
21.59 and 21.60 show the construction sequence.

Much like the case of MSE walls, the design must
consider external stability and internal stability as well as
deformations.

21.13.1 External Stability

External stability includes global stability, sliding, and bear-
ing capacity. Sliding and bearing capacity are handled in a
fashion similar to the MSE wall design (section 21.12). The
global stability, however, is different from the MSE wall
approach. It is a slope stability type of analysis that considers
failure along a surface through the nails. This surface can
be a circle, two straight lines, or one line (Figure 21.61).
The one-line solution is the simplest and is discussed here.
Computer programs such as SNAIL (CALTRANS 1991) and
GOLDNAIL (Golder, 1993) can be used to solve the problem
for more complex failure surfaces.

Consider the soil nail wall of Figure 21.62. At equilibrium,
the force resisted by the nails is T, the weight of the wedge
is W, the surcharge force is Q, the shear force on the failure
plane is S, and the normal force on the failure plane is N. The
dimensions and angles involved are defined in Figure 21.62.
The problem is to find the value of T to obtain a target factor
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Figure 21.57 Full-scale instrumented wall at Texas A&M University (Briaud and Lim 1999).

of safety F (chosen value) on the ultimate shear resistance S.
The factor of safety F is defined as:

F =
∑

maximum resisting shear forces on failure plane∑
driving shear forces on failure plane

=
∑

R∑
L

(21.110)

Alternatively, the LRFD expression would be:

γ
∑

L = ϕ
∑

R (21.111)

Writing equilibrium equations normal and along the plane
of failure gives:∑

normal forces = (W +Q) cos ψ +T sin(ψ + i)−N = 0

(21.112)

∑
tangent forces = (W +Q) sin ψ −T cos(ψ + i)−S = 0

(21.113)

The maximum value of the force S is Smax corresponding
to the shear strength of the soil:

S = Smax

F
= c′L + N tan ϕ′

F
(21.114)

where c′ and ϕ′ are the effective stress cohesion and friction
angle of the soil and F is the chosen factor of safety by design.
The unknowns are N, S, and T and the three equations (21.112,
21.113, and 21.114) give the three quantities. Actually, the
angle ψ corresponding to the lowest factor of safety is not
known either, and must be found by trial and error. Once this
is done, the load that must be safely carried by the nails is T.
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Figure 21.58 Predicted and measured result for the FEM method (Briaud and Lim 1999).

Excavate unsupported
cut 1 to 2 m high

Step 1. Excavate small cut Step 2. Drill hole for nail

Step 3. Install and grout nail

Step 5. Repeat process to
final grade

4

3

2

1

Step 6. Place final facing
(on permanent wall)

Step 4. Place drainage strips
initial shotcrete layer & install
bearing plates/nuts

Figure 21.59 Soil nail wall construction sequence (FHWA 1998).

21.13.2 Internal Stability

Internal stability includes pull-out of the nails at the grout-soil
interface, pull-out of the steel bar at the grout-bar interface,
tensile yielding, and bending and shearing of the nails. The
pull-out of the steel bar at the grout-bar interface is usually not
controlling if threaded bars are used. Bending and shearing
also do not appear to have a major influence on the behavior

of the mass (Lazarte et al. 2003). Let’s look first at pull-out
at the grout-soil interface.

Pullout at Grout-Soil Interface

The equation for the ultimate axial resistance R of a nail in
tension is:

R = πDLpfmax (21.115)
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Figure 21.60 Soil nail wall construction (Courtesy of FHWA www
.fhwa.dot.gov/publications/publicroads/11septoct/alongroad.cfm).
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Figure 21.61 Soil nail wall failure surfaces.
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Figure 21.62 Soil nail wall global stability analysis.

where D is the diameter of the nail (drill hole), Lp is the
useful length of the nail beyond the failure zone, and fmax is
the shear strength at the grout-soil interface. Table 21.8 gives
some estimated values of fmax.

Tensile Force Distribution in the Nail

Figure 21.63 shows a simplified distribution of the tension
in a nail within the reinforced soil mass. As in the case of

T (x)

To

Lp

X

Tmax

Figure 21.63 Tension load distribution in a soil nail.

the MSE wall, the tension load is lower at the wall face (To),
then increases as the soil transfers the load to the nail until
a maximum value is reached (Tmax), and then decreases to
zero as the load is transferred from the nail to the surrounding
soil. At the wall face, the nail is usually connected to a plate
pressed against the soil by a nut threaded on the nail steel bar.
The load To varies from 0.6 to 1 times the maximum load
Tmax. The load Tmax starts to decrease at a distance Lp from
the end of the nail. The measured locus of Tmax, the failure
plane, and the distance Lp are shown in Figure 21.64. The load
that must be globally carried by the nails is T, as calculated
in the external stability analysis. The ultimate resistance that
can be developed by individual nails over the length Lp is Ri,
which must satisfy:

γ T = ϕ

n∑
i=1

Ri (21.116)

The distribution of Ri among the nails is not precisely
defined and experience plays a role in that determination. In
general, shorter nails are placed at the bottom of the wall and
longer ones at the top. A pattern such as the one shown in
Figure 21.65 is not uncommon.

Length of Nails

The required length of each nail Lpi to resist Ri is calculated
by using Eq. 21.115. The total length for nail i is Lti; it is
obtained by adding the length Lpi required to safely carry the

T1

T2

T3

Lp

Lp

Lp

H

1

(0.3 to 0.4) H Locus of maximum
nail axial force

Critical failure
surface

Distribution of
tension along nail

2

3

Facing

Figure 21.64 Load in the nails and available resisting length.
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Table 21.8 Estimated Ultimate Grout-Soil Shear Strength, fmax

Ultimate Grout-Soil Shear
Material Construction Method Soil/Rock Type Strength, fmax (kPa)

Coarse-grained soils Rotary drilling Sand/gravel
Silty sand
Silt
Piedmont residual
Fine colluvium

100-180
100-150
60-75
40-120
75-150

Driven casing Sand/gravel
low overburden
high overburden

Dense moraine
Colluvium

190-240
280-430
380-480
100-180

Augered Silty sand fill
Silty fine sand
Silty clayey sand

20-40
55-90
60-140

Jet grouted Sand
Sand/gravel

380
700

Fine-grained soils Rotary drilling Silty clay 35-50
Driven casing Clayey silt 90-140
Augered Loess

Soft clay
Stiff clay
Stiff clayey silt
Calcareous sandy clay

25-75
20-30
40-60
40-100
90-140

Rock Rotary drilling Marl/limestone
Phyllite
Chalk
Soft dolomite
Fissured dolomite
Weathered sandstone
Weathered shale
Weathered schist
Basalt
Slate/Hard shale

300-400
100-300
500-600
400-600
600-1000
200-300
100-150
100-175
500-600
300-400

(Elias and Juran 1991)

10 m

158
0.5 m

1.5 m

1.5 m

1.5 m

1.5 m

1.5 m

1.5 m

0.5 m

Figure 21.65 Typical pattern of nail length distribution.

required load Ri plus the discounted length Ldi within the
failure zone (Figure 21.64):

Lti = Ldi + Lpi (21.117)

Tensile Yielding of Nails

The nails must be designed in such a way that the load applied
does not break the nails. In calculating the tensile strength of
the nail, the resistance of the grout is ignored and only the
steel is considered. The area of the steel bar must satisfy:

γ Tmax = ϕAtσy (21.118)
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where γ and ϕ are the load and resistance factors respectively,
Tmax is the highest load in the nail, At is the steel bar cross
section, and σ y is the yield strength of the steel. According to
Briaud and Lim (1997) and Lazarte et al. (2003), the value of
Tmax is given by:

Tmax = 0.65 to 0.75 Kaγ Hsvsh (21.119)

where Ka is the active earth pressure coefficient, γ is the
total unit weight of the soil, H is the height of soil retained,
and sv and sh are the vertical and horizontal nail spacing
respectively. Note that Eq. 21.119 assumes that there is no
water within the retained depth of soil or rock.

21.13.3 Wall Movement

The movement of soil nail walls is similar to the movement
of anchored and strutted walls. According to Lazarte et al.
(2003), for soil nail walls with ratios of length of nails to height
of wall between 0.7 and 1.0, negligible surcharge loading, and
typical load and resistance factors (safety factors), empirical
data show that the maximum long-term horizontal and vertical
wall displacements at the top of the wall, δh and δv, can be
estimated by the values in Table 21.9 where H is the wall
height. The parameter C helps to estimate the extent of the
movement behind the wall (Figure 21.66):

D = CH(1 − tan α) (21.120)

where D is the horizontal distance of influence of the exca-
vation measured from the front of the wall where settlement
of the ground surface takes place, C is the coefficient in
Table 21.9, H is the height of the wall, and α is the batter of
the wall (Figure 21.66).

21.13.4 Other Issues

Other issues include the details of the connection plates at
the nail head, punching and bending of the wall cover at the
front of the nail, corrosion resistance, and seismic loading.
For more details on these matters, see Lazarte et al. (2003).

D

H
Initial configuration

Soil nail

Deformed
pattern

dH

dV

a

L

Figure 21.66 Deformation of soil nail walls.

Table 21.9 Estimates of Soil Nail Wall Movements

Variable
Weathered Rock

or Stiff Soil
Sandy
Soil

Fine-Grained
Soil

δh/H and δv/H 0.001 0.002 0.003
C 1.25 0.8 0.7

(Lazarte et al. 2003.)

21.14 SPECIAL CASE: TRENCH

Trenches are narrow and fairly shallow excavations often
used for placing utilities in congested areas. In the case of
the undrained behavior of fine-grained soils, the relationship
between the vertical total stress σ ov and horizontal total stress
σ oh at failure of the trench is given by:

σoh = σov − 2su (21.121)

where su is the undrained shear strength of the soil.
The most stressed element in the trench is the soil element

at the bottom of the trench, as shown in Figure 21.67. For
that element, the vertical total stress σ ov is:

σov = γ h (21.122)

where γ is the total unit weight of the soil and h is the depth
of the trench. Initiation of failure of the trench corresponds
to failure of the element shown in Figure 21.67. For this
element, σ oh is zero and the depth hf at which initiation of
failure starts is:

hf = 2su

γ
(21.123)

So, for example, if su is 100 kPa and γ is 20 kN/m3, then
hf is 10 m and a safe depth might be 5 m. Would you go and
work at the bottom of an open, unprotected trench 1 m wide
and 5 m deep? You should not, and you should not allow
anyone else to work in such a situation. The risk of collapse
is too great, as evidenced by the number of related deaths
every year. There is an average of 50 deaths per year due
to trench accidents in the United States. Even going into a
1.2 m deep trench is not safe. You might think that as long
as your head is above ground, you will be safe: Not true!
If your head is above ground, you can open your mouth to

sov

soh

Figure 21.67 Initiation of failure in a trench.
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take air in, but if your chest is below ground, you cannot
expand your lungs, no air goes in, and you die. Do not go
into an open, unsupported trench (Figure 21.68). You may go
into a trench that is supported by what is called a trench box
(Figure 21.69).

The theory leading to Eq. 21.101 is correct, but the assump-
tions may not match the reality. It is assumed that the soil is
uniform and that every part of it has a minimum undrained
shear strength su. This may not be the case in the field, for
many reasons: the soil may be fissured and you tested the

Figure 21.68 Do not go in there! (Courtesy of CDC’s Public
Health Image Library.)

Figure 21.69 Much safer when protected by a trench box.
(Courtesy of www.cobletrenchsafety.com/jobprofile.php?id=95)

soil between fissures rather than at the fissures, which may
control the mass strength; you may have tested the soil in the
summer when it is harder (e.g., water tension higher) and the
trench is opened in the winter; the undrained shear strength
may not be the appropriate strength if the soil drains during
and after the trench is open.

Additionally, if someone becomes partially buried in soil,
do not try to pull that person out by rope and mechanical
means. The tensile strength of the body is typically less than
the pull-out capacity or force generated and you can imagine
the result! Excavate around the body to free the person.

PROBLEMS

21.1 Show the pressure diagram, calculate the resultant push, and give its location for a 10 m high wall due to
a. Water only
b. Dry soil with unit weight of 20 kN/m3 and a friction angle of 30◦ (active and passive)
c. The same soil but with water to the top of the wall (active and passive)

21.2 Solve Coulomb’s wedge analysis for the passive case of a soil with friction and cohesion. Write vertical and horizontal
equilibrium and demonstrate equation 21.17.

21.3 Plot Coulomb and Rankine active and passive earth pressure coefficients for a vertical wall, no wall friction, as a function
of the ground surface inclination β. Which one would you use?

21.4 Evaluate the influence of wall friction on the active and passive earth pressure coefficients by comparing Rankine value
(no friction) and Coulomb values (varying friction angle from 0 to ϕ′) for a vertical wall and horizontal backfill. Which
one would you use?

21.5 Demonstrate that the direction of the plane of failure for the active pressure case (PB in Figure 21.11) is equal to 45 +
ϕ′/2.

21.6 A 6 m high retaining wall has a backfill made of unsaturated sandy silt with a water tension equal to -1000 kPa and an
area ratio (α) equal to 0.3. The total unit weight is 20 kN/m3. The wall has no effective stress cohesion (c′ = 0), and an
effective stress friction angle equal to 30◦ (ϕ′ = 30). The backfill is horizontal and the wall friction is neglected. Calculate
the active and passive earth pressure diagram for this wall.

21.7 A wall is to be placed in a soil as described in Figure 21.1s. Prepare the active pressure diagram and the passive pressure
diagram for that soil profile.

21.8 A 10 m high retaining wall has a horizontal backfill made of soil without water. The soil properties are γ = 20 kN/m3,
c′ = 0, ϕ′ = 30◦. Draw the active pressure diagram against the wall due to the following surcharges at the top of the wall:

a. Uniform surcharge equal to 20 kPa
b. Line load of 20 kN/m at a distance of 1 m from the edge of the wall
c. A point load of 20 kN at a distance of 1 m from the edge of the wall
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3 m

1 m

2 m

6 m

Sand,
g 5 20 kN/m3

c9 5 0
f9 5 348

Silt, g 5 19 kN/m3

c9 5 0
f9 5 308

sv sv9 sah9 sahuw

Clay, g 5 18 kN/m3

c9 5 10 kPa, f9 5 288

Figure 21.1s Soil profile.

21.9 How deep would you dig an unsupported trench in a stiff clay with an undrained shear strength of 75 kPa and a unit
weight of 18 kN/m3? The contract requires that you do the digging yourself while working at the bottom of the trench.

21.10 Plot the coefficient of earth pressure at rest Ko as a function of OCR for an overconsolidated clay with a friction angle ϕ′
equal to 28◦. On the same graph, plot Ka and Kp.

21.11 Draw the earth pressure diagram for a 7 m high gravity retaining wall with a backfill compacted with a vibratory roller.
The roller weighs 150 kN, has a centrifugal force amplitude of 50 kN, is 2 m wide, and gets as close as 1 m to the top
edge of the wall. The soil has a unit weight of 19 kN/m3, a passive earth pressure coefficient equal to 3, and an at-rest
earth pressure coefficient equal to 0.6.

21.12 An 8 m high top-down wall is retaining a shrink-swell soil with a swell pressure profile decreasing with depth from
500 kPa at the ground surface down to 50 kPa at the bottom of the wall. The soil has a friction angle ϕ′ equal to 28◦ and
no cohesion c′. Ko is 0.6. Draw the pressure diagram for the wall.

21.13 Draw the displacement ya and yp necessary to mobilize the active and passive earth pressure as a function of the wall
height H for a dense sand.

21.14 Derive equations 21.73 and 21.74.
21.15 For the retaining wall shown in Figure 21.2s, calculate the pressure distribution against the wall, the resultant push, the

factor of safety against sliding, and the factor of safety against overturning.

1m

0.5 m

0.3 m

0.3 m

0.3 m

1.0 m

2.4 m

Fill
c9 5 0, w9 5 328
gt 5 18 kN/m3

Clay
c9 5 5 kN/m3

w9 5 288
gt 5 20 kN/m3

No water

Reinforced
concrete

Figure 21.2s Retaining wall.
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21.16 Design the soil reinforcing strips required for a 20 m high MSE wall. The precast concrete panels are 1.5 m by 1.5 m.
The vertical and horizontal spacing between strips are 750 mm and 450 mm respectively. The unit weight of the backfill
material is 19 kN/m3 with an angle of internal friction of 34◦ and a coefficient of uniformity of 4.4. The location of the
first layer of strips, measured from the finished grade, is 375 mm. Neglect the traffic surcharge.

21.17 A cantilever retaining wall is embedded 6 m below excavation level and retains 5 m of soil. An impervious layer exists
4 m below the bottom of the wall. The water level is at the ground surface on both sides of the wall and the soil deposit is
uniform and deep. Draw the water pressure diagram against the wall on both sides of the wall, assuming that the water
pressure is hydrostatic. Then draw a flow net and develop the water pressure diagram on both sides of the wall. Compare
and comment.

21.18 Demonstrate Equation 21.91.
21.19 What is the depth of embedment d required for a cantilever wall retaining a height of sand H? Express the results as a

function of H, Kp/Ka, and a factor of safety F applied to σ p, the passive pressure. (Note: There is no water.)
21.20 For the anchored slurry wall shown in Figure 21.3s, calculate the pressure distribution on both sides of the wall for a

deflection of 25 mm at the top of the wall. Calculate the anchor forces. How important is the vertical capacity of the wall?
Explain your answer. What would happen if the water level rose on both sides of the excavation to the top of the wall?
What would happen if the water level rose to the top of the wall on the retained-soil side of the excavation and to 2 m
below that on the excavated side?

Sand
 

 

Anchor horizontal
spacing 5 2.4 m  

0.4 m thick reinforced
 concrete slurry wall 

1.9 m

3.0 m

2.7 m

1.55 m
Sand 

gt 5 18 kN/m3

f 5 328

gt 5 18 kN/m3

f 5 328

308

308

Figure 21.3s Anchored slurry wall.

21.21 Explain Figure 21.49.
21.22 Use Tables 21.4 and 21.5 and add a column giving the back-calculated alpha values.
21.23 For Figure 21.62, the height H is 9 m, α is 17◦, β is 18◦, ψ is 44◦, and i is 10◦. The stiff clay weighs 20 kN/m3 with some

cohesion c′ (to be ignored), and a friction angle ϕ′ of 32◦. A uniformly applied surcharge of 10 kPa is to be considered on
top of the wall. Calculate the required nail force T for a factor of safety against shear failure along the chosen plane to be
1.5. Distribute that force among the four nails and find the required length for each nail.

21.24 A 3 m wide strutted excavation is planned in a clay with an undrained shear strength equal to 40 kPa and a total unit
weight of 19 kN/m3. What depth of excavation corresponds to a factor of safety against base failure equal to 1.5?

Problems and Solutions

Problem 21.1

Show the pressure diagram, calculate the resultant push, and give its location for a 10 m high wall due to:

a. Water only
b. Dry soil with unit weight of 20 kN/m3 and a friction angle of 30◦ (active and passive)
c. The same soil but with water to the top of the wall (active and passive)
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Solution 21.1 (Figure 21.4s)

a. Water only
uw = γw × H

uw = 9.81 × 10 = 98.1 kPa

The resultant push per unit length of wall is:

Pw = uw × H

2
= γw × H 2

2

Pw = 9.81 × (10)2

2
= 490.5 kN/m

Location from the bottom of the wall:
z = h

3
= 3.33 m

10 m

3.33 m

98.1 kPa

Uw

Pw 5 490.5 kN/m

Figure 21.4s Pressure diagram for water only behind the wall.

b. Dry soil with unit weight of 20 kN/m3 and a friction angle of 30◦ (active and passive)
The active force is:

σ ′
ov = γd × H = 20 × 10 = 200 kPa

Pa = Ka × γd × H 2

2

Ka = 1 − sin ϕ

1 + sin ϕ
= 1 − sin 30◦

1 + sin 30◦ = 0.33

Pa = 0.33 × 20 × (10)2

2
= 333.3 kN/m

The passive force is:

Pp = Kp × γd × H 2

2

Kp = 1 + sin ϕ

1 − sin ϕ
= 1 + sin 30◦

1 − sin 30◦ = 3.0

Pp = 3 × 20 × (10)2

2
= 3000 kN/m
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The location of the active and passive force measured from the bottom of the wall (shown in Figure 21.5s) is:

z = h

3
= 3.33 m

3.33 m

200 kPa 66.67 kPa 600 kPa

Pp 5 3000 kN/mPa 5 333.3 kN/m

sov9 5 gd 3 H s9a 5 Ka 3 sov9 s9p 5 Kp 3 sov9

3.33 m

10 m

Figure 21.5s Pressure diagram for dry soil: Active and passive pressure profile.

c. Soil with water to the top of the wall (active and passive)
The vertical effective stress at the bottom of the wall is:

σ ′
ov = γt × H − γw × H = 20 × 10 − 9.81 × 10 = 101.9 kPa

The active force is
Pa = 1

2
HKaσ

′
ov + Pw

Ka = 1 − sin ϕ

1 + sin ϕ
= 1 − sin 30◦

1 + sin 30◦ = 0.33

Pa = 10 × 0.33 × 101.9

2
+ 490.5 = 660.2 kN/m

The passive force is:
Pa = 1

2
HKpσ ′

ov + Pw

Kp = 1 + sin ϕ

1 − sin ϕ
= 1 + sin 30◦

1 − sin 30◦ = 3.0

Pp = 10 × 3 × 101.9

2
+ 490.5 = 2019 kN/m

The location of the active and passive force measured from the bottom of the wall (shown in Figure 21.6s) is:

z = h

3
= 3.33 m

200 kPa 33.9 kPa98.1 kPa

uw

101.9 kPa

3.33 m

305.7 kPa132 kPa

Pp 5 660 kN/m Pp 5 2019 kN/m

3.33 m

403.8 kPa

st 5 gs 3 H s9 5 st 2 uw s9a 5 Ka 3 s9 sa 5 s9a 1 uw s9p 5 Kp 3 s9 sp 5 s9p 1 uw

10 m

Figure 21.6s Pressure diagram for wall with water at ground surface.
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Problem 21.2

Solve Coulomb’s wedge analysis for the passive case of a soil with friction and cohesion. Write vertical and horizontal
equilibrium and demonstrate equation 21.17.

Solution 21.2

Pp

(a 1 d)

(w9 1 r)
(1802w92r2a2d)

W

R

Figure 21.7s Coulomb wedge analysis for the passive case.

Pp

sin(ρ + ϕ′)
= W

sin(180 − ϕ′ − ρ − α − δ)

Pp = W sin(ρ + ϕ′)
sin(ϕ′ + ρ + α + δ)

W = γH 2

2sin2(α)
sin(α + ρ)

(
sin (α + β)

sin(ρ − β)

)
Pp = γH 2

2sin2(α)
sin(α + ρ)

(
sin (α + β)

sin(ρ − β)

)
sin(ρ + ϕ′)

sin(ϕ′ + ρ + α + δ)

∂Pp

∂ρ
= 0 → Pp = γH 2

2

sin2(α − ϕ′)

sin2(α) sin(α + δ)

⎡⎣1 −
√

sin
(
ϕ′ + δ

)
sin(ϕ′ + β)

sin(α + δ) sin(α + β)

⎤⎦2

Problem 21.3

Plot Coulomb and Rankine active and passive earth pressure coefficients for a vertical wall, no wall friction, as a function of
the ground surface inclination β. Which one would you use?

Solution 21.3

Coulomb theory

a. Figure 21.8s shows the wedge analysis in Coulomb theory for this case. As stated, the wall is vertical, and there is no
wall friction. Therefore, the active earth force is acting horizontally. Note that β is the ground surface inclination, ϕ is
the soil friction angle, and α is the failure plane inclination. H is the height of the wall, Pa is the maximum active force
acting on the wall, W is the weight of the wedge, and R is the resultant force.

b

a

w
Pa

R

W

H

Figure 21.8s Illustration of active wedge analysis in Coulomb theory.
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In this case, the expression of Coulomb active earth pressure coefficient simplifies to:

Kah = cos2ϕ[
1 +

√
sin ϕ sin (ϕ − β)

cos β

]2

To find the relationship between Kah and β, a soil friction angle equal to 30◦ is assumed. The plot between Ka and β

is shown in Figure 21.9s.
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Figure 21.9s Plot of Ka and Kp vs. β using both Coulomb theory and Rankine theory.

b. Figure 21.10s shows the wedge analysis in Coulomb theory for this case. As stated, the wall is vertical, and there is no
wall friction. Therefore, the passive earth force is acting horizontally. Note that β is the ground surface inclination, ϕ is
the soil friction angle, and α is the failure plane inclination. H is the height of the wall, Pp is the maximum passive force
acting on the wall, W is the weight of the wedge, and R is the resultant force.

W

R

Pp

H

b

a

w

Figure 21.10s Illustration of passive wedge analysis in Coulomb theory.

In this case, the expression of Coulomb passive earth pressure coefficient simplifies to:

Kph = cos2ϕ[
1 −

√
sin ϕ sin(ϕ+β)

cos β

]2

To find the relationship between Kph and β, a soil friction angle equal to 30◦ is assumed. The plot between Kph and β

is shown in Figure 21.9s.
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Rankine theory

Fig 21.11s shows an illustration of the retaining wall analyzed using Rankine theory.

Pa, PpH

b

b

Figure 21.11s Retaining wall analyzed using Rankine theory.

Note that β is the ground surface inclination, ϕ is the soil friction angle, H is the height of the wall, Pp is the passive earth
force, and Pa is the active earth force.

a. Based on Rankine theory, the active earth pressure coefficient that gives the horizontal component of Pa is:

Kah = cos2β
cos β −

√
cos2β − cos2ϕ

cos β +
√

cos2β − cos2ϕ

To find the relationship between Kah and β, a soil friction angle equal to 30◦ is assumed. The plot between Kah and β

is shown in Figure 21.9s.
b. Based on Rankine soil theory, the passive earth pressure coefficient that gives the horizontal component of Pa is:

Kph = cos2β
cos β +

√
cos2β − cos2ϕ

cos β −
√

cos2β − cos2ϕ

To find the relationship between Kph and β, a soil friction angle equal to 30◦ is assumed. The plot between Kph and β

is shown in Figure 21.9s.

Discussion

Figure 21.9s shows that for Kph the Coulomb solution is a limit equilibrium solution giving upper-bound values, whereas
the Rankine solution is an equilibrium-of-stresses solution that gives lower-bound values. Therefore, if a lower bound is
conservative, one should choose Rankine theory; if an upper bound is conservative, one should choose Coulomb theory. To
that end one would be tempted to use an average of the two values as a more reasonable estimate; however such an average
is not based on any theoretical reasoning. Note that in the case of extreme values of the geometry parameters, it is advisable
to use engineering judgment, as the Ka and Kp values can become unreasonable.

Problem 21.4

Evaluate the influence of wall friction on the active and passive earth pressure coefficients by comparing Rankine value (no
friction) and Coulomb values (varying friction angle from 0 to ϕ′) for a vertical wall and horizontal backfill. Which one
would you use?

Solution 21.4

Active Pressure

For a vertical wall and horizontal backfill, the Coulomb value Kah that gives the horizontal component Pah of the active push
Pa is:

Kah = sin2(90 + ϕ′)[
1 +

√
sin(ϕ′+δ) sin ϕ′

sin(90−δ)

]2
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and the Rankine value is:

Kah = 1 − sin ϕ′

1 + sin ϕ

Figure 21.12s shows the Kah values versus friction angle for both the Coulomb and Rankine solutions. For Coulomb,
different curves are presented for different values of the wall friction. As can be seen from the figure, the Coulomb value
of Kah decreases as the wall friction increases; the Rankine value does not change. The maximum value of Coulomb Kah is
reached for zero wall friction, which is equal to the Rankine value.
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Figure 21.12s Kah vs. soil friction angle for different wall friction angle.

Passive Pressure

Coulomb:

Kph = sin2(90 − ϕ′)⎡⎣1 −
√

sin
(
ϕ′ + δ

)
sin ϕ′

sin(90 + δ)

⎤⎦2

Rankine:

Kph = 1 + sin ϕ′

1 − sin ϕ

Figure 21.13s shows the Kph values versus friction angle for both the Coulomb and Rankine solutions. For Coulomb,
different curves are presented for different values of the wall friction.
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Figure 21.13s Kph vs. soil friction angle for different wall friction angle.

Which one would you use? Rankine solution generally gives reasonable values. Coulomb theory is also reasonable, in
that it takes into account wall friction in the case of the active earth pressure, but Coulomb’s passive earth pressure values
are quite optimistic and should not be used. The problem is that the failure surface is optimistically chosen as a straight line
instead of a curved surface which would offer less resistance.

Problem 21.5

Demonstrate that the direction of the plane of failure for the active pressure case (PB in Figure 21.11) is equal to 45 + ϕ′/2.
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Solution 21.5

First we find the Pole on the failure circle in the active case (Figure 21.14s). The failure point is shown by point T on the
failure circle. If we draw a line from the left of the failure circle M to T, the angle ̂MTO will be 90◦. In the triangle TOM:

̂TMO = 180 − (90 + ϕ′) = 90 − ϕ′

In the triangle TPM:
̂MPT = M̂TP

2 × ̂MPT + (90 − ϕ′) = 180 → ̂MPT = 45 + ϕ′

2

O
Pole

45 1 w9/2

Failure
circle 

90-w9

M

T

P

w9

w9

s9

t

Figure 21.14s Pole method.

Problem 21.6

A 6 m high retaining wall has a backfill made of unsaturated sandy silt with a water tension equal to -1000 kPa and an area
ratio (α) equal to 0.3. The total unit weight is 20 kN/m3. The wall has no effective stress cohesion (c′ = 0), and an effective
stress friction angle equal to 30◦ (ϕ′ = 30). The backfill is horizontal and the wall friction is neglected. Calculate the active
and passive earth pressure diagram for this wall.

Solution 21.6

Use Rankine theory to solve this problem.

Active Earth Pressure

The active earth pressure coefficient for this problem is:

Ka = 1 − sin ϕ′

1 + sin ϕ′ = 1

3

Because the soil behind the wall is uniform, we only need to choose two calculation points: point a and b, shown in
Figure 21.15s.

H 5 6 m

a

b
120 kPa

2300 kPa

2300 kPa

300 kPa

420 kPa

100 kPa

140 kPa 2160 kPa

2200 kPa

sv sv9 sah9 sahauw

Figure 21.15s Active earth pressure diagram.
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Point a: total vertical stress σv = 0
Therefore, effective vertical stress σ ′

v = σv − αuw = 0 + 0.3 × (−1000) = 300 kPa
Effective active horizontal stress is σ ′

ah = Kaσ
′
v = 1

3 × 300 = 100 kPa
Total active horizontal stress is σah = σ ′

ah + αuw = 100 + (−300) = −200 kPa
Point b: total vertical stress σv = γtH = 20 × 6 = 120 kPa

Therefore, effective vertical stress σ ′
v = σv − αuw = 120 − 0.3 × (−1000) = 420 kPa

Effective active horizontal stress is σ ′
ah = Kaσ

′
v = 1

3 × 420 = 140 kPa
Total active horizontal stress is σah = σ ′

ah + αuw = 140 + (−300) = −160 kPa

The active earth pressure diagram is shown in Figure 21.15s. Practically, the suction should be ignored as it could disappear
in the rainy season or cracks could develop in the backfill and the active earth pressure diagram would be the same as if the
soil had no water.

Passive Earth Pressure:

The passive earth pressure coefficient for this problem is

Kp = 1 + sin ϕ′

1 − sin ϕ′ = 3

Point a: Effective passive horizontal stress is σ ′
ph = Kpσ ′

v = 3 × 300 = 900 kPa
Total passive horizontal stress is σph = σ ′

ph + αuw = 900 + (−300) = 600 kPa
Point b: Effective passive horizontal stress is σ ′

ph = Kpσ ′
v = 3 × 420 = 1260 kPa

Total passive horizontal stress is σph = σ ′
ph + αuw = 1260 + (−300) = 960 kPa

The passive earth pressure diagram is shown in Figure 21.16s. Practically, the suction would be ignored and the passive
earth pressure diagram would be the same as if the soil had no water.

H 5 6 m

a

b
120 kPa

2300 kPa

2300 kPa

300 kPa

420 kPa

900 kPa

1260 kPa 960 kPa

600 kPa

sv sv9 sph9 sphauw

Figure 21.16s Passive earth pressure diagram.

Problem 21.7

A wall is to be placed in a soil as described in Figure 21.1s. Prepare the active pressure diagram and the passive pressure
diagram for that soil profile.

3 m

1 m

2 m

6 m

Sand,
g 5 20 kN/m3

c9 5 0
f9 5 348

Silt, g 5 19 kN/m3

c9 5 0
f9 5 308

sv sv9 sah9 sahuw

Clay, g 5 18 kN/m3

c9 5 10 kPa, f9 5 288

Figure 21.1s Soil profile.
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Solution 21.7

Use Rankine theory to solve this problem.
For each layer, the active and passive earth pressure coefficients are calculated as follows:

Sand : Ka = 1 − sin ϕ′

1 + sin ϕ′ = 0.283,Kp = 1 + sin ϕ′

1 − sin ϕ′ = 3.54

Clay : Ka = 1 − sin ϕ′

1 + sin ϕ′ = 0.361,Kp = 1 + sin ϕ′

1 − sin ϕ′ = 2.77

Silt : Ka = 1 − sin ϕ′

1 + sin ϕ′ = 0.333,Kp = 1 + sin ϕ′

1 − sin ϕ′ = 3

Active Earth Pressure

Because several soil layers and a groundwater level are involved in this problem, 5 calculation points are chosen
(Figure 21.17s).

3 m

1 m

2 m

6 m

a

b

c

d

e

60

80

230

(Unit: kPa)

90 140

8630116

10 70

60

46.6

28.6

19.0

19.8

13.2

17.0

136.6

58.6

49.0

29.8

23.2

17.0

Sand,
g 5 20 kN/m3

c9 5 0
f9 5 348 

Clay, g 5 18 kN/m3

c9 5 10 kPa, f9 5 288

Silt, g 5 19 kN/m3

c9 5 0
f9 5 308

sv s9v sahuw s9ah

Figure 21.17s Active earth pressure diagram.

Point a: Total vertical stress: σv = 0, uw = 0
Therefore, effective vertical stress:

σ ′
v = σv − uw = 0

Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0

Total active horizontal stress is σah = σ ′
ah + uw = 0

Point b: Total vertical stress:
σv = γ h = 20 × 3 = 60 kPa, uw = 0
Therefore, effective vertical stress:

σ ′
v = σv − uw = 60 kPa

Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0.283 × 60 − 2 × 0 = 17.0 kPa

Total active horizontal stress is σah = σ ′
ah + uw = 17.0 kPa

Point c: Total vertical stress σv = γ h = 60 + 20 = 80 kPa, uw = 10 × 1 = 10 kPa
Therefore, effective vertical stress:

σ ′
v = σv − uw = 70 kPa

Note that point c is on the interface between two different layers, so the effective active horizontal stress at that point
should be calculated individually in each layer.
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Point c, sand: Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0.283 × 70 − 2 × 0 = 19.8 kPa

Total active horizontal stress is
σah = σ ′

ah + uw = 19.81 + 10 = 29.8 kPa

Point c, clay: Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0.361 × 70 − 2 × 10 × √

0.361 =
13.2 kPa

Total active horizontal stress is
σah = σ ′

ah + uw = 13.2 + 10 = 23.2 kPa

Point d: Total vertical stress: σv =
∑

γ h = 80 + 18 × 2 = 116 kPa, uw = 10 × 3 = 30 kPa
Therefore, effective vertical stress: σ ′

v = σv − uw = 116 − 30 = 86 kPa
Note that point d is on the interface between two different layers, so the effective active horizontal stress at that point

should be calculated individually in each layer.
Point d, clay: Effective active horizontal stress is σ ′

ah = Kaσ
′
v − 2c′√Ka = 0.361 × 86 − 2 × 10 × √

0.361 =
19.0 kPa

Total active horizontal stress is σah = σ ′
ah + uw = 19.0 + 30 = 49.0 kPa

Point d, silt: Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0.333 × 86 − 2 × 0 = 28.6 kPa

Total active horizontal stress is σah = σ ′
ah + uw = 28.6 + 30 = 58.6 kPa

Point e: Total vertical stress: σv =
∑

γ h = 116 + 19 × 6 = 230 kPa, uw = 10 × 9 = 90 kPa
Therefore, effective vertical stress:

σ ′
v = σv − uw = 230 − 90 = 140 kPa

Effective active horizontal stress is σ ′
ah = Kaσ

′
v − 2c′√Ka = 0.333 × 140 − 2 × 0 = 46.6 kPa

Total active horizontal stress is σah = σ ′
ah + uw = 46.6 + 90 = 136.6 kPa

The active earth pressure diagram is shown in Figure 22.17s.

Passive Earth Pressure

Because several soil layers and a groundwater level are involved in this problem, 5 calculation points are chosen
(Figure 21.18s.).

3 m

1 m

2 m

6 m

a

b

c

d

e

60

80

230

(Unit: kPa)

90 140

8630116

10 70

60

420

271.5258

247.8

227.2

212.4

510

301.5

288

257.8

237.2

212.4

Sand,
g 5 20 kN/m3

c9 5 0
f9 5 348 

Clay, g 5 18 kN/m3

c9 5 10 kPa, f9 5 288

Silt, g 5 19 kN/m3

c9 5 0
f9 5 308

sv sphuw s9v s9ph

Figure 21.18s Passive earth pressure diagram.
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For those calculation points, the vertical stresses, water stress, and effective vertical stresses are the same as for the active
earth pressure. Here we only provide the calculation of effective passive horizontal stress and total passive horizontal stress
at those five points.

Point a: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 0

Total passive horizontal stress is
σph = σ ′

ph + uw = 0

Point b: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 3.54 × 60 + 2 × 0 = 212.4 kPa

Total passive horizontal stress is
σph = σ ′

ph + uw = 212.4 kPa

Point c: Note that point c is on the interface between two different layers, so the effective passive horizontal stress at that
point should be calculated individually in each layer.Point c, sand: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 3.54 × 70 + 2 × 0 = 247.8 kPa

Total passive horizontal stress is
σph = σ ′

ph + uw = 247.8 + 10 = 257.8 kPa

Point c, clay: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 2.77 × 70 + 2 × 10 ×
√

2.77 = 227.2 kPa

Total passive horizontal stress is
σph = σ ′

ph + uw = 227.2 + 10 = 237.2 kPa

Point d: Note that point d is on the interface between two different layers, so the effective passive horizontal stress at that
point should be calculated individually in each layer.

Point d, clay: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 2.77 × 86 + 2 × 10 ×
√

2.77 = 271.5 kPa

Total passive horizontal stress is

σph = σ ′
ph + uw = 271.5 + 30 = 301.5 kPa

Point d, silt: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 3 × 86 + 2 × 0 = 258 kPa

Total passive horizontal stress is

σph = σ ′
ph + uw = 258 + 30 = 288 kPa
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Point e: Effective passive horizontal stress is

σ ′
ph = Kpσ ′

v + 2c′
√

Kp = 3 × 140 + 2 × 0 = 420 kPa

Total passive horizontal stress is
σph = σ ′

ph + uw = 420 + 90 = 510 kPa

The passive earth pressure diagram is shown in Figure 21.18s.

Problem 21.8

A 10 m high retaining wall has a horizontal backfill made of soil without water. The soil properties are γ = 20 kN/m3, c′ =
0, ϕ′ = 30◦. Draw the active pressure diagram against the wall due to the following surcharges at the top of the wall:

a. Uniform surcharge equal to 20 kPa
b. Line load of 20 kN/m at a distance of 1 m from the edge of the wall
c. A point load of 20 kN at a distance of 1 m from the edge of the wall

Solution 21.8 (Figure 21.19s)

Ka = 1 − sin 30

1 + sin 30
= 1

3

σah = σ ′
ovKa + 
σh

a.
σah = 1

3
× (20z + 20) = 6.67(z + 1)

b.

σah = 1

3
× 20z + 4 × 20

π

12z

(z2 + 1)2
= 6.67z + 25.46z

(1 + z2)2

c. Assume that v = 0.35

σah = 1

3
z + 20

π(z2 + 1)

⎛⎝ 3z(
z2 + 1

) 3
2

− (z2 + 1)
1
2 (1 − 2v)
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1
2 + z
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Figure 21.19s Horizontal pressure diagram.

Problem 21.9

How deep would you dig an unsupported trench in a stiff clay with an undrained shear strength of 75 kPa and a unit weight
of 18 kN/m3? The contract requires that you do the digging yourself while working at the bottom of the trench.
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Solution 21.9

Assuming that the soil is truly uniform, with no fissures:

σah = σ0v − 2Su

σah = γ H − 2Su = 18H − 2 × 75 = 0 → H = 4.16 m

I would dig the trench to a depth of 1 m and stop there. Before going deeper, I would place a trench box to protect myself
against trench collapse. Then I would dig further.

Problem 21.10

Plot the coefficient of earth pressure at rest Ko as a function of OCR for an overconsolidated clay with a friction angle ϕ′
equal to 28◦. On the same graph, plot Ka and Kp.

Solution 21.10 (Figure 21.20s)

K0 = (1 − sin ϕ′)OCRsin ϕ′

Ka = 1 − sin ϕ

1 + sin ϕ
= 1 − sin 28◦

1 + sin 28◦ = 0.36

Kp = 1 + sin ϕ

1 − sin ϕ
= 2.77
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Figure 21.20s Earth pressure coefficients vs. OCR.

Problem 21.11

Draw the earth pressure diagram for a 7 m high gravity retaining wall with a backfill compacted with a vibratory roller. The
roller weighs 150 kN, has a centrifugal force amplitude of 50 kN, is 2 m wide, and gets as close as 1 m to the top edge of the
wall. The soil has a unit weight of 19 kN/m3, a passive earth pressure coefficient equal to 3, and an at-rest earth pressure
coefficient equal to 0.6.

Solution 21.11 (Figure 21.21s)

σh = L

a + L

√
2Pγ

π
= 2

1 + 2

√
2

( 150+50
2

) × 19

π
= 23.2 kN/m2

d = L

Ko(a + L)

√
2P

πγ
= 2

0.6(1 + 2)

√
2

( 150+50
2

)
π × 19

= 2.0 m

Koγ z = 0.6 × 19 × 7 = 79.8 kN/m2

L: the length of the roller
a: the distance between the edge of the wall and the closest roller position
P: the line load imposed by the roller weight of the roller plus the centrifugal force for vibratory rollers
γ : the unit weight of the soil
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K0: the at-rest earth pressure coefficient
d: depth to which the pressure diagram is modified due to the roller

The depth z to reach the horizontal pressure equal to 23.2 kPa is such that Kpγ z = 23.2 kPa, therefore, z = 0.41 m.

1 m

P 5 (150 1 50)/2 kN/m

sh 5 23.2 kN/m2

K0gz 5 79.8 kN/m2

0.41 m

2 m

Figure 21.21s Earth pressure diagram.

Problem 21.12

An 8 m high top-down wall is retaining a shrink-swell soil with a swell pressure profile decreasing with depth from 500 kPa
at the ground surface down to 50 kPa at the bottom of the wall. The soil has a friction angle ϕ′ equal to 28◦ and no cohesion
c′. Ko is 0.6. Draw the pressure diagram for the wall.

Solution 21.12 (Figure 21.22s)

K0 = 0.6

Kp = 1 + sin ϕ′

1 − sin ϕ′ = 1 + sin 28◦

1 − sin 28◦ = 2.77

Assuming that the soil unit weight is γ =18 kN/m3:

Koγ h = 0.6 × 18 × 8 = 86.4 kPa

Kpγ h = 2.77 × 18 × 8 = 398.88 kPa

Swell pressure

500

50

Passive pressure

Kpgh 5 399 kPaAt rest pressure

K0gh 5 86 kPa

8 m

4003002001000

235

80

sh (kPa) 

Figure 21.22s Earth pressure diagram.
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Problem 21.13

Draw the displacement ya and yp necessary to mobilize the active and passive earth pressure as a function of the wall height
H for a dense sand.

Solution 21.13 (Figures 21.23s, 21.24s)

From Table 21.1, the average displacements needed to generate active and passive earth pressures for different soil types are:

Loose sand Soft clay

ya

H
= 0.004, yp

H
= 0.04 ya

H
= 0.015, yp

H
= 0.04

Dense sand Stiff clay
ya

H
= 0.0015, yp

H
= 0.02 ya

H
= 0.0075, yp

H
= 0.02
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Figure 21.23s Active displacement vs. wall height.
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Figure 21.24s Passive displacement vs. wall height.

Problem 21.14

Derive equations 21.73 and 21.74.

Solution 21.14

The uniform soil pressure p1 due to the line load is:
p1 = Q

B
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The soil pressure p2 due to overturning moment is the maximum pressure at the edge of the triangular distribution under the
foundation. The pressure distribution under the foundation must resist the moment. Writing the moment equilibrium gives:

1

2
p2

B

2
× 2

3

B

2
× 2 = M ⇒ p2 = ±6M

B2

p = Q

B
± 6M

B2
&e = M

Q
⇒

{
pmax = Q

B

(
1 + 6e

B

)
pmin = Q

B

(
1 − 6e

B

)
Problem 21.15

For the retaining wall shown in Figure 21.2s, calculate the pressure distribution against the wall, the resultant push, the factor
of safety against sliding, and the factor of safety against overturning.

1m

0.5 m

0.3 m

0.3 m

0.3 m

1.0 m

2.4 m

Fill
c9 5 0, w9 5 328
gt 5 18 kN/m3

Clay
c9 5 5 kN/m3

w9 5 288
gt 5 20 kN/m3

No water

Reinforced
concrete

Figure 21.2s Retaining wall.

Solution 21.15 (Figures 21.25s, 21.26s)

Passive earth pressure, active earth pressure:

σph = Kpσ
′
ov + 2c′

√
Kp + αu σah = Kaσ

′
ov − 2c′√Ka + αu

Kp = 1 + sin ϕ′

1 − sin ϕ′ Ka = 1 − sin ϕ′

1 + sin ϕ′

a. Calculate active earth pressure (active side):

Ka1 = 1 − sin 32

1 + sin 32
= 0.307

Ka2 = 1 − sin 28

1 + sin 28
= 0.361

σ ′
ah = 0.307 x 43.2 = 13.26 kPa at a depth of 2.4 m (in the fill)

σ ′
ah = 0.361 x 43.2–2 x 5

√
0.361 = 9.59 kPa at a depth of 2.4 m (in the clay)

σ ′
ah = 0.361 x 55.2–2 x 5

√
0.361 = 13.92 kPa at a depth of 3.0 m (in the clay)

Since there is no water σ ′
ah = σah
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b. Calculate passive earth pressure (passive side):

Kp = 1 + sin ϕ′

1 − sin ϕ′ = 1 + sin 28

1 − sin 28
= 2.77

σ ′
ph = KP σ ′

ov + 2c′
√

Kp = 16.64 kPa at the ground level

σ ′
ph = KP σ ′

ov + 2c′
√

Kp = 2.77 × 12 + 10
√

2.77 = 49.88kPa at a depth of 0.6m

Since there is no water σ ′
ph = σph

c. Draw diagram (Figure 21.2s).

s9pH (kPa) 16.64 s9ov (kPa)

s9ov (kPa) s9ah (kPa)

49.88 12 55.2

43.2 13.269.59

13.92

Figure 21.25s Earth pressure diagram.

Pah = 1

2
× 13.26 × 2.4 + 9.59 × 0.6 + 1

2
× (13.92 − 9.59) × 0.6 = 22.96kN

Xa =
1
2 × 13.26 × 2.4 × 1.4 + 9.59 × 0.6 × 0.3 + 1

2 × (13.92 − 9.59) × 0.6 × 0.2

22.965
= 24.26

22.96
= 1.06m

Pph = 16.64 × 0.6 + 1

2
× (49.88 − 16.64) × 0.6 = 19.96kN

Xp = 16.64 × 0.6 × 0.3 + 1
2 × (49.88 − 16.64) × 0.6 × 0.2

19.956
= 4.99

19.96
= 0.25m

Wsoil1 = 2.4 m × 1 m × 18 kN/m2 = 43.2 kN/m

Wsoil2 = 0.5 m × 0.3 m × 20 kN/m2 = 3 kN/m

Wsoil3 = 1 m × 0.3 m × 20 kN/m2 = 6 kN/m

Wstem = (2.4 m + 0.3 m) × 0.3 m × 25 kN/m2 = 20.25 kN/m

Wbase = 1.8 m × 0.3 m × 25 kN/m2 = 13.5 kN/m

  

1.3 

0.65

0.9

20.25

43.2

13.5

 

33 6 6

A B

C

s

Pph = 19.96 kN

Xp = 0.25 m

Pah = 22.97 kN

Xa = 1.06 m

Figure 21.26s Forces diagram.
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Considering a sliding failure along AB:

Fsliding =
∑

W tanϕ′ + PpH

PaH

= (43.2 + 20.25 + 13.5 + 6 + 3) × tan 28◦ + 19.96

22.97

= 45.70 + 19.96

22.97
= 2.84 > 2 → OK

Considering a rotation failure around point A:

Foverturning = Mmax,resist

Mdriving
= 43.2 × 1.3 + 20.25 × 0.65 + 13.5 × 0.9 + 19.96 × 0.25

22.97 × 1.06

= 86.46

24.35
= 3.55 > 2 → OK

It is also reasonable to consider rotation failure around point C:

Foverturning = Mmax,resist

Mdriving
= 43.2 × 1.3 + 20.25 × 0.65 + 13.5 × 0.9

22.97 × 0.76
= 81.47

17.46
= 4.67 > 2 → OK

Problem 21.16

Design the soil reinforcing strips required for a 20 m high MSE wall. The precast concrete panels are 1.5 m by 1.5 m. The
vertical and horizontal spacing between strips are 750 mm and 450 mm respectively. The unit weight of the backfill material
is 19 kN/m3 with an angle of internal friction of 34◦ and a coefficient of uniformity of 4.4. The location of the first layer of
strips, measured from the finished grade, is 375 mm. Neglect the traffic surcharge.

Solution 21.16

Panel section = 1.5 m × 1.5 m

sv = 0.75 mm

sh = 450 mm

γsoil = 19 kN/m3

Cu = 4.4

a. Design for Pullout

The maximum line load (Tmax) to be resisted by the reinforcement inclusions at depth z can be computed as:

Tmax = svshσh

The horizontal stress σ h can be calculated as:

σh = krσov + 
σh

σh = krσov

The coefficient of earth pressure kr is computed using Figure 21.27s (AASHTO). The ka value is computed as:

ka = 1 − sin ϕ′

1 + sin ϕ′ = 1 − sin 34

1 + sin 34
= 0.283

Then the kr value is computed as:
a-1. If zi is less than 6 m, then:

kr

ka

= 1.7 − zi

12
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a-2. If zi is larger than 6 m, then:
kr

ka

= 1.2

The calculation of Tmax for the different strips is summarized in Table 21.1s.

0 1 1.2 1.7 2.5
0

1 1.2

*G
e

o
s
y
n

th
e

ti
c
s

M
e
ta

l 
s
tr

ip
s

M
et

al
 b

ar
 m

at
s 

&

W
el

de
d 

w
ire

 g
rid

s

6000 mm

* Does not apply to polymer strip
reinforcement

D
e

p
th

 b
e

lo
w

 t
o

p
 o

f 
w

a
ll

, 
Z

Coefficient of lateral stress ratio = kr/ka

Figure 21.27s Coefficient of lateral stress ratio = kr/ka.

Table 21.1s Summary of Calculation of Tmax

Strip No. Depth (m) ka kr/ka kr σ v (kPa) σ h (kPa) Tmax (kN)

1 0.375 0.283 1.67 0.472 7.1 3.365 1.14
2 1.125 0.283 1.61 0.455 21.4 9.716 3.28
3 1.875 0.283 1.54 0.437 35.6 15.564 5.25
4 2.625 0.283 1.48 0.419 49.9 20.907 7.06
5 3.375 0.283 1.42 0.402 64.1 25.747 8.69
6 4.125 0.283 1.36 0.384 78.4 30.082 10.15
7 4.875 0.283 1.29 0.366 92.6 33.913 11.45
8 5.625 0.283 1.23 0.348 106.9 37.240 12.57
9 6.375 0.283 1.20 0.340 121.1 41.134 13.88

10 7.125 0.283 1.20 0.340 135.4 45.973 15.52
11 7.875 0.283 1.20 0.340 149.6 50.813 17.15
12 8.625 0.283 1.20 0.340 163.9 55.652 18.78
13 9.375 0.283 1.20 0.340 178.1 60.491 20.42
14 10.125 0.283 1.20 0.340 192.4 65.331 22.05
15 10.875 0.283 1.20 0.340 206.6 70.170 23.68
16 11.625 0.283 1.20 0.340 220.9 75.009 25.32
17 12.375 0.283 1.20 0.340 235.1 79.848 26.95
18 13.125 0.283 1.20 0.340 249.4 84.688 28.58
19 13.875 0.283 1.20 0.340 263.6 89.527 30.22
20 14.625 0.283 1.20 0.340 277.9 94.366 31.85
21 15.375 0.283 1.20 0.340 292.1 99.206 33.48
22 16.125 0.283 1.20 0.340 306.4 104.045 35.12
23 16.875 0.283 1.20 0.340 320.6 108.884 36.75
24 17.625 0.283 1.20 0.340 334.9 113.724 38.38
25 18.375 0.283 1.20 0.340 349.1 118.563 40.01
26 19.125 0.283 1.20 0.340 363.4 123.402 41.65
27 19.875 0.283 1.20 0.340 377.6 128.241 43.28
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Now that we have calculated the load Tmax, we need to find the length of reinforcement that will safely carry that load
without pulling out of the soil. The pull-out capacity Tpullout (kN) of the reinforcement inclusion is given by:

Tpullout = 2 × fmax × b × La

fmax = F ∗ × σ ′
ov × α

Using the ultimate limit state procedure, we have:

γ Tmax = φTpullout

The active length of the reinforcement strip required to resist the pullout load is:

Tpullout = γ Tmax

ϕ

La = Tpullout

2 × fmax × b

La = (γ1krσ
′
ov) × sv × sh

2 × ϕ × F ∗ × σ ′
ov × α × b

La = (γ1kr) × sv × sh

2 × ϕ × F ∗ × α × b

L = La + Lmax = (γ1kr) × sv × sh

2 × ϕ × F ∗ × α × b
+ 0.3H

The value of α is taken as 1.0 for strip reinforcements (Section 21.10.2). The resistance and load factors are taken as 0.9
and 1.35 respectively. The coefficient of friction (F*) is computed according to AASHTO LRFD using Figure 21.28s.

If zi is less than 6 m, then:

F ∗ = 1.2 + Log Cu = 1.8435 at z = 0 m

F ∗ = 0.6745 at z = 6 m

F ∗ = 1.8435 − 0.1948 × zi

If zi is larger than 6 m, then:
F ∗ = tan φ = 0.6745
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Figure 21.28s Friction coefficient F* for MSE wall reinforcement.
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Table 21.2s Summary of Calculation of Total Strip Length (L)

Strip No. Depth (m) Tmax (kN) F* fmax (kPa) La (m) L (m)

1 0.375 1.14 1.770 12.61 1.350 7.350
2 1.125 3.28 1.624 34.72 0.944 6.944
3 1.875 5.25 1.478 52.66 0.997 6.997
4 2.625 7.06 1.332 66.44 1.062 7.062
5 3.375 8.69 1.186 76.06 1.143 7.143
6 4.125 10.15 1.040 81.51 1.246 7.246
7 4.875 11.45 0.894 82.79 1.382 7.382
8 5.625 12.57 0.748 79.92 1.573 7.573
9 6.375 13.88 0.675 81.70 1.699 7.699

10 7.125 15.52 0.675 91.31 1.699 7.699
11 7.875 17.15 0.675 100.92 1.699 7.699
12 8.625 18.78 0.675 110.53 1.699 7.699
13 9.375 20.42 0.675 120.15 1.699 7.699
14 10.125 22.05 0.675 129.76 1.699 7.699
15 10.875 23.68 0.675 139.37 1.699 7.699
16 11.625 25.32 0.675 148.98 1.699 7.699
17 12.375 26.95 0.675 158.59 1.699 7.699
18 13.125 28.58 0.675 168.20 1.699 7.699
19 13.875 30.22 0.675 177.82 1.699 7.699
20 14.625 31.85 0.675 187.43 1.699 7.699
21 15.375 33.48 0.675 197.04 1.699 7.699
22 16.125 35.12 0.675 206.65 1.699 7.699
23 16.875 36.75 0.675 216.26 1.699 7.699
24 17.625 38.38 0.675 225.87 1.699 7.699
25 18.375 40.01 0.675 235.48 1.699 7.699
26 19.125 41.65 0.675 245.10 1.699 7.699
27 19.875 43.28 0.675 254.71 1.699 7.699

b. Design for Yielding

Using the ultimate limit state procedure, we have:

γ Tmax = φTyield

The resistance and load factors are taken as 0.75 and 1.35 respectively. The Tyield for steel reinforcement is given by:

Tyield = σyield × A

Tyield = σyield × b × Ec

The value of A is the cross-sectional area of the strip after accounting for corrosion (AASHTO 2010). The structural
thickness of the strip at the end of the service life is computed according to AASHTO LRFD as:

Service Life of Zinc Coating (0.086 mm/year) = 2 years + 0.086 − 2 × 0.015

0.004
years

Service Life of Zinc Coating (0.086 mm/year) = 16 years
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Use a strip thickness 50 mm wide and 5 mm thick:

Ec = 5 mm − 2Es

Ec = 5 mm − 2 × (75 years − 16 years) × 0.12 mm/year

Ec = 3.58 mm

Then:

Tyield = 448159.2 kPa × (0.00358 mm × 0.05 mm)

Tyield = 80.2 kN

Then, using the result of Tmax at the bottom layer of strips where the maximum tension load is expected, we have:

0.75 × 80.2 kN > 1.35 × 43.3 kN

60.2 kN > 58.5 kN ∴ OK

Detailed calculations for all the strips are shown in Table 21.3s.

Table 21.3s Summary of Calculations for Strip Resistance to Yielding

Strip No. Depth (m) Tmax (kN) R ϕR γ Tmax Check

1 0.375 1.14 80.2 60.2 1.5 OK
2 1.125 3.28 80.2 60.2 4.4 OK
3 1.875 5.25 80.2 60.2 7.1 OK
4 2.625 7.06 80.2 60.2 9.5 OK
5 3.375 8.69 80.2 60.2 11.7 OK
6 4.125 10.15 80.2 60.2 13.7 OK
7 4.875 11.45 80.2 60.2 15.5 OK
8 5.625 12.57 80.2 60.2 17.0 OK
9 6.375 13.88 80.2 60.2 18.7 OK
10 7.125 15.52 80.2 60.2 20.9 OK
11 7.875 17.15 80.2 60.2 23.2 OK
12 8.625 18.78 80.2 60.2 25.4 OK
13 9.375 20.42 80.2 60.2 27.6 OK
14 10.125 22.05 80.2 60.2 29.8 OK
15 10.875 23.68 80.2 60.2 32.0 OK
16 11.625 25.32 80.2 60.2 34.2 OK
17 12.375 26.95 80.2 60.2 36.4 OK
18 13.125 28.58 80.2 60.2 38.6 OK
19 13.875 30.22 80.2 60.2 40.8 OK
20 14.625 31.85 80.2 60.2 43.0 OK
21 15.375 33.48 80.2 60.2 45.2 OK
22 16.125 35.12 80.2 60.2 47.4 OK
23 16.875 36.75 80.2 60.2 49.6 OK
24 17.625 38.38 80.2 60.2 51.8 OK
25 18.375 40.01 80.2 60.2 54.0 OK
26 19.125 41.65 80.2 60.2 56.2 OK
27 19.875 43.28 80.2 60.2 58.4 OK
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Note: Bearing capacity and slope stability failure were not checked as part of this problem. However, they must be checked
to ensure that the system is safe against these failure modes.

Problem 21.17

A cantilever retaining wall is embedded 6 m below excavation level and retains 5 m of soil. An impervious layer exists 4 m
below the bottom of the wall. The water level is at the ground surface on both sides of the wall and the soil deposit is uniform
and deep. Draw the water pressure diagram against the wall on both sides of the wall, assuming that the water pressure is
hydrostatic. Then draw a flow net and develop the water pressure diagram on both sides of the wall. Compare and comment.

Solution 21.17

The hydrostatic water pressure diagram is shown in Figure 21.29s and the flow net in Figure 21.30s.

11 3 9.81 5 107.9 kPa

3 9.81 3 112 5 176.6 KN

6 3 9.81 5 58.9 kPa

3 9.81362 5 176.6 KN

1 

2
1 

2

Figure 21.29s Water pressure in hydrostatic conditions.

A

B

CF

G

DE

Figure 21.30s Flow net.

Water pressures are calculated at points A, B, C, D, E, F, and G on each side of the wall to generate the water stress profile.
The loss of total head through the flow net is 5 m. The loss of total head through each flow field is 5/12 = 0.417 m. The total
head ht(M) at any point M is calculated by:

ht(M) = ht(beg) − nd
ht

where ht(beg) is the total head at the beginning of the flow net (11 m), nd is the number of equipotential drops to go from the
beginning of the flow net to point M, and 
ht is the drop of total head across any flow field. Then the elevation head he(M)
is measured on the scaled drawing and the pressure head hp(M) is obtained as the difference between the total head and the
elevation head (Table 21.4s.).

Table 21.4s

Point Total Head (m) Elevation Head (m) Pressure Head (m) WaterStress (kPa)

A 15 15 0 0
B 14.33 9.6 4.73 46.40
C 13.75 6.0 7.75 76.03
D 12.5 4 8.5 83.38
E 11.66 4 7.66 75.14
F 10.62 6.3 4.32 42.38
G 10 10 0 0
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The water pressure diagram from the flow net is shown in Figure 21.31s together with the hydrostatic diagram. As can be
seen, the hydrostatic diagram is more conservative.

Hydrostatic
Hydrostatic

Flow net
Flow net

75.1 kPa 58.9 kPa 83.4 kPa 107.9 kPa

Figure 21.31s Water pressure under flow conditions.

Problem 21.18

Demonstrate Equation 21.91.

Solution 21.18

Equation 21.90 expresses moment equilibrium at the bottom of a wall:

PaXa − PpmXpm = 0

Using Equations 21.86–21.88, and 21.89 in Eq. 21.90, we get:
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Problem 21.19

What is the depth of embedment d required for a cantilever wall retaining a height of sand H? Express the results as a function
of H, Kp/Ka, and a factor of safety F applied to σ p, the passive pressure. (Note: There is no water.)
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Solution 21.19

1

2
Kaγ (H + D)2 × 1

3
(H + D) −

1
2KpγD2 × 1

3D

F.S
= 0

Ka(H + D)3 = 1

F.S
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H + D

D
=

(
1

F.S

Kp

Ka

)0.33

D = H(
1

F.S

Kp

Ka

)0.33 − 1

Problem 21.20

For the anchored slurry wall shown in Figure 21.3s, calculate the pressure distribution on both sides of the wall for a
deflection of 25 mm at the top of the wall. Calculate the anchor forces. How important is the vertical capacity of the wall?
Explain your answer. What would happen if the water level rose on both sides of the excavation to the top of the wall? What
would happen if the water level rose to the top of the wall on the retained-soil side of the excavation and to 2 m below that
on the excavated side?

Sand
 

 

Anchor horizontal
spacing 5 2.4 m  

0.4 m thick reinforced
 concrete slurry wall 

1.9 m

3.0 m

2.7 m

1.55 m
Sand 

gt 5 18 kN/m3

f 5 328

gt 5 18 kN/m3

f 5 328

308

308

Figure 21.3s Anchored slurry wall.

Solution 21.20

From Figure 21.19 and utop/H = 0.025/7.6 = 0.003, K behind the wall is 0.2 (average). Using Eq. 21.99, the constant pressure
from z = 0 to z = H is:

σh = Kσ ′
ov(at z = H) + uw

= 0.2(18)(7.6)

= 27.4 kN/m2

For z = H, just below the constant pressure, the Ka active earth pressure is used:

σah = Kaσv

= 1 − sin(30)

1 + sin(30)
(18)(7.6)

= 45.5 kN/m2
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For z = H + D, the active pressure is:

σah = Kaσv

= 1

3
(18)(9.15)

= 54.8 kN/m2

For z = H on the excavation side, the passive pressure is 0 and at z = H + D, the passive pressure is:

σph = Kpσv

= 3(18)(1.55)

= 83.7 kN/m2

Using the tributary area for the top anchor, the horizontal component for that anchor is:

F1h = σhA1 = 27.4 × (1.9 + 1.5) × 2.4 = 223.6 kN

Using the tributary area for the bottom anchor, the horizontal component for that anchor is:

F2h = σhA2 = 27.4 × (1.5 + 1.35) × 2.4 = 187.4 kN

Because the anchors are inclined at 30◦, the actual loads in the anchors are:

F1 = F1h

cos α
= 223.6

cos 30
= 258.2 kN

F2 = F2h

cos α
= 187.4

cos 30
= 216.4 kN

The vertical capacity is important because the soil mass tends to move toward the excavation and downward. The
downward movement imposes downdrag on the wall. If the vertical capacity is insufficient, the wall will move downward
and rotate around the anchor. This will cause horizontal movement as well.

If water rises on both sides to the top of the wall, the water pressure on both sides will cancel out and the soil horizontal
stress will decrease from the total stress (Kγ H) to the effective stress (Kγ ′H). This would lead to a pressure on the wall of
about one-half of the pressure with no water on either side. If there was a difference in level of 2 m, there would be a net
water pressure equal to 2 m of water on the wall in addition to the Kγ ′H.

Problem 21.21

Explain Figure 21.49.

Solution 21.21

Figure 21.49 shows an example of load distribution in an anchor in tension. The load resisted by the soil increases steadily
from the back of the anchor to the front of the anchor. The load in the tendon is constant and equal to the anchor load along
the tendon unbonded length because the greased sheath that covers the anchor does not permit any load transfer. Then the
load in the tendon drops off as the grout contributes to the load being resisted. Within the zone where the grout is in tension,
the tendon is the only one carrying load, because the grout cracks and contributes no load to the resistance. Within the tensile
strains where the grout can resist tension, some of the load is carried by the tendon and some by the grout. The grout has zero
load at the ground surface and the load increases in compression over the unbonded tendon length because the grout moves
with respect to the soil and is loaded in compression. Beyond the tendon unbonded length, the grout is in tension to such a
level that it cracks and cannot contribute to the resistance. Then, in the back of the anchor, the tension load decreases to the
point where the strains are low enough and the grout can resist some tension.
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Problem 21.22

Use Tables 21.4 and 21.5 and add a column giving the back-calculated alpha values.

Solution 21.22 (Table 21.5s)

fmax = αcsu

αc = fmax

su

Sample calculation: Stiff silt-clay mixture su = 50 kPa, fmax = 30 kPa, αc = 30
50 = 0.6

Table 21.5s

Anchor Type
(Grout
Pressure)

Soil
Type

Shear Strength
of Soil su
(kPa)

Shear Strength
of Soil-Grout
Interface fmax (kPa) αs

Gravity grouted anchors
(< 350 kPa)

Silt-clay mixtures Stiff to very stiff
50 to 200

30 to 70 0.35-0.6

Pressure grouted anchors
(350 to 2800 kPa)

High-plasticity clay Stiff (50 to 120)
Very stiff (120 to 200)

30 to 100
70 to 170

0.6-0.83 0.58-0.85

Medium-plasticity clay Stiff (50 to 120)
Very stiff (120 to 200)

100 to 250
140 to 350

2-2.1 1.2-1.75

Medium-plasticity
sandy silt

Very stiff (120 to 200) 280 to 380 2.3-1.9

Problem 21.23

For Figure 21.62, the height H is 9 m, α is 17◦, β is 18◦, ψ is 44◦, and i is 10◦. The stiff clay weighs 20 kN/m3 with some
cohesion c′ (to be ignored), and a friction angle ϕ′ of 32◦. A uniformly applied surcharge of 10 kPa is to be considered on top
of the wall. Calculate the required nail force T for a factor of safety against shear failure along the chosen plane to be 1.5.
Distribute that force among the four nails and find the required length for each nail.

Solution 21.23 (Figure 21.32s)

W

N

L

S
i

i

T
H 5 9 m

c 5 448

10.2 m

Q

a

b

Figure 21.32s Nailed wall.

Equations 22.112, 22.113, and 22.114 are used to find the three unknowns N, S, and T:

(W + Q) cos ψ + T sin(ψ + i) − N = 0

(W + Q) sin ψ − T cos(ψ + i) − S = 0

S = Smax

F
= c′L + N tan ϕ′

F
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The weight of the soil is obtained by multiplying the unit weight of the soil by the area of the triangle. The area of the
triangle is 41.4 m2 per meter perpendicular to the page and W is 828 kN/m. Substituting these values in the equations:

(828 + 10.2 × 10) cos 44 + T sin(44 + 15) − N = 0

(828 + 10.2 × 10) sin 44 − T cos(44 + 15) − S = 0

N tan 30

1.5
− S = 0

Then:

669 + 0.857T − N = 0

646 − 0.515T − S = 0

0.385N − S = 0

After solving the system of equations, N = 1065 kN/m, S = 410 kN/m, and T = 462 kN/m. For simplification, if all the
nails in the wall carry the same force, then the force T is divided by the four nails and the force at each nail is approximately
115.5 kN/m. The required length of the nails can be found using Eq. 22.115 plus a factor of safety F:

Ra = T

n
= πDLpfmax

F

where Ra is the allowable load on each nail, T is the total nail load, n is the number of nails, D is the diameter of the nail
(drill hole), Lp is the useful length of the nail, and fmax is the shear strength at the grout-soil interface. The shear strength fmax
depends on the soil and the construction method and is estimated using Table 22.8. For a stiff clay, an fmax of 50 kPa can be
used and a diameter of 200 mm.

Lp = FT

nπDfmax
= 1.5 × 462

4π × 0.2 × 50
= 5.5 m

The required length Lp of each nail is 4.4 m. The length of the nail inside the failure zone is the discounted length Ld. The
total length of each nail is the sum of the required length and the discounted length. The total length of each nail is:

Lti = Ldi + Lpi

Lt1 = Ld1 + Lp1 = 5.6 + 5.5 = 11.1 m

Lt2 = Ld2 + Lp2 = 4.3 + 5.5 = 9.8 m

Lt3 = Ld3 + Lp3 = 3 + 5.5 = 8.5 m

Lt4 = Ld4 + Lp4 = 1.8 + 5.5 = 7.3 m

Problem 21.24

A 3 m wide strutted excavation is planned in a clay with an undrained shear strength equal to 40 kPa and a total unit weight
of 19 kN/m3. What depth of excavation corresponds to a factor of safety against base failure equal to 1.5?

Solution 21.24

The safety factor for the base failure can be calculated using the following equation:

F = Ncsu

σov(z=H)

Assume that H = 3m and H/B = 1. Then, using the Skempton chart, the Nc = 6.4

1.5 = 6.4 × 40

19 × H
and H = 8.9 m
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Assume that H = 9 and H/B = 3. Then, using the Skempton chart, the Nc = 7.3

1.5 = 7.3 × 40

19 × H
and H = 10.24 m

Assume that H = 10 and H/B = 3.33. Then, using the Skempton chart, the Nc = 7.3

1.5 = 7.3 × 40

19 × H
and H = 10.24 m

H = 10 m


