
CHAPTER 19

Slope Stability

19.1 GENERAL

Slopes can be natural or manmade slopes (Figure 19.1).
Natural slopes are found on the sides of mountains or at the
edge of rivers, for example. Manmade slopes may be cut
slopes, as in the case of an underpass for a road, or filled
slopes, as in the case of an earth dam or a highway embank-
ment. In all cases, the main parameter sought by the geotech-
nical engineer is the factor of safety against sliding failure
of the slope.

Slopes fail along a failure surface. Most of the time, this
surface can be approximated by a circle. However, the failure
surface can take many other shapes, including a single plane,
a series of planes, a log spiral, a sliding block, and others
(Figure 19.2). Most analyses assume that the problem can be
solved as if it were a plane strain problem in two dimensions.
In three dimensions, the surface looks more like a spoon
shape. Circular failure surfaces are the most common.

19.2 DESIGN APPROACH

There are two aspects to slope stability: the safety against
failure (ultimate limit state) and the movement under normal
conditions (serviceability limit state). The movement under
normal conditions is not often an issue and thus is rarely calcu-
lated; the best method for such estimates is the finite element
method. The main issue is safety against failure; therefore,
slope stability analysis consists of calculating the factor of
safety F. Other issues include slope monitoring and slope
stabilization methods. In the general case (circular failure
surface), the factor of safety F is defined as (Figure 19.3):

F = τaf

τam
(19.1)

where τaf is the average shear strength of the soil on the plane
of failure and τam is the average shear stress mobilized on the
plane of failure to keep the slope in equilibrium.

A simple example of how the factor of safety is obtained is
shown in Figure 19.4. In this example the soil has a constant
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shear strength s along the length L of the failure plane, which
is assumed to be an arc of a circle with a radius R and a center
O. The weight of the failing soil mass is W, with a center
of gravity generating a moment arm a around the center O.
The factor of safety defined in Eq. 19.1 is also given in this
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Figure 19.4 Simple slope stability problem.

case by the ratio of the maximum resisting moment over the
driving moment around the center of the circle:

F = τaf

τam
= sLR

Wa
(19.2)

Note that because most of the time the slope stability
problem is treated as a plane strain problem, the forces will
be in kN/m and the moment in kN.m/m or kN. Typically
the engineer will aim for a factor of safety between 1.25
and 1.5, depending on the application. As will be shown
later, these values typically lead to a probability of failure
that is higher than the probability of failure accepted in
foundation engineering. Equation 19.2 is very simple; much
more complexity is associated with slope stability analysis.
The complexity arises from several issues:

1. The strength of the soil is not constant along the failure
surface

2. The shape of the failure surface may vary (circle, plane,
multilinear shape, log spiral)

3. One must find the failure surface corresponding to the
lowest possible factor of safety

4. The boundary and external forces may be complex
5. The soil may be reinforced by inclusions

Equation 19.1 indicates how important it is to have a good
estimate of the shear strength of the soil to obtain a good
estimate of the factor of safety. The shear strength of soils
was discussed in Chapter 15. The main equation is:

τf = c′ + (σ − αuw) tan ϕ′ (19.3)

where τf is the shear strength, c′ is the effective stress cohesion
intercept, σ is the total normal stress on the failure plane,
α is the area ratio coefficient for the water phase, uw is the
water stress, and ϕ′ is the effective stress friction angle. The
parameters c′ and ϕ′ can be obtained from a drained shear
test (triaxial, direct shear, simple shear) or an undrained shear
test with water stress measurements. The total stress σ can

be calculated from the soil unit weight and any additional
stress created by loading. The area ratio coefficient α can
be estimated as the degree of saturation (α = S) or through
a correlation to the air entry value uwae(α = (uwae/uw)0.5).

If hydrostatic conditions exist, the water stress uw can be
estimated as follows. If the point considered is located under
the groundwater level (GWL), uw is the unit weight of water
times the vertical distance from the point considered to the
GWL. In this case the water stress is positive (compression).
If the point considered is above the GWL in the zone that is
saturated by capillary action, the water stress is also given as
the unit weight of water times the distance between the point
considered and the GWL, but this time the water stress is
negative (tension). If the point considered is in the unsaturated
zone above the zone saturated by capillary action, the water
tension uw can be estimated by its relationship with the water
content through the soil water retention curve (SWRC). If the
point considered is below the GWL but there is an excess
water stress �uw, then the total water stress is the sum of the
hydrostatic water stress and the excess water stress.

Because the factor of safety F involves the strength of the
soil, it can be considered as an ultimate limit state where
Eq. 19.1 is rewritten as:

γ τam = ϕτaf (19.4)

where γ is the load factor and ϕ is the resistance factor. The
values of γ and ϕ depend on how well the loading parameters
and the shear strength parameters are known. The load factor
in AASHTO (2007) for overall stability of slopes is taken as
1.0. The resistance factor ϕ proposed by AASHTO (2007) is:

• 0.75 if the geotechnical parameters are well defined and
the slope does not support or contain a structural element

• 0.65 if the geotechnical parameters are not well defined
or the slope supports or contains a structural element.

These resistance factors correspond to a probability of
failure varying between 0.01 and 0.001.

19.3 INFINITE SLOPES

The simplest case of slope stability is the case where the
slope is infinitely long (Figure 19.5). In this instance the
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Figure 19.5 Infinite slope.
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failure is assumed to be parallel to the ground surface.
Several soil conditions, in order of increasing complexity,
can be considered: dry sand, dry c′ − ϕ′ soil, c′ − ϕ′ soil with
seepage, and c′ − ϕ′ soil with unsaturated conditions.

19.3.1 Dry Sand

Consider a slice of the sheet of soil failing downslope. It is
h high and b wide, and rests on the failure surface, which is
at an angle β with the horizontal. The external forces acting
on a free-body diagram of that slice include the weight of the
slice W; the resistance R at the bottom of the slice, which can
be decomposed into a normal force N and a shear force T; and
the earth pressure force on the left PL and the earth pressure
force on the right PR. The two forces PL and PR are equal,
opposite, and in line with each other, so they simply cancel
out of the equilibrium equation. The relationships between
W, N, and T are:

N = W cos β = γ bh cos β (19.5)

T = W sin β = γ bh sin β (19.6)

where γ is the total unit weight of the dry sand. N and T repre-
sent the forces existing in the slope and mobilized to maintain
the slope in equilibrium. The shear force S corresponding
to the strength of the failure surface is not mobilized in the
slope unless the slope is at failure. That force S represents
the maximum value that T can have and is expressed as:

S = N tan ϕ′ = γ bh cos β tan ϕ′ (19.7)

The normal stress σ on the failure plane is:

σ = N

A
= γ bh cos β

b/ cos β
= γ h cos2β (19.8)

The shear stress τ on the plane of failure is:

τ = T

A
= γ bh sin β

b/ cos β
= γ h sin β cos β (19.9)

The shear strength on the plane of failure is:

τf = S

A
= γ bh cos β tan ϕ′

b/ cos β
= γ h cos2β tan ϕ′ (19.10)

The factor of safety F is expressed as:

F = τf

τ
= γ h cos2β tan ϕ′

γ h sin β cos β
= tan ϕ′

tan β
(19.11)

This is a very useful result, which says that a slope of dry
sand cannot stand at an angle higher than the friction angle
of the soil. This angle is usually around 30◦ for loose, dry
sand. Next time you are at the beach, take a handful of dry
sand, drop it gently on a flat surface, and measure the angle
of the slope; this procedure will give you the friction angle
of that loose sand, also called the angle of repose. Note that

the factor of safety is independent of h, which means that all
planes parallel to the ground surface are equally likely to be
failure planes.

19.3.2 Dry c′ − ϕ′ Soil

In the case of dry c′ − ϕ′ soil, the only thing that changes is
that the soil has a nonzero effective stress cohesion intercept
c′ in the expression of the shear strength (Eq. 19.10):

τf = c′ + γ h cos2β tan ϕ′ (19.12)

Then the factor of safety becomes:

F = τf

τ
= c′ + γ h cos2 β tan ϕ′

γ h sin β cos β
= c′

γ h sin β cos β
+ tan ϕ′

tan β

(19.13)
The factor of safety has increased compared to the dry sand

case and depends on the depth h of the plane considered.
Failure will occur on the plane defined by F = 1, called the
critical plane, at a depth hcrit:

hcr = c′

γ cos2 β(tan β − tan ϕ′)
(19.14)

Recall from section 15.16 that you can go from an effective
stress solution to a total stress undrained solution by changing
c′ into su and taking ϕ′ as equal to zero. Then the critical
depth for the undrained case is.

hcr = su

γ sin β cos β
(19.15)

19.3.3 c′ − ϕ′ Soil with Seepage

In the case of c′ − ϕ′ soil with seepage, the GWL is at the
ground surface and the added complexity comes from having
to take into account the influence of the water stress uw on the
shear strength. To obtain uw, a flow net is drawn (Figure 19.6).

Recalling Eq. 19.8, the total normal stress on the failure
plane is:

σ = γsath cos2β (19.16)
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Figure 19.6 Infinite slope with seepage.
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where γsat is the saturated unit weight of the soil. The water
stress uw on the failure is equal to:

uw = hpγw (19.17)

where hp is the pressure head on the failure plane.
We know from the flow net properties that the total head

at A (Figure 19.6) is equal to the total head at B. We also
know that the pressure head at B is zero; therefore, the
pressure head at A is the difference in elevation between A
and B:

htA = heA + hpA = htB = heB + hpB (19.18)

Because hpB is zero, then:

hpA = heB − heA (19.19)

Therefore, the vertical distance AC in Figure 19.6 is the
pressure head at A, and from geometry we can calculate:

hpA = h cos2β and uw = γwh cos2β (19.20)

Then the effective stress σ ′ is:

σ ′ = (γsat − γw)h cos2β (19.21)

and the shear strength is:

τf = c′ + (γsat − γw)h cos2β tan ϕ′ (19.22)

so the factor of safety becomes:

F = τf

τ
= c′ + (γsat − γw)h cos2β tan ϕ′

γsath sin β cos β

= c′

γsath sin β cos β
+ (γsat − γw)

γsat

tan ϕ′

tan β
(19.23)

19.3.4 c′ − ϕ′ Soil with Unsaturated Conditions

In the case of c′ − ϕ′ soil with unsaturated conditions, the
effective stress becomes:

σ ′ = γth cos2β − αuw (19.24)

The shear strength is now:

τf = c′ + (γth cos2β − αuw) tan ϕ′ (19.25)

Because the mobilized shear stress remains the same, the
factor of safety is:

F = τf

τ
= c′ + (γth cos2β − αuw) tan ϕ′

γth sin β cos β

= c′

γth sin β cos β
− αuw tan ϕ′

γth sin β cos β
+ tan ϕ′

tan β
(19.26)

Comparison

The factors of safety corresponding to the various soil con-
ditions can be compared. Assume that the soil is an overcon-
solidated silty clay with c′ = 5 kPa and ϕ′ = 30◦, the slope
has an angle of 20◦ with the horizontal, and the unit weight is
20 kN/m3. The question is: What is the factor of safety against
failure for a plane at a depth 2 m below the ground surface?

For the case of the dry soil, the factor of safety is:

Fdry = 5

20 × 2 sin 20 cos 20
+ tan 30

tan 20

= 0.389 + 1.586 = 1.975 (19.27)

For the case of the slope with seepage, the factor of safety is:

Fseep = 5

20 × 2 sin 20 cos 20
+ (20 − 10)

20

tan 30

tan 20

= 0.389 + 0.793 = 1.182 (19.28)

For the case of the slope with an unsaturated condition,
with a degree of saturation equal to 60% and a water tension
equal to −1000 kPa, the factor of safety is:

Funsat = 5

20×2 sin 20 cos 20
− 0.6(−100) tan 30

20×2 sin 20 cos 20
+ tan 30

tan 20

= 0.389 + 2.695 + 1.586 = 4.67 (19.29)

As can be seen, the factors of safety are organized as
follows:

Funsat > Fdry > Fseep (19.30)

Note that Funsat is much higher than the other factors
of safety even though the water tension is quite modest.
Therefore, water tension plays a very important role in slope
stability. Note also that if there is no cohesion, Fseep will be
equal to half of Fdry. Again the role of water proves to be
very important in slope stability. These calculations explain
why slope failures are more likely to happen after heavy
prolonged rains, as is often reported in the news media.

19.4 SEEPAGE FORCE IN STABILITY ANALYSIS

The seepage force is the force exerted in friction by water
flowing around soil particles and trying to drag them away.
The forces shown on a free-body diagram are the exter-
nal forces. The internal forces are resolved internally. The
seepage force is an external force when the soil skeleton is
considered the free body, but it is an internal force when
the soil skeleton plus the water are considered the free body.
Most slope stability analyses consider the soil skeleton plus
the water as the free body. In those cases the seepage force
must not be included in any slope stability calculations.

Figure 19.7 shows the two free-body diagram options.
In the case where the free body is the soil particles plus the
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Figure 19.7 Soil skeleton and seepage force approach.

water, the weight W is the total weight including the solids
and the water; the side forces are the total forces ZR and ZL;
and the bottom forces are the effective normal force N′, the
uplift force U, and the shear force T. In the case where the
free body is the soil particles alone, the weight Wsubm is the
total weight minus the buoyancy force, the side forces are
the effective components Z′

R and Z′
L, the bottom forces are

the effective normal force N′ and the shear force T, and the
seepage force Eu must be included.

Let’s go back to the example of the infinite slope in the
case of seepage through the slope. In the solution presented
in the subsection concerning c′ − ϕ′ soil with seepage, the
free body considered was the soil skeleton and the water all
together, as is usually done. As you recall, we did not consider
the seepage force in that case. Indeed, it was an internal force
because it was a force acting between the particles and the
water, which are both part of the free body. Let’s see what
happens if we consider instead the soil skeleton alone to be
the free body.

The forces are calculated as follows:
Submerged weight:

Wsubm = (γsat − γw)bh (19.31)

Normal force on bottom:

N ′ = Wsubm cos β = (γsat − γw)bh cos β (19.32)

Shear force on bottom:

T = Wsubm sin β + Eseep (19.33)

Normal stress on bottom:

σ ′ = N ′

b/ cos β
= (γsat − γw)h cos2β (19.34)

Uplift force on bottom (Eq. 9.20):

U = γwh cos2β × b

cos β
(19.35)

Seepage force:

Eseep = iγwbh (19.36)

Hydraulic gradient:

i = �ht

b/ cos β
= sin β (19.37)

Shear stress on bottom:

τ = T

b/ cos β
= (γsat − γw)h sin β cos β + γwh sin β cos β

= γsath sin β cos β (19.38)

Shear strength on bottom:

τf = c′ + σ ′ tan ϕ′ = c′ + (γsat − γw)h cos2β tan ϕ′

(19.39)
Then the factor of safety becomes:

F = τf

τ
= c′ + (γsat − γw)h cos2β tan ϕ′

γsath sin β cos β

= c′

γsath sin β cos β
+ (γsat − γw)

γsat

tan ϕ′

tan β
(19.40)

We get the same result as with Eq. 19.23, but after having
started from a different free-body diagram (the free body of
the soil skeleton with the water as an outside influence). The
simplest approach in slope stability analysis is to consider the
soil and the water together. When you do so, the seepage force
is an internal force and does not enter into the calculations.
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Figure 19.8 Plane failure along the bottom of a wedge.

19.5 PLANE SURFACES

The infinite slope is a case of a plane surface. A plane surface
can also be considered as the base of a wedge (Figure 19.8).
In this case, the factor of safety can be calculated as follows.
The length of the side AB of the triangle is H/sin β. Referring
to Figure 19.8, the rule of sines in the triangle ABC gives:

H/ sin β

sin(θ − α)
= L

sin(π − β + α)
(19.41)

or:

L = H

sin β

sin(β − α)

sin(θ − α)
(19.42)

Then the height d of the triangle is given by:

d = H

sin β
sin(β − θ) (19.43)

The weight of the wedge is:

W = 1

2
γ Ld = 1

2
γH 2 sin(β − θ) sin(β − α)

sin2β sin(θ − α)
(19.44)

The shear force T and normal force N necessary to keep the
wedge in equilibrium are:

T = W sin θ (19.45)

N = W cos θ (19.46)

Then the factor of safety is:

F = S

T
= c′L + W cos θ tan ϕ′

W sin θ
(19.47)

where W is given by Eq. 19.44.

19.6 BLOCK ANALYSIS

Sometimes the most likely failure mechanism is a block
of soil moving along a predetermined interface because
of the presence of a weak layer along the bottom of the
block (Figure 19.9). The stability analysis of block ABCD in
Figure 19.9 is called a block analysis. In this case the driving
shear force T along the potential failure plane DC is:
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Figure 19.9 Block failure along a plane.

T = W sin α (19.48)

The component of the active force Pa in the direction of
sliding along DC is calculated according to the methodology
described in Chapter 21. Along AD it is:

Pa cos(ϕ′ − α) (19.49)

At the same time, the component of the passive resistance
Pp in the direction of sliding along BC is calculated according
to the methodology described in Chapter 21. Along BC it is:

Pp cos(ϕ′ − α) (19.50)

The normal force N on the plane of failure is:

N = W cos α (19.51)

and the uplift force U due to the average water stress uw on
the potential failure plane is:

U = uwL (19.52)

So, the maximum shear resistance on the potential plane of
failure is:

S = c′L + (W cos α − uwL) tan ϕ′ (19.53)

The factor of safety against sliding of the block on plane
DC can then be calculated as:

F = c′L + (W cos α − uwL) tan ϕ′ + Pp cos(ϕ′ − α)

W sin α + Pa cos(ϕ′ − α)
(19.54)

19.7 SLOPES WITH WATER IN TENSILE CRACKS

Tensile cracks can develop at the top of a slope due either to
impending failure or to desiccation. The depth of those cracks
is highly variable. The depth of cracks due to desiccation is
approximately equal to the horizontal distance between cracks
on the ground surface. The depth of cracks due to active
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Figure 19.10 Influence of a tension crack at the top of a slope.

pressure failure can be calculated by using the active pressure
expression and finding the depth where tension ends and
the effective horizontal stress becomes zero (Figure 19.10).
The expression for the active effective stress σ ′

ah is (see
Chapter 21):

σ ′
ah = σ ′

ov tan2
(

45 − ϕ′

2

)
− 2c′ tan

(
45 − ϕ′

2

)
(19.55)

Setting Eq. 19.55 equal to zero gives the depth of the
tension crack. This requires expressing σ ′

oh as a function of
the depth z. If the water table is at the ground surface, the
depth of the crack is:

zc = 2c′

(γsat − γw) tan

(
45 − ϕ′

2

) (19.56)

If the soil is unsaturated:

zc = 2c′

γt tan

(
45 − ϕ′

2

) + αuw

γt

(19.57)

Because uw is negative, Eq. 19.57 gives a lower estimate
of zc than does Eq. 19.56. As it is rare to have the ground-
water table at the ground surface near a slope, zc is often
estimated as:

zc = 2c′

γt tan

(
45 − ϕ′

2

) (19.58)

Of course, engineering judgment always plays an important
role in such decisions. Once an estimate of zc is known,
the slope stability analysis can proceed with the worst-case
assumption that the crack is filled with water. Indeed, the
water pressure pushes the slope horizontally. Figure 19.10
shows a planar surface analysis. In this case, the water forces
U1 and U2 are:

U1 = 1

2
γwzc

2 (19.59)

U2 = 1

2
γwzcL (19.60)

The length L of segment AB is given by:

L = H − zc

sin θ
(19.61)

The driving shear force on plane AB is:

T = W sin θ + U1 cos θ (19.62)

The maximum resisting shear force on plane AB is:

S = c′L + (W cos θ − U2) tan ϕ′ (19.63)

The final expression of the factor of safety is then:

F =
c′ (H − zc)

sin θ
+

(
W cos θ − 1

2
γwzc

(
H − zc

)
sin θ

)
tan ϕ′

W sin α + 1

2
γwz2

c cos θ

(19.64)

19.8 CHART METHODS

When the soil is uniform and a circular failure surface is as-
sumed, the problem is simple enough that the factor of safety
can be determined from charts. These charts have been devel-
oped by various engineers, including Taylor (1948), Spencer
(1967), Janbu (1968), and Morgenstern (1963), among others.

19.8.1 Taylor Chart

Taylor (1948) developed charts for two cases:

• ϕ′ = 0, undrained shear strength su, and total stress
analysis

• ϕ′ > 0, c′ > 0, no water

ϕ = 0, Undrained Shear Strength su,

and Total Stress Analysis

The slope and its parameters are shown in Figure 19.11. This
chart applies where the soil is uniform, can be represented
by a constant undrained shear strength su, and has a total
unit weight γ. Note that the concept ϕ′ = 0 is not a true
concept; however, it is mathematically convenient, and sim-
ply expresses the fact that the undrained shear strength is
assumed to be independent of the normal total stress. In fact,

H

DH

Hard layer

nHnHb

Figure 19.11 Slope parameters for Taylor chart.
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ϕ′ is always nonzero, as friction always exists between two
materials. However, because the total stress changes and the
effective stress does not, it looks like the friction angle is
zero; this is why it is more appropriate to say that the total
stress friction angle ϕ is zero whereas ϕ′ is not.

The procedure is as follows:

1. Find the depth factor D, the height of the slope H, the
total unit weight γ of the soil, the undrained shear strength
su of the soil, and the slope angle β. The depth factor D
(Figure 19.11) is the ratio between the vertical distance from
the toe of the slope to the underlying hard layer and the height
of the slope.

2. Knowing D and β, find the stability number N on the
chart in Figure 19.12 by using the solid lines. The short
dashed lines across the solid lines give the value of n, which
is the ratio between the horizontal distance from the toe of
the slope to the exit of the circle and the height of the slope.
Once n is known, the circle can be identified, because it must
be tangent to the hard layer.

3. The stability number N is defined as:

N = cd

γ H
(19.65)
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Figure 19.12 Taylor chart for ϕ = 0, undrained shear strength su

soils (Taylor 1948). (This material is reproduced with permission of
John Wiley & Sons, Inc.)

where cd is the shear stress necessary to keep the slope in
equilibrium. Using Eq. 19.65, calculate the value of cd .

4. The factor of safety is given by:

F = su

cd

(19.66)

5. If the geometry of the case at hand is such that the
failure circle is most likely to be a toe circle, use the long
dashed lines to find the stability number N.

ϕ′ > 0, c′ > 0, No Water, Effective Stress Analysis

This chart (Figure 19.13) applies to the case in which the soil
is uniform, has a unit weight γ, has no water, and can be
represented by an effective stress cohesion c′ and an effective
stress friction angle ϕ′. Note that the statement was that the
soil has no water rather than that the soil was dry. Indeed, a
dry soil can have enough water to develop very high water
tension, which changes the shear strength significantly; this
chart refers to the case of no water. For this chart, two factors
of safety are defined:

Fc′ = c′

c′
d

and Fϕ′ = tan ϕ′

tan ϕ′
d

(19.67)

where c′
d and ϕ′

d are the fraction of c′ and ϕ′ required to
maintain the slope in equilibrium.
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Figure 19.13 Taylor chart for ϕ′ > 0, c′ > 0. no water soils
(Taylor 1948). (This material is reproduced with permission of
John Wiley & Sons, Inc.)
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The step-by-step procedure is as follows:

1. Choose an initial value of F′
c. A value of 1.5 is common.

2. Using Eq. 19.67, calculate the value of c′
d.

3. Calculate the depth factor D as defined in Figure 19.11
and the stability factor N as:

N = c′
d

γ H
(19.68)

4. Knowing the stability number N, the slope angle β,

and the depth factor D, find ϕ′
d from the chart. Use the

solid lines for the general case and the other lines as
appropriate; check the chart for details.

5. Calculate F′
ϕ and compare to F′

c.

6. If F′
ϕ and F′

c are not equal or within a target tolerance,
go back to step 1 and try a new value of F′

c until they
are within that tolerance. It would be reasonable to use
the mean of F′

c and F′
ϕ as the next guess.

19.8.2 Spencer Chart

Spencer (1967) developed charts for the case where the
groundwater surface is within the slope circle (Figure 19.14).
The soil strength is described by the effective stress parame-
ters c′ and ϕ′. The failure surface is considered to be circular
and to go through the toe of the slope. The presence of the
water in the slope is quantified by using the water stress
ratio ru:

ru = uw

σov
(19.69)

where uw is the water stress at the chosen point and σov is the
vertical total stress in the soil at the same point. Although ru

varies from one point to the next in the slope, a single value
is used for the chart method. Referring to Figure 19.14 the
average ratio ru is estimated as:

ru = γw

γt

× Area ABGEF

Area ABCDEF
(19.70)

where γw and γt are the unit weight of water and the total unit
weight of the soil respectively. Note that the maximum value
of ru is about 0.5, because even if the slope is filled with water
the ratio γw/γt is about 0.5. As a result, Spencer prepared
charts for values of ru = 0 (slope with no water), ru = 0.25

H
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w
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Area (ABGEFA)
ru =

Area (ABCDEF)

g

g 3

Figure 19.14 Slope parameters for Spencer chart.

(slope with water halfway up), and ru = 0.5 (slope full of
water). Note also that there is no water outside the slope.

The procedure for using Spencer’s chart is as follows:

1. Choose an initial value of F′
c (Eq. 19.67). A value of 1.5

is common.
2. Using Eq. 19.67, calculate the value of c′

d.

3. Calculate the stability factor N as:

N = c′
d

γ H
(19.71)

4. Calculate the water stress ratio ru.

5. Knowing the stability number N, the water stress ratio
ru, and the slope angle β, find ϕ′

d from the chart
(Figure 19.15). If the ratio ru is not exactly equal to 0,
0.25, or 0.5 as in the charts, the two closest cases of
ratio ru are calculated and interpolation on F′

ϕ is used.
6. Calculate F′

ϕ and compare to F′
c.

7. If F′
ϕ and F′

c are not equal or within a target tolerance,
go back to step 1 and try a new value of F′

c until F′
ϕ and

F′
c are within that tolerance. Using the mean of F′

c and
F′

ϕ as the next guess for F′
c is reasonable.
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(Spencer 1967). (This material is reproduced with permission of
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Figure 19.16 Slope parameters for Janbu chart.

19.8.3 Janbu Chart

Janbu (1968) developed an extensive set of charts covering
many different cases. They include charts for the case where
the soil has several layers, charts for the case where a sur-
charge exists on top of the slope, charts where a crack exists at
the top of the slope, charts dealing with undrained short-term
behavior, charts dealing with effective stress drained behav-
ior, and charts dealing with different water levels outside the
slope and inside the slope (Figure 19.16). These charts are
detailed in Abramson et al. (2002) and in Duncan and Wright
(2005). The chart dealing with a uniform soil, effective stress
parameters c′ and ϕ′, different water levels inside and outside
the slope, and toe circles as failure surfaces is discussed here.

The procedure is as follows:

1. Calculate Pd as:

Pd = γ H + q − γwHw

μqμwμt

(19.72)

where Pd is a stress parameter characterizing the demand
side of the slope stability; γ is the total unit weight of the
soil; H is the height of the slope; q is the uniform surcharge
at the top of the slope; γw is the unit weight of water; Hw
is the height of water outside of the slope above the toe of
the slope (Figure 19.16); and μq, μw, and μt are reduction
factors for the surcharge, the submergence, and the tension
crack respectively. In the case of no surcharge, μq is 1; in the
case of no tension cracks, μt is 1 as well. The value of μw is
found in the chart shown in Figure 19.17.

2. Calculate the effective stress parameter Pe as:

Pe = γ H + q − γwH ′
w

μqμ
′
w

(19.73)

where Pe is an effective stress parameter characterizing the
average effective stress on the failure plane, γ is the total unit
weight of the soil, H is the height of the slope, q is the uniform
surcharge at the top of the slope, γw is the unit weight of
water, H ′

w is the height of water within the slope above the toe
of the slope (Figure 19.16), and μq and μ′

w are the surcharge
reduction factor and the seepage factor respectively. In the
case of no surcharge, μq is 1 and the value of μ′

w is found in
the chart shown in Figure 19.17.
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3. Calculate λcϕ as:

λcϕ = Pe tan ϕ′

c′ (19.74)

where λcϕ is a parameter characterizing the ratio between the
strength due to friction over the strength due to cohesion, and
c′ and ϕ′ are the effective stress cohesion and friction angle
respectively.

4. Using the chart in Figure 19.18, together with the slope
angle β and the strength ratio λcϕ, determine the stability
number Ncf .

5. Calculate the factor of safety as:

F = Ncf
c′

Pd

(19.75)

6. The location of the center of the failure circle is given
by the chart in Figure 19.19. The chart gives the normalized
values xo and yo of the coordinates:

Xo = xoH and Yo = yoH (19.76)

where Xo and Yo are the actual coordinates in meters, and H
is the height of the slope.

19.8.4 Morgenstern Chart

Morgenstern (1963) developed charts for the case of a rapid
drawdown in a dam (Figures 19.20 and 19.21). The charts
are for a uniform soil slope, effective stress parameters c′ and
ϕ′, soil total unit weight γ, a slope with a height H, and the
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water level being drawn down an amount H from the top of
the slope to a lower level. It is further assumed that the water
stress in the soil does not have time to dissipate during the
drawdown period.

The procedure is as follows:

1. Calculate the quantities c′/γ H and tan β.

2. Select the chart that corresponds to the correct c′/γ H,

and the correct tan β.

3. Using the values of H/H and ϕ′, find the value of the
factor of safety on the chart.

19.9 METHOD OF SLICES

The method of slices avoids some of the limitations associated
with the chart methods. The method of slices is applicable
to layered soils and to any water stress distribution. It is still
associated with circular failure surfaces, although the concept
can be applied to other shapes. The origin of the method goes
back to the work of Fellenius (1927), a Swedish engineer.
This problem-solving approach proceeds by breaking down
the mass of soil into elements, drawing a free-body diagram
of each element, writing the constitutive and fundamental
equations at the element level, solving for the unknowns, and
reassembling the pieces once the forces are known at the
element level. Recall that what we really want to evaluate
is the factor of safety of the slope F as defined in Eq. 19.1.
In the method of slices, the soil mass is sliced as shown in
Figure 19.22. Typically a minimum of 10 slices is necessary
for reasonable accuracy. Figure 19.23 shows a slice with
all parameters indicated. These parameters are defined in
Table 19.1.

The number of unknowns and the number of equations
available to find the values of the unknowns must be evalu-
ated. The soil properties and the geometry of the slope are
known quantities. The known forces are Q, Uβ, W, kh, kv,

and Uθ , whereas the known distances are b, h, and hC. Fur-
thermore, it is commonly assumed that the reactions N′ and
Uθ are acting at the midpoint of the bottom of the slice while
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Figure 19.22 Sliced slope.
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Q and Uβ are applied at the middle of the top of the slice. The
number of unknowns and the number of equations are shown
in Table 19.2.

The total number of unknowns is 5n−2 and the total num-
ber of equations is 4n; therefore, there are n−2 unknowns in
excess and the problem is statically indeterminate. It is nec-
essary to make assumptions. Many assumptions have been
made over time and each set of assumptions has been associ-
ated with one of the methods of slices. The assumptions and
the associated names are presented in Table 19.3. That table
shows the progress that took place over a period of 50 years in
reducing the coarseness of the assumptions and increasingly
satisfying the fundamental equations. The ordinary method
of slices, the Bishop simplified method, and the generalized
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Table 19.1 Definition of Parameters in Figure 19.23

Q = force applied at the top of the slice δ = angle of force Q with the vertical
Uβ = water force applied at top of slice θ = angle of bottom of slice with horizontal
W = total weight of slice β = angle of top of slice with horizontal
khW = horizontal static force due to earthquake λL = angle of force ZL with horizontal
kvW = vertical static force due to earthquake λR = angle of force ZR with horizontal
ZL = earth pressure force on left side of slice hL = height of point of application of ZL above bottom of

left side of slice
ZR = earth pressure force on right side of slice hR = height of point of application of ZR above bottom of

right side of slice
Sm = mobilized shear force at bottom of slice hC = height of center of gravity of slice above the middle of

the bottom of slice
N′ = normal force on base of slice transmitted through the

grains
h = height of slice from center of bottom to center of top

Uθ = water force applied at bottom of slice b = width of slice

limit equilibrium method are detailed next. The other meth-
ods are presented in Abramson et al. (2002) and in Duncan
and Wright (2005).

19.9.1 Ordinary Method of Slices

The assumption made by Fellenius (1927) is that the resultant
of ZL and ZR (Figure 19.23) is equal to zero. This assumption
decreases the number of unknowns by 3n − 3 (Table 19.2),
leaving 2n + 1 unknowns and 4n equations. Therefore, the
system is overdeterminate, meaning that not all equations
can be satisfied. Fellenius chose to satisfy equilibrium of
each slice in a direction perpendicular to the bottom of the
slice. Referring to Figure 19.23, this leads to the following
expression for slice i:

N ′
i + Uθ i + khWi sin θi − Wi(1 − kv) cos θi

− Uβi cos(βi − θi) − Qi cos(δi − θi) = 0 (19.77)

Table 19.2 Unknowns and Equations for the Method
of Slices

Unknowns Equations

n values of Sm forces n force equilibrium equations
in x direction

n values of N′ n force equilibrium equations
in y direction

n − 1 values of Z forces n moment equilibrium
equations

n − 1 values of the angles λ n shear strength equation
n − 1 values of the location

of the Z forces
1 factor of safety

TOTAL = 5n − 2 TOTAL = 4n

This equation gives the expression of N′
i.

The value of Uθ i is given by:

Uθ i = αiuwi
bi

cos θi

(19.78)

where αi is the area ratio for the soil along the bottom of the
slice (see section 15.5) and uwi is the average water stress at
the bottom of the slice. Obtaining the value uwi is discussed in
section 19.10. The weight of the slice Wi is calculated using
the total unit weight of the soil. If the slice includes several
soil layers, the weight is given by:

Wi =
m∑

j=1

γjAj (19.79)

where γj is the total unit weight of soil j within slice i and Aj

is the area of soil j included within slice i.
The expression for the mobilized shear force at the bottom

of slice i necessary to keep the slope in equilibrium Smi is
given by the shear strength equation and the factor of safety:

Smi =
c′
i

bi

cos θi

+ N ′
i tan ϕ′

i

F
(19.80)

where F is the global factor of safety for the slope. Then the
global factor of safety F for the n slices in the slope is given
by the ratio between the global maximum resisting moment
MR max around O, the center of the circle, and the global
driving moment MD around O:

F = MR max

MD

(19.81)

The expressions for MR max and MD are:

MR max =
n∑

i=1

(
c′
i

bi

cos θi

+ N ′
i tan ϕ′

i

)
R (19.82)
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Table 19.3 Methods of Slices, Authors, and Assumptions

Name of Method Reference Assumptions Comment

Ordinary method of
slices

Fellenius 1927 Resultant of Z forces on each slice is
equal to zero.

Based on writing equilibrium
perpendicular to base. Does
not satisfy all equilibrium
equations. Overdeterminate.

Janbu simplified
method

Janbu 1954 Z forces are horizontal. Does not satisfy all equilibrium
equations. Overdeterminate.

Bishop simplified
method

Bishop 1955 Shear forces on the side of all slices
are zero (i.e., Z forces are
horizontal).

Based on writing vertical force
equilibrium. Does not satisfy
all equilibrium equations.
Overdeterminate.

Bishop rigorous
method

Bishop 1955 Shear forces on the side of all slices
are assumed.

Satisfies all equilibrium
equations.

Lowe and Karafiath
method

Lowe and
Karafiath 1960

ZR forces inclined at an angle equal
to the average between the angle
of the top and bottom of the slice.

Does not satisfy all equilibrium
equations.

Morgenstern-Price
method

Morgenstern and
Price 1965

Inclination of Z forces given by a
function of the horizontal distance
multiplied by a scalar.

Satisfies all equilibrium
equations.

Spencer method Spencer 1967 Z forces have a constant but
unknown inclination.

Satisfies all equilibrium
equations.

Corps of Engineers
method

U.S. Army Corps
of Engineers
1970

Z forces inclined parallel to the
ground surface or parallel to the
line joining the beginning and the
end of the failure circle.

Does not satisfy all equilibrium
equations.

Janbu generalized
method

Janbu 1973 Location of point of application of
the Z forces on an assumed thrust
line.

Does not satisfy all equilibrium
equations.

Sarma method Sarma 1973 Inclination of Z forces given by a
function of the horizontal distance
multiplied by a scalar.

Makes use of horizontal
seismic coefficient. Satisfies
all equilibrium equations.

MD =
n∑

i=1

⎡
⎢⎣

(
Wi

(
1 − kv

) + Uβi cos βi + Qi cos δi

)
×R sin θi − (Uβi sin βi + Qi sin δi)

×(R cos θi − hi) + khWi(R cos θi − hci)

⎤
⎥⎦

(19.83)
and the general expression of the factor of safety for the
ordinary method of slices is:

F =

n∑
i=1

⎛
⎜⎜⎝
c′
i

bi

cos θi

+ (
Wi

(
1 − kv

)
cos θi

+Uβi cos(βi − θi) + Qi cos(δi − θi) − Uθ i

−khWi sin θi) tan ϕ′
i

⎞
⎟⎟⎠R

n∑
i=1

⎡
⎢⎣

(
Wi

(
1 − kv

) + Uβi cos βi + Qi cos δi

)
×R sin θi − (Uβi sin βi + Qi sin δi)

×(R cos θi − hi) + khWi(R cos θi − hci)

⎤
⎥⎦

(19.84)

In the simple case where kh = kv = Uβi = Qi = 0 (no
earthquake, no water on top of ground surface, no structures
on top of ground surface), the expression of the factor of
safety becomes:

F =

n∑
i=1

(
c′
i

bi

cos θi

+
(

Wi cos θi − αiuwi
bi

cos θi

)
tan ϕ′

i

)
n∑

i=1

Wi sin θi

(19.85)
The sequential steps to be followed to obtain F correspond

to the columns in Table 19.4.
Then the factor of safety is given by:

F = Sum of column 14

Sum of column 6
(19.86)
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Table 19.4 Hand Calculations for the Ordinary Method of Slices (Simple Case of No Earthquake, No Water above
Ground Surface, and No Structural Load on Ground Surface)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Slice
no. Area

Unit
weight W θ W sin θ W cos θ b/ cos θ α uw tan φ′ c′

7 − 8×
9 × 10

8 × 12+
13 × 11

m2/m kN/m3 kN/m ◦ kN/m kN/m m kN/m2 kN/m2 kN/m kN/m
1
—
i A1, . . . ,

Aj, . . . ,

Am

γ1, . . . ,

γj, . . . ,

γm
—
n

The following notes are very important:

1. Make a drawing to scale of the slope, including the
groundwater level and the external loads. This is necessary
because the areas in column 2 are measured on the drawing.

2. Choose the circle to be analyzed.
3. Use a minimum of 10 slices and make the slices corre-

spond to natural intersections with the chosen failure circle.
4. The unit weights in column 3 are total unit weights.

This means that the seepage force is considered an internal
force and must not be included in the calculations.

5. One way to handle a free water body (river, lake) on top
of the ground surface is to let the circle cut through the water
body, which then becomes part of the free-body diagram.
Then, if there is water on top of a slice, the weight of that
volume of water must be included in the total weight W in
column 4. If water at the end of the circle is considered (e.g.,
Figure 19.22), then the last slice is a water slice with weight
but zero values for c′ and ϕ′.

6. An alternative way to consider a free water body on top
of the ground surface is to consider that the free body stops
at the ground surface and to treat the water on top of this
body as an external load with weight and direction. This is
the way it is presented in Figure 19.23. External loads (due,
for example, to structures on the slope surface) are handled
in this fashion.

7. The angle θ in column 5 must carry a sign, which will
affect the sign of the columns with θ in them. Column 6 will
often be affected by the sign of θ; the negative sign of θ

indicates that the slice decreases the driving moment of the
soil mass.

8. Tan ϕ′ and c′ must be the soil properties at the bottom
of the slice, not the average properties of the soil within the
slice. The reason is that the shear strength is being evaluated
at the bottom of the slice.

9. The quantity in Column 13 for a given slice cannot be
negative. If it is and if the calculations are correct, set it equal
to zero.

19.9.2 Bishop Simplified Method

The assumption made by Bishop (1955) is that the Z forces
(ZL and ZR in Figure 19.23) are horizontal. This assumption
decreases the number of unknowns by n − 1, because the
angles λ are known (Table 19.2), leaving 4n − 1 unknowns
and 4n equations. Therefore, the system is overdeterminate
by one, meaning that not all equations can be satisfied.
Bishop chose to satisfy equilibrium of each slice in the
vertical direction. Referring to Figure 19.23, this leads to the
following expression for slice i:

(N ′
i + Uθ i) cos θi + Smi sin θi − Wi(1 − kv) − Uβi cos βi

− Qi cos δi = 0 (19.87)

The expression of Smi remains the same as in the OMS
(Eq. 19.80). By combining Eq. 19.87 with the expression of
Smi (Eq. 19.80), the following expression of N′

i. is obtained:

N ′
i = 1

mθ i

⎛
⎜⎜⎝Wi

(
1 − kv

) −
c′
i

bi

cos θi

sin θi

F
− Uθ i cos θi

+Uβi cos βi + Qi cos δi

⎞
⎟⎟⎠

(19.88)
with (Figure 19.24):

mθ i = cos θi

(
1 + tan θi tan ϕ′

F

)
(19.89)

The expressions of Uθ i, Wi, F, MRmax, and MD are given
by the same equations as in the OMS (Eqs. 19.78, 19.79,
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Figure 19.24 Graphical values of the parameters mθ .

19.81, 19.82, and 19.83 respectively). The only thing that
changes is the expression of N′. The final expression of the
factor of safety is:

F =

n∑
i=1

⎛
⎝c′

i

bi

cos θi

+
(

1

mθ i

(
Wi

(
1 − kv

) − c′
ibi tan θi

F

))
−Uθ i cos θi + Uβi cos βi + Qi cos δi

))
tan ϕ′

i

⎞
⎠R

n∑
i=1

⎡
⎢⎣

(
Wi

(
1 − kv

) + Uβi cos βi + Qi cos δi

)
R sin θi − (Uβi sin βi + Qi sin δi)

×(R cos θi − hi) + khWi(R cos θi − hci)

⎤
⎥⎦

(19.90)
In the simple case where kh = kv = Uβi = Qi = 0 (no

earthquake, no water on top of ground surface, no structures
on top of ground surface), the expression of the factor of
safety becomes:

F =

n∑
i=1

1

mθ i
(c′

ibi + (Wi − αiuwibi) tan ϕ′
i )

n∑
i=1

Wi sin θi

(19.91)

The sequential steps to be followed to obtain F correspond
to the columns in Table 19.5.

Iterations are continued until two consecutive factors of
safety fall within the target tolerance.

19.9.3 Generalized Equilibrium Method

Many other methods exist that make various assumptions
about the side forces ZL and ZR, their inclination, and their
location. The generalized equilibrium method (Abramson
et al. 2002) exemplifies the general approach. In this method,
the inclination angle λ of the side forces is assumed to be
described by a function expressed as:

λi = ηf (xi) (19.92)

where η is a scalar constant for the slope and f(xi) is the
function with values between 0 and 1 describing the variation
of the side forces angle λi as a function of the horizontal
distance xi along the slope. Examples of the function f(x) are
shown in Figure 19.25.

Equation 19.92 decreases the number of unknowns by
n − 1, as it gives the value of the interslice forces inclinations
λi, but it does introduce one more unknown in η for a total
reduction of unknowns of n − 2. This brings down the total
number of unknowns to exactly 4n, which now corresponds
exactly to the 4n number of equations available. Hence, the
system is statically determinate. The equations are similar to
those of the Bishop simplified method except that the side
forces are now included. Force equilibrium parallel to the
base gives n equations:

Smi + ZLi cos(θi − λLi) − ZRi cos(θi − λRi)

− Wi(1 − kv) sin θi − Wikh cos θi − Uβi sin(θi − βi)

− Qi sin(θi − δi) = 0 (19.93)

Force equilibrium perpendicular to the base gives n
equations:

N ′
i + ZRi sin(θi − λRi) − ZLi sin(θi − λLi)

− Wi(1 − kv) cos θi + Wikh sin θi + Uθ i

− Uβi cos(θi − βi) − Qi cos(θi − δi) = 0 (19.94)

Moment equilibrium around the point at the middle of the
base leads to n equations:

ZLi cos λLi

(
hLi − bi

2
tan θi

)
− ZRi cos λRi

(
hRi + bi

2
tan θi

)

+ ZLi
bi

2
sin λLi + ZRi

bi

2
sin λRi − Wikhhci + Uβihi sin βi

+ Qihi sin δi = 0 (19.95)
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Table 19.5 Hand Calculations for Bishop Simplified Method (Simple Case of No Earthquake, No Water above Ground
Surface, and No Structural Load on Ground Surface)

1 2 3 4 5 6 7 8 9 10 11 12

Slice
no. Area

Unit
weight W θ W sin θ b α uw tan ϕ′ c′

11 × 7 + (4 − 8×
9 × 7) × 10

m2/m kN/m3 kN/m ◦ kN/m m kN/m2 kN/m2 kN/m
1
. . .

i A1, . . . ,

Aj, . . . ,

Am

γ1, . . . ,

γj, . . . ,

γm
. . .

n

13 14 15 16 17 18 19

Choose
F1 = 1.5?

mθ1 = Eq. 19.85 or
Figure 19.24

12/14 F2 = �15/�6 mθ2 = Eq. 19.85 or
Figure 19.22 using
F2

12/17 F3 = �18/�6

f(x) 5 Constant 
(spencer’s method)

x coordinate cresttoe
0

F
u
n
c
ti
o
n
 f
(x

)

1

f(x) 5 Half-sine
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Figure 19.25 Example of functions f(x) (after Abramson et al., 2002).
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Then one can write n shear strength equations:

Smi =
c′
i

bi

cos θi

+ N ′
i tan ϕ′

i

F
(19.96)

These 4n equations contain 4n unknowns, which are the n
values of the Sm forces, the n values of the N ′ forces, the
n − 1 values of the Z forces, the n − 1 values of the location
of the Z forces, the scalar η, and the factor of safety F. The
system is solved for those variables and the factor of safety
is found in that fashion.

19.9.4 Critical Failure Circle

The method of slices gives the factor of safety for a chosen
failure circle. The trick is to find which circle will give the
lowest possible factor of safety; this is called the critical
circle. Because the center of the circle and the radius of the
circle can both vary, there is a double infinity of possible
circles. The search for the critical circle typically proceeds
by choosing a center location and then varying the radius of
the circle until the lowest factor of safety is found for that
center. That center is then assigned the corresponding value
of the factor of safety. Many different centers are tried and
each time the radius is varied until the minimum factor of
safety is found for that center. A map is prepared of the center
locations and the associated factors of safety (Figure 19.26).
This map describes the surface of the factor of safety F in two
dimensions (F = F(x, y)).

Two options are available for a computer program to search
for the minimum factor of safety: the automatic search and the
grid approach. Some software programs have an automatic
search mode, in which the slope of the surface F(x,y) is used
to move the location of the center toward lower F values until
a minimum is found. The problem with this approach is that
the minimum could be a local minimum and not the absolute
minimum. This is a bit like finding a low valley in a mountain

Rmin

R value for
Minimum F
given this
center
location

Grid of
trial
center

Contours

of equal F

values

1.41

Minimum
factor of
safety
for any
center
location

Trial
values
of R

Figure 19.26 Finding the location of the minimum factor of safety.

range but not finding the deepest valley over the peak next to
it. One way to alleviate this problem is to repeat the automatic
search by starting the search at a different center location.

With the grid approach, the user inputs a grid of center
locations and the program outputs the factor of safety surface,
leaving the decision of where the minimum factor of safety
might be up to the user. A broad grid is used at first and can be
refined once the likely location is more precisely identified.

19.10 WATER STRESS FOR SLOPE STABILITY

The water stress along the bottom of the failure surface has a
significant influence on the factor of safety. The water stress at
the bottom of a slice can be positive (below the groundwater
level) or negative (above the groundwater level). A high
positive water stress (compression) leads to a low factor of
safety, whereas a high negative water stress (tension) leads
to a high factor of safety. There are several ways to estimate
the water stress in a slope: piezometric surface, water stress
ratio value ru, and grid of water stress values (Figure 19.27).

19.10.1 Piezometric and Phreatic Surface

A distinction must be made between the groundwater level,
also called the phreatic surface, and the piezometric surface.
If you drill a borehole in the ground, water will come to
equilibrium at a certain level in the hole: this level corresponds
to the phreatic surface or groundwater level. If you consider a
point M in the ground and calculate the water stress at M as the
product of the unit weight of water times the distance from M
to a surface, then that surface is the piezometric surface. The
groundwater level does not depend on the location of M, but
the piezometric surface does. In most cases the piezometric
surface is slightly below the phreatic surface, and using the
phreatic surface as the piezometric surface will lead to a
factor of safety slightly lower than the true factor of safety.
The expression of the water stress uw at point M is then:

uw = γwhp (19.97)

where γw is the unit weight of water and hp is the pressure
head (positive or negative). The pressure head is the vertical

Phreatic 
surface

Piezometric 
surface

P

M

N

Grid point where 
uw is specified

Interpolation to 
obtain uw

Figure 19.27 Input of water stress.
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distance between point M and the piezometric surface. In
the absence of a piezometric surface, the phreatic surface or
groundwater level can be used as a first approximation. Note
that if the point is above the groundwater level, the water
stress will be negative, indicating water tension.

19.10.2 Water Stress Ratio Value

The water stress ratio ru is defined as:

ru = uw

σov
(19.98)

where uw is the water stress at a point M and σov is the total
vertical stress at the same point M. Specifying a single value
of ru for a slope is very convenient, as it becomes simple to
calculate the water stress at the bottom of the slice from the
total vertical stress at the bottom of the slice. The problem is
that the true ru value may vary from one location along the
failure surface to another; thus, this is a simplification, albeit
a convenient one. Using a single ru value is cruder than using
a piezometric or phreatic surface, particularly for points of
the failure surface that are above the groundwater level.

19.10.3 Grid of Water Stress Values

The approach that uses a grid of water stress values con-
sists of inputting the water stress in the slope mass at grid
points canvassing the slope. This input solution is more time-
consuming than the two previously mentioned solutions, but
it is also the most precise and versatile way to input the water
stress. The grid size can vary, but should be fine enough
that the interpolation between grid points leads to reasonable
accuracy in the value of the water stress (Figure 19.27). Note
that negative values (water tension) can be input with this
solution at appropriate places in the grid.

19.10.4 Water Stress Due to Loading

If the slope is subjected to loading that induces water stress,
the approach consists of calculating the hydrostatic water
stress and the excess water stress separately:

uw = uwo + �uwe (19.99)

where uwo is the hydrostatic component and �uwe is the
excess water stress. If the excess water stress is due to
loading on the ground surface, it is generally calculated by
first calculating the vertical normal total stress increase due
to the load �σv in the soil mass (see section 17.8.7). Then the
value of �uwe is related to �σv by:

B = �uwe

�σv
(19.100)

The value of the water stress parameter B is 1 in soft,
saturated soil under the water table, but can be much smaller
in stiff, overconsolidated soils. If B is not known, one solution

is to assume a value (0.5, for example), calculate the factor
of safety with that assumption, monitor the water stress in
the slope with piezometers during construction, and stop
construction if the water stress goes over the assumed value
if that value is critical. One particular case in which such an
approach is warranted is when an embankment is built over a
soft clay.

19.10.5 Seepage Analysis

If water seeps through a slope, the water stress will be different
from hydrostatic conditions. To calculate the water stress in
this case, a flow net solution can be used (see sections 13.2.12
to 13.2.16). Figure 19.28 shows an example. In this case, the
water stress at point M is given by equation 19.97, where hp
is the pressure head expressed as:

hp = ht − he (19.101)

where ht and he are the total head and elevation head at M
respectively. Referring to Figure 19.28, the total head at M is
the same as the total head at A, because they are on the same
equipotential line. Because the pressure head at A is zero, the
pressure head at M is expressed as follows:

htM = htA and hpA = 0 then hpM = heA − heM
(19.102)

and the pressure head at M is the difference in elevation
between M and A. Thus, the piezometric line is slightly
below the phreatic line. If the slope is relatively flat, as most
soil slopes are, the difference is small, but if the slope is steep,
the difference can be larger and using the phreatic line as the
piezometric line can be excessively conservative.

19.11 TYPES OF ANALYSES

Several types of analyses can be performed, including:

1. Drained or undrained analysis
2. Effective stress or total stress analysis
3. Long-term or short-term analysis

Phreatic 
surface

Piezometric 
surface

M

A

Impervious

B

Figure 19.28 Flow net for slope stability.
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In a drained analysis, the water stress is considered to be
hydrostatic throughout the mass. The soil strength param-
eters associated with this analysis are the drained strength
parameters or effective stress parameters.

An undrained analysis is used when the water does not
have time to drain away. The soil strength parameter used in
this case is the undrained shear strength. One must be careful
to use the undrained shear strength corresponding to the stress
path of the soil in the slope.

An effective stress analysis can be used in all cases. It
makes no particular assumption regarding drainage and is
based on sound fundamental principles. It makes use of the
effective stress equation to obtain the shear strength of the
soil based on the effective stress cohesion c′ and the effective
stress friction angle ϕ′. It can be used for an undrained
analysis, a drained analysis, a short-term analysis, or a long-
term analysis. The difficulty with using an effective stress
analysis is that the water stress in the soil mass must be
known. This is particularly challenging in the case of an
undrained analysis.

A total stress analysis considers that the soil is made
of one material; it does not recognize the existence of the
three components (particles, water, and air). Hence, one must
be very careful when using such an analysis. A total stress
analysis can be used in the case of a soil with no water and in
the case of a soil where the shear strength is independent of
rapid variations in total stress. One such case is the undrained
behavior of soft, compressible, saturated soils under the water
table right after loading by an embankment.

A long-term analysis considers that all water stresses
induced by loading have had time to dissipate and are back
to hydrostatic. In this regard, a long-term analysis is similar
to a drained analysis.

A short-term analysis is used for a soil condition taking
place shortly after loading. As such, it is often a drained
analysis for fast-draining soils like free-draining sands and
gravels, and an undrained analysis for slow-draining soils
like silts and clays.

The effective stress analysis is the preferred analysis, but
it is also often the most difficult to perform, because of the
complexities associated with predicting water stresses in the
soil mass due to loading and due to desaturation close to
the ground surface. In all cases it is wise to perform both a
short-term and a long-term analysis for any soil problem to
ensure proper behavior in the short and long terms.

19.12 PROGRESSIVE FAILURE IN
STRAIN-SOFTENING SOILS

An added complexity in selecting the shear strength to use
in the failure analysis occurs when the soil exhibits strain-
softening behavior. In this case there is a peak strength τfmax
and a residual strength τfres after the peak (Figure 19.29).
The complexity comes from the fact that the failing body is

A

A
B
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C
C

t

D
D

D
t

t

Figure 19.29 Progressive failure.

not rigid and moves differently along the failure surface. The
largest displacements along the failure surface typically start
at the bottom of the slope and move back until they reach the
top of the slope. Therefore, the displacement could be large
enough to be at the residual shear strength toward the bottom
of the slope but still be at the peak shear strength toward the top
of the slope. This is called progressive failure (Figure 19.29).
In the case of progressive failure, the back-calculated shear
strength from a slope failure could be between the peak shear
strength and the residual shear strength. Progressive failure is
most likely to occur for slopes excavated in overconsolidated,
stiff, fine-grained soils; such slopes may exist for several years
before failing.

19.13 SHALLOW SLIDE FAILURES IN
COMPACTED UNSATURATED EMBANKMENTS

Shallow slides may occur many years after an embank-
ment is compacted at a water tension level that decreases
with time, thereby weakening the soil strength. Aubeny
and Lytton (2004) studied this problem and explained the
phenomenon mathematically (see section 13.3.2) and ex-
perimentally. When embankments are built for freeway
overpasses, for example, the approach embankment must
be compacted and usually reaches a height of about 8 m.
The side slopes are typically between 2 horizontal to 1 ver-
tical and 3 horizontal to 1 vertical. The compaction takes
place around the optimum water content (see Chapter 20),
which corresponds to an unsaturated soil condition. Long af-
ter construction (e.g., 10 to 20 years), these embankments can
experience shallow slide failures (Figure 19.30). The depth of
these slides is about 1.5 to 2 meters. These failures take place
because the water tension decreases as a function of time, as
the as-built water tension is slowly reduced by repeated rain-
falls. The drying and wetting process creates cracks that are
typically as deep as they are horizontally spaced. This source
of water at depth weakens the soil by decreasing the effective
stress tied to the water tension—and the shallow slope fails.
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Figure 19.30 Shallow slide in a compacted embankment. (Cour-
tesy of Professor Charles Aubeny, Texas A&M University.)

The parts of the world where the rainfall and the temperature
vary a lot during the seasons (tropics) are most likely to
experience this problem. The solution is either to perform the
slope stability analysis by using a wetted shear strength of
the compacted soil or to prevent the water tension from being
lost as a function of time. Geosynthetic covers may achieve
this result.

19.14 REINFORCED SLOPES

19.14.1 Reinforcement Type

Many types of reinforcements can be used in a slope
(Figure 19.31). They include rigid steel inclusions, geosyn-
thetics, soil nails, stone columns, tieback anchors, and piles.
Among these types of reinforcements, only tieback anchors
are posttensioned to a preset tension force; all others are not.
Of course, in most cases, the reinforcement ends up being in
tension under working load conditions. Some reinforcement
is considered to be rigid (e.g., soil nails), whereas other re-
inforcement is considered to be flexible (e.g., geosynthetics).
This rigidity has an impact on the moment arm associated
with the reinforcement.
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Circle 2
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T29
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Figure 19.31 Reinforced slope.

19.14.2 Factor of Safety

The factor of safety for a slope and for a circular failure
surface is defined in Eq. 19.81 as the ratio of the maximum
resisting moment divided by the driving moment. Each layer
of reinforcement increases the maximum resisting moment,
so the factor of safety for a reinforced slope FR is:

FR = MR max(soil) + MR max(reinforcement)

MD

(19.103)

where MR max(soil) is the maximum resisting moment
provided by the soil along the failure circle considered,
MR max(reinforcement) is the maximum resisting moment pro-
vided by the reinforcement, and MD is the driving moment
due to the soil weight and any other external loads. For an
unreinforced slope, the factor of safety Funreinforced is:

FU = MR max(soil)

MD

(19.104)

The expression of the maximum resisting moment provided
by the reinforcement is:

MR max(reinforcement) =
n∑

i=1

Tidi (19.105)

where Ti is the maximum resistance of the ith reinforcement
outside of the circle considered and di is the moment arm
of the force Ti. The value of di depends on the flexibility of
the reinforcement. If the reinforcement is rigid, such as soil
nails, then the reinforcement will not bend along the potential
plane of failure and the moment arm is the one associated
with the direction of the reinforcement (di in Figure 19.31).
If the reinforcement is flexible, then it will bend at the failure
plane and follow the direction of the circle; in this case the
moment arm of the reinforcement is the radius of the circle.
The resistance force Ti is given by:

Ti = Af fu (19.106)

where Af is the contact area between the soil and the rein-
forcement (πDL for a cylindrical shape, 2(B + W)L for a
rectangular shape), and fu is the maximum shear stress that
can be developed at the soil-reinforcement interface. The
length L involved in calculating Ti is the length of reinforce-
ment outside of the circle considered (MN in Figure 19.31).
Note that for posttensioned reinforcement such as tieback
anchors, the force Ti increases the compressive stresses on
the failure plane, thereby increasing the shear strength along
the plane of failure (see Chapter 21).

Another mode of failure in the case of a reinforced slope is
for the failure circle to pass behind the reinforced zone (circle
2 in Figure 19.31). This circle is associated with a factor of
safety F2 (Eq. 19.104) which should be compared to F1 of
the reinforced slope (Eq. 19.103).
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19.15 PROBABILISTIC APPROACH

In foundation engineering, uncertainty is included in the
design through the use of load and resistance factor de-
sign (LRFD). In slope stability, LRFD is rarely used, but
uncertainty does exist. The uncertainty associated with the
calculated factor of safety in slope stability is quantified
through a direct probability of failure calculation. This proba-
bilistic approach has a great advantage over the deterministic
approach, which gives only one value of the factor of safety.
Imagine the following situations. You are given an average
factor of safety equal to 1.5 and you feel comfortable about
the safety of that slope. Then a probabilistic analysis is con-
ducted to assess the probability of failure associated with the
1.5 factor of safety and yields a 0.2 or 1 chance in 5 of a
failure occurring. Now you are not so comfortable about the
1.5 value. In contrast, if the assessed probability of failure
turns out to be 0.001, you are very comfortable, as such a low
probability of failure is well within the acceptable range for
common civil engineering projects.

A background on probability is presented in section 11.6.1.
The procedure for obtaining the probability of failure is out-
lined in section 11.6.2. A sample calculation of the probability
of failure for a slope is given in section 11.6.4. The follow-
ing simple examples illustrate the calculations to obtain the
probability of failure.

19.15.1 Example 1

A slope exists as shown in Figure 19.32. It is made of
clay with a normally distributed undrained shear strength su

having a mean of 70 kPa and a standard deviation of 20 kPa.
The failure circle has a radius of 16 m and the length of the
arc is 24 m. The weight of the soil mass within the circle is
3200 kN per meter of length perpendicular to the page and
the horizontal distance between the center of the circle and
the center of gravity of the soil mass is 5.5 m.

The deterministic value of the factor of safety is:

F = RL

Wa
su = 16 × 24

3200 × 5.5
70 = 1.527 (19.107)

a 5 5.5 m

L 5 24 m

W 5 3200 kN/m

1
2

Su (m 5 70 kPa, s 5 20 kPa)

9 m

R
 5

 1
6
 m

Layer 1

Layer 2

Figure 19.32 Probabilistic slope calculations example.

Note that if:

Y = aX then μY = aμX (19.108)

Therefore, the value of the factor of safety in Eq. 19.107 is
also the mean of F,μF. Let’s calculate the standard deviation
of F. Again we note that if:

Y = aX then σY = aσX (19.109)

Therefore, the standard deviation of F is:

σF = RL

Wa
σsu

= 16 × 24

3200 × 5.5
× 20 = 0.436 (19.110)

Failure occurs when F < 1 and the probability that F < 1
is P(F < 1), which can be evaluated as follows. The first
step is to transform F into the standard normal variable U:

U = F − μF

σF

= F − 1.527

0.436
(19.111)

The standard normal variable U has the following properties
(see section 11.6.1):

P(U < u) = 1 − P(U < −u) and P(U < u)

= P(U > −u) (19.112)

We are looking for the probability:

P(F < 1) = P

(
F − μF

σF

<
1 − 1.527

0.436

)

= P(U < −1.21) = 1 − P(U < 1.21)

(19.113)

Table 11.3 gives:

P(U < 1.21) = 0.8869 (19.114)

and the probability of failure for this case is:

P(F < 1) = 1 − 0.8869 = 0.1131 (19.115)

For most civil engineering works, this would not be an
acceptable probability of failure but the deterministic value
of the factor of safety (1.527) would be.

19.15.2 Example 2

Consider the same slope geometry and the same circle, but
now with the soil made of two layers. The top layer (crust) has
a mean su value of 150 kPa, a standard deviation of 30 kPa,
and a failure circle arc length of 6.5 m. The bottom layer has a
mean su value of 70 kPa, a standard deviation of 20 kPa, and
a failure circle arc length of 17.5 m. The weight and center
of gravity of the soil mass are unchanged, with a weight of
3200 kN/m and a moment arm of 5.5 m.
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The deterministic value of the factor of safety is:

F = R(L1su1 + L2su2)

Wa
= 16(6.5 × 150 + 17.5 × 70)

3200 × 5.5

= 2.0 (19.116)

Note that if:

Y = aX + bZ then μY = aμX + bμZ (19.117)

Therefore, the value of the factor of safety in Eq. 19.116
is also the mean of F,μF. It makes sense that the factor of
safety would be higher than in Example 1, because we have
replaced part of the soil with a stronger layer. Let’s calculate
the standard deviation of F. Again we note that if:

Y = aX + bZ then σY =
√

a2σ 2
X + b2σ 2

Z (19.118)

Therefore, the standard deviation of F is:

σF =
√(

16 × 6.5

3200 × 5.5

)2

302 +
(

16 × 17.5

3200 × 5.5

)2

202 = 0.364

(19.119)
We follow the same process as in Example 1:

U = F − μF

σF

= F − 2.0

0.364
(19.120)

Then, we are looking for the probability:

P(F < 1) = P

(
F − μF

σF

<
1 − 2.0

0.364

)

= P(U < −2.747) = 1 − P(U < 2.747)

(19.121)

Table 11.3 gives:

P(U < 2.747) = 0.997 (19.122)

and the probability of failure for this case is:

P(F < 1) = 1 − 0.997 = 0.003 (19.123)

This is an acceptable probability of failure in civil engi-
neering. The main reason why the probability of failure has
dramatically decreased (from 0.113 to 0.003) is that the mean
factor of safety (2 instead of 1.527) is now further away from
the failure value (F = 1).

19.15.3 Example 3

Let’s repeat Example 1, but with two layers as in Example 2,
except that these two layers are now identical and made of
the Example 1 soil: mean su = 70 kPa and standard deviation
of su = 20 kPa. The new calculations are as follows.

The deterministic value of the factor of safety is:

F = R(L1su1 + L2su1)

Wa
= 16(6.5 × 70 + 17.5 × 70)

3200 × 5.5

= 1.527 (19.124)

It makes sense that we find the same factor of safety as
in Example 1. The standard deviation of F has changed,
however; it is now:

σF =
√(

16 × 6.5

3200 × 5.5

)2

202 +
(

16 × 17.5

3200 × 5.5

)2

202 = 0.339

(19.125)
We follow the same process as in Example 1:

U = F − μF

σF

= F − 1.527

0.339
(19.126)

Then, we are looking for the probability:

P(F < 1) = P

(
F − μF

σF

<
1 − 1.527

0.339

)

= P(U < −1.555) = 1 − P(U < 1.555)

(19.127)

Table 11.3 gives:

P(U < 1.555) = 0.9400 (19.128)

and the probability of failure for this case is:

P(F < 1) = 1 − 0.940 = 0.060 (19.129)

This is about half the probability of failure calculated in
Example 1, yet the soil conditions are the same except that we
divided the soil into two identical layers. The reason for the
decrease in the probability of failure is that if you randomly
select a shear strength value from two identical distributions,
you are very likely to make errors that tend to balance each
other or reduce the error. The reason for this balancing error
is that if you randomly pick a value that is too high for the
first layer, you are more likely to pick a value that is too low
for the second layer, as there are more values lower than your
first guess. If there is only one layer, you have only your first
guess for the calculations.

19.16 THREE-DIMENSIONAL CIRCULAR
FAILURE ANALYSIS

The analysis of the circular failure in the preceding sections
has assumed a plane strain condition. This means that the
failing soil body has the shape of a cylindrical sector. Al-
though in most cases this is a reasonable approximation, slope
failures are always three dimensional (Figure 19.33). Three-
dimensional or 3D slope failure analyses can be performed,
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Figure 19.33 Three-dimensional slope failure. (Courtesy of Gor-
don W. Hunter, British Columbia Ministry of Transportation and
Infrastructure.)

but are not done as commonly as plane strain analyses. One
reason is that, most of the time, the assumption of a plane
strain condition leads to a conservative factor of safety.

One way to perform a 3D slope stability analysis is to de-
compose the soil volume into a series of slices, each of which
is considered to be a plane strain case (Figure 19.34). Many
different assumptions can be made for such a mechanism, as
was done for the 2D case. Some of them include a common
axis of rotation for all circles and no forces between the circle
slices. It can be seen in Figure 19.34 that if the deepest circle
in the center of the volume is the critical circle for the 2D case,
then all other circles will have a factor of safety higher than
the 2D critical circle. From this observation, it follows that
the global factor of safety for the 3D volume will be higher
than for the 2D case. Though there are some exceptions to this
statement, it is the general trend and has been documented

Plane strain
circle Shallow edge

circle

Wj

W

H

Rj

Axis of 
rotation

Figure 19.34 Decomposition of a 3D soil body into 2D soil slices.
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Figure 19.35 Comparison of 3D to 2D factor of safety. (After
Stark 2003.)

by Stark (2003), for example (Figure 19.35). In Figure 19.35,
H is the height of the slope and W is the width of slope
considered in the analysis (sum of wj on Figure 19.34). Three
curves are shown for three different slope angles (1h to 1v,
3h to 1v, and 5h to 1v).

For the 2D case, the factor of safety of the j th circle (Bishop
simplified) is modified after Eq. 19.91:

F2D,j =

n∑
i=1

1

mθ ij
(c′

ijbij + (Wij − αijuwijbij) tan ϕ′
ij)

n∑
i=1

Wij sin θij

(19.130)
where all parameters are defined in Table 19.1 and j is the
number of the circle slice as shown in Figure 19.34. Then, if
the axis of rotation is the same for all slices and if the forces
between the circle slices are neglected, the factor of safety
for the 3D volume becomes:

F3D =

m∑
j=1

Rj wj

n∑
i=1

1

mθ ij
(c′

ijbij + (Wij − αijuwijbij) tan ϕ′
ij)

m∑
j=1

Rj wj

n∑
i=1

Wij sin θij

(19.131)
where Rj and wj are the radius and width of the circle slice j
respectively.

The drastic assumptions associated with this equation limit
its applicability to a first estimate. A number of computer
programs are available to perform more sophisticated 3D
analyses. The goal of the assumptions, as in the 2D case, is
to make the problem a statically determinate problem and to
satisfy equilibrium equations in all directions. In the end, the
finite element method is again the best way to solve the 3D
problem, because with this method all equilibrium equations
will automatically be satisfied for all elements of soil.
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19.17 FINITE ELEMENT ANALYSIS

The finite element method (FEM) can be used to analyze the
stability of slopes. The mesh should be large enough that
the boundaries have only a small and tolerable influence on
the stability calculations. If the height of the slope is H, the
mesh should be at least 3 H high. If the horizontal distance
between the toe and the crest of the slope is L, the mesh
should be at least 5 L long. The advantages of the FEM over
the limit equilibrium method (LEM) are that (Griffiths and
Lane 1999):

1. No assumptions need be made about the failure surface;
the weakest surface will automatically be found through
the stress field calculated as part of the solution.

2. All equilibrium equations are satisfied.
3. In addition to a factor of safety, information is obtained

on the displacements of the slope. This information,
of course, is only as good as the soil model and soil
properties used to obtain it.

4. The FEM includes complex issues such as progressive
failure up to complete failure.

The factor of safety is determined through the use of
a strength reduction factor (SRF) which is applied to the
strength parameters of the soil:

c′
r = c′

SRF
(19.132)

tan ϕ′
r = tan ϕ′

SRF
(19.133)

where c′ and ϕ′ are the effective stress cohesion and friction
angle of the soil respectively, and c′

r and ϕ′
r are the reduced

effective stress cohesion and friction angle of the soil re-
spectively. The FEM is performed repeatedly as the values
of c′

r and ϕ′
r are gradually decreased by using an increasing

SRF. The failure criterion can be defined in various ways
(Abramson et al. 2002):

1. Bulging of the slope surface
2. Limiting shear stress reached on the failure surface
3. Nonconvergence of the solution

When an agreed-upon failure criterion is reached, the SRF
is equal to the safety factor. Figure 19.36 shows an FEM
output of a failed slope.

Figure 19.36 Failed slope in finite element method. (Courtesy of
Griffiths and Lane 1999.)

19.18 SEISMIC SLOPE ANALYSIS

An earthquake can induce failure of a slope that is statically
safe. The reason is twofold: The earthquake increases the
driving moment, mostly through horizontal shaking; and in
some soils it can decrease the shear strength of the soil
by increasing the water compression stress through cyclic
loading, possibly leading to liquefaction. There are several
ways to include earthquake loading in slope stability analysis:

1. Pseudostatic method
2. Newmark’s displacement method
3. Postearthquake stability method
4. Dynamic finite element method

19.18.1 Pseudostatic Method

The pseudostatic method is the most common and the sim-
plest. It consists of adding a horizontal and vertical static
force in the limit equilibrium analysis. These two forces are
chosen to be equivalent to the effects of the inertia dynamic
forces generated during shaking of the soil mass. They are
assumed to be proportional to the weight W of the failing soil
mass. The coefficients of proportionality are kh and kv for the
horizontal and vertical direction respectively (Figure 19.37).
Most commonly, the vertical seismic coefficient kv is as-
sumed to be zero and the horizontal seismic coefficient kh
depends on the severity of the shaking. Table 19.6 (Abramson

Wi

khWi

kvWi

Center of
gravity of

slice i

Figure 19.37 Pseudostatic seismic forces.

Table 19.6 Values of the Seismic Horizontal
Coefficient kh

Seismic Coefficient kh Comment

0.10 Major earthquake, U.S. Army
Corps of Engineers, 1982

0.15 Great earthquake, U.S. Army
Corps of Engineers, 1982

0.05 to 0.15 State of California
0.15 to 0.25 Japan
1/3 to 1/2 of peak ground

acceleration (PGA)
Marcuson and Franklin 1983

(After Abramson et al. 2002.)
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et al. 2002) is a summary of some common values for the
seismic coefficient kh.

The seismic force is usually placed at the center of gravity
of the slice. Seismic analyses indicate that most of the time,
the peak acceleration increases as the wave propagates from
the bottom to the top of the slope. This would mean that
the point of application of the seismic force should be above
the center of gravity of the slice (CG); this would generate
smaller overturning moments than if that force were placed
at the CG. Therefore, placing the seismic force at the CG of
the slices, as is usual practice, is conservative in most cases.

Another way to approach the problem is to find the hor-
izontal seismic coefficient kh that would lead to failure of
the slope. This value of kh, called the yield horizontal seis-
mic coefficient ky, corresponds to a factor of safety of 1
(Figure 19.38). Then the value of ky can be compared to the
peak ground acceleration (PGA) of the earthquake at the slope
location. Abramson et al. (2002) suggest the observations in
Table 19.7.

Note that a very important part of the pseudostatic analysis,
as for any slope stability analysis, is to select the correct
shear strength. The issue here is that the shear strength during
shaking is likely to be reduced compared to the static case.

19.18.2 Newmark’s Displacement Method

Newmark’s displacement method is credited to Newmark
(1965). Whereas most other slope stability methods aim at
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Figure 19.38 Yield horizontal seismic coefficient.

Table 19.7 Likelihood of Failure for Different
Values of ky

Relative Position of ky and PGA Observation

ky > PGA No failure likely
0.5 PGA < ky < PGA Minor damage possible
ky < 0.5 PGA Failure likely

(After Abramson et al. 2002.)

predicting the factor of safety, this method aims at predicting
the accumulation of displacement of the slope during a series
of acceleration cycles, as in an earthquake, for example.

The first step is to develop an acceleration history a(t) for the
earthquake at the location of the slope (Figure 19.39). Then
the yield acceleration ay is found by using the pseudostatic
method. The relationship between ay and ky is:

ay = kyg (19.134)

where g is the acceleration due to gravity. Any acceleration
above ay will lead to movement as the slope fails during a
short time increment (points B to D in Figure 19.39). By
integration of the net acceleration (a(t)−ay) from B to D,
the velocity of the soil mass is found (points B1 to D1 in
Figure 19.39). Then the velocity decreases as the acceleration
recedes below ay and the shear strength slows the soil mass
down (points D1 to M1 in Figure 19.39). By integrating
the velocity from B1 to M1, the displacement of the slope
mass is obtained (points B2 to M2 in Figure 19.39). At
M2, a permanent displacement has been accumulated; the
displacement increases again when the acceleration exceeds
the yield acceleration (point H in Figure 19.39). The process
repeats itself until the earthquake is over. One of the key parts
of this method is developing the acceleration history for the
slope. This is discussed in Chapter 22.

Makdisi and Seed (1978) performed a parametric analysis
using actual and hypothetical dams and embankments. Using
the results, they simplified Newmark’s method and presented
it in the form of a chart (Figure 19.40). The acceleration
ratio ky/kmax is on the horizontal axis, where ky is the yield
horizontal seismic coefficient corresponding to failure of the
slope and kmax is the maximum acceleration horizontal seis-
mic coefficient corresponding to the maximum acceleration
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Figure 19.39 Newmark’s displacement method (1965).
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Figure 19.40 Makdisi and Seed (1978) chart. (This material is
reproduced with permission of John Wiley & Sons, Inc.)

in the slope and defined as:

amax = kmaxg (19.135)

The earthquake magnitude M (see Chapter 22) is selected
for the site and the range of displacement is read on the vertical
axis using the acceleration ratio and the magnitude M.

19.18.3 Postearthquake Stability Analysis

Postearthquake stability analysis is a static analysis that
considers the situation right after an earthquake. The main
issue in this case is the proper selection of the shear strength
existing after the earthquake. The steps for such an analysis
(Duncan and Wright 2005) include:

1. Study whether the soil has liquefied or not (see
Chapter 22)

2. Determine the reduced shear strength due to cyclic
loading (see Chapter 22)

3. Use that shear strength for a conventional stability
analysis

19.18.4 Dynamic Finite Element Analysis

Dynamic finite element analysis is a 2D or 3D dynamic
analysis of the slope and its surroundings. The finite element
mesh should be large enough that the effect of the boundaries
does not significantly affect the stability calculations for
the slope. The recommendations of section 19.17 for static
analysis may not be sufficient, as earthquake shaking creates
waves that propagate against the boundaries and are reflected
toward the slope. The soil model should incorporate the
evolution of the strength and deformation properties as a

function of cycles. The earthquake motion is usually induced
at the bottom of the mesh and propagates upward through
the slope mesh. The fact that the soil model can more
closely follow the soil behavior and the fact that the dynamic
equilibrium of the elements is satisfied at all times are two
major advantages of this approach. The complexity of the
approach is its drawback.

19.19 MONITORING

Monitoring consists of making observations or measurements
on a slope in order to evaluate its stability. Among the most
useful parameters to observe or measure are:

1. Cracks, particularly on top of the slope
2. Movements of the slope surface or at depth
3. Groundwater and water stress conditions

Crack openings are indications that a slope is stressed
(Figure 19.41). Cracks associated with instability on top of
slopes are parallel to the slope crest and are several meters
long. If the cracks are less than 25 mm wide, and if there
is no difference in elevation between the two sides, the
probability of failure is low. If the cracks are between 25 and
75 mm wide, with some difference in elevation between the
two sides, the probability of failure is much higher. If the
cracks are much larger than 100 mm with similar difference
in elevation between the two sides, it is likely time to run.
Instruments to measure cracks can be as simple as a tape
measure or as sophisticated as an extensometer that monitors
the distance between the two sides and sends readings to a
remote monitoring station. It is very useful to monitor crack
width b as a function of time t and plot the curve b vs. t.
If the growth rate of the crack opening decreases with time,
it indicates a trend toward stability, but if the growth rate
increases steadily with time, failure may be imminent. There
are cases in which the growth rate decreases but then reverses
to an increase with time (Figure 19.42).

Movements of the slope surface can be tracked with useful
and simple measurements. Tools can be as simple as sur-
veying stakes driven in the ground and as advanced as GPS
monitoring. Movement of the crest is a good indication, but
swelling or heaving at the base of the slope is also an early
sign. As in the case of cracks, the shape of the curve of
the movement as a function of time is the best indication of
potential failure.

Movement at depth in the slope is a very useful but more
complicated measure, and is expensive to obtain. The most
common method is to place a vertical inclinometer casing
through the surface of the slope to a depth well below
the potential failure surface (Figure 19.43). The bottom of
the slope indicator casing should be in a soil zone that is
not influenced by the slope movement. The reason is that
the bottom readings will represent the zero position for the
casing. The slope inclinometer casing is grooved and the
probe has wheels (Figure 19.44) that fit in the grooves to keep
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(d)

(a)

(c)

(b)

Figure 19.41 Example of cracks on top of slopes. (a: From Bray et al. 2001. Used by permission. b: Photo by and courtesy of Jonathan
Wilkins. c: Courtesy of Dr. Ian West.)
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Figure 19.43 Inclinometer in a slope.
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(a) (b)

Figure 19.44 Inclinometer instrument and casing installation. (a) Inclinometer. (b) Casing installation. (Courtesy of Landslide Technology.)

the direction of the probe constant during the readings. The
probe is lowered to the bottom of the casing and then pulled
up the casing while readings are taken at regular intervals.
This interval is usually the length L of the probe between
wheels (e.g., L = 0.5 m). The first reading R1 is taken at the
bottom of the casing at a depth z1. The probe is pulled up
an amount equal to L and the second reading R2 at depth z2
is obtained, and so on all the way to the top of the casing.
The first set of readings in the casing is taken right after
installation and provides a set of zero readings Roi. It is
assumed that the bottom of the casing is low enough below
the slope potential failure surface that no movement takes
place at the bottom of the casing; therefore, the readings at
the bottom provide a reference for all the others. If there is
doubt about whether the bottom is moving, then the top of
the casing should be surveyed each time a set of inclinometer
readings is taken.

Each reading represents the angle α between the probe
direction and the vertical at that location. The instruments to
measure this angle are servo-accelerometers located in the
probe. A servo-accelerometer is essentially a mass placed at
the end of a pendulum between two magnetic coils. When
the pendulum begins to swing to a new position, a magnetic
force is applied to keep the pendulum in the zero position.
The current necessary for the magnetic force to keep the
pendulum in the zero position is proportional to the an-
gle that the pendulum would have taken had it not been
restrained.

The reading Ri at depth zi gives the angle of the inclinome-
ter as:

sin θi = Ri

C
(19.136)

where C is a constant specific to each inclinometer and θi is
the angle of the casing with the vertical at depth zi .

Often readings will be taken in two opposite directions
of the probe (0 and 180◦ in a horizontal plane) and the
average of the two readings will be used. The horizontal

distance di between the two points separating two consecutive
readings (often the length between probe wheels) is given by
(Figure 19.45):

di = L sin θi (19.137)

where L is the increment of depth between readings. If the
set of zero readings gave a value of di equal to doi, then the
net horizontal distance is (di − doi). Because we want the
overall position of the casing after deformation, it is necessary
to add all net horizontal distances between all consecutive
points from the bottom of the casing to the depth where the
horizontal movement is required. If it is assumed that the
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Figure 19.45 Inclinometer data reduction.
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bottom of the casing is not moving, the horizontal movement
of the casing at any depth zn is (Figure 19.45):

Dn =
n∑

i=1

(di−dio) = L

C

n∑
i=1

(Ri − Rio) (19.138)

Groundwater and water stress conditions are very impor-
tant aspects of slope stability. The groundwater level can be
measured by simply measuring the equilibrium water level
in an open standpipe or by using a piezometer. If the water
is in compression, the water stress can be measured with a
piezometer. If the water is in tension, the water stress can
be measured with a field tensiometer up to a water tension
of −90 kPa. Above that value, a soil sample can be taken,
the water content determined, and the soil water retention
curve used to go from the water content to the water tension
(see section 9.15).

19.20 REPAIR METHODS

There are essentially two ways to repair a slope that is getting
close to failure (Figure 19.46):

1. Increase the resisting moment (e.g., soil improvement,
inclusions)

2. Decrease the driving moment (e.g., shallower slope)

19.20.1 Increase the Resisting Moment

The shear strength s of the soil is:

s = c′ + (σ − αuw) tan ϕ′ (19.139)

where c′ is the effective stress cohesion intercept, σ is the
normal total stress on the plane of failure, α is the area ratio

for the water phase, uw is the water stress, and ϕ′ is the
effective stress friction angle. Therefore, increasing s may
consist of increasing c′, or σ, or tan ϕ′, or decreasing αuw.

Increasing c′ can be done by chemical injection of cementing
agents such as lime or cement. Increasing σ is usually not a
good idea, as it also increases the driving moment. Increasing
tan ϕ′ is difficult, but can be done through densification by
compaction or vibration. If the soil is saturated and if the water
is in compression, the term αuw becomes uw and decreasing
uw consists of decreasing the water stress (through drainage,
for example) if there are excess water stresses or by lowering
the water level (by pumping, for example) if the water stress
is hydrostatic. If the soil is saturated with water in tension
or if the soil is unsaturated, decreasing uw consists of drying
or evaporation, for example. In this case uw becomes more
negative, but α also decreases, so the net result is not as
efficient as a decrease in uw alone. In some instances, the
water tension is naturally decreased (less negative) during the
life of the slope because of the weather. This may lead to
failure, and one way to prevent such failures is to keep the
water tension from changing by isolating the soil from the
weather. Geosynthetic covers can achieve this goal.

The other way to increase the resisting moment is to
insert inclusions in the slope and across the failure plane
(Section 19.14). For existing slopes, soil nails or piles can
be used. Soil nails are small-diameter inclusions that are
placed most often by drilling and sometimes by driving.
The drilling process consists of drilling a hole, removing the
drilling tool, inserting a steel bar or cable with centralizers
in the hole, and grouting the annulus between the bar and
the soil. Soil nails have the advantage that they are relatively
easy to place at any inclination, although they are most
often placed nearly horizontally. Piles are placed vertically

Chemichal
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Mechanical
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Benching Adding a berm or
retaining wall 

Crest removal

Light weight
material 
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Foam

Figure 19.46 Slope repair methods.
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or near vertically and have a larger diameter than nails.
For new slopes like embankments, geosynthetic layers or
reinforcing steel strips can be placed as reinforcement.

19.20.2 Decrease the Driving Moment

The driving moment Md for the slope is:

Md = Wa (19.140)

where W is the weight of the failing soil mass and a is the
horizontal distance from the center of the failure circle for a

circular failure surface and the center of gravity of the failing
soil mass. Therefore, decreasing Md consists of decreasing
W or a or both. To decrease W, lightweight material such as
foam can be used for embankments. Also, the slope angle
can be reduced by removing part of the crest, adding a berm
at the bottom of the slope, or simply grading the slope to a
flatter angle (Figure 19.46).

In the end, the choice of one method or another is based on
effectiveness of the method, feasibility, and cost. For landfill
slopes, see section 24.7.6. For slopes involving geosynthetics,
see section 25.6.3.

PROBLEMS

19.1 .Calculate the factor of safety for the slope shown in Figure 19.1s in the following cases:
a. Slope alone
b. Slope plus building
c. Slope plus building and earthquake
d. What is the yield coefficient ky for that slope?

6 m

R
 5

 1
0
 m

7 m 2 m

100 kN/m

L 5 15 m

Su 5 100 kPa

a 5 0.1

W 5 1400 kN/m

Figure 19.1s Slope with building and earthquake.

19.2 An infinite slope is made of sand with a friction angle of 32◦ and a unit weight of 20 kN/m3. The slope angle is 2.5
horizontal to 1 vertical. Calculate the factor of safety in the summer when the slope has no water, then calculate the factor
of safety in the spring when the slope is filled with water.

19.3 Derive the expression for the factor of safety of an infinite slope with a failure plane parallel to the ground surface at a
depth h and with a groundwater level at a height mh above the failure plane (m < 1).

19.4 Design a safe slope angle for an excavated slope in a stiff clay to reach a 20 m deep deposit of lignite. The stiff clay has
effective shear strength parameters of c′ = 10 kPa and friction angle ϕ′ = 25◦

. Consider the case where the water level is
not within the slope failure zone and then the one where the water level follows the slope contour. Use the chart method.
In practice, it is not uncommon to see such excavations with much steeper slopes than the answer you will get in this
problem; although failures do occur, they do not occur too often. Why do you think that is?

19.5 Calculate the factor of safety by using Janbu’s charts for the slope shown in Figure 19.2s in the following cases:
a. Case 1 : Hw = Hw′ = 10 m
b. Case 2 : Hw = 0,Hw′ = 10 m
c. Case 3 : Hw = Hw′ = 0
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Hw

H9w

yo

xo

10 m c 5 5 kPa
w 5 308
g 5 20 kPa 358

Figure 19.2s Slope with different water levels.

19.6 A 3 horizontal to 1 vertical slope is cut in a clay that has an effective stress cohesion of 5 kPa and an
effective stress friction angle of 30◦. The slope is 6 m high. Calculate:

a. The factor of safety of the slope against long-term failure if the water table is below the critical circle.
b. The factor of safety of the slope against long-term failure if the water table coincides with the slope contour.

19.7 Calculate the probability of failure of a slope that has a factor of safety with a mean of 1.5 and a coefficient of variation of
0.2 (assume that the factor of safety is normally distributed). If the acceptable probability of failure is 0.001, what must
be the mean value of the factor of safety if the coefficient of variation remains equal to 0.2?

19.8 Which situation is more desirable? Explain and demonstrate.
a. Mean factor of safety F = 1.5 and coefficient of variation of F = 0.2
b. Mean factor of safety F = 1.3 and coefficient of variation of F = 0.1

19.9 Calculate the factor of safety for the slope shown in Figure 19.3s. Select your best estimate of the critical circle and
calculate the factor of safety by the Bishop modified method of slices.
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25 30 35 40 45 50
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6055 65

230

70

225

215

210

2
1

0

5

15

10Fill

Silty clay

gmat 5 19.1 kN/m^3

gsubm 5 9.3 kN/m^3

c 5 15 kPa

f9 5 208

suC0 5 100 kPa

Sand

gmat 5 19.1 kN/m^3

gsubm 5 950 kg/m^3 5 9.3 kN/m^3

c9 5 0 kPa

f9 5 308

gmat 5 20.4 kN/m^3

gsubm 5 11 kN/m^3

c9 5 0 kPa

f9 5 328

Range of possible locations for embankment crest
(connection with bridge pavement)

Bed rock

Range of possible locations
for embankment toe

0 m 10 m

Figure 19.3s Slope of Fredericton embankment.

19.10 A slope is subjected to an acceleration history as shown in Figure 19.4s. The yield acceleration for that slope is 1.5 m/s2.

Calculate the displacement history of the slope according to Newmark’s method.
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Figure 19.4s Acceleration history.

19.11 Consider the case of a c′ = 0, ϕ′ > 0 soil and demonstrate that for one slice, the factor of safety is the same for the
ordinary method of slices (OMS) and for the Bishop simplified method of slices (BSMS). If it is true for one slice, why is
it not true for n slices (n > 1)?

19.12 A 3D slope failure has a failure surface in the form of a sphere and a factor of safety F3D. This sphere is sliced in a
direction perpendicular to the crest. The slices have the same width b. The deepest slice in the center of the sphere has
a factor of safety Fmin. Each slice has a 2D factor of safety equal to Fi. What other assumptions must be made for the

following equation to be true? F3D = 1
n

n∑
i=1

Fi

19.13 A dry fine sand slope has a factor of safety of 1.5 on the Earth.
a. Calculate and discuss the factor of safety for the same slope on the moon.
b. Assume that there could be water on the moon. Would the result of the dry case still hold?

19.14 Define the seepage force and discuss when the seepage force should be considered in a slope stability analysis. Why is it
not usually considered?

19.15 Explain the difference between the following analyses, including what shear strength you would use: total stress analysis,
effective stress analysis, undrained analysis, drained analysis, short-term analysis, long-term analysis.

19.16 An inclinometer casing is attached to a 10 m high retaining wall. Zero readings taken before the wall is backfilled indicate
that the wall is perfectly vertical. The backfill is placed and compacted. At the end of construction, the inclinometer
readings are taken again. Find what the readings are if:

a. The displacement y (m) of the wall obeys the equation y = 0.01 (zmax − z) where zmax is the maximum depth the
inclinometer probe can reach in the casing (10 m) and z is the depth at which the reading is taken.

b. The displacement y (m) of the wall obeys the equation y = 0.001 (zmax − z)2 where zmax is the maximum depth the
inclinometer probe can reach in the casing (10 m) and z is the depth at which the reading is taken.

Problems and Solutions

Problem 19.1

Calculate the factor of safety for the slope shown in Figure 19.1s in the following cases:

a. Slope alone
b. Slope plus building
c. Slope plus building and earthquake
d. What is the yield coefficient ky for that slope?

6 m

R
 5

 1
0
 m

7 m 2 m

100 kN/m

L 5 15 m

Su 5 100 kPa

a 5 0.1

W 5 1400 kN/m

Figure 19.1s Slope with building and earthquake.
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Solution 19.1

The factor of safety is the maximum resisting moment divided by the driving moment:

FS = Maximum resisting moment

Driving Moment

a. Slope alone:

FS = 100 × 15 × 10

1400 × 7
= 1.53

b. Slope and building:

FS = 100 × 15 × 10

1400 × 7 + 100 × (7 + 2)
= 1.40

c. Slope plus building and earthquake:

FS = 100 × 15 × 10

1400 × 7 + 100 × (7 + 2) + 0.1 × 1400 × 6
= 1.30

d. The earthquake yield coefficient ky for that slope:

FS = 100 × 10 × 15

1400 × 7 + 100 × (7 + 2) + kY × 1400 × 6
= 1.00 ⇒ kY = 0.51

Problem 19.2

An infinite slope is made of sand with a friction angle of 32◦ and a unit weight of 20 kN/m3. The slope angle is 2.5 horizontal
to 1 vertical. Calculate the factor of safety in the summer when the slope has no water, then calculate the factor of safety in
the spring when the slope is filled with water.

Solution 19.2

For the case of sand with no water during the summer:

FS = tan ϕ′

tan β
= tan(32)

1/2.5
= 1.56

For the case of the sand filled with water during the spring with no cohesion, and assuming a saturated unit weight of
22 kN/m3 :

FS = (γsat − γw)

γsat

tan ϕ′

tan β
= (22 − 9.81)

22

tan(32)

1/2.5
= 0.86

The presence of water significantly reduces the factor of safety of the slope.

Problem 19.3

Derive the expression for the factor of safety of an infinite slope with a failure plane parallel to the ground surface at a depth
h and with a groundwater level at a height mh above the failure plane (m < 1).

Solution 19.3

Let’s call γm the soil unit weight above the groundwater level and γsat the soil unit weight below the groundwater level.
Referring to Figure 19.6 and the case of the infinite slope with seepage, the shear strength on the failure plane is:

τf = c′ + (γm(1 − m)h cos2β + γsatmh cos2β − γwmh cos2β) tan ϕ′

τf = c′ + ((1 − m)γm + m(γsat − γw))h cos2β tan ϕ′
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The shear stress τ on the plane of failure is:

τ = (γm(1 − m)h cos β + γsatmh cos β) sin β

τ = ((1 − m)γm + mγsat)h cos β sin β

The factor of safety is:

FS = c′ + ((1 − m)γm + m(γsat − γw))h cos2β tan ϕ′

((1 − m)γm + mγsat)h cos β sin β

FS = c′

((1 − m)γm + mγsat)h cos β sin β
+ ((1 − m)γm + m(γsat − γw))

((1 − m)γm + mγsat)
× tan ϕ′

tan β

Problem 19.4

Design a safe slope angle for an excavated slope in a stiff clay to reach a 20 m deep deposit of lignite. The stiff clay has
effective shear strength parameters of c′ = 10 kPa and friction angle ϕ′ = 25◦

. Consider the case where the water level is
not within the slope failure zone and then the one where the water level follows the slope contour. Use the chart method. In
practice, it is not uncommon to see such excavations with much steeper slopes than the answer you will get in this problem;
although failures do occur, they do not occur too often. Why do you think that is?

Solution 19.4

If the soil is uniform and a circular failure surface is assumed, chart methods can be used.

a. Case of No Water

a-1. Taylor (1948) (Figure 19.5s)

H

DH

nHb

Hard layer

Figure 19.5s Sketch of problem 19.4.

Let’s assume toe circles on Figure 19.13 with c′ = 10 kPa, ϕ′ = 25◦, and γ = 20 kN/m3. We start with an assumed factor
of safety where c′ equals 1.5.

The developed friction angle is calculated using:

ϕd = tan−1
(

tan ϕ

FS

)
= tan−1

(
tan 25

1.5

)
= 17.26◦

F ′
c = c′

c′
d

and Fϕ′ = tan ϕ′

tan ϕ′
d

F ′
c = c′

c′
d

= 1.5 → c′
d = 10

1.5
= 6.67 kPa

The stability number N = c′
d

γ H
= 6.67

20 × 20
= 0.0167 → Figure 19.13 → β = 22◦
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a-2. Spencer (1973)

ru = uw

σ0v
= 0 because there is no water

F ′
c = c′

c′
d

and Fϕ′ = tan ϕ′

tan ϕ′
d

F ′
c = c′

c′
d

= 1.5 → c′
d = 10

1.5
= 6.67 kPa and N = c′

d

γ H
= 6.67

20 × 20
= 0.0167

Figure 19.15 → ru = 0 → β = 23◦

b. Water Case

b-1. Taylor (1948), undrained: su = 70 kPa (ϕ′ = 0)

Assuming a toe circle, a factor of safety of 1.5, and using su = 70 kPa:

FS = Su

cd

→ cd = Su

FS
= 70

1.5
= 46.67 kPa

N = cd

γ H
= 46.67

20 × 20
= 0.12 → Fig. 19.12 for n = 0 → β = 11◦

b-2. Spencer (1973), drained behavior: c′, ϕ′

ru = uw

σ0v
= 0.5

Figure 19.15 → ru = 0.5 → β = 11◦

Table 19.1s Slope Angle from Taylor and Spencer Methods

Slope Angle β Taylor (1948) Spencer (1973)

Dry case 22◦ 23◦

Water case 11◦ 11◦

Several factors come into play. First, the water in the soil is likely in tension, which increases the safe angle. Second, the
excavation remains open for a limited amount of time and the soil behavior may be time dependent. The slopes may be well
drained. The open-pit mine slope industry seems to accept a higher probability of slope failure as part of the economical
optimization of the lignite mining process.

Problem 19.5

Calculate the factor of safety by using Janbu’s charts for the slope shown in Figure 19.2s in the following cases:

a. Case 1 : Hw = H′
w = 10 m

b. Case 2 : Hw = 0, H′
w = 10 m

c. Case 3 : Hw = H′
w = 0

Hw

H9w

yo

xo

10 m c 5 5 kPa
w 5 308
g 5 20 kPa 358

Figure 19.2s Slope with different water levels.
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Solution 19.5

Janbu Chart

a. Case 1: Hw = H ′
w = 10 m

μw = μ′
w = 1, all other μ = 1

Pd = 20 × 10 − 10 × 10

1 × 1 × 1
= 100

Pe = 20 × 10 − 10 × 10

1 × 1
= 100

λcφ = 100 tan(30)

5
= 11.55

For λcφ = 11.55 and β = 35◦ → cot β = 1.43 → Ncf = 27

F = 27 × 5

100
= 1.35

For λcφ = 11.55 and β = 35◦ → cot β = 1.43 → xo = 0 and yo = 1.82
Therefore, Xo = 0 and Yo = 18.2 m.

b. Case 2: Hw = 0, H ′
w = 10 m

μw = μ′
w = 1, all other μ = 1

Pd = 20 × 10

1 × 1 × 1
= 200

Pe = 20 × 10 − 10 × 10

1 × 1
= 100

λcφ = 100 tan(30)

5
= 11.55

For λcφ = 11.55 and β = 35◦ → cot β = 1.43 → Ncf = 27

F = 27 × 5

200
= 0.675

For λcφ = 11.55 and β = 35◦ → cot β = 1.43 → xo = 0 and yo = 1.82
Therefore, Xo = 0 and Yo = 18.2 m.

c. Case 3: Hw = 0, H ′
w = 0

μw = μ′
w = 1, all other μ = 1

Pd = 20 × 10

1 × 1 × 1
= 200

Pe = 20 × 10

1 × 1
= 200

λcφ = 200 tan(30)

5
= 23.1

For λcφ = 23.1 and β = 35◦ → cot β = 1.43 → Ncf = 47

F = 47 × 5

200
= 1.175

For λcφ = 23.1 and β = 35◦ → cot β = 1.43 → xo = −0.2 and yo = 2
Therefore, Xo = −2 m and Yo = 20 m.
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Problem 19.6

A 3 horizontal to 1 vertical slope is cut in a clay that has an effective stress cohesion of 5 kPa and an effective stress friction
angle of 30◦. The slope is 6 m high. Calculate:

a. The factor of safety of the slope against long-term failure if the water table is below the critical circle.
b. The factor of safety of the slope against long-term failure if the water table coincides with the slope contour.

Solution 19.6

The slope angle is: tan β = 1
3 then β = 18.42◦

a. Dry Case, No Water

a-1. Taylor (1948)
Assume depth factor as D = 0.5, β = 18.5◦, c′ = 5 kPa, ϕ′ = 30◦, and γ = 20 kN/m3.

F ′
c = c′

c′
d

and F ′
ϕ = tan ϕ′

tan ϕ′
d

Iteration #1, FS = 1.5:

F ′
c = c′

c′
d

→ 1.5 = 5

c′
d

→ c′
d = 3.33 kPa

The stability number N = c′
d

γ H = 3.33
20×6 = 0.0277 → Figure 19.13 → ϕ′

d = 11◦

F ′
ϕ = tan ϕ′

tan ϕ′
d

= tan 30

tan 11
= 2.97

Iteration #2, FS = 2.2:

F ′
c = c′

c′
d

→ 2.2 = 5

c′
d

→ c′
d = 2.27 kPa

The stability number N = c′
d

γ H
= 2.27

20 × 6
= 0.019 → Figure 19.13 → ϕ′

d = 14.5◦

F ′
ϕ = tan ϕ′

tan ϕ′
d

= tan 30

tan 14.5
= 2.23

The safety factor would be 2.21.

a-2. Spencer (1967)
ru = uw

σ0v
assumed equal to 0

Iteration #1, FS = 1.5:

F ′
c = c′

c′
d

and Fϕ′ = tan ϕ′

tan ϕ′
d

F ′
c = c′

c′
d

→ 1.5 = 5

c′
d

→ c′
d = 3.33 kPa and N = c′

d

γ H
= 3.33

20 × 6
= 0.0277

Figure 19.15 → ru = 0 → ϕ′
d = 12◦

F ′
ϕ = tan ϕ′

tan ϕ′
d

= tan 30

tan 12
= 2.7

Iteration #2, FS = 2.5:

F ′
c = c′

c′
d

→ 2.5 = 5

c′
d

→ c′
d = 2 kPa
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The stability number N = c′
d

γ H
= 2

20 × 6
= 0.017 → Figure 19.15 → ϕ′

d = 14◦
F ′

ϕ = tan ϕ′

tan ϕ′
d

= tan 30

tan 14
= 2.3

The average safety factor would be 2.4.

b. Water Case, water level at ground surface

b-1. Spencer (1967), Drained behavior: c′, ϕ′

ru = uw

σ0v
= 0.5

Iteration #1, FS = 1.5:

Figure 19.15 → ru = 0.5, N = c′
d

γ H
= 3.33

20 × 6
= 0.0277 → ϕ′

d = 23◦

F ′
ϕ = tan ϕ′

tan ϕ′
d

= tan 30

tan 23
= 1.36

Factor of safety is about 1.43.

Problem 19.7

Calculate the probability of failure of a slope that has a factor of safety with a mean of 1.5 and a coefficient of variation of
0.2 (assume that the factor of safety is normally distributed). If the acceptable probability of failure is 0.001, what must be
the mean value of the factor of safety if the coefficient of variation remains equal to 0.2?

Solution 19.7

Probability of Failure for a Given Factor of Safety

Mean, μ = 1.5
Coefficient of variation, CoV = 0.2
Acceptable probability of failure, PoFac = 0.001
Standard deviation σ :

CoV = σ

μ

σ = μ · CoV = 1.5 × 0.2 = 0.3
Standard normal variable U of F = 1:

u = F − μF

σF

= 1 − 1.5

0.3
= −1.67

P(F < 1) = P

(
F − μF

σF

<
1 − μF

σF

)
= P(U < −1.67)

Using Table 11.3,

P(U < 1.67) = 0.9525

P(U < u) = 1 − P(U < −u)

P(U < −1.67) = 1 − 0.9525 = 0.0475 or 4.75% probability of failure

Factor of Safety for a Given Probability of Failure

P(F < 1) = 0.001

P(F < 1) = P

(
F − μF

σF

<
1 − μF

σF

)
= P

(
F − μF

0.2μF

<
1 − μF

0.2μF

)
= P

(
U <

1 − μF

0.2μF

)
= 0.001

Using Table 11.3, we get:
P(U < 3.1) = 0.999 or P(U < −3.1) = 0.001
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Therefore, we must have:
1 − μF

0.2μF

= −3.1 or μF = 2.63

Problem 19.8

Which situation is more desirable? Explain and demonstrate.

a. Mean factor of safety F = 1.5 and coefficient of variation of F = 0.2
b. Mean factor of safety F = 1.3 and coefficient of variation of F = 0.1

Solution 19.8

CoV = σ

μ

σa = CoV.μ = 0.2 × 1.5 = 0.3

σb = CoV.μ = 0.1 × 1.3 = 0.13

P(F < 1) = P

(
F − μF

σF

<
1 − μF

σF

)
= P

(
F − 1.5

0.3
<

1 − 1.5

0.3

)

= P(U < −1.67) = 1 − P(U < 1.67) = 1 − 0.9525 = 0.0475

P(F < 1) = P

(
F − μF

σF

<
1 − μF

σF

)
= P

(
F − 1.3

0.13
<

1 − 1.3

0.13

)

= P(U < −2.31) = 1 − P(U < 2.31) = 1 − 0.9896 = 0.0104

Therefore, a mean factor of safety of 1.3 with a coefficient of variation of 0.1 (case b) is more desirable than a mean factor
of safety of 1.5 and a coefficient of variation of 0.2 (case a). The reason is that the probability of failure is 1.04% in case b
and 4.75% in case a.

Problem 19.9

Calculate the factor of safety for the slope shown in Figure 19.3s. Select your best estimate of the critical circle and calculate
the factor of safety by the Bishop modified method of slices.
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(connection with bridge pavement)
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Range of possible locations
for embankment toe
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Figure 19.3s Slope of Fredericton embankment.
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Solution 19.9

The sketch for the simplified method of slices is shown in Figure 19.6s. The results are shown in Table 19.2s.

Bed rock

Soil-1 (fill)
gmat 5 20.4 kN/m3

gsubmerg 5 11 kN/m3

c9 5 0 kPa

f 5 328 gmat 5 19.1kN/m3

gsubmerg 5 9.3 kN/m3

c9 5 0 kPa

f 5 308

Soil-3 (siltyclay)

gmat 5 19.1 kN/m3

gsubmerg 5 9.3 kN/m3

c9 5 15 kPa

f 5 208

su 5 100 kPa

Soil-2 (sand)

2

3a

4

5

6
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8 9 10a

11

12a 13

1

1
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5

0

25

210

215

220
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5

0

25

210

215

220

225

230

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 m

3b

10b 12b

O

Figure 19.6s Bishop Simplified Method of Slices.

Problem 19.10

A slope is subjected to an acceleration history as shown in Figure 19.4s. The yield acceleration for that slope is 1.5 m/s2.
Calculate the displacement history of the slope according to Newmark’s method.
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Figure 19.4s Acceleration history.



19.20 REPAIR METHODS 691

T
ab

le
19

.2
s

Su
m

m
ar

y
of

th
e

R
es

ul
ts

of
th

e
B

is
ho

p
Si

m
pl

ifi
ed

M
et

ho
d

of
Sl

ic
es



692 19 SLOPE STABILITY

Solution 19.10

From Figure 19.4s: single rectangular acceleration, A = 3 m/s2, yield acceleration, ay = 1.5 m/s2, relative acceleration arel(t),
relative velocity vrel(t) and relative displacement drel(t).

At t
0

≤ t ≤ t
0
+ �t or 1 < t < 1.5 seconds, relative acceleration, relative velocity, and relative displacement are:

arel(t) = A − ay = 3 − 1.5 = 1.5 m/s2

vrel(t) =
∫ t

t0

arel(t)dt = [A − ay](t − t0) = [3 − 1.5](t − 1) = 1.5t − 1.5 m/s

drel(t) =
∫ t

t0

vrel(t)dt = 1

2
[A − ay](t − t0)

2 = 1

2
[3 − 1.5](t − 1)2 = 0.75(t − 1)2 m

At t
0

= t
0
+ �t or 1.5 seconds:

vrel(t + �t) = [A − ay]�t = [3 − 1.5] × 0.5 = 0.75 m/s

drel(t + �t) = 1

2
[A − ay]�t2 = 1

2
[3 − 1.5]0.52 = 0.1875 m

At t
0
+ �t ≤ t ≤ t

1
or 1.5 < t < 2 seconds:

arel(t) = 0 − ay = −1.5 m/s2

vrel(t) = 0.75 +
∫ t

1.5
arel(t)dt = 0.75 +

∫ t

1.5
(−1.5)dt = −1.5t + 3 m/s

drel(t) = 0.1875 +
∫ t

1.5
vrel(t)dt = 0.1875 +

∫ t

1.5
(−1.5t + 3)dt = −0.75t2 + 3t − 2.625

All results are plotted in Figure 19.7s.
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Figure 19.7s Acceleration, velocity, and displacement history of a slope.
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Problem 19.11

Consider the case of a c′ = 0, ϕ′ > 0 soil and demonstrate that for one slice, the factor of safety is the same for the ordinary
method of slices (OMS) and for the Bishop simplified method of slices (BSMS). If it is true for one slice, why is it not true
for n slices (n > 1)?

Solution 19.11

OMS

F = W cos θ tan ϕ

W sin θ
= tan ϕ

tan θ

BSMS

m = cos θ

(
1 + tan θ tan ϕ

F

)

F =
1
m

(W tan ϕ)

W sin θ
= tan ϕ

cos θ sin θ
(

1 + tan θ tan ϕ

F

)
tan ϕ

F
= cos θ sin θ

(
1 + tan θ tan ϕ

F

)
tan ϕ

F
(1 − cos θ sin θ tan θ) = cos θ sin θ

F = tan ϕ(1 − sin2θ)

cos θ sin θ
= tan ϕ cos2θ

cos θ sin θ
= tan ϕ

tan θ

The assumption in both methods is with respect to side forces. Because we have only one slice, there are no side forces
between slices. Most importantly, there are as many unknowns as there are equations, so equilibrium equations can be written
in any direction and will lead to the same answer. The three unknowns are Sm, N′, and F; the three equations are vertical
equilibrium, horizontal equilibrium, and the shear strength equation. Moment equilibrium is automatically satisfied because
all forces go through the middle of the base of the slice. Thus, both methods should give identical safety factor. This is no
longer true when we have more than one slice, because the assumptions are different for the side forces.

Problem 19.12

A 3D slope failure has a failure surface in the form of a sphere and a factor of safety F3D. This sphere is sliced in a direction
perpendicular to the crest. The slices have the same width b. The deepest slice in the center of the sphere has a factor of safety
Fmin. Each slice has a 2D factor of safety equal to Fi. What other assumptions must be made for the following equation to be
true?

F3D = 1

n

n∑
i=1

Fi

Solution 19.12

As explained in section 19.16, in order to use this equation for the safety factor F3D:

1. The axis of rotation must be the same for all slices (Figure 19.34)
2. The forces between circle slices must be negligible

Problem 19.13

A dry, fine sand slope has a factor of safety of 1.5 on the Earth.

a. Calculate and discuss the factor of safety for the same slope on the moon.
b. Assume that there could be water on the moon. Would the result of the dry case still hold?
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Solution 19.13

a. The factor of safety for dry sand is F = tan ϕ′

tan β
. It is independent of gravity acceleration (g), so it would be the same on

the moon.
b. It would be if the water was at the surface of the slope, but it would not be if the slope was above the groundwater

level and water tension developed in the slope. Because water tension is a chemically-based phenomenon and not a
gravity-based phenomenon, it would be the same on the Earth and on the moon, but its ratio to gravity forces would
be very different. Therefore, it would lead to different factors of safety. The same slope would be safer on the moon if
water tension existed in both cases.

Problem 19.14

Define the seepage force and discuss when the seepage force should be considered in a slope stability analysis. Why is it not
usually considered?

Solution 19.14

The seepage force is the force exerted in friction by water flowing around soil particles and trying to drag them away. The
forces shown on a free-body diagram are the external forces. The internal forces are resolved internally. The seepage force is
an external force when the soil skeleton is considered as the free body, but it is an internal force when the soil skeleton plus
the water is considered as the free body. Most slope stability analyses consider the soil skeleton plus the water as the free
body. In those instances, the seepage force must not be included in any slope stability calculations.

Problem 19.15

Explain the difference between the following analyses, including what shear strength you would use: total stress analysis,
effective stress analysis, undrained analysis, drained analysis, short-term analysis, long-term analysis.

Solution 19.15

A total stress analysis considers that the soil is made of one material. During the analysis, the three components (particles,
water, and air) are not recognized. This analysis can be used in the case of a soil with no water and in the case of a soil where
the shear strength is independent of rapid variations in total stress.

An effective analysis can be used in all cases. It makes no particular assumption regarding drainage and is based on sound
fundamental principles. It makes use of the effective stress equation to obtain the shear strength of the soil based on effective
stress cohesion c′ and the effective stress friction angle ϕ′ (τ = c′ + σ ′ tan ϕ′). It can be used for an undrained analysis, a
drained analysis, a short-term analysis, or a long-term analysis. The difficulty with this method is that the water stress in the
mass must be known.

An undrained analysis is used in the case where the water is not allowed or does not have time to drain away. The soil
strength parameter used in this case is the undrained shear strength (su).

In a drained analysis, the water stress is considered to be hydrostatic throughout the mass. The soil strength parameters
used are the drained strength parameters or effective stress parameters (τ = c′ + σ ′ tan ϕ′).

A short-term analysis considers a time shortly after loading. It is often a drained analysis for fast-draining soils like
free-draining sands and gravels, and an undrained analysis for slow-draining soils like silts and clays. In the case of
free-draining sands and gravels, the drained strength parameters are used. In the case of silts and clays, the undrained shear
strength (su) is used.

A long-term analysis considers that all water stresses induced by loading have had time to dissipate and are back to
hydrostatic condition. In this regard a long-term analysis is similar to a drained analysis. The soil strength parameters used
are the drained strength parameters or effective stress parameters (τ = c′ + σ ′ tan ϕ′).

Problem 19.16

An inclinometer casing is attached to a 10 m high retaining wall. Zero readings taken before the wall is backfilled indicate
that the wall is perfectly vertical. The backfill is placed and compacted. At the end of construction, the inclinometer readings
are taken again. Find what the readings are if:

a. The displacement y (m) of the wall obeys the equation y = 0.01 (zmax − z) where zmax is the maximum depth the
inclinometer probe can reach in the casing (10 m) and z is the depth at which the reading is taken.
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b. The displacement y (m) of the wall obeys the equation y = 0.001 (zmax − z)2 where zmax is the maximum depth the
inclinometer probe can reach in the casing (10 m) and z is the depth at which the reading is taken.

The inclinometer has a calibration constant C = 20,000 and a wheel spacing of 0.5 m.

Solution 19.16

Assume that the constant parameter for the inclinometer is C = 20,000, and the length of probe between wheels is L = 0.5 m.
Figure 19.8s shows the wall and inclinometer.

y

10 m

z

Compacted
soil

Figure 19.8s Illustration of the inclinometer.

The equation for the displacement Dn of the inclinometer casing is:

Dn =
n∑

i=1

(di−dio) = L

C

n∑
i=1

(Ri − Rio)

where Dn is the displacement at a depth zn from the surface, zn is the depth to the first (deepest) reading in the casing minus n
times the distance L between readings, di is the difference in horizontal displacement between the i and i − 1 reading points,
dio is the initial value of di, L is the length between readings, C is the inclinometer calibration constant, Ri is the reading at
depth zi, and Rio is the initial value of Ri.

Case a. In this case the wall deforms by simple rotation and the displacement y(m) of the wall is linear. The equation for
Dn becomes:

Dn =
n∑

i=1

di = L

C

n∑
i=1

Ri

But Dn is also given in the problem as:
Dn = 0.01(10 − z)

Therefore, the difference between two consecutive readings is:

Dn − Dn−1 = dn = 0.01(10 − z) − 0.01(10 − z − 0.5) = 0.005 m

The increment of displacement is constant and the angle of the wall is also constant:

θn = sin−1 dn

L
= sin−1 0.005

0.5
� 0.01 rd

Furthermore, Do is equal to zero, because the bottom of the wall does not move. Now the reading is equal to:

Rn = C

L
dn = 20000

0.5
× 0.005 = 200

So the reading of the inclinometer is constant equal to 200; Table 19.3s summarizes the results.
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Case b. In this case, the displacement y(m) of the wall is nonlinear. The equation for Dn is still:

Dn =
n∑

i=1

di = L

C

n∑
i=1

Ri

But Dn is also given in the problem as:
Dn = 0.001(10 − z)2

Therefore, the difference between two consecutive readings is:

Dn − Dn−1 = dn = 0.001(10 − z)2 − 0.001(10 − z − 0.5)2 = 0.001(9.75 − z)

The increment of displacement increases linearly with z and so does the angle of the wall:

θn = sin−1 0.001(9.75 − z)

L
= sin−1 dn

L

Furthermore, Do is equal to zero, because the bottom of the wall does not move. Now the reading is equal to:

Rn = C

L
dn = 20000

0.5
× 0.001(9.75 − z) = 390 − 40z

Table 19.4s summarizes the results.

Table 19.3s Inclinometer Readings for Linear Displacement of Wall

Depth z
(m)

Displacement y
(m)

Inclined angle
(radians)

Inclined angle
(degree)

Inclinometer reading
(R)

10 0 0.009999667 0.572938698 0
9.5 0.005 0.009999667 0.572938698 200
9 0.01 0.009999667 0.572938698 200
8.5 0.015 0.009999667 0.572938698 200
8 0.02 0.009999667 0.572938698 200
7.5 0.025 0.009999667 0.572938698 200
7 0.03 0.009999667 0.572938698 200
6.5 0.035 0.009999667 0.572938698 200
6 0.04 0.009999667 0.572938698 200
5.5 0.045 0.009999667 0.572938698 200
5 0.05 0.009999667 0.572938698 200
4.5 0.055 0.009999667 0.572938698 200
4 0.06 0.009999667 0.572938698 200
3.5 0.065 0.009999667 0.572938698 200
3 0.07 0.009999667 0.572938698 200
2.5 0.075 0.009999667 0.572938698 200
2 0.08 0.009999667 0.572938698 200
1.5 0.085 0.009999667 0.572938698 200
1 0.09 0.009999667 0.572938698 200
0.5 0.095 0.009999667 0.572938698 200
0 0.1 0.009999667 0.572938698 200
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Table 19.4s Inclinometer Readings for Linear Displacement of Wall

Depth z
(m)

Displacement y
(m)

Inclined angle
(radians)

Inclined angle
(degree)

Inclinometer reading
(R)

10 0 0 0 0
9.5 0.00025 0.0005 0.028648 10
9 0.001 0.0014997 0.085943 30
8.5 0.00225 0.0024995 0.143239 50
8 0.004 0.0034993 0.200535 70
7.5 0.00625 0.0044992 0.257832 90
7 0.009 0.0054990 0.315128 110
6.5 0.01225 0.0064988 0.372425 130
6 0.016 0.0074986 0.429722 150
5.5 0.02025 0.0084985 0.487020 170
5 0.025 0.0094983 0.544318 190
4.5 0.03025 0.0104982 0.601617 210
4 0.036 0.0114981 0.658916 230
3.5 0.04225 0.0124980 0.716216 250
3 0.049 0.0134978 0.773516 270
2.5 0.05625 0.0144978 0.830818 290
2 0.064 0.0154977 0.888120 310
1.5 0.07225 0.0164976 0.945423 330
1 0.081 0.0174976 1.002727 350
0.5 0.09025 0.0184976 1.060032 370
0 0.1 0.0194975 1.117338 390


