
CHAPTER 17

Shallow Foundations

17.1 DEFINITIONS

Shallow foundations (Figure 17.1) are those placed close to
the ground surface, typically at a depth less than one times the
width of the foundation. A 1 m thick, 3 m by 3 m foundation
under a column, placed at a depth of 1.5 m, would be a
shallow foundation called a spread footing. Spread footings
can be square, circular, or very long compared to their width,
in which case they are called strip footings. A 3 m thick, 40 m
by 40 m square foundation, placed at a depth of 10 m, would
be considered a particular type of shallow foundation called
a mat foundation. A 0.1 m thick, 15 m by 15 m foundation
stiffened with 1 m deep beams 3 m apart in both directions
would be a shallow foundation called a stiffened slab on
grade.

17.2 CASE HISTORY

This case history illustrates the behavior of shallow foun-
dations. Five tests of spread footings were performed at the
National Geotechnical Experimentation Site at Texas A&M
University. The soil at the site is a medium-dense, fairly
uniform, silty fine silica sand with the following average
properties near the footings and within the top 5 meters:
mean grain size D50 = 0.2 mm, SPT (standard penetration
test) blow count 18 blows per 0.3 m, CPT (cone penetrometer
test) point resistance 6 MPa, PMT (pressuremeter test) limit
pressure 800 kPa, PMT modulus 8.5 MPa, DMT (dilatome-
ter test) modulus 30 MPa, borehole shear test friction angle
32o, estimated total unit weight 15.5 kN/m3, and cross hole
shear wave velocity 240 m/s. The water table is 4.9 m deep.
Additional data can be found in Briaud and Gibbens (1999;
1994). Geologically, the top layer of sand is a flood plain
deposit of Pleistocene age about 3 m thick with a high fine
content. The next layer of sand is a river channel deposit
of Pleistocene age about 3 m thick, clean and uniform. The
third layer is a mixed unit with an increasing amount of
clay seams and gravel layers; it is also of Pleistocene
age and was deposited by a stream of fluctuating energy.

Below these 200,000-year-old sand layers and about 10 m
below the ground surface is the 45-million-year-old Eocene
bedrock; this bedrock is a dark gray clay shale that was de-
posited in a series of marine transgressions and regressions.
Erosion of the Eocene marine clay took place before the
Pleistocene river sediments were deposited.

The test setup is shown in Figure 17.2. The 5 footings
were square with a side dimension equal to 1 m, 1.5 m, 2.5 m,
3 m, and 3 m. They were embedded 0.75 m into the sand and
were 1.2 m thick. They were loaded in load step increments,
each one lasting 30 minutes, while settlement was recorded
every minute during the load step. All footings were pushed
downward until the settlement reached 0.15 m. Figure 17.3
shows an example of the load settlement curve obtained
for the 3 m by 3 m north footing, as well as the log of the
settlement vs. the log of time for several load steps. The
pressure vs. settlement curves for all footings are shown in
Figure 17.4. These curves were normalized by dividing the
pressure by the limit pressure of the pressuremeter and the
settlement by the width of the footing. Figure 17.4 indicates
that this normalization makes the footing size disappear: The
p/pL vs. s/B curve becomes a property of the soil, much like
a stress-strain curve. Tell tales and inclinometers were placed
below and on the side of the footing, respectively. They
indicated the depth to which the soil was compressed and
the lateral movement of the soil during the load application.
Figure 17.5 shows the soil movement as a function of depth
for four of the footings and the lateral movement for the 3 m
north footing. The data show that most of the settlement and
lateral movement occurs within one footing width below the
footing.

17.3 DEFINITIONS AND DESIGN STRATEGY

The most important considerations in foundation design are
to ensure:

1. The safety of the foundation against soil failure (ultimate
limit state)
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Figure 17.2 Load test setup: (a) Load settlement curve with
30-minute load steps. (b) Settlement time curves for each load step.

2. The functionality of the foundation and the structure
above by minimizing the foundation movement and
distortion (serviceability limit state)

3. The safety of the foundation against structural failure

Item 3 is handled primarily by the structural engineer and
is not covered in this book. Items 1 and 2 in the preced-
ing list are primarily geotechnical engineering considerations
involving soil shear strength and the soil increase and de-
crease in volume when loaded. They are the topic of this
chapter for shallow foundations and of Chapter 18 for deep
foundations.

The geotechnical design of a shallow foundation consists
of estimating the size and depth of the foundation. The depth
is chosen on the basis of several factors, including profile
of soil strength and compressibility, depth of the zone that
shrinks and swells, depth of frost penetration, groundwater
level, and ease of construction. The size is typically chosen
once the depth is chosen.

No foundation can be designed to ensure zero probabil-
ity of failure. This is because any calculation is associated
with some uncertainty; because the engineering profession’s
knowledge, while having made great strides, is still incom-
plete in many respects; because human beings are not error
free; because budgets are limited; and because the engineer
designs the bridge or building for conditions that do not in-
clude extremely unlikely events, such as a big airplane hitting
the bridge at the same time as an earthquake, a hurricane,
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Figure 17.4 Pressure vs. settlement curve for all footings and normalized curves: (a) Pressure-
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and a 500-year-flood during rush hour. The engineer and the
public must accept a certain level of probability of failure.
This acceptable level of probability of failure is tied to the
number of deaths that the public accepts on a daily basis (fa-
talities) and to the amount of money that it can afford to spend
(economy). In geotechnical engineering and in structural en-
gineering, this acceptable probability of failure is typically
less than 1 chance in 1000 (10−3).

Design procedures have been developed to calculate a
foundation size that meets these low probabilities of failure.
These procedures involve:

1. Selecting the design issues (limit states)
2. Selecting load factors and resistance factors that are

consistent with the low target probability of not meeting
the design criterion

3. Determining the minimum size of the foundation that
satisfies the low probability of not meeting the design
criterion

For example, let’s go back in time to the year 1100
and design the foundation of the Tower of Pisa, but with
today’s knowledge. The load is calculated to be 150,000
kN. The uncertainty about this load is small because the
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dimensions of the structure are on the plans. Nevertheless,
a load factor of 1.2 is used to obtain the factored load of
1.2 × 150,000 = 180,000 kN, which lowers the probability
of exceeding the load. The resistance is the ultimate bearing
pressure of the soil below the tower. It is calculated as 6 times
the undrained shear strength su of the soil within the depth
of influence of the foundation (section 17.6.1). From the
borings, in situ tests, and laboratory tests, a value of 80 kPa
is selected for su. This leads to an ultimate bearing pressure
of 480 kPa. The uncertainty associated with the undrained
shear strength and the calculation model is not negligible, so
a resistance factor of 0.6 is selected. The factored resistance
is 0.6 × 480 = 288 kPa, which lowers the probability of not
having the necessary resistance. The load factor 1.2 and the
resistance factor 0.6 are based on the probability distribution
of the load and of the resistance, and on ensuring that the
probability that the difference between the factored load
and the factored resistance is negative (failure) is less than
approximately 10−3. The difference between the load and the
resistance is called the limit state function. We decide to place
the 15 m diameter Tower of Pisa on a circular mat foundation
1 m thick with a diameter B. Now the ultimate limit state
equation is written as:

1.2 × 150000 < 0.6 × 480 × π B2/4 (17.1)

which leads to B > 28 m. The actual, as-built foundation was
less than 15 m in diameter and the soil below the foundation
failed. The design should also include other considerations
such as the serviceability limit state, but this simple example
illustrates the design process and the concept of load and
resistance factors.

More specifically, the design process proceeds as follows:

1. Decide on the foundation depth.
2. Make a reasonable estimate of the foundation size.

3. Calculate the ultimate bearing pressure of the founda-
tion, pu.

4. Check if the ultimate bearing pressure satisfies the safety
criterion under the given load (ultimate limit state).

5. Repeat steps 1 through 3 until the safety criterion is
satisfied and obtain the safe foundation pressure ps,

which is the unfactored load divided by the foundation
area.

6. Under the safe foundation pressure ps, check that the
foundation satisfies the serviceability limit state by cal-
culating the movement of the foundation and ensuring
that it is less than the allowable movement.

7. If the calculated movement is larger than the acceptable
movement sa, increase the foundation size and/or the
foundation stiffness and repeat step 6.

8. If the movement is acceptable, the design is complete, as
the pressure applied is safe and allows only acceptable
movement.

In addition to the preceding steps concerning soil strength
and compressibility, the foundation must be well designed
structurally. For example, one must ensure that the column
will not punch through the spread footing, or that the mat
foundation will not bend excessively. The structural aspect
of foundation design is not covered in this book.

Shallow foundations are typically less expensive than deep
foundations. Therefore, it is economically prudent, in most
cases, to start with a shallow foundation solution. Only if it
is shown to be insufficient or inappropriate should the design
proceed with deep foundations.

17.4 LIMIT STATES, LOAD AND RESISTANCE
FACTORS, AND FACTOR OF SAFETY

Limit states are the loading situations and the associated
equations that are considered during the design of a
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foundation. They must be satisfied to yield a proper design.
There are two major limit states: the ultimate limit state and
the service limit state. In foundation engineering, ultimate
limit state involves calculations of ultimate capacity using
primarily the shear strength of the soil. Satisfying the
ultimate limit state ensures that the foundation will meet
a chosen level of safety against failure. The service limit
state involves calculations of movements using deformation
parameters. Satisfying the service limit state ensures that the
foundation will meet a chosen degree of confidence against
excessive movement or distortion of the structure.

The ultimate limit state refers to satisfaction of equations
ensuring that the foundation will function far enough away
from failure of the soil. This requires the choice of load
factors γ and resistance factors ϕ that will achieve the chosen
level of probability of success. These equations are of the
form:

γ L < ϕR (17.2)

where γ is the load factor, L is the load, ϕ is the resistance
factor, and R is the resistance. The resistance here is meant to
be the ultimate resistance of the soil. In the case of complex
loading and multiple resistances, Eq. 17.2 becomes:

∑
γiL

i
<

∑
ϕiRi (17.3)

where γi is the load factors, Li is the loads, ϕi is the resistance
factors, and Ri is the resistances. The load factors and the
resistance factors make it possible to address separately the
uncertainties associated with each load and each resistance.

The term
∑

γiL
i

also makes it possible to select the most
appropriate combination(s) of loads that the soil has to resist.
An example of an ultimate limit state equation is:

1.25 DL + 1.75 LL < 0.5 Ru (17.4)

where DL is the dead load and permanent live load on
the foundation, LL is the nonpermanent live load on the
foundation, and Ru is the ultimate resistance of the foundation
from the soil point of view. Typical load factors for ultimate
limit state are shown in Table 17.1; typical resistance factors
for ultimate limit state are shown in Table 17.2. Note that
there are two choices for the resistance side. The first one
consists of applying a factor ϕ to the resistance (resistance
factor); the second one consists of applying factors to the
individual material properties such as the components of
the shear strength (material factors). The Eurocode gives
designers the choice to use either of the approaches (not
both), whereas the AASHTO specifications only use the
resistance factors. The selection of the soil parameter is a
very important step. The AASHTO specifications tend to use
mean values of the parameters, whereas the Eurocode uses
“cautious estimates” of the soil parameters. This affects the
selection of the resistance and material factors.

These factors γ and ϕ are developed by using the following
procedure:

1. The unbiased estimates or best estimates or true values
or measured values of the ultimate resistance and the
load are Rm and Lm. The nominal values or design

Table 17.1 Typical Load Factors for Ultimate Limit State

Type of Loading

Load Factor γ

(AASHTO)
For bridges

Load Factor γ

(ASCE 7)
For buildings

Load Factor γE
(Eurocode 7)
For buildings

Dead load and permanent live load 1.25 1.2 1.35
Other live load 1.75 1.6 1.5
Extreme events (earthquake, hurricane, etc.) 1 1 1

Table 17.2 Typical Resistance Factors for Ultimate Limit State and Shallow Foundations

(Eurocode 7)

Type of Soil Testing
Resistance Factor ϕ

(AASHTO)
Material Factor

γM = 1/ϕ

Resistance Factor
γR = 1/ϕ

Many high-quality tests 0.5 to 0.6 1.25–1.4
(may be reduced for

extreme events)

1.1 to 1.7 (footings)
1.1 to 1.6 (piles)
(may be reduced for

extreme events)

Ordinary quantity and quality of tests 0.4 to 0.5
Extreme events (earthquake, hurricane, etc.) 1
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values or predicted values of the resistance and the load
are Rp and Lp.

2. Obtain the probability distribution of the load Lm and
of the ultimate resistance Rm. Note that Lm and Rm are
probabilistic. Each follows a certain distribution (for
example, lognormal) with specified means (μRm and
μLm) and standard deviation (σRm and σLm).

3. Write the likelihood function as g = Rm − Lm.

Because Rm and Lm are random, g is also random.
4. Compute, using reliability software such as FERUM

(2001):
a. the probability P(g ≤ 0)

b. the corresponding value of the generalized reliability
index β

c. the coordinates of the failure point (R∗
m,L∗

m)

5. Choose a target reliability index βtarget, usually 2.33 for
redundant systems and 3 for nonredundant systems.

6. Compare the β from step 4 with the βtarget from step 5.
If the β from step 4 is equal to the βtarget from step 5,
then the central resistance factor ϕ and the central load
factor γ can be calculated as:

ϕ = R∗
m/μRm

γ = L∗
m/μLm

7. Otherwise, increase or decrease μRm and repeat steps 1
through 5.

8. Calculate the nominal resistance factor ϕ and the nom-
inal load factor γ as follows:

ϕ = ϕ
μRm

μRp

γ = γ
μLm

μLp

For normal distributions, the reliability index β is the in-
verse of the coefficient of variation and tells us how many
standard deviations the mean of Rm − Lm is from the zero ori-
gin. For more complex distributions, this definition does not
hold true. Typical β values are 2.33 for redundant systems
and 3 for nonredundant systems. These β values corre-
spond to probabilities of failure equal to 10−2(β = 2.33) and
10−3(β = 3.0).

The service limit state involves calculations of move-
ments using deformation parameters. Satisfying the service
limit state ensures that the foundation will meet a chosen
degree of confidence against excessive movement or distor-
tion of the structure. The equations have the same format
as the ultimate limit state equations. The load factors are
applied to the loads to be considered for movement calcula-
tions and the resistance factors are applied to the predicted
movement or the soil deformation parameters. Typically,
however, the load factors and resistance factors are taken as
equal to 1. The nonpermanent live loads are not included in
the loads considered for calculating settlements that take a

long time to develop, such as consolidation settlements in
saturated clays.

For example, the service limit state in terms of loads for a
spread footing can be written as follows:

γ1DL + γ2LL ≤ ϕ
sallBE

I (1 − ν2)
(17.5)

where sall is the allowable settlement of the foundation, B is
the width of the spread footing, E is the modulus of the soil
below the footing, I is a shape factor, and ν is the Poisson’s

ratio of the soil. The term
sallBE

I (1 − ν2)
on the right-hand side

of Eq. 17.5 is the load that generates the allowable settlement
of the footing on an elastic half space; it is the resistance of
the system at the service limit state. As mentioned earlier,
the load factors and the resistance factors are usually taken
as equal to 1. Furthermore, if the settlement will take place
over a long period of time, the live load is not included in the
settlement calculations except for the permanent live load.

Before the development of the load and resistance factor
design (LRFD) approach, also called limit state design (LSD),
the working stress design (WSD), also called the allowable
stress design (ASD), approach was used. WSD consists of
applying a global factor of safety against the ultimate bearing
capacity of the soil in order to obtain the safe load. The
equation is:

L < R/F (17.6)

where L is the applied load to be safely carried, R is the
ultimate resistance, and F is the global factor of safety. The
factor of safety varies depending on the type of design (shal-
low foundation, deep foundation, slope stability, retaining
wall) and is typically between 1.5 and 3 (Table 17.3). For
the ultimate bearing pressure under a shallow foundation
obtained by calculations, it is 3. The settlement is calcu-
lated using the dead loads and permanent live load without
applying any factors.

One is always tempted, when comparing the WSD and
LRFD approaches, to compare the global factor of safety
with the ratio of the load factor divided by the resistance
factor. Indeed, from Eqs. 17.2 and 17.6 comes F = γ /ϕ.

Table 17.3 Typical Global Factors of Safety against
Soil Failure

Type of Geotechnical
Application

Global Factor
of Safety F

Shallow foundations 2.5 to 3
Deep foundations 2 to 2.5
Retaining wall 1.5 to 2
Slope stability 1.3 to 1.5
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Using this expression and the extreme values of the load
factors (dead load) and resistance factors gives a global factor
of safety ranging from 1.3 to 4.2. This is a larger range than
the values in Table 17.3 and shows that not all geotechnical
methods give the same degree of precision on the predicted
resistance. The LRFD approach takes this factor clearly
into account.

One very important issue is how the geotechnical design
parameters are selected from the borings, tests results, and
soundings resulting from the site investigation. For example,
the issue is to know which value to select from an undrained
shear strength profile or a blow count profile or a cone
penetrometer point resistance profile. This value is called the
characteristic value, and its selection obviously will have a
major impact on the uncertainty associated with predictions of
the resistance. The Eurocode 7 defines the characteristic value
as “a cautious estimate of the value affecting the occurrence
of the limit state.” So, in this case the selection is tied to the
limit state itself.

Design methods can be classified into three categories: de-
sign by theory, design by empiricism, and design by analogy.
Design methods by theory rely on theoretical derivations
for recommending the design equations. Design methods by
empiricism rely on experimental data and correlations for rec-
ommending the design equations. Design methods by analogy
rely on the close analogy between the mode of deformation
in the soil test and under the foundation. Generally speaking,
the best methods include—and accumulate the advantages
of—all three, by using a close analogy, experimental data,
and a solid theoretical background.

17.5 GENERAL BEHAVIOR

In a load test on a shallow foundation (say, a 3 m by 3 m
spread footing), the load on the foundation is increased in
steps (jacking against an anchored frame or accumulating
dead weight) and the corresponding downward movement is
recorded. The load settlement curve is plotted and usually
shows a relatively linear part at lower loads (elastic behavior),
followed by a curved part, followed by a part where the
movement accelerates faster than the load (Figure 17.6).

Load tests on silts and clays often plunge; load tests on sands
and gravel rarely do, with the load increasing steadily with
more deflection (Figure 17.6). The reason for the difference is
that the fine-grained soils tend to shear in an undrained mode
during a load test that may last a few hours, whereas coarse-
grained soils likely shear in a drained mode. The undrained
shear strength of a clay does not vary much with the stress and
confinement level (su = constant), so when the load on the
footing increases, the shear strength does not increase and the
failure is clearly defined. The drained shear strength of a sand
depends on the stress and confinement level (s = σ ′ tan ϕ′);
thus, when the load increases, so does the stress level and
therefore the shear strength. Hence, the ultimate resistance of
the sand increases as more load is applied and the failure is ill
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foundations.

defined. In such a case, the ultimate load can be defined as the
load corresponding to a movement equal to one-tenth of the
foundation width. The true ultimate resistance of a footing on
sand or gravel does exist, but at much larger displacements.
These displacements are on the order of the width of the
footing, as can be shown by the cone penetrometer test.

One important part of shallow foundation behavior is the
movement of the foundation under sustained load, because
most foundations are loaded with a static load for the life of
the structure, which may be several decades or more. During
the load test, the load can be maintained for a period of time
and the movement can be observed as a function of time
during that period.

17.6 ULTIMATE BEARING CAPACITY

The ultimate bearing capacity pu is one of the critical val-
ues to be estimated when designing a shallow foundation.
It is defined as the highest pressure the soil can resist. As
explained in section 17.5, pu corresponds to a plunging load
in fine-grained soils, but to a load at large displacement (such
as one-tenth of the footing width or B/10) in coarse-grained
soils, because of the shape of the load settlement curve. Thus,
the ultimate bearing capacity tends to control the design of
shallow foundations on clay, whereas settlement tends to con-
trol the design of shallow foundations on sand. The value of
pu can come from an empirical formula (pressuremeter test,
cone penetrometer test, or standard penetration test), from a
formula based on theory (general bearing capacity equation),
or from a load test. Load tests on shallow foundations
are rare.

17.6.1 Direct Strength Equations

Direct strength equations rely on the average value of the
strength of the soil within the depth of influence of the
foundation below the foundation level. They are generally of
the form:

pu = k s + γ D (17.7)
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where k is the bearing capacity factor, γ is the effective
unit weight of the soil, D is the embedment depth, and s is
a measure of the soil strength averaged over the depth of
influence. This depth of influence is typically taken as one
foundation width below the foundation level for a uniform
soil. The case of layered soils is addressed in section 17.6.3.

The first direct strength equation was proposed by Skemp-
ton (1951); it addresses the problem of the undrained ultimate
bearing capacity of a shallow foundation on a fine-grained
soil. The equation makes use of the average undrained shear
strength su within the depth of influence below the footing.
The theoretical background for this equation is rooted in the
information presented in section 11.4.2. The equation is:

pu = Ncsu + γ D (17.8)

where Nc is the bearing capacity factor (Figure 17.7) proposed
by Skempton after calibration against field data, γ is the total
unit weight of the soil above the foundation depth, and D is
the depth of embedment. Note that Nc is higher for square
footings than for strip footings. The reason is that the square
footing can develop a relatively larger failure surface, because
the failure surface can develop in four directions, whereas the
failure surface for the strip footing is confined to only two
directions. The Nc values for the square footing and the strip
footing are related by:

Nc(square) = 1.2Nc(strip) (17.9)

Note also that Nc gradually increases with the relative
depth of embedment, due to the gradual increase in the length
of the failure surface with embedment. The values of Nc peak
at:

Nc(square) max = 9 and Nc(strip) max = 7.5 (17.10)

The second direct strength equation was proposed by
Menard (1963a; 1963b); it addresses the problem of the
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Figure 17.7 Skempton chart for Nc. (Skempton 1951)

ultimate bearing capacity of any soil in which the pres-
suremeter test can be performed. The theoretical background
of this equation is rooted in the solution to the expansion of a
cylindrical cavity. The equation is:

pu = kpp∗
L + γ D (17.11)

where kp is the pressuremeter bearing capacity factor, γ is
the total unit weight of the soil above the footing depth, D

is the depth of embedment, and pL∗ is the net limit pressure
equal to the PMT limit pressure pL minus the horizontal total
stress at rest σoh:

p∗
L = pL − σoh (17.12)

The PMT bearing capacity factor kp is given in two steps
(Frank, 1999, 2013, Norme Francaise AFNOR P94-261), first
a soil classification step (Table 17.4) and then an equation for
each soil category (Eqs. 17.13 to 17.18).

Clay and silt—strip footing:

kp = 0.8 +
(

0.2 + 0.02
D

B

)(
1 − e−1.3 D

B

)
(17.13)

Clay and silt—square footing:

kp = 0.8 +
(

0.3 + 0.02
D

B

)(
1 − e−1.5 D

B

)
(17.14)

Clay and silt—rectangular:

kp(B/L) = kp(B/L=0)

(
1 − B

L

)
+ kp(B/L=1)

B

L
(17.15)

Sand and gravel—strip footing:

kp = 1 +
(

0.3 + 0.05
D

B

) (
1 − e−2 D

B

)
(17.16)

Sand and gravel—square footing:

kp = 1 +
(

0.22 + 0.18
D

B

) (
1 − e−5 D

B

)
(17.17)

Sand and gravel—rectangular:

kp(B/L) = kp(B/L=0)

(
1 − B

L

)
+ kp(B/L=1)

B

L
(17.18)

where B and L are the width and length of the footing
respectively, and D is the depth of embedment. These rules
are primarily based on load tests with 1 m by 1 m square
footings. As can be seen, the kp factor varies within a typical
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Table 17.4 Soil Classification for the PMT and CPT Foundation Rules (After Frank, 2013)

Soil Type Strength
PMT

pL ∗ (MPa)
CPT

qc(MPa)
SPT

N(bpf)
Shear Strength

su(kPa)

Clay, Silt Very soft to soft <0.4 <1 <75
Firm 0.4 to 1.2 1 to 2.5 75 to 150
Stiff 1.2 to 2 2.5 to 4 150 to 300
Very stiff >2 >4 >300

Sand, Gravel Very loose <0.2 <1.5 <3
Loose 0.2 to 0.5 1.5 to 4 3 to 8
Medium dense 0.5 to 1 4 to 10 8 to 25
Dense 1 to 2 10 to 20 25 to 42
Very dense >2 >20 42 to 58

After Norme Francaise AFNOR P94-261 as presented in Frank, 2013

range of 0.9 to 1 for clay and 1.2 to 1.4 for sands. The
following simpler rule seems conservative in most cases:

pu = kppL with kp = 0.9 for clay and

kp = 1.2 for sand (17.19)

Interestingly, it can be shown that the horizontal resistance
of a soil is the major component of the vertical resistance.
Referring to Figure 17.8, consider a circular footing with a
diameter D founded on the ground surface. The soil is a
saturated clay layer with a thickness equal to 2D. According
to Eq. 17.8, the vertical ultimate bearing capacity pu of
that footing is 6.2 su. To calculate how much of pu comes
from the horizontal soil resistance, let’s remove that lateral
support. In this case the footing sits on top of a large
sample loaded in an unconfined compression test; thus, the
ultimate bearing capacity that it generates is equal to 2su.

The difference between the two diagrams on Figure 17.8
gives the contribution of the horizontal strength of the soil
to the vertical ultimate bearing pressure: 4.2su. Therefore,
68% of the vertical ultimate bearing pressure is due to
horizontal resistance. For sand, the percent contribution of
the horizontal resistance is even larger, as the unconfined
compression resistance of a sand is very small.

SoilSoil

2su 6su

Figure 17.8 Lateral support as main contributor to vertical capac-
ity. (Baguelin et al. 1978)

The third direct strength equation makes use of the cone
penetrometer point resistance qc; it addresses the problem of
the ultimate bearing capacity of any soil into which the cone
penetrometer can be pushed. The theoretical background of
this equation is rooted in the solution to the expansion of a
spherical cavity. There is one equation for clays and another
one for sands. For clays, the equation is based on the work of
Tand et al. (1986):

pu = kcqc + γ D (17.20)

where kc is the cone penetrometer bearing capacity factor
(Figure 17.9), qc is the average point resistance within one
footing width below the footing, γ is the total unit weight of
the soil above the footing, and D is the depth of embedment.
All in all, it appears that a kc value of 0.35 is a reasonable
estimate for shallow foundations on clay. In sand, a value of
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Figure 17.9 Chart for the CPT bearing capacity factor kc. (After
Tand et al. 1986)
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kc equal to 0.23 has been proposed by Briaud and Gibbens
(1999). So, in summary:

Clays pu = 0.40qc + γ D (17.21)

Sands pu = 0.20qc + γ D (17.22)

The Norme Francaise AFNOR P94-261 as presented in
Frank (2013) gives the following recommendations for kc:

Clay and silt—strip footing:

kc = 0.27 +
(

0.07 + 0.007
D

B

) (
1 − e−1.3 D

B

)
(17.23)

Clay and silt—square footing:

kc = 0.27 +
(

0.1 + 0.007
D

B

) (
1 − e−1.5 D

B

)
(17.24)

Sand and gravle—strip footing:

kc = 0.09 +
(

0.04 + 0.006
D

B

) (
1 − e−2 D

B

)
(17.25)

Sand and gravel—square footing:

kc = 0.09 +
(

0.03 + 0.02
D

B

) (
1 − e−5 D

B

)
(17.26)

where B and L are the width and length of the footing
respectively, and De is the depth of embedment. For the case
of a rectangular footing, Eq. 17.15 is used. As can be seen,
the kc factor recommended by AFNOR varies within a typical
range of 0.30 to 0.35 for clay and 0.10 to 0.14 for sands.

The fourth direct strength method makes use of the SPT
blow count N; it addresses the problem of the ultimate
bearing capacity of any soil in which the standard penetration
test can be performed. There is one equation for sands and
another one for clays. The form of the equation is:

pu = kNN pa + γ D (17.27)

where kN is the SPT bearing capacity factor, N is the average
blow count within one footing width below the footing, pa is
the atmospheric pressure used for normalization, γ is the total
unit weight of the soil above the footing, and D is the depth
of embedment. For sands, the kN value is based on the work
of Briaud and Gibbens (1999) and for clay the kN value is
back-calculated using Eq. 17.8 and the correlation between
the blow count and the undrained shear strength. Note that
calculating pu based on the SPT blow count is probably the
least accurate of all direct methods. So, in summary:

Sands pu = 0.60N pa + γ D (17.28)

Clays pu = 0.35N pa + γ D (17.29)

17.6.2 Terzaghi’s Ultimate Bearing Capacity Equation

This equation is called the general bearing capacity equation.
The assumptions made in deriving this equation are that the
soil has no water, that it has a constant friction angle and
cohesion c, and that it has a constant unit weight. As such,
it corresponds to a soil strength profile that increases linearly
with depth (Figure 17.10). If the soil strength profile does not
meet this requirement, this equation should not be used, as it
will give erroneous values of pu.

The Terzaghi equation also assumes that a failure mech-
anism develops with a shear plane under the foundation
(Figure 17.11) and that the soil mass is pushed sideways to
allow for the foundation penetration. This was not observed
in the large footing tests by Briaud and Gibbens (Figure 17.5).

The general bearing capacity equation for a strip footing is:

pu = c′Nc + 1

2
γ BNγ + γ DNq (17.30)

where pu is the ultimate bearing capacity of the soil; c′
is the effective stress cohesion intercept; Nc,Nγ , and Nq

are bearing capacity factors function of the effective stress
friction angle ϕ′; γ is the effective unit weight; B is the
width of the foundation; and D is the depth of embedment of
the foundation. The assumption of constant ϕ′ and constant
γ implies that the shear strength profile increases linearly
with depth. If this matches the soil strength profile observed
at the site, the equation is applicable. However, most field
situations do not exhibit such simple linear profiles. In this
case, the empirical equations give a more representative
estimate of pu. Note that the general bearing capacity equation
is to be used with effective stress parameters (c′, ϕ′) and
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Figure 17.10 Soil strength profiles.
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Figure 17.11 Bearing capacity failure mechanism.
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drained conditions. It gives the long-term capacity of fine-
grained soils and the short- and long-term capacity of coarse-
grained soils. The undrained ultimate bearing capacity of
fine-grained soils is given by Eq. 17.8.

The following derivation is an illustration of how the
bearing capacity factors Nc,Nγ , and Nq can be obtained.
The footing is a strip footing, which ensures a plane strain
condition. The step-by-step procedure explained in section
11.4.1 is followed to obtain the failure load.

1. The failure mechanism of Figure 17.11 is assumed.
2. The free-body diagram of the wedge below the footing

is drawn (Figure 17.12) and the reasoning is carried out on half
of the wedge because of symmetry (OAB in Figure 17.12).
The angle of the side of the wedge with the vertical is the
angle of the failure plane. It is considered to be 45 + ϕ′/2
because that is the angle of the failure plane in a triaxial
test (see section 9.12.1) and with a passive pressure type of
failure (see Chapter 21). All external forces are shown; they
include the ultimate load Qu at the soil-foundation interface
(Qu(kN/m) = pu × B), the weight W of the half wedge, the
cohesion force C along the face AB, and the passive earth
pressure force Pp (also on face AB).

3. Vertical equilibrium of forces is the fundamental
equation used. Note that the forces are in force per unit
length, as this is a plane strain problem:

Qu

2
= Pp cos

(
45 − ϕ′

2

)
+ C cos

(
45 − ϕ′

2

)
− W

(17.31)
where ϕ′ is the soil friction angle.
Referring to Figure 17.12, the weight W of the half wedge is:

W = 1

2
γ

B

2
H = 1

4
γ B

B

2
tan

(
45 + ϕ′

2

)

= 1

8
γB2 tan

(
45 + ϕ′

2

)
(17.32)

where γ is the unit weight of the soil.

B Qu

pu

C BWO

H

A

45 1 w9/2

45 2 w9/2

L

gD

w9

45 2 w9/2

Pp

C

Figure 17.12 Free-body diagram of soil wedge in bearing capacity
failure.

The cohesion force is:

C = c′L = c′ B

2 sin

(
45 − ϕ′

2

) (17.33)

where c′ is the soil cohesion intercept.
The passive resistance Pp is given by an equation presented
in Chapter 21:

Pp = 1

2
KpγH 2 + 2c′H

√
Kp + γ DHKp (17.34)

where Kp is the passive earth pressure coefficient (see Chapter
21). This coefficient depends on ϕ′. Regrouping Eqs. 17.31
to 17.34 gives:

pu = Qu/2

B/2
= c′

(
1 + 2

√
Kp cos

(
45 − ϕ′

2

))
tan

(
45 + ϕ′

2

)

+ 1

2
γ B

⎛
⎜⎜⎝

Kp cos

(
45 − ϕ′

2

)

2 tan

(
45 − ϕ′

2

) − 1

2

⎞
⎟⎟⎠ tan

(
45 + ϕ′

2

)

+ γ DKp tan

(
45 + ϕ′

2

)
(17.35)

This can be rewritten as:

pu = c′Nc + 1

2
γ BNγ + γ DNq (17.36)

and the expressions of the bearing capacity factors Nc,Nγ ,

and Nq become clear. In Eq. 17.36, pu is the ultimate bearing
pressure the soil can resist, c′ is the effective stress cohesion,
γ is the soil effective unit weight, B is the foundation width,
D is the depth of embedment, and Nc,Nγ , and Nq are the
bearing capacity factors.

4. Note that the constitutive equation is buried in
Eq. 17.34, which makes use of the shear strength equation
of the soil. This is discussed in Chapter 21. The problem
now is to obtain the expression of Kp as a function of ϕ′.
Taking the expression that comes from Chapter 21 is not
appropriate, because the assumptions for the retaining walls
dealt with in Chapter 21 are not applicable to the extreme
inclination of the “retaining wall” associated with plane AB
in Figure 17.12 and Figure 17.13. In Chapter 21, a plane

C B

A D

G F

E

Pp

O

Figure 17.13 Evaluation of passive resistance.
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is assumed as a failure surface (line AG in Figure 17.13),
whereas a different shape failure surface is assumed for
the bearing capacity failure (line ADE in Figure 17.13).
Different assumptions have been made for line ADEF, and
each one leads to a different set of bearing capacity factors
Nc,Nγ , and Nq. Some assume a circle for line AD, some
assume a log spiral, some assume that line DF stops at E,
some go all the way to F, and some use a wedge ABC that is
not a triangle.

5. The solution originally proposed by Terzaghi (1943)
was decomposed into three superposed states:
a. State I, soil with cohesion and friction but no weight and

no surcharge
b. State II, soil with friction and surcharge but no weight and

no cohesion
c. State III, soil with weight and friction but no surcharge

and no cohesion

Then each State is solved with separate failure envelopes
and the solutions for each State are added in superposition
of all States, to end up with Eq. 17.36. Although such a
superposition principle is not theoretically correct in plasticity
(or any other nonlinear) theory, the error appears to be small.

Many different bearing capacity factors have been proposed
by various authors. All in all, the Nc,Nγ , and Nq factors most
commonly used are those shown in Figure 17.14. They come
from the work of Reissner (1924) for Nc and Nq and from
the work of Meyerhof (1955) for Nγ .

The general bearing capacity equation requires that the soil
be rigid enough to push the whole soil wedge from the footing
to the ground surface. This may be the case when the soil is
very dense or very stiff, but not when it is loose or soft. This
also requires a very large amount of movement. To alleviate
this limitation, Terzaghi and Peck (1963) recommended a
correction that consists of reducing the value of the friction
angle to 0.67ϕ′ for loose and soft soils.
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Figure 17.14 Bearing capacity factors.

Recall that one of the assumptions for the development of
Eq. 17.36 is that the soil has no water. If the groundwater
level (GWL) is within the depth of influence of the footing
(1B below the footing), the unit weight in Eq. 17.36 should
be the effective unit weight:

If the soil is below the GWL γeff = γt − γw (17.37)

If the soil is above the GWL γeff = γt (17.38)

For example, if the GWL is at the level of the foundation,
the γ value for the third term in Eq. 17.36 should be γt ,

because that term refers to the soil above the foundation
level, but the γ value for the second term in Eq. 17.36
should be γt − γw because it refers to the soil below the
foundation level.

17.6.3 Layered Soils

The previous two subsections dealt with relatively uniform
soils. If the strength profile indicates that a layered system is
involved in the responses to the foundation loading, modifi-
cations to the equations are necessary. The following simple
examples show how this can be done for a strip footing.

Hard clay over soft clay. The first step is always to find a
reasonable failure mechanism. Referring to Figure 17.15, it
seems reasonable to assume that if the thickness H of the hard
layer is large enough, the ultimate bearing pressure will be
the one of the hard layer, pu(hard). If the thickness of the hard
layer is negligible, then the ultimate bearing pressure will be
pu(soft). If the thickness of the hard layer is intermediate, then
the foundation will punch through the hard layer into the soft
layer. This is very similar to punching through the ice layer
when you walk across a frozen lake, if the ice is not thick
enough.

Vertical equilibrium of forces for the failing mass (ABCD
in Figure 17.15a) gives:

puB + γ(hard)HB = 2F + pu(soft)B = 2su(hard)H

+ (Nc(soft)su(soft) + γ(hard)H)B

(17.39)

Or

pu = Nc(soft)su(soft) + 2su(hard)

H

B
(17.40)

where pu is the ultimate bearing pressure of the foundation,
Nc is the bearing capacity factor from Figure 17.7 for a depth
of embedment of H/B, su(soft) and su(hard) are the undrained
shear strength of the soft layer and hard layer respectively,
γ(hard) is the unit weight of the hard layer, H is the thickness
of the hard layer, and B is the width of the footing. Note that in
Eq. 17.40 all forces are in kN/m, because they are calculated
per unit length of footing perpendicular to the page. The pu
values for both layers taken independently are:

pu(soft) = Nc(soft)su(soft) + γ(hard)H (17.41)
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Figure 17.15 Layered systems.

pu(hard) = Nc(hard)su(hard) (17.42)

Then the critical height ratio, Hc/B, where the failure
changes from a punching failure of the layered system to
failure in the hard layer alone, can be found by writing that at
that point the value of pu for the layered system is equal to
the pu value for the hard layer:

Nc(hard)su(hard) = Nc(soft)su(soft) + 2su(hard)

H

B
(17.43)

Note that a distinction must be made between Nc(hard) and
Nc(soft) because of the different depth of embedment for the
foundation on top of the hard layer and the foundation on top
of the soft layer. Because the top of the hard layer is at the
ground surface, Nc(hard) is equal to 5.14. Then the expression
for Hc/B is:

Hc

B
= 5.14su(hard) − Nc(soft)su(soft)

2su(hard)

= 2.57 − Nc(soft)

2

su(soft)

su(hard)

(17.44)
Because Nc(soft) depends on H/B, Eq. 17.44 has to be solved

by iteration. Figure 17.16 illustrates the variation of pu with
an increase in H/B. As can be inferred from Eq. 17.44, the
critical depth Hc varies from about 2 for significant strength
contrast between the two layers to about 1 when the strength
contrast is not very significant.

Soft clay over hard clay. In this case, the failure mechanism
is different from the one for the hard clay over the soft clay. If
the soft clay layer is thick enough, the failure will occur in the
soft clay and pu is equal to pu(soft). If the thickness of the soft
layer is negligible, then it should be removed and pu is equal
to pu(hard). If the thickness of the soft layer is intermediate,
then the failure mechanism is that the soft layer squeezes out
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Figure 17.16 Ultimate bearing capacity for a layered system.

on the side of the footing. More scientifically put, a local
failure occurs in the soft layer as shown in Figure 17.15b.
Therefore, for a soft layer over a hard layer, the ultimate
bearing pressure is always pu(soft).

Sand over clay. If the sand is very loose and the clay is
very hard, a local failure in the sand layer can occur. Most
of the time, in the case of a hard layer over a soft layer,
the punching mechanism is likely to apply. If the thickness
H of the sand layer is large enough, the ultimate bearing
pressure will be the one of the sand layer, pu(sand). If the
thickness of the sand layer is negligible, then the ultimate
bearing pressure will be pu(clay). If the thickness of the sand
layer is intermediate, then the foundation will punch through
the hard layer into the soft layer. The force F in this case
is equal to the horizontal force Pp times the coefficient of
friction tan ϕ′. The horizontal force Pp is the resultant force
corresponding to the passive earth pressure distribution on
the vertical plane BC (Figure 17.15c). Indeed, this plane is
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pushed sideways into the soil and generates the passive earth
pressure at ultimate load. This force Pp is given by:

Pp = 1

2
Kp(sand)γ(sand)H

2 (17.45)

where Kp(sand) is the coefficient of passive earth pressure for
the sand. From Chapter 21 we get:

Kp(sand) = 1 + sin ϕ′

1 − sin ϕ′ (17.46)

Vertical equilibrium of forces for the failing mass (ABCD in
Figure 17.15c) gives:

puB + γ(sand)HB = 2F + pu(clay)B

= 2
1

2
Kp(sand)γ(sand)H

2 tan ϕ′

+ (Ncsu(clay) + γ(clay)H)B (17.47)

Therefore, the ultimate bearing pressure is:

pu = Kp(sand)γ(sand)

H 2

B
tan ϕ′ + Ncsu(clay) (17.48)

where pu is the ultimate bearing pressure of the foundation,
Kp(sand) is the coefficient of passive earth pressure for the
sand, γ(sand) and γ(clay) are the unit weight of the sand and of
the clay respectively, H is the thickness of the sand layer, B

is the width of the foundation, ϕ′ is the friction angle of the
sand, Nc is the bearing capacity factor from Figure 17.7 for
a depth of embedment of H/B, and su(clay) is the undrained
shear strength of the clay. Then the critical height ratio,
Hc/B, where the failure changes from a punching failure of
the layered system to failure in the sand layer, can be found
by writing that at that point the value of pu for the layered
system is equal to the pu(sand) value for the sand layer, which
is given by an equation of the form of Eq. 17.7.

Other combinations of layered systems should be addressed
by considering the most likely failure mechanism and using
the procedure outlined in section 11.4.1 to obtain pu. If several

failure mechanisms are possible, pu should be calculated for
each one and the minimum value should be retained, because
the soil will fail at the lowest failure load encountered.

17.6.4 Special Loading

Most of the solutions for ultimate bearing pressure pre-
sented so far have been for simple cases. However, shallow
foundations can be more complex (Figure 17.17) including:

1. Influence of the foundation shapes (rectangular, square,
circular, strip), is

2. Influence of the depth of embedment, id
3. Influence of the load eccentricity, ie
4. Influence of the load inclination, ii
5. Influence of a nearby slope, iβ

An increase in the depth of embedment tends to increase
the ultimate bearing pressure pu, while the eccentricity, the
inclination, and the slope presence tend to decrease pu. In each
case, an influence factor must be added in front of the equation
for the base case. Such factors have been proposed for the
pressuremeter method, the cone penetrometer method, and
the general bearing capacity method. The influence factors
for the cone penetrometer method are the same as the ones
for the pressuremeter method.

Pressuremeter method. These factors are recommended by
Frank (1999) and Norme Francaise AFNOR P94-261 (2013)
and are as follows. Note that the influence of the foundation
shape and of the depth of embedment are already included in
the formulas for the bearing capacity factor kp and kc (Eqs.
17.13 to 17.18 and Eqs. 17.23 to 17.26). If the load applied
to a B × L footing has an eccentricity eB along the width B

and eL along the length L, the influence of the eccentricity
is taken into account by using a rule attributed to Meyerhof.
This rule consists of reducing the footing size as follows:

B ′ = B − 2eB and L′ = L − 2eL (17.49)

Then the design rules are applied to the reduced-size B ′ × L′
footing, but the final recommendation is a B × L footing.
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Figure 17.17 Complex loading cases for a shallow foundation.
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If a footing is subjected to a centered inclined load making
an angle α with the vertical, the influence factor ii is given
by Figure 17.18. Note that in Figure 17.18, the upper curve is
for fine-grained soils, whereas the three lower curves are for
coarse-grained soils and for three different relative depths of
embedment D/B.

If a footing is located close to a slope and subjected to a
centered vertical load, the presence of the slope reduces the
ultimate bearing pressure. The influence factor iβ is given by
Figure 17.19 as a function of d/B where d is the horizontal
distance between the front edge of the bottom of the footing
to the slope and B is the footing width. Each curve on
Figure 17.19 corresponds to a slope angle β. Note that this
figure corresponds to zero embedment depth. A simplified
straight line relationship is also shown on Figure 17.19.

It is common practice to multiply the influence factors
when several conditions are present at the same time.

General bearing capacity method. Several recommenda-
tions have been made for the influence factors to apply to
the general bearing capacity equation. They take into ac-
count the foundation shape, the load eccentricity, the load
inclination, and the presence of a nearby slope. They can
be found in many manuals, including the Canadian foun-
dation manual, the NAVFAC manual, the AASHTO bridge
specifications, the API RP2A manual, the Norme Francaise
AFNOR as presented by Frank (1999), and many others.
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Figure 17.18 Influence of inclination. (After Frank, 1999)
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Figure 17.19 Influence of nearby slope. (After Frank, 1999)

The recommendations vary, but a review of these factors
leads to the factors shown in Table 17.5, which represent rea-
sonable averages. Note that there is a different factor for each
of the three terms in Eq. 17.36. The subscript c is used for the
cNc term, the subscript γ is used for the term 0.5γ BNγ , and
the subscript q is used for the term γ DNq. Thus, the general
formula is:

pu = icsiceiciicβcNc + iγ siγ eiγ iiγβ

1

2
γ BNγ

+ iqsiqeiqiiqβγ DNq (17.50)

17.6.5 Ultimate Bearing Capacity of Unsaturated Soils

Unsaturated soils and saturated soils with water in tension
generally have higher ultimate bearing capacity pu than the
same soils with water in compression. Indeed, the water
tension increases the effective stress and therefore the shear
strength, which affects the value of pu.

In the case of the direct equations, nothing changes because
the change in strength is directly taken into account because
the test itself takes the increase in strength into account. The
PMT limit pressure, the CPT point resistance, the SPT blow
count, and the undrained shear strength all reflect the impact
of water tension on these soil parameters. Therefore, if one is
using a direct method such as Eqs. 17.8, 17.11, 17.21, 17.22.
17.28, or 17.29, there is no need to change anything in the
approach to be taken. Nevertheless, one must be aware of the
fact that if the strength test is performed when the soil is very
dry (high water tension), as is often the case in the summer,
the predicted value of pu will be high. If the soil loses that
water tension in the winter, then the value of pu will become
much smaller. It is very possible for the water tension to vary
significantly from one season to the next down to a depth
of 3 m below the surface. Because shallow foundations are
often placed within that depth, it is desirable to test the soil
when it is in its wet state. If this is not possible, experience
should be used from prior comparisons between summer
and winter strength to reduce the strength accordingly before
computing pu.

In the case of the general bearing capacity equation, it is
important to understand the role of each of the three terms.
The first term, c′Nc, refers to the contribution made by the
effective stress cohesion of the soil along the failure plane.
The second term, 0.5γ BNγ , refers to the contribution made
by the friction along the failure plane due to the effective
stress below the foundation but without a surcharge. The third
term, γ DNq, refers to the contribution made by the friction
along the failure plane due to the presence of the surcharge
γ D. It is relatively common practice to calculate the bearing
capacity of soils with water tension (unsaturated or saturated)
by increasing the cohesion c′ to include the apparent cohesion
capp = α uw tan ϕ in the value of c′. Then the equation is:

pu = (c′ − αuw tan ϕ′)Nc + 1

2
γ BNγ + γ DNq (17.51)
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Table 17.5 Influence Factors for the General Bearing Capacity Equation

ic for cNc term iγ for 0.5γ BNγ term iq for γ DNq term

Shape* 1 + 0.2 (B/L) 1 − 0.3(B/L) 1
Eccentricity Meyerhof rule Meyerhof rule Meyerhof rule
Inclination** (1 − α/90)2 (1 − tanα)2.5 (1 − tanα)1.5

Nearby slope*** 0.3(1 + (d/2B)) 0.3(1 + (d/2B)) 0.3(1 + (d/2B))

*B is the footing width and L is the footing length
**α is the angle of inclination of the load
***For slope angles between 2 to 1 and 3 to 1, d is the horizontal distance from the footing
edge to the slope, B is the footing width

This practice does not recognize the fact that the apparent
cohesion is due to an increase in effective stress through the
water tension and not to an increase in “glue” between the
grains. It appears more appropriate to include this increase
in effective stress in the second term. The expression 0.5γ B
represents the effective stress σ ′

ov for a “no water” condition
at a depth of 0.5B below the foundation level in the case
of no surcharge. This expression should be replaced by the
effective stress at that same location but after consideration
of the water tension. The bearing capacity for soils with water
tension (unsaturated or saturated) would then be:

pu = c′Nc + 1

2
(γ B − αuw)Nγ + γ DNq (17.52)

Unfortunately, there are no known large-scale footing tests
in which water tension was measured during a load test so
as to provide verification for either approach. In any case,
it is recommended that the direct method equations be used
rather than the general bearing capacity equation, because the
former methods are not restricted by the shape of the soil
strength profile and have been extensively calibrated against
footing load tests, particularly the PMT and CPT methods.

17.7 LOAD SETTLEMENT CURVE APPROACH

The design of a shallow foundation, much like the design of
a deep foundation, is split into two steps. One addresses the
ultimate bearing capacity, the other the movement at work-
ing loads. The load settlement curve (LSC) method (Jeanjean
1995; Briaud 2007) is used to predict the entire load settlement
curve of the shallow foundation, rather than being limited to
predicting only two points on that curve. It was developed in
part after testing five large-scale footings (Figures 17.3 and
17.4). During these tests, inclinometer casings placed verti-
cally at the edge of the footings gave the lateral deformation
of the soil below the footings (Figure 17.5). These lateral de-
formation profiles never indicated that a plane of failure was
developing as assumed in Figure 17.11. Instead, it showed
that a “barreling” effect was progressively increasing in the

same shape as the one created by the pressuremeter test. This
is why the PMT curve was chosen as the curve to use and
transform it into the footing load settlement curve. So, the
LSC method is a way to transform the pressuremeter curve
into the load settlement curve for a footing (Figure 17.20).
During these large-scale tests, it was also observed that the
normalized curve, plotted as pressure on the footing divided
by the soil strength (PMT limit pressure) versus the settle-
ment divided by the footing width, was independent of the
footing size and essentially a unique property of the soil
(Figure 17.4).

The transformation of the PMT curve into the footing curve
is based on two equations as follows:

s

B
= 0.24

	R

Ro

(17.53)
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Figure 17.20 The load settlement curve (LSC) method. (Briaud
2007.)
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pf = fL/Bfefδfβ,d�pp (17.54)

where s is the footing settlement, B is the footing width,
Ro is the initial radius of the pressuremeter cavity, 	R

is the increase in cavity radius, pf is the footing pressure
corresponding to the settlement s, pp is the pressuremeter
pressure corresponding to 	R/Ro, and fL/B, fe, fδ, and fβ,d

are the factors to include the influence of the footing shape,
the load eccentricity, the load inclination, and the presence of
a slope.

Equation 17.53 serves as a strain compatibility equation
because it matches the strains at the ultimate values, which are
s/B = 0.1 for the footing (a typical reference) and 	R/Ro

equal to 0.414 for the PMT (corresponding to the definition
of the limit pressure). The value of 0.24 in Eq. 17.53 is the
ratio of 0.1/0.414. In Eq. 17.54, � is a function of s/B (or
0.24 	R/Ro), which represents the ratio between the footing
pressure pf and the PMT pressure pp for the reference case
of a centered vertical load on flat ground. Figure 17.21 shows

the data from many sites used to generate the average �

function and the design � function of Figure 17.22. The
design � function is one standard deviation below the mean
� function with respect to the data shown on Figure 17.21
and is recommended for design. The precision of the method
can be gauged by the scatter on Figure 17.21.

The equations for the influence factors came mostly from
numerical simulations (Hossain 1996; Briaud 2007):

Shape fL/B = 0.8 + 0.2
B

L
(17.55)

Load eccentricity fe = 1 − 0.33
e

B
for the center

(17.56)

Load eccentricity fe = 1 −
( e

B

)0.5
for the edge

(17.57)
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Load inclination fi = 1 −
(

i

90

)2

for the center

(17.58)

Load inclination fi = 1 −
(

i

360

)0.5

for the edge

(17.59)

Near a slope fβ,d = 0.8

(
1 + d

B

)0.1

for a 3 to 1 slope (17.60)

Near a slope fβ,d = 0.7

(
1 + d

B

)0.15

for a 2 to 1 slope (17.61)

where B and L are the footing width and length respectively,
e is the load eccentricity, i is the inclination angle of the load,
and d is the horizontal distance from the edge of the footing to
the slope surface (Figure 17.17). The influence factor for the
influence of a nearby slope is given for two common highway
slopes: a 3 to 1 slope has a β angle with the horizontal of 18.4
degrees, and a 2 to 1 slope has a β angle with the horizontal
of 26.6 degrees.

During the large footing tests discussed in section 17.2,
the load was held for 30 minutes at each load level (Figure
17.3) and the settlement s was recorded as a function of
time t. Figure 17.3 shows the relationship between the log
of settlement and the log of time for each load step. The
settlement s(t) is normalized by the settlement value at the
beginning of that load step s(t1) and the time t is normalized by
a time t1 equal to one minute. As can be seen from Figure 17.3,
the relationship is linear in the log space; therefore, the model
is a power model with an exponent n equal to the slope of the
line in the log space:

s(t)

s(t1)
=

(
t

t1

)n

(17.62)

The exponent n can be measured in a pressuremeter test
where the pressure is held at an appropriate pressure level
while the relative increase in radius 	R/Ro is recorded as
a function of time t. Equation 17.62 is then applied to the
PMT data and n is back-calculated. The n value tends to be
between 0.01 and 0.03 for sands and between 0.02 to 0.05 for
stiff to hard clays.

The step-by-step procedure for the load settlement curve
method is as follows:

1. Perform preboring pressuremeter tests within the zone
of influence of the footing.

2. Plot the PMT curves as pressure pp on the cavity wall
versus relative increase in cavity radius 	R/Ro for each
test. Extend the straight-line part of the PMT curve to
zero pressure and shift the vertical axis to the value of
	R/Ro where that straight line intersects the horizontal

axis; re-zero that axis. This is done to correct the origin
for the initial expansion of the pressuremeter to allow it
to come into contact with the borehole wall.

3. Develop the mean pressuremeter curve of all the PMT
curves within the depth of influence of the footing.
To do so, choose a value of 	R/Ro and average the
corresponding pressures of all the PMT curves; in doing
so, give more weight to the shallower PMT curves,
which will have more influence on the settlement than
the deep PMT curves (Briaud 2007).

4. Transform the PMT curve point by point into the footing
curve by using Eqs. 17.53 and 17.54.

5. Generate the short-term load settlement curve for the
footing from the normalized curve.

6. Generate the long-term load settlement curve by multi-
plying all settlement values by the factor (t/t1)

n where
t is the design life of the structure, t1 is 1 hr, and n is the
time exponent obtained from PMT tests or set equal to
0.03 as the default value.

Figure 17.23 is an example of the LSC method.

17.8 SETTLEMENT

17.8.1 General Behavior

Once the ultimate bearing capacity has been calculated and
once the dimensions of the footing have been established
such that the ultimate limit state (safety criterion) is satisfied,
the settlement under the foundation pressure is calculated.
This is the service limit state. Typically in this case, the
load factors and resistance factors are taken as equal to 1.
The nonpermanent live loads are not included in the loads
considered for calculating settlements that take a long time
to develop, such as consolidation settlements in saturated
clays. The settlement of a structure is often decomposed
into an elastic component (elastic settlement), then a time-
delayed component associated with water stress dissipation
(consolidation), then a time-delayed component associated
with the slow movement of particles as a function of time
(creep settlement). The settlement of a structure can also be
decomposed into the settlement induced by the deviatoric
stress tensor (shearing) and by the spherical stress tensor
(compression). In cases where the settlement is concentrated
in a thin (relative to the width of the foundation) layer, the
settlement due to the spherical part of the tensor dominates.
This would be the case of a wide embankment on top of a
thin layer of soft clay. If, in contrast, the soil layer is deep
(relative to the width of the foundation), the settlement due
to the deviatoric tensor dominates. This would be the case of
a tall building on top of a mat foundation underlain by a deep
deposit of very stiff clay.

The pressure distribution under a shallow foundation de-
pends on the flexibility of the foundation (Figure 17.24).
For flexible foundations, the pressure is constant but the
settlement is not. The settlement at the center sflex (center) is
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larger than the settlement at the edge sflex(edge). For rigid
foundations, the settlement srigid is constant but the pressure
is not—at least initially. The following is an approximate

relationship between the settlements:

sflex (center) � 2sflex (edge) � 1.33srigid (17.63)

In other words, the settlement at the center of a flexible
footing is about twice as large as the settlement at the edge of
a flexible footing, and the settlement of a rigid footing is about
the average of the center and the edge of a flexible footing.
These observations are based on the theory of elasticity. Also
in elasticity, the pressure near the edge of a rigid footing is
very large and the pressure in the center of that footing is
much smaller (Figure 17.24); in fact, it is about one-half the
mean pressure. As will be discussed in section 17.8.7, the soil
tends to develop a constant pressure under the foundation in
the long term even if the foundation is very rigid.

There are a number of methods for performing settlement
calculations:

1. Elasticity approach
2. Load settlement curve method (see section 17.7)
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3. Chart approach
4. General layered soil approach
5. Consolidation settlement approach

17.8.2 Elasticity Approach for Homogeneous Soils

Soils are not elastic, as they do not recover all the deformation
they experience when strained. Soils are not linear either, as
their stress-strain curve are not a straight line. Nevertheless, if
a foundation is loaded with a certain load Q and experiences
a settlement s as a result, there is always a modulus E that,
when combined with Q, can give the right s value. The
elasticity equations also have a significant advantage in that
they are simple to use. They have a drawback in that they
require a very sensible and often very difficult choice of the
soil modulus. The best way to obtain the modulus is to run a
test that closely reproduces what the soil will be subjected to
under the structure. At the preliminary design stage, one may
wish to use estimated values as presented in Chapter 14.

The equation for the elastic settlement s of a shallow
foundation is:

s = I (1 − ν2)
pB

E
(17.64)

where I is an influence factor for any deviation from a footing
on the ground surface subjected to a centered vertical load; ν

is Poisson’s ratio, usually taken as 0.35 for drained conditions
and 0.5 for undrained conditions; p is the average pressure
at the foundation level; B is the width of the foundation; and
E is the soil modulus of deformation. The factor I can be
written as:

I = IsIeIh (17.65)

where Is is the factor for the influence of the shape of the
footing, Ie is the factor for the influence of the embedment
depth, and Ih is the factor for the presence of a hard layer
at depth. Table 17.6 gives the values of Is and shows that
the strip footing settles a lot more than the square footing.

Table 17.6 Values of the Elastic Influence Factor Is for
Foundation Shape

Influence Factor for Shape, Is.

Flexible

Shape Rigid Center Corner

Length-to-
Width

Ratio L/B

Circular 1 0.79 1 0.64
1 0.88 1.12 0.56
1.5 1.07 1.36 0.68

Rectangular 2 1.21 1.53 0.77
3 1.42 1.78 0.89
5 1.7 2.1 1.05

10 2.1 2.54 1.27
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Figure 17.25 Influence factor for hard layer within depth of
influence: (a) Hard layer at depth H. (b) Influence factor Ih. (After
Christian and Carrier 1978)

This is due to a much larger depth of influence for the
strip footing compared to the square footing. The factor Ie

reduces settlement compared to a surface footing, because
of the beneficial effect of having more mass to deform for
a deeper footing than a shallower footing. The factor Ie can
be estimated for footings with a relative depth of embedment
(D/B) less than 1 (shallow foundations) by:

Ie = 1 − 0.1
D

B
(17.66)

The maximum reduction for larger values of D/B is 15%
(Ie = 0.85). The factor Ih is a reduction factor when there
is a hard layer within the depth of influence of the footing.
Figure 17.25 gives the values of Ih when it is assumed that
beyond 2B the hard layer has no reduction influence on the
settlement and that the hard layer is incompressible.

The previous method assumes that the soil has a modulus
which is constant with depth. If the soil has a modulus profile
that increases linearly with depth (Figure 17.26), a correction
factor IG can be used. The equation for the soil modulus
profile is:

E = Eo + E1

( z

B

)
(17.67)

where E is the soil modulus at a depth z, Eo is the soil modulus
at the ground surface, and E1 is the rate of increase of the soil
modulus as a function of the normalized depth (z/B). The
influence factor IG takes the modulus profile into account and
is defined as:

IG = s1

so

(17.68)

where s1 is the settlement calculated using E from Eq. 17.67
and so is the settlement calculated from Eq. 17.64 using
a constant modulus Eo with depth (E1 = 0). Figure 17.26
shows the influence factor IG as a function of the ratio E1/Eo.

17.8.3 Elasticity Approach for Layered Soils

Another way to use elasticity to solve a settlement problem
is to decompose the depth of influence zi into several soil
layers Hi thick and calculate the compression 	Hi of each
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Figure 17.26 Influence of modulus increase vs. depth (Gibson soil).

layer. The vertical strain in each layer is εi and is related to
the increase in stress 	σi in the middle of that layer. The
settlement s is expressed as:

s =
n∑

i=1

	Hi =
n∑

i=1

εiHi =
n∑

i=1

	σi

Ei

Hi (17.69)

where s is settlement, n is the number of layers within the
depth of influence, i refers to the ith layer, Hi is the thickness
of the ith layer, 	Hi is the compression of the ith layer, εi

is the mean vertical strain of the ith layer, and 	σi is the
increase in stress in the center of the ith layer. Equation 17.69
assumes that the relationship between εi and 	σi is given by:

εi = 	σi

Ei

(17.70)

This relationship ignores the influence of confinement on
the strain and therefore is an approximation. This assumption
is conservative, as taking the confinement into account would
reduce the strain. How to obtain the magnitude of 	σi in the
middle of each layer is discussed in section 17.8.7.

Schmertmann (1970; 1978) used this approach and pro-
posed a method to calculate the settlement s of footings on
sand:

s = C1C2	p
n∑

i=1

Izi

Ei

Hi (17.71)

where C1 takes into account the beneficial effect of the
embedment, C2 takes into account the increase in settlement
with time, 	p is the net bearing pressure expressed as the
difference between the footing pressure p (load over area)
minus σ ′

ov (the vertical effective stress in the soil at the
level of the foundation near the footing), Izi is called the
strain influence factor, Ei is the soil modulus, and Hi is the
thickness of the ith layer. The coefficient C1 is:

C1 = 1 − 0.5
σ ′

ov

	p
≥ 0.5 (17.72)

where σ ′
ov is the vertical effective stress in the soil at the

level of the foundation near the footing, and 	p is the net
increase in pressure expressed as the difference between the
footing pressure p (load over area) minus σ ′

ov. The coefficient
C2 is:

C2 = 1 + 0.2 log

(
t (years)

0.1

)
(17.73)

where t is the time in years.
The strain influence factor Izi is such that Izi × 	p repre-

sents 	σi in Eq. 17.69. It is shown in Figure 17.27. In that
figure, Iz increases first and then decreases. The peak value
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Table 17.7 Conversion from CPT to SPT Values for
Sands

Soil qc (kPa)/N (bpf)

Silts, sandy silts, slightly cohesive
silt-sand

200

Clean, fine to medium sands and slightly
silty sands

350

Coarse sands and sands with little gravel 500
Sandy gravel and gravel 600

of Iz is called Izp. It is shown as 0.5 on Figure 17.27 but in
fact it is given by:

Izp = 0.5 + 0.1

(
	p

σ ′
Izp

)0.5

(17.74)

where σ ′
Izp is the vertical effective stress at the location of

Izp. The soil modulus Ei is recommended by Schmertmann
as follows:

For circular or square footings E = 2.5qc (17.75)

For strip footings (L/B > 10) E = 3.5qc (17.76)

where qc is the CPT point resistance. Schmertmann adds the
conversion values of Table 17.7 between qc and N.

17.8.4 Chart Approach

The chart approach consists of simplifying the problem suf-
ficiently so that the calculations are minimized and a chart
can be read for the answer. Such a chart approach was de-
veloped by Terzaghi and Peck (1963) for footings on sand
(Figure 17.28). This chart is only for footings on sands, and
it gives the pressure that satisfies both the ultimate bearing
pressure criterion and the settlement criterion of 25 mm. This
chart was developed before LRFD was developed and as such
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is based on the following. The safe pressure criterion ensures
that a reasonable factor of safety is applied to the ultimate
bearing pressure:

psafe = pu

F
(17.77)

where psafe is the safe bearing pressure, pu is the ultimate
bearing pressure, and F is the factor of safety. The allowable
pressure criterion ensures that the settlement will be less than
25 mm in this case:

pallowable = p for 25 mm settlement (17.78)

The chart of Figure 17.28 gives the minimum of psafe and
pallowable. The first part of the design curves on the chart
increases linearly with the width B of the footing for the
following reason. For small values of B, it turns out that the
ultimate bearing pressure criterion controls the design, and
since there is no cohesion for sands, it is expressed as:

pu = 1

2
γ BNγ (17.79)

As a result, psafe increases linearly with B. The influence
of the depth of embedment D is included by having several
charts for different relative depths of embedment D/B. For
the settlement s of the footing, Terzaghi and Peck found that
s was proportional to the SPT blow count as follows:

pallowable(kPa) for 25 mm settlement=11.1N(blows/0.30 m)

(17.80)
This indicates that pallowable is not a function of B and

therefore it shows up as a horizontal line on Figure 17.28.
As a result, the ultimate pressure criterion controls for small
footings and the settlement criterion controls for larger foot-
ings. If Eq. 17.80 is extended to other settlement values, and
assuming linear behavior, the equation becomes:

s (mm) = 2.3
p(kPa)

N(bpf)
(17.81)

17.8.5 General Approach

The general approach to calculating the settlement of a
structure is valid in all cases and proceeds as follows:

1. Determine the depth of influence zi .

2. Divide that depth into an appropriate number n of layers
(4 is a minimum), each layer being Hi thick.

3. Calculate the vertical effective stress σ ′
ovi in the middle

of each layer i before any load is applied.
4. Calculate the increase in stress 	σvi in the middle of

each layer i due to load.
5. Calculate the vertical effective stress σ ′

ovi + 	σvi in the
middle of each layer i long after loading.

6. Obtain the vertical strain εbi before any load is applied,
corresponding to the stress σ ′

ovi.

7. Obtain the vertical strain εai long after the load applica-
tion corresponding to the stress σ ′

ovi + 	σvi.

8. Calculate the compression 	Hi of each layer i as:

	Hi = (εai − εbi)Hi (17.82)

9. Calculate the settlement 	H as:

	H =
n∑

i=1

	Hi =
n∑

i=1

(εai − εbi)Hi (17.83)

This general approach requires some other steps, which are
addressed in the next sections. These steps are where one
determines the zone of influence zi (step 1), finds the increase
in stress 	σv (step 4), and obtains the strains εb i and εai given
the stresses σ ′

ov and σ ′
ov + 	σv (steps 6 and 7).

17.8.6 Zone of Influence

The zone of influence zi below a loaded area can be defined
in one of two ways:

1. The depth at which the stress increase in the soil 	σv
has decreased to 10% of the stress increase p at the
foundation level. This depth is called z0.1σ .

2. The depth at which the downward movement of the soil
becomes equal to 10% of the downward movement at
the surface. This depth of influence is called z0.1s.

Although the stress-based definition is the most commonly
used in geotechnical engineering, the movement-based defi-
nition seems more reasonable because it ensures that 90% of
the settlement is being calculated. Multiplying the answer by
1.11 will then give the full value of settlement.

The value of z0.1σ is typically taken as 2 times the width
B of the footing for square and circular footings, and as 4
times the width B of the footing for long strip footings. These
values are based on the elastic analysis of a uniform soil.
Interpolation based on the ratio of width over length (B/L) is
used for rectangular footings:

z0.1σ

B
= 4 − 2

(
B

L

)
(17.84)

The value of z0.1s is the same as the value of z0.1σ if the soil
modulus is constant with depth. If the soil modulus increases
with depth, the value of z0.1σ does not change, but that of z0.1s
does. The increase in modulus with depth is characterized by
Eq. 17.67. Figure 17.29 shows the variation of z0.1s for a strip
footing and for various values of the increase in modulus
with depth characterized by E1/Eo. For very small values
of E1/Eo (constant modulus with depth), the value of 4B is
confirmed, but for high values of E1/Eo the zone of influence
based on settlement criterion z0.1σ is much smaller than z0.1s.

It decreases from 4B to 1B and reaches 1B for a modulus
which is zero at the surface and increases linearly with depth.
This phenomenon is explained as follows. When the soil is
uniform and the soil modulus is constant with depth, the zone
of influence is relatively deep (4B). At the other extreme,
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Figure 17.29 Zone of influence based on settlement criterion. (Briaud et al. 2007)

when the soil modulus increases with depth from a value
of zero at the surface, the deeper layers are stiffer and do
not compress as much as the shallower layers, which are
softer. As a result, 90% of the settlement takes place within a
much shallower depth and z0.1s is only 1B. For intermediate
modulus profiles, the depth of influence depends on B and
varies from 4B for small B values to 1B for large B values.

The procedure for finding the zone of influence below a
foundation based on the settlement criterion using Figure
17.29 is as follows:

1. Fit the soil modulus profile with a straight line.
2. Determine the ratio E1/Eo.

3. Obtain the depth of influence z0.1s from Figure 17.29
knowing the footing width B.

4. Calculate the settlement within that depth.
5. Multiply the answer by 1.11 to obtain the total settle-

ment.

This approach has not been verified at full scale and is
based solely on numerical simulations.

17.8.7 Stress Increase with Depth

2 to 1 method: One simple way to calculate the increase in
stress below a foundation is the 2 to 1 method. This method
consists of spreading the load with depth, as shown in Figure
17.30. The foundation is B wide and L long and is subjected
to a load Q. At a depth z, the area over which the load
is applied is increased by z/2 on both sides and becomes

B

z/2

z/2 z/2

L

z/2

L
B

Q

z

Figure 17.30 2 to 1 method for stress increase calculations.

B + z and L + z. The average increase in stress at depth z is
given by:

For a rectangular foundation 	σv = Q

(B + z)(L + z)

(17.85)

If the foundation is circular, then the diameter is increased
by z/2 all around and the average increase in stress is given
by:

For a circular foundation 	σv = 4Q

π(D + z)2

(17.86)
If the foundation is infinitely long (strip footing or embank-

ment, for example), the load is defined as a line load (kN/m).
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Furthermore, the load cannot spread in the direction of the
length L, so the expression becomes:

For a strip foundation 	σv = Q

B + z
(17.87)

Note that this method aims at estimating the average
increase in vertical stress under the foundation. In elasticity,
the increase in stress at the edge of a rigid foundation is
different from the increase in stress at the center.

Bulbs of pressure: A more precise way to obtain the
increase in stress at depth is the bulb of pressure chart
(Figure 17.31). This chart gives the increase in stress below a
square foundation and below a strip foundation for a uniform
elastic soil. By using this chart, you can get the increase in
stress at any location in the soil mass in the vicinity of the
foundation. It is particularly useful for obtaining the increase
in stress at the edge and at the center of the footing because
this difference can affect the distortion of the foundation.
Note that Figure 17.31 is for a flexible foundation where
the pressure is uniform at the foundation level. Although
foundations can be rigid, using the flexible solution in all
cases is recommended for the following reason. Full-scale
measurements (Focht, Khan, and Gemeinhardt 1978) indicate
that the initially uneven pressure distribution under relatively
rigid foundations redistributes itself and becomes close to the
constant pressure under a flexible footing. This is attributed
to the inability of the soil to sustain a large stress gradient
for a long period of time. Therefore, the long-term settlement
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Figure 17.31 Bulbs of pressure based on Boussinesq elastic solu-
tion for a flexible foundation.
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Figure 17.32 Newmark’s chart.

of a foundation should be calculated on the basis of the
stress distribution below a flexible distribution, regardless of
whether the foundation is actually rigid or flexible.

Newmark’s chart: The bulbs of pressure method gives the
increase in stress under a square foundation or a strip foun-
dation. If the foundation is more complicated, one possible
solution is Newmark’s chart (Figure 17.32). This chart is also
for a uniform elastic soil and gives the increase in stress at
any location below a foundation of any shape.

The best way to use the Newmark’s chart is to make a
transparency of the chart. If you do not have a transparency,
then the drawing of the foundation has to be made on the
original Newmark’s chart, making it hard to reuse that chart.
The transparency allows you many uses.

The procedure to use Newmark’s chart is as follows:
1. Choose the depth z at which the stress increase 	σv is

required. Set the scale on the Newmark’s chart (AB on
Figure 17.32) equal to z. This gives the scale to be used
for step 2.

2. Draw the foundation to the scale determined by z = AB.

3. Choose the point C in plan view on the foundation
drawing under which 	σv is required.

4. Overlay the transparent Newmark’s chart on the foun-
dation drawing such that point C of the foundation
drawing is at the center of the Newmark’s chart.

5. Count the number n of squares or fields of the New-
mark’s chart covered by the foundation drawing.

6. Calculate the increase in stress 	σv as:

	σv = nI p (17.88)

where n is the number of squares, I is the influence
factor of the Newmark’s chart indicated on the chart,
and p is the mean foundation pressure.
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All of the solutions described in this subsection are limited
to a uniform soil. If a layered soil such as a pavement is
involved, or if the modulus is not constant with depth, the
finite element method may be a good solution for finding the
increase in stress with depth.

17.8.8 Choosing a Stress-Strain Curve and
Setting Up the Calculations

Possibly the most difficult step in settlement calculations is
to select the best and most applicable stress-strain curve to
link the stress increment to the strain increment. This step
requires a lot of thought and engineering judgment based on
experience. Sections 17.8.2 and 17.8.3 described the elasticity
approach, in which the stress-strain curve is a straight line and
the modulus E is used to define the slope. Choosing such a
modulus is a very difficult task; the content of Chapter 14 can
help in that respect. The best and most applicable stress-strain
curve is usually the one that most closely duplicates what the
soil is being subjected to in the field, before and during the
construction and then during the life of the structure. This
includes the stress path, the strain path, the weather, the soil
profile, the load level, and many more factors.

In general, if the structure is wide compared to the thickness
of the compressing soil layer, then a test such as the consoli-
dation tests will duplicate the soil deformation process quite
closely. This would be true in the case of a wide embankment
on a relatively thin, compressible layer, for example, because
in this instance the friction between the embankment and the
soil generates a natural resistance against lateral expansion
of the soil much like the steel ring in the consolidation test.
In contrast, if the soil deposit is deep compared to the width
of the structure, then a test such as the pressuremeter test or
the triaxial test duplicates the soil deformation process quite
closely. Indeed, in this instance the soil below the foundation
tends to barrel out in the same fashion as the soil around the
pressuremeter or in the triaxial test.

Once the stress-strain curve is chosen, the strains corre-
sponding to the stresses can be determined. The strains before
and long after the loading (εbi and εai) are obtained from the
curve for the corresponding stresses σ ′

ov and σ ′
ov + 	σv. Note

that although in the field the strain εbi corresponding to σ ′
ov

was zero, it is unlikely to be zero when reading the stress-
strain curve. This is attributed to possible disturbance and
stress relief upon extrusion. The calculations are then set up
in the form of a spreadsheet, as shown in Table 17.8, where
i is the layer number, Hi is the thickness of layer i, σ ′

ovi is
the vertical effective stress in the middle of layer I before
loading, 	σvi is the increase in stress in the middle of layer
i due to loading, εbi is the vertical strain corresponding to
σ ′

ovi, εai is the vertical strain corresponding to σ ′
ovi + 	σvi,

and 	Hi is the compression of layer i. The sum of the last
column in the table corresponds to Eq. 17.83 and represents
the settlement.

Table 17.8 Calculation of Settlement by the General
Approach

i
Hi
(m)

σ ′
ovi

(kPa)
	σvi
(kPa)

σ ′
ovi + 	σvi

(kPa) εbi εai 	Hi

1
2
3
4

17.8.9 Consolidation Settlement: Magnitude

As pointed out in section 17.8.8, the consolidation test is well
suited to predicting the settlement of structures when most
of the settlement is due to vertical compression and very
little is due to lateral deformation. This limited horizontal
movement can be created by the friction on the top and
the bottom of a thin layer under a wide load. In this case
the consolidation test curve can be used as the stress-strain
curve in the general method, and the strains can be obtained
by reading the curve for the corresponding stresses (Figure
17.33). It is recommended that you read the curve directly
rather than reconstructing an undisturbed curve. This should
be an incentive for obtaining quality samples, as disturbance
is likely to increase the settlement prediction. Note that
the consolidation curve is made of points corresponding to
equilibrium points at the end of the 24-hour test period under
each load step. The settlement is then calculated as:

	H = Ho

(ebefore − eafter)

1 + eo

= Ho(εafter − εbefore) (17.89)

Or, when the compressing zone is divided into several layers:

	H =
n∑

i=1

Hoi

(ei before − ei after)

1 + eoi
=

n∑
i=1

Hoi(εi after − εi before)

(17.90)
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Figure 17.33 Obtaining the strains from the stresses for settlement
calculations.
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where 	H is the settlement, Hoi is the thickness of each layer,
eibefore and eiafter are the void ratios read on the consolidation
curve (Figure 17.33) at σ ′

ov and σ ′
ov + 	σv respectively, eoi is

the initial void ratio in each layer, and εiafter and εibefore are
the strains read on the consolidation curve at σ ′

ov + 	σv and
σ ′

ov respectively.
If consolidation curves are not available, then the following

equations can be used but the precision of the predictions will
be affected. These equations correspond to the bilinear shape
of the void ratio or vertical strain versus log of vertical
effective stress (Figure 17.33a). Beyond the preconsolidation
pressure σ ′

p, the slope of the curve is the compression index
Cc, defined as:

Cc = 	e

	 log σ ′ = e1 − e2

log

(
σ ′

1

σ ′
2

) (17.91)

Rough estimates of Cc can be obtained by correlation with
index properties (see section 14.12). Before the preconsolida-
tion pressure σ ′

p, the slope of the curve is the recompression
index Cr. It is defined as:

Cr = 	e

	 log σ ′ = e1 − e2

log

(
σ ′

1

σ ′
2

) (17.92)

The choice of the right equation for calculating the settle-
ment is based on the relative magnitude of the effective stress
before loading σ ′

ov and the effective stress long after loading
σ ′

ov + 	σv, compared with the preconsolidation pressure σ ′
p

(see section 14.11). Normally consolidated (NC) soils have
a vertical effective stress σ ′

ov equal to the preconsolidation
pressure σ ′

p, and overconsolidated (OC) soils have a ver-
tical effective stress σ ′

ov smaller than the preconsolidation
pressure σ ′

p.

NC soils :

	H = Ho

1 + eo

Cc log

(
σ ′

ov + 	σv

σ ′
ov

)
(17.93)

OC soils and σ ′
ov + 	σv < σ ′

p

	H = Ho

1 + eo

Cr log

(
σ ′

ov + 	σv

σ ′
ov

)
(17.94)

OC soils and σ ′
ov + 	σv > σ ′

p

	H = Ho

1 + eo

(
Cr log

(
σ ′

p

σ ′
ov

)
+ Cc log

(
σ ′

ov + 	σv

σ ′
p

))

(17.95)

For Eq. 17.93, the curve is simply a single straight line
in the e-log σ ′ set of axes, so there is only one term. For
Eq. 17.94, the curve is bilinear, but the stresses σ ′

ov and
σ ′

ov + 	σv are both on the recompression part of the curve.

In Eq. 17.95, the stresses σ ′
ov and σ ′

ov + 	σv straddle the
preconsolidation pressure; therefore, both Cc and Cr are
involved and the equation has two terms. The first term
represents the recompression from σ ′

ov to σ ′
p, the second term

represents the virgin compression from σ ′
p to σ ′

ov + 	σv.

17.8.10 Consolidation Settlement: Time Rate

The time rate of settlement can be estimated by using the
consolidation theory solution described in section 11.4.6. The
time required for a given percentage of the settlement to take
place is given by:

tU = TU

H 2

cv
(17.96)

where tU is the time required for U% of the settlement to take
place, TU is the time factor (which comes from the theoretical
solution and is obtained from Figure 17.34), H is the drainage
length, and cv is the coefficient of consolidation for the soil
obtained from a consolidation test (see section 9.5.1). On
Figure 17.34, curve C1 represents the most common case.
The parameter U is the average percent consolidation, which
is a function of the time t and is defined as:

U(t) = 	H(t)

	Hmax
(17.97)

where 	H(t) is the settlement after a time t and 	Hmax is the
maximum settlement at time equal to infinity. 	Hmax is the
settlement obtained from section 17.8.9. The drainage length
(Figure 17.35) depends on the ability of the upper layer and
the lower layer to drain the water away. If both the top and
bottom layers are free draining (two-way drainage), then the
drainage length H is equal to one-half the layer thickness
Ho. This is because the furthest that a water molecule has to
travel to get out of the compressing layer is one-half of the
layer thickness. If only one of the two layers, top or bottom,
is free draining (one-way drainage), then the drainage length
H is equal to the layer thickness Ho. This is because the
furthest that a water molecule has to travel to get out of the
compressing layer is the layer thickness. Then, the complete
settlement vs. time curve (	H(t) vs. tU , Figure 17.36) can be
created by using the combination of Eq. 17.96 and Eq. 17.97.

17.8.11 Creep Settlement

The consolidation settlement is associated with the dissipation
of excess water stress by drainage of the soil mass. When
the excess water stress has dissipated, the settlement may
continue to occur due to creep in the soil. The creep settlement
is attributed to the slow movement of particles with respect
to each other with no change in water stress. This creep
settlement can occur in saturated soils as well as in unsaturated
soils. It is often slow and small, but can be significant in soft
soils and soils with high organic content.

One can use consolidation test data to estimate the creep
settlement. During each load step in a consolidation test,
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the sample compression is recorded as a function of time
(see section 14.12). The slope of the tail end of that curve
corresponds to the creep settlement; because at that point on
the curve, the excess water stress has dissipated. That slope Cα

is called the secondary compression index and is defined as:

Cα = 	e

	 log t
(17.98)

where 	e is the change in void ratio between the start time
tstart and the end time tend and 	 log t is the change in the log
base 10 of the time. Then, the creep settlement is estimated as:

	H = Ho

1 + eo

Cα log

(
tend

tstart

)
(17.99)

where 	H is the creep settlement, Ho is the layer thickness,
eo is the initial void ratio, Cα is the secondary compression
index, tstart is the start time, and tend is the end time.

To estimate the creep settlement, pressuremeter test data
can be used, as discussed in section 17.7. The equation in this
case is:

s(tend)

s(tstart)
=

(
tend

tstart

)n

(17.100)
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Table 17.9 Range of Possible Values for Footing Pressures

Category Types of soils Presumed allowable bearing value

Coarse-grained soils Dense gravel or dense sand and gravel >600 kN/m2

Medium-dense gravel, or medium-dense sand and gravel 200 to 600 kN/m2

Loose gravel, or loose sand and gravel <200 kN/m2

Dense sand >300 kN/m2

Medium-dense sand 100 to 300 kN/m2

Loose sand <100 kN/m2

Fine-grained soils Very stiff and hard clays 300 to 600 kN/m2

Stiff clays 150 to 300 kN/m2

Firm clay 75 to 150 kN/m2

Soft clays and silts <75 kN/m2

Very soft clay Not applicable

where s(tend) and s(tstart) are the settlements at the times
tend and tstart respectively and n is the rate effect exponent.
This exponent can be measured on a site-specific basis by
performing the pressuremeter tests discussed in section 17.7.
The typical range of values for n is 0.01 and 0.03 for sands
and 0.02 to 0.05 for stiff to hard clays.

17.8.12 Bearing Pressure Values

The allowable pressure on a shallow foundation should al-
ways be calculated according to proper design procedures.
It is useful to have an idea of what to expect as a range of
possible pressure for various soils. Any pressure significantly
outside of those ranges should be checked very carefully.
Table 17.9 gives estimates of these ranges.

17.9 SHRINK-SWELL MOVEMENT

17.9.1 Water Content or Water Tension
vs. Strain Curve

Most soils swell and shrink when they get wet and dry. Some
soils are particularly prone to such movements, which must
be taken into account in the foundation design. Such soils can
be identified in a number of ways. One index is the plasticity
index: the difference between the liquid limit and the plastic
limit. The higher the plasticity index, the more prone to large
shrink-swell movements the soil is. The reason is that a high
plasticity index is indicative of a higher content of very small
clay particles, and very small clay particles tend to absorb
more water than larger clay particles. Another index is the
shrink-swell index: the range of water content over which the
soil freely shrinks and swells. The higher the shrink-swell
index, the more prone to large shrink-swell movement the soil
is. The reason is simply that the volume change is related to
the water content and that a larger variation in water content
leads to a larger change in volume.

The basic behavior of a soil with regard to water content
changes can be shown by performing two simple tests: a free
swell test and a free shrink test (see sections 9.6 and 9.7). For
a shrink test, a disk of soil is placed on a table and allowed to
dry; its weight and dimensions are recorded as a function of
time. At the end of the test, the sample is oven dried and the
dry weight is obtained. The test data give the water content
versus volume change of the sample. For the swell test, a disk
of soil is placed in a consolidometer ring, submerged, and
allowed to swell. The thickness of the sample and the weight
of the sample are kept constant so that the water content
versus volume change curve can be plotted. The free shrink
curve and the free swell curve are joined on the same graph
to give the shrink-swell curve for the sample. The maximum
water content that the soil can reach is the swell limit. As the
soil dries, the soil shrinks along the water content vs. volume
change curve, which is a straight line until the shrinkage limit
is reached (Figure 17.37).

During shrinkage, the soil particles come closer and closer
together until they can no longer get any closer; at that point,
called the shrinkage limit, any further loss of water will no
longer represent a loss of volume. In first approximation, it
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can be said that above the shrinkage limit, the soil is saturated,
and below the shrinkage limit, the soil is no longer saturated.
The slope of the water content vs. volume change line is
called the shrink-swell modulus Ew. Simple weight-volume
relationships (see section 14.16) give Ew as:

Ew = γw

γd

(17.101)

where γw, and γd are the unit weight of water and the dry
unit weight of the soil respectively.

17.9.2 Shrink-Swell Movement Calculation Methods

Several different types of methods are available to predict
the shrink-swell movement of a soil: the potential vertical
rise (PVR) method (McDowell 1956), the suction method,
and the water content method. The PVR method consists of
obtaining samples at the site, measuring the water content and
the Atterberg limits, and using charts based on observations
to calculate the maximum possible vertical movement. This
movement corresponds to the case where the ground surface
would be inundated for a very long time. This movement
depends on the water content of the soil at the time of
sampling. Therefore, a sample taken during the summer
months will lead to a large predicted PVR and one taken
during the winter months will lead to a small predicted PVR.
The PVR only gives an indication of the swelling potential,
not the shrinkage potential.

The suction method (Lytton 1994) relates the settlement to
the log of the water tension. Lytton includes the settlement
due to the change in mechanical stress in addition to the
movement due to the change in water tension and proposes
the following equation:

s =
n∑

i=1

fiHi

(
−γhi log

hfi

hii
− γσ i log

σfi

σii
− γπ i log

πfi

πii

)
(17.102)

where i is the layer number, fi is the crack fabric factor
to convert the volumetric strain into vertical strain, Hi is
the layer thickness, γhi is the matrix suction compression
index for layer i, hfi and hii are the final and initial values
of the matric suction in layer i respectively, γσ i is the mean
principal stress compression index for layer i, σfi and σii are
the final and initial values of the mean principal stress in
layer i respectively, γπ i is the osmotic suction compression
index for layer i, and πf i and πii are the final and initial
values of the osmotic suction in layer i respectively. The
three compression indices are obtained from correlations
with index soil properties on samples from layer i, or from
testing samples, and the boundary values of the matric and
osmotic suction are based on experience. For the crack fabric
factor f, Lytton recommends f = 0.5 when the soil is drying
and f = 0.8 when the soil is wetting.

The water content method (Briaud et al. 2003) makes use
of the water content vs. volume change curve recorded in

a free shrink test to calculate the amplitude of the vertical
movement. The equation used is:

s =
n∑
1

fi

	wi

Ewi

Hi (17.103)

where s is the vertical movement of the ground surface, n

is the number of layers making up the depth of the active
zone involved in the shrink-swell movement, fi is the factor
used to transform the volumetric strain into the vertical strain
(0.33, according to Briaud et al. 2003), Hi is the thickness
of the i th layer, 	wi is the change of water content in the
i th layer during the calculation period (expressed as a ratio,
not a percentage), and Ewi is the shrink-swell modulus of the
soil in the i th layer as given by Eq. 17.101 or measured in a
shrink test or a swell test.

The number of layers involved in the calculations is given
by the depth of the active zone, which is often obtained from
local experience on water content profiles observed over
several years. These profiles typically show large variations
in water content near the surface, and a decrease in variation
with depth down to a depth where the variation is negligible;
that depth is the depth of the active zone. Typical values
range between 3 and 5 m. The value of Ewi is obtained from
measurements on samples (shrink test) from layer i or from
using Eq. 17.101.

The value of 	wi should not be taken as the difference
between the swell limit and the shrink limit for the soil. This
would assume that, during the life of the structure, the soil
will shrink to the shrink limit and swell to the swell limit.
This is extremely conservative and very unlikely. Instead,
	w is obtained from local experience as the amplitude of
the water content variation at the chosen depth (middle of
Hi) read on the water content profiles collected in an area
over time. Briaud et al. (2003) collected more than 8000
water content measurements over a period of time and as a
function of depth. They obtained values of the variation of
water content over several seasons and found the amplitude
of 	w for four cities in Texas (Figure 17.38). The samples
came from right outside of the foundation as well as from
under the foundation. The 	w values ranged from 0.05 to
0.08 for the samples outside of the foundation imprint. The
	w values for the samples directly under the foundation were
lower:

	wunder = 0.7	woutside (17.104)

17.9.3 Step-by-Step Procedure

Calculating the shrink-swell movement of a soil proceeds
much like calculating the settlement of a building. The
parallel is drawn in the following step-by-step procedure
(Figure 17.39):

1. Determine the depth of the active zone H (the zone
within which the movement takes place over time). This
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Figure 17.38 Water content variation for three cities in Texas. (Briaud et al. 2003)
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Figure 17.39 Parallel between shrink-swell and settlement methods.

is parallel to the zone of influence for the settlement
case. The active zone is usually estimated from local ex-
perience or from water content or water tension profiles
gathered over many years. Typical values vary between
3 and 5 m.

2. Decompose that zone into an appropriate number n of
soil layers. This is the same step as in the settlement
procedure.

3. Estimate the initial water content wi in the center of each
layer. The water content and associated water tension
play the role of the effective stress in the settlement
procedure.

4. Estimate the final water content wf in the center of
each layer. Again, the water content and associated
water tension play the role of the effective stress in
the settlement procedure. The final water content can
be obtained from the soil boring files accumulated over

time by a consulting company in a given geological
area. This is what was done for Figure 17.38. This step
is parallel to obtaining the increase in stress with depth
by the elasticity method for the settlement case. Indeed,
the water content in the shrink-swell calculations plays
the role of the stress in the settlement calculations.

5. Obtain the relationship between the water content and
the vertical strain by performing simple tests like the
free shrink test or the free swell test. This relationship
plays the role of the stress-strain curve in the settlement
calculations.

6. Using the water content vs. vertical strain curve, obtain
the strains εi and εf corresponding to the initial and final
water content wi and wf . This is the same step as in the
settlement calculations, but using water content instead
of stress.
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7. Calculate the shrink or swell movement using:

s =
n∑
1

fi

wf − wi

Ewi

Hi (17.105)

where s is the vertical movement of the ground surface,
n is the number of layers making up the depth of the
active zone involved in the shrink-swell movement, fi

is the factor used to transform the volumetric strain
into the vertical strain (0.33, according to Briaud et al.
2003), Hi is the thickness of the ith layer, wf and wi
are the final water and initial contents in the ith layer
during the calculation period (expressed as a ratio, not a
percentage), and Ewi is the shrink-swell modulus of the
soil in the ith layer as given by Eq. 17.101 or measured
in a shrink test or a swell test. Equation 17.105 for
shrink-swell movement is the same as Eq. 17.83 for
settlement calculations.

This procedure uses the water content as the main variable.
The water content can be replaced by the water tension
or suction in this procedure when using the suction-based
shrink-swell movement method.

17.9.4 Case History

Four footings were placed at a site near Dallas, Texas, where
the soil is a CL-CH (Figure 17.40). The soil below footings
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Figure 17.40 Footings and soil stratigraphy.

W1 and W2 was water injected, whereas the soil below
footings RF1 and RF2 was left intact. The soil properties
are shown in Figure 17.40; the groundwater level was about
4.5 m deep. The footings were constructed at the ground
surface and were 2 m by 2 m by 0.6 m thick. The movement
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of the footings was measured every month for 2 years and
borings were drilled every 3 months. The samples were tested
and gave the water content and water tension profiles shown
in Figure 17.41. Additional properties, including the shrink-
swell modulus Ew, the f factor to convert volumetric strain
to vertical strain, and the maximum percent swell (%SW),
are shown in Figure 17.42. The recorded movement of the
footings is shown by Figure 17.43, and the temperature and
rainfall variation during the same two years is shown in
Figure 17.44. These data indicate the following:

1. The amplitude of movement of the footings on the
water-injected soil is the same as the amplitude of the
movement of the footings on the intact soil.

2. The footings on the water-injected soil swelled less and
shrank more than the footings on the intact soil.

3. The movement was very small during the first year when
the rainfall was very evenly distributed (Figure 17.44).
During the second year, a three-month drought followed
by three months of heavy rainfall created a lot of
movement amplitude.

17.10 FOUNDATIONS ON SHRINK-SWELL SOILS

17.10.1 Types of Foundations on Shrink-Swell Soils

Predicting the vertical movement of the ground surface is
useful but not a direct input to the design of foundations
on shrink-swell soils. The problem with shrink-swell soils
is that the soil shrinks and swells more at the edges of the
building than under the center of the building. This tends to
distort the building and damage it if the distortion exceeds
the building’s ability to deform. The best foundation systems
are those that minimize building distortion even when the soil
movement is very uneven. Foundations that have been used
include (Figure 17.45):

1. Stiffened slab on grade for smaller structures (1 to 3
stories). These slabs consist of a thin (∼0.1 m thick)
slab on grade connected to deep beams (say, 1 to 1.2 m
deep, 0.3 m wide, placed in both directions with a 3 to
5 m spacing center to center). This solution, sometimes
called waffle slab, is typically economical (∼$100/m2

in 2010) and very satisfactory if the slab is stiff enough.
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Figure 17.43 Observed movement over two years.
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Figure 17.45 Types of foundations used for light buildings on shrink-swell soils.

2. Elevated structural slab for larger structures (3 to 15
stories). This system consists of a structural slab (a slab
that can sustain the dead load and live load in free
span) connected to piles in such a way that there is a
sufficient gap (say, 0.3 m) between the ground surface
and the bottom of the beams stiffening the slab. This
solution is more expensive (∼$200/m2 in 2010) but
very satisfactory provided the piles go deep enough
below the zone of movement.

3. Anchored slab on grade. This system consists of a slab
on grade and on piles. There is no gap between the
ground surface and the slab that rests on it. This is a
very undesirable system because when the soil swells,
the bored piles prevent the slab from moving up, so the
slab deforms and can break under the swell pressure.
Alternatively, if the soil shrinks under the slab, the slab
on grade becomes unsupported and breaks because it is
not designed to carry the load in free span.

4. Posttensioned slabs are typically flat slabs that are post-
tensioned to keep the concrete in compression during
bending. They are satisfactory systems provided they
are stiff enough to minimize distortion. For equal stiff-
ness, they are not as economical as a stiffened slab
on grade. Thin posttensioned slabs on grade are unde-
sirable for buildings because they are overly flexible.
Although they minimize the cracking of the slab, they
do not prevent distortion of the superstructure. Thin
posttensioned slabs are a very good solution, however,
for playing surfaces such as tennis or basketball courts
on shrink-swell soils, because they minimize cracking.

17.10.2 Design Method for Stiffened Slabs on Grade

A stiffened slab on grade has deep beams (e.g., 1 m deep,
0.3 m thick), spaced relatively closely (e.g., 4 m) in both di-
rections. These beams stiffen the slab, which is sometimes
called a waffle slab. The stiffening limits the amount of dis-
tortion that the superstructure is subjected to in case of soil
movement. In the summer, when the soil shrinks around the
periphery of the structure and a gap develops between the
ground surface and the edge of the foundation, the edges of

the slab do not drop significantly, because of the rigidity of
the slab and beams; this prevents excessive distortion of the
superstructure. In the winter, when the soil swells around the
periphery of the structure and lifts the foundation, the center
of the foundation does not sag significantly, again because of
the rigidity of the slab and beams; this prevents excessive de-
formations of the superstructure. The design of the foundation
is therefore controlled by these two conditions, sometimes
called edge drop and edge lift. The critical design parameters
for these two conditions are the cantilever edge distance for
the edge drop condition and the free span distance for the edge
lift condition. These parameters depend on several factors,
including weather, vegetation, soil shrink-swell sensitivity,
soil stiffness, and slab stiffness. Several design procedures
have been suggested over the years, including:

1. BRAB method (Building Research Advisory Board
1968)

2. PTI method (Post Tensioning Institute 2004)
3. WRI method (Wire Reinforcing Institute 1981)
4. Australian method (Australian Standard (AS) 2870,

1996)
5. TAMU-Slab method (Briaud et al. 2010)

The TAMU-Slab method is based on the use of charts.
The details of the research work on which the method is
based can be found in Abdelmalak (2007) and Briaud et al.
(2010). The design parameters necessary to size the beams
and their spacing are the maximum bending moment Mmax,

the maximum shear force Vmax, and the maximum deflection
	max of the slab (Figure 17.46).

In the TAMU-Slab method, these quantities are linked to
the equations of Mmax, Vmax, and 	max for an equivalent
cantilever beam with a length Leqv. These equations are
applied to the design of the beams for the stiffened slab by
using modification factors:

Mmax = 1

2
qLeqv

2 (17.106)

Vmax = FvqLeqv (17.107)

	max = qL4
eqv

F	 maxEI
(17.108)
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Figure 17.46 Half slab with deflection, bending moment, and
shear.

where q (kN/m) is the distributed load on the cantilever
beam, Fv is the modification factor for the shear force, F	 max
is the modification factor for the deflection, and EI(kN.m2)

is the bending stiffness of the beam product of the modulus
E(kN/m2) by the moment of inertia I (m4). For a true
cantilever beam, the equivalent cantilever length Leqv would
simply be the length of the cantilever beam, the maximum
shear modification factor FV would be 1, and the maximum
deflection factor F	 max would be 8. For the stiffened
slab on grade, these factors were obtained from numerical
simulations. The equivalent length and the modification
factors are given by charts for various slab thicknesses.

The three most important factors affecting the final choice
of the beam depth are the weather, the soil, and the slab
stiffness. The weather and the soil were found (Abdelmalak
2007) to be best characterized by the soil and weather index
ISW. This soil and weather index can be defined on the basis
of the water tension or the water content:

ISW(Water Tension) = ISS H 	Uedge (17.109)

ISW(Water Content) = H 	wedge = 0.5ISW(Water Tension)

(17.110)

where ISW (Water Tension) and ISW (Water Content) are the soil and
weather indices on the basis of the water tension and the
water content respectively; ISS is the shrink-swell index, a
soil parameter equal to the difference between the swell
limit and the shrink limit; H is the depth of the active zone

in meters; 	Uedge is the change in the log10 of the water
tension in kPa at the edge of the foundation over the period
considered for the design; and 	wedge is the change in water
content expressed as a ratio at the edge of the foundation over
the period considered for the design. The change in log10 of
water tension is:

	Uedge = log10
uw(final at edge)

uw(initial at edge)
(17.111)

Based on testing of a number of clays, the relationship
between ISW (Water tension) and ISW (Water content) was found to
be:

ISW(Water Content) = 0.5ISW(Water Tension)

because
	wedge = 0.5ISS 	Uedge (17.112)

A few cities in the United States where the shrink-swell
soil problem is acute were selected and the weather over the
past 20 years was simulated to obtain estimates of the change
in log10 of water tension (kPa), 	Uedge. Simulations were
performed for the free field and the edge of the foundation. It
was found that the value at the edge was about one-half the
value in the free field. The results are shown in Table 17.10.

The slab stiffness was represented by the slab equivalent
depth deq, which represents the thickness of a flat slab having
the same moment of inertia as the moment of inertia of a
stiffened slab with a beam depth equal to D, a beam width
equal to b, and a beam spacing equal to S. The slab equivalent
depth can be calculated by:

S deq
3 = bD3 (17.113)

Step-by-step procedure for the water content method

1. Obtain the dimensions of the slab B × L and the
loading pressure on the slab w (kPa).

2. Estimate the depth H of the active zone. This is best
based on local practice and experience. In Texas, H is
typically considered to be between 3 and 5 m.

3. Estimate the change in water content 	wedge at the
edge of the foundation. This is also best estimated
from local practice and experience. Note that 	wedge
was found to be equal to one-half of the change in
water content 	wfree field in the free field. The borings

Table 17.10 Change in log10 of Water Tension in kPa for Six Cities in the USA

College Station, TX San Antonio, TX Austin, TX Dallas, TX Houston, TX Denver, CO

	Ufree field 0.788 1.392 0.866 1.295 1.283 1.374

	Uedge 0.394 0.696 0.433 0.648 0.642 0.687

(Abdelmalak 2007)
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accumulated over time by a local company may come
in very handy in estimating 	wfreefield and therefore
	wedge.

4. Choose a beam spacing s and a beam width b. Typ-
ical numbers for s are 3 to 5 m and for b are equal
to 0.3 m.

5. Make a first assumption as to the beam depth D (say,
1 m).

6. Calculate the thickness of the equivalent slab deq
by using Eq. 17.113 and the soil and weather index
ISW (water content) by using Eq. 17.110.

7. Use the design charts of Figures 17.47 to 17.49 for the
edge drop case (summer shrinkage) and Figure 17.50
to 17.52 for the edge lift case (winter swelling), and
obtain the equivalent length Leq, the shear factor Fv,

and the deflection factor F	 max.

8. Use the distributed load on the beam q(kN/m) (q =
w × s) to calculate the maximum bending moment
Mmax, maximum shear Vmax, and maximum deflection
	max according to Eqs. 17.106 to 17.108.

9. Calculate the ratio 0.5L/	max and Leq/	max. Ratios
larger than 500 typically lead to acceptable distortions.
If this criterion is not reached, repeat steps 5 to 9 with
a larger beam depth D.

10. If the deflection criterion of step 9 is met, use the
maximum bending moment and maximum shear to
design the beam reinforcement and the slab.

Step-by-step procedure for the water tension method

The steps for this method are the same as the steps for the
water content method except for the following. In step 3, the
change in log10 of the water tension in kPa is needed instead

0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5

L
e

q
v

 (
m

)

H.Dwedge (m)

Leqv design chart (edge drop)

deq 5 0.63 m deq 5 0.51 m

deq 5 0.38 m
deq 5 0.25 m

deq 5 0.13 m
2

qL2
eqvMmax 5

Figure 17.47 Equivalent cantilever length—water content method—edge drop case.
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Figure 17.49 Maximum shear factor—water content method—edge drop case.
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Figure 17.52 Maximum shear factor—water content method—edge lift case.

of the change in water content. In step 6, the soil and weather
index ISW (water tension) is used instead of ISW (water content) based
on Eq. 17.112. In step 7, the same charts are used after
converting the ISW (water tension) into ISW (water content) based on
Eq. 17.112.

17.11 TOLERABLE MOVEMENTS

Tolerable movements depend on the structure that is being
built. Some embankments can tolerate 1 m of settlement as
long as the pavement is built after the settlement takes place.
Some sensitive facilities can tolerate only a few millimeters of
settlement. Very tall buildings can settle anywhere from a few
millimeters to 200 or 300 mm. One problem with a large total
settlement is the connection to utilities outside the building,
because typically the building settles or moves with respect
to its surroundings. The total settlement st is one issue, but
the differential settlement sd is even more important in many
cases. The differential settlement is rarely calculated, how-
ever, as there are rarely enough borings to make a settlement
calculation at each building column or at each bridge pier.
The practice is to calculate st and to assume that sd is 3/4 of st:

sd = 0.75st (17.114)

Bridges can tolerate a lot of differential movement, as
documented in the study by Moulton et al. (1985). Simply
supported bridges are bridges where each span is made of
beams resting on top of the piers; the beams are not connected
from one span to the next. For a continuous bridge, the beams
continuously span several piers from one end of the bridge
to the other. Simply supported bridges are easier and faster
to construct, but continuous bridges make better use of the
material and are thus lighter and therefore can be cheaper.
Moulton surveyed more than 400 bridges and found that the

supports (abutments and piers) moved vertically an average
of 94 mm and horizontally an average of 68 mm. He found
that bridges supported on shallow foundations had the same
average movement as the ones founded on piles. From dam-
age inspection, he concluded that total vertical and horizontal
movements of up to 50 mm were tolerable. The longitudinal
distortion is the ratio of the differential movement sd between
adjacent piers over the span length L. Moulton et al. (1985)
and Barker et al. (1991) made recommendations for the
limits of longitudinal angular distortion. In the end, it appears
reasonable to accept 0.004 for continuous bridges and 0.008
for simply supported bridges. Simply supported bridges can
sustain more differential movement than continuous bridges.

For simply supported bridges
L

sd

≥ 125 (17.115)

For continuous bridges
L

sd

≥ 250 (17.116)

where L is the span length and sd is the differential vertical
movement between adjacent piers. The amount of movement
and distortion that buildings can tolerate has been studied
by many researchers, including Skempton and MacDonald
(1956), Polshin and Tokar (1957), Wahls (1994), and Zhang
and Ng (2007). The tolerable amount of movement and distor-
tion also depends on the level of damage that can be tolerated
by the building, including the appearance and the function.
It varies with many factors, such as the type, size, function,
and properties of the structure; the soil type and properties;
the method and time of construction; the type and stiffness of
the foundation; and the rate and uniformity of the settlement.
Zhang and Ng (2007) collected data for 380 buildings; the
results are shown in Table 17.11. Many codes include toler-
able values as well. All in all, it appears that, for buildings,
vertical movements of 50 mm are generally tolerable and that



17.12 LARGE MAT FOUNDATIONS 523

Table 17.11 Allowable Vertical Displacement and Angular Distortion for Buildings

Allowable value (FS = 1.5) Allowable value (95% percentile)

Building category
Vertical displacement

(mm)
Span length over

differential movement
Vertical displacement

(mm)
Span length over

differential movement

Foundation type:

Shallow foundation 145 245 49 833
Deep foundation 71 770 42 3333

Structural type:

Frame buildings 92 323 29 1000
Load-bearing wall 60 417 22 1111

Soil type:

Clay 113 333 44 1666
Sand 57 27

Building use:

Factory 141 263 53 526
Office 81 435 47 833

(Zhang and Ng 2007)

larger movements can be tolerated if they occur uniformly. It
is common practice, however, to design buildings for 25 mm
settlement. A span length over differential movement ratio
of 500 also seems good guidance in most cases:

For buildings
L

sd

≥ 500 (17.117)

where L is the span length and sd is the differential vertical
movement between adjacent columns.

17.12 LARGE MAT FOUNDATIONS

17.12.1 General Principles

Mat foundations, also called raft foundations, are shallow
foundations. A large mat may be used as the foundation for
a tall building in an area where the soil strength does not
increase significantly with depth. The design strategy is to
place the foundation at a depth such that the weight of the
excavated soil is nearly equal to the weight of the building.
For this reason it is often called a floating foundation. The
unit weight of soil (about 16 to 20 kN/m3) is much larger
than the unit weight of a building (about 2.5 to 5 kN/m3).
A story is about 3 m high; therefore, using a ratio of unit
weight of soil over unit weight of building equal to 5, when
a mat foundation is placed at a depth of 12 m, the weight
of soil removed is equal to a 60 m high building with 20
stories (16 out of the ground). Placing such a building on
such a foundation would lead to a postconstruction stress
on the soil equal to the one in the soil prior to construction.

Therefore, there would likely be very little problem with
ultimate capacity and settlement. More precisely, the soil
movement would be reduced to the unloading and reloading,
which would take place during excavation of the soil and
construction of the building. If a building taller than 20
stories were built, the ultimate capacity and settlement would
have to be considered under the excess load beyond that of 20
stories. These are the basic geotechnical governing principles
for the design of large mat foundations for tall buildings.

The design of the mat itself is controlled by the bending that
it will undergo. The column loads represent point loads on
the mat that must be transferred to the soil without punching
or excessive bending. This requires an amount of concrete
reinforcement dictated by the interaction between the stiff mat
and the softer soil. The analysis can proceed in one of two
ways: beam on elastic foundation approach or finite element
approach. In the beam on elastic foundation approach, the
stiffness of the soil comes from a stress-strain curve obtained,
for example, from a consolidation test, and the stiffness of
the mat is given by its bending stiffness value EI, where E is
the modulus of concrete and I is the moment of inertia of the
section. Because the stiffness of the soil is dependent on the
strain experienced by the soil, and because the soil strain also
depends on the mat stiffness, an iteration process develops
where a run is made with the mat stiffness and a chosen soil
stiffness; then the results are used to calculate the new soil
strain and the next value of the soil stiffness. This process is
repeated until the assumed soil stiffness and the calculated soil
stiffness are within an acceptable tolerance. At that point, the
bending moments in the mat are used to choose the amount of
reinforcement necessary. With the more sophisticated FEM
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approach, the interaction is taken into account directly and
the output gives the pressure distribution under the mat, the
mat settlement profile, and the mat bending moment and
shear. These mats often end up being of a uniform thickness
equal to about 3 m. Pouring such mats is a large operation
requiring many concrete trucks lined up one after the other;
the concrete sets while developing very high temperatures
(up to 80o C or more) due to the heat of hydration.

17.12.2 Example of Settlement Calculations

A large building weighing 400 MN is to be built on a deep
deposit of very stiff clay (Figure 17.53). The building is to
be placed at the bottom of a 15 m deep excavation, which
will correspond to 4 levels of parking garages and 1 level
for a mall. The height of the building is 180 m or 60 stories
in addition to the 15 m of embedment. The footprint is a
30 m × 30 m square and the building will be founded on a
thick mat foundation. The soil has a total unit weight of
20 kN/m3 and the groundwater level is deeper than the zone
of influence of the foundation. Pressuremeter tests gave a
profile of first load modulus Eo and reload modulus Er, as
shown on Figure 17.53, with the equations:

First load PMT modulus Eo (MPa) = 10 + 0.5z(m)

(17.118)

Reload PMT modulus Er (MPa) = 50 + 2z(m) (17.119)

The strength has been deemed sufficient not to create
problems of ultimate bearing capacity, but the settlement
must be estimated.
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Figure 17.53 High-rise settlement: Problem definition.

It is first necessary to understand clearly what the soil
will undergo at any depth below the building (Figure 17.54).
Before any excavation, the vertical stress at a point in the
soil is σov. The 15 m deep excavation creates a decrease in
stress equal to 	σexc below the excavation level, such that
after the excavation the stress has decreased to σov − 	σexc.

The construction of the building creates an increase in stress
equal to 	σbldg such that after the building is completed, the
stress in the soil is σov − 	σexc + 	σbldg. When the building
is constructed starting at the bottom of the excavation, the
soil first follows a reloading curve until the weight of the
building becomes equal to the weight of soil removed. In
other words, the recompression settlement Srel should be
calculated under the stress increment 	σexc while using the
PMT reload modulus Er. Then, as construction continues,
the soil is loaded in the virgin behavior and the settlement
beyond the recompression settlement (sometimes called the
net settlement, Snet) should be calculated under the stress
increment 	σbldg − 	σexc (sometimes called the net increase
in stress) while using the PMT first load modulus Eo. This
process is illustrated in Figure 17.54.

The steps outlined in section 17.8.5 are followed and are
presented in Table 17.12.

1. The zone of influence zi is taken as 2B because the
building imprint is square: zi = 60 m.

2. The zone of influence in this case is decomposed into 4
layers (Figure 17.53), each 15 m thick. This is column
1 in Table 17.12.

3. We calculate the initial stress σov at the center of each
layer. For example, the center of layer 1 is at a depth of
22.5 m and therefore the vertical stress at the center is
σov = 22.5 × 20 = 450 kPa. This is column 2 in Table
17.12.

4. The first load modulus Eo is calculated in the center of
each layer. For example, the modulus in the middle of
layer 1 is Eo = 10 + 0.5 × 22.5 = 21.25 MPa. This is
column 3 in Table 17.12.

5. The reload modulus Er is calculated in the center of
each layer. For example, the modulus in the middle
of layer 1 is Er = 50 + 2 × 22.5 = 95 MPa. This is
column 4 in Table 17.12.

6. We calculate the decrease in stress 	σexc in the middle
of each layer due to the excavation. The total pressure
decrease at the bottom of the excavation is pexc =
15 × 20 = 300 kPa. The bulb of pressure method is
used to obtain the decrease in stress in the middle of
each layer. For example, the decrease in stress 	σexc in
the middle of layer 1 is 0.85 pexc = 255 kPa according
to the bulb of pressure shown in Figure 17.31. This is
column 5 in Table 17.12.

7. We calculate the increase in stress 	σbldg in the middle
of each layer due to the construction of the building.
The total pressure increase at the foundation level is
the weight of the building divided by the foundation
area or pbldg = 400000/30 × 30 = 444 kPa. The bulb
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Figure 17.54 High-rise settlement: Stresses.

Table 17.12 High-Rise Settlement Calculations

1 2 3 4 5 6 7 8 9 10

H (m) σov(kPa) Eo(kPa) Er(kPa) 	σexc(kPa) 	σbldg(kPa) 	εexc 	εnet 	Hrel(mm) 	Hnet(mm)

15 450 21250 95000 255 378 0.00268 0.00579 40 87
15 750 28750 125000 150 222 0.00120 0.00250 18 38
15 1050 36250 155000 75 111 0.00048 0.00099 7 15
15 1350 43750 185000 45 67 0.00024 0.00050 4 8

69 148

Washington monument San Jacinto monument

Figure 17.55 Washington Monument and San Jacinto Monument on large mats.
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of pressure method is used to obtain the increase in
stress in the middle of each layer. For example, the
increase in stress 	σbldg in the middle of layer 1 is
0.85pexc = 378 kPa according to the bulb of pressure
shown in Figure 17.31. This is column 6 in Table
17.12.

8. The weight of the soil excavated is equal to 20 × 30 ×
30 × 15 = 270,000 kN. Because the building weighs
400,000 kN, the weight of soil excavated represents
67.5% of the total weight of the building. When the
building has reached a weight of 270,000 kN, we
assume that the soil will have been recompressed to
its initial position. We calculate the strain increment
	εrel in the middle of each layer due to the reloading
by the building construction from zero load to a load
equal to the weight of the excavated soil as:

	εrel = 	σexc

Er

(17.120)

This is column 7 in Table 17.12. Equation 17.120
neglects the influence of the stress confinement on the
strain (conservative).

9. The increase in stress 	σbldg in the middle of each
layer corresponds to the weight of the entire building.
Because the strain increment corresponding to 	σexc
has already been calculated (Eq. 17.120), we now
need to calculate the strain increment 	εnet due to
(	σbldg − 	σexc). This is done as follows:

	εnet = 	σbldg − 	σexc

Eo

(17.121)

10. Then the compression 	Hrel of each layer due to 	εrel
is calculated as:

	Hrel = H	εrel (17.122)

and the compression 	Hnet of each layer due to 	εnet
is calculated as:

	Hnet = H	εnet (17.123)

This corresponds to columns 9 and 10 in Table
17.12.

11. Finally, the settlement is calculated by adding the
compression of the four layers. The settlement Srel due
to the reloading of the soil under the part of the weight
of the building equal to the weight of soil excavated is:

Srel =
4∑

i=1

Hi	εrel i =
4∑

i=1

	Hrel i = 69 mm

(17.124)
Then the settlement Snet due to the weight of the
building in excess of the weight of the excavated soil
is:

Snet =
4∑

i=1

Hi	εnet i =
4∑

i=1

	Hnet i = 148 mm

(17.125)
The total settlement Stot of the building is:

Stot = Srel + Snet = 217 mm (17.126)

17.12.3 Two Case Histories

Two large mat case histories are presented here: the Wash-
ington Monument (Briaud et al. 2009) and the San Jacinto
Monument (Briaud et al. 2007) (Figure 17.55). The Wash-
ington Monument (Washington, DC) was completed in 1884
and stands at 169.16 m tall above ground (Figure 17.56). In
a first phase, it was built to a height of 55.6 m on a square
mat 24.38 m by 24.38 m when construction stopped with a
calculated settlement of 1.33 m. In a second phase, the mat
was underpinned and extended to a square ring mat 38.54 m
by 38.54 m on the outside and 13.41 m by 13.41 m on the
inside. The monument experienced an additional measured
settlement of 0.12 m while construction was completed. Ad-
ditional data are shown in Table 17.13. The mat rests on an
8.3 m thick layer of sand and gravel with a blow count averag-
ing 100 bpf underlain by a 11.7 m thick layer of very stiff clay
with an average undrained shear strength of 100 kPa. Below
the very stiff clay is the bedrock. The settlement during phase
one was calculated, on the basis of available consolidation
tests, to be 1.33 m (Briaud et al. 2009), whereas the settlement
during phase two was only 0.17 m (Figure 17.57). The reason
the settlement was so large during the first phase is that the
bottom of the first mat foundation was shallow and rested

Table 17.13 Data for the Washington Monument and the San Jacinto Monument

Washington Monument San Jacinto Monument

Total weight = 608 MN
Weight of foundation = 184 MN
Pressure at foundation level = 465 kPa
Net pressure = 252 kPa
Calculated total settlement = 1.50 m
Measured settlement after underpinning = 0.17 m

Total weight = 313 MN
Weight of foundation = 133 MN
Pressure at foundation level = 224 kPa
Net pressure = 141 kPa
Calculated total settlement = 0.61 m
Measured settlement after mat placed = 0.33 m
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on a very compressible soft clay layer. The underpinning
brought the foundation down to the strong sand and gravel
layer. More details can be found in Briaud et al. (2009).

The San Jacinto Monument (Houston, Texas, USA) was
completed in 1936 and stands at 171.9 m tall above ground;
it is the tallest free standing column in the world. It rests on
a square mat foundation 37.8 m by 37.8 m. Some of the data
regarding weight and pressure are shown in Table 17.13. The
mat rests on a deep deposit of very stiff clay with an average
undrained shear strength equal to 100 kPa. The CPT point
resistance is 1000 kPa at the ground surface and increases
to 3000 kPa at 10 m depth. The pressuremeter limit pressure
is 800 kPa at the ground surface, increasing to 3000 kPa at
a depth of 40 m. The PMT first load modulus is 15 MPa at
the ground surface, increasing to 60 MPa at a depth of 40 m.
The PMT reload modulus is 2.1 times larger than the first
load modulus on the average. The PMT viscous exponent n
averages 0.045. The settlement was calculated, on the basis

of available consolidation tests, to be 0.61 m (Briaud et al.
2007). The settlement measured after the mat was poured
reached 0.33 m (Figure 17.58). More details can be found in
Briaud et al. (2007).

These two tall, columnar structures on large mats settled
significantly, yet both are as straight as possible, with no
lean detectable to the naked eye. If heterogeneity had been
an issue, these structures would likely have tilted. However,
at the scale of a 38 m by 38 m mat, the soil is much more
homogeneous than at the scale of a cone penetrometer, for
example. This shows that heterogeneity is scale dependent
and that tall structures can stand much larger settlement than
might be thought. The weight of these simple structures is
shown in Table 17.13. By comparison, the Eiffel Tower in
Paris, France, weighs 94 MN; the Tower of Pisa in Pisa, Italy,
weighs 142 MN; each tower of the World Trade Center in
New York weighed 4500 MN; and the Burj Khalifa in Dubai
weighs about 5000 MN.
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PROBLEMS

17.1 If a shallow foundation test is performed on clay, there is a clear plunging load. If a shallow foundation test is performed
on sand, the load continues to increase and a clear plunging load is not obvious. Explain why. How is the ultimate load
defined for the load test on sand?

17.2 Calculate the ultimate bearing pressure for the footings and the soil described in section 17.2 by all applicable methods
listed in section 17.6. Additional soil data can be obtained from Briaud and Gibbens (1999). If you had to give one answer
what would you choose to do?

17.3 Calculate the ultimate bearing pressure (edge failure) for the mat of the San Jacinto Monument (section 17.12.2) by all
applicable methods listed in section 17.6. If you had to give one answer, what would you choose to do?

17.4 Redo the example of Figure 17.23 but using the mean curve instead of the design curve for the � function.
17.5 Calculate the increase in stress under the center of the circular footing (Figure 17.1s) as a function of depth by all the

methods presented in section 17.8.7. Show the profile of effective stress before construction and after construction. At
what depth is 	σ ′(z) equal to 1/10 of 	σ ′(z = 0)?

706.5 kN

3 m

γ = 20 kN/m3 No water

Circular 
footing

Figure 17.1s Circular footing.

17.6 Calculate the settlement of the footing shown in Figure 17.2s. If only 10 mm of settlement can be tolerated by the
structure, what is the size of the footing required to carry the same load?

P = 427 kN

1.5 m × 1.5 m

E = 10000 kPa ν = 0.35

Figure 17.2s Square footing.

17.7 A square foundation is 3 m × 3 m and rests on a deep layer of sand at a depth of 1.5 m. The soil modulus at the ground
surface is 10 MPa and increases linearly to 50 MPa at a depth of 10 m. What load can the footing carry if the allowable
settlement is 25 mm?

17.8 Using the Schmertmann method, simplify the equation giving the settlement of a footing at the surface of a sand deposit
when the soil is uniform with a constant value of E. Compare that equation to the elasticity equation.

17.9 A column load of 4000 kN is to be supported by a square spread footing on a medium-dense sand. Recommend the size
and the embedment of the footing after addressing the issue of bearing capacity and settlement of the footing (25 mm is
tolerable). Soil properties: N = 30 blows/ft, qc = 8 MPa, fc = 70 kPa, pL = 1500 kPa, Eo = 12 MPa, γ = 20 kN/m3.

If you need additional properties, assume reasonable values.
17.10 A column load of 2000 kN is to be supported by a square spread footing on a very stiff clay. Recommend the size of

the footing after addressing the issue of bearing capacity and settlement of the footing (25 mm is tolerable). Soil
properties: su = 100 kPa, qc = 1.5 MPa, fc = 70 kPa, pL = 500 kPa, Eo = 7.5 MPa, Cc = 0.3, cv = 10−4 cm2/s, γ =
18 kN/m3. If you need additional properties, assume reasonable values.

17.11 .In 1955, an oil tank 10 m high and 38 m in diameter is built as shown in Figure 17.3s.
a. Calculate the settlement of the center of this tank (point C on Figure 17.3s) using the data from Figure 17.4s.

Assume that the stress increase in the middle of the compressible layer is equal to the pressure under the tank
because the layer is thin.
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In 1975, this tank is removed; a year later, a new tank 15 m high and 76 m in diameter is built. The edge of the new tank
goes through the center of the old tank.

b. Calculate the settlement of the edge of the new tank away from the old tank (point B on Figure 17.3s) using the data
from Figure 17.4s. Assume that the stress increase at the edge of the new tank in the middle of the compressible
layer is equal to one half of the pressure under the new tank.

150 kPa

76 m

γ = 19 kN/m3

38 m

New tank
Old tank

100 kPa

5 m

10 m

4 m Clay

Sand

C

Water 
table

A

Figure 17.3s Old and new oil tanks.
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Figure 17.4s Stress-strain curve for oil tank problem.

c. Calculate the settlement of the edge of the new tank that passes over the center of the old tank (point C on Figure
17.3s) using the data from Figure 17.4s. Make the same assumption as in b.

d. Do you see any problem with the difference in settlement between C and B for the new tank?
17.12 Use the shrink-swell case history from section 17.9.4 to calculate the footing movements and compare your results with

the measured movements.
17.13 The high-rise building shown in Figure 17.53 is subjected to a hurricane wind of 200 km/h. This wind creates a pressure

of 3 kPa on the flat side of the building. Calculate the pressure diagram under the foundation.
17.14 The high-rise building shown in Figure 17.53 is placed on a stiff clay with the following properties: compression index

Cc equal to 0.4, recompression index Cr equal to 0.1, initial void ratio eo equal to 0.5, and total unit weight equal to
20 kN/m3. The soil is lightly overconsolidated by overburden removal and has a preconsolidation pressure σ ′

p150 kPa
higher than the effective stress σ ′

ov. The groundwater level is at the ground surface. Calculate the settlement of the
building. How would you estimate the time required for the settlement to take place if cv were known?
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17.15 The annual drying and wetting condition of a site is shown in Figure 17.5s. Calculate the shrink and swell displacement at
the center and at the edge of the building, and then calculate the differential movement between the two points. Hint: Use

ε = 	Hi

Hi

= f
	wi

Ewi
∴ ε = 0.33

	wi

(γw/γd)
and wi = 25%, γd = 14 kN/m3, γw = 10 kN/m3

1m –5% 5%

–2.5% 2.5%
–0.5% 0.5%

–0.2% 0.2%

GWL

Layer 1

∆w ∆w

Layer 2

Layer 3–1% 1%

–1% 1%

1m

1m

Figure 17.5s Annual drying and wetting condition.

17.16 A stiffened slab on grade for a two-story house is to be designed. The slab and site data are given as follows: slab
dimensions 20 m by 20 m, beam spacing s = 3.0 m (for both directions), beam width b = 0.3 m, slab load w = 10 kPa,
depth of movement zone H = 3.0 m, soil surface water content change 	wo = 20%. Recommend a beam depth that will
minimize the distortion of the slab for the edge drop case to more than L/	 = 500.

17.17 Calculate the settlement of the San Jacinto Monument using the pressuremeter data given in section 17.12.3.

Problems and Solutions

Problem 17.1

If a shallow foundation test is performed on clay, there is a clear plunging load. If a shallow foundation test is performed on
sand, the load continues to increase and a clear plunging load is not obvious. Explain why. How is the ultimate load defined
for the load test on sand?

Solution 17.1

The reason a shallow foundation test performed on sand shows no clear plunging load is that fine-grained soils tend to
shear in an undrained mode during a load test, whereas coarse-grained soils likely shear in a drained mode. The undrained
shear strength of a clay does not vary much with the stress and confinement level (su = constant), so when the load on the
footing increases, the shear strength does not increase and the failure is clearly defined. The drained shear strength of a sand
depends on the stress and the confinement level (s = σ ′ tan ϕ′), so when the load increases the shear strength also increases.
Therefore, the failure for the sand is ill defined, and no obvious plunging load is observed. The ultimate load on the sand can
be defined as the load corresponding to a movement equal to one-tenth of the foundation width.

Problem 17.2

Calculate the ultimate bearing pressure for the footings and the soil described in section 17.2 by all applicable methods listed
in section 17.6. Additional soil data can be obtained from Briaud and Gibbens (1999). If you had to give one answer what
would you choose to do?
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Solution 17.2

Figure 17.6s shows the illustration of the soil profile.

BxB 0
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5
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3
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3
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Sand, flood plain 

deposit of pleistocene 

age, medium dense

4.9 m
Sand, river channel 

deposit of pleistocene 
age, medium dense

Clay &

gravel  

Figure 17.6s Footing and soil profile.

The methods include Skempton method, PMT method, CPT method, SPT method, and Terzaghi’s general bearing capacity
equation (GBE) method. The Skempton method is applicable only to fine-grained soil, so it is not discussed in this solution.
The simple versions of the PMT method, CPT method, SPT method, and GBE method are used to solve the bearing capacity
for the 1 m × 1 m footing, 1.5 m × 1.5 m footing, 2.5 m × 2.5 m footing, and 3 m × 3 m footing respectively. All footings
are embedded 0.75 m. The soil unit weight is 15.5 kN/m3. The following soil properties are selected within the zone of
influence of the footings from the soil profiles presented in Figures 17.7s, 17.8s, 17.9s: the PMT limit pressure is 800 kPa, the
CPT point resistance is 6000 kPa, and the SPT blow count is 18 bpf. Since the footing width does not appear in the ultimate
bearing pressure pu equations, and since the embedment depth is the same for all footings, then the value of pu will be the
same for all footings.

PMT method:

pu = kppL + γ D (17.1s)

where kp is the pressuremeter bearing capacity factor, pL is the pressuremeter limit pressure, γ is the total unit weight of the
soil above the footing depth, and D is the embedment of the footing.

Based on Equation 17.19, kp is 1.2 and pu is:

pu = 1.2 × 800 + 15.5 × 0.75 = 972 kPa
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Figure 17.7s PMT profile.
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CPT method:
pu = kcqc + γ D (17.2s)

where kc is the cone penetrometer bearing capacity factor, qc is the average point resistance within one footing width below
the footing, γ is the total unit weight of the soil above the footing depth, and D is the embedment of the footing. Based on
Equation 17.22, kc is 0.2 and pu is:

pu = 0.2 × 6000 + 15.5 × 0.75 = 1212 kPa
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Figure 17.8s CPT profile.

SPT method:
pu = kNNpa + γ D (17.3s)

where kN is the SPT bearing capacity factor, N is the average blow counts within one footing width below the footing, pa

is the atmospheric pressure, γ is the total unit weight of the soil above the footing depth, and D is the embedment of the
footing. Based on Equation 17.28, kN is 0.6 and pu is:

pu = 0.6 × 18 × 101.3 + 15.5 × 0.75 = 1106 kPa
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Figure 17.9s SPT profile.

Terzaghi’s GBE:

This method is based on the following equation:

pu = c′Nc + 1

2
γ1BNr + γ2DNq (17.4s)
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where c′ is the effective stress cohesion; Nc,Nr, and Nq are bearing capacity factors, γ1 is the average effective unit weight
of soil within the one footing width below the foundation, B is the width of the foundation, γ2 is the effective unit weight of
the soil above the foundation, and D is the depth of embedment of the foundation.

For this case, N = 18 bl/ft, c′ = 0, φ′ = 32.5◦ (Figure 15.12), Nc = 39, Nr = 23, and Nq = 23 (Figure 17.14):

pu = 0 × 39 + 1

2
× 15.5 × B × 23 + 15.5 × 0.75 × 23 = 178.25B + 267.38

1 × 1 m footing : pu = 446 kPa

1.5 × 1.5 m footing : pu = 535 kPa

2.5 × 2.5 m footing : pu = 713 kPa

3 × 3 m footing : pu = 802 kPa

Based on this analysis, I would choose the average pu value from the PMT method, CPT method, and SPT method as the
ultimate bearing pressure of the footings. I would not use the general bearing capacity equation predictions because the soil
profile does not correspond to the assumption made to derive that equation (linear strength increase with depth)

pu = 972 + 1212 + 1106

3
= 1097 kPa

Note that these footings were load tested (Briaud, Gibbens, 1999) individually and gave ultimate bearing pressures
(pressure at one tenth of the footing width) equal to:

1 × 1 m footing : pu = 1500 kPa

1.5 × 1.5 m footing : pu = 1500 kPa

2.5 × 2.5 m footing : pu = 1300 kPa

3 × 3 m footing (North) : pu = 1250 kPa

3 × 3 m footing (South) : pu = 1500 kPa

Problem 17.3

Calculate the ultimate bearing pressure (edge failure) for the mat of the San Jacinto Monument (section 17.12.2) by all
applicable methods listed in section 17.6. If you had to give one answer, what would you choose to do?

Solution 17.3

Skempton:
pu = Ncsu + γ D

D = 9.1 m (Figure 17.56), and B = 37.8 m, so the ratio D/B = 0.24.

From the Skempton chart in Figure 17.7, Nc = 6.7. The undrained shear strength below the monument is given as
Su = 100 kPa. Assuming a unit weight of 19 kN/m3:

pu = 100 × 6.7 + 19 × 9.1 = 843 kPa

PMT Method (for clay):
pu = kpp∗

L + γ D

D = 9.1 m (Figure 17.56), B = L = 37.8 m, so the ratio B/L = 1, and D/B = 0.24:

pu = 0.9 × 800 + 19 × 9.1 = 893 kPa

CPT Method (for clay):
pu = 0.40qc + γ D
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Because the profile of qc increases from 1000 kPa at the surface to 3000 kPa at 10 m depth, and because there is 9.1 m
embedment, it appears reasonable to select 3000 kPa as the cautious design value for qc:

pu = 0.4 × 3000 + 19 × 9.1 = 1373 kPa

There are no SPT data, c′, or ϕ′ to use with the remaining methods.
If I had to choose one answer, I would choose 900 kPa as a conservative yet substantiated value (supported by two

methods). The CPT method seems a bit optimistic in this case.

Problem 17.4

Redo the example of Figure 17.23 but using the mean curve instead of the design curve for the � function.

Solution 17.4

The f factor does not change when we use the mean curve instead of the design curve:

	R/Ro pp (kN/m2) s/B s (mm) �Mean f pf (kN/m2) Q(kN)

0 0 0 0 0 0.689 0 0
0.006 75 0.00144 4.32 3.6 0.689 186.0 8370
0.012 120 0.00288 8.64 3.1 0.689 256.3 11533

0.024 220 0.00576 17.28 2.75 0.689 416.8 18756
0.032 300 0.00768 23.04 2.25 0.689 465.1 20929
0.055 450 0.0132 39.6 1.9 0.689 589.1 26509
0.1 650 0.024 72 1.5 0.689 671.8 30231
0.15 775 0.036 108 1.35 0.689 720.9 32440
0.20 850 0.048 144.0 1.3 0.689 761.3 34258
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Figure 17.10s Load settlement curve.
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Problem 17.5

Calculate the increase in stress under the center of the circular footing (Figure 17.1s) as a function of depth by all the methods
presented in section 17.8.7. Show the profile of effective stress before construction and after construction. At what depth is
	σ ′(z) equal to 1/10 of 	σ ′(z = 0)?

Solution 17.5
706.5 kN

3 m

γ = 20 kN/m3 No water

Circular 
footing

Figure 17.1s Circular footing.

2 to 1 method:

The average pressure under the footing is:

pave = Q

πB2/4
= 706.5

π(3)2/4
= 100 kPa

The increase in stress for a circular footing is:
σz = Q

π(B + z)2/4

Depth (m) 	σ ′
z (kN/m2) Before construction (kN/m2) After construction (kN/m2)

0 100 0.0 100
1 56.2 20.0 76.2
2 36.0 40.0 76.0
3 25.0 60.0 85.0
4 18.4 80.0 98.4
5 14.1 100.0 114.1
6 11.1 120.0 131.1
7 9.0 140.0 149.0
8 7.4 160.0 167.4
9 6.2 180.0 186.2
10 5.3 200.0 205.3

Bulbs of pressure (using Figure 17.31):

Depth Factor 	σ ′
z Before construction After construction

(m) Depth/diameter (from bulbs of pressure) (kN/m2) (kN/m2) (kN/m2)

0 0.00 1 100 0.0 100
1 0.33 0.8 80 20.0 100
2 0.67 0.57 57 40.0 97
3 1.00 0.35 35 60.0 95
4 1.33 0.23 23 80.0 103
5 1.67 0.17 17 100.0 117
6 2.00 0.12 12 120.0 132
7 2.33 0.09 9 140.0 149
8 2.67 0.07 7 160.0 167
9 3.00 0.06 6 180.0 186
10 3.33 0.04 5 200.0 204
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Newmark’s chart:
Newmark chart

Depth z Influence factor = 0.0025

Figure 17.11s Newmark’s chart.

Depth Number 	σ ′
z Before construction After construction

(m) of squares Factor (kN/m2) (kN/m2) (kN/m2)

0 1.0 100 0.0 100
1 316 0.79 79 20.0 99
2 200 0.5 50 40.0 90
3 104 0.26 26 60.0 86
4 72 0.18 18 80.0 98
5 40 0.1 10 100.0 110
6 32 0.08 8 120.0 128
7 30 0.075 7.5 140.0 147.5
8 24 0.06 6 160.0 166.0
9 18 0.045 4.5 180.0 184.5
10 10 0.025 2.5 200.0 202.5
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Figure 17.12s Difference between the three methods.
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Problem 17.6

Calculate the settlement of the footing shown in Figure 17.2s. If only 10 mm of settlement can be tolerated by the structure,
what is the size of the footing required to carry the same load?

P = 427 kN

1.5 m × 1.5 m

E = 10000 kPa ν = 0.35

Figure 17.2s Square footing.

Solution 17.6

The settlement equation for an elastic soil gives (rigid square foundation: I = 0.88):

s = pB
(1 − υ2)

E
I = 427

1.5 × 1.5
× 1.5 × (1 − 0.352)

10000
× 0.88 = 0.022 m

Footing size
s = pB

(1 − υ2)

E
I = Q

B2
B

(1 − υ2)

E
I

B = Q

s

(1 − υ2)

E
I = 427

0.01

(1 − 0.352)

10000
0.88 = 3.3 m

The footing size should be 3.3 m by 3.3 m.

Problem 17.7

A square foundation is 3 m × 3 m and rests on a deep layer of sand at a depth of 1.5 m. The soil modulus at the ground surface
is 10 MPa and increases linearly to 50 MPa at a depth of 10 m. What load can the footing carry if the allowable settlement is
25 mm?

Solution 17.7
so = pB

(1 − v2)

Eo

× I

where:
so : reference settlement for uniform soil with Eo modulus
p : Pressure = ?
B : width of foundation = 3m
V : Poisson’s ratio = 0.35
Eo : modulus of elasticity at the bottom of the foundation:

10 + 1.5

10
(50 − 10) = 16 MPa

I : influence factor for square footing = 0.88

so = p × 3 × (1 − 0.352)

16000
× 0.88 = 1.448 × 10−4p

The settlement of the footing in the case of the increasing modulus with depth is s1, such that:

IG = s1

so
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where IG is read on Figure 17.26 for the corresponding value of E1/Eo, which is:

E = Eo + E1

( z

B

)
or

E1

Eo

=
(

E

Eo

− 1

)
B

z

We know that at a depth z equal to 8.5 m below the footing, the modulus E is 50 MPa, which gives an E1/Eo ratio of:

E1

Eo

=
(

50

16
− 1

)
3

8.5
= 0.75

Figure 17.26 gives IG = 0.80, so the settlement expression becomes:

s1 = IG × pB
(1 − ν2)

Eo

× I = 0.80 × p × 3 × (1 − 0.352)

16000
× 0.88 = 1.158 × 10−4p

Because s1 must be 25 mm, then p = 0.025/1.158 × 10−4 = 216 kPa.
The allowable footing load is then:

Qall = 216 × 3 × 3 = 1944 kN

Problem 17.8

Using the Schmertmann method, simplify the equation giving the settlement of a footing at the surface of a sand deposit
when the soil is uniform with a constant value of E. Compare that equation to the elasticity equation.

Solution 17.8

The Schmertmann equation is:

s = C1C2p�
Izi

Ei

Hi

The footing is placed on the ground surface, so:

σ ′
ov = 0 ⇒ C1 = 1 − 0.5

σ ′
ov

	p
= 1

Let’s assume that the settlement occurs in 0.1 years, so:

C2 = 1 + 0.2 log

(
0.1

0.1

)
= 1

E is a constant, so the final equation is:
s = p

E
�HiIzi

The quantity �HiIzi is the area under the strain influence factor curve on Figure 17.27. This area depends on the maximum
value of Izp, which is:

Izp = 0.5 + 0.1

(
	p

σ ′
Izp

)0.5

A reasonable range for Izp may be found when the ratio

(
	p
σ ′

Izp

)
varies between 2 and 20 or a corresponding range for Izp

between 0.6 and 0.9 with an average of 0.75. For the value of 0.75, the area under the Iz diagram is:

0.5(0.1 + 0.75) × 0.5B + 0.5 × 0.75 × 1.5B = 0.785B

and the final Schmertmann equation becomes:

s = 0.785
pB

E
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The elasticity equation is:

s = I (1 − ν2)
pB

E
= 0.88 × (1 − 0.352)

pB

E
= 0.77

pB

E

Problem 17.9

A column load of 4000 kN is to be supported by a square spread footing on a medium-dense sand. Recommend the size
and the embedment of the footing after addressing the issue of bearing capacity and settlement of the footing (25 mm is
tolerable). Soil properties: N = 30 blows/ft, qc = 8 MPa, fc = 70 kPa, pL = 1500 kPa, Eo = 12 MPa, γ = 20 kN/m3. If
you need additional properties, assume reasonable values.

Solution 17.9

Let’s assume that D = 0.5 m.

Ultimate bearing capacity: SPT

pu (kN/m2) = 60N + γ D = 60 × 30 + 20 × 0.5 = 1810 kPa

psafe (kN/m2) = 1810

3
= 603 kPa = Q

B2

B =
√

Q

603
=

√
4000

603
= 2.58 m

Ultimate bearing capacity: CPT

pu (kN/m2) = 0.2qc + γ D = 0.2 × 8000 + 20 × 0.5 = 1610 kPa

psafe (kN/m2) = 1610

3
= 537 kPa = Q

B2

B =
√

Q

537
=

√
4000

537
= 2.73 m

Ultimate bearing capacity: PMT

pu (kN/m2) = 1.2pL + γ D = 1.2 × 1500 + 20 × 0.5 = 1810 kPa

psafe (kN/m2) = 1810

3
= 603 kPa = Q

B2

B =
√

Q

603
=

√
4000

603
= 2.58 m

Settlement (25 mm tolerable)

s = pB(1 − ν2)
I

E

I = shape factor (0.88 for square footing)

p = mean pressure under the foundation

B = foundation width

E = elasticity modulus of the soil (E = 2E0(sand) from Briaud (1992))

ν = Poisson’s ratio

25 × 10−3 = 4000

B2
× B(1 − 0.352)

0.88

2 × 12000

B = 5.15 m

So the recommended foundation size is 5.2 m × 5.2 m and the settlement criterion controls the design.
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Problem 17.10

A column load of 2000 kN is to be supported by a square spread footing on a very stiff clay. Recommend the
size of the footing after addressing the issue of bearing capacity and settlement of the footing (25 mm is tolerable).
Soil properties: su = 100 kPa, qc = 1.5 MPa, fc = 70 kPa, pL = 500 kPa, Eo = 7.5 MPa, Cc = 0.3, cv = 10−4cm2/s, γ =
18 kN/m3. If you need additional properties, assume reasonable values.

Solution 17.10

Let’s assume that D = 0.5 m.

Ultimate bearing capacity: CPT

pu (kN/m2) = 0.4qc + γ D = 0.4 × 1500 + 18 × 0.5 = 609 kPa

psafe (kN/m2) = 609

3
= 203 kPa = Q

B2

B =
√

Q

203
=

√
2000

203
= 3.14 m

Ultimate bearing capacity: Pressuremeter

pu (kN/m2) = 0.9pL + γ D = 0.9 × 500 + 18 × 0.5 = 459 kPa

psafe (kN/m2) = 459

3
= 153 kPa = Q

B2

B =
√

Q

153
=

√
2000

153
= 3.62 m

Ultimate bearing capacity: Undrained shear strength

pu (kN/m2) = NcSu + γ D = 6.3 × 100 + 18 × 0.5 = 639 kPa

psafe (kN/m2) = 639

3
= 213 kPa = Q

B2

B =
√

Q

213
=

√
2000

213
= 3.06 m

Settlement (25 mm tolerable)
s = pB(1 − ν2)

I

E

I = shape factor (0.88 for square footing)

p = mean pressure under the foundation
B = foundation width
E = elasticity modulus of the soil (E = E0(clay) from Briaud (1992))

ν = Poisson’s ratio

25 × 10−3 = 2000

B2
× B(1 − 0.352)

0.88

7500

B = 8.24 m

So the recommended foundation size is 8.3 m × 8.3 m

Problem 17.11

In 1955, an oil tank 10 m high and 38m in diameter is built as shown in Figure 17.3s.

a. Calculate the settlement of the center of this tank (point C on Figure 17.3s) using the data from Figure 17.4s. Assume
that the stress increase in the middle of the compressible layer is equal to the pressure under the tank because the layer
is thin.

In 1975, this tank is removed; a year later, a new tank 15 m high and 76 m in diameter is built. The edge of the new
tank goes through the center of the old tank.
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b. Calculate the settlement of the edge of the new tank away from the old tank (point B on Figure 17.3s) using the data
from Figure 17.4s. Assume that the stress increase at the edge of the new tank in the middle of the compressible layer is
equal to one half of the pressure under the new tank.

c. Calculate the settlement of the edge of the new tank that passes over the center of the old tank (point C on Figure 17.3s)
using the data from Figure 17.4s. Make the same assumption as in b.

d. Do you see any problem with the difference in settlement between C and B for the new tank?

150 kPa

76 m

γ = 19 kN/m3

38 m

New tank
Old tank

100 kPa

5 m

10 m

4 m Clay

Sand

C

Water 
table

A

Figure 17.3s Old and new oil tanks.
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Figure 17.4s Stress-strain curve for oil tank problem.

Solution 17.11

	H = 	e

1 + eo

H = CcH

1 + eo

log
σ ′

ov + 	σ ′

σ ′
ov

= 	εH

a. Settlement at point C for old tank
σ ′

ov = 19 × 2 − 9.81 × 2 = 19.62 kPa

	σ = 100 kPa

σ ′
ov + 	σ = 119.62 kPa

From Figure 17.4s, ε119.6kPa = 0.1, ε19.6kPa = 0,	ε = 0.1 − 0 = 0.1

	H = 	εH = 0.1 × 4 m = 0.4 m
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Figure 17.13s Settlement at point C for old tank.

b. Settlement at point B for new tank
σ ′

ov = 19 × 2 − 9.81 × 2 = 19.62 kPa

	σ = 150 × 1/2 = 75 kPa

σ ′
ov + 	σ = 94.62 kPa

From Figure 17.4s, ε94.6kPa = 0.088, ε19.6kPa = 0,	ε = 0.088 − 0 = 0.088

	H = 	εH = 0.088 × 4 m = 0.352 m
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Figure 17.14s Settlement at point B for new tank.

c. Settlement at point C for new tank
σ ′

ov = 19 × 2 − 9.81 × 2 = 19.62 kPa

	σ = 150 × 1/2 = 75 kPa

σ ′
ov + 	σ = 94.62 kPa
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In 1955, the preconsolidation pressure was 119.6 kPa. Therefore:

σ ′
ov + 	σ = 94.62 kPa < σ ′

c = 119.6 kPa ∴ Overconsolidated clay

From the rebound curve in Figure 17.4s:

ε94.6kPa = 0.114, ε19.6kPa = 0.086,	ε = 0.114 − 0.086 = 0.028

	H = 	εH = 0.028 × 4 m = 0.112 m
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Figure 17.15s Settlement at point C for new tank.

d. The differential settlement between point B and point C:

	HB−C = 	HB − 	HC = 0.352 m − 0.112 m = 0.24 m

This differential settlement between C and B is significant and will cause bending of the foundation and the new oil tank.
This bending may create a problem with the sliding roof often used in such oil tanks.

Problem 17.12

Use the shrink-swell case history from section 17.9.4 to calculate the footing movements and compare your results with the
measured movements.

Solution 17.12

The settlement time history was developed using the data presented in section 17.9.4. The change in water content was
computed from the boring information and used to estimate the settlement. The analysis was conducted using a representative
layer of 0.5 m for the dark gray silty clay and for the brown silty clay. The total settlement was estimated by the contribution
of each layer. The results are presented in Table 17.2s and Table 17.3s. The average estimated settlement was compared with
the average measured settlement from the four footings, as shown in the figure. The water content method seems to yield a
reasonable prediction of the movement of the foundation:

s =
n∑
1

fi

wf − wi

Ewi
Hi
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Figure 17.16s Measured vs. predicted settlement.

Table 17.2s Settlement of the Dark Gray Silty Clay

Boring Boring Date Elapsed time (days) wi(%) 	wi(%) fi Ewi 	εi s1(m)

B1 6/24/1999 0 0.19 — 0.33 0.752 0.0000 0.0
B2 7/13/1999 19 0.185 −0.005 0.33 0.752 −0.0026 −1.1
B3 10/25/1999 123 0.17 −0.02 0.33 0.752 −0.0104 −4.4
B4 2/11/2000 232 0.165 −0.005 0.33 0.752 −0.0026 −1.1
B5 5/11/2000 322 0.2 0.035 0.33 0.752 0.0182 7.7
B6 8/11/2000 414 0.14 −0.06 0.33 0.752 −0.0311 −13.2
B7 11/17/2000 512 0.17 0.03 0.33 0.752 0.0156 6.6
B8 3/13/2001 628 0.22 0.05 0.33 0.752 0.0259 11
B9 7/15/2001 752 0.17 −0.05 0.33 0.752 −0.0259 −13.0

Table 17.3s Settlement of Brown Silty Clay

Boring Boring Date Elapsed time (days) wi(%) 	wi(%) fi Ewi 	εi s2(m) stotal(m)

B1 6/24/1999 0 0.15 — 0.33 0.869 0.0000 0.0 0.0
B2 7/13/1999 19 0.15 0 0.33 0.869 0.0000 0.0 −1.1
B3 10/25/1999 123 0.17 0.02 0.33 0.869 0.0090 3.8 −0.6
B4 2/11/2000 232 0.155 −0.015 0.33 0.869 −0.0067 −2.9 −4.0
B5 5/11/2000 322 0.19 0.035 0.33 0.869 0.0157 6.7 14.3
B6 8/11/2000 414 0.155 −0.035 0.33 0.869 −0.0157 −6.7 −19.8
B7 11/17/2000 512 0.15 −0.005 0.33 0.869 −0.0022 −0.9 5.7
B8 3/13/2001 628 0.21 0.06 0.33 0.869 0.0269 11.4 22.3
B9 7/15/2001 752 0.18 −0.03 0.33 0.869 −0.0135 −5.7 −16.7

Problem 17.13

The high-rise building shown in Figure 17.53 is subjected to a hurricane wind of 200 km/h. This wind creates a pressure of
3 kPa on the flat side of the building. Calculate the pressure diagram under the foundation.
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Solution 17.13

400 MN

180 m

3 kPa

30 m 3 30 m

Figure 17.17s High-rise building.

The average pressure is:
pave = 400000

30 × 30
= 444 kPa

The wind creates a horizontal force equal to:

H = pA = 3 × 30 × 180 = 16200 kN

The point of application of that force is at a height of 90 m above the ground surface. Therefore, the moment applied on
the foundation is:

M = Hb = 16200 × 90 = 1458000 kN · m

This moment will create a trapezoidal pressure distribution under the foundation such that the high pressure will be pmax
and the low pressure pmin. The high pressure pmax is such that:

M = 1

2
(pmax − pave)B × B

2
× 2

3
× B

2
× 2 = B3

6
(pmax − pave)

But the average pressure is equal to the vertical load V divided by the foundation area A:

pave = V

B2

and the eccentricity e is given by:
M = Ve

In the end,
pmax = pave

(
1 + 6e

B

)

and then:
pmin = pave

(
1 − 6e

B

)

Numerically:

pmax = 444

(
1 + 6(1458000/400000

30

)
= 768 kPa

pmin = 444

(
1 − 6(1458000/400000

30

)
= 120 kPa
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The pmax value would have to be checked against the ultimate bearing capacity of the soil.

768 kPa

120 kPa

Figure 17.18s Stresses under foundation.

Problem 17.14

The high-rise building shown in Figure 17.53 is placed on a stiff clay with the following properties: compression index Cc

equal to 0.4, recompression index Cr equal to 0.1, initial void ratio eo equal to 0.5, and total unit weight equal to 20 kN/m3.

The soil is lightly overconsolidated by overburden removal and has a preconsolidation pressure σ ′
p150 kPa higher than the

effective stress σ ′
ov. The groundwater level is at the ground surface. Calculate the settlement of the building. How would you

estimate the time required for the settlement to take place if cv was known?

Solution 17.14

The solution is the same as the one presented in Table 17.12 except that the consolidation test is used instead of the
pressuremeter test. For the consolidation test, the equations change for the evaluation of the settlement due to the building
pressure. The following equations cover all the possible cases at various depths:

If σ ′
ov + 	σb ldg < σ ′

p use 	H = Ho

1 + eo

Cr log

(
σ ′

ov + 	σbldg

σ ′
ov

)

If σ ′
ov + 	σbldg > σ ′

p use 	H = Ho

1 + eo

(
Cr log

(
σ ′

p

σ ′
ov

)
+ Cc log

(
σ ′

ov + 	σbldg

σ ′
p

))

Note that from the statement of the problem:

σ ′
p = σ ′

ov + 150 kPa

It is assumed that the excavation and subsequent construction are done under undrained conditions. Hence, the effective
stress after excavation and therefore at the beginning of construction is the same as the effective stress before excavation
begins. This assumption states that during the undrained behavior, the change in total stress due to excavation is the same as
the change in water stress. The following table shows the calculations for each of the four layers of Figure 17.19s.

400 MN

15 m

15 m

15 m

15 m

15 m D

C

B

A

30 m 3 30 m

Figure 17.19s High-rise building.
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Table 17.4s Calculations for the consolidation settlement of the highrise

1 2 3 4 5 6 7

H Depth below ground Depth below foundation
Point (m) surface (m) level (m) σov(kPa) σ ′

ov(kPa) 	σbldg(kPa)

A 15 22.5 7.5 450 225 378
B 15 37.5 22.5 750 375 222
C 15 52.5 37.5 1050 525 111
D 15 67.5 52.5 1350 675 67

8 9 10 11 12 13 14

σ ′
ov + 	σbldg(kPa) σ ′

p(kPa) Cc Cr 	HR(mm) 	HV(mm) 	HT(mm)

603 375 0.4 0.1 221 825 1046
597 525 0.4 0.1 146 223 369
636 675 0.4 0.1 83 0 83
742 825 0.4 0.1 41 0 41

Summing column 14 gives a total settlement of 1539 mm. This is obviously not tolerable for such a building.
The time rate of settlement can be estimated by using the consolidation theory solution described in section 11.4.6. The

time required for a given percentage of the settlement to take place is given by:

tU = TU

H 2

cv

where tU is the time required for U% of the settlement to take place, TU is the time factor (which comes from the theoretical
solution and is obtained from Figure 17.34), H is the drainage length, and cv is the coefficient of consolidation for the soil
obtained from a consolidation test (see section 9.5.1). The parameter U is the average percent consolidation, which is a
function of the time t and is defined as:

U(t) = 	H(t)

	Hmax

where 	H(t) is the settlement after a time t and 	Hmax is the maximum settlement at time equal to infinity. 	Hmax is the
settlement obtained from previous calculations.

The major question in this case is to find the drainage length H. This is done by carefully analyzing the stratigraphy to
estimate the thickness of the compressing layer between two draining layers. Identifying the presence of sand seams in a clay
deposit becomes very important in this case.

Problem 17.15

The annual drying and wetting condition of a site is shown in Figure 17.5s. Calculate the shrink and swell displacement at
the center and at the edge of the building, and then calculate the differential movement between the two points. Hint: Use

εi = 	Hi

Hi

= f
	wi

Ewi
∴ εi = 0.33

	wi

(γw/γd)

and
wi = 25%, γd = 14 kN/m3, γw = 10 kN/m3
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1m

1m

Figure 17.5s Annual drying and wetting condition.

Solution 17.15

ε = 0.33
	wi

(γw/γd)
= 0.33

	wi

10/14
= 0.462	wi

εi = 	Hi

Hi

∴ 	Hi = εiHi

a. Center

Layer wi 	wi εi 	Hi(mm)

1 0.25 ±0.01 ±0.00462 ±4.62
2 0.25 ±0.005 ±0.00231 ±2.31
3 0.25 ±0.002 ±0.00092 ±0.92

The total displacement at the center of the foundation:

• Shrinking: −7.85 mm
• Swelling: +7.85 mm

b. Edge

Layer wi 	wi εi 	Hi(mm)

1 0.25 ±0.05 ±0.0231 ±23.1
2 0.25 ±0.025 ±0.01155 ±11.55
3 0.25 ±0.01 ±0.00462 ±4.62

The total displacement at the edge of the foundation:

• Shrinking: −39.27 mm
• Swelling: +39.27 mm
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Problem 17.16

A stiffened slab on grade for a two-story house is to be designed. The slab and site data are given as follows: slab dimensions
20 m by 20 m, beam spacing s = 3.0 m (for both directions), beam width b = 0.3 m, slab load w = 10 kPa, depth of
movement zone H = 3.0 m, soil surface water content change 	wo = 20%. Recommend a beam depth that will minimize
the distortion of the slab for the edge drop case to more than L/	 = 500.

Solution 17.16

The design process advances by trial and error in the sense that the beam depth is assumed and then the resulting deflection is
calculated and checked against the distortion criterion. If the deflection criterion is not met, a larger beam depth is assumed.
Let’s assume a beam depth of 1.2 m. The calculations then proceed with the soil-weather index Is−w calculations:

	wedge = 0.5 	w0 = 0.5 × 0.2 = 0.1 or 10%

Is−w = 	wedge × H = 0.1 × 3 = 0.3 m

and then the slab bending stiffness:

EI = E bh3/12 = 2 × 107 × 0.3 × 1.23/12 = 8.64 × 105 kN.m2

which leads to the equivalent slab thickness:

b h3/12 = s deq
3/12

deq = h(b/s)1/3 = 1.2 (0.3/3)1/3 = 0.56 m

The values of the design parameters are read on the water content charts for the edge drop case:

Leq = 5.3 m for maximum moment

Lgap = 3.6 m for information

F	max = 2.9 for maximum deflection

Fv = 0.8 for maximum shear

The maximum bending moment is calculated as:

q = 10 × 3 = 30 kN/m line load on each beam

Mmax = 0.5 qLeq
2 = 0.5 × 30 × 5.32 = 421.3 kN.m

The maximum deflection is calculated as:

	max = q Leq
4/F	maxEI = 30 × 5.34/2.9 × 8.64 × 105

	max = 9.5 × 10−3m

The maximum shear force is calculated as:

Vmax = Fvq Leq = 0.8 × 30 × 5.3 = 127.2 kN

This results in a distortion of:

0.5L/	max = 10/9.5 × 10−3 = 1050

Leq/	max = 5.3/9.5 × 10−3 = 558

Note that this example is an extreme case, as a 	w0 of 20% corresponds to extreme weather conditions and a distributed
pressure of 10 kPa is quite high for a house. This is why the beam depth is significant.
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Problem 17.17

Calculate the settlement of the San Jacinto Monument using the pressuremeter data given in section 17.12.3.

Solution 17.17

The steps outlined in section 17.8.5 are used to solve this problem. The calculations are shown in Table 17.5s. The bulbs of
pressure were used to obtain the change in stress at depth. The unit weight of the soil is 18 kN/m3, the size of the foundation
is 37.8 m × 37.8 m, the excavation depth is 4.5 m, the excavation pressure is −83 kPa, the contact pressure between the
foundation and the soil is 224 kPa, and the following equations were assumed, using the values of the moduli given in section
17.12.3:

Eo(MPa) = 15 + 1.125 z(m) = 15 + 1.125 × 38 (z/B) = Eo + E1(z/B)

ER(MPa) = 31.5 + 2.362 z(m) = 31.5 + 2.362 × 38(z/B) = Ero + Er 1(z/B)

The release of pressure due to excavating 4.5 m of soil is:

	pexc = 4.5 × 18 = 81 kPa

The contact pressure under the building is:

	pbldg = 313000/(37.8 × 37.8) = 219 kPa

The total settlement of the monument is the sum of the last two columns or:

Stotal = 41.5 + 114.1 = 155.6 mm

Table 17.5s Calculations of the San Jacinto Monument settlement

H
(m)

Depth to center
of layer (m)

σov
(kPa)

Eo
(kPa)

Er
(kPa)

Pressure
factor

	σexc
(kPa)

	σbldg
(kPa) 	εexc 	εnet

	Hrel
(mm)

	Hnet
(mm)

19 14 252 30750 64575 0.88 71 193 0.001100 0.003970 20.9 75.4
19 33 594 52125 109462 0.50 40 110 0.000365 0.001343 16.9 25.5
19 52 936 73500 154350 0.25 20 55 0.000139 0.000476 2.6 9.0
19 71 1278 94875 199237 0.15 12 33 0.000060 0.000221 1.1 4.2

� = 41.5 � = 114.1

Also:

• Elastic settlement (Equation 17.64)—Using an average modulus of 30 MPa and Poisson’s ratio of 0.35:

s = I (1 − v2)
pB

E
= 0.88(1 − 0.352)

141 × 38

30
= 138 mm

• Long-term settlement (Equation 17.100)—Where s(to) = 138 mm, to = 5 min, t = 70 years, and n = 0.045:

s(t)

s(to)
=

(
t

to

)n

s(t)

138
=

(
70 × 365 × 24 × 60

5

)0.045

s(t) = 281.1 mm
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• Settlement using linear increase of modulus with depth (Equation 17.68)—Using the elastic settlement equation with the
elastic modulus at the surface:

so = I (1 − v2)
pB

Eo

= 0.88(1 − 0.352)
141 × 38

15
= 276 mm

From Figure 17.26, IG is 0.5 (using E1/Eo = 2.85):

E1

Eo

= 1.125 × 38

15
= 2.85

From Equation 17.68, the settlement is:

IG = s1

so

s1 = IGso = 0.5(276) = 138 mm


