
CHAPTER 13

Flow of Fluid and Gas Through Soils

13.1 GENERAL

The fluid and gas phase can either flow through the voids
between the soil particles or stay static in the voids. The flow
is affected by the resistance offered by friction between the
soil particles, by the size of the voids, by the blockage posed
by the gas phase to the fluid flow, by the blockage posed by
the fluid phase to the gas flow, and by the energy gradient in
the fluid or gas. Most of the time the fluid is water and the gas
is air, so from this point on we will talk about water and air.
If other fluids or gasses are involved, the viscosity of the fluid
or gas will change from that of water and air; additionally,
any chemical reaction that may occur between the fluid and
the particles can increase or decrease the size of the voids.

Some of the output quantities of interest in a flow problem
are the water stress, the air stress, the water velocity and its
direction, the air velocity and its direction, and the quantity
of water flowing per unit time. In geoenvironmental studies,
the future location of a moving body of a contaminant is of
interest in predicting the extent of contamination. The soil can
be saturated or unsaturated. The flow of water in a saturated
soil is the simplest case, so we will start with that.

13.2 FLOW OF WATER IN A SATURATED SOIL

13.2.1 Discharge Velocity, Seepage Velocity,
and Conservation of Mass

One of the two main equations used to solve flow problems in
soils is the conservation of mass equation, which in this case
states that the flow Q in m3/s is equal to the cross-sectional
area A times the water velocity v:

Q = vA (13.1)

One distinguishes between the discharge velocity and the
seepage velocity (Figure 13.1). The seepage velocity vs is
the actual velocity of the water. In other words, if you were
riding on the water molecule, what you would read on the
speedometer would be the seepage velocity. Also, if you put a
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Figure 13.1 Steady flow of water through soil.

dye in the water and you could see through the soil, you would
see the colored water propagate at the seepage velocity. The
cross section associated with that velocity is the actual cross
section of the voids Av.

Q = vsAv (13.2)

Because Av is difficult to estimate, the discharge velocity v
is used instead in almost all calculations. The discharge
velocity is the ratio of the flow Q divided by the total cross-
sectional area At of the soil being traversed by the water (voids
plus grains). The discharge velocity is not the actual water
velocity, but it is a convenient value to use for calculation
purposes:

Q = vAt (13.3)

Using Eqs. 13.2 and 13.3 gives the relationship between
the seepage and discharge velocity as

vAt = vsAv or v = nvs (13.4)

where n is the porosity of the soil. This shows that the seepage
velocity is higher than the discharge velocity (2 to 3 times
higher). Although vs is the actual water velocity, in most
geotechnical problems we will use the discharge velocity v.
One exception concerns the propagation of contaminated
plumes, where it is important to know where the contaminated
water is going as a function of time; in this case the seepage
velocity must be used. In any case, switching from one to the
other can be achieved simply by using Eq. 13.4.
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13.2 FLOW OF WATER IN A SATURATED SOIL 371

13.2.2 Heads

The energy level in the water is measured in height of water or
head. The total head ht represents the total energy available
to the water to drive through the soil voids. The pressure
head hp represents the energy stored as pressure in the water.
The elevation head he represents the potential energy, and
the velocity head hv represents the kinetic energy. The total
head is the sum of the pressure head plus the elevation head
plus the velocity head:

ht = hp + he + hv (13.5)

Because water flows very slowly through soils (mm per
second at most), the velocity head is assumed to be zero
for all practical purposes. The pressure head times the unit
weight of water γw gives the water stress uw or pore pressure:

uw = hpγw (13.6)

The elevation head is measured with reference to an arbi-
trarily chosen datum. This arbitrary choice does not affect the
results because all calculations involve changes in quantities,
not absolute quantities. The total head of a water molecule at
the surface of a lake is the same as the total head of a water
molecule at the bottom of that lake (Figure 13.2). Indeed,
at the surface, the pressure head is zero but the elevation
head is the water depth (if the lake bottom is chosen as the
datum), whereas at the bottom of the lake the elevation head
is zero but the pressure head is equal to the water depth (water
pressure divided by unit weight).

As the water drives through the voids of the soil, it burns
energy or total head. The loss of energy is due to the friction
that exists between the water molecules and the soil particles.
This friction force is called the seepage force S. At any point
M in the soil, the elevation head can be obtained as the
vertical distance between M and the arbitrarily chosen datum
(Figure 13.3). At any point M in the soil, the pressure head
can be measured by placing a standpipe connected to M at
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Figure 13.2 Heads in a lake with no flow.
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Figure 13.3 Pressure head at M.

one end and to the atmosphere at the other and measuring
the vertical distance between M and the water level in the
pipe. The standpipe does not have to be vertical or even
straight as long as there is a clear water path from M to the
atmospheric pressure. Figure 13.4 shows an example of head
diagrams from a constant head permeameter and a falling
head permeameter.

13.2.3 Hydraulic Gradient

The hydraulic gradient is defined between two points A
and B along the path of water travel, called the flow path.
The hydraulic gradient is the ratio of the loss of total head
between A and B over the actual distance traveled by the
water to go from A to B (not always the straight line joining
the two points):

iAB = htA − htB

lAB
= �htAB

lAB
(13.7)

where iAB is the hydraulic gradient between A and B, �htAB is
the loss of total head between A and B, and lAB is the length of
the flow path from A to B. The hydraulic gradient is unitless
and varies from about 0.1 to 2 in the field. The hydraulic
gradient represents a rate of energy consumption. It is similar
in concept to gas consumption for a car. Gas in the tank
of a car is energy that is burned when traveling from one
point to another; the amount of gas burnt per actual distance
traveled on the highway is the gas consumption. If you wish
to figure your car consumption from one point to another,
you use the actual distance travelled, not the straight-line
distance between the two cities. The same applies for the
hydraulic gradient. The hydraulic gradient between D and C
in Figure 13.4a is:

iDC = htD − htC

lDC
= 1.12 − 0.96

0.2
= 0.8 (13.8)

The hydraulic gradient between C and D on Figure 13.4b
is:

iCD = htC − htD

lCD
= 0.8 − 0.4

0.2
= 2 (13.9)

13.2.4 Darcy’s Law: The Constitutive Law

This law is named after Henry Darcy, a French engineer, who
discovered it in 1855 as he was working on a problem with the
public fountains in Dijon, France (yes, that’s the mustard city).
The experiment that Darcy set up is essentially the same as
the constant head permeameter shown in Figure 13.4a. Darcy
varied the water level and the length of the sample while
measuring the flow coming out of the sample. He found that
there was a linear relationship between the water velocity
and the hydraulic gradient (Figure 13.5). The slope of that
line is called the hydraulic conductivity k and Darcy’s law
states that the discharge velocity v is equal to the hydraulic
conductivity k times the hydraulic gradient i:

v = ki (13.10)
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Figure 13.4 Head diagram examples: (a) Constant heat permeameter. (b) Falling head
permeameter.
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Figure 13.5 Darcy’s law.

Going back to the analogy with the car and its gas con-
sumption, it would mean that the gas consumption of the car
is linearly proportional to the speed of the car. Darcy’s law
is the most important constitutive law related to the flow of
fluids through soils.

In Figure 13.4a, if the hydraulic conductivity of the sand is
10−5 m/s, and considering the hydraulic gradient of Eq. 13.8,
the discharge velocity is:

v = 10−5 × 0.8 m/s = 0.008 mm/s = 691 mm/day
(13.11)

In Figure 13.4b, if the hydraulic conductivity of the clay is
10−10 m/s, the discharge is:

v = 10−10 × 2 m/s = 0.0000002 mm/s = 6.3 mm/year
(13.12)

Darcy’s law applies to fluid flow and is parallel to Fourier’s
law for heat flux, to Ohm’s law for electrical flux, and to
Fick’s law for diffusive flux. All these laws express that the
propagation of a phenomenon is linearly related to a gradient
of potential through a conductivity constant specific to the
material through which the propagation is taking place. The
analogy can be taken further, as shown in Table 13.1.

13.2.5 Hydraulic Conductivity

The hydraulic conductivity of saturated soils varies widely,
from about 10−2 m/s for some gravels to about 10−11 m/s for
some clays. It is measured in the laboratory with a constant
head permeameter for sands and gravels, or with a falling head
permeameter for silts and clays (see Chapter 9). In the field,
it is measured by using a borehole and performing either a
pumping test or an infiltration test (see Chapter 7). It can also
be obtained by using the piezocone penetrometer test through
pore-pressure decay as a function of time (see Chapter 7).
The hydraulic conductivity obtained by laboratory tests can
be 10 times to 100 times lower than the field value, because
the lab test may be testing the intact soil between fissures
while the field test may include a network of fissures.

The hydraulic conductivity of saturated soils depends on
many factors, including the void ratio, the shape and rough-
ness of the particles, the structure of the soil skeleton, and

Table 13.1 Equivalency between Hydraulic, Heat, and Electricity

Parameter Hydraulic Heat Electricity

Law Darcy Fourier Ohm
Soil property Hydraulic conductivity Thermal conductivity Electrical conductivity
Quantity Volume V(m3) Heat Q(J) Charge q (C)
Potential Head (m) Temperature (K) Potential (V)
Gradient Hydraulic gradient (m/m) Temperature gradient (K/m) Potential gradient (V/m)

Flux Flow rate (m3/s) Heat transfer rate (J/s) Current I(A)
Flux density Velocity v(m/s) Heat flux (W/m2) Current density j(A/m2)
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the fluid properties (viscosity and unit weight). To separate
the influence of the fluid from that of the soil skeleton on the
hydraulic conductivity k, the intrinsic hydraulic conductivity
or simply permeability, K is used:

K = k
μf

γf

(13.13)

where μf is the dynamic viscosity of the fluid, and γf is
the unit weight of the fluid. The value of μf for water is
10−6 kPa.s at 20◦C, and γf for water is 9.79 kN/m3 at 20◦C.
Note that K is in units of m2.

Some empirical relationships have been proposed over
the years for estimating the hydraulic conductivity of coarse-
grained soils. Hazen (1892), working on sand filters, proposed
a formula relating the hydraulic conductivity k to the D10
particle size corresponding to 10% finer on the particle size
distribution curve. The Hazen formula seems to work best for
sands with D10 values between 0.1 and 1 mm.

k(m/s) = C(D10(mm))2 (13.14)

where C is a constant usually taken as 0.01 but with reported
values from 0.1 to 0.001. For D10 values above 1 mm, the
power of 2 for D10 decreases. Kozeny (1927) and Carman
(1938) proposed a semi-empirical formula also for sands:

k(m/s) = γ e3

μCS2
o(1 + e)

(13.15)

where γ is the unit weight of the permeating fluid (kN/m3),
μ is its dynamic viscosity (kN.s/m2), e is the void ratio of
the soil, C is a constant usually taken equal to 5 × 106, and
So is the specific surface of the particles (1/m). The specific
surface is the ratio of the particle surface area over the volume
of the particle. For a sphere it would be:

So = πD2

πD3/6
= 6

D
(13.16)

The factor 6 in Eq. 13.16 goes up to 8.5 for very angular
coarse-grain particles. Using a value of 5 × 106 for C, a value
of 10 kN/m3 for the unit weight of water, and a value of
10−6 kN.s/m for the dynamic viscosity of water at 20◦C, the
formula becomes:

k(m/s) = 2e3

S2
o (mm−2)(1 + e)

(13.17)

The specific surface can be measured or estimated from the
particle size distribution curve (Carrier 2003). Some equations
have been proposed to estimate the hydraulic conductivity of
remolded clays from index properties (Carrier and Beckman
1984):

k(m/s) = 0.0174

1 + e

(
e − 0.027

(
wL − 0.242PI

)
PI

)4.29

(13.18)

Table 13.2 Approximate Range of Hydraulic
Conductivity of Soils

Soil type
Hydraulic conductivity (m/s) for

water flow in saturated soils

Gravel 10−4 to 10−2

Sand 10−6 to 10−4

Silt 10−8 to 10−6

Clay 10−11 to 10−8

where e is the void ratio, wL is the liquid limit, and PI is the
plasticity index. Table 13.2 gives a range of possible hydraulic
conductivity values for saturated water flow through soils.

13.2.6 Field vs. Lab Values of Hydraulic Conductivity

One of the difficult issues in soil hydraulic conductivities
is the different values obtained in the laboratory at small
scale, klab, and in the field at large scale, kfield, particularly
for fine-grained soils. The difference can be several orders of
magnitude, as shown conceptually in Figure 13.6. Among the
reasons for this large difference is the lack of representative-
ness of the small samples. Indeed, often the small samples
do not reflect the influence of the large-scale features of a
soil deposit on the hydraulic conductivity k. These features
include cracks and fissures formed through successive drying
and wetting or simply bending of the soil mass over geologic
time. Hence, the lower values given in Table 13.2 may repre-
sent the lab values, while the higher values may represent the
large-scale field values.

13.2.7 Seepage Force

Seepage force is a drag force that develops at the interface
between flowing water and soil particles. It is due to the
viscous friction between the two elements. If the water and
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scale hydraulic conductivity.



374 13 FLOW OF FLUID AND GAS THROUGH SOILS

the soil particles are considered together in a free-body
diagram, the seepage force is an internal force and does not
enter into the equilibrium of the free body. Indeed, only the
external forces influence the equilibrium of the free body.
However, if the soil skeleton made only of the particles is
considered as the free body and the water is external, then
the seepage force must be considered in the equilibrium of
the free body, as it is now an external force. Similarly, if
the water only is considered as the free body, then again the
seepage force is an external force.

Let’s see how we can calculate the magnitude of this
seepage force. For this, we consider the sketch of Figure 13.7
in which water flows from A to B in a cylinder of diameter
D filled with soil. As explained earlier, we must consider
either the free body of the soil skeleton alone or the free
body of the water alone to make the seepage force appear in
the equilibrium of the free body. It is easier in this case to
consider the free body of the water in the cylinder between
point A and point B. So, imagine the body of water with all
the soil particles removed; it looks like Swiss cheese. The
external forces are the seepage force, which is the summation
of all the small friction or drag forces the soil particles exert
on the water; the oblique upward force at point A due to the
water pressure at that point; the oblique downward force at
point B due to the water pressure; and the weight of the water.
The weight of the particles is another external force, but it is
carried by the container.

The equilibrium of the free body of water in the flow
direction is written as:

hpAγwA − hpBγwA − S − W sin α = 0 (13.19)

where hpA and hpB are the pressure head at A and B re-
spectively, γw is the unit weight of water, A is the total
cross-sectional area (πD2/4), S, S is the seepage force, W

is the weight of the water body, and α is the angle between
the flow direction and the horizontal. Note that A is not the
correct area to use, as there are holes in this “Swiss cheese”
water body. We consider this area, even though it is wrong,
for the same reason that we consider the cross-sectional
area, even though it is wrong, for the determination of
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Figure 13.7 Seepage force.

discharge velocity (Section 13.2.1). The term W sin α can be
expressed as:

W sin α = ALγw
heA − heB

L
(13.20)

where heA and heB are the elevation head at A and B respec-
tively and A is the total cross-sectional area. Again, this is not
the correct area to use, as there are holes in the “Swiss cheese”
water body, but it is consistent with the area chosen for the
equilibrium equation (Eq. 13.19). Then, using Eqs. 13.19 and
13.20, the seepage force per unit of soil volume (S/AL) can
be written as:

S

AL
= hpAγw − hpBγw

L
+ γw

heA − heB

L
= htA − htB

L
γw

= iABγw (13.21)

where iAB is the hydraulic gradient between A and B. There-
fore, the seepage force s per unit volume of soil is given
by iγw and exists in the direction of the hydraulic gradient.
This is where the choice of the “wrong” area—total cross-
sectional area—becomes useful; if we had used the correct
area, we would have obtained the seepage force per unit of
water volume, which would be more difficult to calculate
than the simpler volume of soil:

→
s = γw

→
i (13.22)

For example, if the hydraulic gradient is 1 (a rather high but
not unusual hydraulic gradient for common flow problems),
the seepage force for one cubic meter of volume is 10 kN, or
about one ton. This is a significant force. Note that the seepage
force is zero when there is no flow (i = 0) and therefore does
not include the buoyancy force, which is always in the vertical
upward direction.

13.2.8 Quick Sand Condition and Critical
Hydraulic Gradient

If the flow is upward and in the vertical direction, the seepage
force adds to the buoyancy force to lighten the soil particles,
and can become high enough to make the soil particles
weightless (Figure 13.8).

This is called a quick sand condition and the corresponding
hydraulic gradient is called the critical hydraulic gradient ic.
Referring to Figure 13.9, the buoyancy force Fb on the soil
volume of cross-sectional area A and length L is equal to:

Fb = ALγw or fb = Fb

AL
= γw (13.23)

where fb is the buoyancy force per unit volume. In the case
where the flow is vertical upward, the equilibrium of forces
per unit volume when the quick condition is reached is:

s + fb = γwic + γw = γsat or ic = γsat

γw
− 1 (13.24)
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Figure 13.8 Quick sand condition. (Courtesy of Lee Krystek)
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Figure 13.9 Seepage force for upward and downward flow.

Another way to arrive at this result for the critical gradient
ic is to consider the experiment of Figure 13.4 and ask when
the total head difference between A and B will be sufficient
to generate an effective stress equal to zero at the bottom of
the sample:

σ ′ = σ − uw = γsatL + γwhpB − γwhpE = 0 (13.25)

γsatL + γw(htB − heB) − γw(htE − heE)

= γsatL − γw(htE − htB) − γwL = 0 (13.26)

ic = htE − htB

L
= γsat

γw
− 1 (13.27)

Note that because γsat/γw is about 2, the critical gradient is
about 1. If you fall into a quick sand, it is like falling into a
very thick liquid. This liquid has the unit weight of the soil
(∼20 kN/m3), which is typically equal to about two times
the unit weight of the human body (∼10 kN/m3). Therefore,
theoretically you should sink halfway into the quick sand
until the buoyancy force counterbalances your weight. One
problem is that if you do not stay still, you will go down, as
there is no bearing capacity under your feet, and it will be
difficult to go back up as this heavy liquid can develop friction
resisting your movement upward. So, if you fall in such a
quick sand, stay still and hope that the theory is correct! In
contrast, if the flow is downward, the seepage force increases

the weight of the particles artificially and the bearing capacity
is improved compared to a no-flow condition. Figure 13.9
illustrates these conditions.

13.2.9 Quick Clay

A quick clay is something completely different from a quick
sand condition. A quick clay is a clay that is a solid in its
natural state, but turns into a liquid when disturbed. This
disturbance can come from shearing because of loading.
Such clays typically were slowly deposited in a seawater,
offshore environment and, through geologic aging, are now
in an onshore environment. One mechanism is loading by
glaciers, which were as thick as 300 m some 10,000 years ago
but have now melted, thereby allowing the offshore clays to
rebound and become above ground in the process. The slow
offshore deposition can lead to a card-castle type of structure
for the clay particles (edge-to-face contacts) with a high
porosity and abundant salt content in the pore water and at
the contacts. Then, in the onshore environment, the clay has
been permeated by rainwater (distilled water) or groundwater
(usually low-salinity water) and the salt has been washed
away from the voids in the clay, leaving only some salt at the
contacts between the clay particles and the low-salinity water
in the voids. The salt strengthens the particle contacts and
therefore the structure because it decreases the repulsion that
typically exists between electrically charged clay platelets.
The intact clay may have an undrained shear strength of
25 kPa and a water content of 30% in the undisturbed case,
for example. The low-salinity water leaches the salt away and
weakens the bond between particles. If this fragile structure is
disrupted by shearing or vibrations, for example, the structure
collapses and the mixture of water from the voids and clay
particles becomes a thick liquid (Figure 13.10). If salt is
then added to the thick liquid and mixed by stirring, the clay
regains some strength (Figure 13.10).

13.2.10 Sand Liquefaction

The phenomenon of sand liquefaction should be distinguished
from the quick sand condition. Quick sand conditions are due
to sufficiently rapid upward flow, whereas sand liquefaction is
typically related to earthquake shaking. During such violent,
repeated shaking, the water in the saturated sand does not
have time to escape the pores (undrained behavior), so the
pressure in the water goes up. If the water stress uw becomes
so high as to equal the total stress σ , then the effective
stress σ ′(σ ′ = σ − uw) becomes equal to zero and the sand
liquefies. This heavy liquid can flow to the surface and create
sand boils, which are often found at the ground surface after
a severe earthquake (Figure 13.11).

13.2.11 Two-Dimensional Flow Problem

Some of the structures involving problems associated with
steady-state flow through saturated soils include earth dams,
cofferdams, spillways, cutoff walls, retaining walls, and



376 13 FLOW OF FLUID AND GAS THROUGH SOILS

(a) (b)

(c) (d)

Figure 13.10 Rissa landslide clay, Norway 1978: (a) Intact quick clay. (b) Remolded clay.
(c) Adding salt to remolded clay. (d) Remolded clay strengthened by salt. (Pictures/images are
from the film The Quick Clay Landslide in Rissa, Norway, Made by Norwegian Geotechnical
Institute [NGI])

Figure 13.11 Sand boil. (Courtesy of USGS.)
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slopes. Some of the questions that must be answered in
design are:

1. What is the water stress (pore pressure) at any point in
the soil mass?

2. What is the amount of water flowing through the soil?
3. What is the uplift force exerted on a structure buried in

the soil?
4. What is the factor of safety against a quick sand condi-

tion developing under or near a structure?
5. What happens when the hydraulic conductivity is dif-

ferent in two directions?
6. What happens if the soil is layered rather than being

uniform?

To answer these questions, it is necessary to solve the flow
problem. The following assumptions are made:

1. The soil is uniform with the same hydraulic conductivity
in all directions.

2. The soil is saturated with water and the water is in
compression.

3. The water is incompressible.
4. Darcy’s law governs the water flow through the soil.
5. The flow is in two directions only (x and z, but no flow

in the y direction).
6. The flow is independent of time: steady-state flow.

To solve the problem with these assumptions, we use the
problem-solving method outlined in section 11.4.5:

1. Zoom in at the element level. We select an element of
soil that has an elementary area dx dz with a dimension
of 1 in the y direction (Figure 13.12).

2. Considering the element of Figure 13.12, the water
velocity is vx in the x direction and vz in the z direction

when it enters the element and vx + ∂vx

∂x
dx and vz +

∂vz

∂z
dz when it exits the element. It is assumed that the

water does not flow in the y direction because of the
plane strain assumption.

vz

vx dxvx 1

dy
 5

 1
  

dz

dx

−vx

−x

dzvz 1
−vz

−z

Figure 13.12 Element of soil in the flow mass.

3. The fundamental equation in this case is the conservation
of mass equation, expressing that the flow of water in
the element is equal to the flow of water out of the
element. Use is made of the flow equation (Q = vA):

vxdz × 1 + vzdx × 1 =
(

vx + ∂vx

∂x
dx

)
dz × 1

+
(

vz + ∂vz

∂z
dz

)
dx × 1 (13.28)

∂vx

∂x
+ ∂vz

∂z
= 0 (13.29)

4. The constitutive equation describes how fast the water
flows through the soil (Darcy’s law):

vx = kix = k
dht

dx
and vz = kiz = k

dht

dz
(13.30)

5. The governing differential equation is obtained by com-
bining Eq. 13.29 and the first derivative of the terms in
Eq. 13.30:

d2ht

dx2
+ d2ht

dz2
= 0 (13.31)

6. This form of differential equation is called the Laplace
equation and the solutions are called harmonic func-
tions.

7. The complexity of the solution is brought about by the
complexity of the boundary conditions. These boundary
conditions describe the flow conditions at the geometric
boundaries of the flow. Equation 13.31 can be solved
mathematically or graphically. The most common so-
lution to this problem is a graphical solution called the
flow net.

The preceding solution is based on the assumption that the
soil mass is uniform, meaning that the hydraulic conductivity
kh is equal to the vertical hydraulic conductivity kv. If kh is
very different from kv, then Eq. 13.31 becomes:

kh

d2ht

dx2
+ kv

d2ht

dz2
= 0 (13.32)

13.2.12 Drawing a Flow Net for Homogeneous Soil

A flow net is a graphical solution to the governing differential
equation for a steady-state flow of water through a pervious
soil. The flow net is made of two sets of lines: the flow lines
and the equipotential lines. The flow lines describe the path
of the water molecules. The equipotentials are lines of equal
potential or total head ht. A flow channel is the soil conduit
between two consecutive flow lines (Figure 13.13d ). A flow
field is the geometric shape between two consecutive flow
lines and two consecutive equipotentials (Figure 13.13d ).
A flow net is a map of the total head ht giving the value of
ht for any point in the flow net with an x and z coordinate.
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Figure 13.13 Sample flow nets.

Figure 13.13 gives examples of flow nets. To draw a flow
net, proceed as follows:

1. Draw the cross section of the flow problem to scale.
2. Draw the boundary flow lines. These are flow lines such

that the total flow through the flow net occurs between these
flow lines.

3. Draw the boundary equipotential lines (also called
boundary equipotentials). These lines define the total head at
the beginning of the flow net ht(beg) and the total head at the
end of the flow net ht(end).

4. Draw an additional two to three flow lines between the
boundary flow lines.

5. Draw the equipotentials such that they cross the flow
lines at a right angle; this is the condition expressed by the
governing differential equation. Choose the equipotentials in
such a way that the flow fields are squares. This is the case
if the flow fields are very small, but at the scale at which
most flow nets are drawn, this condition should be replaced
by: choose the equipotentials in such a way that a circle
can be inscribed in each flow field and is tangent to all four
sides.

6. Adjust the flow lines and the equipotentials until the
conditions of step 5 (perpendicularity and circle inscribed)
are satisfied. This step usually takes the longest time and
requires some experience.
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13.2.13 Properties of a Flow Net for Homogeneous Soil

Two of the most important properties of the flow net are:

1. The potential drop or drop in total head �ht from one
equipotential to the next is the same across any of the
equipotentials.

2. The flow is the same through any of the flow channels.

One of the first things to do when working with a flow
net is to choose the datum: the horizontal line where the
elevation is equal to zero. The chosen datum is usually
located at the location of the bottom impervious layer, so that
all elevations will be positive, but theoretically it can be set at
any level within the diagram. The total head at the beginning
of the flow net ht (beg) and at the end of the flow net ht (end)

can be calculated as follows: The elevation heads he(beg)

and he(end) are simply measured to scale on the diagram (e.g.,
he(beg)(A) = 11 m and he(end)(B) = 2 m on Figure 13.13a). The
pressure heads hp(beg) and hp(end) are readily available from
the free water body connected to the beginning and the end
of the flow net (e.g., hp(beg)(A) = 6 m and hp(end)(B) = 1 m
on Figure 13.13a). The value of ht(beg) and ht (end) can then
be found (e.g., ht (beg)(A) = 11 + 6 = 17 m and ht (end)(B) =
2 + 1 = 3 m on Figure 13.13a). Note that ht (beg) and ht (end)

are constant on the equipotential; indeed, if you try a different
point on that equipotential you will find the same value (e.g.,
ht (beg)(A′) = 5 + 12 = 17 m on Figure 13.13a).

The number of flow channels is Nf and the number of
equipotential drops is Nd (Figure 13.13d). One of the prop-
erties of the flow net is that the drop of total head �ht across
two consecutive equipotential lines is the same for all flow
fields; it is given by:

�ht = (ht(beg) − ht(end))

Nd

(13.33)

Once ht (beg) and ht (end) are known, the total head ht (M) can
be found for any point in the flow net by interpolation:

ht(M) = ht(beg) − nd

(ht(beg) − ht(end))

Nd

(13.34)

where nd is the number of drops to go from the beginning of
the flow net to the point considered. For example, consider
point M in the flow net of Figure 13.13a. The elevation head
at point M is 7 m and the total head is:

ht(M) = 17 − 1.7
17 − 3

9
= 14.35 m (13.35)

The hydraulic gradient i in any flow field is:

i = �ht

l
(13.36)

where �ht is the loss of total head in the flow field (a constant
for all flow fields) and l is the flow path across the flow

field (varies from one flow field to another). Therefore, the
hydraulic gradient varies throughout the flow net and is
inversely proportional to the length of the flow field. Because
the velocity is linearly related to the hydraulic gradient
through the hydraulic conductivity of the soil, the water
velocity increases when the size of the flow field decreases.
To illustrate, imagine that you can ride a water molecule in
Figure 13.13e and that you have the choice between molecule
at point A and molecule at point B; which molecule should
you choose if you wish to win the flow net race? Molecule
A is your best bet because it is associated with smaller flow
fields, higher gradients, and therefore higher velocities. Note
that although A will burn the same amount of energy (total
head) as B to travel through the flow net, it has a shorter trip
to travel and can afford to step on the gas and have a higher
energy consumption per meter travelled (hydraulic gradient).
Thus, molecule A will get to C before molecule B gets to D.
You can check this race by using a colored dye in the water at
the upstream face of the flow net in a laboratory experiment.

13.2.14 Calculations Associated with Flow Nets

Quantity of Flow

How much water will go through a flow net per unit time?
This is important for a dam, for example. The flow q through
one flow channel is:

q = kiA = kid × 1 (13.37)

where A is the cross section through which the water flows.
A is equal to d × 1 where d is the width of the flow field
perpendicular to the flow and 1 represents the unit width of
the flow net perpendicular to the flow net (Figure 13.13e).
Because the flow field is a square, its width d is equal to its
length l over which the total head drops by �ht . Therefore,
Eq. 13.37 can be rewritten as:

q = k
�ht

l
l × 1 = k�ht (13.38)

Furthermore, the flow through one flow field is the same as
the flow through all flow fields in one flow channel, because
no water crosses over into other flow channels. If we go
back to the car traffic analogy, in water flow no one changes
lanes; everybody stays in their own lane, but the highway is
totally congested (saturated soil), so all lanes carry the same
traffic flow. The flow q is also the same in all flow channels.
Because there are Nf flow channels, the flow per unit width
of flow net is Nf × q. If the length perpendicular to the plane
of the flow net over which the flow takes place is L, the total
flow Q through or under the structure is Nf × q × L. Using
Eq. 13.38 leads to the formula for the total flow:

Q = k
Nf

Nd

L(ht(beg) − ht(end)) (13.39)
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Water Stress

What is the water stress uw at any point in the flow net? This
is important for calculating the effective stress at any point
or even calculating the uplift force on a buried solid structure
like a spillway. The procedure is as follows:

1. Calculate the total head at the point M considered by
using Eq. 13.34.

2. Subtract the elevation head to obtain the pressure head
hp(M).

3. Get the water stress by:

uw = hp(M)

γw
(13.40)

where γw is the unit weight of water. Note that uw
includes the hydrostatic stress, because the pressure
head is the level at which the water would rise in a pipe
connected to M . If there were no flow, that height would
correspond to the hydrostatic height.

Uplift Force on a Buried Structure

What is the upward force generated by the water pressure
under a solid structure buried in the flow net? This force
Fup is the result of the water pressure acting on the bottom
of the structure, as in the case of the spillway shown in
Figure 13.13b. The procedure for determining upward force
is as follows:

1. Select a few points in the flow net along the bottom of the
structure. A minimum of four points is recommended
(A, B, C, D).

2. Calculate the water stress uA, uB, uC, and uD at A, B,
C, and D.

3. Calculate the average water stress uav under the struc-
ture.

4. Calculate the uplift force as:

Fup = uavBL (13.41)

where B is the width of the structure (dam) and L is the
length.

Exit Gradient

What is the highest hydraulic gradient on the exit face of
the flow net? This is called the exit gradient. Because the
drop in total head is the same for any two consecutive
equipotentials, the highest hydraulic gradient on the exit face
(exit gradient) is associated with the smallest flow field on
the exit face (Eq. 13.36). Because the exit face is often a
horizontal plane, the exit gradient iexit is compared to the
critical hydraulic gradient icrit to avoid a critical condition
(quick sand). A large factor of safety F is usually used:

iexit = icrit

F
or

�ht

l
= 1

F

(
γsat

γw
− 1

)
(13.42)

If the required factor of safety is not satisfied, the flow
must be modified to satisfy the required factor of safety. This
can be done by using cutoff walls, deepening barriers, or
preventing the flow altogether.

Heave and Critical Block

A calculation similar to the comparison between the exit
gradient and the critical gradient can be performed in the case
of retaining structures, as shown in Figure 13.14. In this case a
block of soil is identified where the flow is upward and could
create a quick sand condition. The free body considered is the
soil particles only, with the water as an external body. In this
case, the weight of the soil particles is the buoyant weight
and the seepage force is an external force acting vertically
and upward on the soil particles. The factor of safety against
heave is the ratio of the buoyant weight of the particles
divided by the seepage force:

F = W ′

S
=

(γsat − γw)D × D

2(
ht(A) − ht(B)

D

)
γwD × D

2

= (γsat − γw)D

(ht(A) − ht(B))γw

(13.43)

13.2.15 Flow Net for Hydraulically Anisotropic Soil

The procedure described in section 13.2.12 is used for a soil
that has the same hydraulic conductivity in the vertical and
horizontal directions. If the horizontal hydraulic conductivity
kh is significantly different from the vertical hydraulic con-
ductivity kv, then the flow net is distorted because Eq. 13.32
applies and the flow lines and equipotential lines no longer
intersect at right angles. A change of variable can bring
Eq. 13.32 back to Eq. 13.31:

x = αx′ and z = z′ (13.44)

kh

α2kv

d2ht

dx′2 + d2ht

dz′2 = 0 (13.45)

which shows that if:

α = √
kh/kv (13.46)

then the flow net can be drawn for the anisotropic soil with
a proper scale transformation in the x direction. The steps to

Flow

Critical block

A

D

D/2

B

Figure 13.14 Heave of critical block.
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draw the flow cross section to scale in the section 13.2.12
procedure are modified as follows:

1. Select a scale for the vertical z direction.
2. Select a scale for the horizontal x direction such that the

horizontal scale is equal to
√

kh/kv times the vertical
scale.

3. Draw the flow net according to the procedure of
section 13.2 12.

4. If needed, use that flow net to go back to the untrans-
formed set of axes and draw the resulting flow net in
that space; understand that in that space, the flow lines
and equipotential lines will not intersect at right angles
and the flow fields will not be squares.

For example, if the hydraulic conductivity kh was 4 ×
10−8 m/s in the horizontal direction and kv was 10−8 m/s
in the vertical direction, the transformed cross section of
the scaled diagram would be shrunk by a factor of 2 in
the horizontal direction while it was kept unchanged in the
vertical direction (Figure 13.15). Then the flow net would be
drawn as if the soil were uniform. Note that the quantity of
flow equation would become:

Q = √
khkv

Nf

Nd

L(ht(beg) − ht(end)) (13.47)

13.2.16 Flow and Flow Net for Layered Soils

If the flow goes from layer 1 with a hydraulic conductivity
k1 to a layer 2 with a hydraulic conductivity k2, then the flow
lines and the equipotential lines are deflected. If the approach
angle of the flow line coming from layer 1 to the interface
is θ1 (Figure 13.16), the angle with which that flow line
leaves the interface into layer 2 is θ2 and is different from θ1.
The angles are linked by the following equations:

k1

k2
= tan θ1

tan θ2
(13.48)

If the flow is either parallel to the interface or perpendicular
to the interface, then the flow lines are not deflected and an
equivalent hydraulic conductivity ke can be found.

In the case where the flow is parallel to the interface of
two layers (Figure 13.17), the hydraulic gradient across two
equipotentials is the same in both layers:

i1 = i2 = htB − htA

L
= ie (13.49)

k1

k2

θ2

θ1

k2

k1 tan  1

tan  2
=

Figure 13.16 Flow line crossing layer interface.
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Figure 13.17 Flow parallel to parallel layers.

The flow is additive:

q = q1 + q2 = v1H1 × 1 + v2H2 × 1 (13.50)

or
keie(H1 + H2) = k1i1H1 + k2i2H2 (13.51)

Therefore:

ke = k1H1 + k2H2

H1 + H2
(13.52)

This result can be generalized for n layers.

ke =

n∑
i=1

kiHi

n∑
i=1

Hi

(13.53)
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Figure 13.15 Flow net for anisotropic soil.
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Figure 13.18 Flow perpendicular to parallel layers.

In the case where the flow is perpendicular to two layers
(Figure 13.18), the flow across two equipotentials is the same
in both layers:

q = q1 = q2 and

q = keieL × 1 = k1i1L × 1 = k2i2L × 1 (13.54)

The loss of total head, however, is additive:

�ht = �ht 1 + �ht 2 (13.55)

but

ie = �ht

H1 + H2
and i1 = �ht1

H1
and i2 = �ht2

H2

(13.56)
Therefore,

H1 + H2

keL
q = H1

k1L
q1 + H2

k2L
q2 (13.57)

and
ke = H1 + H2

H1

k1
+ H2

k2

(13.58)

This result can be generalized for n layers:

ke =

n∑
i=1

Hi

n∑
i=1

Hi

ki

(13.59)

13.3 FLOW OF WATER AND AIR
IN UNSATURATED SOIL

13.3.1 Hydraulic Conductivity for Water and for Air

There is a need to distinguish between the soil hydraulic con-
ductivity for water kw and the soil hydraulic conductivity for
air ka; kw expresses how fast water travels through the water
phase and ka expresses how fast air travels through the air

phase. One of the fundamental observations regarding water
flow in unsaturated soils is that the hydraulic conductivity
of water decreases compared to saturated soils. You might
think that as the soil becomes drier, there is more room for
the water to go through, but that is not the case, because air
occupies the voids and cannot get out of the way unless you
chase it out somehow. Instead, the water has to go through
what is left of water in the soil. The air may be thought of
as blocking the flow like particles do. In this sense, the area
blocking the flow has increased from the area associated with
the particles (solid phase) in the case of a saturated flow to the
area associated with the particles plus the air phase in the case
of unsaturated flow. This means that the cross-sectional area
decreases and that the drag force increases because the water
is bound more tightly to the particles. Thus, the hydraulic
conductivity decreases because:

1. Cross-sectional area of water flow decreases
2. Tortuosity increases
3. Drag forces increase

Note also that the difference between the discharge velocity
v and the seepage velocity vs (actual water molecule velocity)
is increased. Recall that for saturated flow we had:

Saturated flow:

vAt = vsA v or v = nvs (13.60)

where At is the total cross-sectional area of the soil where the
water flows, Av is the area of voids where the water can flow
in the saturated case, and n is the porosity.

In the case of unsaturated flow, the equation becomes:
Unsaturated flow:

vAt = vsAw or v = Snvs (13.61)

This gives an indication that the degree of saturation will
have a significant influence on the hydraulic conductivity
of the water. When the degree of saturation decreases, so
does the water content, and the water tension increases in
the soil. Therefore, the higher the water tension, the lower
the hydraulic conductivity of water is for an unsaturated soil.
The reverse is observed for the hydraulic conductivity of air,
which increases as the water content decreases and the water
tension increases.

Figure 13.19 illustrates what happens to the water hydraulic
conductivity kw when a coarse-grained soil and a fine-grained
soil desaturate, which means that they are subjected to higher
and higher water tension. At low water tension (∼ saturated),
the coarse-grained soil has a much higher kw (e.g., 10−4 m/s)
than the fine-grained soil (e.g., 10−7 m/s). Indeed, the water
travels a lot faster through a saturated coarse-grained soil
than through a saturated fine-grained soil. The water tension
corresponding to the air entry value for the coarse-grained
soil (e.g., uwae = 10 kPa) is much lower than for the fine-
grained soil (e.g., uwae = 1000 kPa) because it is a lot easier
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Figure 13.19 Constant head permeameter test results for unsaturated soils.

for the air to enter the large pores than the small pores.
The crossover occurs because it does not take much of an
increase in water tension to desaturate the pores of a coarse-
grained soil compared to what is required to drive the water
out of the pores of a fine-grained soil. The fine-grained soil
retains more water longer while the water travels through
its pores, compared to the coarse-grained soil. As a result,
at high water tension (e.g., 5000 kPa), the kw value of the
coarse-grained soil (e.g., 10−11 m/s) can be much lower than
the kw value of the fine-grained soil (e.g., 10−8 m/s).

When the soil is dry, the value of air hydraulic conductivity
ka is maximum and equal to ka(dry). This trend is contrary to
the trend for the hydraulic conductivity of water kw. Indeed,
kw decreases when the soil gets drier; it is maximum when
the soil is saturated and equal to kw(sat). Both hydraulic
conductivities are often presented as normalized values as
follows:

kw = krwkw(sat) (13.62)

ka = kraka(dry) (13.63)

Figure 13.20 shows an example of the combined variation
of both normalized hydraulic conductivity values krw and kra
as a function of the degree of saturation S. Note that there is a
limiting degree of saturation Sw (0.3 on Figure 13.20) where
the water is no longer mobile (bound water) and at the same
time a limiting degree of saturation Sa (0.85 on Figure 13.20)
where the air is no longer mobile (occluded air). These two
stages correspond to the residual stages.

A number of models have been proposed to describe the
variation of the hydraulic conductivity as a function of water

content, or water tension, or degree of saturation. Among the
most popular are:

Averjanov (1950)

kw = kwsS
n
e (13.64)

LaLiberte and Correy (1966)

kw = kws

(
uwae

uw

)n

(13.65)

Gardner (1958)

kw = kws

1 + aun
w

(13.66)

where kw is the hydraulic conductivity to water, kws is the
hydraulic conductivity to water when the soil is saturated, Se
is the effective degree of saturation, uw is the water tension,
uwae is the water tension at the air entry, and a and n are
fitting parameters.

The hydraulic conductivity of unsaturated soils depends
on many factors, including the degree of saturation, the void
ratio, the shape and roughness of the particles, the structure of
the soil skeleton, and the fluid properties (viscosity and unit
weight). To separate the influence of the fluid from that of
the soil skeleton on the hydraulic conductivity k, the intrinsic
hydraulic conductivity, or simply permeability K , is used:

K = k
μf

γf

(13.67)

where μf is the dynamic viscosity of the fluid, and γf is
the unit weight of the fluid. At 20◦C and one atmosphere,
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Figure 13.20 Relative hydraulic conductivity of water and air as a function of degree of saturation.

the value of μf for water is 10−6 kPa.s and γf for water is
9.79 kN/m3 At 20◦C and one atmosphere, the value of μf

for air is 1.82 x 10−5 Pa.s and γf for air is 11.8 N/m3. Note
that K is in units of m2.

13.3.2 One-Dimensional Flow

Let’s now study the problem of a soil layer sitting in the
sun and drying from the inside out or sitting in the rain and
getting wet from the outside in. The question here is: What is
the change in water stress as a function of time and depth in
the soil layer? The assumptions are:

1. The soil is uniform with the same hydraulic conductivity
in all directions.

2. The soil is unsaturated, with both water and air present
3. The water is incompressible, but the volume of water in

a given soil element can change with time.
4. The soil is not changing volume.
5. Darcy’s law governs the water flow through the soil.
6. The change in elevation head is negligible compared to

the change in pressure head (water tension).
7. The flow is in one direction only (flow in the z direction,

but no flow in the x or y directions).
8. The flow is transient (dependent on time).

The problem is solved (after Aubeny and Lytton 2004) by
following a process similar to the case of the saturated soil and
as described in the problem-solving method of section 11.4.5.

1. Zoom in at the element level. We select an element of
soil that has an elementary area dx dz with a dimension
of 1 in the y direction (Figure 13.21).

2. Considering the element of Figure 13.21, the water
velocity is vz in the z direction when it enters the
element and vz + dvz when it exits the element. It is
assumed that the water does not flow in the x and y
directions (one-dimensional flow).

dz

0

dx vz 1 dvz

vx 5 0

vz

d y
 5

 1

Figure 13.21 Element of unsaturated soil in the flow mass.

3. The fundamental equation in this case is the conserva-
tion of mass equation, expressing that the flow of water
coming out of the element minus the flow of water en-
tering the element is equal to the time rate of change
of the volume of water in the element:

q(out) − q(in) = dVw

dt
(13.68)

dvz

dz
dx dy dz = dVw

dt
or

dvz

dz
= dVw

V dt
(13.69)

4. The first constitutive equation links the water velocity
vz to the hydraulic conductivity k and the hydraulic
gradient iz (Darcy’s law):

vz = kiz = k
dht

dz
(13.70)

where ht is the total head, which is equal to the pressure
head hp plus the elevation head he. It is assumed that
the change in elevation head is negligible compared to
the change in pressure head (water tension):

dhe � dhp
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Then Eq. 13.70 can be written:

vz = k
dhp

dz
(13.71)

5. The second constitutive equation describes how the
hydraulic conductivity varies with the water stress
(suction). Here the Laliberte and Corey model is used,
with an exponent n equal to 1, which is not unreason-
able but is particularly convenient mathematically:

k = k0hp0

hp

(13.72)

Therefore,

vz = k0hp0

dhp/hp

dz
= k0hp0

d(logehp)

dz
(13.73)

6. The third constitutive equation describes how the water
content varies with the water stress (suction):

dw = c d(log10 hp) = cd(0.434 logehp) (13.74)

where c is the slope of the soil water retention curve
(SWRC).

7. Then Eqs. 13.69 to 13.74 are regrouped while making
use of a change of variable and phase relationships to
obtain the governing differential equation:

Change of variable

u = log10hp = 0.434 logehp (13.75)

Phase relationship

Vw = Ww

γw
= Ww

γw

Ws

Ws

= w
γd

γw
V (13.76)

dvz

dz
= 2.3k0hp0

d2u

dz2
= dw

dt

γd

γw
= c

du

dt

γd

γw
(13.77)

du

dt
= 2.3k0hp0γw

cγd

d2u

dz2
(13.78)

With the diffusivity

α = 2.3k0hp0γw

cγd

(13.79)

Then
du

dt
= α

d2u

dz2
(13.80)

Note that this is the same equation as the one-
dimensional consolidation equation for a saturated
soil, except that u is the log10 of the water stress
expressed as a height of water rather than being the
excess water stress itself.

8. Now the space and time boundary conditions must be
addressed. Let’s assume that the entire semi-infinite
layer is at an initial water tension stress uwi at a time
equal to zero and that the top of the layer is suddenly
subjected to a wet condition that permanently imposes
a much lower water tension uw(z=0) at that boundary
(ground surface).

9. We define the degree of wetting U at any depth z as:

U = uw(z,t) − uwi

uw(z=0,t) − uwi
(13.81)

where uw(z,t) is the water tension at a depth z and a
time t, uwi is the initial water tension throughout the
layer, and uw(z=0,t) is the wetting value of the water
tension permanently applied at the ground surface. We
also define the time factor T as:

T = α
t

z2
(13.82)

The solution to the governing differential equation is given
in this case by the complementary error function, as follows:

U = erfc

(
1

2
√

T

)
(13.83)

Figure 13.22 shows that function.
The average degree of wetting represents the ratio of the

area under the water tension (in excess of the wetting value)
vs. depth profile at time t over the same area at time t = 0
(Figure 13.22). Another way to present the results is shown in
Figure 13.23, where the evolution of the water tension toward
the imposed wet value at the surface is shown as a function
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Figure 13.22 Decrease in water tension with depth in an initially
high-water-tension soil layer subjected to wetting at the ground
surface. (After Aubeny and Lytton 2004)
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Figure 13.23 Decrease in water tension with time at a chosen
depth. (After Aubeny and Lytton 2004)

of time for a given depth z. In that figure the water tension is
normalized as:

U ′ = uw(z,t) − uw(z=0,t)

uwi − uw(z=0,t)

(13.84)

13.3.3 Three-Dimensional Water Flow

The previous example was of a one-dimensional flow of
water perpendicular to the surface of an unsaturated soil.
Let’s look now at what happens in a three-dimensional case.
The assumptions are:

1. The flow is in three directions (x, y, z).
2. The flow is transient (dependent on time).
3. The soil is uniform with different hydraulic conductivi-

ties in the x, y, and z directions.
4. The soil is unsaturated, with both water and air present.
5. The water is incompressible, but the volume of water in

a given soil element can change with time.
6. The soil is not changing volume.
7. Darcy’s law governs the water flow through the soil.
8. The hydraulic conductivity k is a function of the water

tension uw.

The problem is solved by following a process similar
to the case of the saturated soil and as described in the
problem-solving method of section 11.4.5:

1. Zoom in at the element level. We select an element of
soil that has an elementary volume V = dx dy dz.

2. The water velocity is vx in the x direction when it

enters the element and vx + ∂vx

∂x
dx when it exits the

element. The same applies in the y and the z directions
(three-dimensional flow).

3. The fundamental equation in this case is the conservation
of mass equation, expressing that the flow of water
coming out of the element minus the flow of water

entering the element is equal to the time rate of change
of the volume of water in the element:

q(out) − q(in) = dVw

dt
(13.85)

Or, using Q = vA on all faces of the element,

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= dVw

V dt
(13.86)

4. The first constitutive equation links the water velocity
vx to the hydraulic conductivity kwx and the hydraulic
gradient ix (Darcy’s law):

vx = kwxix = kwx
dht

dx
(13.87)

where ht is the total head equal to the pressure head hp
plus the elevation head he, which is the coordinate z.
Then Eq. 13.87 can be written:

vx = kwx

d(hp + z)

dx
= kwx

dhp

dx
and vy = kwy

dhp

dy

but

vz = kwz

d(hp + z)

dz
= kwz

(
dhp

dz
+ 1

)
(13.88)

5. The second constitutive equation describes how the
hydraulic conductivity varies with the water stress (suc-
tion). Here several models could be selected, but in
general suffice to say that:

kw = kw(hp) (13.89)

6. The third constitutive equation describes how the water
content varies with the water stress (suction). If a linear
semilog model is accepted for this part of the soil water
retention curve, then:

dw = c d(log10 uw) (13.90)

where c is the slope of the SWRC. Using the phase
relationship of Eq. 13.76, the following expression is
obtained for the term on the right-hand side of Eq. 13.86:

dVw

V dt
= γd

γw

dw

dt
(13.91)

7. Then Eqs. 13.86 to 13.91 are regrouped to obtain the
governing differential equation. In this process the pres-
sure head is transformed into the water tension by
using:

uw = γwhp (13.92)
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The governing differential equation is then

∂

∂x

(
kwx

(
uw

) ∂uw

∂x

)
+ ∂

∂y

(
kwy

(
uw

) ∂uw

∂y

)

+ ∂

∂z

(
kwz

(
uw

) (
∂uw

∂z
+ 1

))
= cγd

∂(log10 uw)

∂t

(13.93)

8. Now the space and time boundary conditions must be
addressed and the differential equation can be solved.
The solution is the function that describes the water
tension uw for any location (x, y, z) and any time t .

13.3.4 Three-Dimensional Air Flow

Section 13.3.3 gave the steps for generating the governing
differential equation for the water flow in an unsaturated soil.
Now we need to repeat the process for the flow of air in
the unsaturated soil. As shown in Figure 13.17, the water
hydraulic conductivity decreases when the water tension
increases. At the same time, the air hydraulic conductivity
increases when the water tension increases, because more of
the void space is occupied by air. For the flow of water we
made a distinction between the discharge velocity v and the
seepage velocity vs , which were related as follows in the case
of unsaturated flow:

vwAt = vwsAw or vw = Snvws (13.94)

For the air flow the relationship becomes:

vaAt = vasAa or va = (1 − S)nvas (13.95)

For a degree of saturation of about 85% or more, the air
is usually occluded, so we cannot talk about air flow; rather,
we address diffusion of the air mass through the water in the
soil voids. For a degree of saturation of 20% or less, the air
hydraulic conductivity approaches its maximum value.

Blight (1971) and Fredlund and Rahardjo (1993) showed
that Darcy’s law is applicable to the flow of air in soils, and
related the air velocity to the gradient of the total head in the
air by:

vax = ka

∂hta

∂x
(13.96)

The pressure head hpa is related to the air pressure ua by:

ua = γahpa (13.97)

Note that the unit weight of air γa varies with tempera-
ture and pressure (Table 13.3); at 20◦C and at atmospheric
pressure, γa is 11.8 N/m3.

To develop the solution for the three-dimensional flow of
air in soil, we follow the same procedure as in the case
of water:

Table 13.3 Unit Weight of Air

Temperature
(◦C)

Pressure
(atm)

Unit weight
of air (N/m3)

Mass density
(kg/m3)

−10 1 13.17 1.341
0 1 12.67 1.316

10 1 12.23 1.247
20 1 11.81 1.204
30 1 11.43 1.164
40 1 11.05 1.127

1. Zoom in at the element level. We select an element of
soil that has an elementary volume V = dx dy dz.

2. The air velocity is vax in the x direction when it enters

the element and vax + ∂vax

∂x
dx when it exits the element. The

same applies in the y and the z directions (three-dimensional
air flow).

3. Writing the conservation of mass principle for air poses
a problem a bit different from the conservation of mass for
water. Because water is considered incompressible at usual
pressures, conservation of mass is also conservation of vol-
ume, which is what we used for the fundamental equation for
water. However, because air is very compressible, the mass
of air in a given volume could be very different depending on
temperature and pressure. We write that the air mass exiting
the element minus the air mass entering the element is equal
to the change in air mass corresponding to a decrease in
volume of the soil pores of the element over time:

∂(ρavax)

∂x
+ ∂(ρavay)

∂y
+ ∂(ρavaz)

∂z
= 1

V

∂(ρaVa)

∂t
(13.98)

where ρa is the mass density of air, Va is the volume of air in
the element, and V is the volume of the soil element.

4. The first constitutive equation is Darcy’s law for air
flow, which is written for each direction:

vax = kax

γa

∂ua

∂x
and vay = kay

γa

∂ua

∂y

but vaz = kaz

γa

(
∂ua

∂z
+ ρag

)
(13.99)

where ua is the air pressure. The second term in the z direction
indicates the influence of gravity on the air flow. Note that:

kax

γa

= Kax

μa

(13.100)

where K is the intrinsic hydraulic conductivity and μa is the
viscosity of air.
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5. The term on the right-hand side of Eq. 13.98 can be
rewritten as follows by using phase relationships:

1

V

∂(ρaVa)

∂t
= ∂(ρan(1 − S))

∂t
(13.101)

6. The ideal gas law is an additional constitutive equation
describing how the air density ρa varies with the air pressure
ua and temperature T :

ρa = ωa

RT
ua (13.102)

where ωa is the molecular weight of air (kg/mol), R is
the universal gas constant (J/mol.K), and T is the absolute
temperature (K).

7. Then Eqs. 13.98 to 13.102 are regrouped to obtain the
governing differential equation for the flow of air through a
soil:

∂

(
ωa

RT
ua

Kax

μa

∂ua

∂x

)
∂x

+
∂

(
ωa

RT
ua

Kay

μa

∂ua

∂y

)
∂y

+
∂

(
ωa

RT
ua

Kaz

μa

(
∂ua

∂z
+ ωa

RT
uag

))
∂z

=
∂

( ωa

RT
uan (1 − S)

)
∂t

(13.103)

8. Now the space and time boundary conditions must be
addressed and the differential equation can be solved. The
solution is the function that describes the air pressure ua for
any location (x, y, z) and any time t .

PROBLEMS

13.1 .A soil has a porosity of 40%.
a. The soil is saturated and water flows through the soil. Calculate the ratio between the discharge velocity v and the

seepage velocity vs.
b. The soil is unsaturated, with a degree of saturation equal to 35%. Calculate the ratio between the discharge velocity

v and the seepage velocity vs .
13.2 .Water is flowing through three soil layers as shown in Figure 13.1s. The cross section is a square with sides of 100 mm.

The hydraulic conductivity of each soil layer is given in Table 13.1s.
a. What is the equivalent hydraulic conductivity of the three layers?
b. Determine the flow rate exiting the system.
c. Determine the elevation head diagram, the total head diagram, and the pressure head diagram from point A to point D.

q

q

A B C D

1 2 3

0 Datum15 cm15 cm15 cm0 Datum

D 5 10 cm

h1 5 50 cm

h2 5 20 cm

Dh 5 30 cm

Figure 13.1s Three-layer permeameter.



13.3 FLOW OF WATER AND AIR IN UNSATURATED SOIL 389

Table 13.1s Hydraulic Conductivity of Three Soil Layers

Soil Hydraulic conductivity (m/s)

1 1 × 10−4

2 5 × 10−6

3 3 × 10−5

13.3 .Water is flowing through three soil layers as shown in Figure 13.2s. The cross-section is a square with sides of 100 mm.
The hydraulic conductivity of each soil layer is given in Table 13.1s.

a. What is the equivalent hydraulic conductivity of the three layers?
b. Determine the flow rate exiting the system.
c. Determine the elevation head diagram, the total head diagram, and the pressure head diagram from point A to point D.

q

q

A B

0 Datum0 Datum 45 cm

3.33 cm
3.33 cm
3.33 cm

D 5 10 cm

h1 5 50 cm

h2 5 20 cm

Dh 5 30 cm

2
3

1

Figure 13.2s Three-layer permeameter.

13.4 Use the uplift force equation (Eq. 13.41) to calculate the uplift force on a ship and demonstrate Archimedes’ principle.
13.5 .Referring to Figure 13.3s, calculate the following quantities:

a. Elevation head, total head, and pressure head at point M on Figure 13.3sa
b. The quantity of water seeping through the dam of Figure 13.3sa per day
c. Elevation head, total head, and pressure head at points A, B, and C on Figure 13.3sb
d. The uplift force on the bottom of the concrete dam in Figure 13.3sb
e. The hydraulic gradient between points A and B and then between points C and D on Figure 1.3sc
f. The factor of safety against a quick condition on the exit face of the cofferdam (Figure 13.3sc) by the exit gradient

method and the critical block method
g. The seepage force applied by the water on a soil grain on the exit face of the slope if the grain has a volume of 1 mm3

(Figure 13.3sd)
h. The water pressure distribution behind the retaining wall of Figure 13.3se
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Figure 13.3s Flow nets.

13.6 A tube is filled with a relatively dry soil at a water tension corresponding to a pressure head h0 and a volumetric water
content θ0. Water is made available at one end of the tube (Figure 13.4s). As a result, a wetting front is created and
advances from left to right on the figure. The wetted soil has a water tension corresponding to a pressure head of h1 and a
volumetric water content of θ1. How fast will the wetting front propagate across the sample?

X

Wetting front

Soil at h1, u1
(dry)

Soil at h0, u0
(wet)

t 5 t1 t 5 t2

Figure 13.4s Horizontal wetting front propagation.
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13.7 A soil sample has a saturated hydraulic conductivity ksat equal to 10−8 m/s. Estimate the hydraulic conductivity of the
sample if it dries to a degree of saturation equal to 0.9 and then 0.5. Use Figure 13.5s to estimate kunsat.
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Figure 13.5s Relative hydraulic conductivity of water and air as a function of degree of saturation.

Problems and Solutions

Problem 13.1

A soil has a porosity of 40%.

a. The soil is saturated and water flows through the soil. Calculate the ratio between the discharge velocity v and the
seepage velocity vs .

b. The soil is unsaturated, with a degree of saturation equal to 35%. Calculate the ratio between the discharge velocity v
and the seepage velocity vs .

Solution 13.1

a. For a saturated soil, the relation between seepage and discharge velocity is:

v = nvs

Given n = 40%, we have:

v = 0.4vs

v

vs

= 0.4

b. For an unsaturated soil, the relation between seepage and discharge velocity is:

vw = Snvws

Given n = 40% and S = 35%, then:
vw

vws
= Sn = 0.35 × 0.4 = 0.14
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Problem 13.2

Water is flowing through 3 soil layers as shown in Figure 13.1s. The cross section is a square with sides of 100 mm. The
hydraulic conductivity of each soil layer is given in Table 13.1s.

a. What is the equivalent hydraulic conductivity of the three layers?
b. Determine the flow rate exiting the system.
c. Determine the elevation head diagram, the total head diagram, and the pressure head diagram from point A to point D.

q

q

A B C D

1 2 3

0 Datum15 cm15 cm15 cm0 Datum

D 5 10 cm

h1 5 50 cm

h2 5 20 cm

Dh 5 30 cm

Figure 13.1s Three-layer permeameter.

Table 13.1s Hydraulic Conductivity of Three Soil Layers

Soil Hydraulic conductivity (m/s)

1 1 × 10−4

2 5 × 10−6

3 3 × 10−5

Solution 13.2

This is a problem about water flowing perpendicularly to the soil layers. The equivalent hydraulic conductivity is calculated
as:

keq = �Hi

�
Hi

ki

= 0.45 m
0.15 m

k1
+ 0.15 m

k2
+ 0.15 m

k3

= 0.45 m
0.15 m

1 × 10−4 m/s
+ 0.15 m

5 × 10−6 m/s
+ 0.15 m

3 × 10−5 m/s

= 1.23 × 10−5 m/s

The flow rate is calculated as:

q = vA = keqiA = keq
�h

L
D2 = 1.23 × 10−5 m/s × 0.3 m

0.45 m
× 0.12 m2 = 8.2 × 10−8 m3/s

The zero datum is set at the bottom of the soil layer. The elevation heads at points A, B, C, and D are the same:

heA = heB = heC = heD = 5 cm

The total head at point A is calculated as:

htA = he + hp = 5 cm + 55 cm = 60 cm
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The total head at point B is calculated as:

q = vA = k1iA = k1
�hAB

LAB
D2 = 1 × 10−4 m/s × �hAB

0.15m
× 0.12 m2 = 8.2 × 10−8 m3/s

�hAB = 0.012m = 1.2cm

Because htA = 60 cm from the previous calculation, the total head at point B is:

htB = htA − �hAB = 60 cm − 1.2 cm = 58.8 cm

The total head at point C is calculated as:

q = vA = k2iA = k2
�hBC

LBC
D2 = 5 × 10−6 m/s × �hBC

0.15 m
× 0.12 m2 = 8.2 × 10−8 m3/s

�hBC = 0.246 m = 24.6 cm

Because htB = 58.8 cm from the previous calculation, the total head at point C is:

htC = htB − �hBC = 58.8 cm − 24.6 cm = 34.2 cm

The total head at point D is calculated as:

q = vA = k3iA = k3
�hCD

LCD
D2 = 3 × 10−5 m/s × �hCD

0.15 m
× 0.12 m2 = 8.2 × 10−8 m3/s

�hCD = 0.041 m = 4.1 cm

Because htc = 34.2 cm from the previous calculation, the total head at point D is:

htD = htC − �hCD = 34.2 cm − 4.1 cm = 30 cm

The pressure head can be obtained by subtracting the elevation head from the total head at each point:

hpA = htA − heA = 60 cm − 5 cm = 55 cm

hpB = htB − heB = 58.8 cm − 5 cm = 53.8 cm

hpC = htC − heC = 34.2 cm − 5 cm = 29.2 cm

hpD = htD − heD = 30 cm − 5 cm = 25 cm

The elevation head diagram, the total head diagram, and the pressure head diagram from point A to point D are plotted in
Figure 13.6s.

q

q

A B C D

Total head

Elevation head

Pressure head

60 cm
58.8 cm

55 cm
53.8 cm

34.2 cm
30 cm

29.2 cm

5 cm
25 cm

0 Datum 0 Datum
15 cm15 cm15 cm

1 2 3

Figure 13.6s Elevation head, total head, and pressure head diagram from point A to point D.
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Problem 13.3

Water is flowing through three soil layers as shown in Figure 13.2s. The cross section is a square with sides of 100 mm. The
hydraulic conductivity of each soil layer is given in Table 13.1s.

a. Determine the flow rate exiting the system.
b. Determine the elevation head diagram, the total head diagram, and the pressure head diagram from point A to point D.
c. What is the equivalent hydraulic conductivity of the three layers?

q

q

A B

0 Datum0 Datum 45 cm

3.33 cm
3.33 cm
3.33 cm

D 5 10 cm

h1 5 50 cm

h2 5 20 cm

Dh 5 30 cm

2
3

1

Figure 13.2s Three-layer permeameter.

Solution 13.3

a. This is a problem about water flowing in the direction of the soil layer boundaries. The equivalent hydraulic conductivity
is calculated as:

keq = k1 + k2 + k3

3
= (100 + 5 + 30)

3
× 10−6 = 4.5 × 10−5 m/s

b. The flow rate is calculated as:

q = vA = keqiA = keq
�h

L
D2 = 4.5 × 10−5 m/s × 0.3 m

0.45 m
× 0.12 m2 = 3 × 10−7 m3/s

c. The zero datum is set at the bottom of the soil layer. The total head at point A is calculated as:

htA = he + hp = 5 cm + 55 cm = 60 cm

The total head at point B is calculated as:

q = vA = keqiA = k3
�hAB

LAB
D2 = 4.5 × 10−5 m/s × �hAB

0.45m
× 0.12 m2 = 3 × 10−7 m3/s

�hAB = 0.3m = 30cm

htB = htA − �hAB = 60 cm − 30 cm = 30 cm

The total head at point B can be found by simply using right side condition.
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The elevation head diagram, the total head diagram, and the pressure head diagram from point A to point B are plotted in
Figure 13.7s.

Total Head

Pressure Head

Elavation

2
3

1

q

q

0 Datum0 Datum 45 cm

D 5 10 cm

h1 5 50 cm

h2 5 20 cm

Dh 5 30 cm

Figure 13.7s Total head, pressure head, and elevation diagram.

Problem 13.4

Use the uplift force equation (Eq. 13.41) to calculate the uplift force on a ship and demonstrate Archimedes’ principle.

Solution 13.4

Consider that the height of the ship under water is Z and the total height of the ship is H. The width of the ship is B and the
length is L.

Uplift water pressure on the bottom of the ship is:

uav = γwZ

Uplift force would be:

Fup = uavBL ⇒ Fup = γwZBL

This is Archimedes’ principle, which states that the upward buoyant force exerted on a body immersed in a fluid is equal
to the weight of the fluid displaced by the body.

Problem 13.5

Referring to Figure 13.3s, calculate the following quantities:

a. Elevation head, total head, and pressure head at point M on Figure 13.3sa
b. The quantity of water seeping through the dam of Figure 13.3sa per day
c. Elevation head, total head, and pressure head at points A, B, and C on Figure 13.3sb
d. The uplift force on the bottom of the concrete dam in Figure 13.3sb
e. The hydraulic gradient between points A and B and then between points C and D on Figure 13.3sc
f. The factor of safety against a quick condition on the exit face of the cofferdam (Figure 13.3sc) by the exit gradient

method and the critical block method
g. The seepage force applied by the water on a soil grain on the exit face of the slope if the grain has a volume of 1 mm3

(Figure 13.3sd )
h. The water pressure distribution behind the retaining wall of Figure 13.3se
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Figure 13.3s Flow nets.

Solution 13.5

a. Elevation head, total head, and pressure head at point M on Figure 13.3sa
The head loss between each equipotential line:

�h = �H

Nd

= 17 − 3

9
= 1.56 m

The total head:
ht = �Ht − �h × (Nd)B = 17 − 1.56 × 2 = 13.9 m

The elevation head at M:
he = 7 m

The pressure head at M:
(hp)B = ht − he = 13.9 − 7 = 6.9 m



13.3 FLOW OF WATER AND AIR IN UNSATURATED SOIL 397

The pore water pressure at M:

uB = hp × γw = 6.9 × 9.81 = 67.69 kN/m2 = 67.69 kPa

b. The quantity of water seeping through the dam of Figure 13.3sa per day if the hydraulic conductivity of the soil is
10−8 m/s:

q = k�H
Nf

Nd

= 10−8 × (17 − 3) × 3

9
= 4.67 × 10−8 m3/ sec /m

Q = q × L =
(

k�H
Nf

Nd

)
L = 4.67 × 10−8 × 1 m = 4.67 × 10−8 m3/ sec

Q1day = 4.67 × 10−8 × (24 × 60 × 60) = 0.00403 m3

c. Elevation head, total head, and pressure head at points A, B, and C on Figure 13.3sb
The head loss between each equipotential line:

�h = �H

Nd

= 16 − 2

12
= 1.17 m

The total head at each point:

(ht )A = �Ht − �h × (Nd)B = (20 + 16) − 1.17 × 5.5 = 29.57 m

(ht )B = �Ht − �h × (Nd)B = (20 + 16) − 1.17 × 7.5 = 27.23 m

(ht )C = �Ht − �h × (Nd)B = (20 + 16) − 1.17 × 10.5 = 23.72 m

The elevation head at A, B, and C:
he = 20 m

The pressure head at each point:

(hp)A = ht − he = 29.57 − 20 = 9.57 m

(hp)B = ht − he = 27.23 − 20 = 7.23 m

(hp)B = ht − he = 23.72 − 20 = 3.72 m

The pore water pressure at each point:

uA = hp × γw = 9.57 × 9.81 = 93.88 kN/m2 = 93.88 kPa

uB = hp × γw = 7.23 × 9.81 = 70.93 kN/m2 = 70.93 kPa

uC = hp × γw = 3.72 × 9.81 = 36.49 kN/m2 = 36.49 kPa

d. The uplift force on the bottom of the concrete dam in Figure 13.3sb
The pressure head at each point:

hp = ht − he = �H − Nd × �h − he

u = hp × 9.81

uA = 9.57 × 9.81 = 93.88 kPa

uB = 7.23 × 9.81 = 70.93 kPa

uC = 3.72 × 9.81 = 36.49 kPa

he at end of wall = (20 − 10) m

(hp)end of wall = (16 + 20) − 4 × 1.17 − (20 − 10) = 21.32 m

∴ uend of wall = 21.32 × 9.81 = 209.15 kPa
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The resultant uplift force is:

Fup = (Awall × uwall) + AAB × uAB + ABC × uBC

= ((2 × 1) × 209.15) + (16 × 1) × 93.88 + 70.93

2
+ (16 × 1) × 70.93 + 36.49

2
= 2596.14 kN/m

e. The hydraulic gradient between points A and B and then between points C and D on Figure 13.3sc
The head loss between each equipotential line:

�h = �H

Nd

= 8

8
= 1 m

The total head:

(ht )A = �Ht − �h × (Nd)A = (8 + 8) − 1 × 0 = 16 m

(ht )B = �Ht − �h × (Nd)B = (8 + 8) − 1 × 1 = 15 m

(ht )C = �Ht − �h × (Nd)C = (8 + 8) − 1 × 7 = 9 m

(ht )D = �Ht − �h × (Nd)D = (8 + 8) − 1 × 8 = 8 m

Hydraulic gradient between points A and B:

i = �h

LAB
= 16 − 15

3.5
= 0.29

Hydraulic gradient between points C and D:

i = �h

LCD
= 9 − 8

1.5
= 0.67

f. The factor of safety against a quick condition on the exit face of the cofferdam (Figure 13.3sc) by the exit gradient
method and the critical block method

Exit Gradient

The critical hydraulic gradient (ic):

ic = γsat − γw

γw
= 20 − 9.81

9.81
= 1.04

Determine the factor of safety against quicksand and explain it

FOS = ic

i
= 1.04

0.67
= 1.55 < 4

Heave and Critical Block

Taking flow field CD as the critical block

FOS = W ′

S
= (γsat − γw)d

(ht(C) − ht(D))γw
= (20 − 9.81) × 1.5

(9 − 8) × 9.81
= 1.6

g. The seepage force applied by the water on a soil grain on the exit face of the slope if the grain has a volume of 1 mm3

(Figure 13.3sd) The drop in total head in the last flow field on the exit face is

�ht = 4

16
= 0.25 m
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The corresponding hydraulic gradient and the force on the soil grain are

i = �ht

l
= 0.25

0.625
= 0.4

Fs = i γwV = 0.4 × 9.81 × 1 × 10−9 = 3.92 × 10−9 kN

h. The water pressure distribution behind the retaining wall of Figure 13.3se
The head loss between each equipotential line:

�h = �H

Nd

= 9.25

11
= 0.841 m

The total head:

ht(A) = Ht(beg) − �h × (Nd)A = 16.5 − 0.841 × 0 = 16.5 m

ht(C) = 16.5 − 0.841 × 2 = 14.82 m

ht(D) = 16.5 − 0.841 × 3.5 = 13.56 m

ht(bottom of wall) = 16.5 − 0.841 × 5.8 = 11.62 m

The water pressure:

u(A) = (ht(A) − he(A)) × γw = (16.5 − 16.5) × 9.81 = 0 kPa

u(C) = (14.82 − 9.37) × 9.81 = 53.46 kPa

u(D) = (13.56 − 5.87) × 9.81 = 75.44 kPa

u(bottom of wall) = (11.62 − 4.10) × 9.81 = 73.77 kPa

Problem 13.6

A tube is filled with a relatively dry soil at a water tension corresponding to a pressure head h0 and a volumetric water content
θ0. Water is made available at one end of the tube (Figure 13.4s). As a result, a wetting front is created and advances from
left to right on the figure. The wetted soil has a water tension corresponding to a pressure head of h1 and a volumetric water
content of θ1. How fast will the wetting front propagate across the sample?

X

Wetting front

Soil at h1, u1
(dry)

Soil at h0, u0
(wet)

t 5 t1 t 5 t2

Figure 13.4s Horizontal wetting front propagation.

Solution 13.6

Consider the position of the wetting front at time t and then at time t + dt. The volume of water dVw which has filled the
voids during that interval of time is:

dVw = (θo − θ1)dVt = (θo − θ1)Adx
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where A is the tube cross section and dx is the advance of the wetting front over the time dt. The corresponding flow rate is:

Q = dVw

dt
= (θo − θ1)Adx

dt

The velocity can be obtained from the flow rate and also from Darcy’s law:

v = Q

A
= (θo − θ1)dx

dt
= ko

ho − h1

x

or
xdx = ko

ho − h1

θo − θ1
dt

Then the distance x is given as a function of time, as:

x =
√

2ko

ho − h1

θo − θ1
t

Problem 13.7

A soil sample has a saturated hydraulic conductivity ksat equal to 10−8 m/s. Estimate the hydraulic conductivity of the sample
if it dries to a degree of saturation equal to 0.9 and then 0.5. Use Figure 13.5s to estimate kunsat.
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Figure 13.5s 5s Relative hydraulic conductivity of water and air as a function of degree of saturation.

Solution 13.7

From Figure 13.5s, we can find krw and use it in Eq. 13.62 to calculate the hydraulic conductivity of the soil sample in
unsaturated conditions.

For S = 0.9, krw = 0.93, kunsat = krwx ksat. = 0.93 × 10−8 m/s = 9.3 × 10−9 m/s

For S = 0.5, krw = 0.1, kunsat = krwx ksat. = 0.1 × 10−8 m/s = 1 × 10−9 m/s


