
CHAPTER 11

Problem-Solving Methods

11.1 GENERAL

There are three main types of problems in geotechnical
engineering: failure load problems, deformation problems,
and flow problems. Each problem can be solved by perform-
ing experimental modeling, by doing theoretical modeling,
or by using experience. The best solutions are those that have
a theoretical framework, are calibrated against and correlated
with experimental measurements, and are verified by experi-
ence at full scale. Experience is obtained by years of practice.
As the saying goes, good judgment comes from experience,
but experience comes from bad judgment. An attempt can be
made at teaching experience by letting engineers, who have
been practicing successfully for a long time, discuss case
histories—including failures—in a classroom environment.
Theoretical modeling includes continuum mechanics closed-
form solutions, numerical simulations, dimensional analysis,
probabilistic analysis, and risk analysis. Experimental mod-
eling includes the use of scaled models, centrifuge models,
and/or full-scale models. In all cases, fundamental laws and
constitutive laws help in solving the problem.

11.2 DRAWING TO SCALE AS A FIRST STEP

One very important first step in solving a geotechnical engi-
neering problem (or any engineering problem in general) is
to always start by making a drawing to scale of the problem.
If this step is not taken, the engineer may not get a proper
sense of the issues at hand. For example, if one is designing a
pile foundation under a building with the pile tips bearing into
a sand layer, making a drawing to scale helps the engineer
evaluate whether the sand layer is thick enough to prevent
serious compression of the layers below. Failing to make that
drawing properly, and instead drawing only a sample single
pile bearing into the sand layer, may give the false impression
of a thick sand layer (Figure 11.1). Also, if you draw a driven
pile as a thick, short vertical member instead of the actual
slender member, the issue of buckling will not come to your
attention. Embankments typically have side slopes of 2 to 1
or 3 to 1, yet when they are sketched on a piece of paper, these
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Figure 11.1 Make a drawing to scale.

slopes are often drawn too steep. By making a drawing to
scale, you give yourself a better chance of recognizing some
of the problems associated with the physical dimensions of
the project. Always make a drawing to scale as a first step in
solving an engineering problem.

11.3 PRIMARY LAWS

Two main types of laws are used to solve problems: fun-
damental laws and constitutive laws. Fundamental laws are
valid no matter what material is being considered. They apply
equally to soil, concrete, steel, or marshmallow. Fundamental
laws include, for example, force and moment equilibrium,
conservation of energy, and conservation of mass. The con-
stitutive laws describe the behavior of the material. They
are different for each material, whether it is soil, concrete,
steel, or peanut butter. Constitutive laws include, for example,
elasticity, plasticity, and viscoelasticity. Shear strength laws
such as the Mohr-Coulomb criterion belong to the class of
constitutive laws. Most theoretical problems are solved by
making use of a combination of fundamental laws and con-
stitutive laws. Other laws exist, such as the similitude laws
used in dimensional analysis and the probabilistic laws used
in risk analysis.
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11.4 CONTINUUM MECHANICS METHODS

The basic and general steps in developing a theoretical
solution to a soil problem are to describe the problem pre-
cisely, identify the variables, write the applicable equations,
and solve for the unknowns. If there are more equations
than unknowns, then one must choose which equations are
most important to satisfy. If there are more unknowns than
equations, it is time to make reasonable assumptions to gen-
erate new equations. The reasonableness of the assumptions
should then be verified by experimentation at model scale
or (even better) at full scale. In soil mechanics, there are
three main types of problems: failure problems, deformation
problems, and flow problems.

11.4.1 Solving a Failure Problem: Limit Equilibrium,
Method of Characteristics, Lower and Upper Bound
Theorems

A typical solution to the problem of finding a failure load
(e.g., ultimate bearing capacity of a footing) or a failure
moment (e.g., slope stability) is to use the limit equilibrium
analysis. In such a failure analysis, the step-by-step process
advances as follows:

1. Assume a reasonable failure mechanism. If such a
failure mechanism is not obvious, an experiment can be
performed to observe the failure mechanism.

2. Draw a free body diagram of the failing body (soil
mass) and identify the external forces and external moments
applied to the failing body.

3. Write the applicable fundamental equations. These are
equations that are valid for all problems and independent
of the type of material involved. They include equilibrium
equations (three forces, three moments), conservation of
mass, and conservation of energy, among others.

4. Write the applicable constitutive equations. These are
the equations describing the behavior of the material under
load. Constitutive laws include, for example, elasticity, plas-
ticity, and viscoelasticity. The shear strength equation for
soils, which states that the shear strength is a function of the
effective stress on the failure plane, is another example of a
constitutive law.

5. Count the number of equations and the number of un-
knowns. If there are as many equations as there are unknowns,
proceed to the next step. If there are more equations than un-
knowns (rare), choose which equations are most important
to satisfy. If there are more unknowns than equation, for-
mulate assumptions that lead to additional equations. These
assumptions should be based on engineering judgment, or ex-
perience, or experimental observations. The reasonableness
of these assumptions should be verified by comparing the
solution to observed full-scale behavior.

6. Combine all equations and solve for the unknown (fail-
ure load or failure moment).

There can be as many solutions as there are assumed failure
mechanisms, so obviously it becomes important to choose

the failure mechanism that most closely duplicates the real
one. This is where observation of full-scale failures becomes
very useful.

Another solution is to use the method of characteristics.
Characteristics are lines in the physical soil mass where
the partial differential equation collapses into an ordinary
differential equation. The equilibrium equations at the ele-
ment level typically lead to partial differential equations. The
method of characteristics simplifies these equations to the
point where the problem is easier to solve. The method of
characteristics can help to calculate failure loads for simple
geometries.

Yet another solution is to use the bound theorems and
apply them to soil masses. There are two such theorems:
the lower bound theorem and the upper bound theorem. The
lower bound theorem states that if any stress distribution
throughout the soil mass can be found which is everywhere
in equilibrium internally, does not violate the yield condition,
and balances the external loads, the soil mass will safely
carry the external loads. The upper bound theorem states that
if an estimate of the failure load of a soil mass is made by
equating internal rate of energy to the rate at which external
forces do work in any postulated but kinematically admissible
mechanism of deformation of the soil mass, the estimate will
be either high or correct. In short, the lower bound theorem
involves guessing a stress field that leads to a lower bound of
the failure load; the upper bound theorem involves guessing
a velocity or displacement field that leads to an upper bound
estimate of the failure load.

11.4.2 Examples of Solving a Failure Problem

The first exemple problem is to find the ultimate pressure pu
that a strip footing of width B (Figure 11.2) can exert on the
surface of a saturated clay that has a shear strength s equal to
the undrained shear strength su because the loading is rapid.
The steps described in section 11.4.1 for the limit equilibrium
method are followed.

1. A cylindrical failure surface, as shown in Figure 11.3a,
seems reasonable. This failure mechanism has been
observed in many old silo failures.

2. The failing soil mass is the half cylinder shown in Figure
11.3b together with its free body diagram. All external
forces and stresses are shown on the diagram, including
the weight of the mass. Note that the weight is always
an external force.
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Figure 11.2 Strip footing example.
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Figure 11.3 Failure load for a strip footing.

3. The most useful fundamental equation in this case is
moment equilibrium around point O on Figure 11.3b.

M@O = 0 = puB
B

2
− s πB B (11.1)

4. The constitutive equation in this case is the shear
strength equation, which states that the shear strength s
is equal to the undrained shear strength of the clay.

s = su (11.2)

5. There are two unknowns (pu and s) and two equations,
so the problem can be solved.

6. Now we combine the equations and obtain:

pu = 2πsu (11.3)

Other failure mechanisms are plausible and would lead to
slightly different estimates of pu.

The second problem is the one of a vertical wall with a
height H supporting a clean, dry sand backfill with a friction
angle ϕ (Figure 11.4). It is assumed that there is no friction
between the wall and the backfill. The wall exerts a horizontal
load P against the sand. As the wall moves very slightly away
from the sand, the load P decreases and there is a point where
the sand behind the wall starts to fail. At that point, the load
is Pa and the question is to find the load Pa corresponding
to impending failure of the sand. Note that the problem is
a plane strain problem; therefore, all the loads will be line
loads expressed in kN/m.
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a) Problem b) Free body of failing mass

Figure 11.4 Example of a wall moving away from the backfill.

The steps described in section 11.4.1 for the limit equilib-
rium method are followed.

1. The soil is assumed to fail as a wedge making an angle
θ with the horizontal, as shown in Figure 11.4. This failure
mechanism has been observed in model scale and centrifuge
experiments.

2. The failing soil mass is the wedge; its free-body diagram
is shown in Figure 11.4. All external forces are shown on the
diagram, including the action of the wall P, the weight of the
soil mass W, the normal force N, and the shear force T on
the failure plane. Note that the shear force T is acting uphill
because the wedge is falling down along that plane and the
soil outside of the wedge is resisting that tendency.

3. The most useful fundamental equations in this case are
vertical and horizontal equilibrium of forces:∑

Fv = 0 = W − N cos θ − T sin θ (11.4)∑
Fh = 0 = P − N sin θ + T cos θ (11.5)

4. The constitutive equations in this case are the shear
strength equation of the sand and the expression of the weight
of the wedge. The shear strength equation states that the
ultimate shear force T comes from the friction generated by
the normal force N on the failure plane. The weight of the
wedge is equal to the area of the wedge times the unit weight
of the sand γ :

T = N tan ϕ (11.6)

W = γH 2

2 tan θ
(11.7)

5. There are four unknowns (W, N, T, P) and four
equations, so the problem can be solved.

6. Now we combine the equations and obtain:

P = γH 2

2

(
sin θ cos θ − tan ϕ cos2θ

sin θ cos θ + tan ϕ sin2θ

)
(11.8)

There is one more issue to resolve. The load P depends on
θ, yet there is a unique value of θ associated with the failure
load Pa. This is the load at which the wedge fails behind the
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Figure 11.5 Load P as a function of the wedge angle θ; wall
moves away from backfill.

wall, and this load corresponds to the θ value that maximizes
P (Figure 11.5). In other words, the wedge that needs the
maximum support will fail first. The maximum value of P is
obtained by setting dP

dθ
= 0. This derivative is:

dP

dθ
= γH 2

2

(
sin θ cos θ − sin (θ − ϕ) cos(θ − ϕ)

sin2θ cos2(θ − ϕ)

)
= 0

(11.9)

There are two solutions to Eq. 11.9: one is ϕ = 0, which is
not realistic, and the other one is:

θ = π

4
+ ϕ

2
(11.10)

The load Pa can then be obtained from Eq. 11.8.

Pa = γH 2

2

(
1 − sin ϕ

1 + sin ϕ

)
(11.11)

This problem is repeated but now with the wall being
pushed into the sand (Figure 11.6) instead of pulled away
from the sand as in the previous case. The question is to find
the load Pp that corresponds to the failure of the soil mass.
Only one thing changes in the derivation: the direction of the
shear force T on the failure plane. Because the wedge will
now move up along the failure plane, the soil outside the
wedge will exert a shear force acting toward the bottom of
the wedge. Therefore, in the equations T is replaced by −T
and the problem leads to the situation shown in Figure 11.7.
The failure load Pp is the load corresponding to the value of
θ that minimizes P; that is, the wedge offering the minimum
resistance is the wedge that will fail first.
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Figure 11.6 Example of a wall moving toward the backfill.
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Figure 11.7 Load P as a function of the wedge angle θ; wall
moves into backfill.

θ = π

4
− ϕ

2
(11.12)

Pp = γH 2

2

(
1 + sin ϕ

1 − sin ϕ

)
(11.13)

11.4.3 Solving a Deformation Problem

A typical solution to a deformation problem proceeds through
the following steps:

1. Zoom in at the infinitesimal element level. This element
has dimensions expressed in differential lengths.

2. The knowns and unknowns (e.g., loads, displacements,
stresses, and strains) are identified on the element, including
their variation from one side of the element to the other. This
variation involves derivatives expressing the rate of change
of the variable in one direction over a small distance.

3. The fundamental equations are written using the knowns
and unknowns identified in step 2. These are equations that
are true for all materials. They include equilibrium equations
(three forces and three moments), conservation of mass, and
conservation of energy, among others.

4. The constitutive equations are written using the knowns
and unknowns identified in step 2. These equations describe
the behavior of the material involved in the deformation.
They include elasticity equations, plasticity equations, and
viscosity equations, among others.

5. All equations are regrouped into the governing differ-
ential equations (GDEs).

6. The boundary conditions are expressed mathematically.
If the problem is a dynamic problem, the boundary conditions
involve both space and time.

7. The GDEs are solved in closed-form solutions if they
are simple enough and through numerical solutions such as
the finite difference method if they are too complicated. The
boundary conditions are used to define the constants involved
in the solution.

11.4.4 Example of Solving a Deformation Problem

The exemple problem is to find the horizontal displacement
y(z) of a pile as a function of z if the pile is loaded in
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Figure 11.8 Horizontally loaded pile example.

overturning by a horizontal load Ho and an overturning
moment Mo applied at the ground surface (Figure 11.8). For
this simple example, the influence of the axial load will be
ignored.

The solution proceeds by following the steps described in
section 11.4.3.

1. Zoom in at the element level. In this case, we will select
an element of the pile that is dz long (Figure 11.9).

2. The forces and moments acting on the element are
shown on the element (Figure 11.9). These actions are the
shear V (kN) and moment M (kN.m) at both ends of the ele-
ment, and the soil resistance P (kN/m) as a line load. Some of
these quantities change by a little bit from one end of the ele-
ment to the other. This little bit is expressed mathematically as
∂V
∂z

dz for the shear force V, for example, expressing that the

change is equal to the rate of change of V times the distance dz.

Because V is dependent only on z, ∂V
∂z

dz can be simply written
as dV.

3. The fundamental equations that are most useful in this
case are horizontal equilibrium and moment equilibrium.
Let’s write horizontal equilibrium first (Figure 11.9):∑

FH = 0 = Pdz + V − (V + dV) (11.14)

or
P = dV

dz
(11.15)

So, horizontal equilibrium states that the line load P on
a pile is equal to the first derivative of the shear V. Now

Pdz

M + dM

V + dV

V

M
Y

Z

Figure 11.9 Element of horizontally loaded pile.

let’s write moment equilibrium around point O (Figure 11.9).

Again, Because M is only a function of z, ∂M
∂z

dz can be simply

written as dM.∑
M@o = 0 = M + dM − M − V

dz

2
− (V + dV)

dz

2
(11.16)

Neglecting the higher-order term, we are left with:

V = dM

dz
(11.17)

So, moment equilibrium states that the shear in a pile is
equal to the first derivative of the bending moment.

4. The constitutive equations describe the behavior of the
pile and of the soil. The pile behavior is described by relating
the bending moment M applied to the pile to the curvature
generated in the pile. This curvature is expressed by the
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second derivative of y. The proportionality constant between
the moment and the curvature is the bending stiffness EpI,
where Ep is the modulus of the pile material and I is the
moment of inertia of the pile cross section around the axis of

the moment. Again, because y is only a function of z, ∂2y

∂z2 can

be more simply written as d2y

dz2 .

M = EpI
d2y

dz2
(11.18)

Note that the unit of d2y

dz2 is 1/m because d2y is a little piece

of y and dz2 is the square of a little piece of z. This extends

to the nth derivative; the unit of dny

dzn is 1/m(n−1) because dny

is still a little piece of y while dzn is the nth power of a little
piece of z. For the constitutive equation describing the soil
behavior, a simple linear relationship is used between the
line load P (kN/m) characterizing the soil resistance and the
deflection y (m) of the soil-pile interface. The proportionality
constant is a spring constant K (kN/m2) that characterizes
the stiffness of the soil:

P = −Ky (11.19)

The minus sign is there because P and y are in opposite
directions (Figure 11.9).

5. The governing differential equations can now be as-
sembled by regrouping the fundamental and constitutive
equations:

P = −Ky = dV

dz
= d2M

dz2
= EpI

d4y

dz4
(11.20)

or

y + EpI

K

d4y

dz4
= 0 (11.21)

6. The boundary conditions are stated for both ends of the
pile. To simplify the solution of the differential equation, it is
assumed that the pile is infinitely long and that the deflection
is zero at the infinite end. At the top of the pile, the horizontal
force and the overturning moment are known. The boundary
conditions are:

a. z = infinity, y = 0
b. z = 0, M = Mo,

c. z = 0, V = Ho

7. Now we need to solve the differential equation. The
solution y(z) has to be a function that becomes the same func-
tion when differentiated four times. This means a combination
of exponential and trigonometric functions. The solution is
therefore of the general form:

y(z) = e
− z

lo

(
a sin

z

lo
+ b cos

z

lo

)

+ e
z
lo

(
c sin

z

lo
+ d cos

z

lo

)
(11.22)

The lo parameter is required because of the need to match
the factor EpI/K in the differential equation 11.21. Applying
boundary condition 6a gives c = d = 0. Applying boundary
conditions 6b and 6c requires that the expressions of V and
M be derived using Eqs. 11.17 and 11.18:

y(z) = e
− z

lo

(
a sin

z

lo
+ b cos

z

lo

)
(11.23)

dy

dz
= 1

lo
e
− z

lo

(
− (a + b) sin

z

lo
+ (a − b) cos

z

lo

)
(11.24)

d2y

dz2
= − 2

lo
2
e
− z

lo

(
−b sin

z

lo
+ a cos

z

lo

)
(11.25)

d3y

dz3
= 2

lo
3
e
− z

lo

(
(a − b) sin

z

lo
+ (a + b) cos

z

lo

)
(11.26)

d4y

dz4
= − 4

lo
4
e
− z

lo

(
a sin

z

lo
+ b cos

z

lo

)
(11.27)

It can be seen from Eq. 11.23 and Eq. 11.27 that:

d4y

dz4
= − 4

l4
o

y (11.28)

which compared to Eq. 11.21 leads to:

lo =
(

4EpI

K

) 1
4

(11.29)

Now boundary condition 6b can be written as:

d2y

dz2
@z=0

= Mo

EpI
= − 2

l2
o

e
− 0

lo

(
−b sin

0

lo
+ a cos

0

lo

)
(11.30)

and

a = −Mo l2
o

2EpI
(11.31)

Then:

d3y

dz3
@z=0

= Ho

EpI

= 2

l3
o

e
− 0

lo

(
(a − b) sin

0

lo
+ (a + b) cos

0

lo

)
(11.32)

and

a + b = Hol
3
o

2EpI
(11.33)

so

b = Hol
3
o

2EpI
+ Mo l2

o

2EpI
(11.34)
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Now we can build the equations for the deflection y, the
slope y′, the bending moment M, the shear force V, and the
line load P:

y(z) = e
− z

lo

(
−Mo l2

o

2EpI
sin

z

lo
+
(

Hol
3
o

2EpI
+ Mo l2

o

2EpI

)
cos

z

lo

)

(11.35)
But

EpI = Kl4
o

4
(11.36)

Therefore, finally:

y(z) = 2Ho

loK
e
− z

lo cos
z

lo
+ 2Mo

l2
oK

e
− z

lo

(
cos

z

lo
− sin

z

lo

)
(11.37)

y ′(z) = −2Ho

l2
oK

e
− z

lo

(
cos

z

lo
+ sin

z

lo

)
− 4Mo

l3
oK

e
− z

lo cos
z

lo

(11.38)

M(z) = Holoe
− z

lo sin
z

lo
+ Moe

− z
lo

(
cos

z

lo
+ sin

z

lo

)
(11.39)

V (z) = Hoe
− z

lo

(
cos

z

lo
− sin

z

lo

)
− 2Mo

lo
e
− z

lo sin
z

lo

(11.40)

where y(z) is the pile displacement at a depth z, y′(z) is the
pile slope at z, M(z) is the bending moment at z, and V(z)
is the shear force at z; Ho and Mo are the shear and moment
at the ground surface, K is the soil spring constant, and lo is
the transfer length given by Eq. 11.29. The profiles of y(z),
y′(z), M(z), and V(z) corresponding to Eq. 11.37 to 11.40 are
shown in Figure 11.8 as a function of depth for a real pile.

11.4.5 Solving a Flow Problem

A typical solution to a flow problem proceeds through the
following steps:

1. Zoom in at the infinitesimal element level. This element
has dimensions expressed in differential lengths.

2. The knowns and unknowns (flow velocities, volumes,
total head, and water stress, for example) are identified on the
element, including their variation from one side of the element
to the other. This variation involves derivatives expressing
the rate of change of the variable in one direction over a small
distance.

3. The fundamental equations are written using the knowns
and unknowns identified in step 2. These equations are true for
all materials. The most useful in this case is the conservation
of mass equation.

4. The constitutive equations are written using the knowns
and unknowns identified in step 2. These equations describe
the behavior of the material involved in the flow. The main
equation in this case is Darcy’s law in the three dimensions.

5. All equations are regrouped into the governing differ-
ential equations.

6. The boundary conditions are expressed mathematically.
These boundary conditions are usually in the form of total
head or flow conditions. If the problem is a transient flow
problem, the initial conditions are also stipulated.

7. The governing differential equations are solved in
closed-form solutions if they are simple enough, and through
numerical solutions such as the finite difference method if
they are too complicated. The boundary conditions are used
to define the constants involved in the solution.

11.4.6 Example of Solving a Flow Problem

One example of a flow problem is the flow of water out of a
saturated soil layer when it is loaded by a long embankment
(Figure 11.10a). Before loading, the layer is under an at-rest
state of stress with a vertical effective stress σ ′

ov and an
initial water stress uwo. Both σ ′

ov and uwo vary with the depth
z. When the vertical stress is increased by �σ due to the
embankment loading, the water stress increases by an amount
called the excess pore pressure uwe. The excess pore pressure
uwe is high at first and decreases as a function of time while
the water drains out. The settlement takes place as a result of
this water drainage (Figure 11.10b). The problem is to predict
the variation of the excess pore pressure uwe as a function of
time t and the settlement �H of the embankment as a function
of time t.

The following simplifying assumptions are made:

a. The soil is saturated with water
b. The water is incompressible
c. The soil skeleton is linear elastic (linear stress-strain

relation)
d. The soil particles are incompressible
e. Darcy’s law governs the flow of water through the soil
f. The water drains at the top and at the bottom of the layer
g. The flow is in the vertical direction only

h

HO

Fill

Clay

Sand

Flow of
water

Random soil 
element

uw

uwe max = ∆σ  

uwe, max = ∆σ

uw0 = γwHO

uw0
uwe

uwe (z) at t = ∞
uwe (z) at t = t

uwe (z) at t = 0

uw

z

0

H0

0
∆σ = γh

Figure 11.10 Embankment example.
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h. The increase in stress �σ in the layer due to the
embankment is constant within the layer

i. The excess water stress uwe increases by �σ when the
embankment is placed

j. No lateral soil movement takes place

With these assumptions, the solution proceeds as follows:

1. Zoom in at the element level. In this case, we will select
an element of soil with an elementary volume V equal to dx
dy dz (Figure 11.11).

2. Considering the element of Figure 11.11, the water
velocity in the z direction is vz when it enters the element and
vz + dvz when it exits the element. It is assumed that the water
does not flow in the y direction because of the plain strain
condition induced by the infinitely long embankment. It is
also assumed that there is no flow in the x direction because
the total head gradient is much higher in the z direction than
in the x direction. Because the water velocity is proportional
to the total head gradient (Darcy’s law), most of the water
goes in the vertical direction. Also shown on the element is
the change of volume dV of the element during a time dt.
This change of volume corresponds to the water loss and
also to the compression of the element, given that the soil
is saturated.

3. The fundamental equation in this case is the conserva-
tion of mass equation expressing that, during a time dt, the
volume of water entering the element plus the water squeezed
out of the element due to the stress applied is equal to the
volume of water exiting the element. Use is made of the flow
equation (Qdt = vAdt):

vz dx dy dt + dV = (vz + dvz) dx dy dt (11.41)

dV

Vdt
= dvz

dz
(11.42)

Another fundamental equation is conservation of energy,
which leads to the relationship between the total head ht, the
elevation head he, and the pressure head hp. Note that the
velocity head is neglected because water flows very slowly
through soils:

ht = he + hp (11.43)

and by differentiation

dht = dhe + dhp (11.44)

Note that for the element, the elevation head he is constant
and therefore dhe = 0. Note also that, by definition:

hp = uwo + uwe

γw
(11.45)

Because uwo is constant:

dhp = duwe

γw
(11.46)

Combining the previous observation, we get:

dht = dhp = duwe

γw
(11.47)

The effective stress in the element is:

σ ′ = σ − (uwo + uwe) (11.48)

By differentiation and noting that both σ and uwo are
constant during the loading and subsequent drainage:

dσ ′ = −duwe (11.49)

4. The first constitutive equation describes how fast the
water flows through the soil (Darcy’s law):

vz = ki = −k
dht

dz
(11.50)

and by taking the first derivative of vz with respect to z:

dvz

dz
= −k

d2ht

dz2
(11.51)

The second constitutive equation describes how much the
soil compresses under stress (stress-strain relationship):

dσ ′ = M
dV

V
(11.52)

y

x

z

vz

vz + dvz

dx

dy

dz

Volume of
water

squeezed out
in a time

0

0

0
0

dV

 dt

Figure 11.11 Element of soil under the embankment.
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The strain in this case is the volumetric strain (εv = dV/V)

and M is the constrained modulus because the soil is not
allowed to expand laterally.

5. By regrouping Eqs. 11.42, 11.47, 11.49, 11.51, and
11.52, the governing differential equation is obtained:

1

V

dV

dt
= dvz

dz
= 1

M

dσ ′

dt
= − 1

M

duwe

dt
= −k

d2ht

dz2

= − k

γw

d2uwe

dz2
(11.53)

duwe

dt
= k M

γw

d2uwe

dz2
(11.54)

The coefficient of consolidation cv is expressed in m2/s
and is defined as:

cv = kM

γw
(11.55)

and the governing differential equation for this problem is:

duwe

dt
= cv

d2uwe

dz2
(11.56)

6. Now we need to organize the space and time boundary
conditions. The space boundary conditions state that the
excess water stress uwe at the ground surface is zero because
the water can drain freely at that location. Also, the excess
water stress uwe is zero at the bottom of the layer because the
water can drain freely at that depth:

uwe@z=0 = 0 at any time t (11.57)

uwe@z=Ho
= 0 at any time t (11.58)

The time boundary conditions state that the excess water
stress uwe is equal to the increase in total stress �σ at time
t = 0 and then equal to 0 at time t = infinity:

uwe@t=0 = �σ at any depth z (11.59)

uwe@t=∞ = 0 at any depth z (11.60)

7. This is the step where we solve the governing differen-
tial equation (11.56) and apply the boundary conditions. To
simplify the mathematical process, it is convenient to use the
following transformation into dimensionless variables:

Z = z

Hd

(11.61)

U = 1 − uwe

uwe(max)

(11.62)

T = cvt

Hd
2

(11.63)

where z is the depth below ground surface, Hd is the longest
drainage path, U is the degree of consolidation at depth z and
time t, uwe is the excess water stress at depth z and time t,

uwe(max) is the maximum excess water stress at time t = 0 at
any depth taken as equal to �σ, T is the time factor, and t is
the time. Note that the maximum drainage length is equal to
the layer thickness Ho if the water can only drain on one side
(top or bottom of the layer), but is equal to 0.5Ho if the water
can drain at both ends. With these transformed variables, the
GDE (Eq. 11.56) becomes:

dU

dT
= d2U

dZ2
(11.64)

The solution to this partial differential equation, together
with the space and time boundary conditions, is a Fourier
series expansion of the form (Terzaghi 1943):

U = 1 −
m=∞∑
m=0

2

M
sin(MZ) exp(−M2T )

with M = π

2
(2m + 1) (11.65)

The graphical representation of U as a function of Z and T
is shown in Figure 11.12.

It is also useful to define the average degree of consolidation
Uav:

Uav = 1 −

∫ H

0
uwedz∫ H

0
uwe maxdz

= 1 −
m=∞∑
m=0

2

M2
exp(−M2T )

with M = π

2
(2m + 1) (11.66)

The average degree of consolidation represents the ratio of
the area under the excess water stress profile at time t over
the same area at time t = 0 (Figure 11.13).

The graphical representation of Uav as a function of T is
shown in Figures 11.14 and 11.15.

Equation 11.52 indicates that the volumetric strain dV/V
in the layer is linearly proportional to the increase in effective
stress dσ ′. Because the soil is assumed not to move laterally,
the volumetric strain is also the vertical strain dH/H. Also,
because the total stress is constant, the increase in effec-
tive stress is equal to the decrease in excess water stress
(Eq. 11.49). Therefore, the average degree of consolidation
Uav can be rewritten as:

Uav = 1 − uwe(average)

uwe(max)(average)
= uwe(max)(av) − uwe(av)

uwe(max)(av)

= �σ ′(av)

�σ ′
max(av)

=
M

�H

H

M
�Hmax

H

= �H

�Hmax
(11.67)

This means that Uav represents the settlement of the struc-
ture divided by the maximum settlement. In contrast, because
T is a function of the time t, the complete settlement vs.
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Figure 11.13 Definition of the average degree of consolidation.

time curve (�H/�Hmax vs. t) can be constructed by using
the U vs. T curves. An example is shown in Figure 11.16.
The following equations have been proposed to approximate
Eq. 11.66:

For Uav < 0.6 :

T = π

4
Uav

2 or �H = �Hmax
2

Hd

√
cvt

π (11.68)

ForUav > 0.6 :

T = −0.933 log(1 − Uav) − 0.085 or

�H = �Hmax

⎛
⎝

1 − 10
−
⎛
⎝ cvt

Hd
2 +0.085

0.933

⎞
⎠
⎞
⎠

(11.69)

11.5 NUMERICAL SIMULATION METHODS

Numerical solutions typically require the use of a computer
because of the complexity and amount of the mathematics
involved. They tend to work as follows. The soil space or the
foundation is discretized into many small elements (linear,
surface, or volume). The points forming the geometry of these
elements are the nodes. The unknowns (e.g., stresses, strains,
displacements, forces, moments, flow velocity, head) have
to be calculated at all the nodes. The governing differential
equations are transformed into algebraic equations that must
be written as many times as there are nodes in the discretized
soil space. This usually yields a large number of equations
organized in matrix form. From this matrix equation, the
unknowns must be extracted and solved for; this often requires
an inversion process of the main matrix and can only be done
by computers. The output of these numerical solutions is in
the form of large tables that give the calculated values of
the unknowns at each node within the soil mass. Numerical
methods (Jing and Hudson 2002; Bobet 2010) include the
finite difference method (FDM), the finite element method
(FEM), the boundary element method (BEM), and the discrete
element method (DEM).

11.5.1 Finite Difference Method

The finite difference method is very powerful in solving
differential equations. The main idea is to replace the dif-
ferential equation by incremental algebraic equations. This
is done by using algebraic expressions of the derivatives of
the functions involved in the governing differential equation.
In Figure 11.17, the function y(z) has values yi−2, . . . , yi+2
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corresponding to values of z equal to zi−2, . . . , zi+2 respec-
tively. The values of z are separated by a constant distance h.
The first derivative of y evaluated at z = zi can be expressed
as the slope of the tangent at zi:

dy

dz @zi

= y ′
i = yi+1 − yi−1

2h
(11.70)

This expression is called the central difference expression
of the derivative, as it balances the influence of both sides of
the function with respect to point i (Figure 11.17).

The forward difference would be:

dy

dz @zi

= y ′
i = yi+1 − yi

h
(11.71)

and the backward difference would be:

dy

dz @zi

= y ′
i = yi − yi−1

h
(11.72)

The second derivative can be expressed using the same
approach. Indeed, the second derivative is the first derivative
of the first derivative. This gives the following expression,
using a forward and a backward formulation for y′ to end up
with a centered formulation of y′′.

d2y

dz2
@zi

= dy′

dz @zi

= y ′′
i = y ′

i+1 − y ′
i

h

=
yi+1 − yi

h
− yi − yi−1

h

h
= yi+1 − 2yi + yi−1

h2

(11.73)

Using the same process, the third derivative can be
expressed as:

d3y

dz3
@zi

= dy′′

dz @zi

= y ′′′
i = yi+2 − 2yi+1 + 2yi−1 − yi−2

2h3

(11.74)
and the fourth derivative:

d4y

dz4
@zi

= dy′′′

dz @zi

= y ′′′′
i = yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4

(11.75)

A typical finite difference solution proceeds through the
following steps:

1. The structure or soil mass involved is broken down
into small elements of chosen finite dimensions. Each
element has a number and each node at the boundaries
of these elements has a number.

2. The knowns and unknowns (loads, displacements,
stresses, strains, velocities, and heads, for example)
are identified for each node and given a subscript
corresponding to the node number.

3. The governing differential equation is written in alge-
braic finite difference form as many times as there are
nodes in the structure or soil mass.

4. The space and time boundary conditions are also
expressed in terms of the algebraic expressions of the
variables.

5. All equations are regrouped into a matrix equation.
6. The matrix equation is solved to extract the unknown

quantities. This usually requires that the matrix be
inverted. Considering the size of these matrices, a com-
puter is required for this step.

7. The solution is presented in the form of a table that
gives the sought quantities at all the nodes.

11.5.2 Examples of Finite Difference Solutions

The example is to solve the governing differential equation
by using the FDM for the problem of section 11.4.4: a
pile subjected to a horizontal force Ho and an overturning
moment Mo applied at the ground surface. The GDE is
(Eq. 11.21):

y + EpI

K

d4y

d z4
= 0 (11.76)

The solution to this problem is the function y(z) describing
the horizontal deflection of the pile as a function of the
depth z. The process consists of the following steps:

1. The pile is discretized into elements as shown in
Figure 11.18. The displacement at node i is yi. There
are a total of n + 1 unknown values of the horizontal
displacement y (y0 to yn).
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|
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Figure 11.18 Pile discretized into numbered elements and nodes.
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2. The GDE is written for each node using the expressions
of the derivatives presented in section 11.5.1:

yi + EpI

K

d4y

dz4
@zi

= yi + EpI

K

(
yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4

)
= 0

(11.77)or

yi+2 − 4yi+1 +
(

6 + Kh4

EpI

)
yi − 4yi−1 + yi−2 = 0

(11.78)

Because there are n + 1 nodes along the pile (0 to n),
Eq. 11.78 theoretically could be written n + 1 times.
That is not the case here, because Eq. 11.78 involves 5
nodal values of the displacement y, so in fact Eq. 11.78
can only be written n − 3 times. Because there are n + 1
values of the horizontal displacement y, we are missing
four equations. Can the boundary conditions help us?

3. The boundary conditions are that the horizontal load is
Ho at the ground surface and zero at the bottom of the
pile and that the moment is Mo at the ground surface
and zero at the bottom of the pile. To express these four
boundary conditions, additional and fictitious nodes are
created. These are nodes −1 and −2 at the top of the
pile and nodes n + 1 and n + 2 at the bottom of the
pile (Figure 11.18). The fact that the moment is Mo at
the ground surface and zero at the bottom of the pile is
written as:

M@z=0 = EpI
d2y

dz2
@z=0

= EpI

(
y1 − 2y0 + y−1

h2

)
= Mo (11.79)

M@z=L = EpI
d2y

dz2
@z=L

= EpI

(
yn+1 − 2yn + yn−1

h2

)
= 0 (11.80)

The fact that the shear force is Ho at the ground
surface and zero at the bottom of the pile is written as:

V@z=0 = EpI
d3y

dz3
@z=0

= EpI

(
y2 − 2y1 + 2y−1 − y−2

h3

)
= Ho

(11.81)

V@z=L = EpI
d3y

dz3
@z=L

= EpI

(
yn+2 − 2yn+1 + 2yn−1 − yn−2

h3

)
= 0

(11.82)

The boundary conditions lead to four new equations,
but we have also created four new unknowns (y−2, y−1,

yn+1, and yn+2). Thus, the new count is n + 5 unknowns and
n + 1 equations. The extra four equations are created because
the additional nodes allow the GDE to be written four more
times. Now we have n + 5 unknowns and n + 5 equations.
These n + 5 equations are written in matrix form as:

[K][Y ] = [C] (11.83)

where [K] is an n + 5 by n + 5 matrix of the coefficients
of the yi values in the algebraic equations corresponding to
the GDE and the boundary conditions, [Y ] is a n + 5 long
column matrix of the y values (y−2 to yn+2), and [C] is
a n + 5 column matrix of the constants in the n + 5 GDE
equations. Because the y values are the unknowns to be solved
for, the [K] matrix must be inverted and the solution is:

[Y ] = [K]−1[C] (11.84)

This solution is illustrated by solving for the deflection
and pressure distribution for a retaining wall as shown in
Figure 11.19.

The units for this problem are not stated, because as long
as the units are consistent the solution is independent of
the units. The bending stiffness of the wall is 10,000 and
the element height is 1. The soil reaction curves at each
node must be prepared (Figure 11.20). The reaction curves
represent the relationship between the line load P on the wall
and the horizontal displacement y of the wall. A number
of simplifying assumptions will be made to facilitate the
solution.

At node 0, the reaction curve shows that the line load Po is
equal to zero for all y values:

P0 = 0 (11.85)

At node 1, the reaction curve is taken as a constant equal
to 60. In fact, the reaction curve at node 1 should reflect the
mobilization of the active pressure if the wall moves away
from the soil and of the passive pressure if the wall moves
into the soil. However, because the active pressure is the
pressure that will be mobilized considering the problem, and
because the active pressure requires very little movement to
be mobilized, it is reasonable to assume that the movement
will be large enough that the line load on the wall will

22
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2h
4h

h

Figure 11.19 Wall discretized into numbered elements and nodes.
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Figure 11.20 Reaction curves for the wall at each node.

correspond to the active pressure for a large range of lateral
displacements:

P1 = 60 (11.86)

The same reasoning applies to the reaction curve at node 2,
where the pressure is twice as high and the line load is equal
to 120:

P2 = 120 (11.87)

At node 3, the reaction curve is as shown in Figure 11.20.
It indicates that the line load is linearly proportional to the
lateral displacement of the wall. Again, this reaction curve
should reflect the influence of the active and passive pressures
on both sides of the wall. The simplifying assumption in this
case is that the passive resistance dominates the behavior of
the wall below the excavation level. Knowing that it takes
much larger displacements to mobilize the passive resistance
than the active pressure, it is likely that below the excavation
depth the wall will be in the range of displacement where a
linear assumption is reasonable. Therefore, the reaction curve
at node 3 is characterized by:

P3 = −K3y = −1000y (11.88)

The reason for the minus sign is that when the deflection
increases to the right (�y > 0), the line load decreases
(�P < 0). The same reasoning applies for the reaction curve
at node 4, but with a higher stiffness K4, as node 4 is deeper
in the soil and therefore likely stiffer:

P4 = −K4y = −1500y (11.89)

As you can see, this problem has been greatly simplified
compared to the real problem. The reason is that without
such simplifications, the mathematics would become quite
complicated.

Now the problem is clearly defined and we can proceed
with the step-by-step procedure:

1. The wall has been discretized as shown in Figure 11.19.
2. The line loads and the horizontal displacements are

numbered from 0 at the top of the wall to 4 at the bottom
of the wall.

3. The GDE is the same as the one for the horizontally
loaded pile (Eq. 11.21):

P − EpI
d4y

d z4
= 0 (11.90)

Expressed in finite difference formulations, it be-
comes:

Pi − EpI

(
yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4

)
= 0

(11.91)
4. The boundary conditions are that the moment and the

shear force are zero at both ends of the wall. This
requires adding two fictitious nodes at both ends of the
wall, as shown in Figure 11.19. The equations for the
shear and moment are:

M = EpI

(
yn+1 − 2yn + yn−1

h2

)
= 0 (11.92)

V = EpI

(
yn+2 − 2yn+1 + 2yn−1 − yn−2

h3

)
= 0

(11.93)

5. Now all the equations can be written and assembled in
a matrix:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 2 0 −2 1 0 0 0 0
0 1 −2 1 0 0 0 0 0
1 −4 6 −4 1 0 0 0 0
0 1 −4 6 −4 1 0 0 0
0 0 1 −4 6 −4 1 0 0
0 0 0 1 −4 6.1 −4 1 0
0 0 0 0 1 −4 6.15 −4 1
0 0 0 0 0 1 −2 1 0
0 0 0 0 −1 2 0 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y−2
y−1
y0
y1
y2
y3
y4
y5
y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0.006
0.012

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.94)
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Table 11.1 Results of the Finite Difference Solution for
the Simulated Wall

Node number
(depth)

Horizontal deflection
y of wall

Line load
P on wall

1 2.72 0
2 1.95 60
3 1.18 120
4 0.42 −420
5 −0.32 480

The first two equations in the matrix equation are
the two equations for the moment and shear boundary
conditions at the top of the wall; then there are five
GDEs written at five nodes; and the last two equations
are the two equations for the moment and shear boundary
conditions at the bottom of the wall. Now it is time to
invert the matrix to obtain the [Y ] matrix as the solution
to the problem.

6. The computer does that for us, and the deflections y at
each node are calculated. The line loads on the wall are
obtained by using the relationship between the load and
the deflection given by the reaction curves of Eqs. 11.85
to 11.89. The results of this finite difference solution are
presented in Table 11.1.

The deflection profile y(z) and the line load profile P(z) are
shown in Figure 11.21. The profile P(z) shows that the wall is
in horizontal equilibrium because the area under the left side
of the profile is equal to the areas under the right side of the
profile. This is the way it should be, as horizontal equilibrium
was one of the fundamental equations we used in setting up
the solution.

11.5.3 Finite Element Method

The finite element method (FEM) is another powerful numer-
ical method to solve geotechnical problems (Clough 1960;
Desai and Abel 1972; Zienkiewicz et al. 2005). The output,
like most numerical methods, will be in the form of tables
giving the unknown quantities at discrete locations in the soil

mass. The general steps in developing a solution to a finite
element simulation are as follows:

1. Discretize the soil mass into finite elements connected
by nodes.

2. Choose the functions describing the variation of the
unknowns across each element and between its nodes.

3. Write the strain-displacement equations.
4. Write the stress-strain equations for the soil.
5. Derive the equations governing the behavior of the soil

element.
6. Assemble the element equations into the global matrix

equation.
7. Introduce the boundary conditions into the global matrix

equation.
8. Solve the global matrix equation for the unknowns.

Each step is discussed in more detail here.

1. Discretize the soil mass into finite elements connected
by nodes. In this step the soil mass is subdivided into a
number of small elements (Figure 11.22). The sides of the
elements intersect at the nodes. Each element and each
node is numbered in sequence. The size of the elements is
influenced by a number of factors, including how fast the
stress changes from one point to another of the soil mass
(stress gradient). Various shapes of elements exist: lines,
triangles, quadrilaterals, parallelepipeds, or brick elements.
One of the big advantages of the FEM is that irregular
boundaries do not present a big problem.

2. Choose the functions describing the variation of the un-
knowns across each element and between its nodes. These are
called interpolation functions or shape functions. The solution
of the FEM will give the answers at the nodes (Fig. 11.23),
but we need to be able to calculate the unknowns everywhere
in the mass to establish the general equations. The interpola-
tion functions relate for example the displacement anywhere
in the element to the displacements at the nodes. These
interpolation functions are typically in the form of polyno-
mials. It is more convenient, however, to write them in the
following form:

ux(x, y) = H1ux1 + H2ux2 + H3ux3 + H4ux4 =
#nodes∑
i=1

Hiuxi

(11.95)
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Figure 11.21 Wall deflection and line load.
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Figure 11.23 Element in plane strain.

uy(x, y) = H1uy1 + H2uy2 + H3uy3 + H4uy4 =
#nodes∑
i=1

Hiuyi

(11.96)

where ux(x, y) is the displacement in the x direction of any
point within the element with coordinates x and y, uxi is
the displacement in the x direction of node i, uy(x, y) is
the displacement in the y direction of any point within the
element with coordinates x and y, uyi is the displacement in
the y direction of node i, and the His are the interpolation
functions. Equations 11.95 and 11.96 would be for an element
with four nodes and plain strain condition in the z direction.
They describe the shape of the displacement surface across
the element.
In matrix form:

[
ux

uy

]
=
[
H1 0 H2 0 H3 0 H4 0
0 H1 0 H2 0 H3 0 H4

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 (x1,y1)2 (x2, y2)

3 (x3, y3)

4 (x4, y4)

y

x

(a)

4 (1, –1)3 (–1, –1)

2 (–1, 1) 1 (1, 1)

s

r

(b)

Figure 11.24 Finite element representation in real and natural
coordinates: (a) Real coordinates. (b) Natural coordinates.

or

[u] = [H ][ui] (11.97)

Note that the [u] matrix is the matrix of displacements
as variables, whereas the [ui] matrix is the matrix of dis-
placements at the nodes. The [H ] matrix is called the shape
function matrix. Note also that these matrices are written for
the element and not for the entire soil mass.

Regarding the coordinates x and y, it is more convenient
to use natural coordinates (Figure 11.24). As can be seen,
regardless of the element’s original shape, the transformation
leads to a set of coordinates varying from −1 to +1 along
each face. Also, the element is square. The interpolation
functions for a four-node element in natural coordinates are:

H1 = 1

4
(1 + r)(1 + s) (11.98)

H2 = 1

4
(1 − r)(1 + s) (11.99)
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H3 = 1

4
(1 − r)(1 − s) (11.100)

H4 = 1

4
(1 + r)(1 − s) (11.101)

where r and s are the natural coordinates (Figure 11.24).
In the general case, coordinates can be expressed in terms

of interpolation functions as follows:

x =
#nodes∑
i=1

Hixi (11.102)

y =
#nodes∑
i=1

Hiyi (11.103)

3. Write the strain-displacement equations. There are typ-
ically 9 equations: 3 force equilibrium equations and 6
constitutive equations linking the stresses to the strains. The
other equations are the 3 moment equilibrium equations, but
they simply lead to the fact that shear stresses on perpendic-
ular planes are equal and in opposite directions so they have
already been used up. However, there are 15 unknowns: 6
stresses, 6 strains, and 3 displacements. So we are short 6
equations. What saves the day is that the 6 strains are defined
on the basis of the 3 displacements, so this adds 6 strain-
displacement equations. In the end we have 15 unknowns and
15 equations.

Recalling Eq. 11.95, the normal strain in the x direction
is εxx:

εxx = ∂ux(x, y)

∂x
=
[
∂H

∂x

]
[uxi] (11.104)

The same equation holds true for εyy:

εyy = ∂uy(x, y)

∂y
=
[
∂H

∂y

]
[uyi] (11.105)

For the shear strain γxy, the equation becomes:

γxy = ∂ux

∂y
+ ∂uy

∂x
=
[
∂H

∂y

]
[uxi] +

[
∂H

∂x

]
[uyi] (11.106)

or, in matrix form:

[ε] = [B][ui] (11.107)

where [ε] is the strain matrix (3 × 1 vector for a two-
dimensional problem), [B] is the matrix containing the
derivatives of the interpolation functions Hi (3 × 8 for a
two-dimensional problem), and [ui] is the matrix of nodal
displacements (8 × 1 for a two-dimensional problem).

⎡
⎣εxx

εyy

γxy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂H1

∂x
0

∂H2

∂x
0

∂H3

∂x
0

∂H4

∂x
0

0
∂H1

∂y
0

∂H2

∂y
0

∂H3

∂y
0

∂H4

∂y

∂H1

∂y

∂H1

∂x

∂H2

∂y

∂H2

∂x

∂H3

∂y

∂H3

∂x

∂H4

∂y

∂H4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1
uy1

ux2
uy2

ux3
uy3

ux4
uy4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.108)

Because the interpolation functions Hi are defined in natural
coordinates, the derivatives ∂Hi/∂x and ∂Hi/∂y can be
related to ∂Hi/∂r and ∂Hi/∂s through the Jacobian matrix
[J] as follows: ⎡

⎢⎢⎣
∂Hi

∂x

∂Hi

∂y

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

∂Hi

∂r

∂Hi

∂s

⎤
⎥⎥⎦ (11.109)

where the Jacobian matrix [J ] is described as follows:

J =

⎡
⎢⎢⎣

∂x

∂r

∂y

∂r

∂x

∂s

∂y

∂s

⎤
⎥⎥⎦ (11.110)

Recalling Eq. 11.102 and Eq. 11.103, the components of this
Jacobian matrix are written as follows:

∂x

∂r
=
∑ ∂Hi

∂r
.xi (11.111)

∂x

∂s
=
∑ ∂Hi

∂s
.xi (11.112)

∂y

∂r
=
∑ ∂Hi

∂r
.yi (11.113)

∂y

∂s
=
∑ ∂Hi

∂s
.yi (11.114)

4. Write the stress-strain equations for the soil. These
are the constitutive equations, the ones that are specific to
the soil involved. One of the simplest constitutive laws is
the case where the stresses are linearly related to the strains
(elasticity):

[σ ] = [C][ε] (11.115)

where [σ ] is the stress matrix, which is a 3 × 1 matrix for
a two-dimensional problem and a 6 × 1 matrix for a three-
dimensional problem; [ε] is the strain matrix, which is a 3 × 1
matrix for a two-dimensional problem and a 6 × 1 matrix
for a three-dimensional problem; and [C] is the soil stiff-
ness matrix, which is a 3 × 3 matrix for a two-dimensional
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problem and a 6 × 6 matrix for a three-dimensional prob-
lem. In elasticity and for three dimensions, Eq. 11.115
is written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

σxx
σyy

σzz
τxy

τyz

τzx

⎤
⎥⎥⎥⎥⎥⎥⎦ = E

(1 − 2ν)(1 + ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0
1

2
− ν 0 0

0 0 0 0
1

2
− ν 0

0 0 0 0 0
1

2
− ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy

εzz
εxy

εyz

εzx

⎤
⎥⎥⎥⎥⎥⎥⎦ (11.116)

In the case of two dimensions, the C matrix becomes:

C = E

(1 − 2ν)(1 + ν)

⎡
⎢⎢⎢⎣

1 − ν ν 0

ν 1 − ν 0

0 0
1

2
− ν

⎤
⎥⎥⎥⎦ (11.117)

5. Derive the equations governing the behavior of the
soil element. You may have noticed that we have not yet
written any fundamental equations such as the equilibrium
equations. We do that in this step, but it is done by using
another technique called a variational principle that includes
the equilibrium equations. More specifically, we use the min-
imum total potential energy principle (MTPE) along with
the virtual work technique. The MTPE principle states that
the actual displacement solution of a deformable body is
the solution that renders the TPE functional � minimum,
meaning that the derivative of � is equal to zero. The two
types of energies involved in the TPE are the work done
by the external forces W and the internal strain energy U

of the deformable soil mass. The TPE is minimum (system
in equilibrium) when the change in work done by the ex-
ternal forces δW is equal to the change in internal strain
energy δU:

δ� = 0 → δU = δW (11.118)

The increment of virtual internal strain energy δU for a
bar is:

δU = σAδε dx = δε σ dV (11.119)

where σ is the axial stress, A is the cross-sectional area, δε

is a virtual axial strain, and dx and dV are an infinitesimal
length and volume of the bar. This is generalized for the
three-dimensional soil element as:

δU =
∫

V

δ[ε]T [σ ]dV (11.120)

The change in work is calculated by assuming that the
soil mass is subjected to virtual small displacements (virtual
work). The increment in virtual external work δW for a
bar is:

δW = Fbodyδu + Fboundaryδu = bdVδu + tdAδu (11.121)

where Fbody is the body force, δu is a virtual displacement,
F is the boundary force, b is the body force density (e.g.,
unit weight), t is the boundary tractions (e.g., pressure),
and dV and dA are an infinitesimal volume and area of
the bar. This is generalized for the three-dimensional soil
element as:

δW =
∫

V

δ[u]T [b]dV+
∫

V

δ[u]T [t]dA (11.122)

Then the principle of virtual work states that the expressions
in Eq. 11.120 and 11.122 are equal:∫

V

δ[ε]T [σ ]dV =
∫

V

δ[u]T [b]dV+
∫

V

δ[u]T [t]dA (11.123)

Using Eqs. 11.107 and 11.115, we get:∫
V

δ[u]T [B]T [C][B]δ[u]dV = δ[u]T
([

Fbody

] + [Fboundary]
)

= δ[u]T [F ] (11.124)

The element stiffness matrix Ke is defined as:

[Ke] =
∫

V

[B]T [C][B]dV (11.125)

To calculate the integral on the right side of Eq. 11.125,
we select integration points where all the components of the
B and C matrices are evaluated. In the special case of a plane
strain problem, the components of the stiffness matrix can be
reduced to the following expression:

t

∫∫
Area

fmn(x, y)dxdy =
2∑

i=1

2∑
j=1

t × fmn(ri, sj ). det J.wi .wj

(11.126)
where t is the thickness of the element (1 in plane strain
cases), fmn(x, y) is the function found at the intersection of
the m row and n column of the BtCB matrix of Eq. 11.125
expressed in real coordinates, fmn(r, s) is the same function
but expressed in natural coordinates, i and j are the running
indices identifying the location of the integration point, ri

and sj are the natural coordinates of the chosen integration
points on the element, wi and wj are the weighting factors
that depend on the number and location of the integration
points, and det J is the determinant of the Jacobian matrix. In
the general case, the thickness is not a constant and must be
calculated at each integration point by using the interpolation
functions (see problem 11.7). Figure 11.25 shows an example
of four integration points.
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Figure 11.25 Four integration points.

Because Eq. 11.124 must be satisfied for any kinematically
admissible virtual displacement field [u], we must have:

[Ke][u] = [F ] (11.127)

In Eq. 11.127, most of the displacements u are unknown
and most of the forces are either zero or known. This is the
equation governing the behavior of the element. If the element
were a spring, K would be the spring constant, but in the case
of the three-dimensional element, K is a square matrix.

6. Assemble the element equations into the global matrix
equation. Equation 11.126 is the equation for one element.
There are as many such matrix equations as there are elements
in the mesh. They must be assembled to form the stiffness
matrix for the entire soil mass. To do so, we specify that
the body must remain continuous during the deformation.
This means that each node can have only one displacement
vector common to all elements containing this node. At each
node, we also have only one body force and one external
force value. The following example illustrates how the global
matrix is assembled.

Consider the two elements of Figure 11.26. The stiffness
matrices for the 2 elements and their assembly into the
global matrix of the soil mass of the 2 elements are shown in
Figure 11.27. As can be seen, the coefficients of the individual
element matrices are labeled Ki

jk. The index i designates the
element number, j refers to the node number corresponding
to the force Fj, and k refers to the number of the node where
a displacement uk contributes an additional displacement at
node j. With these definitions for the indices, the stiffness
coefficients for adjacent elements are simply added when they
refer to the same j and k values while coming from different
elements i. This simple example is extended to all nodes in
the mesh to form the global stiffness matrix [K]. Then the
global governing equation for the entire soil mass is:

[K][u] = [F ] (11.128)

Figs. 11.26 and 11.27 show how to assemble the global
matrix for two four-node elements.

(1)

(2)

(3)

(4)

(5)

(6)

1

Element #1 

Element #2 

2

7

8

3

4

9

10

5
6

11

12

(1)

(2)

(3)

(4)

(5)

(6)

Element #1 

Element #2 

ux1

ux2

ux3

ux4

ux5

ux6

uy1

uy2

uy3 uy6

u

uy4

y5

Numbering of nodes and
degrees of freedom

Positive direction of
displacement at the nodes

(a) (b)

Figure 11.26 Two 2D FEM elements and numbering the degrees
of freedom: (a) Number of nodes and degrees of freedom. (b)

Positive direction of displacements at nodes.

7. Introduce the boundary conditions into the global ma-
trix equation. Equation 11.128 describes how the soil mass
will behave in general terms. The boundary conditions make
the problem specific. These boundary conditions (also called
constraints) are given in the way of specified values of dis-
placements, forces, temperatures, or any other parameters that
affect the problem. In dynamics, these conditions involve the
same types of parameters, but all of them are associated with
a specific time. Examples of boundary conditions include
requiring no movement at a node (ui

x = ui
y = ui

z = 0), no
external force at a node (F i

x = F i
y = F i

z = 0), or movement
at a node allowed only in one direction, or a single force
applied at a node. The specified values of displacement and
forces go directly into the [u] and [F ] matrices. Of course,
for problems other than deformation problems, the boundary
conditions are different and can be in terms of specified flow
velocities, heat flux, and so on.

8. Solve the global matrix equation for the unknowns. The
matrix equation to be solved is:

[K][u] = [F ] (11.129)

In a three-dimensional problem, the [K] matrix is a 3n × 3n
matrix where n is the number of nodes; the [u] matrix is a
3n × 1 matrix; and the [F ] matrix is also a 3n × 1 matrix.
The reason it is 3n is that there are 3 directions at each node
with 3 associated displacements and 3 associated forces. The
displacement vectors and the force vectors will be:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
x

u1
y

u1
z

.

.

.

un
x

un
y

un
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 1
x

F 1
y

F 1
z

.

.

.

F n
x

F n
y

F n
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 11.27 Assembling the global stiffness matrix: (a) Stiffness of matrix of element #1. (b)

Stiffness matrix of element #2. (c) Assembled global stiffness matrix.

In these vectors most of the unknowns are the displace-
ments at the nodes, except for the displacement boundary
conditions. However, most of the forces at the nodes are
known and are zero. Remember that we are talking about
the external forces, not the internal forces. The soil experi-
ences stresses all over its mass, but the external forces at the
nodes are zero except at supports or at boundary conditions.
This distinction between internal forces and external forces
is critically important and can be illustrated as follows.

Consider a simply supported beam resting on rigid supports
at both ends. Place a heavy load in the center of the beam.
If the beam is in equilibrium, the external moment is zero
everywhere along the beam, but the internal moment (bending
moment) is significant along most of the beam. You know
the displacement at both ends (zero), but you do not know the
force (support reaction). Along the rest of the beam, you do
not know the displacement, but you know the force, which
is zero except in the center where the force is equal to the
applied external load.

The same principle applies to the finite element method and
Eq. 11.128. The displacement matrix [u] is largely unknown
and the external force matrix [F ] is largely known. Therefore,

because we want to know [u], it will be necessary to invert
the stiffness matrix [K] to get the displacements:

[u] = [K]−1 [F ] (11.130)

Because the global stiffness matrix is very large, this
operation can require a lot of time when the mesh has many
elements. Techniques for optimizing this operation have
been developed in mathematics, including matrix banding.
This banding is affected by the numbering of the nodes and
it is always desirable to ensure that neighboring nodes do not
have very different numbers.

One issue arises with a boundary condition that specifies
a displacement: say, ui = δ. An example may be a support
where no movement is allowed. In this case, the displacement
is zero but the force is unknown. To solve the matrix problem
(Eq. 11.130), all unknowns must be in the displacement matrix
and all values in the force matrix must be known. To satisfy
this mathematical need, the following trick is applied. The
known displacement is entered in the displacement matrix
as an unknown ui. The corresponding force is entered as
the value of the known displacement δ to form the modified
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force matrix F ′ and the corresponding row (row i) in the
K matrix is set to be all zeroes except for the diagonal
value, which is 1. The same applies to column i, because
the matrix is symmetrical. That way the ith equation simply
says that ui = δ. This is repeated for all such cases and gives
rise to a new matrix K′. The matrix K ′ is inverted and all
displacements at all nodes are found by:

[u] = [K ′]−1 [F ′] (11.131)

Then the complete force matrix F is found as the matrix
product Ku:

[F ] = [K][u] (11.132)

Once the displacement matrix is obtained, the strains and
stresses can be obtained by using the strain-displacements
relationships (Eq. 11.107) and the stress-strain relationships
(Eq. 11.115).

11.5.4 Example of Finite Element Solution

Use the FEM to solve the deformation field for a test per-
formed on an elastic soil. The height of the sample is 0.1 m,
the width is 0.05 m, and the length is infinite. The major
principal stress is 300 kPa and the minor principal stress is
100 kPa. The modulus is 40 MPa and the Poisson’s ratio is
0.35. Consider a plane strain geometry and use two four-
noded elements. Use numerical integration with four points
to construct the stiffness matrix.

Step 1: Discretize the soil mass into finite elements
connected by nodes

The elements are shown in Figure 11.28. The element dimen-
sions are a = 0.05 m and b = 0.05 m; the soil properties are
E = 40,000 kPa and μ = 0.35.

Step 2: Choose the interpolation functions in natural
coordinates

Recalling Eqs. 11.98 to 11.101, these functions are consid-
ered:

H1 = 1

4
(1 + r)(1 + s) (11.133)
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Figure 11.28 Triaxial test in plane strain.

H2 = 1

4
(1 − r)(1 + s) (11.134)

H3 = 1

4
(1 − r)(1 − s) (11.135)

H4 = 1

4
(1 + r)(1 − s) (11.136)

Step 3: Write the strain-displacement equations

[ε] = [B][ui] (11.137)

⎡
⎣εxx

εyy
γxy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂H1

∂x
0

∂H2

∂x
0

∂H3

∂x
0

∂H4

∂x
0

0
∂H1

∂y
0

∂H2

∂y
0

∂H3

∂y
0

∂H4

∂y

∂H1

∂y

∂H1

∂x

∂H2

∂y

∂H2

∂x

∂H3

∂y

∂H3

∂x

∂H4

∂y

∂H4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.138)

Constructing the [B] Matrix.

a. Calculate the inverse of the Jacobian matrix used in the
transformation from natural coordinates to real coordi-
nates.

J =

⎡
⎢⎢⎣

∂x

∂r

∂y

∂r

∂x

∂s

∂y

∂s

⎤
⎥⎥⎦ =

⎡
⎢⎣

a

2
0

0
b

2

⎤
⎥⎦ =

[
0.025 0

0 0.025

]

(11.139)
Therefore:

det J = 6.25 ∗ 10−4

and

J−1 =
(

1

det J

)
.

⎡
⎢⎣

b

2
0

0
a

2

⎤
⎥⎦ =

[
40 0
0 40

]
(11.140)

b. Obtain the relation between the derivatives of the in-
terpolation functions in real coordinates and in natural
coordinates:⎡

⎢⎢⎣
∂Hi

∂x

∂Hi

∂y

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

∂Hi

∂r

∂Hi

∂s

⎤
⎥⎥⎦ (11.141)
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⎢⎢⎣

∂H

∂x

∂H

∂y

⎤
⎥⎥⎦ =

⎡
⎢⎣

b

2
0

0
a

2

⎤
⎥⎦ .

⎡
⎢⎢⎣

∂H

∂r

∂H

∂s

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b

2
.
∂H

∂r

a

2
.
∂H

∂s

⎤
⎥⎥⎦

(11.142)

c. Select the natural coordinates of integration points r and
s for a four-node element. This information is found in
most FEM books (e.g., Zienkiewicz 2005).

r =

⎡
⎢⎢⎣

1√
3

− 1√
3

− 1√
3

1√
3

⎤
⎥⎥⎦ (11.143)

s =

⎡
⎢⎢⎣

1√
3

1√
3

− 1√
3

− 1√
3

⎤
⎥⎥⎦ (11.144)

d. Compute the components of the matrix [B] at the four
integration points (Figure 11.29):

Point #1. Recalling Eqs. 11.133 to 11.136, the derivatives
of the interpolation function are:

∂H

∂r
=
[

1

4
(1 + s) −1

4
(1 + s) −1

4
(1 + s)

1

4
(1 + s)

]
(11.145)

∂H

∂s
=
[

1

4
(1 + r)

1

4
(1 + r) −1

4
(1 + r) −1

4
(1 + r)

]
(11.146)

12

3 4

Element #1 

Element #2 

0.577

0.577

r

r

s

s

Figure 11.29 The integration points.

For integration point #1. the natural coordinates are:

r = 1√
3

s = 1√
3

∂H

∂r
=
[

1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)

× 1

4

(
1 + 1√

3

)]
= [

0.394 −0.394 −0.105 0.105
]

(11.147)

∂H

∂s
=
[

1

4

(
1 + 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)

−1

4

(
1 + 1√

3

)]
= [

0.394 0.105 −0.105 −0.394
]

(11.148)

Point #2.

r = − 1√
3

s = 1√
3

∂H

∂r
=
[

1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 − 1√

3

)

× 1

4

(
1 − 1√

3

)]
= [

0.394 −0.394 −0.105 0.105
]

(11.149)

∂H

∂s
=
[

1

4

(
1 − 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)

−1

4

(
1 − 1√

3

)]
= [

0.105 0.394 −0.394 −0.105
]

(11.150)

Point #3.

r = − 1√
3

s = − 1√
3

∂H

∂r
=
[

1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)
−1

4

(
1 + 1√

3

)

× 1

4

(
1 + 1√

3

)]
= [

0.105 −0.105 −0.394 0.394
]

(11.151)
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∂H

∂s
=
[

1

4

(
1 − 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)

× −1

4

(
1 − 1√

3

)]

= [
0.105 0.394 −0.394 −0.105

]
(11.152)

Point #4.

r = 1√
3

s = − 1√
3

∂H

∂r
=
[

1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)
−1

4

(
1 + 1√

3

)

× 1

4

(
1 + 1√

3

)]

= [
0.105 −0.105 −0.394 0.394

]
(11.153)

∂H

∂s
=
[

1

4

(
1 + 1√

3

)
1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)

−1

4

(
1 + 1√

3

)]

= [
0.394 0.105 −0.105 −0.394

]
(11.154)

Now Eqs. 11.138, 11.140, and Eqs. 11.145 to 154 are
combined to create the B matrix. For example, the top right
element of matrix B is 40 × 0.394 = 15.773.

B
i = 1
j = 1

=
⎡
⎣15.773 0 −15.773 0 −4.226 0 4.226 0

0 15.773 0 4.226 0 −4.226 0 −15.773
15.773 15.773 4.226 −15.773 −4.226 −4.226 −15.773 4.226

⎤
⎦

B
i = 1
j = 2

=
⎡
⎣15.773 0 −15.773 0 −4.226 0 4.226 0

0 4.226 0 15.773 0 −15.773 0 −4.226
4.226 15.773 15.773 −15.773 −15.773 −4.226 −4.226 4.226

⎤
⎦

B
i = 2
j = 1

=
⎡
⎣4.226 0 −4.226 0 −15.773 0 15.773 0

0 4.226 0 15.773 0 −15.773 0 −4.226
4.226 4.226 15.773 −4.226 −15.773 −15.773 −4.226 15.773

⎤
⎦

B
i = 2
j = 2

=
⎡
⎣ 4.226 0 −4.226 0 −15.773 0 15.773 0

0 15.773 0 4.226 0 −4.226 0 −15.773
15.773 4.226 4.226 −4.226 −4.226 15.773 −15.773 15.773

⎤
⎦

Step 4. Write the stress-strain equations for the soil and
obtain the constitutive matrix

Recalling Eq. 11.116:

C = E(1 − μ)

(1 + μ)(1 − 2μ)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
μ

(1 − μ)
0

μ

(1 − μ)
1 0

0 0
(1 − 2μ)

2(1 − μ)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 104 ∗
⎡
⎣6.419 3.457 0

3.457 6.419 0
0 0 1.481

⎤
⎦ (11.156)

Step 5. Derive the equations governing the behavior of the
soil element

Recalling Eqs. 11.124 and 11.126:

[Ke] =
∫

V

[B]T [C][B]dV
(11.157)

[Ke][u] = [F ] (11.158)

and recalling the numerical integration from Eq. 11.125:

Ke =
∫

v
BT CBdv =

2∑
i=1

2∑
j=1

BT
ij CijBij

det J.wi .wj .t

(11.159)

(11.155)
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For two-point Gauss integration, wi , and wj are equal to 1.
In the case of plane strain, the thickness t of the elements is
taken as 1. Therefore, the stiffness matrix for each element is
as follows:

Ke = 104

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.63 1.23 −1.89 0.49 −1.32 −1.23 0.58 −0.49
2.63 −0.49 0.57 −1.23 −1.31 0.49 −1.89

2.63 −1.23 0.58 0.49 −1.31 1.23
2.63 0.49 −1.89 1.23 −1.31

2.63 1.23 −1.89 0.49
SYM 2.63 −0.49 0.58

2.63 −1.23
2.63

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.160)

Step 6. Assemble the element equations into the global
matrix equation

The global stiffness matrix equation Kg is based on the
connected degrees of freedom shown in Figure 11.28, and is
assembled as:

Kg = 104 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.63 −1.23 0.58 0.49 0 0 −1.89 0.49 −1.32 1.23 0 0
2.63 −0.49 −1.89 0 0 0.49 0.57 1.23 −1.32 0 0

5.27 0 0.58 0.49 −1.32 −1.23 0.39 0 −1.32 1.23
5.27 −0.49 −1.89 −1.23 −1.32 0 1.15 1.23 −1.32

2.63 1.23 0 0 −1.32 −1.23 −1.89 0.49
2.63 0 0 −1.23 −1.32 −0.49 0.57

2.63 1.23 0.57 −0.49 0 0
2.63 0.49 −1.89 0 0

SYM 5.27 0 0.57 −0.49
5.27 0.49 −1.89

2.63 −1.23
2.63

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 7. Introduce the boundary conditions into the global
matrix equation

Referring to Figure 11.28, the degrees of freedom of the
triaxial sample at nodes (3) and (6) should be constrained in
both directions. Moreover, nodes (1) and (4) can only deform
vertically. Thus, the rows and columns associated with those
degrees of freedom should be zero.

Step 8. Solve the global matrix equation for the unknowns

The triaxial sample is subjected to a confining pressure σ3 and
a vertical pressure σ1. For this problem, σ3 = 100 kPa, and

σ1 = 300 kPa. The force components applied at the nodes
due to the confining pressure and the vertical stress are:

At nodes 2 and 5

Phorizontal = σ3 × b

2
× 2 = 100 × 0.05

2
× 2 = 5 kN/m

(11.162)
At nodes 1 and 4

Pvertical = σ1 × a

2
= 300 × 0.05

2
= 7.5 kN/m (11.163)

Now the force matrix is assembled as:

F ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F ′
x1

Fy1

Fx2

Fy2

F ′
x3

F ′
y3

F ′
x4

Fy4

Fx5

Fy5

F ′
x6

F ′
y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−7.5

5

0

0

0

0

−7.5

−5

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(kN) (11.164)

(11.161)

Note that in fact the forces Fx1, Fx3, Fy3, Fx4, Fx6, and
Fy6 are actually unknown, but they are set equal to zero
because of the mathematical trick mentioned at the end of
section 11.5.3 and because the corresponding displacements
are zero. Note also that the matrix K ′ will have zeroes on
rows corresponding to the displacement boundary conditions,
except the diagonal, which will have a 1. The same applies
to the corresponding columns. The 12 × 12 matrix K ′ is
inverted by the computer and the displacement vector u is
found as K ′1 × F ′ :
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u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4
ux5
uy5
ux6
uy6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−0.5134
−0.0428
−0.2567

0
0
0

−0.5134
0.0428

−0.2567
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(mm) (11.165)

Then we can obtain the force vector by K × u:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx1
Fy1
Fx2
Fy2
Fx3
Fy3
Fx4
Fy4
Fx5
Fy5
Fx6
Fy6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.62
−7.5

5
0

3.62
7.5

−3.62
−7.5
−5
0

−3.62
7.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(kN) (11.166)

11.5.5 Boundary Element Method

The FDM and the FEM model the continuum by discretizing
the entire body of the soil mass. The boundary element method
(BEM) (Crouch and Starfield 1983; Brebbia et al. 1984) is
different in that it models the continuum by discretizing
only the boundaries of the continuum (Figure 11.30). The
mathematical technique for the BEM consists of replacing
the governing differential equations valid over the entire soil
mass by integral equations that consider only the boundary
values. If the soil mass extends to infinity, the FEM requires
a boundary at some distance from the imposed loading or
deformation. No artificial boundaries are needed in the BEM;
this is an advantage of the BEM over the FEM and the
FDM. Another advantage is that for a 3D problem, only
the boundary surface need be discretized; this reduces the
problem from a 3D problem (volume) to a 2D (surface)

Element

Domain
Ω

Node

Boundary
Γ

Figure 11.30 Discretization with the boundary element method.

problem. This is attractive if the boundary surface is small
compared to the volume of soil to be simulated. The BEM
is particularly well suited to addressing static continuum
problems with small boundary-to-volume ratios, with elastic
behavior, and with stresses or displacements applied to the
boundaries (Bobet 2010).

11.5.6 Discrete Element Method

The discrete element method (DEM), also called the distinct
element method (Cundall and Strack 1979; Ghaboussi and
Barbosa 1990) differs from the finite element method in that
it does not assume that the soil mass is a continuum; rather, it
treats the soil mass as an assembly of particles of various sizes
(Figure 11.31). Obviously, this is an improvement that gets
us closer to reality for soils. The DEM addresses three issues
during the calculations: the representation of the contacts,
the representation of the solid material, and the detection
and revisions of the contacts during deformation. Each soil
particle is subjected to the forces transmitted at the contacts
by adjacent particles and to its own body forces (gravity). The
representation of the contact is usually handled through the
use of spring and dashpot models (Figure 11.32). The springs
have a stiffness kn for the normal force and ks for the shear
force. The dashpots have damping factor cn for the normal
force and cs for the shear force.

The solution proceeds in small time steps and the fi-
nite difference method (FDM) is used in the solution (see
sections 11.5.1 and 11.5.2). The steps are:

1. The state of all the particles in the soil mass is known
at time t. This includes contact forces, displacements,
velocities, and accelerations.

Particle j

Particle i

vj

vi

Fij
Fji

Fn

Fn

Figure 11.31 Distinct element method: (a) DEM domain. (b)
Particle interaction. (a: Courtesy of C. Couroyer PhD Thesis, 2000,
University of Surrey, Guildford, Surrey, UK.)

n

s

Fn

Fs

CsKsKn

Cn

Element Element

(a) Contact forces (b) Contact forces idealization 

Figure 11.32 DEM element and idealized contact models.
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2. A time increment �t is considered. This time increment
has to be small enough for the solution to be numerically
stable. The following condition can be used (Hart et al.
1998):

�t < 0.1
√

mmin

2kmax
(11.167)

where mmin is the smallest particle mass and kmax is the
largest stiffness of all contacts. In the DEM, time comes
into play for both dynamic and static problems. Even in
a static problem, it takes time for the deformations to
take place.

3. The differential equations of motion are then used to
obtain the displacement and rotation of the particles
at time t + �t. The accelerations of the particles are
calculated assuming that the forces and moments are
constant over �t :

üt
i =

∑
F t

i

mi

(11.168)

θ̈ t
i =

∑
Mt

i

Ii

(11.169)

where üt
i and θ̈ t

i are the linear and angular acceleration
of particle i at time t respectively, F t

i and Mt
i are the

resultant force and resultant moment on particle i at
time t respectively, and mi and Ii are the mass and the
moment of inertia of particle i respectively. Then the
velocities of the particles are calculated assuming that
the accelerations are constants over −�t/2 and +�t/2:

u̇
t+ �t

2
i = u̇

t− �t
2

i + üt
i�t (11.170)

θ̇
t+ �t

2
i = θ̇

t− �t
2

i + θ̈ t
i �t (11.171)

where u̇i and θ̇i are the linear and angular velocities
respectively. Then the displacements and rotations of
the particles are calculated assuming that the velocities
are constant over �t:

ut+�t
i = ut

i + u̇
t+ �t

2
i �t (11.172)

θ t+�t
i = θ t

i + θ̇
t+ �t

2
i �t (11.173)

where ui and θi are the displacement and the rotation
respectively.

4. The equations representing the behavior of the con-
tacts are then used to update the forces and moments.
Figure 11.32 gives a common model for the contact
normal forces Fn and the contact shear forces Fs:

F t+�t
n = kn�u�t

n + cn�u̇�t
n (11.174)

F t+�t
s = ks�u�t

s + cs�u̇�t
s (11.175)

where ks and kn are the stiffnesses in the normal and
shear directions respectively, cn and cs are the damping
factors in the normal and shear directions respectively,
�un and �us are the incremental displacements in the
normal and shear directions respectively, and �u̇n and
�u̇s are the incremental velocities in the normal and
shear directions. The shear force Fs cannot exceed the
shear strength of the soil, so the following condition is
checked at each increment:

F t+�t
s ≤ c′Ac + F t+�t

n tan ϕ′ (11.176)

where c′ is the effective stress cohesion intercept, Ac is
the contact area, and ϕ′ is the effective stress friction
angle.

5. The cycle of calculations in 1 through 4 is repeated
many times. The final solution is obtained when a chosen
tolerance in the difference between two consecutive sets
of calculations is achieved.

The DEM is quite efficient with these calculations. The
calculations are done through a straightforward process solv-
ing one equation at a time, and no large matrix has to
be inverted. Where the computing power and storage ca-
pacity are required is in recognizing and keeping track of
all the contacts between elements from one step to the
next. The DEM is very useful for soils and fissured rock
masses.

11.6 PROBABILITY AND RISK ANALYSIS

All the methods discussed so far are deterministic in nature,
which means that they give one precise answer for one
problem. Considering the fact that uncertainty exists in every
step taken in arriving at a solution, it makes sense to calculate
the uncertainty associated with the solution or predicted value.
This is called the probabilistic approach.

11.6.1 Background

This subsection reviews some basic concepts of statistics
because they are useful in the steps described for the gen-
eral procedure. When many values of a certain variable are
collected—such as the undrained shear strength su of a clay
at a site and at a given depth, for example—they will vary
and can be organized in a table from the lowest to the highest
value (Table 11.2). These values sui can then be regrouped
into sets of increments or ranges, as shown in Table 11.2.
A histogram is a plot of the number of times the variable
is found in each increment as a function of the value of
the variable (Figure 11.33a and b). Note that a different
histogram is generated if a different increment magnitude
is selected.

A distinction is made between the variable X and the
values of that variable xi. The mean μ of a set of values
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Table 11.2 Values of Undrained Shear Strength and
Histogram Input

Undrained
strength
value (kPa)

Number of
values (10 kPa

increments)

Number of
values (20 kPa

increments)

49 1 value between 40
and 50

1 value between 40
and 60

62 2 values between 60
and 70

6 values between 60
and 80

67
73 4 values between 70

and 80
75
76
79
81 3 values between 80

and 90
4 values between 80

and 100
85
86
93 1 value between 90

and 100
105 1 value between 100

and 110
1 value between 100

and 120

(x1, x2, x3, . . . , xn) is defined as follows and is called the
expected value E(X) of X:

μ = x1 + x2 + · · · + xn

n
=

n∑
i=1

xi

n
= E(X) (11.177)

The standard deviation σ is a measure of the deviation of
the values with respect to the mean. It is given by:

σ =
√

(x1 − μ)2 + (x2 − μ)2 + · · · + (xn − μ)2

n − 1

=

√√√√√√
n∑

i=1

(xi − μ)2

n − 1
(11.178)

The reason for using the squares is that the difference
(xi − μ) can be positive or negative and might cancel out
during summation, thereby not giving a true rendition of the
scatter around the mean. We could have used the absolute
values of the difference, but that is not what is chosen in
practice. Also, the reason for using (n − 1) rather than n is
the fact that only (n − 1) values of (xi − μ) are independent,
as the sum of the n values of (xi − μ) is equal to zero. This is
called the Bessel correction. The square of the standard

deviation σ 2 is called the variance v and the ratio of the
standard deviation to the mean is the coefficient of variation
CoV. The CoV is a measure of the scatter in the data. The
CoV of structural dead loads may be around 0.05, whereas
the CoV of soil data may be around 0.3:

CoV = σ

μ
(11.179)

For normal distributions, the inverse of the CoV is the
reliability index β. The reliability index tells us how many
standard deviations the mean is from the zero origin. It is
very useful in reliability analysis and engineering code cali-
bration. In this case, the variable is the difference between the
resistance R and the load L and the reliability index β tells
us how many standard deviations σ(R−L) the mean μ(R−L) is
from failure (R − L = 0). It serves as an indication of the
safety level (reliability index).

β = μ

σ
(11.180)

For distributions different from normal distributions, the
generalized reliability index is still used, but is defined dif-
ferently.

If the number of values of xi increases, the histogram
becomes smoother; if the number becomes infinity, a smooth
function is obtained. This function is f (x) and is called
the probability density function (PDF) (Figure 11.33c). It is
defined as the function f (x) that satisfies:

P(a < X < b) =
∫ b

a

f (x)dx (11.181)

where P(a < X < b) is the probability that X will be between
a and b. The curves on Figure 11.34 are examples of the
function f (x). The area under the curve between two values
a and b is the probability that X will fall between those two
values. The function also satisfies:

P(−∞ < X < +∞) =
∫ +∞

−∞
f (x)dx = 1 (11.182)

Recall that for the histogram, the distribution depended on
the increment selected for the variable. The same happens
for f(x): Different functions will be obtained depending on
the units used for the variable axis. However, the integral in
Eq. 11.181 will be the same because it is a relative measure.
The cumulative distribution function (CDF) gives the value:

P(X < x) =
∫ x

−∞
f (x)dx (11.183)

One of the most commonly used PDFs is the normal
distribution. The normal distribution function is:

f (x) = 1

σ
√

2π
e
− 1

2

(
x−μ

σ

)2

(11.184)
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Figure 11.33 Histogram for two values of the variable increment.
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Figure 11.34 Examples of probability density function for normal
distributions.

The corresponding CDF is:

F(x) = 1

2

(
1 + erf

(
x − μ

σ
√

2

))
(11.185)
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Figure 11.35 Examples of cumulative distribution function for
normal distributions.

The “erf” function is called the error function; it does
not have a closed-form expression, but can be tabulated.
Figure 11.34 shows normal distributions and Figure 11.35
shows cumulative distributions.
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It is often advantageous to normalize the variable. The
standard normal variable (SNV) is denoted u:

u = x − μ

σ
(11.186)

Therefore, the mean and the standard deviation of the SNV
are 0 and 1 respectively. The PDF and CDF for the SNV are:

PDF ϕ(u) = 1√
2π

e− u2
2 (11.187)

CDF �(u) = 1

2

(
1 + erf

(
u√
2

))
(11.188)

Values of the CDF function �(u) for the Standard Normal
Variable u are presented in Table 11.3. So, if you wish to
find out the probability P(X < x) that a normally distributed
variable X is less than a chosen value x, the steps are:

1. Obtain the mean μ and standard deviation σ of X

2. Calculate the value of the standard normal variable
u = (x − μ)/σ

3. Look in Table 11.3 to find �(u)

4. Then

�(u) = P(U < u) = P

(
X − μ

σ
<

x − μ

σ

)
= P(X < x) (11.189)

5. Remember that �(u) has the following properties:

P(U < u) = 1 − P(U < −u) so

�(u) = 1 − �(−u) (11.190)

P(U < u) = P(U > −u) (11.191)

Figure 11.36 shows some useful areas under the normal
distribution.

Another distribution that is very commonly used is the
lognormal distribution (Figures 11.37 and 11.38). This dis-
tribution of a variable X is defined as a distribution such
that the LnX (natural logarithm) is normally distributed. The
probability density function of the lognormal distribution is
therefore:

f (x) = 1

xσLnx

√
2π

e
−

1

2

(
Lnx − μLnx

σLnx

)2

(11.192)

Note that the distribution differs slightly from the normal
distribution equation. This is because the function is f (x)

rather than f (Lnx). The function f (Lnx) would have the
same expression as Eq. 11.184, but f (x) is equal to f (Lnx)
times the derivative of Lnx with respect to x, which brings
about the additional 1/x. In this case, the mean and standard
deviation of the lognormal distribution are:

μLnx = Ln

(
μx

2√
μx

2 + σx
2

)
(11.193)

σLnx =
√

Ln

(
1 + σx

2

μx
2

)
(11.194)

Table 11.3 can be used to obtain the probability P(X < x)

that a lognormal distributed variable X is smaller than a
chosen value x. The process takes place as follows:

1. Obtain the mean μx and the standard deviation σx of X

2. Obtain the mean μLnx and standard deviation σLnx of
LnX. This can be done by using Eqs. 11.193 and 11.194
once μx and σx are known.

3. Calculate the value of the standard normal variable

u =
(

Lnx − μLnx

σLnx

)
4. Look in Table 11.3 to find �(u)Then

�(u) = P(U < u) = P

(
LnX − μLnx

σLnx
<

Lnx − μLnx

σLnx

)
= P(LnX < Lnx) = P(X < x) (11.195)

5. Remember that �(u) has the following properties:

P(U < u) = 1 − P(U < −u) so

�(u) = 1 − �(−u) (11.196)

and
P(U < u) = P(U > −u) (11.197)

11.6.2 Procedure for Probability Approach

A method of calculating the uncertainty associated with a
predicted value usually proceeds as follows:

1. First, the uncertainty associated with each variable
involved in the solution is quantified. This quantifica-
tion process often requires that the mean μ and standard
deviation σ of each variable be determined, or that the
mean μ and the coefficient of variation CoV = σ/μ be
determined. Soil properties tend to have coefficients of
variation on the order of 0.3 to 0.4.

2. Deterministic approaches may use mean values of the
variables to obtain the mean value of the predicted value.
In probabilistic approaches, a second set of equations
is organized dealing with the relationship between stan-
dard deviations. There are special mathematical rules
of operation to combine the standard deviations of the
contributing variables and obtain the standard deviation
of the variable to be predicted. If the expression of the
variable to be predicted as a function of the contribut-
ing variables is too complicated, one may have to use
numerical probabilistic simulations such as the Monte
Carlo simulation.



11.6 PROBABILITY AND RISK ANALYSIS 309

Table 11.3 Values of the Areas under the Distribution of the Standard Normal Variable

The table gives the cumulative probability up to the standarized normal value of x

P[X < x] = ∫ 1 exp ( X2
x

–∞ 2π
1

2
) dX

0 x

P[X < x] 

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5159 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7854
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8804 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9773 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9865 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9924 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9980 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

x 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90
P 0.9986 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000

3. The Monte Carlo simulation consists of drawing values
of the contributing variables at random from the range
of possible values (using a random number generator),
respecting the distribution of these variables, and cal-
culating the value of the function to be predicted. This
drawing process is repeated thousands of times and the
values obtained are organized into a distribution for the

predicted function from which a mean and a standard
deviation are calculated.

4. Once the standard deviation of the predicted function
is known, one can find out the probability that the
predicted function value will be higher or lower than a
chosen target.
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Figure 11.36 Useful areas under the normal distribution.
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11.6.3 Risk and Acceptable Risk

There is a very important distinction to be made between
probability of failure and risk. The probability of failure is
simply the probability that something is going to collapse
(e.g., a bridge, a slope, a building, a dam). Risk is defined
as the probability of failure multiplied by the value of the

consequence. It uses units of the value of the consequence,
typically fatalities or dollars lost:

R = P(F<1)C (11.198)

where R is the risk, P is the probability of failure, and C

the value of the consequence. For example, if a slope exists
at a very steep angle, it likely would have a high probability
of failure. If it were located in the middle of a deserted
area and it failed, no one would die and the economic loss
would be minimal; therefore the risk would be small. If the
same slope were in the middle of a busy city with many
buildings and people around it, the number of people dying
and the economic loss from destroyed building, utilities,
and transportation facilities would be significant; therefore
the risk would be very high even though the probability of
failure was the same. That illustrates the distinction between
probability of failure and risk.

This brings up the point of what is an acceptable risk. First
of all, it is not possible to design a structure (for example, a
tunnel or an earth dam) that has zero risk associated with its
engineering life. This is due to the facts that any calculation
is associated with some uncertainty; that the engineering
profession’s knowledge, though having made great strides,
is still incomplete in many respects; that human beings are
not error free; and that the engineer designs the structure for
conditions that do not include extremely unlikely events such
as a falling satellite hitting the structure at the same time
as an earthquake, a hurricane, and a 500-year flood during
rush hour.

Most modern codes have been written with an accepted
probability of failure of about 1 chance in 1000 (structural
engineering); it may be estimated that geotechnical engineer-
ing operates at a somewhat higher risk than that. In any case,
the choice of an acceptable risk is difficult because so many
factors enter into the decision. One of those factors is the
evaluation of how many fatalities are acceptable. Though few
people are prepared to say that any fatality is acceptable,
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Table 11.4 Approximate Probability of Human Death

Activity Probability of death*

Heart disease 0.25
Cancer 0.23
Stroke 0.036
Car 0.012
Suicide 0.009
Fire 0.0009
Airplane 0.0002
Bicycle 0.0002
Lightning 0.00001
Earthquake 0.000009
Flood 0.000007

*These numbers represent the number of deaths due to that
activity in one year in the USA divided by the total number of
death in the USA during that same year. Sources: New York
Times, Center for Disease Control, National Safety Council.

it is a matter of public record that some fatalities do occur
because of civil engineering decisions. These fatalities can
be due to malpractice or to unforeseen events. The choice of
an acceptable risk involves other disciplines beyond geotech-
nical engineering, including philosophy, politics, and social
sciences. One of the very difficult steps required in estimating
an acceptable risk is what price to put on human life. It is
not uncommon to use a number like $1 million, because
that is an average life insurance value for many people. The
probabilities of death in the USA for various human activi-
ties (Table 11.4) help frame the acceptable numbers in this
domain.

Note that the statistics do not always match the human
perception. For example, the probability of dying in a car
accident is much higher than the probability of dying in an
airplane accident, yet people tend to be much more afraid
of flying than of driving their cars. Figure 11.39 shows the
annual risk associated with various activities in geotechnical
engineering and in everyday life. The annual probability of
failure (PoF) is on the vertical axis, and there are two scales
on the horizontal axis: lives lost or fatalities per year (F ) and
dollars lost per year (D). Because the two do not necessarily
correspond, the activities are shown as bubbles rather than
precise points on the graphs. Since the risk is the product of
the probability times the value of the consequence, two risk
values can be defined:

R(fatalities) = PoF × F (11.199)

R(dollars lost) = PoF × D (11.200)

Therefore, the annual risk is constant on diagonals in
Figure 11.39. The red, blue, and green lines correspond to a
high, medium, and low annual risk. The numbers are shown
in Table 11.5. These data indicate that 0.001 fatalities per
year and $1000 US per year may be acceptable target risk
values.

A more advanced way to formulate the risk is:

R = T × V × C (11.201)

where T is the threat, V the vulnerability, and C the value of
the consequence.

As can be seen in this case, the probability of failure is
split into two components. The threat is the probability that a
certain event will occur (big flood or big earthquake), whereas
the vulnerability is the probability that failure will occur if
the event occurs. Vulnerability is the part of the system where
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Figure 11.39 Risk associated with various engineering and human activities (Yao 2013).
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Table 11.5 Annual Risks for the USA
(risk = PoF × value of the consequence)

Annual risk
level

Fatalities/year
in USA

Dollars
lost/year
in USA

Low 0.001 1000
Medium 0.01 10000
High 0.1 100000
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Figure 11.40 Fragility curves.

one has the most control. Fragility curves (Figure 11.40) link
the probability of failure to the severity of the threat; they
quantify the vulnerability function V.

11.6.4 Example of Probability Approach

A slope stability analysis is used as an example of the proba-
bility approach. In a deterministic analysis, a single factor of
safety is calculated. In a probabilistic analysis, a mean factor
of safety is calculated from the mean values of the soil pa-
rameters, the slope geometry, and the water stress conditions.
Then a standard deviation of the factor of safety is obtained
from the standard deviations of the parameters involved in the
calculations. This is done either by mathematical calculations
from the individual standard deviations of the parameters
involved in the factor of safety of the slope, if the prob-
lem is simple enough; or by numerical simulations, such as
the Monte Carlo simulation, if the problem involves several
layers or complicated geometry and water stress conditions.
Knowing the standard deviation of the factor of safety, one
can calculate the probability that the calculated factor of
safety will be below 1; this is the probability of failure of
the slope.

The deterministic approach gives only one factor of safety,
whereas the probabilistic approach gives a mean factor of
safety and a probability of failure. This added information
can be very valuable for the engineer who must accept or
reject the calculated value of the factor of safety. Indeed,
one could have the same mean factor of safety but drastically
different probabilities of failure depending on whether the soil

parameters are known with good precision (low coefficient
of variation) or with poor precision (high coefficient of
variation). For example, a mean factor of safety of 1.5 with a
coefficient of variation of 0.5 would likely be unacceptable,
whereas a mean factor of safety of 1.5 with a coefficient
of variation of 0.05 would likely be acceptable. Yet no
distinction could be made on the basis of the mean value alone.

Let us say that a slope has a mean factor of safety equal to
1.5 (μF = 1.5) and a standard deviation equal to 0.45 (σF =
0.45). The coefficient of variation is 0.3 (CoVF = 0.3). Let’s
further assume that F follows a lognormal distribution. The
question is what is the probability of failure P(F < 1)? We
follow the steps of section 11.6.2:

1. The mean and standard deviation of F are 1.5 and 0.45
respectively.

2. The mean and standard deviation of LnF are calculated
as follows:

μLnx = Ln

(
1.52√

1.52 + 0.452

)
= 0.362 (11.202)

σLnx =
√√√√Ln

(
1 + 0.452

1.52

)
= 0.294 (11.203)

3. Calculate the value of the standard normal variable U
for F = 1:

u = LnF − μLnF

σLnF
= Ln1 − 0.362

0.294
= −1.231

(11.204)
4. Table 11.3 does not gives the value of �(−1.231),

but it gives the value of �(1.231) = 0.8907. Because
�(u) = 1 − �(−u), then �(−1.231) = 1 − 0.891 =
0.109. Therefore, the probability of failure is 0.109.

This process can be repeated a number of times for different
values of the factor of safety, and a plot of the factor of
safety versus the probability of failure can be generated
(Figure 11.41). Using that plot, if we wish to operate at a
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Figure 11.41 Probability of failure vs. mean factor of safety for a
slope.
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Figure 11.42 Slope and consequence of failure.

probability of failure of 0.001, then we would have to use a
factor of safety of 2.5. Now let’s say that the slope failure
would have some serious consequences (Figure 11.42), such
as 10 fatalities and $5 million. For a factor of safety of 1.5,
we would calculate a risk of 0.109 × 10 = 1.09 fatalities and
0.109 × 5M$ = $545,000. If we wish to operate at a risk
level of 0.01 fatalities/year (Figure 11.39), then we need
to have: Risk = 0.01 fatalities = P(F < 1) × 10 fatalities or
P(F < 1) = 0.001; therefore F = 2.5 (Figure 11.41). If we
wish to operate at a risk level of $10,000/year, then we
need to have: Risk = $10000 = P(F < 1) × 5M$ or P(F <

1) = 0.002 and F = 2.35 (Figure 11.41). In this case, the
fatality-risk criterion controls.

11.7 REGRESSION ANALYSIS

Let’s say that we have data presented on an x—y scatter plot
(Figure 11.43) representing n xi values and n corresponding
yi values. It is often desirable to find the best fit line for
the data presented so that y can best be predicted for any
value of x. This is regression analysis. The basic concepts
are presented here for a linear regression where the best fit
line to be found is a straight line y = ax + b. The first step
is to define what is meant by best fit. The most common
definition is that the sum of the squares of the differences
di (Figure 11.43) between the predicted values of y and the
measured value of y is minimum. The sum of the squares is:

a

1
b

(xi, yi)

di

y 5 ax 1 b

X

Y

Figure 11.43 Regression minimizing the vertical distance.

f (a, b) =
n∑

i=1

di
2 =

n∑
i=1

(yi − axi − b)2 (11.205)

This function f(a,b) is minimum when the partial derivatives
with respect to a and to b are zero:

∂f (a, b)

∂a
= 0 = a

∑
xi

2 + b
∑

xi−
∑

xiyi (11.206)

∂f (a, b)

∂b
= 0 = a

∑
xi + bn −

∑
yi (11.207)

These two equations give a and b as:

a =
∑

xi

∑
yi − n

∑
xiyi(∑

xi

)2 − n
∑

xi
2

(11.208)

b =
∑

xi
2
∑

yi −
∑

xi

∑
xiyi

n
∑

xi
2 −

(∑
xi

)2 (11.209)

If you look at a scatter plot and “eyeball” the regression
line, you tend to minimize the normal distance (NM on
Figure 11.44) between the data points and the best fit line
rather than the vertical distance. This is called an orthogonal
regression.

a

b

y 5 ax 1 b
Y

X

1

P

O
N

M

Figure 11.44 Regression minimizing the orthogonal distance.
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In this case the expression for the sum of the squares of the
distances becomes:

f (a, b) =
n∑

i=1

di
2 =

n∑
i=1

((xiM − xiN)2+yiM − yiN)2)

=
n∑

i=1

1

1 + a2
(yiM − axiM − b)2 (11.210)

Then the derivative with respect to b gives:

∂f (a, b)

∂b
= 0 or

∑
(yi − axi − b) = 0 (11.211)

or

b =
∑

yi

N
− a

∑
xi

N
= y − ax (11.212)

Eliminating b from Eq. 11.210 gives:

f (a) =

∑
(yi − y)2 − 2a

∑
(xi − x)(yi − y)

+a2
∑

(xi − x)2

1 + a2
(11.213)

Then we set:
∂f (a)

∂a
= 0 (11.214)

which gives the following equation:

a2
∑

(xi − x)(yi − y) − a
(∑(

yi − y
)2 −

∑
(xi − x)2

)
−
∑

(xi − x)(yi − y) = 0 (11.215)

which leads to the solution for a:

a =

∑
(yi − y)2 −

∑
(xi − x)2

+

√√√√√
(∑(

yi − y
)2 −

∑
(xi − x)2

)2

+ 4
(∑(

xi − x
)
(yi − y)

)2

2
∑

(xi − x)(yi − y)

(11.216)
Note that if the regression line is forced to go through the

origin, then:

b = 0 and a =
∑

yi∑
xi

(11.217)

The coefficient of regression r2 is a measure of how well
the regression equation predicts the data. It is given by:

r2 = 1 −
∑

(yi − axi − b)2∑
(yi − μy)

2
(11.218)

It tells us how well the regression line predicts the data
compared to a simple average. Values close to 1 indicate

that y = ax + b is a very good predictor of the data, whereas
values close to zero indicate that y = ax + b is a very poor
predictor of the data and that you might as well use the mean
regardless of the value of x.

11.8 ARTIFICIAL NEURAL NETWORK METHOD

The artificial neural network (ANN) (De Wilde 1996;
Schalkoff 1997) gets its name from the human brain, where
neurons interact with each other to process information
and make decisions. ANN can be thought of as a very
sophisticated regression analysis where a data set is input
and, after calculations through a number of neuron layers
involving mathematical functions, is converted into a desired
output (Figure 11.45). For example, there are many bridges
in the USA for which the foundation type and depth are
unknown. Let’s say that you wish to predict the type and
depth of the foundation on the basis of related information,
such as the dead load of the bridge, the number of lanes,
the length of the span, the foundation depth of neighboring
bridges, the dates when the bridge was designed and built,
the soil type and the soil strength if borings are available, and
so on. This input becomes a set of numbers fitting in a layer
of initial neurons and related in some fashion to the type
and depth of the unknown foundation. A set of mathematical
functions to be chosen by the user are placed in the next layer
of neurons waiting for the arrival of the input data; these
mathematical functions will transform the input values into
a new set of values that is in turn sent to the next layer of
neurons. Each time the data set goes through a new layer of
neurons, it is mathematically transformed and then sent to the
next set of neurons, where it undergoes new mathematical
transformation. The output layer of neurons for this example
would contain the type and depth of the foundation.

The neurons in a layer are connected only to the previous
layer and to the next layer of neurons. Any given neuron is
connected to some of the neurons in the previous layer and
some of the neurons in the following layer but not necessarily

i1
i1

i2

im

i2

i3

in

Input
layer L1

Layer L2 Layer LN-1
Output
layer LN

Figure 11.45 Artificial neural network. (After Bobet 2010.)



11.9 DIMENSIONAL ANALYSIS 315

to all of them. The mathematical functions f that operate the
transformation in a neuron are for example (Bobet 2010):

ijk = f

⎛
⎝ ∑

h∈Lk−1

(
whjih(k−1) + θjk

)⎞⎠ = f (oj ) with j ∈ Lk

(11.219)
where ijk is the information to be calculated and be stored in
neuron j of layer k, often called the state of neuron jk; ih(k−1) is
the known information stored in neuron h of layer (k − 1); whj
is the weight factor associated with the connection between
neuron h in layer k − 1 and neuron j in layer k (note that wjh
does not exist, as there is no connection back from neuron h
to neuron j); θjk is the bias or threshold value associated with
neuron jk; and oj is the argument associated with neuron jk
in the function f. Although these functions are chosen by the
user at will, certain functions are more popular than others.
This is the case of the sigmoidal function:

f (oj ) = 1

1 + e−oj
(11.220)

Once the functions are in place, the ANN must be “trained,”
which means that the constants in the functions must be
determined. This is done by minimizing the error E between
the input data and the output predictions through a process
similar to the regression analysis discussed in section 11.7:

E =
∑

m∈LN

(dm−f (om))2 (11.221)

where dm is the data for neuron m of layer n and f(om) is
the predicted value for neuron m of layer n. Once the ANN
is trained, it can be used to make predictions concerning the
type of data that was used to train it. However, the accuracy
is tied to the quality of the ANN and the experience of the
developer. Using ANN outside of the range of values used to
train it can lead to serious errors.

11.9 DIMENSIONAL ANALYSIS

Units are essential to quantify engineering parameters. Unfor-
tunately, there are several unit systems, and this often makes
it difficult to communicate across countries using different
systems. The most common system in the world is the SI
unit system (Système International), but the U.S. customary
unit system is still used in the USA. These systems were
developed in the late 1700s (SI system in France) and the
early 1800s (Imperial system in the UK). Although there are
seven units in a system of units (Chapter 1), four are used
commonly in engineering: length, mass, time, and tempera-
ture. In the SI system, the practice is to use the meter, the
kilogram, the second, and the degree Celsius. In the U.S. cus-
tomary system, the practice is to use the foot, the pound, the
second, and the degree Fahrenheit. These four units are called
primary units, from which derived units can be obtained.

The Newton is a unit of force; it is not a primary unit but
rather a derived unit, as it is a combination of mass, length,
and time (F = ma = mass × length/time2). Stress is also not
a primary unit, but rather a derived unit, as it uses mass,
length, and time. One way to avoid worrying about units
is to nondimensionalize the parameters used in a problem.
Strains are an example of such nondimensional quantities.
Strains are the same regardless of the system of units used. In
geotechnical engineering, we tend to use dimensional param-
eters, whereas in hydraulic engineering the trend is toward
using nondimensional parameters. As a result, the difference
in unit systems does not affect hydraulic engineering as much
as geotechnical engineering.

11.9.1 Buckingham � Theorem

Dimensional analysis is a very useful tool when dealing with
mechanics problems. It goes back to the work of Newton
and Fourier, but culminated with Buckingham (an American
physicist born in 1867) and his famous � theorem in 1915.
This theorem states that a function describing a relationship
among n quantities, xi, such as f1(x1, x2, x3, . . . , xn) = 0.

where m primary units are required to express the xi quantities,
can be reduced to the form f2(�1,�2,�3, . . . ,�n−m) = 0,

where �i are nondimensional products of powers of the xi of
the form πi = x1

ax2
b . . . xn

c. This means that the number n
of variables necessary to describe a function can be reduced
by the number m of primary units necessary to describe these
variables. For example, if we have 5 variables (n = 5) with
units of mass, length, and time (m = 3), then only 2 variables
enter the function and are necessary to describe the solution.

The advantages of dimensional analysis include:

• Forcing us to think through a problem at the front end
• Providing insight about a solution
• Reducing the number of required experiments or simula-

tions
• Providing a basis for direct scaling from model tests to

prototype predictions
• Helping in memorizing formulas
• Helping in transforming empirical formulas from one

system of units to another
• Detecting errors in equations revealed by lack of dimen-

sional homogeneity
• Providing a mechanism for converting a formula from

one unit system to another
• Interpreting the behavior of scale models
• Guiding the selection of experiments
• Obtaining partial solutions to complex problems

The procedure for applying the Buckingham � theorem is
as follows:

1. Identify all the n independent variables influencing the
solution to the problem.

2. Identify the m primary units involved in these n inde-
pendent variables and form m primary unit groups. In
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each primary unit group, list all the variables containing
that primary unit.

3. Select one variable from each group as a repeating
variable. Do not select the variable that is to be predicted
and do not select the same variable from each group.

4. Form the (n − m) � terms as products of the repeating
variables and each one of the nonrepeating variable in
turn. Each variable is raised to a power exponent.

5. Determine the exponents of the power such that the
products are dimensionless.

6. Write the function that links the � terms and formulate
the expression of the solution.

A certain degree of art and experience is associated with
judicious use of the � theorem, and it does require some trial
and error, but as the following example will show it is worth
the effort.

11.9.2 Examples of Dimensional Analysis

The problem is to use dimensional analysis to find the general
expression of the function giving the lateral displacement at
the top of an infinitely long pile subjected to a horizontal load
applied at the top of the pile and placed in an elastic soil.
Figure 11.46 shows the problem and the variables.

1. The independent variables are shown in Table 11.6 with
their dimensions. There are 5 independent variables.

Pile
bending
stiffness

EpIEs

Ho

D

d

Soil
modulus

Figure 11.46 Laterally loaded pile problem.

Table 11.6 Variables and Their Dimensions

Quantity Symbol Dimension

Displacement d L
Force Ho F
Soil modulus Es F/L2

Pile bending stiffness EpI F L2

Pile diameter D L

2. There are 2 primary units, as listed in Table 11.6. We
therefore form 2 primary unit groups of variable. For
example,
a. L group: d, Es, EpI, D
b. F group: Ho, Es, EpI

3. We select one variable in each group, for example D
in the L group and Es in the F group. These are the
repeating variables.

4. Because there are 5 variables and 2 primary units, we
have 5 − 2 = 3 � terms. To obtain the 3 � terms, we
form the power product of the 2 repeating variables plus
1 of the remaining variables. The � terms are:
a. �1 = DaEs

bdc

b. �2 = DdEs
eHo

f

c. �3 = DgEs
hEpIi

5. Now we need to find the exponent of the powers in the
� terms such that they are dimensionless.
a. For �1 = DaEs

bdc in terms of dimensions
La(F/L2)bLc

For this term to be dimensionless, we must have
b = 0 and a −2b + c = 0

This gives b = 0 and a = −c. We then set one
exponent to a convenient value: say, a = 1 and
�1 becomes �1 = d/D.

b. For �2 = DdEs
eHo

f in terms of dimensions
Ld(F/L2)eFf

For this term to be dimensionless, we must have
e + f = 0 and d − 2e = 0

This gives e = −f and d = 2e = −2f. We chose
f = 1 for this example, so �2 becomes �2 =
Ho/(EsD

2).

c. For �3 = DgEs
hEpIi in terms of dimensions

Lg(F/L2)h(FL2)i

For this term to be dimensionless, we must have
h + i = 0 and g − 2h + 2i = 0

This gives h = −i and g = −4i. We chose i =
1 for this example, so �3 becomes �3 =
EpIp/(EsD

4)

6. Then we can say that g(�1,�2,�3) = 0 or
f1(d/D, Ho/(EsD

2), EpIp/(EsD
4)) = 0. This can be

rewritten as d/D = f2(Ho/(EsD
2), EpIp/(EsD

4)). Be-
cause the problem is linear (linear soil and linear pile),
we can write:

d

D
= Ho

EsD
2
f3

(
EpI

EsD
4

)
(11.222)

Although the pile displacement cannot be calculated
with this function, the result is still very helpful. For
example, if we wish to find the function f3, all we
need to do is vary EpI/(EsD

4). Without the dimensional
analysis, we would have to vary many combinations
of the four variables. Discovering the general expres-
sion of the solution saves a lot of research time in
this case.
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11.10 SIMILITUDE LAWS FOR EXPERIMENTAL
SIMULATIONS

11.10.1 Similitude Laws

Experiments play a very important role in geotechnical en-
gineering. From laboratory testing to in situ testing, from
scaled models to centrifuge testing, all contribute to a better
understanding of the problem. This section deals with simil-
itude laws or scaling laws as they are used in scaled models
and centrifuge tests. When facing a geotechnical problem
where few established design procedures exist, the engineer
may elect to perform scaled model tests to predict the be-
havior of the full-scale prototype. These scaled tests may be
done by using models tested under one gravity (1g tests) or
centrifuge tests.

A geotechnical centrifuge is a large rotating arm at the
end of which is a swinging bucket (Figure 11.47). In that
bucket is a model of the real problem (slope, retaining
wall, foundation). The rotating arm spins at high speeds
(e.g., 60 rpm); the swinging bucket first swings upward and
then flies nearly horizontally. The centrifugal acceleration
artificially increases the stresses in the sample. These high
stresses make the sample behave as if it were much larger
than it truly is, so the full-scale structure can be simulated
and studied. Similitude laws must be evaluated and satisfied
to ensure that a true similitude exists between the model scale
(simulation) and the full scale, also called prototype scale
(reality). If such a similitude is satisfied, the results from
the scaled model can easily be extrapolated to the full-scale
behavior.

To achieve similitude, each dimensionless term (� terms
from section 11.9) must be equal in the prototype and in the
model:

�i model = �i prototype (11.223)

11.10.2 Example of Similitude Laws Application for a
Scaled Model

We wish to run a model test to predict the ultimate load Pu of
a square footing of size B embedded at a depth d in clay with
an undrained shear strength su and a unit weight γ. There are
5 parameters and 2 primary units. Therefore, there are 3 �

terms and the dimensional analysis gives:

f (�1,�2,�3) = f

(
Pu

B2su

,
d

B
,

su

Bγ

)
= 0 (11.224)

The subscript m will be used for the model parameters, and
the subscript p will be used for the prototype. To simplify the
experiment, we would like to use the same clay as the one
found at the site for the prototype:

sum = sup (11.225)

The scaled model will be n times smaller than the prototype:

nBm = Bp (11.226)

To satisfy the similitude, we now have to ensure that all �

terms are equal for the model and for the prototype. First we
check the �1 term:

�1m = �1p or
Pum

Bm
2sum

= Pup

Bp
2sup

(11.227)

Pum = Pup

n2
(11.228)

Therefore, we can expect the prototype ultimate load to be
n2 times larger than the load measured in the scaled model.
Now let’s look at the �2 term:

�2m = �2p or
dm

Bm

= dp

Bp

(11.229)

This is satisfied by geometric scaling. Finally let’s look at
the �3 term:

�3m = �3p or
sum

Bmγm

= sup

Bpγp

(11.230)

γm = nγp (11.231)

Therefore, to satisfy similitude we will have to find a clay
with the same undrained shear strength but with a unit weight
n times larger than the unit weight of the prototype soil. This
is very difficult to achieve, but there is an artificial way to do
this using the centrifuge.

11.10.3 Example of Similitude Laws Application for a
Centrifuge Model

Let’s continue the example of section 11.10.2 and recognize
that:

γ = ρg (11.232)

where ρ is the mass density of the clay and g is the acceleration
due to gravity (9.81 m/s2). Satisfying the �3 term leads to:

gm = ngp (11.233)

Therefore, we can satisfy all similitude requirements by
using a gravitational field n times larger for the model. This
can be achieved in a geotechnical centrifuge (section 11.10.1)
by spinning the bucket of the centrifuge fast enough to
generate a centrifugal acceleration equal to ng. This is very
useful, because in geotechnical engineering body forces play
an important role, unlike in structures. These body forces
affect the stability of slopes, tunnels, and mines, for example.
Also, the strength of soils is greatly affected by the stress
level; indeed, the shear strength depends on the effective
stress on the plane of failure. Thus, the centrifuge plays an
important role in solving geotechnical engineering problems.
It is not without difficulties, however, as shown in the next
example.
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Consider the problem of flow through soil. The constitutive
law for the soil is Darcy’s law.

v = ki = k
dht

dx
(11.234)

where v is the discharge velocity, k is the soil hydraulic
conductivity, i is the hydraulic gradient, and dht is the change
in total head over the distance dx. The hydraulic conductivity
is dependent not only on the soil but also on the fluid. Indeed,
as you can imagine for the same hydraulic gradient, water
would flow faster through sand than thick oil. In fact, the
hydraulic conductivity k is expressed as:

k = γwK

μ
(11.235)

where γw is the unit weight of the flowing fluid, K is a
property of the soil, and μ is the dynamic viscosity of the
fluid. We can write:

km

kp

=
γwmKm

μm

γwpKp

μp

(11.236)

Because we wish to use the same soil and the same fluid
in the model and the prototype, Km = Kp and μm = μp.

However, γwm = n γwp because of the gravitational field, so
we get:

km = n kp (11.237)

This means that the soil should be n times more pervious
in the model than in the prototype—a conflict, as we wish to
use the same soil.

Now consider the coefficient of consolidation cv. The
expression comes from Eq. 11.55:

cv = k M

γw
(11.238)

where M is the constrained modulus. Because we are using
the same soil in the model and in the prototype, Mm = Mp
and we can write:

cvm

cvp
=

kmMm

γwm

kp Mp

γwp

=

nkpMm

nγwp

kp Mp

γwp

= 1 (11.239)

So the coefficient of consolidation is the same. Now let’s
look at the time factor T (Eq. 11.63), which is one of the
dimensionless terms to be satisfied:

Tm = Tp = cvmtm

Hdm
2

= cvptp

Hdp
2

(11.240)

We know that cv is unchanged and that the drainage length
Hd will scale geometrically, so:

tm = tp

n2
(11.241)

Figure 11.47 Geotechnical centrifuge. (Courtesy of the Center for Geotechnical Modeling,
University of California-Davis, USA.)
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Therefore, the time scale in the model is n2 times faster
than in the prototype. If the model is 100 times smaller, the
consolidation time will be 10,000 times faster. Note that the
scaling of time is not always n2 and depends on the problem.
For example, the scaling of time for a dynamic event is n,
not n2.

11.11 TYPES OF ANALYSES
(DRAINED–UNDRAINED, EFFECTIVE
STRESS–TOTAL STRESS,
SHORT-TERM–LONG-TERM)

With respect to water and air drainage, geotechnical engi-
neering analyses can be

• Effective stress or total stress analyses
• Drained or undrained analyses
• Long-term or short-term analyses

An effective stress analysis is the best approach in all
geotechnical engineering problems, but it is not always the
simplest, and sometimes the added complexity may not be
necessary. In the effective stress analysis, the soil is consid-
ered to be made of three distinct phases (water, air, solids)
and the stresses in the three phases are handled separately.

The effective stress analysis is always appropriate and appli-
cable, but is often difficult because it requires knowledge of
the water stress and even the air stress. For example, it is
perfectly appropriate to do an effective stress analysis to solve
a problem involving the undrained behavior of a saturated
clay, but the water stress must be known in the soil mass.

A total stress analysis consists of considering that the soil
is monophase. This is the approach taken when dealing with
concrete or steel. For soils, such an analysis is appropriate
when dealing with the undrained behavior of saturated clays,
for example, because in this case the two phases involved
(solids and water) remain bound together, as there is no water
movement. An undrained analysis is simply the analysis of
a soil that does not drain; it is a common analysis for clays
that are loaded rapidly. In extreme cases, the liquefaction of
sands during earthquakes can also be considered an undrained
behavior.

In a drained analysis, the water stress remains equal to
hydrostatic; it is a common assumption for the slow loading
of sands or the very slow loading of clays. A long-term
analysis is similar to a drained analysis because in the long
term all soils become drained. A short-term analysis may be
an undrained analysis for some soils (clays) and a drained
analysis for others (static loading of clean sands).

PROBLEMS

11.1 A vertical wall is supporting a clean, dry sand backfill with a unit weight γ and effective angle of internal friction ϕ′
(Figure 11.1s). It is assumed that there is no friction between the wall and the backfill. The wall exerts a horizontal load
P against the sand. As the wall is pushed into the sand, the load P increases and there is a point where the sand behind the
wall fails. At that point, the load is Pp corresponding to the passive earth pressure and the question is to find the load Pp
corresponding to impending failure of the sand. Note that the problem is a plane strain problem.

H
P

W

T N

H

tan θ

θ

Figure 11.1s Free-body diagram of the failing soil mass.

11.2 A slope is made of a saturated clay with a total unit weight γ, and an undrained shear strength su. The slope makes an
angle β with the horizontal. Choose 2 circles along which the slope could fail and calculate the factor of safety of that
slope against rotation failure along the 2 circles. Why are the 2 factors of safety not the same? Describe how you would
find the minimum factor of safety for this slope.

11.3 .A pile has a diameter D, a length L, and a modulus Ep. It is subjected to a vertical load Q. The soil generates a constant
pile soil friction f. At the pile point the soil generates a point pressure p = kp w, where w is the vertical displacement of
the point and kp is a constant.

a. Develop the governing differential equation.
b. Find the expression for the top displacement by the finite difference method.
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11.4 Develop the closed-form solution for the expansion of an infinitely long cylindrical cavity in an elastic soil space. The
soil is weightless and has a Poisson’s ratio ν and a modulus E. The cavity has an initial radius ro. The goal is to generate
the curve that gives the radial stress σr as a function of the relative increase in cavity radius �r/ro.

11.5 Develop the closed-form solution for the expansion of a spherical cavity in an elastic soil space. The soil is weightless
and has a Poisson’s ratio ν and a modulus E. The cavity has an initial radius ro. The goal is to generate the curve that
gives the radial stress σr as a function of the relative increase in cavity radius �r/ro.

11.6 Develop the solution for the flow of water through a saturated soil sample in a constant head permeameter. The goal is to
find the excess water stress anywhere and at any time in the sample.

11.7 Use the finite element method to construct the global stiffness matrix for triaxial test performed on an elastic soil. The
major principal stress is 300 kPa and the minor principal stress is 100 kPa. The modulus is 40 MPa and the Poisson’s ratio
is 0.35. The height and diameter of the sample are 0.1 m and 0.05 m respectively. Consider an axisymmetric geometry
and use two four-noded elements.

11.8 Two weightless particles of fine sand have a diameter of 1 mm and are placed in the corner of a container as shown in
Figure 11.2s. The vertical load applied on the top particle is 0.4 kN. Find all forces between the particles, the wall, and
the ground surface. Calculate the contact stress between the two particles if the contact area is 0.005 mm2. The angles θ1
and θ2 are equal to 45o.

Ground

r1

r2

Figure 11.2s Discrete element problem.

11.9 .A slope is to be designed for a target probability of failure of 0.001. Plot the mean factor of safety μ versus the coefficient
of variation CoVF in the following cases:

a. F follows a normal distribution.
b. F follows a lognormal distribution.

11.10 A levee system is to be designed to meet a risk of 0.001 fatalities/yr and $1000/yr. It protects a city where 500,000 people
could die and where the potential economic loss is $200 billion if the system fails. What would you recommend for the
design annual probability of failure of the levee system?

11.11 A levee system is to be designed to meet a risk of 0.001 fatalities/yr and $1000/yr. It protects farmland where 100 people
and a few cows could die and where the total potential economic loss is $200 million. What would you recommend for
the design probability of failure of the levee system?

11.12 .The set of data (y, x) shown in Table 11.1s is plotted and a linear regression (y = ax + b) is performed. Calculate the
values of a and b by:

a. Minimizing the vertical distance between the measured and predicted y values.
b. Minimizing the normal distance between the measured data and the regression line.
c. Compare the results.
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Table 11.1s Data Set

Data point number x value y value

1 2.1 7.4
2 4.5 10.1
3 4.8 11.7
4 5.3 12.4
5 5.7 13.1
6 6.2 16.7
7 7.8 23.4

11.13 Use consistent units to find the relationship between the shear wave velocity vs, the mass density ρ, and the shear modulus
of elasticity G.

11.14 The following empirical equations are used in sands to obtain the ultimate pressure pu under a driven pile point and the
ultimate friction fu on a driven pile side. Use normalization to give these formulas with pu and fu in the U.S. customary
system.

pu(kPa) = 1000 (N(bl/ft))0.5

fu(kPa) = 5 (N(bl/ft)0.7

11.15 Perform a dimensional analysis for a square footing embedded at a depth d in a clay with an undrained shear strength su.

The footing size is B and the failure load is Qu.

Problems and Solutions

Problem 11.1

A vertical wall is supporting a clean, dry sand backfill with a unit weight γ and effective angle of internal friction ϕ′
(Figure 11.1s). It is assumed that there is no friction between the wall and the backfill. The wall exerts a horizontal load P
against the sand. As the wall is pushed into the sand, the load P increases and there is a point where the sand behind the
wall fails. At that point, the load is Pp corresponding to the passive earth pressure and the question is to find the load Pp
corresponding to impending failure of the sand. Note that the problem is a plane strain problem.

H
P

W

T N

H

tan θ

θ

Figure 11.1s Free-body diagram of the failing soil mass.



322 11 PROBLEM-SOLVING METHODS

Solution 11.1

The free-body diagram of the failing soil mass is shown in Figure 11.1s. All the external forces are shown on the diagram,
including the weight of the soil mass W, the normal force N, and the shear force T on the failure plane. Also, the force
generated by the wall is shown in the diagram as P. Here the failure plane is assumed to be at an angle θ from the horizontal
plane. Note that the direction of the shear force T is acting toward the bottom of the wedge, because the soil has the tendency
to move upward along the failure surface. The equilibrium equations are set up as follows:

W − N cos θ + T sin θ = 0

P − N sin θ − T cos θ = 0

The constitutive equations in this case are the shear strength equation of the sand and the expression of the weight of the
wedge:

W = γH 2

2 tan θ

T = N tan ϕ

We can then obtain N and P as:

N = W

cos θ − tan ϕ sin θ
= γH 2

2 tan θ (cos θ − tan ϕ sin θ)

and

P = γH 2(sin θ cos θ + tan ϕ cos 2θ)

2(sin θ cos θ − tan ϕ sin 2θ)

The maximum value of P, which is Pp, is obtained by setting
dP

dθ
= 0:

dP

dθ
= γH 2

2
× (− cos 2θ + tan ϕ sin 2θ) tan ϕ

(sin θ cos θ − tan ϕ sin 2θ)2
= γH 2(sin 2θ sin 2ϕ − cos 2θ sin ϕ cos ϕ)

2 sin 2θ cos 2(θ + ϕ)
= 0

There are two solutions to this equation: one is ϕ = 0, which is not realistic, and the other one is:

θ = π

4
− ϕ

2
.

The load Pp can then be expressed as:

Pp = γH 2

2

(
1 + sin ϕ

1 − sin ϕ

)
.

Problem 11.2

A slope is made of a saturated clay with a total unit weight γ, and an undrained shear strength su. The slope makes an angle
β with the horizontal. Choose 2 circles along which the slope could fail and calculate the factor of safety of that slope against
rotation failure along the 2 circles. Why are the 2 factors of safety not the same? Describe how you would find the minimum
factor of safety for this slope.

Solution 11.2

Case 1: The circle is chosen as shown in Figure 11.3s. The center of the circle is 20 m horizontally away from the edge of the
slope, and 10 m vertically above the top of the slope. The radius of the circle is 20 m.

R

10 m

20 m

O

B

C

D

su

W

a

10 m

Aθ
δ
α

β

Figure 11.3s Illustration of the slope potential failure surface (case 1).
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F.S. = Mr

Md

= su · l · R

W · a
= su · θ · R2

W · a
(a unit width of the soil slice is analyzed)

Here, θ is in radians, a is the arm of the weight of the failure area (hatched), W is the weight of the failing soil, su is the
undrained shear strength of the soil, and R is the radius of the circle.

In triangle ODA,

|OA| =
√

|OD|2 + |DA|2 =
√

102 + 202 = 22.4 m

α = arctan

(
10

20

)
= 26.6◦

Therefore,
δ = α + β = 26.6 + 30 = 56.6◦

In triangle OCA (OBA),
|OC|2 = |OA|2 + |AC|2 − 2 × |OA| × |AC| × cos δ

and
202 = 22.42 + |AC|2 − 2 × 22.4 × |AC| × cos 56.6◦

Therefore,
|AC| = 5.2 m

and with the same method:

|AB| = 19.4 m

|BC| = 14.2 m

In triangle OBC,

cos θ = |OC|2 + |OB|2 − |BC|2
2 × |OC| × |OB| = 202 + 202 − 14.22

2 × 20 × 20
= 0.748

θ = 42◦ = 0.733 rad

The weight of the circular segment can be calculated as:

W = γ · A · 1 = γ · R2

2
(θ − sin θ) · 1 = 19 × 202

2
(0.733 − sin 0.733) × 1 = 242.8 kN

a =
4R sin3

(
θ

2

)
3(θ − sin θ)

× sin β =
4 × 20 × sin3

(
0.733

2

)
3(0.733 − sin 0.733)

× sin 30◦ = 9.6 m

The safety of factor can be obtained as follows:

F.S. = Mr

Md

= su · l · R · 1

W · a
= su · θ · R2 · 1

W · a
= 50 × 0.733 × 202 × 1

242.8 × 9.6
= 6.3

Case 2: The circle is chosen as shown in Figure 11.4s. The center of the circle is at 24.2 m distance horizontally away from
the edge of the slope, and 16.2 m distance vertically above the top surface of the slope. The radius of the circle is defined to
be 36.5 m.

F.S. = Mr

Md

= su · l · R · 1

W1 · a + W2 · b
= su · θ · R2 · 1

W1 · a + W2 · b
(unit width of the soil slice is analyzed)

Here, θ is in radians, a is the moment arm of the weight of the failure area (circular segment), W1 is the weight of the
circular segment, b is the moment arm of the weight of triangle ABC, W2 is the weight of triangle ABC, su is the undrained
shear strength of the soil, and R is the radius of the circle.
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O

A

B

C
D

R

16.2 m

24.2 m

W2

W1

su

E

a

b

θ

δ
α

β

10 m

Figure 11.4s Illustration of the slope potential failure surface (case 2).

In triangle ODA,

|OA| =
√

|OD|2 + |DA|2 =
√

16.22 + 24.22 = 29.1 m

α = arctan
16.2

24.2
= 33.8◦

Therefore,
δ = α + β = 33.8 + 30 = 63.8◦

In triangle OAC,

|OC|2 = |OA|2 + |AC|2 − 2 × |OA| × |AC| × cos(180◦ − α)

36.52 = 29.12 + |AC|2 − 2 × 29.1 × |AC| × cos(180◦ − 33.8◦
)

Therefore,

|AC| = 8.5 m

In triangle OBA,

|OA|2 + |AB|2 − 2 × |OA| × |AB| × cos δ = |OB|2

29.12 + |AB|2 − 2 × 29.1 × |AB| × cos 63.8◦ = 36.52

|AB| = 38.4 m

In triangle ABC,

|BC| =
√

|AB|2 + |AC|2 − 2 × |AB| × |AC| × cos 150◦ =
√

38.42 + 8.52 − 2 × 38.4 × 8.5 × cos 150◦ = 46 m

cos ∠ACB = 8.52 + 462 − 38.42

2 × 8.5 × 46
= 0.913

∠ACB = 24.1◦

In triangle OBC,

cos θ = |OB|2 + |OC|2 − |BC|2
2 × |OC| × |OB| = 36.52 + 36.52 − 462

2 × 36.5 × 36.5
= 0.206

θ = 78◦ = 1.36 rad
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The weight of the circular segment can be calculated as:

W1 = γ · A · 1 = γ · R2

2
(θ − sin θ) = 19 × 36.52

2
(1.36 − sin 1.36) = 4836 kN/m

a =
4R sin3

(
θ

2

)
3(θ − sin θ)

× sin ∠ACB =
4 × 36.5 × sin3

(
1.36

2

)
3(1.36 − sin 1.36)

× sin 24.1◦ = 12.9 m

E is the center point of segment AB:

|AE| = 1

2
|AB| = 1

2
× 38.4 = 19.2 m

|CE| =
√

|AE|2 + |AC|2 − 2 × |AE| × |AC| × cos 150◦ =
√

19.22 + 8.52 − 2 × 19.2 × 8.5 × cos 150◦ = 26.9 m

cos ∠ACE = 8.52 + 26.92 − 19.22

2 × 8.5 × 26.9
= 0.934,

∠ACE = 20.9◦

b = |DA| + |AC| − 2

3
|CE| cos ∠ACE = 24.2 + 8.5 − 2

3
× 26.9 × cos 20.9◦ = 15.9 m

W2 = γ · A · 1 = γ · 1

2
|AC| · |AB| · sin 150◦ · 1 = 19 × 1

2
× 8.5 × 38.4 × sin 150◦ × 1 = 1550.4 kN

The safety of factor can be obtained as follows:

F.S. = Mr

Md

= su · l · R · 1

W1 · a + W2 · b
= su · θ · R2 · 1

W1 · a + W2 · b
= 50 × 1.36 × 36.52 × 1

4836 × 12.9 + 1550.4 × 15.9
= 1.04

The two results are different because different potential failure circles are chosen to perform the calculation. The minimum
factor of safety should be obtained by repeating this trial-and-error process until the minimum factor of safety is found.
Choose different locations for the center of the circle and different radii, and perform the calculations following the procedure
used previously until the minimum factor of safety is found. It is recommended that you use a software program to minimize
the time spent on the calculations!

Problem 11.3

A pile has a diameter D, a length L, and a modulus Ep. It is subjected to a vertical load Q. The soil generates a constant pile
soil friction f. At the pile point the soil generates a point pressure p = kpw, where w is the vertical displacement of the point
and kp is a constant.

a. Develop the governing differential equation
b. Find the expression for the top displacement by the finite difference method.

Solution 11.3 (Figure 11.5s)

u2

u1

dl f

2

1

w

σ + dσ

σ

Figure 11.5s Pile element.
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a.

Equilibrium : As.dσ + γ.dl.As = f.dl.pp ⇒ dσ

dl
= f

As

.pp − γ

Constitutive : ε =

du︷ ︸︸ ︷
u2 − u1

dl
= σ

E
⇒ dσ

dl
= d2u

dl2
E

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

d2u

dl2
E = f

As

pp − γ

As: Area of pile section σ : Compressive stress
f: friction stress pp: Perimeter of pile
E: Young’s modulus of pile Y: Unit weight of pile

Governing differential equation :
d2u

dl2
= f

EAs

pp − γ

E

b. Figure 11.6s Finite difference application:

Q

n

n-1

n-2

W fL

3

2

kpAsu1

1

Figure 11.6s Pile discretization.

ui+1 − 2ui + ui−1

�l2
= f

EAs

pp − γ

E
→ ui+1 =

(
f

EAs

pp − γ

E

)
.�l2 + 2ui − ui−1

Boundary condition:

σ1 = kpu1 → u2 − u1

�l
= kpu1

E
→ u2 =

(
1 + kp�l

E

)
u1

Equilibrium:

kp.As.u1 = Q + W − fL.pp → u1 = Q + W − f.L.pp

kp.As

u3 =
(

f

EAs

pp − γ

E

)
.�l2 + 2u2 − u1 → u3 =

(
f

EAs

pp − γ

E

)
.�l2 + 2

(
1 + kp�l

E

)
u1 − u1

=
(

f

EAs

pp − γ

E

)
.�l2 +

(
1 + 2

kp�l

E

)
u1

u4 =
(

f

EAs

pp − γ

)
.�l2 + 2u3 − u2 → u4

=
(

f

EAs

pp − γ

E

)
.�l2 + 2

[(
f

EAs

pp − γ

E

)
.�l2 +

(
1 + 2

kp�l

E

)
u1

]
−
(

1 + kp�l

E

)
u1
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= 3

(
f

EAs

pp − γ

E

)
.�l2 +

(
1 + 3

kp�l

E

)
u1

u5 =
(

f

EAs

pp − γ

E

)
.�l2 + 2u4 − u3 → u5

=
(

f

EAs

pp − γ

E

)
.�l2 + 2

[
3

(
f

EAs

pp − γ

E

)
.�l2 +

(
1 + 3

kp�l

E

)
u1

]

−
[(

f

EAs

pp − γ

E

)
.�l2 +

(
1 + 2

kp�l

E

)
u1

]

= 6

(
f

EAs

pp − γ

E

)
.�l2 +

(
1 + 4

kp�l

E

)
u1

un = (n − 1)(n − 2)

2

(
f

EAs

pp − γ

E

)
.�l2 +

[
1 + (n − 1)

kp�l

E

]
u1

�l = L

n − 1

un = (n − 2)

2(n − 1)

(
f

EAs

pp − γ

E

)
.L2 +

[
1 + kpL

E

](
Q + W − f.L.pp

kp.As

)

n → ∞ utop = Q.L

EAs

− f.pp.L2

2EAs

+ W.L

2EAs

+
(

Q + W − f.L.pp

kpAs

)

Problem 11.4

Develop the closed-form solution for the expansion of an infinitely long cylindrical cavity in an elastic soil space. The soil is
weightless and has a Poisson’s ratio ν and a modulus E. The cavity has an initial radius ro. The goal is to generate the curve
that gives the radial stress σr as a function of the relative increase in cavity radius �r/ro.

Solution 11.4

The geometry of the problem indicates that this is an axisymmetric problem and a plane strain problem in the vertical
direction. The initial state of stress is σov in the vertical direction and σoh in the radial direction at any point in the soil space.
After applying the pressure p at the cavity surface, the stresses in the mass become:

σrr = σoh + �σrr

σθθ = σoh + �σθθ

σzz = σov + �σzz

where σrr and σθθ are the radial stress and the hoop stress respectively at a distance r from the axis of the cylinder, and �σrr
and �σθθ are the increments of the radial and hoop stress above the at-rest stress value.

σzz

σrr

σrr

σθθ
ρ

r0

r

r dr

u u + du

w = 0

v = 0

Stresses Displacements

σrr0

Figure 11.7s Element of soil around an expanding cylindrical cavity.
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The radial displacement u is the only displacement type in this problem, as there are no displacements in the hoop direction
or in the vertical direction. The radial strain is εrr, the hoop strain is εθθ , and the vertical strain is εzz, which is zero because
of the plane strain condition in the z direction. The relationships between the displacement and the strains for small strain
theory are given in the following. Note that the minus sign is there to keep compression positive, because u decreases when r
increases:

εrr = −du

dr
(11.1s)

εθθ = −u

r
(11.2s)

εzz = 0 (11.3s)

The equations of equilibrium reduce to:
dσrr

dr
+ �σrr − �σθθ

r
= 0 (11.4s)

The constitutive equations are:

εrr = 1

E
(�σrr − ν(�σθθ + �σzz)) (11.5s)

εθθ = 1

E
(�σθθ − ν(�σzz + �σrr)) (11.6s)

εzz = 1

E
(�σzz − ν(�σrr + �σθθ )) (11.7s)

By combining Eqs. 11.1s to 11.7s, the governing differential equation is obtained as:

r2 d2u

dr2
+ r

du

dr
− u = 0 (11.8s)

Assume that u = rn. Then, by plugging it into Eq. 11.4s, we can get n = 1, n = −1.

So, u = A

r
+ Br

From boundary conditions

u = 0 when r = ∞, we get B = 0

u = u0, when r = r0, we get A = u0r0

Therefore,
u = u0r0

r

The strains are:

εr = −du

dr
= u0r0

r2

εθ = −u

r
= −u0r0

r2

Note that from Eqs. 11.1s to 11.7s:

�σr = E(1 − ν)

(1 + ν)(1 − 2ν)

[
u0r0

r2
− ν

1 − ν

u0r0

r2

]
= E

1 + ν

u0r0

r2

Therefore,

�σr(r=r0) = E

1 + ν

u0r0

r0
2

= E

1 + ν

u0

r0
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and
σrr = σoh + 2G

uoro

r2
σθθ = σoh − 2G

uoro

r2
σzz = σov

In a pressuremeter test, the relative increase in radius (uo/ro = εθo) of the cavity is measured along with the pressure
exerted on the cavity wall σrro. Therefore, the pressuremeter curve is a direct plot of a stress-strain curve of the soil.

Problem 11.5

Develop the closed-form solution for the expansion of a spherical cavity in an elastic soil space. The soil is weightless and
has a Poisson’s ratio ν and a modulus E. The cavity has an initial radius ro. The goal is to generate the curve that gives the
radial stress σr as a function of the relative increase in cavity radius �r/ro.

Solution 11.5

1. The equilibrium equation in spherical coordinates is:

σr(rdθ)(rdφ) −
(

σr + ∂σr

∂r
dr

)
(r + dr)2dθdφ +

(
σθ + σθ + ∂σθ

∂θ
∂θ

)
dθ

2
rdφdr

+
(

σφ + σφ + ∂σφ

∂φ
∂φ

)
dφ

2
rdθdr = 0

Ignoring the higher terms:

−∂σr

∂r
− 2σr

r
+ σθ

r
+ σφ

r
= 0

For σθ = σϕ, it becomes:
∂σr

∂r
+ 2

r
(σr − σθ ) = 0

2. Obtain stress-strain relationships (constitutive equations) in the elastic range.

Due to symmetry,
σθ = σφ

εθ = εφ

and σθ , σφ, and σr are principal stresses.

Constitutive Equations

εr = 1

E
(σr − ν(σθ + σφ)) = −du

dr

εθ = 1

E
(σθ − ν(σr + σφ)) = −u

r

εφ = 1

E
(σφ − ν(σr + σθ )) = −u

r

Again, the minus signs are there to keep compression positive. So:

εr = 1

E
(σr − 2νσθ ) = −du

dr

εθ = εφ = 1

E
((1 − ν)σθ − νσr) = −u

r

Obtain
σr = f (u, r, du, dr)

σθ = g(u, r, du, dr)

Solve for u = F(r) with the appropriate boundary conditions.
Because

εr = −du

dr
= 1

E
(σr − 2νσθ )
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we have:

−E
du

dr
+ 2νσθ = σr

−E
u

r
= (1 − ν)σθ − ν

[
−E

du

dr
+ 2νσθ

]

−E
u

r
= (1 − ν)σθ + νE

du

dr
− 2ν2σθ

−E

(
u

r
+ νdu

dr

)
= σθ (1 − ν − 2ν2)

σθ = − E

(1 − ν − 2ν2)

[
u

r
+ ν

du

dr

]

Solve for

σr = −E
du

dr
− 2νE

(1 − ν − 2ν2)

[
u

r
+ ν

du

dr

]

σr = −E
du

dr

[
1 − ν − 2ν2 + 2ν2(

1 − ν − 2ν2
)

]
− 2νE

(1 − ν − 2ν2)

u

r

σr = − E(1 − ν)

(1 − ν − 2ν2)

du

dr
− 2νE

(1 − ν − 2ν2)

u

r

∂σr

∂r
= − E(1 − ν)

(1 − ν − 2ν2)

d2u

dr2
+ 2νE

(1 − ν − 2ν2)

u

r2
− du

dr

2νE

(1 − ν − 2ν2)

1

r

(σr − σθ )
2

r
= −2

r

{
E(

1 − ν − 2ν2
) ×

[
(1 − ν)

du

dr
+ 2ν

u

r
− u

r
− νdu

dr

]}

= − 2E

r(1 − ν − 2ν2)
×
[
(1 − 2ν)

du

dr
+ (2ν − 1)

u

r

]

So

∂σr

r
+ 2

r
(σr − σθ ) = − E

(1 − ν − 2ν2)

{
(1 − ν)

d2u

dr2
− 2ν

u

r2
+ 2(1 − 2ν)

r

du

dr
+ 2(2ν − 1)

u

r2
+ 1

r
2ν

du

dr

}

= − E

(1 − ν − 2ν2)

{
(1 − ν)

d2u

dr2
− 2(1 − ν)

u

r2
+ 2(1 − ν)

r

du

dr

}
= 0

and
d2u

dr2
− 2

u

r2
+ 2

r

du

dr
= 0

or

r2 d2u

dr2
+ 2r

du

dr
− 2u = 0

Solve the differential equation:

u = rn

r2(n)(n − 1)rn−2 + 2r(n)rn−1 − 2rn = 0

n (n − 1) + 2n − 2 = 0

n(n − 1) + 2(n − 1) = 0

}
n = −1, n = 1

u = Ar + B

r2
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Apply the boundary conditions. When

r = ∞ → u = 0

A = 0

u = B

r2

When

r = r0, u = u0

B = u0r
2
o

u = u0r
2
0

r2

The strains can be expressed as:

εθ = −u

r
= −u0r

2
0

r3
= εφ

εr = −du

dr
= 2

u0r
2
0

r3

⎫⎪⎬
⎪⎭

�V

V
= εr + 2εθ = 2

u0r
2
0

r3
− 2

u0r
2
0

r3
= 0

Recall the equilibrium equation:
∂σr

∂r
+ 2

r
(σr − σθ ) = 0

The preceding derivation assumes an unstressed initial state. If the soil is under a hydrostatic initial state of stress equal to
po(σφ = σr = σθ = p0), then the preceding solutions are in terms of stress increments as follows:

σr = p0 + �σr

σθ = p0 + �σθ

σφ = p0 + �σφ

Thus, the equilibrium equation can be written as:

∂σr

∂r
+ 2

r
(�σr − �σθ) = 0

As seen previously, we have:

�σr = − E

(1 − ν − 2ν2)

[
(1 − ν)

du

dr
+ 2ν

u

r

]
du

dr
= −2

u0r
2
0

r3

u

r
= u0r

2
0

r3

Therefore,

�σr = − E

(1 − ν − 2ν2)

u0r
2
0

r3
(−2(1 − ν) + 2ν) = − 2(2ν − 1)E

(1 − ν − 2ν2)

u0r
2
0

r3

= − 2(2ν − 1)

(1 + ν)(1 − 2ν)
E

(
u0r

2
0

r3

)

�σr = 2E

(1 + ν)

u0r
2
0

r3
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At
r = r0 → �σr = 2E

1 + ν

u0

r0

Therefore,

�σr(r=r0) = 2E

1 + ν

u0r
2
0

r0
3

= 2E

1 + ν

u0

r0
= −4Gεθ0

and by the same process:
�σθ(r=r0) = 2Gεθ0

Problem 11.6

Develop the solution for the flow of water through a saturated soil sample in a constant head permeameter. The goal is to find
the excess water stress anywhere and at any time in the sample.

Solution 11.6

Conservation of mass law: Qdt = vAdt
Darcy’s law: vdl = kdh

dh = Q

kA
dl∫ h2

h1

dh = Q

kA

∫ l2

l1

dl → �h = Q

kA
�l

�uw = γw�h = γw
Q

kA
�l

Note that the total head h decreases through the sample; therefore so will uw. See Figure 9.69.

Problem 11.7

Use the finite element method to construct the global stiffness matrix for a triaxial test performed on an elastic soil. The
major principal stress is 300 kPa and the minor principal stress is 100 kPa. The modulus is 40 MPa and the Poisson’s ratio is
0.35. The height and diameter of the sample are 0.1 m and 0.05 m respectively. Consider an axisymmetric geometry and use
two four-noded elements.

Solution 11.7

Refer to section 11.5.3 for the equations used in this problem

Step 1: The selected elements are shown in Figure 11.8s.
The element dimensions are a = 0.025 m and b = 0.05 m. The soil properties are E = 40000 kPa and μ = 35.

1

2

3

4

5

6

a

bElement #1

Element #2

Figure 11.8s Triaxial test mesh.
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Step 2: Choose the interpolation or shape functions. The equations for these functions are:

H1 = 1

4
(1 + r)(1 + s)

H2 = 1

4
(1 − r)(1 + s)

H3 = 1

4
(1 − r)(1 − s)

H4 = 1

4
(1 + r)(1 − s)

Step 3: Write the strain-displacement equations:

[ε] = [B][ui]

⎡
⎣εxx

εyy
γxy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂H1

∂x
0

∂H2

∂x
0

∂H3

∂x
0

∂H4

∂x
0

0
∂H1

∂y
0

∂H2

∂y
0

∂H3

∂y
0

∂H4

∂y

∂H1

∂y

∂H1

∂x

∂H2

∂y

∂H2

∂x

∂H3

∂y

∂H3

∂x

∂H4

∂y

∂H4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Construct the [B] matrix:
a. Calculate the inverse of the Jacobian matrix used in the transformation from natural coordinates to real

coordinates:

J =

⎡
⎢⎢⎣

∂x

∂r

∂y

∂r

∂x

∂s

∂y

∂s

⎤
⎥⎥⎦ =

⎡
⎣a

2
0

0
b

2

⎤
⎦ =

[
0.0125 0

0 0.025

]

Therefore,
det J = 3.125 ∗ 10−4

and

J−1 =
(

1

det J

)
.

⎡
⎣b

2
0

0
a

2

⎤
⎦ =

[
80 0
0 40

]

∂H

∂r
=
[

1

4
(1 + s) −1

4
(1 + s) −1

4
(1 + s)

1

4
(1 + s)

]
∂H

∂s
=
[

1

4
(1 + r)

1

4
(1 + r) −1

4
(1 + r) −1

4
(1 + r)

]

b. Obtain the relation between the derivatives of the interpolation functions in real coordinates and in natural
coordinates: ⎡

⎢⎢⎣
∂Hi

∂x

∂Hi

∂y

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

∂Hi

∂r

∂Hi

∂s

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂H

∂x

∂H

∂y

⎤
⎥⎥⎦ =

⎡
⎢⎣

b

2
0

0
a

2

⎤
⎥⎦ .

⎡
⎢⎢⎣

∂H

∂r

∂H

∂s

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b

2
.
∂H

∂r

a

2
.
∂H

∂s

⎤
⎥⎥⎦
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c. Select the natural coordinates r and s of the integration points for a four-node element:

r =

⎡
⎢⎢⎣

1√
3

− 1√
3

− 1√
3

1√
3

⎤
⎥⎥⎦

s =

⎡
⎢⎢⎣

1√
3

1√
3

− 1√
3

− 1√
3

⎤
⎥⎥⎦

d. Compute the components of the matrix [B] at the four integration points:

12

3

Elemenet #1

Element #2

0.577

0.577

4

r

r

s

Figure 11.9s The integration points.

Intg. Point #1. The derivatives of the interpolation function are:

∂H

∂r
=
[

1

4
(1 + s) −1

4
(1 + s) −1

4
(1 + s)

1

4
(1 + s)

]
∂H

∂s
=
[

1

4
(1 + r)

1

4
(1 + r) −1

4
(1 + r) −1

4
(1 + r)

]

For integration point #1, the natural coordinates are r = 1√
3

and s = 1√
3

∂H

∂r
=
[

1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
1

4

(
1 + 1√

3

)]
= [

0.394 −0.394 −0.105 0.105
]

∂H

∂s
=
[

1

4

(
1 + 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)]
= [

0.394 0.105 −0.105 −0.394
]

In the case of plane strain (Section 11.5.4), the thickness t of the elements was 1. However, in the case of
axisymmetric geometry, the thickness varies across the element and must be evaluated at each integration point. If
you look at the element in plan view, it looks like a piece of pizza with an angle θ. For convenience, we take a
value of 1 radian for this angle. The thickness t of the element at a radius xi is equal to xi times θ. Because θ is 1 rd,
the thickness is simply equal to xi. Therefore, the equation for the thickness t is:

t = [H ][x] = [
H1 H2 H3 H4

]
⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ = H1.x1 + H2.x2 + H3.x3 + H4.x4
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where xi represents the real coordinates of the nodes. For elements 1 and 2, the x matrices are:

element #1 → [x] =

⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦ and element #2 → [x] =

⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦

H1 = 1

4
(1 + r)(1 + s) = 1

4
(1 + 1√

3
)(1 + 1√

3
) = 0.622

H2 = 1

4
(1 − r) (1 + s) = 1

4

(
1 − 1√

3

)
(1 + 1√

3
= 0.1667

H3 = 1

4
(1 − r) (1 − s) = 1

4

(
1 − 1√

3

)(
1 − 1√

3

)
= 0.0446

H4 = 1

4
(1 + r) (1 − s) = 1

4

(
1 − 1√

3

)(
1 − 1√

3

)
= 0.1667

t = [
0.622 0.1667 0.0446 0.1667

]
⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦ = 0.0197 (m)

Intg Point #2: For integration point #2, the natural coordinates are r = − 1√
3

and s = 1√
3

∂H

∂r
=
[

1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 − 1√

3

)
1

4

(
1 − 1√

3

)]
= [

0.394 −0.394 −0.105 0.105
]

∂H

∂s
=
[

1

4

(
1 − 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 − 1√

3

)]
= [

0.105 0.394 −0.394 −0.105
]

H1 = 1

4
(1 + r) (1 + s) = 1

4

(
1 − 1√

3

)(
1 + 1√

3

)
= 0.1667

H2 = 1

4
(1 − r) (1 + s) = 1

4

(
1 + 1√

3

)(
1 + 1√

3

)
= 0.622

H3 = 1

4
(1 − r)(1 − s) = 1

4

(
1 + 1√

3

)(
1 − 1√

3

)
= 0.1667

H4 = 1

4
(1 + r) (1 − s) = 1

4

(
1 − 1√

3

)(
1 − 1√

3

)
= 0.0446

t = [
0.1667 0.622 0.1667 0.0446

]
⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦ = 0.0053 (m)

Intg. Point #3: For integration point #3, the natural coordinates are r = − 1√
3

and s = − 1√
3

∂H

∂r
=
[

1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)
−1

4

(
1 + 1√

3

)
1

4

(
1 + 1√

3

)]
= [

0.105 −0.105 −0.394 0.394
]
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∂H

∂s
=
[

1

4

(
1 − 1√

3

)
1

4

(
1 + 1√

3

)
−1

4

(
1 + 1√

3

)
−1

4

(
1 − 1√

3

)]
= [

0.105 0.394 −0.394 −0.105
]

H1 = 1

4
(1 + r) (1 + s) = 1

4

(
1 − 1√

3

)(
1 − 1√

3

)
= 0.0446

H2 = 1

4
(1 − r) (1 + s) = 1

4

(
1 + 1√

3

)(
1 − 1√

3

)
= 0.1667

H3 = 1

4
(1 − r) (1 − s) = 1

4

(
1 + 1√

3

)(
1 + 1√

3

)
= 0.622

H4 = 1

4
(1 + r) (1 − s) = 1

4

(
1 − 1√

3

)(
1 + 1√

3

)
= 0.1667

t = [
0.0446 0.1667 0.622 0.1667

]
⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦ = 0.0053 (m)

Intg. Point #4: For integration point #4, the natural coordinates are r = 1√
3

and s = − 1√
3

∂H

∂r
=
[

1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)
−1

4

(
1 + 1√

3

)
1

4

(
1 + 1√

3

)]
= [

0.105 −0.105 −0.394 0.394
]

∂H

∂s
=
[

1

4

(
1 + 1√

3

)
1

4

(
1 − 1√

3

)
−1

4

(
1 − 1√

3

)
−1

4

(
1 + 1√

3

)]
= [

0.394 0.105 −0.105 −0.394
]

H1 = 1

4
(1 + r) (1 + s) = 1

4

(
1 + 1√

3

)(
1 − 1√

3

)
= 0.1667

H2 = 1

4
(1 − r) (1 + s) = 1

4

(
1 − 1√

3

)(
1 − 1√

3

)
= 0.0446

H3 = 1

4
(1 − r) (1 − s) = 1

4

(
1 − 1√

3

)(
1 + 1√

3

)
= 0.1667

H4 = 1

4
(1 + r) (1 − s) = 1

4

(
1 + 1√

3

)(
1 + 1√

3

)
= 0.622

t = [
0.1667 0.0446 0.1667 0.622

]
⎡
⎢⎢⎣

0.025
0
0

0.025

⎤
⎥⎥⎦ = 0.0197 (m)

Then we assemble the B matrix:

B
i = 1
j = 1

=

⎡
⎢⎢⎣

31.547 0 −31.547 0 −8.453 0 8.453 0
0 15.773 0 4.266 0 −4.266 0 −15.773

15.773 31.547 4.266 −31.547 −4.266 −8.453 −15.773 15.773
31.547 0 31.547 0 8.453 0 8.453 0

⎤
⎥⎥⎦
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B
i = 1
j = 2

=

⎡
⎢⎢⎣

31.547 0 −31.547 0 −8.453 0 8.453 0
0 4.226 0 15.733 0 −15.733 0 −4.226

4.226 31.547 15.733 −31.547 −15.733 −8.453 −4.226 8.453
8.453 0 117.735 0 31.547 0 2.2650 0

⎤
⎥⎥⎦

B
i = 2
j = 1

=

⎡
⎢⎢⎣

8.453 0 −8.453 0 −31.547 0 31.547 0
0 4.226 0 15.773 0 −15.773 0 −4.226

4.226 8.453 15.773 −8.453 −15.773 −31.547 −4.226 31.547
2.2650 0 31.547 0 117.735 0 8.453 0

⎤
⎥⎥⎦

B
i = 2
j = 2

=

⎡
⎢⎢⎣

8.453 0 −8.453 0 −31.547 0 31.547 0
0 15.773 0 4.266 0 −4.266 0 −15.773

15.773 8.453 4.266 −8.453 −4.266 −31.547 −15.773 31.547
8.453 0 8.453 0 31.547 0 31.547 0

⎤
⎥⎥⎦

Step 4: Write the stress-strain equations for the soil using the constitutive matrix.

C4X4 = E(1 − μ)

(1 + μ)(1 − 2μ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
μ

(1 − μ)

μ

(1 − μ)
0

μ

(1 − μ)
1

μ

(1 − μ)
0

μ

(1 − μ)

μ

(1 − μ)
1 0

0 0 0
1 − 2μ

2(1 − μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 104 ∗

⎡
⎢⎢⎣

6.419 3.457 3.457 0
3.457 6.419 3.457 0
3.457 3.457 6.419 0

0 0 0 1.418

⎤
⎥⎥⎦

Step 5: Derive the equations governing the behavior of the soil element.

[Ke] =
∫

V

[B]T [C][B]dV

[Ke][u] = [F ]

The numerical integration equation is:

Ke =
∫

v
BT CBdv =

2∑
i=1

2∑
j=1

BT
ij CijBij

det J.wi .wj .t

For a 2-point Gauss quadrature integration, the weighing factors wi, wj are equal to 1 and the element stiffness
matrix is:

Ke = 103 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.12 0.8 −0.42 −.44 −0.48 −0.52 0.11 0.16
1.02 −0.26 −0.54 −0.45 −0.55 −0.08 0.07

0.92 0.19 0.43 0.05 −0.05 0.09
0.46 0.16 0.2 0.16 −0.11

1.2 0.53 −0.27 −0.24
SYM 0.75 −0.05 −0.39

0.57 0.135
0.45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now the global stiffness matrix Kg can be assembled:

Kg = 103 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.92 0.12 0.43 0.046 0 0 −0.42 −0.26 −0.05 0.09 0 0
0.45 0.17 0.2 0 0 −0.45 −0.54 0.16 −0.11 0 0

2.12 0.65 0.43 0.04 −0.48 −0.45 −0.68 −0.5 −0.05 0.09
1.2 0.16 0.2 −0.5 −0.5 −0.5 −0.93 0.15 −0.11

1.2 0.52 0 0 −0.48 −0.45 −0.27 −0.27
0.75 0 0 −0.5 −0.55 −0.05 −0.39

1.12 0.8 0.11 0.16 0 0
1.02 −0.08 0.06 0 0

SYM 1.67 0.79 0.11 0.16
1.47 −0.08 0.06

0.54 −0.015
0.44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 11.8

Two weightless particles of fine sand have a diameter of 1 mm and are placed in the corner of a container as shown in
Figure 11.2s. The vertical load applied on the top particle is 0.4 kN. Find all forces between the particles, the wall, and the
ground surface. Calculate the contact stress between the two particles if the contact area is 0.005 mm2. The angles θ1 and θ2
are equal to 45o.

FWV

Ground

FS1

FN1

FN2

FS2

FWH

0.4 N

FGH

FGV

u1

u1
u2

u2

u2
u1

0.4 N 

FWH

FWV

FGV

FGH

FS1
FN2u2

u1

FN1 FS2

r1

r2

 

 

 

Ground 

Figure 11.2s Discrete element problem.

Solution 11.8

Ball 1: ∑
FV = FWV + FS1 sin θ1 + FN1 cos θ1 − Q = 0∑
FH = FWH + FS1 cos θ1 − FN1 sin θ1 = 0∑

Mcenter = FS1r1 − FWVr1 = 0

Ball 2: ∑
Fv = FGV − FN2 cos θ2 − FS2 sin θ2 = 0∑

FH = FN2 sin θ2 − FS2 cos θ2 − FGH = 0∑
Mcenter = FS2r2 − FGHr2 = 0
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Also, at the contact between the two balls:

FS1 = FS2

FN1 = FN2

There are 8 unknown forces and 8 equations:

FWV = FS1

FWV + FWV sin θ1 + FN1 cos θ1 − Q = 0

FN1 = Q − FWV(1 + sin θ1)

cos θ1

FS2 = FGH

FN2 sin θ2 − FS2 cos θ2 − FS2 = 0

FN2 sin θ2 = FS2(cos θ2 + 1)

FN2 = FS2(cos θ2 + 1)

sin θ2

For Q = 0.4 kN, r1 = r2 = 0.5 mm, θ1 = θ2 = 45◦

FWV = 0.117 kN

FS1 = FS2 = 0.117 kN

FN1 = FN2 = 0.283 kN

FWH = 0.117 kN

FGH = 0.117 kN

FGV = 0.283 kN

If the two balls touch over an area with a unit width of 0.05 mm, the stress distribution is:

P = FN

A
= 0.283

0.05 × 10−6
= 5660 kPa

Problem 11.9

A slope is to be designed for a target probability of failure of 0.001. Plot the mean factor of safety μ versus the coefficient of
variation CoVF in the following cases:

a. F follows a normal distribution.
b. F follows a lognormal distribution.

Solution 11.9

a. Normal distribution (Figure 11.10s)
Probability of failure = 0.001. The mean of F is μ and the standard deviation is σ

P (F < 1) = 0.001 ⇒ P

(
F − μ

σ
<

1 − μ

σ

)
= 0.001 ⇒ 1 − μ

σ
= −3.1

σ = μ.COV

1 − μ = −3.1μ.COV → μ = 1

(−3.1COV + 1)
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Figure 11.10s μF vs. CoVF for a probability of failure of 0.001 when F follows a normal distribution.

b. Lognormal distribution (Figure 11.11s)

P(F < 1) = 0.001 ⇒ P

(
ln F − μln F

σln F

<
ln 1 − μln F

σln F

)
= 0.001 ⇒

ln 1 − ln

(
μ2√

μ2 + μ2.COV 2

)
√

ln(1 + COV 2)
= −3.1

ln

(
μ√

1 + COV 2

)
√

ln(1 + COV 2)
= 3.1 → ln(μ) = 3.1

√
ln(1 + COV 2) + ln

√
1 + COV 2

1

10

100

0
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Figure 11.11s μF versus CoVF for a probability of failure of 0.001 when F follows a lognormal distribution.

Problem 11.10

A levee system is to be designed to meet a risk of 0.001 fatalities/yr and $1000/yr. It protects a city where 500,000 people
could die and where the potential economic loss is $200 billion if the system fails. What would you recommend for the
design annual probability of failure of the levee system?

Solution 11.10

R(fatalities) = PoF × F

R(dollars lost) = PoF × D

R: risk

PoF: annual probability of failure

F: lives lost or fatalities if failureoccurs = 500,000

D: dollars lost if failureoccurs = 200 × 109 $.

R(fatalities) = 0.001 fatalities/yr
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R(dollars lost) = 1000 $/yr

0.001 fatality/yr

500,000 people
= 2 × 10−9

1000 dollars/yr

200 × 109 = 5 × 10−9

The recommended annual probability of failure is 2 × 10−9, as it is the most demanding of the two: fatalities control.

Problem 11.11

A levee system is to be designed to meet a risk of 0.001 fatalities/yr and $1000/yr. It protects farmland where 100 people
and a few cows could die and where the total potential economic loss is $200 million. What would you recommend for the
design probability of failure of the levee system?

Solution 11.11

R(fatalities) = PoF × F

R(dollars lost) = PoF × D

R: risk

PoF: annual probability of failure

F: lives lost or fatalities if failureoccurs = 100

D: dollars lost if failureoccurs = 100 × 106 $.

R(fatalities) = 0.001 fatalities/yr

R(dollars lost) = 1000 $/yr

0.001 fatality/yr

100 people
= 1 × 10−5

1000 dollars/yr

200 × 106
= 5 × 10−6

The recommended annual probability of failure is 5 × 10−6, as it is the most demanding of the two: economic loss controls.

Problem 11.12

The set of data (y, x) shown in Table 11.1s is plotted and a linear regression (y = ax + b) is performed. Calculate the values
of a and b by:

a. Minimizing the vertical distance between the measured and predicted y values.
b. Minimizing the normal distance between the measured data and the regression line.
c. Compare the results.

Table 11.1s Data Set

Data point number x value y value

1 2.1 7.4
2 4.5 10.1
3 4.8 11.7
4 5.3 12.4
5 5.7 13.1
6 6.2 16.7
7 7.8 23.4
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Solution 11.12

a. Vertical distance:

a =
∑

xi
∑

yi − n
∑

xiyi(∑
xi
)2 − n

∑
xi2

= 2.77

b =
∑

xi2
∑

yi −
∑

xi
∑

xiyi

n
∑

xi2 −
(∑

xi
)2 = −0.86

b. Normal distance:

a =

∑
(yi − y)2 −

∑
(xi − x)2 +

√(∑(
yi − y

)2 −
∑

(xi − x)
2
)2

+ 4
(∑(

xi − x
)
(yi − y)

)2

2
∑

(xi − x)(yi − y)
= 2.06

b =
∑

yi

N
− a

∑
xi

N
= y − ax = 2.82

c. The plot of the linear regression and the orthogonal regression are shown in Figure 11.12s.
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Y

y = 2.7702x – 0.8624
R2 = 0.868

Orthogonal regression

Linear (vertical regression)

Figure 11.12s Regression plots.

Problem 11.13

Use consistent units to find the relationship between the shear wave velocity vs, the mass density ρ, and the shear modulus
of elasticity G.

Solution 11.13

If we use length, time, and force as primary units, we have

Variable Dimension

Vs L/T
G F/L2

ρ FT2/L4
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We hypothesize that vs = f(G, ρ). Thus, G and ρ must appear to cancel the force dimension, because F does not appear in
vs. Let’s try the ratio G/ρ = (F/L2)/(FT2/L4) = L2/T2. This ratio has the units of velocity squared, so a reasonable guess
is (vs)

2 = G/ρ or vs = (G/ρ)0.5. This is, of course, correct.

Problem 11.14

The following empirical equations are used in sands to obtain the ultimate pressure pu under a driven pile point and the
ultimate friction fu on a driven pile side. Use normalization to give these formulas with pu and fu in the U.S. customary
system.

pu(kPa) = 1000 (N(bl/ft))0.5

fu(kPa) = 5 (N(bl/ft)0.7

Solution 11.14

We first normalize the right-hand term.

pu(kPa) = 1000

(
N (bl/ft)

1(bl/ft)

)0.5

Now the blow count N is normalized and the factor 1000 is in kPa. It can be changed to tsf, for example, by recalling that
100 kPa = 1.0443 tsf. In that case:

pu(tsf) = 1000 kPa

(
1.0443 tsf

100 kPa

)(
N (bl/ft)

1(bl/ft)

)0.5

= 10.443 (N(bl/ft))0.5

We repeat the process for the friction:

fu(kPa) = 5

(
N (bl/ft)

1(bl/ft)

)0.7

fu(tsf) = 5 kPa

(
1.0443 tsf

100 kPa

)(
N (bl/ft)

1(bl/ft)

)0.7

= 0.0522 (N(bl/ft))0.7

Problem 11.15

Perform a dimensional analysis for a square footing embedded at a depth d in a clay with an undrained shear strength su. The
footing size is B and the failure load is Qu.

Solution 11.15 (Figure 11.13s)

Su

Qu

B

d

Figure 11.13s Square footing on clay.

The independent variables are shown in Table 11.2s with their dimensions. There are four independent variables.
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Table 11.2s Independent Variables and Dimensions

Quantity Variable Dimension

Load Qu F
Embedment d L
Footing size B L
Undrained shear strength Su F/L2

There are two primary units, as listed in Table 11.2s. We therefore form two primary unit groups of variables:

a. L group: d, B, Su
b. F group: Qu,Su

We select one variable from each group; for example, B in the L group and Su in the F group. These are the repeating
variables.

Because there are 4 variables and 2 primary units, we have 4 − 2 = 2 π terms. To obtain the 2 π terms, we form the
power:

a. π1 = BaSb
udc

b. π2 = BaSb
uQc

u

Now, we find the exponent and we determine that the 2 π terms are:

π1 = d

B

π2 = Qu

B2Su

Then we can say that g(π1, π2) = 0, or:

f

(
d

B
,

Qu

B2Su

)
= 0

We can also write this expression as:

Qu = d

B
f1(B

2Su)

Notice that if the embedment d = 0, then the expression becomes:

Qu = C1B
2Su

where C1 is a constant that is approximately 6.0.


