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Data Validation: a Technology for Intelligent Manufacturing 

Boris Kalitventzefi Ceorges Heyen, and Miguel Mateus 

2.1 
Introduction 

This document is intended to progressively demonstrate the technical assets of the 
data validation technology. Most of the technical features of the technology will be 
enlightened by specific process systems. However, validation technology can be and 
is implemented in various industrial sectors. Namely, it covers chemical, petrochem- 
ical and refining process plants, thermal and nuclear power plants, upstream oil and 
gas exploitation fields. Data validation is an extension of data reconciliation. Before 
demonstrating the technical assets of the validation, the reconciliation concept will 
be reviewed. 

2.2 
Basic Aspects of Validation: Data Reconciliation 

Data reconciliation (DR) is the first mathematical method that addressed the concept 
of data validation for linear problems. It exploits information redundancy and (lin- 
ear) conservation laws to extract accurate and reliable information from measure- 
ment data and from the process knowledge. It allows for the production of a single 
consistent set of data representing actual process operations, assuming the plant is 
operated in a steady state. 

To understand the basic principles of data reconciliation, one must first recognize 
that plant measurements (including lab analyses) are not 100% error free. When 
using these measurements without correction to generate plant balances, one usu- 
ally gets incoherence in these balances. 

Some sources of errors in the balances directly depend on sensors themselves: 

0 intrinsic sensor accuracy, 
0 sensor calibration, 
0 sensor location. 
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A second source of error when calculating plant balances is the small variations in 
the plant operating conditions and the fact that samples and measurements are not 
exactly taken at the same time. Using time averages for plant data partly reduces this 
problem. However, lab analyses are usually carried out at a low frequency, and thus 
can seldom be averaged. 

Finally, one must also realize that in some parts of a plant too many measure- 
ments are available, whereas in other parts some measurements are missing and 
must be back-calculated from other measurements. 

As shown in detail in Section 3, Chapter 3 of this book, data reconciliation can be 
expressed mathematically as: 

I 

subject to F(x ,y*) = 0 
G(x ,y") 1 0 

where pi is the reconciled value of measurement i ,  
where Yi is the measured value of measurement i ,  

3 is the unmeasured variable j, 
oi is the standard deviation of measurement i 

defining its confidence interval. 
F(x,Y") = 0 corresponds to the process equality constraints. 
G(x,y*) 2 0 corresponds to the process inequality 

constraints. 

is called the penalty of measurement i. 

In early publications on DR, equality constraints were considered linear. Thus, one 
obtains a quadratic formulation, where the Jacobian matrix of F is constant. It  is a 
Gaussian regression problem: given a set (y, oY), the algorithm provides x and y* vec- 
tors together with their standard deviation ay* (when computed). 

When inequality constraints were not considered, some values y or x could be neg- 
ative, what had no physical meaning in chemical or mechanical processes, where 
most variables must be positive (e.g., pressure, flow rate, mole fraction). It was con- 
sidered as a source of information because one had to find which measurement was 
responsible for that negative value. Later on, simple inequalities (y 2 0, x 2 0)  were 
considered. 

When F or G is nonlinear, the DR problem can be solved by sequential lineariza- 
tion. The minimization problem is solved iteratively, using algorithms such as SQP 
(sequential quadratic programming). It is now possible in some commercial codes to 
calculate not only the reconciled values of measurements (y?;, oy*) but also un- 
measured state variables (x,  ox) and some key performance indicators (KPIs) related 
to measured and unmeasured state variables (yq,  x), as well as their uncertainty aKpI: 
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2.2.1 
Redundancy Analyses: Local/Overall 

VALIDAJION O'' 
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The level of redundancy is the number of measurements, which are available beyond 
the absolute minimum needed to calculate the system. Three different cases can be 
encountered: 

0 If a system's redundancy is negative then there is not enough information to 
determine the state of the system. Additional measurements need to be intro- 
duced. 

0 A redundancy equal to zero means that the system is globally just calculable. 
0 And finally, if a system has a positive redundancy, DR can use it as a source of 

information to correct the measurements and increase their accuracy. In fact, 
each measurement is corrected as slightly as possible but in such a way that the 
reconciled measurements match all the constraints of the process model. 

However, overall redundancy is not enough. It must also be achieved at the local 
scale. Indeed, redundancy can be positive at the global scale, but negative locally; 
consequently, information is lacking to completely describe the whole process. 

This point is illustrated with Fig. 2.1, based on a typical synthesis loop. Compo- 
nents A and B are introduced into the process feed, and converted into component 
C in the reactor unit SYNTHES (2C = 3A + B). Afterwards, the product ABC is sepa- 
rated in three distinct streams. One is recycled upstream in the process, another rep- 
resents a purge, and finally an outlet stream contains only the compound C. 

Let us consider a process model restricted to mass balances. Measured variables 
are shown on Fig. 2.1. This simple process model presents a global redundancy level 
of 2 (20 equations for 18 unmeasured variables). However, local redundancy of unit 
SEP-2 is equal to zero. If one of the measurements around this unit was missing 
then global redundancy of the model would still be 1 but local redundancy of unit 
SEP-2 would be -1. Therefore, the system would not be reconcilable until a supple- 
mentary measurement around the mentioned unit has been provided. 
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Figure 2.1 Process flow diagram (PFD) of a synthesis loop 

2.2.2 
If Complementary Measurement(s) are Needed: Which One(s)? 

If the available measurement set is not enough to calculate all required process per- 
formance parameters, how do you propose an extra set from which complementary 
measurements can be chosen? Thus, the system becomes either just calculable or 
locally redundant, but necessarily globally redundant, as illustrated before. 

Consider the previous example, but here we would remove the total flow rate mea- 
surement of stream “purge”. Reconciliation software would then propose a set of var- 
iables from which possible complementary measurements ought to be chosen. 
Namely, the software would purpose in this case a choice between partial flow rates 
of compounds A and B in either stream “abc” or “purge”, or compound C partial flow 
rates in either stream “abc” or “c-prod. 

If it is not possible to add any measurement to the system (because of economical 
constraints for example), another way of avoiding negative redundancy is to aggre- 
gate some units in the model as a more global “black box” (that simply ensures 
global balances to be satisfied). Less information will be obtained locally, but this 
may allow estimating the required KPIs. 

2.2.3 
Increased Accuracy on Measured Data: Why? 

As explained before, data reconciliation is based on measurement redundancy. This 
concept is not limited to replicate measurements of the same variable by separate 
sensors; it includes the concept of topological redundancy, where a single variable 
can be estimated in several independent ways, from separate sets of measurements. 
Therefore, a posteriori accuracy of validated data will be better than a priori accuracy 
of measured data. A priori and a posteriori means before and after consistency treat- 
ment, or in other words before and after validation and reconciliation. 
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Table 2.1 DR back corrects measurements and increases their accuracy 

Meas. Meas. Acc. Reconc. Reconc. Acc. 

AB-1 Flowrate ton/d 1016,O 3,00% 1042,8 1,64% 
Partial Flowrate (A) tonid 181.0 3,00% 180,l 2,98% 
Partial Flowrate (B) ton/d 885,O 3,00% 862,s Z O O %  

30,O 3,00% 30,O 3,00% RECYCLED Flowrate 

AB-2 Partial Flowrate (A) 190,O 3,00% 190,s 1,60% 
A-3”B 0,o O,OO% 0,o O,OO% 

In the previous example, unit MIX-2 presented a level 2 redundancy. Indeed, for 5 
equations and 9 variables (and thus 4 degrees of freedom) we have G measurements 
(G - 4 = 2). Table 2.1 shows the a priori and the a posteriori accuracy of those measure- 
ments around unit MIX-2. 

Reconciled measurements are more accurate than raw data when measurement 
redundancy is available. But when no redundancy is available locally, no improve- 
ment can be expected. This is the case for the estimation of the recycled flow rate: the 
measured value is not corrected, and its accuracy is not improved. When some mea- 
surement is not corrected that does not imply it can be trusted; this would only be the 
case if the standard deviation would decrease. 

2.2.4 
DR Avoids Error Propagation 

Progress in automatic data collection has presented plant operators with a flood of 
data. Tools are needed to extract and fully exploit the relevant information it contains. 
Furthermore, most performance parameters are often not directly measured, but cal- 
culated from measured values. Thus, random errors on measurements also propa- 
gate in the estimation of KPIs. Data reconciliation, on the contrary, allows state esti- 
mation and measurement correction problems to be addressed in a global way. As a 
result, validation technology avoids error propagation, and provides the most likely 
estimate of the actual operating point of the process. Thus, the plant can be safely 
operated closer to its limits. Illustration of error propagation is addressed in Table 
2.2 for the example considered in Fig. 2.1. The goal is to estimate the flow of compo- 
nent C in the process output. 

Because raw measurements are not error free, mass balance equation around 
mixer MIX-1 is not respected (fourth row of Table 2.2). Cases 1 to 3 show what hap- 
pen when each of the three (process inlet) flow rates are manually corrected to close 
the mass balance, the flow rate of stream C being computed afterwards. In the last 
case DR is used to provide a consistent and accurate set of reconciled measurements. 
Indeed, Table 2.2 shows a balance value equal to zero. Note that measurements may 
be considered as correct since reconciled values are inside their confidence limits. 
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Table 2.2 Error propagation 

I 
Measured Accuracy Case 1 Case z Case 3 Reconcilied Accuracy 

A in ton/d 181.0 3.00% 181 181 131 180.1 2.98% 

AB in ton ld  1016.0 3.00% 1066 1016 1016 1042.8 1.64% 
B in ton/d 885.0 3.00% 885 835 885 862.8 2.00% 

Balance in ton/d -50.0 / 0 0 0 o /  

C o u t  ton/d 1 I 994 994 944 959.9 1.80% 
ABC Purge ton/d 72.0 3.00% 72 72 72 72.0 3.00 % 

Knowing that the standard deviation of flow measurements is 3 % of the measured 
value, one obtains for outlet compound C the flow rate: 

0 with DR: a standard deviation equal to 1.80 % with an estimate of 960 ton/d; 
0 with manual correction: a spread of estimates equal to 5.03 % (from 944 to 994 tonld). 

Thus, DR avoids error propagation and so provides more accurate computed para- 
meters than those calculated by less rigorous or ad hoc correction modes. Plant engi- 
neers have to solve that type of problem regardless of if they have the appropriate 
tools or not. 

2.2.5 
Process Measurements to be Exploited 

Key performance indicators (KPIs) can be determined accurately by validation of pro- 
cess measurement data. They are very useful for many purposes, e.g., revamping, 
energy integration, improved follow-up of the plant, possibility of working closer to 
specifications, detecting degradation of equipment performance, etc. 

A hydrogen plant process is used to illustrate the determination of accurate and 
reliable KPI. Namely, this example concerns the steam to carbon ratio (S/C)  in the 
steam reformer feed, that is, one of the key control parameters in such plants. It 
allows controlling the conversion of methane to carbon oxide and hydrogen while 
avoiding carbon deposition on the catalyst. Two different cases were studied to com- 
pute this ratio: 

0 First, DR was not considered. Ratio S/C was calculated from raw measurements 
of flow rates and compositions of process inlets (steam and natural gas) and 
reforming gas recycled. 

0 Afterwards, the same KPI was determined by means of DR. 

Each of these two cases were reassessed, considering a measurement error on the 
steam flow rate (e.g., due to a leak). Namely, the steam flow rate is measured at either 
72 ton/h or 78 ton/h. 

Results shown in Table 2.3 demonstrate that the uncertainty on the S/C ratio is 
reduced when data reconciliation is performed. Also, reconciled S/C ratio is less sen- 
sitive to the flow rate measurement error, which is detected and corrected by data 
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reconciliation. Thus, reconciliation detects errors in available measurements and 
yields accurately consistent and complete estimates of measured as well as unmea- 
sured process parameters. Furthermore, in industrial practice one must take a safety 
margin for the S/C ratio to avoid carbon deposition in the catalyst. With DR, safety 
margins can be thinner, steam consumption is reduced and therefore plant opera- 
tion costs less. 

Table 2.3 KPI computation 

Without rneas. errors 

SIC ratio rel. error SIC ratio rel. error 

With meas. errors 

without D R  3.545 4.24 % 3.840 4.24 % 

with D R  3.514 3.52 % 3.673 3.53 % 

Here a real industrial case encountered in a hydrogen plant is described, for which 
validation technology was applied. In a hydrogen plant (operated by ERE company), 
the feed gas composition was not monitored accurately; measurement errors were 
leading to an approximate knowledge of the steam/carbon ratio [2], uncertainty being 
on the order of 30%. However, the hydrogen production efficiency and cost are 
strongly related to this ratio. Indeed a low S/C ratio decreases energy consumption. 
Therefore, a potential return of 500,000 euro per year had been identified. On the 
other side, a low S/C ratio could lead to carbon deposition (see Fig. 2.2) entailing a 
risk of catalyst damage (shut down for replacement costs five million euro). 

With on-line validation software the steamlcarbon ratio is determined nowadays 
with a precision of 1 %. This allows operating at the optimal point where energy costs 
are mastered and carbon deposition is avoided. This example shows how validation 
software allows for operation closer to the limits, taking care of safety constraints. 

Fraction down wfoniler tuhr  

Figure 2.2 Profile of reformer reactor (courtesy of BP-ERE [3]) 
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2.3 
Specific Assets o f  Information Validation 

Data validation is an extension of DR. In that case the set of corrected measurements 
and other calculated data respect linear and nonlinear constraints (mass, compo- 
nents and energy balances, reaction constraints as well as physical and chemical 
thermodynamic equilibrium constraints). Furthermore the technology includes data 
filtering, gross error detection/elimination, and it also provides the a posteriori accu- 
racy of all the calculated data. Therefore, accurate and reliable KPIs are determined, 
as well as their accuracy. Moreover, validation software detects faulty sensors and 
pinpoints degradation of equipment performance (heat rate, compressor efficiency, 
etc.). 

2.3.1 
Accuracy of Nonmeasured but Calculated Data 

Unmeasured variables of the system are calculated and their accuracy is quantified 
on basis of the measurements that are related to them. Therefore, in addition to pro- 
viding substitution values for failed instruments, data validation software also calcu- 
lates values that are not directly measured. Validation acts as a set of “soft sensors” 
that are robust and accurate because they are based on the reconciled values of all the 
measurements. Typically, validation technology provides three times more calculated 
data (and their accuracy), than the number of effectively measured data. 

Benefits are undeniable, costly lab analyses can be avoided. For instance, on the 
chemical site of Wacker Chemie (Germany) an on-line implementation of validation 
software reduced the number of routine analyses up to 40% (see Fig. 2.3) [3]. 

Wacker considered validation as a revolutionary way for quality follow-up of their 
plants: fobj, the sum of weighted squares of measurement corrections were checked 
for three years (see Fig. 2.4) [3]. They showed a reduction of the objective function 
(fobi) from 30,000 to 1000, demonstrating a better quality of sensors tuning. Any 
increase of that validation criterion alerts operators on possible plant upset. 

Initial situaiioii 
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Figure 2.3 Reduction of lab analysis cost 

~1 i l rp  (courtesy o f  Wacker Chemie [3]) 
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Figure 2.4 
(courtesy of Wacker Chemie [3]) 

Sum of weighted squares of measurement corrections 

J 
fob,  

Furthermore, Wacker also follows the ratio -, based on the chi-square statistical 

test (2). The chi-square test value depends on the number of redundancies of the 
system and on the statistical threshold of the test, typically 95 %. Active bounds are 
considered as adding new levels of redundancy. 

0 If- > 1: no presence of gross errors in the set of measurements can be 

Two different cases are possible, whether the ratio is higher or lower than 1: 

J 
fobi expected. 

J 
0 If- 5 1: presence of at least one gross error in the set of measurements is 

expected. 

A data reconciliation result can only be exploited if the chi-square test is satisfied. 

Gross error detection and elimination is a feature of validation software that will be 
detailed next. 

2.3.2 
Key Performance Indicators and Their Accuracy 

Key performance indicators (KPIs) are identified in the same way as nonmeasured 
state variables. Because measurement errors have been withdrawn from the set of 
reconciled data, the best possible estimate of the plant performance is delivered. 
Thus, KPIs can be accurately determined. 

Typical KPIs include: 

0 global plant efficiency 
0 yields 
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0 steam/carbon ratio, oxygenlcarbon ratio, H2/N2 ratio, etc. 
0 specific energy consumption 
0 specific energy cost 
0 equipment duty and efficiency 
0 catalyst activity, etc. 

Table 2.4 shows S/C ratio values and accuracy using data validation technology. In 
the third case, thermodynamic constraints were taken into account. KPI accuracy is 
more improved with data validation than with data reconciliation. This is due to the 
fact that data validation considers all available process information (temperatures, 
pressures, chemical reactions, equilibrium constraints, etc.), the redundancy level 
being thus higher. Moreover, S/C ratio is much less sensitive to measurement bias, 
as demonstrated with the introduction of a measurement error on the steam flow 
rate entering the reformer (see Table 2.4). The additional assets of data validation are 
described here after. 

Table 2.4 S/C ratio 

I 

Without rneas. errors 
SIC ratio rel. error SIC ratio rel. error 

With rneas. errors 

without DR 3.545 4.24% 3.840 4.24 % 

with DR 3.514 3.52 % 3.673 3.53 % 

with data validation 3.423 0.63 % 3.432 0.63 % 

2.3.3 
Nonlinear Thermodynamic-based Data Validation 

2.3.3.1 
The Limitation of (Linear) Mass Balance-based Reconciliation 
Most commercial data reconciliation packages are based on a linear solver and recon- 
cile measurements on the basis of overall mass balances. Moreover, bounds on vari- 
ables are seldom considered, meaning that negative flow rates or negative invento- 
ries can appear in the results. Additionally, mass balance-based systems only offer a 
low level of redundancy: at the most one gets one level of redundancy around each 
node where all incoming and outgoing rates are measured. As a consequence, the 
improvement in data quality is low and the results are very sensitive to gross errors 
in the measurements. 

On the contrary, thermodynamic-based data validation software provides addi- 
tional equations increasing consequently the redundancy of the system, making it 
more accurate and less sensitive to measurement errors. At the same time, key per- 
formance indicators can be directly derived with a high level of accuracy and reliabi- 
lity. Of course, using thermodynamic properties has its drawback: most of the equa- 
tions become nonlinear making linear solvers useless. Therefore, one must then use 
a nonlinear algorithm as large scale SQP-IP (sequential quadratic programming- 
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interior point), which has been implemented to solve complex nonlinear data recon- 
ciliation problems. 

I 

2.3.3.2 
Example: Reconciliation of Two Distillation Columns 
Two consecutive distillation columns are used to separate styrene (the final product) 
from unreacted ethylbenzene (EB),  which is recycled to the reaction section (see Fig. 
2.5). 

Case 1 presents the design mass (and compound) balance of the plant. Case 2 pre- 
sents typical measured values with a significant bias on the flow rate of recycled EB 
(stream c4) as reconciled in a compound-based data reconciliation system. The bias 
is clearly identified (3.70) and corrected (3.32) so that the styrene and EB recovery are 
accurately determined (87.86 * 0.41 %). Case 3 then presents the same flow rates rec- 
onciled using a simple mass balance system, which is unable to detect the measure- 
ment error and therefore calculates a wrong recovery of EB and styrene. One can see 
that the accuracy of the computed recoveries is considerably better when performing 
a compound balance than with a simple mass balance (in this case, more than ten 
times better). 

2.3.4 
Exploiting LV and LLV Equilibria as Source of Information 

Variables describing the state of a process must be reconciled to verify consistency 
constraints representing basic laws of physics: dew point and boiling point con- 
straints in condensers, evaporators, or distillation columns are a source of informa- 
tion exploited by thermodynamic-based validation software. 

The process of industrial ammonia production may be subdivided into three dis- 
tinct parts: synthesis gas production, compression section and ammonia synthesis 
loop. Process natural gas (PNG) and steam enter the primary reformer reactor, after 
sulfur removal of PNG. High temperature and low temperature shift sections follow 
the secondary reforming, where compressed air is also introduced. After the metha- 
nator section, synthesis gas is partially recycled upstream in the process and partially 
introduced in the hyper compressor section. Finally, gas enters the ammonia synthe- 
sis loop. Figure 2.6 represents an ammonia synthesis loop process flow diagram 
(PFD), which can be considered as having an 8-digit structure with a heat exchanger 
in the middle. 

The synthesis gas enters the hyper compressor as well as the recycle gas, then the 
outlet (process gas) is cooled and partially condensed (106F) to recover ammonia. 
Afterwards, gas is heated through a counter-current heat exchanger, goes to the reac- 
tor section, then again to the same heat exchanger (at lower pressure than the cold 
process gas) before closing the synthesis loop. 

Condenser temperature (see Table 2.5) reflects a compromise between ammonia 
content and flow rate of the gas entering the reactor section. Considering condenser 
pressure as constant (158 bar) to simplify the following illustration, and condenser 
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Table 2.5 Condenser lO6F measurements 

Raw Validated 
measurements measurements 

Condenser lO6F T -14°C -16.50“C 
Vapor flow rate (Nm’ h-’) 456,890 455,040 

Reactor PI, 165 barg 165 barg 
TI, 185 “C 181 C 
%mol NH, 2.4 2.829 
%mol inerts 11.2 11.07 

inlet composition and vapor flow rate specified, three different “what if‘ cases were 
studied (see Table 2.6). First, temperature was assumed equal to measured tempera- 
ture -14°C. In the second column, temperature was considered the same as vali- 
dated value -16.5”C. Finally, temperature is computed for ammonia content in 
vapor phase identical to raw measurement 2.40 %. 

Thus, a large amount of information can be extracted from the results: 

0 At 158 bar, hydrogen solubility rises slightly with temperature. 
0 If temperature is considered equal to the raw measurement (-14”C), ammonia 

vapor composition estimated is considerably different from measurement (3.1 % 
instead of 2.4%). This proves inconsistence in the measurement set. On the con- 
trary, vapor flow rate computed seems closer to that of the measurement value. 

0 In the second “what if” case, we reproduce validated data. 
0 To reach specified reactor inlet ammonia content (2.4%), temperature should be 

-20.8”C, instead of the -14°C measured. Therefore, vapor flow rate decreases. 

This illustration shows the limitations of any partial “manual” validation. 
Why is validated data so important in this particular case? The “what if‘ computa- 

tions show the size of uncertainty of different data. The more NH3 you condense in 
the condenser the better, but this has a direct cost, the energy spent in the cooling 
loop. How do you optimize any compromise if only nonvalidated data are available? 
Does it make sense? 

Table 2.6 LV equilibrium calculation results 

T (“C) -14 -16.5 -20.8 

Vapor fraction 0.9586 0.9558 0.9517 

%ma1 NH3 in vapor phase 3.10 2.83 2.40 
~~~~~ 

Vapor flow rate (Nm3 h-’) 456,330 455,039 453,049 

%mol HI in liquid phase 0.38 0.36 0.33 

Liquid flow rate 14.95 15.93 17.44 
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2.3.5 
Exploiting Reactions and Chemical Equilibria as Source of Information 

I 

This point can be illustrated with the same ammonia process described previously 
(see Fig. 2.6), in particular its reactor section. Ammonia is produced in a two adia- 
batic catalytic stages reactor. Reactants are nitrogen and hydrogen, entering the reac- 
tor in a stoichiometric mixture. Ammonia formation reaction is exothermic and 
reversible; therefore, gas leaving the first adiabatic stage is cooled before entering the 
second stage. Furthermore, the model considers a performance equation, consisting 
in the introduction for both adiabatic stages of a A Teq parameter, which takes into 
account deviation from chemical equilibrium. Because reaction is exothermic, A Teq 
will be positive. 

Thus, important information that can be extracted from data validation, consider- 
ing reactions and chemical equilibrium, are performance parameters A Teq (see Table 
2.7). Results pinpoint a closer approach to equilibrium in the first catalyst bed. In 
addition, it is possible to visualize validated ammonia concentration profile together 
with equilibrium curve and plant measurements (see Fig. 2.7). The two vertical lines 
represent measured inlet and outlet temperatures of the heat exchanger between the 
two catalyst beds. 

One cannot accept a measurement point above the equilibrium curve. This errone- 
ous measurement set could not have been noticed any other way than exploiting 
reactions and chemical equilibria as an information source. 

Table 2.7 Performance parameters 

AT- (‘C) 

First catalytic bed 6 

Second catalytic bed 14 

2.3.6 
Exploiting Process Information 

As explained before, data validation is based on measurement redundancy. The plant 
structure yields additional information, which is exploited to correct measurements. 
Consequently, considering a process at a global scale brings more accuracy to vali- 
dated data than only taking into account a local section of the process. It is the same 
for the accuracy evolution of key performance indicators. 

Considering the same ammonia process as before, the H2/N2 ratio in the synthesis 
loop was estimated in several ways. First, only a local section of the process was con- 
sidered (the synthesis loop). Then, additional information of the plant was succes- 
sively added until the whole process was taken into account. Results pinpoint a sub- 
stantial reduction of the KPI inaccuracy when more and more process information is 
considered (see Fig. 2.8). 



........................... 

2.3 Specific Assets oflnforrnation Validation 

........................ 
81 3 



30% - c 

E g 25% 
Y 

g 20% 

8 10% 

5 - 5% 

a 0% 

E c 

E 
8 15% 

r" 

c 

- Equilibrium curve Raw measurements +Validated data 

Figure 2.7 Synthesis reactor equilibrium curve 

-. 

1 

Evolution of loop H2/N2 ratio accuracy 
3,06 

3,04 

3,02 

3,OO 
0 - c e z" 2,ga 
-a 
I 

2,96 

2,94 

2,92 

2,90 

T 

Figure 2.8 
mation taken into account 

Evolution of  a KPI imprecision according to process infor- 

It was previously demonstrated that validation technology avoids error propaga- 
tion. In fact, data validation software propagates accuracy. This technology combines 
process information and raw measurement data. The more information of the pro- 
cess taken into account, the more nonmeasured data (and so KPIs) will be accurate 
and reliable. 
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2.3.7 
Detection of  Leaks 

Validation technology points out process performance degradation sources and helps 
to operate the plant closer to its ultimate performance. In particular, validation 
allows the detection of leaks. This can be illustrated by a practical case study related 
to a previous ammonia plant, where a leak in a NH3 synthesis loop was discovered. 
It would have been hardly detected by tools other than validation technology. 

A Carbochim plant operated in Belgium at 90 % of nominal capacity; a retrofit was 
studied to restore the expected capacity. Validation conveyed a leak in the heat 
exchanger in the middle of the 8-shucture synthesis loop (see Fig. 2.6). Thus, part of 
the process gas was cycling around from the compressor and condenser section, to 
the heat exchanger and again to the compressor. That leak had not been suspected. 
It probably developed and increased smoothly, but the question is, how could it have 
been discovered in the absence of the appropriate tool? Plant was shut down for iso- 
lating leaking tubes in the exchanger and was reopened to easily achieve the expected 
production rate without any costly additional investment. 

2.4 
Advanced Features of Validation Technology 

2.4.1 
Trivial Redundancy 

Trivial redundancy cases are met when the validated value of a measured variable does 
not depend at all upon its measured value but is inferred directly from the model. 

This can occur in particular in L/V equilibrium drums, where complementary ther- 
modynamic constraints must be respected. Indeed if, e.g., temperature, pressure, flow 
rate and composition of a condenser inlet stream were known together with the unit 
pressure drop, any complementary measurement (e.g., outlet temperature) would be 
considered as a trivial redundancy. Proper validation software detects trivial measure- 
ments, which then are no longer considered as measured. As a consequence, their 
measurement accuracy will not affect the accuracy of the respective validated variable. 

2.4.2 
Gross Error Detedion/Elimination 

Gross errors are detected by means of a chi-square (2) statistical test, which has been 
previously explained at Section 2.3.1. 

2.4.2.1 
Detecting Gross Errors 
The 2 statistical test enables the detection of gross errors in the sets of measure- 
ments. The 2 value depends on the total number of redundancies of the system, 
active bounds being considered as adding new levels of redundancy, and on the sta- 
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tistical threshold of the test, typically 95 %. If the weighted sum of penalties is higher 
than the 2 threshold value, then there is a significant suspicion that gross errors 
exist. In such a case, all results obtained with that model are to be used with caution: 
validated values, identified performance factors and their reconciled accuracy. 

I 

2.4.2.2 
Eliminating Gross Errors: The Highest Impact Method 
Identifymg the actual source of the gross errors is not always trivial and requires a 
careful analysis of the results. The conventional technique (highest penalty method) 
is to ignore the measurements for which the highest corrections are made. This 
method is known to be inadequate in detecting some gross errors, for example, when 
the corresponding measurement is specified with a high level of accuracy as com- 
pared to the other measurements. 

On the contrary, the highest impact method detects the impact on the total sum of 
penalties by removing each of the measurements. This approach is in principle 
highly time-consuming and is therefore not used by most data validation packages. 
However, by means of specific algorithm, one can apply this technique in a calcula- 
tion time of the same order of magnitude as a single validation run. 

2.4.3 
How to Validate with Petroleum Fractions 

The modeling of a refinery process or a part of it is always confronted by the complex- 
ity of the petroleum and its products. Indeed, crudes and petroleum cuts are mixtures 
of a large number of chemical compounds, thus making it very difficult to model 
their properties without accurately knowing their composition. Therefore, it is com- 
mon practice to model such streams by the well known pseudo-component concept. 

2.4.3.1 
Concept 
A pseudo-component is a hypothetical molecule characterized by its density and its 
boiling temperature. Those parameters are then used to estimate the other thermody- 
namic properties (like critical properties or specific heat capacity) using empirical cor- 
relations as proposed for example by American Petroleum Institute (API). According 
to the crude type and origin, different pseudo-components must be used to get an 
accurate representation. The usual way of characterizing petroleum fractions is to gen- 
erate a defined mixture of pseudo-components, with given boiling point, having the 
same properties as the Petroleum fraction. Namely, their composition and their den- 
sity are identified in order to match all stream distillation curves and densities. Most 
common standards for distillation curves are true boiling point (TBP) and ASTM; each 
of them can be expressed on a weight basis or on a volume basis (see Fig. 2.9). 

Several petroleum cuts involved in a distillation process can be modelled as a data 
validation system involving: 
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streams. 

On this basis, data validation will generate calculated distillation curves from mea- 
sured TBP or ASTM data, as it identifies the density of each pseudo-compound; this 
involves minimization of weighted deviation between measured and calculated distil- 
lation points, under density constraints, mass and thermal balance constraints. The 
other thermodynamic properties of the pseudo-compounds are also estimated. 

2.4.3.2 
Crude Oil Atmospheric Distillation Example 
Following example concerns the modeling of a crude oil distillation unit (CDU), pre- 
ceded by the preheating train (see Fig. 2.10) [4]. The crude oil is separated into six 
Petroleum cuts: naphtha, jet, kerosene, gasoline, diesel and residue. 

Naphta 

Gasoil 

4 
I 
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Figure 2.10 Preheat t ra in and  CDU 
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Measurements available to perform the modeling are: 
I 

0 density and distillation curves (ASTM-DSG) of the petroleum cuts, 
0 temperature, pressure and flow rates of the streams, 
0 design data of the exchangers. 

These measurements are validated and the other thermodynamic properties of 
pseudo-compounds are subsequently computed. Furthermore, with several sets of 
measurements taken in one year it was also possible to confirm fouling problems for 
the exchangers at the end of the preheating train. Indeed, their heat transfer coeffi- 
cient decreased by a factor of two after one year of operation. Thus, data validation 
uses a rigorous method integrating robustly complex distillation systems. This forms 
a sound basis for the analysis of refinery performance, and for instance, of a retrofit 
potential. 

tnput a output Data KP' + %;ll Dynamic 
Plant 

" +[ream meac validahon outpui 

2.4.4 
Advanced Process Control Benefits from Working with Data Validation 

Nowadays plants face a market where margins are under pressure due to global com- 
petition, more stringent environmental regulations, a higher demand for flexible 
operation and more severe safety requirements. Control techniques are required to 
increase those margins. Advanced process control (APC) systems can help optimize 
control to deal with those challenges [S]. Data validation technique enhances the 
quality of information allowing APC systems to work more efficiently. 

Figure 2.11 Data Validation working together with APC system 
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king raw information reliability and coherency. Some measurements could be erro- 
neous and balances not be closed. 

Data validation software uses input and output streams of raw measurements in 
order to provide one coherent and accurate data set. With data validation, APC sys- 
tems are allowed to take actions on the process based on coherent and reliable mea- 
sured and nonmeasured data. Validated data contains measurements, equipment 
parameters, KPIs, and many other nonmeasured but validated data. The a posteriori 
accuracy of measurements and KPIs is provided. 

When a dynamic model is tuned according to validated data, benefits are generated 
as early as at the model design stage. 

2.4.4.2 
Benefits at Model Design Stage 
Reduced dynamic model must be certified: dynamic model parameters are chosen 
and adjusted in order to produce results identical to measurements (A = 0 on Fig. 
2.1 1). Benefits using validation techniques are double: 

0 Measurements, to which dynamic model results are compared, are checked and 
corrected by data validation techniques. Measurements are much more reliable 
(they represent the actual process operation) and thus the model will be more reli- 
able as well. 

0 Data validation technology reduces the number of principal directions needed to 
represent process variability, allowing the reduced dynamic model to represent the 
same level of variability using a model with a lower number of principal directions 
(see Fig. 2.12) [GI. 

a9 

0.8 

I. 
c 

0.3 



820 2 Data Validation: a Jechnologyfor intelligent Manufacturing I 
103 

102 

101 

100 

99 

98 

97 

96 

95 

- KPI validated (%) - KPI based on raw measurement (%) 

M-l 
0 5 10 15 20 25 30 35 40 45 

Run - 
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Figure 2.12 illustrates the number of principal directions (or components) neces- 
sary to represent the variability of a given system when the latter is based on vali- 
dated data or on raw measurement data. Taking into account more principal compo- 
nents allows for the explanation of a higher fraction of the total process variability: 

0 When using raw measurements, a large number of components are needed to 
explain most of the process variability (upper limit is the number of original vari- 
ables, 186). 

0 When using the validated data sets, the number of significant principal compo- 
nents tends to a much lower number than the number of variables (upper limit is 
the number of degrees of freedom of the data validation model). 

This reduction in the problem size allows the dynamic model to be more reduced, 
when based on validated data (accuracy increased and noise reduced). Control of the 
process is made easier and the computing demand is decreased. 

Furthermore, since data validation technique enforces the strict verification of all 
mass and energy balance constraints, use of this technology ensures that the princi- 
pal components represent the proper process behavior. 

2.4.4.3 
Benefits at Operation Stage 
Process control behavior can be very different whether APC is working together with 
data validation or not. Figure 2.13 presents the evolution of a process yield (KPI) ver- 
sus time (run) whether data validation software is used or not: 

0 Without data validation, APC detects a KPI variation and tries to stabilize the pro- 
cess operation. Based on raw data with embedded errors, APC takes actions ris- 
king being unusefd, resources-expensive, and even process-disturbing. 
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0 With data validation, APC considers actual process operation (validated, measured 
and nonmeasured, data are used as inputs to APC). APC can now use all of its 
resources on optimization of the process rather than on more stable operations. 

2.5 
Applications 

2.5.1 
On-line Process Performance Monitoring 

The goal is to deliver on a periodic basis (typically each 10 to GO minutes) a coherent 
heat and mass balance of a production unit. In addition to the compound balances, 
the laws of energy conservation are introduced in the form of heat balances. This 
more detailed modeling of the production unit allows validation software to work as 
an advanced process soft sensor and to determine reliable and accurate KPIs. 

Typical benefits are: 

0 access to unmeasured data, which is quantified and related accuracy determined; 
0 early detection of problems: sensor’s deviation and degradation of equipment per- 

formance are pinpointed; 
0 quality at process level: anticipate off-spec products by carefully monitoring the 

process; 
0 work closer to specifications: as the accuracy of measurement data improves, the 

process can be safely operated closer to the limits. This feature is reported as being 
financially the most productive. 
decreased number of routine analyses (up to 40 % in chemical applications); 

0 reduced frequency of sensor calibration (only faulty sensors need to be calibrated). 

improvement of Product Selectivity in a BASF Plant 
This example shows how the operation of a production unit at a BASF operating 
division of performance chemicals can be improved using data reconciliation 171. 
The product C is produced by conversion of component A with component B using 
2 reactors. Several undesired by-products are generated, thus selectivity has to be 
maximized. Process model generated took into account only component mass 
and atomic balances. Several data sets at different process conditions were validated 
and from those the selectivity of product C was calculated. The diagram Fig. 2.14a 
(courtesy of BASF) shows this selectivity as a function of residence time in the first 
reactor, calculated from measured values; Fig. 2.1413 shows the results from validated 
data. 

The selectivity, calculated from crude data, is spread widely and in some cases 
selectivity values of more than 100 % were obtained, which is meaningless. The cor- 
responding unfeasible area is marked on the charts. One could estimate in this case 
that a residence time of about 45 minutes is enough to maximize selectivity. How- 
ever the selectivity based on reconciled data shows a clearer trend and does not 
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reactor: raw data versus reconciled data (courtesy of BASF [7]) 

Nitrile selectivity as a function of residence time in the 

exceed the 100 % boundary. One realizes that residence time should be larger than 
the one estimated without data validation, in order to achieve the product optimal 
selectivity (residence time of about 48 minutes). This example (considering only a 
restricted part of a process) shows that the evaluation of selectivity is meaningful 
only on the basis of validated operational data. These lead to a safe interpretation of 
measurements. By doing so, a selectivity close to 99% can be obtained systemati- 
cally, which is 2 % higher than the average figure obtained without data validation. 
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Reducing Energy Consumption in a Formic Acid Plant of  BASF 
A main problem at the formic acid production is the undesired back-reaction of 
formic acid during distillation, which increases the specific energy consumption [7] .  
This is shown in the left diagram of Fig. 2.15, on the basis of measured values within 
a time interval of G days. BASF looked for process parameters, which may influence 
the back-reaction, in order to decrease operation costs (specific energy consump- 
tion). One of them is the molar ratio of water to methyl formate, both educts of the 
formic acid synthesis. 

The diagram on the right shows the influence of the mentioned molar ratio to the 
rate of the unwanted back-reaction: 

0 Without data validation (raw data , black symbols), no influence is visible but only 

0 Using validated values (grey symbols) a clear trend is visible, which means that 
a cloud of data. 

reducing the molar ratio decreases the rate of back-reaction. 

Both parameters could be correlated only by data validation. Due to these results the 
specific energy consumption can be reduced by 5 %. Data validation allows the most 
effective command variables for the control of a process to be determined. This study 
led to the discovery of which control variable had a dominant effect on the said rate 
of back-reaction, and consequently on the specific energy consumption. 

Performance Monitoring at KKL Nuclear Power Plant 
On-line implementation of validation software in the nuclear power plant (NPP) of 
Leibstadt - Switzerland (KKL) generated substantial benefits (two million USD per 
year) over the past 10 years. The priority of NPP operators is to run their plant as close 
as possible to the licensed reactor power in order to maximize the generator power. 
To meet this objective, plant operators must have the most reliable evaluation of the 
reactor power. The definition of this power is based on a heat balance using several 
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measured process parameters, among which the total feed water flow rate is the most 
critical value. 

On-line implementation of validation software in the NPP of Leibstadt - Switzer- 
land (KKL) has quantified the deviation between the actual and the measured feed 
water flow rate (see Fig. 2.16). In Fig. 2.16, only one recalibration is illustrated. This 
was used to convince the legal authorities about the reliability of the implemented 
validation technique. Validation results were also compared to test runs. 

In agreement with the authorities in charge of safety of NPP, KKL nowadays reca- 
librates the measured flow rate based on the validated value, as soon as a deviation 
becomes significant. This enables the power plant to work close to its maximum 
capacity throughout the whole year (1145 MW). Prevention of losses due to heat bal- 
ance errors increased the plant output by 5 MW. In addition, the use of this technol- 
ogy also made the annual heat cycle testing obsolete and significantly reduced the 
cost for mechanical and instrumentation maintenance [8]. 

Performance Monitoring of Refinery Units at LOR (Lindsey Oil Refinery), U.K. 
On-line validation software is used at LOR for the performance monitoring of refi- 
nery units for several years. One set of applications is about the follow-up of fouling 
of the heat exchangers of several preheat trains. The main goal of the application is 
to determine the appropriate amount of anti-fouling product in order to maintain an 
adequate operation of the preheat trains and thus energy efficiency of the plant. 
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Another set of applications concerns the follow-up of furnaces and power plant 
boilers. The goal here is to determine with sufficient reliability and accuracy their 
energy efficiency. Any inappropriate operation can easily be detected and corrected 
when necessary. 

Performance Monitoring of PE Plant at Confreville, France 
The application enables any deviation within the instrumentation to be detected and 
provides guidance to the operators for the recalibration of the on-line analyzers. In 
addition, it ensures that the on-line soft sensors remain valid by counter-checking 
the quality of the instrumentation on which they rely. 

2.5.2 
On-line Production Accounting 

2.5.2.1 
Description and Benefits 
This solution aims at providing a clear view of the production accounting, on a daily 
basis, of a whole industrial site: rigorous and automatic procedure for production 
accounting based on closed material balances. These material balances can be per- 
formed either: 

0 On a global mass balance basis: mass flow rates, in terms of tons entering and 
tons going out of each production unit, are reconciled to generate a coherent mass 
balance of the whole site. This approach is typically applied in refineries and 
covers the whole site including the tank farm. 

0 On a chemical compound basis: additional information is then required on the 
composition of the various streams and the reactions schemes. This approach is 
typically applied in chemical and petrochemical production plants. 

Typical benefits are: 

0 Actual plant balances: closed balances are key elements as much for effective pro- 
duction accounting as for efficient performance monitoring. 

0 Decrease of unidentified losses and surpluses: abnormal conditions leading to 
losses and/or apparent surpluses are identified and can be corrected before they 
impact the economics of the plant. 

Several real cases can be referred to, namely an adiponitrile plant and two refineries. 

Production Accounting at ERE and Holborn Refineries 
On-line validation software establishes the daily mass balance of the whole ERE 
refinery (BP refinery located at Lingen, Germany), covering about 150 tanks and 
about 50 production or blending units. Only a global mass balance (in tons) is made 
around each unit. The person in charge of the use (and maintenance) of the system 
spends about 30 minutes per day to generate all the validated reports and inputs for 
the production accounting. More recently the Holborn refinery in Germany has 
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installed a similar system, which also automatically detects abrupt changes in mea- 
sured data identifying possible changes in operation or instrumentation failure. 

l 

Production Accounting at Butachimie, France 
In this application the modeling includes compound balances of each main piece of 
equipment of an adiponitrile production facility. Reconciled compound balances are 
provided on a daily basis. All main chemical compounds as well as the catalysts used 
in the system are rigorously tracked all over the process unit. 

2.6 
Conclusion 

Data reconciliation and validation is nowadays a mature technology. However it is 
often confused with flow sheeting and process simulation. Still, much has to be done 
to inform engineers and managers who have not learned about this technology dur- 
ing their studies. We have tried to convey the importance of this technology, and the 
very high diversity of applications and benefits that it can provide for the process 
industry. 
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