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Resource Planning 

Michael C. Georgiadis and Panagiotis Tsiakis 

1.1 
Introduction 

Until recently, resources planning exercises in many companies were based on 
quantitative, managerial judgements about the future directions of the firms and the 
markets in which they compete. Complex interactions between the different 
decision-making levels were often ignored. In the past few years however, important 
planning decisions, such as those relating to capacity expansion, new product intro- 
duction, oil and chemical product distribution and energy planning, have been for- 
mally addressed based on recent developments in mixed-integer optimization. 
Today, most process and energy industries have turned to the use of optimization 
models in seeking efficient long-term planning use of their resources (Shapiro 2004). 

In the last two decades, new techniques have developed to analyze large size plan- 
ning models, while research in aggregation and decomposition techniques has mul- 
tiplied. In addition, many managers have begun to recognize the major drawbacks of 
most current planning systems and the necessity for more intelligent and quantita- 
tive decisions tools instead of administrative routine procedures. This comes as a 
natural continuation of the pioneering work of F. W. Taylor and H. L. Gantt, who in 
the early 1900s identified the impact on productivity and other key performance indi- 
ces, of general production planning systems based on scientific approaches (Wilson 
2003). Today’s computing offers more powerful techniques for modeling and solving 
planning problems, while Gantt charts still provide an excellent display tool for 
understanding and acceptance of plans in any type of environment, in addition to 
other available interfaces. 

During the last year, companies have realized that in order to achieve significant 
competitive advantage within their sector they need to understand the operations 
hierarchy and solve their problems in a unified framework, a fact that is resulting in 
the development of corresponding tools. Towards that, the interest in planning and 
scheduling capabilities has given rise to the providers of solution systems designing, 
developing and implementing planning systems as part of general supply-chain sup- 
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port systems or with open architecture to allow easy integration. Owing to the inher- 
ent complexity and the different scales of integration this has been accepted by the 
research community as a topic that needs urgent answers, since the planning soft- 
ware industry is in its infancy and under pressure to respond to the demand. 

The objective of this chapter is to present a comprehensive review of state-of-the- 
art models, algorithms, methodologies and tools for the resource planning problem 
covering a wide range of manufacturing activities. For reasons of presentation, the 
remaining of this chapter is organized as follows. The long-range planning problem 
in the process industries is considered in Section 1.2 including a detailed discussion 
on the effect of uncertainty, the planning of refinery operations and offshore oil- 
fields, the campaign planning problem and the integration of scheduling and plan- 
ning. Section 1.3 describes the planning problem for new product development with 
emphasis on pharmaceutical industries. Section 1.4 presents briefly the tactical plan- 
ning problem, followed by a description of the resource planning problem in the 
power market and construction projects in Section 1.5. Section 1.6 is a review of 
recent computational solution approaches to the planning problem are reviewed, 
while available software tools are outlined in the Section 1.7. Finally, Section 1.8 will 
make some conclusions and propose future challenges in this area. 

1.2 
Planning in the Process Industries 

1.2.1 
Introduction 

New environmental regulations, new processing technologies, increasing competi- 
tion and fluctuating prices and demands in process industries have led to an increas- 
ing need for quantitative techniques for planning the selection of new processes, the 
expansion and shut down of existing processes, and the production of new products. 
Further decisions also include creation of production, distribution, sales and inven- 
tory plans. (Kallrath 2002). It has been recently realized that in a competitive and 
changing environment the need to plan new output levels and production mixes is 
likely to arise much more frequently than the need to design new batch plants. 

Although the boundaries between planning and scheduling are not very clear we 
can distinguish the following basic features of the process planning problem: 

0 multipurpose equipment 
0 sequence-dependent set-up times and cleaning costs 
0 combined divergent, convergent and cyclic material flows 
0 multistage, batch and campaign production using shared intermediates 
0 multicomponent flow and nonlinear blending for the refinery operations 
a finite intermediate storage, dedicated and variable tanks. 

Structurally, these features often lead to allocation and sequencing problems and 
knapsack structures, or to the pooling problem for the petrochemical industries. In 
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production planning we usually consider material flow and balance equations con- 
necting sources and sinks of a production network. Time-indexed models using a rel- 
ative coarse discretization of time, e.g., a year, quarter, months or weeks are usually 
accurate enough. linear programming (LP), mixed-integer linear programming 
(MILP) and mixed-integer nonlinear programming (MINLP) technologies are often 
appropriate and successful for problems with a clear quantitative objective function, 
as will become clear in the following sections. 

Nowadays, it is possible to find the optimal way to meet business objectives and to 
fulfil all production, logistics, marketing, financial and customer constraints and 
especially: 

0 to accurately model single-site and multisite manufacturing networks; 
0 to perform capital planning and acquisition analysis, i.e., to have the possibility to 

change the structure of a manufacturing network through investment and to 
determine the best investment type, size and location based on user-defined rules 
related to business objectives and available resources; the results of such analysis 
can lead to nonintuitive solutions that provide management with scenarios that 
could dramatically increase profits; 

0 to produce integrated enterprise solutions and to enable a crossfunctional view of 
the planning process involving production, distribution and transport, sales, mar- 
keting and finance functions; 

0 to develop new product and introduction strategies along with capacity planning 
and investment strategies. 

The following sections provide a comprehensive review of the above areas. 

1.2.2 
LongRange Planning in the Process Industries 

Chemical process industries are increasingly concerned with the development of 
planning techniques for their process operations. The incentive for doing so derives 
from the interaction of several factors (Reklaitis 1991, 1992). Recognizing the poten- 
tial benefits of new resources when these are used in conjunction with existing pro- 
cesses is the first. Another major factor is the dynamic nature of the economic envi- 
ronment. Companies must assess the potential impact on their business of impor- 
tant changes in the external environment. Included are changes in product demand, 
prices, technology, capital market and competition. Hence, due to technology obso- 
lescence, increasing competition, and fluctuating prices of and demands for chemi- 
cals, there is an increasing need to develop quantities techniques for planning the 
selection of new processes, and the production of chemicals (Sahinidis et al. 1989) 

The long-range planning problem in process industries has received a lot of atten- 
tion over the last 20 years and numerous sophisticated models exist in the literature. 
Sahinidis et al. (1989) consider the long-range planning problem for a chemical com- 
plex involving a network of chemical processes that are connected in a finite number 
of ways. The network also consists of chemicals: raw materials, intermediates and 
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products that may be purchased from and/or sold to different markets. The objective 
function to be maximized is the net present value (NPV) of the planning problem 
over a long-range horizon of interest consisting of a number of NT time periods dur- 
ing which prices and demands of chemicals, and investment and operating costs of 
the processes can vary. The problem consists of determining the following items: 

0 capacity expansion and shut down policy 
0 selection of new processes and their capacity expansion and shut down policy 
0 production profiles 
0 sales and purchase of chemicals at each time period. 

It is assumed that the material balance and the operating cost in each process can be 
expressed linearly in terms of the operating level of the plant. The investment costs 
of the processes and their expansions are considered to be linear expressions of the 
capacities with a fmed charge cost to account for economies of scale. This is a multi- 
product, multifacility, dynamic, location-allocation problem that has been formu- 
lated using MILP modes. Sahinidis and Grossmann (1991) extended the above 
model to account for production facilities that are flexible manufacturing systems 
operating in a continuous or in a batch mode. The suggested model provides a uni- 
fied representation for the different types of processes. 

Norton and Grossmann (1994) extended the original model of Sahinidis and Gros- 
smann (1991) for dedicated and flexible processes by incorporating raw materials 
flexibility in addition to product flexibility. In their model, raw material flexibility is 
characterized by different chemicals as raw materials or different sources of the 
same raw material. The model was able to handle any combination of raw material 
and process flexibility, thus providing a truly unified representation for all types of 
process flexibility in the long-range planning problem. 

The above industrial relevance of the chemical process planning problem moti- 
vated the need to develop more efficient solution techniques for large-scale prob- 
lems. Liu and Sahinidis (1995) presented a comprehensive investigation of the effect 
of time discretization, data uncertainty and problem size, on the quality of the solu- 
tion and computational requirements of the above MILP planning models. The 
importance of detailed time discretization was demonstrated and the effect of uncer- 
tainty was critically assessed. An exact branch-and-bound algorithm was also pre- 
sented along with several heuristic approaches for the solution of larger problems. 
Extending this work, Liu and Sahinidis (199Ga) investigated separation algorithms 
and cutting plane approaches that were demonstrated to be more robust and faster 
than conventional solution approaches for large-scale problems with long time- 
horizons. 

Oxe (1997) considered a LP approach to choose an appropriate subset of existing 
production plants and lines and to optimize allocation, transportation paths and cen- 
tral stock profiles so that the overall costs are minimized while product delivery is 
ensured within some months (specified for each product) from the order. 

McDonald and Karimi (1997) developed production planning and scheduling 
models for the case of semicontinuous processes, which are assumed to comprise 
several facilities in distinct geographical locations, each potentially containing multi- 
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ple parallel lines. The models developed are deterministic in nature and are formu- 
lated as mixed-integer linear programs. 

Oh and Karimi (2001a) presented a new methodology for determining the optimal 
campaign numbers for producing multiple products on a single machine with 
sequence-dependent set-ups. Their methodology is intended mainly for the purpose 
of capacity planning. In the second part of this work (Oh and Karimi 2001b) they 
addressed the problem of determining the sequence of these given product cam- 
paigns to obtained a detailed schedule of operation. Heuristic algorithms based on a 
decomposition scheme were investigated for the efficient solution of the underlying 
optimization problem. 

1.2.3 
Process Planning under Uncertainty 

Decision making in the design and operation of industrial processes is frequently 
based on parameters of which the values are uncertain. Sources of uncertainty, 
which tend to imply the means for dealing with them, can be divided into: 

0 short-term uncertainties such as processing time variations, rush orders, failed 

0 long-term uncertainty such as market trends, technology changes, etc. 

A detailed classification of different areas of uncertainty is suggested by Subrahma- 
nyam et al. (1994) including uncertainty in prices and demand, equipment reliability 
and manufacturing uncertainty. An excellent review on the general subject of optimi- 
zation under uncertainty has recently been presented by Sahinidis (2004). 

In the area of process planning, uncertainty is usually associated with product 
demand fluctuations, which may lead to either unsatisfied customer demands or loss 
of market share or excessive inventory costs. A number of approaches have been pro- 
posed in the process systems engineering literature for the quantitative treatment of 
uncertainty in the design, planning and scheduling of batch process plants with an 
emphasis on the design. The most popular one so far has been the scenario-based 
approach, which attempts to forecast and account for all possible future outcomes 
through the use of scenarios. The scenario approach was suggested by Shah and 
Pantelides (1992) for the design of flexible multipurpose batch plants under uncer- 
tain production requirements, and was also used by Subrahmanyam et al. (1994). 
Scenario-based approaches provide a straightfonvard way to implicitly account for 
uncertainty (a comprehensive discussion is presented by Liu and Sahinidis (199613)). 
Their main drawback is that they typically rely on either the a priori forecasting of all 
possible outcomes of the discretization of a continuous multivariable probability dis- 
tribution, resulting in an exponential number of scenarios. 

Liu and Sahinidis (199Ga,b) and Iyer and Grossmann (1998) extended the MILP 
process and capacity planning model of Sahinidis and Grossmann (1991) to include 
multiple product demands in each period. They then propose efficient algorithms for 
the solution of the resulting stochastic programming problems (formulated as large 

batches, equipment breakdowns, etc.; 
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deterministic equivalent models), either by projection (Liu and Sahinidis 199Ga) or 
by decomposition and iteration. However, as pointed out by Shah (1998) a major 
assumption in their formulation is that product inventories are not carried from one 
period to the next. This has the advantage in ensuring that the problem size is of, 
O(np x ns), where np is the number of periods and ns is the number of demand sce- 
narios, rather than O(ns"J'+'). However, if the periods are too short, this compromise 
the solution from two perspectives: 

0 All products must be produced in all periods if demand exists for them - this may 

0 Plant capacity must be designed for a peak demand period. 

Clay and Grossmann (1994) addressed this issue. They considered the structure of both 
the two-period and multiperiod problem for LP models and derived an approximate 
model based on successive repartitioning of the uncertain space, with expectations 
being applied over partitions. This has the potential to generate solutions to a high 
degree of accuracy in a much faster time than the full deterministic equivalent model. 

Liu and Sahinidis (1997) presented two different formulations for the planning in 
a fuzzy environment (the forecast model parameters are assumed to be fuzzy). The 
first considers uncertainty in demands and availabilities, whereas the second 
accounts for uncertainty of the right hand size of made constraints and objective 
function coefficient. 

The approaches above mainly focus on relatively simple planning models of plant 
capacity. Petkov and Maranas (1997) considered the multiperiod planning model for 
multiproduct plants under demand uncertainty. Their planning model embeds the 
planninglscheduling formulation of Birewar and Grossmann (1990) and therefore 
calculates accurately the plant capacity. They do use discrete demand scenarios, but 
assume normal distributions and directly manipulate the functional forms to gener- 
ate a problem which maximizes the expected profit and meets certain probabilistic 
bounds on demand satisfaction without the need for numerical integration. Ierapet- 
ritou and Pistikopoulos (1994) proposed a two-stage stochastic programming formu- 
lation for the long-range planning problem including capacity expansion options. 
Based on the Gaussian quadrature method for approximating multiple probability 
integrals, Ierapetritou et al. (1996) considered the operational and production plan- 
ning problem under varying conditions and changing economic circumstances. The 
effect of uncertainty on future plant operation was investigated via the incorporation 
of explicit future plan feasibility constraints into a two-stage stochastic programming 
formulation, with the objective of maximizing an expected profit over a time horizon, 
and the use of the value of perfect information. The main drawback of this approach 
is its high computation cost. To address this issue Bernard0 et al. (1999) investigated 
more efficient integration schemes for the solution of problems with many uncertain 
parameters. Recently, Ryu et al. (2004) addressed bilevel decision making problems 
under uncertainty in the context of enterprise-wide supply-chain optimization with 
one level corresponding to a plant planning problem, and the other to a distribution 
network problem. The bilevel problem was transformed into a family of single para- 
metric optimization problems solved to global optimality. 

be suboptimal. 
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Rodera et al. (2002) presented a methodology for addressing investments planning 
in the process industry using a mixed-integer multiobjective optimization approach. 
Romero et al. (2003) proposed a modeling framework integrating cash flow and 
budgeting aspects with an advanced scheduling and planning model. It was illus- 
trated that potential budget limitation can significantly affect scheduling and plan- 
ning decisions. Recently, Barbaro and Bagajewicz (2004) proposed a new mathemati- 
cal formulation for problems dealing with planning under design uncertainty that 
allows management of financial risk according to the decision-maker’s preferences. 

Sanmarti et al. (1995) define a robust schedule as one which has a high probability 
of being performed, and it is readily adaptable to plant variations. They define an 
index of reliability for a unit scheduled in a campaign through its intrinsic reliability, 
the probability that a standby unit is available during the campaign, and the speed 
with which it can be repaired. An overall schedule reliability is then the product of 
the reliabilities of units scheduled in it, and solutions to the planning problem can be 
driven to achieve a high value of this indicator. 

Ahmed and Sahinidis (1998) noted that the resulting two-stage stochastic optimi- 
zation models in process planning under uncertainty minimize the sum of the costs 
of the first stage and the expected cost of the second stage. However, a limitation of 
this approach is that it does not account for the variability of the second-stage costs 
and might lead to solutions where the actual second-stage costs are unacceptably 
high. In order to resolve this difficulty they introduced a robustness measure that 
penalizes second-stage costs that are above the expected cost. 

Pistikopoulos et al. (2001) presented a systems effectiveness optimization frame- 
work for multipurpose plants that involves a novel preventive maintenance model 
coupled with a multiperiod planning model. This provides the basis for simulta- 
neously identifying production and maintenance policies, a problem of significant 
industrial interest. This framework was then extended by Goel et al. (2003) to incor- 
porate the reliability allocation problem at the design stage. Li et al. (2003) employed 
probabilistic programming approach to plan operations under uncertainty and to 
identify the impact on profits based on reliability analysis. Recently, Suryadi and 
Papageorgiou (2004) presented an integrated framework for simultaneous mainte- 
nance planning and crew allocation in multipurpose plants. 

1.2.4 
Integration of Production Planning and Scheduling 

The decisions made by planning, scheduling, and control functions have a large eco- 
nomic impact on process industry operations - estimated to be as high as US $10 
increased margin per ton of feed for many plants. The current process industry envi- 
ronment places even more of a premium on effective execution of these functions. In 
spite of these incentives, or perhaps because of them, there exists significant dis- 
agreement about the proper organization and integration of these functions, indeed 
even which decisions are properly considered by the planning, scheduling or control 
business processes. It has long been recognized that maintaining consistency among 
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the decisions in most process companies continues to be difficult and the lack of 
consistency has real economic consequences. In their recent work Shobrys and 
White (2002) presented a critical and comprehensive analysis of several practical 
aspects that need to be carefully considered when challenges, associated with 
improving these functions and achieving integration, arise. 

The planning and scheduling levels of the operations hierarchy are natural candi- 
dates for integration because the structure of these two decision problems is very 
similar. However, the direct merging of these two levels requires embedding the 
details of the scheduling level into a super-scheduling-problem defined over the 
entire planning horizon. The result is a problem that is extremely difficult to solve. 
Thus, in recent years research has been increasingly interested in the issues around 
the integration of production and scheduling, in order to provide greater consistency. 

The most common approach for the simultaneous treatment of production plan- 
ning and scheduling is a hierarchical decomposition scheme, where the overall pro- 
duction planning problem is decomposed into two levels (Bitran and Hax 1977). At 
the upper level, the planning problem, which usually involves a simplistic represen- 
tation of the scheduling problem, is solved as a multiperiod LP problem in order to 
maximize the profit and set production targets. At the lower level, the scheduling 
problem is concerned with the sequencing of tasks that should meet the goals. An 
alternative integration approach is through the rolling schedule strategy (Hax 1978). 

Production planning and scheduling are closely related activities. Ideally these two 
should be linked, in order that the production goals set at the production plan level 
should be implementable at the scheduling level. Birewar and Grossmann (1990), 
based on their initial LP flow-shop scheduling model, proposed aggregate methods 
that allow tackling longer time-horizons by reducing the combinatorial nature of the 
problem. The model accounts for inventory costs, sequence-dependent clean-up 
times and costs, and penalties for not meeting predefined product demands. Using 
a graph enumeration method, the production goals predicted by the planning model 
are applied to the actual schedule, with the key point that both problems are solved 
simultaneously, since the sequencing constraints can be accounted for at the plan- 
ning level with very little error. 

Bassett et al. (199Ga), working in the same direction of model-based integrated 
applications and focused on integrating planning decisions with the actual schedule, 
proposed an aggregation/disaggregation technique that can be used to provide solu- 
tions to otherwise intractable mid-term planning models. The initiative is the exploi- 
tation of available enterprise information within the process operational hierarchy 
tree. A more formal approach to integration of production and scheduling is 
described based on the previous work of Subrahmanyam et al. (1996), where the 
planning model, based on an aggregate formulation, is modified to be consistent 
with detailed scheduling decisions. 

Hierarchical production planning algorithms often make use of rolling horizon 
algorithms as a suboptimal to obtain feasible, but often good, solutions. The disad- 
vantage of the method is reliance on the simplistic or rather poor representation of 
the scheduling problem within the aggregate part. Wilkinson (1996) derived an accu- 
rate aggregate formulation by applying formal aggregation operators to the resource- 
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task network (RTN) formulation, and dividing the horizon into aggregate time peri- 
ods (ATPs). This allows creating single MILP models that have varying time resolu- 
tion. The first ATP is modeled in fine detail (scheduling) and the subsequent ATPs 
are modeled using the aggregate formulation (planning). The problem can then be 
solved as a single MILP, maintaining consistency between plan and schedule. 

Rodrigues et al. (2000) presented a two-level decomposition procedure for integrat- 
ing scheduling and planning decisions. At the planning level, demands are adjusted, 
a raw material plan is defined and a capacity analysis is performed. At the scheduling 
level an MILP model is proposed. Geddes and Kubera (2000) described a practical inte- 
gration between planning and online optimization with application in olefins produc- 
tion. Das et al. (2000) developed a prototype system by integrating two higher-level 
hierarchical production planning application programs (aggregated production plan 
and master production schedule) using a common data model integration approach 
into an existing planning system for short-term scheduling and supervisory manage- 
ment, which was originally developed by Rickard et al. (1999). Bose and Pekny (2000) 
presented a similar approach to model predictive control for integrated planning and 
scheduling problems. Van den Heever and Grossmann (2003) addressed the integra- 
tion of production planning and reactive scheduling for the optimization of a hydrogen 
supply network consisting of 5 plants, 4 interconnected pipelines and 20 customers. A 
multiperiod MINLP model was proposed for both the planning and scheduling levels, 
along with heuristic solution methods based on Lagrangean decomposition. 

During the last Foundations on Computer Aided Process Operations (FOCAPO 2003) 
event, several contributions presented were on the integration between planning and 
scheduling decisions. Harjunkoski et al. (2003) provided a comprehensive analysis of 
different aspects needed for the integration of the planning, scheduling and control 
levels in the light of ABB’s industrial initiative. They presented a framework introducing 
an approach to integrating all aspects relevant to decision making in a supportive way. 
An industrial case study was used to illustrate the benefits of the integrated framework. 
Yin and Liu (2003) developed a problem formulation and solution procedure for produc- 
tion planning and inventory management of systems under uncertainty. The produc- 
tion system is modeled by finite-event continuous-time Markov chains. Kabore (2003) 
presented a model predictive control formulation for the planning and scheduling prob- 
lem in process industries. The main idea is to use moving-horizon techniques as well 
as a feedback control concept to continuously update production schedules. Wu and 
Ierapetritou (2003) proposed a method for simultaneously solving a planning and 
scheduling problem. The mathematical formulation of the planning problem involves 
scheduling decisions and results to a large MINLP problem, intractable to solve directly 
within reasonable computational time. A nonoptimal solution strategy is selected to 
provide near-optimal solutions within reasonable computational times. 

Tsiakis et al. (2003) applied the algorithm of Wilkinson (1996) to obtain an inte- 
grated plan and schedule of the operations of a complex specialty oil refinery, focus- 
ing on the downstream products of the oil supply-chain. Operating in an uncertain 
environment, the company needed to schedule the refinery operations in detail over 
the next month, while producing plans for the next year that were both reasonably 
accurate and consistent with the short-term schedule. 
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1.2.5 
Planning of Refinery Operations and Offshore Oilfields 

The refinery industry is currently facing a rather difficult situation, typically charac- 
terized by decreasing profit margins, due to surplus refinery capacity, and increasing 
oil prices. Simultaneous market competition and stringent environmental regula- 
tions are forcing the industry to perform extensive modifications in its operations. As 
a result there is no refinery nowadays that does not use advanced process engineer- 
ing tools to improve its business performance. Such tools range from advanced pro- 
cess control to long-range planning, passing through process optimization, schedul- 
ing and short-term planning. Despite their widespread use and the existence of 
quasi-standard technologies for these applications, their degree of commercial matu- 
rity varies greatly and there are many unresolved problems concerning their use. 
Moro (2003) presents a comprehensive discussion on current approaches to solving 
these problems and proposes directions for future development in this area. 

Traditionally, planning and scheduling decisions in refinery plants have been 
addressed using LP techniques and several tools exist such as the Integrated System 
for Production Planning (SIPP) and the Refinery and Petrochemical Modelling Sys- 
tem (RPMS). An excellent review has recently been presented by Pinto et al. (2000). 
These tools allow the development of general production plans of the whole refinery. 
As pointed out by Pelham and Pharris (1996), the planning technology in the refin- 
ery operations can be considered well-developed and the margins for further 
improvement are very tight. The major advances in this area should be expected in 
the form of more detailed and accurate modeling of the underlying processes, nota- 
bly through the use of nonlinear programming (NLP) as illustrated by Moro et al. 
(1998) using a real-world application. Ballintjin (1993) compared continuous and 
mixed-integer linear formulations and emphasized the low applicability of models 
based solely on continuous variables. 

In the literature, the first mathematical programming (MP) approaches utilizing 
advances in mixed-integer optimization are focused on specific applications such as 
gasoline blending (Rigby et al. 1995) and crude oil unloading. Shah (1996) presented 
a MP approach for scheduling the crude oil supply to a refinery, whereas Lee et al. 
(1996) developed a MILP model for short-term refinery scheduling of crude oil 
unloading with optimal inventory management decisions. Gothe-Lundgren (2002) 
proposed a planning and scheduling model which seems to be limited to the specific 
industrial problem to which it has been applied, whereas Jia and Ierapetritou (2004) 
addressed the optimal operation of gasoline blending and distribution, the transfer 
to product stock tanks and the delivery schedule to satisfy all of the orders. 

Recent work by Pinto et al. (2000) is a key contribution in this area. A nonlinear 
planning model for refinery production was developed that is able to represent a gen- 
eral refinery topology. The model relies on a general representation for refinery pro- 
cessing units in which nonlinear equations are considered. The unit modes are com- 
posed of blending relations and process equations. Certain constraints are imposed 
to ensure product specifications, maximum and minimum unit feed flow rates, and 
limits on operating variables. Real-world industrial case studies for the planning of 
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diesel production were used to illustrate the applicability and usefulness of the over- 
all approach. In the second part of their work scheduling problems in oil refineries 
were studied in detail. Discrete time representations were employed to model sched- 
uling decisions in important areas of the refinery such as crude oil inventory man- 
agement and fuel oil, asphalt, and liquefied petroleum gas (LPG) production. Several 
real-world refinery problems were presented and solved using the developed models. 

Based on the above work, Neiro and Pinto (2004) proposed a general mathematical 
framework for modeling petroleum supply chains. A set of crude oil suppliers, refin- 
eries that can be interconnected by intermediate and final product streams and a set 
of distribution centres form the basis for this work. 

The scheduling of well and facility operations is a very relevant problem in off- 
shore oil field development and represents a key subsystem of the petroleum supply- 
chain. The problem is characterized by long planning horizons (typically 10 years) 
and a large number of choices of platforms, wells, and fields and their interconnect- 
ing pipeline infrastructure. Resource constraints such as availability of the drilling 
rings make the requirement for proper scheduling more imperative to utilize 
resources efficiency. The sequencing of installation of well and production platforms 
is essential to ensure their availability before drilling wells. The operational design of 
the well and production platforms and the time of installation are critical, as they 
involve significant investment costs, these decisions must be optimized to maximize 
the return on investment. Thus, oil field development represents a complex and 
expensive undertaking in the oil industry. The process systems engineering commu- 
nity has recently made several key contributions in this area based on advances in 
mixed-integer optimization. Iyer et al. (1998) developed a multiperiod MILP formula- 
tion for the planning and scheduling of investments and operations in offshore oil 
field facilities. For a given time-horizon, the decision variables in their model are the 
choice of reservoir to develop, selection from among candidate well sites, and the 
well-drilling and platform installation planning, the capacities of well and production 
platforms and the fluid production rates from wells for each time period. The nonlin- 
ear reservoir behavior is handled with piecewise linear approximation functions. 

Van den Heever and Grossmann (2000) presented a mixed-integer nonlinear 
model for oilfield infrastructure that involves design and planning decisions. The 
nonlinear reservoir behavior is directly incorporated into the formulation. For the 
solution of this model an iterative aggregationjdisaggregation algorithm is proposed 
according to which time periods are aggregated for the design problem, and subse- 
quently disaggregated for the planning subproblem. Van den Heever et al. (2000) 
addressed the design and planning of offshore oilfield infrastructure focusing on 
business rules and complex economic objectives. A specialized heuristic algorithm 
that relies on the concept of Lagrangean decomposition was proposed by Van den 
Heever et al. (2001) for the efficient solution of this problem. Ierapetritou et al. 
(1999) studied the optimal location of vertical wells for a given reservoir property 
map. The problem is formulated as a large-scale MILP and solved by a decomposi- 
tion technique that relies on quality cut constraints. Kosmidis et al. (2002) described 
a MILP formulation for the well allocation and operation of integrated gas-oil sys- 
tems, whereas Barnes et al. (2002) focused on the production design of offshore plat- 
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forms. Kosmidis (2003) presented a MINLP model for the daily well-scheduling, 
where the nonlinear reservoir behavior, the multiphase flow in the well, and con- 
straints from the surface facilities are simultaneously considered. An efficient 
solution strategy is also proposed. Lin and Floudas (2003) presented a continuous- 
time modeling and optimization approach for the long-term planning problem for 
integrated gas-field development. They proposed a two-level formulation and solu- 
tion framework taking into account complicated economic calculations. I.E. Goel, 
V. Grossmann Comput. Chem. Eng. 28 (2004), 1409 considered the optimal invest- 
ment and operational planning of gas-field development under uncertainty in gas 
reserves. A novel stochastic programming model that incorporates the decision- 
dependence of the scenario was presented. Aseeri et al. (2004) discussed the finan- 
cial risk management in the planning and scheduling of offshore oil infrastructures. 
They added budgeting constraints to the model of Iyer et al. (1998) by following the 
cash flow of the project, taking care of the distribution of proceeds and considering 
the possibility of taking loans. 

I 

1.2.6 
The Campaign Planning Problem 

The campaign planning problem has received rather limited attention in the past 20 
years, yet it is considered a key problem in chemical batch production. If reliable 
long-term demand predictions are available, it is often preferable to partition the 
planning horizon into a smaller number of relatively long periods of time (“cam- 
paigns”), each dedicated to the production of single product. The campaign mode of 
operations may result in important benefits such as minimizing the number and 
costs of changeovers when switching production from one product to another. The 
complexity of management and control of the plant operation is further reduced by 
operating the plant in a more regular fashion, such as in a cyclic mode within each 
campaign, with the same pattern of operations being repeated at a constant fre- 
quency. Typical campaign lengths are from weeks to several months, with cycle 
times ranging from a few hours to a few days. The campaign mode of operations is 
often used for the manufacture of “generic” materials (e.g., base pharmaceuticals) 
which are produced in relatively large amounts and are then used as feedstocks for 
downstream processes producing various more specialized final products (Papageor- 
giou 1994, Grunow, et al. 2002). 

Mauderli and Rippin (1979) studied the combined production planning and sched- 
uling problem, developing a hierarchical procedure suitable for serial processing net- 
works operated in a zero-wait mode. First, they consider each product individually, 
generating alternative production lines of a single product by assembling the avail- 
able processing equipment in groups in order to achieve maximum path capacity. A 
LP-based screening procedure is used to determine a set of dominant campaigns. 
Finally, the production plan is generated by solving a LP or MILP problem, allocating 
the available production time to the various dominant campaigns for a given set of 
production requirements. 
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The generation of alternative production lines in the Mauderli and Rippin (1979) 
algorithm is based on an exhaustive enumeration procedure. A more efficient gener- 
ation procedure is described by Wellons and Reklaitis (1989a), who formulated the 
optimal scheduling of a single-product production line as a MINLP model. However, 
this approach has several limitations, including high degeneracy, as many path 
assignments result in equivalent schedules. The elimination of this degeneracy was 
considered by Wellons and Reklaitis (1989b) who identified a set of dominant unique 
path sequences and hence improved the solution efficiency of the original formula- 
tion. A further improvement from the single-product production line scheduling to 
the single-product campaign formulation problem has been presented by Wellons 
and Reklaitis (1991a), including the automatic assignment of different equipment 
items to groups, and also the assignment of these groups to production stages. This 
work was extended by Wellons and Reklaitis (1991b) to the multiproduct campaign 
formulation problem for multipurpose batch plants. Finally, a multiperiod planning 
model is proposed, allocating the production time among the dominant campaigns 
while considering simultaneously profit from sales, changeover, inventory costs and 
campaign set-ups. 

Papageorgiou and Pantelides (1993) presented a hierarchical approach attempting 
to exploit the inherent flexibility of multipurpose plants by removing various restric- 
tions regarding the intermediate storage policies between successive processing 
steps, the utilization of multiple equipment items in parallel and also the use of the 
same item of equipment for more than one task within the same campaign. A three- 
step procedure was proposed. First, a feasible solution to the campaign planning 
problem is obtained to determine the number of campaigns and the active parts of 
the original processing network involved within each campaign. Secondly, the pro- 
duction rate in each campaign is improved by removing some assumptions and 
applying the cyclic scheduling algorithm of Shah et al. (1993). Finally, the timing of 
the campaigns is revised to take advantage of the improved production rates. An 
interesting feature of this approach is that any existing campaign planning algorithm 
can be used for its first step. However, this approach relies on several restricted 
assumptions, including limited flexibility in the utilization of processing equipment 
and limited operating modes, while multiple production routes or material recycles 
are not taken into account. 

The algorithms described above are hierarchical in nature, and therefore relatively 
easy to implement given the reduction in the size of the problem solved at each step. 
On the other hand it is difficult to relate the exact objective for each individual step 
in the hierarchy to the overall campaign and planning objective function, and there- 
fore it is very difficult to assess the quality of the final solution obtained. 

Shah and Pantelides (1991) proposed a single-level mathematical (MILP) formula- 
tion for the simultaneous campaign formation and planning problem. Their algo- 
rithm simultaneously determines the number and the length of the campaigns and 
the products and/or stable intermediates manufactured within each campaign. They 
consider serial processing networks operating in a mixed Zero-Wait/Unlimited 
Intermediate Storage (ZW/UIS) mode, and nonidentical parallel equipment items 
operating in phase. 
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Voudouris and Grossmann (1993) extended the work originally presented by Bire- 
war and Grossmann (1989a,b, 1990) to campaign planning problems for multiprod- 
uct plants. They introduced cyclic scheduling, location and sizing of intermediate 
storage, and inventory considerations along with novel linearization schemes trans- 
forming the resulting MINLP formulation. 

Tsiroukis et al. (1993) considered the optimal operation of multipurpose plants 
operating in campaign mode to fulfil outstanding orders. Resource constraints are 
explicitly taken into account while the limited availability of resource levels affects 
the operation of the plant. To deal with the complexity, nonconvexity and nonlinear- 
ity of the MINLP formulation, more efficient formulations along with a problem- 
specific two-level decomposition strategy were proposed. 

Papageorgiou and Pantelides (199Ga) presented a general MP formulation for mul- 
tiple campaigns planning/scheduling of multipurpose batch/semicontinuous plants. 
In contrast to hierarchical approaches presented above, a single-level formulation was 
developed, encompassing both overall planning considerations pertaining to the 
campaign structure and scheduling constraints describing the detailed operating of 
the plant during each campaign. The problem involves the simultaneous determina- 
tion of the campaigns (i.e., duration and constituent products) and for every cam- 
paign the unit-task allocations, the tasks’ timings and the flow of material through 
the plant. A cyclic operating schedule is repeated at a fxed frequency within each 
campaign, thus significantly simplifying the management and control of the plant 
operation. A rigorous decomposition approach to the solution of this problem is pre- 
sented by Papageorgiou and Pantelides (199Gb) and its effectiveness was demon- 
strated by applying it to a number of examples. Ways in which the special structure 
of the constituent mathematical models of the decomposition scheme can be 
exploited to reduce the size and associated integrality gaps are also considered. 

1.3 
Planning for New Product Development 

Pharmaceutical industries are undergoing major changes to cope with the new chal- 
lenges of the modern economy. The internationalization of the business, the diver- 
sity and complexity of new drugs, and the diminishing protection provided by pat- 
ents are some of the factors driving these challenges. Market pressures are also forc- 
ing pharmaceutical industries to take a more holistic view of their product portfolio. 
The typical life cycles of new drugs are becoming shorter making it harder to recover 
the investments, especially with the expiry of short-life patents and the arrival of 
generic substitutes that can later appear in the market, reducing its profitability. It 
becomes necessary that the industry protects itself against these pressures while con- 
sidering the limited physical and financial resources available. Several important 
issues and strategies for the solution of problems concerning pharmaceutical supply- 
chains are critically reviewed by Shah, (2004). 

A large number of candidate new products in the agricultural and pharmaceutical 
industry must undergo a set of steps related to safety, efficacy, and environmental 
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impact prior to commercialization. If a product fails any of the tests then all the 
remaining work of that product is halted and the investment in the previous tests is 
wasted. Depending on the nature of the products, testing may last up to 10 years and 
the problem of scheduling of tests should be made with the goal of minimizing the 
time-to-market and the expected cost of the testing. Another important challenge 
that the pharmaceutical and agrochemical industry faces today is how, then, to con- 
figure its product portfolio in order to obtain the highest possible profit, including 
any capacity investments, in a rapid and reliable way. These decisions have to be 
taken in the face of considerable uncertainty as demands, sales prices, outcomes of 
clinical tests, etc. may not turn out as expected. 

These problems have recently received attention from the process systems engi- 
neering community utilizing advances from the process planning and scheduling 
area. The first approach appeared in the literature by Schmidt and Grossmann 
(199G), who considered the problem of optimal sequencing of testing tasks for new 
product development, assuming that unlimited resources are available. For a product 
involving a set of testing tasks with given costs, durations and probabilities of suc- 
cess, these authors formulated a MILP model based on a continuous-time represen- 
tation to determine the sequence of those tasks. The objective of the model is to max- 
imize the expected net present value (NPV) associated with a product, while a special 
case considers the minimization of cost, subject to a time completion constraint. 
Even though there may be a number of new products under consideration, the 
assumption of unlimited resources allows the problem, with either of the two objec- 
tives, to be decomposed by each product. Extending this work, Jain and Grossmann 
(1999) developed an MILP model that performs the sequencing and scheduling of 
testing tasks for new product development under resources constraints. It was 
shown that it is critical to incorporate resource constraints along with the sequencing 
of testing tasks to obtain a globally optimal solution. Blau et al. (2000) developed a 
simulation model for risk management in the new product development process 
andsubramanian et al. (2001) proposed a simulation-based framework for the man- 
agement of the research and development (R&D) pipeline. The focus of these works, 
however, is the new products development processes and not the planning and 
design of manufacturing facilities. In most of these references it is assumed that 
there are no capacity limitations or that the production level of a new product is not 
affected by the production levels of other products. Furthermore, investments costs 
are not explicitly included in the calculation of the NPV of the projects. 

The problem of simultaneous new product development and planning of manu- 
facturing facilities has received rather limited attention. Papageorgiou et al. (2001) 
developed a novel optimization-based approach to selecting a product development 
and introduction strategy, as well as capacity planning and investment strategies. 
The overall problem is formulated as a MILP model that takes account of both the 
particular features of pharmaceutical active ingredient manufacturing and the global 
trading structures. Maravelias and Grossmann (2001) considered the simultaneous 
optimization of resource-constrained scheduling of testing tasks in new product 
development and design/planning of batch manufacturing facilities. A multiperiod 
MILP model was proposed that takes into account multiple tradeoffs and predicts 
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which products should be tested, the detailed test schedule that satisfy design deci- 
sions for the process network, and production profiles for the different scenarios 
defined by the various testing outcomes. A heuristic algorithm based on Lagrange 
decomposition was investigated for the solution of larger problem instances. Roger 
et al. (2002) have addressed a similar problem. 

In most of the above approaches it is assumed that the resources available for test- 
ing, such as laboratories and scientists, are constant throughout the testing horizon, 
and that all testing tasks have fured costs, duration and resources requirements. 
Another common assumption in all the above approaches is that the cost of one test 
does not depend on the amount of resources allocated to one test. However, as noted 
in the recent contribution by Maravelias and Grossmann (2004) a company may 
decide to hire more scientists or build more laboratories to handle more efficiently a 
great number of potential new products in the R&D pipeline. As another option the 
company may have to outsource the tests, often at a high cost. All these issues have 
been addressed by proposing a MILP model that is efficiently solved with a heuristic 
decomposition algorithm. 

In most of the above approaches uncertainty aspects have been neglected although 
clinical tests are highly uncertain in practice. The recent work by Gatica et al. (2003) 
explicitly considers uncertainty in clinical trial outcomes. A multistage, multiperiod 
stochastic problem was developed that was reformulated as a multiscenario MILP 
model. For this model, a performance measure that takes appropriate account of risk 
and potential returns has also been formulated. Levis and Papageorgiou (2004) 
extended the work of Papageorgiou et al. (2001) and proposed a two-stage multisce- 
nario MILP model determining both the product portfolio and the multisite capacity 
planning in the face of uncertain clinical outcomes, while taking into account the 
trading structure of the company. They proposed a novel hierarchical algorithm to 
reduce the computational effort needed for the solution of the resulting large-scale 
MILP models. 

1.4 
Tactical Planning 

Planning and scheduling is usually part of a company-wide logistics and supply- 
chain management platform. However, to distinguish between those topics, or even 
to distinguish further between planning and scheduling is often an artificial rather 
than a pragmatic approach. In reality, the borderline between all these areas is dif- 
fuse, due to the strong overlaps between scheduling and planning in production, dis- 
tribution or supply-chain management and strategic planning. 

Planning and scheduling considerations are very closely related and often con- 
fused. The most common distinction between the two concepts is based on the time 
horizon they consider. While scheduling considers problems that may be of some 
hours to a few weeks, planning problems may consider time horizons that are of a 
few weeks up to a few months, and in many applications can even be of years. Tacti- 
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cal planning aims to set the targets for the scheduling applications that will follow in 
order to determine the operational policy of the plant in the short term. Owing to its 
nature of involving longer time horizons, planning decisions are often subject to 
uncertainty that might arise from many sources. 

The planning operation in the process industry is focused on analyzing the supply- 
chain operations as they are defined by strategic planning (see Fig. 1.1). Competitive 
environment and technological advances have resulted in enterprise resource plan- 
ning (ERP) systems to be widely used within the process sector; they are considered 
to be software suites that help organizations to integrate their information flow and 
business processes (Abdinour-Helm et al. 2003). 
The fundamental benefits of ERP systems do not in fact come from their planning 
capabilities but rather from their abilities to process transactions efficiently and to 
provide organized structured data bases (Jacobs 2003). Planning and decision sup- 
port applications represent optional additions to this basic transactional, query and 
report capability. ERP has been designed to supersede the earlier concepts of mate- 
rial requirement planning (MRP) and manufacturing resource planning (MRP-11) 
that were designed to assist planners at a local level, by linking various pieces of 
information, especially in manufacturing. The advantage of a successful ERP imple- 
mentation is the integration between different levels of the enterprise, such as finan- 
cial, controlling, project management, human resources, plant maintenance and 
material flow logistics (Mandal and Gunasekaran 2003). The planning functions at a 
tactical level benefit from the existence in-place of an ERP system; the two systems 
do not replace each other but their relationship can be described as complementary. 
ERP systems play the role of an information highway that connects all planning lev- 
els and links various decision support systems to the same data. 

MRP systems were designed to work backwards from the sales orders to deter- 
mine the raw material required for production (Orlicky 1975). MRP-I1 was intro- 
duced as a follow-up to resolve obvious operational problems usually associated with 
the absence of capacity considerations from MRP that resulted in poor schedules 
(Wight 1984). The weakness of both approaches is that they were targeting and devel- 
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oped for the manufacturing environment, and very often ignored the complexities of 
the process world. ERP on the other hand, is not limited only to manufacturing com- 
panies, but is useful for any company with the need to integrate their information 
across many functional areas. 

Planning in the process industry is used to create production, distribution, order 
satisfaction and inventory plans, based on the information that can be extracted from 
ERP systems, while satisfying several constraints. In particular, operational plans 
have to be determined that are aimed to set targets for future production, plan the 
distribution of materials and allocate other related activities according to the busi- 
ness expectations. Business expectations are the product of strategic resource plan- 
ning. A successful strategic resource planning, which can be performed either by 
activity-based cost (ABC), MP, resource-based view (RBV), or a combined approach, 
is sent to the ERP (Shapiro 1999). It is common practice that, based on these tactical 
plans, detailed schedules may be produced that define the exact sequence of opera- 
tions, and determine the utilization of the available resources. Tactical planning is 
called on to address a number of decisions: the manufacturing policy (what shall we 
make?), the procurement policy (what do we need?), the inventory or stock policy 
(what stock already exists?), the resources utilization policy (what do I need to make 
it?). 

Tactical planning supports different short- to medium-term objectives for the busi- 
ness by using different objective functions. By using different objective functions we 
can create several operational plans to support the various strategic supply-chain 
decisions. Its differentiation from other planning approaches is that it requires a 
more detailed representation of the resources in a system. These resources are tied 
with a number of constraints that might need to be satisfied. 

A common approach to tactical planning in the process industry is to describe the 
problem using a MP model, and then to optimize towards a desired objective. The 
objective can be maximization of profit, customer order satisfaction, minimization of 
cost, minimization of tardiness, minimization of common resource utilization, etc. 
The production environment is a rather complex network and most standard heuris- 
tic production planning tools fail to address this complexity. This situation gave rise 
to the idea of employing MP-based models to provide planning systems with a 
higher degree of flexibility by considering both product demands as a function of the 
marketing and sales departments of an organization, and the plant capacity in terms 
of equipment, material, manpower and utility resources. The problem has been 
modeled using a number of approaches. 

Bassett et al. (1996b) proposed a higher level planning model based on formal 
aggregation techniques and using uniform time discretization. The model contains 
aggregate material balance constraints and equipment allocation constraints similar 
to those of the state-task network (STN) description of a process. This planning 
model forms part of a decomposition strategy where production is allocated to differ- 
ent time zones, thus creating a set of scheduling problems that can then be solved 
independently. 

Wilkinson (1995) presented a generic mathematical technique to derive aggregate 
planning models of high accuracy based on the resource-task network (RTN) repre- 



7.5 Resource Planning in the Power Market and Construction Projects I 465 

sentation. The proposed formulations allow a large number of the complicating fea- 
tures of multipurpose, multiproduct plant operation to be taken into account in a 
unified manner. Sequence-dependent changeovers, task utility requirements and 
limited intermediate storage are some of the additional features included. Also the 
use of linking variables allows the planning model to take into account inventory lev- 
els more accurately. 

These two formulations are fairly generic and include most of the important fea- 
tures regarding the planning in process industries where fixed recipes are employed. 
Prior to them, most of the planning models contained complicated sets of con- 
straints which had been tailored to a specific problem type. 

1.5 
Resource Planning in the Power Market and Construction Projects 

The area of resources planning in the energy and power market and construction 
projects is worthy of a review in its own right; it will be considered somewhat briefly 
here, mainly due to its strong similarities with the process planning problem. 

1.5.1 
Resource Planning in the Power Market 

In a traditional electric power system, a utility company is responsible for generating 
and delivering power to its industrial, commercial and residential customers in its 
service area. It owns generation facilities and transmission and distribution net- 
works, and obtains necessary information for the economical and reliable operation 
of its system. For instance, an important problem faced daily by a traditional utility 
company is to determine which and when generating units should be committed, 
and how they should be dispatched to meet the system-wide demand and reserve 
requirements. The centralized resource planning problem involves discrete states 
(e.g., on/off of units) and continuous variables (e.g., units’ generation levels), with 
the objective being to minimize the total generation costs. A 1 % reduction in costs 
can result in more than US$10 million dollars savings per year for a large utility 
company. Various methods have been presented in the literature and impressive 
results have been obtained (Wang et al. 1995, Guan et al. 1997, Li et al. 1997). 

Today, the deregulation and reconstruction of the electric power industry world- 
wide have raised many challenging issues for the economic and reliable operation of 
electric power systems. Traditional unit commitment of hydrothermal scheduling/ 
planning problems are integrated with resource bidding, and the development of 
optimization-based bidding strategies is a preliminary stage. Ordinal optimization 
approaches seek “good enough” binding strategies with high probabilities, and will 
turn out to be effective in handling market uncertainties with much reduced compu- 
tational cost. Under this new structure, resource planning is intertwined with bid- 
ding in the market, and power suppliers and system operators are facing a new spec- 
trum of issues and challenges (Guan and Luh 1999). 
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Many approaches have been presented in the literature to address resources plan- 
ning in the deregulated power markets. In this context, modeling and solving the bid 
selection problem has recently received significant attention. In Hao et al. (1998), 
bids are selected to minimize the total system cost, and the energy clearing price is 
determining as the highest accepted price for each hour. In Alvey et al. (1998), a bid 
clearing system in New Zealand is presented. Detailed models are used, including 
network constraints, reserve constraints, and ramp-rate constraints, and LP is used 
to solve the problem. 

Another very popular way to model the bidding process is to model the competi- 
tors’ behavior as uncertainties. Therefore, the bidding problem can be converted to a 
stochastic optimization problem. One of the widely used approaches in stochastic 
optimization to address this problem is stochastic dynamic programming (Contaxis 
1990, Li et al. 1990). The basic idea is to extend the backward dynamic programming 
procedure by having probabilistic input and probabilities state transmissions in place 
of determining input and transitions and by using expected costs to calculate deter- 
ministic costs-to-go. The direct consequence is increased computational cost due to 
the significant increase in the input space and the number of possible transitions. 
For example, when stochastic dynamic programming is used to solve a hydrosched- 
uling problem with uncertain inflows, one more dimension is needed to consider 
probable inflows in addition to reservoir levels, which significantly worsens the 
dimension of the problem. Another approach is scenario analysis (Carpentier et al. 
1998, Takriti et al. 1996). Each scenario (or a possible realization of random events) 
is associated with a weight representing the probability of its occurrence. The objec- 
tive is to minimize the expected costs over all possible scenarios. Since the number 
of possible scenarios and consequently the computational requirements increase 
drastically as the number of uncertain factors and the number of possibilities per fac- 
tor increase, this approach can only handle problems with a limited number of 
uncertainties. Recently, stochastic dynamic programming has been embedded 
within the Lagrangean relaxation framework for energy scheduling problems, where 
stochastic dynamic programming is used to solve uncertain subproblems after 
system-wide coupling constraints are relaxed. Since dynamic programming for each 
subproblem can be effectively solved without encountering the curse of dimensional- 
ity, good schedules are obtained without a major increase in computational require- 
ments (Luh et al. 1999). 

Among alternatives that are being investigated for the generation of electricity are 
a number of unconventional sources including solar energy and wind energy. In 
recent decades photovoltaic (PV) energy found its first commercial use in space. In 
many parts of the globe, PV systems are being considered as a viable alternative for 
generating electricity. Achieving this goal requires PV systems to enter the utility 
market, whereby electric utilities evaluate the potentials of each PV system corre- 
sponding to its impact on the electric utility expansion planning, and requirements 
for backup generating capacity to ensure a reliable supply of electricity. Abdul- 
Rahman (1996) presented a model for the short-term resource scheduling in power 
systems. An augmented Lagrangean relaxation was used to overcome difficulties 
with the solution convergence as realistic constraints were introduced (i.e., transmis- 
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sion flows, fuel emissions, ramp-rate limits, etc.) in the formulation of unit commit- 
ment. Manvali et al. (1998) presented an efficient approach to short-term resource 
planning for an integrated thermal and PV battery generation. The proposed model 
incorporates battery storage for peak loads. Several constraints including battery 
capacity, minimum up/down time and ramp-rates for thermal units as well as natu- 
ral PV capacity are considered in the proposed model. 

1 S . 2  
Resource Planning in Construction Projects 

Traditionally, resource planning problems in construction projects have been solved 
either as resources-leveling or as a resource-constrained scheduling problem. The 
resources-constrained scheduling problem constitutes one of the most challenging 
facing the construction industry, due to the limited availability of skilled labor, and 
the increasing need for productivity and cost-effectiveness. These challenges have 
been discussed by many practitioners and have led researchers to investigate various 
avenues. One of the most promising solutions to the problem of the shortage of 
skilled labor has been to develop methods that optimize or better utilize the skilled 
workers already in the industry (Burleson et al. 1998). The resource-leveling problem 
arises when there are sufficient resources available and it is necessary to reduce the 
fluctuations in the resource usage over the project duration. These resource fluctua- 
tions are undesirable because they often require a short-term hiring and firing pol- 
icy. The short-term hiring and firing presents labor, utilization, and financial diffi- 
culties because (a) the clerical costs for employee processing are increased, (b) top- 
notch journeymen are reluctant to join a company with a reputation of doing this 
and (c) new, less experienced employees require long periods of training. The sched- 
uling objective of the resource-leveling problem is to make the resource require- 
ments as uniform as possible or to make them match a particular nonuniform 
resource distribution in order to meet the needs of a given project. Resource usage 
usually varies over the project duration because different types of resources are 
needed in varying amounts over the life of the project. In construction projects, for 
example, operators are needed in the beginning of the project to dig the foundations, 
but they are not needed at the end of the project for the interior finish work. In 
resource-leveling, the project duration of the original critical path remains 
unchanged. 

MILP models have been used to formulate the resource-constrained scheduling 
problem (Nutdtasomboon and Randhawa 1996). The efficiency of these models usu- 
ally decreases due to the high combinatorial nature of the problem, and special algo- 
rithms have been developed as an attempt to reduce computational costs and 
improve the quality of the solution. Most of these algorithms rely on special branch- 
and-bound and implicit enumeration approaches (Sung and Lim 1996, Demeule- 
meester and Herroelen 1997). An alternative approach to improving the computa- 
tional efficiency is the use of heuristic methods that produce feasible, but not neces- 
sarily optimal, solutions (Padilla and Carr 1991, Seibert and Evans 1991). 
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Savin et al. (1998) presented a neural network application for construction 
resource-leveling using an augmented Lagrangian multiplier. The formulation objec- 
tive is to make the resource requirements as uniform as possible. Thus, the formula- 
tion does not consider the case of nonuniform resource usage. Also, it only allows for 
one precedence relationship (finish-start) and one resource type, and does not per- 
form cost optimization. 

Chan et al. (1996) proposed a resource scheduling method based on genetic algo- 
rithms (GAS). The method considers both resource-leveling and resource- 
constrained scheduling. It can minimize the project duration, but it does not con- 
sider the case of nonuniform resource usage, neither does it minimize the construc- 
tion cost. Adeli and Karim (1997) presented a general mathematical formulation for 
project scheduling. Multiple crew strategies, work continuity considerations, and the 
effect of varying job conditions on the crew performance could be modeled. They 
developed an optimization framework for minimizing the direct construction cost. 
However, the resource-leveling and resource-constrained scheduling problems were 
not addressed. Recently, Senousi and Adeli (2001) presented a new formulation 
including project scheduling characteristics such as precedence relationships, multi- 
ple crew strategies, and time-cost tradeoff. The formulation can handle minimiza- 
tion of the total construction cost or duration while resource-leveling and resource- 
constrained scheduling are performed simultaneously. 

An important problem that has received rather limited attention in the literature is 
related to the optimal allocation of multiskilled labor resources in construction pro- 
jects. This strategy is commonly found in the manufacturing and process industries 
where some of the labor force is trained to be multiskilled. Various studies have 
demonstrated the benefits of multiskilled resources. Nilikari (1995) presented a 
study involving Finnish shipbuilding facilities, based on a multiskilled work team 
strategy and found savings of up to SO % in production time. 

Burleson et al. (1998) explored several multiskill strategies such as a dual-skill 
strategy, a four-skill strategy and an unlimited-skill strategy. The study compared the 
economic benefits in a huge construction project to prove the benefits of multiskill- 
ing but did not develop a mechanism for selecting the best strategy for a given pro- 
ject. The work of Brusco and Johns (1998) presented an integer goal-programming 
model for investigating cross-training multiskilled resource policies to determine the 
number of employees in each skill category so as to satisfy the demand for labor 
while minimizing staff costs. The model was applied to the maintenance operations 
of a large paper mill in the USA. Hegazy et al. (2000) presented an approach for mod- 
ifying existing resource scheduling heuristics that deal with limited resources, to 
incorporate the multiskills of available labor and accordingly to improve the sched- 
ule. The performance of the proposed approach was demonstrated using a case study 
and the solution is compared with that of a high-end software system that considers 
multiskilled resources. 
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1.6 
Solution Approaches to the Planning Problem 

Most of the planning problems in the process industry result in an LP/MILP or NLP/ 
MINLP model. Planning problems are usually NP-hard and data-driven; no standard 
solution techniques are therefore available, and in many cases we are actually search- 
ing for a feasible solution to the problem rather than an optimal one. The solution 
approaches found in the literature may be categorized as: 

0 exact and deterministic methods such as mathematical optimization including MILP 
and MINLP, graph theory (GT) or constraint programming (CP), or hybrid 
approaches in which MILP and CP are integrated; 

0 rnetaheuristics (evolutionary strategies, tabu search, simulated annealing (SA), vari- 
ous decomposition schemes, etc.). 

In this section we are going to focus on general solution approaches applied to plan- 
ning problems, in addition to those that are mentioned in other sections and are 
problem-dependent. We are not going to describe extensively how these methods 
have been employed by a variety of authors, but we are going to describe the algo- 
rithms and the classes of problem to which they have been applied. Despite the 
extensive research work that exists for the solution of long-term planning and short- 
term scheduling problems, the interest in medium-term planning problem is lim- 
ited. While the benefits of integrating tactical planning into strategic planning and 
production scheduling are becoming clear, interest in research into more effective 
methods has increased. Applequist et al. (1997) provide an excellent review on plan- 
ning technology and the approaches available for solving planning and scheduling 
problems. Despite substantial efforts over the last 40 years, no algorithm, either exact 
or heuristic, has been found that can provide a solution to all planning problems. 

1.6.1 
Exact and Deterministic Methods 

In real life applications we rarely see any NLP/MINLP planning models, except in 
pooling or refinery planning. The rest of the models proposed, despite their complex- 
ity, in term of features they include and mathematical terms, they remain or are 
transformed to be linear regarding their variables and constraints. Therefore, using 
state-of-the-art commercial solvers, such as, XPRESS-MP (Dash Optimization, 
http://www.dashoptimization.com<urle>), CPLEX (ILOG, http://www.ilog.com), or 
OSL (IBM, http://www.ibm.com), LP/MILP problems can be solved efficiently and 
at a reasonable computational cost. 

In the case of NLP/MINLP, the solution efficiency depends strongly on the indi- 
vidual problem and the model formulation. Thus, in many cases the structure of the 
problem is exploited in order to provide valid cuts, or identify special structures in 
order to reduce computational times and increase the quality of the solution. 
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However, as both MILP and MINLP are NP-hard problems, it is recommended 
that the full mathematical structure of a problem to be exploited. Software packages 
may also differ with respect to their ability in presolving techniques, default strate- 
gies for the branch-and-bound algorithm, cut generation within the branch-and-cut 
algorithm, and last but not least, diagnosing and tracing infeasibilities, which is an 
important issue in practice. Kallrath (2000) provides an extensive review of mixed- 
integer optimization in the process industry by describing solution methods, algo- 
rithms, and applications. 

Taking advantage of the special structure of mathematically formulated problems 
either as MILPs or MINLPs, several decomposition methods have been proposed 
and implemented in various types of problems. 

Bassett et al. (199Ga), focusing on chemical process industries, examined a num- 
ber of time-based decomposition approaches along with their associated strengths 
and weaknesses. It is shown that the most promising of the approaches utilizes a 
reverse rolling window in conjunction with a disaggregation heuristic, applied to an 
aggregate production plan as part of their approach to integrate hierarchically related 
decisions. Resource- and task-based decompositions are also examined as possible 
approaches to reduce the problem to manageable proportions. To validate their pro- 
posed schemes a number of examples are presented. 

Gupta, A. Maranas, C. D. Ind. Eng. chem. Res. 38 (1999) 1937 utilized an efficient 
decomposition procedure to solve mid-term planning problems based on Lagran- 
gean relaxation. Having tried commercial MILP solvers, they found that the 
employed solution strategy is more efficient. The basic idea of the proposed solution 
technique is the successive partitioning of the original problem into smaller, more 
computationally tractable subproblems by hierarchical relaxation of key complicating 
constraints. Alongside with the hierarchical Lagrangean relaxation they employ a 
heuristic algorithm to obtain valid upper bounds. Two examples are used to demon- 
strate the capabilities of the proposed algorithm. 

The size of the actual planning problem may be prohibitive for standard commer- 
cial solvers. Therefore, rigorous decomposition techniques that benefit from the spe- 
cial structure of MILP problems is exploited. Dimitriadis (2001), identified that 
block-diagonal MILP problems may be decomposed to simpler ones and introduced 
the concept of decomposable MILP (D-MILP). An algorithm based on the idea of 
“key variables”, which break the problem down into a number of smaller partial 
MILPs that can be solved independently and in parallel, was implemented based on 
a standard branch-and-bound scheme. The decomposition branch-and-bound (dBB) 
as the algorithm is called, achieves better performance by obtaining quick upper 
bounds to the problem and assisting the solver to find an optimal solution within 
reasonable computational time. One of the advantages of the approach is that is can 
guarantee the optimality of the solution. Tsiakis et al. (2000) improved the algorithm 
by providing an automated method to decompose the problem and implementing a 
more generic solution scheme applicable to all MILP problems that have a similar 
structure. 

I 
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1.6.2 
Metaheuristics 

In addition to the so called optimization methods we have techniques described as 
heuristics. These techniques differ in the sense that cannot guarantee an optimal 
solution; instead they aim to find reasonably good solutions in a relatively short time. 
Heuristics tend to be fairly generic and easily adaptable to a large variety of planning 
problems. There are a number of heuristic general-purpose approaches that can be 
applied to planning and scheduling problems (Pinedo 2003). 

SA and tabu searchare described as improvement algorithms. Algorithms of the 
improvement type are conceptually completely different from the constructive type 
algorithms. The algorithm starts by obtaining a complete plan that can be selected 
arbitrarily, and then tries to obtain a better plan by manipulating the current solu- 
tion. The procedure is described as local search. A local search procedure does not 
guarantee an optimal solution, but aims to obtain a better solution in the neighbor- 
hood of the current one. They very often employ a probabilistic acceptance-rejection 
criterion with the hope it will lead to better solution. Reeves (1995) describes exten- 
sively the methods and applications in production planning systems. 

GAsare more general than SA and tabu search and they can be classified as a gen- 
eralization of the previously mentioned techniques. In this case a number of feasible 
solutions are initially found. Then, local search based on an evolution criterion is 
employed to select the most promising solution for further exploitation. The rest of 
the solutions are fathomed (Reeves 1995). 

Heuristics are widely employed in industry to provide solutions to production 
planning problems. Stockton and Quinn (1995) describe how a GA based on aggre- 
gate planning techniques is used to develop a production plan that allows a strategic 
business objective to be implemented in short- and mid-term operational plans. 

LeBlanc et al. (1999) utilize an extension of the multiresource generalized assign- 
ment problem (MRGAP) in order to provide an implementable solution to produc- 
tion planning problems. The model considers splitting of individual batches across 
multiple machines, while considering the effect of set-up times and set-up costs, fea- 
tures that the standard assignment problem (AP) fails to capture. The proposed for- 
mulations are solved using adaptations of a GA and SA. 

A multiobjective GA (MOGA) approach was employed by Morad and Zalzada 
(1999) for the planning of multiple machines, taking into account their processing 
capabilities and the process costs incurred. The formulation is based on multiobject- 
ive weighted-sums optimization, which is to minimize makespan, to minimize total 
rejects produced and to minimize the total cost of production. 

Tabu search is employed by Baykasoglu (2001) to solve multiobjective aggregate 
production planning (APP) problems based on a mathematically formulated prob- 
lem. The model by Masud and Hawng was selected as the basis due to its extensibil- 
ity characteristics. 
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1.7 
Software Tools for the Resource Planning Problem 

Enterprise resource planning (ERP) is a software-driven business management sys- 
tem which integrates all facets of the business, including planning, manufacturing, 
sales and marketing. Increasingly complex business environments require better 
and more accurate resource planning. Furthermore, management is under constant 
pressure to improve competitiveness by lowering operating costs and improving 
logistics, thus increasing the level of control within the operating environment. 
Organizations therefore have to be more responsive to the customer and competi- 
tion. Resource planning as a business solution aims to help the management by set- 
ting up better business practices and equipping them with the right information to 
take timely decisions. 

Production planning as a later business function is considered to be part of the 
supply-chain planning and scheduling suite, alongside other functions such as 
demand forecasting, supply-chain planning, production scheduling, distribution and 
transportation planning. Tactical production planning includes those software mod- 
ules responsible for production planning within a single manufacturing facility. These 
solutions normally address tactical activities, although they may also be used to sup- 
port both strategic and operational decisions and are very often integrated with them. 

1.7.1 
Enterprise Resource Planning 

A big share of the software and services provided worldwide is targeting the integra- 
tion of ERP and supply-chain operations. Most of the information needed by produc- 
tion planning software tools resides within ERP systems. Most of the ERP software 
providers already have developed their own fully integrated planning applications, 
have acquired smaller companies with production planning software or have been 
in partnership with such providers. The standard object-oriented approach to the 
implementation of ERP systems has contributed towards an easy integration. The 
leading suppliers and systems integrators to the worldwide ERP market across all 
industry sectors are alphabetically: Oracle (http://www.oracle.com), Manugistics 
(http://www.manugistics.com), Peoplesoft (http://www.peoplesoft.com), and SAP 
(http://www.sap.com) according to the latest market share studies. In small-medium 
enterprises (SMEs) the leading provider of ERP systems is Microsoft Business Solu- 
tions with its Navision system (http://www.microsoft.com/businessSolutions). 

1.7.2 
Production Planning 

Production planning deals in medium-range time horizons, where decisions about 
incremental adjustments to the capacity or customer service levels are made. 
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Changes to supplier delivery dates, swings in raw materials purchases, and outsourc- 
ing agreements may require 3-5 months. Thus, production planning deals with what 
will be done, and when, in a factory over longer time frames. Tactical plans are 
updated frequently based on the operational plan and the actual schedule. This sec- 
tion provides the profiles of production planning software suppliers with main focus 
on the process industry, again in alphabetical order. 

1.7.2.1 
Advanced Process Combinatorics (http://www.combination.com) 
The company’s modular supply-chain product VirtECS contains a module, called 
Scheduler, with production planning capability. The package handles complex pro- 
duction planning models with multiple input/output bills of material, multiple rout- 
ings, resource constraints and set-up times. Their algorithms used for production 
planning are based on a MILP formulation, with a number of techniques applied for 
their solution. Additionally, a set of Gantt-chart-based interactive tools provides the 
user with manipulating capabilities on the actual plan. A key strength of APC 
revolves around the research on optimization since the company was generated from 
an industrial research consortium at Purdue University. 

1.7.2.2 
Aspen Technologies (http://www.aspentech.com) 
Aspen Technology’s supply-chain capabilities are based largely on the company’s 
acquisition of the Process Industry Modelling Systems (PIMS) from Bechtel and 
Manager for Interactive Modelling Interfaces (MIMI) of Chesapeake Decision Sci- 
ences. Aspen PIMS is a tactical level refinery planning package that is widely used in 
over 170 refineries worldwide. The Aspen MIMI production planner is focused on 
models that include material flows, set-up times, labor constraints and other 
resource restrictions. In addition to the standard heuristics and simulation employed 
for production planning and scheduling, the advanced planning offers LP-based opti- 
mization capabilities. Users can interact with the Gantt chart in order to develop 
“what-if” analysis cases and add constraints. Aspen has one of the larger installed 
bases of MIMI products for over 300 customers around the globe. 

1.7.2.3 
i2 Technologies (http://www.iz.com) 
As part of its supply-chain platform, i2’s Factory Planner manages material and 
capacity constraints to develop feasible operating plans for production plants. The 
tool aims to be a decision support system in the areas of production planning and 
scheduling, taking into account material and capacity requirements. It utilizes a 
number of heuristic algorithms and basic optimization to obtain feasible plans, and 
to answer capable-to-promise delivery-date quoting. 
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1.7.2.4 
Manugistics (http://www.manugistics.com) 
Manufacturing Planning and Scheduling, integrated within the Constraint-Based 
Master Planning supply-chain system of Manugistics, provides the detailed opera- 
tional plan. It  is based on a flow-oriented model, and uses the theory of constraints 
to solve the production planning problems. It takes into account throughput of 
equipment, determines the bill of materials, and allows what-if scenario analysis. 

1.7.2.5 
Process System Enterprise (PSE) (http://www.psenterprise.com) 
PSE’s ModelEnterprise has been designed as a modular supply-chain modeling plat- 
form that allows the construction and maintenance of complex enterprise models, 
and supports a wide range of tools applied to these models for solving different types 
of problem. The Optimal Single Site Planner and Scheduler (OSS Planner Sched- 
uler) determines an optimal schedule for a plant producing multiple products. It is 
especially suited to multipurpose plant where products can be made on a selection of 
equipment units, via different routes and in different sizes. The plans produced are 
finite capacity and rigorously optimal. The objective of the optimization problem can 
be configured according to the economic requirements of the operation - for exam- 
ple, to deliver maximum profit, maximum output or on-time in-full. The OSS Plan- 
ner Scheduler uses state-of-the-art MILP optimization algorithms that allow complex 
systems to be modeled. Utilizing comprehensive costing all costs may be accounted 
such as processing, storage, utilities, cleaning, supplies and penalties for late deliv- 
ery. PSE originated at Imperial College, London, in the 1990s. and ModelEnterprise 
has been developed based on knowledge and research found there. 

1.7.2.6 
SAP AC (http://www.sap.com) 
The APO Production Planning and Detailed Scheduling (PP/DS) tool comes under 
the umbrella of SAP APO supply-chain solutions. The software can be used to gener- 
ate production plans and sequence schedules. A variety of approaches is included in 
this solution for theory of constraints and mathematical optimization, but in princi- 
ple it is a heuristics-based tool, where the user-developed rules are employed. Other 
features of the tool include forward and backwards scheduling, simultaneous capac- 
ity and material planning in detail, what-if analysis to simulate effects of changes in 
constraints, and interactive scheduling via a Gantt chart interface. 

1.8 
Conclusions 

The impact of accurate resource planning on the productivity and performance of 
both manufacturing and service organizations are tremendous. Researchers have 
found that organizations that had no resource planning information technology 
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infrastructure in place performed poorly most of the time compared to those who 
had a specific plan. The successful implementation of planning capabilities means 
reduction in cost, increased productivity and improved customer services. The 
importance of resource planning models and systems therefore becomes significant. 
Moreover, the solution to the problems associated with that poses further challenges. 

Despite many years of study in resource planning models, plus numerous exam- 
ples of successful modeling systems implementations and industrial applications, 
there is still a great potential for applying them in a pervasive and enduring manner 
to a wider range of real-life industrial applications. 

Several researchers have tackled the resource planning problem under uncertainty 
using different approaches. However, in most cases they have skirted around the 
problem of multiperiod, multiscenario planning with detailed production capacity 
models (i.e., embedding some scheduling information). Here, issues that must be 
addressed mainly relate to problem scale. Combined mixed-integer programming 
and stochastic optimization techniques seem to offer a promising solution alterna- 
tive to this problem. 

One of the major challenges will be to develop planning approaches that are con- 
sistent with detailed resource scheduling as part of the overall supply-chain integra- 
tion. An obvious drawback is the problem size. This poses the need for rigorous 
decomposition algorithms and techniques that will enable handling problems of 
greater size without compromising the quality of the solution. 

Over the last few years a trend has developed bringing MP and constrained pro- 
gramming techniques closer to each other. This results in hybrid approaches (i.e., in 
algorithms combining elements from both areas) that may have a great impact on 
reducing computational requirements for solving large-scale planning problems. 

In addition to new techniques and solution approaches, advances in computational 
power in terms of hardware and software allow the exploitation of parallel algorithm 
optimization techniques. The tree structure in mixed-integer optimization, and the 
time- or scenario-dependent structures, indicates that more benefits are to be 
expected from parallelizing the combinatorial part. Dealing with large-scale NP-hard 
problems may lead to the implementation of distributed planning, where the compu- 
tational effort and time is divided over a number of computers or clusters. Time- 
based or spatial decomposition methods will be exploited more and more. 

Resource planning is a fundamental business process that exists in every produc- 
tion environment. It has long been recognized that in the process industries there 
are very large financial incentives for planning, scheduling and control decisions to 
function in a coordinated fashion. Nevertheless, many companies have not achieved 
integration in spite of multiple initiatives. An important challenge thus relates to the 
development of efficient theoretical methodologies, algorithms and tools to achieve 
this integration in a formal way, allowing process industries to take steps to practi- 
cally improve the integration activities at different levels. 

The planning problem of refinery operations and offshore oilfields has been 
recently attacked by several researchers. However, the practical implementation of 
most of the developed approaches is usually limited to subsystems of a plant with 
considerable simplifications. Here, the trend is to expand the planning process to 
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include larger systems, such as a group of refineries instead of a single one. Another 
area that deserves further attention is the inclusion of scheduling decisions in plan- 
ning processes. Furthermore, there is a lot of scope for developing commercial tools 
to serve refineries to cope with daily operational problems. 

In the area of product planning, the integration of development management and 
capacity and production planning seems to be very important. Currently, capacity 
issues are often not considered at the development stage. The development of inte- 
grated models of the life cycle, from the discovery through to consumption would 
greatly facilitate strategic decision making. 

Demand for advanced planning systems (APS) is expected to grow with the solu- 
tions being increasingly industry- and supply-chain-specific. The standards are speci- 
fied by the large software suppliers, such as i2 and Manugistics. The scope for 
smaller suppliers is to have a more specific focus in segments of the industry. There 
is a clear trend for industry-specific solutions, this being due to the different operat- 
ing environments and the detail required in order to generate a meaningful plan. 
The development of resource planning systems very much depends on the industry 
segment (industrial or nonindustrial) and the manufacturing type (process or dis- 
crete industries). While segmentation based on the type of industry is common, it is 
important to be able to segment the operational environment based on the supply- 
chain type. In this case we have distribution, manufacturing or source intensive sup- 
ply chains, each one with their own needs. Many companies are competing as soft- 
ware providers for planning systems. However, they have realized that they need to 
be able to communicate with other libraries and software modules as part of supply- 
chain solutions, and at minimum cost. Systems with open architecture and ease of 
integration are in demand. Initiatives such as CAPE-OPEN aim to define industry- 
wide standards (CO-LaN 2001). 
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