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Multiscale Process Modeling 

/an T Cameron, Cordon D. Ingram, and Katalin M. Hangos 

6.1 
Introduction 

This chapter covers multiscale modeling by discussing the origins of such phenom- 
ena in process and product engineering as well as discussing the approaches to the 
modeling of systems that seek to capture multiscale phenomena. The chapter dis- 
cusses the development of the partial models that make up the multiscale model, 
particularly focusing on the characteristics of those models. The issue of partial 
model integration is also developed through the use of integrating frameworks. 
Those frameworks are analyzed to understand the important implications of model 
coupling and computational behavior. 

Throughout this chapter, reference is made to granulation processing, which helps 
illustrate the concepts and challenges in this important area. 

6.2 
Multiscale Nature of Process and Product Engineering 

6.2.1 
The Origin and Nature of  Multiscale Engineering Systems 

Multiscale systems, and hence their models, exist due to the phenomena they con- 
tain or seek to represent. This is due to the fact that thermodynamic behavior and 
rate processes undergird our main view of the scientific and engineering world. 

The underlying phenomena come into focus depending on the granularity of our 
perspective, which is influenced by the history of scientific investigation and, indeed, 
our own backgrounds. This perspective ultimately deals with length and time scales 
that can vary from atomic to global scales, or beyond. We can investigate time scales 
of nanoseconds to millennia, or length scales from nanometers to light-years, as seen 
in Villermaux (1996), who illustrated the typical scales dealt with in chemistry, 
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physics, chemical engineering and astronomy. Hence, we are presented with a spec- 
tmm of scales depending on where we wish to view the system under study. 

Our modeling efforts are simply a mapping of our understanding of these phe- 
nomena into a convenient mathematical or physical representation. The amount of 
scale-related information we incorporate into our models determines the multiscale 
degree of that representation. In some cases we can work on a single scale of time 
and/or length, or incorporate two, three or more scales within our models. This latter 
case is the area of multiscale modeling, which we address here. 

As evidenced by the literature on the subject of multiscale engineering systems, 
there has been an explosion in interest since the mid 1990s (Li and Kwauk 2003). 
Papers on this topic at the start of the 1990s were very few. By 2000 a ten-fold 
increase in publications occurred and it continues to grow at a phenomenal rate. It 
is an area of intense research driven mostly by applications in science and engineer- 
ing, especially materials science, mathematics and physics. Li and Kwauk (2003) and 
Glimm and Sharp (1997) provide examples from many disciplines. In fact, multi- 
scale models are often multidisciplinary. 

Within chemical engineering, the multiscale approach facilitates the discovery and 
manufacture of complex products. These may have rnultiscale product specijcations, 
that is, desired properties specified at different scales. Biotechnology, nanotechno- 
logy and particulate technology - in fact, product engineering in general - are driv- 
ing the interest in the multiscale approach (Charpentier 2002; Cussler and Wei 
2003). In addition, despite the continuing increase in computing power, there are 
problems of practical interest that will remain intractable when tackled by direct, 
“brute force” methods. Multiscale techniques provide a way of making these prob- 
lems feasible. There are a growing number of tools, methods and representations for 
engineering systems, yet little fundamental conceptual analysis leading to overall 
frameworks that help guide the modeling of multiscale systems. 

I 

6.2.2 
Length, Time, Other Scales and their Representation 

Because process engineering has its roots in physics and chemistry, the properties of 
models reflect the underlying time and length scales on which important phenom- 
ena occur. This can be from the quantum mechanical length scales of m with 
time scales of s to global scales of lo4 m and 10’ s and higher. At one extreme 
we are concerned about subatomic behavior, while the other extreme represents 
global processes that might have characteristic times of years or decades. 

Small scales are of significant interest in determining product properties whereas 
large-scale processes can be of interest to process engineers involved in areas such as 
climate change, environmental impact and supply chain management. 

Figure 6.1 shows a general scale map appropriate to process and product engineer- 
ing. It is an adaptation of work by Grossmann and Westerberg (2000). It is noticeable 
that there is a general relationship between length and time scales that reflects the 
time constants over which phenomena occur at different lengths of behavior. 
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Figure 6.1 A general scale map 

It is now widely appreciated that product quality is often determined at scales well 
below the scales applicable at the processing or macrolevel. Hence there is intense 
interest in micro- and nanoscale behavior in product design. 

For example, the development of granulation processes via drum or pan granula- 
tion is a multiscale operation, where final product quality is determined not only by 
the macroscale processing equipment level, but also at the microscale level of particle 
formation and interaction. A typical granulation circuit diagram is shown in Fig. 6.2, 
which highlights the principal operating equipment in the circuit. In this case, the 
circuit consists of the granulator where fine feed or recycle granules are contacted 
with a binder or reaction slurry. Growth occurs depending on a number of opera- 
tional and property factors. Drying, product separation and treatment of recycle 
material then occurs. For this application, Fig. 6.3 shows a scale map from Ingram 
and Cameron (2004, which considers the key phenomena as represented by length 
and time scales within the processes. The scales represent individual particles 
through to agglomerates and then onto processing equipment and finally the com- 
plete circuit. 

Besides the length and time scales, a detail scale could also be considered, which 
seeks to develop models with varying degrees of fidelity in relation to the real world 
phenomena. This form of scale can consider such issues as: 

0 The granularity of the system view in terms of number and types of balance vol- 
umes and the degree of aggregation that takes place. 

0 The number of key mechanisms related to flows, reaction, heat, mass and 
momentum transfers within the model and their inclusion or exclusion. Of partic- 
ular interest is the complexity and fidelity of the constitutive relations. These 
issues can have a significant impact on the validity region of the resultant process 
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Figure 6.2 Typical continuous granulation plant 
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Figure 6.3 Scale map for granulation processes 

or product models, as different relations such as equations of state or property mod- 
els are used. 
0 Species identification and representation using, for example, “lumped” represen- 

tations common in pseudo-component approaches to petroleum fractions. 

The detail scale complements the traditional time and length scales that are common 
in multiscale modeling. 
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We mention briefly some of the key issues in multiscale modeling before addressing 
some of those issues related to modeling and integration in Sections 6.3 and 6.4. 

The principal issues relate to: 

Scale identification and selection for a specific modeling goal: For any modeling 
task the issue of identifylng what scales are needed to be represented in the final 
model is an important consideration. As a first step, the literature contains a vari- 
ety of scale maps and diagrams that show the hierarchical organization in specific 
application areas (for examples Alkire and Verhoff 1994; Maroudas 2000). There 
are several approaches that are more fully elaborated upon in Section 6.3. How- 
ever, an understanding of the time scales of interest can often dictate the final 
scales of length and time that are needed in the model. 

0 Model representation: In what form does the model exist? This question is often 
answered by our understanding of the system under study and the phenomena we 
can identify. It is most often the case that grey-box models are used at several 
scales, because we often have some mechanistic understanding of the system phe- 
nomena. At the same time there are system parameters that are calculated via data 
fitting or, in some cases, are averaged values from another calculation at a lower 
scale. A spectrum of models exists from completely black box to mechanistic 
descriptions. 

0 Model integration: Model integration refers to linking the partial models that apply 
at a single scale into a composite, multiscale model. It still remains a challenging 
area and one where much is yet to be done to resolve this important issue. Section 
6.4 discusses a number of these issues, with reference to several application areas. 
A number of integration frameworks exist, which possess distinct characteristics 
of information flow between scales and hence computational and other properties. 

0 Model solution: Solution of multiscale systems remains another major challenge, 
especially where distinct model forms are present within the composite or multi- 
scale model. This is a huge area and beyond the scope of the present chapter. 
Some aspects are briefly discussed in Section 6.4.4.2. 

6.3 
Modeling in Multiscale Systems 

The general approach for developing a process model for multiscale systems is an 
extension of that for conventional, nonmultiscale process systems (Hangos and 
Cameron 2001 a). This approach, called the “seven-step modeling procedure”, 
included the following stages: 

1. model goal set definition (modeling problem specification); 
2. model conceptualization (identifylng controlling factors) ; 
3. modeling data: needs and sources; 
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4. model building and model analysis; 
5. model verification; 
6 .  model solution; 
7. model calibration and validation. 

Thus, this section focuses on the special elements of the extended general approach 
that make it applicable for modeling multiscale systems as well. 

Similar to the conventional case, the modeling problem specification consists of 
the definition of the process system with its boundaries, subsystems, components, 
mechanisms together with the description of the modeling goal. In the multiscale 
case the process system description as well as the modeling goal may call for a multi- 
scale model when there are order of magnitude differences in either length or time 
behavior between the system elements. A separate subsection below deals with the 
specialties of the modeling goal in modeling multiscale systems. 

An extended seven-step modeling procedure (Hangos and Cameron 2001a) can 
also be followed as a general approach in the multiscale case when some of the steps 
need special care and procedures that are described below. 

I 

6.3.1 
Multiscale Modeling Strategies 

Most often the need for developing a multiscale model arises in step 1 (Problem d e j -  
nition) or step 2 (Identifi) controlling factors) of the seven-step modeling procedure. 
Here, one usually identifies the necessary scales that become part of the problem 
definition. Thus, the first two steps should be repeated for each of the scales to 
develop individual modeling problem definitions and to identify the relevant control- 
ling factors. This way a set of scale-driven related submodels is created. 

Interest in system behavior over a long period of time (steady-state properties) 
often excludes phenomena, and hence scales, operating on a very fast timeframe. 
This eliminates the fast components of the system. In other cases such as modeling 
startup and shutdown performance of processes the intermediate time scales are of 
main interest. Here, some exclusion of slow and very fast components can be made 
(Robertson and Cameron 1997a,b). 

In addition, modeling decisions should be made on how to organize the in- 
formation flow between the partial models, that is, to determine the multiscale 
modeling framework (Ingram, Cameron and Hangos 2004) as discussed in Section 
6.4. 

Having formulated the modeling problems for each of the partial models, identi- 
fied the controlling factors and reviewed the data available, we can turn to construct- 
ing the model in step 4 of the seven-step modeling procedure. There are two funda- 
mentally different approaches to doing this: the bottom-up and the top-down 
approaches. As their name suggests, bottom-up approaches start with constructing 
the partial model in the finest resolution scale and proceed towards the coarser 
scales. Alternatively, top-down approaches start with the coarsest scale partial model 
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and refine its elements using finer scale submodels if necessary. Two other 
approaches have also been suggested in the literature. A simultaneous approach, 
which has been used industrially in the context of new product design (Lerou and Ng 
1996), involves developing models at each scale of interest at the same time, and then 
linking them together. Middle-out modeling is the method of choice in some multi- 
scale biological applications (Noble 2002). It refers to building up a model by starting 
with the scale that is best understood and has the most data, and then working “out- 
wards” (to finer and coarser scales) from that. 

In the following, the key elements of the extended modeling procedure, the devel- 
opment and role of the multiscale modeling goal set, and the specialties of the top- 
down and bottom-up strategies of model construction will be described in more 
detail. 

6.3.1.1 
The Role of the Modeling Goal 
Any process model is developed for a specific use or possibly multiple uses. These 
uses influence the goals that the model must fulfill. It is, however, important to rec- 
ognize that modeling goals normally change, are refined, deleted or added as the 
modeling cycle proceeds. This is clearly seen in the modeling process of multiscale 
systems, where the original modeling goal might indicate the use of a multiscale 
approach and then the modeling goal set of any partial model is established and 
refined incrementally as the modeling proceeds. 

Overall Modeling Goal 
The modeling goal is typically a statement with three major components: 

0 the need to develop a model in some relevant form; 
0 an application of the model for a given purpose; 
0 a reality that is being modeled. 

These three aspects can in turn be decomposed into lower level goals that are applica- 
ble to the partial models. This can be seen in the overall modeling goals such as: 
“Develop a model for evaluating control options for chemical vapor deposition (CVD) 
of...”. 

The overall modeling goal will determine the number and hierarchy of the scales 
and their integration framework. Multiscale models are needed if the process system 
has controlling factors or mechanisms with very different scales covering several 
orders of magnitude. The modeling goal or the requested modeling accuracy might 
require partial models of finer granularity. A goal might include inputs and outputs 
at different scales, e.g., in CVD, where reactor operating conditions (macro) might be 
achieved such that film microstructure has acceptable smoothness (micro) or simply 
feasibility. Alternatively, the modeling feasibility can dictate partial model inclusion. 

An example of such a case can be a dynamic modeling problem of an industrial 
granulator drum for fault detection and diagnosis purposes. Figure 6.4 shows some 
multiscale aspects of the granulation system and indicates some of the key informa- 
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Figure 6.4 A rnultiscale view of linking granulation phenomena. 
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tion flows that exist. Because the malfunctions and faults in this equipment can be 
consequences of the granulation mechanisms, transport phenomena, fluid dynamics 
and operation procedures affecting the whole system, one needs to have several 
scales, a granulation particle scale and equipment scales integrated in a multiscale 
modeling framework. 

Modeling Goals for the Partial Models 
The systematic decomposition of the overall modeling goal to the individual scales is 
difficult and has not yet been studied well in the literature. If we consider the model- 
ing goal to be a multifaceted statement then some of the facets originate in the origi- 
nal overall modeling goal, i.e., those goal elements that are relevant to the partial 
model related to a particular scale are simply inherited from higher level goals. 

The other integrutingfucets in the modeling goal set of a partial model ensure its 
consistency and purposefulness from the viewpoint of the multiscale integrating 
framework applied to the modeling problem. This integrating part may contain vari- 
ables in other partial models to be computed with a given accuracy, and may deter- 
mine the data or other model ingredients to be used that are delivered by other par- 
tial models. 

Continuing the granulator drum example, the granulation particle submodel will 
inherit the goal facets related to the malfunctions caused by the granulation process 
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itself. That is, it should be dynamic and should describe the formation, growth, and 
breakage of the particles. The integrating facets in the modeling goal set ensure that 
the model to be developed should produce the source and kernel functions in the 
granule population balance in every time instance with a given accuracy that is 
needed to complete the conservation balance equations on the equipment scale. 

6.3.1.2 
Gradual Model Enrichment or Iterative Deepening 
The philosophy of the top-down approach for multiscale model development is very 
simple: start from the overall system model on the coarsest resolution scale (largest 
time or space scale) and develop a new partial model on a finer resolution scale if any 
facet in the overall goal set requires it. This approach can be regarded as iterative 
model deepening, which is directed by the modeling goal and its sensitivity with 
respect to the elements of the process model being developed. The top-down 
approach has been viewed as the best method for process engineering because time 
and cost pressures favor quick application of the results, with a minimum of detailed 
modeling. Later on in the lifecycle of the process, model refinement can be applied 
as required. 

The iterative model deepening technique is applied in step 4 (Model building and 
model analysis) of the seven-step modeling procedure when the number of scales and 
the model integration framework have already been selected. We then start from the 
overall system model on the lowest resolution scale with the overall modeling goal 
and determine which facets of the modeling goal are not satisfied. By using sensitiv- 
ity analysis, it is possible to determine which model elements influence the missing 
goal facets. The model is then enriched by a partial model on a finer resolution scale 
for the necessary model elements. Repeating the above deepening steps until the 
entire modeling goal set is satisfied constructs the final multiscale model. 

It is worth mentioning that the iterative model deepening procedure is similar to 
the approach applied for empirical model building (Hangos and Cameron 2001a). 

If we again consider the granulator drum example, we start constructing the over- 
all multiscale model by developing the material and energy balances of the drum and 
find out that we need finer models for the convective and diffusive flows, together 
with the source terms describing the particle birth, growth, and breakage processes 
in the granule population balance. 

6.3.1.3 
Model Composition 
The bottom-up approach of constructing multiscale process models is also applied in 
step 4 of the modeling procedure as an alternative method to the iterative model- 
deepening procedure. The overall model construction starts by building the partial 
models on the highest resolution scale. These models are then integrated according 
to the selected multiscale integration framework to prepare the modeling problem 
statements for the submodels on the next, coarser resolution scale. 

Bottom-up model composition is a common way to build multiscale models, when 
the submodels originate from different sources and/or are based on different princi- 
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ples. The advantage of this approach is that substantially different models may be 
integrated if a suitably selected framework is found. The drawback is that the result- 
ing model is often not homogeneous in its approach, purpose, and accuracy or it may 
happen that a partial model cannot be suitably integrated. Model composition 
ensures that the upper level models have a sound fundamental basis and may conse- 
quently be more reliable than those developed by model enrichment (Section 
6.3.1.2). However there is the risk of starting the modeling process at a level that is 
too fundamental, which may lead to accurate but inefficient modeling. 

I 

6.3.2 
Partial Models: Approaches and Classification 

In this section we focus on the partial models or submodels of a multiscale process 
model. For this purpose, we assume a well-posed modeling problem for each partial 
model, i.e., a system description and modeling goal specification for any partial model. 
This implies that the mechanisms and data available can be determined individually. 

The approaches of model building of the partial models, that is the development of 
the model equations, are essentially the same as in the classical case: we may apply 
mechanistic approaches based on first principles or a black- or grey-box model. Simi- 
larly, the classification of the resulting partial models goes along the same lines as in 
the general, nonmultiscale case. 

6.3.2.1 
Mechanistic Approaches for Process Models 
The mechanistic approach of developing the model equations of a process model 
uses first principles to construct the ingredients of a partial model. The model- 
building subprocedure (Hangos and Cameron 2001a) is followed in this case with 
the following substeps: 

1. system and subsystem boundary and balance volume definitions; 
2. define the characterizing variables (inputs, outputs, and system states); 
3. establish the balance equations for conserved quantities: mass, energy, momen- 

tum and number, etc.; 
4. transfer rate specifications; 
5. property relation specifications; 
6.  balance volume relation specifications; 
7. equipment and control constraint specifications; 
8. modeling assumptions. 

In the multiscale case, however, steps 1 and 2 need special care, because these are 
partially determined by the other partial model@) and by the integrating framework 
of the overall multiscale model. 

As the result of a mechanistic approach to partial model construction, we obtain a 
process model with standard ingredients (see Section 6.3.3.2). This makes it rela- 
tively easy to integrate the resulting partial model into a multiscale framework (see 
Section 6.4). 
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Table 6.1 Classification of partial models. 

Type of Model 

Mechanistic 

Empirical 

Stochastic 

Deterministic 

Lumped parameter 

Distributed parameter 

Linear 

Nonlinear 

Continuous 

Discrete 

Hybrid 

Criterion o f  Classification 

Based on mechanisms/underlying phenomena 

Based on input-output data, trials or experiments 

Contains model elements that are probabilistic in nature 

Based on cause-effect analysis 

Dependent variables not a function of spatial position 

Dependent variables are functions of spatial position 

Superposition principle applies 

Superposition principle does not apply 

Dependent variables defined over continuous space-time 

Only defined for discrete values of time and/or space 

I Containing continuous and discrete behavior 

6.3.2.2 
Black- and Grey-Box Modeling 
Usually, either engineering knowledge or data are not available to construct a fully 
mechanistic so-called “white-box’’ model, but we obtain a partial model with 
unknown model parameters and/or structural elements. One can then use measured 
data from the real process to give an estimate of the unknown model parameters or 
to construct an empirical, so-called “black-box” model for the unknown model ele- 
ment. This way a fully determined model can be obtained in the model calibration and 
validation step of the modeling procedure. 

It is important to note, however, that in most of the cases it is rather difficult, if not 
impossible, to calibrate a grey-box partial model, because one only has measured 
data from the overall process system and not from its subsystems corresponding to 
partial models (see Section 6.4.4.3 for more details). 

In some cases a fully black-box model should be developed by using empirical 
model building (Hangos and Cameron 2001a) that is similar in its approach to 
gradual model enrichment. Typical of these models are Box-Jenkins and neural 
networks. 

6.3.2.3 
Model Classification 
The classification of the resulting partial models is done similarly to the general 
case. As the characteristic of the different classes of models have a great impact 
on the solution techniques and on the application area we briefly recall the criteri- 
on of classification and the type of models in Table 6.1 (Hangos and Cameron 
2001a). 
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It is important to observe that a classification criterion generates a pair or triplet of 
I 

model types and all classification criteria can be applied to a particular partial model. 

6.3.2.4 
Particular Modeling Techniques for Different Scales 
We make a brief digression here to list some of the techniques that have evolved to 
describe specific scales. In approximate order of increasing scale, they include: 

0 computational quantum chemistry and molecular mechanics to deduce basic 

0 molecular dynamics, Monte Carlo and hybrid methods that predict the ensemble 

0 assorted techniques for front tracking, interface modeling, particle interactions 

0 computational fluid dynamics for detailed flow prediction; 
0 unit operation modeling and process flowsheet simulation, most familiar to chem- 

0 environmental simulation and business enterprise modeling on the “megascale”. 

Each technique has many variations, both broad and subtle, and will likely require 
contribution from specialists in the field. This reinforces the cross-disciplinary 
nature of much multiscale modeling work. 

chemical properties on the electronic/atomic scale; 

behavior of many molecules; 

and so on, grouped roughly as “mesoscale” models; 

ical engineers, for vessel and plant scale studies; 

6.3.3 
Characteristics of Partial Models 

This section deals with the characteristic properties and model elements of partial 
models in a multiscale process model with an emphasis on those model properties 
and ingredients that are important from the viewpoint of multiscale modeling. 

6.3.3.1 
Model Types 
The classification of partial models and the resulting model types are already 
described in Table 6.1 in Section 6.3.2.3. There are some model types that often arise 
as partial models in multiscale systems and are therefore of special importance. 

Lumped and distributed parameter models. Most often both of these types of partial 
model can be found together in a multiscale model. The models in the finest scale 
are typically distributed parameter dynamic models, while the models on the coars- 
est scale are often lumped parameter models. The integration of such mixed-type 
partial models into a multiscale integration framework needs special care (see Sec- 
tion 6.4). 

Deterministic and stochastic models. There are some characteristic phenomena 
often found in multiscale systems, such as fluid dynamics, diffusion, heterogeneous 
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kinetics and the like that are often described by using stochastic models on a fine 
scale. The integration of such partial models into a framework of deterministic mod- 
els is usually performed by using averages of different types (mean values for sto- 
chastic variables, time, and/or space averages). 

6.3.3.2 
Standard Ingredients of Partial Models 
Partial models in a multiscale model have the same standard ingredients as usual 
process models. In this case, however, it is of crucial importance to have all the ingre- 
dients clearly specified in order to be able to integrate the partial models into a multi- 
scale framework. The seven-step modeling procedure ensures that the resulting 
model possesses all ingredients in a consistent way. Therefore mechanistic partial 
models need no further effort to ensure this. 

Balance volumes. Homogeneous or quasihomogeneous parts of process systems 
over which conservation balances are constructed are called balance volumes. They 
are fundamental elements of a partial model in a multiscale system. The union of all 
balance volumes in a partial model spans the entire domain of the partial model, 
while the balance volumes in different partial models are related in a way determined 
by the multiscale integration framework. 

Model equations (differential and algebraic). The differential equations in a dynamic 
partial model usually originate from conservation balances and they are supple- 
mented by constitutive algebraic equations that make the model complete from both 
the engineering and mathematical viewpoints (Hangos and Cameron 2001b). The 
algebraic equations are of mixed origin: they describe extensive-intensive relation- 
ships, transfer and reaction rate equations, equations of state, physicochemical prop- 
erty equations, balance volume relations, and equipment and control relations. In 
addition, conservation balance equations are also algebraic equations in static partial 
models. 

Model variables and parameters. Variables in a dynamic partial model are time and 
possibly space-dependent quantities, which are either differential variables if their 
time-derivative appears in the model equations or algebraic variables otherwise. 
There are also model parameters present in a partial model; their value is regarded 
as constant. Some of the variables are given a value by using specification equations 
in order to make a model with zero degrees of freedom: specification equations are 
also part of the model. In dynamic partial models, some of the variables, the potential 
input variables, are also assigned a given “value,” a time-dependent function. 

Initial and boundary conditions. Similarly to any process model, partial models are 
sets of ordinary and/or partial differential (or integro-differential) and algebraic equa- 
tions. In order to make the model well-posed from a mathematical sense, we need to 
give suitable initial and boundary conditions, which are also part of the model. 
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Modeling assumptions. Although not always stated explicitly, modeling assump- 
tions are key ingredients of any process model, because they document any decision 
the modeler had taken while developing the model. This way modeling assumptions 
are artifacts of process modeling and serve as key elements in model documentation, 
verification and consistency checking (Hangos and Cameron 2001 a). 

I 

6.3.3.3 
Particular Considerations for Integrating Multiscale Process Models 
Some of the above standard ingredients of partial models have particular significance 
when integrating partial models into a multiscale framework. These are briefly listed 
in this subsection, while the way they are used is described in Section 6.4. 

Variables and parameters. Some of the characterizing variables of the partial models 
in a multiscale process model, such as the conserved extensive quantities (mass, 
component masses, and energy), the thermodynamic state variables (temperature, 
pressure, and concentrations), and the rate variables, are usually related in a way 
determined by the integration framework. In addition, some of the model parame- 
ters in a partial model of coarser scale may be determined by the modeling output of 
partial models of finer scales. Such interscale relationships appear in a partial model 
in the form of additional specifications or equalities for the model parameters. 

A simple example of such an interscale relation can be the value of the porosity 
of an equipment scale model determined by another partial model on a particle 
scale. 

Initial and boundary conditions. Phenomena occurring at an interphase boundary 
often call for a partial model describing them in a finer scale. The result of such 
small scale modeling enters into the equipment-scale model as an expression for the 
boundary condition of that particular interphase boundary. 

Constitutive equations. Certain algebraic variables in partial models of coarser 
scales, such as reaction or transfer rates, serve typically as connection points between 
partial models of different scales. Their determining “connecting” constitutive equa- 
tions contain variables of different scale partial models, where the variables of finer 
scales are usually averaged to obtain the connecting algebraic variable on the coarser 
scale. 

A simple example of such a connection can be a reaction rate of a heterogeneous 
catalytic reaction, where the reaction rate equation serves as a connecting point 
between the equipment scale and the catalytic particle scale variables. As a result 
of the particle scale model, an algebraic relationship should be somehow deter- 
mined that describes the average reaction rate in a point of the equipment as a func- 
tion of the average concentrations and temperature at the same point in a time 
instance. 
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Model integration is the process of linking partial models that exist at different time 
and length scales into a coherent, composite multiscale model. Integration is the 
essence of multiscale modeling. If information did not flow between the scales of 
interest, the model would not be multiscale! Two models sharing information at the 
same scale does not constitute a multiscale system. 

In this section we will explore the challenges and status of model integration, com- 
pare alternative integration schemes, and address some implementation matters. 

6.4.1 
The Challenges and Status of Multiscale Integration 

The multiscale modeler potentially faces several challenges in performing model 
integration because it may be necessary to link partial models that: 

0 Span a vast range oflength scales. For example, in electrodepositing of metal onto 
printed circuit boards, electrical function is influenced by lattice defects of 
O( lo-'') m, local hydrodynamic and mass transfer processes affecting the deposi- 
tion rate occur over 0(104) m, and current distribution must be controlled over 
the entire job, which is 0(1) m in size (Alkire and Verhoff 1994). 

0 Operate on very dcrerent time scales. In semiconductor fabrication using chemical 
vapor deposition (CVD) for instance, individual diffusion and reaction events 
occur at atomic time scales of 0(10-13) s and thin film growth takes place over 
minutes 0(102) s, while the total processing time for a multilayer film may be 
hours or days 0(104) s (Jensen 1998). 

0 Have disparate natures. The models may have different dominant phenomena, be 
continuous or discrete, have different dimensionality, be deterministic or stochas- 
tic, exist in concept only or already be implemented in commercial software, and 
be drawn from different scientific disciplines. 

These challenges raise several types of issues that need to be tackled for successful 
integration (Pantelides 2001) : 

0 conceptual issues, for example, deciding what information should flow between the 
scales and how, or investigating the benefits of reformulating the partial models to 
allow better integration; 

0 mathematical issues, regarding how well-posed the problem is, for instance; 
0 numerical issues, such as the choice of numerical method for efficient and robust 

0 application issues, including the software engineering work needed to link diverse 
solution of the composite model; 

software across different platforms. 

Despite the difficulties, there are many successful examples of multiscale model 
integration from a wide range of disciplines. It  is partly the diversity of the applica- 
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tion areas and the complexity of the implementation details that obscures the com- 
mon features in these examples. There are the beginnings of a classification scheme 
for model integration methods, and there is some knowledge of their characteristics. 
However, we are not yet at the point of understanding, in a quantitative and general 
way, how the choice of integration method affects the resulting multiscale model nor 
how to select the best integration method for a particular modeling problem. 

I 

6.4.2 
The Classification of Model Integration Methods 

Multiscale models can be classified by the way the partial models at each scale are 
linked. The very act of classification is enlightening. It draws out the similarities and 
differences in the broad range of existing multiscale models. It also makes compar- 
ing alternatives easier. Several authors have proposed classification schemes, often 
just in passing. A widely accepted scheme has not emerged and there is a confusion 
of terms. We will summarize a few of these classification ideas then recommend a 
particular one in the next section. 

Maroudas (2000) divides multiscale models in materials science into two catego- 
ries: serial and parallel. Serial multiscale models result from sequentially scaling up 
the partial models: the outputs of the finer scale models become the inputs of the 
coarser scale ones. By way of contrast, in parallel multiscale models, the partial mod- 
els exist side by side and are solved together. 

Stefanovit and Pantelides (2000) identified three ways in which molecular dynam- 
ics (MD) for property estimation could be integrated with traditional process models. 
First, the MD model is run to generate “pseudo-experimental data,” which are then 
fitted to find macroscopic material parameters. The second possibility is sequential 
like the first, but instead the macroscopic parameters are found directly from the 
microscale simulations. In the third approach, the macroscopic model calls the 
microscopic one on demand to find a relationship between macroscopic variables. 
This technique eliminates the need for macroscopic parameters. 

Phillips (2001), whose interest is materials science, distinguishes two broad classes 
of multiscale models: those that work in information passage mode, and models with 
internal structure. Information passage models are of two subtypes. In the first, the 
fine-scale model is used to generate macroscopic parameters, which are then used by 
the coarse scale model. In the second, the microscale model is transformed into a 
macroscale model, that is, a new effective macroscale theory is derived from a micro- 
scale one. Models with internal structure, which in Phillips’ area are typically “mixed 
atomistic-continuum models,” are where the microscopic model is adjacent to or 
embedded within the macroscopic model and they are solved together. 

Guo and Li (2001) and Li and Kwauk (2003) are concerned with predicting the 
structure of dynamic, multiscale systems with competing mechanisms. They 
describe three modeling approaches of increasing complexity and illustrate them by 
referring to gas-solid fluidization. The first approach is descriptive: each scale of inter- 
est is modeled separately without attempting to link them together. The second is 
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correlative, where fine scale information is scaled up for use in coarser scale models. 
Volume-averaging of parameters is a possible technique, for example. In the third 
approach, variational, the partial models are solved together subject to the minimiza- 
tion of some quantity that reflects the strengths of the competing mechanisms that 
influence the system structure. The last approach can handle regime transformations. 

These schemes represent different views of multiscale integration, which reflect 
their originators’ backgrounds and modeling objectives. They all distinguish 
between sequential and simultaneous application of the partial models, and most 
discriminate between variations on the sequential method. Pantelides (2001) pre- 
sented a classification scheme for multiscale process modeling with four categories, 
serial, simultaneous, hierarchical and parallel, that encompass most of the ideas above. 
Ingram and Cameron (2002) refined and extended this scheme with an additional 
class in order to distinguish between different methods of simultaneously combin- 
ing partial models. 

6.4.3 
A Framework Classification for Process Modeling 

We introduce the termframework to describe the way partial models, which apply at 
different scales, are linked, or integrated, to form a composite multiscale model. Fig- 
ure 6.5 shows the extended version of Pantelides’ classification scheme for multi- 
scale frameworks that is proposed for process modeling. The main division is 
between decoupling and interactive frameworks. The serial and simultaneous frame- 
works decouple the solution of the partial models, so that one partial model is solved 
(in some sense) then the others are solved in turn. In contrast, the interactive 
frameworks-embedded, multidomain, and parallel-essentially involve simultaneous 
solution of the constituent partial models. Another view of the classification scheme, 

Multiscale models 

‘Interactive frameworks’ 

Transformation 

‘Decoupling frameworks’ 

Figure 6.5 
framework used to link the partial models. 

Classification scheme for multiscale models based o n  the 
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Domain relationships and information flows in models with 

expressed in terms of the model domains and the information flows between them, 
appears in Fig. 6.6. The framework classification attempts to define the broad con- 
ceptual options for linking partial models. It is not intended to discriminate between 
the very specific techniques that are used in particular applications. 

The following sections explore the frameworks in more detail, by giving a short 
description, common application situations, some advantages and disadvantages, 
and the main challenges associated with them. The integration of two partial models 
at a time is discussed. The fine and coarse scale models are referred to as microscale 
and macroscale models, respectively. 
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6.4.3.1 
Simultaneous Integration Framework 

Description 
In simultaneous integration, the microscale model is used to describe the system in 
its entirety (Fig. G.6a). This approach corresponds, for example, to using discrete ele- 
ment modeling to predict the trajectory of every particle (microscale level) in a fluid- 
ized bed (macroscale level), or the use of computational fluid dynamics (CFD) 
(microscale) to model the detailed fluid flow in a complex vessel (macroscale). The 
macroscale “model” simply summarizes or interprets the detailed microscale results, 
usually by totalizing, averaging or otherwise correlating the microscale data. This is 
why the macroscale model in simultaneous integration could be better called the 
“macroscale function.” In the fluid bed example above, the macroscale function 
might estimate the average bed expansion or gross solids circulation rate, while in 
the CFD case, the macroscale function might calculate the residence time distribu- 
tion. The microscale and macroscale models are decoupled in the sense that infor- 
mation is transferred in one direction only: from the microscale to the macroscale. 

Application 
Simultaneous integration is used when: 

0 it is not possible to model any part of the system with sufficient accuracy at the 
macroscale level; 

0 some part of the region can be successfully modeled at the macrolevel, but the 
micro- and macroregions cannot be meshed together well enough (this is multido- 
main integration; see section 6.4.3.4); 

0 it is desired to view the system entirely at the microlevel. 

It also serves as a baseline integration method against which other frameworks can 
be tested because it has “zero integration error” (Solomon 1995; Werner 1999). 

Advantages and Disadvantages 
The advantages of simultaneous integration include the potentially high levels of 
detail, flexibility and accuracy. The main disadvantage is the very high computational 
burden, the highest of all the frameworks. This limits the size of the system and the 
length of time that can be simulated. Artificially reducing the system size risks fail- 
ing to capture large-scale/long-time effects (McCarthy and Ottino 1998). Despite con- 
tinuing growth in computer power, at least for the intermediate future, there will be 
problems of practical interest where microscale modeling of the entire system is 
impossible (Chan and Dill 1993). Simultaneous integration will also likely generate 
a large amount of detailed microscale data that is largely irrelevant to the modeling 
objective. 
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Challenges 
These include: 

0 improving the accuracy of the microscale model, because any microscale error will 

0 increasing solution efficiency via improved numerical algorithms and distributed 

0 recognising when simultaneous integration is truly necessary. 

I 

flow to the macroscale; 

computing; 

6.4.3.2 
Serial Integration Framework 

Description 
There are three broad, partially overlapping possibilities in serial integration: simpli- 
fication, transformation and one-way coupling. 

1. Simplification 
The microscale model covers a small part of the system domain. Usually, it is this 
model that we “simplify” (Fig. 6.6b). In this case, the microscale model is simpli- 
fied by just “fitting a curve” to computed input-output data, by systematic order 
reduction methods, or by analytical solution if possible. The simplified or solved 
microscale model creates a relationship between macroscopic variables that is eas- 
ier to evaluate than the complete solution of the original microscale model. We 
should perhaps refer to the microscale model as the “microscale function.” The 
macroscale model spans the system domain and calls the microscale function on 
demand. This kind of integration is used, for example, to link local and global 
scales in climate modeling. Mechanistic city-scale calculations relating atmo- 
spheric and urban variables to pollutant fluxes can be approximated by polynomi- 
als, which are then used in a global atmospheric chemistry model to predict cli- 
mate change under different development scenarios. A more familiar example 
may be the analytical solution of the reaction-diffusion equations in a porous cata- 
lyst to yield a Thiele modulus-effectiveness factor relationship that is then used in 
reactor scale modeling. 

In serial integration by simplification, information flows in both directions 
between the micro- and macroscales. However, the framework is decoupling in 
the sense that the solution process has two stages. First, the microscale model is 
first simplified to a “microscale function,” and then the macroscale model is 
solved, which involves calling the microscale function. 

Often the microscale model is “simplified”, but sometimes it is the macroscale 
one (Fig. G.6c). For example, if the focus of a modeling exercise were a particular 
unit in a process, then a model of the process excluding that unit could be built and 
then simplified, to provide a computationally cheap approximation to the opera- 
tional environment of the unit. In this case, there is a “macroscale function” (the rest 
of the plant) that is called as required by the microscale model (the particular unit). 

Another possibility in the serial integration framework is transformation. The 
microscale model describes a small part of the system domain. It is “formally 

2. Transformation 
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transformed” into a macroscale model (Fig.G.Gd). This process is also called 
upscaling, coarse-graining, degree of freedom thinning, and constructing new 
effective theories or laws. Now, the microscale model is no longer needed and the 
system domain is described entirely by the new macroscale model. Many tech- 
niques are used for upscaling : volume averaging, renormalization and homogeni- 
zation, among others. The three named methods have been used to upscale the 
equations for diffusion in porous media. No flow of information occurs between 
the microscale and macroscale models during solution because, in effect, the 
microscale model has been eliminated. Only the macroscale model must be 
solved. It is a decoupling framework in this sense. 

The third variation on the serial integration framework occurs when, because of 
the nature of the system, information flows naturally between the scales in one 
direction only (Fig. G.Ge,f). Or, that the approximation is close enough to satisfy the 
modeling goal. Physical vapor deposition (PVD) is an example. A vessel scale 
(macro) model predicts the average spatial distribution of metal sputtered onto a 
substrate in a PVD chamber. A “feature scale” (micro) model can then track the 
build up of the deposit layer on features, such as holes and trenches, on the sub- 
strate surface. Another example is the use of (microscale) molecular dynamics to 
calculate a diffusion coefficient, which is later used at the vessel (macro) scale via 
Fick‘s law. The information may flow either from the microscale to the macro- 
scale, or vice versa. The independent model is solved first, and then the depen- 
dent one is solved. In this framework the solution of the models is decoupled in 
one direction. 

3. One-way Coupling 

Application 
The use of serial integration depends on the broad strategy chosen: 

0 Simplijcation. Virtually any microscale (or macroscale) model can be simplified by 
order reduction or approximation techniques; some models may be solved analyti- 
cally under appropriate simplifying assumptions. 

0 Transformation. The ability to use transformation depends on the upscaling 
method chosen and the nature of the system. For example, sufficient “scale sepa- 
ration” is needed for homogenization (Auriault 1991). 

0 One-way coupling. This method can be used when the nature of the system is such 
that one scale is dependent and the other is independent, or at least we can treat 
them as such. There is no feedback between the scales. 

Many well-known relationships in science and engineering can be viewed as applica- 
tions of serial multiscale integration by simplification or transformation. Examples 
include: equations of state derived from the kinetic theory of gases, the rheological 
equation for Newtonian fluids, Thiele modulus-effectiveness factor expressions for 
reaction-diffusion problems, and even, in some sense, Newton’s law of universal 
gravitation (Phillips 2001). 
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Advantages and Disadvantages 
The principal advantage of the serial approach is the elimination of the expensive, 
detailed microscale model. Consequently, serial integration can potentially produce 
the most efficient models among the five frameworks. Many powerful mathematical 
techniques for order reduction, analytical solution and upscaling can be applied to 
the microscale model. These techniques not only enhance calculation efficiency, but 
also, and perhaps more importantly, highlight the essential nature of the microscale 
model. They strip away unnecessary detail to reveal how (a few) key variables influ- 
ence macroscale behavior. The &sadvantages include the restricted accuracy and 
flexibility of the approach. Considerable effort may be needed to apply the mathemat- 
ical techniques referred to above. 

I 

Challenges 
The basic challenge is to find an appropriate balance between fidelity and computa- 
tional cost through manipulation of the microscale model. This includes learning 
which mathematical techniques are best used to simplify or transform the micro- 
scale model, and knowing when one-way coupling is acceptable. A fitrther challenge 
is to provide mechanisms for revising the microscale representation as required 
(Oran and Boris 2001, p. 439). 

6.4.3.3 
Embedded Integration Framework 

Description 
The microscale model is “formally embedded” within the macroscale model in this 
framework (Fig. G.Gg) ,  which was termed hierarchical by Pantelides (2001). The mac- 
roscale model spans the system domain, while the microscale model is local, 
restricted to a relatively small part of the domain. The microscale model calculates, 
on demand, a relationship between macroscale quantities. Hence, while its domain 
is small, the microscale model may be called (instantiated) at many points through 
the system. Ab initio molecular dynamics is an example of the embedded frame- 
work. In this application, the macroscale model is an MD simulation that tracks the 
motion of each molecule based on the forces that act upon it. The microscale model 
is an electron-atom scale computational chemistry method, such as density func- 
tional theory, that calculates the intermolecular force (potential) function on thejy as 
the MD simulation proceeds. The embedded approach is a true, interactive multi- 
scale method because information is passed between two models that are actively 
being solved. 

Application 
This framework is used when a suitable macroscale model exists but needs to be 
“informed” by localized microscale simulation, and the microscale model cannot be 
acceptably simplified. If a suitable simplification of the macroscale model were avail- 
able, serial integration via simplification (Section 6.4.3.2) should be used to reduce 
computing demands. 
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Advantages and Disadvantages 
Embedded integration has a natural appeal because of its orderly, hierarchical 
nature. It potentially has the flexibility and accuracy of simultaneous integration, but 
with a much lower computational load. The detailed, expensive microscale calcula- 
tions are performed only where and when they are required. A disadvantage is the 
need to run the microscale model at all, because it may still consume the bulk of the 
computing resources. Because the micro-macro interface in embedded and serial 
(simplification) integration may be similar, it should be possible to swap these meth- 
ods with little change needed in the macroscale model. 

Challenges 
The challenges include: 

0 finding the smallest domain and shortest time needed to simulate the microscale 
model to provide accurate results with a minimum amount of calculation; 

0 enhancing the micro-macro interface beyond that used in traditional serial (sim- 
plification) modeling. For example, Stefanovit and Pantelides (2000) show a new 
approach to linking molecular dynamics information with unit operation model- 
ing. 

6.4.3.4 
Multidomain Integration Framework 

Description 
In the multidomain framework, the microscale and macroscale models describe sep- 
arate but adjoining parts of the whole system (Fig.G.Gh). It is sometimes called 
“hybrid modeling” because it is often used to create hybrid, discrete-continuous 
models. There are many multidomain models in materials science. In investigating 
the fracture of brittle solids, for example, the region around the growing crack could 
be modeled with a discrete, atomistic, microscale method: molecular dynamics. Rel- 
atively far from the crack, the solid could be modeled at the macroscale level with a 
continuum technique, such as the finite element method. The interface between the 
micro- and macroscale domains may be either a point, line or surface, or it may be 
a buffer zone with a volume that is nonzero, but small compared to the size of the 
micro- and macrosimulated regions. The models in the two regions interact across 
an interface. This multidomain framework is a true, interactive multiscale method, 
with a two-way flow of information between the partial models via the interface. 

Application 
Multidomain integration is used where some parts of the system can be adequately 
described at the macrolevel, while in other regions, only a microscale model will 
suffice. It  is often used in models with heterogeneous media, for example, the gas 
and solid phases in chemical vapor deposition, or the catalyst and bulk phases in a 
packed bed reactor. In these applications, the microscale region is usually fKed in 
space. The other main application for multidomain models is materials science, par- 



212 6 Multiscale Process Modeling 

ticularly the field of fracture mechanics. There, the microscale model is applied when 
the macroscale model fails some error criterion; the microscale region may change 
as the simulation proceeds. 

I 

Advantages and Disadvantages 
Like embedded integration, the multidomain method couples micro- and macroscale 
models to reduce the computational burden compared to simultaneous integration, 
while maintaining microscale realism where needed. The greatest disadvantage is 
the potential complexity of the micro-macro interface. It is important to guarantee 
the continuity of thermodynamic properties and transport fluxes across the interface, 
and to avoid unphysical wave reflections (Brenner and Ganesan 2000a,b; Curtin and 
Miller 2003). 

Challenges 
The main challenge is to formulate a seamless interface between the microscale and 
macroscale regions. In some applications, techniques are also needed to move, grow 
and shrink the microscale region as the simulation proceeds to minimize computa- 
tional requirements. 

6.4.3.5 
Parallel Integration Framework 

Description 
Both microscale and macroscale models cover the entire system domain in parallel 
integration (Fig. 6.6i). However, the models are complementary in the detail with 
which they describe the important phenomena. There are currently few examples of 
parallel integration in chemical engineering. All combine a CFD model with a tradi- 
tional unit operation model. For example, in a bubble column reactor, two phenom- 
ena are important: hydrodynamics and process chemistry. In a parallel framework, 
the microscale model might treat the fluid mechanics in detail via CFD, while the 
process chemistry could be represented in an abbreviated manner by a simple gas 
source (or sink) term. The macroscale model, on the other hand, could contain a 
comprehensive reaction scheme that was assumed to take place in simple fluid flow 
regime, such as a well-mixed or plug-flow region, or some combination of these. 
Current parallel models are solved by successive substitution. The macroscale model 
predicts some quantities that are inputs to the microscale model, while the micro- 
model outputs some variables that the macromodel requires. The models are run 
alternately until convergence. Parallel integration is an interactive multiscale method 
because both models are active and must be solved in concert. 

Application 
To date, parallel CFD-unit operation models have been developed for a bubble col- 
umn reactor (Bauer and Eigenberger 1999,2001), a batch stirred tank reactor (Bezzo, 
Macchietto and Pantelides 2000), an industrial crystallizer (Urban and Liberis 1999) 
and a high temperature electrochemical reactor (Gerogiorgis and Ydstie 2003). The 
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parallel method is suitable where the important mechanisms in the system are 
weakly coupled (Pantelides 2001; Urban 2001). However, it is likely that the strength 
of the coupling that can be successfully accommodated by the parallel method would 
increase as the macroscale model is more finely discretized. Very strongly coupled 
systems may require embedded integration. 

Advantages and Disadvantages 
The key advantage of parallel integration is the division of the system into two sim- 
pler problems. It is also a way to form a multiscale model from an existing software 
package that has limited interface options. The main disadvantage is the inherent 
approximation of the method and its consequent limitation to systems with weakly 
coupled active mechanisms. 

Challenges 
One challenge for parallel CFD-unit operation models is to determine efficiently, 
perhaps automatically, an acceptable combination of ideal flow regions needed to 
approximate the CFD flow pattern. Another is to replace successive substitution with 
a more efficient and stable solution method. However, the most open challenge is to 
expand the range of applications beyond the CFD-unit operation examples reported 
so far. A general question is how best to partition the controlling phenomena 
between the parallel models. 

6.4.3.6 
Discussion of the Scheme 
The extended classification scheme proposed for process modeling groups multi- 
scale models according to how the microscale and macroscale models are linked. It 
helps in understanding the structure of multiscale models, but there are some open 
issues: 

0 The classification scheme does not provide formal definitions for the frameworks. 
A given multiscale model could potentially fall into more than one category. Con- 
versely, applying a framework to given partial models does not guarantee a unique 
multiscale model; many variations are possible. 

0 While some qualitative properties of the frameworks are outlined, we lack compre- 
hensive comparative information. There is little guidance and there are no quanti- 
tative tools available to help select the integration method. These would be espe- 
cially useful early in the modeling process. 

0 It is unclear how, or indeed if, all frameworks could be applied to a given model- 
ing problem. Some problems do not naturally seem to suit certain integration 
methods and the underlying reasons need to be understood. 

0 The way the integration framework depends on the partial models to be inte- 
grated, and conversely, how the partial models affect the properties of the integrat- 
ing framework, also needs careful further investigation. 

0 The classification scheme considers the integration of two scales at a time. How- 
ever, it can be applied to multiscale models with more than two scales. For exam- 
ple, in a three-scale system, the micro- and mesomodels could be linked with one 
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framework, while the meso- and macroscales could be linked with another frame- 
work. This “painvise” scheme may not be adequate to describe all multiscale mod- 
els with more than two scales. 

Some of these unresolved issues can be tackled through structural analysis tech- 
niques. 

For systems that may exist in more than one state or regime, there is an additional 
element needed in model integration. It is to define the criteria used to identify the 
operating regime or prevailing physical structure of the system. Li and Kwauk (2003) 
have developed a method for multiscale models. 

I 

6.4.4 
Application of the Frameworks 

So far, we have looked at some issues of conceptual modeling for multiscale process 
systems. There are also mathematical and software issues involved in implementing 
the models: the use of existing software, solution methods, and model testing. 

6.4.4.1 
The Use of Existing Sofiware 
The chemical engineering community has already addressed many of the challenges 
in linking existing, previously incompatible process simulation software through the 
CAPE-OPEN project and its successors (Braunschweig, Pantelides, Britt, et al. 2000). 
CAPE-OPEN defines a set of open interface standards that allows parts of process 
simulators from different vendors to work together in a “plug-and-play’’ manner. The 
standard is maintained by the CAPE-OPEN Laboratories Network, CO-LaN (http: 
www.colan.org). Their Web site contains a list of current projects and discusses 
issues in linking process engineering software. 

Work at the University of Aachen has been centered on the component-based hier- 
archical explorative open process simulator (CHEOPS) (http: www.lfpt.rwth- 
aachen.de/Research/cheops.html) as an integrative modeling and solution environ- 
ment. 

There are commercial examples of multiscale software integration. Some of these 
include linking a CFD package with another software type, for example, process 
modeling software (gPROMS with FLUENT and STAR-CD), a process simulator 
(ASPEN Plus with FLUENT), and a gas-phase/surface chemistry simulator (CHEM- 

A related development is underway in the field of medical research as part of the 
IUPS Physiome Project (Hunter and Borg 2003; Hunter, Robbins and Noble 2002). 
A series of XML-based markup languages is being developed to capture and 
exchange information on human physiology - from the scale of cells to the whole 
body. 

KIN With STAR-CD). 
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6.4.4.2 
Solution Methods for Multiscale Models 
Solution efficiency is important in multiscale modeling because the partial models 
may use computationally intensive techniques, such as quantum chemistry, molecu- 
lar simulation and so on. A key feature of multiscale modeling is transforming a 
problem that is intractable when viewed at the finest scale into a manageable one 
when considered at multiple scales. The modeling techniques used at each scale 
have established specialized solution methods. The challenge is to meld the scale- 
specific solution techniques into an efficient strategy for solving the multiscale prob- 
lem. 

There is a broad and powerfd class of numerical methods known as multiscale 
(multigrid, multilevel, multiresolution, etc.) schemes (Brandt 2002). They seek to 
solve problems that are defined by equations at one scale, but have a multiscale char- 
acter. This numerical approach complements the concept we have advanced in this 
work, namely defining separate models at each scale and linking them through a 
framework. The multiscale numerical method consists of recursively constructing a 
sequence of solutions to a fine-scale problem at increasingly coarse scales. Large- 
scale behavior is effectively calculated on coarse grids, but it is based on information 
drawn from finer scales. Multigrid techniques have been applied to a vast range of 
problems. A few relevant to process engineering are: high efficiency methods for 
fluid dynamics, solution of partial differential equations in general, data assimilation 
and other inverse problems, optimal feedback control, efficient molecular dynamics 
and molecular modeling, and global optimization. See Brandt (2002) for a compre- 
hensive review. Not included in that review is the recent "equation-free" (or "gap- 
tooth/projective integration") method (Kevrekidis, Gear and Hummer 2004) that has 
been developed in the context of process systems. 

The solution of multiscale models constructed from partial models linked by a 
framework involves several issues, including: 

0 The efeect ofthefiarnework - In some frameworks, for example, the simultaneous 
and some serial ones, the solution process is decoupled. The best method at each 
scale can then be employed in isolation. The nature of the mathematical problem 
is different for each of the interactive frameworks. In multidomain integration, 
the models only interact through boundary conditions, while in embedded inte- 
gration, information may also flow through the state variables and their derivatives 
at any location, through transport coefficients and fluxes, and source terms, for 
example. Thus far, only successive substitution has been used to solve parallel 
multiscale models. There are also fundamental questions, such as how the proper- 
ties - differential index, stability, computational complexity, and so forth - of a 
multiscale model are determined by the properties of the partial models and the 
chosen framework. 

0 Time stepping - The partial models will usually have quite different time scales. In 
interactive frameworks, this results in stiff problems. Different microscale and 
macroscale time steps are often used. The microscale time step is usually much 
smaller than the macroscale one, but not always. When the microscale model is 
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stochastic, temporal averaging is helpful in damping out microscale “noise,” 
which would otherwise propagate into the macroscale model (Raimondeau, Agha- 
layam, Katsoulakis, et al. 2001). 

0 Updating strategies - Partial models that have been simplified may need to be 
updated by referring to the original model, either periodically or when their esti- 
mated error becomes too high (Oran and Boris 2001). The accuracy required for 
the simplified model can be judged through error propagation methods, similar to 
those used in design sensitivity studies as presented, for example, in Xin and 
Whiting (2000). 

0 State transitions - For systems that may exist in different regimes, identification of 
the prevailing state is required. Li and Kwauk (2003) solved the multiscale model 
together with an optimization problem: minimization of a function (stability con- 
dition) that reflects the competing mechanisms that determines the system struc- 
ture. 

0 Parallelization - Parallel processing fits naturally into some multiscale codes 
(Laso, Picasso and Ottinger 1997; Broughton, Abraham, Bernstein, et al. 1999). 

I 

6.4.4.3 
Model Verification and Validation 
The verification and validation (V&V) of models in science and engineering is a disci- 
pline in its own right (Oberkampf, Trucano and Hirsch 2003). The goal is to lend 
confidence (Kister 2002; Best 2003) to the use of the model. Pantelides (2001) identi- 
fied the construction of validated models as a major challenge in chemical engineer- 
ing. Here we touch on some aspects related to multiscale models. 

Verification is “the process of determining that a model implementation accu- 
rately represents the developer’s conceptual description of the model and the solu- 
tion to the model,” that is, solving the equations correctly. It is a matter of software 
engineering and mathematics. There are two aspects: code verification and solution 
verification (Oberkampf, Trucano and Hirsch 2003). The former can be split into the 
verification of the numerical algorithm and software quality assurance. Solution veri- 
fication involves checking for gross consistency (such as overall mass conservation), 
spatial and temporal convergence, and consistency with trusted solutions. Essen- 
tially, it is being confident that the numerical error in the predictions is acceptable and 
the qualitative behavior of the solution, for example the stability, corresponds to the 
developer’s expectations. 

In multiscale modeling, each partial model can be verified in isolation, using 
dummy functions or typical values for any variables that are shared between scales. 
The composite multiscale model should then be verified. This tests the integrating 
framework. Code and solution verification can be applied as before, but additional 
“trusted solutions” are potentially available. For each pair of linked scales, the chosen 
framework could be checked against simultaneous integration of those scales, since 
that has “zero integration error” (Solomon 1995; Werner 1999). The process is to 
compare predictions for the coarse scale variables using the chosen framework 
against the predictions of the same coarse variables derived from a complete simula- 
tion of the system at a finer scale. In practice, complete simulation of the system at 
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the microscale may not be feasible, but selected microscale simulation of regions 
with typical or extreme behavior may be. Another possibility is to check the integra- 
tion of three scales at a time against a two-scale model for the special case where the 
intermediate scale should not alter the solution (Gobbert, Merchant, Borucki, et al. 
1997). Of course, this is most convenient when a suitable existing two-scale model is 
available, which might occur as part of the iterative model building process when it 
is decided that another scale is needed. 

Model validation is “the process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the intended uses of 
the model”. It is a question of getting the actual physics of the system right. Ideally, 
validation consists of testing the model against experimental data drawn from a set 
of carefully targeted experiments (Pantelides 2001 ; Oberkampf, Trucano and Hirsch 
2003). Both the data and the model will contain uncertainties. Two issues that are 
important for multiscale model validation are measuring data over a range of scales 
and estimating model parameters at different scales. 

If a model contains parameters that are unknown, that is, too uncertain, experi- 
ments can be used to estimate them. For hierarchical models, which include multi- 
scale models, parameter estimation can be applied simultaneously at all scales, 
sequentially to the scales in some order, or independently at each scale, or a mixture 
of these (Robinson and Ek 2000). The ideal situation is to determine each parameter 
independently. Conversely, the simultaneous approach is seen as “bad empiricism” 
(Randall and Wielicki 1997), to be used only for parameters with mechanisms that 
are poorly understood. In climate science and meteorology, there are complex multi- 
scale models with many poorly known parameters. Brandt (2002) discusses the use 
of (multiple) multiscale computational approaches to assimilating data on the fly into 
dynamic models of the atmosphere. 

Good data helps in both parameter estimation and model validation. For multi- 
scale models, we would like data at each scale of interest. Different measurement 
techniques are used at different scales; see, for example, Balazs, Maxwell, deTeresa, 
et al. (2002); Gates and Hinkley (2003) for some techniques used in materials sci- 
ence. Like the various modeling techniques that describe the phenomena at different 
scales, we can locate the tools of measurement on the logarithmic time and length 
axes of a scale map (see Figs. 5 and 6 of Gates and Hinkley (2003)). However, there 
is a fundamental difference in the multiscale nature of models and measurements, 
at least at small scales. For models there is a rough positive correlation between time 
and space scales: small processes operate quickly and large processes slowly, in gen- 
eral. The opposite is true for measurement. There is an approximate negative corre- 
lation: it takes a long time to measure small things, and a short time to measure 
large ones. The consequence for multiscale modeling is that it is not possible to 
gather data to allow the direct validation or parameter estimation of some partial 
models. We have no choice but to view their effects through the filter of intermediate 
scales. 
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6.4.5 
Summary of  Multiscale Model Integration 

I 

Mdtiscale model integration refers to linking models at different scales together into 
a coherent whole. The constituent models may operate on vastly different character- 
istic time and length scales, and may be of dsparate kinds. There are many reported 
examples of model integration and we are beginning to understand its principles. 
Classification of the types of integration is helpful. One classification scheme pro- 
posed for process modeling identifies five broad frameworks for multiscale integra- 
tion: simultaneous, serial, multidomain, embedded and parallel. There is some qual- 
itative information available on their properties and when they can be applied. Aside 
from conceptual modeling concerns, there are issues of integrating existing soft- 
ware, solution of the model, and model validation. 

There is a good opportunity now, through using the large number of published 
models as examples, to improve our understanding of model integration. Key ele- 
ments will be a clearer classification of integration methods and a suite of modeling 
tools to estimate the performance of a multiscale model - in terms of both dynamic 
and computational properties - at an early stage in the modeling process. As com- 
puting power increases and becomes more accessible, previously infeasible model- 
ing techniques will become ripe for integration into multiscale models. New ideas 
will be needed to achieve tighter integration of different kinds of models. 

6.5 
Future Challenges 

There is strong and increasing interest in the multiscale approach. Many examples of 
multiscale modeling are now scattered widely throughout the literature and there are 
the beginnings of a general “theory of multiscale modeling.” However, like any rap- 
idly evolving field, the development is uneven. In specific areas, we can choose 
between several sophisticated multiscale techniques, while in other fields multiscale 
thinking has barely made an impact. We highlight here some future challenges in 
the multiscale modeling of process systems. 

Overall Strategy for Multiscale Modeling 
In Section 6.3 we outlined a general model building strategy and discussed its exten- 
sion to multiscale modeling. Solomon (1995), Li and Kwauk (2003) and others pro- 
vide alternative viewpoints. Are these strategies sufficient for the ejicient development 
of parsimonious multiscale models? One item that deserves more attention is the role 
of the modeling goal in multiscale systems. How can we use a statement of the mod- 
eling goal to drive model building towards : 

0 Identifying and selecting the scales to include in the model? 
0 Developing or choosing among alternative partial models at each scale? 
0 Guiding the integration of the partial models into a multiscale model? 
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We need a better understanding of the decomposition of goal sets in multiscale prob- 
lems: relating goals to scales and appreciating the filtering effect of the integrating 
framework. 

Rethinking the Partial Models 
Pantelides (2001) expresses the point well: “it should not be taken for granted that 
techniques (e.g. for CFD or molecular modeling) that have evolved over long periods 
of time for ‘stand-alone’ use automatically possess the properties that are necessary 
for their integration within wider computational schemes. Indeed, our experience 
has been that the contrary is often true.” We may need to reformulate the partial 
models to assist with mathematical aspects of “tighter” model integration: ensuring 
well-posedness, continuity, efficient Jacobian calculation, and so on. Stefanovie and 
Pantelides (2000) provide an example. 

Model Integration 
Classification is the first step in generalizing our understanding of the options for 
linking multiscale models. Several classification schemes have been proposed (Sec- 
tions 6.4.2 and 6.4.3), and there is some anecdotal information available on the prop- 
erties of the classes. Are there more useful classification schemes? Attempting a for- 
mal definition of the classes, for example, Ingram, Cameron and Hangos (2004), 
may help improve upon current ideas. We also need to develop techniques to answer 
the question: how do the properties of the partial models and the nature of the inte- 
gration method contribute to the properties of the resulting multiscale model? A 
suite of characterizing model metrics that can be applied at different stages of the 
modeling process will be of assistance here. 

Numerical Methods 
Solving the partial models from some scales may entail a very high computational 
load. Indeed, the possibility of the repeated solution of such models in a multiscale 
simulation highlights the need for efficient numerical methods. Multiscale models 
might run across different platforms and processors. The partial models may be of 
different types (Section 6.3.2.3) and will almost certainly have very different time 
scales. SpeciaIist techniques, refined over time, are usually available for the models 
from different scales. We need to understand how the most suitable numerical 
methods for the partial models and the chosen integration scheme interact in order 
to develop efficient and robust solution methods for multiscale models. 

Multiscale Modeling Took 
A multiscale perspective would enhance existing CAPE tools. To be effective aids for 
multiscale modeling such tools should: 

0 permit partial model development; 
0 allow various integration schemes to be applied; 
0 generate metrics that characterize the partial and multiscale models; 
0 provide specialist solvers for different scales; 
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0 store validation data over the range of scales; 
0 archive the underlying assumptions of the partial models. 

Extending the current work on open interface standards and heterogeneous simula- 
tion would facilitate these efforts. 

On a final note, we need to maintain a watch on how other disciplines are 
approaching the challenge of multiscale modeling and its application. There are 
interesting developments in materials science, ecology, climate studies, medicine 
and many other fields (Glimm and Sharp 1997; Li and Kwauk 2003). 

I 
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