
I107 

3 
Molecular Modeling for Physical Property Prediction 

Vincent Cerbaud and XavierJoulia 

3.1 
Introduction 

Multiscale modeling is becoming the standard approach for process study in a broa- 
der framework that promotes computer-aided integrated product and process 
design. In addition to the usual purity requirements, end products must meet new 
constraints in terms of environmental impact, safety of goods and people, and spe- 
cific properties. Engineering achievements can be startling from the user perspective 
like aqueous solvent paint that is still washable after drying! 

This can only be done by improving process knowledge and performance at all 
scales, right down to the atomic scale. Current experimental and modeling 
approaches assess with difficultly such submicronic scales. In experiments, there is 
the question of how to conceive experimental devices small enough and how to intro- 
duce them in molecular systems without irreversibly affecting the phenomena that 
they look at. In modeling and simulation, the questions are: which hypotheses are 
still relevant? How does one handle boundary effects? Numerical difficulties may 
arise along with the necessity of defining new parameters. They will be adjustable 
ones as no experiments can obtain them. This latter statement is particularly true 
for energetic interaction parameters like binary interaction parameters in current 
liquid-vapor equilibrium macroscopic thermodynamic models based on the activity 
coefficient approach or on the equation of state approach. The study of any process, 
phenomena attributed to energetic interactions has always been left for another time, 
but that time has come. 

Indeed, molecular modeling is a field of study that is interested in the behavior of 
atomic and molecular systems subject to energetic interactions. It is then a natural 
complement of experimental and modeling approaches to expand multiscale 
approaches towards smaller scales. Besides, process flows primarily concern mole- 
cules from raw materials to end products. Therefore, at any process development 
step, the challenge of knowing the physical properties and thermodynamical state of 
molecules is critical. However, the future of this challenge is dim when one thinks 
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about the millions of chemical compounds referenced in the chemical abstract 
series. Neither experimental approaches nor current themodynamic models can han- 
dle the combination of properties needed. In some cases experiments are not even 
practical because of material decomposition or safety issues. Universal group contri- 
bution methods are a pipe dream and existing ones are efficient but are restricted to 
specific areas like petrochemical and small molecular systems. 

As providers of accurate physicochemical data, molecular modeling methods offer 
an alternative to an intensive and expensive experimental campaign once molecular 
models are available, which is becoming increasingly the case (Case, Chaka, Friend 
et al. 2004). But the first goal is nothing compared to the main interest of molecular 
methods, that is, probing matter at the molecular level (Chen and Mathias 2002; De 
Pablo and Escobedo 2002; Sandler 2003). Indeed, molecular modeling can be seen as 
a “third way to explore real matter” (Allen and Tildesley 1987). Like a theoretical 
approach, it is based on a model system of the real one. But unlike theory, no hypoth- 
esis and no transcription of key phenomena into equations or correlations is per- 
formed. Rather, molecular modeling performs numerical experiments to simulate 
directly the behavior of the model system. 

The concept of numerical experiment is strong. First, the model system is made of 
a boundered molecular system and of an interaction model analogous to an experi- 
mental sensor that enables one to compute the internal energy of the model system. 
Second, think of the pseudoconstant thermometer temperature and of the Brownian 
motion of atoms in a liquid that generates a fluctuating temperature. More generally, 
any macroscopic property value measured by an experimental probe is a time- 
average over many instantaneous fluctuating values. Statistical thermodynamics pos- 
tulates that this time-average equals an ensemble average over a statistically signifi- 
cant number of model system configurations. Molecular modeling generates them 
numerically using methods like molecular dynamics or Monte Carlo methods. Any 
property of interest is then derived using thermodynamical laws from instantaneous 
property value averages and correlation factors. Thirdly, numerical standard devia- 
tion associated to the ensemble average is the equivalent of experimental accuracy. 

This chapter presents molecular modeling concepts so as to demystify them and 
stress their interests for chemical engineers. Multiscale approach including molecu- 
lar modeling are not illustrated due to restricted space. Rather, routine examples on 
the use of several molecular techniques suitable for acquiring accurate vapor-liquid 
equilibrium data when no data is available are provided. 
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3.2 
What is Molecular Modeling? 

Molecular modeling includes computer theoretical chemistry and molecular simula- 
tion. Computer theoretical chemistry calculations are carried out at 0 K and solve 
Schrodinger’s equation to obtain nuclear and electronic properties such as confor- 
mation, orbital, charge density, and electrostatic potential surface in fundamental or 
excited states. Computation time is huge, being proportional at best to N2.Selectrons, 
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which restricts its use to small systems. The precision of the results is significant 
because the only assumptions are linked to approximations carried out to solve 
Schrodinger’s equation. In particular, there are no adjustable parameters. Besides, it 
provides crucial information on the electronic distribution that enables one to evalu- 
ate electrostatic interactions in molecular simulation. 

Molecular simulation is a numerical technique used to acquire the physicochemi- 
cal properties of macroscopic systems from the description, on an atomic scale, of 
the elementary interactions and from the application of statistical thermodynamics 
principles. It concerns the calculation of a model system internal energy at a positive 
temperature. Computation time is proportional to Nmolecules, which makes it a tech- 
nique adapted to the study of real systems: phase properties, interfaces, reaction, 
transport phenomena, etc. Molecular simulation carries out dynamic modeling of 
the system subjected to realistic temperature and pressure conditions thanks to an 
adequate sampling of the system configurations. A configuration is a set of particle 
coordinates and connections. Inaccuracy may arise from the energetic models that 
contain fitted but physically meaningful parameters or from system configuration 
sampling techniques that must comply with statistical thermodynamic principles. 

Molecular simulation offers the most potential for process engineering. Wherever 
energetic-interaction-related phenomena have a prevalent place, molecular simula- 
tion deserves to be considered for use in studying and loolung further into the know- 
ledge of the phenomena in the heart of the processes. In particular, it is suitable for 
the study of phase equilibrium, interfacial properties (specific adsorption on cata- 
lyst), transport coefficients, chemical reactivity, activity coefficients, etc. 

3.2.1 
Scientific Challenges of Molecular Modeling in Process Engineering 

The use of molecular simulation in process engineering lies mainly in the difficulty 
of establishing the link between the macroscopic properties and their energetic 
description or that of significant parameters at mesoscopic or molecular scale. The 
micro-macro relation can be simple: in distillation, the knowledge of phase equilib- 
rium data enables one to run an extensive study and design of the process. In tablet 
processing, the relation is more complex: the tablet properties (compactness, friabil- 
ity, dissolution) are related to the pellet’s cohesion and to the substrate’s solubility. 
Obviously, the energetic interaction is a key phenomenon and is taken into account 
through solubility parameters, which can be broken down into primary energy con- 
tributions (van der Waals repulsion-attraction, Coulombic interaction, etc.), precisely 
the applicability of molecular simulation. But particle size and solvent effects on the 
aggregate size and homogeneity are equally important, notwithstanding operational 
process parameters, and are still difficult to address at a molecular scale. So, identify- 
ing the limiting phenomena is a priority before any molecular simulation. 

The size of the model systems is not an unsolvable problem as periodic boundary 
conditions can be applied to replicate the original system box and mimic a homoge- 
neous macroscopic phase. Rather, the scientific challenges concern issues often 
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encountered in experiments, the sensor challenge, the sampling challenge, and the 
multiscale challenge. 
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3.2.1.1 
The Sensor Challenge 
For data-oriented simulations, accurate force fields/sensors are needed to evaluate 
precisely energetic interactions. The study of highly polar systems, reliable and rele- 
vant extrapolation of carefully set force field parameters, and the absence of tempera- 
ture dependency of these parameters are key improvements of molecular simulation 
models over existing macroscopic models. 

The model system is usually a parallelepiped box filled with particles whose ener- 
getic interactions are described by a force field enabling one to compute the system 
internal energy. In order to mimic a homogeneous phase, the box is usually repli- 
cated in 3-D by applying periodic boundary conditions. The typical size ranges from 
20 to 1000 8, and may vary during simulations. Edge effects are to be envisaged and 
can be attenuated by increasing the box size. 

The development of a force field requires a strong collaboration with theoretical 
chemists and physicists. Indeed, different lunds of force fields can arise: some based 
on quantum chemistry concepts and some based on molecular mechanics (Sander 
2003). 

Quantum-based models are used in static modeling and naturally in computer the- 
oretical chemistry calculations. Solving the Schrodinger equation, they provide the 
nuclear and electronic properties system and consequently the true energy of the sys- 
tem (e.g., the energy of ionization) that is physically measurable. Molecular mechan- 
ics models are used in molecular simulation to calculate intensive properties (T, P) 
and extensive properties, among which the internal energy of the system, which is 
not directly measurable by experiment, but enables one to calculate other thermody- 
namic properties by using thermodynamic laws. Properties like vaporization 
enthalpy connected to differences in internal energy are computed and can be com- 
pared to experiments. 

Quantum models (QM) are practical on a few tens of atoms at best and are being 
used more and more in combination with molecular mechanics models for some 
part of the system where accurate electronic distribution is needed, e.g., a reactive 
zone or to provide a description of the electronic distribution. 

Molecular mechanics (MM) models are the most used and are based on a springs 
and beads mechanistic description of the intermolecular interactions and of the 
intramolecular bonds. They allow calculations on several hundreds of particles, 
which enable one to model real systems in a satisfactory way. They contain physical 
parameters evaluated from quantum calculation but also empirical parameters, 
which must be regressed from experimental data. However, this empiricism is atten- 
uated by some physical significance attributed to the parameters. Moreover, MM 
force fields show amazing properties. Valid over a large pressure and temperature 
range, they can be used to compute many properties and all molecules can be 
described from a small set of parameters if careful parameterization is conducted, 
which constitutes the first challenge. 
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Figure 3.1 Process engineering and molecular modeling 

3.2.1.2 
The Sampling Challenge 
The second challenge requires a strong involvement of process engineers. Novel and 
smart methods must be developed to sample specific states of the model system, 
which are of great interest for process engineering, for instance, transition states that 
set the reaction energetic barrier, azeotropes that affect strongly the distillation pro- 
cess feasibility and design, dew points, etc. Usually, existing molecular simulation 
methods sample nonspecific states like a vapor-liquid equilibrium point. Unlike 
measurement time, its experimental equivalent, numerical sampling can be advanta- 
geously biased to sample the specific state of interest but it requires expertise to com- 
ply with statistical thermodynamics principles, which permit a bridging of the micro- 
scopic and macroscopic scales. 

Furthermore, for existing methods based on molecular dynamic or Monte Carlo 
methods, sampling efficiency should be improved, in particular for complex mole- 
cules like macromolecules, even if the alternate solution of running more simula- 
tions is still the leading choice as computer power increases. 

With this second challenge, process engineering finds a new use for molecular 
modeling: it cannot be solely data-oriented, but also discovery-oriented and assumes 
its status of numerical experiment. 

3.2.1.3 
Molecular Modeling in a Multiscale Approach 
The integration of molecular modeling in applicable models for the study of macro- 
scopic systems and their properties is of the utmost importance for process engineer- 
ing. Indeed, often considered as decisive, phenomena related to energetic interac- 
tions have often been left aside during a process study because of a lack of suitable 
tools or incorporated into parameters. Thermodynamic models used in phase equi- 
librium calculations are a good example: binary interaction parameters must be 
found empirically despite their solid physical meaning. The first illustrative example 
addresses the issue of calculating binary parameters by molecular modeling meth- 
ods. 
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Process engineering models are knowledge-based models. In most domains, pro- 
cess study requires a multiscale approach. As a technique of experimentation, molec- 
ular modeling makes it possible to visualize on a molecular scale physicochemical 
phenomena. It can thus be used to develop or revisit theories, models or parameters 
of models and therefore improve our knowledge of processes and increase the capac- 
ity of predictions and extrapolation of existing models. 
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3.3 
Statistical Thermodynamic Background 

Suggested Readings 

1 McQuarry D. A. Statistical thermodynamics. 3 Frenkel D, Smit B Understanding Molecular 
Harper and Collins. New York, 1976. 
ISBN 0060443669 
Allen M. P. Tildesley D. J. Computer Simda- 
tion of Liquids. Oxford University Press, 
Oxford, UK. 1987. ISBN 0198556454 

Simulation. From Algorithms to Applica- 
tions. Academic Press, San Diego, 1996. 
ISBN 0122673700 2 

3.3.1 
A Microscopic Description of Macroscopic Properties 

Traditional thermodynamics and statistical thermodynamics address the same prob- 
lems but differ in their approach: thermodynamics provides general relations with- 
out any consideration of the intrinsic constitution of the matter, while statistical ther- 
modynamics supposes the existence of atoms, molecules, and particles to calculate 
and interpret thermodynamic properties at the molecular level. 

The objective of statistical thermodynamics is to describe the behavior of a macro- 
scopic system in terms of microscopic properties of a system of molecular entities. 

The main idea is to evaluate an average property value and its standard deviation 
from a statistically significant number of configurations, much like a real experi- 
ment. Indeed, the temperature reading on a thermometer appears falsely constant. 
At the molecular level, a positive temperature is the result of atomic vibrations and 
collisions occurring on a time scale (e.g., IO-' s.) much lower than the sampling 
period of the experimental sensor (e.g., s.) (Fig. 3.2). Using statistical thermody- 
namic concepts, molecular simulation will do the same and perform a numerical 
experiment. Each instantaneous configuration (atomic positions and moments) of 
the system exists according to a probability distribution. The most probable will have 
the largest contribution to the computed average value. For the experimental system 
the macroscopic property X value is a time-average over a set of configurations r (t)  
sampled during the measurement time tmeas: 
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TO, 

Measurement time (1 0-3 s) >> fluctuations ( s) 

TO, 

Measurement time (1 0-3 s) >> fluctuations ( s) 
Figure 3.2 
instantaneous temperature 

Measurement of a “mean” temperature and its relation with 

But knowing all configurations T(t) is impractical because the number of particles 
(6.023 x for a mole) and thus the number of positions and moments are incom- 
mensurable. Statistical thermodynamics was developed to solve this problem statisti- 
cally. 

The first postulate of statistical thermodynamics is that “the value Ofany macro- 
scopic property is equal to its average value over a sample of the model system conjgura- 
tions,” as shown here: 

where t to ta l  is the number of sampled configurations. The notation ( )ensemble refers to 
a statistical ensemble. By definition it consists in a significant number of subensem- 
bles having the same macroscopic properties. The thermodynamic state of a macro- 
scopic system is perfectly specified by a few parameters, for example the number of 
moles N, the pressure P, and the temperature T. From them, one can derive a great 
number of properties (density, chemical potential, heat capacity, difhsion coeffi- 
cient, viscosity coefficient, etc.) through equations of state and other thermodynamic 
relations. Reproducing conditions occurring in experiments, the “canonical” NVT, 
and the “isobar-isothermal” NPTensembles are quite useful. The notations NVT and 
NPT mean, respectively, that the number of moles N + volume V + the temperature 
T and the number of moles N + the pressure P + the temperature T, are kept con- 
stant for each system configuration during simulations run in those ensembles. 

One considers that the postulate of statistical thermodynamics applies during 
simulations in a statistical ensemble on systems with a few thousands of particles 
replicated by periodic boundary conditions and that averages are made on a few 
million configurations. The sampling size and quality are often the Achilles’ heel of 
molecular simulations. 

3.3.2 
Probability Density 

Equation 2 states that configurations have the same weight, on average, and the 
same probability of existence. This is the second postulate of statistical thermody- 
namics: “All the accessible and distinct quantum statesfrom a closed system offixed energy 
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(‘microcanonic’ NVE) are equiprobable.” Equation 2 is therefore rewritten: 
I 

X(r(t))h,, = (X)ensemble = (x(r(r)) ’ Pensernble(r(r))) Second postulate (3) 
r(r) 

where pensemble(I’) is the probability density, which is the probability of finding a 
configuration with positions and moments r(t). In the NVT ensemble, any configu- 
ration probability density is connected to its energy E and to am, the total partition 
function, namely the sum over all configurations, by the Boltzmann formula: 

Two points are noteworthy: 

1. The knowledge of the partition function allows the calculation of all thermody- 
namic properties. But this can never be done fully but rather imperfectly through 
the generation of a statistically representative number of configurations. 

2. A model is required to evaluate any configuration energy in order to calculate the 
partition function. This is done through a force field. 

3.3.3 
Average, Fluctuations, and Correlation Functions 

Equation 2 is the usual mean formula to calculate an average value (molar fractions, 
etc.). Other properties (heat capacity, etc.) are calculated from the variance expressing 
the fluctuations around the mean: 

( x ) ~  Variance (5) 

Correlation coefficients give access to properties describing the dynamic state of the 
system. The nonnormalized form of the correlation coefficient over T configurations 
is: 

Ittotal 

correlxx(r) = ( x ( T ) . x ( ~ ~ ) )  = - C x(tO).x(to+~) Correlation coefficient (6 )  

The integration of the nonnormalized correlation coefficients enables one to directly 
calculate macroscopic transfer coefficients (diffusion, viscosity, or the thermal diffu- 
sivity coefficient). Their Fourier transform can be compared with experimental 
spectra. 

ro=l 
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Statistical Error 
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Molecular simulation is a numerical experiment. Consequently, the results are prone 
to systematic and statistical errors. The systematic errors must be evaluated, and 
then eliminated. They are caused by size effects, bad random number generation, 
and insufficient equilibration period (see below). Statistical errors are inversely pro- 
portional to sampling and are thus zero for infinite sampling. 

On the assumption that the Gauss law applies, the statistical error is the variance 
(Eq. (5)). However, sampling a large but finite number of configurations induces a 
correlation between the Ttotd configurations that persist during a certain number of 
successive Configurations. A statistical factor of inefficiency s is introduced to evalu- 
ate the number of correlated successive configurations. The tto ta l  configurations are 
cut into nb blocks of ‘Gb configurations upon which the average ( 4 b  and its variance 
( S * ( a b )  are computed. By selecting several increasing values of o b ,  the statistical 
inefficiency s and the statistical error 02((X)total) is evaluated: 

3.4 
Numerical Sampling Techniques 

The generation of a statistically representative sample of the model system configura- 
tions is mainly done by two techniques: molecular dynamics and the Monte Carlo 
method. They obey the principles summarized in Fig. 3.3. Both methods differ in 
their applications. The Monte Carlo method is adapted for the study of static phenom- 
ena (equilibrium and static interface) while molecular dynamics is suitable for the 
study of dynamic phenomena (shear induced flow). A phase equilibrium easily com- 
puted using Monte Carlo methods would be difficult to reach in molecular dynamics 
because of the time needed and of boundary effects near the interface. 

3.4.1 
Molecular Dynamics 

Molecular dynamics generates a trajectory by integrating the classical equation of 
motion over time steps 6t starting from an initial configuration whose particle posi- 
tions and velocity are known (Fig. 3.3). The n* configuration can be traced down the 
initial one by reverse integration. In the equation of motion (Fig. 3.3), the forces Fi 
acting on the particle of mass mi are equal to the derivative of the Vi(r) potential 
describing the interactions of the particle i with its surroundings. 
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Figure 3.3 Basic concepts of the Monte Carlo method and molecular dynamics 

The integration of the differential set of equations is carried out mainly by Verlet- 
like algorithms rather than by Gear-like algorithms, which are widespread in process 
engineering. The Verlet algorithm calculates the new particle positions r(t) using a 
3rd order Taylor expansion and replacing the second derivative by the forces thanks to 
the equation of motion, one gets a formula with no velocity term: 

F ( t )  tit2 

m 2! 
r(t + tit) = 2r(t) - r(t - tit) + - . - + o(tit4) (9) 

Velocities are computed afterwards: 

u( t )  = - - + o(st2) (10) 
dr(t) - r(t + tit) - r(t - tit) 

dt 26t 

This algorithm shows several interesting characteristics: (1) It is symmetrical with 
regards to 6t, which makes the trajectory reversible over the time. (2) It preserves the 
total energy of the system over long periods of integration, a key point to get long tra- 
jectories and deduce with accuracy some correlation functions. In particular, it is 
more precise than the Gear-like algorithms for large 6 t (the reverse is true for small 
6t )  making it suitable to simulate long trajectories, which is our goal. (3) It requires 
less data storage than Gear-like algorithms. 

Transport coefficients (self-diffusion, thermal diffisivity, and viscosity) are com- 
puted from autocorrelation coefficients, the “Green-Kubo” formulas, for instance, 
the coefficient of self diffusion Di is related to the relative particle velocities: 

Similarly, viscosity is obtained from the shear stress tensor autocorrelation coeffi- 
cient related to the pressure exerted on the particle and the thermal diffusivity is 
obtained from the energy flow autocorrelation coefficient. 
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A challenge with molecular dynamics run in a statistical ensemble where the tem- 
perature is set constant, is keeping it constant when moving and interacting particles 
inevitably heat the system. A solution is to place the system in a large thermostated 
bath periodically set in contact with the model system through techniques like the 
Andersen or Nose-Hoover methods. 

3.4.2 
Monte Carlo Method 

The Monte Carlo method generates system configurations randomly. The n* config- 
uration is related to its preceding one but it is impossible to go back to the initial con- 
figuration. 

First of all, randomness is particularly critical and has given its name to the 
method in reference to the Monte Carlo casino. The advice is to always use a pub- 
lished robust random number generator and never try to build one or use the falsely 
random precompiled “Ran” function on a computer. Systematic deviation and repeti- 
tive sequences can be checked by running simple tests. 

The second key issue is sampling (Fig. 3.4). Uniform sampling allows a good esti- 
mate of the partition function needed to compute all macroscopic properties, but at 
the expense of sampling high energy and thus improbable configurations. Preferen- 
tial sampling (or metropolis sampling) samples the configurations with the largest 
contribution in the calculation of the partition function and of averages. 

The disadvantage of metropolis sampling is that the partition function (equivalent 
to the surface under the curve) is no longer correctly evaluated. Thus, the question 
arises of finding how to generate the configurations with a correct probability distri- 
bution without having to calculate the function of partition that occurs in the defini- 
tion of the probability density (Eq. (4)). The solution is to obey the microscopic law of 
reversibility. 

Given an old (0) and a new (n) configuration, their probability densities p are pro- 
portional to exp(-E(,,)/kBT) and exp(-E,,,/kBII) in the NVTensemble (Eq. (4)). Defin- 
ing the transition probability M(o+n) of going from (0) to (n), the microscopic 
reversibility states that at equilibrium the number of transitions from (0) to (n) and 
from (n) to (0) corrected by the probability densities must be equal. 

In addition, an acceptance criterion is introduced acc(o + n) along with a(o -+ n) an 
a priori probability of trying to go from (0) to (n), which is supposed to be symmetri- 
cal (a(o + n) = a(n  + 0)): 

M(o + n) = a(o + n) . acc(o -+ n) (13) 
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Then by exploiting the symmetry of a ,  Eq. (12) becomes: 
I 

acc(o -+ n) - pg& 
acc(n -+ 0) - & = eXP ( kbT ) -(% - (14) 

In this equation, the partition function that is so difficult to calculate no longer 
appears. 

The metropolis idea is to choose acc(o+n) asymmetrically. As indicated in 
Fig. 3.5: 

If the new configuration energy is lower than the old one, the transition is always 
accepted 
If the new configuration energy is higher than the old one, one picks a random 
number c between 0 and 1: 
o if = 

o if 5 = 

5 exp(-(E(,) - E(,,))/keT), the transition is accepted, 
> exp(-(E(,, - E(o,)/kBTj, the transition is rejected. 

Applied to Eq. (14), this acceptance criterion enables one to define the acceptance 
probability of a random displacement in general and in the NVT ensemble: 

Last, a symmetrical a(o + n) is chosen to allow a sampling effective in terms of 
acceptance and efficient in terms of the configuration space. Usually one defines a 
maximum value associated with the transition, like a maximum displacement d,- 
that is fxed in order to satisfy a rate of 50 % of accepted transitions. If several move- 
ments are possible (e.g., translation, rotation, and volume), the type of movement 
will be chosen randomly from a predetermined statistical distribution. Again, one 
insists on the randomness of the choices of particle and of the type of movement in 
order to respect the microscopic reversibility. 

In ensembles other than NVT, probability densities are corrected with respect of 
the microscopic reversibility law. 

probability 

1 r\ 

Uniform sampling 

Figure 3.4 Uniform and preferential sampling 

probability 

ILA- 
t t t  t t t configurations 

Preferential sampling 



r. 

0 E,,,-E,, AE 

Figure 3.5 Metropolis preferential sampling. Criterion of acceptance 

3.4.3 
Phase Equilibrium Calculations using Cibbs Ensemble Monte Carlo 

The Gibbs ensemble was developed by Panagiotopoulos in 1987 to simulate vapor- 
liquid equilibria. Simulations are carried out in a NVT ensemble on two microscopic 
boxes located within two homogeneous phases far from any interface. Each box is 
simulated with periodic boundary conditions. Constant total volume V and total N 
particles are divided between the two phases V,, N1 and V,, N2. 

The temperature is set constant in the simulations and random movements are 
performed to satisfy the phase equilibrium conditions as described in Fig. 3.6: 

0 Displacements (translation, rotation) within each phase to ensure minimal inter- 

0 A change of volume proportional between the phases: AVl = -AV2 so that the 

0 Transfer of the particle from one box to the other to equalize the chemical poten- 

nal energy; 

total volume is constant. This should satisfy the pressure equality. 

tials. 

The acceptance probabilities of the various movements in the case of a single compo- 
nent system are given below. 

For the translation in each area: 

For the change of volume, V, is being increased by A V and V2 is being decreased by 
just as much: 

with A V chosen by generating a uniform random number 5 between 0 and 1 ; 6 V,,, 
being the change of maximum volume adjusted to obtain a fixed percentage (e.g., 
50 %) of acceptance of the move: 

A V  = < . SVma, . min(V1, V2) (18) 
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For the transfer of a particle of area 2 to area 1: 
I 

One of the main difficulties of the Gibbs ensemble Monte Carlo method resides in 
the transfer of particles to satisfy the chemical potentials equality because of the diffi- 
culty to insert polyatomic molecules in the dense phase. An alternative is to seek 
open spaces where insertion is eased into the particle. This affects randomness and 
introduces a statistical bias like the configurational bias method, which consists of 
inserting segment by segment a molecule in a phase. The probability of acceptance 
of the transfer of the particle represented by Eq. (19) is then modified by introducing 
the energy differences A Ei into weighting factors Wi that represent the total energy 
of interaction with the surroundings of the inserted molecule. For an L segment mol- 
ecule inserted in m possible directions: 

More generally, the introduction of a bias consists of defining an a pliori probability 
a(o + n), which is no longer symmetrical. Equations 14 and 15 become: 

Real bulk Initial Gibbs Ensemble Monte Carlo 
phases state 

Mavement type 

-. 

Equilibrium 
conditions 

Internal 
l.-placements AV, = -A& 

Partide 
lransfer 

............ .- ......... 

E, minimal P, = P, &,I = K,2 

Figure 3.6 
ensemble 

Principles of phase equilibrium simulations in the Gibbs 
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To conclude this section, both molecular dynamics and Monte Carlo methods 
require the calculation of the interaction energy; for molecular dynamics to derive 
forces exerted on the system particles and for the Monte Carlo method to calculate 
the acceptance criterion. The following section reviews the main features of the force 
fields enabling to calculate intra and intermolecular interaction energies. 

3.5 
Interaction Energy 

Suggested Readings 

1 Leach A. R. Molecular Modelling, Principles 
and Applications. Longmann, Harlow, UK, 
1996 
Karplus M. Porter R. N. Atoms and Mole- 
cules. Benjamin inc., New York, 1970 

2 

3.5.1 
Quantum Chemistry Models 

Quantum chemistry models are never used alone in molecular simulation because 
of the still prohibitive computation time. However, they must be considered as they 
can provide less-sophisticated molecular mechanics models with partial electronic 
charges and various dipoles useful for computing Coulombic and dipolar interac- 
tions. They can also provide accurate spring constant values describing the bonding 
intramolecular interactions associated with the various oscillatory modes within the 
molecules (stretching, bending, and torsion). 

In quantum chemistry, only atomic nuclei surrounded by revolving electrons are 
considered. Calculations provide the nuclear and electronic properties system and 
the true total energy of the system. Total energy is related to the general time depen- 
dent wave function Y (r, t) by means of the generalized Schrodinger equation: 

where H is the Hamiltonian, a mathematical operator with kinetic and potential 
energetic contributions. Apart from an analytical solution for the sole hydrogen 
atom, Schrodinger equation solutions are always approximate to some degree 
because a compromise must be made between computation time and accuracy. 
Three levels of approximation are considered, namely ab initio methods, mean field 
methods, like density functionnal theory (DFT), and semiempirical methods. 

Among ab initio methods, configuration interaction (CI) methods are the most 
accurate, but the slowest. Calculated energy values have a precision comparable with 
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experimental ones (0.001 ev). CI solutions are obtained by minimizing a linear com- 
bination of the wave functions associated with the system fundamental state and all 
excited states. 

The self consistent field molecular orbital concept considers atomic orbitals that 
represent wave functions of electrons moving within a potential generated by the 
nucleus and by an average effective potential generated by the other electrons. The 
best such wave functions are Hartree-Fock wave functions and solve the Schrodinger 
equation for a given electronic configuration (e.g., the fundamental state) without 
any empirical parameter. They can be used for CI calculations. Atomic orbital wave 
functions are approximated using Gaussian functions, which leads to peculiar 
denominations like STO-3G Hartree-Fock calculations (use of a basis set of three 
Gaussian functions). The larger the basis set, the longer and the more accurate the 
calculation. 

The semiempirical methods are the most approximated quantum methods: 
Hiickel calculations can be done on a sheet of paper; finer semiempirical models 
enable one to obtain with good precision the ionization energy, optimal conforma- 
tions, and electronic surface potential. However, they present the disadvantage of cal- 
culating the wave functions approximately by replacing various integrals by fitted 
empirical parameters. 

Between the two levels of approximation, one finds the mean field methods of the 
popular density functionnal theory. The idea is rather than to seek to solve the exact 
Hartree-Fock problem in an approximate way, one could seek to solve an approxi- 
mate problem in an exact way. That consists of modifylng the Hamiltonian operator 
and replacing the term of exchange of correlation accounting for multiatomic orbital 
interactions by the electronic density pi. The results are obtained with satisfactory 
accuracy and much faster than Hartree-Fock calculations, enabling one to even study 
periodic systems of interesting size. 

Nevertheless, all quantum mechanical calculations are performed for a static con- 
figuration of the system under 0 K conditions. But as a provider of key properties like 
electronic distribution, they should be systematically used in any molecular simula- 
tion aiming to be quantitative. 

I 

3.5.2 
Molecular Mechanics Models 

Molecular simulation uses molecular mechanics models to calculate the internal 
energy of the system. It considers that the molecules can be represented by centers 
of forces like beads and the bonds can be represented by springs (Fig. 3.7). As Fig. 
3.7 shows, the total internal energy is the sum of intramolecular or bonding interac- 
tions and of intermolecular or nonbonding interactions. The set of molecular 
mechanics parameters is called a force field. 

Intramolecular energy takes into account vibration phenomena between bonded 
centers of forces. As the beads and spring model suggests, they are described by har- 
monic functions and handle stretching, bending, torsion as well as improper rotation 
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if needed. Average parameters lo, +o and harmonic constants ki and are usually 
fitted to accurate vibration energy calculations made with quantum mechanical 
methods. 

Intermolecular energy takes into account the two-body interactions between the 
centers of forces. Three-body interactions are rarely included. Short range interac- 
tions can be described by a van der Waals potential modeled by a 12-6 Lennard-Jones 
function. The 1/rI2 term represents the repulsive contribution, which becomes sig- 
nificant below 3 A. The 1/4 term represents the attractive contribution related to the 
dispersive effect of induced dipoles. More rigorous forms may include 1/$ or l/rl’ 
terms or other functional forms (Buckingham potential, “exponential-6” potential, 
etc.) . 

Electrostatic interactions are a major contribution to intermolecular energy as they 
are long-range interactions felt up to a distance of 25 A for multicharged ions. Per- 
manent dipole and multipole are rarely included, but Coulombic interactions related 
to partial atomic charges qiand q, are a must. All electronic parameters (dipoles, par- 
tial charges) should be fitted to electronic surface potentials computed by quantum 
mechanics to improve quantitative predictions of molecular simulations. 

Hydrogen bonding interactions are either modeled explicitely by a 12-10 Lennard- 
Jones function or assumed to be implicitely taken into account in the van der Waals 
interaction. 

The functional form of the molecular mechanics energy shows that it is not a true 
energy that can be measured experimentally. Rather, for a single molecule, it is zero 
at its most stable conformation, whereas true zero energy corresponds to the pro- 
tons, neutrons, and electrons infinitely split apart. Molecular mechanics predictions 
of conformations are in excellent agreement with experimental ones. Nevertheless, 
the practical use of molecular mechanics is great because for a system of several mol- 
ecules, it computes the thermodynamic internal energy from which many interest- 
ing properties can be derived. 

Force fields can be of all-atoms (AA) type, as shown in Fig. 3.7, in which there is 
a center of force on each atom. Their names are Dreiding, Universal Force Field, 
Compass, OPLS, etc. But other types exist where atoms are grouped (e.g., -CH3) 
under a single center of force in order to reduce the computing time of short range 
interactions. This leads to united atoms (UA) force fields. 

In all cases, long-range electrostatic interaction is split in as many centers as possi- 
ble, usually on all atoms and sometimes on virtual centers. A similar idea is at the 
origin of polarizable force field like the anisotropic united atoms (AUA), which 
intends to take into account the electronic cloud shift when two particles approach: 
the charged center is displaced along the resultant of the nearby bonds. 

Since all intramolecular parameters and electrostatic parameters are systematically 
derived from quantum mechanical calculations, molecular simulations using molec- 
ular mechanics force fields have greatly improved their accuracies. However, even if 
for a particle i ,  Lennard-Jones parameters ui and E~ are, respectively, associated with 
the collision diameter (the distance for which energy is null) and with the potential 
well. They must still be fitted to some extent, as will be shown later using experimen- 
tal data (enthalpies, formation energies, densities, etc.). 
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Figure 3.7 Typical molecular mechanics force field. 

For multi component systems, the diameter ay and the energy parameter E Y  are 
obtained from pure substances using traditional mixing rules like those of Lorentz- 
Berthelot: 

These very simple rules have rarely been questioned, more proof of the strong 
physical basis of molecular simulation. Furthermore, they highlight that the study of 
a system with M different centers of forces only requires the knowledge of 2M 
parameters, whereas a traditional approach with a thermodynamic model with 
binary interaction parameters would require M( M+1)/2 such parameters. 

Even if the main functional forms of the potentials (stretching, bending, torsion, 
van der Waals and Coulomb) are present in all quoted force fields, the choice must 
be made by knowing the type of experimental data used to regress the Lennard-Jones 
parameters and the way electrostatic interaction are described. Mixing Lennard- 
Jones parameters from several force fields without any confrontation to experimental 
data is acceptable only if qualitative results are sought. 

3.6 
Running the Simulations 

How should one represent the behavior of macroscopic systems when the model sys- 
tem typically contains only a few thousand particles? The problem is solved by adopt- 
ing periodic boundary conditions that duplicate in all directions identical images of 
the model system. In molecular dynamics, care should be taken that any particle 
moving through one wall of the main image will reenter at the opposite wall with the 
same velocity. 

Notice that the interaction energy of a particle must include interaction with all 
included replicated particles. However, for long-range interactions this would 
require too much computer effort and limiting techniques are implemented: rough 
ones, such as a “cutoff distance beyond which the interaction is supposed to be null, 
or more accurate ones like the Ewald summation. In the case of a cutoff, it is neces- 
sary to include long range corrections. 
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The initial particles in the box are usually set along a periodic network to avoid 
overlaps that would result in an infinite energy. Then, a statistical ensemble and a 
sampling technique are chosen. Force field parameters are associated with all force 
centers and for molecular dynamics simulations, a statistical distribution of initial 
velocities is set. Finally, the simulation is launched. It consists of a phase of equili- 
bration and a phase of production. The purpose of the phase of equilibration is to 
bring the system from an initial configuration to a configuration representative of 
the system: random distribution of the molecules and the velocities within a system 
with imposed thermodynamic conditions (that of the chosen statistical ensemble). In 
molecular dynamics under fured temperature T, the system in gradually heated to the 
T set value. 

The phase of production starts when key properties like potential energy, pressure, 
and density fluctuate over mean values. Each configuration then generated is kept to 
calculate the macroscopic properties from averages of fluctuation to coefficients of 
correlation. As statistical error decreases when the number of configuration 
increases, at least 10' configurations should be generated. 

3.7 
Applications 

Vapor-liquid equilibrium calculations are a major field of investigation because of 
the importance of processes like distillation. Too often, data are missing. We present 
two approaches that use molecular modeling to obtain such data. The first example 
aims at computing binary interaction parameters occurring in the UNIQUAC activ- 
ity coefficient model. The second example directly computes the equilibrium compo- 
sitions using a Gibbs ensemble Monte Carlo method. 

3.7.1 
Example I: Validation of the UNIQUAC Theory 

3.7.1.1 
Overview of UNIQUAC Model 
The practical calculation of vapor-liquid equilibrium (Eq. (26)) involves an activity 
coefficient (yi to describe the nonideality of the liquid phase due to energetic 
interactions. 

By applying the thermodynamic relation of Gibbs-Duhem, one connects the individ- 
ual coefficients of activity yi with the excess gibbs energy GE: 
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The UNIQUAC model proposes an expression for the G E  with two contributions: a 
combinatorial part that describes the dominant entropic contribution and a residual 
part that mainly occurs due to the intermolecular forces responsible for the mixing 
enthalpy. The combinatorial part is related to the composition xi and to the molecule 
shape and size. It requires only pure component data. The residual part depends, in 
addition, on the interaction forces embedded into two binary interaction parameters 
Ay and Aji. 

I 

GE 

combinatorial residual 
RT 

Parameters ri, qi, and qi' are molecular constants for each pure component i, related 
respectively to its size, its external geometrical surface, and its interaction surface. q' 
can be different from q, in particular for polar molecules. The model system upon 
which the UNIQUAC theory was developped considers interacting molecules. Then, 
the two binary interaction parameters Ay and A,i can be expressed in terms of interac- 
tion energies Uv between dissimilar molecules i and j, and Uii between similar mole- 
cules i :  

where NA is the Avogadro number. 
The Wilson activity coefficient model also proposes two binary interaction parame- 

ters. It is a simplification of the UNIQUAC model in which parameters r, q,  and q' 
are all set to unity. Interaction surfaces are not taken into account and molar vol- 
umes are eliminated in the equation. 

The relationship between the Wilson and UNIQUAC parameters is as follows: 

where V; and yare  the molar volumes of components i and j. 
The traditional approach consists of regressing Av and A,i from experimental data, 

with all drawbacks associated with this approach: data specific parameters, poor 
extrapolation capacity, temperature and pressure dependency, and the need of exper- 
imental data. A few years ago, an attempt to directly calculate the binary interaction 
parameters was made and is reported below. 
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3.7.1.2 
Calculation Using Molecular Mechanics UNIQUAC Binary Interaction Parameters 
In 1994, Jonsdottir, Rasmussen and Fredenslund (1994) computed interaction ener- 
gies between isolated couples of molecules. They used molecular mechanics models 
not in a molecular simulation perspective, but rather like a quantum mechanical 
approach. For a given orientation of the two molecules, an energy minimization was 
run to reach a stable conformation. Many orientations are selected and the mean 
interaction energy Ui, and U, is evaluated by weighting each value using its Boltz- 
mann factor exp(- Uti/kBT). 

This corresponds to a rough sampling, obviously not statistically representative 
as only a few hundred couples are investigated. This questions the validity of the 
first statistical thermodynamic postulate that equals the ensemble average and mac- 
roscopic time-average value. Rightfully, the authors claim to perform a molecular 
static approach in between quantum mechanics and molecular simulation 
approaches. The consistent force field parameters are optimized for the alkanes and 
ketones that are the molecules of interest but no value in particular and no partial 
atomic charge values are provided. Alkane conformers are taken into account, how- 
ever, which is an advantage of molecular modeling approaches over classical parame- 
ter fitting. 

The Uii and U, interaction energies are computed as the difference between the 
molecules couple energy and the energy of each isolated molecule: 

Simulation results are used with the UNIQUAC equation to predict vapor-liquid 
equilibrium data (Eq. (26)), which are compared with experimental ones: 

0 For the alkane/alkane systems (n-butaneln-pentane; n-hexane/cyclohexane (Fig. 
3.8) and n-pentane/n-hexane), the relative error ranges from 1.1 to 4% for the 
pressure and the absolute error tandis ranges from 0.011 to 0.042 for the molar 
fractions. 

0 For the alkanelketones (n-pentane/acetone; acetone/cyclohexane (Fig. 3.8); 
cyclohexane/cyclohexanone), the relative error ranges from 4.3 to 17.6 % for 
the pressure and the absolute error ranges from 0.016 to 0.042 for the molar frac- 
tions. 

In conclusion, the error increases along with the molecule polarity. One may ques- 
tion the force field ability to handle electrostatic interaction in addition to likely insuf- 
ficient sampling of the system configurations. Finally, the authors tested the Wilson 
model and found errors four times greater for the n-pentane/acetone system. They 
concluded that the UNIQUAC equation has a better physical basis than that of the 
Wilson equation. This result was foreseeable since the Wilson model is a simplified 
form of the UNIQUAC model. 
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Figure 3.8 Bubble curve at 298.15 K for the n-hexane/cyclohexane (top) 
and acetone/cyclohexane (bottom) systems. Solid line: simulation. Stars: 
experimental data (reprinted from Jonsdottir, Rasmussen and Fredens- 

lund (1994) with permission from Elsevier) 

3.7.1.3 
Ab lnitio Calculation of UNIQUAC Binary Interaction Parameters 
Compared to Jonsdottir, Rasmussen and Fredenslunds (1994) work, Sum and Sand- 
ler (1999) used quantum mechanics models to improve the representation of electro- 
static interactions. Often in such calculations, no rigorous sampling is performed, 
the emphasis being made on minimizing the total system energy. 

For each binary system, eight molecules are considered (four of each). A stable sys- 
tem conformation is found by minimization using semiempirical methods. Then the 
energy is minimized using ab initio methods (Hartree-Fock method with an 
extended basis set 6-3119<*G(3d, 2p)). Couples of molecules are then isolated and 
their interaction energy is computed according to Eq. (31). The average interaction 
energy is computed at best on 10 pairs of molecules. Then binary interaction param- 
eters are derived for the UNIQUAC and Wilson equation, which enables one to com- 
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pute vapor-liquid equilibrium data using Eq. (26).  The systems studied are highly 
polar: water-methanol; water-ethanol; water-formic acid; water-acetic acid, and water- 
acetone. Simulation data are then compared with experimental data and with predic- 
tion using the activity coefficient group contribution method UNIFAC. 

The results obtained for the Wilson model are never quantitative and are even 
qualitatively wrong as it does not manage to reproduce the azeotropic behavior of the 
water-ethanol mixture (Fig. 3.9). On the other hand, despite the poor sampling, sim- 
ulations with the UNIQUAC model give good quantitative results, comparable with 
experimental data and UNIFAC predicted data. Two points are significant: no experi- 
mental data were used at any stage and no temperature or pressure conditions were 
set, which is an advantage over regressed binary parameters. Indeed, the same set of 
water-acetone parameters is used to generate accurate data over a large temperature 
and pressure range (Fig. 3.9). 

In conclusion, when no experimental data are available, vapor-liquid equilibrium 
data can be predicted using UNIQUAC binary interaction parameters directly com- 
puted with molecular modeling methods. If the sampling issue is not yet settled, 
quantum mechanics methods, which accurately describe electronic distribution, 
have demonstrated their use, while force field approaches did not for polar systems. 

The next example shows that accurate predictions can be made with carefully set 
force field approaches using efficient sampling of phase equibrium systems thanks 
to the Gibbs ensemble Monte Carlo method. 
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Figure 3.9 Vapor-liquid equilbriurn at 298.15 K for the water-ethanol 
and water-acetone systems (reprinted with permission from Sum and 
Sandler (1999) 
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3.7.2 
Example 2: Direct Prediction of Nitrile Vapor-Liquid Equilibrium 

I 

As highlighted before, the development of molecular simulation as a systematic pro- 
vider of accurate physicochemical data is impeded by the availability of accurate force 
fields. In the 1980s, force fields were derived to reproduce physicochemical data of 
monophase systems or devoted to macromolecules of biological interest (amino 
acids, proteins, etc.). But the simulation of multiphase systems was neglected until 
the Gibbs ensemble Monte Carlo method and the active development of new AA-, 
AUA-, and UA-type force fields like, OPLS by Jorgensen, Madura and Swenson 
(1984), Trappe by Martin and Siepmann (1998), NERD by Nath, Escobedo and de 
Pablo (1998), Exp6 by Emngton and Panagiotopoulos (1999), and AUA by Toxvaerd 
(1990, 1997) added to this world effort. 

As stated before, force field development consists of deriving short range van der 
Waals interaction parameters like the (T and E Lennard-Jones parameters. But the 
challenge is to obtain generic values that can be used for many molecules, much like 
in a group contribution approach, and for many properties with various sampling 
techniques, such as phase equilibrium data (using the Gibbs ensemble Monte Carlo 
method, transport coefficients, and molecular dynamics) and absorption isotherms 
(Monte Carlo). By comparison, no existing macroscopic model can compute such a 
wide variety of properties using so few parameters. 

In the AUA4 model, generic parameters have been derived for linear, branched, 
and cyclic alkanes, aromatics, hydroxyl, carboxyl, and thiol groups (Delhommelle, 
Granucci, Brenner et al. 1999; Ungerer, Beauvais, Delhommelle et al. 2000; Delhom- 
melle, Tschinvitz, Ungerer et al. 2000 Bourrasseau, Ungerer, Boutin et al. 2002; 
Bourrasseau, Ungerer and Boutin 2002). For the nitrile group -C=N, we proceeded 
as follows (Hadj-Kali, Gerbaud, Joulia et al. 2003): 

1. Quantum mechanics calculations using DFT for the acetonitrile molecule, for 
which many experimental data are available, to find a stable conformation, deter- 
mine harmonic constants for the intramolecular contribution of the force field 
potential, and determine discrete partial atomic charges from quantum electro- 
static surface potentials. 

2. Setting up the acetonitrile (CH,CN) force field for which CH3 Lennard-Jones 
parameters are taken from the generic databank of the AUA4 force field. The 
same general expression shown in Fig. 3.7 is used. 

3. Running Gibbs ensemble Monte Carlo simulations to identify missing ( E ~ ,  oN) 
and ( E C .  ac) Lennard-Jones parameters of the nitrile group. The acetonitrile mole- 
cule is fully flexible and long-range electrostatic interactions were evaluated with 
a cutoff and tail corrections. Reference experimental data (Francesconi, Franck 
and Lentz 1975; Chakhmuradov and Guseinov 1984; Kratzke and Muller 1985; 
Warowny 1994) are the saturated vapor pressure ln(Pat) at 433.15 and 453.15 K, 
the vaporization enthalpy AH,,,, and the liquid density elis at 273.15, 298.15, 
433.15, and 453.15 K. The optimization method is a simple gradient method and 
the objective function used is a square mean root function with uncertainty values 
set equal to 0.1 for ln(Psat), 1 kj mol-' for AHvap, and 10 kg m-3 for elis. 
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4. Once aN, ON) and EC, ac) values reproduce acetonitrile data accurately, their gen- 
ericity is evaluated by predicting, with no further parameter adjustment, vapor- 
liquid equilibrium data of other linear nitriles (propionitrile, butyronitrile). In 
these molecules aN, u N )  and ac, ac) are taken as being equal to the values 
obtained for acetonitrile, whereas CH2 and CH3 Lennard- Jones parameters are 
extracted from the AUA4 databank. The harmonic constant, partial charges, and 
stable conformations are obtained from quantum DFT calculations. 

DFT electrostatic surface potentials are fitted to partial atomic charges using the simple 
Mulliken population analysis, which equally splits the electronic distribution according 
to the van der Waals radius, or using the MEP method, which mimics the electrostatic 
potential surface with a least square method. As shown below, the MEP analysis gives 
the best results, but does not pass the genericity test. Each atom bears a partial charge. 

All quantum calculated conformations and dipolar moments agree with experi- 
mental data (Goldstein, Buyong, Lii et al. 1996) and harmonic constants agree with 
literature reference values (Goldstein, Buyong, Lii et al. 1996; Ungerer, Beauvais, 
Delhommelle et al. 2000). 

Parameter regression requires that each optimization cycle (two are used) per- 
forms 16 Gibbs ensemble Monte Carlo simulations to compute the gradients varying 

+ 6cC, ac)] for each of the four temperatures considered. 
Each simulation takes 20 h on a Linux Pentium IV, 1.9 GHz with 512 Mb RDRAM. 

Equilibration period requires lo6 configurations and the production period ranges 
from 2.3 X lo6 to 4.5 X lo6 configurations. 

Results of the optimization of the Lennard-Jones parameters are shown in Table 3.1. 
As indicated below (Fig. 3.10), the set of MEP parameters gives the best results for 

the acetonitrile with a mean standard deviation over all reference values of 1.9 % and 
a very good estimate of the critical point. With an underestimation of the vapor den- 
sities, an overestimation of liquid densities at elevated temperature and a poor esti- 
mation of the critical point, the Mulliken set gives an error of 3.1 %. 

But MEP generic character is poor, whereas the Mulliken one is excellent for pro- 
pionitrile and butyronitrile vapor pressure predictions (Fig. 3.11). 

A possible explanation for the poor MEP predictions lies in the charge values com- 
puted for the propionitrile and n-butyronitrile (Hadj-Kali 2004). The least square fit- 
ting of the quantum calculated electrostatic potential surface has in that case led to 
unphysical values with positive nitrogen atomic charge, in contradiction with the 
well-known electronegativity character of this atom. Also, the MEP nitrile uc parame- 
ter value, which is too elevated compared to other uc values associated with other car- 
bonated chemical groups of the AUA4 force field (Table 3.2). Correctly, the oc value 
with the Mulliken distribution follows a decreasing trend as the carbonated chemical 
group size decreases. 

So, two criteria for a generic set of Lennard-Jones parameters are able to model the 
van der Waals interaction are: (1) physically meaningful values of the Lennard-Jones 
u and E parameters and (2) physically meaningful set of atomic charges representing 
the electrostatic potential surface of the molecule. The importance of representation 
of the electrostatic potential surface has also been acknowledged in COSMO 

[(EN 6 E N ,  ON); (EC, OC)]? [(EN, 6ON); (EC, OC)],  [(EN, ON); (ECt OC 6aC)], [(EN! ON); (EC 
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approaches for the computation of physical properties, which recently won the first 
industrial fluid properties simulation challenge (Sander 2003; Case, Chaka, Friend 
et al. 2004). 

Critical points in Fig. 3.10 are obtained using the king method (Frenkel and Smit 
1996). For direct simulations near the critical point, it is difficult to achieve conver- 
gence. As shown in Fig. 3.12 for the density versus configuration plot for a simple 
Lennard-Jones fluid, the fluctuations increase and boxes interchange as the reduced 
temperature nears 1. Experimental observations of a similar phenomenon are well 
known and demonstrate that the molecular simulation is indeed a numerical experi- 
ment that can not only compute accurate physicochemical data, but also behave as an 
efficient sensor of system behavior on a molecular scale. 

I 

+ A simulations (Mulliken charges) 

3.8 
Conclusions 

300 4) 

Molecular modeling is an emerging discipline for the study of energetic interaction 
phenomena. A molecular simulation performs numerical experiments that enable 
one to obtain accurate physicochemical data provided sampling and energy force 
field issues are addressed carefully. Still computationally demanding, molecular 
modeling tools will likely not be used “online” or be incorporated in process simula- 
tors. However, rather like computer fluid dynamics tools, they should be used in par- 
allel with existing efficient simulation tools in order to provide information on the 
molecular scale about energetic interaction phenomena and increase the knowledge 
of processes that must manufacture ever more demanding end products. 

b 
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critical point for a Lennard-Jones fluid 

Density versus configuration number in the vicinity of the 

Table 3.1 Optimal ( E ~ ,  uN) and (EC, (JC) parameter values for the nitrile group. Mulliken charges 

E C / ~  (K) € N l k O  (K) UC (A) uN 

Charges MEP optimization 50.677 65.470 3.5043 3.3077 

Charges Mulliken optimization 95.52 162.41 3.2183 3.5638 
~~ ~ 

Table 3.2 Comparison of oC parameters for various chemical groups in the A U M  force field 

~~ 

AUQ chemical group -CH, =CH, =CH -C MEP -C Mulliken 

charges charges 

3.6072 3.4612 3.3625 3.5043 3.2183 (Jc (4 
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