
2625

CHAPTER 102
Stochastic Optimization

ANTON J. KLEYWEGT

ALEXANDER SHAPIRO
Georgia Institute of Technology

1. INTRODUCTION 2625

2. OPTIMIZATION UNDER
UNCERTAINTY 2625

3. STOCHASTIC PROGRAMMING 2628

3.1. Stochastic Programming with
Recourse 2629

3.2. Sampling Methods 2631

3.3. Perturbation Analysis 2632

3.4. Likelihood Ratio Method 2633

3.5. Simulation-Based Optimization
Methods 2634

4. DYNAMIC PROGRAMMING 2636

4.1. Basic Concepts in Dynamic
Programming 2636
4.1.1. Decision Times 2636
4.1.2. States 2637
4.1.3. Decisions 2637

4.1.4. Transition Probabilities 2638
4.1.5. Rewards and Costs 2638
4.1.6. Policies 2639
4.1.7. Example 2640

4.2. Finite Horizon Dynamic
Programs 2641
4.2.1. Optimality Results 2641
4.2.2. Finite Horizon

Algorithm 2641
4.2.3. Structural Properties 2642

4.3. Infinite Horizon Dynamic
Programs 2643

4.4. Infinite Horizon Discounted
Dynamic Programs 2643
4.4.1. Optimality Results 2643
4.4.2. Infinite Horizon

Algorithms 2644

4.5. Approximation Methods 2645

REFERENCES 2646

1. INTRODUCTION
Decision makers often have to make decisions in the presence of uncertainty. Decision problems are
often formulated as optimization problems, and thus in many situations decision makers wish to solve
optimization problems that depend on parameters which are unknown. Typically, it is quite difficult
to formulate and solve such problems, both conceptually and numerically. The difficulty already starts
at the conceptual stage of modeling. Often there are a variety of ways in which the uncertainty can
be formalized. In the formulation of optimization problems, one usually attempts to find a good trade-
off between the realism of the optimization model, which affects the usefulness and quality of the
obtained decisions, and the tractability of the problem, so that it can be solved analytically or nu-
merically. As a result of these considerations, there are a large number of different approaches for
formulating and solving optimization problems under uncertainty. It is impossible to give a complete
survey of all such methods in one article. Therefore, this chapter aims only to give a flavor of
prominent approaches to optimization under uncertainty.

2. OPTIMIZATION UNDER UNCERTAINTY
To describe some issues involved in optimization under uncertainty, we start with a static optimization
problem. Suppose we want to maximize an objective function G(x, �), where x denotes the decision

Handbook of Industrial Engineering: Technology and Operations Management, Third Edition.
Edited by Gavriel Salvendy Copyright © 2001 John Wiley & Sons, Inc.

2626 METHODS FOR DECISION MAKING

to be made, � denotes the set of all feasible decisions, � denotes an outcome that is unknown at the
time the decision has to be made, and � denotes the set of all possible outcomes.

There are several approaches for dealing with optimization under uncertainty. Some of these
approaches are illustrated next in the context of an example.

Example 1 (Newsvendor problem). Many companies sell seasonal products, such as fashion ar-
ticles, airline seats, Christmas decorations, magazines, and newspapers. These products are charac-
terized by a relatively short selling season, after which the value of the products decreases
substantially. Often a decision has to be made how much of such a product to manufacture or purchase
before the selling season starts. Once the selling season has started, there is not enough time remaining
in the season to change this decision and implement the change, so that at this stage the quantity of
the product is given. During the season the decision maker may be able to make other types of
decisions to pursue desirable results, such as to change the price of the product as the season pro-
gresses and sales of the product take place. Such behavior is familiar in many industries. Another
characteristic of such a situation is that the decisions have to be made before the eventual outcomes
become known to the decision maker. For example, the decision maker has to decide how much of
the product to manufacture or purchase before the demand for the product becomes known. Thus,
decisions have to be made without knowing which outcome will take place.

Suppose that a manager has to decide how much of a seasonal product to order. Thus, the decision
variable x is a nonnegative number representing the order quantity. The cost of the product to the
company is c per unit of the product. During the selling season the product can be sold at a price
(revenue) of r per unit of the product. After the selling season, any remaining product can be disposed
of at a salvage value of s per unit of the product, where typically s � r. The demand D for the
product is unkown at the time the order decision x has to be made. If the demand D turns out to be
greater than the order quantity x, then the whole quantity x of the product is sold during the season,
and no product remains at the end of the season, so that the total revenue and the profit turn out to
be rx and rx � cx � (r � c)x, respectively. If the demand D turns out to be less than the order
quantity x, then quantity D of the product is sold during the season, and the remaining amount of
product at the end of the season is x � D, so that the total revenue and the profit turn out to be rD
� s(x � D) and rD � s(x � D) � cx � (s � c)x � (r � s)D, respectively. Thus, the profit is given
by

(s � c)x � (r � s)D if x � D
G(x, D) � (1)�(r � c)x if x � D

The manager would like to choose x to maximize the profit G(x, D), but the dilemma is that D is
unknown, or in other words is uncertain, at the time the decision should be made.

Note that if r � c and s � c, then the company can make no profit from buying and selling the
product, so that the optimal order quantity is x* � 0, irrespective of what the demand D turns out
to be. Also, if s � c, then any unsold product at the end of the season can be disposed of at a value
at least equal to the cost of the product, so that it is optimal to order as much as possible, irrespective
of what the demand D turns out to be. These, of course, are obvious cases. Therefore, we assume in
the remainder of this example that s � c � r. Under this assumption, for any given D � 0, the
function G(�, D) is a piecewise linear function with positive slope r � c for x � D and negative
slope s � c for x � D. Therefore, if the demand D is known at the time the order decision has to
be made, then the best decision is to choose order quantity x* � D.

However, if D is not known, then the problem becomes more difficult. Sometimes a manager
may want to hedge against the worst possible outcome. Suppose the manager thinks that the demand
D will turn out to be some number in the interval [a, b] with a � b, that is, the lower and upper
bounds for the demand are known to the manager. In that case, in order to hedge against the worst
possible scenario, the manager will choose the value of x that gives the best profit under the worst
possible outcome. That is, the manager will maximize the function g(x) � G(x, D) over xminD�[a,b]

� 0. This leads to the following max-min problem:

max min G(x, D) (2)
x�0 D�[a,b]

It is not difficult to see that g(x) � G(x, a), and hence x* � a is the optimal solution from the point
of view of the worst-case scenario. Clearly, in many cases this will be an overly conservative decision.

Sometimes a manager may want to make the decision that under the worst possible outcome will
still appear as good as possible compared with what would have been the best decision with hindsight,
that is, after the outcome becomes known. For any outcome of the demand D, let

STOCHASTIC OPTIMIZATION 2627

g*(D) � max G(x, D) � (r � c)D
x�0

denote the optimal profit with hindsight, also called the optimal value with perfect information. The
optimal decision with perfect information, x* � D, is sometimes called the wait-and-see solution.
Suppose the manager chose to order quantity x, so that the actual profit turned out to be G(x, D).
The amount of profit that the company missed out on because of a suboptimal decision is given by
g*(D) � G(x, D). This quantity is often called the absolute regret. The manager may want to choose
the value of x that minimizes the absolute regret under the worst possible outcome. For any decision
x, the worst possible outcome is given by [g*(D) � G(x, D)]. Since the manager wants tomaxD�[a,b]

choose the value of x that minimizes the absolute regret under the worst possible outcome, this leads
to the following min-max problem:

min max [g*(D) � G(x, D)] (3)
x�0 D�[a,b]

The optimal solution of this problem is x* � [(c � s)a � (r � c)b] / (r � s). Note that x* is a convex
combination of a and b, and thus a � x* � b. The larger the salvage loss per unit c � s, the closer
x* is to a, and the larger the profit per unit r � c, the closer x* is to b. That seems to be a more
reasonable decision than x* � a.

It was assumed in both variants of the worst-case approach discussed above that no a priori
information about the demand D was available to the manager except the lower and upper bounds
for the demand. In some situations this may be a reasonable assumption and the worst-case approach
could make sense if the range of the demand is known and is not too large.

Another approach to decision making under uncertainty, different from the worst-case approaches
described above, is the stochastic optimization approach, on which we focus in the remainder of this
article. Suppose that the demand D can be viewed as a random variable. This means that the prob-
ability distribution of D is known, or at least can be estimated, by using historical data and /or a
priori information available to the manager. Let F(w) � �(D � w) be the corresponding cumulative
distribution function (cdf) of D. Then one can try to optimize the objective function on average, that
is, to maximize the expected profit �[G(x, D)] � G(x, w) dF(w). This leads to the stochastic��0

program

max {g(x) � �[G(x, D)]} (4)
x�0

In the present case it is not difficult to solve the above optimization problem in a closed form.
For any D � 0, the function G(�, D) is concave (and piecewise linear). Therefore, the expected value
function g(�) is also concave. Suppose for a moment that F (�) is continuous at a point x � 0. Then

x �

g(x) � � [(s � c)x � (r � s)w] dF(w) � � (r � c)xdF(w)
0 x

Using integration by parts it is possible to calculate that

x

g(x) � (r � c)x � (r � s) � F(w) dw (5)
0

The function g(�) is concave, and hence continuous, and therefore Eq. (5) holds even if F (�) is
discontinuous at x. It follows that g(�) is differentiable at x iff F (�) is continuous at x, in which case

g�(x) � r � c � (r � s)F(x) (6)

Consider the inverse F�1(�) � min{x : F(x) � �} function of the cdf F, which is defined for � �
(0, 1). (F�1(�) is called the �-quantile of the cdf F.) Since g(�) is concave, a necessary and sufficient
condition for x* � 0 to be an optimal solution of problem (4), is that g�(x*) � 0, provided that g(�)
is differentiable at x*. Note that because s � c � r, it follows that 0 � (r � c) / (r � s) � 1.
Consequently, an optimal solution of (4) is given by

r � c
�1x* � F (7)� �r � s

This holds even if F (�) is discontinuous at x*.

2628 METHODS FOR DECISION MAKING

Clearly the above approach explicitly depends on knowledge of the probability distribution of the
demand D. In practice, the corresponding cdf F (�) is never known exactly and can be approximated
(estimated) at best. Nevertheless, often the obtained optimal solution is robust with respect to per-
turbations of the cdf F (�).

Another point worth mentioning is that by solving (4), the manager tries to optimize the profit
on average. However, the realized profit G(x*, D) could be very different from the corresponding
expected value g(x*), depending on the particular realization of the demand D. This may happen if
G(x*, D), considered as a random variable, has a large variability that could be measured by its
variance Var[G(x*, D)]. Therefore, if the manager wants to hedge against such variability, he may
consider the following optimization problem

max {g (x) � �[G(x, D)] � � Var[G(x, D)]} (8)�
x�0

The coefficient � � 0 represents the weight given to the conservative part of the decision. If � is
large, then the above optimization problem tries to find a solution with minimal profit variance, while
if � � 0, then problem (8) coincides with problem (4). Note that since the variance Var[G(x, D)] �
�[(G(x, D) � �[G(x, D)])2] is itself an expected value, from a mathematical point of view, problem
(8) is similar to the expected value problem (4). Thus, the problem of optimizing the expected value
of an objective function G(x, D) is very general—it could include the means, variances, quantiles,
and almost any other aspects of random variables of interest.

The following deterministic optimization approach is also often used for decision making under
uncertainty. The random variable D is replaced by its mean 	 � �[D], and then the following
deterministic optimization problem is solved:

max G(x,) (9)
x�0

A resulting optimal solution is sometimes called an expected value solution. Of course, this ap-x
proach requires that the mean of the random variable D be known to the decision maker. In the
present example, the optimal solution of this deterministic optimization problem is � 	. Note thatx
the mean solution can be very different from the solution x* given in (7). It is well known that thex
quantiles are much more stable to variations of the cdf F than the corresponding mean value. There-
fore, the optimal solution x* of the stochastic optimization problem is more robust with respect to
variations of the probability distributions than an optimal solution of the corresponding deterministicx
optimization problem. This should be not surprising, since the deterministic problem (9) can be
formulated in the framework of the stochastic optimization problem (4) by considering the trivial
distribution of D being identically equal to 	.

Also note that, for any x, G(x, D) is concave in D. As a result, it follows from Jensen’s inequality
that G(x,) � �[G(x, D)], and hence

max G(x,) � max �[G(x, D)]
x�0 x�0

Thus, the optimal value of the deterministic optimization problem is biased upward relative to the
optimal value of the stochastic optimization problem.

One can also try to solve the optimization problem

max G(x, D) (10)
x�0

for different realizations of D, and then take the expected value of the obtained solutions as the final
solution. In the present example, for any realization D, the optimal solution of (10) is x � D, and
hence the expected value of these solutions, and final solution, is � �[D]. Note that this approachx
does not have a clear rationale, and moreover, in many optimization problems it may not make sense
to take the expected value of the obtained solutions. This is usually the case in optimization problems
with discrete solutions, for example, when a solution is a path in a network, there does not seem to
be a useful way to take the average of several different paths. Therefore, we do not discuss this
approach further.

3. STOCHASTIC PROGRAMMING
The discussion of the above example motivates us to introduce the following model optimization
problem, referred to as a stochastic programming problem:

STOCHASTIC OPTIMIZATION 2629

min {g(x) � �[G(x, �)]} (11)
x��

(We consider a minimization rather than a maximization problem for the sake of notational conven-
ience.) Here � � �n is a set of permissible values of the vector x of decision variables and is referred
to as the feasible set of problem (11). Often � is defined by a (finite) number of smooth (or even
linear) constraints. In some other situations the set � is finite. In that case problem (11) is called a
discrete stochastic optimization problem (this should not be confused with the case of discrete prob-
ability distributions). Variable � represents random (or stochastic) aspects of the problem. Often �
can be modeled as a finite dimensional random vector, or in more involved cases as a random process.
In the abstract framework we can view � as an element of the probability space (�, F, P) with the
known probability measure (distribution) P.

It is also possible to consider the following extensions of the basic problem (11).

• One may need to optimize a function of the expected value function g(x). This happened, for
example, in problem (8), where the manager wanted to optimize a linear combination of the
expected value and the variance of the profit. Although important from a modeling point of
view, such an extension usually does not introduce additional technical difficulties into the
problem.

• The feasible set can also be defined by constraints given in a form of expected value functions.
For example, suppose that we want to optimize an objective function subject to the constraint
that the event {h(x, W) � 0}, where W is a random vector with a known probability distribution
and h(�, �) is a given function, should happen with a probability not bigger than a given number
p � (0, 1). Probability of this event can be represented as the expected value �[
 (x, W)], where

1 if h(x, w) � 0

 (x, w) � �0 if h(x, w) � 0

Therefore, this constraint can be written in the form �[
 (x, W)] � p. Problems with such probabilistic
constraints are called chance constrained problems. Note that even if the function h(�, �) is continuous,
the corresponding indicator function
 (�, �) is discontinuous unless it is identically equal to zero or
one. Because of that, it may be technically difficult to handle such a problem.

• In some cases the involved probability distribution P� depends on parameter vector �, whose
components also represent decision variables. That is, the expected value objective function is
given in the form

g(x, �) � � [G(x, �)] � � G(x, �) dP (�) (12)� �
�

By using a transformation it is sometimes possible to represent the above function g(�) as the expected
value of a function, depending on x and �, with respect to a probability distribution that is independent
of �. We shall discuss such likelihood ratio transformations in Section 3.4

The above formulation of stochastic programs is somewhat too general and abstract. In order to
proceed with a useful analysis we need to identify particular classes of such problems that on one
hand are interesting from the point of view of applications and on the other hand are computationally
tractable. In the following sections we introduce several classes of such problems and discuss various
techniques for their solution.

3.1. Stochastic Programming with Recourse

Consider again problem (4) of the newsvendor example. We may view that problem as a two-stage
problem. At the first stage a decision should be made about the quantity x to order. At this stage the
demand D is not known. At the second stage a realization of the demand D becomes known and,
given the first stage decision x, the manager makes a decision about the quantities y and z to sell at
prices r and s, respectively. Clearly the manager would like to choose y and z in such a way as to
maximize the profit. It is possible to formulate the second stage problem as the simple linear program

max ry � sz subject to y � D, y � z � x, y � 0, z � 0 (13)
y,z

The optimal solution of the above problem (13) is y* � min{x, D}, z* � max{x � D, 0}, and its

2630 METHODS FOR DECISION MAKING

optimal value is the profit G(x, D) defined in (1). Now at the first stage, before a realization of the
demand D becomes known, the manager chooses a value for the first-stage decision variable x by
maximizing the expected value of the second-stage optimal profit G(x, D).

This is the basic idea of a two-stage stochastic program with recourse. At the first stage, before
a realization of the random variables � becomes known, one chooses the first-stage decision variables
x to optimize the expected value g(x) � �[G(x, �)] of an objective function G(x, �) that depends on
the optimal second stage objective function.

A two-stage stochastic linear program with fixed recourse is a two-stage stochastic program of
the form

Tmin c x � �[Q(x, �)]x (14)
s.t. Ax � b, x � 0

where Q(x, �) is the optimal value of the second-stage problem

Tmin q(�) yy (15)
s.t. T(�)x � Wy � h(�), y � 0

The second-stage problem depends on the data �(�) � (q(�), h(�), T(�)), elements of which can be
random, while the matrix W is assumed to be known beforehand. The matrices T(�) and W are called
the technology and recourse matrices, respectively. The expectation �[Q(x, �)] is taken with respect
to the random vector � � �(�), whose probability distribution is assumed to be known. The above
formulation originated in the works of Dantzig (1955) and Beale (1955).

Note that the optimal solution y* � y*(�) of the second-stage problem (15) depends on the
random data � � �(�) and therefore is random. One can write Q(x, �(�)) � q(�)Ty*(�).

The next question is how one can solve the above two-stage problem numerically. Suppose that
the random data have a discrete distribution with a finite number K of possible realizations �k � (qk,
hk, Tk), k � 1, . . . , K, (sometimes called scenarios), with the corresponding probabilities pk. In that
case, �[Q(x, �)] � pkQ(x, �k), whereK�k�1

TQ(x, �) � min {q y : T x � Wy � h , y � 0}k k k k k k k

Therefore, the above two-stage problem can be formulated as one large linear program:

KT Tmin c x � p q y�k�1 k k k

s.t. Ax � b (16)
T x � Wy � hk k k

x � 0, y � 0, k � 1, . . . , Kk

The linear program (16) has a certain block structure that makes it amenable to various decomposition
methods. One such decomposition method is the popular L-shaped method developed by Van Slyke
and Wets (1969). We refer the interested reader to the recent books by Kall and Wallace (1994) and
Birge and Louveaux (1997) for a thorough discussion of stochastic programming with recourse.

The above numerical approach works reasonably well if the number K of scenarios is not too
large. Suppose, however, that the random vector � has m independently distributed components, each
having just three possible realizations. Then the total number of different scenarios is K � 3m. That
is, the number of scenarios grows exponentially fast in the number m of random variables. In that
case, even for a moderate number of random variables, say m � 100, the number of scenarios becomes
so large that even modern computers cannot cope with the required calculations. It seems that the
only way to deal with such exponential growth of the number of scenarios is to use sampling. Such
approaches are discussed in Section 3.2.

It may also happen that some of the decision variables at the first or second stage are integers,
such as binary variables representing ‘‘yes’’ or ‘‘no’’ decisions. Such integer (or discrete) stochastic
programs are especially difficult to solve, and only very moderate progress has been reported so far.
A discussion of two-stage stochastic integer programs with recourse can be found in Birge and
Louveaux (1997). A branch and bound approach for solving stochastic discrete optimization problems
was suggested by Norkin et al. (1998). Schultz et al. (1998) suggested an algebraic approach for
solving stochastic programs with integer recourse by using a framework of Gröbner basis reductions.
For a recent survey of mainly theoretical results on stochastic integer programming see Klein Ha-
neveld and Van der Vlerk (1999).

Conceptually the idea of two-stage programming with recourse can be readily extended to mul-
tistage programming with recourse. Such an approach tries to model the situation where decisions

STOCHASTIC OPTIMIZATION 2631

are made periodically (in stages) based on currently known realizations of some of the random
variables. An H-stage stochastic linear program with fixed recourse can be written in the form

1 1 2 2 H Hmin c x � �{min c (�)x (�) � . . . � �[min c (�)x (�)]}
1 1 1s.t. W x � h

1 1 2 2 2T (�)x � W x (�) � h (�) (17)
......

H�1 H�1 H H HT (�)x (�) � W x (�) � h (�)
1 2 Hx � 0, x (�) � 0, . . . , x (�) � 0

The decision variables x2(�), . . . , xH(�) are allowed to depend on the random data �. However, the
decision xt(�) at time t can only depend on the part of the random data that is known at time t (these
restrictions are often called nonanticipativity constraints). The expectations are taken with respect to
the distribution of the random variables whose realizations are not yet known.

Again, if the distribution of the random data is discrete with a finite number of possible reali-
zations, then problem (17) can be written as one large linear program. However, it is clear that even
for a small number of stages and a moderate number of random variables the total number of possible
scenarios will be astronomical. Therefore, a current approach to such problems is to generate a
reasonable number of scenarios and solve the corresponding (deterministic) linear program, hoping
to catch at least the flavor of the stochastic aspect of the problem. The argument is that the solution
obtained in this way is more robust than the solution obtained by replacing the random variables
with their means.

Often the same practical problem can be modeled in different ways. For instance, one can model
a problem as a two-stage stochastic program with recourse, putting all random variables whose
realizations are not yet known at the second stage of the problem. Then, as realizations of some of
the random variables become known, the solutions are periodically updated in a two-stage rolling
horizon fashion, every time by solving an updated two-stage problem. Such an approach is different
from a multistage program with recourse, where every time a decision is to be made, the modeler
tries to take into account that decisions will be made at several stages in the future.

3.2. Sampling Methods

In this section we discuss a different approach that uses Monte Carlo sampling techniques to solve
stochastic optimization problems.

Example 2. Consider a stochastic process It, t � 1, 2, . . . , governed by the recursive equation

�I � [I � x � D] (18)t t�1 t t

with initial value I0. Here Dt are random variables and xt represent decision variables. (Note that [a]�

� max{a, 0}.) The above process It can describe the waiting time of the tth customer in a G /G / 1
queue, where Dt is the interarrival time between the (t � 1)th and tth customers and xt is the service
time of (t � 1)th customer. Alternatively, It may represent the inventory of a certain product at time
t, with Dt and xt representing the demand and production (or ordering) quantities, respectively, of the
product at time t.

Suppose that the process is considered over a finite horizon with time periods t � 1, . . . , T. Our
goal is to minimize (or maximize) the expected value of an objective function involving I1, . . . , IT.
For instance, one may be interested in maximizing the expected value of a profit given (Albritton et
al. 1999);

TG(x, W) � � {
 min[I � x , D] � h I }t�1 t t�1 t t t t (19)
T T�1� �
 x � � (
 �
 � h)I �
 I � (
 � h)It�1 t t t�1 t�1 t t t 1 0 T T T

Here x � (x1, . . . , xT) is a vector of decision variables, W � (D1, . . . , DT) is a random vector of
the demands at periods t � 1, . . . , T, and
t and ht are nonnegative parameters representing the
marginal profit and the holding cost, respectively, of the product at period t.

If the initial value I0 is sufficiently large, then with probability close to one, variables I1, . . . , IT

stay above zero. In that case I1, . . . , IT become linear functions of the random data vector W, and
hence components of the random vector W can be replaced by their means. However, in many
practical situations the process It hits zero with high probability over the considered horizon T. In
such cases the corresponding expected value function g(x) � �[G(x, W)] cannot be written in a closed

2632 METHODS FOR DECISION MAKING

form. One can use a Monte Carlo simulation procedure to evaluate g(x). Note that for any given
realization of Dt, the corresponding values of It, and hence the value of G(x, W), can be easily
calculated using the iterative formula (18).

That is, let Wi � , . . . ,), i � 1, . . . , N, be a random (or pseudorandom) sample of Ni i(D D1 T

independent realizations of the random vector W generated by computer, that is, there are N generated
realizations of the demand process Dt, t � 1, 2, . . . , T, over the horizon t. Then for any given x
the corresponding expected value g(x) can be approximated (estimated) by the sample average

N1
iĝ (x) � G(x, W) (20)�N N i�1

We have that � g(x), and by the law of large numbers, that converges to g(x) with�[ĝ (x)] ĝ (x)N N

probability one (w.p.1) as N → �. That is, is an unbiased and consistent estimator of g(x).ĝ (x)N

Any reasonably efficient method for optimizing the expected value function g(x), say by using its
sample average approximations, is based on estimation of its first (and maybe second) order deriv-
atives. This has an independent interest and is called sensitivity or perturbation analysis. We will
discuss that in Section 3.3. Recall that �g(x) � (�g(x) /�x1, . . . , �g(x) /�xT) is called the gradient
vector of g(�) at x.

It is possible to consider a stationary distribution of the process It (if it exists) and to optimize
the expected value of an objective function with respect to the stationary distribution. Typically, such
a stationary distribution cannot be written in a closed form and is difficult to compute accurately.
This introduces additional technical difficulties into the problem. Also, in some situations the prob-
ability distribution of the random variables Dt is given in a parametric form whose parameters are
decision variables. We will discuss dealing with such cases later.

3.3. Perturbation Analysis

Consider the expected value function g(x) � �[G(x, �)]. An important question is under which
conditions the first order derivatives of g(x) can be taken inside the expected value, that is, under
which conditions the equation

�g(x) � ��[G(x, �)] � �[� G(x, �)] (21)x

is correct. One reason why this question is important is the following. Let �1, . . . , � N denote a
random sample of N independent realizations of the random variable with common probability dis-
tribution P, and let

N1
iĝ (x) � G(x, �) (22)�N N i�1

be the corresponding sample average function. If the interchangeability equation (21) holds, then

N N1 1
i i�[�ĝ (x)] � �[� G(x, �)] � ��[G(x, �)] � �g(x) (23)� �N xN Ni�1 i�1

and hence is an unbiased and consistent estimator of �g(x).�ĝ (x)N

Let us observe that in both examples 1 and 2 the function G(�, �) is piecewise linear for any
realization of �, and hence is not everywhere differentiable. The same holds for the optimal value
function Q(�, �) of the second-stage problem (15). If the distribution of the corresponding random
variables is discrete, then the resulting expected value function is also piecewise linear and hence is
not everywhere differentiable.

On the other hand, expectation with respect to a continuous distribution typically smoothes the
corresponding function and in such cases Eq. (21) often is applicable. It is possible to show that if
the following two conditions hold at a point x, then g(�) is differentiable at x and Eq. (21) holds:

1. The function G(�, �) is differentiable at x w.p.1.
2. There exists a positive valued random variable K(�) such that �[K(�)] is finite and the ine-

quality

�G(x , �) � G(x , �)� � K(�)�x � x � (24)1 2 1 2

holds w.p.1 for all x1, x2 in a neighborhood of x.

STOCHASTIC OPTIMIZATION 2633

If the function G(�, �) is not differentiable at x w.p.1 (i.e., for P-almost every � � �), then the
right-hand side of Eq. (21) does not make sense. Therefore, clearly the above condition (1) is nec-
essary for (21) to hold. Note that condition (1) requires G(�, �) to be differentiable w.p.1 at the given
(fixed) point x and does not require differentiability of G(�, �) everywhere. The second condition (ii)
requires G(�, �) to be continuous (in fact Lipschitz continuous) w.p.1 in a neighborhood of x.

Consider, for instance, function G(x, D) of example 1 defined in 1. For any given D, the function
G(�, D) is piecewise linear and differentiable at every point x except at x � D. If the cdf F (�) of D
is continuous at x, then the probability of the event {D � x} is zero and hence the interchangeability
equation (21) holds. Then �G(x, D) /�x is equal to s � c if x � D, and is equal to r � c if x � D.
Therefore, if F (�) is continuous at x, then G(�, D) is differentiable at x and

g�(x) � (s � c)�(D � x) � (r � c)�(D � x)

which gives the same equation as (6). Note that the function �G(�, D) /�x is discontinuous at x � D.
Therefore, the second order derivative of �[G(�, D)] cannot be taken inside the expected value. Indeed,
the second order derivative of G(�, D) is zero whenever it exists. Such behavior is typical in many
interesting applications.

Let us calculate the derivatives of the process It, defined by the recursive equation (18), for a
particular realization of the random variables Dt. Let �1 denote the first time that the process It hits
zero, that is, �1 � 1 is the first time � � becomes less than or equal to zero, and henceI x D� �1 � �1 1 1

� 0. Let �2 � �1 be the second time that It hits zero, etc. Note that if � 0, then �2 � �1 �I I� � �11 1

1, and so on. Let 1 � �1 � . . . � �n � T be the sequence of hitting times. (In queueing terminology,
�i represents the starting time of a new busy cycle of the corresponding queue.) For a given time t
� {1, . . . , T}, let � t � �i Suppose that the events � � � 0}, � � 1, . . . , T,� {I x Di�1 ��1 � �

occur with probability zero. Then, for almost every W, the gradient of Is with respect to the com-
ponents of vector xt can be written as follows:

1 if t � s � � and t 	 �i i�1� I � (25)�x st 0 otherwise

Thus, by using Eqs. (19) and (25), one can calculate the gradient of the sample average function
of example (2), and hence one can consistently estimate the gradient of the expected valueĝ (�)N

function g(�).
Consider the process It defined by the recursive equation (18) again. Suppose now that variables

xt do not depend on t, and let x denote their common value. Suppose further that Dt, t � 1, . . . ,
are independently and identically distributed with mean 	 � 0. Then for x � 	 the process It is
stable and has a stationary (steady-state) distribution. Let g(x) be the steady-state mean (the expected
value with respect to the stationary distribution) of the process It � It(x). By the theory of regenerative
processes it follows that for every x � (0,) and any realization (called sample path) of the process
Dt, t � 1, . . . , the-long run average � It(x) /T converges w.p.1 to g(x) as T → �. It isTĝ (x) �T t�1

possible to show that also converges w.p.1 to �g(x) as T → �. That is, by differentiating the�ĝ (x)T

long-run average of a sample path of the process It we obtain a consistent estimate of the corre-
sponding derivative of the steady-state mean g(x). Note that �It(x) � t � �i�1 for �i�1 � t � �i, and
hence the derivative of the long-run average of a sample path of the process It can be easily calculated.

The idea of differentiation of a sample path of a process in order to estimate the corresponding
derivative of the steady-state mean function by a single simulation run is at the heart of infinitesimal
perturbation analysis. We refer the interested reader to Glasserman (1991) and Ho and Cao (1991)
for a thorough discussion of that topic.

3.4. Likelihood Ratio Method

The Monte Carlo sampling approach to derivative estimation introduced in Section 3.3 does not work
if the function G(�, �) is discontinuous or if the corresponding probability distribution also depends
on decision variables. In this section we discuss an alternative approach to derivative estimation
known as the likelihood ratio (or score function) method.

Suppose that the expected value function is given in the form g(�) � ��[G(W)], where W is a
random vector whose distribution depends on the parameter vector �. Suppose further that the dis-
tribution of W has a probability density function (pdf) f (�, w). Then for a chosen pdf �(w) we can
write

ƒ (�, w)
� [G(W)] � � G(w)ƒ (�, w) dw � �G(w) �(w) dw� �(w)

and hence

2634 METHODS FOR DECISION MAKING

g(�) � � [G(Z)L(�, Z)] (26)�

where L(�, z) � ƒ(�, z) /�(z) is the so-called likelihood ratio function, Z � �(�) and ��[�] means that
the expectation is taken with respect to the pdf �. We assume in the definition of the likelihood ratio
function that 0 /0 � 0 and that the pdf � is such that if �(w) is zero for some w, then ƒ(�, w) is
also zero, that is, we do not divide a positive number by zero.

The expected value in the right-hand side of (26) is taken with respect to the distribution �, which
does not depend on the vector �. Therefore, under appropriate conditions ensuring interchangeability
of the differentiation and integration operators, we can write

�g(�) � � [G(Z)� L(�, Z)] (27)� �

In particular, if for a given �0 we choose �(�) � ƒ(�0, �), then �� L(�, z) � �� ƒ(�, z) /ƒ (�0, z), and
hence �� L(�0, z) � �� ln[ƒ (�0, z)]. The function �� ln[ƒ (�, z)] is called the score function; thus the
name of this technique.

Now by generating a random sample Z1, . . . , ZN from the pdf �(�), one can estimate g(�) and
�g(�) by the respective sample averages

N1
i ig̃ (�) � G(Z)L(�, Z) (28)�N N i�1

N1
i i�g̃ (�) � G(Z)� L(�, Z) (29)�N �N i�1

This can be readily extended to situations where function G(x, W) also depends on decision variables.
Typically, the density functions used in applications depend on the decision variables in a smooth

and even analytic way. Therefore, usually there is no problem in taking derivatives inside the expected
value in the right-hand side of (26). When applicable, the likelihood ratio method often also allows
estimation of second and higher order derivatives. However, note that the likelihood ratio method is
notoriously unstable and a bad choice of the pdf � may result in huge variances of the corresponding
estimators. This should not be surprising since the likelihood ratio function may involve divisions
by very small numbers, which of course is a very unstable procedure. We refer to Glynn (1990) and
Rubinstein and Shapiro (1993) for a further discussion of the likelihood ratio method.

As an example consider the optimal value function of the second stage problem (15). Suppose
that only the right-hand-side vector h � h(�) of the second-stage problem is random. Then Q(x, h)
� G(h � Tx), where G(�) � min {qTy:Wy � �, y � 0}. Suppose that the random vector h has a pdf
ƒ(�). By using the transformation z � h � Tx, we obtain

� [Q(x, h)] � � G(� � Tx)ƒ (�) d� � � G(z)ƒ (z � Tx) dz � � [G(Z)L(x, Z)] (30)ƒ �

Here � is a chosen pdf, z is a random vector having pdf �, and L(x, z) � ƒ(z � Tx) /�(z) is the
corresponding likelihood ratio function. It can be shown by duality arguments of linear programming
that G(�) is a piecewise linear convex function. Therefore, �x Q(x, h) is piecewise constant and
discontinuous, and hence second order derivatives of �ƒ[Q(x, h)] cannot be taken inside the expected
value. On the other hand, the likelihood ratio function is as smooth as the pdf ƒ(�). Therefore, if
ƒ (�) is twice differentiable, then the second order derivatives can be taken inside the expected value
in the right-hand side of (30), and consequently the second order derivatives of �ƒ [Q(x, h)] can be
consistently estimated by a sample average.

3.5. Simulation-Based Optimization Methods

There are basically two approaches to the numerical solution of stochastic optimization problems by
using Monte Carlo sampling techniques. One approach is known as the stochastic approximation
method and originated in Robbins and Monro (1951). The other method was discovered and redis-
covered by different researchers and is known under various names.

Suppose that the feasible set � is convex and that at any point x � � an estimate of the�̂ (x)
gradient �g(x) can be computed, say by a Monte Carlo simulation method. The stochastic approxi-
mation method generates the iterates by the recursive equation

x � � (x � � �̂ (x)) (31)��1 � � v �

where �� � 0 are chosen step sizes and �� denotes the projection onto the set �, that is, ��(x) is
the point in � closest to x. Under certain regularity conditions the iterates x� converge to a locally

STOCHASTIC OPTIMIZATION 2635

optimal solution of the corresponding stochastic optimization problem, that is, to a local minimizer
x* of g(x) over �. Typically, in order to guarantee this convergence the following two conditions are
imposed on the step sizes: (1) � �, and (2) � �. For example, one can take �v �� � 2� � � ���1 � ��1 �

c /� for some c � 0.
If the exact value �� � �g(x�) of the gradient is known, then ��� gives the direction of steepest

descent at the point x�. This guarantees that if �� 	 0, then moving along the direction ��� the value
of the objective function decreases, that is, g(x� � ���) � g(x�) for � � 0 small enough. The iterative
procedure (31) tries to mimic that idea by using the estimates of the corresponding ‘‘true’’�̂ (x)�

gradients. The projection �� is needed in order to enforce feasibility of the generated iterates. If the
problem is unconstrained, that is, the feasible set � coincides with the whole space, then this projec-
tion is the identity mapping and can be omitted from (31). Note that does not need to be an�̂ (x)�

accurate estimator of �g(x�).
Kushner and Clark (1978) and Benveniste et al. (1990) contain expositions of the theory of

stochastic approximation. Applications of the stochastic approximation method, combined with the
infinitesimal perturbation analysis technique for gradient estimation, to the optimization of the steady-
state means of single-server queues were studied by Chong and Ramadge (1992) and L’Ecuyer and
Glynn (1994).

An attractive feature of the stochastic approximation method is its simplicity and ease of imple-
mentation in those cases in which the projection ��(�) can be easily computed. However, it also has
severe shortcomings. The crucial question in implementations is the choice of the step sizes ��. Small
step sizes result in very slow progress towards the optimum while large step sizes make the iterates
zigzag. Also, a few wrong steps in the beginning of the procedure may require many iterations to
correct. For instance, the algorithm is extremely sensitive to the choice of the constant c in the step
size rule �� � c /�. Therefore, various step size rules were suggested in which the step sizes are
chosen adaptively (see Ruppert 1991 for a discussion of that topic).

Another drawback of the stochastic approximation method is that it lacks good stopping criteria
and often has difficulties with handling even relatively simple linear constraints.

Another simulation-based approach to stochastic optimization is based on the following idea. Let
be the sample average function defined in (22), based on a sample of size N. Consider theĝ (x)N

optimization problem

min ĝ (x) (32)N
x��

We can view the above problem as the sample average approximation of the ‘‘true’’ (or expected
value) problem (11). The function is random in the sense that it depends on the correspondingĝ (x)N

sample. However, note that once the sample is generated, becomes a deterministic functionĝ (x)N

whose values and derivatives can be computed for a given value of the argument x. Consequently,
problem (32) becomes a deterministic optimization problem and one can solve it with an appropriate
deterministic optimization algorithm.

Let and denote the optimal objective value and an optimal solution of the sample averagev̂ x̂N N

problem (32), respectively. By the law of large numbers we have that converges to g(x) w.p.1ĝ (x)N

as N → �. It is possible to show that under mild additional conditions, and converge w.p.1 tov̂ x̂N N

the optimal objective value and an optimal solution of the true problem (11), respectively. That is,
and are consistent estimators of their ‘‘true’’ counterparts.v̂ x̂N N

This approach to the numerical solution of stochastic optimization problems is a natural outgrowth
of the Monte Carlo method of estimation of the expected value of a random function. The method
is known by various names, and it is difficult to point out who was the first to suggest this approach.
In the recent literature a variant of this method, based on the likelihood ratio estimator , wasg̃ (x)N

suggested in Rubinstein and Shapiro (1990) under the name stochastic counterpart method (also see
Rubinstein and Shapiro 1993 for a thorough discussion of such a likelihood ratio–sample approxi-
mation approach). In Robinson (1996) such an approach is called the sample path method. This idea
can also be applied to cases in which the set � is finite, that is, to stochastic discrete optimization
problems (Kleywegt and Shapiro 1999).

Of course, in a practical implementation of such a method, one has to choose a specific algorithm
for solving the sample average approximation problem (32). For example, in the unconstrained case,
one can use the steepest descent method. That is, iterates are computed by the procedure

x � x � � �ĝ (x) (33)��1 � � N �

where the step size �� is obtained by a line search, such as �� � arg min� (x� � � � . Noteĝ ĝ (x))N N �

that this procedure is different from the stochastic approximation method (31) in two respects. Typ-
ically a reasonably large sample size N is used in this procedure, and, more importantly, the step
sizes are calculated by a line search instead of being defined a priori. In many interesting cases

2636 METHODS FOR DECISION MAKING

is a piecewise smooth (and even piecewise linear) function and the feasible set is defined byĝ (x)N

linear constraints. In such cases bundle-type optimization algorithms are quite efficient (see Hiriart-
Urruty and Lemarechal 1993 for a discussion of the bundle method).

A well-developed statistical inference of the estimators and exists (Rubinstein and Shapirov̂ x̂N N

1993). That inference aids in the construction of stopping rules, validation analysis, and error bounds
for obtained solutions and, furthermore, suggests variance reduction methods that may substantially
enhance the rate of convergence of the numerical procedure. For a discussion of this topic and an
application to two-stage stochastic programming with recourse, we refer to Shapiro and Homem-de-
Mello (1998).

If the function g(x) is twice differentiable, then the above sample path method produces estimators
that converge to an optimal solution of the true problem at the same asymptotic rate as the stochastic
approximation method, provided that the stochastic approximation method is applied with the as-
ymptotically optimal step sizes (Shapiro 1996). On the other hand, if the underlying probability
distribution is discrete and g(x) is piecewise linear and convex, then w.p.1 the sample path method
provides an exact optimal solution of the true problem for N large enough, and moreover the prob-
ability of that event approaches one exponentially fast as N → � (Shapiro and Homem-de-Mello
1999).

4. DYNAMIC PROGRAMMING
Dynamic programming (DP) is an approach for the modeling of dynamic and stochastic decision
problems, the analysis of the structural properties of these problems, and the solution of these prob-
lems. Dynamic programs are also referred to as Markov decision processes (MDP). Slight distinctions
can be made between DP and MDP, such as that in the case of some deterministic problems the term
dynamic programming is used rather than Markov decision processes. The term stochastic optimal
control is also often used for these types of problems. We shall use these terms synonymously.

Dynamic programs and multistage stochastic programs deal with essentially the same types of
problems, namely dynamic and stochastic decision problems. The major distinction between dynamic
programming and stochastic programming is in the structures that are used to formulate the models.
For example, in DP, the so-called state of the process, as well as the value function, that depends on
the state, are two structures that play a central role, but these concepts are usually not used in
stochastic programs. Section 4.1 provides an introduction to concepts that are important in dynamic
programming.

Much has been written about dynamic programming. Some books in this area are Bellman (1957),
Bellman (1961), Bellman and Dreyfus (1962), Nemhauser (1966), Hinderer (1970), Bertsekas and
Shreve (1978), Denardo (1982), Ross (1983), Puterman (1994), Bertsekas (1995), and Sennott (1999).

The dynamic programming modeling concepts presented in this chapter are illustrated with an
example, which is both a multiperiod extension of the single-period newsvendor problem of Section
2 as well as an example of a dynamic pricing problem.

Example 3 (Revenue management problem). Managers often have to make decisions repeatedly
over time regarding how much inventory to obtain for future sales as well as how to determine the
selling prices. This may involve inventory of one or more products, and the inventory may be located
at one or more locations, such as warehouses and retail stores. The inventory may be obtained from
a production operation that is part of the same company as the decision maker, and such a production
operation may be a manufacturing operation or a service operation, such as an airline, hotel, or car
rental company, or the inventory may be purchased from independent suppliers. The decision maker
may also have the option to move inventory between locations, such as from warehouses to retail
stores. Often the prices of the products can be varied over time to attempt to find the most favorable
balance between the supply of the products and the dynamically evolving demand for the products.
Such a decision maker can have several objectives, such as to maximize the expected profit over the
long run. The profit involves both revenue, which is affected by the pricing decisions, as well as
cost, which is affected by the inventory replenishment decisions.

In Section 4.1 examples are given of the formulation of such a revenue management problem
with a single product at a single location as a dynamic program.

4.1. Basic Concepts in Dynamic Programming

In this section the basic concepts used in dynamic programming models are introduced.

4.1.1. Decision Times

A dynamic programming model should distinguish between the decisions made at different points in
time. The major reason for this is that the information available to the decision maker is different at
different points in time—typically more information is available at later points in time (in fact, many
people hold this to be the definition of time).

STOCHASTIC OPTIMIZATION 2637

A second reason why distinguishing decision points is useful is that for many types of DP models
it facilitates the computation of solutions. This seems to be the major reason why dynamic program-
ming is used for deterministic decision problems. In this context, the time parameter in the model
does not need to correspond to the notion of time in the application. The important feature is that a
solution is decomposed into a sequence of distinct decisions. This facilitates computation of the
solution if it is easier to compute the individual decisions and then put them together to form a
solution than it is to compute a solution in a more direct way.

The following are examples of ways in which the decision points can be determined in a DP
model:

• Decisions can be made at predetermined discrete points in time. In the revenue management
example, the decision maker may make a decision once per day regarding what prices to set
during the day, as well as how much to order on that day.

• Decisions can be made continuously in time. In the revenue management example, the decision
maker may change prices continuously in time (which is likely to require a sophisticated way
of communicating the continuously changing prices).

• Decisions can be made at random points in time when specific events take place. In the revenue
management example, the decision maker may decide on prices at the random points in time
when customer requests are received and may decide whether to order and how much to order
at the random points in time when the inventory changes.

A well-formulated DP model specifies the way in which the decision points in time are determined.
Most of the results presented in this article are for DP models where decisions are made at

predetermined discrete points in time, denoted by t � 0, 1, . . . , T, where T denotes the length of
the time horizon. DP models with infinite time horizons are also considered. DP models such as
these are often called discrete-time DP models.

4.1.2. States

A fundamental concept in DP is that of a state, denoted by s. The set S of all possible states is called
the state space. The decision problem is often described as a controlled stochastic process that
occupies a state S(t) at each point in time t.

Describing the stochastic process for a given decision problem is an exercise in modeling. The
modeler has to determine an appropriate choice of state description for the problem. The basic idea
is that the state should be a sufficient, and efficient, summary of the available information that affects
the future of the stochastic process. For example, for the revenue management problem, choosing
the state to be the amount of the product in inventory may be an appropriate choice. If there is a
cost involved in changing the price, then the previous price should also form part of the state. Also,
if competitors’ prices affect the demand for the product, then additional information about competi-
tors’ prices and behavior should be included in the state.

Several considerations should be taken into account when choosing the state description, some
of which are described in more detail in later sections. A brief overview is as follows. The state
should be a sufficient summary of the available information that affects the future of the stochastic
process in the following sense. The state at a point in time should not contain information that is
not available to the decision maker at that time, because the decision is based on the state at that
point in time. (There are also problems, called partially observed Markov decision processes, in
which what is also called the state contains information that is not available to the decision maker.
These problems are often handled by converting them to Markov decision processes with observable
states. This topic is discussed in Bertsekas [1995].) The set of feasible decisions at a point in time
should depend only on the state at that point in time, and maybe on the time itself, and not on any
additional information. Also, the costs and transition probabilities at a point in time should depend
only on the state at that point in time, the decision made at that point in time, and maybe on the
time itself, and not on any additional information. Another consideration is that often one would like
to choose the number of states to be as small as possible since the computational effort of many
algorithms increase with the size of the state space. However, the number of states is not the only
factor that affects the computational effort. Sometimes it may be more efficient to choose a state
description that leads to a larger state space. In this sense the state should be an efficient summary
of the available information.

The state space S can be a finite, countably infinite, or uncountable set. This article addresses
dynamic programs with finite or countably infinite, also called discrete, state spaces S.

4.1.3. Decisions

At each decision point in time, the decision maker has to choose a decision, also called an action or
control. At any point in time t, the state s at time t, and the time t, should be sufficient to determine

2638 METHODS FOR DECISION MAKING

the set A (s, t) of feasible decisions, that is, no additional information is needed to determine the
admissible decisions. (Note that the definition of the state of the process should be chosen in such a
way that this holds for the decision problem under consideration.) Sometimes the set of feasible
decisions depends only on the current state s, in which case the set of feasible decisions is denoted
by A (s). Although most examples have finite sets A (s, t) or A (s), these sets may also be countably
or uncountably infinite.

In the revenue management example, the decisions involve how much of the product to order, as
well as how to set the price. Thus, decision a � (q, r) denotes that quantity q is ordered and that
the price is set at r. Suppose the supplier requires that an integer amount between a and b be ordered
at a time. Also suppose that the state s denotes the current inventory, and that the inventory may not
exceed capacity Q at any time. Then the order quantity may be no more than Q � s. Also suppose
that the price can be set to be any real number between r1 and r2. Then the set of feasible decisions
is A (s) � {a, a � 1, a � 2, . . . , min{Q � s, b}}
 [r1, r2].

The decision maker may randomly select a decision. For example, the decision maker may roll
a die and base the decision on the outcome of the die roll. This type of decision is called a randomized
decision, as opposed to a nonrandomized, or deterministic, decision. A randomized decision for state
s at time t can be represented by a probability distribution on A (s, t) or A (s). The decision at time t
is denoted by A(t).

4.1.4. Transition Probabilities

The dynamic process changes from state to state over time. The transitions between states may be
deterministic or random. The presentation here is for a dynamic program with discrete time parameter
t � 0, 1, . . . , and with random transitions.

The transitions have a memoryless, or Markovian, property, in the following sense. Given the
history H(t) � (S(0), A(0), S(1), A(1), . . . , S(t)) of the process up to time t, as well as the decision
A(t) � A (S(t), t) at time t, the probability distribution of the state that the process is in at time t �
1 depends only on S(t), A(t), and t, that is, the additional information in the history H(t) of the process
up to time t provides no additional information for the probability distribution of the state at time t
� 1. (Note that the definition of the state of the process should be chosen in such a way that the
probability distribution has this memoryless property.)

Such memoryless random transitions can be represented in several ways. One representation is
by transition probabilities, which are denoted by p[s��s, a, t] � �[S(t � 1) � s��H(t), S(t) � s, A(t)
� a]. Another representation is by a transition function ƒ, such that given H(t), S(t) � s, and A(t) �
a, the state at time t � 1 is S(t � 1) � ƒ(s, a, t, �), where � is a random variable with a known
probability distribution. The two representations are equivalent, and in this article we use mostly
transition probabilities. When the transition probabilities do not depend on the time t beside depending
on the state s and decision a at time t, they are denoted by p[s��s, a].

In the revenue management example, suppose the demand has probability mass function p̃(r, d)
� �[D � d�price � r] with d � {0, 1, 2, . . . }. Also suppose that a quantity q that is ordered at
time t is received before time t � 1, and that unsatisfied demand is back-ordered. Then S � {. . . ,
�2, �1, 0, 1, 2, . . . }, and the transition probabilities are as follows.

p̃(r, s � q � s�) if s� � s � q
p[s��s, (q, r)] � �0 if s� � s � q

If a quantity q that is ordered at time t is received after the demand at time t, and unsatisfied demand
is lost, then S � {0, 1, 2, . . .}, and the transition probabilities are as follows:

p̃(r, s � q � s�) if q � s� � s � q
�p[s��s, (q, r)] � � p̃(r, d) if s� � qd�s	0 if s� � q or s� � s � q

4.1.5. Rewards and Costs

Dynamic decision problems often have as objective to maximize the sum of the rewards obtained in
each time period, or equivalently, to minimize the sum of the costs incurred in each time period.
Other types of objectives sometimes encountered are to maximize or minimize the product of a
sequence of numbers resulting from a sequence of decisions, or to maximize or minimize the max-
imum or minimum of a sequence of resulting numbers.

In this article we focus mainly on the objective of maximizing the expected sum of the rewards
obtained in each time period. At any point in time t, the state s at time t, the decision a � A (s, t) at
time t, and the time t, should be sufficient to determine the expected reward r(s, a, t) at time t.

STOCHASTIC OPTIMIZATION 2639

(Again, the definition of the state should be chosen so that this holds for the decision problem under
consideration.) When the rewards do not depend on the time t beside depending on the state s and
decision a at time t, they are denoted by r(s, a).

Note that even if in the application the reward (s, a, t, s�) at time t depends on the state s� atr̃
time t � 1, in addition to the state s and decision a at time t, and the time t, the expected reward at
time t can still be found as a function of only s, a, and t, because

r (s, a, t) � �[r̃ (s, a, t, s�)] � r̃ (s, a, t, s�)p[s��s, a, t]�
s��S

In the revenue management example, suppose unsatisfied demand is back-ordered and that an
inventory cost / shortage penalty of h(s) is incurred when the inventory level is s at the beginning of
the time period. Then (q, r�), s�) � r� (s � q � s�) � h(s) with s� � s � q. Thus,r̃ (s,

�

r (s, (q, r�)) � p̃(r�, d)r�d � h(s)�
d�0

If unsatisfied demand is lost, then (q, r�), s�) � r� (s � q � s�) � h(s) with q � s� � s � q.r̃ (s,
Thus,

s�1 �

r (s, (q, r�)) � p̃(r�, d)r�d � p̃(r�, d)r�s � h(s)� �
d�0 d�s

In finite horizon problems, there may be a salvage value v(s) if the process terminates in state s
at the end of the time horizon t. Such a feature can be incorporated in the previous notation by letting
A (s, T) � {0}, and r (s, 0, T) � v(s) for all s � S.

Often the rewards are discounted with a discount factor � � [0, 1], so that the discounted expected
value of the reward at time t is �tr (s, a, t). Such a feature can again be incorporated in the previous
notation by letting r(s, a, t) � for all s, a, and t, where denotes the undiscounted rewardt� r (s, a, t) r
function. When the undiscounted reward does not depend on time, it is convenient to denote explicitly
the discounted reward by �tr (s, a).

4.1.6. Policies

A policy, sometimes called a strategy, prescribes the way a decision is to be made at each point in
time, given the information available to the decision maker at the point in time. Therefore, a policy
is a solution for a dynamic program.

There are different classes of policies of interest, depending on which of the available information
the decisions are based on. A policy can base decisions on all the information in the history of the
process up to the time the decision is to be made. Such policies are called history-dependent policies.
Given the memoryless nature of the transition probabilities, as well as the fact that the sets of feasible
decisions and the expected rewards depend on the history of the process only through the current
state, it seems intuitive that it should be sufficient to consider policies that base decisions only on
the current state and time, and not on any additional information in the history of the process. Such
policies are called memoryless, or Markovian, policies. If the transition probabilities, sets of feasible
decisions, and rewards do not depend on the current time, then it also seems intuitive that it should
be sufficient to consider policies that base decisions only on the current state, and not on any addi-
tional information in the history of the process or on the current time. (However, this intuition may
be wrong, as shown by counterexample in Section 4.1.7). Under such policies, decisions are made
in the same way each time the process is in the same state. Such policies are called stationary policies.

The decision maker may also choose to use some irrelevant information to make a decision. For
example, the decision maker may randomly select a decision by rolling a die or drawing a card from
a deck of cards. Policies that allow such randomized decisions are called randomized policies, and
policies that do not allow randomized decisions are called nonrandomized or deterministic policies.

Combining the above types of information that policies can base decisions on, the following types
of policies are obtained: the class �HR of history dependent randomized policies, the class �HD of
history dependent deterministic policies, the class �MR of memoryless randomized policies, the class
�MD of memoryless deterministic policies, the class �SR of stationary randomized policies, and the
class �SD of stationary deterministic policies. The classes of policies are related as follows: �SD �
�MD � �HD � �HR, �SD � �MD � �MR � �HR, �SD � �SR � �MR � �HR.

For the revenue management problem, an example of a stationary deterministic policy is to order
quantity q � s2 � s if the inventory level s � s1, for chosen constants s1 � s2, and to set the price
at level r � for a chosen function of the current state s. An example of a stationaryř(s) ř(s)
randomized policy is to set the price at level r � with probability p1(s) and at level r �ř (s) ř (s)1 2

2640 METHODS FOR DECISION MAKING

with probability 1 � p1(s) for chosen functions , , and p1(s) of the current state s. An exampleř (s) ř (s)1 2

of a memoryless deterministic policy is to order quantity q � s2(t) � s if the inventory level s �
s1(t), for chosen functions s1(t) � s2(t) of the current time t, and to set the price at level r � ř(s, t)
for a chosen function of the current state s and time t.ř(s, t)

4.1.7. Example

In this section an example is presented that illustrates why it is sometimes desirable to consider more
general classes of policies, such as memoryless and /or randomized policies, instead of stationary
deterministic policies, even if the sets of feasible solutions, transition probabilities, and rewards are
stationary. More such examples may be found in Ross (1970), Ross (1983), Puterman (1994), and
Sennott (1999).

The examples are for dynamic programs with stationary input data and objective to minimize the
long-run average cost per unit time, lim r (S(t), A(t))�S(0)] /T. For any policy
, letT�1sup �[�T→� t�0

T�11

V (s) � lim sup � r (S(t), A(t)) S(0) � s�
 � �TT→� t�0

denote the long-run average cost per unit time under policy
 if the process starts in state s, where
�
[�] denotes the expected value if policy
 is followed.

A policy
* is called optimal if (s) � for all states s.
*
V inf V (s)HR
��

Example 4. This example shows that even if the dynamic program has stationary input data, it
does not always hold that for any policy , and any � � 0, there exists a stationary deterministic
̃
policy
 that has value function V
 within � of the value function of policy .
̃V
̃

The state space S � {0, 1, 1�, 2, 2�, 3, 3�, . . . }. Feasible decision sets are A (0) � {a}, A (i) �
{a, b}, and A (i�) � {a} for each i � {1, 2, 3, . . . }. When in state i � {0, 1, 2, . . . }, a cost of 2
is incurred, otherwise there is no cost. That is, the costs are r (0, a) � 2, r (i, a) � r (i, b) � 2, and
r (i�, a) � 0. The transition probabilities are as follows:

p[0�0, a] � 1, p[i � 1�i, a] � 1, p[i��i, b] � 1 � p[0�i, b] � p for all ii

p[1�1�, a] � 1, and p[(i � 1)��i�, a] � 1 for all i � 2

The values pi can be chosen to satisfy

� 3
p � 1 for all i, and p �
i i 4i�1

Suppose the process starts in state 1. The idea is simple: we would like to go down the chain i�,
(i � 1)�, . . . , 1� as much as possible. To do that, we also need to go up the chain 1, 2, . . . , i, and
then go from state i to state i� by making decision b. When we make decision b in state i, there is
a risk 1 � pi � 0 of making a transition to state 0, which is very bad.

A stationary deterministic policy
 that chooses decision a for each state i, has long-run average
cost per unit time of V
(1) � 2, which is as bad as can be. The only other possibility for a stationary
deterministic policy
 is to choose decision b for the first time in state j. In that case, each time
state j is visited, there is a positive probability 1 � pj � 0 of making a transition to state 0. It follows
that the mean time until a transition to state 0 is made is less than 2j / (1 � pj) � �, and the long-
run average cost per unit time is V
(1) � 2. Thus, V
(1) � 2 for all stationary deterministic policies

.

Consider the memoryless deterministic policy that on its jth visit to state 1, chooses decision
̃
a, j � 1 times, and then chooses decision b. With probability pi � 3 /4, the process never makes��i�1

a transition to state 0 and the long-run average cost per unit time is 1. Otherwise, with probability
pi � 1 /4, the process makes a transition to state 0 and the long-run average cost per unit�1 � �i�1

time is 2. Hence, the expected long-run average cost per unit time is � 3 /4
 1 � 1 /4
 2
̃V (1)
� 5 /4. Thus, there is no �-optimal stationary deterministic policy for � � (0, 3 /4). In fact, by
considering memoryless deterministic policies that on their jth visit to state 1, choose decision a,
̃k

j � k times and then choose decision b, one obtains policies with expected long-run average cost
per unit time arbitrarily close to 1 for sufficiently large values of k. It is clear that � 1
̃
kV (1) V (1)
for all policies
, and thus V*(1) � 1, and there is no �-optimal stationary deterministic policy for
� � (0, 1).

STOCHASTIC OPTIMIZATION 2641

4.2. Finite Horizon Dynamic Programs

In this section we investigate dynamic programming models for optimization problems with the form

T

max � r (S(t), A(t), t) (34)�
 �
(A(0),A(1),...,A(T)) t�0

where T � � is the known finite horizon length and decisions A(t), t � 0, 1, . . . , T, have to be
feasible and may depend only on the information available to the decision maker at each time t, that
is, the history H(t) of the process up to time t, and possibly some randomization. For the presentation
we assume that S is countable and r is bounded. Similar results hold in more general cases, subject
to regularity conditions.

4.2.1. Optimality Results

From the memoryless properties of the feasible sets, transition probabilities, and rewards, it is intuitive
that it should be sufficient to consider memoryless deterministic policies. This can be shown to be
true for finite horizon problems of the form (34).

The value function V
 of a memoryless policy
 is defined by

T

V (s, t) � � r (S(�), A(�), �) S(t) � s (35)�
 � �

��t

Then, because it is sufficient to consider memoryless deterministic policies, the optimal value function
V* is given by

V*(s, t) � sup V (s, t) (36)
MD
��

It is easy to see that the value function V
 of a memoryless policy
 satisfies the following
inductive equation:

V (s, t) � r (s,
 (s, t), t) � p[s��s,
 (s, t), t)]V (s�, t � 1) (37)�
s��S

(Recall that
 (s, t) denotes the decision under policy
 if the process is in state s at time t. If
 is
a randomized policy, then the understanding is that the expected value is computed with the decision
distributed according to probability distribution
 (s, t). Also, even history-dependent policies satisfy
a similar inductive equation, except that the value function depends on the history up to time t.)
Similarly, the optimal value function V* satisfies the following inductive optimality equation:

V*(s, t) � sup r (s, a, t) � p[s��s, a, t]V*(s�, t � 1) (38)�� �
a�A (s,t) s��S

4.2.2. Finite Horizon Algorithm

Solving a finite horizon dynamic program usually involves using (38) to compute V* with the fol-
lowing backward induction algorithm. An optimal policy
* � �MD is then obtained using (40), or
an �-optimal policy � �MD is obtained using (41).
*�

Finite horizon backward induction algorithm.

0. Set V*(s, T � 1) � 0 for all s � S.
1. For t � T, . . . , 1, repeat steps 2 and 3.
2. For each s � S, compute

V*(s, t) � sup r (s, a, t) � p[s��s, a, t]V*(s�, t � 1) (39)�� �
a�A (s,t) s��S

3. For each s � S, choose a decision

2642 METHODS FOR DECISION MAKING

(s, t) � arg max r (s, a, t) � p[s��s, a, t]V(s�, t � 1) (40)�� �
a�A (s,t) s��S

if the maximum on the right hand side is attained. Otherwise, for any chosen � � 0, choose a decision
such that
*(s, t)�

�
r (s,
*(s, t), t) � p[s��s,
(s, t), t]V(s�, t � 1) ��� � T � 1s��S (41)

� sup r (s, a, t) � p[s��s, a, t]V*(s�, t � 1)�� �
a�A (s,t) s��S

The value function V
 of a policy
 can be calculated with a similar algorithm, except that (37)
is used instead of (39), that is, the maximization on the right-hand side of (39) is replaced by the
decision under policy
, and step 3 is omitted.

4.2.3. Structural Properties

Dynamic programming is useful not only for the computation of optimal policies and optimal ex-
pected values, but also for determining insightful structural characteristics of optimal policies. In fact,
for many interesting applications the state space is too big to compute optimal policies and optimal
expected values exactly, but dynamic programming can still be used to establish qualitative charac-
teristics of optimal quantities. Some such structural properties are illustrated with examples.

Example 5 (inventory replenishment). A business purchases and sells a particular product. A
decision maker has to decide regularly, say once every day, how much of the product to buy. The
business does not have to wait to receive the purchased product. In contrast to the newsvendor
problem, here product that is not sold on a particular day can be kept in inventory for the future.
The business pays a fixed cost K plus a variable cost c per unit of product each time product is
purchased. Thus, if a units of product are purchased, then the purchasing cost is K � ca if a � 0,
and it is 0 if a � 0. In addition, if the inventory level at the beginning of the day is s, and a units
of product is purchased, then an inventory cost of h(s � a) is incurred, where h is a convex function.
The demand for the product on different days are independent and identically distributed. If the
demand D is greater than the available inventory s � a, then the excess demand is backlogged until
additional inventory is obtained, at which time the backlogged demand is filled immediately. Inventory
remaining at the end of the time horizon has no value. The objective is to minimize the expected
total cost over the time horizon. This problem can be formulated as a discrete-time dynamic program.
The state S(t) is the inventory at the beginning of day t. The decision A(t) is the quantity purchased
on day t, and the single-stage cost r (s, a) � (K � ca) � h(s � a). The transitions are givenI{a�0}

by S(t � 1) � S(t) � A(t) � D(t). Dynamic programming can be used to show that the following
policy is optimal. If the inventory level S(t) � �*(t), where �*(t) is called the optimal reorder point
at time t, then it is optimal to purchase �*(t) � S(t) units of product at time t, where �*(t) is called
the optimal order-up-to point at time t. If the inventory level S(t) � �*(t), then it is optimal not to
purchase any product. Such a policy is often called an (s, S)-policy, or a (�, �)-policy. Similar results
hold in the infinite horizon case, except that �* and �* do not depend on time t anymore.

Example 6 (resource allocation). A decision maker has an amount of resource that can be allo-
cated over some time horizon. At each discrete point in time, a request for some amount of resource
is received. If the request is for more resource than the decision maker has available, then the request
has to be rejected. Otherwise, the request can be accepted or rejected. A request must be accepted
or rejected as a whole—the decision maker cannot allocate a fraction of the amount of resource
requested. Rejected requests cannot be recalled later. If the request is accepted, the amount of resource
available to the decision maker is reduced by the amount of resource requested and the decision
maker receives an associated reward in return. The amounts of resource and the rewards of future
requests are unknown to the decision maker, but the decision maker knows the probability distribution
of these. At the end of the time horizon, the decision maker receives a salvage reward for the
remaining amount of resource. The objective is to maximize the expected total reward over the time
horizon. Problems of this type are encountered in revenue management and the selling of assets such
as real estate and vehicles. This resource-allocation problem can be formulated as a dynamic program.
The state S(t) is the amount of resource available to the decision maker at the beginning of time
period t. The decision A(t) is the rule that will be used for accepting or rejecting requests during
time period t. If a request for amount Q of resource with an associated reward R is accepted in time
period t, then the single-stage reward is R and the next state is S(t � 1) � S(t) � Q. If the request

STOCHASTIC OPTIMIZATION 2643

is rejected, then the next state is S(t � 1) � S(t). It is easy to see that the optimal value function
V*(s, t) is increasing in s and decreasing in t. The following threshold policy, with reward threshold
function x*(q, s, t) � V*(s, t � 1) � V*(s � q, t � 1), is optimal. Accept a request for amount Q
of resource with an associated reward R if Q � S(t) and R � x*(Q, S(t), t), and reject the request
otherwise. If each request is for the same amount of resource (say 1 unit of resource), and the salvage
reward is concave in the remaining amount of resource, then the optimal value function V*(s, t) is
concave in s and t, and the optimal reward threshold x*(1, s, t) � V*(s, t � 1) � V*(s � 1, t � 1)
is decreasing in s and t. These intuitive properties do not hold in general if the requests are for
different amounts of resource.

Structural properties of the optimal value functions and optimal policies of dynamic programs
have been investigated for many different applications. Some general structural results are given in
Serfozo (1976), Topkis (1978), and Heyman and Sobel (1984).

4.3. Infinite Horizon Dynamic Programs

In this section we present dynamic programming models with an infinite time horizon. Although an
infinite time horizon is a figment of the imagination, these models often are useful for decision
problems with many decision points. Many infinite horizon models also have the desirable feature
that there exist stationary deterministic optimal policies. Thus, optimal decisions depend only on the
current state of the process and not on the sometimes artificial notion of time, as in finite horizon
problems. This characteristic makes optimal policies easier to understand, compute, and implement,
which is desirable in applications.

We again assume that S is countable and r is bounded. Similar results hold in more general cases,
subject to regularity conditions. We also assume that the sets A (s) of feasible decisions depend only
on the states s, the transition probabilities p[s��s, a] depend only on the states s, s�, and decisions a,
and the rewards r (s, a) depend only on the states s and decisions a, and not on time, as in the finite
horizon case.

In this article we focus on dynamic programs with total discounted reward objectives. As illus-
trated in the example of Section 4.1.7, infinite horizon dynamic programs with other types of objec-
tives, such as long-run average reward objectives, may exhibit undesirable behavior. A proper
treatment of dynamic programs with these types of objectives requires more space than we have
available here, and therefore we refer the interested reader to the references. Besides, in most practical
applications, rewards and costs in the near future are valued more than rewards and costs in the more
distant future, and hence total discounted reward objectives are preferred for applications.

4.4. Infinite Horizon Discounted Dynamic Programs

In this section we investigate dynamic programming models for optimization problems with the form

�
tmax � � r (S(t), A(t)) (42)�
 �

(A(0),A(1),...) t�0

where � � (0, 1) is a known discount factor. Again, decisions A(t), t � 0, 1, . . . have to be feasible
and may depend only on the information available to the decision maker at each time t, that is, the
history H(t) of the process up to time t, and possibly some randomization.

4.4.1. Optimality Results

From the stationary properties of the feasible sets, transition probabilities, and rewards, one would
expect that it should be sufficient to consider stationary deterministic policies. This can be shown to
be true for infinite horizon discounted problems of the form (42).

The value function V
 of a stationary policy
 is defined by

�

 tV (s) � � � r (S(t), A(t)) S(0) � s (43)�
 � �

t�0

Then, because it is sufficient to consider stationary deterministic policies, the optimal value function
V* is given by

V*(s) � sup V (s) (44)
SD
��

Again motivated by the stationary input data, it is intuitive, and can be shown to be true, that the
value function V
 of a stationary policy
 satisfies an equation similar to (37) for the finite horizon
case, that is,

2644 METHODS FOR DECISION MAKING

V (s) � r (s,
 (s)) � � p[s��s,
 (s)]V (s�) (45)�
s��S

Similarly, the optimal value function V* satisfies the following optimality equation:

V*(s) � sup r (s, a) � � p[s��s, a]V*(s�) (46)�� �
a�A (s) s��S

4.4.2. Infinite Horizon Algorithms

Solving an infinite horizon discounted dynamic program usually involves computing V*. An optimal
policy
* � �SD or an �-optimal policy � �SD can then be obtained, as shown in this section.
*�

Unlike the finite horizon case, V* is not computed directly using backward induction. An approach
that is often used is to compute a sequence of approximating functions Vi, i � 0, 1, 2, . . . , such
that Vi → V* as i → �.

Approximating value functions provide good policies, as motivated by the following result. Sup-
pose V* is approximated by such that � �. Consider any policy such thatSDˆ ˆV �V* � V�
̂ � ��

ˆ ˆr (s,
̂ (s)) � � p[s��s,
̂(s)]V(s�) � � � sup r (s, a) � � p[s��s, a]V(s�)� �� �
s��S a�A (s) s��S

for all s � S, that is, decision is within � of the optimal decision using approximating function
̂(s)
on the right-hand side of the optimality equation (46). ThenV̂

2�� � �

̂V (s) � V*(s) � (47)

1 � �

for all s � S, that is, policy has value function within (2�� � �) / (1 � �) of the optimal value
̂
function.

4.4.2.1. Value Iteration One algorithm based on a sequence of approximating functions Vi is
called value iteration, or successive approximation. The iterates Vi of value iteration correspond to
the value function V*(s, T � 1 � i) of the finite horizon dynamic program with the same problem
parameters. Specifically, starting with initial approximation V0(s) � 0 � V*(s, T � 1) for all s, the
ith approximating function Vi(s) is the same as the value function V*(s, T � 1 � i) of the corre-
sponding finite horizon dynamic program, that is, the value function for time T � 1 � i that is
obtained after i steps of the backward induction algorithm.

Value iteration algorithm

0. Choose initial approximation V0 and stopping tolerance �. Set i ← 0.
1. For each s � S, compute

V (s) � sup r (s, a) � � p[s��s, a]V (s�) (48)�� �i�1 i
a�A (s) s��S

2. If � � (1 � , then go to step 3. Otherwise, set i ← i � 1 and go to step 1.�V V � �)� /2�i�1 i �

3. For each s � S, choose a decision

*(s) � arg max r (s, a) � � p[s��s, a]V (s�)�� �� i�1
a�A (s) s��S

if the maximum on the right-hand side is attained. Otherwise, for any chosen � � 0, choose
a decision such that
*(s)�

r (s,
*(s)) � � p[s��s,
*(s)]V (s�) � (1 � �)� � sup r (s, a) � � p[s��s, a]V (s�)� �� �� � i�1 i�1
s��S a�A (s) s��S

It can be shown, using the contraction property provided by the discount factor �, that Vi → V*
as i → � for any initial approximation V0. Also, the convergence is geometric with rate �. Specifically,

STOCHASTIC OPTIMIZATION 2645

for any V0, �Vi � V*�� � �i�V0 � V*��. That implies that the convergence rate is faster if the discount
factor � is smaller.

When the value iteration algorithm stops, the final approximation Vi�1 satisfies �Vi�1 � V*�� �
� / 2. Furthermore, the chosen policy is an �-optimal policy, and the chosen policy is an (� �
*
*� �

�)-optimal policy.
There are several versions of the value iteration algorithm. One example is Gauss–Seidel value

iteration, which uses the most up-to-date approximation on the right-hand side of (48) as soonV (s)i�1

as it becomes available, instead of using the previous approximation Vi(s�) as shown in (48). Gauss–
Seidel value iteration has the same convergence properties and performance guarantees given above,
but in practice it usually converges faster.

There are several other algorithms for solving infinite horizon discounted dynamic programs. One
of these is policy iteration, which computes a sequence of policies
i, and their value functions .
iV
Another algorithm is modified policy iteration, which is a generalization of both value iteration and
policy iteration. With correct choice of algorithm parameters, modified policy iteration often performs
much better than value iteration and policy iteration. There are also several variations on these
algorithms, obtained with different choices of algorithm control methods, such as adaptive control,
as well as parallel versions. Most books on dynamic programming in the References discuss one or
more of these algorithms.

4.5. Approximation Methods

For many interesting applications the state space S is too big for any of the algorithms discussed so
far to be used. This is usually due to the ‘‘curse of dimensionality’’—the phenomenon that the number
of states grows exponentially in the number of dimensions of the state space. When the state space
is too large, not only is the computational effort required by these algorithms excessive, but storing
the value function and policy values for each state is impossible with current technology.

Recall that solving a dynamic program usually involves using (38) in the finite horizon case or
(46) in the infinite horizon case to compute the optimal value function V*, and an optimal policy

*. To accomplish this, the following major computational tasks are performed:

1. Estimation of the optimal value function V* on the right-hand side of (38) or (46).
2. Estimation of the expected value on the right-hand side of (38) or (46). For many applications,

this is a high-dimensional integral that requires a lot of computational effort to compute ac-
curately.

3. The maximization problem on the right hand side of (38) or (46) has to be solved to determine
the optimal decision for each state. This maximization problem may be easy or hard, depending
on the application. The first part of this article discusses several methods for solving such
stochastic optimization problems.

Approximation methods usually involve approaches to perform one or more of these computational
tasks efficiently, sometimes by sacrificing optimality.

For many applications, the state space is uncountable and the transition and cost functions are
too complex for closed form solutions to be obtained. To compute solutions for such problems, the
state space is often discretized. Discretization methods and convergence results are discussed in Wong
(1970a), Fox (1973), Bertsekas (1975), Chow and Tsitsiklis (1991), and Kushner and Dupuis (1992).

For many other applications, such as queueing systems, the state space is countably infinite.
Computing solutions for such problems usually involves solving smaller dynamic programs with
finite state spaces, often obtained by truncating the state space of the original DP, and then using the
solutions of the smaller DPs to obtain good solutions for the original DP. Such approaches and their
convergence are discussed in Fox (1971), White (1980a, b, 1982), White (1982), Cavazos-Cadena
(1986), Van Dijk (1991), and Sennott (1997).

Even if the state space is not infinite, the number of states may be very large. A natural approach
is to aggregate states, usually by collecting similar states into subsets, and then to solve a related DP
with the aggregated state space. Aggregation and aggregation /disaggregation methods are discussed
in Mendelssohn (1982), Chatelin (1984), Schweitzer et al. (1985), Bean et al. (1987), and Bertsekas
and Castanon (1989).

Another natural approach for dealing with a large-scale DP is to decompose the DP into smaller
related DPs, which are easier to solve, and then to use the solutions of the smaller DPs to obtain a
good solution for the original DP. Decomposition methods are presented in Wong (1970b), Collins
and Lew (1970), Courtois (1977), and Kleywegt et al. (1999).

Some general state space-reduction methods that include many of the methods mentioned above
are analyzed in Whitt (1978, 1979a, b), Hinderer (1976, 1978), Hinderer and Hübner (1977), and
Haurie and L’Ecuyer (1986). Surveys are given in Morin (1978) and Rogers et al. (1991).

Another natural and quite different approach for dealing with DPs with large state spaces is to
approximate the optimal value function V* with an approximating function . It was shown in SectionV̂

2646 METHODS FOR DECISION MAKING

4.4.2 that good approximations to the optimal value function V* lead to good policies . PolynomialV̂
̂
approximations, often using orthogonal polynomials such as Legendre and Chebychev polynomials,
have been suggested by Bellman and Dreyfus (1959), Chang (1966), and Schweitzer and Seidman
(1985). Approximations using splines have been suggested by Daniel (1976), and approximations
using regression splines by Chen et al. (1999). Estimation of the parameters of approximating func-
tions for infinite horizon discounted DPs have been studied in Tsitsiklis and Van Roy (1996), Van
Roy and Tsitsiklis (1996), and Bertsekas and Tsitsiklis (1996). Some of this work was motivated by
methods proposed for reinforcement learning; see Sutton and Barto (1998) for an overview.

REFERENCES

Albritton, M., Shapiro, A., and Spearman, M. L. (1999), ‘‘Finite Capacity Production Planning with
Random Demand and Limited Information,’’ Preprint.

Beale, E. M. L. (1955), ‘‘On Minimizing a Convex Function Subject to Linear Inequalities,’’ Journal
of the Royal Statistical Society, Series B, Vol. 17, pp. 173—184.

Bean, J. C., Birge, J. R., and Smith, R. L. (1987), ‘‘Aggregation in Dynamic Programming,’’ Oper-
ations Research, Vol. 35, pp. 215–220.

Bellman, R., and Dreyfus, S. (1959), ‘‘Functional Approximations and Dynamic Programming,’’
Mathematical Tables and Other Aids to Computation, Vol. 13, pp. 247–251.

Bellman, R. E. (1957), Dynamic Programming, Princeton University Press, Princeton, NJ.
Bellman, R. E. (1961), Adaptive Control Processes: A Guided Tour, Princeton University Press,

Princeton, NJ.
Bellman, R. E., and Dreyfus, S. (1962), Applied Dynamic Programming, Princeton University Press,

Princeton, NJ.
Benveniste, A., Métivier, M., and Priouret, P. (1990), Adaptive Algorithms and Stochastic Approxi-

mations, Springer, Berlin.
Bertsekas, D. P. (1975), ‘‘Convergence of Discretization Procedures in Dynamic Programming,’’ IEEE

Transactions on Automatic Control, Vol. AC-20, pp. 415–419.
Bertsekas, D. P. (1995), Dynamic Programming and Optimal Control, Athena Scientific, Belmont,

MA.
Bertsekas, D. P., and Castanon, D. A. (1989), ‘‘Adaptive Aggregation Methods for Infinite Horizon

Dynamic Programming,’’ IEEE Transactions on Automatic Control, Vol. AC-34, pp. 589–598.
Bertsekas, D. P., and Shreve, S. E. (1978), Stochastic Optimal Control: The Discrete Time Case,

Academic Press, New York.
Bertsekas, D. P., and Tsitsiklis, J. N. (1996), Neuro-Dynamic Programming, Athena Scientific, Bel-

mont, MA.
Birge, J. R., and Louveaux, F. (1997), Introduction to Stochastic Programming, Springer Series in

Operations Research, Springer, New York.
Cavazos-Cadena, R. (1986), ‘‘Finite-State Approximations for Denumerable State Discounted Markov

Deci sion Processes,’’ Applied Mathematics and Optimization, Vol. 14, pp. 1–26.
Chang, C. S. (1966), ‘‘Discrete-Sample Curve Fitting Using Chebyshev Polynomials and the Ap-

proximate Determination of Optimal Trajectories via Dynamic Programming,’’ IEEE Transactions
on Automatic Control, Vol. AC-11, pp. 116–118.

Chatelin, F. (1984), ‘‘Iterative Aggregation /Disaggregation Methods,’’ in Mathematical Computer
Performance and Reliability, G. Iazeolla, P. J. Courtois, and A. Hordijk, Eds., Elsevier, Science
Publishers Amsterdam, pp. 199–207.

Chen, V. C. P., Ruppert, D., and Shoemaker, C. A. (1999), ‘‘Applying Experimental Design and
Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming,’’
Operations Research, Vol. 47, pp. 38–53.

Chong, E. K. P., and Ramadge, P. J. (1992), ‘‘Convergence of Recursive Optimization Algorithms
Using Infinitesimal Perturbation Analysis Estimates,’’ Discrete Event Dynamic Systems: Theory
and Applications, Vol. 1, pp. 339–372.

Chow, C. S., and Tsitsiklis, J. N. (1991), ‘‘An Optimal One-Way Multigrid Algorithm for Discrete-
Time Stochastic Control,’’ IEEE Transactions on Automatic Control, Vol. AC-36, pp. 898–914.

Collins, D. C., and Lew, A. (1970), ‘‘A Dimensional Approximation in Dynamic Programming by
Structural Decomposition,’’ Journal of Mathematical Analysis and Applications, Vol. 30, pp. 375–
384.

Courtois, P. J. (1977), Decomposability: Queueing and Computer System Applications, Academic
Press, New York.

STOCHASTIC OPTIMIZATION 2647

Daniel, J. W. (1976), ‘‘Splines and Efficiency in Dynamic Programming,’’ Journal of Mathematical
Analysis and Applications, Vol. 54, pp. 402–407.

Dantzig, G. B. (1955), ‘‘Linear Programming under Uncertainty,’’ Management Science, Vol. 1, pp.
197–206.

Denardo, E. V. (1982), Dynamic Programming Models and Applications, Prentice-Hall, Englewood
Cliffs, NJ.

Fox, B. L. (1971), ‘‘Finite-State Approximations to Denumerable-State Dynamic Programs,’’ Journal
of Mathematical Analysis and Applications, Vol. 34, pp. 665–670.

Fox, B. L. (1973), ‘‘Discretizing Dynamic Programs,’’ Journal of Optimization Theory and Appli-
cations, Vol. 11, pp. 228–234.

Glasserman, P. (1991), Gradient Estimation via Perturbation Analysis, Kluwer, Norwell, MA.
Glynn, P. W. (1990), ‘‘Likelihood Ratio Gradient Estimation for Stochastic Systems,’’ Communica-

tions of the ACM, Vol. 33, pp. 75–84.
Haurie, A., and L’Ecuyer, P. (1986), ‘‘Approximation and Bounds in Discrete Event Dynamic Pro-

gramming,’’ IEEE Transactions on Automatic Control, Vol. AC-31, pp. 227–235.
Heyman, D. P., and Sobel, M. J. (1984), Stochastic Models in Operations Research, Vol. 2, McGraw-

Hill, New York.
Hinderer, K. (1970), Foundations of Non-stationary Dynamic Programming with Discrete Time Pa-

rameter. Springer, Berlin.
Hinderer, K. (1976), ‘‘Estimates for Finite-Stage Dynamic Programs,’’ Journal of Mathematical Anal-

ysis and Applications, Vol. 55, pp. 207–238.
Hinderer, K. (1978), ‘‘On Approximate Solutions of Finite-Stage Dynamic Programs,’’ in Dynamic

Programmming and Its Applications, M. L. Puterman, Ed., Academic Press, New York, pp. 289–
317.

Hinderer, K., and Hübner, G. (1977), ‘‘On Exact and Approximate Solutions of Unstructured Finite-
Stage Dynamic Programs,’’ in Markov Decision Theory: Proceedings of the Advanced Seminar
on Markov Decision Theory (Amsterdam, September 13–17, 1976), H. C. Tijms and J. Wessels,
Eds., Mathematisch Centrum, Amsterdam. pp. 57–76.

Hiriart-Urruty, J. B., and Lemarechal, C. (1993), Convex Analysis and Minimization Algorithms,
Springer, Berlin.

Ho, Y. C., and Cao, X. R. (1991), Perturbation Analysis of Discrete Event Dynamic Systems, Kluwer,
Norwell, MA.

Kall, P., and Wallace, S. W. (1994), Stochastic Programming, John Wiley & Sons, Chichester.
Klein Haneveld, W. K., and Van der Vlerk, M. H. (1999), ‘‘Stochastic Integer Programming: General

Models and Algorithms,’’ Annals of Operations Research, Vol. 85, pp. 39–57.
Kleywegt, A. J., and Shapiro, A. (1999), ‘‘The Sample Average Approximation Method for Sto chastic

Discrete Optimization,’’ Preprint, available at Stochastic Programming E-Print Series, http: / /do-
chost.rz.hu-berlin.de / speps / .

Kleywegt, A. J., Nori, V. S., and Savelsbergh, M. W. P. (1999), ‘‘The Stochastic Inventory Routing
Problem with Direct Deliveries,’’ Technical Report TLI99-01, The Logistics Institute, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Kushner, H. J., and Clark, D. S. (1978), Stochastic Approximation Methods for Constrained and
Unconstrained Systems, Springer, Berlin.

Kushner, H. J., and Dupuis, P. (1992), Numerical Methods for Stochastic Control Problems in Con-
tinuous Time, Springer, New York.

L’Ecuyer, P., and Glynn, P. W. (1994), ‘‘Stochastic Optimization by Simulation: Convergence Proofs
for the GI /G/1 Queue in Steady-State,’’ Management Science, Vol. 11, pp. 1562–1578.

Mendelssohn, R. (1982), ‘‘An Iterative Aggregation Procedure for Markov Decision Processes,’’ Op-
erations Research, Vol. 30, pp. 62–73.

Morin, T. (1978), ‘‘Computational Advances in Dynamic Programming,’’ in Dynamic Programmming
and its Applications, M. L. Puterman, Ed., Academic Press, New York. pp. 53–90.

Nemhauser, G. L. (1966), Introduction to Dynamic Programming, John Wiley & Sons, New York.
Norkin, V. I., Pflug, G. C., and Ruszczyński, A. (1998), ‘‘A Branch and Bound Method for Stochastic

Global Optimization,’’ Mathematical Programming, Vol. 83, pp. 425–450.
Puterman, M. L. (1994), Markov Decision Processes, John Wiley & Sons, New York.
Robbins, H., and Monro, S. (1951), ‘‘On a Stochastic Approximation Method,’’ Annals of Mathe-

matical Statistics, Vol. 22, pp. 400–407.

2648 METHODS FOR DECISION MAKING

Robinson, S. M. (1996), ‘‘Analysis of Sample-Path Optimization,’’ Mathematics of Operations Re-
search, Vol. 21, pp. 513–528.

Rogers, D. F., Plante, R. D., Wong, R. T., and Evans, J. R. (1991), ‘‘Aggregation and Disaggregation
Techniques and Methodology in Optimization,’’ Operations Research, Vol. 39, pp. 553–582.

Ross, S. M. (1970), Applied Probability Models with Optimization Applications, Dover, New York.
Ross, S. M. (1983), Introduction to Stochastic Dynamic Programming, Academic Press, New York.
Rubinstein, R. Y. and Shapiro, A. (1990), ‘‘Optimization of Static Simulation Models by the Score

Function Method,’’ Mathematics and Computers in Simulation, Vol. 32, pp. 373–392.
Rubinstein, R. Y., and Shapiro, A. (1993), Discrete Event Systems: Sensitivity Analysis and Stochastic

Optimization by the Score Function Method, John Wiley & Sons, Chichester.
Ruppert, D. (1991), ‘‘Stochastic Approximation,’’ in Handbook of Sequential Analysis, B. K. Ghosh

and P. K. Sen, Eds., Marcel Dekker, New York, pp. 503–529.
Schultz, R., Stougie, L., and Van der Vlerk, M. H. (1998), ‘‘Solving Stochastic Programs with Integer

Recourse by Enumeration: A Framework Using Gröbner Basis Reductions,’’ Mathematical Pro-
gramming, Vol. 83, pp. 229–252.

Schweitzer, P. J., and Seidman, A. (1985), ‘‘Generalized Polynomial Approximations in Markovian
Decision Processes,’’ Journal of Mathematical Analysis and Applications, Vol. 110, pp. 568–582.

Schweitzer, P. J., Puterman, M. L., and Kindle, K. W. (1985), ‘‘Iterative Aggregation-Disaggregation
Procedures for Discounted Semi-Markov Reward Processes,’’ Operations Research, Vol. 33, pp.
589–605.

Sennott, L. I. (1997), ‘‘The Computation of Average Optimal Policies in Denumerable State Markov
Decision Chains,’’ Advances in Applied Probability, Vol. 29, pp. 114–137.

Sennott, L. I. (1999), Stochastic Dynamic Programming and the Control of Queueing Systems, John
Wiley & Sons, New York.

Serfozo, R. F. (1976), Monotone Optimal Policies for Markov Decision Processes. Mathematical
Programming Study, Vol. 6, pp. 202–215.

Shapiro, A. (1996), ‘‘Simulation-Based Optimization: Convergence Analysis and Statistical Infer-
ence,’’ Stochastic Models, Vol. 12, pp. 425–454.

Shapiro, A., and Homem-de-Mello, T. (1998), ‘‘A Simulation-Based Approach to Two-Stage Sto-
chastic Programming with Recourse,’’ Mathematical Programming, Vol. 81, pp. 301–325.

Shapiro, A., and Homem-de-Mello, T. (1999), ‘‘On the Rate of Convergence of Optimal Solutions
of Monte Carlo Approximations of Stochastic Programs,’’ SIAM Journal on Optimization, Vol.
11, No. 1, pp. 70–86, 2000.

Sutton, R. S., and Barto, A. G. (1998), Reinforcement Learning: An Introduction, MIT Press, Cam-
bridge, MA.

Topkis, D. M. (1978), ‘‘Minimizing a Submodular Function on a Lattice,’’ Operations Research, Vol.
26, pp. 305–321.

Tsitsiklis, J. N., and Van Roy, B. (1996), ‘‘Feature-Based Methods for Large-Scale Dynamic Pro-
gramming,’’ Machine Learning, Vol. 22, pp. 59–94.

Van Dijk, N. (1991), ‘‘On Truncations and Perturbations of Markov Decision Problems with an
Application to Queueing Network Overflow Control,’’ Annals of Operations Research, Vol. 29,
pp. 515–536.

Van Roy, B., and Tsitsiklis, J. N. (1996), ‘‘Stable Linear Approximations to Dynamic Programming
for Stochastic Control Problems with Local Transitions,’’ Advances in Neural Information Proc-
essing Systems 8, MIT Press, Cambridge, MA, pp. 1045–1051.

Van Slyke, R., and Wets, R. J. B. (1969), ‘‘L-Shaped Linear Programs with Application to Optimal
Control and Stochastic Programming,’’ SIAM Journal of Applied Mathematics, Vol. 17, pp. 638–
663.

White, D. J. (1980a), ‘‘Finite-State Approximations for Denumerable-State Infinite-Horizon Dis-
counted Markov Decision Processes: The Method of Successive Approximations,’’ in Recent De-
velopments in Markov Decision Processes, R. Hatley, L. C. Thomas, and D. J. White, Eds.,
Academic Press, New York, pp. 57–72.

White, D. J. (1980b), ‘‘Finite-State Approximations for Denumerable-State Infinite-Horizon Dis-
counted Markov Decision Processes,’’ Journal of Mathematical Analysis and Applications, Vol.
74, pp. 292–295.

White, D. J. (1982), ‘‘Finite-State Approximations for Denumerable-State Infinite Horizon Discounted
Markov Decision Processes with Unbounded Rewards,’’ Journal of Mathematical Analysis and
Applications, Vol. 86, pp. 292–306.

STOCHASTIC OPTIMIZATION 2649

Whitt, W. (1978), ‘‘Approximations of Dynamic Programs, I,’’ Mathematics of Operations Research,
Vol. 3, pp. 231–243.

Whitt, W. (1979a), ‘‘A-Priori Bounds for Approximations of Markov Programs,’’ Journal of Mathe-
matical Analysis and Applications, Vol. 71, pp. 297–302.

Whitt, W. (1979b), ‘‘Approximations of Dynamic Programs, II,’’ Mathematics of Operations Re-
search, Vol. 4, pp. 179–185.

Wong, P. J. (1970a), ‘‘An Approach to Reducing the Computing Time for Dynamic Programming,’’
Operations Research, Vol. 18, pp. 181–185.

Wong, P. J. (1970b), ‘‘A New Decomposition Procedure for Dynamic Programming,’’ Operations
Research, Vol. 18, pp. 119–131.

