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1. OVERVIEW

Transportation and distribution play a critical role in the successful planning and implementation of
today’s supply chains. Although many view the transportation of goods as a non-value-added activity,
effective transportation planning and execution will not only enhance a company’s productivity but
will also increase customer satisfaction and quality.

In this chapter, we will explore the factors that impact the transportation of goods and the different
tools and techniques that the industrial engineer can apply in the development of effective transpor-
tation networks and systems to reduce or minimize costs, improve cycle time, and reduce service
failures. A similar but inherently different aspect of transportation is that of transporting people.
Although this chapter is concerned with the transportation of goods, the industrial engineer also plays
an important role in designing these types of systems.

Today’s logistics activities are concerned with the movement of goods, funds, and information.
Information technology has now become an integral component of any transportation system. Tech-
nology is being used for scheduling and creating complex delivery and pickup routes and also for
providing customers with up-to-the-minute information on the status of their shipments. The industrial
engineer will not only aid in the development of efficient delivery routes and schedules, but will also
help in the design of state-of-the-art transportation information systems.

2. INTRODUCTION

Transport is the process of transferring or conveying something from one place to another. Trans-
portation is the process of transporting. The transportation of people, goods, funds, and information
plays a key role in any economy, and the industrial engineer can play a key role in properly balancing
the parameters and constraints that affect the effectiveness and efficiency of transportation systems.

This chapter will cover certain applications of industrial engineering in transportation. The em-
phasis is placed on the movement of goods. However, the methodologies described in the chapter
can be applied to a variety of transportation problems.

Transportation plays a critical role in today’s increasingly small world. Economies, businesses,
and personal travel are, in one word, global. Information on the status of the items or persons being
moved is as crucial as the movement itself. Confirmation of delivery in a timely, electronic form is
often as important as on-time, damage-free, value-priced arrival.

The industrial engineer can apply a variety of mathematical and engineering tools and techniques
in the planning and management of effective transportation networks and systems in order to reduce
or minimize costs, improve cycle time, reduce service failures, and so on. The industrial engineer
plays a critical role in the development of efficient delivery routes, schedules, and plans and also
helps in the design and implementation of transportation information systems.

3. TRANSPORTATION AND INDUSTRIAL ENGINEERING

3.1 Transportation as a System

Designing a transportation system means, in most cases, the design of multiple integrated systems—
systems to move goods or people, systems to move information about goods or people, and systems
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to move funds associated with goods or people. Within each of these three types of systems there
may be multiple subsystems.

Today, in the package delivery business, transportation companies offer several types of services
in which the primary distinction is the time it takes to move the package from its point of origin to
its final destination. Services range from same-day or next-day delivery to multi-week delivery, util-
izing different transportation modes such as airplanes, trucks, railcars, boats, and even bicycles. The
packages may all originate at the same location (e.g., shipper) going to the same destination, or each
package in a shipment may have a different destination. In either case, the transportation systems
must be capable of supporting a variety of service offerings, depending on the customer’s needs. The
success of such systems is measured by the systems’ effectiveness in meeting the promised service
guarantees.

In air travel, the service offerings vary from first class to coach travel. Dividing the aircraft into
separate travel compartments allows multiple systems to utilize the same asset, route, flight crew, and
schedule to offer variations in service. Therefore, the air travel industry must also utilize multiple
integrated systems when designing the processes to facilitate the movement of people.

Providing information about the goods or people being moved also involves the implementation
and use of multiple integrated systems. Many customers today provide information about shipments
to the carrier at the time of shipment or earlier. This information is introduced into multiple systems
for a variety of uses. The shipper has information about the shipment: its contents, the carrier, the
mode of transportation, the expected date of arrival, the value of the shipment, shipping charges, and
so on. The carrier and shipper can, through integrated systems, track the status of the shipment as it
moves to its final destination. Upon delivery, the carrier can provide proof of delivery proactively or
upon request. The receiver can be prealerted of the upcoming shipment, its contents, and the expected
date and time of arrival. For international shipments, information can be sent to customs before the
item is moved to the customs site. The movement and timely availability of all this information
increase the efficiency of the modern supply chain.

As with the movement of goods, people, or information, the transfer of funds makes use of
integrated systems. The electronic billing of the carrier’s charges to the shipper is integrated with the
system providing information about the shipment itself. The payment and transfer of funds to the
carrier can be initiated by the pickup or the delivery or through periodic billing cycles. Payments
upon delivery for the contents of the shipment can be handled electronically and triggered by the
electronic transmission of the signature at delivery.

In designing a transportation system, it is crucial to facilitate the integration of the multiple
systems needed for the movement of the goods, people, information, and funds. Industrial engineers
are often the catalysts in facilitating such integration.

4. THE PARAMETERS AND FUNCTIONS ASSOCIATED WITH
TRANSPORTATION

There are two basic parameters that affect the design of freight transportation processes: the territory
to be covered and the frequency with which the transportation events occur. These parameters are
not static. Demand (e.g., number of shipments per week or day) fluctuations make these parameters
dynamic in nature. Demand in transportation is often seasonal. The Thanksgiving holiday in the
United States is one of the highest demand days for air travel. The Saturday prior to Mother’s Day
usually presents a substantial increase in package delivery volume compared to other Saturdays.
Demand can vary by time of day or day of the week. Traffic volume in a major city varies greatly
between Monday morning at 7:30 am and Thursday morning at 3:00 am. The transportation system
must be designed to handle these variations in demand effectively.

It is important to note that what drives demand in the private freight transportation sector is cost
and quality of service. The design (planning), execution, and measurement of the transportation
system have an impact on the cost and quality of the transportation process. The better the costs and
quality of service, the greater the demand and therefore, the greater the need to alter the service
territory and the frequency of service.

Transportation planning, execution, and measurement are the fundamental functions associated
with transportation and are integral to the success of the transportation system.

Planning is needed across all areas of the transportation system. Planning the overall distribution
network, regional (e.g., certain geography) planning, and site (e.g., local) planning are crucial. Asset
planning, including buildings and facilities, vehicles, aircraft, trailers, and materials-handling equip-
ment, is also required. Demand variations drive decisions for asset quantity and capacity. The use of
owned vehicles supplemented by leased vehicles during peak (high-demand) times is an example of
the decisions that need to be made during the planning process. The impact of demand on scheduling,
vehicle routing, and dispatching drives labor and asset needs. Labor can often be the largest com-
ponent of cost in the transportation industry. The transportation planning activity is charged with
developing plans that, while minimizing costs, meet all service requirements.
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The execution of the plan is as important as the planning of the transportation process itself. An
excellent plan properly executed results in lower costs and higher quality of service. This in turn
drives demand and therefore the need for new plans.

Finally, the proper measurement of the effectiveness of the transportation system, in real time,
offers a mechanism by which transportation managers, supply chain specialists, and industrial engi-
neers can constantly reduce costs and improve service. With new technologies such as wireless
communication, global positioning systems (GPS), and performance-monitoring technology, mea-
surement systems allow the users to improve transportation processes as needed.

5. THE ROLE OF THE INDUSTRIAL ENGINEER IN TRANSPORTATION
PLANNING AND TRANSPORTATION OPERATIONS
The role of the industrial engineer in the transportation industry is primarily to aid the organization

in providing a high level of service at a competitive price. The industrial engineer has the skills
necessary to assist in many areas that impact the effectiveness of the transportation system:

Work measurement and methods analysis: Labor is a large component of the total cost of service
in the transportation industry. The pilot, driver, captain, or engineer literally controls the *“‘con-
tainer”” of goods or people in transit. The design of effective work methods and the development
of the appropriate work measurement offer tools that aid management in the control and exe-
cution of transportation processes and provide a mechanism by which the performance of the
system can be measured. Methods design and work measurement are often used to develop
comprehensive work scheduling and vehicle routing systems aimed at reducing costs and meet-
ing all service commitments.

Facility design and location: The determination of the number of facilities required to move
materials and finished goods from one point to another, their capacity, and their location is often
considered one of the traditional roles of the industrial engineer. The use of single (e.g., decen-
tralized) vs. regional distribution center locations and the determination of the territory served
by a local terminal are part of the transportation system design process. In addition, industrial
engineers will often aid in the decision process to determine whether a facility should be au-
tomated or be built using manual sorting systems.

System design: The integration of the components of the transportation process into a highly
efficient system also involves the industrial engineer.

Equipment: Requirements, design and selection of trucks, trailers, containers, aircraft, scanners,
communication devices, materials-handling systems, etc. are tasks undertaken by the industrial
engineer.

Facility layout: The industrial engineer is often responsible for the design of facility layouts
that will offer the most effective arrangement of the physical components and materials-handling
equipment inside distribution centers and delivery terminals.

Asset utilization and control: The design of systems and procedures to balance and manage the
number of trucks, trailers, containers, aircraft, scanners, communication devices, and materials-
handling systems required to facilitate the transportation processes is one more area requiring
the attention of the industrial engineer.

* Measurement systems: Industrial engineers also participate in the development of effective trans-
portation performance measures, including customer satisfaction, cost, and plan accuracy.

.

.

.

As indicated by this list, the industrial engineer adds great value to the transportation industry.
Industrial engineering principles are highly applicable in this complex industry. Industrial engineers
continue to serve as key members of the teams responsible for the design and integration of systems
to facilitate the movement of goods, people, funds, and information in this increasingly competitive
industry.

6. TRANSPORTATION AND THE SUPPLY CHAIN

Supply chain management is a comprehensive concept capturing objectives of functional integration
and strategic deployment as a single managerial process. Figure 1 depicts the supply chain structure.

This structure has been in place for decades. Even when the manufacturing activity takes place
in minutes, the final delivery of a product may take days, weeks, or months, depending on the
efficiency of the supply chain. The operating objectives of a supply chain are to maximize response,
minimize variance, minimize inventory, maximize consolidation, maintain high levels of quality, and
provide life-cycle support.

Transportation is part of the physical distribution. The physical distribution components include
transportation, warehousing, order processing, facility structure, and inventory. The major change in
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Figure 1 The Supply Chain Structure.

the supply chain in the last decade is information. It is information that allows transportation planners
to reduce the costs in the supply chain in today’s highly competitive environment. The integrated
freight transportation systems that facilitate the movement of goods, information, and funds can target
all areas of the supply chain. Every segment of the supply chain has a transportation need.

In an organization, transportation requirements may cover a wide range of territory and frequency
characteristics. Decisions are usually made on the basis of cost as long as customer requirements are
met. When making decisions that affect the organization’s supply chain, it is important not to look
at transportation alone or as an independent activity. Instead, transportation should be viewed in the
context of the entire supply chain in order to make the most effective decisions (Figure 2).

The remainder of this chapter examines industrial engineering applications in transportation. We
concentrate our attention in the transportation of goods. However, the techniques reviewed in the
following sections can be applied to a variety of transportation problems. We do not provide a
complete survey; instead, we present several representative applications in some detail.

7. TRANSPORTING GOODS

7.1. Cost, Time, and Quality Optimization in Transportation

In the transportation of goods, we often develop models that minimize total cost while maintaining
acceptable levels of service. This cost may be a combination of the cost of operating a vehicle (fuel,
maintenance, depreciation, etc.), the labor cost of the operator of the vehicle (driver, pilot, etc.), and
possibly other fixed costs. In the transportation of small packages or less-than-truckload shipments,
sorting cost is also considered, representing the cost of sorting and handling the packages to con-
solidate shipments. Cost may be considered indirectly, as in the case of minimizing empty vehicles
or maximizing the load factor.

The time needed for transporting goods is another very important factor. Instead of minimizing
general cost, transportation time may be minimized directly when time constraints are very tight or
when the computation of cost is dominated by the labor cost. Whether the transportation time is
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Figure 2 Transportation Target Markets in the Supply Chain.
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minimized directly or not, the model may include time constraints (e.g., time windows, total time of
a driver’s route) or the time element may be incorporated in the input data of the model (e.g., included
in the underlying network).

There is a tradeoff between transportation cost and transportation time. In the last decades, shorter
product cycles in manufacturing and notions like just-in-time inventory have resulted in an increasing
demand for smaller transportation times at higher prices and higher transportation cost. The small-
package transportation industry has responded with many “‘premium” services that guarantee short
transportation times. Even when the transportation time is not guaranteed, it represents a primary
element of quality of service along with other considerations such as minimization of lost and dam-
aged goods, which are often handled indirectly or are external to the cost optimization models.

7.2. Integrating Customer Needs in Transportation Planning

Although we often try to minimize cost in transportation planning, what we really want to achieve
is maximization of profit (revenue minus cost). Cost minimization assumes that demand is external
to the model and unaffected by the solution obtained. Demand remains at assumed levels only if the
obtained solution satisfies customer requirements and customer needs are integrated into the trans-
portation planning process.

Excluding price and transportation time, many customer needs are not easily incorporated into a
mathematical model. They may be included in the input data (e.g., different types of service oftered)
or considered when alternative solutions obtained by optimization are evaluated. Flexibility, a good
set of transportation options, and good communication are of primary importance to customers,
permitting them to effectively plan their own operations, pickups, and deliveries.

7.3. Forecasting in Transportation Planning

The development of effective transportation plans is highly dependent on our ability to forecast
demand. Demand, in the case of the transportation of goods, refers to the expected number of ship-
ments, the number of packages associated with a shipment, and the frequency with which such
shipments occur. When developing transportation routes and driver schedules, demand levels are used
as input and therefore need to be forecasted. Changes in demand can occur randomly or can follow
seasonal patterns. In either case, if an accurate forecast is not produced, the transportation planning
effort will yield less accurate results. These results have implications in the design of facilities (e.g.,
capacity), the acquisition of assets (e.g., delivery vehicles), and in the development of staffing plans
(e.g., labor requirements). It is important to note that several factors affect demand in the transpor-
tation industry. Business cycles, business models, economic growth, the performance of the shipper’s
business, competition, advertising, sales, quality, cost, and reputation all have a direct impact on the
demand for transportation services.
When developing a forecast, the planner must address some basic questions:

. Does a relationship exist between the past and the future?

. What will the forecast be used for?

. What system is the forecast going to be applied to?

. What is the size of the problem being addressed?

. What are the units of measure?

. Is the forecast for short-range, long-range, or medium-range planning purposes?

AUt A W N -

Once these questions have been addressed, the steps shown in Figure 3 guide the planner towards
the development of a forecasting model that can be used in generating the forecast to support the
transportation planning process.

Depending on the type of the transportation problem being solved (e.g., local pickup and delivery
operations, large-scale network planning), the user may select different forecasting techniques and
planning horizons. For long-range network planning in which the planner is determining the location
of future distribution centers, long-range forecasts are required. Sales studies, demographic changes,
and economic forecasts aid in the development of such forecasts. When developing aggregate plans
in order to determine future staffing needs and potential facility expansion requirements, the planner
develops medium-range forecasts covering planning horizons that range from one or two quarters to
a year. Known techniques such as time series analysis and regression are usually applied to historical
demand information to develop the forecast. Finally, in order to develop weekly and daily schedules
and routes to satisfy demand in local pickup and delivery operations, the planner may develop daily,
weekly, or monthly forecasts (short-range forecasts). Because demand fluctuations can have a direct
impact on the effectiveness of pickup and delivery routes, the use of up-to-date information from
shippers is critical. Techniques such as exponential smoothing and trend extrapolation facilitate this
type of forecasting.
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Figure 3 Steps in Forecasting.

Forecasting is often considered an art. Because the inputs to any forecasting model are mostly
historical and based on experience, the accuracy of such forecasts is based on the model selected
and the frequency with which it is updated. Forecasting models are usually grouped into two cate-
gories: subjective and objective.

Subjective forecasting models are based on judgement and experience. Several techniques exist
that attempt to make use of the “expert” ’s knowledge to develop a forecast. These techniques include
the Delphi method, jury of executives, and the use of sales force intelligence to develop the forecast.

Objective forecasting models are also known as quantitative models. The selection of a quantitative
model is dependent on the pattern to be projected and the problem being addressed. There are two
types of quantitative forecasting models: time series and explanatory models. In time series models,
time is the independent variable and past relationships between time and demand are used to estimate
what the demand will be in the future. Explanatory models, on the other hand, use other independent
variables instead of or in addition to time. The variables used in the forecasting model are those that
have shown a consistent relationship with demand.

When evaluating the impact of seasonal variability on the forecast, the planner has several indi-
cators that can be used to refine the forecast. Leading and lagging economic indicators of the general
business cycles can aid the forecaster in the refinement of plans. The Department of Commerce
creates an index of well-known economic indicators. This index can be effectively applied to medium-
and long-range forecasts to anticipate demand in the transportation of goods.

Several correlation coefficients can be calculated to determine how closely the forecasts correlate
with actual demand. The sample mean forecast error (e.g., the square root of the sum of the squared
forecast errors), which provides an approximation of the average forecast error of the forecasting
model, can also be used. Choosing the best forecast technique requires an understanding of the
particular forecasting problem and the characteristics of the available data. Ultimately, the planner’s
ability to use past and current information to forecast stops, delivery volume, and other key inputs
to the transportation planning process will determine the quality and accuracy of the transportation
plans developed. With changes in technology and with the increased availability and sharing of
information between companies, we expect substantial improvements in the way forecasting is done
in the transportation industry.

8. PICKUP AND DELIVERY
8.1. Pickup-and-Delivery Operations

Daily operations in parcel delivery include local pickup and delivery. Terminal facilities are assigned
to service areas so that every package that has an origin or destination in the service area is handled
through the assigned terminal. Each workday, a fleet of vehicles leaves a terminal (depot) carrying
packages to be delivered to customers and returns carrying packages that have been picked up from
customers. Most deliveries occur before the pickups, which take place late in the day. Each customer
stop (either delivery or pickup) is characterized by a time window during which service must begin.
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These windows are usually one-sided: a delivery must occur before a given time and a pickup after
a given time. Some windows, though, may be wide open (e.g., a delivery must occur by the end of
the workday) and other windows may be two-sided (a pickup must occur before an early closing
time). Vehicle capacities are not a limitation in this problem; therefore, the fleet of vehicles may be
considered homogenous if the difference in type of vehicle does not have a significant effect on cost.
Maximum on-road time for the workday is an important limitation, where on-road time is defined as
the total elapsed time from the moment a vehicle leaves the depot until it returns to the depot. The
importance of on-road time derives from the fact that often drivers are paid overtime for hours of
work beyond a certain length (e.g., 8 hours), and work rules prohibit work days beyond a certain
length (e.g., 10 hours).

Efficient distribution implies good asset utilization. The primary assets in this problem are vehicles
and drivers. Minimization of the number of drivers and of the total cost of the routes are frequently
used objectives. Efficiency needs to be achieved while level of service is maintained; that is, service
is provided to all customers in such a way as to satisty all time-window constraints. This problem
has a very short-term planning horizon. Since customer stops may differ from day to day and all the
stops are known only a few hours before the actual pickup-and-delivery operation, the problem needs
to be solved a few hours before implementation.

8.2. Modeling

The pickup-and-delivery problem can be modeled as a variation of the vehicle routing problem with
time windows (VRPTW) and a single depot. Inputs for the VRPTW include matrices that specify
the distance and travel time between every pair of customers (including the depot); service time and
time window for each customer; maximum (or specified) number of drivers; starting time of the
workday; and maximum on-road time of the workday. The maximum on-road time of the workday
can be implemented as a time window on the depot, so that the pickup and delivery problem described
above can be considered as a traveling salesman problem with time windows and multiple routes
(m-TSPTW). However, the term VRPTW will be used in this section for this uncapacitated pickup-
and-delivery problem.

Distances and travel times can be derived from the longitude and latitude of the customers and
depot, assuming specific speed functions. Alternatively, distances and travel times can be obtained
from an actual street network; this latter method provides greater accuracy. Longitude and latitude
values are relatively easy to obtain; it is often considerably more difficult to acquire data for a street
network.

The objective in the VRPTW is to minimize the number of drivers and/or minimize the total
cost of the routes while satisfying all constraints. Cost is a function of total distance and on-road
time. The output is a set of routes, each of which specifies a sequence of customers and starts and
ends at the depot. Because of the short-term planning horizon, the drivers need to be notified for
work before the problem is solved. In many cases, therefore, the number of drivers may be estimated
and assumed given; the objective then becomes to minimize total cost.

The number of drivers is unlikely to be changed daily. However, the transportation of small
packages is characterized by seasonality of demand. In the United States, demand increases by 40—
50% during the months before Christmas. A pickup-and-delivery model can be used to obtain the
minimum number of additional drivers that must be used to maintain level of service when demand
increases.

The VRPTW is an extension of the traveling salesman problem with time windows (TSPTW),
which in turn is an extension of the classical traveling salesman problem (TSP). The TSP and its
variants have been studied extensively, and many algorithms have been developed based on different
methodologies (Lawler et al. 1985). The TSP is NP-complete (Garey and Johnson 1979) and therefore
is presumably intractable. For this reason, it is prohibitively expensive to solve large instances of the
TSP optimally. Because the TSPTW (and the VRPTW with a maximum number of available drivers)
are extensions of the TSP, these problems are NP-complete as well. In fact, for the TSPTW and
VRPTW, not only is the problem of finding an optimal solution NP-complete; so is the problem of
even finding a feasible solution (a solution that satisfies all time window constraints) (Savelsbergh
1985). For more on time constrained routing and scheduling problems, see Desrosiers et al. (1995).

Existing exact algorithms for the VRPTW have been reported to solve problems with up to 100
stops. However, the problems encountered in parcel delivery are often substantially larger than this.
Moreover, these problems need to be solved quickly because of the short-term planning horizon. For
these reasons, much of the work in this area has focused on the development of heuristic algorithms—
algorithms that attempt to find good solutions instead of optimal solutions.

Heuristic algorithms for the TSPTW and VRPTW are divided into two general categories: route-
construction heuristics and route-improvement heuristics. The first type of heuristic constructs a set
of routes for a given set of customers. The second type of heuristic starts from an existing feasible
solution (set of routes), and attempts to improve this solution. Composite procedures employ both
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types of heuristic, either by first constructing routes heuristically and then improving them or by
applying route-improvement procedures to partially constructed routes at selected intervals during the
route-construction process itself. Route-construction and route-improvement heuristics are discussed
in more detail below.

8.3. Heuristic Construction Algorithms

There are two general strategies that a route-construction algorithm for the VRPTW can adopt. The
first strategy is “‘cluster first, route second,” which first assigns stops to drivers, and then constructs
a sequence for the stops assigned to each driver. The second strategy carries out the clustering and
sequencing in parallel.

Because clustering is based primarily on purely spatial criteria, the cluster-first, route-second
strategy is often more appropriate for the vehicle routing problem (VRP), where time windows are
not present than for the VRPTW. However, cluster-first strategies can play a useful role in some
instances of the VRPTW, as will be discussed later.

For now, we will confine our attention to algorithms that carry out clustering and sequencing in
parallel. Within this general class of algorithms, there is a further distinction between sequential
heuristics, which construct one route at a time until all customers are routed, and parallel heuristics,
which construct multiple routes simultaneously. In each case, one proceeds by inserting one stop at
a time into the emerging route or routes; the choice of which stop to insert and where to insert it
are based on heuristic cost measures. Recent work suggests that parallel heuristics are more successful
(Potvin and Rousseau 1993), in large part because they are less myopic than sequential approaches
in deciding customer-routing assignments.

In the following discussion, we focus on heuristic insertion algorithms for the VRPTW. Solomon
(1987) was the first to generalize a number of VRP route-construction heuristics to the VRPTW, and
the heuristic insertion framework he developed has been adopted by a number of other researchers.
Solomon himself used this framework as the basis for a sequential algorithm. In what follows, we
briefly describe Solomon’s sequential algorithm and then turn to extensions of the generic framework
to parallel algorithms.

8.4. A Sequential Route-Construction Heuristic

This heuristic builds routes one at a time. As presented by Solomon (1987), sequential route con-
struction proceeds as follows:

1. Select a ““seed” for a new route.

2. If not all stops have been routed, select an unrouted stop and a position on the current route
that have the best insertion cost. If a feasible insertion exists, make the insertion, else go to
step 1.

In step 1, the heuristic selects the first stop of a new route (seed). There are various strategies for
selecting a seed. One approach is to select the stop that is farthest from the depot; another is to select
the stop that is most urgent in the sense that its time window has the earliest upper bound. In step
2, the heuristic determines the unrouted stop to be inserted next and the position at which it is to be
inserted on the partially constructed route. In order to make this determination, it is necessary to
compute, for each unrouted stop, the cost of every possible insertion point on the route.

Solomon introduced the following framework for defining insertion cost metrics. Let (sy, $;, - . . ,
s,,) be the current partial route, with s, and s,, representing the depot. For an unrouted stop u, c,(s;,
u, s;) represents the cost of inserting u between consecutive stops s; and s;. If the insertion is not
feasible, the cost is infinite. For a given unrouted stop u, the best insertion point (i(u), j(u)) is the
one for which

The next stop to be inserted into the route is the one for which
¢, ({Q@*), w*, jw*)) = min, [c,(i(w), u, j(u))]

Stop u* is then inserted in the route between i(#*) and j(u*). Possible definitions for the cost function
¢, are considered later.
8.5. A Parallel Route-Construction Heuristic

A parallel route-construction heuristic that extends Solomon’s sequential algorithm is presented next;
the presentation is based on ideas presented by Potvin and Rousseau (1993, 1995) and Russell (1995).
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1. Run the sequential algorithm to obtain an estimate of the number of routes k. We can also
retain the k seeds obtained by the sequential algorithm. Alternatively, once one has obtained
an estimate of the number of routes, one can use some other heuristic to generate the seeds.
A representative method is the seed-point-generation procedure of Fisher and Jaikumar (1981).
The result of this process is a set of k routes that start from the depot, visit their respective
seeds, and return to the depot.

2. If there are no unrouted stops, the procedure terminates. Otherwise, for each unrouted stop u
and each partially constructed route r = (s, . . . , s,,), find the optimal insertion point (p,(u),
q,(u)) for which

for some cost function c,. For each unrouted u, its optimal insertion point (p(u), g(u)) is taken
to be the best of its route-specific insertion points:

c(p(), u, qu)) = min, [c,(p,(w), u, q,(u))]

Select for actual insertion the node u* for which
c(p(u*), u*, g(u*)) = optimal, [c,(p(w), u, g(u)]

for some cost function c, that may (but need not) be identical to c,. If a feasible insertion
exists, insert the stop u* at its optimal insertion point and repeat step 2. Otherwise, go to
step 3.

3. Increase the number of routes by one and go to step 2.

Possible definitions for ¢, and c, are presented below; again, the presentation here follows that of
Potvin and Rousseau (1993).

We can measure the desirability of inserting u between i and j as a weighted combination of the
increase in travel time and cost that would result from this insertion. Thus, let

d; = cost from stop i to stop j
dGiuj) =d, +d,; — d;
e; = current service start time at j
e, ; = new service start time at j, given that u is now on the route

iu,j) =e,; — €
Then a possible measure of the cost associated with the proposed insertion is given by

(b)) = ayd(iu,j) + ot(iu,j) 6]
where «, and «, are constants satisfying

a + oo, =1

a,a,=0

One way of defining the measure c, is simply by setting ¢, = c,. In this case, the optimal c,-value
is a minimum. An alternative approach is to define ¢, as a ““maximum regret” measure.

A regret measure is a kind of “look-ahead” heuristic: it helps select the next move in a search
procedure by heuristically quantifying the negative consequences that would ensue, if a given move
were not selected. In the context of vehicle routing, a simple regret measure for selecting the next
customer to be routed might proceed as follows. For each unrouted customer, the “‘regret” is the
difference between the cost of the best feasible insertion point and the cost of the second-best insertion
point; the next customer to be added to a route is one whose regret measure is maximal. But this is
still a relatively shortsighted approach. One obtains better results by summing the differences between
the best alternative and all other alternatives (Potvin and Rousseau 1993; Kontoravdis and Bard 1995).
The regret measure that results from this idea has the form

C(u) = 2, [€1(pW), u, () — ¢,(p1), 4, q,.(1))] @)

Underlying the use of this regret measure is a notion of urgency: the regret measure for a stop u is
likely to be high if u has relatively few feasible or low-cost insertion points available. We would like
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to route such a u relatively early to prevent its few good insertion points from being taken by other
customers.

8.6. A Numerical Example

We illustrate the route-construction process by considering an instance of the VRPTW with 18 stops,
together with the depot (node 0). Table 1 displays the time matrix for this problem, and Table 2 the
time windows. All times are listed in hundredths of an hour; for example, 9:45 is represented as 975.
The starting time from the depot is 875 for all drivers. Three routes are to be generated, using as
seeds nodes 18, 6, and 4.

The parallel route-construction procedure initializes each route by inserting its seed node. Hence,
this process creates the three one-stop routes, (0—18-0), (0-6-0), and (0—4-0). Next, for each un-

TABLE 2 Time Windows

Node Earliest Latest
0 875 1300
1 875 1200
2 875 1050
3 875 1200
4 875 1300
5 875 1300
6 875 1200
7 875 1050
8 875 1200
9 875 1200
10 875 1200
11 875 1050
12 875 1200
13 875 1200
14 875 1200
15 875 1200
16 875 1050
17 875 1200

18 875 1300
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routed node, the best feasible insertion cost for each of the three current routes is computed from
formula (1), where o, = 0, «, = 1, and time is used as the cost measure. This computation obtains
for node 1 the best insertion costs (55 63 53) for the three routes. Hence, the best feasible insertion
of node 1 is into route 3 (+* = 3 in formula (2)). The regret measure for node 1 using formula (2)
is calculated as follows:

¢, (1) =55-53+63-53+53—-53=12

The regret measures for the remaining unrouted nodes are computed similarly. The regret values
for each node are shown in the following array, where x indicates a node that has already been
included in a route.

Regrets = (12 16 52 x 100 x 3 23 96 29 86 21 31 1 24 50 48 x)

At each iteration of the procedure, the next stop to be inserted into a route is a stop with the
maximal regret measure. In the present case, node 5 has the maximal regret. Hence, the procedure
inserts node 5 into its best feasible insertion point (first stop after the depot on route 1). After node
5 is inserted, the three routes under construction become (0-5-18-0), (0—-6-0), and (0-4-0). The
algorithm repeats this process until all nodes have been inserted.

The three routes returned by the procedure are shown in Table 3 and Figure 4.

8.7. Infeasible Problems

One of the inputs to a typical instance of the VRPTW is the maximum number of drivers available.
In the case where the time windows are relatively tight, an algorithm may not be able to find a
feasible solution (i.e., a solution in which all time windows are satisfied). The way one proceeds in
this case depends on the nature of the application. In some applications, where there is a service
guarantee and the same penalty applies no matter how close to meeting the service commitment a
late delivery happens to be, we wish to minimize the number of missed time windows. In other
applications, where the penalty is proportional to the lateness of a delivery, we wish to minimize,

TABLE 3 Solution Routes

Node Time Window Arrival Time

Route 1
0 875 1300 875
5 875 1300 929
18 875 1300 980
16 875 1050 1034
13 875 1200 1058
15 875 1200 1077
0 875 1300 1101

Route 2
0 875 1300 875
12 875 1200 914
11 875 1050 958
6 875 1200 978
9 875 1200 999
17 875 1200 1027
3 875 1200 1051
0 875 1300 1095

Route 3
0 875 1300 875
2 875 1050 904
14 875 1200 936
7 875 1050 959
1 875 1200 975
8 875 1200 993
10 875 1200 1021
4 875 1300 1058
0 875 1300 1110
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7 1 8

Figure 4 Example Solution.

over all stops, the total time by which the upper bounds of the time windows of stops are missed.
In either case, we can still apply the heuristic insertion framework described above by adding an
appropriate penalty function to the standard heuristic cost functions.

8.8. Work Breaks

The algorithms presented thus far provide a framework for solving a variety of routing and scheduling
problems. However, the specific algorithms we have considered are applicable directly only to a small
range of problems; they generally have to be extended in some way in order to deal with real-world
applications. One important extension arises in routing applications in which the driver spends an
entire day on the road. For such applications, we must take into account the necessity of scheduling
lunch and other breaks in order to satisfy work rules and other constraints. Taking these factors into
account complicates an already difficult problem.

We can characterize a break by specifying the following values: earliest start time for the break,
latest start time for the break, and duration of the break. For example, we might specify that we are
to include a 50-minute lunch break that begins any time between 11 am and 1 pm.

To accommodate breaks within the heuristic insertion framework, the most natural way to proceed
is to represent the breaks themselves as nodes. Note that a break does come with a natural time
window (earliest and latest start times) and an analogue of service time (duration of break). The one
crucial missing item is location. In some cases, the location of breaks may be specified as part of
the input to the algorithm. In general, however, the algorithm will have to select a location for each
break, based on the locations of the nodes that represent actual stops.

For example, suppose we wish to schedule a break after stop a but before stop c. According to
the heuristic insertion framework, this is just the problem of inserting the break node b between
nodes a and c. One possible approach is simply to assign a’s location to b. In this case, we calculate
the arrival time at ¢ as follows. Let [e,, /] be the time window for a given stop x, svcTime, the
service time at x, and ¢, the travel time from x to y. If x has been assigned to a route, we let arrival,
be the arrival time of the driver at location x. Then the time at which service begins at stop x is
given by

startTime, = max(arrival,, e,)

In the case being considered here, where break node b is inserted between stops a and ¢, we have
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startTime, = startTime, + svcTime, + svcTime, + 7.

Recall that svcTime, is just the duration of the break.

This is the basic picture, but there is at least one complication that we have to take into account.
Suppose, as before, that we wish to insert break node b between a and c. Suppose also that the travel
time from a to ¢ is 30 minutes, that service is completed at a at 10:45, and that the time window
for b is [11:00, 1:00]. Then, according to the simple scheme just described, we would have to wait
for 15 minutes at location a before starting lunch at a!

To avoid this sort of awkward behavior, we would actually insert b at the first point on segment
(a, c) such that there is no waiting time at b. If there is no such point, then we conclude that no
lunch break can be inserted between stops a and c. For example, in the scenario just described, we
would insert b halfway between a and c.

When a break has been fully represented this way as a node with time window, location, and
service time, it is treated just like any other node within the heuristic insertion framework.

8.9. Route-Improvement Heuristics

Heuristic route-improvement procedures play a fundamental role in vehicle routing algorithms. Such
procedures take as input a feasible solution consisting of a route or set of routes and seek to transform
this initial solution into a lower-cost feasible solution.

One of the most successful route-improvement strategies has involved the use of edge-exchange
heuristics. The edge-exchange technique was introduced by Lin and Kernighan (1973) as a local
search strategy in the context of the conventional traveling salesman problem, but it has since been
applied to a variety of related problems, including the vehicle routing problem.

For an individual route, a k-exchange involves replacing k edges currently on the route by k other
edges. For example, a 2-exchange involves replacing two edges (say (i, i + 1) and (j, j + 1)) by
two other edges ((i, j) and (i + 1, j + 1)). Usually, all the available k-exchanges are examined and
the best one is implemented. This is repeated as long as an improved solution is obtained. Since
there are Z subsets of k edges in a cycle of n edges, the computational complexity of the edge-
exchange method increases rapidly with k. Even one k-exchange requires O(r*) time, so attention is
usually confined to the cases k = 2 and k = 3.

The idea of an edge exchange can be extended in a straightforward way to the case of pairs of
routes. In this case, one exchanges entire paths between routes, where a path consists of a sequence

of one or more nodes. For example, let routeA = (a,, a,, . . . , a;), routeB = (b,, b,, . . ., b,). Then,
after exchanging paths between the two routes, the routes that result would be of the form,
routeA = (a,, . .., @, by, . .., by, a,, . . ., @), and similarly for routeB.

As mentioned, the goal of a route-improvement heuristic is to reduce routing costs; typically this
means that we wish to minimize route duration. However, when we are dealing with time windows,
we must also verify that any proposed exchange retains time window feasibility. Techniques for
efficient incorporation of time window constraints into edge-exchange improvement methods were
developed by Savelsbergh (1985, 1990, 1992); see also Solomon et al. (1988).

The most recent work on route improvement has focused on the development of metaheuristics,
which are heuristic strategies for guiding the behavior of more conventional search techniques, with
a view towards avoiding local optima and thereby achieving higher-quality solutions. Metaheuristic
techniques include tabu search, genetic algorithms, simulated annealing, and greedy randomized adap-
tive search (Glover 1989, 1990; Kontoravdis and Bard 1995; Potvin et al. 1996; Rochat and Taillard
1995; Taillard et al. 1997; Thangiah et al. 1995).

To illustrate the pertinent concepts, we focus here on tabu search. Tabu search helps overcome
the problem of local optimality, which often arises when traditional deterministic optimization heu-
ristics are applied. The problem of local optimality arises in the following way. A wide range of
optimization techniques consists of a sequence of moves that lead from one trial solution to another.
For example, in a vehicle-routing algorithm, a trial solution consists of a route for each vehicle; and
a “move,” in the route-improvement phase, might consist of some sort of interroute exchange. A
deterministic algorithm of this general type selects a move that will most improve the current solution.
Thus, such a procedure ‘“‘climbs a hill”” through the space of solutions until it cannot find a move
that will improve the current solution any further. Unfortunately, while a solution discovered with
this sort of hill-climbing approach cannot be improved through any local move, it may not represent
a global optimum.

Tabu search provides a technique for exploring the solution space beyond points where traditional
approaches become trapped at a local optimum. Tabu search does not supplant these traditional
approaches. Instead, it is designed as a higher-level strategy that guides their application.

In its most basic form, the tabu method involves classifying certain moves as forbidden (or
“tabu’); in particular, a move to any of the most recently generated solutions is classified as tabu.
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(When we speak of “moves” here, we mean moves generated by some traditional search method
such as edge exchange.) The tabu algorithm then selects the best move from the set of moves not
classified as tabu, in order to drive the search into new regions. No concern is given to the fact that
the best available moves may not improve the current solution. In particular, because a recently
achieved local optimum will be classified as tabu, the method can drive the search down the hill
away from this local optimum. The hope is that the expanded search will lead to an improved final
solution. There is no guarantee that an improved solution will be found, but variations on the method
just described have achieved considerable success and have become increasingly popular.

What has been described here is a very simple tabu search framework, which performs ‘‘book-
keeping” operations to ensure that the algorithm does not return to recently explored solutions. More
sophisticated metaheuristic strategies more explicitly guide the direction of the search itself.

8.10. Preassigned Routes and Preassigned Territories

The heuristic route-construction methods described thus far are designed to minimize route cost while
satisfying time window and other constraints. Route cost is typically a function of total on-road time
and distance. In an approach to routing that seeks only to minimize travel time and distance, one
typically follows a reoptimization strategy. That is, one is faced each day by a new problem, defined
by the set of customers who actually require service that day; and one solves that problem by applying
a heuristic route-construction algorithm. Because there is no concept, in such algorithms, of geo-
graphical area or regularity of service, the solution for one day will be independent of the solution
for another. While these solutions may be very efficient from the standpoint of total cost and travel
time, they may not be satisfactory for some applications. The reason for this shortcoming is that in
some applications, there may be additional, hidden costs that the reoptimization strategy fails to take
into account.

One such cost involves driver knowledge of the area in which he or she is providing service. A
driver who is familiar with the road network and traffic conditions in his service area is likely to be
more efficient than a driver for whom the delivery area is relatively new. A second, related cost
involves the development of business relationships. For many service providers, an important goal is
to achieve regularity and personalization of service by having the same driver visit a particular
customer every time that customer requires service.

These considerations suggest that for some applications, it may be desirable to maintain some
consistency from one day to the next in assigning customers to drivers. In this case, we need to
devise some alternative to the reoptimization strategy.

One way of devising such an alternative is to interpret our problem as a probabilistic vehicle
routing problem (PVRP) (Jaillet and Odoni 1988). According to this interpretation, we are given a
service region and the set of all potential customers in that region. On a given day, only a subset of
the customers will actually need service and the exact customer set for a given day cannot be
predicted. However, we are also given a probability distribution, based on historical data, over the
set of potential customers. The probability assigned to a potential customer represents the probability
that that customer will require service on any given day.

One way of defining an objective function for this problem is provided by the a priori optimization
strategy investigated by Jaillet (1988) and Bertsimas et al. (1990). In order to develop the ideas
underlying this strategy, it is helpful to focus on the TSP. In the conventional TSP, we are given a
complete graph G = (V,E) and wish to find a lowest-cost tour that visits every node in V. We obtain
the probabilistic TSP (PTSP) by supposing that, on any given day, the traveling salesman may have
to visit only some subset S of the nodes in V. The probability that any v in V is present (must be
visited) in a given problem instance is given by a probability function p over V. We identify a problem
instance with the subset S of nodes that are present in that instance. Thus there are 2" possible
instances of the PTSP on G, where n = |V|

According to the a priori optimization strategy, one finds a priori a tour through all n nodes of
G. For any given instance of the problem, the £ = n nodes that are actually present are visited in
the same order as they appear in the a priori tour; the (n — k) missing nodes are simply skipped.

A natural measure of effectiveness for the a priori strategy is given by the notion of minimum
length in the expected value sense. Thus, let 7 be the a priori tour, and let L, be the length of 7. If
the problem instance S occurs with probability p(S) and requires covering a total length L (S) ac-
cording to the a priori tour, then it will receive a weight of p(S)L(S) in the computation of expected
length. Therefore, according to this construal of the PTSP, the objective is to find an a priori tour 7,
through the n nodes of G, which minimizes the quantity

E[L.] = Zscy p(SILLS)

We extend this model to the VRP by requiring that an a priori tour be constructed for each driver in
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such a way that all potential customers are assigned to some driver. Note that a set of a priori tours
of this sort does provide the kind of regularity of service described above.

At first glance, the task of calculating E[L.] for a given a priori tour 7 may appear problematic
because the summation is over all 2” subsets of V. However, Jaillet derived an efficient closed-form
expression for E[L,], which requires only O(n?) time to compute (see discussion in Jaillet 1988).

Of course, being able to calculate E[L,] efficiently for a given a priori tour is very different from
actually finding a tour that minimizes E[L.]. Because the PTSP is at least as hard as the TSP, there
is little hope of developing exact optimization methods that could solve more than modestly sized
instances of the problem. Consequently, one must employ heuristics in order to develop practically
viable PTSP algorithms. However, it has proven difficult to develop effective heuristic approaches to
the PTSP, at least in part because the class of optimal solutions to the PTSP has properties very
different from those associated with the conventional (Euclidean) TSP. For example, one of the
fundamental properties of the Euclidean TSP is that an optimal solution cannot intersect itself; this
property follows directly from the triangle inequality. In contrast, an optimal solution for the PTSP
can intersect itself, even when the triangle inequality is satisfied (systematic treatments of the dif-
ferences between the TSP and PTSP are presented by Jaillet [1988] and Jaillet and Odoni [1988]).
One consequence of the fact that the PTSP has features very different from the TSP is that, in general,
we cannot expect heuristic approaches designed specifically for the TSP to be extended successfully
to the PTSP. In general, therefore, entirely new solution approaches are needed. One of the few
promising approaches to the PTSP that has been discussed in the literature is based on the idea of
““spacefilling curves” (Bartholdi and Platzman 1988). But the probabilistic versions of the TSP and
VRP remain very much under the heading of research topics.

The problem becomes even more difficult when we turn to probabilistic versions of the VRPTW.
For this problem, presumably, the a priori strategy would involve multiple objectives; in addition to
minimizing the expected length of the a priori tour, we would also want to minimize the expected
number of missed time windows. But it is difficult even to formulate this problem properly, much
less solve it.

For this reason, when time windows are involved, we try in actual applications to capture some
subset of the key features of the problem. In this case, instead of trying to construct a priori tours
of the kind just described, we simply try to construct a solution in which a large percentage of repeat
customers is handled by the same driver and each driver is relatively familiar with most of the territory
to which he or she is assigned.

One way of achieving such a solution is to partition the service area into geographical regions
and then always assign the same driver to the same region. In operational terms, a solution of this
sort is one in which drivers have well-defined territories: a driver travels from the depot to his or her
service area, carries out his or her work there, and then returns to the depot. This picture is to be
contrasted with the one that emerges from the heuristic insertion framework, which usually results
in routes that form a petal structure: in general, it creates routes in the form of intersecting loops, in
which stops appear in a roughly uniform way.

To construct a solution in which drivers are assigned to territories in this way, it is appropriate
to adopt the cluster-first, route-second strategy mentioned earlier. Thus, we proceed by first assigning
stops to drivers, thereby partitioning the service area. We then construct a sequence for the stops
assigned to each driver. This strategy represents a departure from the heuristic insertion framework,
according to which clustering and routing proceed in parallel.

One way of implementing a cluster-first strategy is as follows. Suppose that, on a given day, we
wish to construct k routes. We can proceed by (heuristically) solving a k-median problem (Daskin
1995); we then carry out the initial clustering by assigning each stop to its closest median. Having
created the clusters, we then construct a route for each cluster individually by solving the resulting
TSPTW. Unfortunately, it is often impossible to construct a feasible route for each cluster. When
feasible routes cannot be constructed, we have to shift stops between clusters in such a way as to
achieve feasibility while maintaining well-defined territories as much as possible.

If we begin by solving a new k-median problem each day, then we may succeed in producing
well-defined territories for drivers; but we are unlikely to achieve consistency from one day to the
next in assigning customers to drivers. A natural way of extending this approach to achieve consis-
tency is to take historical information into account. Thus, we can solve a weighted k-median problem
over the set of all locations that have required service over a specified number of past days, where
the weight of a location is proportional to the number of times it has actually required service. We
would then consistently use these medians as the basis for clustering. There may well be days in
which the initial clusters thus constructed are significantly unbalanced with respect to numbers of
customers per driver; in this case, we have to shift stops between clusters, as described above.

Whether the procedure just outlined can be applied successfully in the presence of time windows
depends in part on the nature of those time windows. For some applications, time windows are one-
sided, and there are only a few different service levels: for example, delivery by 9:00 am for express
packages, delivery by 11:00 am for priority packages, and so on. For such applications, it is plausible
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to suppose that the sort of strategy just described, which emphasizes the spatial aspects of the
problem, can be implemented successfully. If, on the other hand, there is a variety of different,
overlapping, two-sided time windows, then we are faced with what is really a three-dimensional
problem, with time as the third dimension. In such a case, where the temporal aspect of the problem
predominates, the prospects for a successful cluster-first strategy of the type described here are
considerably less promising.

An alternative heuristic strategy is to employ a sweep method for clustering, introduced by Gillet
and Miller (1974); see also Fisher and Jaikumar (1981) and Hall et al. (1994). According to this
strategy, one begins by dividing the service area into annuli centered at the depot, using some heuristic
method for determining the radius of each annulus. For each annulus, one then sorts the set of
customers by increasing polar angle and then builds routes sequentially, inserting stops in order into
the current route.

As in the k-median method, the prospects for successful application, in the presence of time
windows, of what is essentially a spatial method depend on the nature of those time windows. Again
as in the k-median method, one would have to take historical data into account in order to achieve
assignments of customers to drivers that are reasonably consistent over time.

8.11. Implementation Issues

It is evident, on the basis of the discussion in this section, that for vehicle-routing applications one
may require a suite of algorithms, each of which best serves a somewhat different objective. Fur-
thermore, to make the best use of these algorithms, it is important that the actual user be specially
trained for the application.

Accuracy of the input data is very important in this problem (and in optimization problems in
general). Because the objective is to minimize cost, the model is very sensitive to data that affect
cost calculations. Because traffic conditions change with the time of day, weather conditions, and so
on, travel times are generally estimated even when the best data are available. When longitude and
latitude values are used as the basis for travel time estimates, a further loss of accuracy results. This
indicates that the extra cost of getting provably optimal solutions may not be justified, and also that
effort needs to be made to develop methodologies that are robust with respect to data inaccuracies.
One must certainly take into account the possibility of such inaccuracies when one reports the output
routes. It is especially important to do so if the intention is to provide precise directions to drivers
who are inexperienced in their assigned areas. Obvious inaccuracies may generate distrust for the
model by the users.

The pickup-and-delivery problem discussed in this section is static in the sense that all demand
is known before any service begins. But one can also consider real time dispatching problems, in
which demand is generated in real time and routing decisions are made after the driver has left the
depot. Advances in communications technology make it feasible to implement real-time systems of
this sort. They also make feasible the implementation of hybrid systems, in which drivers are given
predetermined routes but these routes may be modified dynamically as new demand arises during
the workday. Dynamic problems of this sort will require new algorithmic techniques to supplement
those presented in this section.

9. LARGE-SCALE TRANSPORTATION NETWORK PLANNING
9.1. Line-Haul Movement of Packages

During the pickup and delivery operation of a parcel delivery company, packages are picked up and
brought to a local terminal, as discussed in Section 8. These packages are sometimes transported to
their destination terminal directly and delivered to the customers. In most cases, however, packages
go though a series of transfer terminals where they get sorted and consolidated. Transportation be-
tween terminals is achieved using several modes of transportation. The most prevalent modes on the
ground are highway and rail, using a fleet of tractors and trailers of different types. A fleet of aircraft
is used for transporting by air.

A transfer terminal often shares the same building with one or more local terminals. Several
sorting operations may be run daily in a transfer terminal and are repeated every day of the work
week at the same times. A large transfer terminal may have four sorting operations at different times
of the day or night. Packages get unloaded, sorted, and reloaded on trailers. Several types of trailers
may be used with different capacities and other characteristics. One or more trailers are attached to
a tractor and depart for the next terminal on their route. This may be another transfer terminal or
their destination terminal, or a rail yard for the trailers to be loaded and transported by rail, or an
air terminal, if the packages have to be transported by air. In this section, we will examine a model
that determines the routes of packages from their origin to their destination terminals and the equip-
ment used to transport them, only for packages that travel on the ground using two modes, highway
or rail.
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Package handling and transporting between terminals represents a large part of the operating costs
for a package transportation company. A good operating plan that minimizes cost and/or improves
service is crucial for efficient operations. In recent years, many new products and services have been
introduced in response to customer demand. These changes as well as the changes in package volume
require additions and modifications to the underlying transportation network to maintain its efficiency.
A planning system that can evaluate alternatives in terms of their handling and transporting costs
and their impact on current operations is very important. There is a tradeoff between the number of
sorting operations a package goes through and the time needed to reach its destination. More sorting
operations increase the handling cost, decrease the transportation cost because they consolidate loads
better, but also increase the total time needed until a package is delivered to the customer. All these
factors need to be taken into account in the design of a transportation network for routing packages.

9.2. A Network-Optimization Problem

The network-optimization problem for transporting packages on the ground can be defined as follows.
Determine the routes of packages, mode of transportation (highway or rail), and types of equipment
to minimize handling and transportation costs while the following constraints are met: service re-
quirements are respected, the capacities of sorting operations are not surpassed, no sorting operation
is underutilized, the number of doors of each facility available for loading trailers is considered,
trailers balance by building, and all the packages to the same destination are routed along the same
path.

To maintain level of service, packages must be transported between particular origin/destination
(OD) pairs in a given time. The capacity of a sorting operation cannot be surpassed but also, if the
number of packages through a sorting operation falls below a given value, the sorting operation needs
to be closed down. The number of loading doors of each facility represents the maximum number
of trailers that can be loaded simultaneously during a sorting operation. Note that two or more of
the trailers loaded simultaneously may be going to the same terminal next on their route.

Trailers need to balance by building daily. This means that the trailers of each type that go into
a building must also leave the building during the daily cycle. Balancing is achieved by introducing
empty trailers into the system. There are several types of trailers that are used, with different capac-
ities. Some types can be used both on highway and rail. Trailers can also be rented from the railroads,
and these trailers may not need to balance. Each tractor can pull one, two, and, on rare occasions,
three trailers, depending on the trailer types and highway restrictions. At a terminal, tractor—trailer
combinations are broken up, the trailers unloaded, the packages sorted, the trailers loaded again, and
the tractor and trailers reassembled to form new combinations. There is no constraint on the number
of trailers of any type that are used.

An important operational constraint is that all the packages to the same destination must be routed
along the same path. This implies that all packages with the same destination terminal follow the
same path from the terminal where they first meet to their destination. This constraint results from
the fact that sorting is done by destination. If sorting became totally automated, this constraint might
be modified.

A network-optimization model can be used as a long-term planning tool. It can evaluate alter-
natives for locating new building facilities, opening or closing sorting operations, and changing an
operating plan when new products are introduced or the number of packages in the system changes.
Because any such changes require retraining of the people who manually sort the packages, the
routing network in parcel delivery is not changed often or extensively. For a network-optimization
model to be used as an intermediate-term planning tool to modify the actual routing network, the
model needs to obtain incremental changes, that is, to obtain solutions as close as possible to the
current operations.

9.3. Modeling

The network-optimization problem is formulated on a network consisting of nodes that represent
sorting operations and directed links that represent movement of packages from one sorting operation
to another. Both the highway and rail modes are represented by one link if the same time is needed
to traverse the link by either mode. If a different time is needed by each mode, two different links
are used, each representing one mode. In the latter case, all the packages need to travel by only one
mode even if both modes are feasible so that all the packages that start together arrive at the same
time to their destination. It is assumed that every day is repeated unchanged without any distortion
of the pattern because of weekends. Since a sorting operation is repeated every day at the same time,
one node represents a sorting operation for as many days as necessary for a complete cycle of
operations to occur in the system. To avoid any confusion, we will use in the description of the
network design problem the terms origin and destination or OD pair to refer to the origin and
destination nodes of a package; we will use the terms initial and final nodes to refer to the origin
and destination nodes of a directed link.
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Each node is characterized by a daily starting and ending time of the sorting operation, a sorting
capacity, a sorting cost, and the number of loading doors available. Each link is characterized by a
travel time and distance between its initial and final nodes and the types of combinations that are
permitted on the link with their costs and capacities. The combinations representing both highway
and rail are associated with the same link when the travel time is the same for highway and rail. If
the travel time is different and the link represents a particular mode, only the combinations of this
mode are associated with the link. In addition, for each OD pair, the number of packages that need
to be transported is given as well as the maximum time permitted from the moment a package starts
at its origin until it reaches its destination.

A network-optimization system that solves the problem presented above utilizes large amounts
of data and must have a reliable data interface in addition to the solver. The data interface extracts,
verifies, and validates the data needed for the problem corresponding to the particular geographical
area applicable to the problem. It then generates the network and, after the solver is applied, produces
reports of the results. The solver consists of optimization algorithms that obtain solutions of the
problem.

The network described above can be very large. To facilitate the application of the optimization
algorithms, the network size is reduced using various aggregation rules. OD pairs may be consolidated
by building or destination group, and local terminals in the same building may be combined into one
node. If all the possible connections between each pair of sorting operations are added, the network
becomes very dense. For this reason, only links that are likely to be used in the solution are included
(e.g., direct links between sorting operations that are farther apart than a given distance are omitted).

The network design problem is formulated below as a mixed-integer programming problem (MIP)
(Nemhauser and Wolsey 1988). A graph G(N,E) is given with N a set of nodes and E a set of directed
links. A node represents a sorting operation for each consecutive day of a whole cycle of operations.
A directed link (i,j) represents the movement of packages from sorting operation i (initial node of
the link) to sorting operation j (final node of the link). Because of the presence of two different links
that are used in parallel between the same sorting operations representing two different modes with
different travel times, link (i,j) may not be unique. To simplify the presentation, however, we disregard
the presence of parallel links. The formulation can be easily extended to include this case because
at most one of such parallel links can be used in the solution. Additional notation is introduced next.

9.3.1. Notation

Parameters

A = set of OD pairs = {(k,]) | k € N is the origin and [ € N is the destination, k # [}

M = set of all trailer-combination types (a trailer combination consists of a tractor and one or more
trailers)
set of trailer-combination types of link (i,j) € E; M; C M
set of trailer types
set of trailer types that must balance (rented rail trailers may not need to balance); F C Q
{B,| B, is a building; B, C N}; j € B, means that sorting operation j € N resides in building

B,
= cost of moving trailer-combination type m € M;; on link (i,)) € E
cost of handling all the packages of OD pair (k,/) € A through node i € N
capacity of trailer type ¢ € Q in number of average-size packages
number of single trailers of type ¢ € Q in trailer-combination type m € M
h;; = starting time of sorting operation j minus ending time of sorting operation i so that the
packages sorted at i € N are transported on (i,j) € E and sorted next at j € N

Ks)
|

r; = duration of sorting operation j
s,; = starting time at origin kK € N of the packages to be transported to destination / € N
v, = number of average-size packages of OD pair (k,/) € A
7, = total time permitted for the packages of OD pair (k,/) to travel from k to /
u; = capacity of sorting operation i € N (maximum number of packages that can go through node
)
g; = minimum number of packages going through i € N, if sorting operation i is open

f; = maximum number of outgoing-trailer positions (loading doors) available at node i € N
INF = a very large number

Decision variables

X;,, = number of trailer combinations of type m € M, used on link (i,j) € E
w;, = number of nonempty trailers of type ¢ € Q on link (i,j) € E
yyu = 1 if link (i,j) € E is used to transport the packages of OD pair (k,[) € A; 0 otherwise
z; = 1 if sorting operation i € N is open; 0 otherwise
t,, = departure time of packages of OD pair (k,/) € A from node i € N (end time of sorting operation

i).
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The cost d,,, is estimated as the average cost of a package through sorting operation i € N
multiplied by the number of packages of OD pair (k,/) € A. The cost ¢, is estimated as a function
of the distance of link (i,j) € E, fuel prices, driver wages as well as depreciation and cost of the
trailer-combination type m € M;;.

It is assumed that all the packages processed through a sorting operation are available at the
beginning and leave at the end of the sorting operation. The time h;; of link (i,j) € E is the difference
between the starting time of the sorting operation j and the ending time of the sorting operation i
with the appropriate time difference included for the packages to be transported on link (i,j) and be
available at j on time. The time h; as defined above makes it unnecessary to consider the time
windows of the sorting operations explicitly in the following formulation. The time A, is also equal
to the travel time on link (i,j) plus the difference in time between the beginning of the sorting
operation at j and the arrival of the packages at j, which corresponds to the wait time until the sorting
operation j starts. The capacity of a sorting operation is represented by an upper bound that cannot
be exceeded. A lower bound may also be used to force sorting operations to be closed if they are
underutilized.

9.4. Network Design Formulation
Min Z(x,w,y,zt) = Zcy S nea diu Zien Yiu + 2 jer EmeM,-J Cijm Xijm 3)
subject to

Z/‘EN Vit — 2peN Ypirt = b Vk)eEAIEN 4

where b = 1 fori = k; b = —1 fori = [; b = 0 otherwise

ty =ty — INF(yy, — D = hy + 15 VieENjEN, (k) €EA %)

Lot = Su Vv (kl) €A (6)

=Tyt Syt 1 Vv (kl) € A (7

Sien Zanea U Yo = U; VjEN ®)

Sien Zanen Vi Vi — 82,20 VjEN 9

%= Yy =0 VieENjEN, (k) €EA (10)

Yo ¥ Yy =1 Y @) EE, (,j) EE (kD) €A K.)EAK<K,j#] an
Sien Zien Zmemy Ogm Xijm — Zjen, Zpen Zmemy Oqm Xpm = 0 VB, EB gEF (12)
Se0 ke Wiy — Zunea UV Yiu = 0 Vv (i,j) EE (13)

Sien Zyeo Wiy =i VieEN (14)

S erty Ogm Xgm — Wy =0 YV (i) EE g€ Q (15)

X;, = 0 and integer Y i,j,m (16)

w;, = 0 and integer YV i,j.q 17

Yiu =0or 1 Vi, jk,l (18)

L=0orl Vi (19)

=0 Ykl (20)

The objective function (3) minimizes the total cost of handling and transporting the packages of all
the OD pairs. Constraints (4) are balancing constraints ensuring that the packages of an OD pair start
from their origin, end at their destination, and, if they enter an intermediate node, also exit the node.
Each constraint (5) computes the departure time of the packages of OD pair (k,/) from node j, using
the departure time of the preceding node i. If link (i,j) € E is used to transport the packages of OD
pair (k,)) € A (y;; = 1), the constraint becomes t;, — t;, = h; + r,. If link (i,j) € E is not used
(¥4 = 0), the constraint is not binding. The starting time at each origin is set with constraints (6).
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Constraints (7) ensure that the service requirements are met, that is, the movement of the packages
of OD pair (k,[) from their origin k to their destination / takes no more than 7, time. These constraints
also force constraints (5) to apply with equality if necessary.

Constraints (8) ensure that the capacities of the sorting operations are not violated, and constraints
(9) prevent sorting operations that are open from being underutilized. Constraints (10) ensure that
packages enter node j only if the sorting operation j is open. That is, if y;;, = 1 for any i, j, k, [ then
z; = 1 from constraints (10). If y;;, = O for all i, j, k, [ then z; = O from constraints (9) and (10).

Constraints (11) ensure that all the packages going though sorting operation i and having the
same destination / use the same network link to the next sorting operation on their path, that is, there
are no split paths to the same destination. The only case that is permitted is k # k', j = j'. The case
k = k', j # j' is excluded by constraints (4) which ensure a unique path for each OD pair (k,/). The
case k # k', j # j' is excluded by constraints (11). Using k < k' avoids repeating the constraints
(11) twice.

Constraints (12) are balancing constraints ensuring that for each building B, and for each trailer
type ¢ € F that must balance, the same number of trailers that enter building B, also exit it. To
achieve balancing of trailers, empty trailers may be introduced into the system by constraints (12).
These constraints are more complicated than they would be if each trailer-combination type rather
than each trailer type needed to balance. Constraints (13) are the volume constraints, ensuring that
for each link (i,/) trailers with enough capacity are used to transport the number of packages on the
link.

Constraints (14) ensure that the number of trailers that are filled during a sorting operation is no
larger than the number of available loading doors. It is assumed that at most one trailer is filled from
each door during a sorting operation. This is a good approximation although it may be conservative
at times because occasionally it is possible to fill a trailer at a door and replace it with a new trailer
during the same sorting operation. Constraints (15) ensure that the number of nonempty trailers of
type ¢ € Q, on link (i,j) € E represented by w,, is no larger than the total number of trailers of
type ¢ € Q (empty and nonempty) forming the trailer combinations of type m € M on link
(i.j)) € E represented by x;,. Note that w;, can have alternative solution values in the previous

formulation apart from beinjg exactly equal to the number of nonempty trailers. The value of w,, is
always at least as large as the number of nonempty trailers from constraint (13). If empty trailers are
introduced for balancing so that constraint (15) is not binding, w;, can have alternative solution
values larger than the number of nonempty trailers, depending on how tight the corresponding con-
straint (14) is. Constraints (16) to (20) are the integrality and nonnegativity constraints.

For a large transportation company, the G(V,E) network may have 40,000 links even when care
is taken to keep it as sparse as possible. The number of binary variables y,, of the above MIP
formulation may be 14,000,000 or more. That is also the number of constraints (5), while the number
of constraints (11) is much larger.

Formulation (3)—(20) is too large to be supplied to an MIP solver and solved directly. Instead, a
heuristic solution for the network design problem can be obtained by solving sequentially two smaller
problems that are embedded in formulation (3)—(20). These are the package-routing problem and the
trailer-assignment problem. In the first step, the routes of the packages are obtained assuming a
representative trailer type for highway and rail. This step produces the number of packages that are
transported from the initial node to the final node of each link of the network. In the second step,
given the number of packages and the types of permitted equipment on each link, the actual modes
and trailer combinations that balance are obtained. These two problems are presented next.

9.5. Package-Routing Problem

The package-routing problem determines the routes of packages on the G(N,E) network for each OD
pair so that the service requirements are met, the capacities of the sorting operations are not exceeded,
the sorting operations are not underutilized, the number of loading doors of the buildings is not
exceeded, packages to a common destination are routed along the same path, trailers are not under-
utilized, and total cost is minimized. The package-routing problem does not determine the trailer
combinations that are used, nor does it balance trailer types.

In the following, we still present a simplified formulation where we do not indicate mode, although
we continue to use one link for both modes if the travel times are the same for both modes on the
link and two different links if the travel times are different. We extract from formulation (3)-(20)
constraints (4)—(8), (18), and (20), which involve only the y;, and t;, variables, putting aside for the
moment the constraints on the number of loading doors, underutilized sorting operations, split paths
to common destination, and maximization of trailer utilization. Because of their very large number,
constraints (11) are not included.

Because the objective function (3) involves variables other than y;;, and t;,, we replace it with a
new objective function that uses an estimated cost parameter. First, we select a representative trailer-
combination type for each mode and estimate the cost per package, per mode for each link by dividing
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the combination cost on the link by the combination capacity. For links that share both modes, the
smaller cost of the two modes is used. Using the cost per package, the following cost parameter is
computed:

d; = cost of transporting all the packages of OD pair (k,[) € A on link (i,j) € E
Using this new cost, the objective function (3) is replaced by the following approximation:
Min Z(y.t) = Sien Zgnea djkl Sien Yiu t 2 jer Zanea dljkl YVijkt 2n

Objective function (21) can be simplified if we combine the transporting cost of all the packages of
OD pair (k,l) along link (i,j) and their handling cost through sorting operation j in the following cost
parameter:

¢y = cost of transporting all the packages of OD pair (k,/) € A on link (i,j) € E and handling them
through node j € N

The objective function becomes
Min Z(y.t) = E(i.j)EE E(A:[)EA Cijta Yijri (22)

The MIP formulation (22), (4)—(8), (18), and (20) of the package-routing problem is still a very large
problem and difficult to solve directly. If the complicating constraints (8) are removed, the problem
is solved relatively easily. We take advantage of this characteristic by using a Lagrangian relaxation
approach (Ahuja et al. 1993; Fisher 1985; Geoffrion 1974). This is combined with search heuristics
that also implement the constraints that are completely omitted in the formulation, which are the
constraints on the number of loading doors, the lower bound constraints on the capacity of each
sorting operation that is open, the split paths constraints, and an additional lower bound constraint
on the number of packages on any link (i,j) € E that is actually used. The last constraint forces
more efficient trailer utilization by ensuring that no link carries too few packages, which would result
in the use of trailers with very low load factors in the trailer-assignment step.

The following Lagrangian dual problem is obtained by dualizing constraints (8) using their non-
negative Lagrange multipliers N, j € N.

9.6. Lagrangian Relaxation of the Package-Routing Problem
Min Z(y,t,A) = E(i.j)EE Zenea Cijmt Y + EjEN A Cien Znea Vu Vi — u_/)
= E(i,/)EE E(k,[)EA (Cijkl + /\jvk[) Y T CONSTANT

= 2 hek Zanea E,.jk, Yiju T CONSTANT 23)
subject to

Zien Vi — Zpen Yoir = b Vkl)EAIEN 24)

where b = 1 fori =k; b = — 1 fori = [; b = 0 otherwise
ty =ty — INF(yy, — D = hy + 15 VieENjEN, (k) €EA (25)
tw =Sy VkDEA (26)
tu=Tytsy+r Vk)heEA 27)
Yju = 0or 1 Y ikl (28)
by =0 Y jkl (29)
Az0 Vvj (30)

The cost ¢, = ¢y + Avy is the modified cost of transporting all the packages of OD pair
(k) € A on link (i,j) € E and handling them through node j € N, given the Lagrange multipliers
A,jEN.

" The Lagrangian dual problem (23)—(30) can be solved relatively easily because it decomposes
into |A| constrained shortest-path problems, one for each OD pair. A constrained shortest-path problem
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finds a path from an origin k € N to a destination / € N with the smallest cost that has total time
no greater than 7,,. Although the constrained shortest-path problem is NP-complete, it can be used
as part of an algorithm for the package-routing problem because there are several algorithms that
solve large enough problems in good computer running times (Ahuja et al. 1993; Desrosiers et al.
1995).

A heuristic algorithm for the package-routing problem is presented next, based on the previous
analysis. It is applied to the network described before that includes only one link between a pair of
sorting operations representing the cheaper mode if the times & for both modes are the same, and
two links, one for each mode, if the times are different. A more detailed (but still high-level) de-
scription of each step follows the algorithm.

9.7. Package-Routing Heuristic Algorithm

1. Find the OD pairs that have a unique feasible path from their origin to their destination using
a k-shortest path algorithm. Route all the packages with unique shortest paths along the ob-
tained paths, remove them from the package-routing problem, and update all the parameters.

2. Solve a constrained shortest path for each OD pair using the costs c;;, = c;;, + Ap,,, Where
the Lagrange multipliers are set to zero for the first iteration.

3. Reroute packages to (i) eliminate split paths from each sorting operation to a common desti-
nation, (ii) eliminate split paths between different modes that have different times on links so
that only one mode is used, (iii) enforce the capacity constraint, and (iv) enforce the constraint
on the number of loading doors for each sorting operation.

4. If the solution can be improved and the limit on the number of Lagrangian iterations is not
reached, compute new costs c;,, using subgradient optimization or some other methodology
and go to step 2.

5. Reroute packages from underutilized links to consolidate loads while preserving solution feas-
ibility.

6. Reroute packages to close the underutilized sorting operation that is permitted to be closed
and realizes the most savings. If a sorting operation is closed, disable the node representing it
and start over from step 2.

In step 1, a k-shortest path algorithm (Minieka 1978) for k = 2 is used to obtain all the OD pairs
that have unique feasible paths. The packages of these OD pairs are routed along their single paths
and removed from the problem, updating all the parameters.

Steps 2—4 implement the Lagrangian relaxation algorithm. In step 2, a constrained shortest-path
problem is solved for each OD pair using the costs ¢ = c;;, + Awp,,. For the first iteration, the original
link costs are used that result from setting the Lagrange multipliers to zero.

Step 3 takes care of the split-paths, capacity, and loading-door constraints. Each node of the
network is examined if it satisfies the split-paths constraints (11). If multiple paths to the same
destination exist starting from the node, the best path is selected based on several criteria and all the
packages from the node to the common destination are routed along this path. Also, if packages are
split between two parallel links of different modes, they are rerouted along only one parallel link.
Each node is also examined to find whether it satisfies the capacity constraints (8). For each node
that surpasses the permitted capacity, OD pairs that use the node are selected according to several
criteria and their packages are removed until the capacities are satisfied. The removed packages are
routed again sequentially using the constrained shortest-path algorithm on a network where the nodes
that have reached their capacities are disabled. The split-paths constraints and the capacity constraints
are examined repeatedly until they are satisfied or the algorithm indicates that it cannot find a feasible
solution. Finally, each node is examined if it satisfies constraint (14) on the number of loading doors.
If a node is found that violates the door constraint, packages are rerouted to sequentially reduce the
number of doors but keep the capacity and split constraints valid.

In step 4, if the solution can be improved and more Lagrangian iterations are permitted, new
Lagrange multipliers are computed using subgradient optimization (Ahuja et al. 1993; Crowder 1976)
or some other methodology. These are used to obtain new costs ¢, and a new Lagrangian iteration
starts at step 2. No more details are given here about the Lagrangian relaxation or the subgradient
optimization algorithm. A Lagrangian relaxation approach is used to solve the trailer-assignment
problem and a more detailed description of this optimization procedure is given in that section. When
the Lagrangian iterations are completed, the solution satisfies the split-paths, capacity, and door
constraints. If at any point the heuristic cannot obtain a solution that satisfies a constraint, it stops
and indicates that it cannot find a feasible solution.

In step 5, links are found that carry too few packages for a complete load and the packages are
rerouted so that the capacity, split-paths, and door constraints continue to be satisfied. These con-
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straints are included to improve the results of the trailer-assignment problem that is solved after the
package-routing problem and that represents the true cost of a network design solution.

Finally, in step 6, underutilized sorting operations are examined to implement constraints (9). The
packages of underutilized sorting operations are rerouted and the underutilized sorting operation for
which the total cost of the solution decreases most is eliminated. The node representing the eliminated
sorting operation is disabled and the algorithm starts over from step 2.

The routing decisions obtained by the package-routing heuristic algorithm outlined above are used
as input in the trailer-assignment problem that is described next.

9.8. Trailer-Assignment Problem

Given the number of packages on each link obtained by solving the package-routing problem, the
trailer-assignment problem determines the number and type of trailer combinations on each link of
the network G(N,E) that have enough combined capacity to transport all the packages on the link,
balance by trailer type for each building, and have the least cost.

The trailer-assignment problem is described next. To solve the problem more efficiently, the
network G(N,E) can be modified into the network G'(N',E") as follows. Each node i € N’ represents
a building, that is, all the nodes representing sorting operations in the same building are collapsed
into one node. All the links that carry packages in the solution of the package-routing problem are
included. Among the links in G(N,E) that do not carry packages, only those that may be used to
carry empty combinations for balancing are included so that £’ C E. In particular, among parallel
links between buildings that do not carry packages, only one is retained in G'. Still, the network G’
generally has several parallel links between each pair of nodes, in which case link (i,/) is not unique.
To avoid complicating the formulation and because it is easy to extend it to include parallel links,
we will not include indexing to indicate parallel links, exactly as we did in formulation (3)—(20).

The trailer-assignment problem is formulated below on the network G'(N',E') using constraints
(12), (13), and (16) as well as the objective function (3) with some modifications.

9.9. Trailer-Assignment Formulation

Min Z(x) = X HEE’ ErnEM;/ Cijm Xijm (€1))
subject to
Sien Zmemy Ogm Xim — Zpen' Zmemy Ogn Xipm = 0 VjeEN,q€F (32)
Spemy K Xy = vy V(@) € E (33)
X;,, = 0 and integer Y i,jm (34)

Objective function (31) is the same as objective function (3). It does not include the first component
because it is a constant since the values of the y,, variables are known from the solution of the
package-routing problem. Constraints (32) are the same as constraints (12) except that the summation
over buildings is now unnecessary because a node represents a building. Constraints (33) are similar
to constraints (13) where, as in the objective function, the number of packages, v, for all OD pairs
on link (i,j) is now a constant. The variables w,, are not needed anymore and only the variables x;,,
are used, representing combinations with both f!ull and empty trailers. So the trailer capacities k, for
g € Q are replaced by the trailer-combination capacities k,, for m € M,

The integer-programming (IP) problem (31)-(34) is still difficult to Solve. If constraints (32) are
removed, the problem without balancing is easy to solve because it breaks into many very small
problems, one for each link. To take advantage of this characteristic, Lagrangian relaxation (Ahuja
et al. 1993; Fisher 1985; Geoffrion 1974) is used to solve problem (31)—(34), dualizing the balancing
constraints (32). A Lagrange multiplier A, unrestricted in sign, is used for each balancing constraint
and the following Lagrangian dual problem is obtained.

Min Z(x,A) = 2 jer Zmem; Cijm X,

meMy; Cijm Xijm

+ 2jeN' EqEF g Cien 2 mEM;; Sy Xijm — 2,;EN' EmeMij Sym 'xj/)rn)

= E(i,_,‘)eL EmEM, (Cljrll + qul 6qm (/\ )\,q)) Xijm
=2 her EmEMU ijm Xijm (35)
subject to
ZmEM,‘, k,, Xijm = U!j vV (i,j)) € E (36)

X;,, = 0 and integer YV i,jm (37

ijm
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where ¢, = ¢y T Zper 8, (A, — A,) is the modified cost of moving trailer-combination type
m € M, on link (i,j) € E’ given the vector \.

Problem (35)—(37) decomposes into |E’| subproblems, one for each link (i,j) € E’. Each one of
the subproblems is a kind of integer reverse knapsack problem, similar to the integer knapsack
problem (Martello and Toth 1990; Nemhauser and Wolsey 1988; Chvital 1983) and can be solved
by similar algorithms. Each subproblem is very small, having |M,] variables for link (i,j) € E’. The
solution obtained by solving the Lagrangian dual (i.e., all the reverse knapsack problems) does not
necessarily balance trailer combinations at each node even for optimal N and is not generally feasible
for the original problem (31)—(34). A feasible solution is obtained heuristically by solving sequentially
one minimum-cost-flow problem (Ahuja et al. 1993) for each trailer type that needs to balance.
Balancing is achieved by adding empty trailers or replacing one trailer type with another one of
larger capacity that is not yet balanced or does not need to balance.

A Lagrangian relaxation heuristic algorithm that solves the Lagrangian dual problem (35)—(37)
is presented next. It uses subgradient optimization to compute the Lagrange multipliers A.

9.10. Lagrangian Relaxation Algorithm for the Trailer-Assignment Problem

1. Set the Lagrange multipliers A to zero in the Lagrangian dual problem and initialize Z (upper
bound, best known feasible solution of the original problem) to a high value.

2. Solve the Lagrangian dual problem with the latest values of N (by solving a set of integer
reverse knapsack problems) to obtain the optimal objective function value, Z*(x*, N), for the
given \.

3. Apply a heuristic approach to obtain a feasible solution of the problem and update Z.

4. If the gap between Z and Z*(x*, \) is small or some other criterion is satisfied (e.g., a set
number of iterations is reached or no more improvement is expected), stop.

5. Compute new values of the Lagrange multipliers X using subgradient optimization and go to
step 2.

Step 3 above may be implemented only occasionally instead of at every iteration. Improvement
heuristics can also be used to modify the solution in several ways. They can be used to combine
single trailers into more efficient trailer combinations. They can also be used to find any cycles of
trailer types that are either empty or can be replaced by trailer types that do not need to balance. If
a whole cycle of trailers that results in improved cost is modified, balancing of trailers is maintained.
Improvement heuristics can also be used to replace whole cycles of trailers of excess capacity with
trailers of smaller capacity if the total cost is decreased.

A subgradient optimization algorithm (Ahuja et al. 1993; Crowder 1976) is used in step 5 to
compute an improved Lagrange multiplier vector and is described below.

9.11. Subgradient Optimization Algorithm

Given an initial Lagrange multiplier vector A°, the subgradient optimization algorithm generates a
sequence of vectors A%, NI, N2, . . . If A is the Lagrange multiplier already obtained, A**! is generated
by the rule

PZ — Z¥(x*, NY)

t, = 38
CTS, 5, 0 Xy — 5, 5 bt ) G%
)\Z’l = /\jl‘q +14 2, qu x{;m — E,, 2., Sqm xj‘»;)m VjEN,q€EF (39)

where 7, is a positive scalar called the step size and p, is a scalar that satisfies the condition
0 < p, = 2. The denominator of equation (38) is the square of the Euclidean norm of the subgradient
vector corresponding to the optimal solution vector x* of the relaxed problem at step k. Often a good
rule for determining the sequence p, is to set p, = 2 initially and then halve p, whenever Z*(x*, \¥)
has not increased in a specific number of iterations. The costs are calculated with the new values of
\. If any negative costs are obtained, the value of p is halved and the values of N recomputed until
all the costs are nonnegative or p is too small to continue iterating.

A feasible solution is obtained in step 3, using a minimum-cost-flow algorithm (Ahuja et al. 1993)
sequentially for each trailer type that needs to balance. First, for each building the excess or deficit
of trailers of each type that has to balance is computed. Then a minimum-cost-flow algorithm is
applied for each trailer type that obtains the optimal movements of trailers from each node of excess
to each node of deficit. This may be the movement of a single empty trailer, the movement of an
empty trailer that gets attached to an already used trailer to make up a permitted combination, or the
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movement of an already used trailer replacing another trailer type of smaller or equal capacity that
is not yet balanced or does not need to balance.

Lagrangian relaxation is often used within a branch-and-bound procedure. The exact branch-and-
bound algorithm has large computational cost; also, the trailer-assignment problem is only part of a
heuristic algorithm for the network design problem. For these reasons, the Lagrangian relaxation
algorithm is applied only once, at the root of the branch-and-bound tree, to find a heuristic solution
to the trailer-assignment problem.

9.12. Extensions of the Network-Design Problem

If the results of the network-design problem are intended not only for long-term planning but to
actually modify the routing network, the solution must represent an incremental change from the
currently used solution. Otherwise, any savings from an improved solution may be lost in modifying
the sorting operations to accommodate the solution changes. To this end, both the package-routing
and the trailer-assignment problem can be modified relatively easily to handle presetting some of the
variables. For the package-routing problem, this means presetting whole or partial paths of specific
OD pairs. A solution is obtained by preprocessing the input data to eliminate or modify OD pairs
that are completely or partially preset and updating the input data. Similarly, for the trailer-assignment
problem, particular combinations on links may be preset. After appropriate variables are fixed, the
Lagrangian relaxation algorithm optimizes the remaining variables.

The network-design problem presented considers only packages moving on the ground and
chooses only one transportation mode when travel times differ between sorting operations. The
network-design problem can be extended to include all modes of transportation and all types of
products with different levels of service requirements. Different modes may have different costs and
travel times between sorting operations, permitting parallel use of modes with different travel times
along the same routes. This extension complicates considerably an already difficult problem and is
not described here any further.

10. DRIVER SCHEDULING
10.1. Tractor-Trailer-Driver Schedules

This section examines one approach for solving the tractor-trailer-driver-scheduling problem for a
package-transportation company. Tractor-trailer combinations transport packages between terminals
of a package-transportation company, as discussed in Section 9. This involves movement of both
equipment and drivers. While balancing is the only constraint for equipment routing, the movement
of drivers is more complex. The daily schedule of a tractor-trailer driver starts at his or her base
location (domicile) where he or she returns at the end of his workday. A driver schedule consists of
one or more legs.

A leg is the smallest piece of work for a driver and consists of driving a tractor-trailer combination
from one terminal to another or repositioning trailers inside a terminal. Each leg is characterized by
an origin terminal and a destination terminal, which may coincide. There is an earliest availability
time at the origin terminal, a latest required arrival time at the destination terminal, and a travel time
(or repositioning time) associated with a leg. A tractor-trailer combination that is driven from the
origin terminal to the destination terminal of a leg must start no earlier than the earliest availability
time at the origin and arrive at the destination no later than the latest required arrival time. At the
destination terminal of a leg, a driver may drop his or her current tractor-trailer combination and pick
up a new one to continue work on the next leg of his or her daily schedule, take a break, or finish
work for the day.

In this section, we assume that the legs are already determined and given. We want to generate
driver schedules by combining legs. An acceptable schedule must meet specific work rules, which
specify the minimum number of hours that a driver must be paid for a day’s work (usually 8 hours)
and the maximum length of a workday (usually 10 hours). In addition, a driver must return to his or
her domicile every day and a workday must incorporate breaks of specified duration at specified
times. For example, a lunch break must last 1 hour and be scheduled between 11:00 am and 2:00
pm.
Another consideration in the generation of driver schedules is the availability of packages for
sorting within a terminal. During a sorting operation, loads should arrive at such a rate that the
facility is not kept idle. If packages arrive late, the facility will be underutilized during the early
stages of sorting while the facility capacity may be surpassed later. For this reason, the duration of
each sorting operation is divided into equal time intervals, say, half-hour intervals. Driver schedules
need to be generated in such a way that volume availability is satisfied, that is, a minimum number
of packages arrives at each sorting facility by the end of each time interval.

The driver-scheduling problem has a short or intermediate planning horizon. It is usually solved
regularly once or twice a year and the obtained schedules are bid by the drivers, based on seniority.
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The problem may also be solved if changes in volume occur that render the existing schedules
inadequate. If decisions about driver schedules are made at the local level and the schedules are bid
separately by region, the problem is solved locally in a decentralized fashion.

10.2. Driver-Scheduling Problem

The problem of generating driver schedules can be defined as follows. Given a set of legs with time
windows and travel times, generate driver schedules that assign work to drivers so that all the loads
are moved within their time windows, the total work assigned to each driver meets given work rules,
volume availability meets or exceeds sorting capacities, and the total cost of the schedules is as low
as possible.

The problem is defined on an underlying network. The terminals are represented by nodes of the
network and each leg is represented by an arc connecting the terminal of origin to the terminal of
destination. Time windows on the nodes correspond to the earliest departure and latest arrival times
at the terminals.

The cost of a schedule is a combination of both time and distance in addition to fixed costs
because it is computed based on driver wages, cost of fuel, and vehicle depreciation. Feasible sched-
ules can be generated using deadheading—that is, a driver can drive a tractor without a trailer to
reposition himself or herself for the next leg. Tractor-only movements are used sparingly in a good
set of schedules.

The driver-scheduling problem is formulated mathematically as a set-partitioning problem, a spe-
cial type of integer-programming (IP) problem (Nemhauser and Wolsey 1988; Bradley et al. 1977).

10.2.1 Notation

Parameters
J = set of schedules (columns)

I, = set of legs (rows)

om = set of domiciles (rows)

o = set of sort intervals (rows)

¢; = cost of column j

a; = 1 if column j contains leg i; O otherwise

b; = 1if column j has i € I,,, as its domicile; O otherwise

k® = minimum number of times domicile i must be used

kM = maximum number of times domicile i can be used

g; = number of packages contributed by column j to sort interval i
u; = minimum number of packages required for sort interval i

Decision variables
x; = 1 if column j is selected; 0 otherwise

10.3. Set-Partitioning Formulation with Side Constraints

Min 2, c; x; (40)

subject to
Sieja;x =1 Viegie€l, (set-partitioning constraints) 41)
S, by x = kP V domicile i € I, (lower-domicile constraints) (42)
2, byx = kY V domicile i € I, (upper-domicile constraints) (43)
Dicr 8y X = U V sort interval i € I, (volume-availability constraints) (44)
x;=0orl V schedule j € J (binary constraints) 45)

The objective function (40) minimizes the total cost of schedules. Constraints (41) are the set-
partitioning constraints ensuring that each leg (row) is used by only one schedule (column). Con-
straints (42) and (43) are the domicile constraints and ensure that the lower and upper bounds for
the selection of domiciles are met. According to work rules, each particular terminal must be used
as a domicile a number of times within a given range. Constraints (44) are the volume-availability
constraints and ensure that the required volume of packages is available for each sort interval. Con-
straints (45) are the binary constraints.

The presented formulation is a set-partitioning problem with additional side constraints. For a
freight transportation company with 10,000 tractors and 15,000 drivers in the continental United
States, the problem formulated above is too large to be solved for the whole country. Often, however,
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driver-scheduling decisions are made at the local level and the problem is broken naturally into
smaller problems that are solved locally by each region.

It is sometimes difficult to obtain even a feasible solution of the IP problems formulated in (40)—
(45). If the feasible region contains few feasible solutions or if there are errors in the data that make
it difficult or impossible to find a feasible solution, the set-partitioning formulation (40)—(45) can be
changed into a set-covering formulation (Nemhauser and Wolsey 1988; Bradley et al. 1977) with soft
domicile and volume-availability constraints to help guide the cleaning of data and the solution
process. Slack and surplus (auxiliary) variables are added to the equations and inequalities (41)—(45)
and incorporated into the objective function (40) with very high costs. The following additional
notation is introduced:

d; = very high cost for auxiliary variable of row i.

s = surplus variable for row i; if positive, it indicates the number of units that the original constraint
is below its right-hand-side.

s; = slack variable for row i; if positive, it indicates the number of units that the original constraint

is above its right-hand-side.
10.4. Set-Covering Formulation with Soft Constraints
Min 2, ¢; x; + E,.E,legdis,.’ + 3= dst + S, dsT + Zig, dsT (46)

i€1gom 171 i€1gom" "7
subject to

Seyayx; — s =1 Viegi€ I, (set-covering constraints) 47

S, by x + st = ke V domicile i € [

er by tom (soft lower-domicile constraints) (48)

Siesbyx, — 57 = kM V domicile i € I,

ij X i dom

(soft upper-domicile constraints) (49)

Ses 8t sl = V sort interval i € I, (soft volume-availability constraints)  (50)
x;=0or1 V schedule j € J 51)

st =0 YV row i (52)

s; =0 YV row i (53)

The high value of the costs d; of the slack and surplus variables prevents their inclusion in a
solution with positive values, if this is possible. Constraints (47) resemble set-partitioning constraints
but they can also be considered as set-covering constraints, that penalize overcoverage. If some slack
or surplus variables have positive values in a solution, they may help identify reasons for not obtaining
a true feasible solution or they may remain in the solution for as long as necessary in an iterative
solution process that will be discussed later.

10.5. Column-Generation Methodology

Each one of the regional problem formulations of a large freight transportation company may have
up to 2000 legs (2400 rows altogether) that can be combined into possibly billions of feasible
schedules. Even if the binary constraints (51) are relaxed, it is impossible to solve the resulting linear
program (LP) with all the columns included. Instead, a standard decomposition method for large LPs
called column generation is used (Bradley et al. 1977; Chvétal, 1983).

When the binary constraints (51) are replaced with the following bounding constraints

0=x=1 V schedule j € J

a column generation approach refers to the resulting LP problem that includes all the possible columns
as the master problem. The corresponding LP problem that includes only a subset of the columns is
called the restricted master problem.

Solving the LP involves pricing out each column using the dual variables or shadow prices
associated with the restricted master problem. Sometimes this pricing-out operation can be formulated
as a known problem (e.g., a shortest-path problem) and is called a subproblem. The solution of the
subproblem produces a column, not yet included in the restricted master problem, that prices out
best. For a minimization problem, if the best new column obtained has negative reduced cost, its
inclusion in the restricted master problem will improve the solution. Column generation iterates
solving the subproblem, adding a new column with negative reduced costs to the restricted master
problem, and solving the new restricted master problem until no more columns can be obtained with
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negative reduced costs. At that point the master problem has been solved optimally since all billions
of possible schedules have been examined implicitly.

When the generation of columns cannot be structured as a known optimization problem, they
must be generated explicitly. Usually, this approach results in solving the master problem heuristically
because optimality is guaranteed only if all the feasible columns are examined. The schedules for
the set-partitioning or set-covering problems presented above are obtained explicitly. The nature of
the breaks imposed by work rules, the possible existence of additional local work rules in some
regions, the presence of legs that carry priority loads and need to be included as early as possible in
a schedule, and other local characteristics make it very difficult to generate schedules by solving a
structured subproblem.

The schedules obtained from the solution of the LP problem by column generation may be
fractional and therefore unacceptable. To obtain feasible schedules, an IP problem needs to be solved.
An iterative heuristic approach for solving the driver-scheduling problem is presented next.

10.6. Iterative Process for Solving the Driver-Scheduling Problem with Column
Generation

1. Start with a feasible solution. Set up an LP that consists of the columns of the feasible solution.

2. Solve the LP (restricted master problem). If the LP cost is low enough or a given number of
iterations is reached, go to step 4.

3. Using the LP shadow prices, generate up to a given number of good new schedules and add
them to the LP. If the number of columns exceeds a given maximum, remove columns with
the worst reduced costs. Go to step 2.

4. Solve the IP.

In step 1, the algorithm starts with a feasible solution, which can be obtained from the currently used
set of schedules. These schedules are broken apart to obtain the set of legs for the problem. In step
2, an LP problem is solved that consists of the current set of schedules and shadow prices are obtained
for the rows. In step 3, the algorithm generates more schedules with reduced costs less than a set
value using the shadow prices. The new schedules are added to the LP, omitting duplicate schedules.
Because the LP is a minimization problem, columns with negative reduced costs will reduce the
objective function value. More than one column is added to the LP at each iteration. For this reason,
columns with low positive reduced costs may also be accepted. Such columns are also valuable in
solving the IP problem in step 4. If the total number of columns in the restricted master problem
exceeds a preset maximum number, the columns with the worst (highest) reduced costs are deleted.
Steps 2 and 3 are repeated until an LP cost is obtained that is below a preset cutoff value or until a
given number of iterations is reached. The resulting IP problem is solved in step 4.

In actual applications, the IP problem at step 4 of the previous algorithm obtained from column
generation turned out to be a very difficult problem to solve with existing IP solvers. There were
several reasons for this difficulty. The optimal LP solution at the beginning of step 4 included too
many fractions, the problem structure exhibited massive degeneracy, and there were too many alter-
native optimal solutions. It was even difficult for IP solvers to obtain feasible solutions for large
problems. Because of these difficulties, the following heuristic approach has been used that combines
column generation with solution of the IP problem.

10.7. Integrated Iterative Process for Solving the Driver-Scheduling Problem

1. Start with a feasible solution. Set up an LP that consists of the columns of the feasible solution.

2. Solve the LP (restricted master problem). If the LP cost is low enough or a given number of
iterations is reached, go to step 4.

3. Using the LP shadow prices, generate up to a given number of good new schedules and add
them to the LP. If the number of columns exceeds a given maximum, remove columns with
the worst reduced costs. Go to step 2.

4. Select a small number of columns with the highest fractional values, say 8. Using their legs
as seeds, generate a small number of additional schedules, say 300, add to the LP, and solve
it.

5. Select a small number of the highest fractional schedules, say 8. Restrict them to be integers
and solve the resulting mixed-integer-programming (MIP) problem. If all variables in the so-
lution of the current restricted master problem are integral, stop. Otherwise, set the selected
columns to their integer solution values permanently, update the formulation, and go to step
2.
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Steps 1, 2, and 3 are the same as before. In step 4, a preset number of columns with the highest
fractional values are selected. The actual number used is set by experimentation. The legs making
up these columns are used as seeds to generate a small number of additional columns that are added
to the LP. The LP is solved and a small number of columns with the highest fractional values are
selected and restricted to be integral. The resulting MIP problem is solved to optimality using an
MIP solver. If all the columns of the restricted master problem have integral values in the solution,
the algorithm stops. If some fractional values are still present in the solution, the selected columns
to be integral are set permanently to their integer solution values and eliminated from the formulation
and the column-generation phase starts again. In applications, up to about 40,000 columns were
included in the restricted master problem during the iterative solution process.

10.8. Generation of Schedules

Approaches for generating new schedules are discussed in this section. Several techniques can be
used to obtain new schedules explicitly, guided by the LP shadow prices. Each leg is associated with
a shadow price in the LP solution, which indicates how expensive it is to schedule this leg. The
generation of schedules focuses on the expensive legs to provide more alternative schedules that
include them and drive the LP cost down. New schedules improve the LP solution if they have
negative reduced costs. Usually the cutoff value is set higher than zero to include schedules with low
positive costs that may combine well with the rest of them because columns are not added one at a
time to the LP.

New schedules are generated probabilistically. Each available leg is assigned a probability of
selection proportional to its shadow price. The list of legs is then shuffled using the assigned prob-
abilities of selection as weights.* This means that legs with high shadow prices are more likely to
be at the top of the shuffled list. Each leg in the shuffled list is used as a seed sequentially to generate
up to a given number of legs.

Starting with a seed, schedules are generated using three different approaches: one based on depth-
first search (Aho et al. 1983), a second approach that generates a given number of schedules in
parallel, and a third method that recombines existing schedules to produce new and better ones. The
schedules are generated by limited complete enumeration, that is, all the schedules that can be
generated starting with a particular seed are generated, limited by an upper bound when too many
combinations exist. Tractor-only movements for repositioning drivers are also used in the generation
of feasible schedules. A partial schedule is accepted only if a complete feasible schedule can be
generated from it, including appropriate work breaks. When a maximum total number of columns is
obtained, the process stops.

The depth-first-search approach starts with a seed and adds legs sequentially until a complete
schedule is obtained. Then a new schedule is started using either the same seed or the next seed in
the list. All the feasible successors of a leg are shuffled based on their shadow prices as weights and
used to obtain the next leg of a partial schedule. The parallel approach generates several schedules
simultaneously by adding each one of its feasible successors to the current partial schedule.

The recombination approach identifies feasible schedules that are generated by removing one or
more consecutive legs from one feasible schedule and replacing them with one or more legs from
another schedule. Cycles of leg exchanges are then identified that produce new schedules of lower
costs. In actual applications, the recombination approach tends to produce columns that drive the
iterative solution process much more quickly toward a good overall result than when only columns
obtained by the other two approaches are included.

10.9. Beyond Algorithms

Good algorithms that capture well the complexities of real-world problems are a big step towards
achieving efficiency using optimization techniques. They are rarely, however, sufficient by themselves.
The perfect algorithm is useless if it is not actually used, if it not used properly, or if the solution is
not implemented. This is particularly important in the transportation of goods, which is a labor-
intensive industry, and where the implementation of an optimization system may involve and affect
a large number of people.

Often, a big challenge, beyond the development of good algorithms, is defining the correct prob-
lem to solve, finding the necessary data, setting up tools to extract the needed data, correcting and
validating the data, having the model used correctly, and obtaining acceptance of the model and its
results. A successful, decentralized application needs the involvement of the users, who must be able
and willing to use it correctly and apply the results.

*This is exactly like regular shuffling except for the probabilities of selection that are not uniform. An ordered list
of legs is obtained by randomly selecting one leg at a time from an original list of legs, based on the weights.
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To obtain good results using the algorithms described in this chapter, correct data need to be used.
Obtaining good, correct data is often a difficult, expensive, and time-consuming task. Errors in the
data need to be identified and corrected easily for the system to succeed. The driver-scheduling
problem is especially sensitive to the values of the time windows and cost input. An interface needs
to be available that handles the cleaning of the data as well as the generation of the input to the
algorithms in an appropriate format and that after a solution is obtained produces useful reports.

If a computer system is put in place for the first time to replace a manual system, the data needs
of the computer system may be much larger than those of the manual system. Most optimization
models obtain solutions by comparing explicitly or implicitly large numbers of alternatives for which
data must be available. Manual systems, on the other hand, often obtain a new solution by modifying
an existing one, that is, they examine very few alternatives and need fewer input data. The difference
in input data also means that input-data needs for solving an existing application often have to be
redefined for computer models. If good input data cannot be obtained for the computer model, its
use cannot be expected to improve results.

The algorithms described previously are used to solve difficult MIP problems. Large computers
and expensive commercial LP and IP solvers need to be used, which are usually available only in
centralized locations. The interface that cleans the data and obtains the input can be implemented
locally when the driver-scheduling system is applied separately by region.

A system like the one described has been deployed successfully by United Parcel Service using
two different platforms. The data preparation is implemented on local computers available at all
company locations. The optimization algorithms are solved remotely on large computers at another
location using the company’s intranet. The fact that two different platforms are used is hidden from
the users, who are informed by e-mail about the status of a submitted job at various stages and get
all the reports on the intranet. This kind of application is now possible because of the increase in
computer power that permits the solution of difficult optimization problems in reasonable time and
because of the evolution of the Internet that provides the tools supporting a remote implementation.

To improve the probability of success, user training is very important for both actual use of the
system and interpretation of results. Optimization systems sometimes do not include some difficult
characteristics of a real-life problem. In cases like this, interpretation of results, modification of the
solution, or simply selection among alternative solutions is very important. A pilot implementation
is also very helpful.

An important element for the success of the system is the existence of appropriate support to the
users in applying the system, interpreting the results, and making appropriate decisions. This is
especially important when the system results differ from current practices and need to be understood
and their validity accepted or when they need to be slightly modified. A team of experts in both the
computer system and the operational problem that is solved, who are accepted by the users and speak
the same business language, needs to be available to assist the users, especially when the system is
first deployed.

The optimization model described minimizes total cost of schedules, which often results in a
solution using fewer drivers than those used in the current solution. How such a solution is imple-
mented depends on company—labor agreements, which may differ among companies and regions. In
the short term, available drivers beyond the number needed by the solution may be put on an “on-
call” list and asked to come to work only if another driver is sick or a particular need arises.

It is generally very important to get the final users involved early on in the development process.
In this way, the developer makes sure that the correct problem is solved and user needs are met as
much as possible. Including the user in the development process early on increases the probability
of acceptance of the model.

For the implementation of results, one other very significant factor for success concerns the reward
structure of a company. If an optimization model minimizes cost but the user is not rewarded directly
for implementing a solution that minimizes cost, the solution results are unlikely to be used. If a
model minimizes the number of drivers but the decision maker is not rewarded for using fewer
drivers, he is unlikely to jeopardize the goodwill of the people working with him by making a big
effort to change the status quo.

11. QUALITY IN TRANSPORTATION

Companies that specialize in the transportation of goods must manage their costs, growth, and quality
in order to remain competitive. However, without the appropriate measures and the systems to support
performance measurement, it is practically impossible to manage any transportation system. In mea-
suring quality in the freight-transportation industry several questions arise. First, of course, is the
definition of quality itself. In this industry, quality is viewed differently at different steps in the
transportation process. Shippers have different requirements from those of the receivers. Different
internal processes have different views of quality and its measurement. However, we can summarize
these requirements into five categories:
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. Damages: Was the shipment damaged in the process?

. On-time performance: Were all service guarantees met?

. Accuracy: Was the shipment delivered to the correct destination?

. Shipment integrity: Were all the items in a shipment delivered together?

. Information integrity: Was the information associated with a shipment available at all times?

The primary objective of the transportation-planning activity is to design processes that maintain

high

.

levels of performance in all five categories. Let’s explore these requirements further:

Damages: Of all the quality factors discussed, damages are perhaps one of the most important
indicators of quality in both the receiver’s and the shipper’s view. When the freight-
transportation company damages the merchandise being moved, the shipper, the receiver, and
the transportation company itself are affected. Costs associated with insurance, returns, product
replacement, and lost productivity are all a result of damaged goods. All transportation processes
must be designed to prevent damaging the goods. Usually, every step in the transportation
process has procedures to measure the number of damages created in any period of time. These
procedures are used to establish accountability practices and to identify process-improvement
opportunities.

On-time performance: Freight-transportation companies compete on the basis of service per-
formance and cost. In order to support the needs of the complex supply chains that exist today,
high levels of on-time delivery reliability are expected from the transportation company. Several
external and internal factors can have a direct impact on on-time delivery performance. External
factors such as weather, traffic conditions, and subcontractor labor relations can have a direct
impact on the ability of the transportation company to meet service commitments. With proper
planning, transportation companies manage to minimize the impact of some of these factors.
On the other hand, the one internal factor that will always have a negative impact on on-time
delivery is lack of planning or, quite simply, poor planning. If the organization is not prepared
to handle seasonal variations in pickup and delivery volumes or does not have contingency plans
to deal with unexpected events, on-time delivery performance will be affected.

Accuracy: Delivering to the correct destination is expected every time for every shipment.
However, there are instances in which the transportation system fails to satisfy this basic re-
quirement. Two major causes contribute to this type of service failure: missing or incorrect
information and inadequate planning. For example, when the wrong address is attached to a
shipment, the probability of making delivery mistakes increases substantially. Today, transpor-
tation companies offer a variety of services aimed at providing continuous shipment tracking
and improved information quality. As indicated before, labor is usually the highest cost variable
in the profitability equation of a transportation company. Labor is also the primary driver of
quality in these organizations. When companies fail to develop staffing and training plans prop-
erly, delivery accuracy and reliability will be impacted.

Shipment integrity: Receivers expect to receive all the items (e.g., packages) in a shipment on
the same day and at the same time. It is the responsibility of the freight-transportation company
to maintain the integrity of all shipments. The transportation system must be capable of using
shipment information in its different processes to ensure the integrity of every shipment.

Information integrity: As indicated earlier in this chapter, the information about a shipment is
as important, in today’s supply chains, as the movement of the shipment itself. Since shipment
information is offered to shippers and receivers as a value-added service, the effectiveness with
which this information is provided to them must be monitored and measured. Systems to ef-
fectively capture, store, and provide shipment information are critical in today’s freight trans-
portation business models. The freight-transportation industry will continue to be an
information-based industry. Therefore, maintaining high levels of information accuracy and in-
tegrity will continue to be an important measure of performance.

Now that some basic measures have been defined, let’s look into the quality-improvement process.

Like

other industries, freight-transportation companies make use of well-established quality-

improvement techniques. Without a clear understanding of the facts and figures that affect the quality
of the services offered, management cannot control and improve the processes involved. Remember
that there are four continuous phases in the quality improvement process: Plan, Do, Check, and Act.
Together, these phases are known as the Deming circle. Transportation processes must be designed
and performance targets must be defined. As activities are completed throughout the different pro-
cesses, regular checks must take place as the processes are monitored and controlled. The information
gathered from these checks must be used to improve the process continuously.
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12. TECHNOLOGY
12.1. Vehicle Routing

For solving transportation problems, the use of computers plays an important role in the development
of models, schedules, network plans, and delivery and pickup routes. As described in previous sec-
tions, the complexity and magnitude of the transportation problems discussed in this chapter require
extensive computation times. Making transportation decisions is a complex process. Dispatch man-
agers in package-delivery companies must assess a variety of factors before making dispatch deci-
sions. Some of those factors were discussed in previous sections. They include vehicle capacity, time
windows, demand fluctuations, labor productivity, and the dynamic changes in pickup and delivery
characteristics of customers, geographies, and traffic conditions.

Vehicle-routing problems fall into one of three basic segments: routing of service vehicles, pas-
senger vehicles, and freight vehicles (Hall and Partyka 1997). Service vehicles are used to support
jobs in the field and are generally used by service technicians. In this type of problem, the primary
constraints are service time, time windows, and travel time. Because there is no major variation in
the merchandise carried by any given vehicle, capacity constraints are not included in the formulation
of service routes. Passenger-transportation services such as bus service face an additional constraint:
capacity. The size of the vehicle determines the number of passengers that can be safely carried from
one point to another. Freight vehicles are also constrained by their capacity. When completing pick-
ups, a vehicle may run out of capacity at a certain customer location. At this point, the dispatcher
must either dispatch another vehicle to the customer’s location to complete service or ask the current
driver to return to the depot, obtain an empty vehicle, and return to the customer’s location to
complete the service. It is clear from this example that the decision made by the dispatcher can have
different cost and service implications and may affect more than one customer. A few years ago, the
only way to make these dispatch decisions effectively was through human knowledge and experience.
The ability of the dispatcher to make numerous decisions based on a few pieces of information could
make or break the dispatching process. Today, things have changed. With the increasing implemen-
tation of technologies such as the geographic information systems (GIS) and global-positioning sys-
tems (GPS), dispatchers have new tools that automate and improve the vehicle-routing process.

Routing pickup-and-delivery vehicles does not end with the development of routes prior to the
drivers’ departure from the depot. Once drivers have left the depot, in-vehicle communications and
route-information systems offer mechanisms not only to improve their performance but to meet on-
demand customer requests. When dispatchers have the ability to communicate routing instructions
and customer requests to drivers in the field, the opportunities for improving the overall efficiency
of a dispatch plan increase substantially. However, the initial development of an efficient and effective
dispatch plan is still critical.

Several software vendors have developed vehicle-routing software. In 1997, Hall and Partyka
surveyed several vendors in order to compare the characteristics of their respective software systems.
Table 4 presents an extract of this survey. The complete survey appeared in the June 1997 issue of
OR/MS Today.

12.2. Information Gathering and Shipment Tracking

As indicated earlier in this chapter, the information associated with the goods being moved is as
important as the transportation process itself. Today, transportation companies use a variety of tools
to track, manage, and control the movement of goods from pickup to delivery. In addition, sophis-
ticated electronic devices are being used by drivers not only to record the status of deliveries and
pickups, but also to keep track of vehicle usage, time cards, and sales information.

12.3. New Trends: Intelligent Transportation Systems (ITS)

The transportation community has turned to the deployment of intelligent transportation systems (ITS)
to increase the efficiency of existing highway, transit, and rail systems. One of the key variables in
the vehicle-routing models described above is travel time. With the use of information from ITS,
dispatchers can make better decisions. The U.S. Department of Transportation (DOT) has indicated
that “ITS uses advanced electronics and information technologies to improve the performance of
vehicles, highways, and transit systems. ITS provides a variety of products and services in metro-
politan and rural areas.”

As ITS evolves from pure research, limited prototyping, and pilot projects into routine usage,
decision makers at “‘the corporate, state, regional, and local levels seek reliable information about
the contribution that ITS products can make toward meeting the demand for safe and efficient move-
ment of people and goods.” Literature indicates that substantial benefits have already been realized
in areas such as accident reduction, travel-time savings, customer service, roadway capacity, emission
reduction, fuel consumption, and vehicle stops. Greater benefits are predicted with more extensive



'SIOALP DIAO
BIA SQOBJIQIUJ 'SOTAUISOD UAIOS
pue [opow SuINpayds yjoq

Surpnpour ‘somsnpur oydnnw "oug
ssoIoe s1asn Aq 9[qern3gyuo) sy adeys [YSH A X A pajwIun pAWIUN  PAWI[UN ‘dnoiny au0Isy31] SININTY
'SEoIe QOTAIOS PUB STEUTULIO}
JO uonedo| pue JoquNu
ozrumdo ‘syurensuoo owry /ooeds
30adsar ‘spoured own ordnnu SjuBINSuU0))
ssoxoe sejno1 ozrumndo ue) s100[qQ dey X X X 001 0001 000°0T juowaSeury Jopuog SYAAO
‘sjuowaanbaz
juowdinbe wo uonewIOjUT
sop1aoid ‘sa[npayos JIo[rer) pue yorolony Surnpayos
I0J0€1} “IOALIP JO juswoSeuewr oope)) 29 Sunnoy
SMO[[E—IUSWIOTBURW 90IN0SAY ~ ‘[[oMYO0Y ‘BIOX A X A pajwIun paWIU  pPWIUN *ou] ‘sonsISnuey sonsIgnueA
‘suroped
uonngsip JurzAfeue pue
‘SOLIOAT[Op SuInpoyds ‘seynol SwoIsAs 1D
Suriziumdo pue Jurpying Joj [[e wolj vjep
20107d 9[qIXa pue ‘[nyromod M YIom "OuJ ‘orem)jos sniq
‘orduurs e st ssaxdxgpeo] ued ‘Arejorrdorg A X N pajwIun 00S pawIun uoneuLIOJu] ssardxgpeo]
"ouy ‘serSojouyoay,
N N N V/N V/N V/N 1oupeoy  1oSeuRly peOT]
‘sjuowarbar
PaxXIW se [[om se ‘suonerado
Joams-Aq-19oms pue jurod ojurdeny our
-03-jutod yioq suoddns aremijos ‘oJuroIy A X N pajwIun pAWIUN  PAWIUN ‘sosudioiug OYID G ANOYoon
"9lqe[TeAe
are yoejdsipar pue jodopnnu
10§ suondQ ‘suoneorjdde
PEOI-0Y}-IOAO SB [[oM Sk "OU] ‘SOIBIO0SSY
AIOAT[Op [290] 10 SHIOM AIN0Y0D) ZIYM 02D A A N 9¢¢C cls 009t ERS A l QANOY0H
sarmed [eroadg Q0BJIAIU] Sumuueld Sunnoy  Sunnoy S[RUTULID], SOOIYA sdoyg Ioysiqng jonpoid
jonpoid S[D anoy  Are@  owrl-[eay Jo roquunN Jo IoqunN JO JoquinN
Sunnoy 9ZI§ WI[qoIJ J[qBA[OS

£AIng daemyjos sunpnoy A T9VL

820



uossiusad i pajunday ‘Ly-8¢ “dd “L661 dunf Kbpor SW/¥O KOUSIOYYT 0} Peoy a4} UQ,, ‘BIAMEd D ‘[ PUE [[BH ‘M " 224108

‘spoyow SwaISAs 1D

uoneoo[ rewndo snoLeA [[e woiy ejep

pue ‘worqold uoneuodsuen qim Iom

‘MOYJ YTOMIdU JSOd-UTUI ued ‘1S1O
Surpnpour spoyiawr YO JO IN[OOL ‘opmndejy
d44/8d5/Addd
sdew 1D

‘(s[npowu
SOIISTIB)S PAJUBAPR) BIBP MBI
Jo Sumy aamod ‘sjuowradxa
Jo uSISap ‘I N SMOpUIA\ pue
G6 SMOPUIA) ‘UoneWIUE (J§ PUB ¢
‘SISLLES I pUB IL
10§ 1910y yuewdiys AydeiSoan
rendiq 1aupp 1odoy ooH
PV ‘SuQa10s 9[qeIn3yuod-1asn yerg
‘uoneziumndo 1939y ‘paseq-1so)  ‘ojudelN ‘LD
*SUOTJEDTUNUIOD SSI[AIIM 0]
SQOBJIOUI IIM WISAS yajedsip
pue 3unnol 9OIAISS-IdWOISND
J1o1dwod e se padofaaap

u0aq Ssey (OO SOTUONNOY ojurdeiy
0¢

UOISIOA MITAITY
'S9INOI UOHBUIqUIOD oJuyoIy
pue ‘Sutaup ‘Sunjem ‘(UOTSIOA

Sso[puey ‘WaIsAs SuIpeal-1IRN  SOQ) snid SID
‘soengue[ 19730 IMAD

woly suonouny [[ed 03 Afiqe LdD
pue a3en3ue] oIoBW UOTIRIOUIT ‘A3orouyoqy,
-y)Inoj y3noIy) 9[qeziwolsn)  SUOZLIOH “Yerq
‘108N A

Aq porddns uonewojur oyroads IBM]JOS

Surnyerodioour s3s0o [enjoe Kreyorrdoxd

U0 Paseq SUONN[OS JANIYJO pue ojurdejy
-1803 seje[noed MOHSAVOA Yerd Lao

sdewr 10D

povwirun

00s

povwirun

0001

povwirun

payruun

SQ)BIPIWLIAIU] + |

SOJBIPOUWLIAIU] + |

paseq-MH

payruun

payruun

pavwrun

0001

pavwirun

001

pavwirun

poyruun

poyruun

pavwirun

paseq-MH

poyruun

poyruun

paywirun

000¢

pajwirun

0001

paywrun

paywun

paywun

paywirun

paseq-MH

0008

paywun

uonerodio) rodie)
uornerodio)
QIem)JOS WIOJu]
sar3ojouyoay,
joupeoy

ouy
‘suone[nuIS H¥d

-ouy “‘yIisug

SoNsISOT IOt
sar3o[ouyoa],
JTBWSIINOY

sar3o[ouyoqy,
JIBWISIINOY

SOILLSIDOT SdVO

*ou] ‘[eUOnRUISIU]
MOHSAvOod

*ou] ‘sarSoouyod,

Joupeoy

avopsuel],

SASHL
ouue[d

AIOIIIQY,

1T J101Ae],

II SNODdIHS

000 sotuonnoy
JuI04-03-)uIog
JIRWSIINOY

PooyIOqUSTON
JBWSAINOY

0I1Jamoy

SMOPUIA
I0J MOYSPEOY

000S
LANAVOY

821



822 TECHNOLOGY

deployment of more mature products. Freight-transportation companies face new constraints and
challenges not only in meeting service commitments but in remaining competitive and cost effective
while meeting governmental regulations. The use of ITS offers new opportunities to use information
in the development of routes and schedules.

The ITS program is sponsored by the DOT through the ITS Joint Program Office (JPO), the
Federal Highway Administration (FHWA), and the Federal Transit Administration (FTA).

ITS, formerly known as the intelligent vehicle highway systems (IVHS), were created after the
Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 was established. ISTEA helped
authorize larger spending for transit improvement. In January 1996, then Secretary of Transportation
Frederico Pefia launched Operation TimeSaver, which seeks to install a metropolitan intelligent trans-
portation infrastructure in 75 major U.S. cities by 2005 to electronically link the individual intelligent
transportation systems, sharing data so that better travel decisions can be made.

A projected $400 billion will be invested in ITS by the year 2011. Approximately 80% of that
investment will come from the private sector in the form of consumer products and services.

The DOT has defined the following as the components of the ITS infrastructure:

Transit fleet management: enables more efficient transit operations, using enhanced passenger
information, automated data and fare collection, vehicle diagnostic systems, and vehicle posi-
tioning systems

Traveler information: linked information network of comprehensive transportation data that
directly receives transit and roadway monitoring and detection information from a variety of
sources

Electronic fare payment: uses multiuse traveler debit or credit cards that eliminate the need for
customers to provide exact fare (change) or any cash during a transaction

Traffic signal control: monitors traffic volume and automatically adjusts the signal patterns to
optimize traffic flow, including signal coordination and prioritization

Freeway management: provides transportation managers the capability to monitor traffic and
environmental conditions on the freeway system, identify flow impediments, implement control
and management strategies, and disseminate critical information to travelers

Incident management: quickly identifies and responds to incidents (crashes, breakdowns, cargo
spills) that occur on area freeways or major arteries

Electronic toll collection: uses driver-payment cards or vehicle tags to decrease delays and
increase roadway throughput

Highway—rail intersection safety systems: coordinates train movements with traffic signals at
railroad grade crossings and alerts drivers with in-vehicle warning systems of approaching trains
Emergency response: focuses on safety, including giving emergency response providers the
ability to pinpoint quickly the exact location of an incident, locating the nearest emergency
vehicle, providing exact routing to the scene, and communicating from the scene to the hospital

.

.

.

The use of information from all of these system components will enhance the planner’s ability
in designing efficient transportation networks and delivery routes. In addition, as this information is
communicated to the drivers, they will also have the capability of making better decisions that will
enhance customer satisfaction and reduce overall costs.

For additional information, visit the DOT’s website on ITS: http://www.its.dot.gov/.
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