
710

CHAPTER 26
Client/Server Technology

ON HASHIDA
University of Tsukuba

HIROYUKI SAKATA
NTT DATA Corporation

1. INTRODUCTION 711

1.1. Concept of C/S Systems 711

1.2. Roles of Client and Server 711

1.3. Computer Technology Trends 712
1.3.1. Web Technologies 712
1.3.2. Open System

Technologies 714

2. FEATURES OF C/S SYSTEMS 714

2.1. Advantages 714

2.2. Disadvantages 714

3. C/S SYSTEM ARCHITECTURES 715

3.1. Functional Elements of C/S
Systems 715

3.2. Two-Tier Architecture 715

3.3. Three-Tier Architecture 716

4. FUNDAMENTAL
TECHNOLOGIES FOR C/S
SYSTEMS 718

4.1. Communication Methods 718
4.1.1. Socket 718
4.1.2. Remote Procedure Call 719
4.1.3. CORBA 719
4.1.4. Other Communication

Methods 721

4.2. Distributed Transaction
Management 721

4.3. Distributed Data Management 723

5. CAPACITY PLANNING AND
PERFORMANCE MANAGEMENT 723

5.1. Objectives of Capacity Planning 723

5.2. Steps for Capacity Planning
and Design 725

5.3. Performance Objectives and
System Environment 726

5.4. Performance Criteria 726

5.5. Workload Modeling 727
5.5.1. Workload

Characterization 727
5.5.2. Workload Modeling

Methodology 727

5.6. Performance Evaluation 728
5.6.1. Analytical Models 728
5.6.2. Simulation 728
5.6.3. Benchmarking 729
5.6.4. Comparing Analysis

and Simulation 729

6. MAINTENANCE AND
ADMINISTRATION OF C/S
SYSTEMS 729

6.1. Architecture of System
Management 729
6.1.1. OSI Management

Framework 729
6.1.2. System Management

Architecture 730

6.2. Network Management Protocol 730

6.3. Security Management 732
6.3.1. Threats 732
6.3.2. Security Services 732
6.3.3. Security Technologies 733

7. A PRACTICAL EXAMPLE:
INTERNET BANKING SYSTEM 735

ADDITIONAL READING 736

Handbook of Industrial Engineering: Technology and Operations Management, Third Edition.
Edited by Gavriel Salvendy Copyright © 2001 John Wiley & Sons, Inc.

CLIENT/SERVER TECHNOLOGY 711

Request

Service

Host

Application

Data

Terminal

Presentation

User Interface
User

Input

Output

Figure 1 Host-Centered Processing System.

Request

Service

Server

Data

Client

Presentation

User Interface
User

Input

Output

Application

Application

Figure 2 Relationship of Client and Server.

1. INTRODUCTION

1.1. Concept of C/S Systems

In a traditional, centralized mainframe system, a user interacts with an application via a dumb terminal
that has a keyboard for entering commands and a display to show the results. All applications and
databases are placed on the mainframe (host), and the terminal does not have any ability to process
applications. That is, the functions of the user interface and the presentation are placed on the terminal
and other applications are placed on the host side, as shown in Figure 1.

In a client / server (C/S) system, by contrast, a user advances processing by using a program
called a server, from a workstation or personal computer connected to the server computer by network.
The program that receives services from the server is called a client. As in the host-centric system,
the functions of user interface and presentation are placed on the user (client) side. Databases that
are used for processing requests are placed on the server side. Each application is divided into several
processes that run on the client and server sides and cooperate for processing the application. The
difference between the two systems is the way of distribution of applications. As shown in Figure 2,
some applications can be placed on the user side in the C/S system. Figure 3 shows the physical
and logical structures for a host-centric system and a C/S system.

In the physical structure of the host-centric system, applications and databases are placed on a
mainframe. That is, the physical structure is almost the same as the logical structure described above.
On the other hand, in the C/S system, all the processes that comprise the service are not necessarily
placed in the same computer. In many cases, they are distributed in separate computers connected to
each other via network.

The features of C/S systems are:

• They contain the basic functional components: presentation, application service, and database.
• Generally, each application service is divided into several processes.
• In many cases, the service is offered by cooperative work of several processes placed on separate

computers.

1.2. Roles of Client and Server

There is a many-to-one relationship between clients and servers, but the relationship is relative. In
some cases, a client may pass a reference to a callback object when it invokes a service. This lets

712 TECHNOLOGY

Terminal

Presentation

User Interface

Host

Data

Application

User
Terminal

Equipment

Network

Mainframe

Server Machine
(PC,WS,etc...)

Client

Presentation

User Interface

Application
Server

Data

Application

User
Client Machine
(PC, WS, etc...)

Network

Server Machine
(PC,WS,etc...)

Database

Server Machine
(PC, WS, etc...)

(a)

(b)

Figure 3 Logical Structure vs. Physical Structure. (a) Host processing model. (b) C /S processing
model.

the server call back the client, so the client becomes a server. For example, in an Internet banking
system, a user program (WWW browser) is a client and a program located at the bank that offers
services to the client is a server. However, the role of the program located at the bank is not always
fixed to the server. To offer a fund transfer service to the user, the program located at bank A asks
for a fund acceptance process that is located at bank B. In this case, the program at bank A becomes
a client and the program at bank B becomes a server. Thus, the roles of the client and server change
dynamically depending on the circumstances. In this chapter, ‘‘client’’ means a program that is located
on the user side and provides the user interface and presentation functions, and ‘‘server’’ means a
program that receives requests from the client and provides services to the client.

1.3. Computer Technology Trends

1.3.1. Web Technologies

A C/S system is realized by a network over which clients and servers work together to accomplish
a task. To develop the network applications, it is important for a developer to select an appropriate
communication protocol from the viewpoint of cost and performance. The communication protocol

CLIENT/SERVER TECHNOLOGY 713

(a) User WWW Browser

Network

WWW Server

Database

User WWW Browser

Network

WWW Server

Database

(b)

User WWW Browser

Network

WWW Server

Database

(c)

processing

processing

External system

Figure 4 Progressive Stages of Web-Style C/S System. (a) WWW information-providing system.
(b) WWW information-processing system. (c) WWW information-processing system with external
systems processing.

is a set of rules by which reliable end-to-end communication between two processes over a network
is achieved. In recent years, the TCP/ IP protocol stack has been adopted for constructing many
network applications and has become the standard protocol for the Internet. World Wide Web (or
Web) technologies using HTTP (Hypertext Transfer Protocol), an application layer protocol based on
TCP/ IP, have been applied to C/S systems. At present, Web technologies are the most widespread
for C/S applications. The client side of the Web application is called the browser. Microsoft’s Internet
Explorer and Netscape’s Navigator are the most widely used browsers.

Figure 4 shows the progression of the Web structure of C/S applications:

• At the initial stage, the main service of the Web system was distribution of static information
such as a text or an image stored in the storage device of the server machine (the Web server).
(Figure 4[a]).

• In the middle stage, in addition to distribution of information, more interactive services were
provided to the user by applications added to the Web server. For example, in an online shopping
service, monthly expenditure is calculated using inputs of the purchase amount of daily shopping
(Figure 4[b]).

• In the recent stage, external systems such as legacy systems are placed on the back end of the
Web server and more advanced services can be provided. An Internet banking service is realized
by this structure (Figure 4[c]).

The advantage of a C/S system using the Web technologies is that users can unify various kinds
of operations and the maintenance of the client software becomes easier. In the future, the proliferation
of the Internet means that Web technologies will gain more popularity for realizing C/S systems.

714 TECHNOLOGY

1.3.2. Open System Technologies

A C/S system is one of distributed models of computing in the environment of heterogeneous
computers. This is because open system technologies such as communication protocols and devel-
oping languages are required. For example, the adoption of the Java language as the developing
language has increased, as has the adoption of CORBA (common object request broker architecture)
as interconnection technology. Java is a new object-oriented programming language from Sun Mi-
crosystems and a portable operating system environment that enables the writing of portable com-
ponents. CORBA is a standard architecture created by the OMG (Object Management Group) for a
message broker called object request broker, a software component that enables communication
among objects in a distributed environment. The common feature of Java and CORBA is platform
independence. The most commonly used operating system on which C/S systems are developed is
UNIX, which mainly works on workstations or Windows NT, which mainly runs on server-class
personal computers. Java and CORBA are designed for running on both operating systems and
cooperate mutually. In the future, technology like Java or CORBA that works in heterogeneous
computing environments will become more and more important.

Due to the recent progress in hardware technologies, the processing capacity of a personal com-
puter has become almost equal to that of a workstation. Therefore, there are too many choices among
various technologies to allow appropriate system components to be selected. The system configuration
has become more complex because of a combination of distributed components as well as hetero-
geneity.

2. FEATURES OF C/S SYSTEMS

2.1. Advantages

The advantages of C/S systems derive from their distributed processing structure, which C/S systems
adopt, where processing is handled by two or more cooperating geographically distinct processors.

1. Performance tuning: In a distributed processing environment, the service requests from a client
are not concentrated on a single server but can be distributed among several servers. Therefore,
it becomes possible to distribute required workload among processing resources and improve
the performance, such as response time to the client. Furthermore, adopting an efficient al-
gorithm of request distribution such as an adaptive algorithm taking account of current loads
of all servers makes it possible to improve the throughput (the amount of work processed per
unit time) of the system.

2. Availability improvement: Clients are sensitive to performance of the system, but they do not
perceive the physical structure of the distribution for requests. In other words, the group of
networked servers seems to the client like one server. In a distributed processing environment,
even if one server breaks, other servers can substitute for the broken server and continue to
process its tasks. This can guarantee the high availability of services to the client compared
to a host-centric processing environment.

3. Scalability and cost-efficiency: Scalability is the capacity of the system to perform more total
work in the same elapsed time when its processing power is increased. With a distributed
system, the processing capacity of the system can be scaled incrementally by adding new
computers or network elements as the need arises, and excessive investment in a system can
be avoided at the introduction stage of the C/S system. On the other hand, with a host-centric
system, if the load level is going to saturate the system, the current system will be replaced
by a more powerful computer. If further growth is planned, redundant computer capacity will
need to be built into the current system to cope with future growth in requirements.

2.2. Disadvantages

1. Strong dependence on the network infrastructure: Because a distributed environment is largely
based on a networking infrastructure, the performance and availability of the distributed system
are strongly influenced by the state of the network. For example, if a network failure, such as
of the router or transmission line, occurs, performance and availability for services may seri-
ously deteriorate. The system designer and manager should design the fault-tolerant system
and plan the disaster recovery taking account of the networking infrastructure.

2. Security: From the viewpoint of security, the possibility exists that confidential information
stored on the database may leak out through the network. The system manager should take
security measures such as authentication, access control, and cryptographic control according
to the security level of information.

3. Complexity of system configuration: C/S systems are composed of several components from
multiple vendors. Distributed applications often have more complex functionality than cen-

CLIENT/SERVER TECHNOLOGY 715

tralized applications, and they are built from diverse components. Multitier architectures, which
will be explained in the next section, provide a nearly limitless set of choices for where to
locate processing functions and data. In addition to choices about locations, there are also more
hardware and software choices, and more data sharing occurs. These cause the difficulty in
developing a C/S system and the complexity of managing it.

3. C/S SYSTEM ARCHITECTURES

3.1. Functional Elements of C/S Systems

Since vendors began releasing RDBMS (relational database management system) products in the
1970s, the processing model in which various business data are divided into distributed databases
and are accessed via network has been widely adopted. Client / server systems are composed of the
various functional elements associated with data processing.

The logical functions of C/S systems are roughly divided into three layers:

1. Presentation logic: This function contains all the logic needed to manage screen formats, the
content of windows, and interaction with the user, that is, the user interface. In recent years,
the use of graphical user interface (GUI) features such as buttons has become general.

2. Application logic: This is a generic name for application functions that do not belong to other
layers. It includes business logic and the flow of control among application components.

3. Data logic: This contains all the logic relating to the storage and retrieval of data, and enforcing
business rules about data consistency. Generally, databases are treated and are maintained by
a DBMS (database management system).

In addition to these application-functional layers, some functions are needed to support interac-
tions between clients and servers via networks. All the distributed software that supports interaction
between application components and network software is called middleware. Middleware is a generic
term for all the software components that allow us to connect separate layers or components and put
them into a complete distributed system. It provides an application programming interface (API) that
isolates application codes from the underlying network communication formats and protocols. It also
supplies intermediate system services such as security, naming, directory, messaging, and transaction
management services:

1. Naming service: In C/S systems, names of clients and servers must be unique within the range
in which they are used. A naming service uniquely names a physical entity such as a client
or server and associates logical structure such as a tree with physical entities.

2. Directory service: This is a directory service that provides a way for clients to locate servers
and their services on the network and controls the address of messages and processing requests
through a tree structure.

3. Security service: This service provides authentication, authorization, access control, and user
account management.

4. Messaging service: This service provides the ability to send and receive messages between
and among applications and users.

5. Transaction service: This service manages distributed transaction processing, such as consis-
tency control, that maintains a database in a consistent state and enables recovery control from
failures.

3.2. Two-Tier Architecture

Client / server architectures can be characterized by how the applications are distributed between the
client and the server. In a two-tier architecture, the application logic is placed on either the client or
the server undivided or split into two parts, which are placed on the client and the server respectively.
In most cases, the presentation logic and the application logic are placed on the client side and the
data logic is placed on the server side. Examples of two-tier C/S systems are file servers and database
servers with stored procedures. Figure 5 shows a two-tier architecture.

The advantage of the two-tier architecture is ease of development. Because the two-tier architec-
ture is simple, a developer can create applications quickly using a 4GL (fourth-generation language)
development environment such as Microsoft’s Visual Basic or Inprise’s Delphi. However, as C/S
systems grew up to run mission-critical or enterprise-wide applications, shortcomings of the two-tier
architecture emerged:

1. Performance: Performance may deteriorate markedly as the number of clients, the size of the
database, or the volume of transferred data increases. This deterioration is caused by a lack of
capacity of resources such as the processing unit, the memory area, and the network bandwidth

716 TECHNOLOGY

Network

Client

Presentation/GUI

SQL Connection

Business Logic

The 1st tier

Server

Data Logic

SQL Connection

The 2nd tier

Figure 5 Two-Tier Architecture.

when the processing load is concentrated on the database server. Placing a part of application
logic on the database server allows network traffic between the client and the database server
to be reduced and the performance even improved. For example, a set of database access
commands is compiled and saved in the database of the server. This scheme is called stored
procedure. Some DBMS packages support this scheme. But there remains the problem that
the application maintenance becomes complicated.

2. Maintenance: Because the business logic is placed on the client side in most two-tier C/S
systems, version control of applications becomes complex. For example, in the case of an
online shopping system, the business logic (or rule), such as tax rate, is implemented on the
client side. Although this structure is effective in reducing network traffic between the client
and the server, a system manager has to replace the application of all the clients every time
the business rule or version of application is changed. This becomes a big problem in the total
cost of ownership of two-tier C/S systems: costs of maintaining, operating, and managing
large-scale systems accommodating many users and services.

3.3. Three-Tier Architecture

To solve some problems of the two-tier architecture and improve the reliability and performance of
the system, a three-tier architecture has been adopted. In a three-tier architecture, the business logic
is separated from the presentation and data layers and becomes the middle layer between them. The
presentation logic resides in the first tier (the client side), and the data logic in the third tier (the
server side), and the business logic in the second tier (the middle) between both tiers. This solves
the problems occurring with the two-tier architecture. Figure 6 shows a three-tier architecture where
the business logic and some connection functions are placed in the second tier.

In a three-tier architecture, the second tier plays the most important role. Many functions such as
data access and connection with other systems are located in the second tier and can be used by any
client. That is, the second tier becomes the gateway to other systems. The second tier is often called
the application server.

The advantages of three-tier architecture derived from the application server are:

1. Reduction of network traffic: Concentrating the function of accessing database and other sys-
tems on the application server makes it possible to reduce network traffic between the client
and the server. That is, instead of interacting with the database directly, the client calls the
business logic on the application server, and then the business logic accesses the database on
the database server on behalf of the client. Therefore, only service requests and responses are
sent between the client and the server. From the viewpoint of network traffic, comparisons of
two-tier architecture and three-tier architecture are shown in Figure 7.

2. Scalability: Adding or removing application servers or database servers allows the system to
be scaled incrementally according to the number of clients and volume of requests.

3. Performance: Because workloads can be distributed across application servers and database
servers, this architecture can prevent an application server from becoming a bottleneck and
can keep the performance of the system in a permissible range.

CLIENT/SERVER TECHNOLOGY 717

The 1st tier

Network

Client

Presentation/GUI

Server

RPC Connection

Business Logic

SQL Connection

Data Logic

RPC Connection

The
2nd tier

The
3rd tier

Figure 6 Three-Tier Architecture.

The 1st tier The 2nd tier

The 1st tier

The
2nd tier

The
3rd tier

Network

Client

Presentation/GUI

Server

RPC Connection

Business Logic

SQL Connection

Data Logic

RPC Connection

Network

Client

Presentation/GUI

Server

SQL Connection

Business Logic

Data Logic

SQL Connection

(a)

(b)

Figure 7 Network Traffic Comparison. (a) Two-tier architecture model. (b) Three-tier architecture
model.

718 TECHNOLOGY

Network

Client Process

socket socket

bind

read/write

connect

listen

accept

bind

write/read

Server Process

(1)

(2)

(3)

(4)

(5)

(6)(6)

(1)

(2)

Figure 8 Interprocess Communication via Socket Interface.

4. Availability: Even if an application server fails during processing the business logic, the client
can restart the business logic on other application servers.

4. FUNDAMENTAL TECHNOLOGIES FOR C/S SYSTEMS

4.1. Communication Methods

The communication method facilitating interactions between a client and a server is the most im-
portant part of a C/S system. For easy development of the C/S systems, it is important for processes
located on physically distributed computers to be seen as if they were placed in the same machine.
Socket, remote procedure call, and CORBA are the main interfaces that realize such transparent
communications between distributed processes.

4.1.1. Socket

The socket interface, developed as the communication port of Berkeley UNIX, is an API that enables
communications between processes through networks like input /output access to a local file. Com-
munications between two processes by using the socket interface are realized by the following steps
(see Figure 8):

1. For two processes in different computers to communicate with each other, a communication
port on each computer must be created beforehand by using ‘‘socket’’ system call.

2. Each socket is given a unique name to recognize the communication partner by using ‘‘bind’’
system call. The named socket is registered to the system.

3. At the server process, the socket is prepared for communication and it is shown that the server
process is possible to accept communication by using ‘‘listen’’ system call.

4. The client process connects to the server process by using ‘‘connect’’ system call.

CLIENT/SERVER TECHNOLOGY 719

Network

Client

Client Process

Runtime Library

Client Stub

Server

Server Process

Runtime Library

Server Stub

parameter parameter

message message

Figure 9 Interprocess Communication via an RPC.

5. The communication request from the client process is accepted by using ‘‘accept’’ system call
in the server process. Then the connection between the client process and the server process
is established.

6. Finally, each process begins communicating mutually by using ‘‘read’’ or ‘‘write’’ system calls.

4.1.2. Remote Procedure Call

Because the application programming interface (API) for socket programming uses system calls, the
overhead associated with an application that communicates through the socket interface is rather
small. However, because API is very primitive, socket programming depends on operating systems
and the development of a system with a socket interface becomes complicated. For example, where
programmers develop a system in which communications between processes on different platforms
(such as Windows and UNIX) are required, they should master several versions of socket API sup-
ported by each platform.

One of the earliest approaches to facilitating easier use of sockets is realized by a remote procedure
call (RPC). An RPC is a mechanism that lets a program call a procedure located on a remote server
in the same fashion as a local one within the same program. It provides a function-oriented interface,
and necessary preparation for communication is offered beforehand. An RPC is realized by a mech-
anism called a stub. The functions of stubs at client and server sides are to mimic the missing code,
convert the procedure’s parameters into messages suitable for transmission across the network (a
process called marshaling) and unmarshal the parameters to a procedure, and dispatch incoming calls
to the appropriate procedure.

Communications between two processes by using an RPC is realized by the following steps (see
Figure 9):

1. The client program invokes a remote procedure function called the client stub.
2. The client stub packages (marshals) the procedure’s parameters in several RPC messages and

uses the runtime library to send them to the server.
3. At the server, the server stub unpacks (unmarshals) the parameters and invokes the requested

procedure.
4. The procedure processes the request.
5. The results are sent back to the client through the stubs on both sides that perform the reverse

processing.

The sequence from 1 to 5 is concealed from application programmers. One of the advantages of
an RPC is that it hides the intricacies of the network and these procedures behave much the same
as ordinary procedures to application programmers.

4.1.3. CORBA

An object is an entity that encapsulates data and provides one or more operations (methods) acting
on those data; for example, ‘‘the bank object’’ has data from his client’s account and operations by

720 TECHNOLOGY

ORB Core

Object ImplementationClient

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object
Adapter

IDL
Skeleton

Figure 10 The CORBA Architecture.

which to manipulate them. Object-oriented computing is enabling faster software development by
promoting software reusability, interoperability, and portability. In addition to enhancing the produc-
tivity of application developers, object frameworks are being used for data management, enterprise
modeling, and system and network management. When objects are distributed, it is necessary to
enable communications among distributed objects.

The Object Management Group, a consortium of object technology vendors founded in 1989,
created a technology specification named CORBA (Common Object Request Broker Architecture).
CORBA employs an abstraction similar to that of RPC, with a slight modification that simplifies
programming and maintenance and increases extensibility of products.

The basic service provided by CORBA is delivery of requests from the client to the server and
delivery of responses to the client. This service is realized by using a message broker for objects,
called object request broker (ORB). An ORB is the central component of CORBA and handles
distribution of messages between objects. Using an ORB, client objects can transparently make
requests to (and receive responses from) server objects, which may be on the same computer or
across a network.

An ORB consists of several logically distinct components, as shown in Figure 10.
The Interface Definition Language (IDL) is used to specify the interfaces of the ORB as well as

services that objects make available to clients. The job of the IDL stub and skeleton is to hide the
details of the underlying ORB from application programmers, making remote invocation look similar
to local invocation. The dynamic invocation interface (DII) provides clients with an alternative to
using IDL stubs when invoking an object. Because in general the stub routine is specific to a particular
operation on a particular object, the client must know about the server object in detail. On the other
hand, the DII allows the client to dynamically invoke a operation on a remote object. The object
adapter provides an abstraction mechanism for removing the details of object implementation from
the messaging substrate: generation and destruction of objects, activation and deactivation of objects,
and invocation of objects through the IDL skeleton.

When a client invokes an operation on an object, the client must identify the target object. The
ORB is responsible for locating the object, preparing it to receive the request, and passing the data
needed for the request to the object. Object references are used for the ORB of the client side to
identify the target object. Once the object has executed the operation identified by the request, if
there is a reply needed, the ORB is responsible for returning the reply to the client.

The communication process between a client object and a server object via the ORB is shown in
Figure 11.

1. A service request invoked by the client object is handled locally by the client stub. At this
time, it looks to the client as if the stub were the actual target server object.

2. The stub and the ORB then cooperate to transmit the request to the remote server object.
3. At the server side, an instance of the skeleton instantiated and activated by the object adapter

is waiting for the client’s request. On receipt of the request from the ORB, the skeleton passes
the request to the server object.

4. Then the server object executes the requested operations and creates a reply if necessary.
5. Finally, the reply is sent back to the client through the skeleton and the ORB that perform the

reverse processing.

CLIENT/SERVER TECHNOLOGY 721

ORB Core

Object
Adapter

IDL
Skeleton

Server
Object

Dynamic
Invocation

IDL
Stubs

Client
Object

or

Figure 11 Communication between Objects in the CORBA Environment.

The main features of the CORBA are as follows:

1. Platform independence: Before the ORB transmits the message (request or result) from the
client object or the server object into the network, the ORB translates the operation and its
parameters into the common message format suitable for sending to the server. This is called
marshaling. The inverse process of translating the data is called unmarshaling. This mechanism
realizes communications between objects on different platforms. For example, a client object
implemented on the Windows operating system can communicate with a server object imple-
mented on the UNIX operating system.

2. Language independence: Figure 12 shows the development process of a CORBA C/S appli-
cation. The first step of developing the CORBA object is to define the interface of the object
(type of parameters and return values) by using the intermediate language IDL. Then the
definition file described in IDL is translated into the file containing rough program codes in
various development languages such as C, C��, Java, and COBOL.

IDL is not a programming language but a specification language. It provides language indepen-
dence for programmers. The mapping of IDL to various development languages is defined by OMG.
Therefore, a developer can choose the most appropriate one from various development languages to
implement objects. Also, this language independence feature enables the system to interconnect with
legacy systems developed by various languages in the past.

4.1.4. Other Communication Methods

In addition to Socket, RPC, and CORBA, there are several methods for realizing communication
between processes.

• Java RMI (remote method invocation) is offered as a part of the JAVA language specification
and will be a language-dependent method for the distributed object environment. Although there
is the constraint that all the environments should be unified into Java, the developing process
with it is a little easier than with CORBA or RPC because several functions for distributed
computing are offered as utility objects.

• DCOM (distributed component object model) is the ORB that Microsoft promotes. A DCOM
is implemented on the Windows operating system, and the development of applications can be
practiced by using a Microsoft development environment such as Visual Basic.

4.2. Distributed Transaction Management

In a computer system, a transaction consists of an arbitrary sequence of operations. From a business
point of view, a transaction is an action that involves change in the state of some recorded information
related to the business. Transaction services are offered on both file systems and database systems.

The transaction must have the four properties referred to by the acronym ACID: atomicity, con-
sistency, isolation, and durability:

722 TECHNOLOGY

Source File

ServerClient

Implementing
the Client

Implementing
the Server

Compile with
compiler

Compile with
compiler

Written in IDL

auto
generate

Client Stub Server Skeleton

Written in
C++/Java/COBOL...

Defining
Server I/F

using using

Compile with
IDL compiler

Figure 12 Development Process of a CORBA C/S Application.

• Atomicity means that all the operations of the transaction succeed or they all fail. If the client
or the server fails during a transaction, the transaction must appear to have either completed
successfully or failed completely.

• Consistency means that after a transaction is executed, it must leave the system in a correct
state or it must abort, leaving the state as it was before the execution began.

• Isolation means that operations of a transaction are not affected by other transactions that are
executed concurrently, as if the separate transactions had been executed one at a time. The
transaction must serialize all accesses to shared resources and guarantee that concurrent pro-
grams will not affect each other’s operations.

• Durability means that the effect of a transaction’s execution is permanent after it completes
commitments. Its changes should survive system failures.

The transaction processing should ensure that either all the operations of the transaction complete
successfully (commit) or none of them commit. For example, consider a case in which a customer
transfers money from an account A to another account B in a banking system. If the account A and
the account B are registered in two separate databases at different sites, both the withdrawal from
account A and the deposit in account B must commit together. If the database crashes while the
updates are processing, then the system must be able to recover. In the recovery procedure, both the
updates must be stopped or aborted and the state of both the databases must be restored to the state
before the transaction began. This procedure is called rollback.

CLIENT/SERVER TECHNOLOGY 723

In a distributed transaction system, a distributed transaction is composed of several operations
involving distributed resources. The management of distributed transactions is provided by a trans-
action processing monitor (TP monitor), an application that coordinates resources that are provided
by other resources.

A TP monitor provides the following management functions:

• Resource management: it starts transactions, regulates their accesses to shared resources, mon-
itors their execution, and balances their workloads.

• Transaction management: It guarantees the ACID properties to all operations that run under its
protection.

• Client /server communications management: It provides communications between clients and
servers and between servers in various ways, including conversations, request-response, RPC,
queueing, and batch.

Available TP monitor products include IBM’s CICS and IMS/TP and BEA’s Tuxedo.

4.3. Distributed Data Management

A database contains data that may be shared between many users or user applications. Sometimes
there may be demands for concurrent sharing of the data. For example, consider two simultaneous
accesses to an inventory data in a multiple-transaction system by two users. No problem arises if
each demand is to read a record, but difficulties occur if both users attempt to modify (write) the
record at the same time. Figure 13 shows the inconsistency that arises when two updates on the same
data are processed at nearly the same time.

The database management must be responsible for this concurrent usage and offer concurrency
control to keep the data consistent. Concurrency control is achieved by serializing multiple transac-
tions through use of some mechanism such as locking or timestamp.

Also, in case the client or the server fails during a transaction due to a database crash or a network
failure, the transaction must be able to recover. Either the transaction must be reversed or else some
previous version of the data must be available. That is, the transaction must be rolled back. ‘‘All
conditions are treated as transient and can be rolled back anytime’’ is the fundamental policy of
control in the data management.

In some C/S systems, distributed databases are adopted as database systems. A distributed da-
tabase is a collection of data that belong logically to the same system but are spread over several
sites of a network. The main advantage of distributed databases is that they allow access to remote
data transparently while keeping most of the data local to the applications that actually use it.

The primary concern of transaction processing is to maintain the consistency of the distributed
database. To ensure the consistency of data at remote sites, a two-phase commit protocol is sometimes
used in a distributed database environment. The first phase of the protocol is the preparation phase,
in which the coordinator site sends a message to each participant site to prepare for commitment.
The second phase is the implementation phase, in which the coordinator site sends either an abort
or a commit message to all the participant sites, depending on the responses from all the participant
sites. Finally, all the participant sites respond by carrying out the action and sending an acknowl-
edgement message. Because the commitment may fail in a certain site even if commitments are
completed in other sites, in the first phase of the two phase commit protocol, temporary ‘‘secure’’
commitment that can be rolled back anytime is done at each site. After it is confirmed that all the
sites succeeded, the ‘‘official’’ commitment is performed.

The two-phase commit protocol has some limitations. One is the performance overhead that is
introduced by all the message exchanges. If the remote sites are distributed over a wide area network,
the response time could suffer further. The two-phase commit is also very sensitive to the availability
of all sites at the time of update, and even a single point of failure could jeopardize the entire
transaction. Therefore, decisions should be based on the business needs and the trade-off between
the cost of maintaining the data on a single site and the cost of the two-phase commit when data are
distributed at remote sites.

5. CAPACITY PLANNING AND PERFORMANCE MANAGEMENT

5.1. Objectives of Capacity Planning

Client / server systems are made up of many hardware and software resources, including client work-
stations, server systems, and network elements. User requests share the use of these common re-
sources. The shared use of these resources gives rise to contention that degrades the system behavior
and worsens users’ perception of performance.

In the example of the Internet banking service described in the Section 7, the response time, the
time from when a user clicks the URL of a bank until the home page of the bank is displayed on

724 TECHNOLOGY

Initial value
is 300

Inquire
Inventory

User-1

 Decrease
100 pieces

 Update
Inventory

Inquire
Inventory

User-2

 Increase
200 pieces

200 500

300 300

300

200

500
 Update

Inventory

Something
Wrong!?

He wants to
decrease 100 pieces
 from the inventory

He wants to
increase 200 pieces

 to the inventory
Database

Figure 13 Inconsistency Arising from Simultaneous Updates.

the user’s Web page, affects user’s perception of performance and quality of service. In designing a
system that treats requirements from multiple users, some service levels may be set; for example,
average response time requirements for requests must not exceed 2 sec, or 95% of requests must
exhibit a response time of less than 3 sec. For the given service requirements, service providers must
design and maintain C/S systems that meet the desired service levels. Therefore, the performance of
the C/S system should be evaluated as exactly as possible and kinds and sizes of hardware and
software resources included in client systems, server systems, and networks should be determined.
This is the goal of capacity planning.

The following are resources to be designed by capacity planning to ensure that the C/S system
performance will meet the service levels:

• Types and numbers of processors and disks, the type of operating system, etc.
• Type of database server, access language, database management system, etc.
• Type of transaction-processing monitor

CLIENT/SERVER TECHNOLOGY 725

Identifying
Objectives & Environment

Selecting
Performance Criteria

Modeling Workload

Conducting Performance
Evaluation

Dimensioning Resources

Conducting
Cost/Performance analysis

Figure 14 The Steps in Capacity Planning and Design.

• Kind of LAN technology and bandwidth or transmission speed for clients and servers network-
ing

• Kind of WAN and bandwidth when WAN is used between clients and servers

In the design of C/S systems, processing devices, storage devices, and various types of software
are the building blocks for the whole system. Because capacity can be added to clients, servers, or
network elements, addition of capacity can be local or remote. The ideal approach to capacity plan-
ning is to evaluate performance prior to installation. However, gathering the needed information prior
to specifying the elements of the system can be a complicated matter.

5.2. Steps for Capacity Planning and Design

Capacity planning consists of the steps shown in Figure 14, which are essentially the same as those
for capacity planning of general information systems.

726 TECHNOLOGY

Network

DBMS

Communication
Stack

Stored
Procedure

API

Server
 Application

SQL connection

Client Server

Communication
Stack

Client
Application

API

Figure 15 Response Time Example for a Database Access.

Because new technology, altered business climate, increased workload, change in users, or demand
for new applications affects the system performance, these steps should be repeated at regular intervals
and whenever problems arise.

5.3. Performance Objectives and System Environment

Specific objectives should be quantified and recorded as service requirements. Performance objectives
are essential to enable all aspects of performance management. To manage performance, we must set
quantifiable, measurable performance objectives, then design with those objectives in mind, project
to see whether we can meet them, monitor to see whether we are meeting them, and adjust system
parameters to optimize performance. To set performance objectives, we must make a list of system
services and expected effects.

We must learn what kind of hardware (clients and servers), software (OS, middleware, applica-
tions), network elements, and network protocols are presented in the environment. Environment also
involves the identification of peak usage periods, management structures, and service-level agree-
ments. To gather these information about the environment, we use various information-gathering
techniques, including user group meetings, audits, questionnaires, help desk records, planning doc-
uments, and interviews.

5.4. Performance Criteria

1. Response time is the time required to process a single unit of work. In interactive applications,
the response time is the interval between when a request is made and when the computer
responds to that request. Figure 15 shows a response time example for a client / server database
access application. As the application executes, a sequence of interactions is exchanged among
the components of the system, each of which contributes in some way to the delay that the
user experiences between initiating the request for service and viewing the DBMS’s response
to the query. In this example, the response time consists of several time components, such as
(a) interaction with the client application, (b) conversion of the request into a data stream by
an API, (c) transfer of the data stream from the client to the server by communication stacks,
(d) translation of the request and invocation of a stored procedure by DBMS, (e) execution of
SQL (a relational data-manipulation language) calls by the stored procedure, (f) conversion of
the results into a data stream by DBMS, (g) transfer of the data stream from the server to the
client by the API, (h) passing of the data stream to the application, and (i) display of the first
result.

2. Throughput is a measure of the amount of work a component or a system performs as a whole
or of the rate at which a particular workload is being processed.

3. Resource utilization normally means the level of use of a particular system component. It is
defined by the ratio of what is used to what is available. Although unused capacity is a waste
of resources, a high utilization value may indicate that bottlenecks in processing will occur in
the near future.

CLIENT/SERVER TECHNOLOGY 727

4. Availability is defined as the percentage of scheduled system time in which the computer is
actually available to perform useful work. The stability of the system has an effect on per-
formance. Unstable systems often have specific effects on the performance in addition to the
other consequences of system failures.

5. Cost–Performance ratio: Once a system is designed and capacity is planned, a cost model can
be developed. From the performance evaluation and the cost model, we can make an analysis
regarding cost–performance trade-offs.

In addition to these criteria, resource queue length and resource waiting time are also used in de-
signing some resources.

Response time and availability are both measures of the effectiveness of the system. An effective
system is one that satisfies the expectations of users. Users are concerned with service effectiveness,
which is measured by response time for transaction processing, elapsed time for batch processing,
and query response time for query processing. On the other hand, a system manager is concerned
with optimizing the efficiency of the system for all users. Both throughput and resource utilization
are measures for ensuring the efficiency of system operations. If the quality of performance is mea-
sured in terms of throughput, it depends on the utilization levels of shared resources such as servers,
network elements, and application software.

5.5. Workload Modeling

Workload modeling is the most crucial step in capacity planning. Misleading performance evaluation
is possible if the workload is not properly modeled.

5.5.1. Workload Characterization

Workload refers to the resource demands and arrival intensity characteristics of the load brought to
the system by the different types of transactions and requests. A workload consists of several com-
ponents, such as C/S transactions, web access, and mail processing. Each workload component is
further decomposed into basic components such as personnel transactions, sales transactions, and
corporate training.

A real workload is one observed on a system being used for normal operations. It cannot be
repeated and therefore is generally not suitable for use as a test workload in the design phase. Instead,
a workload model whose characteristics are similar to those of real workload and can be applied
repeatedly in a controlled manner, is developed and used for performance evaluations.

The measured quantities, service requests, or resource demands that are used to characterize the
workload, are called workload parameters. Examples of workload parameters are transaction types,
instruction types, packet sizes, source destinations of a packet, and page-reference patterns. The
workload parameters can be divided into workload intensity and service demands. Workload intensity
is the load placed on the system, indicated by the number of units of work contending for system
resources. Examples include arrival rate or interarrival times of component (e.g., transaction or re-
quest), number of clients and think times, and number of processors or threads in execution simul-
taneously (e.g., file reference behavior, which describes the percentage of accesses made to each file
in the disk system) The service demand is the total amount of service time required by each basic
component at each resource. Examples include CPU time of transaction at the database server, total
transmission time of replies from the database server in LAN, and total I /O time at the Web server
for requests of images and video clips used in a Web-based learning system.

5.5.2. Workload Modeling Methodology

If there is a system or service similar to a newly planned system or service, workloads are modeled
based on historical data of request statistics measured by data-collecting tools such as monitors.

A monitor is used to observe the performance of systems. Monitors collect performance statistics,
analyze the data, and display results. Monitors are widely used for the following objectives:

1. To find the frequently used segments of the software and optimize their performance.
2. To measure the resource utilization and find the performance bottleneck.
3. To tune the system; the system parameters can be adjusted to improve the performance.
4. To characterize the workload; the results may be used for the capacity planning and for creating

test workloads.
5. To find model parameters, validate models, and develop inputs for models.

Monitors are classified as software monitors, hardware monitors, firmware monitors, and hybrid
monitors. Hybrid monitors combine software, hardware, or firmware.

728 TECHNOLOGY

Client LAN-1 LAN-2

Router-1

Router-2

Up-Link

Down-Link

CPU I/O

Web Server

Figure 16 An Example of a Queueing Network Model for a Web Server.

If there is no system or service similar to a newly planned system or service, workload can be
modeled by estimating the arrival process of requests and the distribution of service times or proc-
essing times for resources, which may be forecast from analysis of users’ usage patterns and service
requirements.

Common steps in a workload modeling process include:

1. Specification of a viewpoint from which the workload is analyzed (identification of the basic
components of the workload of a system)

2. Selecting the set of workload parameters that captures the most relevant characteristics of the
workload

3. Observing the system to obtain the raw performance data
4. Analyzing and reducing of the performance data
5. Constructing of a workload model.

The basic components that compose the workload must be identified. Transactions and requests are
the most common.

5.6. Performance Evaluation

Performance models are used to evaluate the performance of a C/S system as a function of the
system description and workload parameters. A performance model consists of system parameters,
resource parameters, and workload parameters. Once workload models and system configurations
have been obtained and a performance model has been built, the model must be examined to see
how it can be used to answer the questions of interest about the system it is supposed to represent.
This is the performance-evaluation process. Methods used in this process are explained below:

5.6.1. Analytical Models

Because generation of users’ requests and service times vary stochastically, analytical modeling is
normally done using queueing theory. Complex systems can be represented as networks of queues
in which requests receive services from one or more groups of servers and each group of servers has
its own queue. The various queues that represent a distributed C/S system are interconnected, giving
rise to a network of queues, called a queueing network. Thus, the performance of C/S systems can
be evaluated using queueing network models. Figure 16 shows an example of queueing network
model for the Web server, where the client and the server are connected through a client side LAN,
a WAN, and a server-side LAN.

5.6.2. Simulation

Simulation models are computer programs that mimic the behavior of a system as transactions flow
through the various simulated resources. Simulation involves actually building a software model of

CLIENT/SERVER TECHNOLOGY 729

each device, a model of the queue for that device, model processes that use the devices, and a model
of the clock in the real world. Simulation can be accomplished by using either a general programming
languages such as FORTRAN or C or a special-purpose language such as GPSS, SIMSCRIPT, or
SLAM. For network analysis, there are special-purpose simulation packages such as COMNET III
and BONeS are available.

5.6.3. Benchmarking

A benchmark is a controlled test to determine exactly how a specific application performs in a given
system environment. While monitoring supplies a profile of performance over time for an application
already deployed, either in a testing or a production environment, benchmarking produces a few
controlled measurements designed to compare the performance of two or more implementation
choices.

Some of the most popular benchmark programs and most widely published benchmark results
come from groups of computer hardware and software vendors acting in consort. RISC workstation
manufacturers sponsor the Systems Performance Evaluation Cooperative (SPEC), and DBMS vendors
operate the transaction Processing Council (TPC). The TPC developed four system-level benchmarks
that measure the entire system: TPC-A, B, C, and D. TPC-A and TPC-B are a standardization of the
debit / credit benchmark. TPC-C is a standard for moderately complex online transaction-processing
systems. TPC-D is used to evaluate price /performance of a given system executing decision support
applications. The SPEC developed the standardized benchmark SPECweb, which measures a system’s
ability to act as a web server for static pages.

5.6.4. Comparing Analysis and Simulation

Analytic performance modeling, using queueing theory, is very flexible and complements traditional
approaches to performance. It can be used early in the application development life cycle. The actual
system, or a version of it, does not have to be built as it would be for a benchmark or prototype.
This saves tremendously on the resources needed to build and to evaluate a design. On the other
hand, a simulation shows the real world in slow motion. Simulation modeling tools allow us to
observe the actual behavior of a complex system; if the system is unstable, we can see the transient
phenomena of queues building up and going down repeatedly.

Many C/S systems are highly complex, so that valid mathematical models of them are themselves
complex, precluding any possibility of an analytical solution. In this case, the model must be studied
by means of simulation, numerically exercising the model for the inputs in question to see how they
affect the output measures of performance.

6. MAINTENANCE AND ADMINISTRATION OF C/S SYSTEMS
Although system maintenance and administration is a complicated task even for a single centralized
system, the complexity increases significantly due to the scalability, heterogeneity, security, distri-
bution, naming, and so on in a C/S system. Efficient network and system-management tools are
critical for reliable operation of distributed computing environments for C/S systems. In recent years,
open and multivendor technologies have been adopted in construction of C/S systems. To adminis-
trate and maintain those systems totally, a standardized system management is needed for equipment
from different vendors.

6.1. Architecture of System Management

6.1.1. OSI Management Framework

The OSI has defined five functional areas of management activities that are involved in distributed
system management:

1. Configuration management: This involves collecting information on the system configuration
and managing changes to the system configuration. Inventory control, installation, and version
control of hardware and software are also included in this area.

2. Fault management: This involves identifying system faults as they occur, isolating the cause
of the faults, and correcting them by contingency fallback, disaster recovery and so on.

3. Security management: This involves identifying locations of sensitive data and securing the
system access points as appropriate to limit the potential for unauthorized intrusions. Encryp-
tion, password requirements, physical devices security, and security policy are also included
in this area.

4. Performance management: This involves gathering data on the usage of system resources,
analyzing these data, and acting on the performance prediction to maintain optimal system

730 TECHNOLOGY

OS & Protocol

Application

Physical

Management Target

Network Packet
Computer H/W
Network H/W
. . .

Server/Client OS
Logical Address
Protocol
. . .

AP Version
Resource
Performance
. . .

System

Figure 17 System Management Items.

performance. Real-time and historical statistical information about traffic volume, resource
usage, and congestion are also included in this area.

5. Accounting management: This involves gathering data on resource utilization, setting usage
shares, and generating charging and usage reports.

6.1.2. System Management Architecture

The items that are managed by system management can be classified into three layers: physical layer,
operating system and network protocol layer, and application layer, as shown in Figure 17.

1. The physical layer includes client devices, server devices, and network elements, including
LANs, WANs, computing platforms, and systems and applications software.

2. The operating system and network protocol layer includes the items for managing communi-
cation protocols to ensure interoperability between some units. In recent years, the adoption
of TCP/ IP standard protocol for realizing the Internet has been increasing. In a system based
on the TCP/ IP protocol stack, SNMP can be used for system management.

3. The application layer includes the items for managing system resources, such as CPU capacity
and memory.

The system management architecture consists of the following components. These components
may be either physical or logical, depending on the context in which they are used:

• A network management station (NMS) is a centralized workstation or computer that collects
data from agents over a network, analyzes the data, and displays information in graphical form.

• A managed object is a logical representation of an element of hardware or software that the
management system accesses for the purpose of monitor and control.

• An agent is a piece of software within or associated with a managed object that collects and
stores information, responds to network management station requests, and generates incidental
messages.

• A manager is software contained within a computer or workstation that controls the managed
objects. It interacts with agents according to rules specified within the management protocol.

• A management information base (MIB) is a database containing information of use to network
management, including information that reflects the configuration and behavior of nodes, and
parameters that can be used to control its operation.

6.2. Network Management Protocol

An essential function in achieving the goal of network management is acquiring information about
the network. A standardized set of network management protocols has been developed to help extract
the necessary information from all network elements. There are two typical standardized protocols

CLIENT/SERVER TECHNOLOGY 731

Manager

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

site-A site-B

Network
Management

Protocol

site-A

Network
Management

Protocol

Target Node

MIB

Agent

Target Node

MIB

Agent

Target Node

MIB

Agent

Trap

Get/Set Get/Set Get/Set

Trap Trap

Manager/Agent

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

site-B

Inform

Inform

Figure 18 SNMP Management System.

for network management: simple network management protocol (SNMP), developed under Internet
sponsorship, and common management information protocol (CMIP), from ISO (International
Organization for Standardization) and ITU-T (International Telecommunication Union-
Telecommunication Standardization Sector).

SNMP is designed to work with the TCP/ IP protocol stack and establishes standards for collecting
and for performing security, performance, fault, accounting, and configuration functions associated
with network management. The communication protocol for the SNMP is UDP, which is a very
simple, unacknowledged, connectionless protocol. CMIP is designed to support a richer set of
network-management functions and work with all systems conforming to OSI standards. Both SNMP
and CMIP use an object-oriented technique to describe information to be managed, where the software
describing actions is encapsulated with the rest of agent code within the managed object. CMIP
requires considerably more overhead to implement than SNMP.

Because SNMP is the most widely implemented protocol for network management today, an
SNMP management system is described below. An SNMP management system consists of the fol-
lowing components, as shown in Figure 18:

1. An SNMP agent is a software entity that resides on a managed system or a target node,
maintains the node information, and reports on its status to managers.

2. An SNMP manager is a software entity that performs management tasks by issuing manage-
ment requests to agents.

3. An MIB is a database containing the node information. It is maintained by an agent.

SNMP is an asynchronous request / response protocol that supports the following operations (Ver-
sion 2):

• Get: a request issued by a manager to read the value of a managed object
• GetNext: a request made by a manager to traverse an MIB tree

732 TECHNOLOGY

• GetBulk: a command issued by a manager, by which an agent can return as many successor
variables in the MIB tree as will fit in a message

• Set: a request issued by a manager to modify the value of a managed object
• Trap: a notification issued from an agent in the managed system to a manager that some unusual

event has occurred
• Inform: a command sent by a manager to other managers, by which managers can exchange

management information

In this case, the managed system is a node such as a workstation, personal computer, or router. HP’s
OpenView and Sun Microsystem’s SunNet Manager are well-known commercial SNMP managers.

System management functions are easily decomposed into many separate functions or objects that
can be distributed over the network. It is a natural idea to connect those objects using CORBA ORB
for interprocess communications. CORBA provides a modern and natural protocol for representing
managed objects, defining their services, and invoking their methods via an ORB. Tivoli Management
Environment (TME) is a CORBA-based system-management framework that is rapidly being adopted
across the distributed UNIX market.

6.3. Security Management

C/S systems introduce new security threats beyond those in traditional host-centric systems. In a C
/S system, it is more difficult to define the perimeter, the boundary between what you are protecting
and the outside world. From the viewpoint of distributed systems, the problems are compounded by
the need to protect information during communication and by the need for the individual components
to work together. The network between clients and servers is vulnerable to eavesdropping crackers,
who can sniff the network to obtain user IDs and passwords, read confidential data, or modify
information. In addition, getting all of the individual components (including human beings) of the
system to work as a single unit requires some degree of trust.

To manage security in a C/S system, it is necessary to understand what threats or attacks the
system is subject to. A threat is any circumstance or event with the potential to cause harm to a
system. A system’s security policy identifies the threats that are deemed to be important and dictates
the measures to be taken to protect the system.

6.3.1. Threats

Threats can be categorized into four different types:

1. Disclosure or information leakage: Information is disclosed or revealed to an unauthorized
person or process. This involves direct attacks such as eavesdropping or wiretapping or more
subtle attacks such as traffic analysis.

2. Integrity violation: The consistency of data is compromised through any unauthorized change
to information stored on a computer system or in transit between computer systems.

3. Denial of service: Legitimate access to information or computer resources is intentionally
blocked as a result of malicious action taken by another user.

4. Illegal use: A resource is used by an unauthorized person or process or in an unauthorized
way.

6.3.2. Security Services

In the computer communications context, the main security measures are known as security services.
There are some generic security services that would apply to a C/S system:

• Authentication: This involves determining that a request originates with a particular person or
process and that it is an authentic, nonmodified request.

• Access control: This is the ability to limit and control the access to information and network
resources by or for the target system.

• Confidentiality: This ensures that the information in a computer system and transmitted infor-
mation are accessible for reading only by authorized persons or processes

• Data integrity: This ensures that only authorized persons or processes are able to modify data
in a computer system and transmitted information.

• Nonrepudiation: This ensures that neither the sender nor the receiver of a message is able to
deny that the data exchange occurred.

CLIENT/SERVER TECHNOLOGY 733

6.3.3. Security Technologies

There are some security technologies fundamental to the implementation of those security services.

6.3.3.1. Cryptography Cryptographic systems or cryptosystems can be classified into two dis-
tinct types: symmetric (or secret-key) and public-key (or asymmetric) cryptosystems. In a symmetric
cryptosystem, a single key and the same algorithm are used for both encryption and decryption. The
most widely used symmetric cryptosystem is the Data Encryption Standard (DES), which is the U.S.
standard for commercial use. In a public-key cryptosystem, instead of one key in a symmetric cryp-
tosystem, two keys are employed to control the encryption and the decryption respectively. One of
these keys can be made public and the other is kept secret. The best-known the public-key crypto-
system is RSA, developed by Rivest, Shamir, and Adleman at MIT (1978).

The major problem in using cryptography is that it is necessary to disseminate the encryption /
decryption keys to all parties that need them and ensure that the key distribution mechanism is not
easily compromised. In a public-key cryptosystem, the public key does not need to be protected,
alleviating the problem of key distribution. However, a public key also needs to be distributed with
authentication for protecting it from frauds. Public-key cryptosystems have some advantages in key
distribution, but implementation results in very slow processing rates. For example, encryption by
RSA is about 1000 times slower than by DES in hardware and about 100 times slower than DES in
software. For these reasons, public-key cryptosystems are usually limited to use in key distribution
and the digital signature, and symmetric cryptosystems are used to protect the actual data or plaintexts.

Data integrity and data origin authentication for a message can be provided by hash or message
digest functions. Cryptographic hash functions involve, instead of using keys, mapping a potentially
large message into a small fixed-length number. Hash functions are used in sealing or digital signature
processes, so they must be truly one-way, that is, it must be computationally infeasible to construct
an input message hashed to a given digest or to construct two messages hashed to the same digest.
The most widely used hash function is message digest version 5 (MD5).

6.3.3.2. Authentication Protocol In the context of a C/S system, authentication is the most
important of the security services because other security services depend on it in some way. When
a client wishes to establish a secure channel between the client and a server, the client and the server
will wish to identify each other by authentication. There are three common protocols for imple-
menting authentication: three-way handshake authentication, trusted-third-party authentication, and
public-key authentication. One of the trusted third-party protocols is Kerberos, a TCP/ IP-based net-
work authentication protocol developed as a part of the project Athena at MIT. Kerberos permits a
client and a server to authenticate each other without any message going over the network in the
clear. It also arranges for the secure exchange of session encryption keys between the client and the
server. The trusted third-party is sometimes called an authentication server.

A simplified version of the third-party authentication in Kerberos is shown in Figure 19. Kerberos
protocol assumes that the client and the server each share a secret key, respectively Kc and Ks, with
the authentication server. In Figure 19, [M]K denotes the encryption of message M with key K.

1. The client first sends a message to the authentication server that identifies both itself and the
server.

2. The authentication server then generates a timestamp T, a lifetime L, and a new session key
K and replies to the client with a two-part message. The first part, [T, L, K, IDs]Kc , encrypts
the three values T, L, and K, along with the server’s identifier IDs, using the key Kc. The
second part, [T, L, K, IDc]Ks, encrypts the three values T, L, and K, along with the client’s
identifier IDc using the key Ks.

3. The client receives this message and decrypts only the first part. The client then transfers the
second part to the server along with the encryption [IDc, T]K of IDc and T using the session
key K, which is decrypted from the first part.

4. On receipt of this message, the server decrypts the first part, [T, L, K, IDc]Ks, originally
encrypted by the authentication server using Ks, and in so doing recovers T, K, and IDc. Then
the server confirms that IDc and T are consistent in the two halves of the message. If they are
consistent, the server replies with a message [T � 1]K that encrypts T � 1 using the session
key K.

5. Now the client and the server can communicate with each other using the shared session
key K.

6.3.3.3. Message Integrity Protocols There are two typical ways to ensure the integrity of a
message. One uses a public-key cryptosystem such as RSA to produce a digital signature, and the
other uses both a message digest such as MD5 and a public-key cryptosystem to produce a digital

734 TECHNOLOGY

Server

Authentication
Server

User Client

(1) IDc,IDs

(2) [T,L,K,IDs]Kc
 + [T,L,K,IDc]Ks

(3) [T,L,K,IDc]Ks
 + [IDc,T]K

(4) [T+1]K

Figure 19 Third-Party Authentication in Kerberos.

signature. In the latter type, a hash function is used to generate a message digest from the message
content requiring protection. The sender encrypts the message digest using the public-key cryptosys-
tem in the authentication mode; the encryption key is the private key of the sender. The encrypted
message digest is sent an appendix along with the plaintext message. The receiver decrypts the
appendix using the corresponding decryption key (the public key of the sender) and compares it with
the message digest that is computed from the received message by the same hash function. If the
two are the same, then the receiver is assured that the sender knew the encryption key and that the
message contents were not changed en route.

6.3.3.4. Access Control Access control contributes to achieving the security goals of confiden-
tiality, integrity, and legitimate use. The general model for access control assumes a set of active
entities, called subjects, that attempt to access members of a set of resources, called objects. The
access-control model is based on the access control matrix, in which rows correspond to subjects
(users) and columns correspond to objects (targets). Each matrix entry states the access actions (e.g.,
read, write, and execute) that the subject may perform on the object. The access control matrix is
implemented by either:

• Capability list: a row-wise implementation, effectively a ticket that authorizes the holder (sub-
ject) to access specified objects with specified actions

• Access control list (ACL): a column-wise implementation, also an attribute of an object stating
which subjects can invoke which actions on it

6.3.3.5. Web Security Protocols: SSL and S-HTTP As the Web became popular and commercial
enterprises began to use the Internet, it became obvious that some security services such as integrity
and authentication are necessary for transactions on the Web. There are two widely used protocols
to solve this problem: secure socket layer (SSL) and secure HTTP (S-HTTP). SSL is a general-
purpose protocol that sits between the application layer and the transport layer. The security services
offered by the SSL are authentication of the server and the client and message confidentiality and
integrity. The biggest advantage of the SSL is that it operates independently of application-layer
protocols. HTTP can also operate on top of SSL, and it is then often denoted HTTPS. Transport
Layer Security (TLS) is an Internet standard version of SSL and is now in the midst of the IETF
standardization process. Secure HTTP is an application-layer protocol entirely compatible with HTTP
and contains security extensions that provide client authentication, message confidentiality and in-
tegrity, and nonrepudiation of origin.

6.3.3.6. Firewall Because the Internet is so open, security is a critical factor in the establishment
and acceptance of commercial applications on the Web. For example, customers using an Internet

CLIENT/SERVER TECHNOLOGY 735

Server–A
(WWW+Application)

Database

Database

Server–B
(WWW+Application)

Bank–A

Bank–B

The
Internet

User WWW Browser

1. Access to the Bank-A
2. Enter ID and Password
4. Select "Fund Transfer"

3. Check the ID and Password
5. Check the balance

balance
Password

ID

6. Ask Server–B
 for processing
 of depositThe Internet

or
Private Network

balance

7. Confirmation

Figure 20 Internet Banking System.

banking service want to be assured that their communications with the bank are confidential and not
tampered with, and both they and the bank must be able to verify each other’s identity and to keep
authentic records of their transactions. Especially, corporate networks connected to the Internet are
liable to receive attacks from crackers of the external network. The prime technique used commer-
cially to protect the corporate network from external attacks is the use of firewalls.

A firewall is a collection of filters and gateways that shields the internal trusted network within
a locally managed security perimeter from external, untrustworthy networks (i.e., the Internet). A
firewall is placed at the edge of an internal network and permits a restricted set of packets or types
of communications through. Typically, there are two types of firewalls: packet filters and proxy
gateways (also called application proxies).

• A packet filter functions by examining the header of each packet as it arrives for forwarding to
another network. It then applies a series of rules against the header information to determine
whether the packet should be blocked or forwarded in its intended direction.

• A proxy gateway is a process that is placed between a client process and a server process. All
incoming packet from the client is funneled to the appropriate proxy gateway for mail, FTP,
HTTP, and so on. The proxy then passes the incoming packets to the internal network if the
access right of the client is verified.

7. A PRACTICAL EXAMPLE: INTERNET BANKING SYSTEM
Here we will explain an Internet banking system as a practical example of a C/S system. An Internet
banking service is an online financial service that is offered on the Internet. The system offers various
financial services, such as inquiry for bank balance, inquiry for payment details, and fund transfer
to customers via the Internet.

We will explain the flow of transactions in C/S processing through an example of fund transfer
service between a customer’s account in bank A and another account in bank B. Figure 20 shows
the flow of processing for the example.

Step 1: A customer connects to the Internet from a desktop personal computer in his home or
office and accesses the site of bank A, which offers the Internet banking service, by using a
Web browser.

Step 2: At the top menu of the Web page, the user is asked to enter his or her user ID and
password already registered. According to the indication on the Web page, the user inputs
user ID and password into the input field on the Web page.

736 TECHNOLOGY

Step 3: The entered user ID and password are sent back to the server via the Internet by the
secured communication protocol HTTPS. The server receives that information and checks
information on the database that accumulates information about the client and other various
data. If the user ID and password correspond to those already registered, the customer is
permitted to use the service.

Step 4: The customer selects ‘‘fund transfer’’ from the menu displayed on the Web page.
Step 5: The server receives the above request, searches the database, and retrieves the customer’s

account information.
Step 6: After confirming that there is enough money for payment in the customer’s account, the

server asks another server in bank B for processing of deposit. In this case, the server of bank
A becomes ‘‘client’’ and the server of bank B becomes ‘‘server.’’

Step 7: After the server of bank A confirms that the processing was completed normally in the
server of bank B, it updates (withdraws) the account information of the customer in the
database. The acknowledgement that the request for fund transfer is successfully completed
is also displayed on the customer’s Web page.

ADDITIONAL READING

Crowcroft, J., Open Distributed Systems, UCL Press, London, 1996.
Davis, T., Ed., Securing Client /Server Computer Networks, McGraw-Hill, New York, 1996.
Edwards, J., 3-Tier Client /Server at Work, Rev. Ed., John Wiley & Sons, New York, 1999.
Menascé, D. A., Almeida, V. A. F., and Dowdy, L. W., Capacity Planning and Performance Modeling:

From Mainframes to Client–Server Systems, Prentice Hall, Englewood Cliffs, NJ, 1994.
Orfali, R., Harkey, D., and Edwards, J., Client /Server Survival Guide, 3d Ed., John Wiley & Sons,

New York, 1999.
Renaud, P. E., Introduction to Client /Server Systems, John Wiley & Sons, New York, 1993.
Vaughn, L. T., Client /Server System Design and Implementation, McGraw-Hill, New York, 1994.

