
Chapter 19

Numerical Methods

INTRODUCTION

Early in one’s career, the engineer/scientist learns how to use equations and mathe-
matical methods to obtain exact answers to a large range of relatively simple
problems. Unfortunately, these techniques are often not adequate for solving real-
world problems, although the reader should note that one rarely needs exact answers
in technical practice. Most real-world applications are usually inexact because they
have been generated from data or parameters that are measured, and hence represent
only approximations. What one is likely to require in a realistic situation is not an
exact answer but rather one having reasonable accuracy from an engineering point
of view.

The solution to an engineering or scientific problem usually requires an answer to
an equation or equations, and the answer(s) may be approximate or exact. Obviously
an exact answer is preferred, but because of the complexity of some equations, exact
solutions may not be attainable. Furthermore, to engineers, an answer that is precise
may not be necessary and wastes time. For this condition, one may resort to another
method that has come to be defined as a numerical method. Unlike the exact solution,
which is continuous and in closed form, numerical methods provide an inexact (but
often reasonably accurate) solution. The numerical method leads to discrete answers
that are almost always acceptable.

The numerical methods referred to above provide a step-by-step procedure that
ultimately leads to an answer and a solution to a particular problem. The method
usually requires a large number of calculations and is therefore ideally suited for digital
computation.

High speed computing equipment has had a tremendous impact on engineering
design, scientific computation, and data processing. The ability of computers to
handle large quantities of data and to perform mathematical operations described
above at tremendous speeds permits the examination of many more cases and more
engineering variables than could possibly be handled on the slide rule—the trademark
of engineers of yesteryear. Scientific calculations previously estimated in lifetimes
of computation time are currently generated in seconds and, in many instances,
microseconds.(1)
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This chapter is concerned with numerical methods. This subject was taught in the
past as a means of providing engineers with ways to solve complicated mathematical
expressions that they could not solve otherwise.

A brief overview of numerical methods is given to provide the practicing engineer
with some insight into what many of the currently used software packages (MathCad,
Mathematica, MatLab, etc.) are actually doing. The authors have not attempted to
cover all the topics of numerical methods. Topics that traditionally fall in the
domain of this subject include:

Regression analyses (Illustrative Example 19.1)

Differentiation (Illustrative Example 19.2)

Integration (Illustrative Example 19.3)

Simultaneous linear algebraic equations (Illustrative Example 19.4)

Nonlinear algebraic equations (Illustrative Example 19.5)

Ordinary differential equation(s) (Illustrative Example 19.5)

Partial differential equation(s) (Illustrative Example 19.6)

Optimization (Illustrative Example 19.7)

Since detailed treatment of each of the above topics is beyond the scope of
this mass transfer text, the reader is referred to the literature(2–4) for a more extensive
analysis and additional information. The remainder of this chapter consists of an
illustrative example section on applications that examine all the topics listed above.
Also note that the illustrative examples primarily address mass transfer topics.

APPLICATIONS

ILLUSTRATIVE EXAMPLE 19.1

Two component diffusivity data (D) for air–water vapor has been extracted from the literature,
as presented in Table 19.1. The literature suggests that diffusivity varies with the temperature to
the 1.5 power, i.e.,

D/ T1:5

Regress(5) the above data to a model of the form
D ¼ Aþ B(T)1:5

and indicate how well the model fits the data.

Table 19.1 Diffusivity–Temperature Data

T, 8C D, ft2/s

0 0.22
25.9 0.258
42.0 0.288
59.0 0.305
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SOLUTION: A regression analysis (employing EXCEL) shows that

A ¼ 0:2208

B ¼ 0:0015

so that

D ¼ 0:2208þ 0:0015x; x ¼ T1:5

with D in ft2/s and T in 8C. The correlation coefficient is 0.99554, indicating an excellent fit. B

ILLUSTRATIVE EXAMPLE 19.2

Refer to Table 19.2. Generate expressions for the benzene concentration gradient, dC/dt, at
t ¼ 4.0 s. Use several differentiation methods.(6)

SOLUTION:

Method 1
The first method consists of choosing any three data points and calculating the slope of the two
extreme points. This slope is approximately equal to the slope at the point lying in the middle.
The value obtained will be the equivalent of the derivative at that point 4.

Using data points from 3.0 to 5.0,

Slope ¼
C5 � C3

t5 � t3

¼
1:63� 2:70
5:0� 3:0

¼ �0:535

Method 2
The second method involves taking the average of two slopes. Using the same points chosen
above, two slopes are calculated, one for points 3 and 4 and the other for points 4 and 5.
Adding the two results and dividing them by two will provide an approximation of the derivative

Table 19.2 Illustrative Example 19.2 Data

Time (s)
Concentration of
benzene (mg/L)

0.0 7.46
1.0 5.41
2.0 3.80
3.0 2.70
4.0 2.01
5.0 1.63
6.0 1.34
7.0 1.17
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at point 4. For the points used in this method, the results are:

Slope1 ¼
C4 � C3

t4 � t3

¼
2:01� 2:70

4:0� 3:0
¼ �0:69

Slope2 ¼
C5 � C4

t5 � t4

¼
1:63� 2:01

5:0� 4:0
¼ �0:38

Slopeavg ¼
�0:69þ (�0:38)

2
¼ �0:535

Method 3
Method three consists of using any three data points (in this case the same points chosen before)
and fitting a curve to it. The equation for the curve is obtained by employing a second-order
equation and solving it with the three data points. The derivative of the equation is then
calculated and evaluated at any point (here, point 4 is used):

C ¼ 0:155t2 � 1:775t þ 6:63

dC

dt
¼ 0:31t � 1:775

Evaluated at t ¼ 4.0 s

dC

dt
¼ 0:31(4)� 1:775 ¼ �0:535

Method 4
The following method uses the method of least squares. In this case, all data points are used to
generate a second-order polynomial equation. This equation is then differentiated and evaluated
at the point where the value of the derivative is required. For example, Microsoft Excel can be
employed to generate the regression equation. Once all the coefficients are known, the equation
has only to be analytically differentiated:

C ¼ 0:1626t2 � 1:9905t þ 7:3108

dC

dt
¼ 0:3252t � 1:9905

Evaluated at t ¼ 4.0 s:

dC

dt
¼ 0:3252(4:0)� 1:9905 ¼ �0:6897

Method 5(7)

The last two methods are very similar to each other. They are based on five data points used to
generate coefficients. For this development, represent C and t by f and x (as it appeared in the
literature(7)), respectively.
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The fifth method uses five data points to generate a five coefficient (fourth order) model
using an equation of the form f ¼ Aþ Bxþ Cx2 þ Dx3 þ Ex4 equation. This method is
known as interpolating. A set of equations is used to evaluate numerical derivatives from the
interpolating polynomial. The equations are listed below:

f 0(x0) ¼
(�25f0 þ 48f1 � 36f2 þ 16f3 � 3f4)

12h
(19:1)

f 0(x1) ¼
(�3f0 � 10f1 þ 18f2 � 6f3 þ f4)

12h
(19:2)

f 0(xi) ¼
( fi�2 � 8fi�1 þ 8fiþ1 � fiþ2)

12h
(19:3)

f 0(xn�1) ¼
(�fn�4 þ 6fn�3 � 18fn�2 þ 10fn�1 þ 3fn)

12h
(19:4)

f 0(xn) ¼
(3fn�4 � 16fn�3 þ 36fn�2 � 48fn�1 þ 25fn)

12h
(19:5)

where h ¼ xiþ1 2 xi

fi ¼ function evaluated at i

For example, the equation obtained for “the five data set” from 1.0 to 5.0 s, i.e., t ¼ 1.0, 2.0,
3.0, 4.0 and 5.0 s, using the equations given above is

f (x) ¼ �0:0012x4 þ 0:002x3 þ 0:2616x2 � 2:34xþ 7:467

All these equations are evaluated for each value of x and f (x). The value obtained for point 4.0
is 20.5448.

Method 6(7)

The last method also uses five data points but only three coefficients are generated for a second-
order polynomial equation of the form f ¼ Aþ Bxþ Cx2. Another set of equations are used to
evaluate the derivative at each point using this method. The equations are provided below:

f 0(x0) ¼
(�54f0 þ 13f1 þ 40f2 þ 27f3 � 26f4)

70h
(19:6)

f 0(x1) ¼
(�34f0 þ 3f1 þ 20f2 þ 17f3 � 6f4)

70h
(19:7)

f 0(xi) ¼
(�2fi�2 � fi�1 þ fiþ1 þ 2fiþ2)

10h
(19:8)

f 0(xn�1) ¼
(6fn�4 � 17fn�3 � 20fn�2 � 3fn�1 þ 34fn)

70h
(19:9)

f 0(xn) ¼
(26fn�4 � 27fn�3 � 40fn�2 � 13fn�1 þ 54fn)

70h
(19:10)

At point 4.0, the solution for the derivative using this method is 20.6897.
Comparing all the values obtained for the derivative at t ¼ 4.0 s, it can be observed that the

answers are very close to each other. It is important to remember that these are approximate
values and that they vary depending on the approach and the number of data points used to gen-
erate the equations. B
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ILLUSTRATIVE EXAMPLE 19.3

The volume of a reactor undergoing conversion X for the reactant (the principal component from
the bottom of a distillation column) is described by the following integral:

V ¼ 6:0� 10�3
ð0:45

0

(1� 0:125X)3 dX

10�4(1� X)(1� 0:5X)2 ; liters

Calculate the volume using the trapezoidal rule method of integration. Discuss the effect of vary-
ing the increment in DX (e.g., if DX ¼ 0.45, 0.09, 0.05, 0.01, 0.005, 0.001).(8)

SOLUTION: An algorithm for the trapezoid rule is given in Figure 19.1. For an increment
size of DX ¼ 0.45, the step size for the reactor volume is:

h ¼ X1 � X0 ¼ 0:45� 0:00 ¼ 0:45

Evaluate the function at X0 and X1:

V0 ¼ f (X0) ¼ 6:0� 10�3 (1� 0:125X)3 dX

10�4(1� X)(1� 0:5X)2

� �
X¼0:0

¼ 6:0� 10�3 (1)3

10�4(1)(1)2

¼ 60

V1 ¼ f (X1) ¼ 6:0� 10�3 (1� 0:125X)3 dX

10�4(1� X)(1� 0:5X)2

� �
X¼0:45

¼ 6:0� 10�3 [1� 0:125(0:45)]3

10�4(1� 0:45)[1� 0:5(0:45)]2

¼ 152:67

The two-point trapezoid rule is given by

ðX1

X0

f (X) dX ¼
h

2
[ f (X0)þ f (X1)]

Therefore,

V ¼
h

2
[ f (X0)þ f (X1)]

¼
h

2
[V0 þ V1]

¼
0:45

2
[60þ 152:67]

¼ 47:85 L

The trapezoid rule is often the quickest but least accurate way to perform a numerical integration
by hand. However, if the step size is decreased, the answer should converge to the analytical
solution. Note that for smaller step sizes, the results of each numerical integration must be
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Figure 19.1 Algorithm for trapezoid rule.
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added together to obtain the final answer. The results (to seven significant figures) for various
step sizes are listed in Table 19.3. B

ILLUSTRATIVE EXAMPLE 19.4

The concentration, C, variation with length, z, in a 3 ft continuous contact mass transfer device is
described by the equation:

dC

C
¼ �

k

v
dz

where k is 50 h21, v is 50 ft/h, C is in lbmol/ft3, z is in feet and C ¼ 1.0 lbmol/ft3 at z ¼ 0.
It has been proposed to represent the above with 10 staged units 0.3 ft in length. Develop

solutions to this problem using a finite difference method of solving an ordinary differential
equation and a lumped parameter model employing a method of solution of simultaneous
linear algebraic equations.

SOLUTION:

Finite Difference Method
A finite difference procedure is now applied to the equation. The first derivative of C with
respect to z is equivalent to the finite difference in the z-direction, i.e.,

dC

dz
¼

DC

Dz
¼

Cnþ1 � Cn

Dz

Inserting this into the describing equation and noting that the average concentration over the
increment should be used leads to

Cnþ1 � Cn

Dz
¼ �

k

vz

� �
Cav

Knowing the initial condition, each successive concentration may be found by rearranging the
above equation:

Cnþ1 ¼ �
kDz

vz

� �
Cav þ Cn

The application of this equation requires a trial-and-error procedure where the average
concentration over the increment is approximated and then checked when Cnþ1 is

Table 19.3 Trapezoid Rule for Various Step Sizes

Step size (DX ) Volume (L)

0.45 47.85094
0.09 43.13532
0.05 42.98842
0.01 42.92521
0.005 42.92324
0.001 42.92260
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calculated. One should note that the approximation part of this problem can be removed by
replacing Cav by

Cnþ1 þ Cn

2

and solving for Cnþ1 directly in terms of Cn.

Lumped-parameter method
In the lumped-parameter method, the device is divided into equal stages and each segment is
considered to be a perfectly mixed vessel. This is shown schematically in Figure 19.2. The
equation is now written as

Cout � Cin

Dz
¼ �

k

vz
Cout

Rearranging the above equation gives

Cout ¼
Cin

1þ
kDz

vz

If the initial concentration is C0 and the term

1þ
kDz

vz
¼ R

then the following set of equations are generated for each stage:

C1 � RC0 ¼ 0; first stage

C2 � RC1 ¼ 0; second stage

..

.

Cfinal � RCfinal�1 ¼ 0; final stage

The above represents a series of (simultaneous) linear algebraic equations. These equations
can be solved by a direct step-by-step hand calculation. Alternatively, a Gauss–Jordan or
Gauss–Seidel method can also be used.

The results of the analyses by the two methods are combined and presented in tabular form
for comparison along with the analytical solution (see Table 19.4). B

Figure 19.2 Lumped-parameter method.
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ILLUSTRATIVE EXAMPLE 19.5

The equation describing the concentration of a pollutant in a flowing river is given by

dC

dt
¼ �0:580C þ 6� 10�5

with C0 ¼ 5.0 � 1025 gmol/cm3 at t ¼ 0 min. Estimate C in gmol/cm3 at 1 and 5 minutes. Use
the Runge–Kutta method of analysis.(8)

SOLUTION: The Runge–Kutta (R–K) method is one of the most widely used techniques
for solving first-order differential equations. For the equation

dy

dx
¼ f (x, y) (19:11)

the solution takes the form

ynþ1 ¼ yn þ
h

6
(D1 þ 2D2 þ 2D3 þ D4) (19:12)

where D1 ¼ hf (x, y)

D2 ¼ hf xn þ
h

2
, yn þ

D1

2

� �

D3 ¼ hf xn þ
h

2
, yn þ

D2

2

� �

D4 ¼ hf (xn þ h, yn þ D3)

The term h represents the increment in x. The term yn is the solution to the equation at xn,
and ynþ1 is the solution to the equation at xnþ1 where xnþ1 ¼ xn þ h. Thus, the R–K method
provides a straightforward means for developing expressions for Dy in terms of the function
f(x, y) at various “locations” along the interval in question.

Table 19.4 Concentration Profile via Three Methods

z, ft Analytical
Finite-

difference
Lumped-
parameter

0.0 1.0000 1.0000 1.0000
0.3 0.8354 0.8358 0.8474
0.6 0.6980 0.7001 0.7181
0.9 0.5830 0.5863 0.6086
1.2 0.4870 0.4910 0.5157
1.5 0.4070 0.4112 0.4371
1.8 0.3400 0.3444 0.3704
2.1 0.2840 0.2884 0.3139
2.4 0.2370 0.2415 0.2660
2.7 0.1980 0.2022 0.2254
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For a simple equation of the form

dC

dt
¼ aþ bC (19:13)

where at t ¼ 0, C ¼ C0, the R–K algorithm given above becomes (for t ¼ h)

C1 ¼ C0 þ
h

6
(D1 þ 2D2 þ 2D3 þ D4) (19:14)

where D1 ¼ hf (x, y) ¼ h(aþ bC0)

D2 ¼ hf xn þ
h

2
, yn þ

D1

2

� �
¼ h[aþ b(C0 þ D1=2)]

D3 ¼ hf xn þ
h

2
, yn þ

D2

2

� �
¼ h[aþ b(C0 þ D2=2)]

D4 ¼ hf (xn þ h, yn þ D3) ¼ h[aþ b(C0 þ D3)]

The same procedure is repeated to obtain values for C2 at t ¼ 2h, C3 at t ¼ 3h, and so on.
Based on the data provided, evaluate the R–K coefficients for t ¼ h:

D1 ¼ 1:0(6:0� 2:9) ¼ 3:1

D2 ¼ 1:0[6:0� 0:58(5:0þ 3:1=2)] ¼ 2:2

D3 ¼ 1:0[6:0� 0:58(5:0þ 2:2=2)] ¼ 2:46

D4 ¼ 1:0[6:0� 0:58(5:0þ 2:46)] ¼ 1:67

Calculate C1:

C1 ¼ C0 þ
h

6
(D1 þ 2D2 þ 2D3 þ D4)

¼ 5:0þ
1
6

[3:1þ 2(2:2)þ 2(2:46)þ 1:67]

¼ 7:35 gmol=cm3

To calculate C2:

D1 ¼ 1:0[6:0� 0:58(7:35)] ¼ 1:74

D2 ¼ 1:24

D3 ¼ 1:38

D4 ¼ 0:94

and

C1 ¼ C0 þ
h

6
(D1 þ 2D2 þ 2D3 þ D4)

¼ 7:34þ
1
6

[1:74þ 2(1:24)þ 2(1:38)þ 0:94]

¼ 8:66 gmol=cm3
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Also calculate C3, C4, and C5:

C3 ¼ 9:40 at t ¼ 3 min
C4 ¼ 9:81 at t ¼ 4 min
C5 ¼ 10:04 at t ¼ 5 min

The reader is left the exercise of comparing the numerical solution above (including that at
t ¼1) with that provided by the analytical solution.

The R–K method can also be used if the function also contains the independent variable.
Consider the following equation:

dC

dt
¼ f1(C, t) (19:15)

For this situation,

C1 ¼ C0 þ
1
6

(D1 þ 2D2 þ 2D3 þ D4) (19:16)

with

D1 ¼ hf (C, t)

D2 ¼ hf C0 þ
D1

2
, t0 þ

h

2

� �

D3 ¼ hf C0 þ
D2

2
, t0 þ

h

2

� �

D4 ¼ hf (C0 þ D3, t0 þ h)

If, for example,

dC

dt
¼ 10C � e�ct

then

D2 ¼ h 10 C0 þ
D1

2

� �
� e�[C0 þ (D1=2)][t0 þ (h=2)]

� �

Situations may arise when there is a need to simultaneously solve more than one ordinary
differential equation (ODE). In a more general case, one could have n dependent variables
y1, y2, . . . , yn, with each related to a single independent variable x by the following system of
n simultaneous first-order ODEs:

dy1

dx
¼ f1(x, y1, y2, . . . , yn),

dy2

dx
¼ f2(x, y1, y2, . . . , yn),

..

.

dyn

dx
¼ fn(x, y1, y2, . . . , yn),

(19:17)

Note that the equations in Equation (19.17) are interrelated, i.e., they are dependent on
each other. This is illustrated in the following development.
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Consider the following two equations:

dC

dt
¼ �Ae�ET=RC ¼ f (C, t)

dT

dt
¼ �kC

DH

rCP
¼ g(C, t)

(19:18)

or, in a more general sense,

dy

dx
¼ f (x, y, z); (e:g:, xyz)

dz

dt
¼ g(x, y, z); (e:g:, x2y2e�z)

(19:19)

The R–K algorithm for Equation (19.19) is

y1 ¼ y0 þ
1
6

(RY1 þ 2RY2 þ 2RY3 þ RY4)

z1 ¼ z0 þ
1
6

(RZ1 þ 2RZ2 þ 2RZ3 þ RZ4)

(19:20)

where y1 2 y0 ¼ Dy, z1 2 z0 ¼ Dz, h ¼ Dx and

RY1 ¼ h� f (x0, y0, z0)

RZ1 ¼ h� g(x0, y0, z0)

RY2 ¼ h� f (x0 þ h=2, y0 þ RY1=2, z0 þ RZ1=2)

RZ2 ¼ h� g(x0 þ h=2, y0 þ RY1=2, z0 þ RZ1=2)

RY3 ¼ h� f (x0 þ h=2, y0 þ RY2=2, z0 þ RZ2=2)

RZ3 ¼ h� g(x0 þ h=2, y0 þ RY2=2, z0 þ RZ2=2)

RY4 ¼ h� f (x0 þ h, y0 þ RY3, z0 þ RZ3)

RZ4 ¼ h� g(x0 þ h, y0 þ RY3, z0 þ RZ3)

Although the R–K approach (and other companion methods) have traditionally been
employed to solve first-order ODEs, it can also treat higher ODEs. The procedure requires
reducing an nth order ODE to a first-order ODE. For example, if the equation is of the form(9)

d2y

dx2
¼ f ( y, x) (19:21)

set

z ¼
dy

dx
(19:22)

so that

dz

dx
¼

d2y

dx2
(19:23)
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The second-order equation in Equation (19.21) has now been reduced to the two first-order
ODEs in Equation (19.24):

d2y

dx2
¼

dz

dx
¼ f ( y, x)

dy

dx
¼ z

(19:24)

The procedure set forth in Equations (19.19) and (19.20) can be applied to generate a solution to
Equation (19.21). Note, however, that the first derivative (i.e., dy/dx or its estimate) is required at
the start of the integration. Extending the procedure to higher-order equations is left as an
exercise for the reader. B

ILLUSTRATIVE EXAMPLE 19.6

The vapor pressure, p0, for a new synthetic chemical at a given temperature has been determined
to take the form:

p0 ¼ T3 � 2T2 þ 2T

If p0 ¼ 1, one may then write

f (T) ¼ T3 � 2T2 þ 2T � 1 ¼ 0

where the term T is in K. The actual temperature, t, is given by

t ¼ 103T

Solve the above equation for the actual temperature in K for p0 ¼ 1.0. Earlier studies indicate
that t is in the 1000–1200 K range.

SOLUTION: The subject of the solution to a nonlinear algebraic equation is considered in this
example. Although several algorithms are available, the presentation will key on the Newton–
Raphson method of evaluating the root(s) of a nonlinear algebraic equation.

The solution to the equation

f (x) ¼ 0 (19:25)

is obtained by guessing a value for x (xold) that will satisfy the above equation. This value is
continuously updated (xnew) using the recursion equation

xnew ¼ xold �
f (xold)

f 0(xnew)
(19:26)

until either little or no change in (xnew 2 xold)/xold is obtained. One can express this operation
graphically (see Fig. 19.3).
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Noting that

f 0(xold) ¼
df (x)

dx
�

Df (x)
Dx
¼

f (xold)� 0
xold � xnew

(19:27)

one may rearrange Equation (19.27) to yield Equation (19.26). The xnew then becomes the xold

in the next calculation.
This method is also referred to as Newton’s method of tangents and is a widely used method

for improving a first approximation to a root to the aforementioned equation of the form f (x) ¼ 0.
The above development can be rewritten in subscripted form to accommodate a computer
calculation. Thus,

f 0(xn) ¼
f (xn)

xn � xnþ1
(19:28)

from which

xnþ1 ¼ xn �
f (xn)
f 0(xn)

(19:29)

where xnþ1 is again the improved estimate of xn and the solution to the equation f (x) ¼ 0. For this
procedure, the value of the function and the value of the derivative of the function are deter-
mined at x ¼ xn, and the new approximation to the root, xnþ1, is obtained. The same procedure
is repeated, with the new approximation, to obtain a still better approximation of the root. This
continues until successive values for the approximate root differ by less than a prescribed small
value, 1, which controls the allowable error (or tolerance) in the root. Relative to the previous

′

Figure 19.3 Newton–Raphson method.
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estimate,

1 ¼
xnþ1 � xn

xn
(19:30)

Despite its popularity, the method suffers for two reasons. First, an analytical expression
for the derivative [i.e., f 0(xn)] is required. In addition to the problem of having to compute an
analytical derivative value at each iteration, one would expect Newton’s method to converge
fairly rapidly to a root in the majority of cases. However, as is common with most numerical
methods, it may fail occasionally. A possible initial oscillation followed by a displacement
away from a root is illustrated in Figure 19.4. Note, however, that the method would have con-
verged (in this case) if the initial guess had been somewhat closer to the exact root. Thus, it can
be seen that the initial guess may be critical to the success of the calculation.

With reference to the problem, assume an initial temperature t1. Set t1 ¼ 1100 so that

T1 ¼ (1100)(10�3) ¼ 1:1

Obtain the analytical derivative, f 0(T ):

f 0(T) ¼ 3T2 � 4T þ 2

Calculate f (T1) and f 0(T1):

f (1:1) ¼ T3 � 2T2 þ 2T � 1 ¼ (1:1)3 � 2(1:1)2 þ 2(1:1)� 1 ¼ 0:111

f 0(1:1) ¼ 3T2 � 4T þ 2 ¼ 3(1:1)2 � 4(1:1)þ 2 ¼ 1:23

Use the Newton–Raphson method to estimate T2. Employ Equation (19.26):

T2 ¼ T1 �
f (T1)
f 0(T1)

¼ 1:1�
0:111
1:23

¼ 1:0098

Calculate T3:

f (T2) ¼ 0:0099

f 0(T2) ¼ 1:0198

T3 ¼ 1:0001

Finally, calculate the best estimate (based on two iterations) of t:

t ¼ 1000:1 K

Figure 19.4 Failure of the Newton–Raphson method.
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Other methods that may be employed include:

1 Wegstein’s method

2 False-position

3 Half-interval

4 Second-order Newton–Raphson

Details are available in the literature.(2,3) B

ILLUSTRATIVE EXAMPLE 19.7

Qualitatively discuss methods of solving partial differential equations.

SOLUTION: Many practical problems in engineering involve at least two independent
variables, i.e., the dependent variable is defined in terms of (or is a function of) more than
one independent variable. The derivatives describing these independent variables are defined
as partial derivatives. Differential equations containing partial derivatives are referred to as
partial different equations (PDEs).

Contrary to a widely accepted myth, an engineer’s mathematical obligations do not end after
formulating an equation for a problem, where it may be given to a mathematician to solve. Even
if such an ideal situation should exist, it is still necessary for engineers to have a reasonable
understanding of the mathematical methods and their limitations employed in the solution in
order to interpret results.

It has been said that “the solution of a partial differential equation is essentially a guessing
game.” In other words, one cannot expect to be given a formal method that will yield exact
solutions for all partial differential equations.(8) Fortunately, numerical methods for solving
these equations were developed during the middle and latter part of the 20th century.

The three main PDEs encountered in engineering practice are briefly introduced below
employing C (e.g., the concentration as the independent variable).

The parabolic equation:

@C

@t
¼
@2C

@x2
(19:31)

The elliptical equation:

@2C

@x2
þ
@2C

@y2
¼ 0 (19:32)

The hyperbolic equation:

@2C

@t2
¼
@2C

@x2
(19:33)

The preferred numerical method of solution involves finite differencing. Only the parabolic
and elliptical equations are considered below. Examples of parabolic PDEs include

@C

@t
¼ D

@2C

@x2
(19:34)
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and (the two-dimensional)

@C

@t
¼ D

@2C

@x2
þ
@2C

@y2

� �
(19:35)

Ketter and Prawel,(3) as well as many others, have reviewed the finite difference approach to
solving Equation (19.34). B

ILLUSTRATIVE EXAMPLE 19.8

Qualitatively discuss optimization.

SOLUTION: Optimization is viewed by many as a tool in decision-making. It often aids in the
selection of values that allow the practicing engineering to better solve a problem. This brief
answer provides a qualitative look at optimization.

In its most elementary and basic form, one may say that optimization is concerned with the
determination of the “best” solution to a given problem. This process is required in the solution
of many general problems in engineering and applied science—in the maximization
(or minimization) of a given function(s), in the selection of a control variable to facilitate the
realization of a desired condition, in the scheduling of a series of operations or events to control
completion dates of a given project, in the development of optimal layouts of organizational
units within a given design space, etc.(4)

The optimization problem has been described succinctly by Aris(10) as “getting the best
you can out of a given situation.” Problems amenable to solution by mathematical optimization
techniques have the general characteristics that

1 there are one or more independent variables whose values must be chosen to yield a
viable solution, and

2 there is some measure of “goodness” available to distinguish between the many viable
solutions generated by different choices of these variables.

Mathematical optimization techniques are used for guiding the problem solver to that choice
of variables that maximizes the goodness measure (profit, for example) or that minimizes some
badness measure (cost, for example).

One of the most important areas for the application of mathematical optimization techniques
is in engineering design. Applications include:

1 the generation of “best” functional representations (curve fitting, for example),

2 the design of optimal control systems,

3 determining the optimal height (or length) of a mass transfer unit,

4 determining the optimal diameter of a unit,

5 finding the best equipment materials of construction,

6 generating operating schedules, and

7 selecting operating conditions.

Once a particular subject or process scheme has been selected for study, it is common practice to
optimize the process from a capital cost and O&M (operation and maintenance) standpoint.
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There are many optimization procedures available, most of them too detailed for meaningful
application in a text of this nature. These sophisticated optimization techniques, some of
which are routinely used in the design of conventional chemical and petrochemical plants,
invariably involve computer calculations. However, use of these techniques in the majority of
industrial applications is not warranted.(11) B
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NOTE: Additional problems are available for all readers at www.wiley.com. Follow
links for this title. These problems may be used for additional review, homework,
and/or exam purposes.
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