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This chapter is concerned with process transport phenomena. As with all 
the chapters in Part II, there are several sections: overview, several techni-
cal topics, illustrative open-ended problems, and open-ended problems.
The purpose of the first section is to introduce the reader to the subject of 
transport phenomena. As one might suppose, a comprehensive treatment 
is not provided although numerous references are included. The second 
section contains three open-ended problems; the authors’ solution (there 
may be other solutions) are also provided. The third (and final) section 
contains 31 problems; no solutions are provided here. 

12.1  Overview

This overview section is concerned—as can be noted from its title— 
with transport phenomena. As one might suppose, it was not possible to 
address all topics directly or indirectly related to transport phenomena. 
However, additional details may be obtained from either the references pro-
vided at the end of this Overview section and/or at the end of the chapter.
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Note: Those readers already familiar with the details associated with this 
subject may choose to bypass this Overview.

Transport phenomena deals with the transfer of certain quantities 
(momentum, energy, and mass) from one point in a system to another. 
Three basic transport mechanisms are involved in a process. They are:

1.	 Radiation
2.	 Convection
3.	 Molecular diffusion.

The first mechanism, radiative transfer, arises due to wave motion and 
is not considered, since it may be justifiably neglected in most engineer-
ing applications. Convective transfer occurs simply due to bulk motion. 
Molecular diffusion is defined as the transport mechanism arising due 
to gradients. For example, momentum is transferred in the presence of a 
velocity gradient; energy in the form of heat is transferred due to a tempera-
ture gradient and mass is transferred in the presence of a concentration gra-
dient. These molecular diffusion effects are described by phenomenological 
laws. These laws have been defined as mathematical models which happen 
to be obeyed within experimental precision by most media. Each of the 
laws described below reduces to the product of an appropriate transport 
coefficient and a gradient.

1.	 Newton’s second law serves to define the viscosity—the 
transport coefficient for momentum transfer.

2.	 Fourier’s law defines the thermal conductivity—the trans-
port coefficient for heat transfer.

3.	 Fick’s law serves to define the diffusivity—the transport 
coefficient for mass transfer.

The aforementioned transport coefficient is almost always determined by 
experiment, although it can be predicted theoretically from knowledge at 
the molecular level. The methods of evaluating and correlating these coef-
ficients is not presented. Instead, the reader is referred to any standard text 
on physical properties for this information.

The remaining sections of this chapter are concerned with

1.	 Development of Equations
2.	 The Transport Equations
3.	 Boundary and Initial Conditions
4.	 Solution of Equations
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5.	 Analogies.

It should be noted that the bulk of the material to follow has been drawn 
from the work of Theodore [1].

12.2  Development of Equations

Much of the materials in this section was presented in Chapter 3, 
Momentum, energy and mass are all conserved. As such, each quantity 
obeys the conservation law within a system.
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This equation may also be written on a time rate basis:
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The conservation law may be applied at the macroscopic, microscopic or 
molecular level. One can best illustrate the differences in these methods 
with an example. Consider a system in which a fluid is flowing through a 
cylindrical tube (see Figure 12.1). Define the system as the fluid contained 
within the tube between points 1 and 2 at any time. If one is interested in 
determining changes occurring at the inlet and outlet of the system, the 
conservation law is applied on a “macroscopic” level to the entire system. 
The resultant equation describes the overall changes occurring to the sys-
tem without regard for internal variations within the system. This approach 
is usually applied in the Unit Operations (or its equivalent) courses. The 
microscopic approach is employed when detailed information concerning 
the behavior within the system is required, and this is often requested of 
and provided by the engineer. The conservation is then applied to a differ-
ential element within the system which is large compared to an individual 
molecule, but small compared to the entire system. The resultant equation 
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is then expanded, via integration, to describe the behavior of the entire sys-
tem. This is defined as the transport phenomena or microscopic approach. 
The molecular approach involves the application of the conservation law 
to individual molecules. This leads to a study of statistical and quantum 
mechanics—both of which are beyond the scope of this text. In any case, 
the description of individual matter at the molecular level is of little value 
to the engineer. However, the statistical averaging of molecular quantities 
in either a differential or finite element within a system leads to a more 
meaningful description of the behavior of a system.

Traditionally, the applied mathematician has developed the differen-
tial equations describing the detailed behavior of systems by applying the 
appropriate conservation law to a differential element or shell within the 
system. Equations were derived with each new application. The engineer 
later removed the need for these tedious and error-prone derivations by 
developing a general set of equations that could be used to describe sys-
tems. These are referred to as the transport equations. Since they are so 
general, they may be used rather indiscriminately to describe the infinite 
variety of specific problems confronting engineers. Needless to say, these 
transport equations have proven to be an invaluable asset in describing the 
behavior of many systems, operations and processes.

A complete description of the transport process requires certain addi-
tional information. The pressure, temperature, and composition depen-
dence of viscosity, thermal conductivity, and diffusivity, must be made 
available from thermodynamics data. Chemical reaction systems require 
kinetic data.

12.3  The Transport Equations

The aforementioned transport equations are available in the literature 
[1,2], the details of which are significantly beyond the purpose and scope 
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Figure 12.1  Pipe flow
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of this text. Theodore [1] developed the equations in vector form and then 
expanded them into the following coordinate system:

1.	 rectangular (Cartesian);
2.	 cylindrical; and
3.	 spherical.

Theodore’s development included material concerned with the continuity, 
momentum transfer, energy transfer in solids, energy transfer, mass trans-
fer in solids, and the mass transfer equations. The classic work of Bird, et 
al. [2] provides additional and a more expansive treatment of this subject.

12.4  Boundary and Initial Conditions

In order to solve the differential transport equation(s) so that one may 
obtain a complete description of the pressure, temperature, composition, 
etc., of a system, it is necessary to specify boundary and/or initial condi-
tions (BC/IC) for the system. This information arises from a description of 
the problem or the physical situation. The number of boundary conditions 
(BC) that must be specified is the sum of the highest order derivative for 
each independent position variable appearing in the differential equation. 
A value specified at the boundary of the system is one type of boundary 
condition. The number of initial conditions (IC) that must be specified is 
the highest order time derivative appearing in the differential equations. 
This condition is used only if time is a variable. The value of the solution at 
time equal to zero constitutes an IC. 

For example, the equation
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requires two BC. The equation
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requires one IC and two BC.
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12.5  Solution of Equations

This section is introduced by outlining the general procedure that engineers 
should follow in solving problems in transport phenomena. The procedure is 
as follows. 

1.	 Draw a line diagram representing the physical system.
2.	 List all pertinent variables and dimensions on the diagram.
3.	 Select the most convenient coordinate system.
4.	 Obtain the mathematical equations (in the chosen coordi-

nates) describing the behavior of the system. This informa-
tion can be “extracted” from the transport equations.

5.	 Specify the BC/IC.
6.	 Solve the equations.
7.	 Check to see if the solution satisfies both the differential 

equation and the BC/IC

As stated earlier, combining the conservation and phenomenological 
laws leads to a set of partial differential equations that can usually be solved 
subject to the system’s BC/IC. In principle, this approach leads to a com-
plete solution. In practice, two major difficulties may arise:

1.	 There is insufficient knowledge of the transport coefficients 
appearing in the equations.

2.	 The complexity of the differential equation and the accom-
panying BC/IC prohibits solution.

The reader is referred to other texts dealing exclusively with item (1). 
Information (data) on the coefficients is general available. One can then 
focus attention on item (2). These solutions may be obtained by:

1.	 Intuition
2.	 Graphical methods
3.	 Analytical methods
4.	 Analog methods
5.	 Numerical methods.

12.6  Analogies

There are certain common principles and laws that apply to the transport 
processes. Because of this, many similarities and analogies exist between 
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the transport mechanisms discussed in the preceding sections; these are 
outlined and discussed in the present section.

Four common subject areas are discussed below. These include:

1.	 Conservation law
2.	 Phenomenological law
3.	 Units of molecular diffusion coefficient
4.	 Ratio of molecular diffusion coefficients

Details of each follows

1.	 Conservation law. Each of the equations describing the transfer 
of momentum, energy, and mass are developed by application 
of the conservation law on a rate basis to momentum, energy, 
and mass, respectively. The general form of the equation is

	

rate of property
into system

by molecular
diffusion

  
 

 





















−





rate of property
out of system
by molecular

diffusion

  
  

 


















↓ ↓ ↓ ↓ ↓ ↓ ↓                     
                           Gradients

  
 

 
+

rate of property
into system

by convectioon

rate of property
out of system
by convection

















−




  
  

 














↓ ↓ ↓ ↓ ↓ ↓ ↓                     
                           Bulk Flow

 

  
 

+

external forces
or

rate of generation
of propeerty
in system

rate of accumulation
of pr

 

  
 



























= ooperty
in system 

               
   

















↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
           Source                             Inventory 	 (12.6)

2.	 Phenomenological law. The laws governing the molecular 
diffusion of momentum, energy, and mass were developed 
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by Newton, Fourier, and Fick, respectively. These phenome-
nological laws express the corresponding fluxes for momen-
tum, energy, and mass in terms of measurable quantities, i.e.,
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or more specifically,
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with the standard notation employed in the transport  
field [1,2].

3.	 Units of molecular diffusion coefficient. The molecular diffu-
sion for momentum, energy, and mass are defined

	
v = − m

r
; ,    kinematic viscosity  momentum 	 (12.11)

	
a k

Cp

2 =
r

; ,    thermal diffusivity  energy 	 (12.12)

	 D DAB AB= ; ,    diffusion coefficient  mass 	 (12.13)

A dimensionless analysis of these three coefficients produces 
an interesting result. The units of v, a2, and DAB are the same 
and given in ft2/s (English units).
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4.	 Ratio of molecular diffusion coefficients. The ratio of the 
molecular diffusion coefficients can play an important role 
in the analysis of a system undergoing the simultaneous 
transfer of any combination of momentum, energy, and/
or mass. It is a measure of the relative magnitude of these 
effects. The three coefficients corresponding to momentum, 
energy, and mass previously have been defined as v, a2, and 
DAB, respectively. Three dimensionless ratios can be gener-
ated from these coefficients.
a. Ratio of momentum to energy; i.e.,

	

v
a k Cp

2 = m r
r
/

/ 	 (12.14)

This may be written as
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and is defined as the Prandtl number. It finds application in 
fluid flow and heat transfer processes.
b. Ratio of momentum to mass; i.e.,
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This term is defined as the Schmidt number and finds appli-
cation in systems undergoing momentum and mass transfer.
c. Ratio of energy to mass; i.e.,

	

a
D

k C
DAB

p

AB

2

=
/ r

	 (12.18)



262  Open-Ended Problems

or 

	

k
C Dp ABr 	 (12.19)

This term is defined as the Lewis number. It finds application in heat and 
mass transfer operations.

12.7  Illustrative Open-Ended Problems

This and the last section provide open-ended problems. However, solutions 
are provided for the three problems in this section in order for the reader 
to hopefully obtain a better understanding of these problems which differ 
from the traditional problems/illustrative examples. The first problem is 
relatively straightforward while the third (and last problem) is somewhat 
more difficult and/or complex. Note that solutions are not provided for the 
31 open-ended problems in the next section. 

Problem 1: Describe the differences between the macroscopic, micro-
scopic, and molecular approaches (as they apply to the conservation laws) 
from a technical perspective.

Solution: Refer to the development provided earlier in the Development of 
Equations section.

Problem 2: Outline the general procedure that chemical engineers should 
follow in solving problems in transport phenomena.

Solution: Solutions can be obtained almost immediately by inspection or 
intuition for a few of these examples. However, the majority of the differ-
ential equations encountered are solved by well-known standard analytical 
methods. These include:

1.	 Separation of variables
2.	 Fourier series
3.	 Bessel functions
4.	 Laplace transforms
5.	 Error functions.

Complet programs now permits solution to some of the more formidable 
problems. The more complex equations, encountered in practice, can be 
solved by numerical methods with a computer.
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The reader is referred to the Solution of Equations section for additional 
details see Chapter 2.

Problem 3: A moving fluid enters the reaction zone of a tubular reactor 
given at concentration c cA A= =

0
 and undergoes chemical reaction. Obtain the 

steady-state equations describing the concentration in the reaction zone if 
the flow is either laminar or plug. Assume various reaction mechanisms in 
generating the solutions. Do not neglect diffusion effects [1].

Solution: The problem is solved using cylindrical coordinates. Based on the 
problem statement

	 cA = cA(r,z),     laminar flow	

	 cA = cA(z),   plug flow	

and
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The partial differential equation describing this system for a first order 
reaction is given by
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For laminar flow, this equation becomes
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For plug flow,
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One can obtain the concentration profile in the reactor for laminar and 
plug flow. Neglecting axial and radial diffusion leads to 
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for laminar flow. This many now be rewritten as

	
2 1

2

v r
a

dc
dz

k cz
A

A A− 

















= − 	

The BC for this problem is
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The solution to the above equation is 
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This approach may be applied to reactions of other/different orders.

12.8  Open-Ended Problems

This last Section of the chapter contains open-ended problems as they 
relate to transport phenomena. No detailed and/or specific solution is 
provided; that task is left to the reader, noting that each problem has 
either a unique solution or a number of solutions or (in some cases) 
no solution at all. These are characteristics of open-ended problems 
described earlier.

There are comments associated with some, but not all, of the prob-
lems. The comments are included to assist the reader while attempting 
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to solve the problems. However, it is recommended that the solution to 
each problem should initially be attempted without the assistance of the 
comments.

There are 31 open-ended problems in this section. As stated above, if 
difficulty is encountered in solving any particular problem, the reader 
should next refer to the comment, if any is provided with the problem. 
The reader should also note that the more difficult problems are generally 
located at or near the end of the section.

1.	 Discuss the recent advances in transport phenomena 
education.
Comment: Refer to the literature for details [2].

2.	 Describe the early history associated with transport phe-
nomena education.
Comment: Refer to the literature for details [2].

3.	 Describe the differences between the macroscopic, 
microscopic, and molecular approaches from a layman’s 
perspective.

4.	 Select a refereed, published transport phenomena article 
from the literature and provide a review.

5.	 Develop an original problem that would be suitable as an 
illustrative example in a book on transport phenomena.

6.	 Prepare a list of the various books that have been written 
on transport phenomena. Select the three best and justify 
your answer. Also select the three weakest books and, once 
again, justify your answer.

7.	 Provide in layman terms, the Boltzmann equation describ-
ing the kinetic theory of gases.

8.	 Describe and discuss the limitations associated with 
Boltzmann’s kinetic theory of gases.

9.	 Attempt to improve on Boltzmann’s kinetic theory of gases.
10.	 Describe Newton’s Law of viscosity in layman terms.
11.	 Describe Fourier’s Law in layman terms.
12.	 Describe Fick’s Law in layman terms.
13.	 Discuss the differences between macroscopic and micro-

scopic coefficients.
14.	 Describe the various classes of polymeric liquids. Also dis-

cuss the differences.
15.	 Describe the various velocity distributions that can arise 

for flowing fluids in conduits.
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16.	 Discuss the differences between free and forced convection 
at the microscopic level.

17.	 Describe the complications that arise in describing multi-
component systems at the microscopic level.

18.	 Describe the problems associated with applying the micro-
scopic approach to turbulent flow systems.

19.	 Discuss the molecular theory of predicting the viscosity of 
both liquids and gases.

20.	 Discuss the molecular theory of predicting the thermal 
conductivity of solids, liquids and gases.

21.	 Discuss the molecular theory of predicting the diffusivities 
of liquids, colloidal suspensions and gases.

22.	 Energy is being absorbed in a long solid cylinder of radius 
a. The temperature at the outer surface of the cylinder is 
maintained at a constant value T0. Calculate the tempera-
ture profile in the solid at steady-state conditions. Assume 
the energy generation term A is a 
•	 linear,
•	 quadratic, and
•	 cubic
function of the temperature. Comment on the results.

23.	 A long hollow cylinder has its inner and outer surfaces 
maintained at constant temperatures. Calculate the tem-
perature profile in the solid section of the cylinder and 
determine the flux at both surfaces for different tem-
peratures. Comment on the results. Assume steady-state 
conditions.

24.	 A component is reacting uniformly in a batch reactor of 
arbitrary shape. Obtain the concentration as a function of 
position and time for various reaction mechanisms if the 
initial concentration is everywhere constant. Assume no 
mass transfer across the surface of the solid.

25.	 An incompressible fluid enters the reaction zone of an insu-
lated tubular (cylindrical) reactor at temperature T0. The 
chemical reaction occurring in the zone causes a rate of 
energy per unit volume to be liberated. Obtain the steady-
state equation describing the temperature in the reactor zone 
if the flow is laminar and the rate of energy generation is a:
•	 linear
•	 parabolic
•	 cubic
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function of temperature. Neglect axial diffusion. Also 
comment on the results.
Comment: Refer to the literature [3].

26.	 Two different viscosity fluids are contained between the region 
bounded by two infinite parallel horizontal plates separated by 
a finite distance. The volumes occupied by each fluid are equal. 
The upper plate is moving with a velocity that varies with time. 
Set up the describing equation(s) and calculate the velocity 
profile of both fluids for different velocity variations.

27.	 Consider an insulated cylindrical copper rod. If the rod is 
initially at a constant temperature and the ends of the rod 
are maintained at a temperature that varies with time, pro-
vide an equation that describes the temperature (profile) in 
the rod as a function of both position and time.

28.	 Refer to the previous problem. Calculate the temperature 
profile for different temperature variations.

29.	 Some have argued (including the senior – in terms of age – 
author of this book) that transport phenomena has outlived 
its usefulness for the chemical engineer. Comment on this 
statement.

30.	 Prepare a detailed review of the second edition of the Bird, 
et al. book.

31.	 Prepare a detailed review that highlights the differences 
between the first [4] and second [2] editions of the Bird, 
et al books.
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