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This chapter is concerned with Materials Science and Engineering (MSE).  
As with all the chapters in Part II, there are sereval sections: overview sev-
eral specific technical topics illustrative open-ended problems, and-open 
ended problems. The purpose of the first section is to introduce the reader 
to the subject of MSE. As one might suppose, a comprehensive treatment is 
not provided, although numerous references are included. The second sec-
tion contains three open-ended problems; the authors’ solution (there may 
be other solutions) is also provided.  The third (and final) section contains 
35 problems; no solutions are provided here.

1.1  Overview

This overview section is concerned—as can be noted from its title—with 
Materials Science and Engineering (MSE). As one might suppose, it was 
not possible to address all topics directly or indirectly related to MSE. 
Because of space limitations, only the subject of crystallography of perfect 
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16  Open-Ended Problems

crystals (CPC) is primarily addressed. However, additional details may be 
obtained from the references at the end of the chapter.

Note: Those readers already familiar with the details associated with 
MSE may choose to bypass this Overview.

The title, Materials Science and Engineering, implies a double focus—one 
geared toward a fundamental study of the materials and their properties, 
and the other towards the production and use of materials for the benefit of 
society.  This chapter is primarily concerned with the former focus.  

The terms Materials denotes a vast areas of compiled knowledge. There 
is very little in all of engineering and science that does not involve materi-
als.  Obviously, the first task in preparing an abbreviated chapter in the 
study of materials must be the application of limits on the subject mat-
ter to be covered—a focus on specific types of materials.  It is generally 
understood that Materials covers only the solid state of matter; liquids are 
considered only in certain cases where solid-liquid equilibrium is involved.  
There are many types of solids, however, and further focusing is required.  

Most solids can be categorized into one of the three types: metals, plas-
tics, or ceramics. (Ceramics are compounds of metallic and non-metallic 
elements such as ferrous oxide.)  In this chapter, emphasis has been placed 
on metals because, in the opinion of the authors, this class of materials has 
the widest impact on all of the four major fields of engineering: chemical, 
civil, electrical, and mechanical.  In the end, the remainder of the chapter 
was divided into three sections. These are briefly discussed below. 

The first topic covered is Crystallography of Perfect Crystals (CPC).  All 
matter is ultimately composed of atomic particles.  How these particles 
are put together plays an extremely important role in determining a mate-
rial’s properties and in the various uses of that material.  The purpose of 
this section is to provide the reader some insights into how solids (mainly 
metals and ionic materials) are organized at the atomic level and how this 
organization is reflected in some of the properties of the solids.  Just as the 
organization of atoms in a solid has a critical role in determining material 
properties, so too does the occasional breakdown of this organization since 
there is no such thing as a perfect crystal.  No study of crystallography 
would therefore be complete without a companion study of crystal imper-
fections, and this is the role of the CRC (Crystallography of Real Crystals) 
section.  These two sections (i.e., CPC and CRC) involve a study of the 
makeup of the crystalline materials from an atomic standpoint, but what 
happens on the atomic level must obviously be reflected at the macroscopic 
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level.  The last sections discuss the behavior of materials more in terms of 
some directly measurable phenomena.  

Finally, the reader should note that there are a host of topics that nor-
mally fall under the Materials Science and Engineering umbrella.  Most of 
them are listed below:

1.	 Atomic Structure
2.	 Crystal Structures
3.	 Crystal Geometry
4.	 Crystalline Imperfections
5.	 Phase Diagrams
6.	 Mechanical Properties of Metals
7.	 Polymeric Materials
8.	 Diffusion in Solids
9.	 Engineering Alloys

10.	 Ceramics
11.	 Composite Materials
12.	 Corrosion
13.	 Electrical Properties
14.	 Optical Properties
15.	 Magnetic Properties
16.	 Superconductive Properties

1.2  Crystallography of Perfect Crystals (CPC)

As noted earlier, all matter is ultimately composed of atomic particles. How 
these particles are put together plays an extremely important role in deter-
mining a material’s properties and in the various uses of that material. The 
purpose of the CPC (Crystallography of Perfect Crystals) section is to give 
the reader some insights into how solids (mainly metals and ionic materi-
als) are organized on the atomic level and how this organization is reflected 
in some of the properties of the solids.

Solid materials may be either amorphous or crystalline. The word amor-
phous literally means “without form” and the atoms or molecules of solids 
in this category have little organization. The word crystalline implies that 
the component atoms, ions or molecules that make up the material are 
arranged spatially in an ordered pattern often referred to as a crystal lattice. 
In the solid state, metallic and ionic materials are almost universally found 
as crystals in nature; many covalent materials are crystalline as well.

There are many different types of crystal patterns or structures. For 
ionic and metallic materials, the main factor that determines the pattern 
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or crystal type is the packing efficiency or the packing factor. Both metal-
lic and ionic bonds are electrostatic in nature. As a result, the closer the 
bonded atoms are, the stronger are the bonding forces and the more sta-
ble is the crystal. For purposes of this explanation, assume the atoms of 
a crystal to be small hard spheres tightly packed together in an ordered 
pattern. The metallic crystal is composed of spheres all having the same 
size and an ionic crystal is constructed of spheres of at least two different 
sizes. The packing factor is defined as the fraction of space occupied by 
the spheres.

The coordination number (CN) of an atom in a crystal is defined as the 
number of nearest neighbors that atom possesses. All “nearest neighbors” 
must be equidistant from the atom in question, which shall be referred to 
as the central atom. In the case of ionic crystals, electrical stability requires 
that the central and neighboring atoms be oppositely charged. In a metal, 
all atoms of the crystal are positively charged and are held together by an 
electron cloud which pervades the entire crystal.

(a) (b) (c)

Figure 1.1  Coordination Number

Table 1.1  Minimum CN radius ratios.

CN (r/R)min

3 0.155

4 0.225

6 0.414

8 0.732

12 1.000
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(a) CN = 3 (b) CN = 4

(c) CN = 6

(d) CN = 8 (e) CN = 12
Figure 1.2  Coordination numbers of (a) 3, (b) 4, (c) 6, (d) 8, and (e) 12.

There are five coordination numbers that occur in nature; as noted in 
Table 1.1, these are 3,4,6,8 and 12. The crystal pattern that a given pair of 
ions form depends mainly on the relative sizes of the atoms or, equiva-
lently, on the radius ratio (r/R). In this ratio, r represents the radius of the 
central atom and R the radius of the neighboring atoms. The central atom 
is always chosen as the smaller of the two ions.

Figure 1-1 shows arrangements for a CN of six. Note that the solid cir-
cles represent atoms whose centers are in the plane of the page; the dotted 
circle represents two atoms whose centers are above and below the plane 
of the page. In 1(a), the central atom is in contact with all six neighbors 
simultaneously, a fact which is critical for ionic bonding. As the (r/R) ratio 
is decreased, the spacing between the neighboring atoms becomes smaller 
until the situation depicted in 1(b) is achieved. In this diagram, the (r/R) 
ratio is 0.414, which is the minimum ratio that is capable of supporting 
a CN of six. For a ratio below this minimum, it is impossible to have the 
central atom contacting all six neighbors at the same time. In Table 1.1, the 
minimum radius ratios for the five coordination numbers are presented 
and in Figure 1.2, the atomic arrangements for the five CNs are depicted. 
In each of the five diagrams of Figure 1.2, the (r/R) ratio is at the minimum 
for that coordination number. 

The minimum radius ratios in Table 1.1 can be calculated using simple 
geometric and trigonometric principles. Taking the coordination num-
ber of six as an example (see Figure 1-2(c)), the three-dimensional figure 
obtained by joining the centers of the neighboring atoms is an octahedron. 
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The two-dimensional figure formed by connecting atom centers A, B, and 
D is an isosceles right triangle. Since each leg of the triangle is 2R and the 
hypothenuse is 2R+2r, the application of the Pythagorean theorem yields

	 ( ) ( ) ( )2 2 2 22 2 2R r R R+ = + � (1.1)               

or

	 2 2 8R r R+ = √ � (1.2)

which can be rearranged to give
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The significance of the information contained in Table 1.1 lies in the fact 
that it can be used to help explain why ionic and metallic materials form 
the types of crystals that they do. The radius ratio of sodium chloride, for 
example, has been determined by x-ray diffraction to be 0.54. Since this 
ratio is less than 0.732, sodium chloride cannot crystallize in a pattern that 
requires a CN of 8; the sodium ion is simply too small to fit eight chloride 
ions around its periphery. This leaves coordination numbers of 6, 4 and 
3 as possibilities, with 6 as the most likely prospect, since of the three, it 
would result in the highest packing factor.

1.2.1  Geometry of Metallic Unit Cells

The term Bravais lattice refers to one of 14 different patterns employed 
in the structure of crystals. Three of these (the only three in which the 
points are arranged to form a cubic pattern) are shown in Figure 1.3. 
These three Bravais lattices are called simple cubic (sc), body centered 
cubic (bcc), and face centered cubic (fcc). Although the points of the 
Bravais lattices are depicted as spheres in these diagrams, the points do 
not (at least for now) represent atoms.  The Bravais lattice is an abstrac-
tion consisting only of a six- or eight-sided box with points placed on 
either inside or on the box surface. Figure 1.4 would show the hexagonal 
Bravais lattice if the three points that fall completely inside the eight-
sided box were absent.

In order to transform the abstraction of the Bravais lattice into a real 
crystal structure, each point of the lattice is allowed to represent a single 
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atom or a set of atoms (like a pair of ions or a molecule). If each point 
of the fcc Bravais lattice shown in Figure 1.3(c) is replaced by a methane 
molecule, for example, the unit cell of the methane crystal (which, since 
methane is a gas at ambient conditions, is found only at very low tem-
peratures) results. A unit cell can be considered the basic “building block” 
for the construction of the crystal, and as such must be representative of 
the entire crystalline material. By repeating the methane unit cell over and 
over again, the solid methane crystal would result. 

1.2.2  Geometry of Ionic Unit Cells

In the previous subsection, it was seen that, for bcc and fcc metallic crys-
tals, the transformation from the Bravais lattice to the unit cell is a matter 

(a) (b)

(c)

Figure 1.3  Bravais lattices: (a) simple cubic, (b) body-centered cubic, (c) face-centered 
cubic.

Figure 1.4  The hexagonal close-packed (hcp) unit cell.



22  Open-Ended Problems

of replacing a point by a single spherical atom. For the hcp metallic crystal, 
each Bravais lattice point is replaced by two spherical atoms. In ionic mate-
rials, a single ion can never replace a Bravais lattice point; all points of the 
Bravais lattice must be identical and must have identical neighbors. The 
sodium chloride structure shown in Figure 1.5, for example, could have 
been arrived at by replacing a point of the sc Bravais lattice by a sodium ion 
and an adjacent point by a chloride ion, etc. The sodium chloride structure, 
however, is not simple cubic; it is face-centered cubic. To demonstrate this, 
if each point of the fcc Bravais lattice pictured in Figure 1.3(c) is replaced 
by an ion pair, for example, one chloride and a sodium ion placed to its 
immediate right, the structure shown in Figure 1.5 results. 

Although simple cubic metals do not exist in nature, simple cubic salts 
(ionic crystals) do. Cesium chloride is an example. The CsCl structure can 
be demonstrated by replacing each point of the sc lattice shown in Figure 
1.3(a) by a cesium ion-chloride ion pair to achieve the structure shown 
in Figure 1.6. In this case, the chloride ions were placed at each vertex, 
and only one cesium ion, the one in the center of the cube, is shown. The 
centers of the other seven cesium ions fall outside of the cube, and are 
members of adjacent unit cells. In this structure, the spherical ions are in 
contact along the body diagonal only. Only ions of opposite charge should 
be touching.

Figure 1.6  A bcc ionic unit cell (CsCl).

Figure 1.5  A fcc ionic unit cell (NaCl).
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1.2.3  Packing Factors

As explained earlier, the packing factor is defined as the fraction of space 
in the crystal occupied by atoms, where once again, it is assumed the atom 
to be an incompressible sphere. The packing factor is conveniently calcu-
lated by first determining the number of atoms in the unit cell of the crystal, 
calculating the spherical volumes of those atoms and dividing by the total 
volume of the unit cell. For example, a simple cubic structure would have a 
packing factor of 0.52. This number is obtained by first finding the volume of 
one sphere of radius, r. (Figure 1.2(a) shows that there is one single atom per 
unit cell.) This volume is then divided by the unit cell volume which is deter-
mined by cubing the edge length, 2r, as is shown by the following equation.
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For metals, the calculation of the packing factor depends only on the 
metal structure and not on the atom size. This is not the case for ionic 
solids when at least two different atom sizes must be taken into account.

Properties of materials fall into one of two categories: extensive and 
intensive. An extensive property is one that depends on the size of the mate-
rial; volume and mass are examples of such properties. An intensive prop-
erty is independent of size and the measurement of that property always 
yields the same value whether a small or large amount of the material is 
being used to make the measurement. Density is one such property.

The unit cell was described earlier as a representative portion of the crys-
tal lattice. If the cell is truly representative, it must possess the same quali-
ties as the crystal that it represents. It is therefore theoretically possible to 
use a single unit cell as a basis for calculating intensive properties. (Note: 
the term basis is used to indicate that amount of materials on which a cal-
culation is being performed. In many problems, amounts are not specified 
and as long as the problem involves intensive properties, the choice of a 
basis is arbitrary and left to the individual performing the calculation.)

1.2.4  Directions and Planes

Many crystal phenomena are directional. For example, when a metal crys-
tal is plastically deformed (i.e., permanently distorted), parts of the crystal 



24  Open-Ended Problems

move relative to other parts. This slippage occurs in certain predictable 
directions and along certain predictable atom planes. Many crystal prop-
erties are also directional, e.g., the elastic modulus, ductility and conduc-
tivity. It is important, therefore, that directions and planes of a crystal be 
identifiable.

The right-handed three-dimensional coordinate system that will be used 
in this discussion is given on the left side of Figure 1.7. In the two cubes 
shown in Figure 1.7, five directions (indicated by vectors) are also shown. 
Directions are represented symbolically by [hkl], where h, k, and l are three 
small whole numbers called indices that correspond to the cartesian coor-
dinates x, y, and z. Note that there are no commas between the numbers. 
The indices for a given direction are determined as follows. The base of the 
vector is chosen as the origin of the coordinate system. The coordinates 
of the tip of the arrowhead are then determined. Using direction (a) as an 
example, the coordinates of the arrowhead are (0,0,1). (Note: the physi-
cal coordinates of the arrowhead would have length dimensions and be 
given in terms of a, the cell constant. In this example, those coordinates are 
(0,0,a). For purposes of determining the indices, however, the cell constant 
is considered to be one mathematical unit and the coordinates are given as 
pure numbers.) The coordinates of the arrowhead tip yield the indices. The 
directions (a), (b), and (c) are represented by [001],[111] and [110], respec-
tively. The tip of the arrowhead for direction (d) has the coordinates (1,0,-
1) and is represented by [101

_
]. Note that a negative direction is indicated by 

a bar over the index. For (e), the arrowhead has the coordinates (1,0,1/2), 
which, following the rules for finding the indices given so far, would yield 
[1 0 1/2]. However, the indices should be small whole numbers. Since the 
direction indicated by vector (e) also passes through the points (2,0,1) and 
(4,0,2), that direction could also be feasibly represented by [201] and [402]. 
In other words, multiplying the coordinates and indices by a positive num-
ber does not alter the direction. The convention used here is to multiply the 
indices by the smallest positive integer that will convert all three to small 
whole numbers. Direction (e) should be therefore represented by [201].

z

y

x

(a) (b)

(c)

(d)

(e)

Figure 1.7  Crystal directions.
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The atom planes of a crystal are represented by the symbol (hkl), where 
once again h, k, and l are small whole numbers. (It is important that the 
reader distinguish between the symbols used for coordinates and planes. 
Both employ parentheses, but the coordinates of a point are separated by 
commas and need not be small whole numbers. No commas appear in the 
symbol for a plane.) It takes three points to fix the position of a plane in 
space (see Figure 1.8), unless the points are along the same straight line. 
The indices of a plane are sometimes referred to as Miller indices, and will 
not be described here. The reader is referred to the literature for additional 
details.

1.3  Crystallography of Real Crystals (CRC) 

Besides structural defects, real crystals also contain impurities (as long 
as the temperature is above absolute zero). The word impurity implies a 
mixture of at least two substances. In crystals, the mixture; can be one 
of two types: a single-phase or homogeneous mixture, and a multiphase 
or heterogeneous mixture. A single-phase mixture is a true solution in 
which the solute is dispersed on an atomic level. This means that the 
atoms, ions, or molecules of the solute are surrounded mainly by par-
ticles of the solvent. A multiphase mixture is not mixed on an atomic 
level and is therefore not the same throughout its volume; it has different 
parts with different detectable properties. A multiphase metal alloy such 
as steel at room temperature may appear to be of uniform composition 
to the naked eye, but through a microscope (and with proper sample 
preparation), two different phase or parts can be detected. It should be 
pointed out that in a multiphase mixture, if the phases or parts could be 
conveniently separated into single phase, these single phases would still 
be mixtures. A 50-50 w/o (weight percent) alloy of silver and aluminum, 

(a) (b) (c)
Figure 1.8  Crystal planes.
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for example, forms two solid phases, which are assigned the symbols, 
α and β. (Note: A 93 w/o silver- 7 w/o aluminum alloy is called sterling 
silver). Both phases are easily seen through a microscope. The α phase is 
composed of fcc silver crystals with aluminum atoms occupying about 
5-10% of the lattice sites; the β phase is made up of fcc aluminum crys-
tals with silver atoms occupying about 1-3% of the lattice sites. This type 
of crystal impurity where the impurity atom replaces one of the solvent 
atoms (the aluminum impurities in the α phase, for example) is called a 
substitution impurity, and the mixture is often referred to as a substitu-
tional alloy. There is another type of impurity, the interstitial impurity, 
where the impurity atoms does not occupy a lattice site, but instead is 
wedged in among the solvent atoms. This type of impurity is the subject 
of the next subsection.

1.3.1  Interstitial Impurities

The second type of impurity that occurs in crystals is the interstitial impu-
rity. When carbon dissolves in iron, it forms such an impurity---the car-
bon atoms do not replace any iron atoms but wedge into the open spaces 
among the iron atoms. Iron is a polymorph. A polymorph is a material that 
can form more than one crystal structure. At room temperature, and up to 
912 ℃ (1673 ℉), the stable crystal structure of iron is bcc (an iron phase 
given the symbol α). From 912℃ to around 1400℃ (2550℉), the stable 
structure is fcc (assigned the symbol γ), and from 1400℃ to the melting 
point at 1540 ℃ (2800℉), bcc given the symbol, δ.

Carbon has a much higher solubility in fcc iron (about 2.1 w/o at 1150 
℃) than in bcc iron (about 0.02 w/o maximum in the α phase and slightly 
higher in the δ phase). This fact is surprising, at first glance, because the 
bcc structure is not as well packed as the fcc structure. Metals with a bbc 
structure have a packing factor of 0.68 and a coordination number of 
8; fcc metals have a packing factor 0.72 and a coordination number of 
12. This indicates that there is more empty space in the bcc form of iron 
(which is true), and therefore more carbon atoms should fit into that 
space (which is false). This apparent discrepancy can be explained by 
the fact that the greater amount of empty space in the bcc crystal is dis-
tributed over openings that are very non-spherical in shape. These non-
spherical spaces can comfortably accommodate spherical atoms only if 
the atoms are extremely small, about one-eighth the size of the carbon 
atom.

The interstitial holes in fcc iron and bcc iron is pictorially represented 
in Figure 1.9.
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1.4  Materials of Construction

The selection of the materials with which to build a chemical or petro-
chemical process plant is a very important part of process design. It is 
desirable to select the least expensive material that can be used for any 
particular piece of equipment in the plant. (Note that “equipment” here 
refers to piping, values and fittings as well as to pumps, columns, heat 
exchangers, etc.) In order to be acceptable, however, a material must have 
adequate mechanical strength and adequate resistance to chemical attack 
(corrosion) under plant operating conditions.

Mechanical strength requirements depend on the process conditions 
(pressure and temperature), the size of the equipment, and the equipment’s 
own support requirements. In general, the larger the piece of equipment 
and the higher the pressure, the greater strength is needed. This can be 
provided either by using thicker materials or by selecting materials with 
inherently higher strength. For most materials, strength decreases with 
increasing temperature; so high temperature processes require thicker or 
different materials.

Corrosion resistance depends on the chemicals being processed and the 
conditions under which they are handled. Very often, special alloy metals 
or other exotic materials are required to avoid rapid corrosion of the equip-
ment. Designers usually try to select materials that will have predicted life-
times of 20 to 50 years or more actual under process conditions. Sometimes 
this is impossible, and the equipment must be frequently replaced.

Carbon steel and common plastics, such as polyvinyl chloride and poly-
ethylene, are the least expensive materials used in process plants. The selec-
tion process starts with them, then considers successively more expensive 

(b)

(a)

Figure 1.9  Interstitial spherical holes in (a) fcc iron, (b) bcc iron.
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materials until one is found that has the required mechanical and corro-
sion-resistance properties. 

1.5  Resistivity

The electrical behavior of certain solids, particularly semiconductors, can 
be explained (and, to some extent, quantified) using atomic-level phenom-
ena. This was not done to any appreciable degree earlier where the connec-
tion between the atomic and macroscopic levels was not as well established, 
at least in a quantitative sense. 

Ohm’s law states that, when a potential or voltage difference is placed 
across a conductor, the resulting current is proportional to the voltage dif-
ference. More succinctly stated

	 E IR= 	 (1.5)

where E = voltage difference, volt
	 I = current, amp
	 R = resistance, ohm

The resistance term R is a proportionality constant that depends on the 
nature of the conductor, including its size and shape. Although resistance 
is a strong function of the material that the conductor is made of, it cannot 
be called a property of that material. For a quantity to be properly called 
a property, it must be a function only of the material of which it is made.

If the conductor is a wire of length, l, and cross-sectional area, A, it 
can be shown by experimentation that the wire’s resistance depends 
almost entirely on four variables: the material, the temperature, the cross-
sectional area, and the length. For convenience, the temperature may be 
lumped with the material to reduce the number of independent variables. 
In other words, copper at 1000 ℉ is considered a different “material” than 
copper at 70℉, which it is. This results in the functional relationship

	 R f= ( )material,T,A 	 (1.6)

Laboratory experimentation also shows that resistance is directly propor-
tional to wire length and inversely proportional to cross-sectional area. 
Removing the length and area dependence from R should leave a variable 
that depends only on the material (at a given temperature), or, in other 
words, should leave a variable that is, by definition, a property. This is 
shown in the equation.
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Where r is the resistivity of the material. The resistivities for many materi-
als at specified temperatures can be found in the literature. Typical units 
for  are ohm·in, etc.

1.6  Semiconductors

Semiconductors fall into one of two categories: intrinsic and extrinsic. A 
semiconductor that conducts in the pure state is an intrinsic semiconduc-
tor. One that has had to have material added to it to get it to conduct is an 
extrinsic semiconductor. Extrinsic semiconductors are commonly used in 
most electronic applications. The matrix or solvent material is usually a 
single crystal of silicon or germanium. Both these elements belong to the 
carbon family and, like carbon (diamond), form crystals in which there are 
three-dimensional networks of covalent bonds. In diamond, silicon, and 
germanium crystals, each atom is covalently bonded to four neighboring 
atoms arranged in tetrahedral fashion. The angle between any two of the 
four bonds is the tetrahedral angle of 109.5°.

There are various classes of materials, metals, and alloys.  Perry and 
Green [1] provided the following categorization:

1.	 Ferrous metals
2.	 Ferrous alloys
3.	 Organic non-metallics
4.	 Thermoplastics

These are also divided into low-temperature metals and high-temperature 
materials.

A detailed and expanded treatment of materials science and engineer-
ing is available in the following three references:

1.	 W.F. Smith, Formulations of Materials Science and 
Engineering,  McGraw-Hill, New York City, NY, 2004.  
(ref(2))

2.	 L. VanVlack, Materials Science for Engineers, Addison 
Wesley, Reading, MA, 1970. (ref(3))
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3.	 W. Callister, Materials Science and Engineering, 3rd edition, 
John Wiley & Sons, Hoboken, NJ, 1985.  (ref(4))

1.7  Illustrative Open-Ended Problems

This and the last section provide open-ended problems.  Solutions are pro-
vided for the three problems in this Section in order for the reader to obtain 
a better understanding of these problems which differ from the traditional 
problems/illustrative examples. The first problem is relatively straightfor-
ward while the third (and last problem) is somewhat more difficult and/or 
more complex.  Note that solutions are not provided for the 35 open-ended 
problems provided in the next Section.

Problem 1: Discuss the periodic table in layman terms.

Solution: At the time of publication, a total of 118 elements were known. 
These elements vary widely in location, concentration, and abundance on 
planet Earth.  For example, over 75 percent of the Earth’s crust consists 
of oxygen and silicon.  Interestingly, approximately 65 percent by mass of 
the human body is oxygen.  As the number and information on elements 
increased, chemists attempted to find similarities in elemental as well as 
chemical behavior.  These efforts ultimately resulted in the development 
of the Periodic Table.  This has gone through significant changes over the 
years, with the latest “form” arranging elements in order of increasing 
atomic number and with elements having similar properties placed in ver-
tical columns known as groups.

Problem 2: Discuss structural defects in crystals.
(Comment: There are many types of structural defects in crystals, but 
only a few will be cited. For a more thorough discussion of these defects, 
the reader is referred to the literature.)

Solution: There is no such thing as a perfect crystal. The reason why imper-
fections exist in crystals is explained below.  Just as the organization of 
atoms in a solid has a critical role in determining material properties, so 
to does the occasional breakdown of this organization have an important 
effect.  No study of crystallography would be complete without a compan-
ion study of crystal imperfections. 

Unless a system is at the temperature of absolute zero atomic motion 
must be occurring inside the crystal.  Temperature is described as a 



Materials Science and Engineering   31

measure of the average kinetic energy of the particles in a system.  The use 
of the word average implies that these particle kinetic energies are distrib-
uted—most particles have energies somewhere around the average, but a 
few have either very low or excessively high energies.  (This distribution 
of particle energies is called the Maxwell-Boltzmann distribution.)  Below 
the melting point, most atoms, ions or molecules of a solid exhibit their 
kinetic energies by vibrating about fixed positions.  In a crystal, the fixed 
positions are the lattice sites.  A relatively small number of particles, how-
ever, have kinetic energies that are greater than the bonding energies that 
hold the other particles close to their assigned sites.  These particles are 
capable of moving away from these sites and causing structural defects in 
crystals.

Structural defects fall into three categories: point, line and area defects.  
Two of the more common point defects are the vacancy and the intersti-
tialcy. A vacancy is defined as a lattice site or position that is unoccupied.  
If the central atom in a unit cell became one of the high energy atoms 
mentioned earlier, it would move out of the center position, squeeze its 
way past the vertex atoms (the atoms are not really hard spheres and are 
capable of compression), and end up somewhere else in the lattice.  The 
vertex atoms would tend to collapse in toward the center, but a gaping 
hole, the vacancy, would remain.  The center of the cell is now referred 
to as a vacant site.  The movement of the surrounding atoms out of their 
positions is generally slight and is referred to as lattice strain. If the high 
energy atom discussed above ended up wedged somewhere in the lattice 
where it does not belong, it becomes an interstitial defect. The intersti-
tial defect is defined as an atom or ion occupying a non-lattice position.  
Obviously, the presence of the interstitial defect also produces lattice strain 
by displacing the neighboring atoms from their positions.

Problem 3: Describe Bragg’s Law in technical terms.

Solution: When a pencil-thin beam of monochromatic x-rays (i.e., x-rays 
of fixed wavelength) is directed at a single crystal, each atom in the crystal, 
acting individually, scatters a tiny fraction of the radiation in all directions.  
The amount scattered by one atom is far too small to be measured; the 
combined scattering by all atoms of the crystal, however, while still only a 
small fraction of the incident radiation, can be detected fairly easily.  The 
combined scattered, or diffracted, radiation does not occur in all direc-
tions as does that scattered by the individual atom.  When a number of 
x-ray beams are added together, the combined intensity will be the sum of 
the individual intensities only if all the individual beams are completely in 
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phase.  If the individual beams are out of phase with each other, the result 
will be mutual destructive interference and the total intensity will be from 
the whole crystal is intense enough to be detected only when all the rays 
scattered from the individual atoms are completely in phase.  This can hap-
pen only when a set of atomic planes in the crystal is aligned at a definite 
angle to the incident x-ray beam.

The above situation is illustrated in Figure 1.10. Note that the angle, θ, 
must be such that the difference in path length traveled between adjacent 
segments of the x-ray beam (PQR) is exactly one full wavelength (or an 
integral number of wavelengths).  This insures that the diffracted segments 
are in phase.  If this path length difference is any other than an integral 
number of wavelength, the result is destructive interference, and in effect, 
mutual annihilation of the diffracted beam.  

The relationship existing among the wavelength, λ, the angle of inci-
dence, θhkl, and the interplanar distance, dhkl, is given by Bragg’s Law of 
Diffraction:

	 nλ = 2dhkl sinθhkl 	 (1.8)

where h, k, and l represent the aforementioned Miller indices of the dif-
fracting plane and n is the number (integer) of wavelengths that make up 
the path length difference (PQR in Figure 1.10). The value of n is referred 
to as the order of diffraction and may usually be assumed to be unity.  If 
this relationship is not satisfied, diffraction cannot occur.  This means that 
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Figure 1.10  Bragg’s law of diffraction.
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directing a monochromatic x-ray beam at a single crystal will, in all prob-
ability, not result in diffraction unless care is taken to align a set of planes 
in the crystal at the proper angle of incidence. Taking the (200) planes as an 
example, the proper angle of incidence would be, according to Bragg’s law:

	 θhkl = sin-1(λ/2d200)	 (1.9)

If, instead of a single crystal, however, a finely divided powder of the 
crystalline sample is introduced into the x-ray beam, diffraction is guaran-
teed.  The reason for this is that, in the finely divided powder, all possible 
crystal orientations are represented and, hence, at least a few of the crystal-
line grains are bound to have their (hkl) planes aligned at the Bragg angle, 
θhkl, to the incident beam.  Each beam diffracted from one of the properly 
aligned crystallites contributes to a cone of radiation which is concentric 
with the incident beam; the semi-apex angle of this cone is twice the Bragg 
angle, or 2θhkl. Note that, since the angle formed by the diffracting plane 
and the incident beam is θ, and the angle formed by the diffracting plane 
and the diffracted beam is also θ, the angle formed by the transmitted beam 
and the diffracted beam is 2θ (see Figure 1.11).

The diffraction or Bragg angle, θ, cannot be directly measured because 
there is no instrumentation available for detecting the orientations of atom 
planes. (These plane orientations can be calculated, but not measured.)  The 
angle, 2θ, however, can be measured because it is the angle between two 
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Figure 1.11  X-ray diffraction of finely divided powder.
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x-ray beams (the transmitted beam and the diffracted beam) and the posi-
tions of x-ray beams can be detected.  In fact, the only measurements that 
need to be taken in powder x-ray diffraction are those of the angle 2θ.  
All information such as d-spacings, cell constants, and atomic/ionic radii 
comes from those measurements.

1.8  Open-Ended Problems

This last Section of the chapter contains open-ended problems as they 
relate to Materials Science and Engineering.  No detailed and/or specific 
solution is provided; that task is left to the reader, noting that each problem 
has either a unique solution or a number of solutions or (in some cases) no 
solution at all.  These are characteristics of open-ended problems described 
earlier.

There are comments associated with some, but not all, of the prob-
lems.  The comments are included to assist the reader while attempting 
to solve the problems.  However, it is recommended that the solution to 
each problem should initially be attempted without the assistance of the 
comments.

There are 35 open-ended problems in this Section.  As stated above, 
if difficulty is encountered in solving any particular problem, the reader 
should next refer to the comment, if any is provided with the problem.  
The reader should also note that the more difficult problems are generally 
located at or near the end of the Section.

1.	 Describe the early history associated with material science 
and engineering.

2.	 Discuss the recent advances in materials science and 
engineering.

3.	 Select a refereed, published article on materials science and 
engineering from the literature and provide a review.

4.	 Provide some normal everyday domestic application 
involving the general topic of materials science and 
engineering.

5.	 Develop an original problem in materials science and engi-
neering that would be suitable as an illustrative example in 
a book.

6.	 Prepare a list of the various books that have been written 
on materials science and engineering.  Select the three 
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best and justify your answer.  Also select the three weakest 
books and justify your answer.

7.	 Define and discuss materials science and engineering in 
layman terms.

8.	 Why is the general subject of materials science and engi-
neering important to the chemical engineer?

9.	 Attempt to improve on the present state of chemical 
nomenclature.

10.	 Define atomic number and mass number and explain their 
difference(s).   Also discuss the basis/reasoning of repre-
senting the atomic mass unit as a Dalton.

11.	 Define an isotope in layman terms.
12.	 In your own words, provide a description of nuclear 

chemistry.
13.	 Discuss the impact nanotechnology has on the teaching of 

materials science and engineering.
14.	 Explain in technical detail the wave nature of light.
15.	 Explain the electronegative spectrum in both technical and 

layman terms.
16.	 Describe the history of the periodic table. (Comment: See 

Problem 1 in the previous Section.)
17.	 Attempt to improve the present format of the periodic 

table. (Comment: See Problem 1 in the previous Section.)
18.	 Discuss the role the Boltzmann constant plays in materials 

science and engineering.
19.	 Describe Bragg’s Law in layman terms. (Comment: See 

problem 3 in the previous Section)
20.	 Provide a brief description of ferrous metals and alloys.
21.	 List some of the various organic non-metals.
22.	 Describe each of the following materials:

a.	 High silicon cast irons
b.	 Stainless steel
c.	 Hastalloy

23.	 Describe the various alloys of aluminum.
24.	 What is the difference between brass and bronze?
25.	 List and describe the various thermoplastics.
26.	 Provide examples of low-temperature materials and high-

temperature materials.
27.	 List some of the various inorganic nonmetallics
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28.	 Provide your own thoughts on the future of ceramic 
materials.

29.	 Describe the various corrosion-testing methods.
30.	 Provide some key properties of the following materials:

•	 Wood
•	 Natural rubber
•	 Carbon and graphite
•	 Asphalt

31.	 Obtain the thermal conductivities of a dozen common 
insulating materials. (Comment: This will require review-
ing the materials literature.) 

32.	 Explain why most pierced ears are allowed to heal with a 
gold post in the opening.

33.	 Describe the relationship between the modulus of elas-
ticity of an amorphous polymer and the glass transition 
temperature. Also provide the explanation in graphical 
form.

34.	 You have been hired as a consultant to provide a recom-
mendation to replace gold-plated pieces in computer chips 
with either copper or steel. Pieces prepare an abstract of a 
report you would submit in this recommendation.

35.	 A company’s research laboratory determines that the den-
sity of platinum is 21.51 g/cc. However, the value listed in 
the literature is 21.45 g/cc. Assuming that each value is 
accurate to 4 significant digits, that the discrepancy is due to 
atom vacancies alone, and that the vacancies have no effect 
on the crystal volume, determine what fraction of the unit 
cells with measured density contains vacancies, or, equiva-
lently, the number of vacancies per unit cell. (Comment: 
One should first note that the number of vacancies per unit 
cell is equivalent to the fraction of unit cells. To demon-
strate this fact, first assume that a unit cell cannot contain 
more than one vacancy.  This is a valid assumption; a min-
iscule number of cells may, in fact, have more than once 
vacancy, but because of the extremely small number of 
vacancies (one out of 369 sites, in this case), one can expect 
the vacancies to be widely distributed throughout the crys-
tal, and the chances of two vacancies occupying the same 
cell to be almost non-existent.  If 10,000 unit cells contain 
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11 vacancies (as in this problem), one may conclude that 
11 of those cells contain on the average, one vacancy each.  
This is the same as saying that 11/10,000 or 0.011 of the 
unit cells contain vacancies. 
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