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In this book, we have discussed a number of applications of systems biology and
synthetic biology. In fact, the scope and potential applications of systems biology and
synthetic biology are not yet fully defined. As we ponder the future directions in
biology research, there remain many open issues, including those that are discussed.

20.1 OUTSTANDING SPECIFIC ISSUES

20.1.1 Systems Biology and Synthetic Biology for the
Investigation of Nonprotein-Coding RNAs

The epoch of systems biology and synthetic biology began when whole-genome
sequences for various organisms started to accumulate. The amount and precision of
this information made it possible to map the coding and noncoding regions and the
hierarchy of regulatory mechanisms, relationships among structural and functional
assemblies, subcellular organelles and compartments, and interaction with external
signals. One of the most important discoveries of the last few years has been the

Systems Biology and Synthetic Biology Edited by Pengcheng Fu and Sven Panke
Copyright � 2009 John Wiley & Sons, Inc.

615



identification of small, nonprotein-coding RNAs (ncRNAs) that act as integral
regulatory components of cellular networks [1]. ncRNAs serve an astonishing variety
of functions and thus play important roles in many intracellular processes, from
transcriptional regulation, gene silencing, chromosomal replication, through RNA
processing and modification, mRNA stability and translation, to protein degradation
and translocation, and so on [2]. The size of ncRNAs range from about 20 nt for the
large family of microRNAs (miRNAs) that modulate development inCaenorhabditis
elegans, Drosophila, and mammals [3–8] to 100–200 nt for small RNAs (sRNAs)
commonly found as translational regulators in bacterial cells [9,10] andup to10,000 nt
for RNAs involved in gene silencing in higher eukaryotes [11–13]. There are two
approaches to searching for ncRNAs: computation methods that focus on intergenic
regions and expression-based methods that examine expression levels of the tran-
scripts [2]. Systematic identification and characterization of ncRNAs in genomes has
become one of the most exciting challenges in cellular and development biology.

Among the noncoding RNA genes that produce functional molecules instead of
encoding proteins, a large number of newly identified RNAs have been found to
function as regulators [1]. These regulatoryRNAs (reRNAs) impact all the steps in the
genetic information pathways, and may serve as transcriptional regulators, transla-
tional regulators, modulators of protein function, or regulators of RNA and protein
distribution. Study of many of these RNAs in bacteria and eukaryotes has shown a
surprisingly high degree of similarity between regulatory RNAs in all types of
organisms [1]. Therefore, insights gained by investigation of the regulatory role of
reRNAs using one system are applicable to other systems as well. reRNAs are now
recognized toplay important roles as regulatory elements, yet littleworkhasbeendone
on a global scale to identify these intracellular regulators. Elucidation of correlations
between expression levels of regulatory RNAs and cell metabolism such as photo-
synthesis and respiration may reveal the occurrence of hitherto unknown regulatory
mechanisms. This information may clarify the mechanisms of gene expression and
gene regulation. Itmay also facilitate rational engineering of the signaling, regulatory,
and metabolic networks for desirable cellular functions.

Compared to protein-codingRNAs, ncRNAs are relatively small. ncRNAs are hard
to find by classical mutational screens because they are inherently immune to
frameshift or nonsense mutations [14]. Therefore, limitations exist for both computa-
tion-based and expression-based ncRNA detection methods. Recently, research
efforts have been made to carry out systematic ncRNA gene-identification screens
along three main lines: cDNA cloning and sequencing tailored to find new small non-
mRNAs [15]; specially designed cDNA cloning screens for a new regulatory RNA
gene family of miRNAs [3–5]; and comparative genome analysis for general ncRNA
gene finding [16–18].

Systematic identification and characterization of ncRNAs in bacterial and eukary-
otic genomes has become one of the most exciting challenges in cellular and
development biology. There exists a controversial ‘‘introns-first” theory [19] that
states that from the evolutionary point of view, the ncRNA molecules predate the
origin of protein translation and therefore predate the exons surrounding them. It is
believed that the contemporary introns housing functional RNAs are ancient relics of
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the RNAworld genome organization, and the newer protein regions surrounding them
represent sequences that were originally noncoding and from which protein genes
were eventually spawned [20].On the contrary, search for newncRNAshas resulted in
finding many such ncRNAs with apparently well-adapted and specialized biological
roles in the cellular transcription machinery [14].

Now can we use systems biology approaches to strive to understand how informa-
tion flow in cells is adjusted by particular reRNAs, and how expression, function, and
turnover of these reRNAs themselves are controlled. Elucidation of correlations
between expression levels of reRNAs andmetabolic flux distributions under different
environmental perturbations may reveal the occurrence of hitherto unknown regula-
tory mechanisms. This information may clarify the mechanisms of gene expression
and gene regulation. The next issue iswhetherwe can facilitate rational engineering of
the signaling, regulatory, and metabolic networks containing ncRNAs for desirable
cellular functions.

20.1.2 Dimension Reduction in Systems Biology and Synthetic
Biology Applications

Systems biology is inherently a universe in which every ‘‘ome”—genome, transcrip-
tome, proteome,metabolome, interactome, phenome, and soon, is another dimension.
We have to reduce this dimensionality through integration in order to comprehend,
evaluate, and make use of the information. Integrating and evaluating the knowledge
bases with their highly disparate nomenclature and frames of reference is arguably the
greatestmethodological challenge in this newdiscipline.Oneexample is the concisely
described work of Toyoda and Wada, who have developed means of defining the
dimensions of several data sets in common terms and projecting the intersections of
these sets in two dimensions [21]. Their premise is that the intersections have four
defining properties: data set, position, dynamics, and probability that the putative
relationship actually exists. The implementation of their ‘‘genome-phenome super-
highway” (GPS) for human, mouse, the worm Caenorhabditis elegans, and the
mustard plant Arabidopsis thaliana may be found at http://omicspace.riken.jp/gps.

Each ‘‘omic” domain has its own unique annotation terminology and attributes,
which has led to the development of unique ‘‘markup languages” compatiblewith the
Internet HTML, Perl, and other computational data-handling conventions. These
include ‘‘G-language” for the genomics environment [22], CellML, MathML, and
SBML (systems biology markup language) [23], to name a few.

Given the huge amount of data produced in array-based studies, how does one
(a) assess its reliability, (b) interpret it in a systematic, unbiased way, and (c) deter-
mine the completeness of the data set? A substantial literature has been developed just
to address each of these questions. Chen et al. [24] provide a brief introduction and
guide to the reliability and analysis aspects. Reliability is affected by the physical
quality and composition of the array, stringency of the experimental conditions,
background gene expression, and similarities among the probes. Nonlinear responses
are inherent in biological systems, so appropriate nonlinear multivariate analysis is
essential. Further research is needed to enable efficient database search, development
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of programming language and data fusion for systems level understanding in biology
and the integration of well-characterized biological parts into genetic circuits and
metabolic networks for desired end products.

20.1.3 The Quest for the ‘‘Minimal Organism’’ and the Creation of
Artificial Life Forms

Systemsbiologists andsyntheticbiologists are interested indetermining the smallest set
of genes, molecules, and structures for replication, growth,metabolism, and regulation
that comprises life. Study of such aminimal gene set and its features may shed light on
the basics of cellular function, help to determine the subset of essential genes in most
species, and improve functionality. Theoretical and experimental efforts have been
madeusingcomparativegenomicsandsystemsanalysis todeterminethe listofessential
genes for a suite of minimal functions that many organisms have in common [25]. The
smallest possible group of genes from small genomes is presumed necessary and
sufficient for sustaining the functional growth of cells in the presence of a full
complement of essential nutrients and in the absence of environmental stress [26].

Methods for making estimates of the ‘‘minimal gene set” by experimental biology
include saturating transposon mutagenesis (gene knockout) [27] and gene silencing
with antisense RNA [28], and so on. These genes can also be computationally
identified from the well-studied organisms with small genomes by comparison of
essential and nonessential proteins across related genera [29], and using a database of
essential genes [30]. For example, Mycoplasma genitalium contains the smallest
genome of any organism, and has a minimal metabolism. Glass et al. [31] have used
global transposonmutagenesis to isolate and characterize the gene disruptionmutants
for100different nonessential protein-codinggenes.Theyhave identified382essential
genes from the 482 M. genitalium protein-coding genes. Disruption of some genes
accelerated theM.genitaliumgrowth. The resultingM.genitaliummutants represent a
close approximation to the minimal set of genes needed to sustain bacterial life, with
little genomic redundancy [32]. Another study, analyzing viable gene knockouts in
Bacillus subtilis, M. genitalium, and Mycoplasma pneumoniae, has resulted in a
similar estimate [33]. It was found that approximately 80 genes out of the 250 in the
original minimal gene set are represented by orthologs in all life forms. For �15
percent of the genes from the minimal number of genes, viable knockouts were
obtained inM.genitalium [25].Escherichia coli is also usedas amodel system forgene
knockout to create a reduced ‘‘clean genome.” Fred Blattner’s team [34] has removed
about 750 ‘‘redundant genes” and planned to delete 500–600 more genes to approach
the ‘‘core genome” that may be common to all organisms. It was claimed that after the
gene removal, the constructswere observed tobemoregenetically stable and to exhibit
increased protein synthesis and electroporation efficiency [34].

The quest for the minimal genomewill improve our understanding of theworkings
of bacterial lives at systems level. On the other hand, the ultimate dream of the
synthetic biologists is to create novel life forms that do not exist in nature. For this
purpose, minimal organisms may be built up by designing a modular system from
‘‘ground zero” that can be given functions. It may involve the design and assembly of
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genetic circuits andmetabolic pathways and evenwhole chromosomes from chemical
components of DNA. Researchers in Synthetic Genomics Inc. (http://www.synthe-
ticgenomics.com/index.htm) have achieved this technical feat by chemically making
DNA fragments in their laboratory and developing newmethods for the assembly and
reproduction of the DNA segments.

The goal is to obtain a synthetic chromosome, and eventually a synthetic cell for the
construction of ‘‘biofactories” for the energy, chemical, and pharmaceutical industries.
The synthetic chromosome created in Synthetic Genomics, Inc. was named
Mycoplasma laboratorium. It can be transplanted into a living cell where it should
‘‘take control” of the cellular metabolism. AlthoughM. laboratoriumwas claimed as a
man-madebacterium, there exist somequestionsabout it because thepartially synthetic
life formwascomposedofbuildingblocks fromalreadyexistingorganisms.Evenwhen
thewholechromosomecanbesynthesizedfromchemicalcomponents,willweconsider
the engineered cells to be new life forms, or should we also require the synthesis of
ribosomes and other components necessary for the expression of genetic information
contained in the genome before accepting the result as an ‘‘authentic” new cell?

20.1.4 Systems Biology and the Evolution of Organelles

The properties, genomes, and functions of plastids andmitochondria are an obligatory
part of systems biology studies of eukaryotes. Genomic and biochemical studies have
established that mitochondria most likely evolved from the rickettsial group of a-
proteobacteria [35].The reRNAsequences in thegenomesofaerobicmitochondria are
most homologous to those of a-proteobacteria, specifically those of Rhodospirillum,
Bradyrhizobium, and Rickettsia [36]. Homologues of 18 different rickettsial proteins
are encoded in mitochondrial DNA, and in yeast, the nuclear genome encodes more
that 150mitochondrial proteins with homologues inRickettsiales [37]. The rickettsial
pathway for ATP production and that of aerobic mitochondria are virtually identical,
and the individual enzymes are orthologs. The properties of rickettsia as an obligate
intracellular pathogen, its ability to transport molecules in either direction across its
cell walls, and other key factors firmly support the concept that aerobic mitochondria
evolved from a-proteobacteria.

Anaerobic environments ranging from sea floor sediments to the gastrointestinal
tracts of vertebrates and invertebrates are populated by extremely diverse communi-
ties of lower single-cell andmulticellular eukaryotic life forms. Some eukaryotes have
adapted to anaerobic life by using alternate mitochondrial respiratory pathways, such
as reduction of fumarate to succinate, using rhodoquinone instead of ubiquinone as
electron carrier [38,39]. These organisms retain their mitochondria and have been
called ‘‘Type I anaerobic eukaryotes.” Additional organisms with ‘‘anaerobic mito-
chondria” include the fungus Fusarium oxysporum that uses a nitrate respiration
pathway, platyhelminthes that utilize fumarate respiration, and trypanosomes that
produce succinic acid while making ATP (summarized by Rotte et al. [40]). Perhaps
most unusual is the mitochondrion of the anaerobic ciliate protist Nictotherus ovalis,
which generates ATP with protons as the terminal electron acceptor, thus producing
molecular hydrogen [41,42].
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A second group of primitive anaerobic eukaryotes, most notably the parasitic
trichomonads such as Tritrichomonas fetus in cattle, Trichomonas vaginalis in
humans, some ciliated protozoa, and the cattle rumen chytrid fungi Neocallimastix
and Piromyces have developed hydrogenosomes—an organelle with intriguing
similarities and differences compared to anaerobic, as well as aerobic mitochon-
dria [43]. Hydrogenosomes produce ATP as well as hydrogen. Although mito-
chondria use pyruvate dehydrogenase, the TCA cycle to regenerate CoA�SH,
and molecular oxygen as the terminal electron acceptor, hydrogenosomes have
pyruvate-ferredoxin oxidoreductase, no TCA cycle, succinate-acetate CoA trans-
ferase and succinyl-CoA synthase to regenerate CoA�SH, and protons as the
terminal electron acceptor [40]. Hydrogenosomes and mitochondria use the same
‘‘transit peptides” for protein importation. Other proteins common to both organ-
elle types include Hsp 10, Hsp 60, and Hsp 70, the succinyl-CoA synthase subunits
a and b, and similar variants of ATP-ADP translocase. Early studies found no
DNA in hydrogenosomes. In 1998, Akhmanova et al. [42] described genomic DNA
in putative ‘‘hydrogenosomes” in the anaerobic ciliate Nictotherus ovalis. In
retrospect, it appears more correct to describe the organelle in this species as
an anaerobic mitochondrion.

The discovery of single-celled eukaryotes that had no mitochondria or hydro-
genosomes originally suggested that these organisms were ancestors of eukaryotes
that had the organelles (presumably endosymbionts of bacterial or archaean
origin). These simple eukaryotes of four types—Metamonads, Microsporidia,
Parabasalia, and Archamoebae—were grouped as a subkingdom called
Archezoa [44] to distinguish them from Mitozoa, the subkingdom of all eukaryotes
that contain mitochondria [45]. Ribosomal RNA sequencing indicated that the
Archezoa predated the other known eukaryotes, and Archaezoan ribosomes were
70S, corresponding to those of prokaryotes. However, subsequently it was shown
that several Archaezoa contained enzyme-coding mitochondrial DNA
sequences [46]. Trichomonas, a Parabasalian, were found to contain hydrogeno-
somes, Microsporidia undergo meiosis and have tubulin genes that relate these taxa
to fungi, and at least one type of Metamonad expresses a chaperonin immuno-
chemically homologous to mitochondrial cpn60. In summary, the more recent and
definitive research indicates that Archezoa are among the earliest eukaryotes, but
they do not predate the endosymbiosis of mitochondria and hydrogenosomes [44].
That various Archezoa lack mitochondria, hydrogenosomes, peroxisomes, or other
organelles as presumptive endosymbionts has been called, ‘‘. . .a secondary reduc-
tion caused by their parasitic lifestyle.” [45]

In summary, a critical mass of genomic, proteomic, and phylogenetic data has
finally accrued to support a comprehensive hypothesis for the origin of eukaryotes,
consistentwith the knownproperties of anaerobic and aerobicmitochondria, aswell as
hydrogenosomes.This hypothesis takes into account themetabolic pathways, electron
transport chains, protein importation signals [47], gene loss and transfer to the host cell
nucleus [48,49], assembly of Fe–S centers and their incorporation into apopro-
teins [50], chaperonins, enzymes, and lipids of the endoplasmic reticulum and nuclear
envelope membranes.
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How,and fromwhat progenitors, did the first single-cell andmulticelled eukaryotes
develop? How did the nucleus, mitochondria, chloroplasts, and other organelles
originate? What primal events led to the formation of chromosomes? Or the mechan-
ismsof cell division?Ormeiosis and sexual recombination?At themolecular level, the
following questions include: How and when did RNA and DNA first develop? What
transformed a world based on RNA as a carrier of genetic information and enzymatic
activity into one in which the genetic information resided in DNA, and enzymatic
catalysis was endowed in proteins?

A great deal of evidence acquired over the past 30 years supports the theory that
mitochondria and hydrogenosomes originated as bacteria that developed an endo-
symbiotic relationship with eukaryotes. Various hypotheses have been forwarded to
reconcile experimental data with how, and at what stage of evolution, the symbiosis
occurred.

20.2 OUTSTANDING GENERAL ISSUES

An appropriate framework for systems and synthetic biology requires the con-
struction of a naturalistic paradigm and philosophy of science for biological
research. That project remains incomplete. In what follows a number of component
issues in that project are discussed. Although progress toward a naturalistic
understanding has been made in each case, there are also future unresolved
challenges to the task.

20.2.1 Mechanism and Reduction

While the new high-throughput experimental technologies can profile all the
chemical components within a cell as whole, and this has an interest in itself,
the ultimate goal is to understand cellular physiology, that is, to understand how
these components deliver cellular functioning. To do this it is necessary to study the
dynamical interrelations among the components. And because the componentsmust
clearly interrelate in multiple ways to deliver function, it will be the complex
dynamical system they jointly comprise that must be uncovered. It is this object that
is the common core of systems and synthetic biology, and it is its representation as a
complex dynamical system that forms the basis of their distinctively new and
powerful modeling tools—and raises the issues in Section 20.1 (see Section 20.2.6
for a further issue within this claim)

This raises a basic ontological issue (i.e., one concerning what exists): what is the
relationship between physiologically described function and biochemically described
dynamical states and processes? The obvious response to make is that the two are one
and the same; that, for example, aerobic cellular respiration is nothing but ATP
synthesis through glycolysis, Krebs cycling, and electron transport. This is reduction
by identification. The physiological function of respiration is identically reduced to, is
identical to, and so nothing other than the dynamical system process. (All this
assuming that the biochemical systems models involved are empirically supported
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and predictively and explanatorily adequate; an assumption made throughout this
discussion.1)

There is a large philosophical literature on reduction, some of it proclaiming
reduction and much arguing against reduction, especially in biology. Yet, from a
scientific point of view it would be anomalous to claim anything less than a
reduction, for example, to claim instead just a correlation between the occurrence
of functional and biochemical systems properties, because this would leave
unexplained duplicate realities, one functional and the other dynamical. Against
the advice of Occam’s razor, it would leave two realms mirroring each other but
running in parallel, for no substantive reason. In what follows the state of
philosophical debate is briefly summarized, from a commonsense scientist-friendly
point of view, in order to focus on the specific issues at stake for systems and
synthetic biology.

20.2.1.1 General Objections Perhaps surprisingly, one group of philosophi-
cal objections to reduction in general argues that correlationmust be accepted because
identification is impossible. These arguments largely turn on semantic (meaning)
considerations: talk of functioning, for example, of respiring, the argument goes, has a
very differentmeaning from talk of biochemical states and state transitions, so the two
can never be identified, even if they are 1:1 correlated. The proper response to this kind
of objection is to point out that it relies on a priori claims about semantics that are very
unlikely in the face of what we know scientifically about language: roughly, that its
recent evolutionary emergence, rapid dynamical shifts in vocabulary, syntax, and
semantics as historical conditions change, and action-centered intentional basis, all
suggest that current semantics are better treated as themselves shifting dynamical
emergents, not a priori constraints.2 There would need to be better reasons than these
to defeat a general identification of the two subject matters described.

Another group of arguments turns on the fact that themirroring is often not precise,
that often there will be particular phenomenological conditions (e.g., ‘‘respiration”)
that do not nicely reduce to exactly corresponding underlying conditions (e.g., ‘‘ATP
synthesis”) of exactly the same scope. This is true, and not only because of the
anaerobic organisms and other energy storage molecules, but also because of the
complexdynamics. For instance, evenKepler’s lawsof planetarymotiondonot reduce
exactly to a theorem of Newtonian mechanics because planet–planet interactions
produce small deviations from Kepler’s generalizations. This will be a common

1The issue of when andwhy that assumption is reasonable is just the general issue of the nature of scientific
method at large. It turns out that scientific method is much more complex (and interesting!) than the neat
logicalmodels towhich the philosophers had hoped to reduce it, andmust itself be understood in dynamical
systems terms, but this is another story—see Ref. [51] and, for example, Ref. [52].
2 For those interested in the technicalities, a same-dynamical-role criterion of property identity is a useful
small first step toward a more plausible alternative semantics and this already suffices to license
identification of functions with dynamical processes, should other substantive requirements be met.
This is argued in Part II of Ref. [53]. For a bioorganizational approach to the underlying intentionality,
see Ref. [54].
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situation wherever a more complex dynamics underlies more phenomenological
observations. In such cases, surely, so long as the departures from strict correspon-
dence can also be explained by the underlying (reducing) dynamics, the reduction can
be considered successful. Call the last the explanatory principle.

This works well for cases where the departures are small. However, there are
also large departures, such as in the relationship of phlogiston chemistry to
oxygen chemistry, where we deny that phlogiston exists even if its postulation
served to codify a number of chemical relationships that survive the replacement.
And there are intermediate cases, for example, the imperfections of the thermo-
dynamics–statistical mechanics relation. How are these to be treated? To decide
we need to remind ourselves that for science reduction is not only about
satisfying metaphysical curiosity, from a methodological point of view, but it
is also primarily about extending explanation and evaluating the potential errors
involved in using the phenomenological model to explain, in place of the
underlying one. (Hence the explanatory principle above.) From this perspective,
reduction is ultimately about the capacity to systematically replace one kind of
description (the more phenomenological one) with another kind (the more basic,
theoretical one) that is equally or more precise and equally or more predictively
and explanatorily powerful. This satisfies the key cognitive aims of science.
Reduction by identification then forms one extreme of a spectrum, where component
ontology as well as relational structure is conserved under the replacement. The other
extreme is occupied by cases like phlogiston where significant relational structure, but
not ontology, is conserved under replacement.3 Mismatch along the spectrum means
that some nonconservation is melded with identificatory reduction. However, the key
point remains that when the explanatory requirement holds, overall reduction is
obtained.

20.2.1.2 Geneticism These general issues aside, an important part of the
philosophical objection to specifically biological reduction has really been to
geneticism, to the idea that organisms could be reduced to just a collection of
genes and gene-determined traits. Modern biology agrees with this objection, DNA
is one biochemical component among many—if with a distinguishable role—and it
is the dynamical system of all of them that sustains function. But, conversely, the
whole biochemical system now becomes the reduction candidate for physiology, so
the objection to geneticism does not defeat reduction, but just shifts its focus. Setting
aside that literature as well, there remains only those objections that are specific to
reduction of functions to systems dynamics.

20.2.1.3 Reduction of Function to Dynamics Some objections to this
have to do with the fact that our commonsense day-to-day function talk is rather

3 Beyond that, sheer discontinuous replacement would occur, but it is hard to think of a substantial case in
science. For the replacement view, see Part I of Ref. [53] and, more informally and accessibly, Ref. [55].
P. M. Churchland’s elegant overall strategy, more subtle but powerful than it may appear, is itself explained
in Ref. [56].
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imprecise for marrying up to dynamical systems specifications, while others stem
from the related problem that vague function descriptions can seem to cut across
what turn out to be the dynamical process distinctions. These can all be resolved
through a little careful analysis of language.4 This is useful to know in a field like
biology where talk of functions is ubiquitous, but often more pragmatic than
precise, especially considering that only features that have functional consequences
are likely to be modeled.

Setting general objections to reduction from function talk aside aswell, brings us at
last to the substantive conditions for function to system process reduction. First, we
specify a function as a map from inputs to outputs. For example, cellular respiration,
crudelyglobally specified, is the function that takes foodandwatermolecules as inputs
and outputs carbon dioxide. Note that more specific functional maps capturing the
process detail can clearly be constructed as required. Corresponding to this in the
molecular description is a dynamical process—that is, a metabolic map carried by
(biochemical) dynamical laws—that takes oxygen and glucose as inputs and yields
ATP (and perhaps other energy storage) and carbon dioxide as outputs. Then the
obvious requirement for identificational reduction is that the respiration functional
map be embeddable into the corresponding biochemical process map without
distortion (homomorphically embeddable). A further coherence condition is equally
obvious: the collection of all such embedded dynamical maps, together with any
nonfunctional data concerning the system, should provide a single coherently unified
biochemical model of the cell genome that preserves or increases predictive and
explanatory power.5 The embedding criterion essentially captures recent conceptions
of a function to mechanism reduction, reducing both the cell and multicellular
organisms to complexes of mechanisms.6

There is an inherent underdetermination by any function, taken in isolation, of its
correct embedding. Although this has sometimes been taken as a fundamental
objection to reduction, it ultimately reduces to a pragmatic issue of sufficient data.
The problem is nicely illustrated in the case of the output of a network of electrical
generators having a frequency variation less than that of any one generator; some kind

4 See Part III of Ref. [53] and, briefly, Ref. [57], Part V, case I and case II end.
5 See Part III of Ref. [53] and, briefly, Refs [56] and [57]. The basic reduction requirement, that functional
maps are mirrored by dynamical maps, is in fact just the application of Nagel’s [58] deductive reduction
conception, rightly understood. Nagel shows how scientists arrive at reduction of a law L2 or propertyP2 of
theoryT2 respectively toa lawL1orpropertyP1of theoryT1by first showinghowtochooseconditions (realor
idealized) underwhich it is possible to construct inT1 a lawL1 or propertyP1 thatwillmirror (be a relevantly
isomorphic dynamical image of) the dynamical behavior of L2 orP2. From that the reduction is shown to be
possible through the identification of L2 or P2 with the mirroring L1 or P1. Indeed, the requisite ‘‘bridging”
conditions canbededuced fromthemirroringcondition, and thenassertedas identitieson thebasis thatdoing
so will achieve a reduction, supported in that light by claims of spatiotemporal coincidence or appeal to
Occam’s razor.
6 See especially Refs [59, 60]. However, the conception of mechanism here does not yet adequately reflect
the importance of process organization to cellular function [61], an outstanding issue for future develop-
ment. Further on organization, see Sections 20.2.3 and 20.2.4.
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of feedback governing process is at work, but is it a real governor or simply the
functional appearance of one at the network level? The latter is possible because
connecting the electrical generators in parallel automatically creates a phase-stabi-
lizing mutual interaction among them without the need for a real governor.7 This
question is resolved by gathering other data about the network–this is the point of the
unification criterion above.

Nonetheless serious issues remain with the overall position. Rosen, for example,
argued that organisms could not be complexes of mechanisms in any compositional
sense and that theywere indeed notmechanisms.8Disentangling the aspects involved,
there remain these systems issues that must be resolved: (1) self-organization and
emergence, (2) the nature of the complexity in ‘‘complex of mechanisms,” and (3) the
specific implications of self-regeneration for (1) and (2). Of these (1) and (3) will
pose specific challenges for reduction. Conversely, however, a thoroughly dynamical
systems approach will allow us to understand the subtle intertwining of reduction and
its failure in emergence within a unifying framework, providing a full, naturalist
account of reduction and emergence in systems and synthetic biology. These three
issues are now discussed separately and in order.

20.2.2 Self-Organization and Emergence

In all systems it is true that the interacting components together create a dynamics that
would not otherwise be present. When the outcome is surprising or unexpected or too
complex to be readily understood, scientists are apt to talk about self-organized
emergent patterns. There are many reasons why leaving things like that is unsatisfac-
tory, among them that (i) no significant feature is addressed, our subjective surprise,
and so on, keeps shifting and has no substantive association with reality, and (ii) this
criterion is dynamically so weak as to trivialize these ideas. But when it comes to
strengthening the requirement, there is currently huge diversity of opinion about both
the concepts, self-organization and emergence. Two broad approaches to identifying
something more penetrating can be distinguished, one epistemic and the other causal
or dynamical.

The epistemic approach tightens up the subjectivity by adding a clause along the
lines that self-organization occurs when the resulting system dynamics could not
have been predicted from the known interaction rules of the components. Since the
dynamics is entirely internal to the system, it is properly referred to a self-
organized.

This approach is attractivebecause there aremanycomplexbehavioral patterns that
arise from the simplest interaction rules, for example,with social insects (hives of bees
and termitemounds), city traffic, and even simple population dynamics as reflected in
the logistic equation. However, it still ties the definition of evidently physical

7 For this example see Ref. [62] and further Part III of Ref. [53].
8 See Refs [63, 64]. Rosen’s objections have to do with the role of global organizational constraints on
organisms and are discussed under Section 20.2.4 below.
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properties to a cognitive test, and anyway proves difficult to formulate satisfactorily.9

So we pass to the option of a causal/dynamical criterion.
One causal/dynamical distinction stands out, and fixing on this avoids a long detour

through a tortuous literature. The distinguished difference is between patterns that
dynamically constrain their components—that show ‘‘top-down” dynamical
constraints—and those that do not. Consider the formation of an iron bar from cooling
molten iron. In this phase transition a macroscopic pattern of intermolecular relations
is formed, the iron crystal, which does thereafter have the power to constrain the
movements of its molecular components through the formation of a new macroscale
force constituted in the ionic lattice bonds formed. Its formation alters not only
individual component behavior but also the specific dynamics under which they are
now able to move: there are lattice vibrations and a Fermi conduction band in place of
liquid molecular dynamics, that is, the phase change alters the force form of the
dynamical equations that govern component behavior. The new macroscale force is
able to retain the constraint relationship invariant under component fluctuations and
exogenous perturbations, through lattice dissipation of these perturbing energies as
sound and/or heat.10

By contrast, from intersecting shallow waves on a gently undulating beach there
emerges themost beautiful and intricate patterns, but there is no comparable constraint
formed by their interaction; shift the underlying sand structure and the dynamics can
shift to entirely other patterns. Similarly, there is no dynamical constraint internal to
social insect societies comparable to the ferric crystal force and compelling their insect
members to satisfy hive and mound laws, or compelling city drivers to create traffic
jams, and so on. All of these patterns are produced by dynamical interactions of
components and thus reflect their ‘‘bottom-up” dynamical constraints, but only some
also express top-down dynamical constraint.

It is natural to choose the formation of a new top-down constraint as a criterion of
emergence for just this characterizes the coming into being of a new dynamical
existence.The iron top-downconstraint formationconstitutes the coming intobeingof

9As it stands, the text formulation is intolerably vague: Predicted by whom? Knowing what? Using what
tools? And it makes an apparently ontological distinction (the existence of emergent behavior) depend on a
cognitive condition (humanpredictive capacity). If, in response, the criterion is instead formulated along the
lines of ‘‘cannot be derived from the set of interaction rules,” then these problems are lessened, but only to be
replaced by the problem of what counts as an acceptable derivation. If derivation includes computational
modeling of collective dynamics then almost all dynamics counts as derivable and nothing self-organizes.
(Perhapsnoncomputabledynamicsmightbeconsideredanexception,but since thisoccurs inquantumtheory
and other ‘‘wave” dynamics, it seems a peculiar boundary.) If instead derivation is restricted to logical
deduction thenalmost everything self-organizes since thedemandfor analyticclosed-formsolutions fails for
almost all sets of differential equations. No satisfactory criterion of in-between scope is readily formulable.
10 The iron bar is a new macroscale level with respect to its molecular constituents because it has its own
characteristic dynamical interaction form. All other talk of levels either concerns measurement (liquid
level), gravitation (level surface), or ismetaphorical (semantic, social, abstraction, theory . . . levels) and can
thus be paraphrased away—or is confused. Note that the presence of a top-down constraint does not fully
determine the specific dynamical form of the system; both the virtual and real electrical governor
arrangements (see footnote 7 and text) exhibit the same phase-stabilizing top-down constraint.
Distinguishing between them is the electrical engineering ‘‘system identification” problem.
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anew, individuatedcapacity to dowork, expressedboth endogenously indissipationof
perturbations and exogenously in rigid body action. It is the arrival of a newdynamical
individual characterized by a new dynamical form.11 The character of the new
individual is constituted by its capacity to do new work. To broaden the criterion
further would be to conflate genuine interactive emergencewith themere emerging in
time of a pattern (as ‘‘from concealment”).

Real emergent dynamical filtering insures that macroscopic properties have the
stability we find them to have, making the macroscopic world as viably simple to
survive in as it is for macroscopic creatures like us. But it also applies to smaller-scale
structures; cellular metabolic regenerative organization and the cellular structures it
sustains, for example, are emergent top-down constraints and cellular function would
not be stable without them.12 But by providing higher level structure for lower level
processes, all these constraints actually underpin the reduction of the functions served
to dynamical processes (and of course the constraints themselves and attendant
structures to dynamical compounds of the components whose interactions constitute
them).13 Emergence heralds the presence of an irreducibly new dynamical existent;
reduction to the components alone fails.Yet, contrary to the standard viewof reduction
and emergence as opposed, this discussion shows that emergence and reduction are
intricately interwoven and mutually supportive.

There is no physicalmystery about thiswhen a dynamicalmodel of emergence is to
hand since it is precisely what the filtering consequent upon formation of a new
dynamical constraint provides. In this way, we naturalize emergence for science. And
it is precisely on that general basis, andonlyon that basis, thatwecan track causal paths
‘‘up” and ‘‘down” through the component/supracomponent levels and thus, come to

11 In a more traditional philosophical language, the iron bar is supervenient on its molecules; nothing about
the bar can change without the change being dynamically grounded in appropriate molecular changes. But
dynamical analysis provides a much richer language in which to discuss the possibilities. First, it specifies
top-down behavioral constraint formation in terms of change in dynamical form, the change in form
describing the causal power this novel constraint possesses. (This also distinguishes such effects as
nonepiphenomenal.) Second, the dynamics itself shows how the constraint, a (relatively) macrolevel state/
property, is determined by the states/properties of its microconstituents and so is supervenient on them, yet
can nonetheless also constitute a constraint on them. Here dynamics gives the constraint a subtle status that
eludes conventional formal analysis, combining what common philosophical assumption opposes. (See
Refs [57] and [65].) Thus, dynamical determination, there being only one dynamical possibility for the
collective dynamical state/property, cannot be equated with logical determination—the collective dynam-
ical state/property is logically derivable from but can be expressed as a logical sum of its constituent states/
properties. The former is specified as the constituents fixing all space–time trajectories so as to allow only
one macropossibility, but these trajectories may be computationally strongly inaccessible, for example,
through all critical point phase transitions. The neuroscientist Roger Sperrywas among the early adopters of
a top-down constraint model of mind emergence, see in later summary [66].
12 For a systems biology illustration and discussion see Refs [67] and [68].
13Metaphysical aside. If there are unique, unchanging, spatiotemporally local, fundamental dynamical
entities (e.g., chemical ions as biochemical atoms) then there is no fundamental emergence, only existential
emergents having these entities as ultimate components in various dynamical compounds. But top-down
constraint formation of itself does not require this. Fundamental nonlinear fields would yield the same
emergent result and there are no such local components, while mutant spatiotemporally local fundamental
components would issue in fundamental kind emergence.
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understand cellular and multicellular organization. However, there remains a
challenge for science, though not specifically for biological science, to find a full
analytic mathematical treatment of the top-down formation process that permits a
more rigorous and general discussion of when, where, and how it occurs, in biological
systems in particular. The ‘‘how” is the difficult part.

While this seems the proper way to deal with emergence, it might be allowed that
self-organization should be more broadly defined to capture simply the central idea
that the resulting pattern is brought about through the interactions of the system
components. The colloquial term ‘‘organize,” as in ‘‘get organized,” encourages this
wide connotation. This position is permissible; all that then matters is that the
definition of the term is clear, as Alice’s Humpty Dumpty allowed. Under the wider
usage self-organization is coextensive with organization (widely interpreted) but
neither coincides with emergence, while under the narrower constraint-formation
usage, self-organization coincides with emergence, but neither coincides with
organization. As noted at the outset, there is no worthwhile definition to be
had that sits between these two options. In my view, it leads to clearer, stronger,
more scientifically useful conceptions of organization, self-organization, and
emergence to adopt the latter usage. For instance, the formation of a crystal is a
clear case of emergence, but not of any significant organization (see subsequently),
yet it is a paradigm self-organizing process in the sense of top-down constraint
formation.14

An immediate consequence worth noting is that self-organization need have
little to do with organization proper. This is as it should be. Organization is a
relational condition of systems where components play distinct roles but the roles
are so interrelated as to produce a coherent global outcome. A simple illustration is
found in theway the parts of a car engine are interrelated so as to deliver torque from
fuel ignition; a profound example lies in intracellular organization. Self-organiza-
tion is simply constraint formation and, as the case of crystallization shows, need
not involve the emergence of any organization. Crystal formation is, rather, an
instance of von Feurster’s correctly named principle of order-(not organization)-
from-noise (i.e., from random reassortment). von Feurster’s own example of
shaking coins down through successively smaller size filters orders them by size
but does not organize them in any interesting sense. The unfortunately wide
colloquial connotation of ‘‘organize” conflates order and organization, which
are important to distinguish in understanding what is distinctive of living systems
(see subsequently).

20.2.3 Organization and Complexity

Complex systems are complex, not only because they have many components, but
fundamentally also because they are organized.15 This raises two complementary

14 For this position see Ref. [69].
15All of the further properties they may show—see 19.4.1—are forms of organization.
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issues, the nature of organization as a form of complexity and the nature of the
constraints that ensures overall functionality. Here we focus on the former issue and
address the latter issue in the next section.

We begin with order, the basic relational notion of which organization is a
special form. The root notion of complex order is that derived from algorithmic
complexity theory: the complexity of the order in a pattern is measured by the
length of its shortest, most compressed, complete description. A crystal lattice is
simply ordered: it has a short compressed description given by fixing the locations
of all ions as multiples of crystal plane distances away from any one reference ion.
A gas, by contrast, has a very long minimal description and hence is maximally
complexly ordered because its component molecules are all moving at random, so
the position of each has to be separately specified. The crystal is highly ordered
and the gas highly disordered. By contrast, an organized system is one where a
number of distinct kinds of components playing unique roles nonetheless interre-
late so that together they support one or more overall, global functions; a car
engine and an organism are paradigm cases. The extremes of order are equally
inhospitable to organization; a highly ordered system is too uniform, and a highly
disordered system is too random, to support the variety of specific interrelation-
ships required for organization. The relation of the piston rod movement in a car
engine to that of the behavior of the fuel injector is very different from its relation
to the exhaust muffler temperature, yet all combine to produce harmonious
functioning. The variety in the relationships explains why too simple or high
orderedness restricts organization, while the occurrence of the systematic inter-
relationships among the components explains why too complex or low orderedness
equally restricts organization. Organization occurs in an intermediate ‘‘window” of
ordered complexity between extremes. Thus, complex organization, as in living
cells, is not straightforwardly complex in the sense of algorithmic complexity, but
in some other sense.

Subtle, multiple different coordinations—that is, correlations—are required for
complex organization if its very different component roles are to jointly serve a
function. That is, it involves nested, higher order correlations of correlations. Very
complexly organized systems, like cells, multicellular organisms, and cities are
characterized by many layers or orders of correlations of correlations. Let us mean
by a system’s organizational depth roughly the number of nestings of subordering
relationswithin it (cf. cellswithin organswithin bodieswithin communities). Then the
complexity of an organization is better measured by its organizational depth than it is
by algorithmic complexity.

But it is still not a very satisfactorymeasure, primarily because it does not take into
account the appearance of top-down constraints within nested systems, that is, it
misses regulatory hierarchy and modularity. The class of all merely nested systems
includes, but is much wider than, that of the organized systems, since organized
systemsmust also sustain a global function. To achieve a global function an organized
system exhibits a highest order global correlation expressing a global constraint (to
performing its functions), with nested sets of lower order correlations within that,
someof themmodularizedby lower order top-downconstraints.Wehaveas yet noway
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to properly take all these features fully into account, and hence no satisfactory
definition of organizational complexity.16

More importantly for science, we have as yet neither a real capacity to represent
organization mathematically, nor a real capacity to investigate it experimentally. The
mathematical framework for dynamical modeling in most of science, including
systems and synthetic biology, is that of differential equations (d.e.s) as vector fields
on differential manifolds, for example, on system phase space. But these modeling
resources, powerful though they are for modeling the energetics of processes, do not
explicitly describe the physical organization of the system—a metabolic cycle and a
pendulum, for instance, may be modeled as equivalent dynamical oscillators. In a
phase space only theglobal dynamical states and their time evolution are specified, not
the organized processes that produce the dynamics; hence, it cannot capture organi-
zation. There is at present no obvious resolution to the general theoretical problem of
how to incorporate organizational principles into dynamical models in a principled
way. Correspondingly, the parameters we can measure are either component fea-
tures—biochemical concentrations and the like—or higher order regulation para-
meters, such as respiration rate. There are no experimental techniques for detecting
organization directly. Rather, it is reconstructed in retrospect after system relation-
ships, in the genome for instance, have been reconstructed fromwhat we canmeasure.
Thus, a future challenge to systems and synthetic biology is to become more
understanding of dynamical organization, both theoretically and experimentally.

20.2.4 Autonomy and Living Organization

The most basic global biological function is the regeneration of the body through
metabolism, utilizing intakes of air, water, and food; for without this nothing else is
possible. It is clearly a global function because it concerns the regeneration of the
whole body. Autonomy, a form of recursive self-maintenance, is the name given to the
global organizational constraint that must be met in order to support metabolic
function. It is worth explicitly identifying autonomy because of its useful roles.
For instance, it uniquely picks out the living systems fromwithin thewider domain of
complex, organized, nonlinear, dissipative (entropy increasing) and irreversible,
chemical and biological systems, providing an unbiased, operational criterion of
life hitherto missing and especially needed in exobiology. It also suffices to provide a
naturalistic grounding for agency (see subsequently) and fruitfully frames the evolu-
tion of intelligence (see subsequently), thus also providing a framework for (organi-
cally) intelligent robotics. Let us explore the idea.

Finite systems sustaining dynamical equilibria far-from-(static)-equilibrium must
do so by irreversibly taking in ordered or low entropy energy andmaterial components
from their environment and exporting it to material components carrying dissipated,

16Gell-Mann [70] discusses effective complexity and logical depth (see Ref. [71]) as other possibilities, but
neither is satisfactory for various reasons he notices, but fundamentally because these too are general
dynamical conceptions and do not directly include top-down constraints (for some further discussion see
Ref. [69]).
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less ordered, or higher entropy energy. These open systems must be organized: by the
Morowitz theorem they must have at least one, and typically have many, closed-loop
processes running within them.

For instance, a candle flame creates a thermodynamic asymmetry between itself
and its environment, including an organizational asymmetry as it both preheats its own
fuel supply (oil or wax) and creates a convection air current that delivers fresh oxygen
to the flame. By supporting these two cyclical processes, the candle flame process
contributes to the maintenance of the process temperature; in those partial respects, it
is self-maintained (including of its self-maintenance capacity). But it has no self-
regulatory capacity: should the flamediedown, it does not causemoreoxygen andwax
vapor to flow in to revive it or cause a search to bring about delivery of other means to
revive it, in contrast to hungry animals actively searching for food to revive them-
selves. The locus of regulation of these latter processes, if any, lies outside the flame
process.

Living beings from single cells ‘‘up” are also among these open, irreversible,
partially self-maintenance systems that maintain a state asymmetry with their
environment. But unlike the candle they display a self-regulatory capacity that is
extensive and active. Internally, as self-regenerating systems their cyclic processes
must contribute to re-creating each other, that is, each process must partially
regenerate the material constraints for themselves and/or others to work, requiring
a highly organizedweb of cyclic process-constraint interdependencies.17 Hence there
must be strong mutual internal regulation of activity if internal coherence is to be
maintained. Externally, organisms actively search for, and intake, requisite ordered
energy and materials and excrete wastes, all the while avoiding or ameliorating
damage. This requires active regulation of behavior. Even single cells regenerate
themselves metabolically and partially regulate their environmental experience.
Multicellular animals perform the same overall tasks, only with an expanded range
of self-regulatory capacities, for both internal interaction (e.g., the cardiovascular
resource delivery and waste removal system) and external interaction (e.g., neurally
regulated sensory and neuromuscular motor systems, and so on) to match their
expanded regenerative requirements.18

There are two broad cyclic processes involved in this activity, internal metabolic
interaction and external environmental interaction, and these need to be coordinated:
the environmental interaction cycle needs to deliver energy and material components
to the organism in a usable form and at times and locations the metabolism requires to
complete its regeneration cycles. The presence of these two thus synchronized cyclic
processes resulting in system regeneration is the broadest functional sense of what is
meant by a system’s being autonomous. Though the detail, especially the dynamical
boundaries and self-regulatory capacity, vary, this autonomy requirement picks out all
and only living individuals—from cells, to multicellular organisms to various multi-
organism communities, including many business firms, cities, and nations. In all

17 These are what Kaufman [72] calls work-constraint cycles.
18 They are models of self-regulation, including active self-maintenance of their self-maintenance
capacities. Hence they are recursively self-maintained—see Ref. [73].
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autonomous systems, the locus of living process regulation lies more wholly within
them than in the environment—hence, the root sense of autonomy in the traditional
sense.19 Birds organize twigs tomake nests, but twigs themselves have no tendency to
organize nests or birds.

Autonomy is a subtle global constraint on the organization of interaction for whole
organisms in their environmental context. In contrast to gases and crystals, dividing a
cell in two typically does not produce two new cells because the fundamental global
process organization that produces cell-type cohesion has been disrupted. Clearly,
autonomy is an emergent property of the cell as a whole. In fact, emergence is a
ubiquitous feature of the far-from-equilibrium systems. Comparing living systems to
inanimate systemshighlights thedistinctivecharacterof living interactiveorganization:

Comparative System Order

Property System Kind
Gas Crystal Cell

Internal bonds None Rigid, passive Adaptive, active
Directive orderinga Very weak, simple Very strong, simple Moderate, very complex
Constraints None Local Global
Organization None None Very high

aDirective ordering is spatiotemporally selective energy flow.

Entities are properly treated as genuine agents when they have a distinctive
wholeness, individuality, and perspective on the world and their activities are self-
regulated, normatively self-evaluated, willful, anticipative, and adaptive.
Autonomous systems are inherently all of those things:

. Self-Regulation. We have already seen that autonomous systems are strongly
self-regulated in both their internal and external interaction, making them the
distinctive primary locus of their regulation. And because the self-regulation is
in service of maintaining an internally coherent whole, they have a distinct,
individual reference point for their activity that provides them a distinctive
perspective on the world.

. Normative Self-Evaluation. Autonomous self-regeneration constitutes the fun-
damental basis for normative evaluation because it is the sine qua non and
reference point for all else. Autonomy is the condition against which the
outcomes of system processes are measured for success or failure. In single
cells the measurement is simply continued existence or not. Multicellular
systems have developed many internal, partial, and indirect surrogate indicators

19On autonomysee furtherRefs [51,54,64,75] and references therein. Self-governance lies at the core of our
commonsense conception of autonomy.However,we aremost familiarwith the idea of autonomy as applied
to persons and political governance, but these are sophisticated notions applied to sophisticated systems
whose trappingsmaydistract from fundamentals.We need to return to basic principles operating in all living
systems to construct a naturalist notion that will ‘‘grade up” across the evolutionary sequence to our
sophisticated concept.
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for autonomy satisfaction and its impending violation, often based around
closure conditions for their important subprocesses, for example, hunger (im-
pending violation) and food satiation (satisfaction). It is these specific surrogate
signals (cf. also thirst/fluid satiation, pain/pain-freeness)we think of as the basic,
primitive norms guiding behavior, but they are literally grounded in turn in the
obtaining of autonomy, from which they derive their normative character.

. Willfulness.Awill is the capacity to dowork (i.e., transform energy) in relation to
the self whose will it is. The constitution of the autonomy constraint, which
focuses directive organization on the generation of behavior to achieve self-
regeneration, constitutes just such a distinctive capacity.

. Anticipation. To anticipate is to act now in relation to some future state, event, or
process. Anticipation is thus an integral feature of autonomous systems because
of their need to interact with their environment in ways achieving future closure
outcomes that contribute to maintaining autonomy. The interactive relationship
between the present action performed and the future, autonomy-evaluated
outcome required is the most basic form of anticipation.20 The willful perfor-
mance of anticipative interactive activity against a normative evaluation criteri-
on provides a root sense of action.

. Adaptedness, Adaptiveness. An organism is adapted when it possesses an
autonomy-satisfying set of traits in its life environment. Conversely, an organ-
ism’s ecological niche comprises the range of life environments for which its
traits provide satisfaction of autonomy. An organism’s adaptiveness is its
capacity to alter its specific traits in mutually coordinated ways so as to adapt
to, that is, satisfy autonomy in, awider range of life environments than its current
one.

20.2.4.1 Intelligence and Intentionality Agency of this kind provides an
organizational platform for characterizing, and understanding the evolution of,
intelligence and intentionality. There are three major aspects determining a system’s
anticipative capacities: the width of its interactive time window, the degree of
articulation of the autonomy-related norms that it can use, and the high-order
interactive relationships that it can effectively regulate. Between them, these features
characterize the dimensions of intelligent/intentional capacity, and their roughly joint

20 The root notion of anticipative action for Rosen [63] is that of a sequence of subactions that together
achieve a closure condition and for which each subaction exists only because it is a member of that closure-
achieving sequence. Each element then anticipates the next and the sequence anticipates the closure
outcome. While this is too broad to provide any distinctively agency sense of anticipativeness, since any
cyclically regenerating system (e.g., an autocatalytic polymer) counts as acting anticipatively, it does
capture the central functional character of anticipation. Elementary systems like single cells will only
exhibit action sequences where what anchors the repeated activation of the elements is just their belonging
to a closure-achieving sequence. A distinctive agency sense of anticipativeness emerges when Rosen’s root
condition is applied to autonomous systems, since only these define a principled sense of it being the system
itself that is anticipatory.
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evolution traces the emergence of mind. And because of their preceding properties,
autonomous systems can also be provided with action-centered informational and
semantic characterizations, to complete the sense of agency. Organism information is
modeled as reduction in downstream process regulation uncertainty. (‘‘Shall I do A or
B?Given the result ofmy last interaction, B is the thing to do.”) Organism semantics is
that of the anticipated norm-referenced, autonomy-satisfaction provided by an action.
These conceptions of information and semantics grade back to the actions of single
cells, though the stronger the self-directed anticipative organization involved, the
richer the semantic and informational structures sustained. In this context intention-
ality is conceived as a high-order regulatory capacity for fluid, meaningful goal-
directed management of interaction. Intelligence and intentionality coevolve making
use of a common self-regulatory apparatus. This avoids the common but implausible
split between the two, respectively into problem solving and referential capacities.21

In sum, autonomy promises to provide the broad organizational framework from
withinwhich a fully naturalized conception of organisms can be developed in terms of
the naturalistic intertwined emergences and mechanistic reductions that reveal their
biochemical organizational depth. Of course, from a scientific point of view, the devil
lies in providing the details. And the challenges in doing so are not only to do with
coping with complications, but they also run deeper.

20.2.4.2 Challenges Posed by Autonomy Science, as discussed in
Section 20.2.3, has only weak tools for studying organization. It has equally weak
tools for studying global constraints, especially spatiotemporally extended global
constraints like autonomy. These are at present not representable in the differential
equation/phase space formalism. Although autonomy, like any dynamical constraint,
must in principle be representable as a limitation on system accessibility to dynamical
states (viz., constraint to those satisfying autonomy), there is at present no modeling
methodology for constructing its constraint representation. So, while it is always
possible to capture the dynamical consequences of internal organization by modeling
system plus environment as a system of coupled component subsystems, there is no
principled, internally motivated basis for reversing the process to extract organization
from the dynamics, that is, for individuating the system in a principledway.22This is as
much a challenge for theoretical robotics as for theoretical biology.

Dually, the challenge posed to practical construction and regulation/control in
biology and robotics is equally deep because, if the account of autonomy (and of
autonomy-based cognition) is even roughly correct, it provides a set of organizational
requirements for this task that will prove far from simple tomeet. For instance, despite
using the label ‘‘autonomous agent,” there are at present no truly autonomous robots in

21 This interaction-centered semantics is very different from, and more powerful than, standard direct
referential semantics, for it captures directly the unlimited implicit possibility content in our action-
differentiated grasp on reality. Bickhard argues that in this way it resolves the frame problem and is anyway
ultimately the only coherent naturalist semantics, see for example Ref. [76]. Further see Refs [54] and [74]
and Section 20.2.4.
22One thinks instinctively of the coupling of equations as the requisite tool, but so far as I am aware there is
as yet no well-defined way to characterize either organization or globalness of constraints in these terms.
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this organizational sense. Robotics uses a very limited formal notion of autonomy
(something like invariant dynamical form) and limited performance criteria (typically
confined to a single task) and an equally limited satisfactionmethod. This is as yet very
far from even incorporating normative signals into the body coherence of robots, let
alone the complexity required for self-regeneration and the capacity for fluid
management of multidimensional environmental and internal interaction processes
in relation to that (cf. Ref. [4], footnote 17). Similar constraints currently apply to our
capacity to understand,much less synthesize, real biological systems.Despite calls for
the simulation of biological autopoietic cells, we remain far from being capable of
doing so.

Robert Rosen argued that living systems were not mechanical, that they could not
be reduced to congeries of mechanisms (see Section 20.2.1), not simply because
reduction in general failed, but for deeper structural reasons. Yet reduction to
mechanisms is evidently what systems and synthetic biology aim to do. The gist
of Rosen’s objections (their final 1991 version [14] is couched in an arcane modeling
language) is that holistic, organizational features like autonomy are central to being
alive and these cannot be captured by analysis into mechanisms—indeed, our present
general modeling tools must necessarily fail to adequately capture such features. He
argued that these limitations, largely unrecognized and unexamined, represented a
powerful limitation on the development of biological science. Cloning is hailed still,
even while the profession knows that, though a technical feat, it is limited to
intercellular nuclear transfer, and the entire cytoplasmic apparatus of the globally
coherent regenerative cell is simply ignored.

There is some point to Rosen’s line of objection.Metabolic regeneration is central,
does exhibit autonomous organization, and currently cannot be adequately modeled
dynamically. The emergence of high-order global functional coherence expressed in
adaptive intelligence offers another version of this challenge. Rosen argues that this
difficulty ismademorepointed by the fact that often thecomponents inmetabolismare
only thus because of the character of the whole (cf. Rosen on anticipation, footnote
20). This seems to make it impossible to understand such systems without
postulating the global dynamical organization at the outset, stymieing attempts
to synthesize the organization from its components. If, in addition, the components
are formed during the self-organization of the whole process, then the argument is
reinforced.

Especially these last cases are real challenges to substantive biological theory.
However, the scientists involved might argue that new tools to understand them are
being developed, albeit slowly, and this shows that they should be recognized as so
manymethodological challenges rather thanoverwhelmingaprioridemonstrationsof
the separation of biology from natural science. Hogeweg, for example, has pioneered
the use of computational models to understand the ways in which spatial segregation
processes can lead to the survival of entities,whethermolecules, viruses, organisms, or
even prebiotic entities, where an unsegregated model would predict their extinction,
and also illuminate multilevel selection and evolution processes. Hogeweg employs
cellular automata (CA)models to capture the spatial organization necessary to explain
the outcome. This is possible because CAs are inherently and explicitly relationally
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organized (though in a generalized, not narrowly spatial, way), even while able to
incorporate some aspects of local dynamical interaction. Dynamic networks are
similarly inherently and explicitly relationally organized, while currently they are
largely used to express functional relationships, they too can be adapted to express
spatial relationships. In ecology, for example, there is increasing attention tomodeling
spatial organization and these kinds of modeling tools can be used to model
intracellular spatial relationships.23 Even so, there is no inherent capacity in any of
these tools to represent either organization per se or globalness of constraints. But it
may be that in future, as need and capacity to model spatial organization grows, more
and powerful such tools will alleviate these problems.

20.2.5 Condition-Dependent Laws and the Unity of Science

Scientists in systems and synthetic biology often regard their approach more as
‘‘model building” than as ‘‘theory” or ‘‘law” centered; this is understandable in a
domain where nearly every variation results in differing functional capacities and
behavioral patterns. Compared to the grand universal, invariant laws of physics, these
local idiosyncratic behavioral patterns do not count as laws; so, especially whenmost
biological systems are yet too complex to predict, it is more useful to simply model
each system and try to understand it on that basis. But of course biologists do use laws
in constructing their models, the laws of (bio-)chemistry; if these did not operate the
same-everywhere biology would be much harder than it already is. Even so,
the complication arises from the fact that the operational invariance largely occurs
at the ion–ion interaction level.Hown-body, k-component ion systemsoperate is often
a strong and sensitive function of the initial and boundary conditions, especially
organizational conditions, obtaining and that is why no simple set of laws can be
deduced in advance. Indeed, self-organization precisely occurs because of the
sensitivity of dynamical form to dynamical initial and boundary conditions
(see Section 20.2.2).

But the last equally provides license to extend the notion of law to such cases. For
since self-organization involves a new dynamical form, it is reasonable to say that it
obeys new dynamical laws characteristic of that form. Moreover, the idea that true
laws have to be specified independently of any initial and boundary conditions is a
conceit of physics, and perhaps ultimately not true there either considering that even
fundamental laws evidently changed form as the big bang cosmos cooled. But once
that independence requirement is dropped we are free to see biology as replete with
real behavioral laws, it is just that they will be condition-dependent, or ‘‘special” (as
some philosophers say).24 For instance, condition—a cooling mould of liquid iron
in contact with a heat reservoir of lower temperature, emergent laws—rigid body
(not fluid) dynamics, crystalline (not fluid) conduction of electricity, heat, and

23 See, for example, Hogeweg [77–79]. On spatial modeling in ecology see, for example, Refs [80] and [81]
and references therein.
24 See Ref. [82] for an early insight of this kind. We now see that this condition is not unique to life, for
instance, it characterizes at least all dynamics that shows self-organization.
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sound. Put that way, condition-dependent laws are commonplace even in physics,
and certainly throughout all the other sciences. It is just that condition-dependent
laws are often on that account hard to predict or use for prediction, but that is a
different, epistemic issue.

Why not push condition-dependence further to include every instance of change in
initial and/or boundary conditions? For instance, the specific force of gravity changes
between the Sun–Saturn and Sun–Earth subsystems because of the changing masses
involved.Why not claim all these as equally condition-dependent laws?Well, because
it is the same general law that is involved; the diverse cases are unified by a single
lawful interaction form. This is not so for the iron bar and other cases involving self-
organization. However, surely the self-organization cases are equally a consequence of
the underlying universal dynamics, and simply produced under specific initial and/or
boundary conditions; if it is just that at present we cannot analytically represent self-
organization then that should not stop us from allying them to the previous simpler
cases. This is so, but there are two important differences marking off the self-
organization cases: (i) it heralds the presence of an irreducibly new dynamical
existent, (ii) the dynamical form itself alters accordingly, so there is no common
universal law form. Thus, they represent a genuinely interesting set of conditions.

However, there are also interesting mid-way cases. Self-organization through
something as radical as phase change is not the only way to induce the formation
of a new constraint condition; inducing a Hopf bifurcation of the dynamics (where a
smooth parameter change alters the dynamic attractor landscape) is another, as is
simply beingmoved fromone local energywell to another in an unchanged dynamical
landscape of a system. In each case changed initial and/or boundary conditions lead to
changeddynamical laws.Although thewell-shift casesmaybe set asideon thegrounds
that they too are unified by a common dynamics (represented by the landscape), the
formerHopf-bifurcation cases alsomanifest a changed dynamical formand deserve to
belong to the self-organization cases, as do other kinds of dynamical bifurcations.
Polanyi once argued, in effect, thatwhatwas distinctiveof living systemswas that their
governing lawswere so strongly dependent on initial and/or boundary conditions [32].
Polanyi had in mind at least the way that information can alter the basis of behavior in
living systems. If the impact of an information-conveying signal on an organism is
dynamically equivalent to a Hopf or other bifurcation, then Polanyi’s living systems
can all be brought under the same dynamical paradigm.

The same considerations apply to dynamicalmodels of thegenome. Theremaybe a
wide variety of dynamically different forms that a genome can take up as various of its
processes alter its own initial and/or boundary conditions so as to induce a dynamical
bifurcation, for example, create and insert a new catalyst into the protein dynamics,
thus forming special laws for that condition. These effects can propagate historically.
The emergence of a new constraint with new dynamics may lead to the subsequent
dynamical formation of still further top-down constraints, and so new entities, that
would not have been dynamically possible without that preceding formation event.
Indeed, something like that must be the overall dynamical form of development.
Moreover, this cascade of dynamical consequences is marked by its initiating
formation event and thus exhibits dynamical fixation of (these) historical constraints.
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Such path-dependent dynamics occur throughout ecology (e.g., somatic and niche
symbioses), economics (e.g., in off-highway development and technological learn-
ing), and the social sciences (fashion, and so on), but are not unknown in physics, for
example, in hysteresis.

Needless to say, biology will not splinter into an unprincipled disunity under these
complex dynamics.25 Once again, these bifurcations will still be dynamically deter-
mined by, and identified in terms of, their dynamical constituents and governed by
laws that themselves are thus grounded in the underlying universal dynamics. This is
precisely what the biochemistry of the dynamical networkmodels is meant to show. It
will also encompass the many changes that consist of less profound dynamical
transitions falling under the same dynamical form (even shifting between strange
and other attractors). And the requirement to ‘‘match-up” the dynamics of different
spatiotemporal scales and domains provides a further important unifying component.
For example, unifying molecular chemistry and cellular biology requires interpreting
cellular processes in biochemical terms that immediately generate many penetrating
tests because of the requirement to match up the two descriptions—for instance all of
the function to process reductions.

All this provides a shared dynamical framework interconnecting emergent variety
in intimate ways that make it possible to successfully model complex genome
dynamics and even development, navigating through the complex world of emergent
but interconnected cellular and intercellular levels and laws. This gives a strong sense
in which biological science remains unified evenwhile acknowledging more strongly
initial and/or boundary condition-dependent laws than simple physics and chemistry
waswont to consider. The challenge to biological science is to recognize explicitly and
better understand this plethora of law types and shifts, so as tomake explicit their basis
and their theoretical and methodological implications.

20.2.6 Limits of Knowability

The advent of complex systemsmodels introduces new considerations concerning the
manner and limits of scientific knowability.By this it is notmeant the pragmatic fact of
vastly more complex systems generating vastly more extensive sets of data than can
practically be managed (cf. Section 20.1.2). Rather, the interest here is in principled
limits on knowledge. Discussion is limited to knowledge of complex systems and is
even so preliminary.26

An immediate consideration is the limit on analytic solvability to achieve ‘‘closed
form” symbolic representation of dynamics, that is, a single formula giving the

25 See, for example, Ref. [83], and for the complex dynamical unity response presented here see Ref. [57],
footnote 4, and Section 20.2.5. It should be added that the conception of laws as simple universal
generalizations, common among philosophers and scientists alike, is simplistic, science shows a far
more complex and rich spectrum of laws—see Ref. [84].
26 For more fundamental limits on knowability deriving from quantum theory, see for example Ref. [70],
and for something of the variety of forms knowledge limits can take, see Ref. [85].

638 OUTSTANDING ISSUES IN SYSTEMS AND SYNTHETIC BIOLOGY



universal solution to a set of dynamical equations.27 But as we move beyond simple
sets of independent linear differential equations toward nonlinear, partial differential
equations in interdependent coupled equation sets, we find that the dynamics they
represent rapidly becomes very complex and the equation sets lack analytic solutions.
Beyond this again lie bifurcations; these have no analytic representationwithin which
their dynamics is exhibited, as the standarddynamical systemsdo, andcannot haveone
in standard dynamical terms precisely because they change their dynamical form, that
is, change their dynamical representation, and as a function of their own initial/
boundary conditions. In all these cases, as noted in Chapter 19 (see footnote 36), it
is then necessary to explore their dynamics through numerical approximation and
temporal iteration. Their dynamics is exhibited in extended form in space and time,
rather than being condensed into a single abstract relation among symbols. This places
computational modeling at the center of their scientific investigation in a strong
manner and highlights the huge, and unique, contribution of computers to scientific
knowledge.

However, it should not be forgotten that in most cases computational modeling
provides only a numerical approximation, not exact values.Again, inmost cases this is
not a problem since the degree of approximation can be increased at will. But
mathematical science contains many noncomputable functions,28 that is, functions
where information crucial to identifying it is lost at any level of finite approximation.
Many superposition or ‘‘wave” phenomena (classical and quantum) are of this kind
where wavelet information at indefinitely small scales is important to identifying the
whole function. A comparable situation occurs when chaos (a ‘‘strange” attractor) is
involved. Because nearby chaotic trajectories diverge exponentially from one another
(at all points along their trajectories), any approximation will be invalidated by some
trajectories within the approximation range—often quickly, one of the earliest
discoveries of chaos (byLorenz, using a coupled triad of partial differential equations)
concerned just such divergence brought about from slightly different rounding errors.
Thus, though computational numerical approximation represents a huge expansion of
our capacity to know complex dynamics, it also represents a selective, but important,
diminution in our knowledge capacity.

The exponential divergence of dynamical trajectories characteristic of chaotic
attractorsmanifests sensitivity to initial conditions. Small differences in the conditions
determining the initial dynamical state are eventuallyamplified into largedivergences.
This can happen with nonlinear dynamics generally, it does not require chaos;
bifurcations are examples. In suchcircumstances, prediction is limitedby the accuracy
of knowledge of the initial system state, that is, of the initial conditions. This is so even

27 Curiously, this is equivalent to science constructing a compressed symbolic description of reality, in the
sense of algorithmic complexity theory. Could the latter’s difficulties with defining organization be
reflected in some characteristic of the former? And what has this to do with Rosen’s [64] more abstract
concerns with modeling?
28 That is, mathematical functions, not biological functions. Mathematical functions are many: one maps
from a domain to a range, hence unique on the range. One distinctive merit of the proposal to model
biological functions as input/output maps is that this relates them directly to mathematical functions and
hence, via modeling, to dynamical maps and so to biochemical processes.

OUTSTANDING GENERAL ISSUES 639



though the system dynamics is deterministic, and so exactly one precise trajectory
happens. Since all human knowledge (indeed all creaturely knowledge) has finite
resolution, prediction is permanently parted from determinism. Self-organization
ensures that this extends to prediction of condition-dependent laws—in particular to
predicting self-organized intracellular dynamics.

Limits on predicting the behavior of intelligent agents provides a further class of
special cases. Even simple sensory agents can on occasion amplify very small signals
(perhaps a few light quanta) into large behavioral differences, so that even smaller
uncertainties in those signals or in the internal state created will place limits on
predicting behavior. Even where these details are knowable in principle another limit
typically biteshard: suchcomplex systemshaveconsiderable logical depthand for such
systems the time required tomake a prediction is in principle large,29 added towhich is
the time required to obtain all the relevant state andprocess information to do so.Often,
those times are much longer than the time horizon for relevant prediction and action,
whence one’s interaction with them is always on the basis of some uncertainty. Slow,
long-running ‘‘agendas” in human personal development can produce surprising
behaviors that defeat even decades of contrary data about a person. Another version
of the same limit applies when an agent alters its own environment on too fast a
timescale for it toknow theconsequencesof itspast actionsbefore it acts again.Humans
have always been in this predicament and continue notoriously to be so, as witness
climate change, peakoil, nuclear proliferation, stability of financialmarkets, and so on.

Finally, an important methodological issue has recently opened up concerning the
most effective statistical means of extracting knowledge of genome organization and
dynamics from the large data sets generated by contemporary high-throughput
experimental technologies, data often sparsely distributed in large-dimensional
parameter spaces. A classic paper by Breiman [36] opposes two approaches to the
data:model learning andmachine learning. Inmodel learning, a class ofmathematical
models specified by parameter values is chosen as a presumedmodel of the underlying
reality from which the data is taken and its parameters are interpreted in terms of the
entities and potential dynamical processes thought to constitute the underlying reality.
The problem for statistical methodology is then to use the data in an unbiased way
to estimate the parameter values and so fix the particular model involved. This model
can subsequently be tested by its prediction of new data and the parameter values
re-estimated as required.

In machine learning, by contrast, no model is specified, rather the data are used to
‘‘tune” a machine-learning process (some one of a large class of convergent mathe-
matical adaptation or self-correction processes, for example, neural nets, run on
computers). The tunedmachine is then used to predict further data and is tested against
it. The tuned machine state may have no obvious understanding in physical model
terms; indeed its state dimensions, hence parameters, emerge from the tuning process
and may be very large. Nonetheless, in a variety of situations it provides superior
predictive performance and, with modeling goodness-of-fit tests often too weak to
select among a variety of models, it emphasizes prediction as a self-sufficient goal of

29 For discussion see Refs [69] and [70].
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science. This threatens to pull apart prediction from ontological-dynamical under-
standing as epistemic goals of science and thus, represents a distinctive constraint
on scientific knowledge. Where it provides intelligible insight into underlying
processes, it is essentially a form of induction from data, just as the previous model
learning approach can be considered a form of hypothetico-deductive falsification,
linking these alternatives to amuchmoregeneral andvenerable debate about scientific
methodology (empiricismversusPopperianism, and soon). There is a livelyversionof
the debate in systems biology [37,38].

To the philosophically minded the machine-learning language may, however,
suggest much more, specifically the prospect of either (1) a new phenomenological
empiricism, where data are again uncritically glorified and last century’s well-
abandoned extreme claims of solely reconstructing theory from it (cf. behaviorism)
reemerge, or (2) a kind of postmodern antirealism in which scientific investigations
each use their own separatemachine-learning states, each state employedwhile ever it
is predictively adequate, with discussion of underlying reality considered a sign of
nostalgia for grand schemes, implicit attempts at ideological hegemony or mental
confusion.This is not theplace todiscuss either the foundationsof statisticalmethodor
the fate of grand conceptions. Rather, abandoning the extremes represented by 1 and 2
above, I want to briefly suggest consideration of amiddle-ground approach tomethod
recognizing the utility of both induction and hypothetico-deduction in context.

It is surely a false dichotomy to oppose prediction to understanding, since each is
necessary to the other: understanding without prediction is ignorant and uncritical,
prediction without understanding is weak and fragmented. The former is obvious for
any finite, comprehensively fallible species like us commencing research in ignorance.
The outcomes of predictive tests underpin acceptance/rejection of any proposed
models and hence of improved understanding. The latter rests on the way a confirmed
dynamical model can direct research much more effectively than simply trying to
collect more data per se. For instance, such models distinguish law-like relations (as
energy transform processes) from mere correlations or noisier relations, and also
identify the sources of noise and bias, including in the interaction between system and
data-gathering instruments—all of which structure future-testing regimes and assess-
ment regimes, including the filtering and correction of data itself. And as before,model
matching across scales and domains widens and focuses this role.

In addition, the machine-learning approach still relies on the choice of data
categories, experimental setup, and appropriate instruments and probes to generate
its data. But all such choices make presumptions about the character and salience of
features in the underlying reality. For instance, instruments have systematic errors and
limitations and unlesswe have sound insight into how the instrumentsworkwe cannot
knowwhat theirdefects areandhencehowtoprocessdata. (Astrikingdemonstrationof
this comes from the quantum theory proof that even core classical measuring devices
haveinherenterror rates,ofwhichsciencehadbeenentirelyunsuspecting.) Instruments
themselves are understood through empirically validated theoretical models.30

30 Often enough using the very theories they are used to test. But this is largely OK, see Ref. [89]. On data
choices, see, for example, Ref. [90].
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Bycomparison, in all these casesmachine learning can only combine the data pools
without direction, there being no methods within data lists alone for simulating
dynamical discrimination and unification, systematic data errors and data limitations.
Even identifying random data errors may cause problems here, since these have
somehow to be distinguished from inherent dynamical fluctuations in the system, the
latter behaving as noise except near bifurcations where their form may be critical to
understandingsystemdynamics.All this leadsto insatiabledemandsforsufficientdata,
ultimately extending to encompass all science and the entire universe as ablock—not a
good theory of epistemic (learning) strategy for finite agents beginning in ignorance.

On the other hand, machine learning often finds patterns in high-dimensional data
where our knowledge of models is initially poor and complex dynamical process lie
behind the data. All of which suggests that a pragmatic mixed strategy is called for,
reinforced by the many approaches in use that combined parametric and nonpara-
metric modeling. If you know nothing about the domain but have enough data (data
rich, hypothesis poor), then machine learning may be the best approach, while if you
know a lot about the domain then, especially if only a small range of data is available
(hypothesis rich, data poor), model learning is surely the best bet. And in between,
knowledge-wise and data-wise, the features of the best-mixed model will no doubt
vary complexly with context.
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