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4.1 INTRODUCTION

Breast cancer is the second leading cause of cancer deaths in the women today (after
lung cancer) and is themost common cancer amongwomen, excluding nonmelanoma
skin cancers. Early detection and more effective treatments have decreased the
mortality rate from breast cancer in recent years [1]. Still, according to the World
Health Organization, more than 1.2 million people will be diagnosed with breast
cancer each year worldwide. The American Cancer Society estimates that each year
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178,000Americanswill be diagnosedwith breast cancerwith 44,000 deaths expected.
Moreover, breast cancer is the leading cause of death among women between 40 and
55 years of age and is the second overall cause of death among American women
(exceeded only by lung cancer).

The term breast cancer refers to a collection of cells of the breast that undergo
uncontrolled growth, differentiation, and proliferation. Such a collection of cells is
known as a malignant breast cancer tumor. Malignant tumors penetrate and destroy
healthy tissues of the breast. In addition, a group of cellswithin amalignant tumormay
also break away and spread to other parts of the body. Breast cancer tumor cells that
spread from one region of the body into another are calledmetastases. One goal of this
chapter is to characterize the metastatic potential of breast cancer tumors in terms of
their global gene expression profiles.

Clinically, the presence of metastatic breast cancer in axillary lymph nodes is the
most significant factor in the overall survival of breast cancer patients [2,3]. Although
the determination of lymph node status is routine, the surgical procedure is invasive,
and the selection of lymph nodes for examination can introduce biases that result in
false negative results. Hence, the ability to assess the lymph node status of a breast
cancer tumor based on quantitative measurements derived from the tumor itself may
obviate the need for axillary lymph node dissection and themorbidity associated with
the procedure [4].

Previous attempts to correlate characteristics of primary breast cancer tumors
such as S-phase fraction, tumor grade, ploidy, hormone receptor status, and ERBB2
overexpression with lymph node status have been less than successful in terms of the
sensitivity and specificity required in clinical settings [5]. Multivariable gene expres-
sion profiling appears to have the analytical resolution necessary to complement the
known clinical markers currently used for tumor characterization [6]. In addition, the
genes, pathways, and predictive models that result from a global analysis of gene
expression in breast cancer tumors provide biological hypotheses for highly focused
studies to identify new molecular targets that may contribute to improved treatment
and personalized care, and a deeper understanding of the systems biology underlying
breast cancer metastasis and tumor growth [7].

In this chapter, modern signal processing and pattern recognition techniques that
employ thewavelet transform (WT), singular value decomposition (SVD), and neural
networks (NNs) are used to analyze microarray data to predict the spread of breast
cancer to the axillary lymph nodes based solely on the gene expression profiles of
the primary breast cancer tumor. In Section 4.2, background knowledge on breast
cancer and genomic signal processing and a description of the main clinical problem
of interest are provided; that is, assessing the distant spread of breast cancer to the
axillary lymph nodes based on the molecular characteristics of primary tumor.
In Section 4.3, a microarray data set based on normal tissue and breast cancer tumor
samples is described. In Section 4.4, results of a prior analysis on the Huang data set
by Huang et al. are summarized [4]. In Section 4.5, genomic signal processing tech-
niques such asWTand SVD are defined and discussed. The expression data matrix is
discussed in Section 4.6 and its connection to Bellman’s curse of dimensionality.
Experimental design issues for the current study are discussed in Section 4.7. Data
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preprocessing and data quality issues are discussed in Section 4.8. In Section 4.9, the
modeling of phenotypic variation using features extracted from the Huang breast
cancer data set using genomic signal processing techniques is described. Validation of
pattern recognition models derived from the Huang microarray data is described in
Section 4.10. Section 4.11 summarizes the main results of the overall study. Finally, a
discussion of the main results is presented in Section 4.12.

4.2 BACKGROUND ON METHODS AND APPROACH

The central dogma of molecular biology states that a gene is transcribed into
messenger RNA (mRNA) that in turn is translated into protein [8]. Networks of
interacting genes and proteins then give rise to emergent states and system dynamics
on these states that characterize the complex biological processes in cells, tissues,
organs, and organisms [7]. Although the central dogma has been modified somewhat
over the years, the core idea is still valid—the flow of information from genes to
mRNA to proteins—and the underlying information processing that it implies forms
the basis for life, death, and disease.

A crucial step in the information processing described by the central dogma is
the transcription of a gene into mRNA, a process also known as transcription or gene
expression. The expression level of every known gene represents the global gene
expression pattern of a biological sample. This pattern is in constant flux over space
and time and, in particular, changes as a normal cell is transformed into a cancer
cell [9]. In this light, it is reasonable to assume that global gene expression patterns of
normal and cancerous cells are quite different.

An important goal in cancer systems biology is the proper quantification of
differences in global gene expression between normal or cancer cells [4]. The genes
that underlie such differences serve as explanatory variables of quantitative models
of cancer that are predictive of clinical outcomes or discriminative between different
cancer subtypes [10]. For the first time, biologists are now able to measure the
expression of every known gene in a tissue sample using a technology called the
DNA microarray or chip. In a marriage of integrated circuit manufacturing,
nanotechnology, photonics,materials science, biochemistry, andmolecular biology,
DNA microarrays are able to measure the activity of thousands of genes simul-
taneously using thousands of distinct probes that are positioned randomly on the
surface of a small glass slide, plastic wafer, or silicon chip [11–13]. Each probe is
composed of millions of strands of DNA that are complementary to specific mRNA
target strand that we wish to quantify. Fluorescent tags are attached to the mRNA
strands contained in a special ‘‘cocktail” prepared from a biological sample. The
chip is immersed in the cocktail for a period of time under stringent conditions to
allow the different mRNA target strands to attach, or hybridize, to their comple-
mentary DNA probes. The amount of tagged mRNA that hybridizes to a specific
probe is quantified based on the intensity of the light that is emitted by the fluorescent
probe when illuminated by a beam of laser light. This measure of light intensity
serves as a surrogate measure of expression for the gene associated with the probe.
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Each probe is interrogated in this way and the individual expression measurements
are assembled into a high-dimensional vector that in aggregate provides a global
snapshot of gene activity in a given tissue sample [14].

When multiple chips are hybridized to different samples, we have a microarray
experiment. In the context of this chapter, the microarray experiment of interest
compares the global gene expression patterns of tissue samples composed of normal
cells to tissue samples composed of cancerous cells. Since not all 25,000 or so genes of
the human genome are associated with cancer, it is reasonable to assume that only a
relatively small number of genes will be differentially expressed (DE) between the
normal and tumor samples. Here, we view the collection of DE genes as a character-
izing biological state of tumor cells in terms of gene expression [15].

DEgenes that interact in thecontextofaknownsignalingor regulatorypathwayscan
be used as features for pattern recognition applications that are capable of identifying
cancer subtypes and predicting clinical outcomes prior to and during treatment [5,9].
Indeed, a list of DE genes most likely intersects with multiple signaling pathways that
control the transformation of a normal cell into a cancer cell [16].Deconvolution of this
list into pathways of functionally related, interacting genes helps to elucidate causal
mechanisms that may lead to a more personalized treatment of cancer through early
diagnosis and drugs targeted to the specific genes in specific pathways [17].

As with any other sensor system, data collected by DNAmicroarrays are contami-
nated with significant amounts of systematic (low-frequency) and random (high-
frequency) variation. The primary sources for such unwanted variation include
experimental error introduced by the data acquisition process unique to DNA micro-
arrays and biological variation that exists between different tissue samples. The
resulting p� n data matrix of a typical microarray experiment, where p equals the
number ofgenes andn equals thenumber of samples, is ill posed in thatp is greater than
n (p� n) by several orders of magnitude. This situation is analogous to having many
more unknowns than equations in a system of linear equations whereby the system in
question has no solution. Standard statistical analysis of such ill-posed data results in
models that mistake noise for signal, and hence, fail to capture the underlying
biological processes that give rise to the observed patterns of differential gene
expression [18,19]. Finally, background noise in microarray data is multiplicative
instead of additive, which can confound standard statistical analysis and modeling
techniques [20].Modern signal processing, pattern recognition, andmachine learning
techniques provide the means to properly analyze and model the noisy, high-
dimensional data sets generated by microarray experiments [21].

4.3 THE HUANG BREAST CANCER DATA SET

The global transcriptional profiles of 37 primary breast cancer tumor samples were
measured using Affymetrix U95-AV-5 GeneChip microarrays [4]. Each microarray
profiled the steady-state mRNA levels of 12,625 genes simultaneously in a single
tumor sample. Of the 37 samples that were profiled, 19 were labeled as ‘‘negative” or
low-risk samples and 18 as ‘‘positive” or high-risk samples based on microscopic
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examination of lymph node samples obtained by axillary lymph node dissection.
AmongERpositivepatients, thehigh-risk (or positive) clinical profilewas represented
by metastases involving 10 or more lymph nodes. The low-risk (or negative) profile
was defined by node negative patients of age greater than 40 years with tumor size less
than 2 cm. The main hypothesis for this experimental design asserts the existence of
global gene expression patterns capable of discriminating between the high- and low-
risk tumor samples.

Microarray data were acquired using protocols established by Affymetrix
Corporation for the U95-AV-5 GeneChip. The amount of starting total RNA for
each GeneChip hybridization was 20 mg. First-strand cDNA synthesis was generated
using a T7-linked oligo-dT primer, followed by second-strand synthesis. An in vitro
transcription reaction was performed to generate the cRNA containing biotinylated
UTP and CTP, which was subsequently chemically fragmented at 95�C for 35min.
The fragmented, biotinylated cRNAwashybridized inMESbuffer (2-[N-morpholino]
ethansulfonic acid) containing 0.5mg/mL acetylated bovine serum albumin to
Affymetrix GeneChip HumanU95Av2 arrays at 45�C for 16 h, according to the
Affymetrix protocol. The arrays contained probes that measured the expression of
over 12,000 genes and ESTs. Arrays were washed and stained with streptavidin
phycoerythrin (SAPE,Molecular Probes). Signal amplificationwasperformedusing a
biotinylated antistreptavidin antibody (Vector Laboratories, Burlingame, CA) at 3 mg/
mL. This was followed by a second staining with SAPE. Normal goat IgG (2mg/mL)
was used as a blocking agent.

Each hybridized GeneChip was scanned using an Affymetrix GeneChip scanner,
and the expressionvalue for eachgenewascalculatedusing theAffymetrixMicroarray
Analysis Suite (v5.0), computing the expression intensities in ‘‘signal” units defined
by the software. Scaling factors were determined for each hybridization based on an
arbitrary target intensity of 500. Scans were rejected if the scaling factor exceeded a
factor of 25, resulting in only one reject. Files containing the computed signal intensity
value for each probe cell on the arrays, files containing experimental and sample
information, and files providing the signal intensity values for each probe set, as
derived from the Affymetrix Microarray Analysis Suite (v5.0) software, were
generated and posted on the Huang study Web site.

4.4 RESULTS OF THE HUANG STUDY

Using k-means clustering, SVD, and statistical tree models, Huang et al. discovered a
gene expression signature based on 200 genes that was able to discriminate between
high-risk and low-risk sampleswith 90 percent accuracy [4,5].Moreover, they showed
that many of the genes that defined the prognostic signature mapped to biological
processes related to breast cancer. In particular, an interferon-mediated immune
response was identified in the list of DE genes significantly changed in expression
between the positive and negative sample groups of the experiment.

In brief, the data analysis employed by Huang et al. first removed genes with
fold change less than two and maximum intensity less than nine on a log2 scale. This
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filtering step resulted in a reduction in the number of genes available for downstream
processing from 12,625 to 7030. K-means clustering was then applied to the filtered
genes to obtain 496 gene clusters. Singular value decomposition was used to extract
the first principal component of each gene cluster. This principal component was
called the ‘‘metagene” associated with the gene cluster. The 496 metagenes were
presented as input to a classification tree, where the sample space is recursively
partitioned into subsets that best fit the data based on a Bayesian measure of
association between metagenes and a binary variable encoding the lymph node status
of the samples [5]. Lists of genes were generated from the top four metagenes having
the largest marginal Bayes’ association. The list was extended by adding additional
genes that are highly correlated with any one of the top four metagenes.

Metagenes were discovered that were highly associated with lymph node status.
These discriminative metagenes were capable of predicting lymph node status in
individual patients with about 90 percent accuracy using the classification tree model
based on the microarray data. The metagenes also defined distinct groups of genes
that participated in biological processes related to metastatic breast cancer. It was
concluded that gene expression patterns can be used to accurately predict the lymph
node status of a primary breast cancer tumor based solely on the gene expression
patterns of the tumor itself [4].

4.5 GENOMIC SIGNAL PROCESSING

An important goal of bioinformatics and systems biology in cancer research is to
improve the diagnosis, prognosis, and treatment of cancer through more accurate
disease classification and patient stratification using quantitative techniques that take
full advantage of the genome-wide data generated by new technologies such as DNA
microarrays [10,22,23]. This comprehensive approach to understanding cancer allows
for the design of therapeutic strategies that are targeted to the specific cancer subtypes
that are unique to an individual patient. The hope is that a deeper understanding of the
molecular heterogeneity of cancer could potentially improve the effectiveness of
existing treatment regimens based on the ability to predict therapeutic response and
adverse effects, as well as suggest new strategies based on the identification of new
molecular targets susceptible to pharmacological intervention [9,23].

By genomic signal processing (GSP) we mean the identification, isolation, and
extraction of information from high-dimensional data, such as that produced by DNA
microarrays, that are useful for modeling and/or explaining observed changes in well-
defined clinical or biological phenotypes. In this chapter,wedescribe anumberofGSP
techniques that in aggregate enable the minimally invasive prediction of distant
changes in lymph node status based solely on the gene expression profile of the
primary breast cancer tumor.

To facilitate the application of GSP techniques, we view the prediction of lymph
node status as a problem in pattern recognition where the raw data are preprocessed,
informative genes are identified, feature patterns are extracted from the expression
profiles of these genes, and finally a pattern recognition (PR) model is formulated
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based on the extracted feature patterns [24,25]. Figure 4-1 shows a high-level
flowchart of the information processing chain used to formulate a NN model of
breast cancer metastasis based on GSP features extracted from whole genome
expression profiles. In brief, the following steps are involved: (1) the microarray
data are normalized and equalized; (2) differentially expressed genes are detected;
(3) feature patterns are extracted from the list of DE genes; (4) and a NN classifier is
trained on the extracted feature patterns. An important step in the modeling process
that is absent in Figure 4-1 is the objective assessment of predictive power of the
resultant model using cross-validation techniques, which is discussed in Section 4.11.

4.6 THE EXPRESSION DATA MATRIX

Specifically, ap� n expressiondatamatrixAraw is formedwhere eachof then columns
of Araw represents the expression profile over p genes of a tumor sample. It follows
that each of the p rows of Araw represents the expression profile of a gene over the n
samples of the microarray experiment [18]. We assume the n columns of Araw are
grouped so that the lymph node negative samples comprise first n1 columns ofAraw for
j¼ 1,2, . . ., n1 and the lymph node positive samples comprise the next n2 columns of
Araw where n¼ n1 þ n2.

Typically, p� n, (p much greater than n) where, for example, p¼ 12,625 and
n¼ 37 for theHuangmicroarray data set. This situation is known as ‘‘Bellman’s curse
of dimensionality,” which states that the number of samples needed to adequately
model phenotypic variation grows exponentially with the number of input vari-
ables [24,26]. Hence, the Huang data matrix is mathematically ill posed for analysis
using standard statistical approaches since thenumber of variables (genes) exceeds the
number of equations (microarrays) by several orders of magnitude.

NNmodels basedona largenumberof input genes (anda relatively small numberof
samples) admit a large number of possible solutions that vary widely in terms of
predictionperformance, andhence, generalize badly froma finite set of trainingdata to
the general population that were unseen during training. Methods must be used to
reduce the number of variables (i.e., dimensionality)without losing information that is
relevant to solving the discrimination or prediction problem at hand [27,28]. Standard
statistical techniques based on optimality arguments where the number of samples
grow asymptotically without bound relative to the number of variables are inadequate

Figure 4-1 Modeling phenotypic variation using DNA microarrays. (1) Raw expression data

matrix is preprocessed to remove systematic error and equalize noise. (2) Differentially expressed

genes are selected from the preprocessed data matrix. (3) Feature patterns with reduced

dimensionality and noise content are extracted from the data matrix of significant genes. (4)

The extracted feature patterns are used to train a neural network to discriminate between

phenotypic classes. The trainedneural network constitutes amodel of phenotypic variation defined

in terms of gene expression.
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for the so-called ‘‘large p, small n” problems. Indeed, microarray experiments require
statistical techniques based on asymptotics where the number of variables increases
without bound relative to the number of samples [29]. Unfortunately, the statistical
analysis of ill-posed problems is less well developed than for situations where the
number of samples is plentiful and the number of variables small.

One approach is to use Bayesian statistics to constrain the space of possible
solutions on a finite training set and automatically select parsimonious models that
generalize to a larger population [21]. Another approach is to use signal processing
techniques to select only highly informative features that reduce input space di-
mensionality, which in turn alleviates the negative impact of Bellman’s curse on the
ability of the derived model to generalize [30]. In this chapter, we describe methods
more closely aligned to the latter approach where signal processing techniques are
used to extract highly informative, low-dimensional features from expression data
matrix. These feature patterns are then used to train NN classifiers that are capable of
distinguishing benign breast cancer tumors from tumors that have spread to the
axillary lymph nodes.

4.7 EXPERIMENTAL DESIGN

Global gene expression profiles are obtained using Affymetrix HU-95 GeneChip.
EachhybridizedGeneChipwas ‘‘vectorized” into columnvectors composedof12,625
components,where each component represents the relativeexpression level of a single
transcript on a given chip [4]. As described above, the vectorized chips were arranged
to form the columns of a 12,625� 37 expression data matrix Araw of raw expression
values where columns 1–19 represented the negative samples and columns 20–37
the positive samples. The data matrix Araw was quantile normalized to obtain the
preprocessed data matrix Anrm.

A sample response function (SRF) for the Huang microarray experiment is a
mapping h:{1,2, . . ., n} ! L defined on the columns ofAnrm where L¼ {�1,1}. Note
that h reflects the phenotypic grouping of the samples such that h(i)¼�1 for
1� i� 19 and h(i)¼�1 for 20� i� 37. Note that h has the shape of a step function
on the column indices of Anrm. The ordered triple (Anrm, L, h) represents the
experimental design for the microarray experiment based on the Huang data set.
Figure 4-2 visualizes the components of themicroarray experiment (Anrm, L, h). Here,
Figure 4-2a is the step-like SRF defined by h for the microarray experiment, (Anrm, L,
h) and Figure 4-2b is a z-scored image of the data matrix log2 (Anrm) [31].

The fundamental hypothesis of microarray data analysis (FHMD) for (Anrm, L, h)
asserts the existence of a set of genes that are highly correlated with step function
h shown in Figure 4-2a. For example, a numerical measure, tg, can be computed
for each gene g defined by

tg ¼ tðxg; hÞ �
xTg h

sg
ð4-1Þ
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where (1) xg is the expression profile of gene g over n samples; (2) sg is the standard
deviation of xg; and (3) xTg h is the correlation between xg and h. Note that
Equation 4-1 is equal to the correlation between xg and h normalized by the standard
deviation of xg, which is also known as the t-score for g. The genes are ordered by
absolute t-scores, and a subset of genes with the largest absolute t-scores is chosen
based on some statistical threshold such as p-value or false discovery rate (FDR).
The resulting list of genes is necessarily correlated with the unit step function h in
accordance with Equation 4-1 and, in the this case, represents the genes that show the
most consistent differential expression between the positive and negative samples of
the Huang breast cancer data set. Such a set of genes is said to be differentially
expressed between the two sample groups in accordance with the t-test.

Figure 4-2 The experimental design for the Huang breast cancer microarray experiment.

(a) Step-like sample response function h defined on the columns of Araw that groups the columns

of the data matrix into lymph node negative (columns 1–19) and positive (columns 20–36) sample

groups. (b) The z-scored image of the 12,625�36 expression data matrix Araw after quantile

normalization and log2 transformation.
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4.8 DATA PREPROCESSING AND DATA QUALITY ASSESSMENT

The columns of Araw are quantile normalized to facilitate comparison between the
samples represented by the columns ofAraw,which results in the datamatrixAnrm [32].
Each entry of Anrm is then log2 transformed to equalize variation over the entire range
of expression values resulting in the p� n preprocessed data matrix Alog2 [20]. The
preprocessed data matrices Anrm and Alog2 form the basis for further downstream
information processing depending on the algorithms used. For the purposes of this
chapter, our focus will be on the normalized expression data matrix Anrm. Note that
quantile normalization essentially models and removes a low-frequency, correlated
signal that corresponds to the systematic experimental error in the raw microarray
data.

The primary goal of the preprocessing step is the removal of systematic nonrandom
variation from the raw data to facilitate the comparison of gene expression across
multiple chips. The quantile normalization procedure can be described in two steps:

. Create a mapping between ranks and expression values; that is, for rank k, find
the n genes, one per array, that have rank k in terms of gene expression and
compute their average expression over the n samples;

. For each gene on each array, replace the measured expression value with the
rank-average expression for that gene.

Note that quantile normalization is an aggressive strategy that produces identical
distributions for each array. On the contrary, quantile normalization is extremely
fast, since it only requires a single sort of the data matrix, a computation of means
across sorted rows, and a single pass through the data [33]. Note that other normali-
zation schemes exist that employ nonparametric modeling techniques such as locally
weighted polynomial regression (lowess) to characterize the systematic error in
raw microarray data. One such method identifies genes that are invariant in terms
of variation between normal and disease sample classes and models the low-frequen-
cy, correlated signal in these invariant genes using a lowess-type smoother. The
resulting error model is then used to correct all the raw data for systematic error.
Normalization based on lowess smoothing of invariant genes tends to be a less
aggressive a procedure than quantile normalization.

Another important preprocessing step is the log2 transformation of the data matrix
Anrm to decouple variation in fold change from expression level. This decoupling
makes the data appear more bell shaped and hence improves the performance of
downstream statistical analysis algorithms designed to detect DE genes. Indeed, raw
microarray data have essentially a log-normal distribution, which implies that the
log2 transform of the data should be more or less normally distributed or at least
unimodal [20]. Other more powerful variance stabilization methods have been pro-
posed that view microarray data as having a normal distribution at low expression
levels, a log-normal model at high intensities, and a mixture of both at intermediate
intensities. The impact of such mixture models on classification and prediction
performance is currently being evaluated.
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The chips that comprise the Huang microarray experiment are assessed for data
quality using a number of standard statistical techniques. For example, histograms of
all 37 columns of the quantile normalized datamatrixAnrm after z-scoring are shown in
Figure 4-3. Note that sample 37 is clearly an ‘‘outlier” in distribution when compared
to the other 36 chips of the experiment. Moreover, pairwise correlation analysis of the
raw and normalized data indicates that sample 37 has relatively low correlation with
the other 36 chips. These results suggest that the expressionvalues for sample 37were
corrupted at somepoint in the data acquisition process.Hence, sample 37was removed
from this study, although we note that sample 37 was retained by Huang et al. in their
study.

4.9 THE MODELING OF PHENOTYPIC VARIATION

The modeling of phenotypic variation in terms of gene expression is a pattern
recognition problem that can be solved bymapping gene expression patterns directly
to phenotypic states using NN classifiers [21]. Such models are known as discrimi-
nant classifiers. Note that it is not necessary to delineate the biological mechanism

Figure 4-3 Histogram plots for quantile normalized, log2 transformed, z-scored microarray

data from the Huang breast cancer data set. Note that most of the samples have similar

histograms, while sample 37 is an outlier in distribution. Therefore, we removed sample 37

from the MANINI analysis since an outlier of that magnitude would distort the final perfor-

mance results.
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underlying the observed variation in disease phenotypes since the predictive model
is implemented based solely on the association between gene expression and
phenotype [15]. The proposed formulation of a discriminant pattern recognition
model for the prediction of lymph node status involves a four-step information
processing chain shown in Figure 4-1. Each step of the processing chain requires the
use of GSP techniques. Data preprocessing was described in the previous section.
Details on the remaining steps of the processing chain shown in Figure 4-1 are
described below.

The proposed GSP processing chain includes the following signal processing
components: (1) Microarray Analysis of Intensities and Ratios (MANINI) detection
algorithm for identifying DE genes, (2) pathway compression for data reduction,
(3) wavelet transformation for the separation of signal from noise, (4) singular value
decomposition for further dimensionality reduction and filtering, and (5) neural
networks for encoding the information contained in features derived frommicroarray
data using GSP techniques.

The signal processing steps outlined above can be combined in different ways
leading to different information processing algorithms. For example, the SVD of the
wavelet transformed data is known as wavelet/SVD (WSVD) signal processing.
Alternatively, the SVDof thewavelet transformof the datamatrix of genes confined to
a specific pathway specified by Ingenuity Pathway Analysis (IPA) is denoted by
WSVD/IPA signal processing. The following sections describe the different signal
processing components andhowtheyare combined to formanalysis pipelines that lead
to robust predictors of lymph node status based solely on the gene expression profiles
of the primary breast cancer tumor.

4.9.1 The MANINI Detection Algorithm

An alternative to the t-test for the supervised detection of genes highly correlated
to a given SRF is the so-called MANINI detection algorithm. The MANINI
detector was specially designed to handle small numbers of samples often en-
countered in real-world case/control microarray experiments, since in the absence
of a large number of chips, one is hard-pressed to do better than use fold change to
detect DE genes [34]. MANINI was also designed to detect DE genes with
expression profiles that are inconsistent or highly variable over the samples of
the experiment [35]. There is a growing trend in microarray data analysis toward
detecting genes in heterogeneous samples (e.g., tumor samples) with expression
patterns that may be too inconsistent for more conventional detector designs such
as the t-test [35,36].

For example, assume that a single signaling pathway is modulated between two
biological conditions. Due to sample heterogeneity and biological variation, it may be
that different components of the pathway are DE for different samples. In this case,
individual genes that participate in the pathway would be difficult to detect using the
t-test since the associated expression profiles would be highly variable over the
samples of the experiment. TheMANINI detector on the other hand would be able to
select such genes for downstream ontological and pathway analysis, where different
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ensembles of functionally related genes are assigned to the common pathway towhich
they belong [7,37].

Let x and y be p� 1 column vectors representing the geometric averages of the
control and disease chips, respectively. Let

M ¼ log 2ðyÞ�log 2ðxÞ ¼ log 2
y

x

� �

and

A ¼ 1
2 log 2ðyÞþ log 2ðxÞ½ � ¼ log 2

ffiffiffiffiffi
xy

p� �
Figure 4-4 shows theMinus–Add (MA) scatter plot ofMversusAwhere fold change

is plotted versus average expression in log2–log2 space.
We note three things about the MA scatter plot: (1) the MA plot can be viewed

as a visualization of differential expression; (2) genes located on the periphery of
the MA data cloud are likely to be DE; and (3) the vertical variation of the MA
data cloud is a function of expression level. This suggests a strategy for detecting
DE genes by selecting only those genes that ‘‘live” on the edge of the MA data

Figure 4-4 Minus–Add scatter plot for Huang breast cancer microarray data set. Each

point represents the geometric average of expression (A-axis) and fold change (M-axis) for a

gene in log2–log2 space. Horizontal dotted lines at M¼�1 represent constant twofold change in

expression between positive and negative samples. Note the dependence of the variance ofM on

the intensity of A .
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cloud based on a threshold that adapts to the spread of the cloud as a function of
expression level [32,38]. Note that using standard twofold change as a constant
threshold for differential expression over the entire range of expression values (as
represented by the horizontal dashed lines in Fig. 4-4) is clearly inappropriate since
too many genes are called DE at lower expression levels and too few genes are called
DE at higher expression levels. A better strategy would be to adaptively threshold the
genes of the MA scatter plot based on expression level.

The MANINI detector implements this idea by ‘‘binning” the horizontal axis of
the MA plot into k quantiles. Each bin contains about the same number of genes that
have similar expression intensities. This quantization scheme also implies that all
genes in a bin have about the same degree of variation since variation is a function of
intensity. For a given bin containingm genes, we assume the signal model yi¼ si þ h
for i¼ 1,2, . . ., m. Here, si is the true expression level of the ith gene, and h	N(0,s)
is normally distributed random variable with mean zero and known variance s2.
Empirical studies show that this is a reasonable assumption for wide range of real-
world data sets. It follows that differential expression within the bin can be modeled
as a m-dimensional random vector, y¼ [yi,y2, . . ., ym]

T, where E(y)¼ [s1,s2, . . ., sm]
T

is sparse [29].By sparse it ismeant thatmost of the componentsof the true signal vector
E(y)¼ [s1,s2, . . ., sm]

T are zero.
In the field of wavelet denoising, Donoho and Johnstone showed that a signal

contaminated by zero-mean Gaussian noise can be optimally filtered by thresh-
olding the wavelet coefficients of the noisy signal [39]. The wavelet transform of a
noisy signal localizes the information content of a signal simultaneously over time
and scale. In this case, high-frequency noise is usually confined to the high-
resolution scales and low-frequency coherent signal is concentrated in the low-
resolution scales. Donoho and Johnstone found that by simply thresholding the
higher resolution wavelet coefficients of the noisy signal and then applying the
inverse wavelet transform, one can optimally estimate the true underlying signal
assuming that it is sparse [29]. Thresholding in this manner to estimate a signal
embedded in noise is called testimation. Note that thewavelet coefficients at a given
scale of resolution form a Gaussian random vector where only a few of the
coefficients are different from zero; that is, the wavelet coefficients at each scale
form a sparse random vector.

Based on the properties of theMA scatter plot, the log2 ratios within an expression
bin of aMAplot can beviewed as a sparseGaussian randomvectorwhere only a small
number of geneswithin the bin are trulyDE. This observation suggests the application
of theDonoho–Johnstone (DJ) universal threshold directly to the log2 ratios of a given
intensity bin using

ŝi ¼ yi if jyij > s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�bÞlogðmÞ

p
0 otherwise

(
ð4-2Þ

to select those genes with ‘‘true” nonzero differential expression for i¼ 1,2, . . ., m,
where ŝi is an estimate of the ith component of the true signal s and 0< b< 1 [29,39].
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Note that 1�b represents ameasure of the ‘‘sparseness” of y. It can be shown that this
disarmingly simple procedure is asymptotically optimal in a statistical sense (i.e., it
minimizes the maximum expected risk) as m grows without bound and that its
application to a noisy high-dimensional data vector amounts to a Bonferroni-type
correction for multiple comparisons [29].

Note the optimality of the estimate ŝ depends on the number of variables m
(or genes) growing without bound. This is in sharp contrast to the situation in
classical statistics where the number of samples is assumed to grow without
bound [18]. Hence, Equation 4-2 actually becomes more accurate when the
number of genes is large, provided the random vector remains sparse. This is
exactly the situation for most whole genome expression profiling studies and
precisely the opposite of what is required for standard statistical algorithms to
work properly. Hence, the MANINI detection algorithm takes advantage of the
large number of genes interrogated in a typical microarray experiment by binning
the genes into subgroups containing equal numbers of genes with similar expres-
sion levels. Since the total number of genes is large, each subgroup will have
enough genes for the DJ universal threshold to work (for that particular subgroup).
For example, the Affymetrix U133 Plus 2.0 GeneChip uses over 54,000 probe sets
to interrogate over 47,000 transcripts that represent approximately 38,000 genes
and gene variants. Binning the horizontal axis of the MA plot into 51 quantiles
results in 50 subgroups of genes where each subgroup contains 1094 measure-
ments with similar expression levels. Note also that each bin of the MA plot
contains only a few genes that are truly DE; that is, the log2 ratios in each bin
contain a sparse signal for DE. This allows the application of the DJ threshold
to most microarray experiments where the signal for DE is sparse both locally and
globally.

Note that Equation 4-2 was implemented for each bin using the mean absolute
deviation (MAD) statistic in place of s to provide a robust estimate of the variation
within the bin. Genes that exceeded the Donoho–Johnstone threshold for the
bin were called DE. The union of all genes called DE over all bins of the MA
scatter plot resulted in a list of genes that are globally DE for the microarray
experiment [31].

The MANINI detection algorithm was used to analyze the 12,625� 26 log2
transformed, quantile normalized expressiondatamatrix denotedbyA.Wesummarize
the MANINI results in Figure 4-5. Differentially upregulated genes are marked by
up-triangles, differentially downregulated genes are marked by down-triangles, and
genes unchanged in expression are represented by points. The black dashed lines
located at M¼�1 represent constant thresholds for a twofold change in expression
in either the up (M¼ 1) or down (M¼�1) direction. The quantiles of A-axis are
represented by dark and gray vertical bands shown in the body of the MA plot.
The MANINI algorithm calls a gene within a given quantile, or bin, differentially
expressed if its absoluteM-value exceeds the DJ noise-adjusted threshold for that bin.
The union of genes calledDEover all bins represents the global signal forDEdetected
by MANINI.
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In Figure 4-6, we show scaled images of the data matrices U and D composed of
genes that MANINI called significantly up- and downregulated, respectively. The
rows ofU shown in Figure 4-6a represents the samples of the experiment clustered by
similarity of their expression profiles over genes called significantly upregulated by
MANINI. A similar interpretation applies to the rows ofD shown in Figure 4-6a. The
results of the cluster analysis are summarized by a dendrogram shown on the left side
ofU andD. Moreover, the cluster structure over all samples is shown on the right side
ofFigure4-6a andb,where thenegative samples are labeled1–19andpositive samples
20–36. Both data matrices U and D are quantile normalized, log2 transformed, and
z-scored by rows.

Note that inFigure4-6aandb, the samples toa large extent segregateby lymphnode
status with some erroneous classifications that are probably due to the inclusion of
genes that are falsely called DE by the MANINI detector. This suggests that we may
be able to identify a subset of genes that are able to do a better job of discriminating
between positive and negative breast cancer tumor samples based on gene expression.
We also note that although the MANINI detector is designed to detect genes with
expression profiles that conform to a step-like response, it is also less sensitive to

Figure 4-5 MA plot summarizing the results of a MANINI analysis of the Huang breast cancer

microarray data set. Each point of the RI plot is a gene represented by average expression and

fold change. Genes represented by up-triangles were called significantly upregulated by

MANINI, while genes represented by the down-triangles were called significantly downregu-

lated. The vertical bands in the body of the MA plot represent the 50 quantiles used to segment

the A axis into disjoint bins containing approximately the same number of genes. Each bin

represents a separate and distinct DE detection problem for genes that have comparable

expression levels.
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deviations from the ideal response than standard statistics such as the two-sample
t-score and hence will call a broader range of expression patterns as statistically
significant.

4.9.2 MANINI and Signal Detection Theory

LetAnrm be a p� n normalized expression data matrix and let r represent a one-to-one
mapping of the column indices {1,2, . . ., n} of Anrm to {�1,1} defined by

rðiÞ ¼ �1 if the ith sample is a control

1 if the ith sample is a case sample

(

Here, the function r is called a response function for the experiment. Figure4-7 showsa
response function equal to the unit step function h defined for a 64-chip microarray

Figure 4-6 Scaled images of the expression data matrices for up- and downregulated DE genes

called by the MANINI detector. The rows of each data matrix are hierarchically clustered by gene

expression profile over the samples.(a) Data matrix composed of DE genes called upregulated by the

MANINI algorithm. (b) Data matrix composed of DE genes called downregulated by the MANINI

algorithm. Note that each set of genes approximately segregates the samples into two distinct clusters

containing positive and negative breast cancer tumor samples.
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experiment by

hðiÞ ¼ �1 if i ¼ 1; 2; . . . ; n1

1 if i ¼ n1 þ 1; n1 þ 2; . . . ; n1 þ n2

(

where n1 þ n2¼ n. Note samples 1–32 are controls and samples 33–64 are cases.
Let gi denote the row expression profile of the ith gene of Anrm for i¼ 1,2, . . ., p.
Then the ith gene is said to be differentially upregulated in the treated group if
gi is positively correlated with the step function h. Conversely, the ith gene is
differentially downregulated in the treated group if gi is negatively correlated

Figure 4-7 Top IPA network for downregulated genes. The network contains 35 genes with a

scoreof 55 (p-value	1.0E-55).An inferred functionof the network isCancer. Thehighlyconnected

hub gene FOS has been implicated in the regulation of cell proliferation, differentiation and

apoptosis, and MMP10 has also been implicated in tumor metastases.
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with h. We note that transcript degradation in the control and/or case classes can
also generate step-like gene expression profiles. For example, degradation of
message for the ith gene in only the control samples can falsely produce a gene
expression profile that suggests upregulation of the gene in question in the treated
samples. We will assume that strict quality control of sample preparation and
hybridization protocols will reduce message degradation and experimental
variation to a minimum.

Let y ¼ ½y1; y2; . . . ; yn�T 2 Rn be a noisy gene expression profile where each yi
represents themeasuredexpression levelofagene in the ith sample for i¼ 1,2, . . .,n. In
the context of statistical hypothesis testing, let

H0 : y ¼ h

and

H1 : y ¼ hþh

where h 2 Rn is a Gaussian, zero-mean, independent, identically distributed random
vector representing noise in the data. Then the Neyman–Pearson Lemma states that
uniformly the most powerful test for H0 versus H1 is defined by [40]

dhðyÞ ¼
1 if f ðyÞ > t

g if f ðyÞ > t

0 if f ðyÞ > t

8><
>: ð4-3Þ

where

f ðyÞ ¼ log LðyÞ½ � ¼ log
p1

p0

� �
¼ log

phðy�hÞ
pnðyÞ

� 	
¼
Xn
k¼1

hkyk

By Equation 4-3, the test dh is called the correlation detector for the known signal h
in the noisy signal y. The step response h is called a template signal for dh. In other
words, the best strategy for detecting the presence of the known template signal h in a
noisy gene expression profile y is to correlate the two together [40,41]. Here, a
large absolute correlation implies that h is present in y, otherwise h is not present. The
key point here is to determine the threshold t on f that optimizes the balance between
sensitivity and the false positive rate defined by (1 – specificity). The response func-
tion need not be confined to be the unit step function, and in fact Equation 4-3 is quite
general and holds for arbitrary y and r.But a step-like response is the standard template
function for detectingwhat is commonly knownas differential expression between the
case and control classes of amicroarray experiment. This step-like response represents
a large and consistent difference in expression between the case and control samples of
the experiment.
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Note that fold change can be viewed as a correlation detector for the unit step
function h in the noisy gene expression profile y. Indeed, we have

hTy ¼
X
i

hiyi ¼
X

controls

hiyi þ
X
cases

hiyi ¼
X

controls

�yi þ
X
cases

yi

¼ n
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and hence, fold change is an correlation detector of the unit step response in noisy data.
Since the t-test for the difference in mean expression between two sample groups is

tðyÞ ¼
2

n

� �X
cases

log2ðxiÞ� 2

n

� � X
controls

log2ðxiÞ

s
¼ 2

ns

� �
log2ðfold changeÞ

where s is the pooled sample standard deviation of y, it follows that the t-test is simply
log fold change penalized for ‘‘within-group” variations in fold change through the
estimated value for s.

Note that if the true response r deviates significantly from the step function h, then
both fold change and the t-test become suboptimal tests for differential expression (as
defined by h.) Note however, that the t-test is further penalized for large variations in
fold change through s, that is, the t-test is biased toward step-like signals that are strong
and consistent within each two-sample groups. Hence, in situations where the true
response of a gene is highly variable over the samples, as in tumor samples with
heterogeneous composition, the t-test will fail to detect these genes [42]. Also, genes
that are up- or downregulated on only a fraction of the case samples may not be
detected [36]. On the other hand, MANINI will detect genes that are modulated
intermittently across the samples of the experiment since fold change by itself is not
penalized for excessive variation. Finally, note that statistical validation of the
resulting gene list is deferred until ontological (PANTHER) or pathway analysis
(INGENUITY) can be conducted to determine the statistically significant functional
categories and pathways contained in the gene lists. A gene is then called significant if
it is contained in a significant functional category or pathway [31].
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In summary, many genes have response profiles that deviate significantly from
the step function due to intermittent up- or downregulation across the samples of the
microarray experiment [43]. Hence, such genes will remain undetected by standard
t-like tests that are designed to detect a consistent and strong step-like change in
expression across the samples of the experiment. The MANINI detection algorithm
attempts to circumvent this problem by selecting genes that exhibit high fold change
relative to a noise-adjusted threshold that varies with expression level. This detection
strategy exploits the observed relationship between variation in fold change and
expression level inmicroarraydata.Hence, a gene is not penalized for highvariation so
long as its average fold change exceeds a ‘‘universal” detection threshold that adapts to
the noise background for the gene. Significant genes are subsequently defined as
those genes that are contained in significant functional categories that signaling
pathways that are contained in the gene lists as identified using IPA and Onto-
Express [37].

4.9.3 Pathway Compression

We assume that the overrepresentation of known cancer-related pathways (as ex-
plained below) in the list of DE genes derived from the Huang breast cancer data
set represents coherent structure that characterizes the underlying biology of lymph
nodepositivebreast cancer tumors in termsofgeneexpression.Conversely,weassume
the absence of such coherent structure suggests that the gene list has little in common
with what is known about gene function and is essentially composed of randomly
selected genes representing mostly noise. We target genes contained in overrepre-
sented pathways as means of ‘‘drilling down” to those genes that are at once the
most biologically relevant and discriminative between positive and negative breast
cancer tumors. This idea is called pathway compression since it serves to reduce the
dimensionality of the resulting gene expression signature that will be used to train a
NN model for classifying breast cancer tumors as lymph node negative or positive.

IPAwas used to identify the biological networks that were perturbed in the Huang
lymph node positive breast cancer samples in the context of what is currently known
about mammalian biology derived from basic and clinical research [15,44]. Research
findings presented in peer-reviewed scientific publications aremanually encoded into
a comprehensive knowledge base of gene function and gene–gene interactions. The
IPAknowledge base contains over 200,000 full text scientific articles, a gene ontology
ofmore than 9800 human, 7900mouse, and 5000 rat genes thatweremanually curated
and parsed fromMEDLINE abstracts. A global interaction network of direct physical,
transcriptional, and enzymatic interactions observed between mammalian ortholo-
gues as described in the literature—the so-called global ‘‘interactome”—was over-
layed on the gene ontology. The resulting global interactome contained molecular
interactions involving over 8000 orthologues with a high degree of connectivity. On
average, individual genes have 11.5 interaction partners, of which 7.2 represent direct
physical interactions.

Every gene interaction in an IPA network is supported by published articles.
Furthermore, the original literature detailing the genetic interactions can be accessed
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to further examine and verify the findings. The global interactome provides a frame-
work for structuring existing knowledge regarding mammalian biology and enables
the objective validation of experimental data in the context of known genome-wide
interactions to identify significant functional pathways. This method is applicable to
data of high-throughput platforms such as microarray expression profiling, polymor-
phism analysis, and proteomics.

Significant pathways contained in MANINI-derived gene lists were identified by
first overlaying the genes identified as DE onto the global interactome. Focus genes
were then identified as those genes having direct interactions with other MANINI-
significant genes in the database. The specificity of connections for each focus gene
was calculated by the percentage of its connections to other significant genes. The
initiation and growth of pathways proceeded fromgeneswith the highest specificity of
connections, where each pathway had a maximum of 35 genes. Pathways of highly
interconnected genes were identified by statistical likelihood based on the following
formula:

IPA Score ¼ �log10 1�
Xf�1

i¼0

CðF; iÞCðN�F; s�iÞÞ
CðN; sÞ

" #

where C(n,k) is the binomial coefficient, N is the number of genes in the global
interactome, F are the number of significant genes detected by MANINI, and s is the
number of genes in the inferred pathway of which f are focus genes. Depending on the
data set, pathways with a score greater than 5 (p-value <1.0E-05) are considered
significant.

IPAwas used to identify biologically significant pathways contained in the gene list
derivedbyMANINI for theHuangbreast cancer data set.A summaryof an IPAanalysis
of 413 downregulated DE genes selected byMANINI is shown in Table 4-1. The list is
composedofpathways thatwere found tobestatisticallyoverrepresented in thegene list
based on gene function and gene–gene interactions contained in the IPA knowledge
base. The networkswere rank ordered by IPA significance score and gene descriptions,
and the number of focus genes for each network was also provided. Only networks
derived from the downregulated genes were targeted since they resulted in the most
robust NN models. Note that the top two IPA networks have p-values on the order of
10�55. Figure 4-7 shows a diagram of the top interaction network from the list (dnet1).

The network diagram for dnet1 in Figure 4-7 details the internal interactions
between the 35genes that are contained in the network.Here, eachnode of the diagram
represents a gene and each edge connecting two genes represents a documented
interaction between them. We selected only the genes contained in dnet1 for further
downstream information processing. IPA pathway analysis can be viewed as a feature
selection procedure where the genes in a significant IPA pathway are used as features
for classifying the samples of the experiment. This gene selection process is known
as pathway compression [31]. In fact, we show in Section 4.11 that genes contained in
dnet1 are able to accurately distinguish between the positive and negative samples of
the Huang breast cancer data set when analyzed using WSVD signal processing
and modeled using neural networks. Note that diseases and biological processes
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associated with the gene network dnet1 include Cancer, Cell-to-Cell Signaling and
Gene Expression. Table 4-2 shows a list of the 35 genes contained in dnet1. Although,
many cancer-related genes such as FOS and MMP10 are included in the dnet1 gene
list, and the network topology of dnet1 suggests specific biological mechanisms that
may have relevance to metastatic breast cancer, we are primarily concerned with how
well the dnet1 genes are able to discriminate between positive and negative breast
cancer tumors, ignoring for now the underlying biology.

4.9.4 Continuous Wavelet Transform

Wavelet signal processing analyzes a noisy signal, for example, the expression profile
ofageneover a rangeof scalesusingwaveletsof different locations and timedurations.

Table 4-1 IPA analysis of genes called downregulated by MANINI

Rank
IPA

Source
Focus
Genes Top Functions

1 55 35 Gene expression, cell-to-cell signaling and interaction, cancer
2 55 35 Gene expression, dermatological diseases and conditions,

genetic disorder
3 16 16 Cellular development, cellular growth and proliferation,

hematological system development and function
4 14 15 Cellular compromise, Dermatological diseases and conditions,

gastrointestinal disease
5 14 15 Inflammatory disease, viral function, immunological disease
6 14 15 Protein synthesis, lipid metabolism, small molecule

biochemistry
7 13 14 Cell signaling, cancer, cell death
8 13 14 Nervous system development and function, organ development,

cancer
9 13 14 Organismal development, lipid metabolism, molecular transport

10 13 14 Carbohydrate metabolism, molecular transport, small molecule
biochemistry

11 13 14 Nervous systemdevelopment and function, cell-to-cell signaling
and interaction, neurological disease

12 11 13 Cellular growth and proliferation, hair and skin development and
function, cell signaling

13 11 13 Viral function, gene expression, cell cycle
14 10 12 Cellular movement, connective tissue development and

function, cell cycle
15 10 12 Energy production, nucleic acid metabolism, small molecule

biochemistry
16 9 11 Cell cycle, cellular assembly and organization, DNA replication,

recombination, and repair

Each row represents a significant IPA gene network. Note the networks are ordered by p-value. The top
network, dnet, has a p-value 	1.0E-55 and contains 35 genes from the MANINI gene list. An inferred
function for dnet1 based on the function of genes contained in the network includes Cancer.
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Table 4-2 Gene list for IPA network dnet1

Affy Tag Name Description

684_at AGT Angiotensinogen (serpin petidase inhibitor, clade A, member 8)
37983_at AGTR1 Angiotensin II receptor, type 1
40960_at B4GALT1 UDP-Gal betaGlcNAc beta 1,4-galactosyltransferase,

polypeptide 1
40367_at BMP2 Bone morphogenetic protein 2
35457_at CART CART prepropeptide
2036_s_at CD44 CD44 molecule (Indian blood group)
39031_at COX7A1 Cytochrome c oxidase subunit Vlla polypeptide 1 (muscle)
1878_g_at ERCC1 excision repair cross-complementing rodent repair deficiency,

complementation group 1
2084_s_at ETV4 ets variant gene 4 (E1A enhancer binding protein, E1AF)
34818_at ETV5 ets variant gene 5 (ets-related molecule)
1408_at FGF4 Fibroblast growth factor 4 (heparin secretory transforming protein

1, Kaposi sarcoma oncogen
1363_at FGFR2 Fibroblast growth factor receptor 2 (bacteria-expressed kinase,

keratinocyte growth factor receptor
2094_s_at FOS v-fos FBJ murine osteosarcoma viral oncogene homologue
36669_at FOSB FBJ murine osteosarcoma viral oncogene homologue B
32383_at GHRHR Growth hormone releasing hormone receptor
32531_at GJA1 Gap junction protein, alpha 1, 43 kDa (connexin 43)
37447_at GPR30 G-protein-coupled receptor 30
39573_at GRIK2 Glutamate receptor, ionotropic, kainate 2
39618_at HAPLN1 Hyaluronan and proteoglycan link protein 1
32570_at HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD)
1006_at MMP10 Matrix metallopeptidase 10 (stromelysin 2)
38602_at MYH6 Myosin, heavy chain 6, cardiac muscle, alpha (cardimyopathy,

hypertrophic 1)
35041_at NTF3 Neurotrophin 3
33998_at NTS Neurotensin
32472_at OXT Oxytocin, prepro-(neurophysin I)
38295_at PBX2 Pre-B-cell leukemia transcription factor 2
32001_s_at PCSK6 Proprotein convertase subtilisin/kexin type 6
35703_at PDGFA Platelet-derived growth factor alpha polypeptide
31732_at RLN2 Relaxin 2
35622_at SHC2 SHC (Src homology 2 domain containing) transforming protein 2
1511_at SHC3 SHC (Src homology 2 domain containing) transforming protein 3
36555_at SNCG Synuclein, gamma (breast cancer-specific protein 1)
34342_s_at SPP1 Secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early

T-lymphocyte activation 1)
32903_at TGFBR1 Transforming growth factor, beta receptor I (activin A receptor

type II-like kinase, 53 kDa)
39681_at ZBTB16 Zinc finger and BTB domain containing 16

Shown are Affymetrix gene tags, gene name, and gene description. Cancer-related genes include FOS,
MMP10, and FGF4. The interaction structure of these genes is shown in Figure 4-7.
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Inotherwords, thewavelet transformprovidesa timescaledecompositionofa signal of
interest [45]. Here, the term ‘‘time” is used loosely referring to some agreed-upon
sequential ordering of multiple measurements (e.g., gene expression values) that may
or may not reflect an actual temporal ordering. Themain point is that all samples have
their components ordered in the same way.

An underlying assumption of wavelet signal processing is that coherent signal and
randomnoise ‘‘live” at different scales of resolution andhence are oftenwell separated
after wavelet transformation. Moreover, noise in real-world data sets are often better
‘‘equalized” after wavelet transformation, thus making the distinction between signal
and noise even more pronounced in the wavelet transform domain. Indeed, it can be
shown that the wavelet transform ‘‘diagonalizes” a scale-invariant signal in much
the same way that the Fourier transform diagonalizes time-invariant signals. Since
scale invariance generalizes time invariance, the wavelet transform can be viewed as
a generalization of the Fourier transform. Researchers have confirmed that the
improved signal/noise separation provided by the wavelet transform results in real-
world pattern recognition applications with enhanced classification and predictive
capabilities [27,28,46].

Wavelets at different scales and times cs,t are derived from a single ‘‘mother”
wavelet c via scaling and translation operations. The wavelet transform of a given
signal f is defined by correlating fwith each waveletcs,t and summing the correlations

~f ðs; tÞ �
ð¥
�¥

c
u�t

s

� �
f ðuÞdu ¼

ð¥
�¥

cs;tðuÞf ðuÞdu

where ~f ðs; tÞ is the CWTof f at scale s and time twith respect to the mother waveletc.
As a function of t for a fixed scale s,~f ðs; tÞ represents information in the signal having
frequencies that are localized to a spectral region that is centered on some frequency
that depends on the fixed scale s. As a function of s for a fixed time t,~f ðs; tÞ represents
information in the signal of all frequencies that is localized in some temporal
region centered on the fixed time t. Larger scale values capture coarse signal detail
(e.g., global trends), while the smaller scale values capture finer detail (e.g., transient
fluctuations and random noise). Hence, the CWT provides a means of characterizing
both local and global variation in a single signal representation.

There are an infinite number of mother wavelets to choose from depending on
the characteristic of the signal being analyzed. The mother wavelet used for the
microarray data analysis in this study is known as the Daubechies mother wavelet.
Computational studies using real and simulated data sets have shown that this
particular wavelet results in the best classification performance on the Huang breast
cancer tumor samples. This is mainly due to the shape of the Daubechies mother
wavelet that simultaneously smoothes the expression profile for a given samplewhile
capturing localized variations in the data over multiple scales of resolution.

Figure 4-8 shows the wavelet transform of quantile normalized, log2 transformed,
z-scored expression profiles of a lymph node negative tumor sample (Fig. 4-9a) and a
lymphnode positive tumor sample (Fig. 4-9b). The expression profilesweregenerated
by the downregulated genes in IPA network dnet1. In each case, the actual sample
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Figure4-9 Thecontinuouswavelet transformbasedon theDaubechiesmotherwavelet of order 4

for two sample expression profiles from the data matrix of pathway compressed genes.(a) The

sample expression profile of a lymph node negative tumor over 35 genes is shown above an image

of the CWTof the profile. The vertical axis of the CWT image represents scale, while the horizontal

axis represents samples ordered by lymph node status with negative samples first. Note that the

CWTof aone-dimensional signal is two-dimensional image. (b) ThesampleprofileandCWT image

of a lymph node positive tumor. Note how coefficients with high magnitude show different

distribution over scale and samples. Coefficients contained in rows near the bottom of the image

containmostly noise, while coefficients in rows near the top of the image represent coherent signal

characterizing differences between negative and positive tumor samples.

Figure 4-8 Eigenvalue plot for the datamatrix of genes from IPA network dnet1. Each eigenvalue

represents the variation in the direction of the corresponding eigencomponent. Eigenvalues 1–10

aremost likely to correspond to coherent signal. Eigenvalues 11–36 probably correspond to noise.
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expression profile is shown above the CWT of the profile. Note that the CWT of a
one-dimensional signal is a two-dimensional image. The vertical axis of each CWT
image represents the scale of resolution of the CWT. Not that the scale of resolution
becomes progressively coarser from the bottom up along the vertical axis. The
horizontal axis represents the tumor samples ordered by lymph node status with
the negative samples occupying columns 1–19 and the positive samples occupying
columns 20–36. Hence, each row of the CWT image represents the information
content of the profile at a particular scale of resolution, while each column represents
the information content of a particular sample over eight scales of resolution.

Themain idea of CWT signal processing is that randomnoise is concentrated at the
higher scales of resolution near the bottom of the CWT image, while lower frequency
coherent signal is concentrated in the coarser scales of resolution near the top. This
separation of signal and noise by scale enhances subsequent compression and
denoising of the data using SVD. Each CWT ‘‘image” is vectorized to generate a
one-dimensionalwavelet transformed expression profile that is used to form a column
of a CWT data matrix Awave.

In particular, let Adnet1 be the 35� 36 data matrix of quantile normalized, log2
transformed, z-scored gene expression values defined by the genes of dnet1. Each
35-dimensional column of Adnet1 is wavelet transformed over 64 scales in increments
of 8 using the continuous wavelet transform (CWT) based on the Daubechies mother
wavelet of order 4 (Daub4) that results (after vectorization) in a 240� 36wavelet data
matrix Awave. SVD was used to compress Awave down to a 12� 36 data matrix
Afeats¼ [f1,f2, . . ., f36] as explained below. Each column fj of Afeats represents a
12-dimensional vector of WSVD features that characterizes the jth sample of the
experiment for j¼ 1,2, . . ., 36. Previous research has shown that WSVD features
significantly enhance the performance of pattern recognition algorithms in real-world
applications [27,28]. In this study, we show that pathway compression coupled with
WSVD signal processing enhances the classification of high- and low-risk breast
cancer samples based solely on gene expression of the primary tumor using neural
network classifiers.

4.9.5 Singular Value Decomposition

SVD is a classical statistical technique for characterizing the linear correlation that
exists in a data matrix [47]. It is closely related to the Karhunen–Loeve transform
(random processes), principal component analysis (matrix diagnonalization), and
factor analysis (correlation structure of multivariate stochastic observations). SVD is
used in many areas of science and engineering as a means of extracting features for
pattern recognition, data compression, signal detection, and sample classification
applications. Essentially, the primary goal of SVD is to find a linear transformation
that maps a vector of noisy, correlated ‘‘time domain” measurements into a much
smaller vector of denoised, uncorrelated feature components [27,28].

Let A¼ [x1, x2, . . ., xK]
T be a p� n expression data matrix with p-dimensional

columns xi composed of noisy, correlated expressionmeasurements (superscript T is
the matrix transpose operator). We desire a linear transformation L : Rp !Rk such
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that yi¼ Lxi is a compressed eigenarray of dimensionality k (k
 n) composed of
uncorrelated, denoised eigenexpression values. The fundamental theorem of linear
algebra states that under very general conditions, there exists orthogonal matrices
U andVand a diagonalmatrixS such thatA¼USVT [48]. Here,U is p� p,U is n� n,
and S is p� n. The columns of U are the eigenarrays of A, and they provide an
orthonormal basis for Rp. Similarly, the columns of V are the eigengenes of A, and
they form an orthonormal basis forRn. The square of the diagonal entries of S are the
eigenvalues, li, of A and are ordered so that lj> ljþ 1 for j¼ 1,2, . . ., n� 1. We
choose the first k eigenarrays ofU that correspond to the k largest eigenvalues (where
usually k
 n) and form the matrix Utrunc with columns equal to the selected
eigenarrays. It follows that L : Rp !Rk defined by L ¼ UT

trunc is the linear transfor-
mation we seek since it maps a p-dimensional vector into a k-dimensional vector
where k
 n< p. The k components of yi¼ Lxi are known as the principal compo-
nents of xi [47].

We note that the resulting feature vector yi is denoised due to the truncation of those
eigenarrays of U that are associated with the remaining (n� k) eigenvalues. It is
assumed that the truncated eigenarrays span a (n� k)-dimensional subspace contain-
ing the randomnoise component of the data.We note that the subspace spanned by the
truncated eigenarraysmay contain information that is useful for classification, andone
needs to be careful that this information is not lost in the dimensionality reduction
process. Usually, though, a visual analysis of a plot of the eigenvalues makes it clear
where the threshold should be set using, say, Kaiser’s rule [49].

Figure 4-10 shows a plot of the 36 eigenvalues obtained for the 240� 36 wavelet
data matrix Awave. Note that the eigenvalue plot becomes linear starting at about the
12th eigenvalue, so that

P12
i¼1 li represents the variation associated with coherent

signal, which accounts for 79 percent of the total variation inAwave based on the top 12
eigenarrays. The sum of the remaining eigenvalues

P36
i¼13 li represents the variation

associatedwith the noise,which accounts for the remaining 21 percent of the energy in
the data. The above analysis of the eigenvalues suggests that we retain the first 12
eigenarrays (i.e., columns) of U to form a 240� 12 transformation matrix Utrunc,
which is used to ‘‘compress” the 240� 36 data matrix Adnet1 down to a 12� 36 data
matrix y of WSVD/IPA feature vectors using

y ¼ ðUtruncÞTx

where x is a 240 component column vector of Awave. Note that each of the 36 tumor
samples is now characterized by 12 numbers instead of the original 12,625 expression
measurements. This is a huge reduction in dimensionalitywith a theoreticallyminimal
loss of information accompanied by a theoretically maximal reduction in noise [15].

4.9.6 Combining Wavelets, SVD, and IPA (WSVD/IPA)

WSVD/IPA signal processing combines wavelet signal processing SVD and IPA
pathway compression to extract signal features from the Huang microarray data set.
The WSVD/IPA feature patterns are then used to train a NN classifier to robustly
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predict lymph node status based on gene expression patterns from primary breast
cancer tumors. The NN classifier is validated using leave-one-out cross-validation
starting with the 12,625� 36 raw data matrix Araw with an outlier sample removed.

We basically follow the flowchart given in Figure 4-1. The columns ofAraw are first
quantile normalization to obtain the normalized data matrix Anrm. This normalization
step facilitates comparisons between themicroarrays of the experiment. TheMANINI
detection algorithm is then applied to Anrm to obtain lists of up- and downregulated
genes that are DE between the positive and negative samples of the Huangmicroarray
data set. This completes the gene detection phase of the information processing chain.

Ingenuity Pathway Analysis is then used to extract statistically significant path-
ways from the MANINI gene lists. The genes in the most statistically significant IPA
networks are then intersected with the MANINI gene lists to generate individual data

Figure 4-10 Network diagram for a feedforward multilayer perceptron. Each node represents a

processing unit (artificial neuron) that computes an output according to Equation 4-4. Each arrow

represents thepassingof information fromonenode to another.Note that theoutput of a givennode

is passed as an input to the every node in the next layer. Nodes in the same layer do not pass

information to eachother. Thediagramshownhasone input layer of 12 nodes, one hidden layer of 6

nodes, and a single note in the output layer. A 12-dimensional feature vector (e.g., a WSVD/IPA

expression feature pattern) is presented to the input layer of the FFMLP. The input cascades

forward through the network layer by layer and eventually results in a single output value at the

output layer of the FFMLP. This output vector is thresholded to determine the decisionmade by the

FFMLP regarding the lymph node status of the tumor that is represented by the 12-dimensional

input feature pattern.

THE MODELING OF PHENOTYPIC VARIATION 143



matrices of normalized, log2 transformed, z-scored gene expression profiles. This step
is called IPA pathway compression, since a gene selected byMANINI is passed on for
downstreamprocessingonly if it is also contained in a significant IPAnetwork.LetAnet

be the data matrix associated with a significant IPA network. The CWT is then used to
transform the columns of Anet to obtain the 240� 36 wavelet data matrix Awave. The
Daubechies mother wavelet over 64 scales in increments of 8 was used since
computational experiments suggested that these parameters resulted in the best
NN performance. Note the CWT better separates signal and noise in the wavelet
domain and enhances data compression and denoising using SVD [39,50,51].
Application of the SVD to Awave resulted in a 12� 36 matrix of WSVD/IPA feature
patterns Afeats¼ [f1,f2, . . ., f36]. Note the columns of Afeats represent 12-dimensional
feature patterns (derived from the original 12,625-dimensional gene expression
profiles) that characterize each of the 36 samples of the Huang data set. Note the
greatly reduced dimensionality of the WSVD/IPA feature vectors fj enhances NN
modeling of lymph node status by alleviating the adverse impact ofBellman’s curse of
dimensionality. TheWSVD/IPA feature vectors fj for j¼ 1,2, . . ., 36were used to train
a 12� 6� 1 NN model with 12 input nodes, 6 hidden nodes, and 1 output node to
discriminate between the positive and negative lymph node samples.

4.9.7 Neural Network Modeling of Lymph Node Status

NN models are useful for situations where there is much data, but a theory is lacking
that explains the data [24]. The focus then shifts to patterns within the data that are
associatedwith aquantifiable attributemeasured for each sample.Neural networks are
also known as data-driven models or machine learning models. In microarray data
analysis, for example, we are usually given a finite number of ordered pairs (x,y) that
associate a k-dimensional gene expression patternx 2 Rk to a unique phenotypic state
y2 {0,1}. In this case, we wish to ‘‘discover” a mapping from expression patterns to
phenotypic states {0,1} that ‘‘generalizes” to new expression patterns not contained in
the original data set [21]. This mapping allows the prediction of phenotypic states of
new patterns that were ‘‘unseen” during training of the NN model. The discovered
mapping can be implemented as a NN, which represents a massively parallel, highly
distributed computational model of observed phenotypic variation based on gene
expression patterns.

A NN is composed of elementary computational units that can be ‘‘connected” to
each other to form a network that is capable of global information processing arising
from the local interactions between the computational units. The strength of the
interaction between two computational units is encoded in a ‘‘synaptic” weight that
quantities the ‘‘strength” of the interaction between the two units [52]. The collection
of all synaptic weights can be adjusted in parallel to realize almost any continuous
mapping between two sets of variables. This emergent computational behavior can be
highly nonlinear in nature, and as a result, a NN model is capable of solving very
difficult classification and prediction problems that require complex boundaries
between the different sample classes. The form of the resulting connection diagram
is called the architecture of the network, and the computations performed by the
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network are highly dependent on this architecture. That is, the modeler has control
over how the connections are evolved so that the architecture is plastic and trainable.
Indeed, the synaptic weights of the MLP can be adjusted using a machine learning
algorithm such as backpropagation to realize an arbitrarily good approximation to any
mapping between expression patterns and phenotype suggested by the data.

A neural network architecture known as the feedforward multilayer perceptron
(FFMLP) is used to model phenotypic variation over the samples of the microarray
experiment in terms of gene expression. The FFMLP architecture arranges the
computational nodes of the network into a ‘‘hidden” layer and an output layer.
There is an additional input layer of nodes, but these nodes merely pass the input
values on to the hidden layer without computation. The hidden layer is described as
such because it is shielded from direct contact with the outside world by the input and
output layers of nodes. The FFMLP is fully connected in that every node of a given
layer is connected to every node of the next layer by an arrow representing the direction
of information flow. Finally, to every arrow is assigned an adaptive weight parameter
that mediates the flow of information between the two nodes. Training data consisting
of empirical input–output pairs are used to adjust the weights using a nonlinear
optimization algorithm (e.g., error backpropagation) to approximate the input–output
mapping that is ‘‘implied” by the data. In this way, a FFMLP can approximate any
mapping between any two sets of quantities to an arbitrary degree of accuracy [49].

Figure 4-10 shows a network diagram for a two-layer FFMLP, where each node
represents a computational unit and each arrow represents the flow of information from
one node to another. In this case, the FFMLPhas an input layer consisting of 12 nodes, a
hidden layer consisting of 6 nodes, and an output layer consisting of a single node.
Usually, the input layer is excluded froma count of layers that compose a givenFFMLP.
If the dimension of the input layer is k, then the training data set consists of ordered pairs
fðx; yÞ 2 Rk � R2g. For a given training data pair (x,y), the k-dimensional feature
vector x is presented to the input layer of theNNand the resulting output vector yNN(x) is
compared with the target vector y where the dimensionality of y and yNN are equal.

For this study, x is the WSVD/IPA feature vector for a chip hybridized to a sample
from the Huang breast cancer data set and y is either 0.05 or 0.95, depending on
whether the sample is negative or positive for lymph node involvement, respectively.
The error between y and yNN is propagated back through the NN to adjust the adaptive
weights of the NN to reduce the error in the output layer using the error back-
propagation algorithm. The learning process is iterated over all training pairs and
repeated until the aggregate error for the trainingdata is reduced to an acceptable level.
Note that training is terminated in such a way as to balance accuracy on the training
datawith the ability of the FFMLP to generalize classification performance to data not
seen during training. To enhance generalization to new data, the output of the FFMLP
is smoothed using Bayesian regularization during training.

The input to the kth node of a given layer is a linearweighted sumof all inputs to the
node from all nodes in the previous layer, given byX

j

wkjxj
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where the sumrunsoverall nodes in theprevious layer that sends a signalxj to nodek (we
assume that abiasparameter is included in the summation) andwkj is the adaptiveweight
for the connection between the two nodes [53]. The output of the kth node is obtained by
transforming the weighted linear sum with a nonlinear activation function g using

zk ¼ g
X
j

wkjxj

 !
ð4-4Þ

For a vector of values presented to the input layer of the FFMLP, the output of each
computational node in a given layer can be computed in a feedforwardmanner in terms
of the outputs of all the nodes in the previous layer.

From a theoretical perspective, the FFMLP is known as a universal approximator;
that is, it canuniformly approximate anycontinuous functionona compactdomain toan
arbitrary degree of accuracy provided the network has a sufficiently large number of
hidden units and enough data. The key problem remains how to find suitable parameter
valuesgivena set of trainingdata.Thereexisteffective solutions to thismachine learning
problem based on both maximum likelihood and Bayesian approaches. The error
backpropagation algorithm is probably themost widely usedmethod to train a FFMLP.

Inparticular, theWSVD/IPAfeaturepatterns xjextracted for each samplewereused
to train a FFMLPmodel to discriminate between the positive and negative lymph node
samples. The FFMLP had an architecture shown in Figure 4-10 compose of 12 input
nodes, 6 hidden nodes, and a single output node. The 12-dimensional WSVD/IPA
input feature vector is passed without any processing to the nodes of the hidden layer,
where each hidden node computes an output value in accordance with Equation 4-4.
The output of each hiddennode is then fed into the single output node,which computes
a weighted linear combination of inputs and transforms the result using the sigmoidal
logistic function g. A fixed threshold (equal to 0.5) is applied to the output value to
determinewhether the input feature pattern was associated with a positive or negative
breast cancer tumor.

The hidden nodes employed hyperbolic tangent activation functions with range
confined to the interval [�1,1]. The single output node employed a sigmoidal logistic
activation with range confined to the interval [0,1]. The Levenberg–Marquardt training
algorithmwithBayesian regularizationwasused to train theFFMLP tooutput avalueof
0.95 for lymph node positive samples and 0.05 for the lymph node negative samples. A
samplewas classified as lymphnodepositive if its associatedFFMLPoutput exceeded a
threshold of 0.5, otherwise it was classified as lymph node negative. The FFMLP was
trained for 20epochswith a targeted errorgoalof0.005.Trainingwasusually completed
in less than 30 s, which facilitated validation of the GSP algorithms.

4.10 MODEL VALIDATION

The robustness and accuracy of FFMLPmodels trained on the Huangmicroarray data
set was evaluated using leave-one-out cross-validation (LOOCV) analysis [4,19].
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LOOCVanalysis begins by removing, say, the kth column from the raw data matrix
Araw. This results in the column-reduced 12,625� 35 data matrix Ak

raw from which
WSVD/IPA features are extracted as described above to train aNNmodel yk(x), where
x represents a 12-dimensional WSVD/IPA feature vector. Let xk denote the WSVD/
IPA feature vector associated with the kth column of Araw that was left out. Recall that
xk was unseen during training of yk and we want to see if yk can correctly classify this
sample. By design, we say that xk is lymph node negative if yk(xk)< 0.5 and lymph
node positive otherwise. The classification result is duly recorded and compared with
the known lymph node status for the left-out sample. The entire process is repeated
36 times for each columnofAraw.The correct classification rate (CCR) is defined as the
percentage of left-out samples thatwere correctly classified.Note that for each sample
left out during the LOOCVanalysis, a different set of downregulated genes is selected
by the MANINI algorithm. This variation in the gene lists reflects the variation in the
populationof all breast tumor expressionprofiles.Weutilize this variation to assess the
robustness of NN models trained on such data.

Figure 4-11 shows a flowchart of the information processing used to validate
feature patterns for classifying breast cancer samples into high- and low-risk groups
using FFMLP classifiers. Major signal processing occurs in the orange boxes labeled
‘‘preprocess data,” ‘‘select genes,” ‘‘extract features,” and ‘‘train classifier” as shown
in Figure 4-12. In particular, gene selection based on MANINI detection and IPA
pathway compression occurs in the ‘‘select genes” box of the flowchart, and WSVD
features are extracted in the ‘‘extract features” box. Note also the parallel chain (in
green) that processes the ‘‘left-out” sample for eventual classification by the NN

Figure 4-11 Flowchart for leave-one-out cross-validation of NN models of lymph node status

based on pathway compression and WSVD signal processing. LOOCV analysis estimates the

impact of sampling variation on the prediction performance of the neural network classifier. The

robustness and accuracy of the proposed predictionmodel depends to a large extent on the quality

of the feature patterns extracted from the raw data.
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classifier trained on the remaining 35 samples. Because the algorithm used to train the
FFMLP classifier is subject to entrapment in local minima, we repeated the LOOCV
procedure 100 times to obtain some idea of the variability introduced into the training
process due to sampling variation in the data. The maximum, median, and minimum
CCRvaluesover 100LOOCVtrailswereused to evaluate theeffectivenessof different
signal processing algorithms in discriminating between positive and negative lymph
node samples from the Huang data set.

4.11 RESULTS

In this section, we present results of a LOOCVevaluation of FFMLP models trained
on WSVD/IPA features to discriminate between breast cancer tumor samples based
on lymph node status. We also assessed and compared the performance of FFMLP
models trained on two additional feature types derived using (1) SVD combined with
pathway compression (SVD/IPA) and (2) SVD compression applied to all down-
regulated genes (SVDOnly).

Figure 4-12 A comparison of WSVD/IPA, SVD/IPA, and SVDOnly features for predicting lymph

node status using neural networks. LOOCV analysis of FFMLPs trained on each feature set was

performed 100 times and plotted to assess the variation in CCR values. WSVD/IPA and SVD/IPA

features were extracted from the 35 genes that were contained in the top IPA network for all genes

calleddownregulatedgenesby theMANINIdetector. SVDOnly featureswereextracted fromall 413

downregulated genes detected by the MANINI detector. Note that the CCR plot for WSVD/IPA

features (open circles) lies uniformly above the CCR plots for SVD/IPA (stars) and SVDOnly (open

squares) features. Median CCR is 94 percent for WSVD/IPA and 72 percent for SVD/IPA and

SVDOnly.
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Figure 4-12 shows plots of 100 CCR values for FFMLP classifiers trained using
WSVD/IPA (open circles), SVD/IPA (stars), and SVDOnly (open squares) feature
patterns. Note that FFMLP models trained onWSVD/IPA feature patterns uniformly
outperform models trained on SVD/IPA and SVDOnly features. Indeed, the median
CCR value associated with WSVD/IPA features was 94 percent, while both SVD/
IPA and SVDOnly features had median CCRs of 72 percent. Hence, wavelet signal
processing improved FFMLP classification performance by 31 percent when used
in conjunction with SVD analysis and IPA pathway compression. SVD/IPA and
SVDOnly had the same median performance, but SVD/IPA had greater variation and
attained amaximumCRRof83versus 78percent for SVDOnly.This suggests that IPA
pathway compression does not provide any improvement in classification perfor-
mance over SVD alone. Table 4-3 summarizes the maximum, median, and minimum
CCR values over 100 LOOCV trials for each feature type.

Overall, wavelet signal processing and pathway compression combined to signifi-
cantly enhance the prediction of lymph node status when compared to more conven-
tional signal processing based on SVD alone. Note the option of combining SVD and
wavelet signaling processing (without the benefit of pathway compression) was not
considered since this would have requiredwavelet processing of data vectors of length
413 instead of 35, which is computationally intensive. Hence, the success of wavelet
signal processing in the context of this study was a direct result of the data reduction
provided by pathway compression; that is, wavelets, pathway compression, and SVD
worked hand in hand to reduce dimensionality without loss of information related to
lymph node status, and thus significantly enhancing the classification of the Huang
breast cancer samples.

Note wavelet signal processing together with pathway compression achieved a
94 percent CCR based on only 35 genes. This result compares favorably with the
90 percent CCR achieved by Huang et al. on the same data set using 200 genes and
different statistical methodology. These results suggest that the lymph node status of
breast cancer samples can be predicted in an accurate and robust manner using a
relatively small number of genes when the appropriate signal processing and data

Table 4-3 Comparison of the classification performance of the different feature types

over 100 LOOCV trials

Feature Type Max CCR Median CCR Min CCR

WSVD/IPA 94% 94% 86%
SVD/IPA 83 72 61
SVDOnly 78 72 69

Themaximum,median, andminimumCCRvalues are shown for each feature set. Note that FFMLPmodels
trained onWSVD/IPA features attained a median CCR of 94 versus 72 percent for SVD/IPA and SVDOnly
features. This result represents a 31percent improvement in prediction performance, suggesting thatwavelet
signal processing significantly enhances the classification of breast cancer tumors that have spread to the
lymph nodes. Note the median CCR for both the SVD/IPA and SVDOnly feature sets were equivalent,
although the CCR variation for the SVD/IPA features is greater than the CCR variation for the SVDOnly
features. This suggests that pathway compression without wavelet processing does not result in any
appreciable improvement in classification performance.
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compression algorithms are utilized. In this particular case, ‘‘appropriate” means
wavelet signal processing, SVD and pathway compression, and neural networks.

4.12 DISCUSSION

We have shown that combining different signal processing techniques, namely,
MANINI detection, pathway compression, wavelets, and SVD results in feature
patterns that are able to accurately and robustly discriminate between high- and low-
risk breast cancer tumors using as few as 35 genes. Specifically, FFMLP classifiers
trained on WSVD/IPA feature patterns showed a 31 percent increase in CCR in
comparison to FFMLP classifiers trained on SVD/IPA or SVDOnly features.

A key step in the robust modeling of lymph node status was the selection of genes
for downstream feature extraction andmachine learning using theMANINI detection
algorithm. Recall that the MANINI detector assigns genes having similar expression
levels into ‘‘bins”where each bin defines a separate signal detection problem based on
data that is approximately normally distributed. A ‘‘test-and-estimate” or testimation
procedure based on the DJ universal threshold (from wavelet denoising theory) was
applied to the fold change values of the genes in each bin. Genes that exceeded the
threshold were called differentially expressed. The union of genes over all intensity
bins was called differentially expressed over bins represents a global gene expression
signature for metastatic breast cancer tumors.

Recent research has shown a deep connection between statistical testimation,
sparse signal estimation, andmultiplehypothesis testingwith adjustments formultiple
comparisons [29].Hence, theMANINI detector can beviewed as an optimal estimator
ofa sparse signal that automatically accounts for the approximately600 statistical tests
performed simultaneously within each of the 50 bins of the MANINI detector. Note
also that MANINI detection throws a wide net and detects genes based on similarity
rather than absolute magnitude or consistency of expression. That is, MANINI may
call a gene DE even though it is altered in expression on only a fraction of the positive
samples of the Huang data set, so long as the average fold change over all samples
exceeds theDJ threshold for the bin towhich it belongs. The ability to detect genes that
are ‘‘intermittently” DE is important when dealing with heterogeneous data sets often
encountered in cancer research that contain weak signals for DE, or samples that are
temporally and/or developmentally out of phase.

The observed increase in FFMLP classification performance using WSVD/IPA
features is due in large part to the fact that pathway compression drastically reduces
the number of genes that must be processed while at the same time preserving
important information related to lymph node status [16]. Since significant IPA
pathways extracted from the MANINI gene list are biologically relevant in terms
of knowngene function andgene–gene interactions as embodied in the IPAknowledge
base, pathwaycompressionprovides abiologically drivenmethod for selecting a small
number of highly informative genes from which feature patterns can be extracted for
diagnostic, prognostic, and predictive applications in the clinic. Because the resultant
features are biologically based, theNNmodels trained on such features are likely to be
more robust over a larger population of samples. The results shown in Table 4-3
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suggests that NNmodels trained on gene expression signatures derived from pathway
compression generalize well to a larger population of samples.

Table 4-3 also indicates that wavelet signal processing significantly enhances the
prediction of lymph node status using NN models. Indeed, wavelet signal processing
raised themedianCCRfrom72 to94percent for anoverall improvement of 31percent.
Themain reason for this result is that wavelet analysis of a sample’s expression profile
exhibits better separation between coherent signal and random noise in the CWT
domain [45,52]. The subsequent analysis of thewavelet transformed datamatrix using
SVD results in a better estimate of the intrinsic dimensionality of thewavelet denoised
data matrix. SVD compression in thewavelet domain has been used to solve a number
of difficult pattern recognition problems, including the automated classification of
underwater buriedmines and the detection of cervical pre-cancer in three-dimensional
hyperspectral images of the cervix [27,28].

Note that wavelet signal processing ofmicroarray datawasmade feasible to a large
extent by pathway compression. Indeed, without pathway compression, sample
expression profiles of 413 genes would have to be wavelet transformed, which is
computationallyonerous. In contrast, after pathwaycompression, the resulting sample
expression profiles are no more than 35 genes long, thereby enabling the efficient use
of the CWT for data preconditioning and denoising. Moreover, the information
processing described in this chapter applies wavelet signal processing to the columns
of the datamatrix instead of the rows.Hence, the resolution of thewavelet transform is
limited not by the number of samples in the experiment, but by the number of genes
included in the pathway-compressed data matrix. Since the number of genes is
intrinsically large, this approach circumvents the problem of having too few samples
for the wavelet transform to work properly.

NN classification performance can probably be improved by including genes
contained in different IPA networks. Future work involves the use of genetic algo-
rithms to globally search for the best combination of genes, significant IPA networks,
wavelets, and model parameters that maximizes the CCR score for predicting lymph
node status in the Huang breast cancer data set. Once the optimal genes and pathways
for distinguishing positive and negative breast cancer tumors are identified, close
examination of individual genes and their interactions with other genes contained
in the selected networks could very well lead to new insights into the molecular
mechanisms underlyingmetastatic breast cancer. Here, the overarching assumption is
that predictive performance is equivalent to biological significance, thus enabling the
use of machine learning models such as FFMLPs to identify the genes and pathways
that are most biologically relevant to the spread of breast cancer to the axillary lymph
nodes. Are there networks or combinations of networks that result in evenmore robust
and accurate predictions of lymph node status than those produced by the IPAnetwork
dnet1? It is expected that modern signal processing, FFMLP/NNmodels, and genetic
search algorithms will provide an answer to this question.

Note that IPA assigned the biological function of cancer to dnet1, and moreover,
simulations suggest that the topology of dnet1 with the FOS gene as a highly
connected ‘‘hub” gene is invariant to minus-one perturbations of the data. The FOS
gene family has been implicated in the regulation of cell proliferation, differentia-
tion, and transformation. Other cellular roles include transformation, apoptosis,
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growth, activation, motility, and cell cycle progression. FOS has also been associ-
ated with cardiovascular disease. Note that the ability to accurately classify breast
cancer tumors according to lymph node status is quite different from attaining a deep
understanding of the biological mechanisms underlying the spread of breast cancer.
Be that as it may, a close examination of predictive networks and the genes they
contain could well lead to a better understanding of the molecular mechanisms
underlying metastatic breast cancer. Such mechanistic models could lead to new
diagnostics and therapeutics that significantly improve the way breast cancer is
treated and managed in the clinic.
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