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PARTICLE DYNAMICS 

23.1 INTRODUCTION 

It should be noted that this chapter will primarily address gas-particle rather than 
liquid-particle behavior. The treatment of liquid- solid behavior/separation will 
appear in Chapter 24-Sedimentation, Centrifugation, Flotation. The general 
subject of particle classification and measurement receives treatment at the end of 
the chapter. 

23.2 PARTICLE CLASSIFICATION AND MEASUREMENT 

Particle size is uniquely defined by particle diameter only for the case of spherical 
particles. Unfortunately, except for liquid droplets, certain metallurgical fumes, and 
combustion emissions, particles are usually not spherical. This may also be the 
case with nanoparticles. To deal with nonspherical particles, it becomes necessary 
to define an equivalent diameter term that depends upon the various geometrical 
and/or physical properties of the particles. 

Some of the methods used to express the size of a nonspherical particle measured 
by microscopy are illustrated in Fig. 23.1. With reference to this figure, Ferret’s 
diameter is the mean length between two tangents on opposite sides of the particle 
perpendicular to the fixed direction of the microscopic scan. Martin’s diameter 
measures the diameter of the particle parallel to the microscope scan that divides 
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r Ferret's +I 

Circle of equal area 

Figure 23.1 Diameters of nonspherical particles. 

the particle into two equal areas. The diameter of a circle of equal area is obtained by 
estimating the projected area of the particle and comparing it with a sphere that 
approximates its size. 

The most popular choice is that sphere diameter (of the same density) that will 
settle with the same velocity as the particle in question under the influence of 
gravity. Other diameters that are occasionally/mly employed are listed in 
Table 23.1. 

The aerodynamic diameter of a particle is defined as the diameter of a sphere 
of unit density (specific gravity = 1.0) having the same falling speed in air as the 
particle. It is most useful in evaluating particle motion in a fluid. The aerodynamic 
diameter is a function of the physical size, shape, and density of the particle. The 
aerodynamic diameter is useful when designing certain recovery/control devices 
and is usually measured by a device called an impactor. 

The aerodynamic diameter (dp,a) is defined by: 

(23.1) 

Table 23.1 Equivalent diameters of particles 

Name Definition 
~~ ~ ~ 

Surface diameter 
Volume diameter 
Drag diameter 

Specific surface 

The diameter of a sphere having the same surface area as the particle 
The diameter of a sphere having the same volume as the particle 
The diameter of a sphere having the same resistance to motion as the 

particle in a fluid of the same viscosity and at the same velocity 
The diameter of a sphere having the same ratio of surface area to 

diameter volume as the particle 
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where dp,= = aerodynamic diameter, consistent units; dp = actual (equivalent) 
diameter, consistent units; pp = particle specific gravity, dimensionless; and C = 
Cunningham correction factor (CCF), dimensionless (to be discussed shortly). 

Illustrative Example 23.1 Calculate the aerodynamic diameter (pm) for the 
following two particles: 

1. Solid sphere, equivalent diameter = 1.4 pm, specific gravity = 2.0. 
2. Hollow sphere, equivalent diameter = 2.8 pm, specific gravity = 0.5. 

Solution Employ Equation (23.1). 

1. For the solid sphere, 

dpp = 1.4(2.0)o.5 

= 1.98 pm 

2. For the hollow sphere, 

dp,a = 2.80(0.51)0.5 

= 2.0pm 

Illustrative Example 23.2 Calculate the aerodynamic diameter (pm) of an 
irregular-shaped “sphere” with an equivalent diameter = 1.3 pm and specific 
gravity = 2.35. 

Solution Once again employ Equation (23.1). For the irregular shape, 

dp,a = 1.3(2.35)o.5 

= 1.99 pm 

Based on the results of this and the previous illustrative example, one concludes that 
particles with different specific gravity, but the same equivalent size, can have differ- 
ent aerodynamic diameters. For example, if dp = 2 pm, the reader is left the exercise 
of showing that the aerodynamic diameter for particles with specific gravity 1 .O, 2.0, 
4.0, and 8.0 is 2.00 pm, 2.83 pm, 4.00 pm, and 5.66 pm, respectively. Thus, 
particles of different size and shape can have the same aerodynamic diameter 
while particles of the same size can have different aerodynamic diameters. 

A common method of specifying large particle sizes is to designate the screen 
mesh that has an aperture corresponding to the particle diameter. Since various 
screen scales are in use, confusion may result unless the screen scale involved is 
specified. The screen mesh generally refers to the number of screen openings per 
unit of length or area. The aperture for a given mesh will depend on the wire size 
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Table 23.2 nler and U.S. standard screen scales 

Tyler Mesh Aperture, Microns U.S. Mesh Aperture, Microns 

400 37 400 37 
325 43 325 44 
270 53 270 53 
250 61 230 62 
200 74 200 74 
170 88 170 88 
150 104 140 105 
100 147 100 149 
65 208 70 210 
48 295 50 297 
35 417 40 420 
28 589 30 590 
20 833 20 840 
14 1168 16 1190 
10 1651 12 1680 
8 2362 
6 3327 
4 4699 
3 6680 

employed. The Tyler and the U.S. Standard Screen Scales in SI units (Table 23.2) are 
the most widely used in the United States. The screens are generally constructed of 
wire mesh cloth, with the diameters of the wire and the spacing of the wires being 
closely specified. These screens form the bottoms of metal pans about 8 in. in diam- 
eter and 2 in. high, whose sides are so fashioned that the bottom of one sieve nests 
snugly on the top of the next. Additional information is provided in Chapter 25- 
refer to Table 25.2. 

The clear space between the individual wires of the screen is termed the screen 
aperture. As indicated above, the term mesh is applied to the number of apertures 
per linear inch; for example, a 10-mesh screen will have 10 openings per inch, and 
the aperture will be 0.1 in. minus the diameter of the wire. 

A typical particulate size distribution analysis method of representation employed 
in the past is provided below in Table 23.3. The numbers in Table 23.3 mean that 
40% of the particles by weight are greater than 5 pm (microns or micrometers) in 
size, 27% are less than 5 pm but greater than 2.5 pm, 20% are less than 2.5 pm 
but greater than 1.5 pm, and the remainder (13%) are less than 1.5 pm. 

Table 23.3 Particle size distribution 

>5.0 Pm 40% 
<5 >2.5 Pm 27% 
C2.5 >1.5 Pm 20% 
< 1.5 Pm 13% 

100% 
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Most industrial techniques used for the separation of particles from gases involve 
the relative motion of the two phases under the action of various external forces. The 
collection methods for particulates are based on the movement of solid particles (or 
liquid droplets) through a gas. The final objective is their removal and/or recovery for 
economic reasons. In order to accomplish this, the particle is subjected to external 
forces-forces large enough to separate the particle from the gas stream during its 
residence time in the unit. Perhaps the most important of these forces is the drag force. 

23.3 DRAG FORCE 

Whenever a difference in velocity exists between a particle and its surrounding fluid, 
the fluid will exert a resistive force upon the particle. Either the fluid (gas) may be at 
rest with the particle moving through it or the particle may be at rest with the gas 
flowing past it. It is generally immaterial which phase (solid or gas) is assumed to 
be at rest; it is the relative velocity between the two that is important. The resistive 
force exerted on the particle by the gas is called the drag. 

In treating fluid flow through pipes, a friction factor term is used in many engin- 
eering calculations. An analogous factor, called the drag coefficient, is employed in 
drag force calculations for flow past particles. Consider a fluid flowing past a station- 
ary solid sphere. If FD is the drag force and p is the density of the gas, the drag coeffi- 
cient, CD, is defined as 

(23.2) 

From dimensional analysis, one can then show that the drag coefficient is solely a 
function of the particle Reynolds number, Re, that is, 

CD = CD(Re) (23.3) 

where 

dPVP Re = - 
P 

The quantitative use of the equation of particle motion presented in the next section 
requires numerical and/or graphical values of the drag coefficient as a function of 
the Reynolds number. These are presented in Fig. 23.2 and Table 24.3 respectively. 

In the following analysis, it is assumed that: 

1. The particle is a rigid sphere (with a diameter dp) surrounded by gas in an 

2. The particle or fluid is not accelerating. 
infinite medium (no wall or multiparticle effects). 
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Figure 23.2 Drag coefficient for spheres. 

A brief discussion of fundamentals is appropriate here because of the importance 
of air flow around particulates. No attempt will be made to develop the expressions 
for the distribution of momentum flux, pressure, and velocity. However, these 
expressions will be applied to develop some of the more important relationships. 

The drag force, FD, exerted on a particle by a gas at low Reynolds numbers is 
given by 

(23.4) 

Equation 23.4 is known as Stokes’ law and can be derived theoretically. However, 
keep in mind that Stokes’ equation is valid only for very low Reynolds numbers- 
up to Re M 0.1; at Re = 1, it predicts a value for the drag force that is nearly 10% 
too low. In practical applications, Stokes’ law is generally assumed applicable up 
to a Reynolds number of 2.0. By rearranging Stokes’ law in the form of Equation 
23.2, the drag coefficient becomes 

6 ~ p v a l ~ a ~  
CD = ; dp = 2a 

PV2P 
(23.5) 

where a equals the particle radius. Hence, for creeping flow around a particle, 
Equation (23.5) reduces to 

24 
CD =- 

Re 
(23.6) 

This is the straight-line portion of the log-log plot of CD vs. Re (Fig. 23.1). For higher 
values of the Reynolds number, it is almost impossible to perform purely theoretical 
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calculations. However, several investigators have managed to estimate, with a con- 
siderable amount of effort, the drag and/or drag coefficient at higher Reynolds 
numbers. 

In addition to the analytical equation (Eq. 23.6), one may use 

CD = 18.5/Re0.6; 2 < Re < 500 (23.7) 

for the intermediate range. This indicates a lesser dependence than Stokes’ law on Re; 
it is less accurate than Stokes’ law for Re < 2. At higher Re, the drag coefficient is 
approximately constant. This is the Newton’s law range, for which 

CD x 0.44; 500 < Re < 200,000 (23.8) 

In this region the drag force on the sphere is proportional to the square of the gas 
velocity. (Note that Newton’s law for the drag force is not to be confused with 
Newton’s law of viscosity or Newton’s laws of motion.) A simple two-coefficient 
model of the form 

CD = a Re-B (23.9) 

can therefore be used over the three Reynolds-number ranges given in Equations 
(23.6)-(23.8). The numerical values of a and p are given below: 

Stokes range 24.0 1.0 
Intermediate range 18.5 0.6 
Newton range 0.44 0.0 

Using the above model in Equation (23.2), the drag force becomes 

a d d p  v)2-B pB p’ 
FD = 

8gc 

The above equation reduces to 

3 q w d P  

gc  
FD = ~ 

for the Stokes’ law range (Re < 2), 

2.3 1 , r r ( d , ~ ) ’ . ~ p ~ ~ ~ p ~ ~ ~  

gc  
FD = 

for the intermediate range (2 < Re < 500), and 

(23.10) 

(23.1 1) 

(23.12) 

0.055 (dpu)2p 

g c  
FD = (23.13) 
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for the Newton’s law range (500 < Re < 200,000). This two-coefficient, three- 
Reynolds-number range model will be used for drag force calculations in this and 
subsequent chapters. Numerical and experimental values for the drag coefficient 
from the model, Equations (23.6)-(23.8) are presented in Table 23.4. A comparison 
between the two indicates that these three equations are fairly consistent with the 
experimental values found in the literature. 

Another empirical drag coefficient model(’) is given by Equation (23.14): 

logCD = 1.35237 - 0.60810(logRe) - 0.22961(log Re)* 

+ O.O98938(log Re)3 + O.O41528(log Re)4 

- O.O32717(log Re)’ + 0.007329(10gRe)~ 

- O.O005568(log Re)7 (23.14) 

This is an empirical equation which has been obtained by the use of a statistical 
fitting technique. As is evident from Table 23.4, this correlation gives excellent 
results over the entire range of Reynolds numbers. An advantage of using this corre- 
lation is that it is not partitioned for application only to a specific Reynolds number 
range. However, the lengthy calculation warrants its use only as a subroutine in a 
computer program. 

still another empirical equation‘*’ is 

(23.15) 

This correlation is also valid over the entire spectrum of Reynolds numbers. Its agree- 
ment with literature values, as seen from Table 23.4, is generally good. However, in 
the range of 30 < Re < lO,OOO, there is considerable deviation. For Re < 30 or 
Re > 10,000, the agreement is excellent. This correlation lends itself easily to 
manual calculations. 

23.4 PARTICLE FORCE BALANCE 

Consider now a solid spherical particle located in a gas stream and moving in one 
direction with a velocity, u, relative to the gas. The net or resultant force experienced 
by the particle is given by the summation of all the forces acting on the particle. These 
forces include drag, buoyancy, and one or more external forces (such as gravity, 
centrifugal, and electrostatic). In order to simplify the presentation, the direction of 
particle movement relative to the gas is always assumed to be positive. Newton’s 
law of motion is then 

FR = F - FB - FD (23.16) 
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where FR is the resultant or net force; F is the external force; FB is the buoyant 
force; and FD is the drag force. The net force results in acceleration of the particle, 
given by 

m dv 

gc 
FR = - (z) (23.17) 

where m is the mass of the particle (7rdp3pp/6); and pp is the particle density. The 
external force per unit mass is denoted as f. The external force, F, on the particle 
is then 

F = mf (23.1 8) 

Unless the particle is in a vacuum, it will experience a buoyant force in conjunction 
with the external force(s); this is given by 

FE = mff (23.19) 

where mfis the mass of gas (fluid) displaced by the particle. The equation of motion 
now becomes 

m - m f  
= f  (7) - e) 

This equation may also be written as 

where mq = (m - mf), or 

@/p. = f (1 - ;) - e) 
rPLp) - e) = f  - 

(23.20) 

(23.21) 

(23.22) 

For gases, pp > > > p, so that the bracketed terms in Equations (23.20) and (23.22) 
reduce to unity. 
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The particle may also be acted upon by one or more external forces. If the external 
force is gravity 

with 

The describing equation for particle motion then becomes 

(23.23) 

If the particle experiences another type of force, for example, an electrostatic force, 
FE, then 

(23.24) 

where fE is the electrostatic force per unit mass of particle. If, for example, the 
external force is from a centrifugal field 

where r is the radius of the path of the particle, f c  is the centrifugal force per unit 
mass of particle, w is the angular velocity, and u+ is the tangential velocity at that 
point. The centrifugal force, Fc, is then 

Fc = mfc 
The describing equation becomes 

@ / g c  = ($) - e) 
or 

(23.25) 

(23.26) 
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The reader is reminded on the use of g,. Any term or group of terms in the above 
equations may be indiscriminately multiplied or divided by this conversion constant. 

If a particle is initially at rest in a stationary gas and is then set in motion by the 
application of a constant external force or forces, the resulting motion occurs in two 
stages. The first period involves acceleration, during which time the particle velocity 
increases from zero to some maximum velocity. The second stage occurs when the 
particle achieves this maximum velocity and remains constant. During the second 
stage, the particle is not accelerating. The left-hand side of Equations (23.20) and 
(23.26) are, therefore, zero. The final, constant, and maximum velocity attained is 
defined as the terminal settling velocity of the particle. Most particles reach their term- 
inal settling velocity almost instantaneously. 

Consider the equations examined above under terminal settling conditions. Since 

= o  dv 
dt 
- 

the general equation for particle motion becomes 

or 
FD f =- 
m 

(23.27) 

The units off in this equation are those of acceleration, that is, length/(time)2. The 
general equation for the terminal settling velocity is obtained by direct substitution 
of Equation (23.10) into Equation (23.27) and solving for v .  Thus, 

3 Q v2pPp 
= 4dp(dpvp)P 

so that 

For the Stokes’ law range, Equation (23.28) becomes 

For the intermediate range, 

0.153 f 0.71dp 1.14pp0.71 

U =  p0.43 p0.29 

(23.28) 

(23.29) 

(23.30) 
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Finally, for Newton's law range 

u = 1 .74(fdp ppp)0.5 (23.31) 

Keep in mind thatfdenotes the external force per unit mass of particle. One consistent 
set of units (English) for the above equations is ft/s2 forf, ft for dp, lb/ft3 for p, lb/ft - s 
for p, and ft/s for u. 

Ordinarily, determining the settling velocity of a particle of known diameter would 
require a trial-and-error calculation since the particle's Reynolds number is unknown. 
Thus, one cannot select the proper describing drag force equation. This iterative cal- 
culation can be circumvented by rearrangement of the drag force equations and 
solving for the settling velocity directly. Both sides of Equations (23.29) and 
(23.31) are multiplied by 

A dimensionless constant, K ,  is defined as 

f P p P  113 

K = dP (7) 

Equations (24.29) and (24.3 1) can now be rewritten, respectively, as 

K3  
Re = - 

18 

(23.32) 

(23.33) 

and 

Re = 1.74K'.5 (23.34) 

Since K is not a function of the settling velocity, the choice of drag force equations 
may now be based on calculated K values. These new K range limits are given as 
follows: 

K < 3.3 Stokes 

43.6 > K > 3.3 Intermediate range 

2360 > K > 43.6 Newton 

If K is greater than 2360, the drag coefficient may change abruptly with small changes 
in fluid velocity. 
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Laro~ca‘~’ and Theodore(4), using the same approach employed above, defined a 
dimensionless term W that would enable one to calculate the diameter of a particle 
if the terminal velocity is known. This particular approach has found application in 
catalytic reactor particle size calculations. The term W-which does not depend on 
the particle diameter-is given by 

W = -  u3p’ (23.35) 
W P p  

The two key values of W that are employed in a manner similar to that for K 
are 0.2222 and 1514, that is, for W <  0.2222, the Stokes’ law region applies, for 
W >  1514, the Newton’s law region applies and in between, the intermediate law 
region applies. 

23.5 CUNNINGHAM CORRECTION FACTOR 

When particles approach sizes comparable to the mean free path of other fluid 
molecules, the medium can no longer be regarded as continuous since particles 
can fall between the molecules at a faster rate than predicted by aerodynamic 
theory. To allow for this “slip,” Cunningham’s correction factor@’ is introduced 
to Stokes’ law 

where C is the Cunningham correction factor (CCF), and 

2 A A  
C = l + -  

d P  

(23.36) 

(23.37) 

The term A is 1.257 x exp(- 1.10dp/2h) and A is the mean free path of the 
fluid molecules (6.53 x lop6 cm for ambient air). The CCF is usually applied to 
particles equal to or smaller than 1 micron. Applications include particulate air 
pollution and nanotechnologyt6’ studies. 

Illustrative Example 23.3 Calculate the CCF for particle size variation from 
1 .O nm to 1 O4 nm at temperatures of 70”F, 2 12”F, and 500°F. Include a sample cal- 
culation for a particle diameter of 400 nm (0.4 pm) at 70”E l atm. 

Solution 
vided in Table 23.5 along with a sample calculation. 

Employ the equations presented above. The calculated results are pro- 
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Table 23.5 Cunningham correction factors 

d D  (nm) dD (pm) C (70°F) C (212°F) c (500°F) 

1 
10 
1 0 0  
250 
500 
1000 
2500 
5000 
10,Ooo 

0.001 
0.01 
0.1 
0.25 
0.5 
1 
2.5 
5 

10 

216.966 
22.2 18 
2.867 
1.682 
1.330 
1.164 
1.066 
1.033 
1.016 

274.0 
27.92 
3.61 
1.952 
1.446 
1.217 
1.087 
1.043 
1.022 

405.32 
39.90 
5.14 
2.528 
1.711 
1.338 
1.133 
1.067 
1.033 

For a dp of 0.4 pm, the CCF should be included. Employing the equation given 
above 

A = 1.257 + 0.40e-'.'OdJ2* 

Therefore 

2Ah 
C = l + -  

dP 

(2)( 1.2708)(6.53 x lo-') 
0.4 

= I +  

= 1.415 

The results clearly demonstrate that the CCFs become more pronounced for nano- 
sized particles in the 10-1OOOnm range. In addition, an increase in temperature 
also leads to an increase in this effect. 

The reader should also note that a comparable effect does not exist for particles 
settling in liquids until the diameter become less than 10 nm (0.01 pm). 

Illustrative Example 23.4 Three different diameter sized fly-ash particles-O.4, 
40, and 400 microns-settle through air. You are asked to calculate the particle term- 
inal velocity and determine how far each will fall in 30 seconds. Assume the particles 
are spherical. The air temperature and pressure are 238°F and 1 atm, respectively. The 
specific gravity of fly-ash is 2.3 1. 
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Solution Calculate the particle density using the specific gravity given 

pp  = SG(62.4) = 2.31(62.4) = 144.141b/ft3 

Determine the properties of the air 

= 0.0569 lb/ft3 PM ( 1 X29) 
RT (0.7302)(238 + 460) 

p = - =  

For the viscosity of air (see Table A.9 in the Appendix) 

p = 0.021 CP = 1.41 x lop5 lb/ft-s 

Determine the value for K for each fly-ash particle size settling in air. 
For dp of 0.4 microns 

= 0.0144 
gPpP 32.174(144.14)(0.0569) 

= dp (7) = 25,::(12) ( (1.41 x 10-5)2 

For dp of 40 microns 

= 1.44 
40 32.174( 144.14)(0.0569) 

25,400(12) ( (1.41 x 10-5)2 
K =  

For dp of 400 microns 

32.174(144.14)(0.0569) 
= 14.4 

25,400(12) 400 ( (1.41 x 1 0 ~ ~ ) ~  
K =  

Determine which fluid-particle dynamic law applies for the above values of K .  
For a dp of 0.4 microns, Stokes’ law applies; for a dp of 40 microns, Stokes’ law 

applies; for a dp of 400 microns, the Intermediate law applies. 
Calculate the terminal settling velocity for each particle size in ft/s using the 

appropriate velocity equation. 
For a dp of 0.4 microns 

32.2(0.4)* 144.14 
18p (25,400(12))2(18)(1.41 x 

- = 3.15 x 1 0 - ~ f t / ~  gdp2Pp v = - -  

For a dp of 40 microns 

32.2(40)*144.14 
- = 0.3 15 f t / ~  gdp2Pp u = - -  

18p (25,400(12))2(18)(1.41 x 
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For a d,, of 400 microns 

0.1 53g0.7 ' dp 1.14pp0.7 ' - 0.1 53(32.2)0.7 ' [400/25,400( 1 2)] ' . I 4 (  144.1 4)0.71 
- 

p0.43p0 29 (1.41 x 10-5)0.43(0.0569)0.29 
V =  

= 8.76 ft/s 

Calculate how far, X ,  the fly-ash particles will fall in 30 seconds. 
For a d,, of 40 microns 

x = ~t = 0.3 15(30) = 9.45 ft 

For a d,, of 400 microns 

x = vc = 8.76(30) = 262.8ft 

For a d,, of 0.4 microns (0.4 x m), K = 0.0144 and v = 3.15 x ft/s, 
without the CCF. With the correction factor (A = 6.53 x one obtains 

A = 1.257 + 0.40 exp ~ 

(-l;?) 

= 1.2708 
-1.10(0.4 x 

= 1.257 + 0.40 exp( 
2(6.53 x lo-*) 

2( 1.2708)(6.53 x 
= 1.415 

2 A A  c= 1 + - = 1 +  
dP 0.4 x 

Equation (23.36) may now be employed. 

vcomcted = V c  = 3.15 x 10-5(1.415) = 4.45 x f t /S  

x = v C o m t ~ t  = 4.45 x 10-5(30) = 1.335 x ft 

Illustrative Example 23.5 Refer to Illustrative Example 23.4. Calculate the size of 
the a fly-ash particle that will settle with a velocity of 1.384 ft/s. 

Solution First calculate the dimensionless number, W, using Equation (24.35): 

= 0.1312 
(1 .384)3(0.0569)2 

W =  
32.2(144.14)(1.41 x 
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Since W < 0.2222, Stokes’ law applies 

Illustrative Example 23.6 Appropriate Drag Force Equation In order to calcu- 
late the terminal settling velocity of a particle in a gravity field, one must decide 
which of the three approximate drag force equations (Stokes, Intermediate, or 
Newton) is applicable. Explain why, when all three equations are used to calculate 
values of the terminal velocities for a given Reynolds number, the correct value is 
always the smallest of the three. 

Solution Refer to Fig. 23.3, which is a slight modification of Fig. 23.2. Irrespective 
of whether one is in region I, 11, or 111, the calculated drag coefficient from any of 
these describing equations produces the highest drag for the correct (and applicable) 
drag force equation. The higher drag provides greater resistance to flow, which in turn 
corresponds to a smaller (or lower) velocity. 

. 
I \ I \  

I \ I ’. 

Figure 23.3 Drag force-Reynolds number regimes. 
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Illustrative Example 23.7 A plant manufacturing Ivory Soap detergent explodes 
one windy day. It disperses 100 tons of soap particles (SG = 0.8) into the atmosphere 
(70"F, p = 0.0752 lb/ft3). If the wind is blowing 20 miles/h from the west and the 
particles range in diameter from 2.1 to 1000 pm, calculate the distance from the 
plant where the soap particles will start to deposit and where they will cease to 
deposit. Assume the particles are blown vertically 400 ft in the air before they start 
to settle. Also, assuming even ground-level distribution through an average lOOft 
wide path of settling, calculate the average height of the soap particles on the 
ground in the settling area. Assume the bulk density of the settled particles equals 
half the actual density. 

Solution 
travel the least distance. For the minimum distance, use the largest particle: 

The smallest particle will travel the greatest distance while the largest will 

dp = 1000 pm = 3.28 x ft 

=31.3 
32.174(0.8(62.4)) - (0.0752)0.0752 

(1.18 x 10-5)2 
K = dp ')'Jf3 = 3.28 x lop3 

The value of K indicates the intermediate range applies. The settling velocity is 
given by 

0 153g0.71d 1.14 0.71 
p pp - 0. 153(32.2)0.7' [3.28 x 10-3]'~'4(0.8(62.4))0.71 

- 
p0.43@0.29 (1.18 x 10-5)0.43(0.0752)0.29 

v =  

= 11.9ft/s 

The descent time is 

H 400 
v 11.9 

t=-=-- - 33.6s 

The horizontal distance traveled is 

For the maximum distance, use the smallest particle 

dp = 2.1 pm=6.89 x 10-6ft 

32.174(0.8(62.4)) - (0.0752)0.0752 
(1.18 x 10-5)2 

K = dp p)pJ'3 = 6.89 x 

= 0.066 
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The velocity is in the Stokes regime and is given by 

gdp2pp (32.2)(6.89 x 10-6)2(0.8(62.4)) 
= 3.59 x 10-4ft/s - o=- - 

18P (1.18 x 10-5) 

The descent time is 

= 1.11 x 106s 
H 400 t=-= 
v 3.59~10-4 

The horizontal distance traveled is 

L = t o =  1.11 x lo6 ( - 3i:o) 5280 = 3.26 x lo7 ft 

To calculate the depth D, the volume of particles (actual), VXt, is first determined. 

The bulk volume is (with 50% voids) 

The length of the drop area, Ld, is 

Ld = 3.2 x lo7 - 994 = 3.2 x 1 O7 ft 

Since the width is 100 ft, the deposition area A is 

A = LdW = (3.2 X lo7)( 100) = 3.2 X lo9 ft2 

The deposition height H is then 

v b  8012 
H = - =  = 2.5 x 1OP6ft 

A 3 . 2 ~  lo9 

The deposition height can be, at best, described as a “sprinkling.” 

23.6 LIQUID-PARTICLE SYSTEMS 

As indicated in the introduction to this chapter, the general treatment of liquid-particle 
dynamics, as it applies to liquid-solid separation, appears later in this Part (Chapter 
24). However, the reader should note that the equations developed earlier in this 
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chapter may be applied directly with only one minor change. Equation (23.38) con- 
tains the density ratio, DR, 

Pp - P DR=- 
P 

For gases, pp > > > p so that the above term reduces to 

PP D R = -  
P 

(23.38) 

(23.39) 

since the p term can be neglected in comparison to pp. However, if the fluid medium 
is a liquid rather than a gas, the p term must be retained in all the equations. This 
change is demonstrated in the next Illustrative Example. 

Illustrative Example 23.8 A small sphere (6mm diameter) is observed to fall 
through castor oil at a terminal speed of 42 mm/s. At the operating temperature of 
20°C, the densities of castor oil and water are 970 kg/m3 and 1000 kg/m3, respect- 
ively. The viscosities of castor oil and water are 900cP and 1 cP, respectively. 
Determine the density of the spherical particle, compute the drag coefficient for 
the spherical particle, calculate the drag and buoyant forces and, if the same sphere 
is dropped in water, would the sphere fall slower or faster and why? Also, calculate 
the Reynolds number and the terminal settling velocity. 

Solution Calculate the particle density, pp, assuming Stokes' law to apply 

Solving for pp 

Check on Stokes' law validity with p / p  = 9.28 x 

dpuf - 0.006(0.042) 
Re=-- = 0.272 < 0.3 

vf 9.28 x 10-4 

Alternatively, calculate the settling criterion factor, K. 

= 1.7 gpp(ps - ' f )  = 0.006 9.807(970)(2897 - 970) 
= " (  pf2 I:' ( (0.9)2 
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Since 1.7 < 3.3, Stokes' law applies. The drag coefficient, CD, for the Stokes' law 
regime is 

24 24 cD=-=- 
Re 0.272 

= 88.2 

Calculate the drag force, FD, for the Stokes' law regime using Equation (23.1 1). 

FD = 3 ~ p f d ~ v t  = 3T(0.9)(0.006)(0.042) 

= 0.00213N 

Calculate the buoyancy force 

= 0.001076N 

Consider the case when the same spherical particle is dropped in water. For water, 
pf is 1000 kg/m3, and p is 0.001 kg/m. s. The particle will move faster because of 
the lower viscosity of water. Stokes' law will almost definitely not apply. 

Calculate the settling criterion factor once again. 

K = dp p(;fL "))lil_ O.W6( 9.807(970)(2897 (o.001)2 - 970) 

= 158 

Since 158 > 43.6, the flow is in the Newton's law regime. Employ Equation (23.31) 
but include the (buoyant) density ratio factor. Therefore, 

vt = 1 . 7 5 1 w  = 1.75/- = 0.58m/s 

23.7 DRAG ON A FLAT PLATE 

The previous sections treated fluid particle dynamics where the particle was assumed 
to be a sphere. The drag force and the development that followed keyed solely on 
spheres. However, there are other applications involving drag that address other 
bodies. One such body is a flat plate. 
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The drag on a body submerged in a moving fluid depends on the body shape and 
size, the speed of the flow, and the properties of the fluid (its viscosity and density). 
One of the simpler bodies to study is a flat plate aligned parallel to the flow. Several 
semi-empirical relationships for the drag coefficient for this geometry have been 
proposed. Two such equations are presented in Equations (23.40) and (23.41) 

1.33 
c D = R e o ' ;  lo4 < Re < 5 x lo5 (23.40) 

(23.41) 

The first equation applies to a laminar flow, and the second (note the 1/7th power) 
when the flow is turbulent. The Reynolds number for a flat plate is given by: 

PVL Re = - 
El. 

(23.42) 

where L is the plate length parallel to the flow. 

Equation (23.43) 
The drag coefficient can be used to find the drag on the plate using 

FD = -CDPV 1 2  LW (23.43) 
2 

where W is the plate width perpendicular to the flow. 
Note that these formulas compute the force on one side of a plate. The drag based 

on these equations should be doubled to compute the drag on a plate in which both 
sides are exposed to the fluid. There are also other similar formulas available in the 
literature. 

Illustrative Example 23.9 The bottom of a ship, moving at 12m/s, can be 
modeled as a flat plate of length 20 m and width 5 m. The water density is 1000 
kg/m3, and the viscosity is N . s/m2. Calculate the drag on the bottom of the 
ship. 

Solution Compute the flow Reynolds number 
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Compute the drag coefficient employing the appropriate equation. 

0.03 1 - 0.03 1 
CD = - 

Re1/’ - (2.4 x 108)1/7 

= 0.002 

Calculate the drag on area LW is 

1 2  FD = - CDPV LW 
2 
1 
2 

= -(0.002)(1000)(12)2(20)(5) = 14,180N 

= 14.2 kN 
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