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lWO-PHASE FLOW 

16.1 INTRODUCTION 

The simultaneous flow of two phases in pipes (as well as other conduits) is complicated 
by the fact that the action of gravity tends to cause settling and “slip” of the heavier 
phase with the result that the lighter phase flows at a different velocity in the pipe 
than does the heavier phase. The results of this phenomena are different depending 
on the classification of the two phases, the flow regime, and the inclination of the 
pipe (conduit). 

As one might suppose, the major industrial application in this area is gas (G)-liquid 
(L) flow in pipes. Therefore, the subjects addressed in this chapter key on a G-L flow in 
pipes. The extension of much of the material to follow to flow in various conduits can 
be accomplished by employing the equivalent diameter of the conduit in question. 

The general subject of liquid-solid flow in pipes is not considered in this chapter. 
Suspensions of solids in liquids fall into two general classes, Newtonian and non- 
Newtonian. Newtonian suspensions are characterized by a constant viscosity, inde- 
pendent of the rate of shear. In the case of non-Newtonian suspensions, the viscosity 
is a variable that is a function of the rate of shear and (in some cases) a function of the 
duration or period of shear for viscous flow. If the suspension is found to be 
Newtonian in character, the pressure drop can be calculated by standard equations 
available for both viscous flow and turbulent flow by employing the average 
density and viscosity of the mixture (see Chapters 11 and 12). The procedures for 
computing the pressure drop for non-Newtonian suspensions are more involved but 
received treatment in Chapter 6. Details on liquid-solid flow is also available from 
Perry and Green.(’) 
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178 TWO-PHASE FLOW 

The general subject of flashing and boiling liquids is also not considered in this 
chapter. However, when a saturated liquid flows in a pipeline from a given point at a 
given pressure to another point at a lower pressure, several processes can take place. 
As the pressure decreases, the saturation or boiling temperature decreases, leading to 
the evaporation of a portion of the liquid. The net results that a one-phase flowing 
mixture is transformed into a two-phase mixture with a corresponding increase in fric- 
tional resistance in the pipe. Boiling liquids arise when liquids are vaporized in pipe- 
lines at approximately constant pressure. Alternatively, the flow of condensing vapors 
in pipes is complicated due to the properties of the mixture constantly changing with 
changes in pressure, temperature, and fraction condensed. Further, the condensate, 
which forms on the walls, requires energy in order to be transformed into spray, and 
this energy must be obtained from the main vapor stream, resulting in an additional 
pressure drop. An analytical treatment of these topics is beyond the scope of this 
book. However, information is available in the literature."' 

The remainder of the chapter examines the following topics: 

Gas (G)-Liquid (L) Flow Principles: Generalized Approach 

Gas (Turbulent) Flow -Liquid (Turbulent) Flow 
Gas (Turbulent) Flow-Liquid (Viscous) Flow 
Gas (Viscous) Flow-Liquid (Viscous) Flow 
Gas-Solid Flow 

16.2 GAS (G)-LIQUID (L) FLOW PRINCIPLES GENERALIZED 
APPROACH 

The suggested method of calculating the pressure drop of gas-liquid mixtures flowing 
in pipes is essentially that originally proposed by Lockhart and Martinelli'2' nearly 60 
years ago. The basis of their correlation is that the two-phase pressure drop is equal to 
the single-phase pressure drop for either phase (G or L) multiplied by a factor that is a 
function of the single-phase pressure drops of the two phases. The equations for the 
total pressure drop per unit length Z (APlZ) ,  are written as: 

The terms YL and YG are functions of the variable X 

(16.1) 

(1 6.2) 

(16.3) 

(16.4) 

where 

(16.5) 
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The relationship between YL and YG is therefore given by 

Y c  = X2YL (16.6) 

The single-phase pressure-drop gradients (AP/Z)L and (AP/Z)G can be calculated by 
assuming that each phase is flowing alone in the pipeline, and the phase in question is 
traveling at its superficial velocity. The Superficial velocities are therefore based on the 
full cross-sectional area, S, of the pipe so that 

and 

(16.7) 

(16.8) 

where uL = liquid-phase superficial velocity, 
uG = gas-phase superficial velocity, 
qL = liquid-phase volume flow rate, 
qG = gas-phase volume flow rate, 

S = pipe cross-sectional area. 

Note that either Equation (16.1) or (16.2) can be employed to calculate the pressure 
drop. 

The functional relationships for YL and YG in Equations (16.3) and (16.4) in terms 
of X were also provided by Lockhart and Martinelli‘2’ for the phase classification under 
different flow conditions. (These relationships are provided later in this chapter.) 
For gas-liquid flows, semi-empirical data were provided for the following three 
flow categories: 

gas (turbulent flow, t)-liquid (turbulent flow) 
gas (turbulent flow)-liquid (viscous flow, v) 
gas (viscous flow)-liquid (viscous flow) 

The next three subsections address each of the above topics. Note that applications 
involving gas (viscous flow)-liquid (viscous flow) do not receive treatment since 
this type of flow rarely occurs in practice; the low viscosity of a gas (or vapor) vir- 
tually eliminates the possibility of gas moving in a laminar flow. 

A variety of the above flow phenomena is possible with the two-phase flow of 
gases and liquids in horizontal pipes ranging from parallel (two-layer) flow at low 
velocities to dispersed flow at high velocities (gas carried as bubbles in a continuous 
liquid phase or liquid carried as spray in the gas). The pressure drop is greater in 
liquid-gas flow than that for the single-phase flow of either gas or liquid for 
several reasons. These include the irreversible work done on the liquid by the gas 
and that the effective cross-sectional area of flow for either phase is reduced by the 
flow of the other phase in the area. 

The basis for the Martinelli comlati~ns(**~’ assumes that the pressure drop for the 
liquid phase must equal the pressure drop for the gas phase for all types of flow, 
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provided that no appreciable pressure differences exist across any pipe diameter and 
that the volume occupied by the liquid and by the gas at any instant of time must 
equal the total volume of the pipe. Using these assumptions, the pressure drop due 
to the liquid flow and that due to the gas flow was expressed in each case by standard 
pressure drop equations using unknown “hydraulic diameters.” The hydraulic diam- 
eters were then expressed in terms of the actual cross-sectional area of flow and the 
ratio of the actual cross-sectional area of flow to the area of a circle of diameter equal 
to the unknown hydraulic diameter. The unknown hydraulic diameter for the liquid 
flow was eliminated in the analysis and an expression was obtained for the pressure 
drop as a function of the single-phase pressure drop for gas alone. The function, 
expressed as 42 in their study, was introduced in order to reduce the range of the vari- 
ables when providing 42 vs a. Isothermal flow in smooth pipes was assumed. 

It is important to know what type of flow is occurring, although this can obviously 
be a difficult task. In order to establish which flow mechanisms applied, Martinelli 
et al.‘2*3’ used a set of flow conditions (as noted above) that were functions of the 
Reynolds number 

Re = 4w/?rDp (16.9) 

where w is the mass flow rate. Martinelli et al.‘2.3’ computed the Reynolds number 
for each using the actual pipe diameter; i.e., a superficial velocity was employed. 
For Re < 2000, the flow for that phase was assumed to be viscous (laminar); for 
Re > 2000, the flow is assumed to be turbulent. 

Illustrative Example 16.1 Air and oil are in concurrent flow through a horizontal 
pipe. The following pressure drop calculations were obtained from Theodore 
Consultants (a group of engineers with limited technical capabilities): 

(AP/Z)G = 2.71 psft/lOOft 

(AP/Z), = 7SOp~ft/lOOft 

Calculate the dimensional parameter X .  

Solution Refer to Equation (16.5): 

x = [(AP/z)L/(AP/z)Glo’5 
Substitute 

X = (7.50/2.71)0.5 

= 1.66 

The volume fraction or holdup of a phase for two-phase flow in a horizontal pipe is 

EL = F3(X) (16.10) 

also available“): 

(16.1 1) 
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where E~ + e L =  1 and eG and eL are, the fraction (dimensionless) of pipe 
volume occupied by the liquid phase and gas phase, respectively; X is the afore- 
mentioned variable defined by Equation (16.5). The relationship between eL and X 
is approximately provided by'4': 

EL = 0.298 + 0.1 17 ln(X) ( 1 6.1 2) 

Gas-liquid flow usually occurs in horizontal pipes. However, when gas-liquid 
mixtures flow in vertical pipes, there is an increase in liquid concentration or 
build-up of liquid due to the density difference in the case of upward flow, and a 
decrease in liquid concentration in the case of downward flow. Since information 
is available on the upward flow of gas-liquid mixtures, a variety of flow phenomena 
are possible including gas as the dispersed phase in a continuous liquid phase to gas 
as the continuous phase with liquid carried as spray. One of the intermediate types of 
flow is where the liquid flows as an annulus and the gas as a central core. The major 
applications are gas lifts. A gas lift is a vertical pipe (known as an eduction pipe) open 
at both ends, part of which is submerged below the surface of the liquid to be 
pumped. Compressed gas is admitted through a foot-piece inside the lower end; a 
mixture of liquid and gas is thus formed within the pipe. The gas reduces the 
average density of the mixture in the eduction pipe to a point where the weight of 
the mixture is less than equivalent to the pressure at the foot-piece. With the gas 
and liquid being supplied at a sufficient rate, the mixture rises upward through the 
pipe and is discharged at the upper end. Industrial use occurs with the operation of 
flowing oil wells. Considerable operating and experimental data have been reported 
but little attempt has been made to correlate them. 

16.3 GAS (TURBULENT) FLOW-LIQUID (TURBULENT) FLOW 

This section provides additional details of the original work of Lockhart and 
Ma~tinelli.'*.~' This is followed by a simpler approach for predicting pressure drop. 
The simpler approach is recommended for industrial applications. 

In the original work (with most of the notation retained), the ratio of the actual 
cross-sectional area of flow to the area of a circle of diameter equal to the 
unknown equivalent (or hydraulic) diameter for the gas phase was assumed to be 
unity and the ratio for the liquid phase was determined from experimental data. 
The following correlations were obtained from the ratio for the liquid phase and 
the properties of the liquid and gas 

e)n= +n e) G 

where +n is a function of a dimensionless group, Xn; and, 

xn = (z)o.lll (PG) 0.555 ($) 

( 1 6.1 3) 

(16.14) 

The magnitude of for values of Xt, is given in Table 16.1. 
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Table 16.1 tp,, vs a,, 

0 
0.10 
0.20 
0.40 
0.70 
1 .oo 
2.00 
4.00 
7.00 
10.0 
20.0 
40.0 
46.2 
for fin > 46 

1 .oo 
1.50 
1.68 
2.13 
3.03 
4.08 
8.30 
19.6 
42.3 
71.0 
222 
770 
1000 
4" = 

Results were later expressed in terms of YL and YG, both of which are functions of 
Xtt; see Equations (16.3) and (16.4) for more details. Van Vliet"' subsequently 
regressed the data to a model of the form 

Yc  =a+bX+cX2+dX3 

and 

YL = axb (16.15) 

The final results for YL and YG for tt flow are presented in Equations (16.16) 
and (16.17): 

YG(tt) = 1.7172 + 15.431X + 3.9314X2 - 2.2952X3; x < 1 

= 5.80 + 6.7143X + 6.9643X2 - 0.75X3; 1 < X < 10 

= 131 + 1.4105X + 1.9362X2 - 0.0087X3; X > 10 

( 1 6.1 6a) 

(16.16b) 

(16.16~) 

( 1 6.1 7a) 

= 18.219X-0.8192; 1 < X < 10 (16.17b) 

= 6.3479X-0.3518; X > 10 ( 1 6.1 7c) 

YL(tt) = 1 1.745X-1.4901; X < 1 

As noted earlier, the pressure drop for two-phase flow can be calculated using 
either Equation (16.1) or (16.2). Longhand calculations have shownc5' that the two 
equations can, in some cases, produce different results. The authors recommend 
using either the gas phase value or the average of the two for design purposes. 
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However, if the volume fraction of one phase predominates (see Eq. (16.12)), the 
authors suggest employing the pressure drop calculation for that phase. 

Illustrative Example 16.2 Refer to Illustrative Example (16.1). Calculate the 
pressure drop (total) if the flow for both phases is turbulent. Base the calculation on: 

a. YG 
b. YL 

Solution 

a. Since the flow is tt and 1 < X < 10, apply Equation (16.16b) to obtain YG 
while noting X = 1.66: 

YG(tt) = 5.80 + 6.7143X + 6.9643X2 - 0.75X3 

Substituting 

YG(tt) = 5.80 6.7143( 1.66) + 6.9643( 1 .66)2 - 0.75( 1.66p 

YG = 5.80+ 11.145 + 19.19 - 3.431 

= 32.7 

This value is an excellent agreement with the values provided by Lockhart and 
Ma~tinelli.'~) The pressure drop is therefore (from Eq. 16.1): 

AP/Z = (YG)(AP/Z)G 
= (32.7)(2.71) 
= 88.6 psf/100 ft 

b. Apply Equation (16.17b) to generate YL 

YL(tt) = 18.219X-0.8'92 

= 18.219(1.66)-o.8192 
= 12.0 

The literature value is approximately 12.'3' The pressure drop is therefore 
(from Eq. 16.2): 

AP/Z = (YL)(AP/Z)L 
= (12.0)(7.50) 

= 90.2 psf/ 100 ft 

As expected, both results are in reasonable agreement. 
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16.4 GAS (TURBULENT) FLOW-LIQUID (VISCOUS) FLOW 

The original work of Lockhart and Martinelli'2' is once again reviewed for the 
turbulent-viscous (tv) case. Using the same procedures as that for the turbulent- 
turbulent (tt) case, the final correlation took the form: 

( 1 6.1 8) 

where 4v is a function of a dimensionless group, Xtv. The magnitude of 
of X,, is provided in Table 16.2. 

for values 

Table 16.2 &, vs flw 

at, 4 v  
0 
0.07 
0.10 
0.20 
0.40 
0.70 
1 .00 
2.00 
4.00 
7.00 
10.0 
20.0 
40.0 
70.0 
100 
200 
400 
1000 
for fitv > 1000 

1 .OO 
2.00 
2.14 
2.46 
2.96 
3.42 
3.85 
5.30 
7.87 
11.3 
14.8 
25.4 
46.0 
75.8 
105 
203 
400 
1000 
& = a W  

The results of Table 16.2, which are functions of X, were expressed in terms of YG 
and YL. Van Vliet@' subsequently regressed the data to a model of the form as in 
Equations (16.16) and (16.17). The final results for Y, and YG are presented in 
Equations (1 6.19) and (16.20) 

YG(tv) = 1.6204 + 1.1825X + 34.778X2 - 30.522X3; X < 1 ( 16.19a) 

= 20 - 21.81X+ 16.357X2 - 1.8333X3; 

= 50.333 + 2.9782X + 1.9395X2 - 0.0088X3; 

1 < X < 10 (16.19b) 

(16.19~) X > 10 
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YL(tV) = 6.7147X-'.5757; X < 1 (16.20a) 

= 11.702X-0.7334; 1 < X < 10 (16.20b) 

= 5.5873X-0.3215; X > 10 (16.20~) 

Illustrative Example 16.3 Refer to Illustrative Example (16.1). Calculate the 
pressure drop (total) if the flow for the gas phase is turbulent and the liquid phase 
is viscous. Base the calculation on: 

a. YG 
b. YL 

Solution 

a. Since the flow is tv and 1 < X < 10, apply Equation (16.19b) to obtain YG 
while noting once again X = 1.66: 

YG(tV) = 20 - 21.81X -/- 16.357X2 - 1.8333X3 

Substituting 

YG(tV) = 20 - 21.81(1.66) + 16.357(1.66)2 - 1.8333(1.66)3 

YG = 20 + 3.62 + 45.1 - 8.39 
= 20.5 

The literature value is approximately 22.(3) The pressure drop is therefore (from 
Eq. 16.1): 

AP/Z = (YG)W/Z)G 
= (32.7)(2.71) 

= 55.6p~f/100ft 

b. Apply Equation (16.20b) to generate YL. 

YL(tV) = 11 .702X-0.7334 

= 1 1.702( 1 .66)-0.7334 

= 8.07 
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The literature value is approximately 7.5.'3' The pressure drop is therefore 
(from Eq. 16.2): 

A P / Z  = (YL)(AP/~)L 
= (8.07)(7.50) 

= 60.5psf/100ft 

As expected, both results are in reasonable agreement. 

16.5 GAS (VISCOUS) FLOW-LIQUID (VISCOUS) FLOW 

The same procedure was employed by Lockhart and Martinelli'2*3' as in the preceding 
two cases except that both liquid and gas ratios of the actual cross-sectional area of 
flow to the area of a circle of diameter equal to the unknown hydraulic diameter 
for the gas phase were determined experimentally in capillary tubes. Their correlation 
was expressed as 

(16.21) 

where 4,, is a function of a dimensionless group, X,,. The magnitude of A, for 
values of X,, is provided in Table 16.3. 

Table 16.3 #,,,, vs fiw 

a,, 4 v v  

0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 
6 

1.40 
1.69 
1.93 
2.16 
2.44 
3.81 
5.15 
6.4 
8.7 (limit of experimental data) 

The results in Table 16.3 were later expressed in terms of YL and YG, both of 
which are functions of X,, (see Equations (16.3) and (16.4) for more details). Van 
Vliet'5' subsequently regressed the data to a model of the form as in Equations 
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(16.16)-(16.17) and (16.19)-(16.20). The final results for Y, and YG are presented in 
Equations (16.22) and (16.23): 

YG(vv)= 1.1241+3.7085X+6.7318X2- 11.541X3; X <  1 

= 10 - 10.405X + 8.6786X’ - 0.9167X3; 

= -78.333 + 7.3223X + 1.8957X’ - 0.0087X3; 

x < 1 

1 < X < 10 

1 < X < 10 

X > 10 

YL(VV) = 3.9794x-1.6583; 

= 6.4699X-0.556; 

= 3.7013X-0~”’6; X > 10 

(16.22a) 

(16.22b) 

(16.22~) 

(16.23a) 

(16.23b) 

(16.23~) 

As noted earlier, this finds flow regime limited application in practice. 

Illustrative Example 16.4 Refer to Illustrative Example (16.1). Calculate the 
pressure drop (total) if the flow for both phases is laminar. Base the calculation on: 

a. YG 
b. YL 

Solution 

a. Since the flow is tv and 1 < X < 10, apply Equation (16.22b) to obtain YG, 
noting X = 1.66. 

YG(VV) = 10 - 10.405X + 8.6786X’ - 0.9167X3 

Substituting 

YG(VV) = 10 - 10.405( 1.66) + 8.6786( 1.66)’ - 0.9167( 1 .66)3 

YG = 10 - 17.3 + 23.9 - 4.19 
= 12.41 

The literature value is approximately 12.5.‘3’ The pressure drop is therefore 
(fromEq. 16.1): 

AP/z = (YG)(AP/Z)G 
= (12.41)(2.71) 

= 33.6psf/100ft 
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b. Apply Equation (16.23b) to generate YL: 

YL(vv) = 6.4699X-0.556 

= 6.4699( 1 .66)-0.s56 

= 4.88 

The literature value is approximately 5.0.'3' The pressure drop is therefore 
(from Eq. 16.2): 

AP/Z = (YL)(AP/Z), 
= (4.88)(7.50) 
= 36.1 psf/lOOft 

As expected, both results are in fair agreement. 

16.6 GAS-SOLID FLOW 

There are many gas-solid flow systems in pipes but this section solely addresses 
pneumatic conveying. The material to follow in this section will essentially be 
divided into five subsections: 

1. Introduction 
2. Solids Motion 
3. Pressure Drop 
4. Design Procedure 
5. Pressure Drop Reduction in Gas Flow 

16.6.1 Introduction 

Conveying material pneumatically has been used for many years. The system can be 
either a pressure system or a suction system. The materials that have been handled 
include grain, wood shavings, pulverized coal, cement, staple, plastic chips, small 
metal parts, and money containers in department stores. Pneumatic conveyors are 
simple, quiet, convenient, and clean; however, pneumatic conveyors have a much 
lower efficiency than the belt or bucket type conveyor. 

In a pressure system, the material can be fed by a screw conveyor or similar feeder 
and then forced through the system by compressed air or the material can be fed into a 
tank and then forced through the system by compressed air. In a suction system, a fan 
or blower is installed after the separating system thereby putting the entire system 
under vacuum. The material, with sufficient air to keep the material in suspension, 
is then drawn or "sucked" through the system. 

Occasionally, it is more convenient to use a combination of pressure and suction 
systems. In a combination system, the material is drawn in, passes through the fan and 
then under pressure is forced through the remainder of the system. For cases where the 
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material may damage the fan, an ejector may be used in place of the fan. Also, using 
an ejector, the material can be fed in the mixing throat of the ejector. 

It should be noted that in the design of pneumatic conveying systems, neither a 
pneumatic or theoretical method has been developed; the design is based on practical 
operating experience and empirical correlations of test data. Earlier general treatments 
of the particle motion and pressure drop are available.‘”8) 

16.6.2 Solids Motion 

The path of the solids in a horizontal pipe is somewhat sinusoidal, the solids striking 
the bottom of the pipe at intervals and then rising again. The height and length of the 
rise appears to decrease as the air velocity decreases. The vertical distribution of the 
solids across the pipe diameter is fairly uniform at low concentrations but becomes 
more dense at the bottom of the pipe as the loading (ratio of weight rate of solids 
to weight rate of air) increases. Finally, at high loadings, a considerable portion of 
the solids have been reported along the bottom of the pipe. The difference between 
the final average velocity of the solids and that of the air stream is almost constant 
for both horizontal and vertical conveyors. This difference is the “slip” between 
the solids and the air and increases with increasing velocity of the air stream. This 
“slip” velocity is of the order of magnitude of the “choking” velocity and is essen- 
tially the minimum transport or conveying velocity. For estimating purposes, the 
“slip” velocity may be taken as equal to the “choking” velocity. It has been reported 
that the “choking” velocity is independent of loading for relatively large particles. 

The minimum transport velocities of a material can be estimated by testing the 
solids in horizontal and vertical glass tubes by determining the minimum air velocity 
to convey the solids in a horizontal tube and the minimum air velocity to just suspend 
the solids in a vertical tube. The minimum transport velocity of the solids may be 
several times the free fall velocity. 

The minimum velocity u, to prevent the settling of some particles of diameter dp 
(in inches) and specific gravity s can be estimated from the following correlation: 

(16.24) 

For horizontal pipes 
k =  100 

and 
b = 0.40. 

For vertical pipes 
k = 205 

and 
b = 0.60. 

See Chapter 22 for additional details. 
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16.6.3 Pressure Drop 

The total pressure drop in the system can be considered to consist of the sum of the 
following pressure drops: 

1. to accelerate the air to the carrying velocity 
2. to overcome the friction of the air on the pipe walls 
3. to supply the loss of momentum of the air in: 

a. accelerating the solids 
b. keeping the solids in suspension 

4. to support the air (vertical pipes) 
5 .  to support the solids (vertical pipes) 

The total pressure drop for horizontal pipes, APT,, is given by 

where APAG = pressure drop to accelerate the air 
APAs = pressure drop to accelerate the solids 

APF = pressure drop due to the friction of moving air 

For vertical pipes, the pressure drop APTv is 

(16.25) 

(16.26) 

where APv = pressure drop to support the air and solid. Details are available 
in the literature.(’) 

16.6.4 Design Procedure 

In an actual design, the quantity of material to be conveyed and the distance are gen- 
erally known. One can then assume a loading and conveying velocity, and the diam- 
eter of the pipe can be computed. Finally, the pressure drop through the system is 
computed. If the pressure drop is excessive, a smaller loading can be taken and the 
above procedure is repeated until a reasonable pressure drop is obtained. There is 
no reliable method to accurately calculate the conveying velocity; however, a convey- 
ing velocity of 70 ft/s can be assumed in lieu of any information. 

Some order of magnitude values of loading, conveying velocities, and pressure 
drops for various systems are outlined below“”: 

1. Fan system 
pressure drop = 10 to 30 in H20 (50 in H20 is about the maximum) 
loading = 0.1 to 2.0 (possibly 5.0) lbsolids/lbair 
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conveying velocity = 30 to 100 ft/s; usually 50 to 70 ft/s 
The fan system is generally used for distances less than 200 ft. 

2. Vacuum system 
pressure drop = 5 to 10 in Hg 
loading = 5 to 20 lbsolids/lbair 
conveying velocity = (same as above) 

pressure drop = 10 to 50 psia (possibly as high as 100 psia) 
loading = 5.0 to 40 lbsolids/lbair 
conveying velocity = (same as above) 

3. Pressure system 

Large radius bends are recommended as the pressure drop will be less than with tight 
bends and it will also be less likely for the solids to collect and choke the bend. 

16.6.5 Pressure Drop Reduction in Gas Flow 

Scattered statements in the literature seem to suggest that the pressure to convey 
a gas can be reduced by the addition of fine particles to the moving stream. This 
is an area that requires more research since the pressure drop reduction effect 
is a function of both the particle size (and/or particle size distribution) and 
concentration. 

Illustrative Example 16.5 Illustrative Examples 16.2, 16.3, and 16.4 were solved 
using the YG and YL equations presented in Equations (16.16)-(16.17), Equations 
(16.19)-( 16.20), and Equations (16.22)-( 16.23), respectively. Comment on the 
similarity of the equations. 

Solution A quick check of the YG values generated from the three equations 
shows little variation. The same applies to the three YL values. Because of the token 
variation of the values for each of the three equations, one might be justified to 
combine the three equations into one. This suggestion is addressed in one of the prob- 
lems for this chapter. 

Illustrative Example 16.6 A mixture of air (a) and kerosene (k) are flowing in a 
horizontal 2.3-inch ID pipe. Data for each component is provided below 

Calculate the flow regime for both phases employing superficial velocities. 
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Solution Calculate the cross-sectional area of the pipe. 

S = (7~/4)(2.3/12)~ 

= 0.0288 f12 

The superficial velocity of each phase can be obtained by applying either Equation 
(16.7) or (16.8). 

U, = 5.3125/(0.0288)(60) 
= 3.07ft/s 

fi = 1.79/(0.0288)(60) 

= 1.036 ft/s 

The Reynolds number can now be calculated by employing Equation (16.9) or the 
equivalent. 

Re, = (2.3/12)(3.07)(0.075)/(1.24 x 

= 3570 

Rek = (2.3/12)(1.036)(52.1)/(0.00168) 

= 6158 

Turbulent flow exists for both phases based on the superficial velocities. 
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