
COMPRESSIBLE AND 
SONIC FLOW 

15.1 INTRODUCTION 

Compressibility refers to a condition where the volume or density of a fluid varies with 
the pressure. In fluid flow applications, it is a consideration only when vapors/gases 
are involved; liquids can safely be considered incompressible in these calculations. 
When the pressure drop in a flowing gas system is less than (on the order of) 
10-20% of the absolute pressure in the system, satisfactory engineering accuracy is 
obtained in pressure drop calculations by assuming the fluid incompressible at 
conditions corresponding to the average pressure in the system. For larger pressure 
drops, compressibility effects can become important. The compressible flow of a 
fluid is further complicated by the fact that the fluid density is dependent on tempera- 
ture as well as on pressure. In such systems, temperature may vary in accordance with 
thermodynamic principles(') (see Chapters 8 and 1 1  for more details). 

Although this chapter is primarily concerned with sonic flow, it also addmses the 
general topic of compressible flow. The presentation that follows first examines compres- 
sible flow, which in turn is followed by sonic flow, which in turn is followed by key pressure 
drop equations that may be employed in engineering flow calculations for this topic. 

15.2 COMPRESSIBLE FLOW 

As noted above, flowing fluids are typically considered compressible when the 
density varies by more than 10-20% during a particular application. In practice, 
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compressible flows are normally limited to gases, supercritical fluids, and multiphase 
flows containing gases; flowing liquids are normally considered incompressible. In 
industrial applications, one-dimensional gas flow through nozzles or orifices and in pipe- 
lines are the most important applications of compressible flow. Multidimensional 
external flows are of interest mainly in aerodynamic applications, a topic beyond 
the scope of this text.(2) 

In addition to the factors discussed above, compressible flow calculations are 
further complicated by other system parameter variations. For example, for a given 
pipe diameter and mass flow rate, the friction factor depends upon the viscosity, 
which, in turn, depends upon temperature. This problem does not exist for isothermal 
flow but can be important during adiabatic operation. However, in adiabatic com- 
pressible flow, Reynolds numbers are usually high indicating turbulent flow and 
any variation of the friction factor due to temperature variations along the pipe 
length is small. Thus, the friction factor may be assumed constant. 

The first step in a compressible-incompressible flow analysis is to classify the 
flow. One has to specify either steady or unsteady flow as well as whether the flow 
is compressible or incompressible. Steady and unsteady flow refers to variations 
with time, while incompressible and compressible flow refers to density variations. 
If the density is constant, or its variation is very small (most liquids, and gases 
with a Mach number less than 0.3), the flow is deemed incompressible. The Mach 
number is discussed in the next section. 

nlustrative Example 15.1 
The outlet density is 0.0049 lb/f?. Is the flow compressible? 

The inlet air density to an expanding nozzle is 0.071 lb/f?. 

Solution 
the flow can be considered compressible. 

Since the density of the fluid changes during its residence in the nozzle, 

15.3 SONIC FLOW 

The Mach number, Mu, is a dimensionless number defined as the ratio of fluid 
velocity to the speed of sound in the fluid, i.e., 

V 

C 
M a = -  (15.1) 

where v is the average velocity of the fluid and c is the speed of sound. If the Mach 
number is less than or equal to 0.3, compressibility effects may usually be neglected, 
and one may safely assume incompressible flow. 

The speed of sound in (selected) common liquids is given in Table 15.1. The speed 
of sound, c, in an ideal gas may be calculated from 

(15.2) 
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Table 15.1 Speed of Sound in Various Liquids 

Liquid Sound Velocity (m/s) 

Acetone 
Benzene 
Ethanol 
Ethylene glycol 
Methanol 
Water 

1174 
1298 
1144 
1644 
1103 
1498 

where k (see Table 15.2) is the ratio of Cp/Cu, R the universal gas constant, T the 
absolute temperature and M W  the molecular weight of the fluid. The derivation of 
this from basic principles is available in the literature. Note that the k values in 
Table 15.2 are approximate for 1 atm and 25°C; a decrease in temperature or an 
increase in pressure will generally result in higher  value^.'^' 

For air, Equation (15.2) simplifies to 

Table 15.2 Values of k 

and 

Gas k 

c = 2 0 J T o ,  m/s 

c = 2 o J T o ,  ft/s 

(15.3) 

(15.4) 

Illustrative Example 15.2 Nitrogen gas at 20°C and 1 atm flows in a duct at a vel- 
ocity of 82 m/s. Is it reasonable to neglect compressibility effects? Assume k = 1.4 
for nitrogen. 

Solution Calculate the speed of sound in N2 at 20°C. See Equation (15.2). 

c=E=/Kmym 
= 349m/s 

The Mach number can then be calculated from Equation (15.1). 

u 82 
c 349 

Ma = - = - = 0.235 

Since 0.235 < 0.3, compressibility effects may be neglected. 
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Equation (15.2) indicates that the square of the velocity of sound is proportional to 
the absolute temperature of the ideal gas. Thus, the velocity of sound may be viewed 
as being proportional to the internal kinetic energy of the gas. Since the kinetic 
energy of a flowing gas is proportional to u2, the ratio u2/c2 provides a measure of 
the ratio of the kinetic energy to the internal energy. The velocity of sound in air 
at room temperature is approximately 1100 ft/s. Thus, for a velocity of 220 ft/s, 
and noting that u/c is defined as the Mach number, Mu is 0.2 and (Ma)2 is 
only 0.04. This indicates that kinetic energy effects do not become important until 
somewhat higher Mach numbers are a~hieved.‘~’ 

Most often, the Mach number is calculated using the speed of sound evaluated at 
the local pressure and temperature. When Ma = 1, the flow is critical or sonic, and 
the velocity equals the local speed of sound. For subsonic flow, Ma < 1, while super- 
sonic flow has Mu > 1. A potential error is to assume that compressibility effects are 
always negligible when the Mach number is small. Proper assessment of whether 
compressibility is important should be based on relative density changes, not on 
Mach number alone.‘2’ However, the Mach number is usually employed in engineer- 
ing calculations. 

Equations developed earlier for incompressible fluids are applicable to compressi- 
ble fluids-in a general sense. However, these same equations may often be applied 
to compressible fluids if the fractional change in pressure is not large. For example, 
compressibility effects may not be important if there is a change in pressure from 14.7 
to 15.7 psia, but could be very important if the change is from 0.1 to 1.0 p~ia.‘~’ 

A detailed treatment of sonic flow though a variety of process units is provided in 
Perry’s Handbook.‘” Included in the treatment are defining equations for: 

1. Flow through a frictionless nozzle 
2. Adiabatic Aow with friction in a duct of constant cross-section 
3. Compressible flow with friction loss 
4. Convergent/divergent nozzles 

Illustrative Example 15.3 Propane (k = C,,/Cv = 1.3) at 17°C and 0.35 MPa is 
flowing in a tube (inside diameter of 1 in) at an average velocity of 43 m/s. 
Determine the speed of sound in the propane. Is the propane flow compressible? 
Why or why not? Is the propane flow laminar or turbulent? 

Solution The speed of sound in propane is first calculated from Equation (15.2). 

= 267 m/s 
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The Mach number is therefore [see Eq. (15.1)] 

Since 0.161 < 0.3, the flow is incompressible. 
Determine the Reynolds number. First calculate the density from the ideal gas law 

p = 6.39 kg/m3 

The viscosity is estimated from Fig. B.2 in the Appendix, 

p = 8 x 10P3cP = 8 x 10P6m2/s 

Therefore, 

43(0.0254)(6.39) - 872,000 Re = - 
8 x 10-6 

Since Re is 872,000 and >4000, the flow is turbulent. 

15.4 PRESSURE DROP EQUATIONS 

Two equations for pressure drop are presented in this section-one for laminar flow 
and one for turbulent flow. Both can be employed for most real-world applications 
involving compressible flow. 

15.4.1 Isothermal Flow 

For laminar flow of gases in pipes and other conduits, the pressure drop from P I  to P2 
may be estimated from Equation (15.5) for laminar flow conditions. 

where Re = Reynolds number, 
p = gas viscosity, 
T = absolute temperature, 
G = mass velocity flux, 
M = gas molecular weight, 
D = pipe/conduit diameter, 
L = pipe/conduit length. 

(15.5) 

Equation (15.5) may be used for engineering purposes provided that the Mach 
number is below 0.5 (i.e.. Ma < 0.5). 
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Finally, one should note that if the flow rate is unknown (this is often the desired 
quantity), a trial-and-error solution is involved since the friction factor depends on the 
velocity. However, the value offdoes not vary significantly over a very wide range of 
Reynolds numbers and the solution is therefore not sensitive to the value off .  
Consequently, an (initial) assumption of an average value of 0.004 forfis satisfac- 
tory. This will yield a value of the velocity for which the Reynolds number can be 
calculated and the corresponding value o f f  determined. An iterative calculation 
using these new and updated values off will provide an acceptable answer. 

(15.6) 

In ducts of appreciable length, the second term in the parentheses can be assumed 
negligible unless the pressure drop is very large. When this term is omitted, Equation 
(15.6) becomes 

(15.7) 

where pavg is the density at the average pressure of ( P I  + P 2 ) / 2  for the mass rate of 
flow of the system. This equation may also be written as 

(15.8) 

It should be noted that in most applications, the flow can more appropriately be 
described as adiabatic rather than truly isothermal. 

The equation for adiabatic flow is based on the condition that the flow arises from 
the adiabatic expansion of the gas through a frictionless nozzle leading from an inlet 
source where the velocity is negligible. Such a system is frequently encountered in 
practice. For this system, the describing equation is given by 

(15.9) 

Illustrative Example 15.5 Verify Equation (15.8); assume Equation (15.6), with 
the second term neglected, to be correct. 

Solution Start with Equation (15.6). Neglecting the second term, 
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Note that 

m G=- 
(.rr/4)D2 

Substituting and rearranging 

p2 -p2 - 4fl(ri~)~RT( 16) 
I - gcD(D2)2(.rr)2(MW) 

Solving for m 

Illustrative Example 15.6 Calculate the pressure drop accompanying the flow of 
natural gas (which may be assumed to be methane) at 70°F through a horizontal steel 
pipe 12 inches in diameter and 3 miles long. The gas enters the pipe at 75 psig and at 
a rate of 236 scfs (14.7 psia, 60°F). The viscosity of methane at 70°F is 0.01 1 centipoise 
and a friction factor of 0.008 may be assumed. 

Solution The mass flow rate is 

riz = (236/379)16 

= lOlb/s 
The mass velocity flux is 

G = 10/[(~/4)(1)~1 

= 12.7 lb/ft2 . s 

Apply Equation (15.7) since the flow is turbulent (gas). Assume an average density 
based on inlet conditions 

P(MW) 

- (89.7)(16) 

= 0.252 lb/ft3 

P = T  

- 
(10.73)(530) 

- 2(0.008)(3)(5280)( 1 2.7)2 
- 

(32.2)(0.252)( 1) 

= 5036psf 
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Rearranging 

P2 = P I  - 5036 

= (89.7 x 144) - 5036 

= 12,917 - 5036 

= 7881 psf 

= 54.7 psia 

= 40.0 psig 

The pressure drop is approximately given by 

A P  = 89.7 - 54.7 = 35.0psia 

Strictly speaking, the calculation should be repeated with an updated value for the 
density at the average of the inlet and outlet pressure. 

Illustrative Example 15.7 Refer of Illustrative Example 15.6. Calculate the 
Reynolds number for the system. Comment on the results. 

Solution The calculation is based on inlet conditions. The Reynolds number is 

DG 
Re=- 

Convert CP to lb/ft 1 s. 

El. = (0.01 1 c~)(6.72 x 

= 7.39 x lb/ft. s 

The Reynolds number is therefore 

The value provided for the friction factor is reasonable for this Reynolds number. 

Illustrative Example 15.8 Air at 2.7 atm and 15°C enters a horizontal 8.5 cm steel 
pipe that is 6.5 m long. The velocity at the entrance of the pipe is 30 m/s. What is the 
pressure drop across the line? 
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Solution 
gas law 

Assume isothermal flow and apply Equation (15.7). From the ideal 

= 3.31 kg/m3 

The mass velocity is 

G = UP = (30)(3.31) 

= 99.3 kg/m2 . s 

Assume (initially) 

f = 0.004 

Rearranging Equation (15.7) 

2$5G2 
PI -P2=-  

gc PD 

2$5G2 
P2 = PI -- 

gcPD 

Substituting, while noting 1 atm = 101,325 kg/m. s2, 

1 (2)(0.004)(65)(99. 3)2 
(3.31)(0.085)(101,325) 

P2 = 2.7 - 

= 2.7 - 0.18 

= 2.52atm 

The pressure drop is therefore 

AP = PI - P2 

= 0.18 atm = 2.65 psi 

Illustrative Example 15.9 Refer to Illustrative Example 15.8. Is the assumption for 
the friction factor reasonable? 

Solution From Table A.3 in the Appendix, 

p = 0.0174 CP = 1.74 x kg/(m . s) 
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Calculate the Reynolds number, 

DG 
Re = - 

(0.085)(99.3) 
= 485,000 - - 

1.74 x 10-5 

Refer to Fig. 14.2. The assumption o f f=  0.004 is reasonable. 
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links for this title. 
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