CONSERVATION LAW
FOR MOMENTUM

Momentum transfer is introduced by reviewing the units and dimensions of momen-
tum, time rate of change of momentum, and force. The phenomenological law
governing the transfer of momentum by molecular diffusion—Newton’s second
law—was briefly discussed in Chapter 5. In addition to molecular diffusion, momen-
tum (and energy) may also be transferred by bulk motion. Since bulk motion involves
transfer of mass from one point in a system to another, the equation of continuity
(conservation law for mass) was also discussed earlier. These serve as an excellent
warm-up for the equation of motion (equation of momentum transfer or conservation
law for momentum that receives treatment in Section 9.2 of this chapter).

9.1 MOMENTUM BALANCES

A momentum balance (also termed the impulse-momentum principle) is important in
flow problems where forces need to be determined. This analysis is inherently more
complicated than those previously presented (i.e., forces possess both magnitude and
direction), because the force, F, and momentum, M, are vectors. In order to describe
force and momentum vectors, both direction and magnitude must be specified; for
mass and energy, only the magnitude is required.

Newton’s law is applied in order to derive the linear momentum balance equation.
Newton’s law states that the sum of all forces equals the rate of change of linear
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momentum

d /mv dM .
ZF:d—t( )=?=M 9.1)

&

Here M is the rate (with respect to time) of linear momentum, and m and v represent
the mass and velocity, respectively. Newton’s law must be applied in a specified
direction (e.g., horizontal or vertical). The product (m)(v) is called the linear momen-
tum. When this is applied to a fluid entering or leaving a control volume, the follow-
ing terms may be defined:

M,y = momentum rate of the fluid leaving the control volume

M;, = momentum rate of the fluid entering the control volume

Equation (9.1) may be rewritten in finite form
ZF = Mout - Min 9.2)

This balance essentially means that for steady-state flow, the force on the fluid equals
the net rate of outflow of momentum across the control surface. Equation (9.2) also

may be rewritten as
d /mv d /mv
(=) ===} - F 3
dr (gt‘ )in dr (g‘-‘ )out Z (9 )

M =Moy— Y F (9.4)

or

This may be compared with the generalized steady-state balance equation for
momentum:

{rate of momentum in} = {rate of momentum out}

+ {generation rate of momentum} 9.5)

Thus, the generation rate of momentum may be viewed as the negative of the net force
acting on the fluid mass.”” When a momentum balance is used to calculate the forces
in different (but perpendicular) directions (e.g., F, and F,), the net (or resultant) force

is obtained
Frs = ,/Ff + F§ (9.6)

Application of the above principles is provided in the following two Illustrative
Examples.



9.1 MOMENTUM BALANCES 87
Nlustrative Example 9.1 A horizontal water jet impinges on a vertical plate. The
jet splits into several jets traveling in the vertical direction. The water flow rate, g,
is 0.5 ft’ /s, the water’s horizontal velocity, v, is 100 ft/s, and the water density, p,
is 62.41b/ ft>. Determine the force required to hold the plate stationary.
Solution The momentum balance equation in the horizontal direction is

F= Mout - Min

The momentum rate of the inlet water in the horizontal direction is given by

_pav
8¢

Min

The horizontal momentum rate of the exit water is My = 0. The net force in the hori-
zontal direction, F, is therefore

pqu (62.4)(0.5)(100)
= _ - — — l
F=0 2 322 97 Ib¢

The net horizontal force can be recalculated if the jet had an angle of 10° to the hori-
zontal. For this case

v

Minzpq

c

F=-95.51b¢

cos(10°) = 97(0.985) = 95.5Ibs

The negative answer above indicates that to hold the plate in place, a force must be
exerted in a direction opposite to that of the water flow.

INustrative Example 9.2 A 10 cm diameter horizontal line carries saturated steam

at a velocity of 420 m/s. Water is entrained (carried along) by the steam at the rate

0.15kg/s. The line has a 90° bend. Calculate the force required to hold the bend

in place due to the entrained water (see Fig. 9.1).

Solution  Select the control volume as the fluid in the bend and apply a mass balance.
My = hiny

In addition,

Uy =02
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.

Figure 9.1 90° turn.

T

Apply a linear momentum balance in the horizontal (x) direction, neglecting the
momentum of the steam

Fx = dgt(mv)out,x - %(mv)in,x =0- mvin,x — _015(420) = —63N

The x-direction force acting on the 90° elbow is therefore F, = +63 N.
Apply a linear momentum balance in the vertical (y) direction

Fy = Moyy — Miny = fittouy — 0 = 0.15(420) = 63N

The y-direction force acting on the 90° elbow is therefore F, = —63 N.
The resultant force may now be calculated from Equation (9.6)

Fres = {/F2 + F2 = 1/(=63)* + 632 = 89.1N

The resultant force is the force required to hold the elbow in place.

INustrative Example 9.3 Water (density = 62.41b /ft3) flows in a 2 inch diameter
pipe. The pipe has a 90° bend. The bend support can withstand a maximum force in
the x-direction of 5 lb;. Determine the maximum water flow rate in the pipe bend.

Solution Select the control volume to be the fluid in the bend and apply a mass
balance.

rhl:r'nzzrh=pSu

For steady incompressible flow,

q=q=4qg=pv
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Therefore,
V)=02=170

Apply a linear momentum balance on a rate basis in the horizontal x-direction [see
Equation (9.4)]

. . .
My = Moy x + Fy=m—=0—(-3)

c

pS*
8¢

5

o=

The use of g, is necessary to obtain the proper units on both sides of the equation.
Substitute numerical values to generate the flow velocity.

N 5(32.174)
v \/p(frD2/4) = \/ 62a(m©.16774) ~ [081/s

Finally, the volumetric and mass flow rates can be calculated

g = Sv = (0.0219)(10.8) = 0.238 ft3/s
m = pg = 62.4(0.238) = 14.81b/s
This represents the maximum water flow rate that the elbow can handle. However, the

practicing engineer employs a safety factor so that the possibility of a failure or
problem arising is decreased.

TNlustrative Example 9.4 Water (density = 1000kg/m’>, viscosity = 0.001kg/
(m - s)) is discharged through a horizontal fire hose (see Fig. 9.2) at a rate of

Figure 9.2 Fire hose.
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1.5m>/min. The fire hose is 10 cm in diameter. The nozzle’s diameter reduces from
10 cm to 3 cm. The nozzle discharges the water into the atmosphere. Calculate water
velocities and the pressures in the fire hose and at the nozzle tip, the x-direction momen-
tum at both ends of the nozzle, the force required to hold the hose, and the type of flow in
the fire hose.

Solution Apply a mass balance on the CV.

q=q = 0S8 =0.025m%s

m = pg = 1000(0.025) = 25kg/s
Calculate the velocities v; and v,.
q 0.025
S|~ wO.17/4
g _ 0.025
S, 7 (0.03)2/4

v = =32m/s

n = =354m/s

Determine the pressure, Py, by applying Bernoulli’s equation between points 1 and 2
(see Fig. 9.2).

=2
P, = 0 Pag (Pascal gauge)

_ ;_)(1)22 - 1)12) _ 1000

2 21 _
2 P ) [(35.4) (3.2)°] = 620,000 Pag

P

Calculate the x-direction momentum rates.
My, = (i), = (25)(3.2) = 8ON

My, = (pvy), = (25)(35.4) = 885N
Obtain the force from the momentum balance in the x-direction.
Fy =My, — M, .~ P\S; = 885 — 80 — (620,000) (%’ (0.1)2) = —4067N
= —9151b;

The magnitude of the force (915 Ib¢) explains why it often takes several firefighters to
hold a fire hose steady at full discharge.

9.2 MICROSCOPIC APPROACH: EQUATION OF
MOMENTUM TRANSFER

The equation of momentum transfer—more commonly called the equation of
motion—describes the velocity distribution and pressure drop in a moving fluid. It
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is derived from momentum considerations by applying a momentum balance on a rate
basis in conjunction with Newton’s law to a volume element in a moving field. Once
again, this microscopic derivation is available in the literature. %>

If the fluid is Newtonian, the components of the shear-stress may be replaced
by the shear-stress components given by Newton’s law (see Table 5.1). In addition,
the density and the viscosity of the fluid are often constant, and the only significant
external force concerned is that due to gravity. The resulting equation has been
referred to as the Navier—Stokes equation. This equation is also expanded into
rectangular, cylindrical and spherical coordinates; the results are presented in
Tables 9.1, 9.2, and 9.3.

Illustrative Example 9.5 Derive Equation (5.16), as presented in Chapter 5. A fluid
is flowing through a long vertical cylindrical duct of radius R under steady-state
laminar flow conditions (see Fig. 9.3). Calculate the velocity profile as a function
of the pressure drop per unit length in the direction of motion. Also, calculate the
volumetric flow rate, the average velocity, the maximum velocity, and the ratio of
the average to the maximum velocity.

Solution This problem is solved using cylindrical coordinates. The describing
equations are now “extracted” from Table 9.2. Since the flow is one-dimensional

v,=0
v¢=0
v, #0

Table 9.1 The equation of motion: expansion in

rectangular coordinates
X-component:
P % % ‘o Ovx 9, 6vx
g\ Ot b 8y be K3
_ 0P pu 620x+8v,+620x +o&
=T a2 "o "oz ) TP,
y-component:
Ovy va va avy
(at T Tyt
(9P+ © (azvy v, +6zvy) L ¥
6y 8¢ ay2 8¢
z-component:
A, sz v, v,
(a: Tty Ty,

_ opP I v, v, &, 8:
=% <6x2+6y2+322)+pg_c
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Table 9.2 The equation of motion: expansion in cylindrical
coordinates

r-component:

au,+ o au,_v_ﬁw% _oP
or ¢3¢ r ‘o) or

ot or
! 1%, 2 ] | g
+ﬂ[3( e ,}> 3_0__%+6v]+p8_

or rPo¢? r2oe 97 8
¢-component:
£ (%, , s vs s v, Ovs) _10P
( 6r+r8¢+r+z<?z ro¢

wld 184 200, Oy gs
N [6r( {"’}) 2o Troe oz TPy,

z—component
v, 4 Ov, v, 0v, p, 02 v\ _ oP
"o T 0 z)

18 _6_1’}_ +162”’+?_2££ 4ok
g |ror rr ot = 02 pgc

Table 9.3 The equation of motion: expansion in spherical coordinates

r-component:

8v,+ ()u,_i_@(')v,_‘_ vy (_9&_0%,—%17?,5 __—8P
ot or r 00  rsinfo¢ r T or
Elgry, 2, 200 2 2 ooy | g
+gc (V A L YT r209c0t0 2sin 0 0 tp
6-component:
p (%0, v vedvg, vy Dvg vivg UGOtO) 1P
ot "Or " r 00 rsinfd¢ r r T roe
20y vp 2cos 6 Ovg 8o
Vi +5— — - —) =
gc ( PT200 " sint6 12 sin20 0¢ P
¢-component:
Jvg Ovg  vgOvy = vy Ovg  Vsr Doy 1 OP
s sy otf) = ————
(81 +o Or r 86 rsinfdod r + = cotd rsin 09¢

r2sin’6 T 60¢ + r2sin’8 9¢

c

2
. (Vzvd, by dv, 2cos b %) 8
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Figure 9.3 Tubular flow.

The terms v,, v4, and all their derivatives must be zero. From Table 7.1,

ov,

“Z_0

0z
Based on physical grounds

ov,

Z_0

o¢
Based on the problem statement

Ov, /0t =0

It is reasonable to conclude that v, might vary with r, i.e.,

U = v(r)
This means
ov,
B #0
or perhaps
2
o%v, £0
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Examining the equation of motion in cylindrical coordinates in Table 9.2, one
notes that

opP
E—-O
or
%—0

0P _u[1o( on
Oz g |ror\’ or

The last equation may be rewritten

4P _pfid(
dz g [rdr (r dr)] ©.7)

The left-hand side is a constant or a function of z. The right-hand side is either a
constant or a function of r. One can then conclude that both must equal a constant.
Since dP/dz is a constant, it is written in the finite form

dP AP
@ T
AP
=TT

The negative sign appears because P decreases as z increases. Equation (9.7) now

becomes
1d , dv,\  gAP
rdr\' dr/  ulL

It would be wise to multiply both sides of the equation by rdr; otherwise, some
difficulty would be encountered on integrating the equation.

dv,\ _ gAP
d<ra) = L rdr

Integrating once

dv, __ gAP
dr —  2ulL

P +A (9.8)
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Multiplying both sides by dr/r

AP A
dv, = _gZCp,L r dr+;dr
and integrating
P
b= —8AP 2 4B ©9.9)
4uL

What about the BCs? Note that the procedure for the evaluation of integration
constants A and B is also available in Chapter 5.
BC(1)

v,=0 atr=R
BC(2)

v, = finite atr=20
or the equivalent @ based on physical grounds
= 0 at r=0
dr

Substituting BC(2) into Equation (9.8) or (9.9) yields

BC(1) gives A=0
8AP
0=_82"g
LB
_8AP .,
B=%TR

Substitution of A and B leads to Equation (5.16), as given in Chapter 5 and shown
again below

_ gAP

— R2_ 2
v, 4/-1'14( )

Ilustrative Example 9.6 With reference to Illustrative Example 9.5, comment on
the nature of the velocity profile.

Solution An examination of Equation (5.16) indicates that the velocity profile is
parabolic. Parabolic velocity profiles are the norm for laminar flow in pipes. The
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reader is left the exercise of plotting v, as a function of r in order to verify the
above statement.
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