
CONSERVATION LAW 
FOR ENERGY 

8.1 INTRODUCTION 

This chapter is concerned with the conservation law for energy. The presentation to 
follow once again includes a review of some key pressure terms. A general introduc- 
tion to the conservation of energy is in turn followed by the development of a general 
total energy balance for steady-state flow. The chapter concludes by extending the 
total energy equation to include mechanical energy; this has come to be defined as 
the mechanical energy balance equation. It is this equation that is employed in the 
solution of most real-world fluid flow problems. 

One of the most critical parameters in fluid flow is pressure. This was briefly 
defined in Chapter 3. Three additional pressure terms should be defined before 
proceeding to the body of this chapter. These are the static pressure (PJ, the velocity 
pressure ( P J ,  and the sum of the two-the total pressure (P,). 

Any fluid confined in a stationary enclosure has static pressure simply because the 
molecules of that fluid are in constant random motion and are continually colliding 
with the container walls. The bulk velocity of this stationary fluid is zero, and the 
total pressure is then equal to the static pressure. If the same fluid is flowing and 
the temperature has not changed, it possesses the same static pressure since its 
molecules still have the same degree of random motion. Its total pressure is now 
higher, however, because it also possesses the second pressure component, velocity 
pressure. If the fluid flow were to suddenly change direction because of a solid 
obstruction (e.g., a plate), an extra pressure on the plate (over and above the static 
pressure) would be exerted because of the momentum of the bulk flow against the 
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plate. This extra pressure is the velocity pressure and the total fluid pressure is the sum 
of the static and velocity pressures. Static pressure is therefore the result of motion on 
the molecular level, while velocity pressure is due to motion at the macroscopic or 
bulk level.(') 

The difference in total pressure between two different points along the stream is 
called the pressure loss or the pressure drop. Pressure losses from fluid flow are 
due to any effect that can change fluid momentum at either the molecular or macro- 
scopic levels; the two main contributing factors are skin friction and form friction. 
Skin friction losses are caused by fluid moving along (parallel to) a solid surface 
such as a pipe or duct wall. The layers of fluid immediately adjacent to the wall 
are in laminar flow and moving much slower than the bulk of the fluid. The pressure 
drop caused by the drag effect of the wall on the fluid is due to skin friction. Form 
friction losses are due to the acceleration or deceleration of the fluid. These 
include changes in bulk fluid velocity that occur because of changes in either flow 
direction or flow speed. An example of a change in flow direction is fluid flowing 
through a 90" elbow; alternatively, a change in flow speed occurs when the cross- 
section of a conduit changes. Besides changes in bulk fluid velocity, form friction 
losses also include changes in velocity that occur locally, i.e., internal to the bulk 
motion of the fluid. This occurs in turbulent flow (see Chapter 14 for more 
details), which is characterized by rapidly swirling masses of fluid called eddies.") 

8.2 CONSERVATION OF ENERGY 

A presentation of the conservation law for energy would be incomplete without a 
brief review of some introductory thermodynamic principles. Thermodynamics is 
defined as that science that deals with the relationships among the various forms of 
energy. A system may possess energy due to its temperature (internal energy), vel- 
ocity (kinetic energy), position (potential energy), molecular structure (chemical 
energy), surface (surface energy), etc. Engineering thermodynamics is founded on 
three basic laws. As described earlier, energy, like mass and momentum, is con- 
served. Application of the conservation law for energy gives rise to the first law of 
thermodynamics. This law for batch processes, is presented below. 

For batch processes 

A E = Q + W  (8.1) 

where potential, kinetic, and other energy effects have been neglected and Q is energy 
in the form of heat transferred across the system boundaries, W is energy in the form 
of work transferred across system boundaries, E (often denoted as v), the internal 
energy of the system, and AE is the change in the internal energy of the system. In 
accordance with the recent change in convention, both Q and Ware treated as positive 
terms if added to the system. 

By definition, a flow process involves material streams entering and exiting a 
system. Work is done on the system at the stream entrance when the fluid is 
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pushed into the system. Work is performed by the system to push the fluid out at the 
stream exit. The net work on the system is called flow work, W, and is given by 

where Pout is the pressure of the outlet stream, Pi ,  is the pressure of the inlet stream, 
V,,, is the volume of fluid exiting the system during a given time interval, and Vi, is 
the volume of fluid entering the system during a given time interval. If the volume 
term is represented as the specific volume (i.e., volume/mass), the work term 
carries the units of energy/mass. 

For practical purposes, the total work term, W, in the first law may be regarded as 
the sum of shaft work, W,, and flow work, W, 

w = w, + Wf (8.3) 

where W, is work done on the fluid by some moving solid part within the system such 
as the rotating vanes of a centrifugal pump. Note that in Equation (8.3), all other 
forms of work such as electrical, surface tension, and so on are neglected. The first 
law for steady-state flow processes is then: 

A H = Q + W ,  (8.4) 

where His the enthalpy of the system and AH is the change in the system’s enthalpy. 
The internal energy and enthalpy in Equations (8.1) and (8.2), as well as other 

equations in this section may be on a mass basis, on a mole basis, or represent the 
total internal energy and enthalpy of the entire system. They may also be written 
on a time-rate basis as long as these equations are dimensionally consistent-it 
makes no difference. For the sake of clarity, upper case letters (e.g., H,  E )  represent 
properties on a mole basis, while lower-case letters (e.g., h, e) represent properties on 
a mass basis. Properties for the entire system will rarely be used and therefore require 
no special symbols. 

Perhaps the most important thermodynamic function the engineer works with is 
the above mentioned enthalpy. This is a term that requires additional discussion. 
The enthalpy is defined by the equation 

H = E + P V  (8 .5)  

where P is once again the pressure of the system and V is the volume of the system. 
The terms E and Hare state or point functions. By fixing a certain number of variables 
upon which the function depends, the numerical value of the function is automati- 
cally fixed; that is, it is single-valued. For example, fixing the temperature and 
pressure of a one-component single-phase system immediately specifies the enthalpy 
and internal energy. This last statement can be verified by Gibbs’s Phase Rule.(*’ 
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The change in enthalpy as it undergoes a change in state from (TI, P I )  to (T2, P2) is 
given by 

AH = H2 - H1 (8.6) 

Note that H and AH are independent of the path. This is a characteristic of all state or point 
functions; that is, the state of the system is independent of the path by which the state is 
reached. The terms Q, W, and W, in Equations (8.4) and (8.5) m path functions; their 
values depend on the path used between the two state. 

The following can be written for a mathematical representation of this important 
thermodynamic point function 

H = H(T, P) 

By the rules of partial differentiation, a differential change in H is given by 

The term (aH/aP), is assumed to be negligible in most engineering applications. It is 
exactly zero for an ideal gas and is small for solids and liquids, and gases near 
ambient conditions. The term (aH/aT), is defined as the heat capacity at constant 
Dressure 

(8.8) 

Equation (8.8) may also be written as 

CW = CpdT (8.9) 

If average molar heat capacity data are available, this equation may be integrated 
to yield 

AH = G A T  (8.10) 

where is the average value of Cp in the temperature range AT. Calculations invol- 
ving enthalpy changes also finds extensive application in heat transfer. 

Many industrial applications operate in a steady-state flow mode with no signifi- 
cant mechanical or shaft work added (or withdrawn) from the system. For this con- 
dition Equation (8.4) reduces to 

Q = A H  (8.1 1) 

This equation is routinely used in many calculations. If a unit or system is operated 
adiabatically, Q = 0 and Equation (8.1 1) becomes 

AH=O (8.12) 

Although the topics of material and energy balances have been covered separately 
in this and the previous chapter, it should be emphasized that this segregation does 
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not exist in reality. Many processes are accompanied by heat effects, and one must 
work with both energy and material balances sim~ltaneously.'~' 

Illustrative Example 8.1 5.5MW of heat is transferred from a gas as it flows 
through a cooler. The average heat capacity of the gas is 1090 J/(kg. "C), the gas 
mass flow rate, m, is 9 kg/s and the gas inlet temperature, T I ,  is 650°C. For this 
example, kinetic and potential energy effects are neglected. Furthermore, there is 
no shaft work. Determine the gas outlet temperature. 

Solution 
process, Equations (8.10) and (8.1 1) applies 

Since there are no kinetic, potential, or shaft work effects in this flow 

Q = A H  

where AH = m c p  AT = mcp(T2 - T I  ). 
Solving for the gas outlet temperature, T2, 

-5.5 x 10-6 
9( 1090) 

+ 650 = 89°C Q 
h C p  

T2 = - - + T I =  

Note that the sign of Q is negative since the heat is transferred out from the gas. 

8.3 TOTAL ENERGY BALANCE EQUATION 

Equations (8.1) and (8.4) find application in many chemical process units such as heat 
exchangers, reactors, and distillation columns, where shaft work plus kinetic and 
potential energy changes are negligible compared with heat flows and either internal 
energy or enthalpy changes. Energy balances on such units therefore reduce to Q = 
AE (closed system) or Q = AH (open system). 

Another important class of operations is one for which the opposite is true-heat 
flows and internal energy changes are secondary in importance to kinetic and poten- 
tial energy changes and shaft work. Most of these operations involve the flow of 
fluids to, from, and between tanks, reservoirs, wells, and process units. Accounting 
for energy flows in such processes is most conveniently accomplished with mechan- 
ical energy  balance^.'^' Details of this approach follow. 

Consider the steady-state flow of a fluid in the process pictured in Fig. 8.1. The 
mass entering at location 1 brings in with it a certain amount of energy, existing in 
various forms. Thus, because of its elevation, z1 ft above any arbitrarily chosen hori- 
zontal reference plane, for example, z = 0, it possesses a potential energy (g/g,)zl 
(which can be recovered by allowing the fluid to fall from the height at location 1 
to that of the reference point). Because of its velocity, u l ,  the mass possesses and 
brings into location 1 of the system an amount of kinetic energy, q 2 / 2 g , .  It also 
brings its so-called internal energy, E l ,  because of its temperature. Furthermore, 
the mass of fluid in question entering at point 1 is forced into the section by the 



76 CONSERVATION LAW FOR ENERGY 

4 

iression 

I 

Figure 8.1 Process flow. 

pressure of the fluid behind it and this form of flow energy must also be included. The 
amount of this energy is given by the force exerted by the flowing fluid times the 
distance through which it acts, and this force is clearly the pressure per unit area, 
PI,  times the area SI of the cross-section. The distance through which the force 
acts is the volume, VI of the fluid divided by the cross-sectional area S1. Since the 
work is the force times the distance, that is, (PISI)(VI/SI) = PIVI, the energy 
expended is the product of the pressure times the volume of the fluid. This was 
referred to earlier as Jow work (see Eq. (8.2)). 

Two additional energy terms need to be included in the analysis. These two 
involve energy exchange in the form of heat (Q) and work (W) between the fluid 
and the surroundings. In the development to follow, it will be assumed (consistent 
with the notation recently adopted by the scientific community) that any energy in 
the form of heat or work added to the system is treated as a positive term. 

Applying the conservation law of energy mandates that all forms of energy enter- 
ing the system equal that of those leaving. Expressing all terms in consistent units 
(e.g., energy per unit mass of fluid flowing), results in the total energy balance: 

As written, each term in Equation (8.13) represents a mechanical energy effect. 
For this reason, it is defined as a form of the mechanical energy balance equation 
and is essentially a special application of the conservation law for energy. Also 
note that, as written, the volume term, V,  (for necessity) is the specific volume. In 
terms of the density, the above equation becomes 

and 

v =  l /p  (8.15) 
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Note once again that Q and W, can be written on a time rate basis in the above equation 
by simply dividing by the mass flowrate though the system; the above equation then 
dimensionally reduces to an energy /mass balance. 

Three points need to be made before leaving this subject. 

1. The term Q should represent the total net heat added to the fluid, but in this 
analysis it includes only the heat passing into the fluid across the walls of 
the containing walls from an external source. This excludes heat generated 
by friction, by the fluid or otherwise, within the unit. However, this effect 
can normally be safely neglected. 

2. The work, W,, similar to Q, must pass though the retaining walls. While it 
could conceivably enter in other ways, it is supplied in most applications by 
some form of moving mechanism, such as a pump, or a fan, and is often 
referred to as shuji work. 

3. The internal energy term E corresponds to the thermodynamic definition 
provided earlier. For convenience, the sum of E and PV may be treated as 
the single function defined above as the enthalpy, H, 

H = E + P V  (8.5) 

It too is a property of the fluid, uniquely determined by point conditions. Like 
E, its absolute value is arbitrary; differences in value are often given above a 
reference. With this revision, and assuming a = 1, Equation (8.13) becomes: 

or simply 

Av2 g 

2gc gc 
- + + A z + A H = Q + W ,  (8.17) 

As noted in the presentation of Equation (8.13), each term is dimensional with 
units of energy/mass. If this equation is multiplied by the fluid flow rate, that is, 
mass/time, the units of each term become energy/time. In the absence of both 
kinetic and potential energy effects, the above equation reduces to Equation (8.4). 
Also note that A ,  the difference term, refers to a difference between the value at 
station 2 (the usual designation for the outlet) minus that at station 1 (the inlet). 

Illustrative Example 8.2 A fluid flow device has three openings, as shown in 
Fig. 8.2. The flow within the control volume is steady and the fluid has a constant 
density of 800 kg/m3. The flow properties at each opening are provided below in 
Table 8.1. What is the rate of change of the system energy in the control volume? 
For steady-state adiabatic operation, is work being done on the system? 
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2 

Figure 8.2 Fluid flow device for Illustrative Example 8.2. 

Table 8.1 Flow/energy data for Illustrative Example 8.2 

Flow Rate, Enthalpy, Flow Direction 
Section q, m3/s h, Jlkg (Relative to the Device) 

1 
2 
3 

8 250 
6 150 

14 200 

In 
In 

out 

Solution Confirm the mass balance. For incompressible flow, 

41 + q 2  = q 3  

8 + 6 = 14m3/s 

Apply the total energy balance, noting that only enthalpy effects need to be con- 
sidered for this flow system 

~ = 800[(8)(250) + (6)(150) - (14)(200)] = 80,OOO J/s 

For adiabatic steady operation 

Q = O  

so that 

AH = Ws = 8OkW = 107.2 hp 

Since work is positive, the surroundings must be doing work on the system through 
some device. 
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8.3.1 The Mechanical Energy Balance Equation 

As noted, the solutions to many fluid flow problems are based on the mechanical 
energy balance equation. This equation is derived, in part, from the general (or 
total) energy equation developed in the previous subsection. Equation (8.13) is 
shown again below: 

Certain “changes” to the above equation are now made: 

Assume adiabatic flow, that is, Q = 0. 
For isothermal, or near isothermal, flow (valid in most applications), the 
internal energy is constant, so that El = E2. 

A term C F ,  representing the total friction arising due to fluid flow, is added to 
the equation. This is treated as a positive term in Equation (8.18) below. 
An efficiency (fractional) term, q, is combined with the shaft work term, W,. If 
work is imparted on the system, the term becomes VW,; if work is extracted 
(with an engine or turbine) the term appears as W,/q.  The efficiency term 
needs to be included since part of the work added to or extracted from the 
system is lost due to irreversibilities associated with the mechanical device. 
The notation h, will be employed for this term in Chapter 9. 

Equation (8.14) now becomes 

- + - + - A z - q W , + ~ F = O  AP Au2 g 

P 2gc gc 
(8.18) 

This equation is defined as the mechanical energy balance equation; it will receive 
extensive attention later in the book. 

8.3.2 The Bernoulli Equation 

The Bernoulli equation has come to mean different things to different people. One 
definition of this equation is obtained by neglecting both work and friction effects. 
Under this condition, Equation (8.18) reduces to 

AP Av2 g 
- + - + - A z = O  

P 2gc gc 
(8.19) 

This is often referred to as the Field equation in other disciplines. 
This equation, which applies to flow in the absence of friction, has some interest- 

ing ramifications. If one of the three terms is increased, either of the other two terms 
must decrease; alternately, both of the other two terms can change but the sum of the 



80 CONSERVATION LAW FOR ENERGY 

two changes must decrease. For example, if the Bernoulli equation is applied along a 
horizontal streamline (path) of a fluid, an increase in the velocity results in a decrease 
in pressure. The phenomenon is "exploited" by birds during flight, and at the 
industrial level in the design of airplane wings. 

The above effect can also explain why roofs are lifted off some buildings during a 
hurricane or tornado; the high velocity on top of the roof creates a lower pressure at 
the outer surface relative to the inner surface. This difference in pressure-force per 
unit area-across the roof's top surface produces a net upward force lifting the roof 
off its foundation. This can be prevented in many instants by simply opening all 
windows and doors; the high velocity within the structure produces a lower pressure 
and consequently a smaller or zero upward force. 

The reader might like to test the validity of the proposed explanation by taking a 
sheet of 8y by 11" paper and holding it by its sides while allowing the paper to 
droop. Blowing across the top of the paper does in fact result in the paper rising to 
a near horizontal level. 

Bernoulli's equation is valid for steady-state flow. However, if the flow is not steady, 
but the changes in flow rate are slow enough to be ignored, then Bernoulli's equation 
may still be applied. In tank flow problems for example, the velocity of the fluid in the 
tank is taken to be the rate of change of liquid height with time, that is, u = dz/dt. 
When this velocity is combined with Bernoulli's equation, the result is a differential 
equation. The solution of the equation normally requires integration. To justify the 
assumption that the flow rate is slow, the flow acceleration, a, is calculated and com- 
pared to the gravity acceleration, g. If a / g  is << 1, the above assumption may be 
assumed valid. 

Illustrative Example 8.3 Refer to Illustrative Example 3.5 in Chapter 3. What is 
the kinetic energy of the water just before it reaches ground level conditions, that 
is, strikes the bottom? 

Solution Apply the conservation law for energy to the 1 kg of water. During free 
fall, AE = 0, and the only terms that remain are the KE and PE. Therefore, 

A(PE) + A(KE) = 0 

since both 

KEI = PE2 = 0 

KE2 = PEI  = 98J 

Illustrative Example 8.4 Refer once again to Illustrative Example 3.5. If the 1 kg 
of water enters a river upon reaching ground conditions, what change has occurred to 
the water. 

Solution Physically, it is still liquid. Energy-wise, it has lost the P E  it started with. 
That P E  has been converted to the internal energy of the entire river; however, the 
temperature change of the river would be neglible. 
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Illustrative Example 8.5 A cylindrical tank (see Fig. 8.3) with a diameter of 3 m 
has an outlet hole of 0.3 m in diameter at its bottom. The initial water level is 9 m. 
How long does it take the liquid level to drop to 1 m above the tank outlet? Justify 
the assumption of using Bernoulli’s equation. The density of water is 1000 kg/m3. 

Solution 
balance on the CV yields 

Assume the control volume (CV) to be the liquid in the tank. A mass 

Set 

dz 
V l  =-  

dt 

Substituting into the above equation gives 

From Bernoulli’s equation 

............ 

............ 

Figure 8.3 Tank drainage. 



82 CONSERVATION LAW FOR ENERGY 

- 
1 

D = 4 i n  

From Fig. 8.3, it is clear that P1  = P2, since both ends are open to the atmosphere. 
Likewise, v1 = 0, and z2 is arbitrarily set to equal zero for convenience. Therefore, 

3 

D = 2 i n  

or 

where z1 is the height at location 1. However, since z1 varies, it is replaced by h, the 
height of water in the tank. Equating the two velocity terms for u2 leads to 

The initial conditions are at c = 0, h = zl. The differential equation may be solved by 
separating the variables and integrating: 
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Justify the use of Bernoulli’s equation. 

dv:! d a = - = -  
dt dt 

Substituting for dhldt and noting 

For this example, the maximum acceleration is 1 % of g .  One can therefore safely use 
Bernoulli’s equation. 

Illustrative Example 8.6 Explain in layman terms, why the CF term in Equation 
(8.18) is positive. 

Solution This steady-state conservation law, as written, is derived on an 

out - in = 0 

basis. Thus, the work term is positive only if it is removed (lost) from the system. The 
same applies to any energy term. Frictional effects give rise to energy that is lost from 
the system and must therefore be retained as a positive term. 
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