
NEWONIAN FLUIDS 

5.1 INTRODUCTION 

This chapter is introduced by examining the units of some of the pertinent quantities 
that will be encountered below. The momentum of a system is defined as the product 
of the mass and velocity of the system. 

Momentum = (Mass)(Velocity) (5.1) 

One set of units for momentum are, therefore, lb . ft/s. The units of time rate of 
change of momentum (hereafter referred to as rate of momentum) are simply the 
units of momentum divided by time, i.e., 

l b*  ft 
S2 

Rate of momentum = - 

The above units can be converted to lbf if multiplied by an appropriate constant. The 
conversion constant in this case is a term that was developed in Chapter 2. 

(lb . ft) 
g, = 32.2- 

(lbf . s2) (5.3) 
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38 NEWTONIAN FLUIDS 

This serves to define the conversion constant g,. If the rate of momentum is 
divided by g ,  as 32.2 (lb . ft)/(lbf . s2)-the following units result: 

Rate of momentum = 

lbf (5.4) 

One may conclude from the above dimensional analysis that a force is equivalent to a 
rate of momentum. 

5.2 NEWTON'S LAW OF VISCOSITY 

The above development is now extended to Newton's law of viscosity. Consider a 
fluid flowing between the region bounded by two infinite parallel horizontal plates 
separated by a distance h. The flow is steady and only in the y-direction. Part of the 
system is represented in Fig. 5.1. A sufficient force F is being applied to the upper 
plate at z = h to maintain the upper plate in motion with a velocity ur = v h .  If the 
fluid density is constant and the flow is everywhere isothermal and laminar, the 
linear velocity gradient in the two-dimensional representation in Fig. 5.2 will result. 

It has been shown by experiment that the applied force per unit area F / A  required 
to maintain the upper plate in motion with velocity v h  is proportional to the velocity 
gradient, i.e., 

For a slightly more general form, one may write 

F Av, 
2% 

X /"= 

Figure 5.1 Fluid/two-plate system. 

(5 .5)  

+ F  

-Y 
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Z 

z=h3F Z t  

z = o  I/ Y 

Figure 5.2 Velocity profile. 

The difference term A can be removed by applying Equation (5.5) to a differential 
width dz: 

F du, 
A K d z  

Equation (5.6) may be written in equation form by replacing the proportionality sign 
with a proportionality constant, - p: 

(5 .7)  

The term p is defined as the coefficient of viscosity, or simply the aforementioned 
viscosity of the fluid. The term F / A  is a shear stress since F is exerted parallel to 
the direction of motion. This applied force per unit area is now designated by T~,, 

A fluid whose shear stress is described by Equation (5.8) is defined as a 
Newtonian fluid. 

A word of interpretation is in order for Equation (5.8). The applied force at z = h 
has resulted in a velocity Vh at z = h. The fluid at this point possesses momentum due 
to this velocity. As z decreases the momentum of the fluid decreases since the velocity 
decreases in this direction. We have already shown that the force applied to a fluid is 
equivalent to the fluid receiving a rate of momentum. Part of the momentum imparted 
to the fluid at z = h is transferred at the specified rate to the slower-moving fluid 
immediately below it. This momentum maintains the velocity of the fluid at that 
point, and is, in turn, transported to the slower fluid below it, and so on. This momen- 
tum transfer process is occumng in the z-direction throughout the fluid. One may 
therefore conclude the applied force in the positive y-direction has resulted in the 
transfer of momentum in the negative z-direction. The first subscript in T~, is retained 
as a reminder of this fact. The subscript y indicates the direction of motion. The 
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negative sign in Equation (5.7) was introduced since momentum is transferred in the 
negative z-direction due to a positive velocity gradient. 

The force per unit area term r is equivalent to a rate of momentum per unit area. 
Therefore, the shear stress and its components are also defined as the momentum flux. 

Refemng once again to the shear stress component T ~ ,  one may divide the RHS of 
Equation (5.8) by g,, 

If T~ has the units lbf/ft2, the viscosity p assumes the units lb/ft. s. 

Chapter 3). This is defined as the ratio of the viscosity to the density of the fluid. 
A term that will frequently be employed in the text is the kinematic viscosity v (see 

(5.9) 
CL 
P 

y = -  

The units of u can be shown to be ft2/s. 
All components of the shear stress for a Newtonian fluid can be expressed in terms 

of the viscosity of the fluid and a velocity gradient. These are presented, but not 
derived, in Table 5.1('**) for rectangular, cylindrical, and spherical coordinates. The 
equations are applicable to all Newtonian fluids provided: 

1. The system is isothermal. 
2. Flow is laminar. 
3. The fluid density is constant. 

Procedures for predicting viscosity values from theory are beyond the scope of this 
text, but available in the literature.") 

Illustrative Example 5.1 
two infinite horizontal parallel plates. The velocity profile of the fluid is given by 

A fluid of viscosity p i s  flowing in the y-direction between 

uy = v (; - 2 )  

where Vand h are constants. 
Calculate the shear stress at the surface z = 0 in terms of p, V, and h. 

Sohtion This problem is solved using rectangular coordinates. First note that u, and 
u, equal zero and uy is solely a function of z. From Table 5.1, 

% = - -  P (a,+ - go 
gc az 

_ _ _ -  - ' d v ~  (since vy is solely a function of z) 
gc dz 
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The velocity profile is given as: 

vy = v[;-z2] 

so that, 

The shear stress at the surface z = 0 is denoted by T J ~ = O :  

T4z=o = : [ 2V(O) - - 3 

Illustrative Example 5.2 Two vertical parallel plates are spaced 1 inch apart. The 
plate on the left side is moving at a velocity of 5 ft/min in the z-direction and the plate 
on the right side is stationary. The space between the plates contains a gas whose 
kinematic viscosity is 1.66 ftz/hr and density is 0.08 lb/ft3. 

1. Calculate the force necessary to maintain the movement of the left plate. 
2. Calculate the momentum flux at the surface of the left plate and at the surface of 

the right plate. 

Solution Note that based on no slip conditions, the velocity of the gas at the surface 
of the moving plate is equal to the velocity of the plate and the velocity of the gas at 
the surface of the stationary plate is zero. 

1. Calculate the force per unit area of plate; this is the shear stress ( T ~ )  that can be 
evaluated from the appropriate equation in Table 5.1. For this application, 

Since xI = 0, xz = 0.0833 ft, v1 = (5)(60) ft/hr, vz = 0, 

lb . ft/hr 
= 478 

ft2 . hr 
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Since, 

ft . lb/s 
lbf . s 

ft . lb/hr 
lbf . hr 

g, = 32.2- = 4.17 x 10' 

478 
7xy=4.17x 10' 

= 1.15 x 10-61bf/fq 

5.3 VISCOSITY MEASUREMENTS 

One of the simplest methods to measure viscosity is to time the discharge of a known 
volume of fluid through a nozzle. A vessel with a short capillary tube is employed. 
This equipment is known as the Saybolt viscometer. It has been used to determine 
the viscosities of oils and paints. Another common technique is to measure the 
torque required to rotate a torque element in a liquid (e.g., Brookjield viscometer 
and coaxial cylindrical viscometers). On a Couette-Hatschek viscometer (or 
MacMichael viscometer), the outer member of a pair of closely fitting coaxial cylin- 
ders is rotated, while in the Stormer viscometer, the inner member of a pair of closely 
fitting cylinders is rotated (see Figs. 5.3 and 5.4). The clearance between the two 

Figure 5.3 Couette-Hatschek viscometer. 
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Figure 5.4 Stormer viscometer. 

cylinders is so small (relative to the cylinder dimensions) that a linear velocity profile 
may be assumed in the fluid filling the gap. By measuring the torque, T, required to 
rotate the cylinder at a specified angular velocity, o (rad/s), it is possible to calculate 
the fluid absolute viscosity andlorjuidity, where thejuidity is defined as the recipro- 
cal of viscosity. In the SI system of units, the fluidity unit is known as the “rhe” 
(1 rhe = 1 /poise = 1 s/g . cm). 

The definitions and equations for the calculation of the fluid viscosity from these 
viscometers are given below: 

Torque, T = ( force)(cylinder radius) = (force)(diameter/2) 

= (F)(D/2)  (5.10) 

= (T)( TDL) (5.1 1) 

= (viscosity)(velocity at the rotating cylinder)/ 

Force, F = (shear stress)(surface area of cylinder) 

Shear stress, T = (absolute viscosity)(velocity gradient) = (p)(du/dy) 

(gap separation) = (p)(u/D) (5.12) 

= (w)(R) = (W)(D/2) (5.13) 

Velocity, u = velocity of the rotating cylinder 
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Radius, R = radius of inside (or outside) cylinder 

Diameter, D = diameter of inside (or outside) cylinder 

Height, L = height of cylinder 

Friction power loss, W ,  = ( force)(velocity) = (F)(u) 

d = gap separation, clearance (5.14) 

Illustrative Example 5.3 A Couette-Hatschek viscometer is used to measure the 
viscosity of an oil (SG = 0.97). The viscometer used has a fixed inner cylinder of 
3 inches diameter and 6 inches height, and a rotating outer cylinder of the same 
height. The clearance, d, between the two cylinders is 0.001 inch. The measured 
torque is 15.3 ft.lbf at an angular rotation speed of 250rpm. Determine the shear 
stress in the oil. Assume the viscometer clearance gap is so small that the velocity 
distribution is assumed linear, that is, du/dy = Au/Ay = u/d. 

Solution 
and L = 6 in = 0.5 ft. 

Calculate the force, F, employing Equation (5.10). Since D = 3 in = 0.25 ft 

- 122.4 lbf = 544.5 N 
2T 2(15 3) 
D 0.25 

F = - = - -  

Calculate the shear stress, T (force parallel to the surface), using Equation (5.1 l), 

122.4 
= 3 11.7 psf = 14.924 kPa - 

F 
r=- 

TDL - ~(0.25)(0.5) 

Illustrative Example 5.4 Refer to Illustrative Example 5.3. Determine the dynamic 
and kinematic viscosities. 

Solution 
Equation (5.13). 

Calculate the linear velocity of the oil, u, from its angular velocity w. See 

w = 250rpm = ( 250- ri) (2~:) (g) = 26.2rad/s 

wD 26.2(0.25) 
u = - -  - = 3.27 ft/s 

2 2 

Calculate the velocity gradient 

du u 3.27 
dy - d - (0.001/12) 

= 39,270 S-' - -  - -  
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Assume Newton’s law of viscosity to apply and calculate the viscosity, p ,  noting that 
7 = (p/g,) (du/dy) . Rearranging yields 

The kinematic viscosity, v, is 

v = - =  EL 0*256 = 0.00423 ft2/s 
p (62.4)(0.97) 

5.4 MICROSCOPIC APPROACH 

Consider the following application. A fluid is flowing through a long horizontal 
cylindrical duct of radius R under steady-state conditions (see Fig. 5.5). The 
general equation for the velocity profile in a pipe as a function of the pressure drop 
per unit length in the direction of motion has been shown to take the form(”*) 

(5.15) 

where A and B are integration constants that are evaluated from the boundary and/or 
initial conditions (Ba/oICs) for the system in question. An equation describing the 
velocity profile in the tube can be generated. Refemng to Fig. 5.5, one concludes 

BC(1): v, = 0 at r = R 

and 

BC(2): uZ = finite at r = 0 

or the equivalent: based on physical grounds 

= O  a t r = 0  dv2 - 
dr 

z=  0; Po z=  L; PL 

Figure 5.5 Horizontal flow in a tube. 
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Substituting BC(2) into Equation (5.15) yields 

A = O  

BC( 1) gives 

gcAP o = - - R ~  + B 
4PL 

Equation (5.15) now becomes 

gcAP 2 u, = -(R -?) 
4PL 

(5.16) 

This equation will be derived and reviewed again in Chapters 9 and 13. 
Another application involves fluid flowing between the region bounded by two 

infinite parallel horizontal plates separated by a distance h. The flow is steady and 
only in the y-direction. Part of the system is represented in Figs. 5.1 and 5.2. A suffi- 
cient force is applied to the upper plate to maintain a velocity vh. The general 
equation for the velocity profile is given by‘*’ 

gcz2 A P  
’- 2 p  Ay 

u - -- + BZ + A 

The boundary conditions (BC) are 

BC(1): uy = O  a t z = O  

BC(2): uy = Vh at z = h 

Substituting BC( 1) into Equation (5.17) yields 

O = O + O + A  

A = O  

Substituting BC(2) into Equation (5.17) gives 

gch2 A P  
Vh=Bh+-- 

2 P  AY 

(5.17) 
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Therefore, 

(5.18) 

Since the fluid is not moving relative to fixed points on both plates, AP/Ay = 0 and 

0, = Vh( ;) (5.19) 

It would be wise at this point to verify that the above solution satisfies both the 
differential equation and BCs. We leave this exercise to the reader. 
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