
UNITS AND DIMENSIONAL 
ANALYSIS 

2.1 INTRODUCTION 

This chapter is primarily concerned with units. The units used in the text are consist- 
ent with those adopted by the engineering profession in the United States. One 
usually refers to them as the English or engineering units. Since engineers are 
often concerned with units and conversion of units, both the English and SI 
system of units are used throughout the book. All the quantities and the physical 
and chemical properties are expressed using these two systems. 

2.1.1 Units and Dimensional Consistency 

Equations are generally dimensional and involve several terms. For the equality to 
hold, each term in the equation must have the same dimensions (i.e., the equation 
must be dimensionally homogeneous or consistent). This condition can be easily 
proved. Throughout the text, great care is exercised in maintaining the dimensional 
formulas of all terms and the dimensional consistency of each equation. The approach 
employed will often develop equations and terms in equations by first examining each 
in specific units (feet rather than length), primarily for the English system. Hopefully, 
this approach will aid the reader and will attach more physical significance to each 
term and equation. 

Consider now the example of calculating the perimeter, P, of a rectangle with 
length, L, and height, H. Mathematically, this may be expressed as P = 2L + 2H. 
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This is about as simple as a mathematical equation can be. However, it only applies 
when P, L, and H are expressed in the same units. 

A conversion constant/factor is a term that is used to obtain units in a more convenient 
form. All conversion constants have magnitude and units in the term, but can also be 
shown to be equal to 1 .O (unity) with no units. An often used conversion constant is 

12 inches/foot 

This term is obtained from the following defining equation: 

12in = 1 ft 

If both sides of this equation are divided by 1 ft one obtains 

12in/ft = 1.0 

Note that this conversion constant, like all others, is also equal to unity without any units. 
Another defining equation is 

lb . ft 
1 lbf = 32.2 - 

S2 

If this equation is divided by Ibf, one obtains 

lb . ft 
1.0 = 32.2- 

lbf * s2 

This serves to define the conversion constant g,. Other conversion constants are given in 
Table A. 1 of the Appendix. 

Illustrative Example 2.1 Convert the following: 

1. 8.03 yr to seconds (s) 
2. 150 mile/h to yard/h 
3. 100.0 m/s2 to ft/min2 
4. 0.03 g/cm3 to Ib/ft3 

Solution 

1. The following conversion factors are needed: 
365 day/yr 
24 h/day 
60 min/h 
60 s/min 
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The following is obtained by arranging the conversion factors so that units 
cancel to leave only the desired units. 

(8.03 yr)(;-> 365day (G) 24h (T) 60 min (g) = 2.53 x lo8 s 

2. In a similar fashion, 

3. ( l O O . O m / s z ) ( )  100 cm ( ft ) r?T= 1.181 x 106ft/min2 
30.48cm min 

4 . (0 .03g/cm3)(L)  ( 30.48 ft cm r= 2.01b/ft3 
454 g 

Terms in equations must also be constructed from a “magnitude” viewpoint. 
Differential terms cannot be equated with finite or integral terms. Care should also 
be exercised in solving differential equations. In order to solve differential equations 
to obtain a description of the pressure, temperature, composition, etc., of a system, it 
is necessary to specify boundary and/or initial conditions for the system. This infor- 
mation arises from a description of the problem or the physical situation. The number 
of boundary conditions (BC) that must be specified is the sum of the highest-order 
derivative for each independent differential term. A value of the solution on the 
boundary of the system is one type of boundary condition. The number of initial 
conditions (IC) that must be specified is the highest-order time derivative appearing 
in the differential equation. The value for the solution at time equal to zero constitutes 
an initial condition. For example, the equation 

requires 2 BCs (in terms of z). The equation 

= O ;  t= t ime 
dT - 
dt 

requires 1 IC. And finally, the equation 

- = D%; D = diffusivity dCA 

at i3y2 

requires 1 IC and 2 BCs (in terms of y ) .  
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2.2 DIMENSIONAL ANALYSIS 

Problems are frequently encountered in fluid flow and other engineering work that 
involve several variables. Engineers are generally interested in developing functional 
relationships (equations) between these variables. When these variables can be 
grouped together in such a manner that they can be used to predict the performance 
of similar pieces of equipment, independent of the scale or size of the operations, 
something very valuable has been accomplished. 

Consider, for example, the problem of establishing a method of calculating the 
power requirements for mixing liquids in open tanks. The obvious variables would 
be the depth of liquid in the tank, the density and viscosity of the liquid, the speed 
of the agitator, the geometry of the agitator, and the diameter of the tank. There 
are therefore six variables that affect the power, or a total of seven terms that must 
be considered. To generate a general equation to describe power variation with 
these variables, a series of tanks having different diameters would have to be set 
up in order to gather data for various values of each variable. Assuming that ten 
different values of each of six variables were imposed on the process, lo6 runs 
would be required. Obviously, a mathematical method for handling several variables 
that requires considerably less than one million runs to establish a design method 
must be available. In fact, such a method is available and it is defined as dimensional 
analysis. ( I )  

Dimensional analysis is a powerful tool that is employed in planning experiments, 
presenting data compactly, and making practical predictions from models without 
detailed mathematical analysis. The first step in an analysis of this nature is to 
write down the units of each variable. The end result of a dimensional analysis is a 
list of pertinent dimensionless numbers. A partial list of common dimensionless 
numbers used in fluid flow analyses is given in Table 2.1. 

Dimensional analysis is a relatively “compact” technique for reducing the number 
and the complexity of the variables affecting a given phenomenon, process or calcu- 
lation. It can help obtain not only the most out of experimental data but also scale-up 
data from a model to a prototype. To do this, one must achieve similarity between the 
prototype and the model. This similarity may be achieved through dimensional analy- 
sis by determining the important dimensionless numbers, and then designing the 
model and prototype such that the important dimensionless numbers are the same 
in both. 

There are three steps in dimensional analysis. These are: 

1. List all parameters and their primary units. 
2. Formulate dimensionless numbers (or ratios). 
3. Develop the relation between the dimensionless numbers experimentally. 

Further details on this approach are provided in the next section. 
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Table 2.1 Dimensionless numbers 

Parameter Definition Importance Qualitative Ratio 

Cavitation 
number 

P - p ‘  

P V 2 P  
Ca=- 

Cavitation 

Eckert number V 2  Dissipation 
EC = - 

C,, AT 

Euler number AP 
EU = - 

P V 2 P  

Froude number u2 

gL 
Fr = - 

Pressure drop 

Free surface flow 

Pressure 
Inertia 

Kinetic energy 
Inertia 

Pressure 
Inertia 

Inertia 
Gravity 

Mach number M~ = - 0 Compressible flow Flow speed 
C Sound speed 

Poiseuille o2 AP Laminar flow in pipes Pressure 
Viscous forces Po = - 

CLLV number 

k 
- Relative 

roughness D 
Turbulent flow, rough walls Wall roughness 

Body length 

Reynolds Re = - pvD = - V D  Various uses Inertia forces 
Viscous forces 

Strouhal 

number C L V  

WL Oscillating flow Oscillation speed 
st = - 

number D Mean speed 

Weber number pv2L Surface forces effect Inertia 
Surface tension We = - 

U 

Note: p’ = vapor pressure, C,, = heat capacity. 

2.3 BUCKINGHAM Pi (m) THEOREM 

This theorem provides a simple method to obtain dimensionless numbers (or ratios) 
termed T parameters. The steps employed in obtaining the dimensionless T par- 
ameters are given below‘*): 

1. List all parameters. Define the number of parameters as n. 
2. Select a set of primary dimensions, e.g., kg, m, s, K (English units may also be 

employed). Let r = the number of primary dimensions. 
3. List the units of all parameters in terms of the primary dimensions, e.g., L [=I 

m, where “[=I” means “has the units of.” This is a critical step and often 
requires some creativity and ingenuity on the part of the individual performing 
the analysis. 
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. I 

4. Select a number of variables from the list of parameters (equal to r). These are 
called repeating variables. The selected repeating parameters must include all r 
independent primary dimensions. The remaining parameters are called “non- 
repeating” variables. 

5 .  Set up dimensional equations by combing the repeating parameters with each 
of the other non-repeating parameters in turn to form the dimensionless par- 
ameters, T. There will be (n - r) dimensionless groups of (m). 

6. Check that each resulting T group is in fact dimensionless. 

D 
b 

Note that it is permissible to form a different T group from the product or division 
of other m, e.g., 

Note, however, that a dimensional analysis approach will fail if the fundamental vari- 
ables are not correctly chosen. The Buckingham Pi theorem approach to dimension- 
less numbers is given in the Illustrative Example that follows. 

Illustrative Example 2.2 When a fluid flows through a horizontal circular pipe, it 
undergoes a pressure drop, AP = (P2 - P I ) .  For a rough pipe, A P  will be higher than 
a smooth pipe. The extent of non-smoothness of a material is expressed in terms of 
the roughness, k. For steady state incompressible Newtonian (see Chapter 5 )  fluid 
flow, the pressure drop is believed to be a function of the fluid average velocity u, 
viscosity p, density p, pipe diameter D, length L, and roughness k (discussed in 
more detail in Chapter 14), and the speed of sound in fluid (an important variable 
if the flow is compressible) c, i.e., 

Determine the dimensionless numbers of importance for this flow system. 

Solution A pictorial representation of the system in question is provided in Fig. 2.1. 

1 2 

r . 
L 

Figure 2.1 Pipe. 
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List all parameters and find the value of n: 

Therefore n = 8. 
Choose primary units (employ SI) 

m, s, kg, K 

List the primary units of each parameter: 

AP [=I Pa = kg rn-l s-* 
I v [=] m s- 

p [=I kg m-l s-l 

D [=] m 

L [=I m 

p [=] kg m-3 

k [=] m 

c [=I m s-l 

Therefore r = 3 with primary units m, s, kg. 

variables: 
Select three parameters from the list of eight parameters. These are the repeating 

D [=I m 

p [=I kg m-3 

v [=I m s-' 

The non-repeating parameters are then AP, p, k, c, and L. 
Determine the number of m: 

n - r = 8 - 3 = 5  

Formulate the first T, r l ,  employing A P  as the non-repeating parameter 

Tl = A P V ~ ~ ~ D ~  

Determine a, b, and f by comparing the units on both sides of the following 
equation: 

0 [=I (kg m-I s-*)(m s-')O(kg m-3)b(m)f 
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Compare kg: 

Compare s: 

Compare m: 

0 = 1 + b. Therefore b = -1 

0 = -2 - a. Therefore a = -2 

0 = -1 + a  - 3b + f .  Thereforef = 0 

Substituting back into r1 leads to: 

This represents the Euler number (see Table 2.1). Formulate the second 72, n2 as 

722 = pvapbDf 

Determine a, b, and f by comparing the units on both sides: 

0 [=I (kg m-'s-')(m s-')a(kg m-3)b(m)f 

Compare kg: 

O =  1 +b .  Thereforeb= -1 

Compare s: 

0 = -1 -a. Therefore a = -1 

Compare m: 

0 = -1 + a  - 3b + f .  Thereforef = -1 

Substituting back into 72.  yields: 

Replace 72. by its reciprocal: 

where Re = Reynolds number (see Chapter 12). 
Similarly, the remaining non-repeating variables lead to 

k 
723 = kvapbDf --t - 

D 
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and 

C 

v 
m4 = cvapbDf -+ - take inverse 

7r4 = - = the Mach number (see ChapterlS) 
v 
C 

Similarly, 

L 
m5 = - 

D 

Combine the m into an equation, expressing mI as a function of m2, m3, m4, and m5: 

D D 
AP 

Eu = - = f (Re, = the Euler number 
PV2/2 

Consider the case of incompressible flow 

The result indicates that to achieve similarity between a model (m) and a prototype 
(p), one must have the following: 

Since Eu =f(Re, k /D ,  LID) ,  then it follows that Eu, = Eu, (see Table 2.1). 

2.4 SCALE-UP AND SIMILARITY 

To scale-up (or scale-down) a process, it is necessary to establish geometric and 
dynamic similarities between the model and the prototype. These two similarities 
a~ discussed below. 

Geometric similarity implies using the same geometry of equipment. A circular 
pipe prototype should be modeled by a tube in the model. Geometric similarity estab- 
lishes the scale of the model/prototype design. A l/lOth scale model means that the 
characteristic dimension of the model is 1 / 10th that of the prototype. 

Dynamic similarity implies that the important dimensionless numbers must be the 
same in the model and the prototype. For a particle settling in a fluid, it has been 
shown (see Chapter 23) that the drag coefficient, CD, is a function of the 
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dimensionless Reynolds number, Re, i.e.: 

By selecting the operating conditions such that Re in the model equals the Re in the 
prototype, then the drag coefficient (orfriction factor) in the prototype equals the fric- 
tion factor in the model. 
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