
355

 Advancing information technology (IT) is the driving element to what many have called
the “ information revolution, ” changing the face of much of modern industry, commerce,
fi nance, education, entertainment — in fact, the very way of life in developed countries.
IT has accomplished this feat largely by automating tasks that had been performed by
human beings, doing more complex operations than had been possible, and doing them
faster and with great precision. Not only has this capability given rise to a whole range
of new complex software - controlled systems but it has also been embedded in nearly
every form of vehicle and appliance, and even in children ’ s toys.

 The previous chapters discussed the application of systems engineering principles
and practice to all types of systems and system elements without regard to whether they
were implemented in hardware or software. Software engineering, however, has
advanced along a separate path than systems engineering. And only recently have the
two paths begun to converge. Many principles, techniques, and tools are similar for
both fi elds, and research has fostered the evolving merger.

 The term software systems engineering was proposed by Dr. Winston Royce, father
of the waterfall chart, early in the history of software engineering to represent the

 11

SOFTWARE SYSTEMS
ENGINEERING

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

c11.indd 355c11.indd 355 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

356 SOFTWARE SYSTEMS ENGINEERING

natural relationship between the two. However, the term was not adopted by the
growing software community, and the term software engineering became the moniker
for the fi eld.

 Within the fi rst decade of the twenty - fi rst century, the fact that the two fi elds have
more in common has been recognized by both communities. And the “ old ” term was
resurrected to represent the application of systems engineering principles and tech-
niques to software development. Of course, the fl ow of ideas has gone in both direc-
tions, spawning new concepts in systems engineering as well — object - oriented systems
engineering (OOSE) being one example. Today, the expanding role of software in
modern complex systems is undeniable.

 The two terms, software engineering and software systems engineering, are not
synonymous, however. The former refers to the development and delivery of software
products, stand - alone or embedded. The latter refers to the application of principles to
the software engineering discipline.

 Accordingly, this chapter will focus on software systems engineering — and how
software engineering relates to systems. In other words, we take the perspective of
using software to implement the requirements, functionality, and behaviors of a larger
system. This excludes stand - alone commercial applications in our discussions, such as
the ubiquitous offi ce productivity products we all use today. While systems engineering
principles could certainly be applied to the development of these types of products, we
do not address these challenges.

 Components of Software

 We defi ne software by its three primary components:

 • Instructions. Referred to as a “ computer program ” or simply as “ code, ” software
includes the list of instructions that are executed by a variety of hardware plat-
forms to provide useful features, functionality, and performance. These instruc-
tions vary in levels of detail, syntax, and language.

 • Data Structures. Along with the set of instructions are the defi nitions of data
structures that will store information for manipulation and transformation by the
instructions.

 • Documentation. Finally, software includes the necessary documents that describe
the use and operation of the software.

 Together, these three components are referred to as “ software. ” A software system is
software (as defi ned above) that also meets the defi nition of a system (see Chapter 1).

 11.1 COPING WITH COMPLEXITY AND ABSTRACTION

 One of the most fundamental differences between engineering software and engineering
hardware is the abstract nature of software. Since modern systems are dependent on

c11.indd 356c11.indd 356 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 357

software for many critical functions, it is appropriate to focus on the unique challenges
of engineering the software components of complex systems and to provide an over-
view of the fundamentals of software engineering of most interest to systems
engineers.

 In earlier chapters, we discussed the relationships between the systems engineer
and design, or specialty engineers. Typically, the systems engineer acts in the role of a
lead engineer responsible for the technical aspects of the system development.
Concurrently, the systems engineer works with the program manager to ensure the
proper programmatic aspects of system development. Together, the two work hand in
hand, resulting in a successful program. Design engineers usually work for systems
engineers (unoffi cially, if not directly reporting to them) in this split between
responsibilities.

 One perspective that can be taken with respect to software engineering is that the
software engineer is simply another design engineer responsible for a portion of the
system ’ s functionality. As functions are allocated to software, the software engineer is
called upon to implement those functions and behaviors in software code. In this role,
the software engineer sits alongside his peers in the engineering departments, develop-
ing subsystems and components using programming code as his tool, rather than physi-
cal devices and parts. Figure 11.1 is an IEEE software systems engineering process
chart that depicts this perspective using the traditional “ Vee ” diagram.

 Figure 11.1. IEEE software systems engineering process.

System

Analysis

System

Testing

System

Design

System

Integration
Testing

Software (SW)

Requirements
Analysis

SW System

Testing

Architectural

SW Design
SW Integration

Testing

Detailed SW
Design

SW Subsystem
Testing

Software EngineeringSoftware Engineering

Systems Engineering

Software Systems Engineering

Code and

Unit Test

c11.indd 357c11.indd 357 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

358 SOFTWARE SYSTEMS ENGINEERING

 Once a subsystem has been allocated for software development (or a combined
software/hardware implementation), a subprocess of developing software requirements,
architecture, and design commences. A combination of systems engineering and soft-
ware engineering steps occurs before these software components are integrated into the
overall system.

 Unfortunately, this perspective tends to promote “ independence ” between the
systems and software development teams. After design, hardware and software engi-
neers begin their respective developments. However, the nature of software requires
that software development strategies be devised early — during system design, depicted
as the second major step in the Vee. If hardware and software are “ split ” during the
design phase (i.e., functionality and subsystem components are allocated to hardware
and software implementation) during or at the end of system design, then the differences
in processes developing and implementing these components will cause the system
development effort to become unbalanced in time.

 Therefore, software development must be integrated earlier than what has been
traditional — in the systems analysis phase. Although not shown in the fi gure, systems
architecting is now a major portion of what this process constitutes as systems analysis .
It is during this activity that software systems engineering is considered.

 Role of Software in Systems

 The development of software has coincided with the evolution of digital computing in
the second half of the twentieth century, which in turn has been driven by the growth
of semiconductor technology. Software is the control and processing element of data
systems (see Chapter 3). It is the means by which a digital computer is directed to
operate on sources of data to convert the data into useful information or action. In the
very early days of computers, software was used to enable crude versions of computers
to calculate artillery tables for the World War II effort. Software is being used today to
control computers ranging from single chips to tremendously powerful supercomputers
to perform an almost infi nite variety of tasks. This versatility and potential power makes
software an indispensable ingredient in modern systems, simple and complex.

 While software and computer hardware are inextricably linked, the histories of
their development have been very different. Computers, which consist largely of semi-
conductor chips, tend to be standardized in design and operation. All of the processing
requirements of specifi c applications are, therefore, incorporated into the software. This
division of function has made it possible to put great effort into increasing the speed
and capability of computers while maintaining standardization and keeping computer
costs low by mass production and marketing. Meanwhile, to handle increasing demands,
software has grown in size and complexity, becoming a dominant part of the majority
of complex systems.

 A traditional view of the role of software in a computer system is represented in
Figure 11.2 . The fi gure shows the layering of software and its relationship to the user
and to the machine on which it runs. The user can be either a human operator or another
computer. The user is seen to interact with all layers through a variety of interfaces.
The fi gure shows that the user interface is wrapped around all the software layers, as

c11.indd 358c11.indd 358 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 359

 Figure 11.2. Software hierarchy.

User

User interface (Screen, Keyboard, Mouse, Channel, DMA …)

Application Software (Custom, Support Tools, Commercial Products …)

Application Program Interface Libraries

Operating System Services

HardwareFirmware

 Figure 11.3. Notional three - tier architecture.

Clients

The “Network”

Application
Servers

The Network

Data Servers
with

Databases

well as having some minimal interaction directly with the hardware. Software at the
application layer is the essence of the computer system, and it is the application that is
supported by the other layers.

 Modern software systems are rarely found within single, stand - alone computers,
such as that represented in this fi gure. Today, software is found across complex net-
works of routers, servers, and clients, all within a multitiered architecture of systems.
Figure 11.3 depicts a simplifi ed three - tier architecture utilizing thin clients over a series

c11.indd 359c11.indd 359 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

360 SOFTWARE SYSTEMS ENGINEERING

of networks. Within each component of the architecture, a similar hierarchy as depicted
in Figure 11.2 is resident.

 As one can imagine, the complexity of computer systems (which should not be
called computer networks) has grown signifi cantly. Software is no longer dedicated to
single platforms, or even platform types, but must operate across heterogeneous hard-
ware platforms. Moreover, software manages complex networks in addition to manag-
ing individual platforms.

 Because of the increasing complexity of software and its ever - increasing role in
complex systems, developing software is now an integrated and comprehensive part of
system development. Thus, systems engineering must include software engineering as
an integral discipline, not simply as another design engineering effort to implement
functionality.

 11.2 NATURE OF SOFTWARE DEVELOPMENT

 Types of Software

 While many people have presented categories of software over the past decades, we
fi nd that most of them can be consolidated into three broad types:

 • System Software. This category of software provides services for other software
and is not intended for stand - alone use. The classic example of this type is the
operating system. The operating system of a computer or server provides mul-
tiple data, fi le, communications, and interface services (to name a few) for other
resident software.

 • Embedded Software. This category of software provides specifi c services, func-
tions, or features of a larger system. This type is most readily recognized with
systems engineering since a basic principle allocated functionality to specifi c
subsystems, including software - based subsystems. Examples of this type are
readily found in systems such as satellites, defense systems, homeland security
systems, and energy systems.

 • Application Software. This category of software provides services to solve a
specifi c need and is considered “ stand - alone. ” Applications typically interact
with system and embedded software to utilize their services. Examples include
the popular offi ce productivity applications — word processors, spreadsheets, and
presentation support.

 Although these three categories cover the wide variety of software today, they do not
provide any understanding of the multiple specialties that exist. Table 11.1 is presented
to provide an additional categorization. The three major software categories are shown
in the table for comparison. Four additional categories are presented: engineering/
scientifi c, product line, Web based, and artifi cial intelligence. While all four fall under
one or more of the three major categories, each type also addresses particular niches
in the software community.

c11.indd 360c11.indd 360 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 361

 TABLE 11.1. Software Types

 Software type Short description Examples

 System A system software provides services to
other software.

 Operating system,
network manager

 Embedded An embedded software resides within a
larger system and implements specifi c
functions or features.

 GUI, navigation
software

 Application An application software is a stand - alone
program that solves a specifi c need.

 Business software,
data processors,
process controllers

 Engineering/
scientifi c

 An engineering/scientifi c software utilizes
complex algorithms to solve advanced
problems in science and engineering.

 Simulations,
computer - aided
design

 Product line A product - line software is intended for
wide use across a spectrum of users and
environments.

 Word processing,
spreadsheets,
multimedia

 Web based A Web - based software, sometimes called
Web applications, is specifi cally
designed for wide area network usage.

 Internet browsers,
Web site software

 Artifi cial
intelligence

 An artifi cial intelligence software is
distinguished by its use of nonnumerical
algorithms to solve complex problems.

 Robotics, expert
systems, pattern
recognition, games

 Types of Software Systems

 While software has become a major element in virtually all modern complex systems,
the task of systems engineering a new system may be very different depending on the
nature of functions performed by the software system elements. Despite the fact that
there are no commonly accepted categories for different types of systems, it is useful
to distinguish three types of software systems, which will be referred to as software -
 embedded systems, software - intensive systems, and computing - intensive systems. The
term “ software - dominated systems ” will be used as inclusive of software systems in
general.

 The characteristics of the three categories of software - dominated systems and
familiar examples are listed in Table 11.2 and are described more fully below.

 Software - Embedded Systems. Software - embedded systems (also referred to
as software - shaped systems, real - time systems, or sociotechnical systems) are hybrid
combinations of hardware, software, and people. This category of systems is one in
which the principal actions are performed by hardware but with software playing a
major supporting role. Examples are vehicles, radar systems, computer - controlled
manufacturing machinery, and so on. The function of software is usually that of per-
forming critical control functions in support of the human operators and the active
hardware components.

c11.indd 361c11.indd 361 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

362 SOFTWARE SYSTEMS ENGINEERING

 Software - embedded systems usually run continuously, typically on embedded
microprocessors (hence the designation), and the software must therefore operate in
real time. In these systems, software is usually embodied in components designed in
accordance with requirements fl owed down from system and subsystem levels. The
requirements may be specifi ed for individual software components or for a group of
components operating as a subsystem. In these systems, the role of software can range
from control functions in household appliances to highly complex automation functions
in military weapons systems.

 Software - Intensive Systems. Software - intensive systems, which include all
information systems, are composed largely of networks of computers and users, in
which the software and computers perform virtually all of the system functionality,
usually in support of human operators. Examples include automated information pro-
cessing systems such as airline reservations systems, distributed merchandising systems,
fi nancial management systems, and so on. These software - intensive systems usually
run intermittently in response to user inputs and do not have as stringent requirements
on latency as real - time systems. On the other hand, the software is subject to system -
 level requirements directly linked to user needs. These systems can be very large and
distributed over extended networks. The World Wide Web is an extreme example of a
software - intensive system.

 TABLE 11.2. Categories of Software - Dominated Systems

 Characteristic
 Software - embedded

systems
 Software - intensive

systems
 Data - intensive

computing systems

 Objective Automate complex
subsystems to
perform faster and
more accurately

 Manipulate masses of
information to
support decisions or
to acquire knowledge

 Solve complex problems,
model complex systems
by computation and
simulation

 Functions Algorithmic, logical Transactional Computational
 Inputs Sensor data, controls Information, objects Data numeric patterns
 Processing Real - time

computation
 Manipulation, GUI,
networking

 Non - real - time
computation

 Outputs Actions, products Information, objects Information
 Timing Real time, continuous Intermittent Scheduled
 Examples Air traffi c control

 Military weapons
systems

 Aircraft navigation
and control

 Banking network
 Airline reservation
system

 Web applications

 Weather predictions
 Nuclear effect prediction
 Modeling and simulation

 Hardware Mini and micro
processors

 N - tier architectures Supercomputers

 Typical users Operators Managers Scientists, analysts

c11.indd 362c11.indd 362 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 363

 In software - intensive systems, software is key at all levels, including the system
control itself. Hence, these must be systems engineered from the beginning. Most of
them can be thought of as “ transactional ” systems (fi nancial, airline reservation,
command, and control). They are generally built around databases that contain domain
information entities that must be accessed to produce the desired transaction.

 Data - Intensive Computing Systems. A type of software system that is sig-
nifi cantly different from the above software system categories includes large - scale
computing resources dedicated to executing complex computational tasks. Examples
are weather analysis and prediction centers, nuclear effects prediction systems, advanced
information decryption systems, and other computationally intensive operations.

 These data - intensive computing systems usually operate as facilities in which the
computing is typically performed either on supercomputers or on assemblies of high -
 speed processors. In some cases, the processing is done by a group of parallel proces-
sors, with computer programs designed for parallel operation.

 The development of data - intensive computing systems requires a systems approach
like other systems. However, most of these are one of a kind and involve very special-
ized technical approaches. Accordingly, this chapter will be focused on the systems
engineering problems associated with the much more common software - embedded and
software - intensive systems.

 Differences between Hardware and Software

 It was noted at the beginning of this chapter that there are a number of fundamental
differences between hardware and software that have profound effects on the systems
engineering of software - dominated systems. Every systems engineer must have a clear
appreciation of these differences and their import. The following paragraphs and Table
 11.3 are devoted to describing software systems and how they differ signifi cantly from
hardware.

 Structural Units. Most hardware components are made up of standard physical
parts, such as gears, transistors, motors, and so on. The great majority are implementa-
tions of commonly occurring functional elements, such as “ generate torque ” or “ process
data ” (see Chapter 3). In contrast, software structural units can be combined in count-
less different ways to form the instructions that defi ne the functions to be performed
by the software. There is not a fi nite set of commonly occurring functional building
blocks, such as makeup hardware subsystems and components. The main exceptions
are generic library functions (e.g., trigonometric) contained in some software program-
ming environments and certain commercial software “ components ” mostly related to
graphic user interface functions.

 Interfaces. Because of its lack of well - defi ned physical components, software
systems tend to have many more interfaces, with deeper and less visible interconnec-
tions than hardware systems. These features make it more diffi cult to achieve good
system modularity and to control the effects of local changes.

c11.indd 363c11.indd 363 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

364 SOFTWARE SYSTEMS ENGINEERING

 Functionality. There are no inherent limits on the functionality of software as
there are on hardware due to physical constraints. For this reason, the most critical,
complex, and nonstandard operations in systems are usually allocated to software.

 Size. While the size of hardware components is limited by volume, weight, and
other constraints, there is no inherent limit to the size of a computer program, especially
with modern memory technology. The large size of many software - based systems
constitutes a major systems engineering challenge because they can embody an enor-
mous amount of custom - built system complexity.

 Changeability. Compared to the effort required to make a change in a hardware
element, it is often falsely perceived to be easy to make changes in software, that is,
 “ merely ” by altering a few lines of code. The impacts of software changes are more
diffi cult to predict or determine due to the complexity and interface problems cited
above. A “ simple ” software change may require retesting of the entire system.

 Failure Modes. Hardware is continuous in both structure and operation, while
software is digital and discontinuous. Hardware usually yields before it fails and tends
to fail in a limited area. Software tends to fail abruptly, frequently resulting in a system
breakdown.

 Abstraction. Hardware components are described by mechanical drawings,
circuit diagrams, block diagrams, and other representations that are models of physical
elements readily understood by engineers. Software is inherently abstract. Besides the

 TABLE 11.3. Differences between Hardware and Software

 Attribute Hardware Software
 Software engineering

complications

 Structural
units

 Physical parts,
components

 Objects, modules Few common building blocks,
rare component reuse

 Interfaces Visible at
component
boundaries

 Less visible, deeply
penetrating
numerous

 Diffi cult interface control,
lack of modularity

 Functionality Limited by power,
accuracy

 No inherent limit
(limited only by
hardware)

 Very complex programs,
diffi cult to maintain

 Size Limited by space,
weight

 No inherent limits Very large modules, diffi cult
to manage

 Changeability Requires effort Deceptively easy
but risky

 Diffi cult confi guration
management

 Failure mode Yields before
failing

 Fails abruptly Greater impact of failures

 Abstraction Consists of
physical elements

 Textual and
symbolic

 Diffi cult to understand

c11.indd 364c11.indd 364 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 365

actual code, architectural and modeling diagrams are highly abstract and each diagram
restricted in its information context. Abstractions may be the single most fundamental
difference between software and hardware.

 The above differences, summarized in Table 11.3 , profoundly affect the systems
engineering of complex software - dominated systems. Not appreciating these differ-
ences and effectively accounting for them have contributed to a number of spectacular
failures in major programs, such as an attempted modernization of the air traffi c control
system, the initial data acquisition system for the Hubble telescope, the Mars Lander
spacecraft, and an airport baggage handling system.

 For the majority of systems engineers who do not have experience in software
engineering, it is essential that they acquire a grounding in the fundamentals of this
discipline. The following sections are intended to provide a brief overview of software
and the software development process.

 11.3 SOFTWARE DEVELOPMENT LIFE CYCLE MODELS

 As described in previous chapters, every development project passes through a series
of phases as it evolves from its inception to its completion. The concept of a life cycle
model is a valuable management tool for planning the activities, staffi ng, organization,
resources, schedules, and other supporting activities required for a project ’ s successful
execution. It is also useful for establishing milestones and decision points to help keep
the project on schedule and budget.

 Chapter 4 described a system life cycle model appropriate for developing, produc-
ing, and fi elding a typical, new large - scale complex system. It was seen to consist of a
series of steps beginning with the establishment of a bona fi de need for a new system
and systematically progressing to devising a technical approach for meeting the need;
engineering a hardware/software system embodying an effective, reliable, and afford-
able implementation of the system concept; validating its performance; and producing
as many units as required for distribution to the users/customers.

 The software elements in software - embedded systems perform critical functions,
which are embodied in components or subcomponents. Therefore, their system life
cycle is governed by the nature of the system and major subsystems and generally
follows the steps characteristic of systems in general, as described in Chapters 4 and
 6 – 10 . A signifi cant feature of the life cycle of software - embedded systems is the fact
that there is no production for the software elements themselves, only of the processors
on which the software runs. Also, there is cause for caution in that software elements
are deceptively complex for their size and usually play critical roles in system opera-
tion. Hence, special measures for risk reduction in this area need to be considered.

 Basic Development Phases. Just as the systems engineering method was seen
to consist of four basic steps (Fig. 4.10),

 1. requirements analysis,

 2. functional defi nition,

c11.indd 365c11.indd 365 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

366 SOFTWARE SYSTEMS ENGINEERING

 3. physical defi nition, and

 4. design validation,

 so also the software development process can be resolved into four basic steps:

 1. analysis;

 2. design, including architectural, procedural, and so on;

 3. coding and unit test, also called implementation; and

 4. test, including integration and system test.

 Although not strictly coincident with the systems engineering method, the general
objectives of each of these steps correspond closely.

 It should be noted that like the systems engineering method, different versions of
the software process use variations in terminology in naming the steps or phases, and
some split up one or more of the basic steps. For example, design may be divided into
preliminary design and detailed design; unit test is sometimes combined with coding
or made a separate step. System test is sometimes referred to as integration and test. It
must be remembered that this stepwise formulation is a model of the process and hence
is subject to variation and interpretation.

 For the category of software - intensive systems, which have come to dominate
communication, fi nance, commerce, entertainment, and other users of information,
there are a variety of life cycle models in use. A few notable examples of these are
discussed briefl y in the following paragraphs. Detailed discussions of software life
cycles may be found in the chapter references and in other sources.

 As in the case of system life cycle models, the various software process models
involve the same basic functions, differing mainly in the manner in which the steps are
carried out, the sequencing of activities, and in some cases the form in which they are
represented. Overall, software development generally falls into four categories:

 1. Linear. Like formal system development life cycle models, the linear software
development model category consists of a sequence of steps, typically with
feedback, resulting in a software product. Linear development models work
well in environments with well - understood and stable requirements, reasonable
schedules and resources, and well - documented practices.

 2. Incremental. Incremental models utilize the same basic steps as linear models
but repeat the process in multiple iterations. In addition, not every step is per-
formed to the same degree of detail within each iteration. These types of devel-
opment models provide partial functionality at incremental points in time as the
system is developed. They work well in environments with stable requirements
where partial functionality is desired before the full system is developed.

 3. Evolutionary. Evolutionary models are similar to the incremental concept but
work well in environments where the fi nal product ’ s characteristics and attri-
butes are not known at the beginning of the development process. Evolutionary
models provide limited functionality in nonproduction forms (e.g., prototypes)

c11.indd 366c11.indd 366 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 367

for experimentation, demonstration, and familiarization. Feedback is critical to
evolutionary models as the system “ evolves ” to meet the needs of the users
through these three procedures.

 4. Agile. Agile development models deviate most from the four basic steps we
have identifi ed above. With linear, incremental, and evolutionary models, the
four steps are manipulated into different sequences and are repeated in different
ways. Within agile development environments, the four steps are combined in
some manner and the delineations between them are lost. Agile methods are
appropriate for environments where structure and defi nition are not available,
and change is the constant throughout the process.

 In addition to the four basic development model categories above, specialized
development models have been proffered, practiced, and published. Two well - known
examples are the component - based development model and the aspect - oriented devel-
opment model. These special - purpose models have specifi c but limited applications
warranting their use. We have chosen to omit these specialized models from our
discussions.

 Linear Development Models

 The waterfall model is the classic software development life cycle, also called the
 “ sequential ” model (see Fig. 11.4). It consists of a sequence of steps, systematically

 Figure 11.4. Classical waterfall software development cycle.

Analysis

Design

Coding and

Unit Test

Integration and
System Test

Operation and
Maintenance

c11.indd 367c11.indd 367 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

368 SOFTWARE SYSTEMS ENGINEERING

proceeding from analysis to design, coding and unit test, and integration and system
test. The waterfall model with feedback (see dashed arrows) depicts the adjustment of
inputs from a preceding step to resolve unexpected problems before proceeding to the
subsequent step. The waterfall model corresponds most closely to the conventional
system life cycle. Table 11.4 lists the system life cycle phases, their objectives, and the
corresponding activity in the waterfall life cycle phase.

 Over the years, the basic waterfall model has morphed into many variations,
including some that quite honestly could no longer be described as linear. Waterfall has
been combined with the other types to form hybrids that could be classifi ed as a com-
bination of two or more categories. And while the basic waterfall model is rarely used
in today ’ s modern software engineering community, its basic principles can be recog-
nized throughout, as will be evidenced in the next two sections.

 Incremental Development Models

 The basic incremental model involves two concepts: (1) performing the basic steps of
software development repeatedly to build multiple increments and (2) achieving partial
operational functionality early in the process, and building that functionality over time.
Figure 11.5 depicts this process using the steps of the basic waterfall process model.
The reader should keep in mind that not all steps of every increment are performed to
the same level of detail. For example (and depicted in the fi gure), the analysis phase
may not need the same attention in the second and third increments as it received in
the fi rst increment. Initial analysis may cover the needs, requirements, and feature defi -
nition for all increments, not just the fi rst. Similarly, by the second iteration, the overall
design of the software system may be largely completed. Further design would not be
needed in the third iteration.

 TABLE 11.4. Systems Engineering Life Cycle and the Waterfall Model

 System phase Objective Waterfall phase

 Needs analysis Establish system need and
feasibility

 Analysis

 Concept exploration Derive necessary system Analysis
 Concept defi nition Select a preferred system

architecture
 Design

 Advanced development Build and test risky system
elements

 Design (and prototype)

 Engineering design Engineer system components to
meet performance requirements

 Coding and unit test

 Integration and evaluation Integrate and validate system
design

 Integration and system test

 Production Production and distribution None
 Operations and support Operation Maintenance

c11.indd 368c11.indd 368 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 369

 Another aspect of incremental development concerns the incremental releases,
sometimes called “ builds. ” As a new increment is released, older increments may be
retired. In its purest form, once the last increment is released, all of the older increments
are retired. Of course, situations arise when customers are fully satisfi ed with an
increment — leading to multiple increments, and thus versions of the software — or
future increments are cancelled. This is depicted in the fi gure by the triangles .

 The rapid application development (RAD) model (sometimes called the “ all - at -
 once ” model) features an incremental development process with a very short cycle time.
It is an iterative form of the waterfall model, depending on the use of previously devel-
oped or commercially available components. Its use is best suited to business applica-
tion software of limited size that lends itself to relatively quick and low - risk development,
and whose marketability depends on deployment ahead of an anticipated competitor.

 Evolutionary Development Models

 In situations where user needs and requirements are not well defi ned, and/or develop-
ment complexity is suffi ciently high to incur signifi cant risk, an evolutionary approach
may be best. The basic concept involves the development of an early software product,
or prototype. The prototype is not intended for actual operations, sales, or deployment,
but to assist in identifying and refi ning requirements, or in reducing development risks.
If the purpose of the prototype is identifying and refi ning requirements, then typically,
an experimental version of the system, or a representative portion that exhibits the
characteristics of the user interface, is built early in the design phase of the development
and operated by the intended user or a surrogate of the projected user. With the fl exibil-
ity of software, such a prototype can often be designed and built relatively quickly and
inexpensively. Attention to formal methods, documentation, and quality design need
not be implemented, since the version is not intended for production.

 Figure 11.5. Software incremental model.

Analysis Design
Coding and
Unit Test

Integration and
System Test

Operation and
Maintenance

Increment 3

Analysis Design
Coding and
Unit Test

Integration and
SystemTest

Operation and
Maintenance

Increment 2

Operation

Coding and Integration and Operation and

Increment 1

Operation and Evaluation

Analysis Design
Unit Test System Test Maintenance

Operation and Evaluation

Time

c11.indd 369c11.indd 369 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

370 SOFTWARE SYSTEMS ENGINEERING

 In addition to refi ning requirements by building trial user interfaces, software
prototyping is often used as a general risk reduction mechanism as in the advanced
development phase. New design constructs can be prototyped early to refi ne the
approach. Interfaces with other hardware and software can also be developed and tested
early to reduce risk. As an example, consider an air traffi c control system. It is often
necessary to discover the real requirements of the system interfaces by testing prelimi-
nary models of the system in the fi eld.

 Perhaps the most common form of the evolutionary model is the spiral model . It
is similar to that pictured in Figure 4.12 but is generally much less formal and with
shorter cycles. Figure 11.6 depicts a version of the spiral development model. It differs
in form by starting in the center and spiraling outward. The expanding spirals represent
successive prototypes, which iteratively perfect the attainment of customer objectives
by the system. Finally, the fi nishing steps are applied on the last spiral/prototype, result-
ing in a fi nished product.

 With all evolutionary methods, it is important to plan for the disposition of the
prototypes (or spirals) after they have been used. Examples abound where a spiral
approach was adopted, and one or two prototypes were developed and tested using
actual users or surrogates. However, after experiencing the prototype, the customer
declared the product suffi cient and requested immediate delivery. Unfortunately,
without formal procedures and methods in place, nor general quality assurance followed
in the prototype development, the “ fi nal product ” was in no condition to be deployed

 Figure 11.6. Spiral model.

Spiral

Determine objectives,
alternatives and constraints

Plan next phases
Develop and verify
next-level product

Evaluate alternatives,
identify and resolve risks

Cumulative cost

Progress through
steps

Requirements plan
Life cycle plan

Risk
analysis

Risk
analysis

Concept of
operation

 Software
requirements

Requirements
validation

Design V and V

Software

product

design

Detailed
design

CodeUnit
test

Integration
and test

Acceptance
test

Implementation

Simulations, models benchmarks

Risk
analysis

Risk
analysis

Prototype
1

Prototype
2

Prototype
3

Operational
prototype

Development
plan

Integration and
test plan

Commitment
Partition

Review

c11.indd 370c11.indd 370 2/8/2011 3:49:21 PM2/8/2011 3:49:21 PM

COPING WITH COMPLEXITY AND ABSTRACTION 371

in the fi eld (or sold to the market). Upon deployment, problems ensued quickly. Our
recommendation is that prototypes should be discarded upon completion of their
purpose — and the customer should be forewarned of the signifi cant risks involved in
deployment prototypes as operational systems.

 The second model, which falls under the evolutionary category, is the concurrent
development model . This approach eliminates the two concepts of sequence and incre-
ments, and develops all phases simultaneously. The model achieves this approach
through the defi nition of software development states. Software modules are tagged
with which state they belong. Formal state transition criteria are defi ned that enables
software modules to transition from one state to the other. Development teams focus
on specifi c activities within a single state. Figure 11.7 depicts an example state transi-
tion diagram (STD) associated with this type of model.

 Software modules are initially assigned to the “ awaiting development ” state. This
state could be thought of as a queue for the development teams. A module is not tran-
sitioned to the “ under development ” state until a team is assigned to its development.
Once completed, the module is transitioned to the “ under review ” state, where a review
team (or person) is assigned. Again, transition does not occur until a team is assigned
to the module. This process is repeated. Since modules are developed simultaneously
by different teams, modules can be in the same state. A push/pull system can be imple-
mented to increase the effi ciency of the associated teams.

 Figure 11.7. State transition diagram in the concurrent development model.

Awaiting
Development

Under Design
Revision

Under
Development

Under Review

Rejected

Accepted

Awaiting
Integration

IntegratedIntegrated

c11.indd 371c11.indd 371 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

372 SOFTWARE SYSTEMS ENGINEERING

 Agile Development Models

 A common result of many software development projects is failure to adapt to changing
or poorly defi ned user requirements and a consequent impact on project cost. A response
to this situation has been the formulation, in the late 1990s and early 2000s, of an
adaptive software methodology referred to as “ agile. ” It uses an iterative life cycle to
quickly produce prototypes that the user can evaluate and use to refi ne requirements.
It is especially suitable for small - to medium - size projects (with less than 30 – 50 people)
where the requirements are not fi rmly defi ned and where the customer is willing to
work with the developer to achieve a successful product. This last point is particularly
important — the agile methodology depends on customer/user involvement. Without a
commitment from the customer for this level of interaction, the agile methodology
incurs a signifi cant risk.

 As defi ned by its proponents, the agile methodology is based on the following
postulates, assuming the above conditions:

 1. Requirements (in many projects) are not wholly predictable and will change
during the development period. A corollary is that customer priorities are likely
to change during the same period.

 2. Design and construction should be integrated because the validity of the design
can seldom be judged before the implementation is tested.

 3. Analysis, design, construction, and testing are not predictable and cannot be
planned with adequate levels of precision.

 These methods rely heavily on the software development team to conduct simultaneous
activities. Formal requirements analysis and design are not separate steps — they are
incorporated in the coding and testing of software. This concept is not for the faint - of -
 heart customer — a great level of trust is required. Nevertheless, agile methods represent
a leap in software development that can lead to highly robust software more quickly
than traditional methods.

 Agile methods include a number of recent process models:

 • Adaptive Software Development (ASD) focuses on successive iterations of three
activities: speculation, collaboration, and learning. The initial phase, speculation,
focuses on the customer ’ s needs and mission. The second phase, collaboration,
utilizes the concept of synergistic talents working together to develop the soft-
ware. The fi nal phase, learning, provides feedback to the team, the customer, and
the other stakeholders, and includes formal review and testing.

 • Extreme Programming (XP) focuses on successive iterations of four activities:
planning, design, coding, and testing. Requirements are identifi ed through the
use of user stories — informal user descriptions of features and functionality.
These stories are organized and used through the iteration process, including as
the basis for fi nal testing.

 • Scrum focuses on a short, 30 - day iterative cycle — with strong teaming. This
process yields several iterations in various maturities with which to learn, adapt,

c11.indd 372c11.indd 372 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 373

and evolve. Within each cycle, a basic set of activities occurs: requirements,
analysis, design, evolution, and delivery.

 • Feature - Driven Development focuses on short iterations (typically about 2
weeks), each of which delivers tangible functionality (features) that the user
values. Eventually, features are organized and grouped into modules that are then
integrated in the system.

 • The Crystal family of agile methods focuses on adaptation of a core set of agile
methodologies to individual projects.

 In all of the above approaches, quality and robustness are required attributes of
products. Thus, the iterations are to be built on rather than thrown away (in contrast to
the incremental and spiral methods). All projects that are based on uncertain require-
ments should consider the above principles in deciding on the methodology to be used.

 In general, the software development life cycles follow the same pattern of progres-
sive risk reduction and system “ materialization ” that has been described in Chapters 3
and 5 – 10 . The remaining sections of this chapter follow a similar structure.

 Software System Upgrades

 Because of the rapid evolution of IT, the associated developments in data processors,
peripherals, and networks, and the perceived ease of introducing software changes,
there are relatively frequent cases where system software is subjected to signifi cant
modifi cations or “ upgrades. ” In a large fraction of instances, the upgrades are planned
and implemented by different individuals from those responsible for their development,
with the resulting probability of inadvertent interface or performance defi ciencies. Such
cases call for participation of and control by systems engineering staff who can plan
the upgrade design from a system point of view and can ensure an adequate require-
ments analysis, interface identifi cations, application of modular principles, and thor-
ough testing at all levels.

 When the system to be upgraded was designed before the general use of modern
programming languages, there can be a severe problem of dealing with an obsolete
language no longer supported by modern data processors. Such legacy software is
generally not capable of being run on modern high - performance processors, and the
programs, which total billions of lines of code, have to either be rewritten or translated
into a modern language. The cost of the former is, in many cases, prohibitive, and the
latter has not come into general practice. The result has been that many of these systems
continue to use obsolete hardware and software and are maintained by a dwindling
group of programmers still capable of dealing with the obsolete technology.

 11.4 SOFTWARE CONCEPT DEVELOPMENT: ANALYSIS AND DESIGN

 The analysis and design steps in the traditional software life cycle described in
the previous sections generally correspond to the concept development stage that is

c11.indd 373c11.indd 373 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

374 SOFTWARE SYSTEMS ENGINEERING

embodied in Part II of this book. These are the activities that defi ne the requirements
and architecture of the software elements of the system. The line of demarcation
between analysis and design may vary substantially among projects and practitioners,
there being broad areas referred to as design analysis or design modeling. For this
reason, the subsections below will focus more on approaches and problems that are of
special interest to systems engineers than on issues of terminology.

 Needs Analysis

 The precondition for the development of any new system is that it is truly needed, that
a feasible development approach is available, and that the system is worth the effort to
develop and produce it. In the majority of software - intensive systems, the main role of
software is to automate functions in legacy systems that have been performed by people
or hardware, to do them at less cost, in less time, and more accurately. The issue of
need becomes one of trading off the projected gains in performance and cost against
the effort to develop and deploy the new system.

 In new systems in which key operations performed by people or hardware are to
be replaced with software, users are typically not unanimous regarding their needs, and
the optimum degree of automation is seldom determinable without building and testing.
Further, an extensive market analysis is usually necessary to gauge the acceptance of
an automated system and the costs and training that this entails. Such an analysis also
usually involves issues of market penetration, customer psychology, introduction trials,
and corporate investment strategy.

 Feasibility Analysis. The decision to proceed with system design has been seen
to require the demonstration of technical feasibility. Within the realm of software,
almost anything appears feasible. Modern microprocessors and memory chips can
accommodate large software systems. There are no clear size, endurance, or accuracy
limits such as there are on hardware components. Thus, technical feasibility tends to
be taken for granted. This is a great advantage of software but also invites complexity
and the assumption of challenging requirements. However, the resulting complexity
may in itself prove too diffi cult and costly.

 Software Requirements Analysis

 The scope of the requirements analysis effort for a new system usually depends on
whether the software is an element in a software - embedded system or if it embraces a
total software - intensive system. In either case, however, the development of a concept
of operations should play an important part.

 Software - Embedded System Components. As noted previously, the soft-
ware elements in software - embedded systems are usually at the component level,
referred to as computer system confi guration items (CSCIs). Their requirements are
generated at the system and subsystem levels and are allocated to CSCIs, usually in a

c11.indd 374c11.indd 374 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 375

formal requirement specifi cation document. The software team is expected to design
and build a product to these specifi cations.

 Too often, such specifi cations are generated by systems engineers with an inade-
quate knowledge of software capabilities and limitations. For example, a large dynamic
range in combination with high precision may be prescribed, which may unduly stress
the system computational speed. Other requirement mismatches may result from the
communication gap that frequently exists between systems and software engineers and
organizations. For such reasons, it is incumbent on the software development team to
make a thorough analysis of requirements allocated to software and to question any
that fail to have the characteristics described in Chapter 7 . These reasons also constitute
a good argument for including software engineers in the top - level requirements analysis
process.

 Software - Intensive System Requirements. As noted earlier, in a software -
 intensive system, software dominates every aspect and must be an issue at the highest
level of system requirements analysis. Thus, the very formulation of the overall system
requirements must be subject to analysis and participation by software systems
engineers.

 The basic problems in developing system requirements for software - intensive
systems are fundamentally the same as for all complex systems. However, there are
several aspects that are peculiar to requirements for systems that depend on the exten-
sive software automation of critical control functions. One special aspect has been noted
previously, namely, unreasonable performance expectations based on the extensibility
of software. Another is the generally diverse customer base, with little understanding
of what software automation is capable of doing, and hence is often not a good
source of requirements.

 The consequences of these and other factors that inhibit the derivation of a reliable
set of requirements typically result in a considerable degree of uncertainty and fl uidity
in software - based system requirements. This is a major reason for the use of prototyp-
ing, RAD, or evolutionary development, all of which produce an early version of the
system that can be subjected to experimentation by users to modify and fi rm up initial
assumptions of desired system characteristics.

 Several variations of developing software requirements exist today. Of course,
many depend on the type of software development model being used; however, some
generic features exist regardless of the model chosen. Figure 11.8 depicts a hierarchy
of software requirements, starting with the user needs at the apex. These needs are
decomposed into desired features, functional and performance requirements, and fi nally
specifi cations. If the system in question is software embedded, the upper levels of the
hierarchy are typically performed at the system level and requirements or specifi cations
are allocated to software subsystems or components.

 If the system in question is software intensive, the upper levels of the hierarchy
are needed. In those cases, a separate process for developing and refi ning requirements
may be needed. Several processes have been offered in the literature. A generic process
is presented in Figure 11.9 . Four steps, which can be further divided into separate steps,
are critical to this effort:

c11.indd 375c11.indd 375 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

376 SOFTWARE SYSTEMS ENGINEERING

 • Requirements Elicitation. This step seems straightforward but, in reality, can be
challenging. Bridging the language barrier between users and developers is not
simple. Although tools have been developed to facilitate this process (e.g., use
cases, described below), users and developers simply do not speak the same
language. Many elicitation methods exist — from direct interaction with stake-
holders and users, involving interviews and surveys, to indirect methods, involv-
ing observation and data collection. Of course, prototyping can be of valuable
use.

 Figure 11.8. User needs, software requirements, and specifi cations.

Problem

User
Needs

Domain

Software
Features

Software Requirements

Solution
Domain

Software Specifications Technology Domain

 Figure 11.9. Software requirements generation process.

Requirements

Elicitation

Requirements

Analysis and
Negotiation

Requirements
Documentation

Requirements
Validation

Inputs

Outputs

c11.indd 376c11.indd 376 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 377

 • Requirements Analysis and Negotiation. Chapter 7 described a series of methods
to analyze and refi ne a set of requirements. These are applicable to software as
much as they are to hardware. In general, these techniques involve checking four
attributes of a requirements set: necessity, consistency, completeness, and feasi-
bility. Once requirements have been refi ned, they need to be accepted — this is
where negotiation begins. Requirements are discussed with stakeholders and are
refi ned until agreement is reached. When possible, requirements are prioritized
and problematic requirements are resolved. A more advanced analysis is then
performed, examining the following attributes: business goal conformity, ambi-
guity, testability, technology requirements, and design implications.

 • Requirements Documentation. Documentation is always the obvious step and
can be omitted since everyone is expecting the requirements to be documented.
We include it because of the criticality in articulating and distributing require-
ments to the entire development team.

 • Requirements Validation. This step can be confusing because many engineers
include “ analysis ” in this step, that is, the concept that each requirement is evalu-
ated to be consistent, coherent, and unambiguous. However, we have already
performed this type of analysis in our second step above. Validation in this
context means a fi nal examination of the requirements set in whole to determine
whether the set will ultimately meet the needs of the users/customers/parent
system. Several methods exist to enable requirement validation — prototyping,
modeling, formal reviews, manual development, and inspection — even test case
development can assist in the validation process.

 Use Cases. As mentioned in Chapter 8 , a popular tool available to requirements
engineers is the use case . A use case has been best described as a story, describing how
a set of actors interact with a system under a specifi c set of circumstances. Because the
set of circumstances can be large, even infi nite, the number of possible use cases for
any system can also be large. It is the job of the requirements engineer, developers,
users, and systems engineer to limit the number and variety of use cases to those that
will infl uence the development of the system.

 Use cases represent a powerful tool in bridging the language gap between users,
or any stakeholder, and developers. All can understand sequences of events and activi-
ties that need to be performed. Although use cases were developed for describing
software system behavior and features, they are regularly used in the systems world to
describe any type of system, regardless of the functionality implemented by software.

 Interface Requirements. Whichever the type of an essential tool of require-
ments analysis is the identifi cation of all external interfaces of the system, and the
association of each input and output with requirements on its handling within the
system. This process not only provides a checklist of all relevant requirements but also
a connection between internal functions required to produce external outcomes. In all
software - dominated systems, this approach is especially valuable because of the numer-
ous subtle interactions between the system and its environment, which may otherwise
be missed in the analysis process.

c11.indd 377c11.indd 377 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

378 SOFTWARE SYSTEMS ENGINEERING

 System Architecture

 It was seen in Chapter 8 that in complex systems, it is absolutely essential to partition
them into relatively independent subsystems that may be designed, developed, pro-
duced, and tested as separate system building blocks, and similarly to subdivide the
subsystems into relatively self - contained components. This approach handles system
complexity by segregating groups of mutually interdependent elements and highlight-
ing their interfaces. This step in the systems engineering method is referred to as
functional defi nition or functional analysis and design (Fig. 4.10).

 In hardware - based systems, the partitioning process not only reduces system com-
plexity by subdividing it into manageable elements but also serves to collect elements
together that correspond to engineering disciplines and industrial product lines (e.g.,
electronic, hydraulic, structural, and software). In software - intensive systems, the seg-
regation by discipline is not applicable, while the inherent complexity of software
makes it all the more necessary to partition the system into manageable elements.
Software has numerous subdisciplines (algorithm design, databases, transactional soft-
ware, etc.), which may, in certain cases, provide partitioning criteria. In systems that
are distributed, the characteristics of the connective network can be used to derive the
system architecture.

 Software Building Blocks. The objective of the partitioning process is to
achieve a high degree of “ modularity. ” The principles that guide the defi nition and
design of software components are intrinsically similar to those that govern hardware
component design, but the essentially different nature of the implementation results in
signifi cant differences in the design process. One fundamental difference is in regard
to commonly occurring building blocks such as those described in Chapter 3 . There is
a profusion of standard commercial software packages, especially for business and
scientifi c applications (e.g., word processors, spread sheets, and math packages), but
rarely for system components. Exceptions to this general situation are the commercial -
 off - the - shelf (COTS) software components heavily used in low - complexity information
systems.

 Another source of software building blocks is that of common objects (COs). These
are somewhat the equivalents in software to standard hardware parts such as gears or
transformers, or at higher levels to motors or memory chips. They are most often used
in the graphical user interface (GUI) environment. The CO concept is represented by
the Microsoft - developed distributed common object model (DCOM). A more vendor -
 independent implementation is the common object resource broker architecture
(CORBA), which is a standard defi ned by the Object Management Group (OMG), an
organization committed to vendor neutral software standards. However, these CO
components comprise only a small fraction of system design. The result is that despite
such efforts at “ reuse, ” the great majority of new software products are very largely
unique.

 Modular Partitioning. Despite the lack of standard parts, software modules
nevertheless can be well structured, with an ordered hierarchy of modular subdivisions
and well - defi ned interfaces. The same principles of modularity to minimize the inter-

c11.indd 378c11.indd 378 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 379

dependence of functional elements that apply to hardware components are applicable
also to computer programs.

 The principles of modular partitioning are illustrated in Figure 11.10 . The upper
patterns show the elements of “ binding, ” also referred to as “ cohesion, ” which measures
the mutual relation of items within software modules (represented by boxes with the
names of colors). It is desirable for binding to be “ tight ” — all closely related items
should be grouped together in a single functional area. Conversely, unrelated and/or
potentially incompatible items should be located in separate areas.

 The lower two diagrams illustrate the elements of “ coupling, ” which measures the
interactions between the contents of different modules (boxes). With tight coupling as
illustrated at the left, any change within a module will likely dictate changes in each
of the other two modules. Conversely, with “ loose ” coupling, interactions between the
modules are minimized. The ideal arrangement, usually only partially achievable, is
illustrated in the right - hand diagram, where interactions between modules are kept
simple and data fl ows are unidirectional. This subject is discussed further below as it
relates to different design methodologies.

 Architecture Modeling. As noted in Chapter 10 , models are an indispensable
tool of systems engineering for making complex structures and relationships under-
standable to analysts and designers. This is especially true in software - dominated
systems where the abstract nature of the medium can make its form and function virtu-
ally incomprehensible.

 Figure 11.10. Principles of modular partitioning.

Tight Binding

Tight Coupling Loose Coupling

Loose Binding

Red Blue BlueBlue Red Red Blue Blue

Module A Module B Module C Module D

RedRed RedBlue Red Red Blue Blue

Module A Module A

Module B Module C Module B Module C

c11.indd 379c11.indd 379 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

380 SOFTWARE SYSTEMS ENGINEERING

 The two main methodologies used to model software systems are called “ structured
analysis and design ” and “ object - oriented analysis and design (OOAD). ” The former
is organized around functional units called procedures and functions. It is based on a
hierarchical organization and uses decomposition to handle complexity. Generally,
structured analysis is considered a top - down methodology.

 OOAD is organized around units called “ objects, ” which represent entities and
encapsulate data with its associated functions. Its roots are in software engineering and
it focuses on information modeling, using classes to handle complexity. Generally,
OOAD can be considered a bottom - up methodology.

 Structured Analysis and Design

 Structured analysis uses four general types of models: the functional fl ow block diagram
(FFBD), the data fl ow diagram (DFD), the entity relationship diagram (ERD), and the
state transition diagram (STD).

 FFBD . The FFBD comes in a variety of forms. We introduced one of those variet-
ies, the functional block diagram, in Chapter 8 (see Fig. 8.4). The FFBD is similar,
except that rather than depicting functional interfaces like the block diagram, connec-
tions (represented by arrows) represent fl ow of control. Since the FFBD incorporates
sequencing (something that neither the functional block diagram (FBD) nor the inte-
grated defi nition 0 (IEDF0) formats do), logical breaking points are depicted by
summing gates. These constructs enable the depiction of process - oriented concepts.
Almost any process can be modeled using the FFBD. Figure 11.11 is an example of an
FFBD.

 As with all functional diagrams, each function within the hierarchy can be decom-
posed into subfunctions, and a corresponding diagram can be developed at each level.
Functional diagrams are the standard method within structured analysis to depict a
system ’ s behavior and functionality.

 DFD . This diagram consists primarily of a set of “ bubbles ” (circles or ellipses)
representing functional units, connected by lines annotated with the names of data
fl owing between the units. Data stores are represented by a pair of parallel lines and
external entities are shown as rectangles. Figure 11.12 shows a DFD for the checkout
function of a small public library system.

 A system is normally represented by DFDs at several levels, starting with a context
diagram in which there is only one bubble, the system, surrounded by external entity
rectangles (see Fig. 3.2). Successive levels break down each of the bubbles at the upper
levels into subsidiary data fl ows. To systems engineers, a software DFD is similar to
the functional fl ow diagram except for the absence of control fl ow.

 ERD . The ERD model defi nes the relationships among data objects. In its basic
form, the entities are shown as rectangles and are connected by lines representing the
relationship between them (shown inside a diamond). In addition to this basic ERD
notation, the model can be used to represent hierarchical relationships and types of
associations among objects. These models are extensively used in database design.

c11.indd 380c11.indd 380 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

 Figure 11.11. Functional fl ow block diagram example.

1.0 RECEIVE ORDER

2.0 DETERMINE
STOCK

3.0 REJECT ORDEROUT OF

STOCK

AND

IN STOCK

4.0 FILL ORDER
5.0 DETERMINE
SHIPPING METHOD

6.0 BILL CUSTOMER

AND

7.0 PACKAGE
ORDER

8.0 SHIP NORMAL

OR

10.0 CLOSE OUT
ORDER

OR
9.0 SHIP PRIORITY

 Figure 11.12. Data fl ow diagram: library checkout.

Member File Book File

Interact
with

Librarian

Manage
Checkout

Activation

Approval

Librarian
Flag
Loan

M
e

m
b

e
r IDM

em
ber I

D

M
em

ber C
ode

Book C
ode

Bar Code

Reader
Record
Loan

Book ID

Loan Record

L
o
a
n
 P

o
in

te
r

L
o
a
n
 P

o
in

te
rL

o
a
n
 P

o
in

te
r

Lo
an

R
eq

ue
st

381

c11.indd 381c11.indd 381 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

382 SOFTWARE SYSTEMS ENGINEERING

 STD . An STD models how the system behaves in response to external events. An
STD shows the different states that the system passes through, the events that cause it
to transition from one state to another, and the actions taken to effect the state
transition.

 Data Dictionary. In addition to the above diagrams, an important modeling tool
is an organized collection of the names and characteristics of all data, function, and
control elements used in the system models. This is called the “ data dictionary ” and is
a necessary ingredient in understanding the meaning of the diagrammatic representa-
tions. It is analogous to a hardware part and interface listing of sets of data and proce-
dure declarations, followed by the defi nition of a number of procedures that operate on
the data. It is not diffi cult to trace the functional relationships, evidenced by function/
procedure calls, and thereby to construct a “ function call tree ” tracing the fl ow of func-
tions throughout the program.

 OOAD

 As discussed in Chapter 8 , OOAD takes a quite different approach to software archi-
tecting. It defi nes a program entity “ class, ” which encapsulates data and functions that
operate on them, producing more self - contained, robust, and inherently more reusable
program building blocks. Classes also have the property of “ inheritance ” to enable
 “ child ” classes to use all or some of the characteristics of their “ parent ” class with a
resultant reduction of redundancy. An object is defi ned as an instance of a class.

 The boundary between the steps of analysis and design in object - oriented (OO)
methodology is not precisely defi ned by the practitioners but generally is where the
process of understanding and experimentation changes to one of synthesizing the archi-
tectural form of the system. This step also involves some experimentation, but its
objective is to produce a complete specifi cation of the software required to meet the
system requirements.

 The construction of the system architecture in OO methodology consists of arrang-
ing related classes into groups — called subsystems or packages — and of defi ning all of
the relations/responsibilities within and among the groups.

 OO methodology has been especially effective in many modern information
systems that are largely transactional. In such programs as inventory management,
fi nancial management, airline reservation systems, and many others, the process is
largely the manipulation of objects, physical or numerical. OO methods are not as well
suited for primarily algorithmic and computational programs.

 Modeling and Functional Decomposition. Object - oriented design (OOD)
also has the advantage of using a precisely defi ned and comprehensive modeling
language — the Unifi ed Modeling Language (UML). This provides a powerful tool for all
stages of program development. The characteristics of UML are described in Chapter 8 .

 A shortcoming of the OO methodology as commonly practiced is that it does not
follow a basic systems engineering principle — that of managing complexity by parti-
tioning the system into a hierarchy of loosely coupled subsystems and components.

c11.indd 382c11.indd 382 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 383

This is accomplished by the systems engineering step of functional decomposition and
allocation. By focusing on objects (things) rather than functions, OOD tends to build
programs from the bottom - up rather than the top - down approach inherent in the systems
engineering method.

 OOD does have a structural element, the use case, which is basically a functional
entity. As described above, use cases connect the system ’ s external interfaces (actors)
with internal objects. The application of use cases to design the upper levels of the
system architecture and introducing objects at lower levels may facilitate the applica-
tion of systems engineering principles to software system design. This approach is
described in Rosenberg ’ s book, Use Case Driven Object Modeling with UML .

 Strengths of UML . The UML language combines the best ideas of the principal
methodologists in the fi eld of OOAD. It is the only standardized, well - supported, and
widely used software modeling methodology. It therefore serves as a high - level form
of communicating software architectural information within and among organizations
and individuals engaged in a development program.

 Moreover, UML has been applied successfully in software - intensive systems proj-
ects. Portions of UML are also used regularly in systems engineering to assist in com-
municating concepts and in bridging the language gaps between engineers and users
(e.g., use case diagrams) and between software and hardware engineers (e.g., commu-
nications diagrams).

 A major strength of UML is the existence of commercial tools that support the
construction and use of its repertoire of diagrams. In the process, these tools store all
the information contained in the diagrams, including names, messages, relationships,
attributes, methods (functions), and so on, as well as additional descriptive information.
The result is an organized database, which is automatically checked for completeness,
consistency, and redundancy. In addition, many of the tools have the property of con-
verting a set of diagrams into C + + or Java source code down to procedure headers.
Many also provide a limited degree of reverse engineering — converting source code
into one or several top - level UML diagrams. These capabilities can save a great deal
of time in the design process.

 Other Methodologies

 The growing importance of software - dominated systems, and their inherent complexity
and abstractness, has engendered a number of variants of structured and OO methodolo-
gies. Two of the more noteworthy ones are briefl y discussed below.

 Robustness Analysis. This is an extension of OO methodology that serves as a
link between OO analysis (what) and design (how). It classifi es objects into three types:

 1. boundary objects, which link external objects (actors) with the system;

 2. entity objects, which embody the principal objects that contain data and perform
services (functions); and

 3. control objects, which direct the interaction among boundary and entity objects.

c11.indd 383c11.indd 383 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

384 SOFTWARE SYSTEMS ENGINEERING

 Robustness analysis creates a robustness diagram for each UML use case, in which the
objects involved in the processing of the use case are classifi ed as boundary and entity
objects and are linked by control objects defi ned for the purpose. An example of a
robustness diagram for the checkout use case for an automated library is shown in
Figure 11.13 . It is seen to resemble a functional fl ow diagram and to be easily
understandable.

 In the process of preliminary design, the robustness diagram is transformed into
class, sequence, and other standard UML diagrams. Control objects may remain as
controller types, or their functionality may be absorbed into methods of the other
objects. To a systems engineer, robustness analysis serves as an excellent introduction
to OOAD.

 Function - Class Decomposition (FCD). This methodology, referred to as FCD,
is a hybrid method that combines structured analysis with OO methodology. It is aimed
at the top - down decomposition of complex systems into a hierarchy of functional sub-
systems and components, while at the same time identifying objects associated with
each unit.

 Figure 11.13. Robustness diagram: library checkout.

Member Record Book Record

Checkout

Workstation Controller

Librarian

Loan
Flagger

Bar Code
Reader

Loan
Recorder

Loan Record

c11.indd 384c11.indd 384 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 385

 As previously noted, conventional OO methodology tends to design a system from
the bottom - up and has little guidance on how to group objects into packages. It is said
to lead to a “ fl at ” modular organization. The FCD method seeks to provide a top - down
approach to system partitioning by using functional decomposition to defi ne a hierarchi-
cal architecture into which objects are integrated. In so doing, it introduces the impor-
tant systems engineering principle of functional decomposition and allocation into OO
software system design.

 FCD uses an iterative approach to partition successively lower levels of the system
while at the same time also adding such objects as turn out to be needed for the lower -
 level functions. UML class diagrams are introduced after the fi rst several levels are
decomposed. The developers of the FCD method have demonstrated its successful use
on a number of large system developments.

 11.5 SOFTWARE ENGINEERING DEVELOPMENT:
CODING AND UNIT TEST

 The process of software engineering development consists of implementing the archi-
tectural design of system components, developed in the concept development stage,
into an operational software that can control a processor to perform the desired system
functions. The principal steps in this process and their systems engineering content are
outlined below.

 Program Structure

 Software has been seen to be embodied in units called computer programs, each con-
sisting of a set of instructions.

 Program Building Blocks. A computer program may be considered to consist
of several types of subdivisions or building blocks. In descending order of size, the
subdivisions of a computer program and their common names are as follows:

 1. A “ module ” or “ package ” constitutes a major subdivision of the overall program,
performing one or more program activities. A medium to large program will
typically consist of from several to tens or hundreds of modules.

 2. In OO programs, a class is a unit composed of a set of “ attributes ” (data ele-
ments) combined with a set of associated “ methods ” or “ services ” (functions).
An object is an instance of a class.

 3. A function is a set of instructions that performs operations on data and controls
the processing fl ow among related functions. A “ utility ” or “ library function ”
is a commonly used transform (e.g., trigonometric function) that is supplied
with an operating system.

 4. A “ control structure ” is a set of instructions that controls the order in which
they are executed. The four types of control structures are the following:

c11.indd 385c11.indd 385 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

386 SOFTWARE SYSTEMS ENGINEERING

 (a) Sequence: a series of instructions;
 (b) Conditional Branch: if (condition) then (operation 1), else (operation 2);
 (c) Loop: do while (condition) or do until (condition); and
 (d) Multiple Branch: case (key 1): (operation 1) … (key n) (operation n).

 5. An “ instruction ” is a “ declarative ” or “ executable ” order to the computer, com-
posed of language key words, symbols, and names of data and functions.

 6. A language key word, symbol, or name of a data element or function.

 Finally, a “ data structure ” is a defi nition of a composite combination of related data
elements, such as a “ record, ” “ array, ” or “ linked list. ”

 As noted previously, software has no commonly occurring building blocks com-
parable to standard hardware parts and subcomponents such as pumps, motors, digital
memory chips, cabinets, and a host of others that simplify designing and building
production hardware. With few exceptions, software components are custom designed
and built.

 Program Design Language (PDL). A useful method for representing software
designs produced by the conventional structured analysis and design methodology is
PDL, sometimes called “ structured English. ” This consists of high - level instructions
formatted with control structures like an actual computer program, but consists of
textual statements rather than programming language key words and phrases. PDL
produces a program listing that can be readily understood by any software engineer and
can be translated more or less directly into executable source codes.

 OOD Representation. It was seen that OOD produces a set of diagrams and
descriptive material, including defi ned objects that constitute intermediate program
building blocks. Through the use of a UML support tool, the design information can
be automatically converted into the architecture of the computer program.

 Programming Languages

 The choice of programming language is one of the major decisions in software design.
It depends critically on the type of system — for example, whether software - embedded,
software - intensive, or data - intensive computing, whether military or commercial, or
whether real - time or interactive. While it is often constrained by the programming
talents of the software designers, the nature of the application should have priority. A
language may impact the maintainability, portability, readability, and a variety of other
characteristics of a software product.

 Except for very special applications, computer programs are written in a high - level
language, where individual instructions typically perform a number of elementary
computer operations. Table 11.5 lists a sample of past and current computer languages,
their structural constituents, primary usage, and general description.

 Fourth - Generation Language (4 GL) and Special - Purpose Language. 4GLs
are typically proprietary languages that provide higher - level methods to accomplish a

c11.indd 386c11.indd 386 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 387

problem solution in a specifi c domain. These 4GLs are usually coupled with a database
system and are related to use of the structured query language (SQL). A key feature of
4GL tools is to bring the programming language environment as close to the natural
language of the problem domain as possible and to provide interactive tools to create
solutions. For example, the creation of a user input form on a workstation is carried
out interactively with the programmer. The programmer enters the labels and identifi es
allowable entry values and any restrictions, and then the “ screen ” becomes part of the
application. 4GLs can speed up the development time for specifi c applications but are
generally not portable across products from different vendors.

 There are many specialty areas where very effi cient high - level languages have been
developed. Such languages usually take on the jargon and constructs of the area they

 TABLE 11.5. Commonly Used Computer Languages

 Language
 Structural

constituents Primary usage Description

 Ada 95 • Objects
 • Functions
 • Tasks
 • Packages

 • Military systems
 • Real - time systems

 Designed expressly for
embedded military systems,
generally replaced C + +

 C Functions • Operating systems
 • Hardware interfaces
 • Real - time applications
 • General purpose

 A powerful, general - purpose
language with signifi cant
fl exibility

 C + + • Objects
 • Functions

 • Simulations
 • Real - time applications
 • Hardware interfaces
 • General purpose

 A powerful, general - purpose
language that implements
object - oriented constructs

 COBOL Subroutines • Business and fi nancial
applications

 A wordy language that is
somewhat self - documenting,
the primary language for
legacy business systems

 FORTRAN • Subroutines
 • Functions

 • Scientifi c
 • Data analysis
 • Simulation
 • General purpose

 A long - standing general -
 purpose language used
mainly for computation -
 intensive programs

 Java • Objects
 • Functions

 • Internal applications
 • General purpose

 Derived from C + + , an
interpretative language that
is platform independent

 Visual
Basic

 • Objects
 • Subroutines

 • Graphical applications
 • User interfaces

 A language that allows
graphical manipulation of
subprogram objects

 Assembly
language

 • Subroutines
 • Macros

 • Hardware control
 • Drivers

 A language for primitive
operations, enables
complete machine control

c11.indd 387c11.indd 387 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

388 SOFTWARE SYSTEMS ENGINEERING

are intended to serve. The intent of these special - purpose languages is to mimic the
problem domain where possible, and to decrease development time while increasing
reliability. In many cases, the special - purpose nature of such languages may limit per-
formance for the sake of ease of use and development. When undertaking custom
software development, the systems engineer should explore the availability and utility
of languages in a required specialty area. Table 11.6 lists a number of special - purpose
languages that have been developed for specifi c application domains, such as expert
systems and Internet formatting.

 Programming Support Tools

 To support the effort of developing computer programs to implement software system
design, a set of programming support tools and training in their effective use is essential.
It is useful for the systems engineer and program manager to be knowledgeable about
their uses and capabilities.

 Editors. Editors provide programmers with the means to enter and change source
code and documentation. Editors enhance the entry of programming data for specifi c
languages. Some editors can be tailored to help enforce programming style guides.

 TABLE 11.6. Some Special - Purpose Computer Languages

 Language
 Structural

constituents Primary usage Description

 Smalltalk
and variants

 Objects • Database applications
 • Simulations

 The original object -
 oriented language

 LISP Lists • Artifi cial intelligence
applications

 • Expert systems

 A language based on
operations of lists

 Prolog • Objects
 • Relationships

 • Artifi cial intelligence
applications

 • Expert systems

 A powerful logic - based
language with many
variants

 Perl • Statements
 • Functions

 • Data test manipulation
 • Report generation

 A portable language
with built - in text
handling capabilities

 HTML • Tags
 • Identifi ers
 • Test elements

 Formatting and
hyperlinking of
documents

 A document markup
language with a unique
but simple syntax

 XML • Tags
 • Identifi ers
 • Strings/text

 • Formatting
 • Field identifi cation

and linking

 A textual data markup
language with a unique
complex syntax

 PHP • Tags
 • Identifi ers
 • Strings/text
 • Commands

 Server scripting A document generation
control language

c11.indd 388c11.indd 388 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 389

 Debuggers. Debuggers are programs that allow an application to be run in a
controlled manner for testing and debugging purposes. There are two major types of
debuggers: symbolic and numeric. The symbolic debugger allows the user to reference
variable names and parameters in the language of the source code. A numeric debugger
works at the assembly or machine code level. The computer instructions written in a
programming language is called “ source code. ” To convert the source code produced
by the programmers into executable code, several additional tools are required.

 Compilers. A compiler converts the source language into an intermediate format
(often called object code) that is compatible for use by the hardware. In this process,
the compiler detects syntax errors, omissions of data declarations, and many other
programming errors, and identifi es the offending statements.

 A compiler is specifi c to the source language and usually to the data processor.
Compilers for a given language may not be compatible with each other. It is important
to know what standards govern the compiler that will be used and to be aware of any
issues associated with code portability. Some compilers come with their own program-
ming development environment that can increase programmer productivity and sim-
plify the program documentation process.

 Linkers and Loaders. A linker links several object code modules and libraries
together to form a cohesive executable program. If there is a mixed language applica-
tion (C and Java are common), the combination of a compiler and linker that works on
multiple languages is required. Tools that help manage the linking of complex applica-
tions are essential in the management and control of software development. A loader
converts linked object code into an executable module that will run in the designated
environment. It is often combined with the linker.

 Software Prototyping

 The section on the software system life cycle described several models that used the
prototyping approach, either once or recursively. The objective of software prototyping
is the same as it is in hardware systems, where it is used to reduce risks by constructing
and testing immature subsystems or components. In software systems, prototyping is
generally used even more frequently for three reasons: (1) requirements are poorly
defi ned; (2) the functionality is unproven; and (3) building the prototype does not
require bending metal, only writing code .

 Conventionally, a prototype is often taken to mean a test model that is to be dis-
carded after being used. In practice, the system prototype often becomes the fi rst step
in an evolutionary development process. This strategy has the advantage of preserving
the design features of the prototype after they have been improved as a result of user
feedback, as well as building upon the initial programming effort. However, it requires
that the prototype programs be engineered using a disciplined and well - planned and
documented process. This places a limit on how fast the process can be. The choice of
strategy must obviously be based on the particular requirements and circumstances of
the project. Table 11.7 lists the typical characteristics of exploratory prototypes, which

c11.indd 389c11.indd 389 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

390 SOFTWARE SYSTEMS ENGINEERING

are meant to be discarded, and of evolutionary prototypes, which are meant to be built
upon.

 The success of a prototyping effort is critically dependent on the realism and fi del-
ity of the test environment. If the test setup is not suffi ciently realistic and complete,
the prototype tests are likely to be inadequate to validate the design approach and
sometimes can be actually misleading. The design of the test should receive a compa-
rable degree of expert attention as the prototype design itself. As in hardware systems,
this is a key area for systems engineering oversight.

 Software Product Design

 In typical hardware system developments, product design consists of the transformation
of development prototype hardware components, which might be called “ breadboards, ”
into reliable, maintainable, and producible units. In this process, the functional perfor-
mance is preserved, while the physical embodiments may be changed quite radically.
Much of this work is carried out by engineers particularly skilled in the problems of
production, environmental packaging, materials, and their fabrication methods, with
the objective that the fi nal product can be produced effi ciently and reliably.

 In the software elements of the system, the product design process is very different.
There is no “ production ” process in software. However, other aspects of a production
article are still present. Maintainability continues to be a critical characteristic due to
the numerous interfaces inherent within software. Repair by replacement of a failed
component — a standby in hardware — does not work in software. An effective user
interface is another crucial characteristic of operational software that is often not
achieved in the initial version of the system.

 Thus, considerable effort is usually required to make a working computer program
into a software product usable by others. Fred Brooks has postulated this effort to be
three times the effort required to develop a working program. However, there is no
professional group in software engineering comparable to the hardware production and
packaging engineer. Instead, the “ productionization ” must be incorporated into the
software by the same designers responsible for its basic functionality. Such breadth of

 TABLE 11.7. Characteristics of Prototypes

 Aspect Exploratory Evolutionary

 Objective • Validate design
 • Explore requirements

 • Demonstrate
 • Evaluate

 Nature of product • Algorithms
 • Concepts

 • Engineered
 • Programed

 Environment Virtual Operational
 Confi guration management Informal Formal
 Testing Partial Rigorous
 Ultimate use Disposable A foundation for further builds

c11.indd 390c11.indd 390 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 391

expertise is often not present in the average software designer, with the result that
maintainability of software products is frequently less than satisfactory.

 Computer User Interfaces. As noted previously, a critical part of engineering
operational software systems is the design of the user interface. A computer interface
should display information in a form giving the user a clear and well - organized picture
of the system status so as to assist the decision process effectively and to provide simple
and rapid modes of control. The selection of the appropriate interface mode, display
format, interactive logic, and related factors most often requires prototype design and
testing with representative users.

 The most common control modes offered by computer interfaces are menu interac-
tions, command languages, and object manipulation. A summary of some comparative
characteristics of these is given in Table 11.8 .

 The most rapidly growing computer interface mode is that of object manipulation,
the objects being usually referred to as “ icons. ” In addition to the characteristics listed
in Table 11.8 , graphical presentations of information can often present relationships and
can convey meaning better than text. They enable the user to visualize complex infor-
mation and form inferences that can lead to faster and more error - free decisions than
can be achieved by other methods. GUIs are most commonly seen in PC operating
systems such as Macintosh OS and Microsoft Windows. The power of the World Wide
Web owes a great deal to its GUI formats.

 To the systems engineer, GUIs offer both opportunities and challenges. The oppor-
tunities are in the virtually infi nite possibilities of presenting information to the user in
a highly enlightening and intuitive form. The challenges come from the same source,
namely, the sheer number of choices that tempt the designer to continue to optimize,
unrestrained by an inherent limit. Since GUIs involve a complex software design, there
is a risk of cost and schedule impact if the systems engineer is not alert to this hazard.

 Advanced Modes. In designing user interfaces for computer - controlled systems,
the rapidly advancing technology in this area makes it necessary to consider less

 TABLE 11.8. Comparison of Computer Interface Modes

 Mode Description Advantages Disadvantages

 Menu interaction Choice from a list
of actions

 • User preference
 • Accurate

 • Limited choices
 • Limited speed

 Command mode Abbreviated
action commands

 • Flexible
 • Fast

 • Long training
 • Subject to errors

 Object manipulation Click or drag icon • Intuitive
 • Accurate

 • Moderate fl exibility
 • Moderate speed

 Graphical user
interface (GUI)

 Click graphical
buttons

 Visual Basic and
Java support

 • Moderate fl exibility
 • Moderate speed

 Touch screen and
character recognition

 Touch or write on
screen

 • Simple
 • Flexible

 Easy to make errors

c11.indd 391c11.indd 391 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

392 SOFTWARE SYSTEMS ENGINEERING

conventional modes that offer special advantages. Three examples are briefl y described
below:

 1. Voice Control. Spoken commands processed by speech recognition software
provide a form of rapid and easy input that leaves the hands free for other
actions. Currently, reliable operation is somewhat limited to carefully enunci-
ated words selected from a fi xed vocabulary. Capabilities to understand sen-
tences are gradually being evolved.

 2. Visual Interaction. Computer graphics are being used to aid decision makers
by generating displays modeling the results of possible actions, enabling “ what -
 if ” simulations in real time. Visual interactive simulation (VIS) is an advanced
form of visual interactive modeling (VIM).

 3. Virtual Reality. A form of 3 - D interface in which the user wears stereo goggles
and a headset. Head movements generate a simulated motion of the image cor-
responding to what the eyes would see in the virtual scene. Such displays are
used for a growing variety of tasks, such as design of complex structures and
pilot training. They are used in battlefi eld situations and games.

 Unit Testing

 The engineering design phase of system development begins with the engineering of
the individual system components whose functional design has been defi ned and the
technical approach validated in the previous phase. Before the resulting engineered
component is ready to be integrated with the other system components, its performance
and compatibility must be tested to ensure that they comply with requirements. In
software development, this test phase is called “ unit testing ” and is focused on each
individual software component.

 Unit tests are generally performed as “ white box ” tests, namely, those based on
the known confi guration of the component. Such tests deliberately exercise the critical
parts of the design, such as complex control structures, external and internal interfaces,
timing or synchronization constraints, and so on.

 A compensating characteristic of software for the added testing problems is that
the test equipment itself is almost wholly software and can usually be designed and
built correspondingly quickly. However, the effort of test design must be as carefully
planned and executed as is the system design.

 Unit tests for a given component or major module consist usually of a series of
test cases, each designed to test a control path, a data structure, a complex algorithm,
a timing constraint, a critical interface, or some combination of these. Test cases should
be designed to test each function that the unit is required to perform. Since there are
typically too many paths to test them all, the selection of test cases requires systems
engineering judgment.

 Errors uncovered in unit testing should be documented and decisions made as to
when and how they should be corrected. Any corrective changes must be carefully
considered before deciding which previous test cases should be repeated.

c11.indd 392c11.indd 392 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 393

 11.6 SOFTWARE INTEGRATION AND TEST

 The subject of system integration and evaluation is discussed in detail in Chapter 13 ,
and the general techniques and strategies apply equally to the software components of
software - embedded systems and to the software - intensive systems themselves. The
discussion makes clear that this aspect of a system ’ s development process is critically
important, that it must be carefully planned, expertly executed, and rigorously analyzed,
and that the magnitude of the effort required is a large fraction of the entire develop-
ment effort.

 At the system level, the test objectives and strategies of software - dominated
systems are similar to those described in Chapter 13 . At the software component level,
it is necessary to use testing approaches more nearly designed to test software units.
The balance of this chapter is devoted to methods of integration and testing complex
software programs and software - intensive systems.

 The objectives of testing hardware components and subsystems are many — from
reducing technical and programmatic risks to verifying specifi cations. Additional objec-
tives related to politics, marketing, and communications are also part of a system test
program. At the lower element level, however, the objectives of testing hardware and
software converge.

 For software, the objective of testing generally falls into a single category: verifi ca-
tion or validation of the software. Moreover, the general method to accomplish this
objective is to discover and identify all instances where the program fails to perform
its designated function. These range all the way from a case where it fails to meet an
essential requirement to where a coding error causes it to crash. Contrary to popular
belief, the most valuable test is one that fi nds a hitherto undiscovered error, rather than
one in which the program happens to produce the expected result. Because of the large
variety of input scenarios characteristic of the environment of a complex system, the
latter result may simply mean that the program happens to handle the particular condi-
tions imposed in that test.

 Verifi cation and Validation

 Although the terms verifi cation and validation are not for software only, they apply
equally to hardware and systems — they are often used more within a software context
than any other. Verifi cation is simply the process of determining whether the software
implements the functionality and features correctly and accurately. These functions and
features are usually found in a software specifi cations description. In other words, veri-
fi cation determines whether we implemented the product right.

 Validation , in contrast, is the process of determining whether the software satisfi es
the users ’ or customers ’ needs. In other words, validation determines whether we imple-
mented the right product.

 Testing is typically a primary method used to perform verifi cation and validation,
though not the only method. However, a robust test program can satisfy a large portion
of both evaluation types.

c11.indd 393c11.indd 393 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

394 SOFTWARE SYSTEMS ENGINEERING

 Differences in Testing Software

 While the general objectives of testing software may be the same as testing hardware
system elements, the basic differences between hardware and software described at the
beginning of this chapter make software testing techniques and strategies considerably
different.

 Test Paths. The unconstrained use of control structures (branches, loops, and
switches) may create a multitude of possible logical paths through even a relatively
small program. This makes it impractical to test all possible paths and forces the choice
of a fi nite number of cases.

 Interfaces. The typically large number of interfaces between software modules,
and their depth and limited visibility, makes it diffi cult to locate strategic test points
and to identify the exact sources of discrepancies encountered during testing.

 Abstraction. The design descriptions of software are more abstract and are less
intuitively understandable than hardware design documentation. This complicates test
planning.

 Changes. The apparent ease of making changes in software requires correspond-
ingly more frequent retesting. Local changes often require repetition of system - level
tests.

 Failure Modes. The catastrophic nature of many software errors has two critical
consequences. One is the severity of the impact on system operation. The other is that
prompt diagnosing of the source of the failure is often frustrated by the inoperability
of the system.

 Integration Testing

 Integration testing is performed on a partially assembled system as system components
are progressively linked together. The integration of a complex system is described in
Chapter 13 to be a process that must be carefully planned and systematically executed.
This is no less true with software systems. The principles and general methods dis-
cussed in that chapter apply equally.

 Regression Testing

 In an integration test sequence, the addition of each component creates new interactions
among previously integrated components, which may change their behavior and
invalidate the results of earlier successful tests. Regression testing is the process of
repeating a selected fraction of such tests to ensure the discovery of newly created
discrepancies. The more numerous, complex, and less visible interactions typical

c11.indd 394c11.indd 394 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 395

of software make it necessary to resort to regression testing more often than for primar-
ily hardware systems.

 A problem with regression testing is that unless it is used judiciously, the number
of tests can grow beyond practical bounds. For this reason, the test strategy should
include careful selectivity of the test cases to be repeated. A balance must be struck
between insuffi cient and excessive rigor to achieve a usable yet affordable product; a
systems engineering approach to planning and carrying out integration testing is
required.

 Validation Testing

 Validation testing is intended to determine whether or not a system or a major subsystem
performs the functions required to satisfy the operational objectives of the system.
Validation testing consists of a series of test scenarios, which collectively exercise the
critical system capabilities.

 The planning of validation testing and design of test cases also demands a systems
engineering approach. The same is true of the analysis of test results, which requires a
thorough knowledge of system requirements and of the impact of any signifi cant devia-
tions from nominally required performance. At this stage of system development, deci-
sions on how to handle test discrepancies are critically important. The choice between
embarking on a corrective change or seeking a deviation requires an intimate knowl-
edge of the impact of the decision on program cost, schedule, and system performance.
Often the best course of action is to investigate the operation of the test equipment,
which is itself occasionally at fault, and to repeat the test under more controlled
conditions.

 Black Box Testing. The section on unit testing described white box testing as
addressing the known design features of the component. Validation and other system -
 level tests consider the system under test as an input - to - output transfer function, without
any assumption of its internal workings. As such, black box testing is complementary
to white box testing and is likely to uncover interface errors, incorrect functions, ini-
tialization errors, as well as critical performance errors.

 Alpha and Beta Testing. For software products built for many users, as in the
case of much commercial software, most producers have a number of potential custom-
ers operate the software before releasing the product for distribution. Alpha testing is
typically conducted in a controlled environment at the developer ’ s site, often by
employees of a customer. The developer records errors and other problems. Beta testing
is conducted at a customer ’ s site without the developer ’ s presence. The customer
records the perceived errors and operating problems and reports these to the developer.
In both cases, the advantage to the customer is the opportunity to become acquainted
with an advanced new product. The developer gains by avoiding the risk of fi elding
a product containing user defi ciencies that would signifi cantly curtail the product ’ s
marketability.

c11.indd 395c11.indd 395 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

396 SOFTWARE SYSTEMS ENGINEERING

 11.7 SOFTWARE ENGINEERING MANAGEMENT

 The basic elements of managing the development of complex systems were discussed
in Chapter 5 , and specifi c aspects in Chapters 6 – 10 . This section deals with some
aspects of the management of software - dominated systems that are particularly infl u-
enced by the distinguishing character of software, of which systems engineers should
be cognizant.

 Computer Tools for Software Engineering

 Software support tools are software systems that assist the development and mainte-
nance of software programs. In any major software development effort, the availability
and quality of the support tools may spell the difference between success and failure.
Support tools are used in all aspects of the product life cycle and are becoming more
widely available in the commercial marketplace. For these reasons, and the fact that
tools for a major software development project require very signifi cant investment, the
subject is a proper concern of systems engineers and project managers.

 The more specifi c subject of programming support tools was described briefl y in
Section 11.5 . The paragraphs below discuss the subject of integrated computer - aided
software engineering (CASE) tools and some of their typical applications.

 CASE . CASE is a collection of tools that are designed to standardize as much of
the software development process as possible. Modern CASE tools revolve around
graphics - oriented diagramming tools that let the designer defi ne the structure, program
and data fl ow, modules or units, and other aspects of an intended software application.
By the use of well - defi ned symbology, these tools provide the basis for the requirements
analysis and design phases of the development cycle.

 Requirements Management Tools. The derivation, analysis, quantifi cation,
revision, tracing, verifi cation, validation, and documentation of operational, functional,
performance, and compatibility system requirements have been seen to extend through-
out the system life cycle. For a complex system development, it is a critical and exacting
task that involves operational, contractual, as well as technical issues. Several computer -
 based tools are commercially available that assist in creating an organized database and
provide automatic consistency checks, traceability, report preparation, and other valu-
able services.

 Software Metrics Tools. Several commercial tools and tool sets are available
to produce automatically measures of various technical characteristics of computer
programs, relating to their semantic structure and complexity. (See later section on
metrics.)

 Integrated Development Support Tools. Several tools have become avail-
able that provide a set of compatible integrated support functions, and, in some cases,
the capability of importing and exporting data from and to complementary tools from

c11.indd 396c11.indd 396 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 397

other manufacturers. For example, some tools integrate project management, UML
diagramming, requirements analysis, and metrics acquisition capabilities. Such tools
simplify the problem of maintaining information consistency among the related domains
of software development.

 Software Confi guration Management (CM). CM in system development
was discussed at some length in Chapter 10 . Its importance increases with system
complexity and criticality. In software systems, strict CM is the most critical activity
during and after the engineering development stage. Some of the reasons for this may
be inferred from the section on the differences between hardware and software:

 1. Software ’ s abstractness and lack of well - defi ned components makes it diffi cult
to understand.

 2. Software has more interfaces; their penetration is deeper and hence is diffi cult
to trace.

 3. Any change may propagate deep into the system.

 4. Any change may require retesting of the total system.

 5. When a software system fails, it often breaks down abruptly.

 6. The fl exibility of software renders making a software change deceptively
easy.

 Capability Maturity Model Integration (CMMI)

 The abstract nature of software, and its lack of inherent limits on functionality, com-
plexity, or size, makes software development projects considerably more diffi cult to
manage than hardware projects of comparable scope.

 Organizations whose business is to produce software - intensive systems or compo-
nents and to meet fi rm schedules and costs have often failed to meet their goals because
their management practices were not suited to the special needs of software. To help
such organizations produce successful products, the Carnegie Mellon University
Software Engineering Institute (SEI), operating under government sponsorship, devised
a model representing the capabilities that an organization should have to reach a given
level of “ maturity. ” This is called a capability maturity model (CMM). A maturity model
defi nes a set of maturity levels and prescribes a set of key process areas that character-
ize each level. This model provides a means for assessing a given organization ’ s capa-
bility maturity level through a defi ned set of measurements. CMM has been accepted
as a standard of industry. It is related to but not equivalent to the International Standard
ISO 9000 for software.

 Software and systems engineering had separate maturity models until the SEI
published the fi rst integrated CMM, combining several previous models into a single,
integrated model known as CMMI. Today, CCMI addresses three specifi c areas of
interest: (1) product and service development; (2) service establishment, management,
and delivery; and (3) product and service acquisition. As of this writing, CMMI, Version
1.2 is the latest version of the model.

c11.indd 397c11.indd 397 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

398 SOFTWARE SYSTEMS ENGINEERING

 At its core, CMMI is a process improvement methodology. Understanding the
current maturity of an organization ’ s processes and identifying the objective maturity
level for the future are keys concepts behind the model. Therefore, one aspect of CMMI
is the formal defi nition of maturity levels. These apply to organizations, not projects,
although as projects grow in size and complexity, the lines of demarcation between an
organization and a project can become blurred.

 Capability Maturity Levels. The CMM defi nes six capability and fi ve maturity
levels as summarized in Tables 11.9 and 11.10 . The CMMI process is fully institutional-
ized. Key performance areas (KPAs) are defi ned for each level and are used in deter-
mining an organization ’ s maturity level. Each KPA is further defi ned by a set of goals

 TABLE 11.9. Capability Levels

 Capability level 0: incomplete
 An “ incomplete process ” is a process that either is not performed or partially performed. One
or more of the specifi c goals of the process area are not satisfi ed, and no generic goals exist
for this level since there is no reason to institutionalize a partially performed process.

 Capability level 1: performed
 A performed process is a process that satisfi es the specifi c goals of the process area. It

supports and enables the work needed to produce work products.

 Capability level 2: managed
 A managed process is a performed (capability level 1) process that has the basic infrastructure
in place to support the process. It is planned and executed in accordance with police;
employs skilled people who have adequate resources to produce controlled outputs; involves
relevant stake holders; is monitored, controlled, and reviewed; and is evaluated for adherence
to its process description.

 Capability level 3: defi ned
 A defi ned process is a managed (capability level 2) process that is tailored from the
organization ’ s set of standard processes according to the organization ’ s tailoring guidelines
and contributes work products, measures, and other process improvement information to the
organizational process assets.

 Capability level 4: quantitatively managed
 A quantitatively managed process is a defi ned (capability level) process that is controlled using
statistical and other quantitative techniques. Quantitative objectives for quality and process
performance are established and used as criteria in managing the process. Quality and process
performance is understood in statistical terms and is managed throughout the life of the
process.

 Capability level 5: optimizing
 An optimizing process is a quantitatively managed (capability level 4) process that is
improved based on an understanding of the common causes of variation inherent in the
process. The focus of an optimizing process is on continually improving the range of process
performance through both incremental and innovative improvements.

c11.indd 398c11.indd 398 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 399

and key practices that address these goals. SEI also defi nes key indicators that are
designed to determine whether or not the KPA goals have been achieved. These are
used in CMM assessments of an organization ’ s capability maturity level.

 CMMI is widely used by industry, especially by large system and software devel-
opment organizations. The U.S. DoD prescribes a demonstration of CMMI Level 3
capability for major system acquisitions. However, the investment necessary to achieve
CMMI certifi cation is considerable, and it is generally estimated that going from level
1 to level 2 or from level 2 to level 3 requires from 1 to 2 years.

 Systems Engineering Implications. Examination of the KPAs reveals that
they address a combination of project management, systems engineering, and process
improvement issues. At level 2, the KPAs addressing requirements management
and CM are clearly systems engineering responsibilities, while project planning,
project tracking and oversight, and subcontract management are mainly project man-
agement functions. At level 3, software product engineering, intergroup coordination,
and peer reviews are of direct concern to systems engineers. At higher levels, the focus
is largely on process improvement based on quantitative measurements of process
results.

 TABLE 11.10. Maturity Levels

 Maturity level 1: initial
 Processes are usually ad hoc and chaotic.

 Maturity level 2: managed
 The projects of the organization have ensured that processes are planned and executed in
accordance with policy; the projects employ skilled people who have adequate resources to
produce controlled outputs; involve relevant stakeholders; are monitored, controlled, and
reviewed; and are evaluated for adherence to their process descriptions.

 Maturity level 3: defi ned
 Processes are well characterized and understood, and are described in standards, procedures,
tools, and methods. The organization ’ s set of standard processes, is established and improved
over time. These standard processes are used to establish consistency across the organization.
Projects establish their defi ned processes by tailoring the organization ’ s set of standard
processes according to tailoring guidelines.

 Maturity level 4: quantitatively managed
 The organization and projects establish quantitative objectives for quality and process
performance and use them as criteria in managing processes. Quantitative objectives are
based on the needs of the customer, end uses, organization, and process implementers.
Quality and process performance is understood in statistical terms and is managed through
cut the life of the processes.

 Maturity level 5: optimizing
 An organization continually improves its processes based on a quantitative understanding of
the common causes of variation inherent in processes.

c11.indd 399c11.indd 399 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

400 SOFTWARE SYSTEMS ENGINEERING

 Software Metrics

 Metrics are quantitative measures used to assess progress, uncover problems, and
provide a basis for improving a process or product. Software metrics can be classifi ed
as project metrics, process metrics, or technical metrics.

 Project Metrics. Software project metrics are concerned with measures of the
success of project management — stability of requirements, quality of project planning,
adherence to project schedules, extent of task descriptions, quality of project reviews,
and so on. These are basically the same as would be used on any comparable project
to track management practices. A reason for greater attention to project metrics on a
software development is the traditionally more diffi cult task of reliable planning and
estimating new software tasks. Project metrics should be tailored to the formality, size,
and other special characteristics of the project.

 Process Metrics. Software process metrics are fundamental to the practice of
establishing process standards as described in the previous section on software capabil-
ity maturity assessment. Such standards identify a set of process areas that need to be
addressed. They do not generally prescribe how they should be handled but require that
appropriate practices be defi ned, documented, and tracked.

 Technical Metrics. Technical software metrics are focused largely on assessing
the quality of the software product rather than on management or process. In that sense,
they are an aid to design by identifying sections of software that are exceptionally
convoluted, insuffi ciently modularized, diffi cult to test, inadequately commented, or
otherwise less than of high quality. Such measures are useful for directly improving
the product, and for refi ning design and programming practices that contributed to the
defi ciencies. There are numerous commercial tools that are designed to track technical
software metrics.

 Management of Metrics. Software metrics can be useful in developing good
practices and in improving productivity and software quality. However, they can also
be misused with negative results for the projects and the software staff. It is important
to observe a number of principles in the management of metrics:

 1. The purpose of each metric must be clearly understood by all concerned to be
benefi cial and worth the effort to collect and analyze.

 2. The metrics collected on a given project should be appropriate to its character
and criticality.

 3. The results of metrics collection should be used primarily by the project to
increase its probability of success.

 4. The results should never be used to threaten or appraise individuals or teams.

 5. There should be a transition period for the introduction of new metrics before
the data collected are used.

c11.indd 400c11.indd 400 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 401

 Future Outlook

 The continuing growth of information systems is exerting severe pressure to improve
software technology in order to keep pace with rising demands and to minimize risks
of major software project failures, which have been all too frequent in recent years.
Furthermore, the unreliability of much commercial software has frustrated many com-
puter users. Below are some trends that have the potential to meet some of the above
needs.

 Process Improvement. The establishment and widespread adoption of software
process standards, such as CMMI, have signifi cantly strengthened the discipline used
in software design. They have introduced engineering practices and management over-
sight into a culture derived from science and art. For large, well - defi ned projects, these
approaches, which have been found to reduce failure rates, vary signifi cantly. For
smaller projects having loosely defi ned requirements, agile methods have attracted
many adherents.

 Programming Environment. Computer - aided programming environments,
such as that for Visual Basic, are likely to continue to improve, providing better automatic
error checking, program visualization, database support, and other features designed to
make programming faster and less prone to error. Integration of syntax checking, debug-
ging, and other programming support functions into the environment, along with more
powerful user interfaces, is likely to continue to improve productivity and accuracy.

 Integrated CASE Tools. Requirements and CM tools are being integrated with
modeling and other functions to facilitate the development, upgrading, and maintenance
of large software programs. The integration of these tools enables the traceability of
program modules to requirements and the management of the massive number of data
elements present in complex systems capabilities. While the development of such tools
is expensive, their growth and consequent increases in productivity are likely to con-
tinue, especially if more emphasis is placed on reducing the time and cost of becoming
profi cient in their use.

 Software Components. Reuse of software components has long been a major
goal, but its effective realization has been the exception rather than the rule. One such
exception has been the availability of commercial GUI components, supporting features
such as windowing and pull - down menus. With the proliferation of automated transac-
tional systems (fi nancial, travel, inventory, etc.), it is likely that numerous other stan-
dard components will be identifi ed and made commercially available. The gains in
development cost and reliability in automated transactional systems are potentially
very large.

 Design Patterns. A different approach to reusable components has been the
development of design patterns. A seminal work on this subject by Gamma et al. defi nes

c11.indd 401c11.indd 401 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

402 SOFTWARE SYSTEMS ENGINEERING

23 basic patterns of OO functions and describes an example of each. The patterns are
subdivided into three classes: creational patterns that build various types of objects,
structural patterns that operate on objects, and behavioral patterns that perform specifi ed
functions. While this approach appears to hold great promise of creating versatile soft-
ware building blocks, it has thus far not been adopted by a signifi cant fraction of
developers.

 Software Systems Engineering. Perhaps the most signifi cant advance in the
development of software - dominated systems would come from the effective application
of systems engineering principles and methods to software system design and engineer-
ing. Despite the many differences between the nature of software and hardware tech-
nologies, some avenues to narrowing this gap are being actively explored. The
development of the CMMI by SEI, which addresses both systems engineering and
software engineering in a common framework, may contribute to a more common
outlook. However, real progress in this direction must involve education and extensions
of current software methodologies to facilitate modular partitioning, clean interfaces,
architectural visibility, and other basic features of well - designed systems. The continu-
ing demand for complex software - dominated systems may accelerate efforts to intro-
duce systems engineering methods into software development.

 11.8 SUMMARY

 The terms software engineering and software systems engineering are not synony-
mous, however. The former refers to the development and delivery of software
products, stand - alone or embedded. The latter refers to the application of principles
to the software engineering discipline. We defi ne software as having three major
components: (1) instructions, also referred to as code; (2) data structures; and (3)
documentation.

 Coping with Complexity and Abstraction

 The role of software has changed over the past 20 years — most modern systems are
dominated by software. Therefore, software engineering has become a full part of
system development.

 Nature of Software Development

 Software can be categorized as either

 (a) system software, providing services to other software;

 (b) embedded software, providing functions, services, or features within a larger
system; or

 (c) application software, providing services as a stand - alone system.

c11.indd 402c11.indd 402 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

COPING WITH COMPLEXITY AND ABSTRACTION 403

 Systems that utilize software can be categorized in one of three ways:

 1. Software - Embedded Systems are a hybrid combination of hardware and soft-
ware. Although predominantly hardware, these systems use software to control
the action of hardware components. Examples are most vehicles, spacecraft,
robotics, and military systems.

 2. Software - Intensive Systems consist of computers and networks, controlled by
software. These systems use software to perform virtually all of the systems ’
functionality, including all automated complex information functionality.
Examples are fi nancial management, airline reservations, and inventory
control.

 3. Data - Intensive Computing Systems are large - scale computing resources dedi-
cated to executing complex computational tasks. Examples are weather analysis
and prediction centers, nuclear effects prediction systems, advanced informa-
tion decryption systems, and other computationally intensive operations.

 Software has intrinsic differences from hardware, including

 • near - infi nite variability of software structural units

 • few commonly occurring software components;

 • software is assigned most critical functions;

 • interfaces are more numerous, deeper, and less visible; software functionality
and size have almost no inherent limits; software is easily changeable;

 • simple software changes may require extensive testing; software often fails
abruptly, without warning signs; and

 • software is abstract and diffi cult to visualize.

 Software Development Life Cycle Models

 The life cycles of software - dominated systems are generally similar to the systems
engineering life cycle described in Chapter 4 . While there are a plethora of life cycle
models, we can defi ne four basic types:

 1. Linear — a sequence of steps, typically with feedback;

 2. Incremental — a repetition of a sequence of steps to generate incremental capa-
bilities and functionality until the fi nal increment, which incorporates full
capabilities;

 3. Evolutionary — similar to incremental, except early increments are intended to
provide functionality for experimentation, analysis, familiarization, and dem-
onstration. Later increments are infl uenced heavily from experience with early
increments.

 4. Agile — the typical steps for software development are combined in various
forms to enable rapid yet robust development.

c11.indd 403c11.indd 403 2/8/2011 3:49:22 PM2/8/2011 3:49:22 PM

404 SOFTWARE SYSTEMS ENGINEERING

 Software Concept Development: Analysis and Design

 Performance requirements for software - embedded systems are developed at the system
level and should be verifi ed by software developers.

 Performance requirements for software - intensive systems should be established
with close interaction with customers/users and may need to be verifi ed by rapid pro-
totyping. They should not unreasonably stress software extensibility.

 Software requirements are typically developed using four steps: elicitation from
users, customers and stakeholders, analysis and negotiation with customers, documen-
tation, and validation.

 Two prevailing methodologies for designing software systems are structured analy-
sis and design and OOAD. Structured analysis focuses on functional architecture, using
functional decomposition, and defi nes program modules as the primary structural units.
This methodology proceeds with top - down functional allocation. In contrast, OOAD
focuses on “ classes ” of objects as program units and encapsulates data variables with
operations. This methodology uses an iterative rather than a top - down development.

 Other methodologies include robustness analysis, which focuses on initial OO
architectural design, FCD, and combined structured and OO approaches.

 UML supports all phases of OO development. UML provides 13 types of diagrams,
presenting different views of the system, and is widely used. UML has been adopted
as an industry standard.

 Software Engineering Development: Coding and Unit Test

 The engineering design phase of software development implements software architec-
tural design and the computer instructions to execute the prescribed functionality. The
phase produces computer programs written in a high - level language (source code) and
subjects each program unit to a “ unit test ” before acceptance.

 The programming language must be suited to the type of software and compiler
availability. It must conform with the design methodology and requires that staff expe-
rienced with the language be available.

 Prototyping an iterative development comes in two forms: (1) purely exploratory
and is to be discarded once its purpose is fulfi lled, and (2) evolutionary, and is to be
built upon. In the latter case, high quality must be built in from the beginning.

 Human – computer interfaces are critical elements in all software - intensive systems.
These types of interfaces usually use interactive graphics formats and may include voice
activation and other advanced techniques.

 Software Integration and Test

 Testing software systems involves many more test paths and interfaces than hardware
and requires special test points for diagnosing failures and their sources. Testing often
requires end - to - end system - level retesting after eliminating a failure.

 Alpha and beta testing subject the new system to tests by the customer and expose
user problems before wide product distribution.

c11.indd 404c11.indd 404 2/8/2011 3:49:23 PM2/8/2011 3:49:23 PM

COPING WITH COMPLEXITY AND ABSTRACTION 405

 Software Engineering Management

 CM for software - dominated systems is critical in that software is inherently complex
and has numerous and deep interfaces. Since software is responsible for controlling
some of the most critical system functions, software tends to be subject to frequent
changes.

 The CMMI establishes six levels of capability and fi ve levels of maturity for an
organization. CMMI establishes KPAs for each level and provides a basis for assessing
an organization ’ s overall systems and software engineering capability.

 PROBLEMS

 11.1 With reference to Figure 11.1 , list two specifi c examples of each of the
blocks shown in the diagrams. For one case of each block, describe the kind
of data that fl ows along the paths shown by the lines between the blocks.

 11.2 Look up (if necessary) the principal subcomponents of the data processor
(CPU) of a personal computer. Draw a block diagram of the subcomponents
and their interconnections. Describe in your own words the functions of
each subcomponent.

 11.3 Extend the examples of the three types of software - dominated systems
shown in Table 11.1 by listing two more examples of each type. Briefl y
indicate why you placed each example into the selected category.

 11.4 Using the example of an automated supermarket grocery inventory and
management system, draw the system context diagram. Assume that the
master - pricing database comes from a central offi ce. Neglect special dis-
counts for store card carriers.

 11.5 For the same example, defi ne the functions performed by the automated
grocery system in processing each individual grocery item. Differentiate
between those carrying bar codes and those sold by weight.

 11.6 Draw a functional fl ow diagram for the processing of a grocery item showing
the two alternate branches mentioned in Problem 11.5.

 11.7 Identify the objects involved in the above automated grocery system and
their attributes. Draw an activity diagram corresponding to the processes
described in Problem 11.6.

 For Problems 11.8 – 11.12, suppose you have been asked to develop the
software for an elevator system for a multistory building. The system will
contain three elevators and will have fi ve fl oors and a basement - level
parking garage.

 11.8 Develop 20 – 25 functional and performance requirements for this software
system. Please perform analysis on your list to ensure your fi nal list is
robust, consistent, succinct, nonredundant, and precise.

 11.9 (a) Identify 8 – 12 top - level functions for this software system.

 (b) Draw an FFBD for this system using the functions in (a).

c11.indd 405c11.indd 405 2/8/2011 3:49:23 PM2/8/2011 3:49:23 PM

406 SOFTWARE SYSTEMS ENGINEERING

 11.10 (a) Identify 8 – 12 classes for this software system. Each class should have
a title, attributes, and operations.

 (b) Draw a class diagram showing the associations between the classes in
(a).

 11.11 (a) Identify the 8 – 12 top - level hardware components of the elevator
system.

 (b) Identify the interfaces between the software and hardware components
of this system in (a). Please construct a table with three columns. In the
fi rst column, labeled “ hardware component, ” identify the component in
which the software will need to interface. In the second column, labeled
 “ input/output, ” identify whether the interface is an input, an output, or
both. In the third column, labeled “ what is passed, ” identify what is
passed between the software and hardware.

 11.12 Develop an operational test plan for this software system. The test plan
should include a purpose, a description of no more than fi ve tests,
and a linkage between each test and the requirement(s) that are being
tested.

 FURTHER READING

 G. Booch , J. Rumbaugh , and J. Jacobson . The Unifi ed Modeling Language User Guide . Addison -
 Wesley , 1999 .

 F. P. Brooks , Jr. The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,
 1995 , Chapter 8.

 B. Bruegge and A. H. Dutoit . Object - Oriented Software Engineering . Prentice Hall , 2000 ,
Chapters 1 – 7.

 P. DeGrace and L. H. Stahl . Wicked Problems, Righteous Solutions . Yourdon Press, Prentice Hall ,
 1990 , Chapter 3.

 A. Denis , B. H. Wixom , and R. M. Roth . Systems Analysis Design , Third Edition . John Wiley &
Sons, Inc. , 2006 , Chapters 4, 6, and 8 – 10.

 G. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapters 8 and 14.

 H. Eisner . Essentials of Project and Systems Engineering Management . John Wiley & Sons, Inc. ,
 1997 , Chapters 10 and 12.

 E. Gamma , R. Helm , R. Johnson , and J. Dlissides . Design Patterns . Addison - Wesley , 1995 .

 K. E. Kendall and J. E. Kendall . Systems Analysis and Design , Sixth Edition . Prentice Hall , 2005 ,
Chapters 6, 7, 14, and 18.

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 , Chapter 6.

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach , Sixth Edition . McGraw - Hill ,
 2005 , Chapters 20 – 24.

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,
Chapter 5.

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,
Chapters 13 and 14.

c11.indd 406c11.indd 406 2/8/2011 3:49:23 PM2/8/2011 3:49:23 PM

COPING WITH COMPLEXITY AND ABSTRACTION 407

 D. Rosenberg . Use Case Driven Object Modeling with UML . Addison - Wesley , 1999 , Chapters
1 – 4.

 J. Rumbaugh , M. Blaha , W. Premerlani , F. Eddy , and W. Lorenson . Object - Oriented Modeling
and Design . Prentice Hall , 1991 , Chapters 1 – 3.

 Sommerville . Software Engineering , Eighth Edition . Addison - Wesley , 2007 , Chapters 2, 4, 6, 7,
and 11.

c11.indd 407c11.indd 407 2/8/2011 3:49:23 PM2/8/2011 3:49:23 PM

