
197

 8.1 SELECTING THE SYSTEM CONCEPT

 The concept defi nition phase of the system life cycle marks the beginning of a serious,
dedicated effort to defi ne the functional and physical characteristics of a new system
(or major upgrade of an existing system) that is proposed to meet an operational need
defi ned in the preceding conceptual phases. It marks a commitment to characterize the
system in suffi cient detail to enable its operational performance, time of development,
and life cycle cost to be predicted in quantitative terms. As illustrated in Chapter 4
(Figure 4.6), the level of effort in the concept defi nition phase is sharply greater than
in previous phases, as system designers and engineering specialists are added to the
systems engineers and analysts who largely staffed the preceding phases. In most needs -
 driven system developments, this phase is conducted by several competing developers,
based on performance requirements developed in the preceding phases by or for the
customer. The output of this phase is the selection, from a number of alternative system
concepts, of a specifi c confi guration that will constitute the baseline for development
and engineering. From this phase on, the system development consists of implementing

 8

CONCEPT DEFINITION

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

c08.indd 197c08.indd 197 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

198 CONCEPT DEFINITION

the selected system concept (with modifi cations as necessary) in hardware and software,
and engineering it for production and operational use.

 With the advent and formal defi nition of systems architecting, this phase has been
known in some sources as the system architecture phase. While this may not be entirely
appropriate, systems architecting, as it is now defi ned and understood, is a major activ-
ity within this phase. The specifi cs of systems architecting are discussed in Section 8.8 .

 Place of the Concept Defi nition Phase in the System Life Cycle

 The place of the concept defi nition phase in the overall system development is shown
in Figure 8.1 . It constitutes the last phase of the concept development stage and leads
to the initiation of the engineering development stage, beginning with the advanced
development phase. Its inputs are system performance requirements, the technology
base that includes a number of feasible system concepts, and the contractual and orga-
nizational framework in which the system development is to be cast. Its outputs are
system functional specifi cations, a defi ned system concept, and a detailed plan for the
ensuing engineering program. The planning outputs of this phase are usually specifi ed
to include the systems engineering management plan (SEMP), which defi nes in detail
the systems engineering approach to be followed, the project work breakdown structure
(WBS), cost estimates for development and production, test plans, and such other sup-
porting material as may be directed (see Chapter 5).

 When the customer is the government, laws specify that all acquisition programs
be conducted competitively, except in unusual circumstances. The competition fre-
quently occurs during the concept defi nition phase. It customarily begins with a formal
solicitation, which contains the system requirements, usually at the level of total system
functionality, performance, and compatibility. Based on this solicitation, competing
contractors carry out a proposal preparation effort, which embodies the concept defi ni-
tion phase of the program. The system concept and approach proposed by the successful

 Figure 8.1. Concept defi nition phase in system life cycle.

System Performance
Requirements

System Functional
Specifications

Concept Exploration Concept Definition

Analysis of Alternatives
Functional Architecture
Physical Architecture

Advanced
Development

Candidate System
Concepts

Defined System
Concepts

c08.indd 198c08.indd 198 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

SELECTING THE SYSTEM CONCEPT 199

bidder (or in some cases more than one) then becomes the baseline for the ensuing
system development.

 In the development of a commercial product, the concept defi nition phase generally
begins after the conclusion of a feasibility study, which established a valid need for
the product and the feasibility of meeting this need by one or more technical approaches.
It is the point at which the company has decided to commit signifi cant resources
to defi ne the product to a degree where a further decision can be made whether or
not to proceed to full - scale development. Except for the formality and requirements
for detailed documentation, the general technical activities during this phase for
commercial and government programs are similar. One or several design concepts
may be pursued, depending on the perceived importance of the objective and available
funds.

 Design Materialization Status

 The previous phase was concerned with system design only to the level necessary to
defi ne a set of performance requirements that could be realized with a feasible system
design, and that would not rule out other advantageous design concepts. For that
purpose, it was suffi cient to defi ne functions at the subsystem level and only visualize
the type of components that would be needed to implement the concept.

 In order to defi ne a system to the level where its operational performance, develop-
ment effort, and production cost can be estimated with any degree of confi dence (by
analogy with previously developed systems), the conceptual design must be carried one
level further. Thus, in the concept defi nition phase, the design focus is on components,
the fundamental building blocks of systems. As indicated in Table 8.1 , which is an
overlay of Table 4.1 , the focus in this phase is on the selection and functional defi nition
of the system components and the defi nition of their confi guration into subsystems.

 Performance of the above tasks is primarily a systems engineering responsibility
since they address technical issues that often cut across both technical disciplines and
organizational boundaries. However, the functional defi nition task can be effectively
carried out only if the component implementation used to achieve each prescribed
function is reasonably well understood and is suffi ciently visualized to serve as the
basis for risk assessment and costing, which cannot be carried out solely at the func-
tional level. Accordingly, as with many systems engineering tasks, consultation with
and advice from experienced design specialists are almost always required, especially
in cases where advanced techniques may be used to extend subsystem performance
beyond previously achieved levels.

 Systems Engineering Method in Concept Defi nition

 The activities in the concept defi nition phase are discussed in the following sections in
terms of the four steps of the systems engineering method (see Chapter 4), followed
by a description of the planning of the ensuing system development effort and the
formulation of system functional requirements. The four steps, as applied to this phase,
are summarized below (generic names in parentheses):

c08.indd 199c08.indd 199 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

 TA
B

LE
 8

.1
.

 St
at

us
 o

f S
ys

te
m

 M
at

er
ia

liz
at

io
n

of
 C

on
ce

pt
 D

efi
 n

iti
on

 P
ha

se

 L
ev

el

 P
ha

se

 C
on

ce
pt

 d
ev

el
op

m
en

t
 E

ng
in

ee
ri

ng
 d

ev
el

op
m

en
t

 N
ee

ds
 a

na
ly

si
s

 C
on

ce
pt

ex

pl
or

at
io

n
 C

on
ce

pt

de
fi n

iti
on

 A

dv
an

ce
d

de
ve

lo
pm

en
t

 E
ng

in
ee

ri
ng

de

si
gn

 In

te
gr

at
io

n
an

d
ev

al
ua

tio
n

 Sy
st

em

 D
efi

 n
e

sy
st

em

ca
pa

bi
lit

ie
s

an
d

ef
fe

ct
iv

en
es

s

 Id
en

tif
y,

 e
xp

lo
re

,
an

d
sy

nt
he

si
ze

co

nc
ep

ts

 D
efi

 n
e

se
le

ct
ed

co

nc
ep

t
w

ith

sp
ec

ifi
ca

tio
ns

 V
al

id
at

e
co

nc
ep

t

 Te

st
 a

nd
 e

va
lu

at
e

 Su
bs

ys
te

m

 D
efi

 n
e

re
qu

ir
em

en
ts

 a
nd

en

su
re

 f
ea

si
bi

lit
y

 D
efi

 n
e

fu
nc

tio
na

l
an

d
ph

ys
ic

al

ar
ch

ite
ct

ur
e

 V
al

id
at

e
su

bs
ys

te
m

s

 In

te
gr

at
e

an
d

te
st

 C
om

po
ne

nt

 A
llo

ca
te

fu

nc
tio

ns
 t

o
co

m
po

ne
nt

s

 D
efi

 n
e

sp
ec

ifi
ca

tio
ns

 D

es
ig

n
an

d
te

st

 In
te

gr
at

e
an

d
te

st

 Su
bc

om
po

ne
nt

 V

is
ua

liz
e

 A
llo

ca
te

 f
un

ct
io

ns

to
 s

ub
co

m
po

ne
nt

s
 D

es
ig

n

 Pa
rt

 M

ak
e

or
 b

uy

200

c08.indd 200c08.indd 200 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

PERFORMANCE REQUIREMENTS ANALYSIS 201

 Performance Requirements Analysis (Requirement Analysis). Typical activities
include

 • analyzing the system performance requirements and relating them to opera-
tional objectives and to the entire life cycle scenario, and

 • refi ning the requirements as necessary to include unstated constraints and
quantifying qualitative requirements where possible.

 Functional Analysis and Formulation (Functional Defi nition). Typical activities
include

 • allocating subsystem functions to the component level in terms of system
functional elements and defi ning element interactions,

 • developing functional architectural products, and

 • formulating preliminary functional requirements corresponding to the assigned
functions.

 Concept Selection (Physical Defi nition). Typical activities include

 • synthesizing alternative technological approaches and component confi gura-
tions designed to performance requirements;

 • developing physical architectural products; and

 • conducting trade - off studies among performance, risk, cost, and schedule to
select the preferred system concept, defi ned in terms of components and
architectures.

 Concept Validation (Design Validation). Typical activities include

 • conducting system analyses and simulations to confi rm that the selected
concept meets requirements and is superior to its competitors, and

 • refi ning the concept as may be necessary.

 The application of the systems engineering method to the concept defi nition
phase is illustrated in Figure 8.2 , which is an elaboration of the generic diagram of
Figure 4.12 . Inputs are shown to come from the previous (requirements defi nition)
phase in the form of system performance requirements and competitive design con-
cepts. In addition, there are important external inputs in the form of technology, system
building blocks (components), tools, models, and an experience knowledge base.
Outputs include system functional requirements, a defi ned system concept, and (not
shown in the diagram) detailed plans for the ensuing engineering stage of system
development.

 8.2 PERFORMANCE REQUIREMENTS ANALYSIS

 As noted in Chapter 4 , each phase of development must begin with a detailed analysis
of all of the requirements and other terms of reference on which the ensuing program
is to be predicated. In terms of problem solving, this is equivalent to fi rst achieving a
complete understanding of the problem to be solved.

c08.indd 201c08.indd 201 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

202 CONCEPT DEFINITION

 Analysis of Stated Performance Requirements

 Requirements analysis in the concept defi nition phase is especially important because
system performance requirements as initially stated often represent an imperfect inter-
pretation of the user ’ s actual needs. Even though the previous phases may have been
thoroughly carried out, the derivation of a set of performance requirements for a
complex system is necessarily an imprecise and often subjective process, not to mention

 Figure 8.2. Concept defi nition phase fl ow diagram.

Concept exploration

phase

Performance requirements

Performance
Analyze

performance

requirements

Refine
performance
requirements

Predecessor

system

Performance

requirements

analysis

Define
component

Formulate
Predecessor system

requirements

Functional
analysis and

formulation

Incompatibilities

functions

functional
requirementsFunctional elements

Trade‐off criteriaPreliminary

functional

design

Functional

elecments

Trade‐offs

Synthesize

alternative

concepts

Select

preferred

concept

Predecessor system

• Building blocks

• Technology

Concept
selection

Concept
effectiveness

Measures of

effectiveness

Concept

Advanced

development

phase

Concept

deficienciesExcessive requirements
Concept

effectiveness

Trade‐offs

Conduct
system

simulation

Validate

selected
concept

Selected concept

Previous simulations
validation

c08.indd 202c08.indd 202 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

PERFORMANCE REQUIREMENTS ANALYSIS 203

iterative. In particular, the stated requirements tend to be infl uenced by personal and
often not well - founded presumptions of what will turn out to be hard or easy to achieve.
This may result in some performance requirements being unnecessarily stringent
because they are believed to be readily achievable (a presumption that may turn out to
be invalid). It is therefore essential that both the basis for the requirements and their
underlying assumptions be clearly understood. Following this, steps can be taken to
refi ne the requirements as necessary to support the defi nition of a truly viable system
concept. The estimated relative diffi culty of achieving the requirements will help to
guide resource allocation during development.

 The task of understanding the source of the given performance requirements in
terms of user needs is the particular province of systems engineering. This task requires
as intimate an acquaintance with the operational environment and with system users as
circumstances may permit. In the case of complex operational systems, such an under-
standing can best be derived through years of work in the fi eld.

 Categories of System Requirements. In discussing the subject of require-
ments analysis, attention is usually focused on what functions the system must perform
and how well. We have named these types of requirements, functional and performance .
Such requirements are generally well defi ned. There are, however, other types of
requirements that may be equally important but may be much more poorly defi ned, or
even omitted up to this point. These include the following:

 1. Compatibility Requirements: how the system is to interface with its operating
site, its logistics support, and with other systems.

 2. Reliability, Maintainability, Availability (RMA) Requirements: how reliable the
system must be to fulfi ll its purpose, how it will be maintained, and what support
facilities will be required.

 3. Environmental Requirements: what extremes of the physical environment must
the system be built to withstand throughout its lifetime.

 RMA requirements, when explicitly stated, tend to be arbitrary and often not well
defi ned. For the other two categories, requirements are often largely confi ned to the
system ’ s operational mode and leave out the conditions of shipping, storage, transit,
assembling, and supporting the system. In these circumstances, it is necessary to inves-
tigate in detail the entire life of the system, from product delivery to the end of its
operating life and its disposition.

 System Life Cycle Scenario. To understand all of the situations that the system will
encounter during its lifetime, it is necessary to develop a model or scenario that identi-
fi es all of the different circumstances to which the system will be exposed. These will
include at least

 1. storage of the system and/or its components,

 2. transportation of the system to its operational site,

c08.indd 203c08.indd 203 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

204 CONCEPT DEFINITION

 3. assembly and readying the system for operation,

 4. extended deployment in the fi eld,

 5. operation of the system,

 6. routine and emergency maintenance,

 7. system modifi cation and upgrading, and

 8. system disposition.

 The model of these phases of the system ’ s use must be suffi ciently detailed to
reveal any interactions between the system and its environment that will affect its
design. For example, the maintenance of the system will require a supply of spare parts,
special test equipment, special test points, and other provisions that need to be
recognized.

 The model also needs to contain information for life cycle costing. Only by visual-
izing the complete life of the projected system can valid requirements and associated
costs be developed.

 Completion and Refi nement of System Requirements

 The development of a system life cycle model will almost always reveal that
many important system requirements were not explicitly stated. This is likely to be
true not only for the nonoperating phases of the system but also for its interaction
with the physical environment. These environmental specifi cations are often derived
from “ boiler plate, ” especially in many military systems, rather than from a realistic
model of the operating environment. In contrast, the desire to make use of standard
commercial components may cause such specifi cations to be unduly relaxed or omitted
entirely.

 Probably the most important requirement that is often not stated is that of afford-
ability. In competitive system developments, the projected system cost is one of the
factors considered in selecting the winning proposal. Therefore, affordability must be
considered as equivalent to other stated requirements, even though it may not be rep-
resented as such. It is, therefore, necessary to gain as much insight as practicable into
what level of projected system cost development, production, and support will consti-
tute an acceptable (or competitive) value.

 Useful life is another system characteristic that is seldom stated as a requirement.
To prevent early obsolescence, a system that uses high technology must be capable of
periodic upgrading or modernization. To make such a process economically viable, the
system must be designed with this objective in mind, making those subsystems or
components that are susceptible to early obsolescence easy to modify or replace with
newer technology.

 In some programs, such upgrading or growth capability is explicitly provided
for. This process is sometimes called “ preplanned product improvement ” (P 3 I). In the
majority of cases, however, especially when initial cost is a major concern, there is
not a stated requirement for such capability. Nevertheless, it must be kept in mind
as an important criterion for comparing alternative system concepts, since in

c08.indd 204c08.indd 204 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

PERFORMANCE REQUIREMENTS ANALYSIS 205

practice, future changes in operating conditions and/or system environment (or
product competition) will more often than not lead to increasing pressures for a system
upgrade.

 Unquantifi ed Requirements. In order to be useful, a system requirement must
be verifi able. This typically means measurable. Where the requirement is stated in
nonquantifi able terms, the task of requirements analysis includes endowing it with as
much quantifi cation as possible. The following two examples are typical of such
requirements.

 A commonly unquantifi ed area is that of user requirements, and especially the
user – system interface. The overworked term “ user friendly ” does not translate readily
into measurable form. Accordingly, it is important to gain a fi rsthand understanding of
the user ’ s needs and limitations. This, in turn, is complicated by the fact that there may
be several users with different interfacing constraints and levels of training. There is
also the maintenance interface, which has totally different requirements.

 The interfaces between the system and other equipment at its operating site and
with related systems are also often not stated in measurable terms. This may require a
fi rsthand examination of the projected system environment, and even measurements of
these interfaces, if necessary. For example, are there specifi cations for such parameters
as available power or input signals that must be provided at the site?

 Requirements and the Predecessor System. As noted previously, if there is
a predecessor (current) system that performs the same or similar function as the pro-
jected system, as is usually the case, it is the single richest source of information on
the requirements for the new system. It deserves detailed study by systems engineering
at all stages of development, especially in the formative phases.

 The predecessor system offers an excellent basis for understanding the exact nature
of the defi ciencies that led to the call for a new system. Since all its attributes are
measurable, they can serve as a point of departure for quantifying the requirements for
the new system. There is frequently documentation available that can provide a direct
comparison to requirements for the new system.

 The users of the predecessor system are usually the best source of information of
what is needed in a new system. Thus, systems engineering should make the effort to
gain a detailed fi rsthand understanding of system operation.

 Operational Availability. There may or may not be a stated requirement for
the date at which the system is to be ready for operational use. When there is, it is
important to try to understand the priority of meeting this date relative to the importance
of development cost, performance, and other system characteristics. This knowledge is
needed because these factors are mutually interdependent, and their proper balance is
essential to the success of the system development.

 In any event, the time of availability is always important to the ultimate value of
the system. This is because the growth of technology and competitive pressures operate
continuously to shorten the new system ’ s effective operational life. Thus, the time of
operational availability must be considered a prime factor in the planning of a system

c08.indd 205c08.indd 205 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

206 CONCEPT DEFINITION

development. In commercial developments, the fi rst product to exploit a new technol-
ogy often gains a lion ’ s share of the market.

 Determining Customer/User Needs. As noted previously, it is always neces-
sary to clarify, extend, and verify the stated system requirements through contacts not
only with the customer but also with present users of existing or similar systems.

 In a competitive acquisition program, access to the customer may often be formally
controlled. However, it should be used, insofar as possible, to clarify ambiguities and
inconsistencies in the requirements as originally stated. This may be done directly,
through correspondence, or at a bidders ’ conference, as appropriate.

 A better opportunity to clarify system requirements is in the preproposal stage. In
many large acquisition programs, a draft request for proposal (RFP) is circulated to
prospective bidders for comment. During this period, it is usually possible to obtain a
better understanding of the customer requirements than will be possible after the issu-
ance of the RFP. This emphasizes the fact that the effort to respond to a system acquisi-
tion RFP must begin well before (months or years) its formal issuance.

 In developing commercial systems, there is always an active and often an extended
market survey to establish customer/user needs. In these cases, explicit system require-
ments may often not yet exist. As a prerequisite to the defi nition of a system concept
and its associated performance requirements, it is therefore essential that systems engi-
neering interact as directly as possible with potential customers and users of current
systems to observe at fi rst hand the system strengths, limitations, and associated operat-
ing procedures.

 8.3 FUNCTIONAL ANALYSIS AND FORMULATION

 It has been seen that in keeping with the inherent magnitude of designing a complex
system, the systems engineering method divides the design task into two closely
coupled steps: (1) analyzing and formulating the functional design of the system (what
actions it needs to perform) and (2) selecting the most advantageous implementation
of the system functions (how the actions can best be physically generated). The close
coupling between these steps results from their mutual interdependence, which requires
both visualization of the implementation step in formulating the functional design and
iteration of the implementation step when alternative approaches are considered. Those
familiar with software engineering will recognize these two steps as design and imple-
mentation, respectively.

 Defi nition of Component Functions

 The system materialization process in the concept defi nition phase is mainly concerned
with the functional defi nition of system components (see Table 7.1). If the details of
the concept exploration phase are available, the functional confi guration at the system
level has already been explored (recall the coffeemaker example in Chapter 7). If not,

c08.indd 206c08.indd 206 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

FUNCTIONAL ANALYSIS AND FORMULATION 207

there will have almost always been exploratory studies preceding the formal start of
concept defi nition that have laid out one or more candidate top - level concepts that can
serve as a starting point for component functional design.

 Functional Building Blocks. The general nature of the task of translating per-
formance requirements into system functions can be illustrated by using the concept of
system functional building blocks as summarized in Chapter 3 . Extending the discus-
sion in Chapter 7 , the following steps are involved:

 1. Identifi cation of Functional Media. The type of medium (signals, data, materi-
als, energy, and force) involved in each of the primary system functions can
usually be readily associated with one of these fi ve classes, using the criteria
suggested in Chapter 7 .

 2. Identifi cation of Functional Elements. Operations on each of the fi ve classes of
media are represented by fi ve or six basic functional elements, listed in Chapter
 3 , each performing a signifi cant function and found in a wide variety of system
types. The system actions (functions) can be constructed from a selection of
those functional building blocks.

 3. Relation of Performance Requirements to Element Attributes. Each functional
element possesses several key performance attributes (e.g., speed, accuracy, and
capacity). If these can be related to the relevant system performance
requirement(s), it confi rms the correct selection of the functional element.

 4. Confi guration of Functional Elements. The functional elements selected to
achieve the required performance characteristics must be interconnected and
grouped into integrated subsystems. This may require adding interfacing (input/
output) elements to achieve connectivity.

 5. Analysis and Integration of All External Interactions. The given performance
requirements often leave out important interactions of the system with its opera-
tional (or other) environment (e.g., external controls or energy source). These
interactions need to be integrated into the total functional confi guration.

 It is not advisable to attempt to optimize at this stage. The initial formulation of
the system functional design will need to be modifi ed after the subsequent step of
physical defi nition and the ensuing iteration.

 Functional Interactions. The functional elements are inherently constituted
to require a minimum of interconnections to other elements besides primary inputs
and outputs. However, most of them depend on external controls and sources of
energy, as well as being housed or supported by a material structure. Their grouping
into subsystems should be such as to make each subsystem as self - suffi cient as
possible.

 Minimizing critical functional interactions among different subsystems has
two purposes. One is to aid the system development, engineering, integration, test,

c08.indd 207c08.indd 207 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

208 CONCEPT DEFINITION

maintenance, and logistics support. The other is to facilitate making future changes in
the system during its operational life to upgrade its effectiveness.

 When several different ways to group functions (functional confi gurations)
are comparably effective, these alternatives should be carried forward to the next
step of the design process where a choice of the superior confi guration may be more
obvious.

 Functional Block Diagramming Tools

 Several formal tools and methods exist (and continue to be developed) for representing
a system ’ s functionality and their interactions. Commercial industry has used the func-
tional fl ow diagram, formally referred to as the functional fl ow block diagram (FFBD),
to represent not only functionality but also the fl ow of control (or any of the fi ve basic
elements). This diagramming technique can be used at multiple levels to form a hier-
archy of functionality.

 Recently developed is a method known as the integrated defi nition (IDEF) method.
In fact, IDEF extends beyond functionality and now encompasses a range of capability
descriptions for a system. Integrated defi nition zero (IDEF0) is the primary technique
for representing system functionality. The basic construct is the functional entity, rep-
resented by a rectangle, as shown in Figure 8.3 . Strict rules exist for identifying inter-
faces to and from a function. Sometimes, detail is included within the box, such as the
listing of multiple functions performed by the entity; other times, the inside of the
rectangle is left blank. Inputs always enter from the left; outputs exit to the right.
Controls (separated from inputs) enter the function from the top, and mechanisms (or
implementation) enter from the bottom.

 One of the simplest diagramming techniques is the functional block diagram
(FBD). This technique is similar to FFBDs, but without the fl ow structure, and IDEF0,

 Figure 8.3. IDEF0 functional model structure.

Controls

Title

Functions

• F1

• F2
• F3

Inputs Outputs

• F3

Mechanisms

c08.indd 208c08.indd 208 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

FUNCTIONAL ANALYSIS AND FORMULATION 209

but without the diagramming rules. Basically, each function is represented by a rect-
angle. Interfaces between functions are identifi ed by directional arrows and are labeled
to represent what is being passed between the functions. When a function interfaces
with an external entity, the entity is represented in some fashion (e.g., rectangle and
circle) and an interface arrow is provided.

 Recall from Chapter 7 the example of the coffeemaker. Eleven functions were
identifi ed; they are relisted here:

 Input Functions

 • Accept user command (on/off)

 • Receive coffee materials

 • Distribute electricity

 • Distribute weight

 Transformative Functions

 • Heat water

 • Mix hot water with coffee grinds

 • Filter out coffee grinds

 • Warm brewed coffee

 Output Functions

 • Provide status

 • Facilitate removal of materials

 • Dissipate heat

 Figure 8.4 represents an FBD using the 11 functions. Three external entities were
also identifi ed: the user, a power source (assumed to be an electrical outlet), and the
environment. Notice that within the functions list, and the diagram, maintenance is not
considered. This is due to the nature of household appliances in general, and coffeemak-
ers in particular. They are not designed to be maintained. They are “ expendable ” or
 “ throwaway. ”

 Since it is diffi cult to avoid crossing lines, several mechanisms exist to distinguish
between separate interface arrows. Color is probably the most prevalent. But other
methods, such as dashed lines, are used as well. In the case of power, we have simply
listed the functions that require power (e.g., “ F5 ”). We have tried to be rather thorough
in this example to help the reader think through the process of identifying functions
and developing a functional structure for the system. Simplifying this diagram would
not be diffi cult since we could omit several functions at this stage, as long as we did
not forget about them later on. For example, function 10, “ facilitate removal of materi-
als , ” could be omitted at this stage, as long as the ultimate design does indeed allow
the user to easily remove materials. Notice as well that we can categorize the functions
into those handling the fi ve basic elements:

c08.indd 209c08.indd 209 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

210 CONCEPT DEFINITION

 Figure 8.4. Functional block diagram of a standard coffeemaker.

1. Receive

Coffee

Materials

User

5. Heat Water

Coffee Grinds

Filter

Water

Water

Hot Water

Heat

2. Accept User

Command

6. Mix Hot

Water with

Coffee Grinds 11. Dissipate

Heat

On/Off

Command

C
o

ff
e

e
 G

ri
n

d
s

On/Off

Signal

On/Off

7. Filter Out

Coffee Grinds

9. Provide

Status

Heat

F
ilt

e
r

On/Off

Signal
Coffee Sludge

Heat
On/Off

Status

Environment
8. Warm

Brewed Coffee

10. Facilitate

Removal of

Brewed Coffee

Heat

Power 3 Distribute 4 Di t ib t

Brewed Coffee
Materials

F5

F6 All

Used Filter

Used Coffee Grinds

Used Filter

Used Coffee Grinds

Warm

Brewed

Coffee

Weight

Weight

Source
3. Distribute

Electricity
4. Distribute

Weight
User

F6

F8

F9
Functions

E
le

c
tr

ic
it
y

E
le

c
tr

ic
it
y

 Materials Receive coffee materials
 Mix hot water with coffee grinds
 Filter out coffee grinds
 Facilitate removal of materials

 Data Provide status
 Signals Accept user commands
 Energy Distribute electricity

 Heat water
 Warm brewed coffee
 Dissipate heat

 Force Distribute weight

 This is not a “ clean ” categorization, since some functions input one type of element
and convert it into another type. For example, function 2, “ accept user commands, ”
inputs a datum and converts it to signals. Subjective judgment is necessary.

 Hardware – Software Allocation. The issue of whether a given function should
be performed by hardware or software may seem like a question of implementation
rather than function. However, system - level issues are almost always involved in such

c08.indd 210c08.indd 210 2/8/2011 11:04:58 AM2/8/2011 11:04:58 AM

FUNCTIONAL ANALYSIS AND FORMULATION 211

decisions, such as the effect on operator interfaces, test equipment, and widespread
interaction with other system elements. Accordingly, the defi nition of functional build-
ing blocks makes a clear distinction between software elements (e.g., control system
and control processing) and hardware elements (e.g., process signal and process data).
For these reasons, the functional defi nition at the component level should include the
allocation of all signifi cant processing functions to either hardware or software. An
important consideration in such decisions is provision for future growth potential to
keep up with the rapidly advancing data processing technology.

 In software - embedded systems, as defi ned in Chapter 11 , software tends to be
assigned most of the critical functions, especially those related to controls, because of
its versatility. In software - intensive systems, in which virtually all the functionality is
performed by software, functional allocation is not as straightforward because of the
absence of commonly occurring functional elements. Chapter 11 describes the inherent
differences between hardware and software and their effect on system design, and
addresses the methods used in designing software system architectures.

 To the extent that decisions may be involved in selecting functional elements,
confi guring them, or quantifying their functional characteristics, trade - offs should be
made among the candidates using a set of predefi ned criteria. The principles and
methods of trade - off analysis are described in Chapter 9 .

 Simulation

 The analysis of the behavior of systems that have dynamic modes of response to events
occurring in their environment often requires the construction of computer - driven
models that simulate such behavior. The analysis of the motion of an aircraft, or for
that matter of any vehicle, requires the use of a simulation that embodies its kinematic
characteristics.

 Simulations can be thought of as a form of experimental testing. They are used to
obtain information critical to the design process in a much shorter time and at lesser
cost than building and testing system components. In effect, simulations permit design-
ers and analysts to gain an understanding of how a system will behave before the system
exists in physical form. Simulations also permit designers to conduct “ what - if ” experi-
ments by making selected changes in key parameters. Simulations are dynamic; that
is, they represent time - dependent behavior. They are driven by a programmed set of
inputs or scenarios, whose parameters may be varied to produce the particular responses
to be studied, and may include input – output functional models of selected system ele-
ments. These characteristics are especially useful for conducting system trade - off
studies.

 In the concept defi nition phase, system simulation is particularly useful in the
concept selection process, especially in cases where the dynamic behavior of the system
is important. Simulation of the several alternative concepts permits the conduct of
 “ experiments ” that present the candidates with a range of critical potential challenges.
The use of simulation results in scoring the candidates is generally more meaningful
and persuasive than using judgment alone. Chapter 9 describes in greater detail some
of the different types of simulation used in system development.

c08.indd 211c08.indd 211 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

212 CONCEPT DEFINITION

 Formulation of Functional Specifi cations

 One of the outputs of the concept defi nition phase is a set of system functional speci-
fi cations to serve as an input to the advanced development phase. It is appropriate to
formulate a preliminary set of functional specifi cations at this step in the process to lay
the groundwork for more formal documents. This also serves as a check on the com-
pleteness and consistency of the functional analysis.

 In stating functional specifi cations, it is essential to quantify them insofar as may
be inferred from the performance and compatibility requirements. The quantifi cation
should be considered provisional at this time, to be iterated during the physical defi ni-
tion step and incorporated into the formal system functional specifi cation document at
the end of the concept defi nition phase. It is at this level in the system hierarchy that
the physical confi guration becomes clearly evident.

 8.4 FUNCTIONAL ALLOCATION

 The decisions in the process of concept defi nition center on the selection of a particular
system confi guration or concept and the defi nition of the functions it is to perform.
These decisions do more to determine the ultimate performance, cost, and utility of the
new system than those in any subsequent phase of the development. Further, in a com-
petitive acquisition process, selection of who will develop the system is largely based
on the evaluation of the proposed concept and the supporting documentation. For those
reasons, the functional allocation process is of crucial importance.

 The systems engineering method calls for such decisions to be made by a structured
process that considers the relative merit of a number of alternatives before any one is
selected. This process is called “ trade - off studies ” or “ trade - off analysis ” and is used
in decision - making processes throughout system development. Trade - off analysis is
most conspicuously employed during the concept defi nition phase, largely in the selec-
tion of the physical implementation of system components. As stated previously,
Chapter 9 contains a description of the principles and methods of trade - off analysis.

 Formulation of Alternative Concepts

 The fi rst step in selecting a preferred system concept is to formulate a set of alternative
solutions, or in this case, system concepts. In the early development phases, the alterna-
tive construction begins by allocating the functions identifi ed above to physical
components of the system. In other words, we must determine how we will implement
the functions above. Of course, this might entail decomposing the top - level functions
in an FBD (or other functional representation) into lower - level functions. Many
times, this activity provides insight into alternative methods of implementing each
function.

 As we identify system components, beginning with subsystems, we are constantly
faced with the question of whether multiple functions can and should be implemented
by a single physical component. The converse is also an issue: should a single function

c08.indd 212c08.indd 212 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

FUNCTIONAL ALLOCATION 213

be implemented by multiple subsystems? Ideally, a one - to - one mapping is our goal.
However, other factors may lead one to map multiple functions to a single component,
or vice versa.

 A specifi c allocation of functions to physical components, and the functional and
physical interfaces that result from that allocation, is considered a single alternative.
Other allocation schemes will result in different alternatives. The trade - offs mentioned
above can occur at multiple levels, from the entire system to individual components.
Many times, these trade - offs are part of the functional allocation process.

 An important objective is to ensure that no potentially valuable opportunities are
omitted. The following paragraphs discuss issues with developing alternatives.

 The Predecessor System as a Baseline. As noted earlier, most system devel-
opments are aimed at extending the capabilities or increasing the effi ciency of some
function that is presently being inadequately performed by an existing system. In cases
where the functions of the current system are the same or similar to those of the new
system, the current system provides a natural point of departure for system concept
defi nition. Where the main driving force comes from serious defi ciencies of limited
portions of the current system, an obvious (partial) set of alternative approaches would
begin with a minimum modifi cation of the system, restricted to those subsystems or
major components that are clearly defi cient. Other alternatives would progressively
modify or replace other subsystems that may be made obsolescent by modern technol-
ogy. The general confi guration of the system would be retained.

 In cases where there are new and improved technological advances at the compo-
nent level, or when there are standard commercial off - the - shelf components that could
be applied to the new system, the impetus for change to a new system would be
technology - driven. In this case, a commonly used approach is to introduce improve-
ments sequentially over time as modifi cations to the current system confi guration.

 Even when there are reasons against retaining any parts of the current system, as,
for example, when moving from a conventional, manually controlled process to an
automated and higher - speed operation, the current system ’ s general functional confi gu-
ration, component selection, materials of construction, special features, and other char-
acteristics usually provide a useful point of departure for alternative concepts.

 Technological Advances. As noted in Chapter 6 , some new system develop-
ments are driven more by advances in technology than by operational defi ciencies in
the previous system. These advances may arise either in exploratory research and
development programs aimed at particular application areas, such as development of
advanced jet engines, or may come from broadly applicable technology such as high -
 speed computing and communication devices.

 Such advances are often incorporated into an existing system to achieve specifi c
performance improvements. However, if their impact is major, the possibility of a
radical departure from the previous confi guration should be included among the alterna-
tives. Beyond a certain point, the existing framework may overly constrain the achiev-
able benefi ts and should therefore be abandoned. Thus, when advanced technology is
involved, a wide range of choices for change should be examined.

c08.indd 213c08.indd 213 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

214 CONCEPT DEFINITION

 Original Concepts. In relatively rare instances, a really different concept is advanced
to meet an operational need, especially when the need had not been previously met. In
such instances, there is not likely to be a previous system to use for comparison, so
that different types of alternatives would need to be examined. Often, various versions
of the new concept can be considered, differing in the degree of reliance on new and
unproven technology in exchange for projected performance and cost.

 Modeling of Alternatives

 For comparing alternative concepts, each must be represented by a model that possesses
the key attributes on which the relative values of the alternatives will be judged. As a
minimum, an FFBD of each should be constructed, and a pictorial or other physical
description produced for providing a more realistic view of the system candidate.

 Both the above modeling and the simulation of alternative concepts will contribute
important context to the selection process and associated trade - offs.

 8.5 CONCEPT SELECTION

 The objective of trade - off studies in the concept defi nition phase is to assess the relative
 “ goodness ” of alternative system concepts with respect to

 • operational performance and compatibility,

 • program cost,

 • program schedule, and

 • risk in achieving each of the above.

 The results are judged not only by the degree to which each characteristic is expected
to be achieved but also by the balance among them. Such a judgment is of necessity
highly program dependent because of the differing priorities that may be placed on the
above characteristics.

 Design Margins. In a competitive program, there is always a tendency to maxi-
mize system performance so as to gain an edge over competing system proposals. This
often results in pushing the system design to a point where various design margins are
reduced to a bare minimum. The term “ design margin ” refers to the amount that a given
system parameter can deviate from its nominal value without producing unacceptable
behavior of the system as a whole. A reduction in design margins is inevitably refl ected
in tighter restrictions on the environmentally induced changes in component character-
istics during system operation and/or on the fabrication tolerances imposed in the
production process. Either can lead to higher program risk, cost, or both. Accordingly,
the issue of design margins should be explicitly addressed as an important criterion
when selecting a preferred system concept.

c08.indd 214c08.indd 214 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

CONCEPT SELECTION 215

 System Performance, Cost, and Schedule. To the extent that stated perfor-
mance requirements are quantifi ed, are found to be an accurate expression of opera-
tional needs, and are within current system capabilities, they may be considered a
minimum baseline for the system. However, where they are found to stress the state of
the art, or to be desirable rather than truly essential, they need to be considered elastic
and capable of being traded off against cost, schedule, risk, or other factors. Unstated
requirements found to be signifi cant should always be included among the variables.

 Program cost must be derived from the system life cycle cost, which in turn must
be derived from a model of the complete system life cycle. The appropriate relative
weighting of the near - term versus long - term costs depends on the fi nancial constraints
of the acquisition strategy. Specifi c cost drivers should be identifi ed wherever
possible.

 The appropriate weighting of schedule requirements is very program dependent
and may be diffi cult to establish. There is an inherent tendency, especially in govern-
ment and other programs where competition among contractors is especially strong, to
estimate both cost and schedule of a new acquisition on the optimistic side, making no
provision for the unforeseen delays that always occur in new system developments and
are often caused by “ unk - unks, ” as discussed in Chapter 4 . This optimism factor also
applies to the estimation of system performance and technical risk. Overall, it tends to
slant the trade - off process toward the selection of advanced concepts and optimistic
schedules over more conservative ones.

 Program Risks. The assessment of risk is another primary systems engineering
task. It involves estimating the probability that a given technical approach will not
succeed in achieving the intended objective at an affordable cost. Such risk is
present in every previously untried approach. In the development of new complex
systems, there are many areas in which risk of failure must be explicitly considered
and measures taken to avoid such risks or to reduce their potential impact to manage-
able levels.

 Chapter 5 , which devotes a section to the subject of risk management, shows that
program risk can be considered to consist of two factors: (1) probability of failure — the
probability that the system will fail to achieve an essential program objective, and (2)
criticality of failure — the impact of the failure on the success of the program. Thus, the
seriousness of each risk can be qualitatively considered as a combination of the prob-
ability of the failure weighted by its criticality to the system. For the purposes of this
chapter, the following are examples of conditions that may result in a signifi cant prob-
ability of program failure:

 • A leading - edge unproven technology is to be applied.

 • A major increase in performance is required.

 • A major decrease in cost is required for the same performance.

 • A signifi cantly more severe operating environment is postulated.

 • An unduly short development schedule is imposed.

c08.indd 215c08.indd 215 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

216 CONCEPT DEFINITION

 Selection Strategy. The preceding discussion shows that the principal criteria
involved in selecting a preferred system concept are complex, semiquantitative at best,
and involve comparisons of incommensurables. This means that the evaluation of the
relative merits of alternatives must be such as to expose and illuminate their most criti-
cal characteristics and to allow the maximum exercise of judgment throughout the
evaluation process.

 Two additional guidelines for conducting complex trade - off analyses may be
useful: (1) to conserve analytical effort, use a staged approach to the selection process,
in which only the most likely winners are subjected to the full system evaluation; and
(2) to retain the visibility of the complete evaluation profi le of each concept (against
each critical measure of effectiveness) until the fi nal selection, rather than combining
the components into a single fi gure of merit, a practice that is often employed but that
tends to submerge signifi cant differences.

 In pursuing a staged approach, the following suggestions can serve as a checklist,
to be applied where appropriate:

 1. For the fi rst stage of evaluation, make sure that a suffi cient number of alterna-
tive approaches are considered to address all needs and to explore all relevant
technical opportunities.

 2. If the number of alternatives is larger than can be individually evaluated in
detail, perform a preliminary comparison to winnow out the “ outliers. ” This is
equivalent to qualifying the candidates. But be careful not to discard prema-
turely any candidates that present a new and unique technological opportunity,
unless they are inherently incapable of qualifying.

 3. For the next stage of evaluation, examine the list of performance and compat-
ibility requirements and select a subset of the most critical ones that are also
the most likely to reject unsuitable system concepts. Include consideration of
growth capability and design margins as appropriate.

 4. For each candidate concept, evaluate its expected compliance with each selected
criterion. In the case of partial noncompliance, attempt to adjust the concept
where possible to satisfy the criteria. Estimate the resultant performance, cost,
risk, and schedule. In the event of conspicuous imbalance in the above, attempt
to modify further the concept to achieve an acceptable balance for all
requirements.

 5. Assign weighting factors or priorities to the evaluation criteria, including cost,
risk, and schedule, and apply to the ranking of each concept. Avoid concepts
that do not have a sound balance of the above factors.

 6. For each evaluation criterion, rank order the several candidate concepts.

 7. Look for and eliminate clear losers.

 8. Unless there is a single clear winner, perform a signifi cantly more detailed
comparison among the two or three potential winners. To this end, develop
a life cycle model for each concept, along with a WBS, and a risk abatement
plan.

c08.indd 216c08.indd 216 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

CONCEPT VALIDATION 217

 In making the fi nal system concept selection, review the evaluation profi le of the
merit of each candidate concept against each critical measure of effectiveness to ensure
that the choice has no major weaknesses. Check for the sensitivity of the result to a
reasonable variation of the weighting of individual criteria.

 As stated previously, use each of the above suggestions only where it may be
appropriate to the particular selection process. Chapter 9 devotes a section to the fun-
damentals of trade - off analysis, with an example of their application.

 8.6 CONCEPT VALIDATION

 The task of designing a model of the system environment to serve as the basis for
concept validation builds on the set of parameters initially established for use in the
trade - off studies of the selection process.

 Modeling the System and Its Environment

 Since the degree of system defi nition at this stage is largely functional, its validation
must rely primarily on analysis rather than on testing. The rapid growth of computer
modeling and simulation in recent years is providing powerful tools for the validation
of complex system concepts.

 System Effectiveness Models. In complex operational systems, system effec-
tiveness models are developed in the needs analysis and concept exploration phases to
provide a fuller understanding of the effectiveness of existing systems in performing
their missions and in identifying defi ciencies that need to be remedied. These are most
often computer simulations that include provisions for varying key parameters to estab-
lish the sensitivity of overall performance to environmental and system parameter
variations and to determine the nature and extent of system changes needed to offset
any identifi ed defi ciencies (see also Chapter 9).

 In the concept defi nition phase, the construction of system effectiveness models
by the system developer depends on whether or not the models used in the previous
phases are available, as in the case where the developer is also the customer. In that
case, the models can be readily extended to conform to the selected system concept
for the validation process. If not, the construction of the model becomes part of the
concept defi nition task. For this and other reasons, the preparation for the competitive
effort often begins months (and sometimes years) before the start of the formal
competition.

 Computer models are also capable of validating a host of subsystem or component -
 level technical design features. Areas such as aerodynamic design, microwave antennae,
hydrodynamics, heat transfer, and many others can be modeled for analysis through the
use of special computer codes. Advances in computer capabilities have made such
modeling more and more accurate in predicting system behavior for purposes of design
and evaluation.

c08.indd 217c08.indd 217 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

218 CONCEPT DEFINITION

 Critical Experiments. When a proposed system concept relies on technical
approaches that have not been previously proven in similar applications, its feasibility
must be demonstrated. Often this cannot be done credibly through analysis alone and
must be subjected to experimental verifi cation. This is diffi cult to accommodate in the
limited time and constrained resources of a competitive acquisition, but must neverthe-
less be undertaken to support the proposed system concept.

 The term “ critical experiment ” is appropriate in such instances because it is related
to the specifi c purpose of substantiating a critical feature of the design. It purposely
stresses the proposed design feature to its extreme limits to ensure that it is not just
marginally satisfactory. The term “ experiment ” rather than “ test ” is appropriate because
it is performed for the purpose of obtaining suffi cient data to understand thoroughly
the behavior of the system element, rather than merely to measure whether or not the
element operates within certain limits. By the same token, extensive data analyses are
also performed to illuminate the system behavior.

 Analysis of Validation Results

 The analysis of the results of system validation simulations can produce three different
types of unsatisfactory fi ndings that require remedial action: (1) defi ciencies in
the assumed characteristics of the system being modeled, (2) defi ciencies in the
test model, or (3) excessively stringent system requirements. It is the purpose of
the analysis process to attribute the results of the simulation to one or more of the
above causes. Beyond these fi ndings, the analysis should also indicate what kind
and degree of changes would eliminate the discrepancies. This latter fi nding usually
requires a series of simulations or analyses that test the effect of alternative remedial
actions.

 The feedback resulting from the validation analysis results in an iterative process
in which the system model design and environmental model are refi ned as necessary
to bring the system model in compliance with the requirements.

 Iteration of System Concepts and Requirements

 The above description of the validation process implies that only one concept was found
to be superior in the concept trade - off evaluation, and that this concept was then vali-
dated against the full system requirements. Not infrequently, two and sometimes more
concepts turn out to be nearly equal in preliminary rankings. In that case, each should
be evaluated against the full requirements to see if the more rigorous comparison pro-
duces a clear discriminator for selecting the preferred concept.

 The system requirements should always be regarded as fl exible up to a point. If
the validation or trade - off results show that one or more stated requirements appear to
be responsible for unduly driving up system complexity, cost, or risk, they should be
subjected to critical analysis, and if appropriate, highlighted for discussions with the
customer by program management.

c08.indd 218c08.indd 218 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEM DEVELOPMENT PLANNING 219

 8.7 SYSTEM DEVELOPMENT PLANNING

 A major product of the concept defi nition phase is a set of plans that defi ne how the
engineering program is to be managed. Among these are the WBS, the life cycle model,
the SEMP or its equivalent, system development schedules, the operational (or inte-
grated logistic) support plan, and such others as may be specifi ed by the contracting
agency to provide all participants with clear objectives and timescales for accomplish-
ing their respective tasks.

 Of the above plans, systems engineering has prime responsibility only for
the SEMP. However, it is also deeply involved in all the others by having to provide
a detailed description and ongoing assessment of the development process to those
who are directly responsible for the other technical management documents. For
example, systems engineers are often asked to review initial estimates of the time
and effort required to perform a particular engineering task, and based on their
appraisal of the associated technical risks, to recommend approval or modifi cation as
appropriate.

 WBS

 The WBS, which was described in Chapter 5 , is one of the essential development plan-
ning vehicles. The WBS provides a hierarchical framework designed to accommodate
all the tasks that need to be accomplished during the entire life of the project. The
topmost level represents the project as a whole; the next contains the system product
itself, and the principal supporting and management categories. Succeeding levels
subdivide the total effort into successively smaller work elements. This subdivision is
continued until the complexity and cost of each work element or task are reduced to
the point that the task can be directly planned, costed, scheduled, and controlled. The
process must ensure that no necessary task is overlooked and that realistic cost and
schedule estimates can be made.

 The specifi c form of the WBS is dependent on the nature of the project and is often
stipulated in the contract for the system development, especially if the government is
the customer. Government programs have had to comply with standards, which defi ne
a specifi c hierarchical structure that provides a logical framework and a place for every
aspect of a system product, often with a high degree of detail.

 As an example of a typical WBS structure, the system project is at level 1, and the
next level (level 2) is broken down into fi ve types of activities, abbreviated from the
more detailed descriptions in Chapter 5 :

 1. System Product , including the total effort of developing, producing, and inte-
grating the system itself, together with any auxiliary equipment required for its
operation. It includes all of the design, engineering, and fabrication of the
system, as well as the testing of its components (unit test).

 2. System Support (also referred to as “ integrated logistics support ”), involving
provision of equipment, facilities, and services necessary for the development

c08.indd 219c08.indd 219 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

220 CONCEPT DEFINITION

and operation of the system product. It includes all equipment, facilities, and
training for both development and system operations.

 3. System Test , beginning at the integration test level, unit tests of individual com-
ponents being part of the effort of developing the system product. It includes
integration and testing of subsystems and of the total system.

 4. Project Management , covering the project planning and control effort through-
out the program.

 5. Systems Engineering , covering all aspects of systems engineering support.

 The WBS is by its nature an evolving document. As noted previously, it begins in the
concept exploration phase, when only the topmost level can be identifi ed. It is in the
concept defi nition phase, when the system components and architecture have been
defi ned, that serious costing and scheduling may be undertaken. Thereafter, the WBS
must evolve along with the development and engineering of the system components
and progressive discovery and resolution of problems. Thus, at any time, the WBS
should refl ect the latest knowledge of the program tasks and their status, and should
constitute a reliable basis for program planning.

 As noted in Chapter 5 , the WBS is structured so that every task is identifi ed at the
appropriate place within the WBS hierarchy. Systems engineering plays an important
role in helping the project manager to structure the WBS so as to achieve this
objective.

 SEMP

 Chapter 5 described the nature and purpose of the planning of the systems engineering
tasks that are to be performed in the course of developing a system. In many system
acquisition programs, such a plan is referred to as the SEMP and is a required deliver-
able as part of a proposal for a system development program.

 The SEMP is a detailed plan showing how the key systems engineering activities
are to be conducted. It typically covers three main activities:

 1. Development Program Management — including organization, scheduling, and
risk management;

 2. Systems Engineering Process — including requirements, functional analysis, and
trade - offs; and

 3. Engineering Specialty Integration — including reliability, maintainability, pro-
ducibility, safety, and human factors.

 Life Cycle Cost Estimating

 The provision of a credible cost estimate for development, production, and (usually)
operational support of the proposed new system is a required product of the concept
defi nition phase. While systems engineering is not primarily responsible for this task,
it has an essential role in providing key items of information to those who are.

c08.indd 220c08.indd 220 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEM DEVELOPMENT PLANNING 221

 The only basis for deriving costs for a new task is through the identifi cation of a
similar and successfully completed task whose costs are known. To this end, the system
concept must be decomposed into elements analogous to existing components. Since
the concept at this stage is still mainly functional, the systems engineer must visualize
the likely physical embodiment of these functions. Once this is done, and any unusual
features are identifi ed, those experienced in cost estimating can usually make a reason-
able estimate of the prospective costs.

 The main guides for deriving system costs are the WBS, the life cycle model, and
costing models. The WBS, which spells out all the tasks to be performed during system
development, is the chief reference for deriving development costs.

 The costs of developing new or modifi ed components are usually derived from
estimates provided by those who expect to do the development — whether subcontrac-
tors or in - house. Special care must be taken to assure that these estimates refl ect an
assessment of the associated development risk that is neither unduly optimistic nor
overly cautious. These estimates should be reviewed critically by systems engineering
to provide a check on the above factors.

 The costs for component production, assembly, and testing are usually derived
using a cost model developed for this purpose. The cost model is based on the accu-
mulated experience of the developing organization and is updated after each new
program. The actual costing is usually done by cost estimating specialists. However,
these specialists must rely heavily on the vision of the system elements as provided by
systems engineers and the design engineers responsible for component development.

 The preparation of cost estimates must not only be as expertly performed as pos-
sible, but it must also be documented so as to be credible to management and to the
customer. In a competitive acquisition program, the magnitude and credibility of the
cost estimates, especially development costs that are the most immediate, weigh heavily
in the evaluation.

 The “ Selling ” of the System Development Proposal

 The selection of a feasible and affordable concept in the concept defi nition phase is a
necessary but not suffi cient step to assure that the engineering of that concept into an
operational system will be undertaken. Progression to the engineering development
stage requires a management decision to devote much larger resources to the project
than have as yet been expended in the conceptual phases. Whether the concept is to be
part of a competitive proposal for a formal acquisition program or is to be presented
informally to in - house management, there are always other ways to spend the money
required to develop the proposed system. Accordingly, such a decision requires compel-
ling evidence that the result will be well worth the cost and time to be expended.

 To accomplish its purpose, the concept defi nition phase must produce persuasive
evidence in favor of proceeding with the development of the proposed system. This
requires that the reasons for selecting the proposed concept are clear and compelling,
that the feasibility of the approach is persuasively demonstrated, and that the plan for
carrying out the system development is thoroughly thought out and documented. The
end result must be to instill a high degree of confi dence that the new system will achieve

c08.indd 221c08.indd 221 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

222 CONCEPT DEFINITION

the required performance within the estimated cost and time and be superior to other
potential system approaches.

 In developing such a case, it must be remembered that those making the decision
to proceed are not likely to be technical experts, so that the evidence will have to be
couched in terms that intelligent laymen can understand. This is a very diffi cult con-
straint, which must nevertheless be observed. Translating and condensing design spe-
cialist jargon and test data into a form that is readily understood, and is clearly relevant
to the issues of concept feasibility, risk, and cost, is a very important responsibility that
is commonly also assigned to systems engineering.

 In this task of selling the system concept and development plan, the following
general approach is recommended:

 1. Show the shortfalls in existing systems and the need to be fi lled by the proposed
system.

 2. Demonstrate that the proposed concept was selected after a thorough examina-
tion of alternatives. Illustrate the alternatives and indicate which main features
of the selected system drove the decision.

 3. Fully discuss program risks and the proposed means for their management.
Describe results of critical experiments designed to reveal problems and identify
solutions, especially in the application of new technology.

 4. Display evidence of careful planning of the development and production
program. Documents such as the WBS, SEMP, TEMP, and other formal plans
give evidence of such planning.

 5. Present evidence of the organization ’ s experience and previous successes in
system developments of a similar nature, and the carryover of key staff to the
proposed system.

 6. Present the derivation of the life cycle costing for the project and the level of
confi dence in the conservatism of the estimates.

 7. Provide further justifi cation as indicated by the specifi c evaluation criteria listed
in the system requirements. Discuss environmental impact analysis if that is an
issue.

 8.8 SYSTEMS ARCHITECTING

 When we think of the word “ architecture, ” something like Figure 8.5 comes to mind.
For many people, architecture refers to buildings, and an architect is someone who
designs buildings. Over two decades ago, though, a professor at the University of
Southern California challenged that notion. He reasoned that as systems grew in com-
plexity, the top - level design, or more accurately the conceptual design of a system, as
defi ned at the time, was insuffi cient to guide engineers and designers to accurate and
effi cient designs. He looked to the fi eld of architecture to understand how complex
systems (i.e., buildings) could be created and developed, and (as far as we understand)
coined the term “ systems architecting. ” That man was Eberhardt Rechtin.

c08.indd 222c08.indd 222 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEMS ARCHITECTING 223

 The Institute of Electrical and Electronics Engineers (IEEE) Std 610.12 defi nes an
architecture as “ the structure of components, their relationships, and the principles and
guidelines governing their design and evolution over time. ” This applies to complex
systems, such as aircraft, power plants, and spacecraft, as much as buildings. Therefore,
Rechtin ’ s premise was to apply the principles from the fi eld of architecture to systems
engineering, not as a replacement, but as part of developing a system.

 Dr. Rechtin defi ned the term systems architecting in this way:

 The essence of architecting is structuring. Structuring can mean bringing form to func-
tion, bringing order out of chaos, or converting the partially formed ideas of a client

 Figure 8.5. Traditional view of architecture.

Boss

Longitudinal ridge

Transverse rib

High vault

Lateral ridge

Lateral web

Longitudinal
webCrocket

Finial

Pinnacle

Buttress pier

Buttress

Cusp

Oculus

Gargoyle

Diagonal rib

Springing
Clear storey

Mullion

Light

String course

Tritorium

Main arcade

Aisle
Central or main vessel

Respond

Set off

Wall arcade

Diaz

Respond

Spandrel

Arcode arch

Abalus

Capital

Shaft

Pier

Base

Flying
buttress

c08.indd 223c08.indd 223 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

224 CONCEPT DEFINITION

into a workable conceptual model. The key techniques are balancing the needs, fi tting
the interfaces, and compromising among the extremes.

 Read closely, the principles of concept development and defi nition are within his defi ni-
tion. Twenty years ago, conceptual design and components of architecting were lumped
into the phrase “ preliminary design. ” Fortunately, that term has been replaced by the
more extensive “ architecting. ”

 Architectural Views

 While this section is not intended to present the reader with a full description of systems
architecting (see Further Reading for more detail on architecting), we do want to present
the basic concepts behind the development of a system architecture. In this vein, most
commercial and government work on architectures has followed the notion of archi-
tectural views. The idea is this. Develop representations of a system from multiple
perspectives, or views, to assist the stakeholders in understanding a system concept
(and in making those valuable trade - off decisions) before extensive development has
occurred.

 While many different architecture development methods and guidelines exist
today, all have a very common set of these perspectives. In general, a system architec-
ture will present three common views of a system.

 Operational View. This representation is from the users ’ or operators ’ perspec-
tive. This view would include products that address operational system phases, scenarios,
and task fl ows. Information fl ow from the users ’ perspectives might also be addressed.
User interfaces would also be described. Example products that might be included in
this view would be operational fi gures or graphics, scenario descriptions (including use
cases), task fl ow diagrams, organization charts, and information fl ow diagrams.

 Logical View. This representation is from the manager ’ s or customer ’ s perspec-
tive. The logical view would include products that defi ne the system ’ s boundary with
its environment and the functional interfaces with external systems, major system func-
tions and behaviors, data fl ow, internal and external data sets, internal and external
users, and internal functional interfaces. Example products for this view would be
FFBDs, context diagrams, N2 diagrams, IDEF0 diagrams, data fl ow diagrams, and
various stakeholder - specifi c products (including business - related products).

 Physical View. This representation is from the designers ’ perspective. This view
would include products that defi ne the physical system boundary, the system ’ s physical
components and how they interface and interact together, the internal databases and
data structures, the information technology (IT) infrastructure of the system and the
external IT infrastructure with which the system interfaces, and the standards in force
in its development. Example products include physical block diagrams down to a fairly
high level of detail, database topologies, interface control documents (ICDs) , and
standards.

c08.indd 224c08.indd 224 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEMS ARCHITECTING 225

 Different architectural guidelines and standards may use different names, but all
three of these perspectives are included in every architectural description.

 A common question from someone just introduced to the concept of systems
architecting is “ What is the difference between architecting and designing? ” A conve-
nient method of answering that question is to delineate the uses of an architecture versus
a design.

 A system architecture is used

 • to discover and refi ne operational and functional requirements,

 • to drive the system to a specifi c use or purpose,

 • to discriminate between options, and

 • to resolve make/buy decisions.

 A system design is used

 • to develop system components,

 • to build and integrate system components, and

 • to understand confi guration changes as the system is modifi ed.

 The nature of these uses means there is a difference between architecting and
engineering. Systems architecting is largely an inductive process that focuses on
functionality and behavior. Consequently, architecting deals with unmeasurable
parameters and characteristics as much if not more than measureable ones. The toolset
is largely unquantitative and imprecise — diagramming is a large component of
the architect ’ s toolset. Heuristics typically guide an architect ’ s decisions rather than
algorithms.

 Design engineering can be contrasted with architecting since it relies on deductive
processes. Engineering focuses on form and physical decomposition and integration.
Consequently, design engineering deals with measurable quantities, characteristics,
and attributes. Thus, analytical tools derived from physics are the engineer ’ s primary
tools.

 Given these characteristics of the two fi elds (which should certainly not be con-
sidered loosely coupled), the architect tends to be active in the early phases of the
system development life cycle. The architect tends to be rather dormant during the
detailed design, fabrication, and unit testing phases. Integration and system testing will
see the architect emerge again to ensure requirements and top - level architectures are
being followed. In contrast, the design engineer ’ s activity peaks during the architect ’ s
dormant phases, though he is by no means completely inactive during the early and
late phases of system development.

 Architecting in the Engineering Hierarchy. With the differences between
architecting and engineering, it is obvious the two activities are separate. An obvious
question then arises: who works for whom? Although there are exceptions, our role of
systems architecting leads to the management structure where the architect works for

c08.indd 225c08.indd 225 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

226 CONCEPT DEFINITION

the systems engineer. Systems architecting is a subset of systems engineering. This is
different from the role and place of the traditional architect — which is typically at the
top. When a new building is designed, developed, and constructed, the architect plays
the primary role in the building ’ s design and continues with that prominent role through-
out development and construction. In system development, the systems engineer holds
the prominent technical position and the architect works for the systems engineer.

 Architecture Frameworks

 As mentioned, architectures are used extensively now in large, complex system devel-
opment programs. The architect and his team have a large latitude in developing and
integrating products. This initially led to architectures that were technically accurate
but diverse in their structure. In order to standardize the architecture development effort
and the products associated with architectures, many organizations developed and
mandated the use of architecture frameworks.

 An architecture framework is a set of standards that prescribes a structured
approach, products, and principles for developing a system architecture. Two early
frameworks that emerged were the Command, Control, Communications, Computers,
Intelligence, Surveillance and Reconnaissance (C4ISR) Architecture Framework man-
dated by the U.S. Department of Defense (DoD) and The Open Group Architecture
Framework (TOGAF) developed for commercial organizations.

 Other frameworks have emerged recently as well, and some that have been around
for decades are being recognized as architecture frameworks, though that particular title
was not applied until recently (e.g., the Zachman Framework). The early frameworks
were focused on individual systems and their architectures. Newer versions, however,
have expanded into the fi eld of enterprise architecture, a subset of enterprise engineer-
ing or enterprise systems engineering (see Chapter 3 for a discussion of enterprise
systems engineering). All of the current versions, including the Department of Defense
Architecture Framework (DODAF) and TOGAF, have enterprise editions of their
frameworks.

 Many architecture frameworks that can be applied to system development exist,
even if the primary purpose is enterprise architecting. Below is a selected list of archi-
tecture frameworks:

 • DODAF

 • TOGAF

 • The Zachman Framework

 • Ministry of Defense Architecture Framework (MODAF)

 • Federal Enterprise Architecture Framework (FEAF)

 • NATO Architecture Framework (NAF)

 • Treasury Enterprise Architecture Framework (TEAF)

 • Integrated Architecture Framework (IAF)

 • Purdue Enterprise Reference Architecture Framework (PERAF)

c08.indd 226c08.indd 226 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEMS ARCHITECTING 227

 DODAF. Although by no means more important or “ better ” than any other frame-
work, we discuss the basic products of the DODAF to illustrate the basic components
of a framework.

 The DOD framework, like all frameworks mentioned, is divided into a series of
perspectives, or viewpoints. Figure 8.6 depicts these viewpoints using a fi gure from the
DODAF description. The viewpoints can be observed in three bundles. The fi rst con-
sists of four viewpoints that describe the overall system and its environment: capability,
operational, services, and systems. The second bundle consists of the underlying prin-
ciples, infrastructure, and standards: all data and information and standards. The fi nal
bundle is a single viewpoint focusing on the system development project.

 Version 2 of this framework is easily scalable from the system level to the enter-
prise level, where multiple systems are under development and would be integrated
into a legacy system architecture. In fact, each of the three major system - level archi-
tecture frameworks, DODAF, MODAF, and TOGAF, are now compatible with enter-
prise development efforts. Furthermore, with the addition a services viewpoint,
service - oriented architectures are now possible within the DODAF framework.

 Within each viewpoint, a set of views is defi ned. A total of 52 views are defi ned
by DODAF, organized within the eight viewpoints. For each view, a variety of methods
and techniques are available to represent the view. For example, one view within the
operational viewpoint is the operational activity model. This view can be represented
by a variety of models, such as the FFBD. Other models can be used to represent the

 Figure 8.6. DODAF version 2.0 viewpoints.

Articulates the capability requirement, delivery
timing, and depolyed capability

A
rtic

u
la

te
s
 a

p
p
lic

a
b
le

 o
p
e
ra

tio
n
a
l, b

u
s
in

e
s
s
, te

c
h
n
ic

a
l, a

n
d

in
d
u
s
try

 p
o
lic

y
, s

ta
n
d
a
rd

s
, g

u
id

a
n
c
e
, c

o
n
s
tra

in
ts

, a
n
d
 fo

re
c
a
s
ts

D
e
s
c
rib

e
s
 th

e
 re

la
tio

n
s
h
ip

s
 b

e
tw

e
e
n
 o

p
e
ra

tio
n
a
l a

n
d

c
a
p
a
b
ility

 re
q
u
ire

m
e
n
ts

 a
n
d
 th

e
 v

a
rio

u
s
 p

ro
je

c
ts

 b
e
in

g
im

p
le

m
e
n
te

d
, d

e
ta

ils
 d

e
p
e
n
d
e
n
c
ie

s
 b

e
tw

e
e
n
 c

a
p
a
b
ility

m
a
n
a
g
e
m

e
n
t a

n
d
 th

e
 d

e
fe

n
s
e
 a

c
q
u
is

itio
n
 s

y
s
te

m
 p

ro
c
e
s
s

A
rtic

u
la

te
s
 th

e
 d

a
ta

 re
la

tio
n
s
h
ip

s
 a

n
d
 a

lig
n
m

e
n
t s

tru
c
tu

re
s
 in

th
e
 a

rc
h
ite

c
tu

re
 c

o
n
te

n
t

O
ve

ra
rch

in
g
 a

sp
e
cts o

f a
rch

ite
ctu

re
 co

n
te

xt th
a
t re

la
te

 to
 a

ll vie
w

s

Articulates operational scenarios, processes,
activities, and requirements

Articulates the performers, activities, services,
and their exchanges providing for, or

supporting, DoD functions

Articulates the legacy systems or independent
systems, their compsition, interconnectivity, and

context providing for, or supporting, DoD functions

Capability viewpoint

Operational viewpoint

Services viewpoint

S
ta

n
d

a
rd

s
 v

ie
w

p
o
in

t

P
ro

je
c
t v

ie
w

p
o
in

t

A
ll v

ie
w

p
o
in

ts

D
a

ta
 a

n
d

 in
fo

rm
a
tio

n
 v

ie
w

p
o
in

t

Systems viewpoint

c08.indd 227c08.indd 227 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

228 CONCEPT DEFINITION

operational activity model, such as an IDEF0 diagram, or a combination of diagrams.
Thus, an architecture framework will typically have three layers of entities: a set of
 viewpoints that compose the framework , a set of views that defi ne each viewpoint, and
a set of models that can represent the view.

 Every large system development effort must have a minimum set of architecture
views. Rarely will a system architecture contain all 52 architecture views. Pertinent
views are decided beforehand by the systems engineer and system architect, depending
on the intended communication and the appropriate stakeholders.

 The key to developing successful system architectures is to understand the purpose
of the architecture. Although each system development effort is different, depending
on the magnitude and complexity of the system, all architectures have at least one
common purpose: to communicate information. Choosing which framework to use,
which viewpoints within the framework, which views within the viewpoint, and which
models within the view all depends on the purpose the architect is trying to achieve.

 The existing frameworks defi ne the superset of viewpoints and views that may be
included within the architecture. Within each view, the framework typically suggests
candidate models, which can be used to represent the view. A hallmark of the current
frameworks, however, is the fl exibility inherent within each view. If the architect desires
to use a model not included in the candidate list, he can — as long as he does not violate
the overall framework constraints.

 For example, many of the current frameworks were initially defi ned using tradi-
tional, structured analysis models (e.g., IDEF0, FFBD, data fl ow diagrams) to defi ne
their views. However, engineers familiar with object - oriented (OO) models began to
use a combination of OO and structured analysis models to represent views. As the
trend increased, the organizations responsible for the common architecture frameworks
revised the available models to include OO models that can represent the views. Section
 8.9 discusses two languages that implement OO models.

 8.9 SYSTEM MODELING LANGUAGES: UNIFIED MODELING
LANGUAGE (UML) AND SYSTEMS MODELING LANGUAGE (SysML)

 All architecture frameworks use models to represent aspects, perspectives, and views
of the system. Traditional models, like standard block diagramming techniques, are
based on the top - down decomposition of a system. These methods are typically func-
tionally based and are formed into a hierarchy of models representing attributes of the
system in increasing levels of detail. In the 1970s, when software engineering was
expanding at a signifi cant rate, a formal modeling construct emerged and was called
 “ structured analysis and design ” (SAAD). The term has been applied to systems in
general and is not restricted to software systems only.

 Models that have been in use for decades resemble many of the SAAD constructs,
and they have been grouped into what we call traditional hierarchical methods , or
simply traditional systems modeling . This book uses many of the traditional models to
represent aspects of systems. This informal modeling language has evolved into an
excellent educational language for communicating principles and techniques.

c08.indd 228c08.indd 228 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

SYSTEM MODELING LANGUAGES 229

 After the advent of SAAD, a new set of modeling languages has emerged, based
on object - oriented analysis and design (OOAD) principles. This analysis and design
method is primarily bottoms - up in approach and focuses on entities, as opposed to
functions, though the two are closely related. In the 1990s, a new modeling language
that incorporated OOAD principles and techniques was formalized: the UML.

 UML

 It was noted that in developing a complex system, it is essential to create high - level
models of its structure and behavior to gain an understanding of how it may be con-
fi gured to meet its requirements. In the development of OOAD methodology, several
of the principal practitioners separately developed such models. In the mid - 1990s, three
of them (Booch, Rumbaugh, and Jacobson), developed a common modeling terminol-
ogy they called the “ UML. ” This language has been adopted as a standard by the
software community and is widely used throughout industry and government. It is sup-
ported by sophisticated tools produced by several major software tool developers.

 Whereas structured methodology employs three complementary views of a system,
UML provides OO analysts and designers with 13 different ways to diagram different
system characteristics. They may be divided into six static or structural diagrams and
seven dynamic or behavioral diagrams. Figure 8.7 also lists the two sets of diagrams.

 Structural diagrams represent different views of system entity relationships:

 • Class Diagrams show a set of classes, their relationships, and their interfaces.

 • Object Diagrams show a set of instances of classes and their relationships.

 • Component Diagrams are typically used to illustrate the structure of, and rela-
tionships among, physical objects.

 • Deployment Diagrams show a static view of the physical components of the
system.

 • Composite Structure Diagrams provide a runtime decomposition of classes.

 • Package Diagrams present a hierarchy of components.

 Figure 8.7. UML models.

Structural Diagrams Behavioral Diagrams

Class
Activity

Use Case
Component

Object

Composite Structure

Deployment

State Machine

Sequence
Communication

Deployment
Package

Timing

Interaction Overview

c08.indd 229c08.indd 229 2/8/2011 11:04:59 AM2/8/2011 11:04:59 AM

230 CONCEPT DEFINITION

 Behavioral diagrams represent different views of system dynamic
characteristics.

 • Use Case Diagrams show interrelations among a set of use cases representing
system functions that respond to interactions with external entities (“ actors ”).

 • Sequence Diagrams show the interactions among a set of objects in executing a
system scenario, arranged in chronological order.

 • State Machine Diagrams model the transition events and activities that change
the state of the system.

 • Activity Diagrams are fl owcharts of activities within a portion of the system
showing control fl ows between activities.

 • Communication Diagrams defi ne links between objects, focusing on their
interactions.

 • Interaction Overview Diagrams are a mix of sequence and activity diagrams.

 • Timing Diagrams present interactions between objects with timing
information.

 UML class diagrams correspond approximately to entity relationship diagrams in
structural analysis, while state chart diagrams correspond to state transition diagrams.
Others, especially activity diagrams, are different views of functional fl ow diagrams.

 The new language was quickly adopted by the software engineering community
as the de facto standard for representing software concepts and software - intensive
systems. Although the origins of the language are in the software world, recently, the
language has been used successfully in developing systems that include both hardware
and software.

 UML is governed by the Object Management Group (OMG), a worldwide consor-
tium. UML will continue to evolve with new releases and added complexity.

 Rather than providing examples and explanations to all of the diagrams, we present
some examples — several behavioral diagrams: the use case diagram, the activity
diagram, and the sequence diagram; and one structural diagram: the class diagram.

 Use Case Diagram. We present the use case diagram fi rst due to its utility in
defi ning a system ’ s operation. In software, and in some hardware applications, use cases
have been used to assist the identifi cation and analysis of operational and functional
requirements.

 The form of a use case diagram is shown in Figure 8.8 , modeling the interaction
of an “ actor ” on the left side (represented by the stick fi gures) with a single use case
(represented by an oval), which leads to a subordinate activity (a separate use case),
while the other three interact with a second (external) actor. The arrows indicate the
initiation of the use case, not the fl ow of information. For example, the librarian actor
can initiate the “ manage loans ” use case. The “ check - in book ” use case may also initiate
the same use case.

 Each use case in the diagram represents a separate sequence of activities and
events. UML defi nes a standard set of components for a use case, including

c08.indd 230c08.indd 230 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

SYSTEM MODELING LANGUAGES 231

 • title;

 • short description;

 • list of actors;

 • initial (or pre -) conditions describing the state of the environment before the use
case occurs (or is executed);

 • end (or post -) conditions describing the state of the environment after the use
case occurs (or has been executed); and

 • sequence of events, a list of actions or events that occur in a defi ned sequence.

 Table 8.2 displays an example use case description for “ check - out book. ” The
sequence of events lists the actions and activities that both actors and subsystems
execute. In this case, the use case involves one actor and two subsystems — the check -
 out station and the loan management subsystem. This use case represents an automated
check - out system at a library using the Universal Product Code (UPC) symbology.

 Although not required, it can be benefi cial to use columns to separate actions of
each actor and subsystem, such as was done in Table 8.2 . This allows the reader to
easily determine who is performing the action and in what order (sometimes simultane-
ously). Use cases can, of course, be stylized or tailored to specifi c situations and may
demonstrate the preferences of their authors. In other words, two engineers may come
up with different use case sequences of events for the same use case. This may not
represent a fl aw or problem. In fact, a use case may have several different variants,
known in UML as “ scenarios. ” Unfortunately, the use of the term scenarios differs from
our traditional defi nition provided earlier.

 Activity Diagram. As another example of a behavior diagram, we turn to the
activity diagram. Activity diagrams can represent any type of fl ow inherent in a system,
including processes, operations, or control. The diagram accomplishes this through a

 Figure 8.8. Use case diagram.

Check-Out
Book

Check-In
Book

Manage
Loans

Send
Overdue
Notice

Maintain
Loan

Record

Librarian Library

Member

c08.indd 231c08.indd 231 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

232 CONCEPT DEFINITION

 TABLE 8.2. Use Case Example — “ Check - Out Book ”

 Title Check book

 Short description This use case describes a typical process of a library member
checking out a library book.

 List of actors Library member
 Initial conditions Library member has no books assigned to him on loan.
 End conditions Library member has a single book assigned to him on loan.

 Sequence
of events Library member Check - out station

 Loan management
subsystem

 1 Displays “ Please swipe card ”
 2 Swipes library car
 3 Reads member data from card
 4 Sends request to confi rm

member is in good standing

 5 Checks database for
member information

 6 Confi rms good standing
 7 Receives confi rmation Sends confi rmation
 8 Displays “ Place book UPC

under scanner ”

 9 Places book UPC
symbol under
scanner

 10 Scans book UPC
 11 Sends request to confi rm

book is available

 12 Checks database for
book information

 13 Confi rms availability
 14 Receives confi rmation Sends confi rmation
 15 Displays “ Thank you! Book

is due in two weeks. ”
 Indicates book as “ out ”

sequence of activities and events. The sequence of activities and events is regulated via
various control nodes. The basic components of the activity diagram are described
below:

 • Action: an elementary executable step within an activity (rectangle with rounded
corners);

 • Activity Edge: a connecting link between actions, and between actions and nodes
(an arrow); activity edges are further divided into two types: object fl ows and
control fl ows;

 • Object Flow: an activity edge that transports objects (or object tokens);

c08.indd 232c08.indd 232 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

SYSTEM MODELING LANGUAGES 233

 • Control Flow: an activity edge that represents direction of control (also trans-
ports control tokens);

 • Pin: a connecting link between action parameters and a fl ow (a box connected
to an action and a fl ow); a pin accepts explicit inputs or produces explicit outputs
from an action;

 • Initial Node: the starting point for a control fl ow (solid circle);

 • Final Node: the termination point for a control fl ow (solid circle within an open
circle);

 • Decision Node: a branch point for a fl ow in which each branch fl ow contains a
condition that must be satisfi ed (diamond);

 • Merge Node: a combination point in which multiple fl ows are merged into a
single fl ow (diamond);

 • Fork Node: a point at which a single fl ow is split into multiple concurrent fl ows
(a solid line segment); and

 • Join Node: a point in which multiple fl ows are synchronized and joined into a
single fl ow (a solid line segment).

 Figure 8.9 represents a simple activity diagram, which is analogous to a functional
fl ow diagram, for our library book system. The diagram shows the activity path to split
into two concurrent activities, one of which follows one of two logical paths, of return-
ing or borrowing a library book.

 Figure 8.9. UML activity diagram.

BorrowReturn

Record

Return
Overlimit

Underlimit

Cancel

Loan

Issue

Loan

Record

LoanLoan Loan Loan

c08.indd 233c08.indd 233 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

234 CONCEPT DEFINITION

 Figure 8.10. UML sequence diagram.

Check-out station
Loan management

subsystem
Book database

Displays “Please swipe card”

Swipes library card

Reads member

data from card

Sends request to

confirm member is in

good standing

Checks database for
member information

Confirms good

standing

Sends confirmation
Receives

confirmation

Displays “Place book

UPC under scanner”
Places book UPC

symbol under

scanner Scans book UPC

Displays “Thank you!
Book is due in two
weeks”

Sends request to

confirm book is

available Checks database for

book information

Confirms

availability

Sends confirmation
Receives

confirmation

Indicates book as “out”

Library

member

 Sequence Diagram. Our last behavior diagram is the sequence diagram. These
diagrams are usually linked to a use case where actions or events are listed in sequential
formats. The sequence diagram takes advantage of this sequence and provides a visual
depiction of the sequence of events, tied to the actor or subsystem performing the action.

 Figure 8.10 depicts an example sequence diagram of the check - out operation. The
diagram is tied to the use case presented above but provides additional information
over what was presented in the use case description.

 Class Diagram. At the heart of the UML is the concept of the class and is
depicted in the class diagram. A class is simply a set of objects (which can be real or
virtual) that have the same characteristics and semantics. In this case, an object can be

c08.indd 234c08.indd 234 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

SYSTEM MODELING LANGUAGES 235

almost anything and, within the UML, can be represented in software. The class typi-
cally describes the structure and behavior of its objects.

 Within a class defi nition, three primary components exist (among others):

 • Attributes: the structural properties of the class;

 • Operations: the behavior properties of the class; and

 • Responsibilities: the obligations of the class.

 Classes typically have relationships with other classes. The basic structural relationship
is known as an association . Figure 8.11 depicts a simple association between the two
classes, “ employee ” and “ company. ” The line linking the two classes can have an arrow;
however, if no arrow is present, then a bidirectional relationship is assumed. The nature
of the association can also be provided by using a triangle. The association is then read
like a sentence, “ Employee works for company, ” and “ Company employs employee. ”
Finally, if the author wants to designate the association as a numerical relationship, he
can use multiplicity . Multiplicity designates the numerical aspects of the association
and can be expressed with specifi c numbers or a series of shorthand notations. For
example, 0..2 means that any value between 0 and 2 can exist as part of the association.
The star symbol, * , is used as a wildcard symbol, and can be thought of as “ many. ”
Thus, in our example, both the star and the number “ 1 ” are used to represent the fact
that an employee works for only one company, and the company employs many
employees.

 Two other relationship types between classes are generalization and dependency .
Generalization refers to a taxonomic relationship between a special, or specifi c, class
and a general class. Figure 8.12 depicts a generalization relationship between the three
classes, customer, corporate customer, and personal customer. In this case, both the
corporate and the personal customers are specifi c class types belonging to the general
class, customer. This relationship is depicted as an arrow with a large arrowhead. In
this diagram, the class attributes and operations are provided for each.

 When a generalization relationship is defi ned, the specifi c classes inherit the attri-
butes and operations of the parent. Thus, the corporate customer class not only has its
own specifi c attributes and operation but would also contain the attributes Name and
Address, in addition to the operation, getCreditRating(). The same is true for the per-
sonal customer class.

 Dependency is the third type of relationship and denotes the situation where one
class requires the other for its specifi cation or implementation. We should note that
dependency is a relationship type that can be used among other elements within the
UML, not just classes.

 Figure 8.11. Example of a class association.

Employee Company
Works for 1

* Employs

c08.indd 235c08.indd 235 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

236 CONCEPT DEFINITION

 Figure 8.12. Example of a class generalization association.

Customer

Name [1]

Address [0..1]

getCreditRating(): String

Corporate Customer

contactName

Personal Customer

contactName

creditRating

creditLimit

billforMonth(integer)

creditCardNumber

 Figure 8.13 includes the dependency association with our library example. The
class diagram depicts several association types as presents a number of classes that
would be defi ned as part of the library check - out system.

 Systems Modeling Language (SysML)

 Although UML has been applied to systems that include both hardware and software,
it became evident that a variant form of UML, developed specifi cally for systems that
combine software and hardware, could be used more effectively. Additionally, with the
evolution of systems engineering, and specifi cally systems architecting, during the
1990s, a formal modeling language was recognized as benefi cial to establish a consis-
tent standard. The International Council on Systems Engineering (INCOSE) commis-
sioned an effort in 2001 to develop a standard modeling language. Due to its popularity
and fl exibility, the new language was based on UML, specifi cally version 2.0. The OMG
collaborated with this effort and established the Systems Engineering Domain Special
Interest Group in 2001. Together, the two organizations developed and published the
systems engineering extension to UML, called the SysML for short.

 Perhaps the most important difference between UML and SysML is that a user of
SysML need not be an expert in OOAD principles and techniques. SysML supports
many traditional systems engineering principles, features, and models. Figure 8.14
presents the diagrams that serve as the basis for the language.

c08.indd 236c08.indd 236 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

SYSTEM MODELING LANGUAGES 237

 Figure 8.13. Class diagram of the library check - out system.

Library
System

Do Check-In ()

Do Check-Out ()

Display menu ()

Work station
Bar Code
Reader

Member

Record Record Record

Book Loan

Display Prompt ()

Print Loan ()
Scan Bar Code ()

Name
Address

Status

Name
Subject

Status

Member ID

Book ID

()

Add Loan ()

Remove Loan ()
Change Status ()

Create Loan ()

Remove Loan ()

Check-Out
Controller

Loan

Book ID
Member ID

Prompt ID ()

Validate ()

Create Loan () Get Data ()

Get ID ()

 Figure 8.14. SysML models.

Structural Diagrams Behavioral DiagramsRequirement Diagram

Block Definition

Internal Block

Parametric

Package

Activity

Use Case

State Machine

Sequence

Requirement

Package Sequence

c08.indd 237c08.indd 237 2/8/2011 11:05:00 AM2/8/2011 11:05:00 AM

238 CONCEPT DEFINITION

 A new category, consisting of a single diagram of the same name, has been intro-
duced: the requirements diagram. Only four of the 13 UML diagrams are included
without changes: package, use case, state machine, and sequence. Diagrams that rely
heavily on OO methodologies and approaches are omitted.

 As with UML above, we present an example diagram from each category — in this
case three — the requirements diagram, the internal block diagram, and the activity
diagram. The latter two correspond closely to the UML class and activity diagrams;
however, we will highlight the differences in our discussion.

 Requirements Diagram. In UML, software requirements are primarily cap-
tured in the use case descriptions. However, these are primarily functional require-
ments; nonfunctional requirements are not explicitly presented in UML. Stereotypes
were developed in response to this gap; however, SysML introduces a new model that
specifi cally addresses any form of requirements.

 Figure 8.15 presents a simple example of a requirements diagram. The primary
requirement is the maximum aircraft velocity. This is a system - level requirement that
has three attributes: an identifi cation tag, text, and the units of the requirements metric.
The text is the “ classical ” description of the specifi c requirement. As described in the
previous chapters, the system - level requirement has a verifi cation method — in this case
a test, indicated by “ TestCase. ” The details of the AircraftVelocityTest would be found
elsewhere.

 Figure 8.15. SysML requirements diagram.

«Verify»«requirement»

Maximum Aircraft Velocity
«TestCase»

AircraftVelocityTest

«Verify»

“requirement”
Id=“R12.6”
Text=“The aircraft shall have a
maximum velocity of no less than

400 kts, at 5000 ft altitude under
standard day conditions”
Units=“kts”

«DeriveReqt» «DeriveReqt» «DeriveReqt»

«requirement»

Engine Thrust
«requirement»

Aircraft Weight
«requirement»

Aircraft Lift

«block»

«Satisfy»

«block»

«Satisfy»

Engine Airframe

c08.indd 238c08.indd 238 2/8/2011 11:05:01 AM2/8/2011 11:05:01 AM

SYSTEM MODELING LANGUAGES 239

 This system - level requirement may lead to a set of derived requirements, typically
associated with subsystems of the system. In the fi gure, three derived requirements are
included: engine thrust, aircraft weight, and aircraft lift. These requirements would also
have attributes and characteristics, although they are not shown in this particular
diagram.

 Finally, the satisfy relationship is depicted in the fi gure. This indicates a mecha-
nism, or entity, that will satisfy the derived requirement. In the case of engine thrust,
the engine subsystem is responsible for satisfying the derived requirement.

 The requirements diagram is typically a series of rectangles that identify and asso-
ciate many system - level requirements with subsystem - level requirements, their verifi -
cation methods, derived requirements, and their satisfaction concepts. The latter allows
the concept of mapping or tracing requirements to functional and physical entities.

 As with operational, performance, and functional requirements, these diagrams are
updated throughout the systems engineering method and the system development
process. Linkages between components of the requirements model represented in this
diagram, and the functional and physical models represented in other SysML diagrams,
are crucial to successful systems engineering. Modern tools have been, and are being,
developed to facilitate these linkages between model components.

 Allocation. In SysML, a formal mechanism has been developed to enable the
user to connect, or bind, elements of different models together. This mechanism is
called allocation. SysML provides three types of allocations, although users can defi ne
others: behavior, structure, and object fl ow. The behavior allocation links, or allocates,
behavior (represented in one or more of the behavioral diagrams) to a block that real-
izes this behavior. Recall that behavior is typically an activity or action. The structure
allocation links, or allocates, logical structures with physical structures (and vice versa).
This mechanism enables the engineer to link components of a logical defi nition of the
system (typically represented by logical blocks) with components of a physical defi ni-
tion of the system (typically represented by physical blocks and packages). Finally, the
object fl ow allocation connects an item fl ow (found in the structure diagram) with an
object fl ow edge (found in the activity diagram). Allocation can be signifi ed by a dashed
arrow in many of the SysML diagrams.

 Block Defi nition Diagram. In UML, the basic element is the class , with the
 object representing its instantiation. Because these terms are so closely identifi ed with
software development, SysML uses a different name to represent its basic element — the
 block . The structure and meaning of the block is almost identical to the class. A block
contains attributes, may be associated with other blocks, and may also describe a set
of activities that it conducts or behaviors it exhibits.

 Blocks are used to represent the static structure of a system. They may represent
either logical (or functional) elements or physical elements. The latter can also be
divided into many types of physical manifestations — hardware, software, documenta-
tion, and so on. Figure 8.16 depicts an example block defi nition. The various compo-
nents of a block defi nition are also depicted. This defi nition would be part of the block
defi nition diagram (or sets of diagrams).

c08.indd 239c08.indd 239 2/8/2011 11:05:01 AM2/8/2011 11:05:01 AM

240 CONCEPT DEFINITION

 The block name is at the top. Values are the attributes or characteristics of the radar
that are pertinent; the fi gure displays a sample set of attributes for this radar block. The
next section down is the operations or the actions and behaviors of the block. In this
example, the radar conducts only two types of operations, DetectTarget and StatusCheck.
In reality, of course, common radars would perform many other operations. There may
be constraints put on the operations or attributes of the block, so the next section lists
any constraints. The block may also be defi ned with its subsystems or components,
typically referred to as “ parts. ” The example lists six basic subsystems of the radar.
Finally, references (to other blocks) are provided.

 Figure 8.17 depicts several types of block associations. Associations, similar to
their counterparts in UML, represent relationships between blocks. Simple associations
are depicted as lines connecting blocks. If direction is needed, then an arrow is placed

 Figure 8.16. SysML block defi nition.

«block»

{encapsulated}

Radar

Values

Frequency: MHz
Bandwidth: MHz

Power: MW
Antenna Gain: dB

Polarization: (V, H, C}

Operations

DetectTarget (f:S/N, PD)

StatusCheck

Constraints

{Power < 5 MW}

Parts

AntennaAntenna

Power Generator
Transmitter

Receiver
Signal Processor
Scope

References

Waveform: RadarSignal

c08.indd 240c08.indd 240 2/8/2011 11:05:01 AM2/8/2011 11:05:01 AM

SYSTEM MODELING LANGUAGES 241

on one end — this type of association is called a navigable association . Special catego-
ries are also available: aggregation associations represent blocks that are part of a
whole; composition associations represent blocks that are part of a composite; depen-
dency associations represent blocks that are dependent on other blocks; and generaliza-
tion associations represent specialized blocks that are incorporated into a general block.

 Activity Diagram. Of UML ’ s behavioral diagrams, only one has been signifi -
cantly expanded within SysML: the activity diagram. Four major extensions have been
incorporated:

 • Control fl ow has been extended with control operators.

 • Modeling of continuous systems is now enabled using continuous object fl ows.

 • Flows can have associated probabilities.

 • Modeling rules for activities have been extended.

 With these extensions, some existing functional modeling techniques can be imple-
mented, such as the extended functional fl ow block diagram (EFFBD). Additionally,
with the new extensions, a function tree can be represented quite easily, as shown in
Figure 8.18 a. This example uses the coffeemaker functions provided in Figure 8.4 .

 These functions can be arranged into a more traditional activity diagram, shown
in Figure 8.18 b. For clarity, the diagram does not include all 11 functions. The general
control fl ow is indicated by the fl ow arrows and follows the general fl ow of Figure 8.4
(the FBD). Inputs and outputs are depicted by separate connectors — arrows with pins
(or rectangles connected to the activity). These connectors are labeled with the entities

 Figure 8.17. SysML block associations.

«block»

Fusion

workstation

«block»
«block»

Radar data fusion
* 1

Aggregation

Is a member of

Radar
workstation

1

associations

Is a part of

Provides data to

Is dependent on

1

«block» «block» «block» «block»

111
*

Antenna Transmitter Receiver Fusion technique

c08.indd 241c08.indd 241 2/8/2011 11:05:01 AM2/8/2011 11:05:01 AM

«activity»

(a)

Make Coffee

«activity»

Receive Coffee Materials

«activity»

«activity»

Distribute Electricity

«activity»

0..1

0..1 0..1

0..1

Accept User Command Distribute Weight

«activity»

Heat Water

«activity»

Provide Status

0..1 0..1

«activity»

Mix Hot Water with Coffee

Grinds

«activity»

Facilitate Removal of

Materials

0..1 0..1

«activity»

Filter Out Coffee Grinds

«activity»

«activity»

Dissipate Heat

0..1

0..1

0..1

Warm Brewed Coffee

 Figure 8.18. (a) SysML functional hierarchy tree. (b) SysML activity diagram.

Accept User Command Provide StatusReceive Coffee Materials

Heat Water
Water

(b)

State

On/O
ff C

ommand

Mix Hot Water with
Coffee Grinds

Coffee Grinds «ControlOperator»
Enable Status Indicator

Filter Out Coffee Grinds
Filter Done IndicationFilter

Warm Brewed Coffee
Warmer Status

Facilitate Removal of
Materials

242

c08.indd 242c08.indd 242 2/8/2011 11:05:01 AM2/8/2011 11:05:01 AM

MODEL-BASED SYSTEMS ENGINEERING (MBSE) 243

passed across the interfaces. A control operator is also included to illustrate this type
of special control mechanism. In this case, a control operator regulates what is passed
to the Display Status activity, depending on the combination of its three inputs.

 We have presented three SysML diagrams to illustrate some of the basic techniques
of the language — one from each diagram category. Like UML, SysML offers the
systems engineer and the systems architect with a fl exible modeling kit with which to
represent many aspects and perspectives of a system concept. Furthermore, it over-
comes some of the inherent challenges within the UML when representing the more
traditional methods of systems engineering, the requirements diagram being perhaps
the most relevant example. With the advent of SysML, numerous commercial applica-
tions have risen to assist the engineer in developing, analyzing, and refi ning system
concepts.

 8.10 MODEL - BASED SYSTEMS ENGINEERING (MBSE)

 With the advent of formal modeling languages, such as UML and SysML, and system
architecture frameworks, such as DODAF and TOGAF, the ability of systems engineers
to represent system requirements, behaviors, and structures has never been greater.
Thus, exploring and defi ning system concepts have now been formalized and a new
subset of systems engineering, systems architecting, has risen from obscurity to signifi -
cance. In broad terms, the system architecture can be thought of as a model of the
system, or at least the system concept. This is not to be confused with the fact that
the term “ model ” is also used to denote the basic building blocks of a system
architecture.

 Soon after the fi rst formal version of UML was released, OMG released the fi rst
version of their new model - driven architecture (MDA). This architecture was the fi rst
formal architecture framework that recognized the shift from a code - centric software
development paradigm to an object - centric paradigm, enabled by the then de facto
standard for software engineering model languages, UML. The MDA presented a set
of standard principles, concepts, and model defi nitions that allowed for consistency in
defi ning object models across the software community.

 MDA delineated between the real system and its representation by a set of models.
These models, in turn, would conform to a metamodel defi nition, which would in turn,
conform to a meta - meta model defi nition. Several concepts, processes and techniques
were presented in the literature using this concept, although the names differed: model -
 driven development, model - driven system design (MDSD), and model - driven engineer-
ing. They were all based on the basic concepts of focusing on a model and its metamodel
to represent the system from the early stages of development through deployment and
operations.

 With the attempt to merge software and systems engineering processes and prin-
ciples, model - driven development was applied several times to system development in
various forms. In 2007, these attempts (along with their techniques and concepts) were
grouped by INCOSE under the banner of MBSE. And with the release of the current
versions of SysML, this approach has continued to increase in popularity.

c08.indd 243c08.indd 243 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

244 CONCEPT DEFINITION

 The basic notion behind MBSE is that a model of the system is developed early
in the process and evolves over the system development life cycle until the model
becomes, in essence, the build - to baseline. Early in the life cycle, the models have low
levels of fi delity and are used primarily for decision making (not unlike the system
architecture in Section 8.8 above). As the system is developed, the level of fi delity
increases until the models can be used for design. Finally, the models are transformed
yet again into the build - to baseline. At each stage, similar to the standard systems
engineering method introduced in Chapter 4 , a subprocess is performed to evolve the
set of system models. Baker introduced this subprocess for his approach (which he
called MDSD). This subprocess is shown in Figure 8.19 .

 Additionally, Baker defi ned an early information model, or view, for an MDSD.
This is provided in Figure 8.20 and is read similarly to a UML class diagram. The
arrows represent the direction of the relationship, not the fl ow of information.

 Figure 8.19. Baker ’ s MDSD subprocesses.

Develop
requirements

Make technology.
design decisions and
identify alternatives

Build test

Formulate

articles

Test articles

Validate
models

models

Analyze test
and existing

against data
and analysis

data

Assess
compliance
with
requirements

 Figure 8.20. Baker ’ s information model for MDSD.

Design Case
Executes

Represents

Validates

Specifies

Exercises

ComponentRequirement Model

c08.indd 244c08.indd 244 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

MODEL-BASED SYSTEMS ENGINEERING (MBSE) 245

 Although this approach may sound familiar to the traditional systems engineering
approach, several signifi cant differences exist between the two. The foremost difference
is the products of each. In traditional systems engineering (including either of the
structured analysis or OO approaches), the primary products early in the system devel-
opment life cycle are documents. Regardless of whether these documents are electronic
or paper, they tend to be static representations of the system. With MBSE, the primary
products are models, which can be executed to some extent. Thus, reviewing an MDSD
(regardless of where one is along the life cycle) involves interrogating a set of models,
which is an automated process. Reviewing traditional systems engineering products
involves largely reading text and diagrams (although modern representations and dis-
plays greatly assist in this).

 Of course, there is a price for this ability. Additional computing resources (applica-
tions, databases, hardware, visualization, and networking) are required to facilitate the
MDSD effort. Currently, few of these resources are available, although more are in
development and should be available to engineers soon. Furthermore, until projects
are implemented using this approach, we do not yet have a rich lessons learned
database.

 With this inexperience in mind, INCOSE set about to identify and document the
products which implemented this approach in part or whole. The INCOSE MBSE Focus
Group published its fi nding in May 2007 and they identifi ed fi ve methodologies:

 1. Telelogic ’ s Harmony ® – SE. This proprietary methodology is modeled after the
products classical systems engineering “ Vee ” process, except that a require-
ments and model repository is established and updated during each step in the
process. Additionally, a test data repository is also established and updated to
track test cases and data. Several tools and applications have been developed
or revised to facilitate the harmony methodology. Telelogic produces several of
these (e.g., Rhapsody, Popkin, DOORS), although the methodology itself is
application - neutral.

 2. INCOSE ’ s Object - Oriented Systems Engineering Method (OOSEM). This
approach implements the model - based approach using SysML to support the
specifi cation, analysis, design, and verifi cation of a system. The basic set of
activities produces artifacts that can be refi ned and used in other applications.
These activities and artifacts are listed below:

 a. Analyze stakeholder needs.
 b. Defi ne system requirements.
 c. Defi ne logical architecture.
 d. Synthesize candidate allocated architectures.
 e. Optimize and evaluate alternatives.
 f. Validate and verify the system.

 3. IBM ’ s Rational Unifi ed Process for Systems Engineering (RUP – SE). The goal
of the RUP – SE process was to apply the discipline and best practices found in
the RUP and to apply them to the challenges of system specifi cation, analysis,
design, and development. Moreover, RUP – SE was developed specifi cally to

c08.indd 245c08.indd 245 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

246 CONCEPT DEFINITION

implement model - driven system development. This adaptation of the existing
unifi ed process focuses on four modeling levels: context, analysis, design, and
implementation, each incorporating higher levels of fi delity than the previous.
These fi rst three model levels are then cross - indexed with six viewpoints:
worker, logical, information, distribution, process, and geometric, to produce
17 architecture artifacts (the context/process pair does not produce an artifact,
and the implementation model produces actual physical artifacts). These arti-
facts become the basis of the RUP – SE architecture framework.

 4. Vitech ’ s MBSE Methodology. This approach is based on four primary activities
that are integrated through a common design repository:

 a. source requirements analysis,
 b. functional/behavior analysis,
 c. architecture/synthesis, and
 d. design validation and verifi cation.

 This methodology requires a common information model to manage
the syntax and semantics of artifacts. Vitech has defi ned a system defi nition
language (SDL) for use with their process (which also can be used with their
tool, CORE), although the process itself can use any information model
language.

 5. Jet Propulsion Laboratory ’ s (JPL) State Analysis (SA). This last methodology
leverages a model - and state - based control architecture to capture system
requirements and design. This process distinguishes between a system ’ s state
and one ’ s knowledge of that state. Generally, the knowledge of the system state
is represented by more abstract concepts than the actual states themselves. How
the system evolves from state to state is represented within a set of models.
Finally, system control is also represented by models, although complete control
is considered impossible due to system complexity.

 The establishment and maturation of OO methods, systems modeling languages, and
the proliferation of tools and applications implementing those methods and languages
have led to an increased awareness of the benefi ts of using a model - driven approach
in systems engineering. And although the approach does come with a price in increased
resources, the benefi ts may indeed provide for an adequate return on investment. Case
studies are slowly being offered as “ proof ” that this approach can indeed work. More
time and experience is necessary before the community as a whole embraces MBSE;
however, its basic principles are sound. And this methodology and approach is one
more step in the convergence of software and systems engineering practices.

 8.11 SYSTEM FUNCTIONAL SPECIFICATIONS

 The concept defi nition phase is not complete until a formal basis is created to
guide the follow - on engineering design stage. A linchpin of such a basis is a statement

c08.indd 246c08.indd 246 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

SUMMARY 247

describing completely and concisely all the functions that the system must be
designed to perform in order to fulfi ll its operational requirements. In major govern-
ment acquisitions, such a statement is usually called the “ system specifi cation ” or
 “ A - Spec. ”

 The system specifi cation can be thought of as a textual and diagrammatic repre-
sentation of the system concept. It does not, however, address specifi cally how the
system is implemented to perform its functions but stipulates what functions are to be
performed, with what precision, and under what conditions. In so doing, it is essential
that the defi nitions be stated in measurable terms because the engineering implementa-
tion of those functions will rely on these defi nitions.

 While the preparation of system specifi cations is logically a part of the concept
defi nition phase, in a competitive acquisition process, it is usually prepared immediately
after the selection process by the successful contractor team. In commercial product
development, the process is not as formal but is similar in purpose.

 The system specifi cation document should address at least the following
subjects:

 System Defi nition

 Mission and concept of operation system functions

 Confi guration and organization of system interfaces

 Required Characteristics

 Performance characteristics (hardware and software) and compatibility
requirements

 RMA requirements

 Support Requirements

 Shipping, handling, and storage training

 Special facilities

 Special Requirements

 Security and safety human engineering

 The leadership and much of the actual work involved in formulating the system
specifi cation document is the responsibility of systems engineering.

 8.12 SUMMARY

 Selecting the System Concept

 Objectives of the concept defi nition phase are to select a preferred system confi guration
and to defi ne system functional specifi cations, as well as a development schedule and
cost.

 Concept defi nition concludes the concept development stage, which lays the basis
for the engineering development stage of the system life cycle. Defi ning a preferred
concept also provides a baseline for development and engineering.

c08.indd 247c08.indd 247 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

248 CONCEPT DEFINITION

 Activities that comprise concept defi nition are

 • Performance Requirements Analysis — relating to operational objectives,

 • Functional Analysis and Formulation — allocating functions to components,

 • Concept Selection — choosing the preferred concept by trade - off analysis, and

 • Concept Validation — confi rming the validity and superiority of the chosen
concept.

 Performance Requirements Analysis

 Performance requirements analysis must include ensuring compatibility with the system
operating site and its logistics support. The analysis must also address reliability, main-
tainability, and support facilities, as well as environmental compatibility. A specifi c
focus on the entire life cycle, from production to system disposition, must be kept.
Finally, the analysis must resolve the defi nition of unquantifi ed requirements.

 Functional Analysis and Formulation

 Functional system building blocks (Chapter 3) are useful for functional defi nition. The
selection of a preferred concept is a systems engineering function, which formulates
and compares evaluation of a range of alternative concepts.

 Functional Allocation

 Developing alternative concepts requires part art and part science. Certainly, the pre-
decessor system can act as a baseline for further concepts (assuming a predecessor is
available). Brainstorming and other team innovation techniques can assist in developing
alternatives.

 Concept Selection

 System concepts are evaluated in terms of (1) operational performance and compatibil-
ity, (2) program cost and schedule, and (3) risks in achieving each of the above. Program
risk can be considered to consist of a combination of two factors: likelihood that the
system will fail to achieve its objectives and impact of the failure on the success of the
program.

 Program risks can result from a number of sources:

 • unproven technology,

 • diffi cult performance requirements,

 • severe environments,

 • inadequate funding or staffi ng, and

 • an unduly short schedule.

 Trade - off analysis is fundamental in all systematic decision making.

c08.indd 248c08.indd 248 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

SUMMARY 249

 Concept Validation

 In concept selection, trade - off analysis should be

 • Organized — set up as a distinct process,

 • Exhaustive — consider the full range of alternatives,

 • Semiquantitative — use relative weightings of criteria,

 • Comprehensive — consider all major characteristics, and

 • Documented — describe the results fully.

 Justifi cation for the development of the selected concept should

 • show the validity of the need to be met;

 • state reasons for selecting the concept over the alternatives;

 • describe program risks and means for containment;

 • give evidence of detailed plans, such as WBS, SEMP, and so on;

 • give evidence of previous experience and successes;

 • present life cycle costing; and

 • cover other relevant issues, such as environmental impact.

 System Development Planning

 The WBS is essential in a system development program and is organized in a hierarchi-
cal structure. It defi nes all of the constituent tasks in the program.

 The SEMP (or equivalent) defi nes all systems engineering activities through the
system life cycle.

 Systems Architecting

 Systems architecting is primarily the development and articulation of different perspec-
tives, or viewpoints, of a system. Almost all system architectures have at least three
perspectives:

 • Operational View — a system representation from the user ’ s or operator ’ s
perspective,

 • Logical View — a system representation from the customer ’ s or manager ’ s per-
spective, and

 • Physical View — a system representation from the designer ’ s perspective.

 Architecture frameworks defi ne the structure and models used to develop and
present a system architecture. These frameworks are meant to ensure consistency across
programs in articulating the various perspectives.

c08.indd 249c08.indd 249 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

250 CONCEPT DEFINITION

 System Modeling Languages: UML and SysML

 The UML provides 13 system models to represent both structural and behavioral
aspects of the system. Although UML was developed for software development applica-
tions, it has been successfully applied to software - intensive systems. The language
differs from the traditional structured analysis approach by focusing on entities (repre-
sented by classes and objects) instead of functions and activities.

 The SysML is an extension of UML that enables a more complete modeling of
software/hardware systems and facilitates the top - down approach of traditional systems
engineering. An emphasis on requirements to drive the development effort is inherent
in SysML. To distinguish the two languages, SysML uses the block as its primary entity,
in place of the class.

 MBSE

 The basic notion behind MBSE is that a model of the system is developed early in the
process and evolves over the system development life cycle until the model becomes,
in essence, the build - to baseline. Early in the life cycle, the models have low levels of
fi delity and are used primarily for decision making (not unlike the system architecture
in Section 8.8 above). As the system is developed, the level of fi delity increases until
the models can be used for design. Finally, the models are transformed yet again into
the build - to baseline.

 System Functional Specifi cations

 System functional specifi cations address the system functional description, its required
characteristics, and the support requirements.

 PROBLEMS

 8.1 Describe three principal differences between system performance require-
ments, which are an input to the concept defi nition phase, and system func-
tional specifi cations, which are an output (see Fig. 8.1).

 8.2 Both the concept exploration and concept defi nition phases analyze several
alternative system concepts. Explain the principal differences in the objec-
tives of this process in the two phases and in the manner in which the analysis
is performed.

 8.3 Describe what is meant by the term “ functional allocation ” and illustrate its
application to a personal computer. Draw a functional diagram of a personal
computer using the functional elements described in Chapter 3 as building
blocks. For each building block, describe what functions it performs, how it
interacts with other building blocks, and how it relates to the external inputs
and outputs of the computer system.

c08.indd 250c08.indd 250 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

PROBLEMS 251

 8.4 Under the subsection Program Risks, fi ve examples are listed of conditions
that may result in a signifi cant probability of program failure. For each
example, explain briefl y what consequences of the condition may lead to a
program failure.

 8.5 In the subsection Selection Strategy, it is recommended that in comparing
different concepts, the weighted evaluations of the individual criteria for each
concept should not be collapsed into a single fi gure of merit for each concept
(as is commonly done) but should be retained in the form of an evaluation
 “ profi le. ” Explain the rationale for this recommendation and illustrate it with
a hypothetical example.

 8.6 Discuss how you would use trade - off analysis to prioritize the efforts to be
allocated to the mitigation of identifi ed high and medium program risks.

 8.7 The section The “ Selling ” of the System Development Proposal lists seven
elements in a recommended approach to the authorities responsible for
making the decision. Illustrate the utility of each element by explaining in
each case what the authorities might conclude in the absence of a suitable
discussion of the subject.

 8.8 (a) Develop a top - level function list for an ATM system. Limit yourself to
no more than 12 functions.
 (b) Draw an FBD of the ATM using the functions in (a).

 8.9 (a) Identify the functions of a common desktop computer.
 (b) Identify the components of a common desktop computer.
 (c) Allocate the functions in (a) to the components in (b).

 8.10 Suppose you have completed the functional analysis and allocation activities
within the concept defi nition phase of a system ’ s development.
 (a) Suppose that you have some functions that are allocated to multiple

components (as opposed to a single component). What does that mean
regarding your conceptual design? Is this a problem?

 (b) Suppose that you have many functions that are allocated to a single
component. What does that mean regarding your conceptual design? Is
this a problem?

 8.11 Convert the coffeemaker FBD in Figure 8.4 to an IDEF0 diagram.

 8.12 Draw a physical block diagram of the coffeemaker represented in Figure 8.4 .
Within the diagram, use rectangles to represent physical components and
label the interfaces between the components.

 8.13 Draw a diagram that presents the associations and relationships between the
following:

 • the system,
 • system architecture,
 • architecture framework,
 • viewpoint,

c08.indd 251c08.indd 251 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

252 CONCEPT DEFINITION

 • view,

 • modeling language, and

 • model.

 The diagram should include seven rectangles (one for each entity above) and
labeled arrows that describe the relationships between the entities.

 8.14 Convert the coffeemaker FBD in Figure 8.4 to a UML activity diagram.

 8.15 Write a two - page essay comparing and contrasting the latest versions of
DODAF and TOGAF.

 8.16 Suppose you are the system architect for a new private business jet aircraft
that is intended to seat eight executives. Suppose also that you have been
asked to use DODAF as your architecture framework. Decide and explain
which views you would include in your architecture. Of course, all of the
views within DODAF will not be necessary for this type of system.

 8.17 Build a matrix that maps UML models to DODAF views. In other words,
which UML model(s) would be appropriate for each DODAF view? Hint:
many DODAF views will be not applicable while others will have more than
a single UML view. Please use a matrix or table.

 8.18 Repeat Problem 8.17, but map SysML models to DODAF.

 8.19 Repeat Problem 8.17, but map UML to TOGAF.

 8.20 Research MBSE and write an essay comparing and contrasting MBSE with
traditional systems engineering, as described in Chapters 1 – 8 of this book.
What are the principles of MBSE? What is different? Can traditional systems
engineering implement the basic principles without signifi cant upgrades?

 FURTHER READING

 L. Baker , P. Clemente , B. Cohen , L. Permenter , B. Purves , and P. Salmon . Foundational Concepts
for Model Driven System Design . INCOSE Model Driven Design Interest Group , INCOSE ,
 July 2000 .

 L. Balmelli , D. Brown , M. Cantor , and M. Mott . Model - driven systems development . IBM
Systems Journal , 2006 , 45 (3), 569 – 585 .

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,
 2006 , Chapter 3.

 F. P. Brooks , Jr . The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,
 1995 .

 W. P. Chase . Management of Systems Engineering . John Wiley , 1974 , Chapters 3 and 4.

 H. Chesnut . Systems Engineering Methods . John Wiley , 1967 .

 S. Dam . DOD Architecture Framework: A Guide to Applying System Engineering to Develop
Integrated, Executable Architectures . SPEC , 2006 .

 Defense Acquisition University . Systems Engineering Fundamentals . DAU Press , 2001 , Chapters
5 and 6.

c08.indd 252c08.indd 252 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

FURTHER READING 253

 Defense Acquisition University . Risk Management Guide for DoD Acquisition , Sixth Edition .
 DAU Press , 2006 .

 Department of Defense Web site . DoD Architecture Framework Version 2.02. http://cio - nii.
defense.gov/sites/dodaf20 .

 H. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapter 12.

 J. A. Estefan . Survey of model - based systems engineering (MBSE) methodologies , INCOSE
Technical Document INCOSE - TD - 2007 - 003 - 02, Revision B, June 10, 2008 .

 M. Fowler . UML Distilled: A Brief Guide to the Standard Object Modeling Language , Third
Edition . Addison - Wesley , 2004 .

 H. Hoffmann . SysML - based systems engineering using a model - driven development approach .
Telelogic White Paper, Version 1, January 2008 .

 International Council on Systems Engineering . Systems Engineering Handbook . A Guide for
System Life Cycle Processes and Activities . Version 3.2, July 2010 .

 J. Kasser . A Framework for Understanding Systems Engineering . The Right Requirement , 2007 .

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 .

 The Open Group . TOGAF Version 9 Enterprise Edition , Document Number G091. The Open
Group , 2009 . http://www.opengroup.org/togaf/ .

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach . McGraw Hill , 2001 .

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,
Chapter 12.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 ,
Chapter 3.

 D. Schmidt . Model - driven engineering . IEEE Computer , 2006 , 39 (2), 25 – 31 .

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .
 Prentice Hall , 1998 , Chapter 4.

c08.indd 253c08.indd 253 2/8/2011 11:05:02 AM2/8/2011 11:05:02 AM

