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    8.1    SELECTING THE SYSTEM CONCEPT 

 The concept defi nition phase of the system life cycle marks the beginning of a serious, 
dedicated effort to defi ne the functional and physical characteristics of a new system 
(or major upgrade of an existing system) that is proposed to meet an operational need 
defi ned in the preceding conceptual phases. It marks a commitment to characterize the 
system in suffi cient detail to enable its operational performance, time of development, 
and life cycle cost to be predicted in quantitative terms. As illustrated in Chapter  4  
(Figure  4.6 ), the level of effort in the concept defi nition phase is sharply greater than 
in previous phases, as system designers and engineering specialists are added to the 
systems engineers and analysts who largely staffed the preceding phases. In most needs -
 driven system developments, this phase is conducted by several competing developers, 
based on performance requirements developed in the preceding phases by or for the 
customer. The output of this phase is the selection, from a number of alternative system 
concepts, of a specifi c confi guration that will constitute the baseline for development 
and engineering. From this phase on, the system development consists of implementing 
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198 CONCEPT DEFINITION

the selected system concept (with modifi cations as necessary) in hardware and software, 
and engineering it for production and operational use. 

 With the advent and formal defi nition of systems architecting, this phase has been 
known in some sources as the system architecture phase. While this may not be entirely 
appropriate, systems architecting, as it is now defi ned and understood, is a major activ-
ity within this phase. The specifi cs of systems architecting are discussed in Section  8.8 . 

  Place of the Concept Defi nition Phase in the System Life Cycle 

 The place of the concept defi nition phase in the overall system development is shown 
in Figure  8.1 . It constitutes the last phase of the concept development stage and leads 
to the initiation of the engineering development stage, beginning with the advanced 
development phase. Its inputs are system performance requirements, the technology 
base that includes a number of feasible system concepts, and the contractual and orga-
nizational framework in which the system development is to be cast. Its outputs are 
system functional specifi cations, a defi ned system concept, and a detailed plan for the 
ensuing engineering program. The planning outputs of this phase are usually specifi ed 
to include the systems engineering management plan (SEMP), which defi nes in detail 
the systems engineering approach to be followed, the project work breakdown structure 
(WBS), cost estimates for development and production, test plans, and such other sup-
porting material as may be directed (see Chapter  5 ).   

 When the customer is the government, laws specify that all acquisition programs 
be conducted competitively, except in unusual circumstances. The competition fre-
quently occurs during the concept defi nition phase. It customarily begins with a formal 
solicitation, which contains the system requirements, usually at the level of total system 
functionality, performance, and compatibility. Based on this solicitation, competing 
contractors carry out a proposal preparation effort, which embodies the concept defi ni-
tion phase of the program. The system concept and approach proposed by the successful 

     Figure 8.1.     Concept defi nition phase in system life cycle.  
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SELECTING THE SYSTEM CONCEPT 199

bidder (or in some cases more than one) then becomes the baseline for the ensuing 
system development. 

 In the development of a commercial product, the concept defi nition phase generally 
begins after the conclusion of a feasibility study, which established a valid need for 
the product and the feasibility of meeting this need by one or more technical approaches. 
It is the point at which the company has decided to commit signifi cant resources 
to defi ne the product to a degree where a further decision can be made whether or 
not to proceed to full - scale development. Except for the formality and requirements 
for detailed documentation, the general technical activities during this phase for 
commercial and government programs are similar. One or several design concepts 
may be pursued, depending on the perceived importance of the objective and available 
funds.  

  Design Materialization Status 

 The previous phase was concerned with system design only to the level necessary to 
defi ne a set of performance requirements that could be realized with a feasible system 
design, and that would not rule out other advantageous design concepts. For that 
purpose, it was suffi cient to defi ne functions at the subsystem level and only visualize 
the type of components that would be needed to implement the concept. 

 In order to defi ne a system to the level where its operational performance, develop-
ment effort, and production cost can be estimated with any degree of confi dence (by 
analogy with previously developed systems), the conceptual design must be carried one 
level further. Thus, in the concept defi nition phase, the design focus is on components, 
the fundamental building blocks of systems. As indicated in Table  8.1 , which is an 
overlay of Table  4.1 , the focus in this phase is on the selection and functional defi nition 
of the system components and the defi nition of their confi guration into subsystems.   

 Performance of the above tasks is primarily a systems engineering responsibility 
since they address technical issues that often cut across both technical disciplines and 
organizational boundaries. However, the functional defi nition task can be effectively 
carried out only if the component implementation used to achieve each prescribed 
function is reasonably well understood and is suffi ciently visualized to serve as the 
basis for risk assessment and costing, which cannot be carried out solely at the func-
tional level. Accordingly, as with many systems engineering tasks, consultation with 
and advice from experienced design specialists are almost always required, especially 
in cases where advanced techniques may be used to extend subsystem performance 
beyond previously achieved levels.  

  Systems Engineering Method in Concept Defi nition 

 The activities in the concept defi nition phase are discussed in the following sections in 
terms of the four steps of the systems engineering method (see Chapter  4 ), followed 
by a description of the planning of the ensuing system development effort and the 
formulation of system functional requirements. The four steps, as applied to this phase, 
are summarized below (generic names in parentheses): 
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PERFORMANCE REQUIREMENTS ANALYSIS 201

  Performance Requirements Analysis (Requirement Analysis).     Typical activities 
include  

   •      analyzing the system performance requirements and relating them to opera-
tional objectives and to the entire life cycle scenario, and  

   •      refi ning the requirements as necessary to include unstated constraints and 
quantifying qualitative requirements where possible.     

   Functional Analysis and Formulation (Functional Defi nition).     Typical activities 
include  

   •      allocating subsystem functions to the component level in terms of system 
functional elements and defi ning element interactions,  

   •      developing functional architectural products, and  

   •      formulating preliminary functional requirements corresponding to the assigned 
functions.     

   Concept Selection (Physical Defi nition).     Typical activities include  

   •      synthesizing alternative technological approaches and component confi gura-
tions designed to performance requirements;  

   •      developing physical architectural products; and  

   •      conducting trade - off studies among performance, risk, cost, and schedule to 
select the preferred system concept, defi ned in terms of components and 
architectures.     

   Concept Validation (Design Validation).     Typical activities include  

   •      conducting system analyses and simulations to confi rm that the selected 
concept meets requirements and is superior to its competitors, and  

   •      refi ning the concept as may be necessary.      

 The application of the systems engineering method to the concept defi nition 
phase is illustrated in Figure  8.2 , which is an elaboration of the generic diagram of 
Figure  4.12 . Inputs are shown to come from the previous (requirements defi nition) 
phase in the form of system performance requirements and competitive design con-
cepts. In addition, there are important external inputs in the form of technology, system 
building blocks (components), tools, models, and an experience knowledge base. 
Outputs include system functional requirements, a defi ned system concept, and (not 
shown in the diagram) detailed plans for the ensuing engineering stage of system 
development.     

   8.2    PERFORMANCE REQUIREMENTS ANALYSIS 

 As noted in Chapter  4 , each phase of development must begin with a detailed analysis 
of all of the requirements and other terms of reference on which the ensuing program 
is to be predicated. In terms of problem solving, this is equivalent to fi rst achieving a 
complete understanding of the problem to be solved. 
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202 CONCEPT DEFINITION

  Analysis of Stated Performance Requirements 

 Requirements analysis in the concept defi nition phase is especially important because 
system performance requirements as initially stated often represent an imperfect inter-
pretation of the user ’ s actual needs. Even though the previous phases may have been 
thoroughly carried out, the derivation of a set of performance requirements for a 
complex system is necessarily an imprecise and often subjective process, not to mention 

     Figure 8.2.     Concept defi nition phase fl ow diagram.  
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PERFORMANCE REQUIREMENTS ANALYSIS 203

iterative. In particular, the stated requirements tend to be infl uenced by personal and 
often not well - founded presumptions of what will turn out to be hard or easy to achieve. 
This may result in some performance requirements being unnecessarily stringent 
because they are believed to be readily achievable (a presumption that may turn out to 
be invalid). It is therefore essential that both the basis for the requirements and their 
underlying assumptions be clearly understood. Following this, steps can be taken to 
refi ne the requirements as necessary to support the defi nition of a truly viable system 
concept. The estimated relative diffi culty of achieving the requirements will help to 
guide resource allocation during development. 

 The task of understanding the source of the given performance requirements in 
terms of user needs is the particular province of systems engineering. This task requires 
as intimate an acquaintance with the operational environment and with system users as 
circumstances may permit. In the case of complex operational systems, such an under-
standing can best be derived through years of work in the fi eld. 

  Categories of System Requirements.     In discussing the subject of require-
ments analysis, attention is usually focused on what functions the system must perform 
and how well. We have named these types of requirements,  functional  and  performance . 
Such requirements are generally well defi ned. There are, however, other types of 
requirements that may be equally important but may be much more poorly defi ned, or 
even omitted up to this point. These include the following: 

  1.     Compatibility Requirements:     how the system is to interface with its operating 
site, its logistics support, and with other systems.  

  2.     Reliability, Maintainability, Availability (RMA)   Requirements:     how reliable the 
system must be to fulfi ll its purpose, how it will be maintained, and what support 
facilities will be required.  

  3.     Environmental Requirements:     what extremes of the physical environment must 
the system be built to withstand throughout its lifetime.    

 RMA requirements, when explicitly stated, tend to be arbitrary and often not well 
defi ned. For the other two categories, requirements are often largely confi ned to the 
system ’ s operational mode and leave out the conditions of shipping, storage, transit, 
assembling, and supporting the system. In these circumstances, it is necessary to inves-
tigate in detail the entire life of the system, from product delivery to the end of its 
operating life and its disposition.  

  System Life Cycle Scenario.     To understand all of the situations that the system will 
encounter during its lifetime, it is necessary to develop a model or scenario that identi-
fi es all of the different circumstances to which the system will be exposed. These will 
include at least 

  1.     storage of the system and/or its components,  

  2.     transportation of the system to its operational site,  
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204 CONCEPT DEFINITION

  3.     assembly and readying the system for operation,  

  4.     extended deployment in the fi eld,  

  5.     operation of the system,  

  6.     routine and emergency maintenance,  

  7.     system modifi cation and upgrading, and  

  8.     system disposition.    

 The model of these phases of the system ’ s use must be suffi ciently detailed to 
reveal any interactions between the system and its environment that will affect its 
design. For example, the maintenance of the system will require a supply of spare parts, 
special test equipment, special test points, and other provisions that need to be 
recognized. 

 The model also needs to contain information for life cycle costing. Only by visual-
izing the complete life of the projected system can valid requirements and associated 
costs be developed.   

  Completion and Refi nement of System Requirements 

 The development of a system life cycle model will almost always reveal that 
many important system requirements were not explicitly stated. This is likely to be 
true not only for the nonoperating phases of the system but also for its interaction 
with the physical environment. These environmental specifi cations are often derived 
from  “ boiler plate, ”  especially in many military systems, rather than from a realistic 
model of the operating environment. In contrast, the desire to make use of standard 
commercial components may cause such specifi cations to be unduly relaxed or omitted 
entirely. 

 Probably the most important requirement that is often not stated is that of afford-
ability. In competitive system developments, the projected system cost is one of the 
factors considered in selecting the winning proposal. Therefore, affordability must be 
considered as equivalent to other stated requirements, even though it may not be rep-
resented as such. It is, therefore, necessary to gain as much insight as practicable into 
what level of projected system cost development, production, and support will consti-
tute an acceptable (or competitive) value. 

 Useful life is another system characteristic that is seldom stated as a requirement. 
To prevent early obsolescence, a system that uses high technology must be capable of 
periodic upgrading or modernization. To make such a process economically viable, the 
system must be designed with this objective in mind, making those subsystems or 
components that are susceptible to early obsolescence easy to modify or replace with 
newer technology. 

 In some programs, such upgrading or growth capability is explicitly provided 
for. This process is sometimes called  “ preplanned product improvement ”  (P 3 I). In the 
majority of cases, however, especially when initial cost is a major concern, there is 
not a stated requirement for such capability. Nevertheless, it must be kept in mind 
as an important criterion for comparing alternative system concepts, since in 
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practice, future changes in operating conditions and/or system environment (or 
product competition) will more often than not lead to increasing pressures for a system 
upgrade. 

  Unquantifi ed Requirements.     In order to be useful, a system requirement must 
be verifi able. This typically means measurable. Where the requirement is stated in 
nonquantifi able terms, the task of requirements analysis includes endowing it with as 
much quantifi cation as possible. The following two examples are typical of such 
requirements. 

 A commonly unquantifi ed area is that of user requirements, and especially the 
user – system interface. The overworked term  “ user friendly ”  does not translate readily 
into measurable form. Accordingly, it is important to gain a fi rsthand understanding of 
the user ’ s needs and limitations. This, in turn, is complicated by the fact that there may 
be several users with different interfacing constraints and levels of training. There is 
also the maintenance interface, which has totally different requirements. 

 The interfaces between the system and other equipment at its operating site and 
with related systems are also often not stated in measurable terms. This may require a 
fi rsthand examination of the projected system environment, and even measurements of 
these interfaces, if necessary. For example, are there specifi cations for such parameters 
as available power or input signals that must be provided at the site?  

  Requirements and the Predecessor System.     As noted previously, if there is 
a predecessor (current) system that performs the same or similar function as the pro-
jected system, as is usually the case, it is the single richest source of information on 
the requirements for the new system. It deserves detailed study by systems engineering 
at all stages of development, especially in the formative phases. 

 The predecessor system offers an excellent basis for understanding the exact nature 
of the defi ciencies that led to the call for a new system. Since all its attributes are 
measurable, they can serve as a point of departure for quantifying the requirements for 
the new system. There is frequently documentation available that can provide a direct 
comparison to requirements for the new system. 

 The users of the predecessor system are usually the best source of information of 
what is needed in a new system. Thus, systems engineering should make the effort to 
gain a detailed fi rsthand understanding of system operation.  

  Operational Availability.     There may or may not be a stated requirement for 
the date at which the system is to be ready for operational use. When there is, it is 
important to try to understand the priority of meeting this date relative to the importance 
of development cost, performance, and other system characteristics. This knowledge is 
needed because these factors are mutually interdependent, and their proper balance is 
essential to the success of the system development. 

 In any event, the time of availability is always important to the ultimate value of 
the system. This is because the growth of technology and competitive pressures operate 
continuously to shorten the new system ’ s effective operational life. Thus, the time of 
operational availability must be considered a prime factor in the planning of a system 
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development. In commercial developments, the fi rst product to exploit a new technol-
ogy often gains a lion ’ s share of the market.  

  Determining Customer/User Needs.     As noted previously, it is always neces-
sary to clarify, extend, and verify the stated system requirements through contacts not 
only with the customer but also with present users of existing or similar systems. 

 In a competitive acquisition program, access to the customer may often be formally 
controlled. However, it should be used, insofar as possible, to clarify ambiguities and 
inconsistencies in the requirements as originally stated. This may be done directly, 
through correspondence, or at a bidders ’  conference, as appropriate. 

 A better opportunity to clarify system requirements is in the preproposal stage. In 
many large acquisition programs, a draft request for proposal (RFP) is circulated to 
prospective bidders for comment. During this period, it is usually possible to obtain a 
better understanding of the customer requirements than will be possible after the issu-
ance of the RFP. This emphasizes the fact that the effort to respond to a system acquisi-
tion RFP must begin well before (months or years) its formal issuance. 

 In developing commercial systems, there is always an active and often an extended 
market survey to establish customer/user needs. In these cases, explicit system require-
ments may often not yet exist. As a prerequisite to the defi nition of a system concept 
and its associated performance requirements, it is therefore essential that systems engi-
neering interact as directly as possible with potential customers and users of current 
systems to observe at fi rst hand the system strengths, limitations, and associated operat-
ing procedures.    

   8.3    FUNCTIONAL ANALYSIS AND FORMULATION 

 It has been seen that in keeping with the inherent magnitude of designing a complex 
system, the systems engineering method divides the design task into two closely 
coupled steps: (1) analyzing and formulating the functional design of the system (what 
actions it needs to perform) and (2) selecting the most advantageous implementation 
of the system functions (how the actions can best be physically generated). The close 
coupling between these steps results from their mutual interdependence, which requires 
both visualization of the implementation step in formulating the functional design and 
iteration of the implementation step when alternative approaches are considered. Those 
familiar with software engineering will recognize these two steps as design and imple-
mentation, respectively. 

  Defi nition of Component Functions 

 The system materialization process in the concept defi nition phase is mainly concerned 
with the functional defi nition of system components (see Table  7.1 ). If the details of 
the concept exploration phase are available, the functional confi guration at the system 
level has already been explored (recall the coffeemaker example in Chapter  7 ). If not, 
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there will have almost always been exploratory studies preceding the formal start of 
concept defi nition that have laid out one or more candidate top - level concepts that can 
serve as a starting point for component functional design. 

  Functional Building Blocks.     The general nature of the task of translating per-
formance requirements into system functions can be illustrated by using the concept of 
system functional building blocks as summarized in Chapter  3 . Extending the discus-
sion in Chapter  7 , the following steps are involved: 

  1.     Identifi cation of Functional Media.     The type of medium (signals, data, materi-
als, energy, and force) involved in each of the primary system functions can 
usually be readily associated with one of these fi ve classes, using the criteria 
suggested in Chapter  7 .  

  2.     Identifi cation of Functional Elements.     Operations on each of the fi ve classes of 
media are represented by fi ve or six basic functional elements, listed in Chapter 
 3 , each performing a signifi cant function and found in a wide variety of system 
types. The system actions (functions) can be constructed from a selection of 
those functional building blocks.  

  3.     Relation of Performance Requirements to Element Attributes.     Each functional 
element possesses several key performance attributes (e.g., speed, accuracy, and 
capacity). If these can be related to the relevant system performance 
requirement(s), it confi rms the correct selection of the functional element.  

  4.     Confi guration of Functional Elements.     The functional elements selected to 
achieve the required performance characteristics must be interconnected and 
grouped into integrated subsystems. This may require adding interfacing (input/
output) elements to achieve connectivity.  

  5.     Analysis and Integration of All External Interactions.     The given performance 
requirements often leave out important interactions of the system with its opera-
tional (or other) environment (e.g., external controls or energy source). These 
interactions need to be integrated into the total functional confi guration.    

 It is not advisable to attempt to optimize at this stage. The initial formulation of 
the system functional design will need to be modifi ed after the subsequent step of 
physical defi nition and the ensuing iteration.  

  Functional Interactions.     The functional elements are inherently constituted 
to require a minimum of interconnections to other elements besides primary inputs 
and outputs. However, most of them depend on external controls and sources of 
energy, as well as being housed or supported by a material structure. Their grouping 
into subsystems should be such as to make each subsystem as self - suffi cient as 
possible. 

 Minimizing critical functional interactions among different subsystems has 
two purposes. One is to aid the system development, engineering, integration, test, 
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maintenance, and logistics support. The other is to facilitate making future changes in 
the system during its operational life to upgrade its effectiveness. 

 When several different ways to group functions (functional confi gurations) 
are comparably effective, these alternatives should be carried forward to the next 
step of the design process where a choice of the superior confi guration may be more 
obvious.   

  Functional Block Diagramming Tools 

 Several formal tools and methods exist (and continue to be developed) for representing 
a system ’ s functionality and their interactions. Commercial industry has used the func-
tional fl ow diagram, formally referred to as the functional fl ow block diagram (FFBD), 
to represent not only functionality but also the fl ow of control (or any of the fi ve basic 
elements). This diagramming technique can be used at multiple levels to form a hier-
archy of functionality. 

 Recently developed is a method known as the integrated defi nition (IDEF) method. 
In fact, IDEF extends beyond functionality and now encompasses a range of capability 
descriptions for a system. Integrated defi nition zero (IDEF0) is the primary technique 
for representing system functionality. The basic construct is the functional entity, rep-
resented by a rectangle, as shown in Figure  8.3 . Strict rules exist for identifying inter-
faces to and from a function. Sometimes, detail is included within the box, such as the 
listing of multiple functions performed by the entity; other times, the inside of the 
rectangle is left blank. Inputs always enter from the left; outputs exit to the right. 
Controls (separated from inputs) enter the function from the top, and mechanisms (or 
implementation) enter from the bottom.   

 One of the simplest diagramming techniques is the functional block diagram 
(FBD). This technique is similar to FFBDs, but without the fl ow structure, and IDEF0, 

     Figure 8.3.     IDEF0 functional model structure.  
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but without the diagramming rules. Basically, each function is represented by a rect-
angle. Interfaces between functions are identifi ed by directional arrows and are labeled 
to represent what is being passed between the functions. When a function interfaces 
with an external entity, the entity is represented in some fashion (e.g., rectangle and 
circle) and an interface arrow is provided. 

 Recall from Chapter  7  the example of the coffeemaker. Eleven functions were 
identifi ed; they are relisted here: 

 Input Functions 

   •      Accept user command (on/off)  

   •      Receive coffee materials  

   •      Distribute electricity  

   •      Distribute weight   

  Transformative Functions 

   •      Heat water  

   •      Mix hot water with coffee grinds  

   •      Filter out coffee grinds  

   •      Warm brewed coffee   

  Output Functions 

   •      Provide status  

   •      Facilitate removal of materials  

   •      Dissipate heat    

 Figure  8.4  represents an FBD using the 11 functions. Three external entities were 
also identifi ed: the user, a power source (assumed to be an electrical outlet), and the 
environment. Notice that within the functions list, and the diagram, maintenance is not 
considered. This is due to the nature of household appliances in general, and coffeemak-
ers in particular. They are not designed to be maintained. They are  “ expendable ”  or 
 “ throwaway. ”    

 Since it is diffi cult to avoid crossing lines, several mechanisms exist to distinguish 
between separate interface arrows. Color is probably the most prevalent. But other 
methods, such as dashed lines, are used as well. In the case of power, we have simply 
listed the functions that require power (e.g.,  “ F5 ” ). We have tried to be rather thorough 
in this example to help the reader think through the process of identifying functions 
and developing a functional structure for the system. Simplifying this diagram would 
not be diffi cult since we could omit several functions at this stage, as long as we did 
not forget about them later on. For example, function 10,  “ facilitate removal of materi-
als  , ”  could be omitted at this stage, as long as the ultimate design does indeed allow 
the user to easily remove materials. Notice as well that we can categorize the functions 
into those handling the fi ve basic elements: 
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     Figure 8.4.     Functional block diagram of a standard coffeemaker.  
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  Materials    Receive coffee materials  
  Mix hot water with coffee grinds  
  Filter out coffee grinds  
  Facilitate removal of materials  

  Data    Provide status  
  Signals    Accept user commands  
  Energy    Distribute electricity  

  Heat water  
  Warm brewed coffee  
  Dissipate heat  

  Force    Distribute weight  

 This is not a  “ clean ”  categorization, since some functions input one type of element 
and convert it into another type. For example, function 2,  “ accept user commands, ”  
inputs a datum and converts it to signals. Subjective judgment is necessary. 

  Hardware – Software Allocation.     The issue of whether a given function should 
be performed by hardware or software may seem like a question of implementation 
rather than function. However, system - level issues are almost always involved in such 
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decisions, such as the effect on operator interfaces, test equipment, and widespread 
interaction with other system elements. Accordingly, the defi nition of functional build-
ing blocks makes a clear distinction between software elements (e.g., control system 
and control processing) and hardware elements (e.g., process signal and process data). 
For these reasons, the functional defi nition at the component level should include the 
allocation of all signifi cant processing functions to either hardware or software. An 
important consideration in such decisions is provision for future growth potential to 
keep up with the rapidly advancing data processing technology. 

 In software - embedded systems, as defi ned in Chapter  11 , software tends to be 
assigned most of the critical functions, especially those related to controls, because of 
its versatility. In software - intensive systems, in which virtually all the functionality is 
performed by software, functional allocation is not as straightforward because of the 
absence of commonly occurring functional elements. Chapter  11  describes the inherent 
differences between hardware and software and their effect on system design, and 
addresses the methods used in designing software system architectures. 

 To the extent that decisions may be involved in selecting functional elements, 
confi guring them, or quantifying their functional characteristics, trade - offs should be 
made among the candidates using a set of predefi ned criteria. The principles and 
methods of trade - off analysis are described in Chapter  9 .   

  Simulation 

 The analysis of the behavior of systems that have dynamic modes of response to events 
occurring in their environment often requires the construction of computer - driven 
models that simulate such behavior. The analysis of the motion of an aircraft, or for 
that matter of any vehicle, requires the use of a simulation that embodies its kinematic 
characteristics. 

 Simulations can be thought of as a form of experimental testing. They are used to 
obtain information critical to the design process in a much shorter time and at lesser 
cost than building and testing system components. In effect, simulations permit design-
ers and analysts to gain an understanding of how a system will behave before the system 
exists in physical form. Simulations also permit designers to conduct  “ what - if ”  experi-
ments by making selected changes in key parameters. Simulations are dynamic; that 
is, they represent time - dependent behavior. They are driven by a programmed set of 
inputs or scenarios, whose parameters may be varied to produce the particular responses 
to be studied, and may include input – output functional models of selected system ele-
ments. These characteristics are especially useful for conducting system trade - off 
studies. 

 In the concept defi nition phase, system simulation is particularly useful in the 
concept selection process, especially in cases where the dynamic behavior of the system 
is important. Simulation of the several alternative concepts permits the conduct of 
 “ experiments ”  that present the candidates with a range of critical potential challenges. 
The use of simulation results in scoring the candidates is generally more meaningful 
and persuasive than using judgment alone. Chapter  9  describes in greater detail some 
of the different types of simulation used in system development.  
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  Formulation of Functional Specifi cations 

 One of the outputs of the concept defi nition phase is a set of system functional speci-
fi cations to serve as an input to the advanced development phase. It is appropriate to 
formulate a preliminary set of functional specifi cations at this step in the process to lay 
the groundwork for more formal documents. This also serves as a check on the com-
pleteness and consistency of the functional analysis. 

 In stating functional specifi cations, it is essential to quantify them insofar as may 
be inferred from the performance and compatibility requirements. The quantifi cation 
should be considered provisional at this time, to be iterated during the physical defi ni-
tion step and incorporated into the formal system functional specifi cation document at 
the end of the concept defi nition phase. It is at this level in the system hierarchy that 
the physical confi guration becomes clearly evident.   

   8.4    FUNCTIONAL ALLOCATION 

 The decisions in the process of concept defi nition center on the selection of a particular 
system confi guration or concept and the defi nition of the functions it is to perform. 
These decisions do more to determine the ultimate performance, cost, and utility of the 
new system than those in any subsequent phase of the development. Further, in a com-
petitive acquisition process, selection of who will develop the system is largely based 
on the evaluation of the proposed concept and the supporting documentation. For those 
reasons, the functional allocation process is of crucial importance. 

 The systems engineering method calls for such decisions to be made by a structured 
process that considers the relative merit of a number of alternatives before any one is 
selected. This process is called  “ trade - off studies ”  or  “ trade - off analysis ”  and is used 
in decision - making processes throughout system development. Trade - off analysis is 
most conspicuously employed during the concept defi nition phase, largely in the selec-
tion of the physical implementation of system components. As stated previously, 
Chapter  9  contains a description of the principles and methods of trade - off analysis. 

  Formulation of Alternative Concepts 

 The fi rst step in selecting a preferred system concept is to formulate a set of alternative 
solutions, or in this case, system concepts. In the early development phases, the alterna-
tive construction begins by allocating the functions identifi ed above to physical 
components of the system. In other words, we must determine how we will implement 
the functions above. Of course, this might entail decomposing the top - level functions 
in an FBD (or other functional representation) into lower - level functions. Many 
times, this activity provides insight into alternative methods of implementing each 
function. 

 As we identify system components, beginning with subsystems, we are constantly 
faced with the question of whether multiple functions can and should be implemented 
by a single physical component. The converse is also an issue: should a single function 
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be implemented by multiple subsystems? Ideally, a one - to - one mapping is our goal. 
However, other factors may lead one to map multiple functions to a single component, 
or vice versa. 

 A specifi c allocation of functions to physical components, and the functional and 
physical interfaces that result from that allocation, is considered a single alternative. 
Other allocation schemes will result in different alternatives. The trade - offs mentioned 
above can occur at multiple levels, from the entire system to individual components. 
Many times, these trade - offs are part of the functional allocation process. 

 An important objective is to ensure that no potentially valuable opportunities are 
omitted. The following paragraphs discuss issues with developing alternatives. 

  The Predecessor System as a Baseline.     As noted earlier, most system devel-
opments are aimed at extending the capabilities or increasing the effi ciency of some 
function that is presently being inadequately performed by an existing system. In cases 
where the functions of the current system are the same or similar to those of the new 
system, the current system provides a natural point of departure for system concept 
defi nition. Where the main driving force comes from serious defi ciencies of limited 
portions of the current system, an obvious (partial) set of alternative approaches would 
begin with a minimum modifi cation of the system, restricted to those subsystems or 
major components that are clearly defi cient. Other alternatives would progressively 
modify or replace other subsystems that may be made obsolescent by modern technol-
ogy. The general confi guration of the system would be retained. 

 In cases where there are new and improved technological advances at the compo-
nent level, or when there are standard commercial off - the - shelf components that could 
be applied to the new system, the impetus for change to a new system would be 
technology - driven. In this case, a commonly used approach is to introduce improve-
ments sequentially over time as modifi cations to the current system confi guration. 

 Even when there are reasons against retaining any parts of the current system, as, 
for example, when moving from a conventional, manually controlled process to an 
automated and higher - speed operation, the current system ’ s general functional confi gu-
ration, component selection, materials of construction, special features, and other char-
acteristics usually provide a useful point of departure for alternative concepts.  

  Technological Advances.     As noted in Chapter  6 , some new system develop-
ments are driven more by advances in technology than by operational defi ciencies in 
the previous system. These advances may arise either in exploratory research and 
development programs aimed at particular application areas, such as development of 
advanced jet engines, or may come from broadly applicable technology such as high -
 speed computing and communication devices. 

 Such advances are often incorporated into an existing system to achieve specifi c 
performance improvements. However, if their impact is major, the possibility of a 
radical departure from the previous confi guration should be included among the alterna-
tives. Beyond a certain point, the existing framework may overly constrain the achiev-
able benefi ts and should therefore be abandoned. Thus, when advanced technology is 
involved, a wide range of choices for change should be examined.  
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  Original Concepts.     In relatively rare instances, a really different concept is advanced 
to meet an operational need, especially when the need had not been previously met. In 
such instances, there is not likely to be a previous system to use for comparison, so 
that different types of alternatives would need to be examined. Often, various versions 
of the new concept can be considered, differing in the degree of reliance on new and 
unproven technology in exchange for projected performance and cost.   

  Modeling of Alternatives 

 For comparing alternative concepts, each must be represented by a model that possesses 
the key attributes on which the relative values of the alternatives will be judged. As a 
minimum, an FFBD of each should be constructed, and a pictorial or other physical 
description produced for providing a more realistic view of the system candidate. 

 Both the above modeling and the simulation of alternative concepts will contribute 
important context to the selection process and associated trade - offs.   

   8.5    CONCEPT SELECTION 

 The objective of trade - off studies in the concept defi nition phase is to assess the relative 
 “ goodness ”  of alternative system concepts with respect to 

   •      operational performance and compatibility,  

   •      program cost,  

   •      program schedule, and  

   •      risk in achieving each of the above.    

 The results are judged not only by the  degree  to which each characteristic is expected 
to be achieved but also by the  balance  among them. Such a judgment is of necessity 
highly program dependent because of the differing priorities that may be placed on the 
above characteristics. 

     Design Margins.     In a competitive program, there is always a tendency to maxi-
mize system performance so as to gain an edge over competing system proposals. This 
often results in pushing the system design to a point where various design margins are 
reduced to a bare minimum. The term  “ design margin ”  refers to the amount that a given 
system parameter can deviate from its nominal value without producing unacceptable 
behavior of the system as a whole. A reduction in design margins is inevitably refl ected 
in tighter restrictions on the environmentally induced changes in component character-
istics during system operation and/or on the fabrication tolerances imposed in the 
production process. Either can lead to higher program risk, cost, or both. Accordingly, 
the issue of design margins should be explicitly addressed as an important criterion 
when selecting a preferred system concept.  
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  System Performance, Cost, and Schedule.     To the extent that stated perfor-
mance requirements are quantifi ed, are found to be an accurate expression of opera-
tional needs, and are within current system capabilities, they may be considered a 
minimum baseline for the system. However, where they are found to stress the state of 
the art, or to be desirable rather than truly essential, they need to be considered elastic 
and capable of being traded off against cost, schedule, risk, or other factors. Unstated 
requirements found to be signifi cant should always be included among the variables. 

 Program cost must be derived from the system life cycle cost, which in turn must 
be derived from a model of the complete system life cycle. The appropriate relative 
weighting of the near - term versus long - term costs depends on the fi nancial constraints 
of the acquisition strategy. Specifi c cost drivers should be identifi ed wherever 
possible. 

 The appropriate weighting of schedule requirements is very program dependent 
and may be diffi cult to establish. There is an inherent tendency, especially in govern-
ment and other programs where competition among contractors is especially strong, to 
estimate both cost and schedule of a new acquisition on the optimistic side, making no 
provision for the unforeseen delays that always occur in new system developments and 
are often caused by  “ unk - unks, ”  as discussed in Chapter  4 . This optimism factor also 
applies to the estimation of system performance and technical risk. Overall, it tends to 
slant the trade - off process toward the selection of advanced concepts and optimistic 
schedules over more conservative ones.  

  Program Risks.     The assessment of risk is another primary systems engineering 
task. It involves estimating the probability that a given technical approach will  not  
succeed in achieving the intended objective at an affordable cost. Such risk is 
present in every previously untried approach. In the development of new complex 
systems, there are many areas in which risk of failure must be explicitly considered 
and measures taken to avoid such risks or to reduce their potential impact to manage-
able levels. 

 Chapter  5 , which devotes a section to the subject of risk management, shows that 
program risk can be considered to consist of two factors: (1) probability of failure — the 
probability that the system will fail to achieve an essential program objective, and (2) 
criticality of failure — the impact of the failure on the success of the program. Thus, the 
seriousness of each risk can be qualitatively considered as a combination of the prob-
ability of the failure weighted by its criticality to the system. For the purposes of this 
chapter, the following are examples of conditions that may result in a signifi cant prob-
ability of program failure: 

   •      A leading - edge unproven technology is to be applied.  

   •      A major increase in performance is required.  

   •      A major decrease in cost is required for the same performance.  

   •      A signifi cantly more severe operating environment is postulated.  

   •      An unduly short development schedule is imposed.     
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  Selection Strategy.     The preceding discussion shows that the principal criteria 
involved in selecting a preferred system concept are complex, semiquantitative at best, 
and involve comparisons of incommensurables. This means that the evaluation of the 
relative merits of alternatives must be such as to expose and illuminate their most criti-
cal characteristics and to allow the maximum exercise of judgment throughout the 
evaluation process. 

 Two additional guidelines for conducting complex trade - off analyses may be 
useful: (1) to conserve analytical effort, use a staged approach to the selection process, 
in which only the most likely winners are subjected to the full system evaluation; and 
(2) to retain the visibility of the complete evaluation profi le of each concept (against 
each critical measure of effectiveness) until the fi nal selection, rather than combining 
the components into a single fi gure of merit, a practice that is often employed but that 
tends to submerge signifi cant differences. 

 In pursuing a staged approach, the following suggestions can serve as a checklist, 
to be applied where appropriate: 

  1.     For the fi rst stage of evaluation, make sure that a suffi cient number of alterna-
tive approaches are considered to address all needs and to explore all relevant 
technical opportunities.  

  2.     If the number of alternatives is larger than can be individually evaluated in 
detail, perform a preliminary comparison to winnow out the  “ outliers. ”  This is 
equivalent to qualifying the candidates. But be careful not to discard prema-
turely any candidates that present a new and unique technological opportunity, 
unless they are inherently incapable of qualifying.  

  3.     For the next stage of evaluation, examine the list of performance and compat-
ibility requirements and select a subset of the most critical ones that are also 
the most likely to reject unsuitable system concepts. Include consideration of 
growth capability and design margins as appropriate.  

  4.     For each candidate concept, evaluate its expected compliance with each selected 
criterion. In the case of partial noncompliance, attempt to adjust the concept 
where possible to satisfy the criteria. Estimate the resultant performance, cost, 
risk, and schedule. In the event of conspicuous imbalance in the above, attempt 
to modify further the concept to achieve an acceptable balance for all 
requirements.  

  5.     Assign weighting factors or priorities to the evaluation criteria, including cost, 
risk, and schedule, and apply to the ranking of each concept. Avoid concepts 
that do not have a sound balance of the above factors.  

  6.     For each evaluation criterion, rank order the several candidate concepts.  

  7.     Look for and eliminate clear losers.  

  8.     Unless there is a single clear winner, perform a signifi cantly more detailed 
comparison among the two or three potential winners. To this end, develop 
a life cycle model for each concept, along with a WBS, and a risk abatement 
plan.    
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 In making the fi nal system concept selection, review the evaluation profi le of the 
merit of each candidate concept against each critical measure of effectiveness to ensure 
that the choice has no major weaknesses. Check for the sensitivity of the result to a 
reasonable variation of the weighting of individual criteria. 

 As stated previously, use each of the above suggestions only where it may be 
appropriate to the particular selection process. Chapter  9  devotes a section to the fun-
damentals of trade - off analysis, with an example of their application.    

   8.6    CONCEPT VALIDATION 

 The task of designing a model of the system environment to serve as the basis for 
concept validation builds on the set of parameters initially established for use in the 
trade - off studies of the selection process. 

  Modeling the System and Its Environment 

 Since the degree of system defi nition at this stage is largely functional, its validation 
must rely primarily on analysis rather than on testing. The rapid growth of computer 
modeling and simulation in recent years is providing powerful tools for the validation 
of complex system concepts. 

  System Effectiveness Models.     In complex operational systems, system effec-
tiveness models are developed in the needs analysis and concept exploration phases to 
provide a fuller understanding of the effectiveness of existing systems in performing 
their missions and in identifying defi ciencies that need to be remedied. These are most 
often computer simulations that include provisions for varying key parameters to estab-
lish the sensitivity of overall performance to environmental and system parameter 
variations and to determine the nature and extent of system changes needed to offset 
any identifi ed defi ciencies (see also Chapter  9 ). 

 In the concept defi nition phase, the construction of system effectiveness models 
by the system developer depends on whether or not the models used in the previous 
phases are available, as in the case where the developer is also the customer. In that 
case, the models can be readily extended to conform to the selected system concept 
for the validation process. If not, the construction of the model becomes part of the 
concept defi nition task. For this and other reasons, the preparation for the competitive 
effort often begins months (and sometimes years) before the start of the formal 
competition. 

 Computer models are also capable of validating a host of subsystem or component -
 level technical design features. Areas such as aerodynamic design, microwave antennae, 
hydrodynamics, heat transfer, and many others can be modeled for analysis through the 
use of special computer codes. Advances in computer capabilities have made such 
modeling more and more accurate in predicting system behavior for purposes of design 
and evaluation.  

c08.indd   217c08.indd   217 2/8/2011   11:04:59 AM2/8/2011   11:04:59 AM



218 CONCEPT DEFINITION

  Critical Experiments.     When a proposed system concept relies on technical 
approaches that have not been previously proven in similar applications, its feasibility 
must be demonstrated. Often this cannot be done credibly through analysis alone and 
must be subjected to experimental verifi cation. This is diffi cult to accommodate in the 
limited time and constrained resources of a competitive acquisition, but must neverthe-
less be undertaken to support the proposed system concept. 

 The term  “ critical experiment ”  is appropriate in such instances because it is related 
to the specifi c purpose of substantiating a critical feature of the design. It purposely 
stresses the proposed design feature to its extreme limits to ensure that it is not just 
marginally satisfactory. The term  “ experiment ”  rather than  “ test ”  is appropriate because 
it is performed for the purpose of obtaining suffi cient data to understand thoroughly 
the behavior of the system element, rather than merely to measure whether or not the 
element operates within certain limits. By the same token, extensive data analyses are 
also performed to illuminate the system behavior.   

  Analysis of Validation Results 

 The analysis of the results of system validation simulations can produce three different 
types of unsatisfactory fi ndings that require remedial action: (1) defi ciencies in 
the assumed characteristics of the system being modeled, (2) defi ciencies in the 
test model, or (3) excessively stringent system requirements. It is the purpose of 
the analysis process to attribute the results of the simulation to one or more of the 
above causes. Beyond these fi ndings, the analysis should also indicate what kind 
and degree of changes would eliminate the discrepancies. This latter fi nding usually 
requires a series of simulations or analyses that test the effect of alternative remedial 
actions. 

 The feedback resulting from the validation analysis results in an iterative process 
in which the system model design and environmental model are refi ned as necessary 
to bring the system model in compliance with the requirements.  

  Iteration of System Concepts and Requirements 

 The above description of the validation process implies that only one concept was found 
to be superior in the concept trade - off evaluation, and that this concept was then vali-
dated against the full system requirements. Not infrequently, two and sometimes more 
concepts turn out to be nearly equal in preliminary rankings. In that case, each should 
be evaluated against the full requirements to see if the more rigorous comparison pro-
duces a clear discriminator for selecting the preferred concept. 

 The system requirements should always be regarded as fl exible up to a point. If 
the validation or trade - off results show that one or more stated requirements appear to 
be responsible for unduly driving up system complexity, cost, or risk, they should be 
subjected to critical analysis, and if appropriate, highlighted for discussions with the 
customer by program management.   
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   8.7    SYSTEM DEVELOPMENT PLANNING 

 A major product of the concept defi nition phase is a set of plans that defi ne how the 
engineering program is to be managed. Among these are the WBS, the life cycle model, 
the SEMP or its equivalent, system development schedules, the operational (or inte-
grated logistic) support plan, and such others as may be specifi ed by the contracting 
agency to provide all participants with clear objectives and timescales for accomplish-
ing their respective tasks. 

 Of the above plans, systems engineering has prime responsibility only for 
the SEMP. However, it is also deeply involved in all the others by having to provide 
a detailed description and ongoing assessment of the development process to those 
who are directly responsible for the other technical management documents. For 
example, systems engineers are often asked to review initial estimates of the time 
and effort required to perform a particular engineering task, and based on their 
appraisal of the associated technical risks, to recommend approval or modifi cation as 
appropriate. 

   WBS  

 The WBS, which was described in Chapter  5 , is one of the essential development plan-
ning vehicles. The WBS provides a hierarchical framework designed to accommodate 
all the tasks that need to be accomplished during the entire life of the project. The 
topmost level represents the project as a whole; the next contains the system product 
itself, and the principal supporting and management categories. Succeeding levels 
subdivide the total effort into successively smaller work elements. This subdivision is 
continued until the complexity and cost of each work element or task are reduced to 
the point that the task can be directly planned, costed, scheduled, and controlled. The 
process must ensure that no necessary task is overlooked and that realistic cost and 
schedule estimates can be made. 

 The specifi c form of the WBS is dependent on the nature of the project and is often 
stipulated in the contract for the system development, especially if the government is 
the customer. Government programs have had to comply with standards, which defi ne 
a specifi c hierarchical structure that provides a logical framework and a place for every 
aspect of a system product, often with a high degree of detail. 

 As an example of a typical WBS structure, the system project is at level 1, and the 
next level (level 2) is broken down into fi ve types of activities, abbreviated from the 
more detailed descriptions in Chapter  5 : 

  1.      System Product , including the total effort of developing, producing, and inte-
grating the system itself, together with any auxiliary equipment required for its 
operation. It includes all of the design, engineering, and fabrication of the 
system, as well as the testing of its components (unit test).  

  2.      System Support  (also referred to as  “ integrated logistics support ” ), involving 
provision of equipment, facilities, and services necessary for the development 
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and operation of the system product. It includes all equipment, facilities, and 
training for both development and system operations.  

  3.      System Test , beginning at the integration test level, unit tests of individual com-
ponents being part of the effort of developing the system product. It includes 
integration and testing of subsystems and of the total system.  

  4.      Project Management , covering the project planning and control effort through-
out the program.  

  5.      Systems Engineering , covering all aspects of systems engineering support.    

 The WBS is by its nature an evolving document. As noted previously, it begins in the 
concept exploration phase, when only the topmost level can be identifi ed. It is in the 
concept defi nition phase, when the system components and architecture have been 
defi ned, that serious costing and scheduling may be undertaken. Thereafter, the WBS 
must evolve along with the development and engineering of the system components 
and progressive discovery and resolution of problems. Thus, at any time, the WBS 
should refl ect the latest knowledge of the program tasks and their status, and should 
constitute a reliable basis for program planning. 

 As noted in Chapter  5 , the WBS is structured so that every task is identifi ed at the 
appropriate place within the WBS hierarchy. Systems engineering plays an important 
role in helping the project manager to structure the WBS so as to achieve this 
objective.  

   SEMP  

 Chapter  5  described the nature and purpose of the planning of the systems engineering 
tasks that are to be performed in the course of developing a system. In many system 
acquisition programs, such a plan is referred to as the SEMP and is a required deliver-
able as part of a proposal for a system development program. 

 The SEMP is a detailed plan showing how the key systems engineering activities 
are to be conducted. It typically covers three main activities: 

  1.     Development Program Management —   including organization, scheduling, and 
risk management;  

  2.     Systems Engineering Process —   including requirements, functional analysis, and 
trade - offs; and  

  3.     Engineering Specialty Integration —   including reliability, maintainability, pro-
ducibility, safety, and human factors.     

  Life Cycle Cost Estimating 

 The provision of a credible cost estimate for development, production, and (usually) 
operational support of the proposed new system is a required product of the concept 
defi nition phase. While systems engineering is not primarily responsible for this task, 
it has an essential role in providing key items of information to those who are. 
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 The only basis for deriving costs for a new task is through the identifi cation of a 
similar and successfully completed task whose costs are known. To this end, the system 
concept must be decomposed into elements analogous to existing components. Since 
the concept at this stage is still mainly functional, the systems engineer must visualize 
the likely physical embodiment of these functions. Once this is done, and any unusual 
features are identifi ed, those experienced in cost estimating can usually make a reason-
able estimate of the prospective costs. 

 The main guides for deriving system costs are the WBS, the life cycle model, and 
costing models. The WBS, which spells out all the tasks to be performed during system 
development, is the chief reference for deriving development costs. 

 The costs of developing new or modifi ed components are usually derived from 
estimates provided by those who expect to do the development — whether subcontrac-
tors or in - house. Special care must be taken to assure that these estimates refl ect an 
assessment of the associated development risk that is neither unduly optimistic nor 
overly cautious. These estimates should be reviewed critically by systems engineering 
to provide a check on the above factors. 

 The costs for component production, assembly, and testing are usually derived 
using a cost model developed for this purpose. The cost model is based on the accu-
mulated experience of the developing organization and is updated after each new 
program. The actual costing is usually done by cost estimating specialists. However, 
these specialists must rely heavily on the vision of the system elements as provided by 
systems engineers and the design engineers responsible for component development. 

 The preparation of cost estimates must not only be as expertly performed as pos-
sible, but it must also be documented so as to be credible to management and to the 
customer. In a competitive acquisition program, the magnitude and credibility of the 
cost estimates, especially development costs that are the most immediate, weigh heavily 
in the evaluation.  

  The  “ Selling ”  of the System Development Proposal 

 The selection of a feasible and affordable concept in the concept defi nition phase is a 
necessary but not suffi cient step to assure that the engineering of that concept into an 
operational system will be undertaken. Progression to the engineering development 
stage requires a management decision to devote much larger resources to the project 
than have as yet been expended in the conceptual phases. Whether the concept is to be 
part of a competitive proposal for a formal acquisition program or is to be presented 
informally to in - house management, there are always other ways to spend the money 
required to develop the proposed system. Accordingly, such a decision requires compel-
ling evidence that the result will be well worth the cost and time to be expended. 

 To accomplish its purpose, the concept defi nition phase must produce persuasive 
evidence in favor of proceeding with the development of the proposed system. This 
requires that the reasons for selecting the proposed concept are clear and compelling, 
that the feasibility of the approach is persuasively demonstrated, and that the plan for 
carrying out the system development is thoroughly thought out and documented. The 
end result must be to instill a high degree of confi dence that the new system will achieve 
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the required performance within the estimated cost and time and be superior to other 
potential system approaches. 

 In developing such a case, it must be remembered that those making the decision 
to proceed are not likely to be technical experts, so that the evidence will have to be 
couched in terms that intelligent laymen can understand. This is a very diffi cult con-
straint, which must nevertheless be observed. Translating and condensing design spe-
cialist jargon and test data into a form that is readily understood, and is clearly relevant 
to the issues of concept feasibility, risk, and cost, is a very important responsibility that 
is commonly also assigned to systems engineering. 

 In this task of selling the system concept and development plan, the following 
general approach is recommended: 

  1.     Show the shortfalls in existing systems and the need to be fi lled by the proposed 
system.  

  2.     Demonstrate that the proposed concept was selected after a thorough examina-
tion of alternatives. Illustrate the alternatives and indicate which main features 
of the selected system drove the decision.  

  3.     Fully discuss program risks and the proposed means for their management. 
Describe results of critical experiments designed to reveal problems and identify 
solutions, especially in the application of new technology.  

  4.     Display evidence of careful planning of the development and production 
program. Documents such as the WBS, SEMP, TEMP, and other formal plans 
give evidence of such planning.  

  5.     Present evidence of the organization ’ s experience and previous successes in 
system developments of a similar nature, and the carryover of key staff to the 
proposed system.  

  6.     Present the derivation of the life cycle costing for the project and the level of 
confi dence in the conservatism of the estimates.  

  7.     Provide further justifi cation as indicated by the specifi c evaluation criteria listed 
in the system requirements. Discuss environmental impact analysis if that is an 
issue.      

   8.8    SYSTEMS ARCHITECTING 

 When we think of the word  “ architecture, ”  something like Figure  8.5  comes to mind. 
For many people, architecture refers to buildings, and an architect is someone who 
designs buildings. Over two decades ago, though, a professor at the University of 
Southern California challenged that notion. He reasoned that as systems grew in com-
plexity, the top - level design, or more accurately the conceptual design of a system, as 
defi ned at the time, was insuffi cient to guide engineers and designers to accurate and 
effi cient designs. He looked to the fi eld of architecture to understand how complex 
systems (i.e., buildings) could be created and developed, and (as far as we understand) 
coined the term  “ systems architecting. ”  That man was Eberhardt Rechtin.   

c08.indd   222c08.indd   222 2/8/2011   11:04:59 AM2/8/2011   11:04:59 AM



SYSTEMS ARCHITECTING 223

 The Institute of Electrical and Electronics Engineers (IEEE) Std 610.12 defi nes an 
architecture as  “ the structure of components, their relationships, and the principles and 
guidelines governing their design and evolution over time. ”  This applies to complex 
systems, such as aircraft, power plants, and spacecraft, as much as buildings. Therefore, 
Rechtin ’ s premise was to apply the principles from the fi eld of architecture to systems 
engineering, not as a replacement, but as part of developing a system. 

 Dr. Rechtin defi ned the term  systems architecting  in this way:

  The essence of architecting is structuring. Structuring can mean bringing form to func-
tion, bringing order out of chaos, or converting the partially formed ideas of a client 

     Figure 8.5.     Traditional view of architecture.  
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into a workable conceptual model. The key techniques are balancing the needs, fi tting 
the interfaces, and compromising among the extremes.   

 Read closely, the principles of concept development and defi nition are within his defi ni-
tion. Twenty years ago, conceptual design and components of architecting were lumped 
into the phrase  “ preliminary design. ”  Fortunately, that term has been replaced by the 
more extensive  “ architecting. ”  

  Architectural Views 

 While this section is not intended to present the reader with a full description of systems 
architecting (see Further Reading for more detail on architecting), we do want to present 
the basic concepts behind the development of a system architecture. In this vein, most 
commercial and government work on architectures has followed the notion of archi-
tectural views. The idea is this. Develop representations of a system from multiple 
perspectives, or views, to assist the stakeholders in understanding a system concept 
(and in making those valuable trade - off decisions) before extensive development has 
occurred. 

 While many different architecture development methods and guidelines exist 
today, all have a very common set of these perspectives. In general, a system architec-
ture will present three common views of a system. 

  Operational View.     This representation is from the users ’  or operators ’  perspec-
tive. This view would include products that address operational system phases, scenarios, 
and task fl ows. Information fl ow from the users ’  perspectives might also be addressed. 
User interfaces would also be described. Example products that might be included in 
this view would be operational fi gures or graphics, scenario descriptions (including use 
cases), task fl ow diagrams, organization charts, and information fl ow diagrams.  

  Logical View.     This representation is from the manager ’ s or customer ’ s perspec-
tive. The logical view would include products that defi ne the system ’ s boundary with 
its environment and the functional interfaces with external systems, major system func-
tions and behaviors, data fl ow, internal and external data sets, internal and external 
users, and internal functional interfaces. Example products for this view would be 
FFBDs, context diagrams, N2 diagrams, IDEF0 diagrams, data fl ow diagrams, and 
various stakeholder - specifi c products (including business - related products).  

  Physical View.     This representation is from the designers ’  perspective. This view 
would include products that defi ne the physical system boundary, the system ’ s physical 
components and how they interface and interact together, the internal databases and 
data structures, the information technology (IT) infrastructure of the system and the 
external IT infrastructure with which the system interfaces, and the standards in force 
in its development. Example products include physical block diagrams down to a fairly 
high level of detail, database topologies, interface control documents (ICDs)  , and 
standards. 
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 Different architectural guidelines and standards may use different names, but all 
three of these perspectives are included in every architectural description. 

 A common question from someone just introduced to the concept of systems 
architecting is  “ What is the difference between architecting and designing? ”  A conve-
nient method of answering that question is to delineate the uses of an architecture versus 
a design. 

 A system architecture is used 

   •      to discover and refi ne operational and functional requirements,  

   •      to drive the system to a specifi c use or purpose,  

   •      to discriminate between options, and  

   •      to resolve make/buy decisions.    

 A system design is used 

   •      to develop system components,  

   •      to build and integrate system components, and  

   •      to understand confi guration changes as the system is modifi ed.    

 The nature of these uses means there is a difference between architecting and 
engineering. Systems architecting is largely an inductive process that focuses on 
functionality and behavior. Consequently, architecting deals with unmeasurable 
parameters and characteristics as much if not more than measureable ones. The toolset 
is largely unquantitative and imprecise — diagramming is a large component of 
the architect ’ s toolset. Heuristics typically guide an architect ’ s decisions rather than 
algorithms. 

 Design engineering can be contrasted with architecting since it relies on deductive 
processes. Engineering focuses on form and physical decomposition and integration. 
Consequently, design engineering deals with measurable quantities, characteristics, 
and attributes. Thus, analytical tools derived from physics are the engineer ’ s primary 
tools. 

 Given these characteristics of the two fi elds (which should certainly not be con-
sidered loosely coupled), the architect tends to be active in the early phases of the 
system development life cycle. The architect tends to be rather dormant during the 
detailed design, fabrication, and unit testing phases. Integration and system testing will 
see the architect emerge again to ensure requirements and top - level architectures are 
being followed. In contrast, the design engineer ’ s activity peaks during the architect ’ s 
dormant phases, though he is by no means completely inactive during the early and 
late phases of system development.  

  Architecting in the Engineering Hierarchy.     With the differences between 
architecting and engineering, it is obvious the two activities are separate. An obvious 
question then arises: who works for whom? Although there are exceptions, our role of 
systems architecting leads to the management structure where the architect works for 
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the systems engineer. Systems architecting is a subset of systems engineering. This is 
different from the role and place of the traditional architect — which is typically at the 
top. When a new building is designed, developed, and constructed, the architect plays 
the primary role in the building ’ s design and continues with that prominent role through-
out development and construction. In system development, the systems engineer holds 
the prominent technical position and the architect works for the systems engineer.   

  Architecture Frameworks 

 As mentioned, architectures are used extensively now in large, complex system devel-
opment programs. The architect and his team have a large latitude in developing and 
integrating products. This initially led to architectures that were technically accurate 
but diverse in their structure. In order to standardize the architecture development effort 
and the products associated with architectures, many organizations developed and 
mandated the use of architecture frameworks. 

 An architecture framework is a set of standards that prescribes a structured 
approach, products, and principles for developing a system architecture. Two early 
frameworks that emerged were the Command, Control, Communications, Computers, 
Intelligence, Surveillance and Reconnaissance (C4ISR) Architecture Framework man-
dated by the U.S. Department of Defense (DoD) and The Open Group Architecture 
Framework (TOGAF) developed for commercial organizations. 

 Other frameworks have emerged recently as well, and some that have been around 
for decades are being recognized as architecture frameworks, though that particular title 
was not applied until recently (e.g., the Zachman Framework). The early frameworks 
were focused on individual systems and their architectures. Newer versions, however, 
have expanded into the fi eld of enterprise architecture, a subset of enterprise engineer-
ing or enterprise systems engineering (see Chapter  3  for a discussion of enterprise 
systems engineering). All of the current versions, including the Department of Defense 
Architecture Framework (DODAF) and TOGAF, have enterprise editions of their 
frameworks. 

 Many architecture frameworks that can be applied to system development exist, 
even if the primary purpose is enterprise architecting. Below is a selected list of archi-
tecture frameworks: 

   •      DODAF  

   •      TOGAF  

   •      The Zachman Framework  

   •      Ministry of Defense Architecture Framework (MODAF)  

   •      Federal Enterprise Architecture Framework (FEAF)  

   •      NATO Architecture Framework (NAF)  

   •      Treasury Enterprise Architecture Framework (TEAF)  

   •      Integrated Architecture Framework (IAF)  

   •      Purdue Enterprise Reference Architecture Framework (PERAF)    
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  DODAF.     Although by no means more important or  “ better ”  than any other frame-
work, we discuss the basic products of the DODAF to illustrate the basic components 
of a framework. 

 The DOD framework, like all frameworks mentioned, is divided into a series of 
perspectives, or viewpoints. Figure  8.6  depicts these viewpoints using a fi gure from the 
DODAF description. The viewpoints can be observed in three bundles. The fi rst con-
sists of four viewpoints that describe the overall system and its environment: capability, 
operational, services, and systems. The second bundle consists of the underlying prin-
ciples, infrastructure, and standards: all data and information and standards. The fi nal 
bundle is a single viewpoint focusing on the system development project.   

 Version 2 of this framework is easily scalable from the system level to the enter-
prise level, where multiple systems are under development and would be integrated 
into a legacy system architecture. In fact, each of the three major system - level archi-
tecture frameworks, DODAF, MODAF, and TOGAF, are now compatible with enter-
prise development efforts. Furthermore, with the addition a services viewpoint, 
service - oriented architectures are now possible within the DODAF framework. 

 Within each viewpoint, a set of views is defi ned. A total of 52 views are defi ned 
by DODAF, organized within the eight viewpoints. For each view, a variety of methods 
and techniques are available to represent the view. For example, one view within the 
operational viewpoint is the operational activity model. This view can be represented 
by a variety of models, such as the FFBD. Other models can be used to represent the 

     Figure 8.6.     DODAF version 2.0 viewpoints.  

Articulates the capability requirement, delivery
timing, and depolyed capability

A
rtic

u
la

te
s
 a

p
p
lic

a
b
le

 o
p
e
ra

tio
n
a
l, b

u
s
in

e
s
s
, te

c
h
n
ic

a
l, a

n
d

in
d
u
s
try

 p
o
lic

y
, s

ta
n
d
a
rd

s
, g

u
id

a
n
c
e
, c

o
n
s
tra

in
ts

, a
n
d
 fo

re
c
a
s
ts

D
e
s
c
rib

e
s
 th

e
 re

la
tio

n
s
h
ip

s
 b

e
tw

e
e
n
 o

p
e
ra

tio
n
a
l a

n
d

c
a
p
a
b
ility

 re
q
u
ire

m
e
n
ts

 a
n
d
 th

e
 v

a
rio

u
s
 p

ro
je

c
ts

 b
e
in

g
im

p
le

m
e
n
te

d
, d

e
ta

ils
 d

e
p
e
n
d
e
n
c
ie

s
 b

e
tw

e
e
n
 c

a
p
a
b
ility

m
a
n
a
g
e
m

e
n
t a

n
d
 th

e
 d

e
fe

n
s
e
 a

c
q
u
is

itio
n
 s

y
s
te

m
 p

ro
c
e
s
s

A
rtic

u
la

te
s
 th

e
 d

a
ta

 re
la

tio
n
s
h
ip

s
 a

n
d
 a

lig
n
m

e
n
t s

tru
c
tu

re
s
 in

th
e
 a

rc
h
ite

c
tu

re
 c

o
n
te

n
t

O
ve

ra
rch

in
g
 a

sp
e
cts o

f a
rch

ite
ctu

re
 co

n
te

xt th
a
t re

la
te

 to
 a

ll vie
w

s

Articulates operational scenarios, processes,
activities, and requirements

Articulates the performers, activities, services,
and their exchanges providing for, or

supporting, DoD functions

Articulates the legacy systems or independent
systems, their compsition, interconnectivity, and

context providing for, or supporting, DoD functions

Capability viewpoint

Operational viewpoint

Services viewpoint

S
ta

n
d

a
rd

s
 v

ie
w

p
o
in

t

P
ro

je
c
t v

ie
w

p
o
in

t

A
ll v

ie
w

p
o
in

ts

D
a

ta
 a

n
d

 in
fo

rm
a
tio

n
 v

ie
w

p
o
in

t

Systems viewpoint

c08.indd   227c08.indd   227 2/8/2011   11:04:59 AM2/8/2011   11:04:59 AM



228 CONCEPT DEFINITION

operational activity model, such as an IDEF0 diagram, or a combination of diagrams. 
Thus, an architecture framework will typically have three layers of entities: a set of 
 viewpoints  that compose the  framework , a set of  views  that defi ne each viewpoint, and 
a set of  models  that can represent the view. 

 Every large system development effort must have a minimum set of architecture 
views. Rarely will a system architecture contain all 52 architecture views. Pertinent 
views are decided beforehand by the systems engineer and system architect, depending 
on the intended communication and the appropriate stakeholders. 

 The key to developing successful system architectures is to understand the purpose 
of the architecture. Although each system development effort is different, depending 
on the magnitude and complexity of the system, all architectures have at least one 
common purpose: to communicate information. Choosing which framework to use, 
which viewpoints within the framework, which views within the viewpoint, and which 
models within the view all depends on the purpose the architect is trying to achieve. 

 The existing frameworks defi ne the superset of viewpoints and views that may be 
included within the architecture. Within each view, the framework typically suggests 
candidate models, which can be used to represent the view. A hallmark of the current 
frameworks, however, is the fl exibility inherent within each view. If the architect desires 
to use a model not included in the candidate list, he can — as long as he does not violate 
the overall framework constraints. 

 For example, many of the current frameworks were initially defi ned using tradi-
tional, structured analysis models (e.g., IDEF0, FFBD, data fl ow diagrams) to defi ne 
their views. However, engineers familiar with object - oriented (OO) models began to 
use a combination of OO and structured analysis models to represent views. As the 
trend increased, the organizations responsible for the common architecture frameworks 
revised the available models to include OO models that can represent the views. Section 
 8.9  discusses two languages that implement OO models.    

   8.9    SYSTEM MODELING LANGUAGES: UNIFIED MODELING 
LANGUAGE (UML) AND SYSTEMS MODELING LANGUAGE (SysML)   

 All architecture frameworks use models to represent aspects, perspectives, and views 
of the system. Traditional models, like standard block diagramming techniques, are 
based on the top - down decomposition of a system. These methods are typically func-
tionally based and are formed into a hierarchy of models representing attributes of the 
system in increasing levels of detail. In the 1970s, when software engineering was 
expanding at a signifi cant rate, a formal modeling construct emerged and was called 
 “ structured analysis and design ”  (SAAD). The term has been applied to systems in 
general and is not restricted to software systems only. 

 Models that have been in use for decades resemble many of the SAAD constructs, 
and they have been grouped into what we call  traditional hierarchical methods , or 
simply  traditional systems modeling . This book uses many of the traditional models to 
represent aspects of systems. This informal modeling language has evolved into an 
excellent educational language for communicating principles and techniques. 
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 After the advent of SAAD, a new set of modeling languages has emerged, based 
on object - oriented analysis and design (OOAD) principles. This analysis and design 
method is primarily bottoms - up in approach and focuses on entities, as opposed to 
functions, though the two are closely related. In the 1990s, a new modeling language 
that incorporated OOAD principles and techniques was formalized: the UML. 

  UML 

 It was noted that in developing a complex system, it is essential to create high - level 
models of its structure and behavior to gain an understanding of how it may be con-
fi gured to meet its requirements. In the development of OOAD methodology, several 
of the principal practitioners separately developed such models. In the mid - 1990s, three 
of them (Booch, Rumbaugh, and Jacobson), developed a common modeling terminol-
ogy they called the  “ UML. ”  This language has been adopted as a standard by the 
software community and is widely used throughout industry and government. It is sup-
ported by sophisticated tools produced by several major software tool developers. 

 Whereas structured methodology employs three complementary views of a system, 
UML provides OO analysts and designers with 13 different ways to diagram different 
system characteristics. They may be divided into six static or structural diagrams and 
seven dynamic or behavioral diagrams. Figure  8.7  also lists the two sets of diagrams.   

  Structural diagrams  represent different views of system entity relationships: 

   •       Class Diagrams  show a set of classes, their relationships, and their interfaces.  

   •       Object Diagrams  show a set of instances of classes and their relationships.  

   •       Component Diagrams  are typically used to illustrate the structure of, and rela-
tionships among, physical objects.  

   •       Deployment Diagrams  show a static view of the physical components of the 
system.  

   •       Composite Structure Diagrams  provide a runtime decomposition of classes.  

   •       Package Diagrams  present a hierarchy of components.    

     Figure 8.7.     UML models.  

Structural Diagrams Behavioral Diagrams

Class
Activity

Use Case
Component

Object

Composite Structure

Deployment

State Machine

Sequence
Communication

Deployment
Package

Timing

Interaction Overview

c08.indd   229c08.indd   229 2/8/2011   11:04:59 AM2/8/2011   11:04:59 AM



230 CONCEPT DEFINITION

  Behavioral diagrams  represent different views of system dynamic 
characteristics. 

   •       Use Case Diagrams  show interrelations among a set of use cases representing 
system functions that respond to interactions with external entities ( “ actors ” ).  

   •       Sequence Diagrams  show the interactions among a set of objects in executing a 
system scenario, arranged in chronological order.  

   •       State Machine Diagrams  model the transition events and activities that change 
the state of the system.  

   •       Activity Diagrams  are fl owcharts of activities within a portion of the system 
showing control fl ows between activities.  

   •       Communication Diagrams  defi ne links between objects, focusing on their 
interactions.  

   •       Interaction Overview Diagrams  are a mix of sequence and activity diagrams.  

   •       Timing Diagrams  present interactions between objects with timing 
information.    

 UML class diagrams correspond approximately to entity relationship diagrams in 
structural analysis, while state chart diagrams correspond to state transition diagrams. 
Others, especially activity diagrams, are different views of functional fl ow diagrams. 

 The new language was quickly adopted by the software engineering community 
as the de facto standard for representing software concepts and software - intensive 
systems. Although the origins of the language are in the software world, recently, the 
language has been used successfully in developing systems that include both hardware 
and software. 

 UML is governed by the Object Management Group (OMG), a worldwide consor-
tium. UML will continue to evolve with new releases and added complexity. 

 Rather than providing examples and explanations to all of the diagrams, we present 
some examples — several behavioral diagrams: the use case diagram, the activity 
diagram, and the sequence diagram; and one structural diagram: the class diagram. 

  Use Case Diagram.     We present the use case diagram fi rst due to its utility in 
defi ning a system ’ s operation. In software, and in some hardware applications, use cases 
have been used to assist the identifi cation and analysis of operational and functional 
requirements. 

 The form of a use case diagram is shown in Figure  8.8 , modeling the interaction 
of an  “ actor ”  on the left side (represented by the stick fi gures) with a single use case 
(represented by an oval), which leads to a subordinate activity (a separate use case), 
while the other three interact with a second (external) actor. The arrows indicate the 
initiation of the use case, not the fl ow of information. For example, the librarian actor 
can initiate the  “ manage loans ”  use case. The  “ check - in book ”  use case may also initiate 
the same use case.   

 Each use case in the diagram represents a separate sequence of activities and 
events. UML defi nes a standard set of components for a use case, including 
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   •      title;  

   •      short description;  

   •      list of actors;  

   •      initial (or pre - ) conditions describing the state of the environment before the use 
case occurs (or is executed);  

   •      end (or post - ) conditions describing the state of the environment after the use 
case occurs (or has been executed); and  

   •      sequence of events, a list of actions or events that occur in a defi ned sequence.    

 Table  8.2  displays an example use case description for  “ check - out book. ”  The 
sequence of events lists the actions and activities that both actors and subsystems 
execute. In this case, the use case involves one actor and two subsystems — the check -
 out station and the loan management subsystem. This use case represents an automated 
check - out system at a library using the Universal Product Code (UPC) symbology.   

 Although not required, it can be benefi cial to use columns to separate actions of 
each actor and subsystem, such as was done in Table  8.2 . This allows the reader to 
easily determine who is performing the action and in what order (sometimes simultane-
ously). Use cases can, of course, be stylized or tailored to specifi c situations and may 
demonstrate the preferences of their authors. In other words, two engineers may come 
up with different use case sequences of events for the same use case. This may not 
represent a fl aw or problem. In fact, a use case may have several different variants, 
known in UML as  “ scenarios. ”  Unfortunately, the use of the term scenarios differs from 
our traditional defi nition provided earlier.  

  Activity Diagram.     As another example of a behavior diagram, we turn to the 
activity diagram. Activity diagrams can represent any type of fl ow inherent in a system, 
including processes, operations, or control. The diagram accomplishes this through a 

     Figure 8.8.     Use case diagram.  
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  TABLE 8.2.    Use Case Example —  “ Check - Out Book ”  

   Title      Check book  

  Short description    This use case describes a typical process of a library member 
checking out a library book.  

  List of actors    Library member  
  Initial conditions    Library member has no books assigned to him on loan.  
  End conditions    Library member has a single book assigned to him on loan.  

   Sequence 
of events     Library member     Check - out station  

   Loan management 
subsystem  

  1        Displays  “ Please swipe card ”       
  2    Swipes library car          
  3        Reads member data from card      
  4        Sends request to confi rm 

member is in good standing  
    

  5            Checks database for 
member information  

  6            Confi rms good standing  
  7        Receives confi rmation    Sends confi rmation  
  8        Displays  “ Place book UPC   

under scanner ”   
    

  9    Places book UPC 
symbol under 
scanner  

        

  10        Scans book UPC      
  11        Sends request to confi rm 

book is available  
    

  12            Checks database for 
book information  

  13            Confi rms availability  
  14        Receives confi rmation    Sends confi rmation  
  15        Displays  “ Thank you! Book 

is due in two weeks. ”   
  Indicates book as  “ out ”   

sequence of activities and events. The sequence of activities and events is regulated via 
various control nodes. The basic components of the activity diagram are described 
below: 

   •      Action:     an elementary executable step within an activity (rectangle with rounded 
corners);  

   •      Activity Edge:     a connecting link between actions, and between actions and nodes 
(an arrow); activity edges are further divided into two types: object fl ows and 
control fl ows;  

   •      Object Flow:     an activity edge that transports objects (or object tokens);  
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   •      Control Flow:     an activity edge that represents direction of control (also trans-
ports control tokens);  

   •      Pin:     a connecting link between action parameters and a fl ow (a box connected 
to an action and a fl ow); a pin accepts explicit inputs or produces explicit outputs 
from an action;  

   •      Initial Node:     the starting point for a control fl ow (solid circle);  

   •      Final Node:     the termination point for a control fl ow (solid circle within an open 
circle);  

   •      Decision Node:     a branch point for a fl ow in which each branch fl ow contains a 
condition that must be satisfi ed (diamond);  

   •      Merge Node:     a combination point in which multiple fl ows are merged into a 
single fl ow (diamond);  

   •      Fork Node:     a point at which a single fl ow is split into multiple concurrent fl ows 
(a solid line segment); and  

   •      Join Node:     a point in which multiple fl ows are synchronized and joined into a 
single fl ow (a solid line segment).    

 Figure  8.9  represents   a simple activity diagram, which is analogous to a functional 
fl ow diagram, for our library book system. The diagram shows the activity path to split 
into two concurrent activities, one of which follows one of two logical paths, of return-
ing or borrowing a library book.    

     Figure 8.9.     UML activity diagram.  
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     Figure 8.10.     UML sequence diagram.  
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  Sequence Diagram.     Our last behavior diagram is the sequence diagram. These 
diagrams are usually linked to a use case where actions or events are listed in sequential 
formats. The sequence diagram takes advantage of this sequence and provides a visual 
depiction of the sequence of events, tied to the actor or subsystem performing the action. 

 Figure  8.10  depicts an example sequence diagram of the check - out operation. The 
diagram is tied to the use case presented above but provides additional information 
over what was presented in the use case description.    

  Class Diagram.     At the heart of the UML is the concept of the class and is 
depicted in the class diagram. A class is simply a set of objects (which can be real or 
virtual) that have the same characteristics and semantics. In this case, an object can be 
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almost anything and, within the UML, can be represented in software. The class typi-
cally describes the structure and behavior of its objects. 

 Within a class defi nition, three primary components exist (among others): 

   •      Attributes:     the structural properties of the class;  

   •      Operations:     the behavior properties of the class; and  

   •      Responsibilities:     the obligations of the class.    

 Classes typically have relationships with other classes. The basic structural relationship 
is known as an  association . Figure  8.11  depicts a simple association between the two 
classes,  “ employee ”  and  “ company. ”  The line linking the two classes can have an arrow; 
however, if no arrow is present, then a bidirectional relationship is assumed. The nature 
of the association can also be provided by using a triangle. The association is then read 
like a sentence,  “ Employee  works for  company, ”  and  “ Company  employs  employee. ”  
Finally, if the author wants to designate the association as a numerical relationship, he 
can use  multiplicity . Multiplicity designates the numerical aspects of the association 
and can be expressed with specifi c numbers or a series of shorthand notations. For 
example, 0..2 means that any value between 0 and 2 can exist as part of the association. 
The star symbol,  * , is used as a wildcard symbol, and can be thought of as  “ many. ”  
Thus, in our example, both the star and the number  “ 1 ”  are used to represent the fact 
that an employee works for only one company, and the company employs many 
employees.   

 Two other relationship types between classes are  generalization  and  dependency . 
Generalization refers to a taxonomic relationship between a special, or specifi c, class 
and a general class. Figure  8.12  depicts a generalization relationship between the three 
classes, customer, corporate customer, and personal customer. In this case, both the 
corporate and the personal customers are specifi c class types belonging to the general 
class, customer. This relationship is depicted as an arrow with a large arrowhead. In 
this diagram, the class attributes and operations are provided for each.   

 When a generalization relationship is defi ned, the specifi c classes inherit the attri-
butes and operations of the parent. Thus, the corporate customer class not only has its 
own specifi c attributes and operation but would also contain the attributes Name and 
Address, in addition to the operation, getCreditRating(). The same is true for the per-
sonal customer class. 

 Dependency is the third type of relationship and denotes the situation where one 
class requires the other for its specifi cation or implementation. We should note that 
dependency is a relationship type that can be used among other elements within the 
UML, not just classes. 

     Figure 8.11.     Example of a class association.  

Employee Company
Works for 1

* Employs
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     Figure 8.12.     Example of a class generalization association.  

Customer

Name [1]

Address [0..1]

getCreditRating(): String

Corporate Customer

contactName

Personal Customer

contactName

creditRating

creditLimit

billforMonth(integer)

creditCardNumber

 Figure  8.13  includes the dependency association with our library example. The 
class diagram depicts several association types as presents a number of classes that 
would be defi ned as part of the library check - out system.     

  Systems Modeling Language (SysML) 

 Although UML has been applied to systems that include both hardware and software, 
it became evident that a variant form of UML, developed specifi cally for systems that 
combine software and hardware, could be used more effectively. Additionally, with the 
evolution of systems engineering, and specifi cally systems architecting, during the 
1990s, a formal modeling language was recognized as benefi cial to establish a consis-
tent standard. The International Council on Systems Engineering (INCOSE) commis-
sioned an effort in 2001 to develop a standard modeling language. Due to its popularity 
and fl exibility, the new language was based on UML, specifi cally version 2.0. The OMG 
collaborated with this effort and established the Systems Engineering Domain Special 
Interest Group in 2001. Together, the two organizations developed and published the 
systems engineering extension to UML, called the SysML for short. 

 Perhaps the most important difference between UML and SysML is that a user of 
SysML need not be an expert in OOAD principles and techniques. SysML supports 
many traditional systems engineering principles, features, and models. Figure  8.14  
presents the diagrams that serve as the basis for the language.   
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     Figure 8.13.     Class diagram of the library check - out system.  
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     Figure 8.14.     SysML models.  
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 A new category, consisting of a single diagram of the same name, has been intro-
duced: the requirements diagram. Only four of the 13   UML diagrams are included 
without changes: package, use case, state machine, and sequence. Diagrams that rely 
heavily on OO methodologies and approaches are omitted. 

 As with UML above, we present an example diagram from each category — in this 
case three — the requirements diagram, the internal block diagram, and the activity 
diagram. The latter two correspond closely to the UML class and activity diagrams; 
however, we will highlight the differences in our discussion. 

  Requirements Diagram.     In UML, software requirements are primarily cap-
tured in the use case descriptions. However, these are primarily functional require-
ments; nonfunctional requirements are not explicitly presented in UML. Stereotypes 
were developed in response to this gap; however, SysML introduces a new model that 
specifi cally addresses any form of requirements. 

 Figure  8.15  presents a simple example of a requirements diagram. The primary 
requirement is the maximum aircraft velocity. This is a system - level requirement that 
has three attributes: an identifi cation tag, text, and the units of the requirements metric. 
The text is the  “ classical ”  description of the specifi c requirement. As described in the 
previous chapters, the system - level requirement has a verifi cation method — in this case 
a test, indicated by  “ TestCase. ”  The details of the AircraftVelocityTest would be found 
elsewhere.   

     Figure 8.15.     SysML requirements diagram.  
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 This system - level requirement may lead to a set of derived requirements, typically 
associated with subsystems of the system. In the fi gure, three derived requirements are 
included: engine thrust, aircraft weight, and aircraft lift. These requirements would also 
have attributes and characteristics, although they are not shown in this particular 
diagram. 

 Finally, the satisfy relationship is depicted in the fi gure. This indicates a mecha-
nism, or entity, that will satisfy the derived requirement. In the case of engine thrust, 
the engine subsystem is responsible for satisfying the derived requirement. 

 The requirements diagram is typically a series of rectangles that identify and asso-
ciate many system - level requirements with subsystem - level requirements, their verifi -
cation methods, derived requirements, and their satisfaction concepts. The latter allows 
the concept of mapping or tracing requirements to functional and physical entities. 

 As with operational, performance, and functional requirements, these diagrams are 
updated throughout the systems engineering method and the system development 
process. Linkages between components of the requirements model represented in this 
diagram, and the functional and physical models represented in other SysML diagrams, 
are crucial to successful systems engineering. Modern tools have been, and are being, 
developed to facilitate these linkages between model components.  

  Allocation.     In SysML, a formal mechanism has been developed to enable the 
user to connect, or bind, elements of different models together. This mechanism is 
called allocation. SysML provides three types of allocations, although users can defi ne 
others: behavior, structure, and object fl ow. The behavior allocation links, or allocates, 
behavior (represented in one or more of the behavioral diagrams) to a block that real-
izes this behavior. Recall that behavior is typically an activity or action. The structure 
allocation links, or allocates, logical structures with physical structures (and vice versa). 
This mechanism enables the engineer to link components of a logical defi nition of the 
system (typically represented by logical blocks) with components of a physical defi ni-
tion of the system (typically represented by physical blocks and packages). Finally, the 
object fl ow allocation connects an item fl ow (found in the structure diagram) with an 
object fl ow edge (found in the activity diagram). Allocation can be signifi ed by a dashed 
arrow in many of the SysML diagrams.  

  Block Defi nition Diagram.     In UML, the basic element is the  class , with the 
 object  representing its instantiation. Because these terms are so closely identifi ed with 
software development, SysML uses a different name to represent its basic element — the 
 block . The structure and meaning of the block is almost identical to the class. A block 
contains attributes, may be associated with other blocks, and may also describe a set 
of activities that it conducts or behaviors it exhibits. 

 Blocks are used to represent the static structure of a system. They may represent 
either logical (or functional) elements or physical elements. The latter can also be 
divided into many types of physical manifestations — hardware, software, documenta-
tion, and so on. Figure  8.16  depicts an example block defi nition. The various compo-
nents of a block defi nition are also depicted. This defi nition would be part of the block 
defi nition diagram (or sets of diagrams).   
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 The block name is at the top. Values are the attributes or characteristics of the radar 
that are pertinent; the fi gure displays a sample set of attributes for this radar block. The 
next section down is the operations or the actions and behaviors of the block. In this 
example, the radar conducts only two types of operations, DetectTarget and StatusCheck. 
In reality, of course, common radars would perform many other operations. There may 
be constraints put on the operations or attributes of the block, so the next section lists 
any constraints. The block may also be defi ned with its subsystems or components, 
typically referred to as  “ parts. ”  The example lists six basic subsystems of the radar. 
Finally, references (to other blocks) are provided. 

 Figure  8.17  depicts several types of block associations. Associations, similar to 
their counterparts in UML, represent relationships between blocks. Simple associations 
are depicted as lines connecting blocks. If direction is needed, then an arrow is placed 

     Figure 8.16.     SysML block defi nition.  
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on one end — this type of association is called a  navigable association . Special catego-
ries are also available: aggregation associations represent blocks that are part of a 
whole; composition associations represent blocks that are part of a composite; depen-
dency associations represent blocks that are dependent on other blocks; and generaliza-
tion associations represent specialized blocks that are incorporated into a general block.    

  Activity Diagram.     Of UML ’ s behavioral diagrams, only one has been signifi -
cantly expanded within SysML: the activity diagram. Four major extensions have been 
incorporated: 

   •      Control fl ow has been extended with control operators.  

   •      Modeling of continuous systems is now enabled using continuous object fl ows.  

   •      Flows can have associated probabilities.  

   •      Modeling rules for activities have been extended.    

 With these extensions, some existing functional modeling techniques can be imple-
mented, such as the extended functional fl ow block diagram (EFFBD). Additionally, 
with the new extensions, a function tree can be represented quite easily, as shown in 
Figure  8.18 a. This example uses the coffeemaker functions provided in Figure  8.4 .   

 These functions can be arranged into a more traditional activity diagram, shown 
in Figure  8.18 b. For clarity, the diagram does not include all 11 functions. The general 
control fl ow is indicated by the fl ow arrows and follows the general fl ow of Figure  8.4  
(the FBD). Inputs and outputs are depicted by separate connectors — arrows with pins 
(or rectangles connected to the activity). These connectors are labeled with the entities 

     Figure 8.17.     SysML block associations.  
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        Figure 8.18.     (a) SysML functional hierarchy tree. (b) SysML activity diagram.  
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passed across the interfaces. A control operator is also included to illustrate this type 
of special control mechanism. In this case, a control operator regulates what is passed 
to the  Display Status  activity, depending on the combination of its three inputs. 

 We have presented three SysML diagrams to illustrate some of the basic techniques 
of the language — one from each diagram category. Like UML, SysML offers the 
systems engineer and the systems architect with a fl exible modeling kit with which to 
represent many aspects and perspectives of a system concept. Furthermore, it over-
comes some of the inherent challenges within the UML when representing the more 
traditional methods of systems engineering, the requirements diagram being perhaps 
the most relevant example. With the advent of SysML, numerous commercial applica-
tions have risen to assist the engineer in developing, analyzing, and refi ning system 
concepts.    

   8.10    MODEL - BASED SYSTEMS ENGINEERING (MBSE) 

 With the advent of formal modeling languages, such as UML and SysML, and system 
architecture frameworks, such as DODAF and TOGAF, the ability of systems engineers 
to represent system requirements, behaviors, and structures has never been greater. 
Thus, exploring and defi ning system concepts have now been formalized and a new 
subset of systems engineering, systems architecting, has risen from obscurity to signifi -
cance. In broad terms, the system architecture can be thought of as a model of the 
system, or at least the system concept. This is not to be confused with the fact that 
the term  “ model ”  is also used to denote the basic building blocks of a system 
architecture. 

 Soon after the fi rst formal version of UML was released, OMG released the fi rst 
version of their new model - driven architecture (MDA). This architecture was the fi rst 
formal architecture framework that recognized the shift from a code - centric software 
development paradigm to an object - centric paradigm, enabled by the then de facto 
standard for software engineering model languages, UML. The MDA presented a set 
of standard principles, concepts, and model defi nitions that allowed for consistency in 
defi ning object models across the software community. 

 MDA delineated between the real system and its representation by a set of models. 
These models, in turn, would conform to a metamodel defi nition, which would in turn, 
conform to a meta - meta model defi nition. Several concepts, processes and techniques 
were presented in the literature using this concept, although the names differed: model -
 driven development, model - driven system design (MDSD), and model - driven engineer-
ing. They were all based on the basic concepts of focusing on a model and its metamodel 
to represent the system from the early stages of development through deployment and 
operations. 

 With the attempt to merge software and systems engineering processes and prin-
ciples, model - driven development was applied several times to system development in 
various forms. In 2007, these attempts (along with their techniques and concepts) were 
grouped by INCOSE under the banner of MBSE. And with the release of the current 
versions of SysML, this approach has continued to increase in popularity. 
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 The basic notion behind MBSE is that a model of the system is developed early 
in the process and evolves over the system development life cycle until the model 
becomes, in essence, the build - to baseline. Early in the life cycle, the models have low 
levels of fi delity and are used primarily for decision making (not unlike the system 
architecture in Section  8.8  above). As the system is developed, the level of fi delity 
increases until the models can be used for design. Finally, the models are transformed 
yet again into the build - to baseline. At each stage, similar to the standard systems 
engineering method introduced in Chapter  4 , a subprocess is performed to evolve the 
set of system models. Baker introduced this subprocess for his approach (which he 
called MDSD). This subprocess is shown in Figure  8.19 .   

 Additionally, Baker defi ned an early information model, or view, for an MDSD. 
This is provided in Figure  8.20  and is read similarly to a UML class diagram. The 
arrows represent the direction of the relationship, not the fl ow of information.   

     Figure 8.19.     Baker ’ s MDSD subprocesses.  
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     Figure 8.20.     Baker ’ s information model for MDSD.  
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 Although this approach may sound familiar to the traditional systems engineering 
approach, several signifi cant differences exist between the two. The foremost difference 
is the products of each. In traditional systems engineering (including either of the 
structured analysis or OO approaches), the primary products early in the system devel-
opment life cycle are documents. Regardless of whether these documents are electronic 
or paper, they tend to be static representations of the system. With MBSE, the primary 
products are models, which can be executed to some extent. Thus, reviewing an MDSD 
(regardless of where one is along the life cycle) involves interrogating a set of models, 
which is an automated process. Reviewing traditional systems engineering products 
involves largely reading text and diagrams (although modern representations and dis-
plays greatly assist in this). 

 Of course, there is a price for this ability. Additional computing resources (applica-
tions, databases, hardware, visualization, and networking) are required to facilitate the 
MDSD effort. Currently, few of these resources are available, although more are in 
development and should be available to engineers soon. Furthermore, until projects 
are implemented using this approach, we do not yet have a rich lessons learned 
database. 

 With this inexperience in mind, INCOSE set about to identify and document the 
products which implemented this approach in part or whole. The INCOSE MBSE Focus 
Group published its fi nding in May 2007 and they identifi ed fi ve methodologies: 

  1.     Telelogic ’ s Harmony  ®   – SE.     This proprietary methodology is modeled after the 
products classical systems engineering  “ Vee ”  process, except that a require-
ments and model repository is established and updated during each step in the 
process. Additionally, a test data repository is also established and updated to 
track test cases and data. Several tools and applications have been developed 
or revised to facilitate the harmony methodology. Telelogic produces several of 
these (e.g., Rhapsody, Popkin, DOORS), although the methodology itself is 
application - neutral.  

  2.     INCOSE ’ s Object - Oriented Systems Engineering Method (OOSEM).     This 
approach implements the model - based approach using SysML to support the 
specifi cation, analysis, design, and verifi cation of a system. The basic set of 
activities produces artifacts that can be refi ned and used in other applications. 
These activities and artifacts are listed below:  

  a.     Analyze stakeholder needs.  
  b.     Defi ne system requirements.  
  c.     Defi ne logical architecture.  
  d.     Synthesize candidate allocated architectures.  
  e.     Optimize and evaluate alternatives.  
  f.     Validate and verify the system.    

  3.     IBM ’ s Rational Unifi ed Process for Systems Engineering (RUP – SE).     The goal 
of the RUP – SE process was to apply the discipline and best practices found in 
the RUP and to apply them to the challenges of system specifi cation, analysis, 
design, and development. Moreover, RUP – SE was developed specifi cally to 
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implement model - driven system development. This adaptation of the existing 
unifi ed process focuses on four modeling levels: context, analysis, design, and 
implementation, each incorporating higher levels of fi delity than the previous. 
These fi rst three model levels are then cross - indexed with six viewpoints: 
worker, logical, information, distribution, process, and geometric, to produce 
17 architecture artifacts (the context/process pair does not produce an artifact, 
and the implementation model produces actual  physical  artifacts). These arti-
facts become the basis of the RUP – SE architecture framework.  

  4.     Vitech ’ s MBSE Methodology.     This approach is based on four primary activities 
that are integrated through a common design repository: 

   a.     source requirements analysis,  
  b.     functional/behavior analysis,  
  c.     architecture/synthesis, and  
  d.     design validation and verifi cation.   

 This methodology requires a common information model to manage 
the syntax and semantics of artifacts. Vitech has defi ned a system defi nition 
language (SDL) for use with their process (which also can be used with their 
tool, CORE), although the process itself can use any information model 
language.  

  5.     Jet Propulsion Laboratory ’ s (JPL) State Analysis (SA).     This last methodology 
leverages a model -  and state - based control architecture to capture system 
requirements and design. This process distinguishes between a system ’ s state 
and one ’ s knowledge of that state. Generally, the knowledge of the system state 
is represented by more abstract concepts than the actual states themselves. How 
the system evolves from state to state is represented within a set of models. 
Finally, system control is also represented by models, although complete control 
is considered impossible due to system complexity.    

 The establishment and maturation of OO methods, systems modeling languages, and 
the proliferation of tools and applications implementing those methods and languages 
have led to an increased awareness of the benefi ts of using a model - driven approach 
in systems engineering. And although the approach does come with a price in increased 
resources, the benefi ts may indeed provide for an adequate return on investment. Case 
studies are slowly being offered as  “ proof ”  that this approach can indeed work. More 
time and experience is necessary before the community as a whole embraces MBSE; 
however, its basic principles are sound. And this methodology and approach is one 
more step in the convergence of software and systems engineering practices.  

   8.11    SYSTEM FUNCTIONAL SPECIFICATIONS 

 The concept defi nition phase is not complete until a formal basis is created to 
guide the follow - on engineering design stage. A linchpin of such a basis is a statement 
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describing completely and concisely all the functions that the system must be 
designed to perform in order to fulfi ll its operational requirements. In major govern-
ment acquisitions, such a statement is usually called the  “ system specifi cation ”  or 
 “ A - Spec. ”  

 The system specifi cation can be thought of as a textual and diagrammatic repre-
sentation of the system concept. It does not, however, address specifi cally how the 
system is implemented to perform its functions but stipulates what functions are to be 
performed, with what precision, and under what conditions. In so doing, it is essential 
that the defi nitions be stated in measurable terms because the engineering implementa-
tion of those functions will rely on these defi nitions. 

 While the preparation of system specifi cations is logically a part of the concept 
defi nition phase, in a competitive acquisition process, it is usually prepared immediately 
after the selection process by the successful contractor team. In commercial product 
development, the process is not as formal but is similar in purpose. 

 The system specifi cation document should address at least the following 
subjects: 

  System Defi nition 

 Mission and concept of operation system functions 

 Confi guration and organization of system interfaces  

  Required Characteristics 

 Performance characteristics (hardware and software) and compatibility 
requirements 

 RMA requirements  

  Support Requirements 

 Shipping, handling, and storage training 

 Special facilities  

  Special Requirements 

 Security and safety human engineering    

 The leadership and much of the actual work involved in formulating the system 
specifi cation document is the responsibility of systems engineering.  

   8.12    SUMMARY 

  Selecting the System Concept 

 Objectives of the concept defi nition phase are to select a preferred system confi guration 
and to defi ne system functional specifi cations, as well as a development schedule and 
cost. 

 Concept defi nition concludes the concept development stage, which lays the basis 
for the engineering development stage of the system life cycle. Defi ning a preferred 
concept also provides a baseline for development and engineering. 
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 Activities that comprise concept defi nition are 

   •      Performance Requirements Analysis —   relating to operational objectives,  

   •      Functional Analysis and Formulation —   allocating functions to components,  

   •      Concept Selection —   choosing the preferred concept by trade - off analysis, and  

   •      Concept Validation —   confi rming the validity and superiority of the chosen 
concept.     

  Performance Requirements Analysis 

 Performance requirements analysis must include ensuring compatibility with the system 
operating site and its logistics support. The analysis must also address reliability, main-
tainability, and support facilities, as well as environmental compatibility. A specifi c 
focus on the entire life cycle, from production to system disposition, must be kept. 
Finally, the analysis must resolve the defi nition of unquantifi ed requirements.  

  Functional Analysis and Formulation 

 Functional system building blocks (Chapter  3 ) are useful for functional defi nition. The 
selection of a preferred concept is a systems engineering function, which formulates 
and compares evaluation of a range of alternative concepts.  

  Functional Allocation 

 Developing alternative concepts requires part art and part science. Certainly, the pre-
decessor system can act as a baseline for further concepts (assuming a predecessor is 
available). Brainstorming and other team innovation techniques can assist in developing 
alternatives.  

  Concept Selection 

 System concepts are evaluated in terms of (1) operational performance and compatibil-
ity, (2) program cost and schedule, and (3) risks in achieving each of the above. Program 
risk can be considered to consist of a combination of two factors: likelihood that the 
system will fail to achieve its objectives and impact of the failure on the success of the 
program. 

 Program risks can result from a number of sources: 

   •      unproven technology,  

   •      diffi cult performance requirements,  

   •      severe environments,  

   •      inadequate funding or staffi ng, and  

   •      an unduly short schedule.    

 Trade - off analysis is fundamental in all systematic decision making.  
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  Concept Validation 

 In concept selection, trade - off analysis should be 

   •      Organized —   set up as a distinct process,  

   •      Exhaustive —   consider the full range of alternatives,  

   •      Semiquantitative —   use relative weightings of criteria,  

   •      Comprehensive —   consider all major characteristics, and  

   •      Documented —   describe the results fully.    

 Justifi cation for the development of the selected concept should 

   •      show the validity of the need to be met;  

   •      state reasons for selecting the concept over the alternatives;  

   •      describe program risks and means for containment;  

   •      give evidence of detailed plans, such as WBS, SEMP, and so on;  

   •      give evidence of previous experience and successes;  

   •      present life cycle costing; and  

   •      cover other relevant issues, such as environmental impact.     

  System Development Planning 

 The WBS is essential in a system development program and is organized in a hierarchi-
cal structure. It defi nes all of the constituent tasks in the program. 

 The SEMP (or equivalent) defi nes all systems engineering activities through the 
system life cycle.  

  Systems Architecting 

 Systems architecting is primarily the development and articulation of different perspec-
tives, or viewpoints, of a system. Almost all system architectures have at least three 
perspectives: 

   •      Operational View —   a system representation from the user ’ s or operator ’ s 
perspective,  

   •      Logical View —   a system representation from the customer ’ s or manager ’ s per-
spective, and  

   •      Physical View —   a system representation from the designer ’ s perspective.    

 Architecture frameworks defi ne the structure and models used to develop and 
present a system architecture. These frameworks are meant to ensure consistency across 
programs in articulating the various perspectives.  
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  System Modeling Languages: UML and SysML 

 The UML provides 13 system models to represent both structural and behavioral 
aspects of the system. Although UML was developed for software development applica-
tions, it has been successfully applied to software - intensive systems. The language 
differs from the traditional structured analysis approach by focusing on entities (repre-
sented by classes and objects) instead of functions and activities. 

 The SysML is an extension of UML that enables a more complete modeling of 
software/hardware systems and facilitates the top - down approach of traditional systems 
engineering. An emphasis on requirements to drive the development effort is inherent 
in SysML. To distinguish the two languages, SysML uses the block as its primary entity, 
in place of the class.  

  MBSE 

 The basic notion behind MBSE is that a model of the system is developed early in the 
process and evolves over the system development life cycle until the model becomes, 
in essence, the build - to baseline. Early in the life cycle, the models have low levels of 
fi delity and are used primarily for decision making (not unlike the system architecture 
in Section  8.8  above). As the system is developed, the level of fi delity increases until 
the models can be used for design. Finally, the models are transformed yet again into 
the build - to baseline.  

  System Functional Specifi cations 

 System functional specifi cations address the system functional description, its required 
characteristics, and the support requirements.   

  PROBLEMS 

    8.1     Describe three principal differences between system performance require-
ments, which are an input to the concept defi nition phase, and system func-
tional specifi cations, which are an output (see Fig.  8.1 ).  

  8.2     Both the concept exploration and concept defi nition phases analyze several 
alternative system concepts. Explain the principal differences in the objec-
tives of this process in the two phases and in the manner in which the analysis 
is performed.  

  8.3     Describe what is meant by the term  “ functional allocation ”  and illustrate its 
application to a personal computer. Draw a functional diagram of a personal 
computer using the functional elements described in Chapter  3  as building 
blocks. For each building block, describe what functions it performs, how it 
interacts with other building blocks, and how it relates to the external inputs 
and outputs of the computer system.  
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  8.4     Under the subsection Program Risks, fi ve examples are listed of conditions 
that may result in a signifi cant probability of program failure. For each 
example, explain briefl y what consequences of the condition may lead to a 
program failure.  

  8.5     In the subsection Selection Strategy, it is recommended that in comparing 
different concepts, the weighted evaluations of the individual criteria for each 
concept should not be collapsed into a single fi gure of merit for each concept 
(as is commonly done) but should be retained in the form of an evaluation 
 “ profi le. ”  Explain the rationale for this recommendation and illustrate it with 
a hypothetical example.  

  8.6     Discuss how you would use trade - off analysis to prioritize the efforts to be 
allocated to the mitigation of identifi ed high and medium program risks.  

  8.7     The section The  “ Selling ”  of the System Development Proposal lists seven 
elements in a recommended approach to the authorities responsible for 
making the decision. Illustrate the utility of each element by explaining in 
each case what the authorities might conclude in the absence of a suitable 
discussion of the subject.  

  8.8       (a)     Develop a top - level function list for an ATM system. Limit yourself to 
no more than 12 functions.  
  (b)     Draw an FBD of the ATM using the functions in (a).    

  8.9       (a)     Identify the functions of a common desktop computer.  
  (b)     Identify the components of a common desktop computer.  
  (c)     Allocate the functions in (a) to the components in (b).    

  8.10     Suppose you have completed the functional analysis and allocation activities 
within the concept defi nition phase of a system ’ s development. 
   (a)     Suppose that you have some functions that are allocated to multiple 

components (as opposed to a single component). What does that mean 
regarding your conceptual design? Is this a problem?  

  (b)     Suppose that you have many functions that are allocated to a single 
component. What does that mean regarding your conceptual design? Is 
this a problem?    

  8.11     Convert the coffeemaker FBD in Figure  8.4  to an IDEF0 diagram.  

  8.12     Draw a physical block diagram of the coffeemaker represented in Figure  8.4 . 
Within the diagram, use rectangles to represent physical components and 
label the interfaces between the components.  

  8.13     Draw a diagram that presents the associations and relationships between the 
following: 

    •      the system,  
   •      system architecture,  
   •      architecture framework,  
   •      viewpoint,  
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   •      view,  

   •      modeling language, and  

   •      model.    

  The diagram should include seven rectangles (one for each entity above) and 
labeled arrows that describe the relationships between the entities.  

  8.14     Convert the coffeemaker FBD in Figure  8.4  to  a  UML activity diagram.  

  8.15     Write a two - page essay comparing and contrasting the latest versions of 
DODAF and TOGAF.  

  8.16     Suppose you are the system architect for a new private business jet aircraft 
that is intended to seat eight executives. Suppose also that you have been 
asked to use DODAF as your architecture framework. Decide and explain 
which views you would include in your architecture. Of course, all of the 
views within DODAF will not be necessary for this type of system.  

  8.17     Build a matrix that maps UML models to DODAF views. In other words, 
which UML model(s) would be appropriate for each DODAF view? Hint: 
many DODAF views will be not applicable while   others will have more than 
a single UML view. Please use a matrix or table.  

  8.18     Repeat Problem 8.17, but map SysML models to DODAF.  

  8.19     Repeat Problem 8.17, but map UML to TOGAF.  

  8.20     Research MBSE and write an essay comparing and contrasting MBSE with 
traditional systems engineering, as described in Chapters  1  –  8  of this book. 
What are the principles of MBSE? What is different? Can traditional systems 
engineering implement the basic principles without signifi cant upgrades?     
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