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9.1 Introduction

Multi-objective optimization has recently been gaining interest among the chemical engi-
neering community. It is applied to numerous areas such as process design, biotechnology,
petroleum refining, pharmaceuticals and polymerization [1]. In the field of thermodynam-
ics, the use of multi-objective optimization has not yet been reported, to the best of our
knowledge.
Accurate simultaneous predictions of phase equilibrium and thermophysical proper-

ties are crucial for the design and simulation of chemical processes. Equations of state
(EOS) are extensively used in process industries and also in the academic community.
The characteristic parameters in most EOS are exclusively tuned to the phase equilibrium
data in order to obtain the best possible representation of Vapor-liquid equilibrium (VLE).
Although VLE predictions are of primary importance for practical purposes, it is found that
these fitted parameters give very poor estimates for other thermophysical properties like
excess enthalpy, heat capacities, Joule Thomson coefficient, and so forth. The predictions
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of second-derivative properties like isobaric heat capacity, speed of sound, thermal expan-
sivity or isothermal compressibility using parameters tuned to phase equilibrium show
large deviations from the actual value. The contrary also happens, i.e. parameters tuned
to thermophysical properties cannot simultaneously describe the phase equilibrium. For
most of the thermodynamic models, the objective functions are highly nonlinear and non-
convex. This calls for the use of global optimization strategies for parameter estimation.
Performances of genetic algorithms, simulated annealing, particle swarm optimization,
harmonic search, and so forth, have been studied for VLE modeling since the early 2000s.
There are a number of publications devoted to parameter estimation for phase equilibria
calculations [2, 3, 4, 5]. However, all these formulate only a single objective function for
optimization, with the usual practice of minimizing the error between experimental and
model predictions. In this chapter, we illustrate the use of multi-objective optimization that
can be applied when two or more conflicting objectives are addressed simultaneously.
Multi-objective (MO) optimization problems can be solved by different techniques

among which evolutionary algorithms are particularly suited because they are capable
of finding multiple optimal solutions in one single simulation run [6, 7]. Genetic algo-
rithm (GA)-based algorithms such as the non-dominated sorting genetic algorithm (NSGA,
NSGA-II, etc.) have found many applications in the field of chemical engineering. Particle
swarm optimization (PSO) is a population-based stochastic optimization technique devel-
oped by Eberhart and Kennedy in 1995. It is inspired by the coordinated behavior in a flock
of birds, swarm of bees, or a school of fish [8]. Particle swarm optimization can be easily
implemented and has only few parameters to adjust which makes it a better candidate than
genetic algorithms. Extensive studies on using PSO for MO applications have been carried
out by different researchers and as such specialized variants of PSO are available [9]. The
scope of this chapter is not to illustrate all the different techniques—rather the authors
intend to explore the application of MO technique for phase equilibrium calculations.

9.2 Particle Swarm Optimization (PSO)

For the sake of readers who are unfamiliar with the PSO technique, we briefly revisit the
important concepts of single objective PSO. The basic idea is that a number of particles
(solutions) are used, which constitute a swarm moving around the search space with a
velocity, looking for the best solution. Suppose the search space is n-dimensional, then the
ith particle of the swarm can be represented as xi = (xi1, xi2, . . . , xin) and the velocity of
this particle is given by vi = (vi1, vi2, . . . , vin). The best previous position (personal best)
of the ith particle (i.e. the position giving the best function value) is recorded as pi = (pi1,
pi2, . . . , pin) and the global best position obtained by any particle in the entire swarm can
be represented as pgn. For each time step, the particle compares its current position with
the personal best and also the global best and manipulates the velocity for the next iteration
accordingly. The particles adjust its velocity and position according to Equations (9.1)
and (9.2):

vk+1
in = w∗vk

in + c1r1(p
k
in − xk

in)+ c2r2(p
k
gn − xk

in) (9.1)

xk+1
in = xk

in + vk+1
in (9.2)
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Where k represents the time step, c1 and c2 are the cognitive and social parameters
respectively (normally, c1 = c2 = 2), r1 and r2 are random numbers within the interval [0,1]
and w is known as inertia, which influences convergence to either a local (smaller w) or
global (larger w) optimum. Linearly decreasing the inertia weight from a relatively large
value to a small value through the course of the PSO run gives the best PSO performance
compared with fixed inertia weight settings.
A pseudocode for the algorithm is given below [10]:

PSO Algorithm

For each particle:
Initialize particle

End
Do

For each particle
Calculate fitness value
If the fitness value is better than its personal best
set current value as the new pbest

End
Choose the particle with the best fitness value of all as gbest
For each particle

Calculate particle velocity according to equation (9.1)
Update particle position according to equation (9.2)

End
While maximum iterations or minimum error criteria is not attained

There are different variants of PSO available and a good number of references can
be found in the literature [11]. The performance of single-objective PSO for parameter
estimation in phase equilibrium calculations, phase stability analyses, and so forth, provides
very promising results [12, 13]. The relative simplicity of PSO and its population based
approach have made it a potential candidate to be extended to multi-objective optimization.
Many different strategies for solving MO problems using PSO have been published since
2002 [14].

9.2.1 Multi-Objective Particle Swarm Optimization (MO-PSO)

There are two approaches to solve multi-objective problems using PSO [11, 15]. The first
method involves either combining all objective functions into a single one or considering
each objective function separately. In these approaches, each particle is evaluated with only
one objective function at a time and the standard algorithm for single objective PSO is
followed. The main limitation with this procedure is in defining a protocol for the proper
manipulation of objective functions to ensure their convergence to the actual Pareto front.
This traditional category to solve MO problems includes weighted aggregation, objective
function ordering, and non-Pareto vector evaluated approaches. The second category con-
sists of approaches that evaluate all objective functions for each particle, and, based on the
concept of Pareto optimality, produce non-dominated best positions (often called leaders)
to guide the particles. The determination of leaders is nontrivial, as they have to be selected
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among a plethora of non-dominated solutions in the neighborhood of a particle. This is the
main challenge related to the second category.
A general MO-PSO algorithm is given below [16]:

MO-PSO Algorithm

Start
Initialize swarm, velocities and best positions.
Set an empty set as the external archive.
While (stopping criteria not satisfied) Do
For each particle of the swarm
Select a leader from the external archive (if applicable).
Update particle velocity and position.
Evaluate new particle position.
Update best position and external archive.
End For
End While

End

Some of the commonly used MO-PSO approaches are briefly discussed below [14].

(i) Weighted-sum approach: This technique combines all the objective functions into a
single one. In other words, the multi-objective problem is transformed to a single
objective function. A function F(x) can be expressed as a linear combination of non-
negative weights (wi):

F (x) =
n∑

i=1
wifi(x) (9.3)

such that
n∑

i=1
wi = 1 (9.4)

Parsopoulos and Vrahatis adopted three types of weighting/aggregating functions:

• Conventional weighted aggregation (CWA) where the weights are fixed during
the run.

• Bang-bang weighted aggregation (BWA) where the weights abruptly change during
the run. For a bi-objective problem, the weights are adapted as follows:

w1(t) = sign (sin(2tπ/a))

w2(t) = 1− w1(t)
(9.5)

where: a is user-defined adaptation frequency and t stands for the iteration number.

• Dynamic weighted aggregation (DWA) where the weights are gradually modified
during the run. For a bi-objective problem, the weights are adapted as follows:

w1(t) = | sin(2tπ/a) |
w2(t) = 1− w1(t)

(9.6)
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(ii) The lexicographic approach: In this approach, the user ranks the objective functions in
increasing order of priority. The optimum solution is then obtained by minimizing the
objective functions separately, starting with the most important one. Hu and Eberhart
[14] proposed such an ordering scheme.

(iii) Non-Pareto vector evaluated approaches: Parsopoulos and Vrahatis [16] also proposed
the vector evaluated PSO (VEPSO) scheme, which employs one swarm per objective
function and evaluates it only with this function. The best positions of one swarm are
used to update the velocity of another swarm corresponding to a different objective
function.

(iv) Pareto-based approaches: These approaches use the concept of Pareto dominance to
determine the best positions (leaders) that guide the swarm during the search. There
are several schemes to select the leader, making it an active area for research. Coello
Coello and his group [9, 17] proposed one of the first Pareto-based PSO approaches.
The basic idea in this proposal was to create an external archive (repository) that will
store the non-dominated solutions and a geographically based approach to maintain
diversity. Works from several other evolutionary multi-objective researchers can be
found in the reference.

9.3 Parameter Estimation in Phase Equilibria Calculations

Phase-equilibria calculations play a vital role in the design, development, operation, opti-
mization and control of chemical processes. Commercial process simulators like ASPEN,
and so forth, use equations of state and / or activity coefficient models for thermodynamic
modeling of vapor-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE), and so forth.
The phase behavior of the system is highly sensitive to the parameters used in these ther-
modynamic models. For instance, the predictive capability of an equation of state is highly
dependent on the binary interaction parameters. These parameters are estimated by tuning
the model to match certain observed properties. Using the correct set of parameters for
these models is vital in order to obtain reliable results. Generally, the model parameters are
obtained by fitting the data to different phase equilibrium properties like binary VLE/LLE
data, critical points, vapor pressure, liquid density, etc. and the objective functions are for-
mulated based on either the classical least squares (LS) or maximum likelihood approaches
(ML). Asmentioned above, simultaneous description of phase equilibrium and thermophys-
ical properties is a very difficult task in applied thermodynamics. Here we illustrate one
important example where the liquid phase is modeled by an activity coefficient model. The
objective is to have a simultaneous prediction of both phase equilibrium (VLE) and the heat
of mixing (excess enthalpy). A number of optimal solutions are obtained and the parameters
are selected depending upon which prediction is more important. The idea presented here
can be extended to solve other exercise problems listed at end of this chapter. Also the reader
is free to choose any suitable MO optimization technique to find the optimal solutions.

9.4 Model Description

The nonrandom, two-liquid (NRTL) activity coefficient model can be used to describe the
phase behavior of the ethyl formate (1)–methanol (2) system at 45 ◦C [18]. The model
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parameters can be estimated by fitting to the phase equilibrium data (VLE, LLE, etc.) or
the heat of mixing data [19]. The following sections illustrate the procedure.

9.4.1 Vapor Liquid Equilibrium

For equilibrium to exist, the temperature, pressure and fugacities of component i in all
phases must be constant. At low pressures we can neglect the Poynting correction factor
and ideal vapor phase can be assumed (fugacity coefficient in vapor phase is assumed unity).
With these considerations, the experimental activity coefficient γ iexp can be written by:

γ
exp
i = yip

xiP
sat
i

, i = 1, · · · , (9.7)

where, xi and yi are experimental mole fractions of component i in liquid and vapor phases
respectively at equilibrium, and Pisat is the pure component vapor pressure of component i
at system temperature T and pressure P.
The NRTLmodel proposed by Renon and Prausnitz is used for the liquid phase to predict

the VLE and excess enthalpy. The NRTL equation for the excess Gibbs energy is given by:

gE

RT
= x1x2

[
τ21G21

x1 + x2G21
+ τ12G12

x2 + x1G12

]
(9.8)

where:

τ12 = g12 − g22

RT
τ21 = g21 − g11

RT
(9.9)

G12 = exp(−α12τ12) G21 = exp(−α12τ21) (9.10)

The parameter α12 is related to the nonrandomness in the mixture, which is fixed at the
typical value of 0.3 for our model. There are therefore two parameters namely, (g12-g22)
and (g21-g11) that need to be estimated for the NRTL model. The activity coefficients are:

In(γ1) = x22

[
τ21

(
G21

x1 + x2G21

)2
+ τ12G12

(x2 + x1G12)2

]

In(γ2) = x21

[
τ12

(
G12

x2 + x1G12

)2
+ τ21G21

(x1 + x2G21)2

] (9.11)

The VLE data for the binary mixture at 45 ◦C is taken from the works of Nagata et al.
[18]. We would like to determine the parameters for NRTL model to match the VLE data.
The objective function can be formulated in terms of the difference between experimental
and model predicted activity coefficients as:

f1 =
ndat∑
j=1

c∑
i=1

{
100 ∗

(
γ
exp
ij − γ cal

ij

γ
exp
ij

)}2
(9.12)

where, ndat is the number of experimental VLE data points and c is the number of compo-
nents in the mixture.
The above error function is minimized using single objective PSO and the parameters

were calculated as (g12-g22) = 2246.1 J/mol and (g21-g11) =1178.14 J/mol that best fit the
VLE data (Figure 9.1).



Parameter Estimation in Phase Equilibria Calculations 255

85

80

75

70

65

60

55

50
0 0.1 0.2 0.3 0.4 0.5

x1, y1

P
re

ss
u

re
 (

kP
a)

0.6 0.7 0.8 0.9 1

Figure 9.1 Vapor-liquid equilibria for the ethyl formate (1)–methanol(2) system at 45 ◦C.

9.4.2 Heat of Mixing

Heats of mixing determine the relative volatilities and consequently the temperature profile
in a distillation column. Hence the heats ofmixing data are needed for reliable and economic
designs of industrial separation processes. In applied thermodynamics, the simultaneous
prediction of vapor-liquid equilibrium (VLE) and excess enthalpies (heat of mixing) by
either equations of state or activity coefficient models has always been a very difficult
problem. The excess enthalpy (hE), which indicates the temperature dependence of excess
Gibbs energy (gE), can be calculated using the Gibbs–Helmholtz equation:(

∂(gE/T ))
∂T

)
P,x

= −
(

hE

T 2

)
(9.13)

For the NRTL model, the expression for excess enthalpies can be derived to be as given
below:

hE

RT
= gE

RT
− x1x2α12

[
x1τ

2
21G21

(x1 + x2G21)2
+ x2τ

2
12G12

(x2 + x1G12)2

]
(9.14)

where, (gE/RT) is calculated from Equation (9.8).
Experimental heats of mixing for the binary system of Ethyl formate - methanol are also

reported by Nagata et al. [18]. Using the set of parameters obtained by fitting to VLE data,
the excess enthalpies are calculated from Equation (9.14) and shown in Figure 9.2.
The NRTL model does not give good predictions for the heat of mixing with the set

of parameters obtained from VLE fitting. If we define a second objective function that
minimizes the error in heat of mixing as:

f2 =
ndat∑
i=1

{
100 ∗

(
h
exp
i − hcal

i

h
exp
i

)}2
(9.15)

Optimizing the above function f2 gives a good fit for the excess enthalpy (Figure 9.3)
but at the expense of degrading the VLE predictions (Figure 9.4). The parameters obtained
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Figure 9.2 Heats of mixing for ethyl formate(1)–methanol(2) system at 45 ◦C.
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Figure 9.3 Heats of mixing when the parameters are fit to excess enthalpies.
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Figure 9.4 VLE predictions when the parameters are fit to excess enthalpies.
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in this case were (g12-g22) = 3596.07.1 J/mol and (g21-g11) =1602.71 J/mol. This shows
that the simultaneous prediction of vapor-liquid equilibrium and heat of mixing using one
set of parameters for the NRTL model is not possible. The decision-maker has to make a
compromise on one of the objectives based on the final requirement.

9.5 Multi-Objective Optimization Results and Discussion

In order to solve the two conflicting objective functions f1 and f2 formulated in the preceding
section, the multi-objective particle swarm optimization technique (MO-PSO) is used. To
illustrate, we adopt the weighted-sum approach strategy. The problem is converted to a
single objective function by using different weights and the Pareto front is developed. To
validate the MO-PSO code, it was used on a test-function initially.
The following two-objective functions are considered:

Minimize : f1(x) = x1

f2(x) = 1+ x22 − x1 − α sin(bπx1)

(9.16)

Subject to : 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2

The problem has two parameters, a and b, which control the convexity of the search
space. The complete Pareto-optimal front is shown in Figure 9.5, which is consistent with
the one reported by Deb [20].
The parameters used for the MO-PSO are given in Table 9.1 [21].

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

f1

f2

0.6 0.7 0.8 0.9 1

Figure 9.5 Pareto-optimal set for Test function using MO-PSO.
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Table 9.1 PSO parameters used.

Parameter Value

c1 2
c2 2
w Initially 0.9, gradually

reduced to 0.4 over time
No. of particles 40
Max Iterations 10 000

After validating the code, MO-PSO is used to optimize the two objective functions
f1 and f2 for the parameter estimation problem. The combined objective function can be
formulated as:

F (x) = w1f1(x)+ w2f2(x) (9.17)

where: f1 and f2 represent the sum of errors for VLE and heat of mixing prediction respec-
tively as explained in previous section. The function F(x) is solved using the standard PSO
algorithm for different weights w1 and w2, where

w2 = 1− w1 (9.18)

The same parameters given in Table 9.1 are used for the MO-PSO. The complete Pareto-
front (Figure 9.6) and the errors with respect to different parameters are shown below
(Figures 9.7 and 9.8).
The bi-objective function is solved using Particle Swarm Optimization (coded in MAT-

LAB 7.11) for different weights. Figures 9.7 and 9.8 help to select the optimum parameters
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Figure 9.6 Pareto-optimal set for fitting VLE and excess enthalpy.
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Figure 9.7 Error in VLE and heat of mixing w.r.t. parameter 1 (g12–g22).

for the NRTL model depending on the final outcome of the problem. For instance, in cases
where accurate prediction of VLE is the sole objective, the parameters are selected that
make the error f1 as low as possible and vice-versa for heat of mixing calculations. If
both the predictions are equally important (e.g. in a distillation column), tradeoff solutions
should be used (which minimizes both f1 and f2 simultaneously). In the example presented
in this chapter, only two objective functions have been used (VLE and heat of mixing).
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There may be instances where additional objectives must be formulated to determine the
best solutions for the process under study; therefore detailed knowledge of the application
is required to make a final decision. The selected parameters should be able to predict other
thermodynamic phenomena like existence of azeotropes, retrograde condensation, and so
forth. Decision-making depends on the user preference and there exist some methods in
the literature to rank the Pareto-optimal solutions [22]. The computational time for the
weighted-aggregation technique is quite high as the objectives are solved for a number of
weights to obtain a good Pareto-front.

9.6 Conclusions

This chapter introduced the application of multi-objective optimization for phase equilibria
calculations, which is one of the most important areas in the field of chemical engineering.
There are numerous instances where the user has to make a decision based on number of
factors. Using the correct set of parameters is crucial for all the process simulators; incorrect
values lead to large errors in prediction, affecting the design, operation and optimization of
the process. Simultaneous description of phase equilibrium and thermophysical properties
using equations of state models is a very difficult task. The parameters fitted for phase
equilibrium are not able to predict the thermophysical properties and vice-versa. Evolu-
tionary algorithms like PSO promise to be the best approach for solving multi-objective
problems as these can give the optimal solutions in one single simulation run. Theweighted-
aggregation technique illustrated in this chapter is the easiest way to solve the multi-
objective problem, although it suffers from crucial limitations like difficulty in fixing the
weights, finding the Pareto-optimal solutions in non-convex objective space, and increased
computational cost.
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Nomenclature

a user-defined adaptation frequency in DWA and BWA.
BWA Bang-bang weighted aggregation.
c number of components in mixture.
c1 cognitive parameter in PSO.
c2 social parameter in PSO.
CWA conventional weighted aggregation.
DWA dynamic weighted aggregation.
g12- g22 NRTL parameter.
G12, G21 NRTL parameters.
g21- g11 NRTL parameter.
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GA genetic algorithm.
gE excess Gibb’s energy.
hE excess enthalpy (heat of mixing).
k time step.
LLE liquid-liquid equilibrium.
LS least squares.
ML maximum likelihood.
MO multi-objective.
MO-PSO multi-objective particle swarm optimization.
n search space dimension.
ndat number of experimental points.
NRTL nonrandom two liquid theory (activity coefficient model).
NSGA non-dominated sorting genetic algorithm.
P total pressure.
pgn global best position.
pi personal best position of the ith particle.
Psat vapor pressure of the pure component.
PSO particle swarm optimization.
R universal gas constant.
r1, r2 random numbers between 0 and 1.
t iteration number.
T temperature.
VEPSO vector evaluated PSO.
vi velocity of the ith particle.
VLE vapor-liquid equilibrium.
w inertia factor in PSO.
w1, w2 weights in a bi-objective function.
xi mole fraction in liquid phase.
xi position of the ith particle.
yi mole fraction in vapor phase.

Greek Characters

α12 NRTL parameter
γ activity coefficient
τ 12, τ 21 NRTL parameters

Generate Pareto-optimal solutions for the following problems:

Exercises

9.1. Fit the parameters for the NRTL Activity coefficient model for ethanol (1) – cyclo-
hexane (2) binary mixture at 298.15K to:
(a) VLE and excess enthalpy.
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(b) Excess enthalpy and excess heat capacity which is related to the excess enthalpy

by.cE
p =

(
∂hE

∂T

)
P,x

.

(c) VLE, excess enthalpy and excess heat capacity.

The experimental data for the binary mixture are given below.

Experimental VLE data for the binary mixture at 298.15 K [23]:

x1 0.0128 0.1511 0.2701 0.4129 0.5355 0.6766 0.7598 0.8364 0.9175 0.9697
y1 0.213 0.3212 0.3345 0.3448 0.3534 0.3712 0.3924 0.4321 0.5332 0.714

Binary excess molar enthalpies hE in J mol−1at 298.15 K [24]:

x1 0.1020 0.1708 0.3166 0.4427 0.5526 0.6495 0.9434
hE 426.2 520.2 617.5 639.8 617.9 564.7 147.4

Binary excess molar heat capacities cp
E in J mol−1 K−1at 298.15 K [24]:

x1 0.0195 0.149 0.244 0.300 0.343 0.413 0.558 0.657 0.762 0.877 0.958
cpE 4.60 9.19 10.10 9.94 9.80 8.95 7.50 5.88 3.84 1.93 0.67

9.2. Equations of state can be fit to speed of sound data that finds important application for
reservoir fluids as it would help to determine the properties of fluids under reservoir
conditions without any PVT measurements. However, cubic equations like SRK and
PRdoes not give good predictions for the speed of soundwhen the parameters are tuned
to the critical properties. Using multi-objective optimization, estimate the parameters
for Peng–Robinson EOS for the methane (1) -butane (2) mixture in the supercritical
region (x1 = 0.894) that can give a fairly good description of both phase equilibrium
and other thermophysical properties. The experimental data for velocity of sound is
given below:
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Experimental data for speed of sound for methane (1) + butane (2), x1 = 0.894 [25]:

P (MPa) u (m/s)

17.237 438.0
16.547 428.4
15.858 419.4
15.168 410.8
14.479 402.9
13.79 395.6
13.10 388.9
12.411 383.1
11.721 378.0
11.032 373.7
10.342 370.3
9.653 367.8
8.963 366.0
8.274 365.1
7.584 364.8
6.895 365.2
6.205 366.4
5.516 368.0
4.826 370.1
4.137 372.7
3.447 375.5
2.758 378.5
2.068 381.6

The velocity of sound using PR EOS can be calculated using the following
expressions:

c2 = −
(

V 2

M

) [
RT

(v − b)2
+ 2a(V + b)

(v2 + 2bV − b2)2
− T

(
R

V − b
− a1

V 2 + 2bV − b2

)2

×
(

Co
P − R − T a2

2
√
2
1n

V + b − √
2b

V + b + √
2b

)−1⎤⎦

a1 = da

dT
, a2 = d2a

dT 2

Other symbols have the usual meaning and van-der Waals mixing rules can be used
to calculate the mixture coefficients.
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