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1.1 Optimization and Chemical Engineering

Optimization is important for processmodeling, synthesis, design, operation and retrofitting
of chemical, petrochemical, pharmaceutical, energy and related processes. Usually, chem-
ical engineers need to optimize the design and operating conditions of industrial process
systems to improve their performance, costs, profitability, safety and reliability. Process
system optimization is challenging because chemical engineering application problems are
often complex, nonlinear and large, have both equality and inequality constraints and/or
involve both continuous and discrete decision variables. The mathematical relationships
among the objective to be optimized (also known as the performance criterion), constraints
and decision variables establish the difficulty and complexity of the optimization problem,
as well as the optimization method that should be used for its solution. In particular, the type
of search space (i.e., continuous or discrete), the properties of the objective function (e.g.,
convex or non-convex, differentiable or nondifferentiable), and the presence and nature of
constraints (e.g., equality or inequality, linear or nonlinear) are the principal characteristics
to classify an optimization problem (Biegler and Grossmann, 2004).
The classes of optimization problems commonly found in engineering applications

include linear programming, quadratic programming, nonlinear programming, combinato-
rial optimization, dynamic optimization, mixed integer linear/nonlinear programming, opti-
mization under uncertainty, bi-level optimization, global optimization and multi-objective
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optimization (Floudas, 2000; Diwekar, 2003; Biegler and Grossmann, 2004; Floudas et al.,
2005). These types of optimization problems are found in almost all application areas
such as modeling, synthesis, design, operation and control of chemical and related pro-
cesses, and a wide variety of numerical methods have been used to solve them (e.g., Luus,
2000; Edgar et al., 2001; Tawarmalani and Sahinidis, 2002; Diwekar, 2003; Biegler and
Grossmann, 2004; Grossmann and Biegler, 2004; Floudas et al., 2005; Ravindran et al.,
2006; Rangaiah, 2009 and 2010).
Application problemsmay havemultiple optima, and it may be essential to find the global

optimum or the best solution. Depending on their convergence properties, optimization
methods can be classified as local or global. They may also be classified as deterministic or
stochastic methods depending on whether their search is deterministic (often using gradient
of the objective function and other properties of the problem) or stochastic (employing
random numbers). Local methods are computationally efficient and suitable for finding a
local optimum. These search strategies have been exploited commercially as can be seen
from their implementation in common software and process simulators such as Solver tool
in Excel, optimization tool-box inMatlab, GAMS, Aspen Plus and Hysys. Current progress
in computational capabilities has prompted an increasing and considerable attention on the
incorporation of global optimization methods in commercial software. For example, an
evolutionary search engine is now available in the Solver tool. Global methods are more
likely to find the global optimum.
To date, research contributions in optimization for chemical engineering have focused

primarily on theoretical and algorithmic advances including the development of reliable
and efficient strategies and their application for solving challenging and important chemical
engineering problems. The majority of these contributions deal with optimization problems
having only one objective function. In general, optimization problems in chemical engineer-
ing and in other disciplines involvemore than one objective function related to performance,
economics, safety and reliability, which have to be optimized simultaneously since these
objective functions may be fully or partially conflicting over the range of interest. Exam-
ples of conflicting objectives are: capital investment versus operating cost; cost versus
safety; quality versus recovery/cost; and environmental impact versus profitability. Multi-
objective optimization (MOO), also known as multi-criteria optimization, is necessary to
find the optimal solution(s) in the presence of tradeoffs among two or more conflicting
objectives.
Multi-objective optimization has therefore been studied and applied to solve a variety

of challenging and important problems in chemical engineering (Bhaskar et al., 2000;
Rangaiah, 2009; Chapter 3 in this book). In a perspective paper on issues and trends in the
teaching of process and product design, Biegler et al. (2010) noted that an important goal
in process design is optimization for multiple objectives such as profit, energy consump-
tion and environmental impact. In another perspective paper on sustainability in chemical
engineering education, identifying a core body of knowledge, Allen and Shonnard (2012)
have included process optimization as one of the computer-aided tools for environmentally-
conscious design of chemical processes; within process optimization, they have listedmulti-
objective, mixed integer and nonlinear optimization. Both these perspectives from eminent
researchers attest the growing importance and need for MOO in chemical engineering.
Even though research in the application of MOO in engineering has grown significantly,

there is only one book specifically devoted to MOO techniques and their applications
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in chemical engineering (Rangaiah, 2009); it describes selected MOO techniques and
discusses many applications.MOO and its applications are growingwith new developments
and interesting applications being reported continually. The present book covers the most
recent developments inMOOmethods and novel applications ofMOO formodeling, design
and operation of chemical, petrochemical, pharmaceutical, energy and related processes. In
short, the present book complements the previous book on MOO in chemical engineering.
The remainder of this chapter is organized as follows. Section 1.2 provides the basic
concepts and definitions used in MOO. Section 1.3 discusses MOO briefly in the context
of chemical engineering. Finally, section 1.4 presents an overview of all the chapters
in this book.

1.2 Basic Definitions and Concepts of Multi-Objective Optimization

In this section, basic definitions and key concepts inMOO are introduced briefly. The reader
is referred to earlier publications (e.g., Deb, 2001; Coello Coello et al., 2002; Rangaiah,
2009) for more details on these topics. Formally, MOO refers to simultaneous optimization
(i.e., maximization and/or minimization) of two or more objective functions, which are
often in conflict with one another. This optimization problem can be stated as follows:

Optimize 〈f1(x), f2(x), . . . , fn(x)〉 (1.1)

subject to

gi(x) ≤ 0 i = 1, 2, . . . , ni

hi(x) = 0 i = 1, 2, . . . , ne

xl < x < xu

(1.2)

where n is the number of objective functions to be simultaneously optimized, x is the vector
of m decision variables (continuous and/or discontinuous) with lower (xl) and upper (xu)
bounds, ni and ne are the number of inequality (g) and equality (h) constraints, respectively.
The feasible space, F is the set of vectors x that satisfy all the constraints and bounds in
Equation 1.2.
In MOO, we are interested in determining the set of values of x that yields the best

compromise solutions for all the specified objective functions. A single solution that simul-
taneously optimizes conflicting objectives is not feasible. Instead, a set of solutions is found
with the following characteristic: improvement of any one of the objectives is not possible
without worsening one or more of other objectives in the optimization problem. These opti-
mal solutions are referred to as the Pareto-optimal solutions (named after Italian economist,
Vilfredo Pareto). They provide quantitative tradeoffs among the objectives involved.
A vector x∗ ∈ F is Pareto optimal if there exists no feasible vector x ∈ F that would

improve some objective function without causing a simultaneous deterioration in at least
one other objective function. The Pareto-optimal solutions are also called non-dominated
solutions. In this context, the concept of domination implies that, given two solutions S1
and S3, S1 dominates S3 if S1 is at least as good as S3 in all objectives and better in at
least one (see Figure 1.1(a)). If neither of the solutions dominates the other, then both are
non-dominated to each other (e.g., S1 and S2 in Figure 1.1(a)). The determination of the
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Figure 1.1 Possible Pareto-optimal fronts for bi-objective optimization: (a) convex, (b) con-
cave, (c) concave and convex and (d) disconnected front. Gray region is the feasible space,
and the thick edge is the Pareto-optimal front.

Pareto-optimal front (i.e., the set of non-dominated solutions) is the main goal in MOO.
A process engineer can establish and understand tradeoffs and process performance using
the MOO results. The selection of a solution from the Pareto-optimal front depends on
the decision maker’s preferences, knowledge about the studied problem and also optimal
values of decision variables. Therefore, the decision maker, based on his/her expertise and
intuition, needs to choose the most appropriate solution for implementation or particular
regions of the tradeoff surface for further exploration.
In general, a good Pareto-optimal front should show two desirable characteristics: the

non-dominated solutions are distributed evenly, and they cover a wide range of values of
objectives under study. However, finding such a Pareto-optimal front can be very difficult
especially for large problems with non-continuous and non-convex search spaces. In MOO,
the concept of a local minimum is replaced by a local Pareto-optimal front, whose presence
may cause problems in the convergence of MOO methods to the global Pareto-optimal
front.
The Pareto-optimal fronts can be concave, convex or may consist of both concave and

convex sections including discontinuities. Figure 1.1 illustrates these for the case of a
bi-objective optimization problem. Better non-dominated solutions are obtained by MOO
methods for problems having convex Pareto fronts than for those having concave Pareto
fronts. The Pareto-optimal fronts with discontinuities are common in engineering problems,
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and are more complex to analyze. The problem dimension can affect the size and shape of
the Pareto-optimal set, and consequently determines the performance of MOO methods.
Further, the complexity of and difficulty of solving multi-objective problems as well as the
difficulty of analyzing their solutions are likely to increase with number of objectives.
There are several types of algorithms used for solving MOO problems to find the Pareto-

optimal solutions (Miettinen, 1999; Rangaiah, 2009). These include different types of
weighted methods (e.g., global criterion, weighted sum, weighted min-max, weighted
product, exponentialweighted), goal programmingmethods, the bounded objective function
method, the ε-constraint method, meta-heuristic/stochastic methods (Coello Coello et al.,
2002; Marler and Arora, 2009). Methods to solve MOO problems can be classified in
different ways, for example, depending on the decision-maker’s preference (i.e., methods
with a priori, posteriori and without articulation of preferences) or whether one or many
non-dominated solutions are obtained in one run.
Weighted, ε-constraint and goal programming methods require a priori preference of

the decision maker, and find one non-dominated solution in one run. By changing the
preference, one can find more non-dominated solutions but this requires more than one run.
Many of these were proposed before 1990, and so can be considered as classical methods.
They generally transform a MOO problem into a single-objective optimization problem,
which can then be solved by a suitable deterministic or stochastic method. Methods with
posteriori or without articulation of preferences can find many non-dominated solutions
in one run. These have been developed after 1990 and can be termed “modern methods.”
Many of them use stochastic global optimization methods such as genetic algorithms,
differential evolution and particle swarm optimization. There are also interactive methods,
which incorporate the decision-maker’s preference during the search for non-dominated
solutions. A comprehensive review of MOO methods can be found in Miettinen (1999),
Coello Coello et al. (2002) and Marler and Arora (2009).
The available MOO methods have their own strengths and weaknesses for solving

application problems, and it is important to identify and understand them for two reasons:
one is to choose and use the appropriate method for the application on hand and another
is for developing new and more robust MOO techniques. In particular, the study and
development of stochastic methods has been an active research area in MOO since the
early 1990s because these strategies can find multiple non-dominated solutions in a single
run. These methods do not require any assumptions on the objective functions and their
mathematical characteristics. Stochastic MOO methods include adaptations of simulated
annealing, genetic algorithms, evolutionary approaches, tabu search, differential evolution
and particle swarm optimization for multiple objectives. One stochastic MOO solver,
namely, elitist nondominant sorting genetic algorithm (NSGA-II) has been used for solving
many chemical engineering application problems (see Chapter 3) because of its ready
availability and effectiveness. The convergence performance of classical MOO methods
depends on the shape and continuity of the Pareto-optimal front. Stochastic MOO methods
are less sensitive to the characteristics of the optimization problem (e.g., type of objective
functions, decision variables and constraints) and the Pareto-optimal front.
The performance of MOO methods can be quantified using different metrics based on

computational requirement (such as CPU time and number of function evaluations), the
closeness of the obtained non-dominated solutions to the true/exact Pareto-optimal front
(known only for benchmark problems) and the spread of the non-dominated solutions found.
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Table 1.1 Summary of relevant journal articles on MOO of chemical engineering
applications.

Period

Number of
journal
papers Major application areas of MOO Reference

Before the
year 2000

≈ 30 Process design and control, chemical
reaction engineering, biochemical
engineering, waste treatment and
pollution control, electrochemical
process

Bhaskar et al.
(2000)

From 2000 to
mid-2007

≈ 100 Process design and operation, petroleum
refining and petrochemicals,
biotechnology and food technology,
pharmaceuticals, polymerization

Masuduzzaman
and Rangaiah
(2009)

From 2007 to
mid-2012

≈ 230 Process design and operation, petroleum
refining, petrochemicals,
polymerization, power generation,
pollution control, renewable energy,
hydrogen production, fuel cells

Chapter 3 of this
book

Analysis of MOO results has been mainly focused on the values of objective functions (i.e.,
in the objective function space shown in Figure 1.1). It is equally important to review and
understand the trends of values of decision variables corresponding to the non-dominated
solutions as one of these has to be selected and implemented to achieve the desired tradeoff
solution for the application under study.

1.3 Multi-Objective Optimization in Chemical Engineering

In chemical engineering, the presence of several conflicting objectives to be optimized
simultaneously is a common situation and, consequently, MOO applications have grown
considerably since the late 1990s. In fact, the importance of this optimization approach is
reflected by a significant increase in the number of papers published in different journals—
see Table 1.1. Recent chemical engineering applications of MOO are summarized in
Chapter 3 of this book. This rapidly growing interest in the chemical engineering com-
munity has prompted the development of new MOO methods, concepts and novel process
applications.
Reported MOO of chemical engineering applications include scheduling, production

planning and management of chemical processes, process design and simulation of unit
operations (e.g., crystallization and distillation), chemical reaction engineering, pollution
prevention and control, industrial waste management, water recycling and wastewater min-
imization, supply chain with environmental considerations, biorefinery process design and
integration (Bhaskar et al., 2000; Masuduzzaman and Rangaih, 2009). In particular, novel
chemical engineering applications combine economic objectives with process performance
metrics (such as conversion and energy consumption) and also environmental objectives
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obtained, for example, from life-cycle analysis. These applications include new emerging
areas such as the design of renewable energy systems and the distributed energy resources
planning (see Chapter 3). As stated by Garcia et al. (2012), the inclusion of environmental
concerns as optimization targets for process design in chemical engineering and other fields
has increased the application and uses of MOO tools.
In summary, MOO is playing an important role in chemical engineering, and a variety

of MOO techniques can be used for chemical engineering applications. There is no doubt
that the number and type of MOO of chemical engineering applications will increase in
the coming years. In fact, many chemical engineering problems that consider only one
objective can be reformulated as MOO problems to develop a more realistic approach to
their solution. Thus, MOO can be used to quantify and understand the tradeoffs among the
conflicting objectives in the optimization of a chemical process.

1.4 Scope and Organization of the Book

This book is organized in three parts. Part I consists of Chapters 1 to 3 and provide an
overview toMOOand its chemical engineering applications. Chapters 4 to 8, in Part II, cover
developments inMOO; although these are contributed by chemical engineering researchers,
they are applicable to and useful in other disciplines too. The focus of Chapters 9 to 17,
in Part III, are on MOO applications in chemical engineering. Chapters 2 to 17 are briefly
summarized in the following paragraphs.
Chapter 2 addresses the optimization of pooling problems for two objectives using the

ε-constraint method, contributed by Zhang and Rangaiah. It describes pooling problems,
presents a new formulation and illustrates the application of the ε-constraint method for
two objectives. Pooling problems are optimization problems of importance in petroleum
refineries. They are likely to have multiple minima, and so a global optimization method is
required to find the optimal solution. The solution of pooling problems for single objective
has been studied using many deterministic global optimization algorithms. However, there
has been no attempt to solve the pooling problems for multiple objectives. Hence, in this
chapter, pooling problems are optimized for two objectives using the ε-constraint method
along with a recent stochastic global optimization algorithm, namely, integrated differential
evolution (IDE). Further, a new formulation that does not involve equality constraints is
described and used. Many pooling problems from the literature are optimized for two
objectives, and the results demonstrate the potential of MOO for finding tradeoff solutions
for pooling problems. In short, this chapter illustrates the application of a popular classical
method, namely, ε-constraint method to the optimization of pooling problems.
Multi-objective optimization has found numerous applications in chemical engineering,

particularly since the late 1990s. Earlier, Bhaskar et al. (2000) have reviewed applications
of MOO in chemical engineering. Masuduzzaman and Rangaiah (2009) have reviewed
reported applications of MOO in chemical engineering from the year 2000 until middle
of 2007. In Chapter 3, Sharma and Rangaiah summarize about 230 articles on MOO in
chemical engineering and related areas, published from the year 2007 until June 2012, under
six groups: (1) process design and operation, (2) petroleum refining, petrochemicals and
polymerization, (3) food industry, biotechnology and pharmaceuticals, (4) power generation
and carbon dioxide emissions, (5) renewable energy, and (6) hydrogen production and fuel
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cells. The first group and the last three groups have seen significant increase in the number
of papers published since 2007.
Part II on MOO developments begins with Chapter 4, where Sharma, Nabavi and Ranga-

iah analyze the performance of jumping gene adaptations of elitist non-dominated sorting
genetic algorithm (NSGA-II), which has been used to optimize many process design and
operation problems for two or more objectives. In order to improve the performance
of this algorithm, jumping gene concept from natural genetics has been incorporated in
NSGA-II. Several jumping-gene adaptations have been proposed and used to solve math-
ematical and application problems in different studies. In Chapter 4, four jumping-gene
adaptations are selected and comprehensively evaluated on a number of bi-objective uncon-
strained and constrained test functions. Three qualitymetrics, namely, generational distance,
spread and inverse generational distance are employed to evaluate the distribution and con-
vergence of the obtained Pareto-optimal solutions at selected intermediate generations and
the final generation. Additionally, a search termination criterion based on the improvement
in the Pareto-optimal front, has been described and used to check convergence of NGSA-II
with the selected jumping-gene adaptations.
In Chapter 5, Sharma and Rangaiah discuss an improved constraint handling technique

for MOO and its application to two fermentation processes. Constraints besides bounds are
often present in MOO problems in chemical engineering; these arise from mass and energy
balances, equipment limitations, and operation requirements. Penalty function and feasi-
bility approaches are the popular constraint handling techniques for solving constrained
MOO problems by stochastic global optimization (SGO) techniques, such as genetic algo-
rithms and differential evolution. This chapter briefly reviews selected applications of these
constraint-handling approaches in chemical engineering. In the penalty-function approach,
solutions are penalized based on constraint violations; its performance depends on the
penalty factor, which necessitates selection of a suitable value for the penalty factor for
different problems. Generally, the feasibility approach is good for solving problems with
inequality constraints due to their large feasible regions. It gives higher priority to a feasible
solution over an infeasible solution, but this limits the diversity of the search. Feasible search
space is extremely small for equality-constrained problems and so the feasibility approach
may not be effective for handling equality constraints. The approach of adaptive relaxation
of constraints in conjunction with feasibility approach, addresses this issue by relaxing
feasible search space dynamically. This approach has been found to be better and effective
for solving SOO problems with equality and inequality constraints by SGO techniques. In
Chapter 5, a modified adaptive relaxation with feasibility approach is explored for solving
constrainedMOO problems by stochastic optimizers, and its performance is compared with
that of feasibility approach alone. For this, the modified adaptive relaxation with feasibility
approach is incorporated in the multi-objective differential evolution (MODE) algorithm
and tested on two benchmark functions with equality constraints. Finally, MODE with the
proposed constraint handling approach is applied to optimize two fermentation processes
for multiple objectives.
A robust multi-objective genetic algorithm (RMOGA) with online approximation under

interval uncertainty is the subject of Chapter 6 by Hu, Butt, Almansoori, Azarm and
Elkamel. Optimization of chemical processes is usually multi-objective, constrained and
has uncertainty in the process inputs, variables and/or parameters. This uncertainty
can produce undesirable variations in the objective and/or constraints. The traditional
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multi-objective genetic algorithm (MOGA) assumes that all inputs are deterministic. How-
ever, optimal solutions obtained by it can be sensitive to input uncertainty and degrade the
solutions. The goal in RMOGA is to obtain solutions that are optimum while also being
relatively insensitive to uncertainty. For this, one nested approach and another sequential
approach are presented in Chapter 6. In both of them, a measure of robustness is consid-
ered using a worst-case analysis, which assumes that the uncertainty in inputs is expressed
by an interval with known lower and upper bounds. In the nested approach, an upper
level problem identifies and improves candidate solutions, while a lower level subproblem
evaluates their robustness. In the sequential approach, the MOO problem is first solved to
obtain optimal solutions, and then the robustness of each optimal solution is evaluated. Both
nested and sequential RMOGA can be computationally costly. To ease the computational
cost, an online approximation-assisted method is used in both approaches. The purpose of
the approximation is to replace the computationally intensive evaluation of objectives and
constraints with a surrogate model (which is computationally much less intensive) while
adaptively improving the accuracy of the approximation as the search progresses. One
numerical example and a petroleum refinery example are used to demonstrate and compare
the applicability of the two RMOGA approaches.
Another technique to handle uncertainty in nonlinear process models is presented in

Chapter 7 by Mitra. Among the various preventive uncertainty handling techniques, the
chance-constrained programming (CCP) has gained considerable interest in recent times
due to certain advantages of its usage over its competitors. The CCP is different from
deterministic optimization since the former has a stochastic component attached to it. The
complexity involved in propagating the uncertainties in stochastic parameters to the corre-
sponding constraints and objective functions of the deterministic equivalent optimization
formulation is one of the key challenges in CCP. In Chapter 7, various facets of CCP has
been presented and explained through examples of different types. Problem formulation
using CCP under different scenarios has been discussed and demonstrated with examples
from the literature and the real world. It has been also shown how stochastic component
present in the CCP formulation leads to solution reliability which has an inverse relationship
with solution quality.
Chapter 8, the last in Part II, is on fuzzy MOO for metabolic reaction networks by

mixed-integer hybrid differential evolution (MIHDE) by Wang and Wu. In the optimiza-
tion of metabolic reaction networks, designers have to manage the nature of uncertainty
resulting from qualitative characters of metabolic reactions, for example the possibil-
ity of enzyme effects. A deterministic approach does not give adequate representation
of metabolic reaction networks with uncertain characters. Fuzzy optimization formu-
lations can be applied to cope with this problem. Chapter 8 introduces a generalized
fuzzy MOO problem (GFMOOP) for finding the optimal engineering interventions on
metabolic network systems considering the resilience phenomenon and cell viability con-
straints. This approach first formulates a constrained MOO problem that considers the
resilience effects and minimum set of manipulated enzymes simultaneously by combin-
ing the concepts of minimization of metabolic adjustment (MOMA) and regulatory on/off
minimization (ROOM). In addition, the nonlinear kinetic equations were included in the
optimization formulation, and so it was formulated as a constrainedmixed-integer nonlinear
programming (MINLP) problem.Mixed-integer hybrid differential evolution (MIHDE)was
extended to solve constrained MINLP problems through the implementation of constraint
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handling techniques. The fuzzy goal attainment approach implemented in MIHDE was
used to solve GFMOOPs for the identification of optimal genetic manipulation strategies
on metabolic reaction networks, and its effectiveness is discussed in Chapter 8.
Chemical engineering applications of MOO, in Part III, begin with Chapter 9 by Punna-

pala, Vargas and Elkamel, on parameter estimation in phase-equilibrium modeling. Phase-
equilibrium calculations play a vital role in the design, development, operation, optimization
and control of chemical processes. Equations of state or activity coefficient models are nor-
mally tuned to match certain properties in order to give an accurate description of the
phase behavior. This chapter introduces the application of MOO for parameter estimation
wherein a model is simultaneously fit to two or more conflicting properties. As an example,
the parameters of NRTL activity coefficient model are estimated by fitting the parame-
ters to vapor-liquid equilibrium data and heat of mixing (excess enthalpy). Particle swarm
optimization is used for this MOO.
Chapter 10 by Bonilla-Petriciolet, Sharma and Rangaiah considers another application of

MOO to phase equilibrium data modeling. In this chapter, MOO is applied for simultaneous
parameter estimation and data reconciliation of vapor-liquid equilibrium using the error-in-
variable formulation and activity coefficient models. Multi-objective differential evolution
with a tabu list is used for obtaining the Pareto-optimal front of data reconciliation problems
with three and four objectives. The application of some criteria of interest in thermodynamic
modeling is illustrated to characterize the solutions obtained from the Pareto-optimal fronts
of reconciled phase equilibrium data. The results show that MOO is an alternative and
reliable approach for performing data reconciliation in phase equilibrium modeling.
Al-Mayyahi, Hoadley and Rangaiah describe multi-objective process synthesis with

embedded energy integration in Chapter 11. Energy integration decreases energy costs of
industrial processes by increasing heat recovery and reducing utilities consumption. Several
potential opportunities for improving the energy efficiency and, consequently, reducing
CO2 emissions of petroleum refining processes have been investigated over the years via
implementing heat integration within a single process unit or among different refining
processes. However, the tradeoff between CO2 emissions and other economic or operating
objectives has not been widely covered. In Chapter 11, MOO has been implemented for
an integrated model of a crude distillation (CDU) and fluidized catalytic cracking (FCC)
complex using a binary-coded NSGA-II to investigate the tradeoff between CO2 emissions
and economic objectives. The CDU includes the atmospheric distillation unit (ADU), the
vacuum distillation unit (VDU) and the crude preheat train, whilst the FCC model includes
the reactor/regenerator section, the feed preheat train, the main fractionator and flue gas
heat and power recovery sections. Pinch analysis is used to maximize the heat recovery
within the integrated model and evaluate the distribution of utilities related to emissions.
The Pareto-optimal results including optimal operating conditions are presented and their
significant features are discussed.
In Chapter 12, Azzaro-Pantel and Pibouleau describe ecodesign of chemical processes

with MOGAs. Process synthesis is a complex activity involving many decision makers
and multiple levels of decision steps. From these many alternatives, the designers want
to select the one that best suits both economic and environmental criteria. This chapter
shows that MOO and multiple choice decision making (MCDM) techniques can be useful
for the ecodesign of a process. Two examples illustrate the determination of eco-friendly
and cost-effective designs: the so-called Williams and Otto process and the well-known
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benchmark process for hydrodealkylation (HDA) of toluene to produce benzene. This
chapter deals with the definition of various objectives for designing eco-efficient processes,
by considering simultaneously ecological and economic features. An improved variant of
NSGA-II is implemented for solving the resulting MOO problems. The environmental
burdens are evaluated by means of a decision support tool dedicated to the management
of plant utilities and to the emission control of pollutants. After finding the Pareto-optimal
solutions, a MCDM technique is used to discover the most interesting tradeoff design
alternatives.
Tarafder presents modeling and MOO of a chromatographic system in Chapter 13.

Chromatography is a separation technique, which plays a crucial role in the downstream
of several pharmaceutical and fine chemical industries. The chromatographic units in these
industries handle gram to kilogram scale of very high-value products per day, and they may
be required to be redesigned after a period of time, depending on the changes in the product
lines or other requirements. The current industrial practice mostly relies on empirical
methods to develop the operating conditions; but, given the high cost of products, there is a
huge incentive of applyingmodel-basedMOO studies in improving the performance of such
processes. Chapter 13 describes the development of a model-based optimization program,
and then demonstrates the ways of conducting optimization studies with this model. The
example chosen for this chapter is the separation of enantiomers in batch processes. In
the industries, there is a strong requirement for faster separation of enantiomers, but that
has to sacrifice the product recovery as the sample mixture may not get enough time to
separate entirely. But, as recovery is a critically important parameter for process economics,
the situation leads to an optimization problem having conflicting objectives. Chapter 13
provides the basic understanding of developing a mathematical model to simulate such
a system, formulate the objective functions, identify the constraints and the most useful
decision variables, and finally, with the help of a genetic algorithm, determine the Pareto-
optimal solutions.
Estimation of crystal size distribution by image thresholding based on MOO is the

subject of Chapter 14 by Periasamy and Lakshminarayanan. Crystallization process can
be effectively controlled by monitoring the crystal size distribution (CSD), which can
be estimated using particle vision and measurement (PVM) images. Image segmentation
based on thresholding is critical in this regard. Generally, the threshold is selected by
optimizing a single objective. Based on the type of thresholding used, segmentation can
be improved. Hence, in this work, optimum threshold is calculated by solving a MOO
problem. The two objectives used are within-class variance and overall probability of error.
This MOO problem is solved based on the plain aggregating approach and simulated
annealing by assigning appropriate weights to each objective function. The MOO-based
thresholding overcomes the limitations and outperforms the thresholding performed by
either of the single objectives. The segmented images are further processed by means of
feature extraction to estimate the CSD. The algorithm was tested on a set of artificially
generated crystallization images, and its accuracy was calculated by comparing the CSD
estimated to the data used to generate the artificial images. This accuracy was found to be
around 90% for images in which about 20–25 particles exist.
In Chapter 15 by Gudena, Rangaiah and Lakshminarayanan, a hybrid steam-stripper

membrane process for continuous bioethanol purification is optimized for multiple
objectives. Several ethanol-water separation technologies for continuous recovery and
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purification of bioethanol from fermentation broth are discussed in the literature. Recently,
a hybrid steam-stripping membrane-separation process is proposed and shown to reduce
energy consumption for separation by nearly half when compared to the conventional dis-
tillation process. This chapter discusses detailed modeling of the hybrid stripper-membrane
separation process in Aspen-PlusTM followed by its MOO using the ε-constraint method.
Important objectives, namely operating cost per unit of ethanol produced, ethanol purity
(as there is no consensus on the limit for water in bioethanol as a fuel in different countries)
and ethanol loss in the waste stream, are considered. Pareto-optimal solutions obtained for
these conflicting objectives are presented and discussed.
The design of the cumene process for economic, environmental and safety (EES) objec-

tives is described in Chapter 16 by Sharma, Lim and Rangaiah. Safety is very important
in the process industry, but it has received much less attention than economic objectives
in process optimization. Although it is difficult to quantify process safety at the prelimi-
nary design stage, several safety indices have been proposed to assess inherent safety of
chemical processes. In this chapter, these safety indices are reviewed, and one of them is
chosen for MOO of the cumene process design. Integrated inherent safety index (I2SI),
material loss from the cumene process and total capital cost, respectively, are used as
safety, environmental and economic objectives for MOO. Three bi-objective and one tri-
objective optimization problems for the cumene process are solved using NSGA-II. The
non-dominated solutions obtained are presented and discussed. These are useful for better
understanding of tradeoffs among the EES objectives and for selecting a suitable design of
cumene process.
In the last chapter of Part III and also the book (Chapter 17), Vandervoort, Thibault and

Gupta develop new proportional-integral (PI) controller tuning methods for processes rep-
resented by a first-order plus dead time transfer function. The developed methods involve
approximating the Pareto-optimal domain associated with the minimization of three perfor-
mance criteria: the integral of the time-weighted absolute error, the integral of the squares
of the differences in the manipulated variable, and the settling time. Two tuning meth-
ods were developed, achieving optimal controller performance by specifying either one
of the controller input parameters or the desired values of the performance criteria. The
developed controller tuning methods were compared to several previously developed con-
troller correlations. Finally, the developed tuning methods were applied to a fourth-order
process subjected to a set point change and a disturbance, and shown to provide excellent
performance.
In summary, chemical engineers working in industry will find the introductory chapters

in Part I and the application chapters in Part III beneficial when using MOO in applications
related to their jobs. Methodological developments in MOO covered in part II will be of
particular interest to researchers from diverse fields who are interested in MOO. Chemi-
cal engineering students, particularly those learning or pursuing research in optimization
including MOO, will find all chapters in this book useful in their studies. Many chapters in
this book have exercises at the end, and some chapters provide useful programs / files on
the book web site. Depending on their background and interest, readers can choose to read
the entire book, one or more parts, or particular chapters.
Increasing importance and significance of MOO in chemical engineering studies and

practice can be seen from the article by Garica et al. (2012) on teaching mathematical
modeling software for MOO in chemical engineering courses, and the article by Lee et al.
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(2008) on optimizing process plants for more than one objective. Availability of Excel-
based MOO programs (e.g., Sharma et al., 2012) will further facilitate MOO of more
applications in chemical engineering. We hope the book in your hand will help to increase
the use of MOO in both academia and industrial practice. We also anticipate the availability
of selected modern methods of MOO for generating Pareto-optimal fronts for chemical
engineering applications, in commercial process simulators such as Aspen Plus and Aspen
Hysys in the coming years.
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