
1.1
Modelling Fundamentals

Models are an integral part of any kind of human activity. However, we are
mostly unaware of this. Most models are qualitative in nature and are not for-
mulated explicitly. Such models are not reproducible and cannot easily be veri-
fied or proven to be false. Models guide our activities, and throughout our
entire life we are constantly modifying those models that affect our everyday
behaviour. The most scientific and technically useful types of models are
expressed in mathematical terms. This book focuses on the use of dynamic
mathematical models in the field of chemical engineering.

1.1.1
Chemical Engineering Modelling

The use of models in chemical engineering is well established, but the use of
dynamic models, as opposed to the more traditional use of steady-state models
for chemical plant analysis, is much more recent. This is reflected in the devel-
opment of new powerful commercial software packages for dynamic simulation,
which has arisen owing to the increasing pressure for design validation, process
integrity and operation studies for which a dynamic simulator is an essential
tool. Indeed it is possible to envisage dynamic simulation becoming a manda-
tory condition in the safety assessment of plant, with consideration of such fac-
tors as start up, shutdown, abnormal operation, and relief situations assuming
an increasing importance. Dynamic simulation can thus be seen to be an essen-
tial part of any hazard or operability study, both in assessing the consequences
of plant failure and in the mitigation of possible effects. Dynamic simulation is
thus of equal importance in large scale continuous process operations, as in
other inherently dynamic operations such as batch, semi-batch and cyclic manu-
facturing processes. Dynamic simulation also aids in a very positive sense in en-
abling a better understanding of process performance and is a powerful tool for
plant optimisation, both at the operational and at the design stage. Furthermore
steady-state operation is then seen in its rightful place as the end result of a dy-
namic process for which rates of change have become eventually zero.
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The approach in this book is to concentrate on a simplified approach to dy-
namic modelling and simulation. Large scale commercial software packages for
chemical engineering dynamic simulation are now very powerful and contain
highly sophisticated mathematical procedures, which can solve both for the ini-
tial steady-state condition as well as for the following dynamic changes. They
also contain extensive standard model libraries and the means of synthesising a
complete process model by combining standard library models. Other important
aspects are the provision for external data interfaces and built-in model identifi-
cation and optimisation routines, together with access to a physical property
data package. The complexity of the software, however, is such that the packages
are often non-user friendly and the simplicity of the basic modelling approach
can be lost in the detail of the solution procedures. The correct use of such de-
sign software requires a basic understanding of the sub-model blocks and hence
of the methodology of modelling. Our simplified approach to dynamic model-
ling and simulation incorporates no large model library, no attached database
and no relevant physical property package. Nevertheless quite realistic process
phenomena can be demonstrated, using a very simple approach. Also, this can
be very useful in clarifying preliminary ideas before going to the large scale
commercial package, as we have found several times in our research. Again this
follows our general philosophy of starting simple and building in complications
as the work and as a full understanding of the process model progresses. This
allows the use of models to be an explicit integral part of all our work.

Kapur (1988) has listed thirty-six characteristics or principles of mathematical
modelling. Mostly a matter of common sense, it is very important to have them
restated, as it is often very easy to lose sight of the principles during the active
involvement of modelling. They can be summarised as follows:
1. The mathematical model can only be an approximation of real-life processes,

which are often extremely complex and often only partially understood. Thus
models are themselves neither good nor bad but should satisfy a previously
well defined aim.

2. Modelling is a process of continuous development, in which it is generally ad-
visable to start off with the simplest conceptual representation of the process
and to build in more and more complexities, as the model develops. Starting
off with the process in its most complex form often leads to confusion.

3. Modelling is an art but also a very important learning process. In addition to
a mastery of the relevant theory, considerable insight into the actual function-
ing of the process is required. One of the most important factors in model-
ling is to understand the basic cause and effect sequence of individual pro-
cesses.

4. Models must be both realistic and robust. A model predicting effects, which
are quite contrary to common sense or to normal experience, is unlikely to be
met with confidence.
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1.1.2
General Aspects of the Modelling Approach

An essential stage in the development of any model is the formulation of the
appropriate mass and energy balance equations. To these must be added appro-
priate kinetic equations for rates of chemical reaction, rates of heat and mass
transfer and equations representing system property changes, phase equilib-
rium, and applied control. The combination of these relationships provides a ba-
sis for the quantitative description of the process and comprises the basic math-
ematical model. The resulting model can range from a simple case of relatively
few equations to models of great complexity. The greater the complexity of the
model, however, the greater is then the difficulty in identifying the increased
number of parameter values. One of the skills of modelling is thus to derive
the simplest possible model, capable of a realistic representation of the process.

The application of a combined modelling and simulation approach leads to
the following advantages:
1. Modelling improves understanding.
2. Models help in experimental design.
3. Models may be used predictively for design and control.
4. Models may be used in training and education.
5. Models may be used for process optimisation.

1.1.3
General Modelling Procedure

One of the more important features of modelling is the frequent need to reas-
sess both the basic theory (physical model), and the mathematical equations,
representing the physical model (mathematical model), in order to achieve
agreement, between the model prediction and actual process behaviour (experi-
mental data).

As shown in Fig. 1.1, the following stages in the modelling procedure can be
identified:
(1) The first involves the proper definition of the problem and hence the goals

and objectives of the study.
(2) All the available knowledge concerning the understanding of the problem

must be assessed in combination with any practical experience, and per-
haps alternative physical models may need to be developed and examined.

(3) The problem description must then be formulated in mathematical terms
and the mathematical model solved by computer simulation.

(4) The validity of the computer prediction must be checked. After agreeing
sufficiently well with available knowledge, experiments must then be de-
signed to further check its validity and to estimate parameter values. Steps
(1) to (4) will often need to be revised at frequent intervals.

(5) The model may now be used at the defined depth of development for de-
sign, control and for other purposes.
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1.2
Formulation of Dynamic Models

1.2.1
Material Balance Equations

Steady-State Balances

One of the basic principles of modelling is that of the conservation of mass or
matter. For a steady-state flow process, this can be expressed by the statement:

Rate of mass flow
into the system

� �
� Rate of mass flow

out of the system

� �
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Dynamic Total Material Balances

Most real situations are, however, such that conditions change with respect to
time. Under these circumstances, a steady-state material balance is inappropri-
ate and must be replaced by a dynamic or unsteady-state material balance, ex-
pressed as

Rate of accumulation of
mass in the system

� �
� Rate of

mass flow in

� �
� Rate of

mass flow out

� �

Here the rate of accumulation term represents the rate of change in the total
mass of the system, with respect to time, and at steady state, this is equal to
zero. Thus, the steady-state material balance is seen to be a simplification of the
more general dynamic balance.

At steady state

Rate of
accumulation of mass

� �
� 0 � �Mass flow in� � �Mass flow out�

hence, when steady state is reached

(Mass flow in) = (Mass flow out)

Component Balances

The previous discussion has been in terms of the total mass of the system, but
most process streams, encountered in practice, contain more than one chemical
species. Provided no chemical change occurs, the generalised dynamic equation
for the conservation of mass can also be applied to each chemical component of
the system. Thus for any particular component

Rate of

accumulation of mass

of component

in the system

�
����

�
���� �

Mass flow of

the component

into the system

�
��

�
���

Mass flow of

the component out

of the system

�
��

�
��

Component Balances with Reaction

Where a chemical reaction occurs, the change, due to reaction, can be taken
into account by the addition of a reaction rate term into the component balance
equation. Thus in the case of material produced by the reaction
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Rate of

accumulation

of mass

of component

in the system

�
�������

�
�������

�

Mass flow

of the

component

into

the system

�
�������

�
�������

�

Mass flow

of the

component

out of

the system

�
�������

�
�������

�

Rate of

production

of the

component

by the reaction

�
�������

�
�������

The principle of the component material balance can also be extended to the
atomic level and can also be applied to particular elements.

Thus for the case of carbon, in say a fuel combustion process

Rate of

accumulation

of carbon mass

in the system

�
����

�
���� �

Mass flow

rate of

carbon into

the system

�
����

�
�����

Mass flow

rate of

carbon out

of the system

�
����

�
����

Note that the elemental balances do not involve additional reaction rate terms
since the elements are unchanged by chemical reaction.

While the principle of the material balance is very simple, its application can
often be quite difficult. It is important therefore to have a clear understanding
of the nature of the system (physical model) which is to be modelled by the ma-
terial balance equations and also of the methodology of modelling.

1.2.2
Balancing Procedures

The methodology described below outlines five steps I through V to establish
the model balances. The first task is to define the system by choosing the bal-
ance or control region. This is done using the following procedure:

I. Choose the Balance Region Such That the Variables Are Constant or Change
Little Within the System. Draw Boundaries Around the Balance Region

The balance region can vary substantially, depending upon the particular area of
interest of the model, ranging from say the total reactor, a region of a reactor, a
single phase within a reactor, to a single gas bubble or a droplet of liquid. The
actual choice, however, will always be based on a region of assumed uniform
composition, or on another property as in the case of population balances. Gen-
erally, the modelling exercises will involve some prior simplification of the real
system. Often the system being modelled will be considered in terms of a repre-
sentation, based on systems of tanks (stagewise or lumped parameter systems)
or systems of tubes (differential systems), or even combinations of tanks and
tubes.
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1.2.2.1 Case A: Continuous Stirred-Tank Reactor
If the tank is well-mixed, the concentrations and density of the tank contents
are uniform throughout. This means that the outlet stream properties are iden-
tical with the tank properties, in this case concentration CA and density �. The
balance region can therefore be taken around the whole tank (Fig. 1.2).

The total mass in the system is given by the product of the volume of the
tank contents V (m3) multiplied by the density � (kg/m3), thus V� (kg). The
mass of any component A in the tank is given in terms of actual mass or num-
ber of moles by the product of volume V times the concentration of A, CA (kg
of A/m3 or kmol of A/m3), thus giving VCA in kg or kmol.

1.2.2.2 Case B: Tubular Reactor
In the case of tubular reactors, the concentrations of the products and reactants
will vary continuously along the length of the reactor, even when the reactor is
operating at steady state. This variation can be regarded as being equivalent to
that of the time of passage of material as it flows along the reactor and is
equivalent to the time available for reaction to occur. Under steady-state condi-
tions the concentration at any position along the reactor will be constant with
respect to time, though not with position. This type of behaviour, obtained with
tubular reactors, can be approximated by choosing the incremental volume of
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the balance regions sufficiently small so that the concentration of any compo-
nent within the region can be assumed approximately uniform. Thus in this
case, many uniform property sub-systems (well-stirred tanks or increments of
different volume but all of uniform concentration) comprise the total reactor
volume. This situation is illustrated in Fig. 1.3.

The basic concepts of the above lumped parameter and distributed parameter
systems are shown in Fig. 1.4.

1.2.2.3 Case C: Coffee Percolator
A coffee percolator operates by circulating a stream of boiling coffee solution from
the reservoir in the base of the coffee pot up through a central rise-pipe to the top
of a bed of coffee granules, through which the solution then percolates, before re-
turning in a more concentrated state to the base reservoir, as shown in Fig. 1.5.

The above system can be thought of as consisting of two parts with 1) the
base reservoir acting effectively as a single well-stirred tank and 2) a fixed bed
system of coffee granules irrigated by the flowing liquid stream. Solute coffee is
removed from the granules by mass transfer under the action of a concentration
driving force and is extracted into the liquid.

The concentrations of the coffee, both in the granules and in the liquid flow-
ing through the bed, will vary continuously both with distance and with time.
The behaviour of the packed bed is therefore best approximated by a series of
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many uniform property subsystems. Each segment of solid is related to its ap-
propriate segment of liquid by interfacial mass transfer, as shown in Fig. 1.6.

The resulting model would therefore consist of component balance equations
for the soluble component written over each of the many solid and liquid sub-
systems of the packed bed, combined with the component balance equation for
the coffee reservoir. The magnitude of the recirculating liquid flow will depend
on the relative values of the pressure driving force generated by the boiling
liquid and the fluid flow characteristics of the system.

The concept of modelling a coffee percolator as a dynamic process comes
from a problem first suggested by Smith et al. (1970).
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II. Identify the Transport Streams Which Flow Across the System Boundary

Having defined the balance regions, the next task is to identify all the relevant
inputs and outputs to the system (Fig. 1.7). These may be well-defined physical
flow rates (convective streams), diffusive fluxes, but may also include interphase
transfer rates.

It is important to assume transfer to occur in a particular direction and to
specify this by means of an arrow. This direction may reverse itself, but the
change will be accommodated by a reversal in sign of the transfer rate term.

III. Write the Material Balance in Word Form

This is an important step because it helps to ensure that the resulting mathe-
matical equation will have an understandable physical meaning. Just starting
off by writing down equations is often liable to lead to fundamental errors, at
least on the part of the beginner. All balance equations have a basic logic, as ex-
pressed by the generalised statement of the component balance given below,
and it is very important that the model equations also retain this. Thus

Rate of

accumulation

of mass

of component

in the system

�
�������

�
�������

�

Mass flow

of the

component

into

the system

�
�������

�
�������

�

Mass flow

of the

component

out of

the system

�
�������

�
�������

�

Rate of

production

of the

component by

the reaction

�
�������

�
�������

This can be abbreviated as

(Accumulation) = (In) � (Out) + (Production)

1 Basic Concepts10

Fig. 1.7 Balance region showing convective and diffusive flows as well as
interphase mass transfer in and out.



IV. Express Each Balance Term in Mathematical Form with Measurable Variables

A. Rate of Accumulation Term

This is given by the rate of change of the mass of the system, or the mass of
some component within the system, with changing time and is expressed as
the derivative of the mass with respect to time. Hence

Rate of accumulation of mass

of component i within the system

	 

� dMi

dt

� �

where M is in kg or mol and time is in h, min or s.

Volume, concentration and, in the case of gaseous systems, partial pressure are
usually the measured variables. Thus for any component i

dMi

dt
� d�VCi�

dt

where Ci is the concentration of component i (kg/m3). In the case of gases, the
Ideal Gas Law can be used to relate concentration to partial pressure and mol
fraction. Thus,

piV � niRT

where pi is the partial pressure of component i, within the gas phase system,
and R is the Ideal Gas Constant, in units compatible with p, V, n and T.

In terms of concentration,

Ci � ni

V
� pi

RT
� yiP

RT

where yi is the mol fraction of the component in the gas phase and P is the total
pressure of the system.

The accumulation term for the gas phase can be therefore written in terms of
number of moles as

dni

dt
� d�VCi�

dt
�

d
piV
RT

� �
dt

�
d

yiPV
RT

� �
dt

For the total mass of the system

dM
dt

� d�V��
dt
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with units

kg
s
� kg

m3

m3

s

B. Convective Flow Terms

Total mass flow rates are given by the product of volumetric flow multiplied by
density. Component mass flows are given by the product of volumetric flow
rates multiplied by concentration.

�Convective mass flow rate� � �Volumetric flow rate� Mass
Volume

� �

for the total mass flow

�M � dM
dt

� F�

and for the component mass flow

�Mi � dMi

dt
� FCi

with units

kg
s
� m3

s
kg
m3

A stream leaving a well-mixed region, such as a well-stirred tank, has the identi-
cal properties as in the system, since for perfect mixing the contents of the tank
will have spatially uniform properties, which must then be identical to the prop-
erties of the fluid leaving at the outlet. Thus, the concentrations of component i
both within the tank and in the tank effluent are the same and equal to Ci1, as
shown in Fig. 1.8.
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C. Diffusion of Components

As shown in Fig. 1.9, diffusional flow contributions in engineering situations
are usually expressed by Fick’s Law for molecular diffusion

ji � �Di
dCi

dZ

where ji is the flux of any component i flowing across an interface (kmol/m2 s
or kg/m2 s) and dCi/dZ (kmol/m3 m) is the concentration gradient and Di is
the diffusion coefficient of component i (m2/s) for the material.

In accordance with Fick’s Law, diffusive flow always occurs in the direction of
decreasing concentration and at a rate, which is proportional to the magnitude
of the concentration gradient. Under true conditions of molecular diffusion, the
constant of proportionality is equal to the molecular diffusivity of the compo-
nent i in the system, Di (m2/s). For other cases, such as diffusion in porous ma-
trices and for turbulent diffusion applications, an effective diffusivity value is
used, which must be determined experimentally.

The concentration gradient may have to be approximated in finite difference
terms (finite differencing techniques are described in more detail in Sections
4.2 to 4.4). Calculating the mass diffusion rate requires knowledge of the area,
through which the diffusive transfer occurs, since

Mass rate

of

component i

�
��

�
�� � �

Diffusivity

of

component i

�
��

�
��

Concentration

gradient

of i

�
��

�
��

Area

perpendicular

to transport

�
��

�
��

jiA � �Di
dCi

dZ

� �
A

The concentration gradient can often be approximated by difference quantities,
where
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jiA � �Di
�Ci

�Z

� �
A

with units

kg
s m2

m2 � m2

s
kg
m3

1
m

m2

D. Interphase Transport

Interphase mass transport also represents a possible input to or output from
the system. In Fig. 1.10, transfer of a soluble component takes place across the
interface which separates the two phases. Shown here is the transfer from
phase G to phase L, where the separate phases may be gas, liquid or solid.

When there is transfer from one phase to another, the component balance
equations must consider this. Thus taking a balance for component i around
the well-mixed phase G, with transfer of i from phase G to phase L, gives

Rate of

accumulation

of i

in phase G

�
����

�
���� � �

Rate of interfacial

mass transfer of i

from phase G

into phase L

�
����

�
����

This form of the transfer rate equation will be examined in more detail in Sec-
tion 1.4. Suffice it to say here that the rate of transfer can be expressed in the
form shown below

Rate of

mass transfer

	 

� Mass transfer

coefficient

	 

Area of

the interface

	 

Concentration

driving force

	 


Q � KA�C

The units of the transfer rate equation (with appropriate molar quantities) are

kmol
s

� m
s

m2 kmol
m3
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where Q is the total mass transfer rate, A is the total interfacial area for mass
transfer (m2), �C is the concentration driving force (kmol/m3), and K is the
overall mass transfer coefficient (m/s). It is important to note that the concen-
tration driving force is represented as a difference between the actual concentra-
tion and the corresponding equilibrium value and is not a simple difference be-
tween actual phase concentrations. Mass transfer rates can be converted to mass
flows (kg/s), by multiplying by the molar mass of the component.

E. Production Rate

The production rate term allows for the production or consumption of material
by chemical reaction and can be incorporated into the component balance equa-
tion. Thus,

Rate of

accumulation

of mass

of component

in the system

�
�������

�
�������

�

Mass flow

of the

component

into

the system

�
�������

�
�������

�

Mass flow

of the

component

out of

the system

�
�������

�
�������

�

Rate of

production

of the

component by

the reaction

�
�������

�
�������

Chemical production rates are often expressed on a molar basis but can be easi-
ly converted to mass flow quantities (kg/s). The material balance equation can
then be expressed as

Mass rate

of production

of component A

�
��

�
�� �

Reaction

rate per

unit volume

�
��

�
��

Volume

of the

system

�
��

�
��

RA � rAV

where RA is the total reaction rate. The units are

kg
s
� kg

s m3
m3

Equivalent molar quantities may also be used. The quantity rA is positive when
A is formed as product, and rA is negative when reactant A is consumed.

V. Introduce Other Relationships and Balances Such That the Number
of Equations Equals the Number of Dependent Variables

The system material balance equations are often the most important elements
of any modelling exercise, but are themselves rarely sufficient to completely for-
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mulate the model. Thus other relationships are needed to complete the model
in terms of other important aspects of behaviour in order to satisfy the mathe-
matical rigour of the modelling, such that the number of unknown variables
must be equal to the number of defining equations.

Examples of this type of relationships, which are not based on balances, but
which nevertheless form a very important part of any model are:
� Reaction stoichiometry.
� Reaction rates as functions of concentration and temperature.
� Equations of state or Ideal Gas Law behaviour.
� Physical property correlations as functions of concentration, temperature, etc.
� Hydraulic flow equations.
� Pressure variations as a function of flow rate.
� Equilibrium relationships (e.g., Henry’s law, relative volatilities, etc.).
� Activity coefficients.
� Dynamics of measurement instruments, as a function of instrument response

time.
� Controller equations with an input variable dependent on a measured vari-

able.
� Correlations for mass transfer coefficients, gas holdup volume, and interfacial

area, as functions of system physical properties and agitation rate or flow ve-
locity, etc.

How these and other relationships are incorporated within the development of
particular modelling instances is illustrated, throughout the text and in the sim-
ulation examples.

1.2.3
Total Material Balances

In this section, the application of the total material balance principle is pre-
sented. Consider some arbitrary balance region, as shown in Fig. 1.11 by the
shaded area. Mass accumulates within the system at a rate dM/dt, owing to the
competing effects of a convective flow input (mass flow rate in) and an output
stream (mass flow rate out).
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The total material balance is expressed by

Rate of

accumulation of mass

in the system

�
��

�
�� � Mass flow

into the system

	 

� Mass flow out

of the system

	 


or in terms of volumetric flow rates F, densities �, and volume V,

dM
dt

� d��1V�
dt

� F0�0 � F1�1

When densities are equal, as in the case of water flowing in and out of a tank

dV
dt

� F0 � F1

The steady-state condition of constant volume in the tank (dV/dt= 0) occurs
when the volumetric flow in, F0, is exactly balanced by the volumetric flow out,
F1. Total material balances therefore are mostly important for those modelling
situations in which volumes are subject to change, as in simulation examples
CONFLO, TANKBLD, TANKDIS and TANKHYD.

1.2.3.1 Case A: Tank Drainage
A tank of diameter D, containing liquid of depth H, discharges via a short base
connection of diameter d, as shown in Fig. 1.12 (Brodkey and Hershey, 1988).

In this case, the problem involves a combination of the total material balance
with a hydraulic relationship, representing the rate of drainage.

For zero flow of liquid into the tank and assuming constant density condi-
tions, the total material balance equation becomes

dV
dt

� �F

Assuming the absence of any frictional flow effects, the outlet flow velocity, v, is
related to the instantaneous depth of liquid within the tank, by the relationship
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v � �2gh�1�2

where

F � �d2

4
v

and

V � �D2

4
h

v is the discharge pipe velocity, V is the volume of liquid in the tank, h is the
depth of liquid in the tank and g is the constant of gravitational acceleration.

The above equations are then sufficient to define the model which has the
following simple analytical solution

h �
�����
H

�
� d2

D2

���
g
2

�
t

� �2

where H is the liquid depth at time t = 0.
However, with a time variant flow of liquid into the tank, then analytical solu-

tion is not so simple. The problem is treated in more detail in simulation exam-
ple TANKDIS.

1.2.4
Component Balances

Each chemical species, in the system, can be described by means of a compo-
nent balance around an arbitrary, well-mixed, balance region, as shown in Fig.
1.13.

In the case of chemical reaction, the balance equation is represented by

Rate of

accumulation

of mass

of component i

in the system

�
�������

�
�������

�

Mass flow of

component i

into

the system

�
����

�
�����

Mass flow of

component i

out of

the system

�
����

�
����

Rate of

production of

component i

by reaction

�
����

�
����
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Expressed in terms of volume, volumetric flow rate and concentration, this is
equivalent to

d�VCi�
dt

� �F0Ci0� � �F1Ci1� � �riV�

with dimensions of mass/time

m3 kg
m3

s
� m3

s
kg
m3 �

m3

s
kg
m3 �

kg
m3s

m3 � kg
s

In the case of an input of component i to the system by interfacial mass trans-
fer, the balance equation now becomes

Rate of

accumulation

of mass

of component i

in the system

�
�������

�
�������
�

Mass flow of

component i

into

the system

�
����

�
�����

Mass flow of

component i

out of

the system

�
����

�
�����

Rate of

interfacial

transfer

of component i

into the system

�
�������

�
�������

d�VCi�
dt

� �F0Ci0� � �F1Ci1� � Qi

where Qi, the rate of mass transfer, is given by

Qi � KiA�Ci

1.2.4.1 Case A: Waste Holding Tank
A plant discharges an aqueous effluent at a volumetric flow rate F. Periodically,
the effluent is contaminated by an unstable noxious waste, which is known to
decompose at a rate proportional to its concentration. The effluent must be di-
verted to a holding tank, of volume V, prior to final discharge, as in Fig. 1.14
(Bird et al. 1960).
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This situation is one involving both a total and a component material balance,
combined with a kinetic equation for the rate of decomposition of the waste
component. Neglecting density effects, the total material balance equation is

dV
dt

� F0 � F1

The rate of the decomposition reaction is given by

rA � �kCA

and the component balance equation by

d�VCA1�
dt

� �F0CA0� � �F1CA1� � k1CA1V

The tank starts empty, so that at time t = 0, volume V= 0, and the outlet flow
from the tank F1 = 0. At time t = V/F0 the tank is full; then F1 = F0 = F, and the
condition that dV/dt= 0 also applies.

The above model equations can be solved analytically. For the conditions that,
at time t = 0, the initial tank concentration CA = 0, the tank is full and overflow-
ing and that both F and CA0 are constant, analytical solution gives

CA � CA0�1 � Z�e��Zt� � Z

where

Z � F
F � kV

When the flow and inlet concentration vary with time, a solution is best ob-
tained by numerical integration.

1.2.4.2 Case B: Extraction from a Solid by a Solvent
An agitated batch tank is used to dissolve a solid component from a solid ma-
trix into a liquid solvent medium, as in Fig. 1.15.

For a batch system, with no inflow and no outflow, the total mass of the sys-
tem remains constant. The solution to this problem thus involves a liquid-phase
component material balance for the soluble material, combined with an expres-
sion for the rate of mass transfer of the solid into the liquid.

The component material balance is then

Rate of accumulation

of the material

in the solvent

�
��

�
�� �

Rate of transfer

of the solid

to the solvent

�
��

�
��
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giving

VL
dCL

dt
� kLA�CL

� � CL�

where VL is the volume of the liquid, CL is the concentration of the component
in the liquid, kL is the liquid phase mass transfer coefficient, A is the total inter-
facial area for mass transfer and CL

� is the equilibrium value.
The analytical solution to the above equation, assuming constant VL, kL, A

and equilibrium concentration, CL
�, is given by

CL
� � CL

CL
� � CL0

� e�kLAt�VL

For the case, where the soluble component is leaching from an inert solid car-
rier, a separate solid phase component balance would be required to establish
the solute concentration in the solid phase and hence the time-dependent value
of the equilibrium concentration, CL

�.
If during this extraction the volume and area of the solid remains approxi-

mately constant, the balance for the component in the solid phase is

VS
dCS

dt
� �kLA�CL

� � CL�

where

CL
� � feq�CS�

and the subscript “eq” refers to the equilibrium condition.
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1.2.5
Energy Balancing

Energy balances are needed whenever temperature changes are important, as
caused by reaction heating effects or by cooling and heating for temperature
control. For example, such a balance is needed when the heat of reaction causes
a change in reactor temperature. This change obviously influences the reaction
rate and therefore the rate of heat evolution. This is seen in the information
flow diagram for a non-isothermal continuous reactor as shown in Fig. 1.16.

Energy balances are formulated by following the same set of guidelines as
those given in Section 1.2.2 for material balances. Energy balances are however
considerably more complex, because of the many different forms energy occurs
in chemical systems. The treatment considered here is somewhat simplified,
but is adequate to understand the non-isothermal simulation examples. The var-
ious texts cited in the reference section provide additional advanced reading in
this subject.

Based on the law of conservation of energy, energy balances are a statement
of the first law of thermodynamics. The internal energy depends not only on
temperature, but also on the mass of the system and its composition. For that
reason, material balances are almost always a necessary part of energy balanc-
ing.
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reactor, with simultaneous mass and energy balances.



For an open system with energy exchange across its boundaries, as shown in
Fig. 1.17, the energy balance can be written as

Rate of

accumulation

of energy

�
��

�
�� �

Rate of

energy

input due

to flow

�
����

�
�����

Rate of

energy

output due

to flow

�
����

�
�����

Rate of

energy

input due

to transfer

�
����

�
����

�

Rate of work

done by the

system on the

surroundings

�
����

�
����

dE
dt

�

S

i�1

Ni0Ei0 �

S

i�1

Ni1Ei1 � Q � W

Here, E is the total energy of the system, Ei is the energy per mole of compo-
nent i, Ni is the molar flow rate of component i, Q is the rate of energy input
to the system due transfer and S is the total number of components (reactants
and inerts).

The work term can be separated into flow work and other work WS, according
to

W � �

S

i�1

Ni0PVi0 �

S

i�1

Ni1PVi1 � WS

Vi is the molar volume of component i. The energy Ei is the sum of the internal
energy Ui, the kinetic energy, the potential energy and any other forms of en-
ergy. Of these various forms of energy, changes of internal energy are usually
dominant in chemical systems. The other terms are usually neglected.

Internal energy, U, can be expressed in terms of enthalpy, H

E � U � H � �PV�
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The accumulation term is given only in terms of enthalpies, since the d(PV)
term is usually negligible in chemical reactors.

dE
dt

� d
dt


S

i�1

nihi1

hi is the partial molar enthalpy of component i. Combining these equations and
assuming the other work WS = 0, yields the energy balance equation

d
dt


S

i�1

nihi1 �

S

i�1

Ni0hi0 �

S

i�1

Ni1hi1 � Q

Here, ni the number of moles of component i, hi the partial molar enthalpy
and Q is the rate of energy input from the environment. Enthalpies are gener-
ally dependent on temperature where:

hi � hi0 �
�T

T0

cpidT

The temperature dependency for heat capacity can usually be described by a
polynomial expression, e.g.,

cp � a � bT � cT2

where a, b and c are empirical constants.
A detailed derivation of the energy balance is given in various textbooks (e.g.,

Aris, 1989 and Fogler, 2005).

With
�hi1

�T
� cpi1 and ni1


 �hi1

�nk
� 0, the accumulation term in the energy

balance equation can be rewritten as

d
dt


S

i�1

nihi1 �

S

i�1

hi1
dni1

dt
� dT1

dt


S

i�1

ni1cpi1

For the solution of the energy balance it is necessary that this is combined with
material balance relationships.

Using a general material balance for component i

dni1

dt
� Ni0 � Ni1 � riV

multiplying this equation by hi1 and summing for all the S components gives
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S

i�1

hi1
dni1

dt
�


S

i�1

hi1Ni0 �

S

i�1

hi1Ni1 � V

S

i�1

rihi1

Introducing the reaction enthalpy �H


S

i�1

rihi1 �

R

j�1

rij

�ij
���Hj�T1��

and allowing for R reactions to occur gives the general energy balance as:


S

i�1

�ni1cpi1� dT1

dt
�


S

i�1

Ni0�hi0 � hi1� �

R

j�1

rij

�ij
���Hj�T1�� � Q

where cpi is the partial molar heat capacity of component i, Rij the reaction rate
of component i in reaction j, �ij the stoichiometric coefficient of component i in
reaction j and �Hj(T1) is the reaction enthalpy of reaction j at temperature T1.

The heat of reaction �H is defined by

�H �

n

i�1

�ihi �

n

i�1

�i�HFi

where �HFi is the heat of formation of component i.
Considering the above temperature dependencies, the complete heat balance

can then be written in the following form


S

i�1

�ni1cpi1� dT1

dt
� �


S

i�0

Ni0

�T1

T0

cpidT1 �

R

j�1

rij

�ij
���Hj�T1�� � Q

This equation can be used directly for any well-mixed, batch, semi-batch or con-
tinuous volume element. The term on the left-hand side represents the rate of
energy accumulation. The first term on the right-hand side depicts the energy
needed to raise the temperature of the incoming reactants, including inert ma-
terial, to the reactor temperature. The second term describes the heat released
by the chemical reactions. Since �H is a function of state, the energy balance
could also be formulated such that the reaction is considered to take place at
the inlet temperature T0, followed by heating the reactor contents to tempera-
ture T1. The above general energy balance equation is applied in simulation ex-
ample REVTEMP and in Case C (Section 1.2.5.3).

The general heat balance can often be simplified for special situations.
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Accumulation Term
At moderate temperature changes, cpi may be assumed to be independent of
temperature and therefore


S

i�1

ni1cpi1 � V�cp

The total heat capacity in the accumulation term must also include the reactor
parts. cp is the heat capacity per unit mass (J/kgk). Then


S

i�1

ni1cpi1
dT
dt

� V�cp
dT
dt

with units

mol
J

mol K
K
s
� m3 kg

m3

J
kg K

K
s
� J

s

Thus the accumulation term has the units of (energy)/(time), for example J/s.

Flow Term
At moderate temperature changes cpi is again assumed constant and therefore
the flow term is

�

S

i�0

Ni0

�T1

T0

cpidT1 � F0�cp�T0 � T1�

with the units

mol
s

J
mol K

K � m3

s
kg
m3

J
kg K

K � J
s

This term actually describes the heating of the stream entering the system with
temperature T0 to the reaction temperature T1, and is therefore only needed if
streams are entering the system.

Heat Transfer Term
The important quantities in this term are the heat transfer area A, the tempera-
ture driving force or difference (Ta–T1), where Ta is the temperature of the heat-
ing or cooling source, and the overall heat transfer coefficient U. The heat
transfer coefficient, U, has units of (energy)/(time)(area)(degree), e.g., J/s m2 K.

�heat transfer rate� � UA�Ta � T1�
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The units for UA�T are thus

J
s
� J

m2sK
m2K

The sign of the temperature difference determines the direction of heat flow.
Here if Ta > T1, heat flows into the reactor.

Reaction Heat Term
For exothermic reactions, the value of �H is by convention negative and for en-
dothermic reactions positive. For a set of R individual reactions, the total rate of
heat production by reaction is given by

rQV �

R

j�1

rij

�ij
���Hj�

with the units

J
m3s

m3 � mol
s

J
mol

� J
s

Other Heat Terms
The heat of agitation may be important, depending on the relative magnitudes
of the other heat terms in the general balance equation and especially with re-
gard to highly viscous reaction mixtures. Other terms, such as heat losses from
the reactor, by radiation or by mixing, can also be important in the overall en-
ergy balance equation.

Simplified Energy Balance
If specific heat capacities can be assumed constant and for zero mechanical
work done to the system, the energy balance equation simplifies to

V�cp
dT1

dt
� F0�cp�T0 � T1� � VrQ � UA�Ta � T1�

where the units of each term of the balance equation are energy per unit time
(kJ/s). This equation can be applied to batch, semi-batch and continuous reac-
tors. Most of the non-isothermal simulation examples in Chapter 5 use the
above form of the energy balance.

1.2.5.1 Case A: Continuous Heating in an Agitated Tank
Liquid is fed continuously to a stirred tank, which is heated by internal steam
coils (Fig. 1.18). The tank operates at constant volume conditions. The system is
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therefore modelled by means of a dynamic heat balance equation, combined
with an expression for the rate of heat transfer from the coils to the tank liquid.

With no heat of reaction and neglecting any heat input from the agitator, the
heat balance equation becomes

V�cp
dT1

dt
� F0�cp�T0 � T1� � UA�TS � T1�

where TS is the steam temperature.

1.2.5.2 Case B: Heating in a Filling Tank
The situation is the same as in Fig. 1.18 but without material leaving the reac-
tor. Liquid flows continuously into an initially empty tank, containing a full-
depth heating coil. As the tank fills, an increasing proportion of the coil is cov-
ered by liquid. Once the tank is full, the liquid starts to overflow, but heating is
maintained. A total material balance is required to model the changing liquid
volume and this is combined with a dynamic heat balance equation.

Assuming constant density, the material balance equation is

dV
dt

� F0 � F1

where for time t less than the filling time, V/F0, the outlet flow, F1, equals zero,
and for time t greater than V/F0, F1 equals F0.
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The heat balance is expressed by

V�cp
dT
dt

� F0�cp�T0 � T� � UA�TS � T�

Assuming A0 is the total heating surface in the full tank, with volume V0, and
assuming a linear variation in heating area with respect to liquid depth, the
heat transfer area may vary according to the simple relationship

A � A0
V
V0

More complex relationships can of course be derived, depending on the particu-
lar tank geometry concerned.

1.2.5.3 Case C: Parallel Reaction in a Semi-Continuous Reactor
with Large Temperature Changes

Let us assume an adiabatic, semi-continuous reactor (see Section 3.2.4) with
negligible input of mechanical energy (Fig. 1.19).

Two reactions are assumed to occur in parallel

A � B 	 C

A � 2B 	 D

The total energy balance from Section 1.2.5 is given by


S

i�1

�nicpi� dT
dt

� F0


S

i�1

Ci0

�T0

T

cpidT � V

R

j�1

rij

�ij
���Hj�

In this case the number of components, S=4 and the number of reactions, R=2.
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The reaction enthalpies at standard temperature, TSt, are then

�H1St � �HFC � �HFA � �HFB

�H2St � �HFD � �HFA � 2�HFB

All heats of formation, �HFi, are at standard temperature.

Assuming that the temperature dependencies for the specific heats are given by

cpi � ai � biTthen

hi � hiSt �
�T

TSt

cpidT � hiSt � ai�T � TSt� � bi

2
�T2 � T2

St�

and the reaction enthalpies, �H1 and �H2, at temperature T are

�H1 � �H1St � �aC � aA � aB��T � TSt� � bC � bA � bB

2
�T2 � T2

St�

�H2 � �H2St � �aC � aA � 2aB��T � TSt� � bC � bA � 2bB

2
�T2 � T2

St�

With stoichiometric coefficients, �A1 = –1 and �A2 = –1, the total heat of reaction
is then

rQ �

R

j�1

rij

�ij
��Hj
� � � rA1 �H1 � rA2 �H2

The total heat capacity in the accumulation term is

V�cp �

S

i�1

�nicpi� � nA�aA � bAT� � nB�aB � bBT�

� nC�aC � bCT� � nD�aD � bDT�

With only component B in the feed, the flow term in the energy balance be-
comes

F0


S

i�1

Ci0

�T0

T

cpidT � F0CB0 aB�T0 � T� � bB

2
T2

0 � T2
� �� �

Substitution into the energy balance then gives

dT
dt

�
F0CB0 aB T0 � T� � � bB

2
T2

0 � T2
� �� �

� VrQ

V�cp
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1.2.6
Momentum Balances

Momentum balance equations are of importance in problems involving the flow
of fluids. Momentum is defined as the product of mass and velocity and as stat-
ed by Newton’s second law of motion, force which is defined as mass times ac-
celeration is also equal to the rate of change of momentum. The general bal-
ance equation for momentum transfer is expressed by

Rate of change

of momentum

with respect to

time

�
����

�
���� �

Rate of

momentum

into the

system

�
����

�
�����

Rate of

momentum

out of the

system

�
����

�
�����

Rate of

generation

of

momentum

�
����

�
����

Force and velocity are however both vector quantities and in applying the mo-
mentum balance equation, the balance should strictly sum all the effects in
three dimensional space. This however is outside the scope of this text, and the
reader is referred to more standard works in fluid dynamics.

As for the mass and energy balance equations, steady-state conditions are ob-
tained when the rate of change of momentum in the system is zero and

Rate of

momentum

into the

system

�
����

�
�����

Rate of

momentum

out of the

system

�
����

�
�����

Rate of

generation

of

momentum

�
����

�
���� � 0

Three forms of force, important in chemical engineering flow problems, are
pressure forces, shear or viscous forces and gravitational forces (Froment and
Bischoff, 1990).

The pressure force is given as the product of pressure and applied area. They
are usually taken to be positive when acting on the system surroundings. Shear
or viscous forces are also usually taken to be positive when acting on the sur-
roundings and shear force is again the product of shear stress and the applied
area. The gravitational forces consist of the force exerted by gravity on the fluid
and is equal to the product of the mass of fluid in the control volume times the
local acceleration due to gravity. The simulation example TANKHYD utilizes a
simple momentum balance to calculate flow rates.

1.2.7
Dimensionless Model Equations

The model mass and energy balance equations will have consistent units,
throughout, i.e., kg/s, kmol/s or kJ/s, and corresponding dimensions of mass/
time or energy/time. The major system variables, normally concentration or
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temperature, will also be expressed in terms of particular units, e.g., kmol/m3

or �C, and the model solution will also usually be expressed in terms of the re-
sultant concentration or temperature profiles, obtained with respect to either
time or distance. Each variable will have some maximum value, which is usual-
ly possible to establish by simple inspection of the system. Time, as a variable,
usually does not have a maximum value, but some characteristic value of time
can always be identified. Using these values, a new set of dimensionless vari-
ables can be obtained, simply, by dividing all the variables by the appropriate
maximum value or by the characteristic time value. This leads to a model com-
posed of dependent variables that vary only between the limits of zero and
unity. This means that the solution may, for example, be in terms of the varia-
tion of dimensionless concentration versus dimensionless time, and now has a
much greater significance, since the particular units of the problem are no long-
er relevant to the model formulation. The model can now be used much more
generally. Furthermore, the various parameters in the original model can be
grouped together such that each group of terms also becomes dimensionless.
As an added result, the model equations can now be formulated in terms of a
fewer number of dimensionless groups than the original number of single pa-
rameters. In addition to extending the utility of the mathematical models, the
resulting dimensionless groups are especially valuable in correlating experimen-
tal data. The above procedure is best illustrated in the simulation examples
(BATCHD, TANKD, HOMPOLY, KLADYN, TUBED, TUBDYN, DISRE, DISRET,
ENZSPLIT, ENZDYN and BEAD).

1.2.7.1 Case A: Continuous Stirred-Tank Reactor (CSTR)
The material balance for a continuous-flow, stirred-tank reactor with constant
volume and first-order reaction is

V
dCA1

dt
� F0CA0� � � F1CA1� � � k1CA1V

and this is treated in more detail in Chapter 3. The dimensions for each term
in the above equation are those of mass per unit time and the units would nor-
mally be kmol/s or kg/s.

Dividing the balance equation by the volume of reactor, V, leads to the equa-
tion in the form

dCA1

dt
� CA0 � CA1

�
� kCA1

This equation has two parameters �, the mean residence time (�= V/F) with di-
mensions of time and k, the reaction rate constant with dimensions of recipro-
cal time, applying for a first-order reaction. The concentration of reactant A in
the reactor cannot, under normal circumstances, exceed the inlet feed value,
CA0, and thus a new dimensionless concentration, �CA1, can be defined as
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�CA1 � CA1

CA0

such that �CA1 normally varies in the range from zero to one.
The other variable time, t, can vary from zero to some undetermined value,

but the system is also represented by the characteristic time, �. Note that the
value of 1/k also represents a characteristic time for the process.

A new dimensionless time variable is defined here as

t � ��t

Alternatively the dimensionless time variable

�t � kt
could be employed.

In terms of the dimensionless variables, the original variables are

CA1 � CA0
�CA1

dCA1 � CA0d�CA1

t � �

dt � �d�t

When substituted into the model equation, the result is

CA0

�

d�CA1

d�t
� CA0 � CA0

�CA1

�
� kCA0�CA1

This equation can now be rearranged such that the parameter for the time deri-
vative is unity. Thus dividing by CA0 and multiplying by � gives

d�CA1

d�t
� 1 � �CA1 � �k���CA1

The parameter term (k�), which is called the Damköhler Number Da, is dimen-
sionless and is now the single governing parameter in the model. This results
in a considerable model simplification because originally the three parameters,
�, k and CA0, all appeared in the model equation.

The significance of this dimensionless equation form is now that only the pa-
rameter (k�) is important; and this alone determines the system dynamics and
the resultant steady state. Thus, experiments to prove the validity of the model
need only consider different values of the combined parameter (k�).

For this, the dimensionless reactant concentration, �CA1, should be plotted ver-
sus dimensionless time, �t, for various values of the dimensionless system pa-
rameter (k�). Although, k is not an operating variable and cannot be set inde-
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pendently, this type of plot may be useful estimating a value from experimental
data, as illustrated below.

At steady state

0 � 1 � �CA1 � �k���CA1

so that

�k�� � 1 � �CA1

�CA1

Knowing � thus permits determination of the value k from experimental data.
Consider an nth-order reaction, the equivalent dimensionless model for the

stirred-tank reactor becomes

d�CA1

d�t
� 1 � �CA1 � k�Cn�1

A0

� �
�Cn

A1

The variables are defined as previously. Thus if, for example, experimental data
is to be tested for second-order reaction behaviour, then data plotted as �CA1 ver-
sus �t should be examined from experiments, for which (k�CA0) is kept con-
stant.

1.2.7.2 Case B: Gas-Liquid Mass Transfer to a Continuous Tank Reactor
with Chemical Reaction
A second-order reaction takes place in a two-phase continuous system. Reactant
A is supplied by gas-liquid transfer, and reactant B is supplied by liquid feed as
depicted in Fig. 1.20.

The model equations are

V
dCA1

dt
� KLa�C�

A � CA1�V � kCA1CB1V � FCA1

V
dCB1

dt
� FCB0 � FCB1 � kCA1CB1V
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The gas-liquid saturation value, CA
* , will be assumed constant.

Dimensionless variables can be defined as

�CA1 � CA1

CB0

�CB1 � CB1

CB0

�t � KLat

The equations become

d�CA1

d�t
� C�

A

CB0
� �CA1

� �
� kCB0

KLa
�CA1�CB1 � 1

KLa�
�CA1

d�CB1

d�t
� 1

KLa�
1 � �CB1� � � kCB0

KLa
�CA1�CB1

where � is the residence time (= V/F). The number of parameters is reduced,
and the equations are in dimensionless form.

An equivalency can be demonstrated between the concept of time constant ra-
tios and the new dimensionless parameters as they appear in the model equa-
tions. The concept of time constants is discussed in Section 2.2.

Thus the variables in this example can be interpreted as follows

1
KLa�

� Transfer time constant
Residence time constant

� Convection rate
Transfer rate

and

kCB0

KLa
� Transfer time constant

Reaction time constant
� Reaction rate

Transfer rate

Further examples of the use of dimensionless terms in dynamic modelling ap-
plications are given in Sections 1.2.5.1, 4.3.6.1 and 4.3.7 and in the simulation
examples KLADYN, DISRET, DISRE, TANKD and TUBED.

1.3
Chemical Kinetics

1.3.1
Rate of Chemical Reaction

By simplifying the general component balance of Section 1.2.4, the material bal-
ance for a batch reactor becomes
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Rate of

accumulation

of mass

of component i

in the system

�
�������

�
�������

�

Rate of

production of

component i

by reaction

�
����

�
����

Expressed in terms of volume V and concentration Ci, this is equivalent to

d�VCi�
dt

� riV

with units of moles/time. Here the term ri is the rate of chemical reaction, ex-
pressed as the change in the number of moles of a given reactant or product
per unit time and per unit volume of the reaction system. Thus for a batch re-
actor, the rate of reaction for reactant i can be defined as

ri � 1
V

dni

dt
moles of i

volume time

where ni = VCi and it is the number of moles of i present at time t. Alternatively
the rate equation may be expressed in terms of mass, kg.

The reactants and products are usually related by a stoichiometric equation
which is usually expressed as a molar relationship. For the case of components
A and B reacting to form product C it has the form

�AA � �BB 	 �CC

�i is the stoichiometric coefficient for species i in the reaction. By convention,
the value of � is positive for the products and negative for the reactants. The
stoichiometric coefficients relate the simplest ratio of the number of moles of
reactant and product species, involved in the reaction.

The individual rates of reaction, for all the differing species of a reaction, are
related via their stoichiometric coefficients according to

ri � rj
�i

�j

� �

The value of ri is therefore negative for reactants and positive for products.

For the reaction
A � 2B 	 3P

the individual reaction rates are therefore

�rA � � 1
2

rB � 1
3

rP
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Thus in defining the rate of reaction, it is important to state the particular spe-
cies.

The temperature and concentration dependencies of reaction rates can usually
be expressed as separate functions, for example

rA � k0f1�T�f2�CA�

The dependency of temperature f1(T) is usually described as the Arrhenius
Equation, as explained in the next section.

The exact functional dependence of the reaction rate with respect to concen-
tration must be found by experiment, and for example may have the general
form

rA � �kC�
AC�

B

Here k is the reaction rate constant, which is a function of temperature only;
CA, CB are the concentrations of the reactants A, B (moles/volume); � is the or-
der of reaction, with respect to A; � is the order of reaction, with respect to B;
(�+�) is the overall order of the reaction. Whatever reference quantity is used to
define specific rates this needs to be stated clearly.

It is important to realize that the reaction rate may represent the overall sum-
mation of the effect of many individual elementary reactions, and therefore only
rarely represents a particular molecular mechanism. The orders of reaction, �
or �, can not be assumed from the stoichiometric equation and must be deter-
mined experimentally.

For heterogeneous catalytic reactions, the rate of reaction is often expressed
as the number of moles (or kg) of component reacting per unit time, per unit
mass of catalyst. For a batch reactor

rA � 1
M

dnA

dt
moles

mass time

where M is the mass of catalyst. Sometimes the surface area is used as the ref-
erence quantity for solid surface reactions.

In vapour phase reactions, partial pressure units are often used in place of
concentration in the rate equation, for example

rA � �kp�
Ap�

B

where pA and pB are the gas phase partial pressures of reactants A and B. In
this case, k would be expressed in terms of pressure units. Detailed treatments
of chemical kinetics are found e.g. in Walas (1989), Missen et al. (1999), Leven-
spiel (1999).
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1.3.2
Reaction Rate Constant

The reaction constant, k, is normally an exponential function of the absolute
temperature, T, and is described by the Arrhenius equation

k � Ze�E�RT

The exponential term gives rise to the highly non-linear behaviour in reactor
systems which are subject to temperature changes.

The parameters Z and E, the activation energy, are usually determined by
measuring k, over a range of temperatures, and plotting ln k versus the recipro-
cal absolute temperature, 1/T, as shown in Fig. 1.21.

High reaction temperatures can cause numerical overflow problems in the
computer calculation of k, owing to the very large values generated by the expo-
nential term. This can often be eliminated by defining a value of the rate con-
stant, k0, for some given temperature, T0.

Thus

k0 � Ze�E�RT0

The logarithmic form of the Arrhenius relationship is then

ln
k
k0

� � E
R

1
T
� 1

T0

� �

which permits the calculation of k at any temperature T. The above procedure is
used in the simulation examples THERM and THERMPLOT.
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1.3.3
Heat of Reaction

The heat of reaction, �H, can be calculated from the heats of formation or
heats of combustion

�H �

n

i�1

�i�HFi �

n

i�1

�i�HCi

where �HFi is the heat of formation of component i, �HCi is the heat of com-
bustion of component i and �i is the stoichiometric coefficient for component i.
If heats of formation are not available, heats of combustion can easily be deter-
mined from calorimetric heats of combustion data. The resulting heat of reac-
tion, �H, can be calculated and by convention is negative for exothermic reac-
tions and positive for endothermic reactions. The temperature dependence of
�H is described in Section 1.2.5. For complex reaction systems, the heats of re-
action of all individual reactions have to be estimated, and the dynamic heat bal-
ance equations must include the heats of all the reactions.

1.3.4
Chemical Equilibrium and Temperature

Chemical equilibrium depends on temperature as described by the van’t Hoff
equation

d�ln K�
dT

� �H
RT2

Here K is the thermodynamic chemical equilibrium constant. If �H is constant,
direct integration yields an explicit expression. If �H is a function of tempera-
ture, as described in Section 1.3.3, then its dependency on cp can be easily
included and integration is again straight-forward. A calculation with varying
�H and cp as functions of temperature is given in the simulation example
REVTEMP developed in Section 1.2.5.3.

1.3.5
Yield, Conversion and Selectivity

The fractional conversion of a given reactant, XA, is defined for a batch system
as

XA � moles of A reacted
moles of A initially present
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giving

XA � nA0 � nA

nA0
or

nA � nA0�1 � XA�

and at constant volume

XA � CA0 � CA

CA0

where nA0 is the initial number of moles of A, nA is the number of moles of A
at fractional conversion XA and (nA0–nA) is the number of moles of A reacted.
From this it follows for a constant-volume batch system that

rA � �nA0

V
dXA

dt

For a well-mixed flow system at steady state, the fractional conversion XA is the
ratio of the number of moles of A converted to the moles A fed to the system

XA � F0CA0 � F1CA1

F0CA0

where for equal volumetric flow rates at inlet and outlet (F0 = F1)

XA � CA0 � CA1

CA0

This definition is identical to that of the batch case.

Fractional yield is defined by

YC�A � Moles of A transformed into a given product C
Total moles of A reacted

Again it is important that both the particular reactant and product, concerned,
should be stated, when defining a fractional yield.

A definition of instantaneous fractional yield is based on the ratio of reaction
rates

YC�A � rC

�rA

where A is the key reactant and C the product.
Multiple reaction selectivity can be defined similarly as the ratio of the rate of

formation of the desired product to the formation rate of an undesired product
as in a parallel reaction
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A �	B�	C

where

SB�C � rB

rC

Here SB,C is the instantaneous selectivity of the desired product B to unwanted
product in this parallel reaction.

1.3.6
Microbial Growth Kinetics

Under ideal batch growth conditions, the quantity of biomass, and therefore the
biomass concentration will increase exponentially with respect to time and in
accordance with all cells having the same probability to multiply. Thus the over-
all rate of biomass formation is proportional to the biomass itself where

rX � kX

Here rX is the rate of cell growth (kg cell m–3 s–1), X is the cell concentration
(kg cell m–3) and k is a kinetic growth constant (s–1). For a batch system, this is
equivalent to

dX
dt

� kX

where dX/dt is the rate of change of cell concentration with respect to time
(kg cell m–3s–1). The analytical solution of this simple first order differential
equation is

X
X0

� ekt

where X0 is the initial cell concentration at time t = 0.

The plot of the logarithm of cell concentration versus time will often yield a
straight line over a large portion of the curve, as shown in Fig. 1.22.

The initial time period up to t1 represents a period of zero growth, which is
known as the lag phase. In this period the cells synthesise enzymes and other
cellular components appropriate to the particular environmental conditions of
the fermentation.

An exponential (or logarithmic) growth phase follows the lag phase, and dur-
ing this period the cell mass increases exponentially. The growth rate is at a
maximum during this phase, and the population of cells are fairly uniform with
respect to chemical composition and metabolic composition.
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The growth of micro-organisms in a batch reactor will eventually end, owing
either to the depletion of some essential nutrient or perhaps to the accumula-
tion of some toxic product. The result is that the growth rate gradually slows,
and the growth becomes nutrient limited or product inhibited. When the
growth rate falls to that of the cell death rate, the cell concentration remains
constant, during the stationary phase part of the curve.

Following the stationary phase the rate of cell death exceeds that of cell
growth, and the cell number begins to decrease, resulting in the final death rate
part of the curve.

The slope of the curve in the limitation region decreases as it approaches t2.
The slope represents the growth rate per unit mass of cells or specific growth
rate and is given the symbol � (s–1), where:

d ln X
dt

� 1
X

dX
dt

� specific growth rate � �

In many processes, cells may die continuously or may start dying (after time,
t3) because of a lack of nutrients, toxic effects or cell ageing. This process can
typically be described by a first order decay relationship:

rd � �kdX

where rd is the death rate and kd (s–1) is the specific death rate coefficient.

The exponential and limiting regions of cell growth can be described by a single
relation, in which � is a function of substrate concentration, i.e., the Monod
equation

� � �maxS
KS � S

Although very simple, the Monod equation frequently describes experimental
growth rate data very well. The form of this relation is shown in Fig. 1.23.
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The important properties of this relationship are as follows:

S 	 0 � � 	 �max

KS
S

S 	 
 � � 	 �max

S � KS � � � �max

2

Substrate Uptake Kinetics
The rate of uptake of substrate by micro-organisms is generally considered to
be related to the rate of growth and to the rate required for maintenance,

rS � �rX

YX�S
� mX

Here rS is the rate of substrate uptake by the cells (kg substrate m–3 s–1). YX/S

(kg/kg) is the stoichiometric factor or yield coefficient, relating the mass of cell
produced per unit mass of substrate consumed and the maintenance factor m
(kg substrate/kg biomass S), represents the utilisation of substrate by the cells
for non-growth related functions.

For further details of microbial kinetics refer to Dunn et al. (2003), Moser
(1988), Shuler and Kargi (1999) and Blanch and Clark (1996).

1.4
Mass Transfer Theory

1.4.1
Stagewise and Differential Mass Transfer Contacting

Mass transfer separation processes, e.g., distillation, gas absorption, etc., are
normally treated in terms of stagewise or differential procedures. In a stagewise
procedure, concentration changes are taken to occur in distinct jumps, as, for
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example, between the neighbouring plates of a distillation column. In a differ-
ential procedure the concentrations are assumed to vary continuously through-
out the total length or volume of the contactor, as, in say, a packed bed gas ab-
sorption column. The two different types of operation lead to two quite distinct
design approaches, namely a stagewise design and a differential design. Both
can be handled to advantage by simulation methods.

Figure 1.24 shows a countercurrent stagewise mass transfer cascade and the
resulting staged profile of the two streams, owing to the mass transfer between
the streams.

In the stagewise simulation method the procedure is based on the assessment
of the separation achieved by a given number of equilibrium contacting stages.
The concept of the equilibrium stage is illustrated, for a particular stage n of
the cascade, as shown in Fig. 1.25.

According to this assumption the two streams are so well mixed that the com-
positions of each phase within the stage are uniform. Further, the mass transfer
is so efficient that the compositions of the streams leaving the stage are in equi-
librium.

CLn � feq�CGn�

The actual stage can be a mixing vessel, as in a mixer-settler used for solvent ex-
traction applications, or a plate of a distillation or gas absorption column. In or-
der to allow for non-ideal conditions in which the compositions of the two exit
streams do not achieve full equilibrium, an actual number of stages can be re-
lated to the number of theoretical stages, via the use of a stage-efficiency factor.
Also it will be seen that a rate approach will account for this.
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Fig. 1.25 Equilibrium mass-transfer stage.



Figure 1.26 shows a differential type of contactor as in, say, a countercurrent
flow-packed gas absorption column, together with the resulting approximate
continuous concentration profiles.

In this type of apparatus, the two phases do not come to equilibrium, at any
point in the contactor and the simulation method is based, therefore, not on a
number of equilibrium stages, but rather on a consideration of the relative rates
of transport of material through the contactor by flow and the rate of interfacial
mass transfer between the phases. For this, a consideration of mass transfer
rate theory becomes necessary.

1.4.2
Phase Equilibria

Knowledge of the phase equilibrium is essential for any mass transfer process,
since this is, by definition, implicit in the idea of a theoretical stage. It is also
important, however, in determining the concentration driving-force term in the
mass-transfer rate expression. At phase equilibrium conditions, the driving force
for mass transfer is zero and therefore further concentration changes via a mass
transfer mechanism become impossible. The equilibrium is therefore also im-
portant in determining the maximum extent of the concentration change, possi-
ble by mass transfer.

Equilibrium data correlations can be extremely complex, especially when re-
lated to non-ideal multicomponent mixtures, and in order to handle such real
life complex simulations, a commercial dynamic simulator with access to a
physical property data-base often becomes essential. The approach in this text is
based, however, on the basic concepts of ideal behaviour, as expressed by Hen-
ry’s Law for gas absorption, the use of constant relative volatility values for dis-
tillation and constant distribution coefficients for solvent extraction. These have
the advantage that they normally enable an explicit method of solution and
avoid the more cumbersome iterative types of procedure, which would other-
wise be required. Simulation examples in which more complex forms of equili-
bria are employed are STEAM and BUBBLE.
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1.4.3
Interphase Mass Transfer

Actual concentration profiles (Fig. 1.27) in the very near vicinity of a mass trans-
fer interface are complex, since they result from an interaction between the
mass transfer process and the local hydrodynamic conditions, which change
gradually from stagnant flow, close to the interface, to more turbulent flow with-
in the bulk phases.

According to the Whitman Two-Film theory, the actual concentration profiles,
as shown in Fig. 1.27, are approximated for the steady state with no chemical
reaction, by that of Fig. 1.28.

The above theory makes the following assumptions:
1. A thin film of fluid exists on either side of the interface.
2. Each film is in stagnant or laminar flow, such that mass transfer across the

films is by a process of molecular diffusion and can therefore be described by
Fick’s Law.

3. There is zero resistance to mass transfer at the interface, itself, and therefore
the concentrations at the interface are in local equilibrium.
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Fig. 1.27 Concentration gradients at a gas-liquid interface.

Fig. 1.28 Concentration gradients according to the Whitman Two-Film theory.



4. Each of the bulk phases, outside the films, are in turbulent flow. Concentra-
tions within the bulk phases are therefore uniform and the bulk phases con-
stitute zero resistance to mass transfer.

5. All the resistance to mass transfer therefore occurs within the films.

Fick’s Law states that the flux j (mol/s m2) for molecular diffusion, for any giv-
en component is given by

j � �D
dC
dZ

where D is the molecular diffusion coefficient (m2/s), and dC/dZ is the steady-
state concentration gradient (mol/m3m). Thus applying this concept to mass
transfer across the two films

jA � DG
CG � CGi

ZG
� DL

CLi � CL

ZL

where DG and DL are the effective diffusivities of each film, and ZG and ZL are
the respective thicknesses of the two films.

The above equations can be expressed as

j � kG�CG � CGi� � kL�CLi � CL�

where kG and kL (m/s) are the mass transfer coefficients for the G-phase and
L-phase films, respectively.

The total rate of mass transfer, Q (mol/s), is given by

Q � jA � j�aV�

where A is the total interfacial area for mass transfer; a is defined as the specific
area for mass transfer or interfacial area per volume (m2/m3) and V is the vol-
ume (m3).

Thus

Q � kGA�CG � CGi� � kLA�CLi � CL�

or in terms of a and V

Q � kGa�CG � CGi�V � kLa�CLi � CL�V

Since the mass transfer coefficient, k, and the specific interfacial area, a, vary in
a similar manner, dependent upon the hydrodynamic conditions and system
physical properties, they are frequently combined and referred to as a “ka” value
or more properly as a mass transfer capacity coefficient.
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In the above theory, the interfacial concentrations CGi and CLi are not measur-
able directly and are therefore of relatively little immediate use. In order to over-
come this apparent difficulty, overall mass transfer rate equations are defined by
analogy to the film equations. These are based on overall coefficients of mass
transfer, KG and KL, and overall concentration driving forces, where

Q � KGA CG � C�
G

� � � KLA C�
L � CL

� �
and CG

* and CL
* are the respective equilibrium concentrations, corresponding to

the bulk phase concentrations, CL and CG, respectively, as shown in Fig. 1.29.
Simple algebra, based on a combination of the film and overall mass transfer

rate equations, lead to the following equations, relating the respective overall
mass transfer coefficients and the coefficients for the two films

1
KG

� 1
kG

� m
kL

and

1
KL

� 1
kL

� 1
mkG

where m is the local slope of the equilibrium line

m � dCG

dC�
L

For a non-linear equilibrium relationship, in which the slope of the equilibrium
curve varies with concentration, the magnitudes of the overall mass transfer
coefficients will also vary with concentration, even when the film coefficients
themselves remain constant. The use of overall mass transfer coefficients in
mass transfer rate equations should therefore be limited to the case of linear
equilibrium or to situations in which the mass transfer coefficient is known to
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be relatively insensitive to concentration changes. Design equations based on
the use of film mass transfer coefficients and film concentration driving forces
make use of the identity that:

kG�CG � CGi� � kL�CLi � CL�

and that the interfacial concentrations CGi and CLi are in local equilibrium.
Examples with mass transfer are OXIDAT, KLADYN and all examples in Sec-
tion 5.8.
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