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5
Statistical Models in Chemical Engineering

The models based on the equations of transport phenomena and on stochastic
models contain an appreciable quantity of mathematics, software creation, com-
puter programming and data processing.

In many countries, a high level in mathematics is not a requirement for achiev-
ing a good knowledge in theoretical and practical chemistry or in chemical engi-
neering, so, chemists or chemical engineers do not often have a deep knowledge
of mathematics even though most areas of chemistry are often based upon quanti-
tative measurements and computation. For example, the statistical validation of
the techniques currently used in laboratories specializing in chemical analysis
may be necessary to maintain the laboratory accreditation and/or for legal reasons
In this case, the chemists or chemical engineers, who may have left formal train-
ing in mathematics 10 or 20 years before, could suddenly be faced with the need
to brush up on statistics.

An important number of reference books on chemistry and chemical engineer-
ing statistics [5.1–5.11] have been published by specialists. The chemists and
chemical engineers who intend to attend programs on statistical modelling of pro-
cesses, must have a good basic knowledge in descriptive statistics, distribution of
random variables and statistics hypotheses, and be able to carry out the experi-
ments connecting the various measurements. These basic notions are therefore
introduced in the following examples and discussions:

Descriptive statistics. A series of physical measurements can be described
numerically. If, for example, we have recorded the concentration of 1000 different
samples in a research problem, it is not possible to provide the user with a table
giving all 1000 results. In this case, it is normal to summarize the main trends.
This can be done not only graphically, but also by considering the overall para-
meters such as mean and standard deviation, skewness etc. Specific values can be
used to give an overall picture of a set of data.

Distribution for random variables. The concept of distribution is fundamental to
statistics. If a series of measurements is extracted from a great number of similar
non-produced measurements (called population), we obtain a population sample.
However, it is not possible to have the same mean characteristics for all the sam-
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ples, because errors and noise influence the characterization properties of each
sample. In fact, it is impossible for each sample to be identical. The distribution
of measurements is often approximated by a normal distribution, although, in
some cases, this does not represent an accurate model. If a sufficient number of
measurements is taken during the analysis of samples, it is possible to see
whether they fit into such a distribution.

If the number of samples with characteristics presenting a normal distribution
is not significant, then we can have an error structure. This situation can also be
due to outliers, i.e. samples that are atypical of the population or that might have
been incorrectly labeled or grouped.

Statistics hypotheses and their testing. In many cases, the measurements are
used to answer qualitative questions. For example, for the quality control of a
batch of liquid products, a concentration analysis is carried out. If the analysis of a
sample from the batch results in a higher concentration with respect to a refer-
ence value then we can reject the batch. In this case, we can use different tests to
validate the rejection or acceptance of the batch. One example of such tests is the
comparison of the mean values. Concerning the example described above, the
measurements are realized by two groups of researchers, A and B. Group A has
recorded twenty concentrations in a series of samples and has obtained a mean
concentration value of 10 g/l and a deviation of 0.5 g/l. Group B, who monitors
the same series of samples, has obtained a mean concentration value of 9.7 g/l
and a deviation of 0.4 g/l. Then both mean values and deviations must be com-
pared so as to answer the following questions: Are they actually different? What is
the probability for both groups to have measured the same fundamental para-
meters? Is this difference in mean values simply caused by a different sampling
or a variation in the measurement technique?

Relating measurements. Evaluating the relationships between the different types
of measurements of the variables that are coupled or not to a process is funda-
mental in statistics. In the case of variables coupled to a process, the separation in
the class of independent variables (xi, I = 1, n) and dependent variables (yj, j = 1, p)
must be established based on the schematic representation of the process (see
Fig. 1.1 in Chapter 1). The statistical models will be built based on experimental
measurements. However, good models can be developed only if experimental
results are obtained and processed from a statistical analysis. The analysis of
neural networks processes, which are also statistical models, represents a modern
and efficient research technique based on the experimental measurement of one
actual process.

The first step for the analysis of a statistical modelling problem concerns the
definition of the concept of statistical models. This definition is based on the dia-
gram shown in Fig. 5.1 (which is a variation of Fig. 1.1 in Chapter 1). Statistical
modelling contains all the statistical and mathematical procedures that use mea-
sured data of yi (i = 1,P) and xj (j = 1,N) simultaneously in order to obtain the mul-
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tiple inter-dependences between dependent and independent variables. The rela-
tion (5.1) obtained on this basis represents the statistical model of a process:

yi ¼ fiðx1; x2::::xnÞ; i ¼ 1; p (5.1)

y1 

y2 

yi 

yp 

x1

x2

xj 
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zk ,k=1,s random variables

commands

independent variables dependent variables

Figure 5.1 Schematic representation of a process.

5.1
Basic Statistical Modelling

The statistical modelling of a process can be applied in three different situations:
(i) the information about the investigated process is not complete and it is then
not possible to produce a deterministic model (model based on transfer equa-
tions); (ii) the investigated process shows multiple and complex states and conse-
quently the derived deterministic or stochastic model will be very complex; (iii) the
researcher’s ability to develop a deterministic or stochastic model is limited.

The statistical modelling of a process presents the main advantage of requiring
nothing but the inputs and outputs of the process (the internal process phenom-
ena are then considered as hidden in a black box). We give some of the important
properties of a statistical model here below:

1. As far as a statistical model has an experimental origin, it
presents the property to be a model which could be verified
(verified model).

2. Statistical models are strongly recommended for process
optimization because of their mathematical expression and
their being considered as verified models.

3. Classic statistical models cannot be recommended for the
analysis of a dynamic process because they are too simple.
Dynamic processes are better described by using the artificial
neural network.

3255.1 Basic Statistical Modelling
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Two types of experiments can produce the data needed to establish statistical mod-
els. Passive experiments refer to the classical analysis of an experimental process
investigation. They occur when the sets of experiments have been produced (in an
industrial or in a pilot unit) either by changing the values of independent process
variables one by one or by collecting the statistical materials obtained with respect
to the evolution of the investigated process. Active experiments will be produced
after the establishment of a working plan. In this case, the values of each of the
independent variables of the process used for each planned experiment are
obtained by specific fixed procedures.

To start the procedure of the statistical modelling of a process, we have to pro-
duce some initial experiments. These experiments will allow us:

1. to identify the domain of the value for each independent vari-
able.

2. to identify the state of the dependent variables when the in-
dependent variables of the process increase.

3. to determine whether the state of the dependent variables of
the process is affected by the interaction of the independent
variables.

Dispersion and correlation analyses are used to process the data obtained in the
preliminary experiments. The goal of these statistical analyses is to have qualita-
tive or quantitative answers to points 2 and 3 mentioned above. Finally, when all
the statistical data have been collected, a correlation and regression analysis will
be used to obtain the inter-dependence relationships between the dependent and
the independent variables of the process (see relation (5.1)).

In a process, when the value domain of each of the independent variables is the
same in the passive and in the active experiments simultaneously, two identical
statistical models are expected. The model is thus obtained from a statistical selec-
tion and its different states are represented by the response curves, which com-
bine the input parameters for each of the output parameters.

Now, if the obtained model is used to produce output data and these are com-
pared with the corresponding experimental results, some differences can be ob-
served. This behavior is expected because the model has been extended outside
the selection of its bases and this extension is only permissible if it is possible to
take into account the confidence limits of the model.

Each of the independent variables x1, x2, x3, ... xN is frequently called a factor
whereas the N-dimensional space containing the coordinates x1, x2, x3, ... xN is
called factorial space; the response surface is the representation of one response
function into N-dimensional space. A statistical model with a unique response
surface would characterize the process that shows only one output (Fig. 5.1).

In a model, the number of response surfaces and the number of process out-
puts are the same. Figure 5.2 shows the surface response for a chemical reaction
where the degree of transformation of the reactive species (dependent variables)
in an expected product is controlled by their concentration and temperature (two
independent variables). When we look at this figure, it is not difficult to observe
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that the maximum degree of transformation can easily be established; so, ignor-
ing the economic aspects of the process, the optimal states of the temperature and
concentration are automatically given by the maximum conversion.
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Figure 5.2 Reaction efficiency (y = g) versus temperature (x1)
and limiting reactant concentration (x2).

The basis of the statistical model is given by the Taylor expansion of relation
(5.1). It is established for the vicinity of the factors of the process where a fixed/an
established value is given to the dependent variable (yi0). In this expansion, yi0

results in the yi value when the factors take the corresponding x10,x20,...xN0 values:
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It is not difficult to observe that the Taylor expression can be transposed as Eq.
(5.3) where the index “i” has been extracted because it stays unchanged along the
relation:

yðiÞ ¼ b
ðiÞ
0 þ

XN

j¼1

b
ðiÞ
j xj þ

XN

j¼1

XN

k¼1;k „ j

b
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ðiÞ
jj x2
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(5.3)

From the analysis of Eqs. (5.2) and (5.3) we can observe that each b coefficient has
a specific expression. As an example, relation (5.4) shows the definition expres-
sion for b

ðiÞ
0 :

b
ðiÞ
0 ¼ yi0 �

XN
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(5.4)

In Eq. (5.4) we can note that, in fact, the model describes the relationship between
the process variables. Nevertheless, coefficients b

ðiÞ
0 ; b

ðiÞ
j ; etc are still unknown

because the functions fi(x1,x2,x3,...xN) are also unknown.
A real process is frequently influenced by non-commanded and non-controlled

small variations of the factors and also by the action of other random variables
(Fig. 5.1). Consequently, when the experiments are planned so as to identify coef-
ficients b

ðiÞ
0 ; b

ðiÞ
j ; etc, they will apparently show different collected data. So, each

experiment will have its own b
ðiÞ
0 ; b

ðiÞ
j , etc. coefficients. In other words, each coeffi-

cient is a characteristic random variable, which is observable by its mean value
and dispersion.

Coefficients b
ðiÞ
0 ; b

ðiÞ
j , etc. (called regression coefficients) can be identified by means

of an organised experiment. Since they have the quality to be the estimators of the
real coefficients defined by relation (5.4), two questions can be formulated:

1. What is the importance of each coefficient in the obtained
model?

2. What confidence can be given to each value of b
ðiÞ
0 ; b

ðiÞ
j , etc.

when they are established as the result of programmed
experiments?

The aim of statistical modelling is certainly not to characterize the relationship in
a sample (experiment). So, after the identification of b

ðiÞ
0 ; b

ðiÞ
j :::: etc., it is important

to know what confidence limits can be given to the obtained model.
Each b

ðiÞ
0 ; b

ðiÞ
j :::, etc. coefficient signification, is formally estimated. For instance,

in this example, b
ðiÞ
0 is the constant term for the regression relationship, b

ðiÞ
j corre-

328



5.1 Basic Statistical Modelling

sponds to the linear effects of the factors, b
ðiÞ
jk gives the effect of the interaction of

xj and xk factors on the regression relationship, etc.
In relation (5.3), where b

ðiÞ
0 ; b

ðiÞ
j ::: etc. are the unknown parameters, we can

observe that among the different methods to identify these parameters, the meth-
od of least-squares can be used without any restriction. So, the identification of
b
ðiÞ
0 ; b

ðiÞ
j ::: etc. coefficients has been reduced to the functional minimisation shown

in relation (5.5):

UðiÞðbðiÞ0 ; b
ðiÞ
j ; b

ðiÞ
jk ; :::Þ ¼

PNe

i¼1
yðiÞ;ex

i � yðiÞ;thi

� �2
(5.5)

where “Ne” gives the dimension of the experimental sample produced for the
identification of the parameters; yðiÞ;ex

i is the “i” experimental value of the output
(i) and yðiÞ;thi is the “i” model-computed value of the output (i). This yðiÞ;thi is
obtained using relation (5.3) and the numerical values of xji; j ¼ 1;N. The dimen-
sion of the model (for the identification of the parameters) depends on the num-
ber of terms considered in relation (5.3). Table 5.1 gives the number of coefficients
to be identified when the number of the factors of the process and the statistical
model degree are fixed at the same time.

Table 5.1 Number of coefficients to be identified for the polynomial state of a statistical model.

Number of factors
of the process

Statistical model with polynomial state (polynomial degree)

Number of identifiable coefficients

First degree Second degree Third degree Fourth degree

2 3 6 10 15

3 4 10 20 35

4 5 15 35 70

5 6 21 56 126

In Table 5.1, where the statistical model is presented in a polynomial state, a
rapid increase in the number of identifiable coefficients can be observed as the
number of factors and the degree of the polynomial also increase. Each process
output results in a new identification problem of the parameters because the com-
plete model process must contain a relationship of the type shown in Eq. (5.3) for
each output (dependent variable). Therefore, selecting the “Ne” volume and parti-
cularizing relation (5.5), allows one to rapidly identify the regression coefficients.
When Eq. (5.5) is particularized to a single algebraic system we take only one
input and one output into consideration. With such a condition, relations (5.3)
and (5.5) can be written as:
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yð1Þ ¼ yð1Þ;th ¼ y ¼ f1ðx1; b
ð1Þ
0 ; b

ð1Þ
1 ; b

ð1Þ
11 ; b

ð1Þ
111::::Þ ¼ f ðx; b0; b1; b2; :::Þ (5.6)

Uð1Þðbð1Þ0 ; b
ð1Þ
1 ; b

ð1Þ
11 ; b

ð1Þ
111::Þ ¼ Uðb0; b1; b2; ::Þ ¼

PNe

i¼1
ðyi � f ðxi; b0; b1; b2:ÞÞ

2 ¼ min
(5.7)

Now, developing the condition of the minimum of relation (5.7) we can derive
relation (5.8). It then corresponds to the following algebraic system:

¶Uðb0; b1; b2; :::Þ
¶b0

¼ ¶Uðb0; b1; b2; :::Þ
¶b1

¼ ¶Uðb0; b1; b2; :::Þ
¶b2

¼ ::

¼ ¶Uðb0; b1; b2; :::Þ
¶bn

¼ 0
(5.8)

Here bn is the last coefficient from the function f ðx; b0; b1; b2; :::Þ. The different
coefficients of this function multiply the xn monomial, and “n” gives the degree of
the polynomial that establishes the y–x relationship.

The computing of the derivates of relation (5.8) results in the following system
of equations:
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yi
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¶f ðxi; b0; ::bnÞ
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�
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f ðxi; b0; b1:::bnÞ
¶f ðxi; b0; b1; :::bnÞ

¶bn
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8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(5.9)

The system above contains N equations and consequently it will produce a single
real solution for b0; b1; ::::; bn (n unknowns). It is necessary to specify that the size
of the statistical selection, here represented by Ne, must be appreciable. Moreover,
whenever the regression coefficients have to be identified, Ne must be greater
than n. This system (5.9) is frequently called: system of normal equations [5.4, 5.12–
5.14].

In relation (5.5) we can see that Uðb0; b1; b2; :::Þ can be positive or null for all
sorts of real b0; b1; b2; :::bn. As a consequence, it will show a minimal value for
the identified b0; b1; b2; :::bn. Thus, the description of function f ðx; b0; b1; b2; :::Þ
results in a particularization of system (5.9).

If the number of independent variables is increased in the process, then the
regression function will contain all the independent variables as well as their sim-
ple or multiple interactions. At the same time, the number of dependent variables
also increases, and, for each of the new dependent variables, we have to consider
the problem of identifying the parameters.
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Coefficients b0; b1; b2; :::bn or b
ðiÞ
0 ; b

ðiÞ
j ; b

ðiÞ
jk ; ::: can be considered as the estima-

tors of the real coefficients of the Taylor expansion in the relationship between the
variables of model (5.1). These coefficients are estimators of maximum confidence
because their identification starts with minimizing the function which contains
the square deviation between the observed and computed values of the output
variables. The quality of the identified coefficient and, indirectly, the quality of the
regression model depend firstly on the proposed regression function. Then, the
quality of the regression function imposes the volume of experiments needed to
produce the statistical model. Indeed, with a small number of experiments we
cannot suggest a good regression function. However, in the case of a simple pro-
cess, the regression function can be rapidly determined with only a few experi-
ments. It is important to note that, after the identification of the coefficients, the
regression model must be improved with a signification test. Only the coefficients
that have a noticeable influence on the process will be retained and the model that
contains the established coefficients will be accepted.

In Fig. 5.3 the different steps of the statistical modelling of a process are shown.
These steps include the analysis of the variables, the planning and developing of
experimental research and the processing of the experimental data needed to
establish the model. We can observe that the production of the statistical model of a
process is time consuming and that the effort to bypass experimentation is considerable.
With respect to this experimental effort, it is important to specify that it is some-
times difficult to measure the variables involved in a chemical process. They
include concentrations, pressures, temperatures and masses or flow rates. In addi-
tion, during the measurement of each factor or dependent variable, we must
determine the procedure, as well as the precision, corresponding to the require-
ments imposed by the experimental plan [5.4]. When the investigated process
shows only a few independent variables, Fig. 5.3 can be simplified. The case of a
process with one independent and one dependent variable has a didactic impor-
tance, especially when the regression function is not linear [5.15].
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Figure 5.3 The different steps of statistical modelling.
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5.2
Characteristics of the Statistical Selection

When we consider a process with only one input and one output variable, the
experimental analysis of the process must contain enough data to describe the
relationship between the dependent variable “y” and the independent variable “x”.
This relation can be obtained only if the data collected result from the evolution of
one stationary process, and then supplementary experimental data can be neces-
sary to demonstrate that the process is really in a stationary state.

As an actual process, we can consider the case of an isothermal and isobaric
reactor working at steady state, where the input variable is the reactant’s concen-
tration and the output process variable (dependent variable) is the transformation
degree. In this case, the values of the data collected are reported in Table 5.2. We
can observe that we have the proposed input values (a prefixed set-point of the
measurements) and the measured input values.

Table 5.2 Data for the characterization of y vs. x.

Current number
for input

Proposed input value of x
(set point)

Measured x value Measured y value

i xi yi

1 13.5 1 14.2 0.81

2 13.5 0.75

3 13.8 0.77

4 14.3 0.75

5 13.4

2 20 1 20.5 0.66

2 21.2 0.64

3 19.8 0.63

4 19.8 0.68

5 19.5 0.65

6 0.67

3 27 1 27.0 0.61

2 27.4 0.59

3 26.9 0.58
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Current number
for input

Proposed input value of x
(set point)

Measured x value Measured y value

i xi yi

4 34 1 35.2 0.52

2 34.7 0.49

3 34.3 0.48

4 35.1 0.55

5 34.5 0.53

5 41 1 42.3 0.47

2 42.6 0.43

3 42.9 0.39

4 41.8 0.46

In experimental research, each studied case is generally characterized by the
measurement of x (xi values) and y (yi values). Each chain of x and each chain of y
represents a statistical selection because these chains must be extracted from a
very large number of possibilities (which can be defined as populations). How-
ever, for simplification purposes in the example above (Table 5.2), we have limited
the input and output variables to only 5 selections. To begin the analysis, the
researcher has to answer to this first question: “what values must be used for x (and
corresponding y) when we start analysing of the identification of the coefficients by a
regression function?” Because the normal equation system (5.9) requires the
same number of x and y values, we can observe that the data from Table 5.2 can-
not be used as presented for this purpose. To prepare these data for the mentioned
scope, we observe that, for each proposed x value (x = 13.5 g/l, x = 20 g/l, x = 27 g/l,
x = 34 g/l, x = 41 g/l), several measurements are available; these values can be
summed into one by means of the corresponding mean values. So, for each type
of xi data, we use a mean value, where, for example, i = 5 for the first case (pro-
posed x = 13.5 g/l), i = 3 for the third case, etc. The same procedure will be applied
for yi where, for example, i = 4 for the first case, i = 6 for the second case, etc.

With this method, we can create such couples as ðx1; y1Þ; ðx2; y2Þ; :::::ðx5; y5Þ
characterizing each case presented in Table 5.2. Thus, they can be used without
any problem to solve the system of normal equations. Each class of finite data xi

or yi with i � 1 represents a statistical selection.
The most frequently used statistical measure for a selection is the mean value.

For a selection xi with i ¼ 1;n, the mean value (x) will be computed by the follow-
ing relation:
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x ¼ 1
n
ðx1 þ x2 þ x3 þ ::::þ xn�1 þ xnÞ ¼

1
2

Xn

i¼1

xi (5.10)

In order to complete the selection characterization, we can use the variance or dis-
persion that shows the displacement of the selection values with respect to the
mean value. Relations (5.11) and (5.12) give the definition of the dispersion:

s2 ¼ 1
n� 1

Xn

i¼1

ðxi � xÞ2 ¼ 1
n� 1

Xn

i¼1

x2
i �

1
N

Xn

i¼1

xi

" #2
2
4

3
5 (5.11)

s2 ¼
n
Pn

i¼1
x2

i �
Pn

i¼1
xi

� �2

nðn� 1Þ (5.12)

It is often necessary to simplify the calculations by replacing the initial selection
by another one, which presents the same mean value and dispersion [5.8, 5.9].
Therefore, if, for each value xi, i = 1,n of the selection, we subtract the x0 value, we
obtain a new selection ui, i = 1,n

ui ¼ xi � x0 (5.13)

computing the mean value and the dispersion for this new selection we have:

u ¼ 1
n

Pn

i¼1
ðxi � x0Þ ¼ x� x0 (5.14)

s2
u ¼

1
n� 1

Xn

i¼1

ðui � uÞ2 ¼ 1
n� 1

Xn

i¼1

ðxi � xÞ2 ¼ s2 (5.15)

Table 5.3 shows the values obtained after the calculation of the mean values and
the dispersions respect to the statistical data presented in Table 5.2.

It is very important to pay attention to two important aspects: (i) the selection is
a sample drawn from a population; (ii) the scope of the statistical analysis is to
characterize the population by using one or more selections.

It is easily observable that each selection xi and its associated yi shown in Tables
5.2 or 5.3 correspond to a sample extracted from each type of population. In the
current example we have 5 populations, which give the input reactant concentra-
tion, and 5 populations for the transformation degree of the reactant. In the
tables, the first population associated to the input concentration corresponds to
the experiment where the proposed concentration has the value 13.5 g/l.

During the experiment, the numerical characterization of the population is
given by the concentration of the reactant associated to the flow of the material
fed into the reactor. Therefore, this reactant’s concentration and transformation
degree are random variables. As has been explained above (for instance see
Chapters 3 and 4), the characterization of random variables can be realized taking
into account the mean value, the dispersion (variance) and the centred or non-
centred momentum of various degrees. Indeed, the variables can be characterized
by the following functions, which describe the density of the probability attached
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Table 5.3 Mean values and dispersions for the statistical data given by Table 5.2.

Current
number for
input

Proposed
input value
for x

Measured x value Measured y value

i xi x s2
x yi y s2

y

1 13.5 1 14.2 13.86 (14.2 –13.86)2 +
(13.5 –13.86)2 +
(13.8 –13.86)2 +
(14.3 –13.86)2 +
(13.4 –13.86)2

= 0.654
s2 = 0.654/4
= 0.1635

0.81 0.77 (0.81 – 0.77)2 +
(0.75 –0.77)2 +
(0.77 –0.77)2 +
(0.75 –0.77)2

= 0.0024
s2 = 0.0024/3
= 0.0008

2 13.5 0.75

3 13.8 0.77

4 14.3 0.75

5 13.4

2 20 1 20.5 20.16 0.473 0.66 0.655 0.00035

2 21.2 0.64

3 19.8 0.63

4 19.8 0.68

5 19.5 0.65

6 0.67

3 27 1 27.0 27.1 0.07 0.61 0.593 0.0001015

2 27.4 0.59

3 26.9 0.58

4 34 1 35.2 34.76 0.148 0.52 0.514 0.00083

2 34.7 0.49

3 34.3 0.48

4 35.1 0.55

5 34.5 0.53

5 41 1 42.3 42.4 0.22 0.47 0.438 0.001291
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to the continuous random variable: repartition (5.16); mean value (5.17); variance
(dispersion) (5.18); non-centred momentum of �i’ order (5.19); centred momen-
tum of �i’ order (5.20):

FðxÞ ¼ PðX £ xÞ ¼
Rx

�¥
f ðxÞdx (5.16)

l ¼ EðXÞ ¼
Rþ¥

�¥
xf ðxÞdx (5.17)

r2 ¼ E½ðX� lÞ2� ¼
Rþ¥

�¥
ðx� lÞ2f ðxÞdx (5.18)

mi ¼ EðXiÞ ¼
Rþ¥

�¥
xif ðxÞdx (5.19)

Mi ¼ E½ðX� lÞ2� ¼
Rþ¥

�¥
ðx� lÞif ðxÞdx (5.20)

The transposition from a selection to a population raises the following fundamen-
tal questions: When a selection characterizes its original population? What is its
procedure? Until now, there has been no existing procedure able to prove whether
or not a selection reproduces its original population identically. However, this fact
can be improved if it is assumed that l ¼ x and r2 ¼ s2. Nevertheless, we have to
verify whether these identities are realistic using an acceptable confidence degree.

5.2.1
The Distribution of Frequently Used Random Variables

The distribution of a population’s property can be introduced mathematically by
the repartition function of a random variable. It is well known that the repartition
function of a random variable X gives the probability of a property or event when
it is smaller than or equal to the current value x. Indeed, the function that charac-
terizes the density of probability of a random variable (X) gives current values be-
tween x and x + dx. This function is, in fact, the derivative of the repartition func-
tion (as indirectly shown here above by relation (5.16)). It is important to make
sure that, for the characterization of a continuous random variable, the distribu-
tion function meets all the requirements. Among the numerous existing distribu-
tion functions, the normal distribution (N), the chi distribution (v2), the Student
distribution (t) and the Fischer distribution are the most frequently used for statis-
tical calculations. These different functions will be explained in the paragraphs
below.

The famous normal distribution can be described with the following example: a
chemist carries out the daily analysis of a compound concentration. The samples
studied are extracted from a unique process and the analyses are made with iden-
tical analytical procedures. Our chemist observes that some of the results are
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scarcely repeated whereas others are more frequently obtained. In addition, the
concentration values are always found in a determined range (between a maxi-
mum and a minimum experimental result). By computing the apparition fre-
quency of the results as a function of the observed apparition number and the
total number of analysed samples, the chemist begins to produce graphic relation-
ships between the apparition frequency of one result and the numerical value of
the experiment.

The graphic construction of this computation is given in Fig. 5.4. Two examples
are given: the first concerns the processing of 50 samples and the second the pro-
cessing of 100 samples. When the mean value of the processed measurements
has been computed, we can observe that it corresponds to the measurement that
has the maximum value of apparition frequency. The differences observed be-
tween the two measurements are the consequence of experimental errors [5.16,
5.17]. Therefore, all the measurement errors have a normal distribution written as
a density function by the following relation:

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�

ðx�lÞ2

2r2 (5.21)

Here l and r2 are, respectively, the mean value and the dispersion (variance) with
respect to a population. These characteristics establish all the integral properties
of the normal random variable that is represented in our example by the value
expected for the species concentration in identical samples. It is not feasible to
calculate the exact values of l and r2 because it is impossible to analyse the popu-
lation of an infinite volume according to a single property. It is important to say
that l and r2 show physical dimensions, which are determined by the physical
dimension of the random variable associated to the population. The dimension of
a normal distribution is frequently transposed to a dimensionless state by using a
new random variable. In this case, the current value is given by relation (5.21).
Relations (5.22) and (5.23) represent the distribution and repartition of this
dimensionless random variable. Relation (5.22) shows that this new variable takes
the numerical value of “x” when the mean value and the dispersion are, respec-
tively, l = 0 and r2 = 1.

u ¼ x� l

r
(5.22)

f ðuÞ ¼ 1ffiffiffiffiffiffi
2p
p e�

u2
2 (5.23)

FðuÞ ¼ 1ffiffiffiffiffiffi
2p
p

Ru

�¥
e�

u2
2 du ¼ erf ðuÞ (5.24)
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Figure 5.4 Graphic introduction of normal distribution.

Before presenting some properties of normal distribution, we have to present
the relation (5.25) that gives the probability for which one random variable is fixed
between a and b values (a<b), with the repartition function:

Pða < X < bÞ ¼ FðbÞ � FðaÞ (5.25)

The particularization of this general relation (5.25) to the dimensionless normal
distribution results in the following observations:

1. the current value of the random variable is positioned within
the interval [l–r, l+r] with a probability equal to 0.684

2. the current value of the random variable is positioned within
the interval [l–2r, l+2r] with a probability equal to 0.955

339



5 Statistical Models in Chemical Engineering

3. the current value of the random variable is positioned within
the interval [l–3r, l+3r] with a probability equal to 0.9975.

The observations mentioned above, which are graphically represented in Fig. 5.4,
can also be demonstrated mathematically. For example, for the observation which
gives Pðl� r � x � lþ rÞ ¼ 0:683, we consider a = (x –l)/r = [(l – r) – l]/r =
–1 and b = (x – l)/r = [(l + r)– l]/r = +1; with Eqs. (5.25) and (5.24) we can derive
P(–1<u<+1) = erf(1) – erf(–1) = 0.8413 – 0.1586 = 0.6823.

f(x) 

µ-3σ µ-2σ µ-σ µ µ+σ µ+2σ µ+3σ

0.683 

0.955 

0.9975 

Figure 5.5 Some properties of a normal distribution (popula-
tion (r) or sample extracted (s)).

By using normal distribution, we can introduce other random variables, which
are very important for testing the significance of b0; b1; b2; b12::: coefficients as
well as for testing the model confidence (see Fig. 5.3).

The first of these random variables is the chi distribution (v2). It is derived from
relation (5.26), which defines the expression of the current random variable. Here
l and r are the characteristics of a normal distribution; xi is the current i value for
the same normal distribution. It is easy to observe that a v2 distribution adds posi-
tive values, consequently v2 ˛ð0;¥Þ and v2 is a dimensionless random variable.
Relation (5.27) expresses the density of the v2 random variable. Here t ¼ n� 1
represents the degrees of freedom of the v2 variable:

ui ¼
xi � l

r
»

xi � x
r

; v2 ¼
Xn

i¼1

u2
i (5.26)

ftðv2Þ ¼ 1

2
t
2rtC

t

2

� � v2
� �t

2�1
e�

v2ð Þ
2r2 (5.27)
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For a rapid calculation, we can use the tabulated data values for the repartition
function of the v2 variable Ftðv2Þ. These tabulated data are obtained with Eq.
(5.28):

Ftðv2Þ ¼
Rv2

a

0
ftðv2Þdv2 ¼ 1� a (5.28)

The second important random variable for statistical modelling is the Student (t)
variable. It is derived from a normal variable, which is associated with “u” and v2

dimensionless random variables. Relation (5.29) introduces the current value of
the Student (t) random variable:

t ¼ uffiffiffiffiffi
v2

t

r (5.29)

Equation (5.30), where CðtÞ is given by relation (5.31) shows the probability to
have a Student random variable with values between t and t + dt; so this relation
gives the density function of the Student variable distribution:

ftðtÞ ¼
C

tþ 1
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ 1Þp

p
C

t

2

� � 1þ t2

t

� ��tþ1
2

(5.30)

CðtÞ ¼
R¥

0
tt�1e�tdt (5.31)

The third random variable is the Fischer variable. It is defined by the use of two
normal variables, each of which is expressed by a v2 random variable. The current
Fischer variable is given by Eq. (5.32) where t1 ¼ n� 1 and t2 ¼ m� 1 represent
the degrees of freedom associated, respectively, to random variables v2

1 and v2
2.

x ¼ v2
1

v2
2
@

Pn

i¼1

ðxi � xÞ21
r2

1

" #

Pm

i¼1

ðxi � xÞ22
r2

2

" # @

r2
2

t2

r2
1

t1

(5.32)

The values of the Fischer variable are within the interval (0, ¥). The density of
probability for this variable is given by Eq. (5.33):

ft1 ;t2
ðxÞ ¼ fm1

ðv2
1Þ=fm2

ðv2
2Þ (5.33)

For a rapid calculation of this variable, we can use the tabulated values for the
Fischer repartition function Ft1;t2

ðxÞ corresponding to the confidence limits
a = 0.05 and a = 0.01.
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5.2.2
Intervals and Limits of Confidence

The paragraphs above show that l and r2 are the most important characteristics
for a random variable attached to a given population. Nevertheless, from a practi-
cal point of view, the main characteristics of l and r2 remain unknown. There-
fore, we have the possibility to draw one or more statistical selection(s) concerning
the property considered by the associated random variable from a population.
However, with this procedure, we cannot estimate l and r2 for the whole popula-
tion directly from the mean value and dispersion of the selection. The acceptance
of the statement, which considers that the population mean value l is placed in
an interval containing the selection mean value (x), must be completed with the
observation that the placement of l near x is a probable event. The probability of
this event is recognized as the “confidence”, “probability level” or “confidence
level”. A similar processing is carried out for r2 and s2. If we define the probability
by a, which shows that l or r2 are not placed in a confidence interval, then, 1 – a

is the probability level or confidence level. a is frequently called the “significance
limit”. Figure 5.6 gives the graphic interpretation for a in the case of a normal
repartition with l= 0 and r2 = 1.

-uαα   uα u

f(u) 

P(-uα<u<uα)=1-α 

P(u>uα)=α/2 
P(u<-uα)=α/2 

Figure 5.6 Diagram for the definition of the significance level.

Considering Fig. 5.6, we observe that, if we have a very high confidence level,
then 1� afi1 and the domain for the existence of parameters (l, r2) is high. As
far as our scope is to produce the relations between the population and the selec-
tion characteristics, i.e. between the couples (l, r2) and ðx; s2Þ, we can write Eq.
(5.17) in a state that introduces the mean value (x) and volume (n) of the selection.
In relation (5.34) the population mean value has been divided into n parts. Now, if
for each interval ai�1 � ai, the population mean value is compared with the mean
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value of the selection that has a similar volume, then relation (5.34) can be written
as (5.35):

l ¼
Rþ¥

�¥
xf ðxÞdx ¼

Ra1

�¥
xf ðxÞdxþ

Ra2

a1

xf ðxÞdxþ :::::þ
Rþ¥

an

xf ðxÞdx ¼l1 þ l2 þ :::þ ln

(5.34)

l ¼ x1 þ x2 þ x3 þ ::::þ xn (5.35)

Now if we consider the population variance (dispersion), each identical interval
ai�1 � ai presents a dispersion which depends on the global r2, thus, we can
write:

r2 ¼ r2
1 þ r2

2 þ :::::þ r2
n ¼

r2

n
þ :::::þ r2

n

� �
¼ n

r2

n

� �
(5.36)

The above relation shows that each of the n divisions of the population has the
r2/n dispersion. Now, considering that a division x� l is a normal random vari-
able and that the mean value of this variable is zero, we can transform relation
(5.22) into relation (5.37) where u keeps its initial properties (mean value is zero
and dispersion equal to unity):

u ¼ x� l

r=
ffiffiffi
n
p (5.37)

It is known that Pða £ v2 £ bÞ ¼ P a£
ðn� 1Þs2

r2
£ b

� �
¼ ð1� aÞ and then, with an

accepted significance limit, we can derive the confidence interval considering that
a = v2

1�a=2 and b = v2
a=2. Thus, we obtain the following results:

P v2
1�a=2 £

ðn� 1Þs2

r2
£ v2

a=2

� �
¼ 1� a

or:

v2
1�a=2 £

n� 1
r2

s2 and v2
a=2 ‡

n� 1
r2

s2

and:

r2 £
n� 1
v2

1�a=2

s2 and r2 ‡
n� 1
v2

a=2

s2 (5.38)

The intersection of the expressions contained in Eq. (5.38) gives the expression for

the confidence interval I ¼ n� 1
v2

a=2

s2;
n� 1
v2

1�a=2

s2

 !
. Here, for v2

a=2 and v2
1�a=2, we

use tabulated or computed values which correspond to the degrees of freedom
m = (n – 1) where n is the number of selected experiments.
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When the selection contains a small number of measurements (for example
n<25), the confidence interval for the mean value will be obtained by the use of
the dimensionless Student variable given here by the current value (5.39):

t ¼ lffiffiffiffiffi
v2

t

r ¼

x� l

r=
ffiffiffi
n
p
ffiffiffiffiffiffiffiffi
ts2

tr2

r ¼ x� l

s

ffiffiffi
n
p

(5.39)

Because t˛ð�¥;þ¥Þ for a fixed significance level, we can write Pð�ta £ t£ taÞ ¼
1� a. Now the substitution of Eq. (5.39) into Pð�ta £ t£ taÞ ¼ 1� a results in the
following relations:

P �ta £
x� l

s

ffiffiffi
n
p

£ ta

� �
¼ 1� a (5.40)

or:

�ta £
x� l

s

ffiffiffi
n
p

and ta ‡
xþ l

s

ffiffiffi
n
p

(5.41)

and:

l £ xþ ta

sffiffiffi
n
p and l ‡ x� ta

sffiffiffi
n
p (5.42)

The expressions from relation (5.42) show that the confidence interval for a mean
value with a small number of measurements is:

I ¼ x� ta

sffiffiffi
n
p ; xþ ta

sffiffiffi
n
p

� �
.

5.2.2.1 A Particular Application of the Confidence Interval to a Mean Value
The scope of this section is to show a practical application of the confidence inter-
val to a mean value. The example below concerns the data given in Table 5.2. In
order to verify the correctness of the data obtained, the chemist has carried out
new measurements in case the proposed x should be near 20 g/l. Table 5.4 gives
the new results obtained for the concentration of the reactant in the reactor feed.
Concerning these data two questions are raised:

1. What is the confidence interval for the mean value of the
population from which the selection in Table 5.4 has been
extracted?

2. What is the difference between these new data and those
given in Table 5.2?
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Table 5.4. New values of the limiting reactant concentration in
the reactor feed (Data equivalent to column 2 in Table 5.2).

Sample
number
(i)

Concentra-
tion
xi, g/l

Sample
number
(i)

Concentra-
tion
xi, g/l

Sample
number
(i)

Concentra-
tion
xi, g/l

Sample
number
(i)

Concentra-
tion
xi, g/l

1 19.4 9 21.2 17 18.4 25 21.6

2 22.2 10 18.7 18 18.1 26 20.4

3 21.9 11 19.3 19 18.9 27 18.5

4 23.2 12 18.7 20 22.0 28 20.8

5 19.8 13 23.5 21 18.5 29 18.8

6 21.3 14 22.5 22 20.5 30 22.1

7 17.8 15 18.9 23 18.7 31 20.7

8 23.2 16 19.3 24 21.1 32 19.2

The answers to the questions above are obtained numerically with the following
procedure and the corresponding algorithm:

1. We compute the selection mean value (x) and the dispersion
(s2) with the data from Table 5.4 and with Eqs. (5.10) and
(5.12).
Result: x ¼20.3 g/l; s2 = 3.86; s = 1.92 g/l

2. We accept the equality between the population and the selec-
tion dispersion, i.e. r2 = s2

Result: r2 = 3.86; r = 1.92 g/l

3. We establish the probability significance level (a).
Result: a = 0.05

4. Equation
1ffiffiffiffiffiffi
2p
p

Rua

�ua

e�
u2
2 du ¼ 1� a is resolved in order to esti-

mate ua.
Result: ua = 1.96.

Observation: For this purpose we must use a computer pro-
gram. Alternatively, we can also use the tabulated data of the
normal ua at various fixed a.

5. We obtain the mean value confidence with relation
I ¼ ðx� ua

rffiffiffi
n
p ; xþ ua

rffiffiffi
n
p Þ

Result: I = (19.5; 21)
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6. We calculate the selection mean value (x) and the dispersion
(s2) with the data from Table 5.2 column 2 and with Eqs.
(5.10) and (5.12).
Results: x ¼20.16 g/l; s2 = 0.473; s = 0.687 g/l).

7. According to point 2 of the present algorithm, we accept the
equality between the population and the selection dispersion
r2 = s2.
Results: r2 = 0.473; r = 0.687 g/l

8. We observe that for v2 variable m = n – 1.
Result: m = 4

9. Equation
Rta

�ta

C
tþ 1

2

� �

ffiffiffiffiffiffi
tp
p

C
t

2

� � 1þ t2

t

� ��tþ1
2

dt ¼ 1� a is solved for ta

unknown.
Result: ta = 2.776

10. We obtain the mean value confidence according to relation

I ¼ x� ta

sffiffiffi
n
p ; x� ta

sffiffiffi
n
p

� �

Result: I = (19.307; 21.013)

11. Conclusion: The obtained results for the confidence intervals
I = (19.5; 21) and I = (19.307; 21.013) show that the com-
pared selections are almost the same or have a similar
origin.

5.2.2.2 An Actual Example of the Calculation of the Confidence Interval
for the Variance
The purpose of this section is to show the calculation of the confidence interval
for the variance in an actual example. The statistical data used for this example
are given in Table 5.3. In this table, the statistically measured real input concentra-
tions and the associated output reactant transformation degrees are given for five
proposed concentrations of the limiting reactant in the reactor feed. Table 5.3 also
contains the values of the computed variances for each statistical selection. The
confidence interval for each mean value from Table 5.3 has to be calculated
according to the procedure established in steps 6–10 from the algorithm shown in
Section 5.2.2.1. In this example, the number of measurements for each experi-
ment is small, thus the estimation of the mean value is difficult. Therefore, we

can compute the confidence interval for the dispersion I ¼ n� 1
v2

a=2

s2;
n� 1
v2

1�a=2

s2

 ! !
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for each experiment only if we establish the degrees of freedom (m = n –1, where n
is the number of experiments from each experimentation), and for a chosen a, we
obtain the quintiles values v2

a=2 and v2
1�a=2. These are the solutions of the follow-

ing system of equations:

Zv
2
a=2

v
1�a=2

ftðv2Þdv2 ¼ 1� a

Z¥

v
1�a=2

ftðv2Þdv2 ¼ 1� a=2

8
>>>>>>>>><

>>>>>>>>>:

(5.43)

Table 5.5 gives the results obtained for the mean value and dispersion intervals for
a significance limit a = 0.05.

Table 5.5 The confidence intervals of the mean value and
dispersion for the data from Table 5.3.

Current
number
for input

n
x/y

x ta I from
Eq. (5.42)

s2
x v2

1�a=2 v2
a=2 I from

Eq. (5.38)

1 5/4 13.86 2.571 13.67;
14.04

0.163 1.15 11.1 0.058;
0.265

2 5/6 20.16 2.571 20.43;
19.97

0.473 1.15 11.1 0.172;
1.641

3 3/3 27.10 3.182 27.23;
26.97

0.070 0.352 7.81 0.018;
0.398

4 5/5 34.76 2.571 34.58;
34.94

0.148 1.15 11.1 0.053;
0.514

5 4/4 42.40 2.776 42.09;
42.705

0.220 0.711 9.49 0.069;
0.928

Current
number for
input

y ta I from
(5.48)

s2
y � 102 v2

1�a=2 v2
a=2 I from

(5.44)

1 0.77 2.776 0.772;
0.768

0.080 0.711 9.49 0.033;
0.331

2 0.655 2.447 0.654;
0.656

0.035 1.64 12.6 0.013;
0.106
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Current
number for
input

y ta I from
(5.48)

s2
y � 102 v2

1�a=2 v2
a=2 I from

(5.44)

3 0.593 3.182 0.592;
0.594

0.010 0.352 7.81 0.002;
0.036

4 0.514 2.571 0.513;
0.515

0.083 1.15 11.1 0.03;
0.288

5 0.438 2.776 0.434;
0.442

0.129 0.711 9.49 0.041;
0.544

5.2.3
Statistical Hypotheses and Their Checking

The introduction of the formulation of the statistical hypotheses and their check-
ing have already been presented in Section 5.2.2.1 where we proposed the analysis
of the comparison between the mean values and dispersions of two selections
drawn from the same population. If we consider the mean values in our actual
example, the problem can be formulated as follows: if x1 is the mean value calcu-
lated with the values in Table 5.4 and x2 is the mean value for another selection
extracted from the same population (such as for example x2, which is the limiting
reactant concentration at the reactor input for Table 5.2, column 2) we must dem-
onstrate whether x1 is significantly different from x2.

A similar formulation can be established in the case of two different dispersions
in two selections extracted from the same population. Therefore, this problem can
also be extended to the case of two populations with a similar behaviour, even
though, in this case, we have to verify the equality or difference between the mean
values l1 and l2 or between the variances r2

1 and r2
2. We frequently use three

major computing steps to resolve this problem and to check its hypotheses:
. First, we begin the problem with the acceptance of the zero or

null hypothesis. Concerning two similar populations, the null
hypothesis for a mean value shows that l1 ¼ l2 or l1 � l2 ¼ 0.
Thus, we can write r2

1 ¼ r2
2 or r2

1 � r2
2 ¼ 0 for dispersion. We

have x1 ¼ x2 or x1 � x2 ¼ 0 for both selections and s2
1 ¼ s2

2 or
s2

1 � s2
2 ¼ 0 for the mean value and dispersion respectively.

. Then, we obtain the value of a random variable associated to the
zero hypothesis and to the commonly used distributions, we
establish the value of the correlated repartition function, which is
in fact a probability of the hypothesis existence.
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. Finally, we accept a confidence level and we compare this value
with those given by the repartition function and we eventually
accept or reject the null hypothesis according to this comparison.

Table 5.6 presents the statistical hypotheses frequently formulated and the tests
used for their validation.

Table 5.6 Frequently formulated statistical hypotheses and their validation tests.

Current
number
for input

Comparison
state

Zero
hypothesis

Test used Computed
value for
the random
variable

Associated
probability

Condition
of rejection

1 Two populations
and two selections.
Parameters:
l1, r1

2

population 1
l2, r2

2

population 2;
x1,s1

2 selection 1
x2,s1

2 selection 2

l1 ¼ l2

or
x1 ¼ x2

u u ¼ l1 � l2

r1=
ffiffiffi
n
p

u ¼ x1 � x2

r1=
ffiffiffi
n
p

PðX£uÞ ¼

Ru

�¥

1ffiffiffiffi
2p
p e�u2 du

PðX£uÞ >
1� a

2 Same as 1 but
for selections
with a small volume

l1 ¼ l2

or
x1 ¼ x2

t
m = n–1

t ¼ l1 � l2

r1

ffiffiffi
n
p

or

t ¼ x1 � x2

r1

ffiffiffi
n
p

PðX£ tÞ ¼

Rt

�¥
ftðtÞdt

PðX£ tÞ >
1� a

3 The n volume
of selection and
its population

s2
1 ¼ r2 v2

m = n–1
v2 ¼ n� 1

r2
s2 PðX£ v2Þ ¼ PðX£ v2Þ >

1� a

4 Two selections
of n1 and n2 volumes

s2
1 ¼ s2

2

or
s2

1 > s2
2

F
m1 = n1–1
m1 = n2–1

F ¼ s2
1

s2
2

PðX£FÞ ¼

RF

�¥
ft1;t2ðFÞdF

PðX£FÞ >
1� a

In order to clarify this conceptual discussion we will use the actual example we
have been working on in this chapter. First, it is required to verify whether disper-
sion s2

1, which characterizes the selection given in Section 5.5.2.1, is similar to dis-
persion s2

2, established in Table 5.5, column 2. Indeed, it is known that these selec-
tions have been extracted from the same original population. The response to this
question is obtained with the calculation methodology described above. This com-
putation is organized according to the algorithmic rule proposed at the beginning
of this paragraph, so:
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. We write the actual H0 hypothesis: H0 : s2
1 ¼ s2

2
. We compute the current value of the Fischer random variable

associated to the dispersions s2
1 and s2

2: F ¼ s2
1=s2

2;
Result: F = 3.86/0.473 = 8.16

. We establish the degrees of freedom for the Fischer variable:
t1 ¼ n1 � 1; t2 ¼ n2 � 1;
Results m1 = 3, m2 = 4

. We obtain the probability of the current Fischer variable by com-
puting the value of the repartition function:

PðX £ 8:16Þ ¼
R8:16

0
ft1;t2ðFÞdF;

Result: PðX £ 8:16Þ ¼
R8:16

0
ft1;t2ðFÞdF ¼ 0:97

. We accept the most used significance level a = 0.05

. We observe that PðX£ 8:16Þ ¼ 0:97 � 1� a ¼ 0:95 and, as a
consequence, we reject the zero hypothesis.

5.3
Correlation Analysis

When the preliminary steps of the statistical model have been accomplished, the
researchers must focus their attention on the problem of correlation between de-
pendent and independent variables (see Fig. 5.1). At this stage, they must use the
description and the statistical selections of the process, so as to propose a model
state with a mathematical expression showing the relation between each of the
dependent variables and all independent variables (relation (5.3)). During this
selection, the researchers might erroneously use two restrictions: Firstly, they may
tend to introduce a limitation concerning the degree of the polynomial that
describes the relation between the dependent variable y(i) and the independent
variables xj, j = 1,n; Secondly, they may tend to extract some independent variables
or terms which show the effect of the interactions between two or more indepen-
dent variables on the dependent variable from the above mentioned relationship.

The problem of simplifying the regression relationship can be omitted if, before
establishing those simplifications, the specific procedure that defines the type of
the correlations between the dependent and independent variables of the process,
is applied on the basis of a statistical process analysis.

Classical dispersion analyses, dispersion analyses with interaction effects and
especially correlation analyses can be used successfully to obtain the information
needed about the form of an actual regression expression. Working with the statis-
tical data obtained by the process investigation, the dispersion and the correlation
analyses, can establish the independent process variables and the interactions of
independent variables that have to be considered in a regression expression [5.18,
5.19].

350



5.3 Correlation Analysis

For a process with one dependent variable and one independent variable, the
statistical process analysis gives one chain with values of yi, i = 1,n and another
one with values of xi, i = 1,n. Here, n is the number of the processed experiments.
The correlation analysis shows that the process variables y and x are correlated if
the indicator cov(x,y), given here by relation (5.44), presents a significant value:

covðy; xÞ ¼

Pn

i¼1
ðxi � xÞðyi � yÞ

ðn� 1Þ (5.44)

We observe that the covariance indicator (cov(x,y)) has an expression which is sim-
ilar to the dispersion of a statistical selection datum near the mean value (Eq.
(5.11)). It is important to specify that the notion of variance (or dispersion) differs
completely from the notion of covariance.

If the multiplication (xi � xÞðyi � yÞ from the covariance definition (5.44) gives
a positive number, then the figurative point ðxi; yiÞ will be placed in the first or
third quadrant of an x,y graphic representation, whereas, the figurative point
ðxi; yiÞ will be placed in the second or fourth quadrant. Now if the x and y variables
are independent, then the placement probability of the figurative point is the
same for all quadrants. So, in this case, we have the graphic representation from

Fig. 5.7(a), and the sum
Pn

i¼1
ðxi � xÞðyi � yÞ tends to zero or to a very small number.

For the case when x and y are dependent, then the placement probability is not

the same for all four quadrants and consequently the sum
Pn

i¼1
ðxi � xÞðyi � yÞ„ 0.

This last situation is shown in Fig. 5.7(b).

1 

2 3 

4 

xi 

yi 

a) b)

1 

2 3

4 

)

_

y,

_

x(
xi 

yi 

Figure 5.7 Graphic introduction of the correlation between
statistical variables, (a) independent variables, (b) dependent
variables.

The x and y covariance increases or decreases with the values of ðxi � xÞ and
ðyi � yÞ. Thus, if we repeat the statistical experiment in order to obtain the chains
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of values xi; yi i ¼ 1;n and if we compute again the cov(x,y), this new cov value
can be different from the cov initially calculated. This distortion is eliminated if
we replace the covariance by the correlation coefficient of the variables:

ryx ¼

Pn

i¼1
ðxi � xÞðyi � yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � xÞ2ðyi � yÞ2

s ¼ covðy; xÞ
sxsy

(5.45)

It is easy to observe that the domain of the values of the correlation coefficient is
placed between –1 and +1 and that ryx : Rfi ½�1; 1�.

The following observations can also be made with respect to the correlation
coefficient:
. If the value of the correlation coefficient approaches zero, then

we can accept x and y variables to be independent. So, the varia-
tions on the dependent variable do not affect the independent
variable;

. When the correlation coefficient takes a positive value, the inde-
pendent and dependent variables increase simultaneously. The
opposite case corresponds to a negative value of the correlation
coefficient;

. The extreme values (ryx ¼ 1; ryx ¼ �1) for the correlation coeffi-
cient show that a linear relationship exists between the dependent
and independent variables.

The discussion presented above for the case when the process has only one input
can easily be extended to a process with more than one independent variable
(many inputs). For example, when we have one dependent and two independent
variables, we can compute the ryx1

; ryx2
; ryx1x2

:: coefficients. All the observations
concerning ryx stay unchanged for each ryx1

; ryx2
; ryx1x2

:: When this process involves
two inputs, if we obtain ryx1

¼ 1; ryx2
¼ �1; ryx1x2

¼ 1 and if the other possible
correlation coefficients approach zero, then dependence y ¼ b0 þ b1x1 � b2x2 þ
b12x1x2 is recommended to build the statistical model of the process.

If we once more consider the example studied throughout this chapter, we can
use the statistical data presented in Table 5.3 in order to compute the value of the
correlation coefficient. However, before carrying out this calculation, we can
observe an important dependence between variables x and y due to the physical
meaning of the results in this table. The value obtained for the correlation coeffi-
cient confirms our a priori assumption because the cov has a value near unity. It
shows that a linear relationship can be established between process variables. The
results of these calculations are shown in Table 5.7.
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5.4 Regression Analysis

Table 5.7 Calculation of the correlation coefficient between the
reactant conversion degree and the input concentration (the
statistical data used are from Table 5.3)

Current
number
for input

xi x (xi – x) yi y (yi – y) (xi – x)
� (yi – y)

(xi – x)2 (yi – y)2

1 13.86 –13.91 0.770 0.1762 –2.45975 193.655 0.03104

2 20.16 –7.616 0.655 0.0612 –0.46609 58.003 0.00374

3 27.70 –0.076 0.593 0.594 –0.0008 0.00006 0.0057 0.00006

4 34.76 27.78 6.984 0.514 –0.0798 –0.55732 48.776 0.00636

5 42.40 14.62 0.437 –0.1568 –2.29304 213.861 0.02496
P5

i¼1
138.88 2.969 5.776144 514.30 0.070672

The value of the correlation coefficient is: ryx = (5.7761/(514.3*0.0707)2) = 0.957.

We can eliminate all the false dependent variables from the statistical model
thanks to the correlation analysis. When we obtain ry1y2

¼ 1 for a process with two
dependent variables (y1; y2), we have a linear dependence between these variables.
Then, in this case, both variables exceed the independence required by the output
process variables. Therefore, y1 or y2 can be eliminated from the list of the depen-
dent process variables.

5.4
Regression Analysis

Regression analysis is the statistical computing procedure that begins when the
model regression equations have been established for an investigated process.
The regression analysis includes [5.18, 5.19]:
. the system of normal equations for the particularizations to an

actual case, in which the relationship between each dependent
variable and the independent process variables is established on
the basis of Eq. (5.3);

. the calculations of the values of all the coefficients contained in
the mathematical model of the process;

. the validation of the model coefficients and of the final statistical
model of the process.

The items described above have already been introduced in Fig. 5.3 where the
steps of the development of the statistical model of a process are presented. It
should be pointed out that throughout the regression analysis, attention is com-
monly concentrated on the first and second aspects, despite the fact that virgin

353



5 Statistical Models in Chemical Engineering

statistical data are available for the third aspect. Normally, this new non-used data
(see Fig. 5.3) allows the calculation of the reproducibility variance (s2

rp) as well as
the residual variance, which together give the model acceptance or rejection. In
fact, this aspect contains the validation of the hypothesis considering that
s2

rp ¼ s2
rz; it is clear that the use of the Fischer test (for instance, see Table 5.6) is

crucial in this situation. The following paragraphs contain the particularization of
the regression analysis to some common cases. It is important to note that these
examples differ from each other by the number of independent variables and the
form of their regression equations.

5.4.1
Linear Regression

A linear regression occurs when a process has only one input (x) and one output
variable (y) and both variables are correlated by a linear relationship:

yth ¼ y ¼ f ðx; b0; b1Þ ¼ b0 þ b1x (5.46)

This relation is a particularization of the general relation (5.3). Indeed, polynomial
regression presents the limitation of being first order. In accordance with Eq.
(5.46), the system of equations (5.9) results in the following system for the identi-
fication of b0 and b1:

XN

i¼1

yi �
XN

i¼1

ðb0 þ b1xiÞ ¼ 0

XN

i¼1

yixi �
XN

i¼1

ðb0 þ b1xiÞxi ¼ 0

8
>>>><

>>>>:

(5.47)

which is equivalent to:

Nb0 þ b1

XN

i¼1

xi ¼
XN

i¼1

yi

b0

XN

i¼1

xi þ b1

XN

i¼1

ðxiÞ2 ¼
XN

i¼1

yixi

8
>>>><

>>>>:

(5.48)

Now it is very simple to obtain coefficients b0 and b1 as the Cramer solution of
system (5.39). The following expressions for b0 and b1 are thus obtained:

b0 ¼

PN

i¼1
yi
PN

i¼1
x2

i �
PN

i¼1
xi
PN

i¼1
yixi

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2 (5.49)
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b1 ¼
N
PN

i¼1
yixi �

PN

i¼1
xi
PN

i¼1
yi

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2 (5.50)

After the calculation of b1 we can extract b0 from relation (5.51) where x and y are
the mean values of variables x and y respectively. Otherwise, this relation can also
be used to verify whether b0 and b1 are correctly obtained by relations (5.50) and
(5.51):

b0 ¼ y� b1x (5.51)

The next step in developing a statistical model is the verification of the signifi-
cance of the coefficients by means of the Student distribution and the reproduc-
ibility variance.

The problem of the significance of the regression coefficients can be examined
only if the statistical data take into consideration the following conditions [5.19]:

1. The error of the measured input parameter (x) must be
minor. In this case, any error occurring when we obtain “y”
will be the consequence of the non-explicit input variables.
These non-explicit variables are input variables which have
been rejected or not observed when the regression expres-
sion was proposed.

2. When the measurements are repeated, the results of the out-
put variable must present random values with a normal dis-
tribution (such samples are shown in Table 5.2).

3. When we carry out an experimentation in which “N” is the
dimension of each experiment and where each experiment is
repeated “m” times, the variances s2

1; s
2
2; ::::s

2
N, which are

associated to the output variable, should be homogeneous.

The testing of the homogeneity of variances concerns the process of primary prep-
aration of the statistical data. It is important to note that this procedure of homo-
geneity testing of the output variances is in fact a problem which tests the zero
hypothesis, i.e.: H0 : s2

1 ¼ s2
2 ¼ :::: ¼ s2

N. For this purpose, we comply with the fol-
lowing algorithm:

1. We compute the mean values of samples with respect to the
output process variable:

yi ¼
Pm

k¼1
yik=m i ¼ 1; 2; 3; ::::N (5.52)

2. With the mean values and with each one of the experiments
we establish the variables s2

1 ¼ s2
2 ¼ :::: ¼ s2

N as well as their
maximum values:
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s2
i ¼

Pm

i¼1
ðyik � yiÞ

2

m� 1
(5.53)

3. We proceed with the calculation of the sum of the variances
that give the value of the testing process associated to the
Fischer random variable:

s2 ¼
XN

i¼1

s2
i F ¼ s2

max

s2
(5.54)

4. At this point we identify the values which have the same
degrees of freedom as variable F and thus we obtain an exis-
tence probability of this random variable between 0 and the
computed value of point c):

t1 ¼ N; t2 ¼ m� 1 PðX £FÞ ¼
RF

�¥
ft1;t2ðFÞdF (5.55)

5. For a fixed significance level a, all the variances
s2

1 ¼ s2
2 ¼ :::: ¼ s2

N will be accepted as homogenous if
we have:

PðX £FÞ£ 1� a (5.56)

6. When the homogeneity of the variances has been tested, we
continue to compute the values of the reproducibility var-
iance with relation (5.64):

s2
rp ¼ s2=N (5.57)

In statistics, the reproducibility variance is a random variable having a number of
degrees of freedom equal to t ¼ Nðm� 1Þ. Without the reproducibility variances
or any other equivalent variance, we cannot estimate the significance of the
regression coefficients. It is important to remember that, for the calculation of
this variance, we need to have new statistical data or, more precisely, statistical
data not used in the procedures of the identification of the coefficients. This
requirement explains the division of the statistical data of Fig. 5.3 into two parts:
one significant part for the identification of the coefficients and one small part for
the reproducibility variance calculation.

The significance estimation of b0 and b1 coefficients is, for each case, a real sta-
tistical hypothesis, the aim of which is to verify whether their values are null or
not. Here, we can suggest two zero hypotheses (H01 : b0 ¼ 0 and H02 : b1 ¼ 0)
and by using the Student test (see Table 5.6), we can find out whether these
hypotheses are accepted or rejected.
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In a more general case, we have to carry out the following calculations:
. firstly: the values of the tj variable using relation (5.58) where bj is

the j regression coefficient, and sbj
represents the corresponding

bj mean square root of variance s2
bj

:

tj ¼
bj

���
���

sbj

(5.58)

. secondly: the existence probability of the tj value of the Student
variable, where t is the number of the degrees of freedom respect
to the calculation of the tj value:

PjðX £ tjÞ ¼
Rtj

�¥
ftðtÞdt

. finally: if we have PjðX £ tjÞ > 1� a, the zero hypothesis for bj so
that H0j : bj ¼ 0 will be rejected. In this case, bj is an important
coefficient in the relationship between the regression variables.
The opposite case corresponds to the acceptance of the H0j

hypothesis.

It is then important to show that, in case of generalization, the mean square root
of the variances with respect to the mean bj value as well as its variances have the
quality to respect the law of the accumulation of errors [5.13, 5.16, 5.19]. As a
result, the mean square root of the variances will have a theoretical expression,
which is given by:

sbj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

¶bj

¶yi

� �vuut s2
i (5.59)

Because, in a normal case, we have the homogenous variances
s2

1 ¼ s2
2 ¼ :::: ¼ s2

N ¼ s2
rp, then for the case of a linear regression, we can particu-

larize relation (5.59) in order to obtain the following relations:

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
rp

PN

i¼1
x2

i

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2

vuuuuuut
(5.60)

sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

rpN

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2

vuuuut
(5.61)

After estimation of the significance of the coefficients, each non-significant coeffi-
cient will be excluded from the regression expression and a new identification can
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be made for all the remaining coefficients. This new calculation of the remaining
regression coefficients is a consequence of the fact that these regression coeffi-
cients are in an active interrelated state. Before ending this problem, we must ver-
ify the model confidence, i.e. we must check whether the structure that remains
after the testing of the significance coefficients, is adequate or not. For the exam-
ple discussed above, the model is represented by the final expression of regres-
sion. Its confidence can thus be verified using the Fischer test the orientation of
which is to verify the statistical hypothesis: H0m : s2

rz ¼ s2
rp suggesting the equality

of the residual and reproducibility variances. The Fischer test begins with the cal-
culation of the Fischer random variable value: F ¼ s2

rz=s2
rp. Here the degrees of

freedom have the values t1 ¼ N� 1; t2 ¼ N� nb, where N is the number of sta-
tistical data used to calculate s2

rz in t1, as well as in t2. Here, nb introduces the
number of regression coefficients that remain in the final form of the regression
expression. For a process with only one output (only one dependent variable) the
residual variance measures the difference between the model computed and the
mean value of the output:

s2
rz ¼

PN

i¼1
ðŷyi � yÞ2

N� nb

(5.62)

ŷyi ¼ b0 þ b1xi i ¼ 1;N (5.63)

After calculating the value of the random variable F, we establish the reproducibil-
ity variances and carry out the test according to the procedure given in Table 5.6.
Exceptionally, in cases when we do not have any experiment carried out in paral-
lel, and when the statistical data have not been divided into two parts, we use the
relative variance for the mean value (s2

y) instead of the reproducibility variance.
This relative variance can be computed with the statistical data used for the identi-
fication of the coefficients using the relation (5.64):

s2
y ¼

PN

i¼1
ðyi � yÞ2

N� 1
(5.64)

In this case, the value of N for t1 and t2 is the same and it is equal to the number
of experiments accepted for the statistical calculations. Coming back to the prob-
lem of the model adequacy, it is clear that the zero hypothesis has been trans-
formed into the following expression: H0m : s2

rz ¼ s2
y .

5.4.1.1 Application to the Relationship between the Reactant Conversion and the
Input Concentration for a CSR
The statistical data shown in Table 5.2 were obtained for an isothermal continu-
ously stirred reactor (CSR) with a spatial time of 1.5 h. With these experimental
data, we can formulate a relationship between the reactant conversion (y) and the
input concentration (x). For the establishment of a statistical model based on a
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linear regression, we have a coefficient of regression close to 1 (found in Table 5.7
which contains the values obtained with the same statistical data). However, we
did not have any additional experiments carried out in parallel and consequently
we cannot establish a real reproducibility variance. The correlation coefficient
from Table 5.7, sustains the proposal of a linear dependence between the conver-
sion (y) and the input concentration of the reactant (x): y ¼ b0 þ b1x. Table 5.8
shows the statistical data and the results of some calculations needed for the deter-
mination of b0 and b1.

Table 5.8 The statistical data and calculated parameters for the
estimation of b0 and b1.

i = xi yi (xi)2 (yixi) x y

1 13.86 0.77 194.8816 10.6722

2 20.16 0.655 406.4256 13.2048

3 27.70 0.593 767.29 16.4261 27.776 0.5938

4 34.76 0.514 1208.2576 17.86664

5 42.40 0.437 1797.76 18.5288
PN

i¼1
138.88 2.969 4374.6 76.67

Thus, for b0 and b1 we obtain:

b1 ¼
N
PN

i¼1
yixi �

PN

i¼1
xi
PN

i¼1
yi

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2 ¼
5 � 76:67� 138:88 � 2:969

5 � 43754:6� ð138:88Þ2
¼ �0:0112 ;

b0 ¼ 0:0112 � 27:76þ 0:5938 ¼ 0:92692

The significance estimation of b0 and b1 is made by computing the residual var-
iance and the variance relative to the mean value of the dependent variable. The
results corresponding to these calculations are shown in Table 5.9.
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Table 5.9 Computed values of the residual and relative variances.

Number (N) 1 2 3 4 5
PN

i¼1

xi 13.86 20.16 27.70 34.76 42.40 138.88

yi 0.77 0.655 0.593 0.514 0.437 2.969

yi � y 0.1762 0.0612 –0.0008 –0.0798 –0.1568

ŷy ¼ b0 � b1xi 0.884 0.701 0.617 0.538 0.452

ŷy� y 0.2902 0.1072 0.0232 –0.0558 –0.1418

Variance s2
rz = (0.29022 + 0.10722 + 0.02322 +

0.05582 + 0.14182)/4 = 0.02986675
s2

y = (0.17622 + 0.06122 + 0.00082 +
0.07982 + 0.15682)/4 = 0.0164367

Now, we can obtain the variances due to b0 and b1 by using relations (5.60) and
(5.61):

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
rp

PN

i¼1
x2

i

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2

vuuuuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01644 � 4374:6

5 � 4374:6� ð138:88Þ2

s
¼ 0:1667

sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

rpN

N
PN

i¼1
x2

i �
PN

i¼1
xi

� �2

vuuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01644 � 5

5 � 4374:6� ð138:88Þ2

s
¼ 0:0018

The estimations of the b0 and b1 significance are computed by the procedure giv-
en in Table 5.6. The results are shown in Table 5.10.

Table 5.10 The significance of b0 and b1 coefficients estimated
by the Student test.

Hypothesis m T P(X<t), relation (5.30) 1–a Conclusion

b0 = 0 4 0.92692/0.1667 = 5.5 0.87 0.95 b0 important

b1 = 0 4 0.0112/0.0018 = 6.2 0.91 0.95 b1 important

At this point, we have to think about the problem of the model confidence. For
this purpose we have to consider that:
. the value of the Fischer variable is F = 0.0298/0.0164 = 1.817;
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. for 1–a = 0.95, we obtain F ¼ F0:05 ¼ 3:24 by solving the equation

1� a ¼
RF

0
f4;4ðFÞdF;

. we accept the zero hypothesis H0m : s2
rz ¼ s2

y because
F0:05 ¼ 3:24 � F ¼ 1:817.

In other words, the reactant transformation degree (g), depends on the input reac-
tant concentration (c0), according to the following relation: g ¼ 0:92692� 0:0112c0.
The results obtained here show that physical and chemical processes occurring in
the reactor of this case under study are not simple. It is well known that for a reac-
tion occurring in a CSR with a simple kinetics, the degree of transformation is
not significantly dependent on the input reactant concentration. For example, if a
first order reaction occurs in a CSR, g will depend only on the residence time and
the kinetic reaction constant g ¼ krss=ðkrss þ 1Þ.

5.4.2
Parabolic Regression

If the regression expression is a polynomial, then, by applying the method of least
squares to identify the coefficients and compute the values of the coefficients, we
obtain a simple linear system. If we particularize the case for a regression expres-
sion given by a polynomial of second order, the general relation (5.3) is reduced
to:

yth ¼ y ¼ f ðx; b0; b1Þ ¼ b0 þ b1xþ b11x2 (5.65)

By computing the derivatives of the system of normal equations
¶f ðx; b0; b1; b11Þ

¶b0
¼ 1;

¶f ðx; b0; b1; b11Þ
¶b1

¼ x;
¶f ðx; b0; b1; b11Þ

¶b11
¼ x2, we establish the

system of equations which is necessary to calculate the values of b0; b1; b11:

b0Nþ b1

XN

i¼1

xi þ b11

XN

i¼1

x2
i ¼

XN

i¼1

yi

b0

XN

i¼1

xi þ b1

XN

i¼1

x2
i þ b11

XN

i¼1

x3
i ¼

XN

i¼1

yixi

b0

XN

i¼1

x2
i þ b1

XN

i¼1

x3
i þ b11

XN

i¼1

x4
i ¼

XN

i¼1

yix
2
i

8
>>>>>>>>>><

>>>>>>>>>>:

(5.66)

The same procedure is used if we increase the polynomial degree given by the
regression equation. In this case, the tests of the coefficient significance and
model confidence are implemented as shown in the example developed in Section
5.4.1.1. It is important to note that we must use relation (5.59) for the calculation
of the variances around the mean value of bj.
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5.4.3
Transcendental Regression

For statistical samples of small volume, an increase in the order of the polynomial
regression of variables can produce a serious increase in the residual variance. We
can reduce the number of the coefficients from the model but then we must intro-
duce a transcendental regression relationship for the variables of the process.
From the general theory of statistical process modelling (relations (5.1)–(5.9)) we
can claim that the use of these types of relationships between dependent and in-
dependent process variables is possible. However, when using these relationships
between the variables of the process, it is important to obtain an excellent ensem-
ble of statistical data (i.e. with small residual and relative variances).

It is well known that using an exponential or power function can also describe
the portion of a polynomial curve. Indeed, these types of functions, which can rep-
resent the relationships between the process variables, accept to be developed into
a Taylor expansion. This procedure can also be applied to the example of the sta-
tistical process modelling given by the general relation (5.3) [5.20].

In this case, the calculation of the coefficients for the transcendental regression
expression can be complicated because, instead of a system of normal equations
(5.9), we obtain a system of non-linear equations. However, we can simplify the
calculation by changing the original variables of the regression relationship. In
fact, changing the original variables results in the mathematical application of
one operator to the expression of the transcendental regression. As an example,
we can consider the relations (5.67)–(5.69) below, where the powers or an expo-
nential transcendental regression are transformed into a linear regression:

yth ¼ y ¼ f ðx; b0; b1Þ ¼ b0bx
1 (5.67)

yth ¼ y ¼ f ðx; b0; b1Þ ¼ b0xb1 (5.68)

lg y ¼ lg b0 þ x lg b1 ; z ¼ lgy ; b0 ¢ ¼ lg b0 ; b1 ¢ ¼ lg b1 ; z ¼ b0 ¢þ bx
1 (5.69)

Coefficients b0 ¢; b1 ¢ can easily be obtained by using the method of least squares.
Nevertheless, the interest is to have the original coefficients of the transcendental
regression. To do so, we apply an inverse operator transformation to b0 ¢ and b1 ¢.
Here, we can note that b0 ¢ and b1 ¢ are the bypassed estimations for their corre-
spondents b0 and b1.

5.4.4
Multiple Linear Regression

When the studied case concerns obtaining a relationship for the characterization
of a process with multiple independent variables and only one dependent variable,
we can use a multiple linear regression:
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yth ¼ y ¼ f ðx1::xk; b0; b1:::bk ¼ b0 þ b1x1 þ b2x2 þ :::þ bkxk (5.70)

It is clear that Eq. (5.70) results from the general relation (5.3). In this case, when
k = 2, we have a regression surface whereas, when k>2, a hypersurface is obtained.
For surface or hypersurface constructions, we have to represent the corresponding
values of the process parameters (factors and one dependent variable) for each
axis of the phase’s space. The theoretical starting statistical material for a multiple
regression problem is given in Table 5.11.

Table 5.11 The starting statistical material for a multiple regression.

i x1 x2 x3 ............ xk y

1 x11 x21 x31 ............ xk1 y1

2 x12 x22 x32 ............ xk2 y2

3 x13 x23 x33 ............ xk3 y3

. ... ... ... ............ ... ..

. ... ... ... ............ ... ..

N x1N x2N x3N ............ xkN yN

The starting data are frequently transformed into a dimensionless form by a nor-
malization method in order to produce a rapid identification of the coefficients in
the statistical model. The dimensionless values of the initial statistical data
(y0

i and x0
ji) are computed using Eqs. (5.71) and (5.72), where sy; sxj are the square

roots of the correspondent variances:

y0
i ¼

yi � y
sy

; x0
ji ¼

xji � xj

sxj
; i ¼ 1;N ; j ¼ 1; k (5.71)

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðyi � yÞ2

N� 1

vuuut
, sxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðxji � xjÞ2

N� 1

vuuut
(5.72)

At this step of the data preparation, we can observe that each column of the trans-
formed statistical data has a zero mean value and a dispersion equal to one. A
proof of these properties has already been given in Section 5.2 concerning a case
of normal random variable normalization.

Then, considering the statistical data from Tables 5.11 and 5.12 and using the
statistical correlation aspects (see Section 5.3), we can observe that the correlation
coefficients are the same for variables y, xj and y0

i ; x0
ji (relation (5.73)). This obser-

vation remains valid for the correlations concerning xj and xl.
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ryxj
¼ ry0x0

j
¼ 1

N� 1

XN

i¼1

y0
i x0

ji (5.73)

rxjxl
¼ rx0

j x0
l
¼ 1

N� 1

XN

i¼1

x0
jix

0
li ; j „ l j; l ¼ 1; 2; :::k (5.74)

Table 5.12 The dimensionless statistical data for a multiple regression.

i x1
0 x2

0 x3
0 ............ xk

0 Y0

1 x0
11 x0

21 x0
31 ............ x0

k1 y1
0

2 x0
12 x0

22 x0
32 ............ x0

k2 y2
0

3 x0
13 x0

23 x0
33 ............ x0

k3 y3
0

. ... ... ... ............ ... ..

. ... ... ... ............ ... ..

N x0
1N x0

2N x0
3N ............ x0

kN yN
0

The observations mentioned above are important because they will be used in
the following calculations. As was explained above, the mean value of the depen-
dent normalized variable is zero, consequently the regression expression with the
normalized variables can be written as:

y0 th ¼ f 0ðx0
1; ::x

0
k; a1; ::akÞ ¼ a1x0

1 þ a2x0
2 þ ::::þ akx0

k (5.75)

It is evident that, for the identification of the aj coefficients, we have to determine
the minimum of the quadratic displacement function between the measured and
computed values of the dependent variable:

Uða1; a2; :::akÞ ¼
PN

i¼1
ðy0

i � y0 th
i Þ

2 ¼ min (5.76)

thus, we obtain the minimum value of function Uða1; a2::::; akÞ when we have:

¶Uða1::akÞ
¶a1

¼ ¶Uða1::akÞ
¶a2

¼ :::::: ¼ ¶Uða1::akÞ
¶ak

¼ 0 (5.77)

the relation above can be developed as follows:
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a1

XN

i¼1

ðx0
1iÞ

2 þ a2

XN

i¼1

ðx0
2ix

0
1iÞ þ ::::::::::::: þ

XN

i¼1

ðx0
Nix

0
1iÞ ¼

XN

i¼1

ðy0
1x0

1iÞ

a1

XN

i¼1

ðx0
1ix

0
2iÞ þ a2

XN

i¼1

ðx0
2iÞ

2 þ ::::::::::::: þ
XN

i¼1

ðx0
Nix

0
2iÞ ¼

XN

i¼1

ðy0
1x0

2iÞ

a1

XN

i¼1

ðx0
1ix

0
NiÞ þ a2

XN

i¼1

ðx0
2ix

0
NiÞ þ :::::::::::::þ

XN

i¼1

ðx0
NiÞ

2 ¼
XN

i¼1

ðy0
1x0

NiÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(5.78)

The system (5.80) for the identification of the aj coefficients is obtained after mul-
tiplying each term of system (5.78) by 1/(N–1) and after coupling this system with
relations (5.73), (5.74) and (5.79):

1
N� 1

XN

i¼1

ðx0
jiÞ

2 ¼ s2
x0

j
¼ 1 (5.79)

a1 þ a2rx1x2
þ a3rx1x3

þ :::::::::þ akrx1xk
¼ ryx1

a1rx2x1
þ a2 þ a3rx2x3

þ :::::::::þ akrx2xk
¼ ryx2

a1rxkx1
þ a2rxkx2

þ a3rxkx3
þ ::::::::: þ ak ¼ ryxk

8
>>>><

>>>>:

(5.80)

Considering the commutability property of the correlations of coefficients
(rxjxl
¼ rxlxj

) we can solve the above system. After solving it with unknown
a1; a2:::ak, we can determine the value of the correlation between the coefficients
of the process variables by using Eq. (5.81):

Ryxj
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1ryx1
þ a2ryx2

þ ::::::þ akryxk

p
(5.81)

When the statistical sample is small, the multiple linear correlation coefficient
must be corrected. The correction is imposed by the fact that, in this case, the
small number of degrees of freedom (t ¼ N� nb is small) adds errors systemati-
cally. Therefore, the most frequently used correction is given by:

Rc
yxj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� R2

yxj
Þ N� 1

N� nb

s
(5.82)

At this point, we have to consider coefficients a1; a2:::ak according to the dimen-
sional relationship between the process variables (5.70). For this purpose, we
must transform aj into bj, and j = 1,k. Indeed, these changes can take place using

the following relations: bj ¼ ajsy=sxj ; j ¼ 1; 2; :::k ; j „ 0 ; b0 ¼ y�
PN

iþ
bjxj.

Now we have to estimate the reproducibility of the variance, to carry out the
confidence tests for the coefficients so as to establish the final model.
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5.4.4.1 Multiple Linear Regressions in Matrix Forms
The regression analysis, when the relationship between the process variables is
given by a matrix, is frequently used to solve the problems of identification and
confidence of the coefficients as well as the problem of a model confidence. The
matrix expression is used frequently in processes with more than two indepen-
dent variables which present simultaneous interactive effects with a dependent
variable. In this case, the formulation of the problem is similar to the formulation
described in the previous section. Thus, we will use the statistical data from Table
5.11 again in order to identify the coefficients with the following relation:

yth ¼ y ¼ f ðx1::xk; b0; b1:::bkÞ ¼ b0x0 þ b1x1 þ b2x2 þ :::þ bkxk (5.83)

The first step in this discussion concerns the presentation of the matrix of the in-
dependent variables (X), the experimental observation vector of the dependent
variable (Y) and the column matrix of the coefficients (B) as well as the transposed
matrix of the independent variables (XT). All these terms are introduced by rela-
tion (5.84). A fictive variable x0, which takes the permanent value of 1, has been
considered in the matrix of the independent variables:

X ¼

x01 x11 : : xk1

x02 x12 : : xk2

: : : : :

: : : : :

x0N x1N : : xNN

2
6666664

3
7777775

Y ¼

y1

y2

:

:

yN

2
6666664

3
7777775

B ¼

b0

b1

b2

:

bk

2
6666664

3
7777775

XT ¼

x01 x02 : : x0N

x11 xT
12 : : x1N

: : : : :

: : : : :

xk1 xk2 : : xkN

2

6666664

3

7777775

(5.84)

The particularization of the system of the normal equations (5.9) into an equiva-
lent form of the relationship between the process variables (5.83), results in the
system of equations (5.85). In matrix forms, the system can be represented by
relation (5.86), and the matrix of the coefficients is given by relation (5.87).
According to the inversion formula for a matrix, we obtain the elements for the
inverse matrix of the matrix multiplication (XXT), where (XT) is the transpose
matrix of the matrix of independent variables.

Relation (5.89) gives the value of each element of matrix (XXT), where the sym-
bol djk represents a current element, as shown in relation (5.88),
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b0

XN

i¼1

ðx0iÞ2 þ b1

XN

i¼1

ðx0ix1iÞ þ ::::::::::::: þ bk

XN

i¼1

ðx0ixkiÞ ¼
XN

i¼1

ðyix0iÞ

b0

XN

i¼1

ðx1ix0iÞ þ a2

XN

i¼1

ðx1iÞ2 þ ::::::::::::: þ
XN

i¼1

ðx1ixkiÞ ¼
XN

i¼1

ðyix1iÞ

b0

XN

i¼1

ðxkix0iÞ þ a2

XN

i¼1

ðx1ix
0
kiÞ þ ::::::::::::: þ

XN

i¼1

ðxkiÞ2 ¼
XN

i¼1

ðy0
1x0

NiÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(5.85)

XTXB ¼ XY (5.86)

B ¼ XTXð Þ�1XY (5.87)

ðXTXÞ�1 ¼

d00 d01 d02 : d0k

d10 d11 d12 : d1k

d20 d21 d22 : d2k

: : : : :
dk0 dk1 dk3 : dkk

2
66664

3
77775

(5.88)

djk ¼

PN

i¼1
xkixji

� �
¢

D
(5.89)

It is not easy to compute the cofactors
PN

i¼1
xkixji

� �
¢ and the determinant of the

(XTX) matrix multiplication. Therefore, the computation depends on the (X)
matrix dimension and more specifically on the number of the independent vari-
ables of the process as well as on the number of experiments produced during the
process of the statistical investigation. Frequently, the computation software of the
problem cannot produce a solution for the coefficient matrix, even if we have care-
fully prepared data (controlled and verified). To overcome this situation, we must
verify whether the inverse matrix of the (X) and (XT) matrix multiplication pre-
sents a degenerated state. This undesirable situation appears when one or more
correlation(s) exist(s) between the independent variables of the process. For this
reason, when we have two factors with a strong correlation in the ensemble of in-
dependent variables, one of them will be excluded before developing the calcula-
tion algorithm to determine the correlation coefficients.

In order to obtain the value of the residual variance, we first define the matrix
of the expected observations ŶY ¼ XB and then we observe that the quadratic dis-
placement between the measured and computed output values of the variables
can be written as:

Y� ŶY
	 


Y� ŶY
	 
T¼

PN

i¼1
ðyi � ŷyiÞ2
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Now we introduce the matrix of the theoretical coefficients of the regression
(coefficients of the relation (5.4)) here symbolized by Br. Therefore, the coefficient
matrix B, defined above, is an estimation of the Br matrix and we can
consequently write that the mean value of matrix B is matrix Br: MðBÞfiBr or
M½B� Br�fi 0.

If we apply the concept of mean value to the matrix obtained from the multipli-
cation of [B–Br] and [B–Br]T,, and using the definition for the variance and covar-
iance of two variables, we obtain the result given by matrix (5.90):

M½ðB� BrÞðB� BrÞT� ¼

r2
b0

covðb0b1Þ covðb0b2Þ : covðb0bkÞ
covðb1b0Þ r2

b1
covðb1b2Þ : covðb1bkÞ

covðb2b0Þ covðb2b1Þ r2
b2

: covðb2bkÞ
: : : : :

covðbkb0Þ covðbkb1Þ covðbkb2Þ : r2
bk

2
666664

3
777775

(5.90)

It should be mentioned that the diagonal components of this matrix contain the
theoretical variances of coefficients bj; j ¼ 1; ::N. Moreover, these variances are
necessary to test the significance of the coefficients of the model. Indeed, when
matching a model with an experimental study, matrix (5.90) is fundamental for
testing the significance of the coefficients. Now, we have to consider the differ-
ences between the measured yi; i ¼ 1; ::N and the expected mean values of the
measurements introduced through the new vector column (Yob):

Yob ¼ Y�MðYÞ ¼

y1 �mðy1Þ
y2 �mðy2Þ

:
yN �mðyNÞ

2

664

3

775 (5.91)

Thus, the replacement of B ¼ ðXTXÞ�1XY(5.94) in the left-hand side of relation
(5.90) results in: M½ðB� BrÞðB� BrÞT� ¼ M½½ðXXTÞ�1XTYob�½ðXTXÞ�1XTYob�T�.
Here, we can observe that ðXTXÞ is a diagonal symmetric matrix and, for that rea-
son, we can write that [(XTX)–1]T = [(XTX)T]–1. Therefore, the relation M½ðB� BrÞ
ðB� BrÞT� can be written as M½ðB� BrÞðB� BrÞT� ¼ ðXTXÞ�1MðYobYT

obÞ. Because
we generally have r2

y1 ¼ r2
y2 ¼ ::::::: ¼ r2

yN ¼ r2
y and due to the statistical indepen-

dence of errors, we have cov½ðyi �mðyiÞÞðyl �mðylÞÞ� as zero for all i „ l and thus
we can write the matrix M YobYT

ob

� �
as follows:

MðYobYT
obÞ ¼

r2
y1 0 0 : 0
0 r2

y2 0 : 0
0 0 r2

y3 : :
: : : : :
0 0 0 : r2

yN

2
666664

3
777775
¼

1 0 0 : 0
0 1 0 : 0
0 0 1 : 0
: : : : :
0 0 0 : 1

2
66664

3
77775

r2
y (5.92)

With this last observation, the calculation for M½ðB� BrÞðB� BrÞT� results in:
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M½ðB� BrÞðB� BrÞT� ¼ ðXTXÞ�1
r2

y (5.93)

This result is very important because it shows how we compute the values of the
elements of the matrix of mean errors M½ðB� BrÞðB� BrÞT�. These elements
allow the calculation of the dispersions (variances) that characterize each bj model
coefficient of the process as shown in relation (5.94), which results from combin-
ing relations (5.93), (5.90) and (5.89):

r2
bj
¼ djjr

2
y ; covðbjbkÞ ¼ djkr2

y (5.94)

From a practical point of view, we should draw the readers’ attention to the follow-
ing significant and important specifics:

1. The ðXTXÞ�1 matrix is the most important to identify the
coefficients of the model and to estimate the mean values of
errors associated to each bj coefficient. This matrix is cur-
rently called the correlation matrix or error matrix.

2. This matrix does not have the state of a diagonal matrix and
consequently, all the regression coefficients are in mutual
correlation. So we cannot develop a different significance
test for each of the coefficients. From this point of view it is
not possible to use the tj values given by relation (5.95) as the
base of a procedure for the process factor arrangement:

tj ¼
bj

���
���

ry

ffiffiffiffiffi
djj

q ¼
bj

���
���

sy

ffiffiffiffiffi
djj

q (5.95)

3. We can use the tj values to start a heuristic procedure, which
can be obtained from the regression expression of the non-
significant coefficients. For this purpose, the following algo-
rithm is used:
a) the factor with the smallest tj value is eliminated.
b) if the residual variance decreases, then the exclusion is

correct and thus, a new identification for the coefficients
can be carried out. The opposite case shows that the
excluded factor is important.

c) new values for tj will be obtained and a new elimination
procedure can start.

d) we close the procedure when is not possible to decrease
the residual variance.

e) the final remaining coefficients are the based estima-
tions of the true coefficients.

Until now, no other procedures have been available for the enhancement of an
initial proposed relationship between the regression variables.
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5.4.5
Multiple Regression with Monomial Functions

In a multiple regression with monomial functions, the particularization of the
relationship between the general process variables (5.3) gives the relation written
below, where fjðxjÞ is a continuous function:

yth ¼ y ¼ f ðx1; x2; ::; b0; b1; :::cÞ ¼ cf1ðx1Þf2ðx2Þf3ðx3Þ::::fkðxkÞ

This type of relationship between the dependent and all independent variables
was first reported by Brandon [5.21]. In this form of function, we observe that the
index (i) does not have a random position; thus, for i = 1, the function of the factor
has a strong influence on the process, whereas, for i = k, the function of the factor
has a slight influence on the process.

The algorithm that allows the identification of the functions and the c constant
can be described as follows:

1. An empirical regression line will be processed for the y–x1

dependence with the statistical data from Table 5.11.
2. Thus, the dependence of yx1

¼ f1ðx1Þ can now be appreciated
and, using the classical least squares method, we can identify
all the unknown coefficients.

3. A new set of values for the dependent variables of the pro-
cess will be produced by dividing the old values by the corre-
sponding f1ðx1Þ values, so that y1 ¼ y=f1ðx1Þ. This new set of
values of dependent variables are independent of factor x1

and, as a consequence, we can write:
yth

1 ¼ cf2ðx2Þf3ðx3Þ::::fkðxkÞ.
4. The first point of the algorithm can be repeated with respect

to the y1–x2 interdependence. Consequently, we can write:
yx2
¼ f2ðx2Þ;

5. We compute the coefficients of function f2ðx2Þ by the proce-
dures recommended in item 2. and we build a new set of val-
ues for the dependent variables
y2 ¼ y1=f2ðx2Þ ¼ y=½f1ðx1Þf2ðx2Þ�. These new values are inde-
pendent with respect to x1 and x2;

6. The procedure continues with the identification of f3ðx3Þ; :::
fkðxkÞ and we finally obtain the set of the last dependent
variables as

yk ¼
yk�1

fkðxkÞ
¼ y

f1ðx1Þf2ðx2Þ:::fkðxkÞ
.

It is easy to observe that vector yk, gives its value to constant
c:
ŷyk ¼ c ¼ 1

N

PN

i¼1
yki because it is absolutely independent.
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5.5
Experimental Design Methods

For all researchers, and especially for those working in experimental domains, a
frequent requirement is summarized by the following phrase: a maximum of infor-
mation with a minimum of experiments. This expression considers not only saving
the researcher’s time but also expensive reactants and energy. The use of experi-
mental design or planning methods can guarantee not only to greatly reduce the
number of experiments needed in an actual research but also to maintain the
maximum information about the process. At the same time this technique gives
the mathematical procedures of data processing for the complete characterization
of the statistical model of a process [5.1, 5.13, 5.21–5.24].

The methodology of experimental design uses a terminology which is appar-
ently different from the vocabulary frequently used in this chapter. Therefore, we
call experimental conditions factors (or factor when we have only one); in fact, in
Fig. 5.1, the experimental conditions are entirely included in the class of indepen-
dent variables of the process. The word level (or levels when we have more than
one), introduces here the values taken by the factors (factor). The term response is
used to quantitatively characterize the observed output of the process when the
levels of the factors are changed.

If we consider a process with k factors and if we suggest N1 changes for the first
factor, N2 changes for the second factor, etc, then the total number of experiments
will be Nex ¼ N1N2::::Nk. In fact, then, N1,N2,.....Nk represent each factor level.
The most frequent situation is to have N1 ¼ N2 ¼ N3 ¼ :::: ¼ Nk ¼ 2 and in this
case, we obtain the famous 2k method for experimental planning. In fact, the
method represents an optimal plan to describe the experiments using two levels
for each process factor.

5.5.1
Experimental Design with Two Levels (2k Plan)

The experimental research of a process with k factors and one response can be
carried out considering all the combinations of the k factors with each factor at
both levels. Thus, before starting the experimental research, we have a plan of the
experiments which, for the mentioned conditions, is recognized as a complete fac-
torial experiment (CFE) or 2k plan. The levels of each of the various factors establish
the frontiers of the process-investigated domain.

This abstract definition will be explained with the actual example of gaseous
permeation through a zeolite/alumina composite membrane. Here, we must
investigate the effect of the five following factors on the rate of permeation: the
temperature (T) when the domain is between 200 and 400 �C, the trans-mem-
brane pressure (Dp) when the domain is between 40 and 80 bar, the membrane
porosity (e) ranging from 0.08 to 0.18 m3/m3, the zeolite concentration within the
porous structure (cz) from 0.01 to 0.08 kg/kg and the molecular weight of the per-
meated gas (M) which is between 16 and 48 kg/kmol. With respect to the first
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factor (T), we can easily identify the value of the maximum level zmax
1 ¼ 400 �C,

the value of the minimum level zmin
1 ¼ 200 �C, the value of the intermediate level

z0
1 ¼ 300 �C and the factor (temperature) displacement which is considered as

Dz1 ¼ 100 �C. We can observe that

z0
1 ¼

zmin
1 þ zmax

1

2
and Dz1 ¼

zmax
1 � zmin

1

2

If we switch this observation to a general case we can write:

z0
j ¼

z max
j þ z min

j

2
; Dzj ¼

z max
j � z min

j

2
(5.96)

Here zj; j ¼ 1; k introduce the original values of the factors. The point with coor-
dinates (z0

1; z
0
2; :::z

0
k) is recognized as the centre of the experimental plan or funda-

mental level. Dzj introduces the unity or variation interval respect to the axis
zj; j ¼ 1; k. At this point, we have the possibility to transform the dimensional
coordinates z1; z2; :::zk to the dimensionless ones, which are introduced here by
relation (5.97). We also call these relations formulas.

xj ¼
zj � z0

j

Dzj
; j ¼ 1; 2; ::k (5.97)

It is not difficult to observe that, by using this system of dimensionless coordi-
nates for each factor, the upper level corresponds to +1, the lower level is –1 and
the fundamental level of each factor is 0. Consequently, the values of the coordi-
nates of the experimental plan centre will be zero. Indeed, the centre of the experi-
ments and the origin of the system of coordinates have the same position. In our
current example, we can consider that the membrane remains unchanged during
the experiments, i.e. the membrane porosity (e) and the zeolite concentration (cz)
are not included in the process factors.

Therefore, we have to analyse the variation of the rate of permeation according
to the temperature (z1), the trans-membrane pressure difference (z2) and the gas
molecular weight (z3). Then, we have 3 factors each of which has two levels. Thus
the number of experiments needed for the process investigation is N = 23 = 8.
Table 5.13 gives the concrete plan of the experiments. The last column contains
the output “y” values of the process (flow rates of permeation). Figure 5.8 shows a
geometric interpretation for a 23 experimental plan where each cube corner
defines an experiment with the specified dimensionless values of the factors. So
as to process these statistical data with the procedures that use matrix calcula-
tions, we have to introduce here a fictive variable x0, which has a permanent +1
value (see also Section 5.4.4).
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Table 5.13 The matrix for a 23 experimental plan (example of gas permeation).

Natural values of factors Dimensionless values of factors Response
values

Experiment
number

z1 z2 z3 x1 x2 x3 Permeation
flow rates
y � 106 (kg/s)

1 200 40 16 –1 –1 –1 8

2 400 40 16 +1 –1 –1 11

3 200 80 16 –1 +1 –1 10

4 400 80 16 +1 +1 –1 18

5 200 40 44 –1 –1 +1 3

6 400 40 44 +1 –1 +1 5

7 200 80 44 –1 +1 +1 4

8 400 80 44 +1 +1 +1 7

-1 , -1 , -1

-1 , +1 , -1

+1 , +1 , +1 
-1 , +1 , +1 

-1 , -1 , +1 +1 , -1 , +1 

+1 ,- 1 , -1

+1 , +1 , -1

x3  (M) 

x1 (T) 

x2    (∆P)

Figure 5.8 Geometric interpretation of a 23 experimental plan.

From a theoretical point of view, if we transform the matrix according to the 23

experimental plan, we obtain the state form shown in Table 5.14. This matrix has
two important properties: the first is its orthogonality, the mathematical expres-
sion of which is:

PN

i¼1
xlixju ¼ 0 8 l „ j ; l; u ¼ 0; 1; :::k (5.98)
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The second is recognized as the normalization property, which shows that the
sum of the dimensionless values of one factor is zero; besides, the sum of the
square values of one factor is equal to the total number of experiments. Relations
(5.99) and (5.100) give the mathematical expression of the norm property:

PN

i¼1
xji ¼ 0 j „ 0 ; j ¼ 1; 2:::k (5.99)

PN

i¼1
x2

ji ¼ N j ¼ 0; 1; :::::k (5.100)

Table 5.14 Matrix for a 23 experimental plan with x0 as fictive
factor. Each line x1,x2,x3 corresponds to one point of Fig. 5.8.

i x0 x1 x2 x3 y

1 +1 –1 –1 –1 y1

2 +1 +1 –1 –1 y2

3 +1 –1 +1 –1 y3

4 +1 +1 +1 –1 y4

5 +1 –1 –1 +1 y5

6 +1 +1 –1 +1 y6

7 +1 –1 +1 +1 y7

8 +1 +1 +1 +1 y8

The orthogonality of the planning matrix, results in an easier computation of
the matrix of regression coefficients. In this case, the matrix of the coefficients of
the normal equation system (XTX) has a diagonal state with the same value N for
all diagonal elements. As a consequence of the mentioned properties, the ele-
ments of the inverse matrix (XTX)–1 have the values djj ¼ 1=N; djk ¼ 0; j „ k.

In these conditions, we obtain the coefficients of the regression equation
according to very simple relations as can be observed in the following matrix
expression:
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B ¼

b0
b1
:
:

bk

2
66664

3
77775
¼ ðXTXÞ�1XTY ¼

1=N 0 0 : 0
0 1=N : 0
0 0 1=N : 0
: : : : :
0 0 0 : 1=N

2
66664

3
77775
:

PN

i¼1
x0iyi

PN

i¼1
x1iyi

:
:

PN

i¼1
xkiyi

2
6666666664

3
7777777775

¼

ð
PN

i¼1
x0iyiÞ=N

ð
PN

i¼1
x1iyiÞ=N
:
:

ð
PN

i¼1
x0iyiÞ=N

2

6666666664

3

7777777775

ð5:101Þ

Each coefficient bj of the regression relationship is given by the scalar multiplica-
tion and summation of the y column and the xj column; a final multiplication by

1/N closes the bj calculation (bj ¼ 1
N

PN

i¼1
xjiyi; j ¼ 0; k). Now, with the help of the

experimental planning from Table 5.13, we can compute the multiple linear
regression given by relation (5.102). Physically, this calculation corresponds to the
assumption that the flow rate of permeation through a membrane depends linear-
ly on the temperature, trans-membrane pressure and molecular weight of perme-
ated gas.

yth ¼ y ¼ f ðx1; x2; x3; b0; b1; b2; b3Þ ¼ b0 þ b1x1 þ b2x2 þ b3x2 (5.102)

x1i

�1
þ1
�1
þ1
�1
þ1
�1
þ1

2
6666666666664

3
7777777777775

�

yi

9
11
10
18
3
5
4
7

2
6666666666664

3
7777777777775

¼

x1iyi

�9
þ11
�10
þ18
�3
þ5
�4
þ7

2
6666666666664

3
7777777777775

X8

i¼1

x1iyi ¼ 15 b1 ¼
X8

i¼1

x1iyi

 !
=N ¼ 15=8 ¼ 1:86

Table 5.15 contains the calculation results for all the coefficients of relation
(5.102).
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Table 5.15 The coefficients of relationship (5.102) according to
the data from Table 5.13.

i x0i x1i x2i x3i x0iyi x1iyi x2iyi x3iyi bj

1 +1 –1 –1 –1 9 –9 –9 –9

2 +1 +1 –1 –1 11 +11 –11 –11 b0 = 67/8 = 8.375

3 +1 –1 +1 –1 10 –10 +10 –10

4 +1 +1 +1 –1 18 +18 +18 –18 b1 = 15/8 = 1.875

5 +1 –1 –1 +1 3 –3 –3 +3

6 +1 +1 –1 +1 5 +5 –5 +5 b2 = 11/8 = 1.375

7 +1 –1 +1 +1 4 –4 +4 +4

8 +1 +1 +1 +1 7 +7 +7 +7 b3 = –29/8 = –3.625
PN¼8

i¼1
8 0 0 0 67 15 11 –29

For a 23 plan, when we consider a more complete regression relationship in
which the factors interact, we can write:

f ðx1; x2; x3; b0; ::b3; b12; ::b23; b123Þ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b12x1x2

þ b13x1x3 þ b23x2x3 þ b123x1x2x3 (5.103)

Here, b12, b13, b23 correspond to the effect of double interactions (factor 1 with
factor 2, etc) and b123 introduces the effect of triple interaction. Table 5.16 com-
pletes the values shown in Table 5.13 with the values needed to calculate the con-
sidered interactions whereas Table 5.17 shows the synthesized calculations of the
interactions between the coefficients.

Table 5.16 The operation matrix for double and triple interaction effects.

i x0i x1i x2i x3i x1ix2i x1ix3i x2ix3i x1ix2ix3i yi

1 +1 –1 –1 –1 +1 +1 +1 –1 9

2 +1 +1 –1 –1 –1 –1 +1 +1 11

3 +1 –1 +1 –1 –1 +1 –1 +1 10

4 +1 +1 +1 –1 +1 –1 –1 –1 18

5 +1 –1 –1 +1 +1 –1 –1 +1 3

6 +1 +1 –1 +1 –1 +1 –1 –1 5

7 +1 –1 +1 +1 –1 –1 +1 –1 4

8 +1 +1 +1 +1 +1 +1 +1 +1 7
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Table 5.17 Calculation of the interaction coefficients for model (5.110).

i x1ix2i x1ix3i x2ix3i x1ix2ix3i yi x1ix2iyi x1ix3iyi x2ix3iyi x1ix2ix3iyi b12,etc

1 +1 +1 +1 –1 9 +9 +9 +9 –9 b12 = 7/8 = 0.875

2 –1 –1 +1 +1 11 –11 –11 +11 +11

3 –1 +1 –1 +1 10 –10 +10 –10 +10 b13 = –5/8 = – 0.625

4 +1 –1 –1 –1 18 +18 –18 –18 –18

5 +1 –1 –1 +1 3 +3 –3 –3 +3 b23 = –5/8 = –0.625

6 –1 +1 –1 –1 5 –5 +5 –5 –5

7 –1 –1 +1 –1 4 –4 –4 +4 –4 b123 = –5/8 = –0.625

8 +1 +1 +1 +1 7 +7 +7 +7 +7
P8

i¼1
0 0 0 0 67 7 –5 –5 –5

If one or more parallel trials are available for the data from Table 5.13, then for
the pleasure of statistical calculation, we can compute new values for the given
coefficients and consequently we can investigate their statistical behaviour. A real
residual variance can then be established. Unfortunately, we do not have the
repeated data for our problem of gaseous permeation through a porous mem-
brane. It is known that the matrix (XTX)–1 has the values djj ¼ 1=N; djk ¼ 0; j „ k
and that, consequently, the regression coefficients will not be correlated. In other
words, they are independent of each other. Two important aspects are noticed
from this observation: (i) we can test the significance of each coefficient in the
regression relationship separately; (ii) the rejection of a non-significant coefficient
from the regression relationship does not have any consequence on the values of
the remaining coefficients.

Coefficients bj; bjl; bjlm ; j „ l; j „m ; j and l and m ¼ 1; 2; :::k obtained with
the help of a CFE have the quality to be absolutely correct estimators of the theo-
retical coefficients as defined in relation (5.4). It is important to repeat that the
value of each coefficient quantifies the participation of the corresponding factor to
the response construction.

Because the diagonal elements of the correlation matrix (XTX)–1 have the same
value, we can conclude (please see the mentioned relation) that they have been
determined with the same precision. Indeed, we can write that all the square roots
of the coefficient variances have the same value:

sbj
¼ sbjl

¼ sbjlm
¼

srpffiffiffiffi
N
p (5.104)

Let us now go back to the problem of gaseous permeation and more precisely to
the experimental part when we completed the data from Table 5.13 with the values
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from the permeation flow rate. These values are obtained from three experiments
for the centre of plan 23:

y0
1 ¼ 10:5:10�6kg=ðm2sÞ; y0

2 ¼ 11:10�6kg=ðm2sÞ; y0
3 ¼ 10:10�6kg=ðm2sÞ.

We obtain all the square roots of the variances needed to test the significance of
the coefficients with these data:

y0 ¼
X3

i¼1

y0
i =3 ¼ 10:5 ; s2

rp ¼
X3

i¼1

ðy0
i � y0Þ2=2 ¼ 0:25 ; srp ¼ 0:5 ; sbj

¼ sbjl

¼ sbjlm
¼ srp=

ffiffiffiffi
N
p
¼ 0:5=

ffiffiffi
8
p
¼ 0:177:

Table 5.18 contains the calculation concerning the significance of the regression
coefficients from relation (5.110). However, respect to table 5.6, the rejection con-
dition of the hypothesis has been changed so that we can compare the computed t
value (tj) with the t value corresponding to the accepted significance level (ta=2).

Table 5.18 The significance of the coefficients for the statistical model (5.103).

n H0 Student variable value: tj ta/2 for m = 2 tj and ta/2 Verdict

1 b0 = 0 t0 ¼ b0j j=sb0
¼ 8:37=0:17 ¼47.2 4.3 t0 > ta/2 rejected

2 b1 = 0 t1 ¼ b1j j=sb1
¼ 1:86=0:17 ¼10.5 4.3 t1 > ta/2 rejected

3 b2 = 0 t2 ¼ b2j j=sb2
¼ 2:75=0:17 ¼15.5 4.3 t2 > ta/2 rejected

4 b3 = 0 t3 ¼ b3j j=sb3
¼ 3:62=0:17 ¼20.45 4.3 t3 > ta/2 rejected

5 b12 = 0 t12 ¼ b12j j=sb12
¼ 0:875=0:17 ¼4.94 4.3 t12 > ta/2 rejected

6 b13 = 0 t13 ¼ b13j j=sb13
¼ 0:625=0:17 ¼3.5 4.3 t13 < ta/2 accepted

7 b23 = 0 t23 ¼ b23j j=sb23
¼ 0:625=0:17 ¼3.5 4.3 t23 < ta/2 accepted

8 b123 = 0 t123 ¼ b123j j=sb123
¼ 0:625=0:17 ¼3.5 4.3 t123 < ta/2 accepted

The calculation from Table 5.18 shows that coefficients b13, b23, b123 have no
importance for the model and can consequently be eliminated. From these final
observations, the remaining model of gaseous permeation, can be represented in
a dimensionless form by the relation (5.105). We must notice that, in these calcu-
lations, the values of the y column have been multiplied by 106.

ŷy ¼ 8:37þ 1:85x1 þ 2:75x2 � 3:632x3 þ 0:875x1x2 (5.105)
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At the end of the process of the statistical modelling, we have to test the signifi-
cance of the model. Here is the case of the model for gaseous permeation through
a porous membrane for which we compute:
. the value of the residual variance:

s2
rz ¼

PN

i¼1
ðyi � ŷyiÞ2

� �
=ðN� nbÞ ¼ 7:14=3 ¼ 1:78;

. the numerical value of the associated Fischer variable:
F ¼ s2

rz=s2
rp ¼ 1:78=0:177 ¼ 10;

. the theoretical value of the associated Fischer variable correspond-
ing to this concrete case:
a ¼ 0:05; m1 ¼ 3; m2 ¼ 2 and F3;2;0:05 ¼ 19:16 .

Thanks to the assigned significance level, we can acknowledge the model to be
adequate because we have F < F3;2;0:05 (10 < 19.6).

5.5.2
Two-level Experiment Plan with Fractionary Reply

Each actual experimental research has its specificity. From the first chapter up to
the present paragraph, the process modelling has been requiring more and more
statistical data. With an excess of statistical data we have a better residual and re-
producibility in the calculation of variances and thus coefficients can be identified
more precisely. Nevertheless, this excess is not absolutely necessary and it is
known that reducing the volume of statistical data saves money. When we use a
CFE in our research, we first assume that each process model regression relation-
ship is a polynome in which the interactions of the factors are considered. For
example, if the relationship of the variables of the model can be limited to the lin-
ear approximation then, to develop the model, it is not necessary to use an experi-
mental investigation made of a complete CFE. We can indeed use only one part of
a CFE for experimental investigation; this part of the CFE is recognized as a frac-
tionary factorial experiment (FFE). Because an FFE must be orthogonal, we start
from the next CFE below; from this start we make sure that the number of experi-
ments in the regression relationship remains greater than the number of
unknown coefficients. We consider that the purpose of a process including three
factors is to obtain a linear approximation between the process variables because
we assume that this process gives a good characterization of an interesting part of
the response surface. Therefore, for this part of the response surface, we can
write:

yth ¼ f ðx1; x2; x3; b0; b1; b2; b3Þ ¼ b0 þ b1x1 þ b2x2 þ b3x3 (5.106)

To solve this problem where we have 3 unknowns, we can chose a type 22 CFE in
which the x1x2 column will be the plan for x3. Table 5.19 gives CFE 22 whereas
Table 5.20 shows the transformation of our problem into an FFE plan. Thus, from
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an initial number of 23 = 8 experiments we will produce only 22 experiments;
more generally we can say that, when we use a type 2k–1 FFE, we halve the initial
minimum required number of experiments.

Table 5.19 The type 22 CFE matrix.

i x0 x1 x2 x1x2 y 1,1 

1,-1-1,-1

-1,1

x1

x2 1 +1 +1 +1 +1 y1

2 +1 +1 –1 –1 y2

3 +1 –1 –1 +1 y3

4 +1 –1 +1 –1 y4

Table 5.20 The FFE plan from a type 22 CFE plan.

i x0 x1 x2 x3 y

1 +1 +1 +1 +1 y1

2 +1 +1 –1 –1 y2

3 +1 –1 –1 +1 y3

4 +1 –1 +1 –1 y4

Using the experimental plan from Table 5.20 it is possible to estimate the con-
stant terms and the three coefficients related to the linear terms from the regres-
sion relationship.

Practically, we cannot a priori postulate the nullity of the effects of the interac-
tion. Indeed, we can accept the fact that some or all of the effects of the interaction
are insignificant according to the linear effects but these are present. Then, from
a practical point of view, when the coefficients corresponding to the effects of in-
teraction are not zero and when we have the coefficients obtained by a 23–1 plan, it
is clear that these last coefficients include the participation of interactions on the
major linear participations into the process response. The estimators of the gen-
eral or theoretical coefficients are: bth

1 ; b
th
2 ; b

th
3 ; b

th
12; b

th
13; b

th
23 and consequently, we

can write:

b1fibth
1 þ bth

23 b2fibth
2 þ bth

13 b3fibth
3 þ bth

12 (5.107)

In order to complete the FFE we can add a new column which contains the multi-
plication x1x3 to Table 5.20. However, we observe that the elements of this multi-
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plication and the elements of the x2 column are the same; so we cannot complete
the FFE. Thus we can also use the fact that, in Table 5.20, we have:

x3 ¼ x1x2 (5.108)

If we multiply the relation above by x3, we obtain x3
2 = x1x2x3 or 1 = x1x2x3, which

is recognized as the contrast of the FFE plan. Now multiplying this contrast by
x1; x2; x3 yields the relations (5.109). These relations explain the relationships
described in Eq. (5.107).

x1 ¼ x2
1x2x3 ¼ x2x3 x2 ¼ x1x3 x3 ¼ x1x2 (5.109)

When we decide to work with an FFE plan and when we have more than three
factors, a new problem appears because we then have more possibilities to build
the plan. For an answer to the question that requires a choice of most favourable
possibility, we use the resolution power of each one of the options. So we generate
the first possibility for an FFE plan by choosing the production (generation) rela-
tion. We can then go on with the contrast relation through which we obtain all the
actual relations that are similar to those given in (5.107).

This procedure will be repeated for all the possibilities of building an FFE plan.
The decision will be made according to the researcher’s interest as well as to the
need to obtain as much information as possible about the investigated process.

We will complete this abstract discussion with the concrete case of a process
with k = 4 factors taking CFE 23 as a basis for an FFE plan. To this end we have:

x4 ¼ x1x2x3 (5.110)

or one out of the next three relations as a production relation:

x4 ¼ x1x2 x4 ¼ x1x3 x4 ¼ x2x3 (5.111)

Table 5.21 gives the FFE matrix that is associated with the production relation
(5.110). According to the procedure described above (showing the development of
relations (5.109)), we produce the formal (5.112) system. It shows the correlation
between the obtainable and theoretical coefficients of the regression relationships.

x1 ¼ x2x3x4fib1 ¼ bth
1 þ bth

234

x2 ¼ x1x3x4fib2 ¼ bth
2 þ bth

134

x3 ¼ x1x2x4fib3 ¼ bth
3 þ bth

124

x4 ¼ x1x2x3fib4 ¼ bth
4 þ bth

123

x1x2 ¼ x3x4fib12 ¼ bth
12 þ bth

34

x1x3 ¼ x2x4fib13 ¼ bth
13 þ bth

24

x1x4 ¼ x2x3fib14 ¼ bth
14 þ bth

23

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(5.112)
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Table 5.21 The FFE matrix from 23 plan and x4 ¼ x1x2x2 as a production relation.

i x0 x1 x2 x3 x4 y

-1 −1 -1

-1-1 1

1  1 -1 

1 -1 1 

-1 1 -1

-1 1  1 

1 -1 -1

1  1  1
1 +1 +1 +1 +1 +1 y1

2 +1 +1 +1 –1 –1 y2

3 +1 –1 +1 –1 +1 y3

4 +1 –1 +1 +1 –1 y4

5 +1 –1 –1 +1 +1 y5

6 +1 +1 –1 +1 –1 y6

7 +1 +1 –1 –1 +1 y7

8 +1 –1 –1 –1 –1 y8

Considering the formal system (5.112), we observe that the triple interaction is
indirectly considered here. It is doubtful that the actual results could confirm this
class of interaction but if we can prove that they are present, then the plan from
Table 5.21 can be suggested. Table 5.22 shows the FFE plan from the case when
the first relation from the assembly (5.111) is the production relation. It is impor-
tant to observe that all the binary interactions are indirectly considered in the for-
mal system of the correlations of the obtainable and theoretical coefficients
(5.113). Therefore, if the interest is to keep all the binary interactions of factors in
the process model relationship, this FFE plan can be used successfully.

Table 5.22 The FFE matrix from a 23 plan and x4 ¼ x1x2 as a production relation.

i x0 x1 x2 x3 x4 y

-1 −1 -1

-1-1 1

1  1 -1 

1 -1 1 

-1 1 -1

-1 1  1 

1 -1 -1

1  1  1 
1 +1 +1 +1 +1 +1 y1

2 +1 +1 +1 –1 +1 y2

3 +1 –1 +1 –1 –1 y3

4 +1 –1 +1 +1 –1 y4

5 +1 –1 –1 +1 +1 y5

6 +1 +1 –1 +1 –1 y6

7 +1 +1 –1 –1 –1 y7

8 +1 –1 –1 –1 +1 y8
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x1 ¼ x2x4fib1 ¼ bth
1 þ bth

24

x2 ¼ x1x4fib2 ¼ bth
2 þ bth

14

x3 ¼ x1x2x3x4fib3 ¼ bth
3 þ bth

1234

x4 ¼ x1x2fib4 ¼ bth
4 þ bth

12

x1x3 ¼ x2x3x4fib13 ¼ bth
13 þ bth

234

x2x3 ¼ x1x3x4fib23 ¼ bth
23 þ bth

134

x3x4 ¼ x1x2x4fib34 ¼ bth
34 þ bth

124

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(5.113)

High-level FFEs such as, for example 1/4 or 1/8 from complete factorial experi-
ments (CFEs) can be used for complex processes, especially if the effect on the
response of some factors is the objective of the research. It is not difficult to decide
that, if we have a problem with the k factors where the p linear effects compensate
the effects of interaction, then the 2k–p FFE can be used without any restriction.

The plan 2k–p FFE keeps the advantages of the CFE 2k plan, then:
. it is an orthogonal plan and consequently simple calculation for

b0; b1; :::: is used;
. all the regression coefficients keep their independence;
. each coefficient is computed as a result of all N experiments;
. the same minimal variance characterizes the determination of all

regression coefficients.

We can then add a new “spherical” property to the properties of CFE 2k and FFE
2k–p. This new property can be used to characterize the quantity of planning infor-
mation. To show the content of this property, by means of the independence of
the regression relationship coefficients and according to the law governing the
addition of variance for a linear regression, we can write:

s2
ŷy ¼ s2

rz ¼ s2
b0
þ x2

1s2
b1
þ x2

2s2
b2
þ :::::::þ x2

ks2
bk

(5.114)

Because s2
bj
¼ s2

rp=N, relation (5.114) becomes:

s2
ŷy ¼ s2

rz ¼
s2

rp

N
ð1þ x2

1 þ x2
2 þ :::::::þ x2

kÞ ¼
s2

rp

N
ð1þ c2Þ c2 ¼

XN

j¼0

x2
j (5.115)

Here, from a geometric viewpoint, c is a sphere radius for the space of k dimen-
sion. When c is significant, the residual variance s2

y is also significant and, conse-
quently, only a small quantity of information characterizes the process model.
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5.5.3
Investigation of the Great Curvature Domain of the Response Surface: Sequential
Experimental Planning

Figure 5.9 shows the response surface that gives the correlation between the de-
pendent variable y (or g) and two independent factors (with values z1 (or t) and z2

(or c) respectively). The problem of this example concerns a chemical reaction
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Figure 5.9 (a) Response surface for k = 2. (b) Sections of the response surface and
of the gradual displacement towards the domain of the great surface curvature.
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where the conversion (g) is a function of the concentration (c) and temperature (t)
of the reactant. For more details, please see the data from Table 5.2. Considering
Fig. 5.9(a), we can easily identify the two different domains: the first domain cor-
responds to the cases when y is linearly dependent on x1 and x2 (or near to a linear
dependence); the second domain corresponds to the height of the curvature sur-
face where the effects of the quadratic factors are significant.

We have the possibility, from a theoretical as well as from a practical point of
view, to plan an experimental research so as to investigate this domain. Figure 5.9
(b) shows how we can gradually carry out these experiments.

We begin the experiments from an a priori starting point and according to the y
variations. First, we keep the x2 value unchanged and increase or decrease x1. If y
begins to decrease (point B from Fig. 5.9 (b)), we stop decreasing x1 and go on
increasing x2 while keeping x1 fixed. Then, we get to point C where we find out
that x2 must be maintained and x1 changed.

It is clear that we can thus determine a way to the extreme point of the response
surface curvature. At the same time, it is not difficult to observe that the ABCDE
way is not a gradient. Despite its triviality, this method can be extended to more
complex dependences (more than two variables) if we make amendments. It is
important to note that each displacement required by this procedure is accom-
plished through an experiment; here the length of displacement is an apparently
random variable since we cannot compute this value because we do not have any
analytical or numerical expression of the response function. The response value is
available at the end of the experiments.

The example shown above, introduces the necessity for a statistical investigation
of the response surface near its great curvature domain. We can establish
the proximity of the great curvature domain of the response surface by means
of more complementary experiments in the centre of the experimental plan
(x1 = 0,x2 = 0,...xk = 0). In these conditions, we can compute y0, which, together
with b0(computed by the expression recommended for a factorial experiment

b0 ¼
PN

i¼1
x0iyi

� �
=N ¼

PN

i¼1
yi

� �
=N), gives relative information about the curvature

of the surface response through relation (5.116).

b0 � y0 fi
Pk

j¼1
bth

jj (5.116)

It is well known that the domains of the great curvature of the response surface
are characterized by non-linear variable relationships. The most frequently used
state of these relationships corresponds to a two-degree polynomial. Thus, to
express the response surface using a two-degree polynomial, we must have an
experimental plan which considers one factor and a minimum of three different
values. A complete factorial 3k experiment requires a great number of experi-
ments (N = 3k; k = 3 N = 27; k = 4 N = 81). It is obvious that the reduction of the
number of experiments is a major need here. We can consequently reduce the
number of experiments if we accept the use of a composition plan (sequential
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plan) [5.25] for the experimental process. The core of a sequential plan is a CFE 2k

plan with k<5 or an FFE plan with k>5. If, by means of CFE or FFE plans, the
regression analysis results in an inadequate regression relationship, we can carry
out new experiments for the plan. To be classified as sequential plans, these sup-
plementary experiments require:

1. The addition of a 2k number of experiments (uniformly dis-
posed on the system axes) to the 2k CFE plan. The coordi-
nates of these points will be ð–a; 0; 0::::0Þ; ð0; –a; 0:::0Þ;
:::ð0; 0; 0:::0; –aÞ where a is the dimensionless distance from
the plan centre to an additional point.

2. An increase in the number of experiments in the centre of
the experimental plan (n0).

For a process with k factors and one response, relation (5.117) can be used to esti-
mate the number of experiments needed by a sequential plan:

N ¼ 2k þ 2kþ n0 for k < 5

N ¼ 2k�1 þ 2kþ n0 for k > 5
(5.117)

The construction of a sequential plan with k = 2 is shown in Fig. 5.10. Points A B
C D are the components of the 22 CFE and points A¢ B¢ C¢ D¢ are the components
added to the basis plan. The notation n0 in the centre of the plan shows that we
must repeat the experiments. The recommended values of a dimensionless a, cor-
responds to the situation when the obtained composition plan keeps almost all
the properties of the CFE plan.

A 

B C 

D 

B
' 

1,1 

1,-1 -1,-1 

0,-α 

-α,0 0,0 

n0 
A

' 

D
' 

C
' 

Figure 5.10 Composition of the plan based on a 22 CFE.
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5.5.4
Second Order Orthogonal Plan

When we select the good value of the dimensionless a, then the corresponding
sequential plan remains orthogonal like its CFE basic plan. At the same time, if
we do not have any special request concerning a sequential plan, the number of
experiments to determine fundamental factors can be drastically reduced to
n0 ¼ 1. With n0 ¼ 1 and k = 2, we obtain the sequential plan shown in Table 5.23.
However, with this general state this plan is not orthogonal because we have

PN

i¼1
x0ix

2
ji „ 0 ;

PN

i¼1
x2

jixli „ 0 (5.118)

Table 5.23 Sequential plan for a 22 CFE.

i x0 x1 x2 x1x2 x2
1 x2

2 y

1 +1 +1 +1 +1 +1 +1 y1

2 +1 +1 –1 –1 +1 +1 y2

3 +1 –1 –1 +1 +1 +1 y3

4 +1 –1 +1 –1 +1 +1 y4

5 +1 +a 0 0 a2 a2 y5

6 +1 –a 0 0 a2 a2 y6

7 +1 0 +a 0 0 0 y7

8 +1 0 –a 0 0 0 y8

9 +1 0 0 0 0 0 y9

In order to comply with the othogonality property, we have to transform the
plan described in Table 5.23. For this purpose, we carry out the quadratic transfor-
mations of the data given in Table 5.23 by:

xj ¢ ¼ x2
j �

PN

i¼1
x2

ji

N
¼ x2

j � x2
j (5.119)

With these transformations, we observe that:

XN

i¼1

x0ixji ¢ ¼
XN

i¼1

x2
ji � Nx2

j ¼ 0 ;
XN

i¼1

xji ¢xli ¢ „ 0 (5.120)

which is a fundamental approach to the orthogonal matrix of the planned experi-
ments. Once the quadratic transformations have been carried out, we have to
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complete the orthogonal matrix. As far as we have a multiple equation system
with a as unique unknown, we need to have a correlation matrix (XTX)–1 where all
the non-diagonal elements are null. Table 5.24 has been obtained subsequent to
the modified Halimov procedure [5.26]. This table gives the a values for the var-
ious factors and for a 2k–1 type basic CFE plan.

Table 5.24 Computed a values for a second order orthogonal plan.

Number of independent factors

2 3 4 5 6

CFE basic plan 22 23 24 25–1 26–1

a 1 1.215 1.414 1.547 1.612

For k = 2, a second order orthogonal matrix plan is the state shown in Table
5.25. Due to the orthogonality of the matrix plan, the regression coefficients will
be computed one after the other as follows:

bj ¼

PN

i¼1
xjiyi

PN

i¼1
x2

ji

(5.121)

The relation (5.104) can be particularized to the general case of the second order
orthogonal plan when we obtain the following relation for coefficients variances:

s2
bj
¼ s2

rp=
PN

i¼1
x2

ji (5.122)

So the regression coefficients have been calculated for an orthogonal composition
matrix and as a consequence, for the quadratic effect, we obtain the next expressions:

ŷy ¼ b0 ¢þ b1x1 þ b2x2 þ :::::þ bkxk þ b12x1x2 þ :::::::þ
bk�1kxk�1xk þ b11ðx2

1 � x2
1Þ þ ::::::::þ bkkðx2

k � x2
kÞ

(5.123)

Therefore, the classic form of the regression relationship derives from calculating
b0 with relation (5.124):

b0 ¼ b0 ¢� b11x2
1 � b22x2

2 � b33x2
3 � ::::::::� bkkx2

k (5.124)

The associated variance b0 is thus taken into account from the addition law as fol-
lows:

s2
b0
¼ s2

b0 ¢
¼ ðx2

1Þs2
b11
þ ðx2

2Þs2
b22
þ ðx2

3Þs2
b33
þ :::::::::þ ðx2

kÞs2
bkk

(5.125)
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The use of the reproducibility variance allows the significance test of the coeffi-
cients of the final regression relationship:

ŷy ¼ b0 þ b1x1 þ b2x2 þ ::þ bkxk þ b12x1x2 þ ::::þ bk�1kxk�1xk þ b11x2
1 þ :::bkkx2

k

(5.126)

Finally, we conclude this analysis with the estimation of the model confidence.
For this purpose, we use a classical procedure which consists in calculating
F ¼ s2

rz=s2
rp, establishing t1 ¼ N� nb ; t2 ¼ N� n0 and calculating the signifi-

cance level (a) and Ft1;t2;a
as well as comparing F and F ¼ s2

rz=s2
rp before making a

decision.
It is important to emphasize that in the case of an orthogonal composition

plan, as shown by relation (5.122), the various regression coefficients are not cal-
culated with similar precisions.

Table 5.25 Orthogonal composition matrix from a CFE 22.

i x0 x1 x2 x1x2 x1
1 ¼ x2

1 � x2
1 x1

2 ¼ x2
2 � x2

2 y

1 +1 +1 +1 +1 +1/3 +1/3 y1

2 +1 +1 –1 –1 +1/3 +1/3 y2

3 +1 –1 –1 +1 +1/3 +1/3 y3

4 +1 –1 +1 –1 +1/3 +1/3 y4

5 +1 +1 0 0 +1/3 –2/3 y5

6 +1 –1 0 0 +1/3 –2/3 y6

7 +1 0 +1 0 –2/3 +1/3 y7

8 +1 0 –1 0 –2/3 +1/3 y8

9 +1 0 0 0 –2/3 –2/3 y9

5.5.4.1 Second Order Orthogonal Plan, Example of the Nitration of an Aromatic
Hydrocarbon
The presentation of this example has two objectives: (i) to solve a problem where
we use a second order orthogonal plan in a concrete case; (ii) to prove the power
of statistical process modelling in the case of the non-continuous nitration of an
aromatic hydrocarbon.

The initial step is the description of the process. Indeed, the nitration of the aro-
matic hydrocarbon occurs in a discontinuous reactor in a perfectly mixed state.
The reaction takes place by contacting an aqueous phase containing nitric and sul-
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furic acids with an organic phase which initially contains the aromatic hydrocar-
bon. The aromatic hydrocarbon transformation degree (y) depends on the follow-
ing factors of the process:
. the temperature of the reaction (t associated to z1, � t �¼ �C);
. the time for reaction lasts (reaction time) (s associated to z2,
� s �¼ min);

. the concentration of the sulfonitric mixture according to the total
reaction mass (csn associated to z3, � csn �¼ % g=g);

. the concentration of the nitric acid in the sulfonitric mixture
(ca associated to z4, � ca �¼ % g=g).

The fundamental level of the factors and their variation intervals have been estab-
lished and are given in Table 5.26. We accept that the factors’ domains cover the
great curvature of the response surface. Consequently, a regression relationship
with interaction effects is a priori acknowledged.

Table 5.26 Fundamental level and intervals of variation of the
factors (example 5.5.4.1)

z1 z2 z3 z4

z0
j 50 40 60 40

Dzj 25 20 20 15

To solve this problem we have to use a second order orthogonal plan based on a
24 CFE plan. According to Table 5.24, we can establish that, for a dimensionless
values of factors, we can use the numerical value a = 1.414. Table 5.27 contains all
the data that are needed for the statistical calculation procedure of the coefficients,
variances, confidence, etc., including the data of the dependent variables of the
process (response data).

The transformation of the dimensional zj into the dimensionless xj has been
made using relations (5.96) and (5.97). For the reproducibility variance, four
complementary experiments are available in the centre of the plan. The
degrees of transformation measured at the centre of the plan are:
y0

1 ¼ 61:8% ; y0
2 ¼ 59:3% ; y0

3 ¼ 58:7% ; y0
4 ¼ 69%.
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Table 5.27 Composition matrix for a 24 CFE (Statistical data for
the example 5.5.4.1).

n0 x0 x1 x2 x3 x4 x1¢ x2¢

1 +1 +1 +1 +1 +1 0.2 0.2

2 +1 –1 –1 +1 +1 0.2 0.2

3 +1 +1 –1 –1 +1 0.2 0.2

4 +1 –1 +1 –1 +1 0.2 0.2

5 +1 +1 –1 +1 –1 0.2 0.2

6 +1 –1 +1 +1 –1 0.2 0.2

7 +1 +1 +1 –1 –1 0.2 0.2

8 +1 –1 –1 –1 –1 0.2 0.2

9 +1 +1 –1 +1 +1 0.2 0.2

10 +1 –1 +1 +1 +1 0.2 0.2

11 +1 +1 +1 –1 +1 0.2 0.2

12 +1 –1 –1 –1 +1 0.2 0.2

13 +1 +1 +1 +1 –1 0.2 0.2

14 +1 –1 – +1 –1 0.2 0.2

15 +1 +1 –1 –1 –1 0.2 0.2

16 +1 –1 +1 –1 –1 0.2 0.2

17 +1 0 0 0 0 –0.8 –0.8

18 +1 1.414 0 0 0 1.2 –0.8

19 +1 –1.4.14 0 0 0 1.2 –0.8

20 +1 0 1.414 0 0 –0.8 1.2

21 +1 0 –1.4.14 0 0 –0.8 1.2

22 +1 0 0 1.414 0 –0.8 –0.8

23 +1 0 0 –1.414 0 –0.8 –0.8

24 +1 0 0 0 1.414 –0.8 –0.8

25 +1 0 0 0 –1.414 –0.8 –0.8
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I X3¢ X4¢ X1X2 X1X3 X1X4 X2X3 X2X4 X3X4 y

1 0.2 0.2 +1 +1 +1 +1 +1 +1 86.9

2 0.2 0.2 +1 –1 –1 –1 –1 +1 40.0

3 0.2 0.2 –1 –1 +1 +1 –1 –1 66.0

4 0.2 0.2 –1 +1 –1 –1 +1 –1 34.4

5 0.2 0.2 –1 +1 –1 –1 +1 –1 76.6

6 0.2 0.2 –1 –1 +1 +1 –1 –1 55.7

7 0.2 0.2 +1 –1 –1 –1 –1 +1 91

8 0.2 0.2 +1 +1 +1 +1 +1 +1 43.6

9 0.2 0.2 –1 +1 +1 –1 –1 +1 74.1

10 0.2 0.2 –1 –1 –1 +1 +1 +1 52.0

11 0.2 0.2 +1 –1 –1 –1 +1 –1 74.5

12 0.2 0.2 +1 +1 +1 +1 –1 –1 29.6

13 0.2 0.2 +1 +1 –1 +1 –1 –1 94.8

14 0.2 0.2 +1 –1 +1 –1 +1 –1 49.6

15 0.2 0.2 –1 –1 –1 +1 +1 +1 68.6

16 0.2 0.2 –1 +1 +1 –1 –1 +1 51.8

17 –0.8 –0.8 0 0 0 0 0 0 61.8

18 –0.8 –0.8 0 0 0 0 0 0 95.4

19 –0.8 –0.8 0 0 0 0 0 0 41.7

20 –0.8 –0.8 0 0 0 0 0 0 79.0

21 –0.8 –0.8 0 0 0 0 0 0 42.4

22 1.2 –0.8 0 0 0 0 0 0 77.6

23 1.2 –0.8 0 0 0 0 0 0 58.0

24 –0.8 1.2 0 0 0 0 0 0 45.6

25 –0.8 1.2 0 0 0 0 0 0 52.3
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The various steps of the statistical calculation are:
1. We begin with calculating the reproducibility:

y0 ¼
P4

i¼1

� �
y0

i =4 ¼ 60:95 and s2
rp ¼

P4

i¼1
ðy0

i � y0Þ2
� �

=3 ¼ 5:95.

2. We use Eq. (5.121) to calculate the regression coefficients
and Eq. (5.122) to determine the variances of the coefficients.
The calculation is explained below and the results given in
Table 5.28.

Table 5.28 Values of the coefficients and their variances
(example 5.5.4.1).

b0¢ b1 b2 b3 b4 b11 b22

bj 61.54 17.37 6.42 4.7 –4.37 4.5 1.3

s2
bj 0.245 0.245 0.245 0.245 0.245 0.746 0.746

sbj 0.545 0.545 0.545 0.545 0.545 0.864 0.864

b33 b44 b12 b13 b14 b23 b24 b34

bj 4.09 –5.34 2.18 0.2 1.2 0.56 0.76 1.9

s2
bj 0.746 0.746 0.372 0.373 0.372 0.372 0.372 0.372

sbj 0.864 0.864 0.61 0.61 0.61 0.61 0.61 0.61

b1 ¼
X25

i¼1

x1iyi

 !
=
X25

i¼1

x2
1i

 !

¼ 86:9� 40þ 66� 34:4þ 76:6� 55:7þ 91� 47:6þ 74:1� 52þ 74:5� 29:6þ 94:8� 49:6þ 68:6� 51:8þ 1:414 � 95:4� 1:141 � 41:7
1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 1þ 2þ 2

¼ 17:37

b11 ¼
X25

i¼1

x1I ¢yi

 !
=ð
X25

i¼1

ðx1i ¢Þ2

¼ 0:2ð86:9þ 40þ 66þ 34:4þ 76:6þ 55:7þ 91:0þ 47:6þ 74:1þ 52þ 74:5þ 29:6þ 91:1þ 49:6þ 68:6þ 51:8

16 � ð0:2Þ2 þ 7 � ð0:8Þ2 þ 2 � ð1:2Þ2

þ 0:8 � 61:8þ 1:2 � 95:4þ 1:2 � 41:7� 0:8 � 79� 0:8 � 42:4� 0:8 � 77:6� 0:8 � 58:0� 0:8 � 45:6� 0:8 � 52:3

16 � ð0:2Þ2 þ 7 � ð0:8Þ2 þ 2 � ð1:2Þ2

¼ 4:5
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b12 ¼
X25

1

ðx1x2Þiyi

 !
=
X25

1

ðx1x2Þ2i

 !

¼ 86:9þ 40� 66� 34:4� 76:6� 55:7þ 91þ 47:6� 74:1� 52þ 74:5þ 29:6þ 94:8þ 49:6� 68:6� 51:8
16

¼ 2:18

s2
b1 ¼ s2

rp=
X25

i¼1

x2
1i

 !
¼ 5:95=20 ¼ 0:245 ;

s2
b11 ¼ s2

rp=
X25

i¼1

x1i ¢

 !2

¼ 5:95=ð16 � 0:22 þ 7 � 0:82 þ 2 � 1:22Þ ¼ 0:746 ;

s2
b12 ¼ s2

rp=
X25

i¼1

x1x2

 !2

i

¼ 5:95 : =16 ¼ 0:372 ::::::

3. We verify the significance of each coefficient of the model
with the Student test. In Table 5.29 the results of the tests
are given. We can then observe that coefficients b22, b14, b23

and b34 are non-significant.

Table 5.29 Results of the Student test for the significance of the
coefficients (example 5.5.4.1).

t0 t1 t2 t3 t4 t11 t22 t33

tj ¼ bj

���
���=sbj 31.9 11.7 8.64 8.04 5.2 1.5 4.73

t3,0.05 3.09 3.09 3.09 3.09 3.09 3.09 3.06 3.09

Conclusion S S S S S S NS S

t44 t12 t13 t14 t23 t24 t34

tj ¼ bj

���
���=sbj 6.22 3.57 3.18 1.97 0.91 1.25 3.8

t3,0.05 3.09 3.09 3.09 3.09 3.09 3.09 3.09

Conclusion S S S NS NS NS S

4. After elimination of the non-significant coefficients, we
write the new model expression and then, we compute the
residual variance:
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ŷy ¼ 61:54þ 17:37x1 þ 6:4x2 þ 4:7x3 � 4:37x4 þ 2:18x1x2 þ 1:9x3x4

¼ 4:5ðx2
1 � 0:8Þ þ 4:9ðx2

2 � 0:8Þ � 5:34ðx2
4 � 0:8Þ

ŷy ¼ 58:9þ 17:37x1 þ 6:4x2 þ 4:7x3 � 4:37x4 þ 2:18x1x2 þ 1:9x3x4 þ 4:5x2
1 þ 4:09x2

3

� 5:31x2
4

s2
rz ¼

X25

i¼1

ðyi � ŷyiÞ2
 !

=ðN� nbÞ ¼
X25

i¼1

ðyi � ŷyiÞ2
 !

=ð25� 10Þ ¼ 396:77=15

¼ 26:4

5. We check whether the obtained model is adequate or not:
– F = s2

rz/s2
rp = 26.4/5.95 = 4.4

– Fm1,m2,a = F15,3,0.05 = 8.6
– Since we have Fm1,m2,a>F, we admit that the established

equation for the degree of transformation of the aromatic
hydrocarbon is satisfactory.

6. Finally, we come back to the dimensional state of the factors.
The result that can be used for the process optimization is:

ŷy ¼ 64:87� 21:68z1 � 4:04z2 � 34:31z3 þ 20:53z4 þ 0:00436z1z2 þ 0:00633z3z4

þ 0:25z2
1 þ 0:2045z2

3 � 0:354z2
4

5.5.5
Second Order Complete Plan

Even though the second order orthogonal plan is not a rotatable plan (for instance
see Eqs. (5.114) and (5.115)), the errors of the experimental responses (from the
response surface) are smaller than those coming from the points computed by
regression. It is possible to carry out a second order rotatable plan using the Box
and Hunter [5.23, 5.27] observation which stipulates that the conditions to trans-
form a sequential plan into a rotatable plan are concentrated in the dimensionless
a value where a ¼ 2k=4 for k<5 and a ¼ 2ðk�1Þ=4 for k>5 respectively. Simulta-
neously, the number of experiments at the centre of the experimental plan (n0)
must be increased in order to make it possible to stop the degeneration of the cor-
relation matrix (XTX)–1. Table 5.30 contains the required values of dimensionless
a and of n0 for a second order rotatable plan.
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Table 5.30 Values of dimensionless a and n0 for a rotatable plan with k factors.

Number of process factors

2 3 4 5 6 6 6 7

CFE basic plan 22 23 24–1 25–1 25–1 26–1 26–1 27–1

a 1.414 1.682 2.00 2.378 2.00 2.828 2.378 3.33

n0 5 6 7 10 6 15 9 21

For k = 2 the values of a rotatable planning matrix of the second order are given
in Table 5.31. This table derives from Table 5.23. It is important to observe that
the complete second order-planning matrix is not orthogonal because we have

PN

i¼1
x0ixji „ 0 and

PN

i¼1
xjixli „ 0 (see relation (5.98) for the orthogonality property).

Table 5.31 Second order complete matrix from a 22 CFE.

i x0 x1 x2 x1x2 x2
1 x2

2 y

1 +1 +1 +1 +1 +1 +1 y1

2 +1 +1 –1 –1 +1 +1 y2

3 +1 –1 –1 +1 +1 +1 y3

4 +1 –1 + –1 +1 +1 y4

5 +1 +1.414 0 0 +2 0 y5

6 +1 –1.414 0 0 +2 0 y6

7 +1 0 +1.414 0 0 +2 y7

8 +1 0 –1.414 0 0 +2 y8

9 +1 0 0 0 0 0 y9

10 +1 0 0 0 0 0 y10

11 +1 0 0 0 0 0 y11

12 +1 0 0 0 0 0 y12
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As a consequence, the bjj coefficients will be linked with other coefficients and
with the b0 constant term. Moreover, to solve the problem of coefficients we must
resolve the normal equation system by computing the inverse (XTX)–1 of the char-
acteristic matrix (XTX). As already noted in Section 5.4, the matrix of the coeffi-
cients and their associated variances are computed as follows:

B ¼ ðXTXÞ�1XY, s2
bj
¼ djjs2

rp (5.127)

For this case of second order complete plan, the specificity of the matrix of the
coefficients results in an assembly of relations directly giving the regression val-
ues of the coefficients. In this example, where the complete second order plan is
based on a 2k CFE, these relations are written as follows:

b0 ¼
A
N

2k2
kðkþ 2Þ

XN

i¼1

x0iyi � 2kkC
XK

j¼1

XN

i¼1

x2
jiyi

" #
(5.128)

bj ¼
C
N

XN

i¼1

xjiyi (5.129)

bjj ¼
A
N

C2½ðkþ 2Þkk � k�
XN

i¼1

x2
jiyi þ C2ð1� kkÞ

Xk

j¼1

XN

i¼1

x2
jiyi � 2kkC

XN

i¼1

x0iyi

" #

(5.130)

blj ¼
C2

Nkk

XN

i¼1

xjixliyi (5.131)

s2
b0
¼ 2Ak2

kðkþ 2Þ
N

s2
rp (5.132)

s2
bjj
¼ A½ðkþ 1Þkk � ðk� 1ÞC2�

N
s2

rp (5.133)

s2
blj
¼ C2

kkN
s2

rp (5.134)

C ¼ Cj ¼
N
PN

i¼1
x2

ji

(5.135)

A ¼ Ak ¼
1

2kk½ðkþ 2Þkk � k� (5.136)

kk ¼
Nk
Ps

i¼1
nic

4
i

ðkþ 2Þ
Ps

i¼1
nic

2
i

� �2 (5.137)
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It should be mentioned that, in the calculation of parameter kk, s represents the
number of spheres circumscribed to the experimental centre plan, ci is recognized
as the radius of each i circumscribed sphere (see relation (5.115)) and ni is the

number of experimental points for the i sphere. It is evident that
Ps

i¼1
ni ¼ N, where

N gives the total number of experiments in the plan. When we use a complete
second order plan, it is not necessary to have parallel trials to calculate the repro-
ducibility variance, because it is estimated through the experiments carried out at
the centre of the experimental plan. The model adequacy also has to be examined
with the next procedure:

1. We begin with calculating the sum of residual squares

S2
rp ¼

Pn0

i¼1
ðy0

i � y0Þ2 with the following degrees of freedom:

m1 ¼ N� nb ¼ N� ðkþ 1Þðkþ 2Þ
2

;

2. We then compute the sum of the reproducibility squares

with the experimental centre plan: S2
rp ¼

Pn0

i¼1
ðy0

i � y0Þ2,

where the degrees of freedom are: m2 ¼ n0 � 1.

3. We define S2
na ¼ S2

rz � S2
rp with mna ¼ m1 � m2 degrees of free-

dom as the sum of non-adequacy squares;
4. Finally, for a selected significance level, the computed

Fischer variable value F ¼ ðS2
na=mnaÞ=ðS2

rp=m2Þ determines
whether the model is adequate or not by comparison with
the theoretical Fischer variable value Fmna ;v2;a

; when F < Fmna;v2;a

we agree to have an adequate model.

According to the testing of the significance of the model coefficients, we use the
Student test where variances s2

bj
(relation (5.127)) are in fact S2

rp=m2. Due to the fact
that the coefficients are linked, if one or more coefficients are eliminated, then a
new determination can be carried out.

5.5.6
Use of Simplex Regular Plan for Experimental Research

The simplex regular plan can be introduced here with the following example: a
scientist wants to experimentally obtain the displacement of a y variable towards
an optimal value for a y = f (x1,x2) dependence. When the analytical expression
y = f (x1,x2) is known, the problem becomes insignificant, and then experiments
are not necessary. Figure 5.11A shows that this displacement follows the way of
the greatest slope. In the actual case, when the function f(x1,x2) is unknown,
before starting the research, three questions require an answer: (i) How do we
select the starting point? (ii) Which experimental and calculation procedure do we
use to select the direction and position of a new point of the displacement?
(iii) When do we stop the displacement?
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Figure 5.11 Representation of the displacement to the great
curvature domain. A, according to the greatest slope method;
B, according to the regular simplex method.

Question (ii) is certainly the most crucial. A possible answer to this question
will be developed in the next section. The research has to begin with a small or
local plan of experiments in order to describe the first movements from the start-
ing point: when the first point of these previously planned experiments has been
completed, the most non-favourable experiment will be rejected and it will be
replaced by another experiment; thus we obtain, the displacement of the local
group of experiments.

For a process with k factors, an abstract presentation of this procedure can be
given as follows:
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. We define a regular simplex plan as an assembly of k+1 equidi-
stant points; for k = 1, the simplex is a segment; for k = 2, it is a
triangle; for k = 3, we are faced with a regular tetrahedron, etc.

. Each simplex has a geometric centre placed at one point.

. When we replace the point rejected out of the group, in order to
maintain a number of k+1 points, the next point will be the mir-
ror image of the rejected point relative to the opposite face of the
simplex.

. After the replacement of the rejected point, the simplex is rebuilt
with a new geometric centre; only the experiments corresponding
to the new point can be carried out to start the procedure (dis-
placement and elimination) over again.

This procedure guarantees that, on the one hand, displacement towards the opti-
mum point through the elimination of the less favourable points and, on the
other hand, displacement through the maximum curvature of the response sur-
face. For the example of a process with two factors, Fig. 5.9 B shows schematically
the described procedure. The starting point of the regular simplex is triangle 123;
point 3 is the less favourable response “y” and, consequently, it must be rejected;
point 4 is the mirror image of point 3 according to the opposite face 12 of the sim-
plex; thus, triangle 421 is the new simplex regular; here point 1 results in the less
favourable y and as described above, we then choose point 5 which is the reflected
image of point 4 (with respect to the opposite face of simplex 421).

If the dimensionless factors of an investigated process are distributed in a plan-
ning matrix (5.138) where xj values are obtained using relation (5.139), then we
can prove that the points of the matrix are organized as a regular simplex. Rela-
tion (5.140) corresponds to the distance from a point to its opposite face.

X ¼

x1 x2 : xJ : xk�1 xk

�x1 x2 : xJ : xk�1 xk

0 �2x2 : : : xk�1 xk

0 0 : xj : xk�1 xk

: : : �jxJ : xk�1 xk

: : : : : �ðk� 1Þxk�1 xk

0 0 0 0 0 ðÞ �kxk

2
666666664

3
777777775

(5.138)

xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2jðjþ 1Þ

s

(5.139)

hj ¼
jþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jðjþ 1Þ
p (5.140)

For k factors, the number of experiments required by the simplex regular matrix
is N = k+1. So, the class of saturated plans contains the simplex regular plan
where the number of experiments and the number of the unknowns’ coefficients
are the same. For the process characterization in this example, we can only use
the relationships of the linear regression. Concerning the simplex regular matrix
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(5.138), we observe that it is an orthogonal matrix because we have

PN

i¼1
xjixli ¼ 0 ; 8 j „ l ; j; l ¼ 1; 2; ::k ;

PN

i¼1
xji ¼ 0. However, in this case, we observe

that the conditions
PN

i¼1
x2

ji ¼ N are missing. Moreover, we can notice that:

XN

i¼1

x2
ji ¼ j

1
2jðjþ 1Þ þ j2

1
2jðjþ 1Þ ¼ 0:5 (5.141)

consequently, the correlation matrix of the regression coefficients can be written
as follows:

ðXTXÞ�1 ¼

1=N 0 : : 0
0 2 : : :
: : 2 : :
: : : 2 0
0 0 : 0 2

2
66664

3
77775

(5.142)

then, the correlation matrix of the coefficients of the regression becomes:

b0 ¼
PN

j¼1
yi

 !
=N ; bj ¼ 2

PN

i¼1
xjiyi (5.143)

In the previous sections we have shown that the variances relative to the bj coeffi-

cients for the orthogonal plans are: s2
bj
¼ s2

rp=
PN

i¼1
x2

ji

� �
, and that, for a simple regu-

lar plan, these variances become s2
bj
¼ s2

rp=0:5 ¼ 2s2
rp. This fact shows that the pre-

cision of a CFE plan is higher than the equivalent regular plan.
For practical use, the simplex regular plan must be drafted and computed

before starting the experiment. For k process factors, this matrix plan contains k
columns and k+1 lines; in the case of k = 6 the matrix (5.151) gives the following
levels of the factors:

X ¼

0:5 0:289 0:204 0:158 0:129 0:109
�0:5 0:289 0:204 0:158 0:129 0:109

0 �0:578 0:204 0:158 0:129 0:109
0 0 �0:612 0:158 0:129 0:109
0 0 0 �0:632 0:129 0:109
0 0 0 0 �0:645 0:109
0 0 0 0 0 �0:654

2

666666664

3

777777775

(5.144)

The next observations will complete the understanding of this method when it is
applied to the experimental scientific investigation of a real process:

1. When the experiments required by the initial simplex regular
plan are completed then we eliminate the point that pro-
duces the most illogical or fool response values; by building
the image of this point according to the opposite face of the
simplex, we obtain the position of the new experimental
point.
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2. The position (coordinates) of the new experimental point can
be determined as follows: (a) the jth coordinates of the new
point xðkþ2Þ

j are computed by relation (5.145), where xðeÞj is
the jth coordinate of the rejected point and xðcÞj is the jth corre-
sponding coordinate of the opposite face of the rejected
point; (b) the jth coordinates of the centre of the opposite face
of the excluded point are given by relation (5.146):

xðkþ2Þ
j ¼ 2xðcÞj � xðeÞj (5.145)

xðcÞj ¼
Pkþ1

i¼1;i„ e
xji

 !
=k (5.146)

3. After each experiment a regression relationship can be
obtained and analyzed using relation (5.143).

4. We can stop the experiments when the displacements of the
factors do not result in a significant change in the process
output.

To conclude this section, it is important to mention that the method of simplex
regular plan is an open method. So, during its evolution, we can produce and add
additional factors. This process can thus result in a transformation from a simplex
regular plan with k columns and k+1 lines to a superior level with k+1 columns
and k+2 lines. The concrete case described in the next section shows how we use
this method and how we introduce a new factor into a previously established plan.

5.5.6.1 SRP Investigation of a Liquid–Solid Extraction in Batch
This example concerns a discontinuous (batch) liquid–solid extraction process.
Here, the quantity of extracted species (y; � y �¼ kgA=kg liq; A = type of
species) depends on the following factors: the ratio of mixing phases (ml=ms-
associated to z1; � ml=ms �¼ kg liq =kg solid), the contact time (s associated to
z2; � s �¼ min); the mixing rate (wa ¼ pnda-associated to z3, � wa �¼ m=s,
n-rotation speed, da – mixer diameter); the mean concentration of one species
carrier, which is placed in the liquid phase (csA-associated to z4,
� csA �¼ kg carrier=kg liq); the diameter of the solid particles (d-associated to z5,
� d �¼ m). The temperature can be another important factor in the process, but
initially we can consider that it is constant. Nevertheless, it will be considered as
an additional factor in a second step of this analysis. The experiments are carried
out with a solid containing 0.08 kg A/kg solid.

The fundamental levels of the factors and the variation intervals are shown in
Table 5.32.
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Table 5.32 Fundamental levels and variation intervals for the
factors of the process.

z1 z2 z3 z4 z5

z0
j 3 50 1.2 0.01 1.5 � 10–3

Dzj 1 20 0.6 0.004 0.5 � 10–3

The objective of the problem is to obtain the values of the factors that corre-
spond to a maximum concentration of the species (A) in the liquid phase.

To solve this problem we use the simplex regular method. For k = 5, the dimen-
sionless matrix of experiments is obtained with relation (5.138). Thus, the matrix
of the dimensionless factors is transformed into dimensional values with relations
(5.96) and (5.97). Table 5.33 corresponds to this matrix, the last column of which
contains the values of the process response. According to this table, the point
placed in position 4 was found to be the least favourable for the process. However,
before rejecting it, we have to build the coordinates of the new point by means of
the image reflection of point number 4 (this point will be calculated to be number
7 from k+1+1). For this purpose, we use relations (5.145) and (5.146).

Table 5.33 Simplex regular plan with natural values of the factors
(example 5.5.6.1).

i z1 z2 z3 z4 z5 � 105 y kgA/kg lq

1 3.5 55.7 1.32 0.0106 1.55 0.029

2 2.5 55.7 1.32 0.0106 1.55 0.042

3 3 39.4 1.32 0.0106 1.55 0.026

4 3 50 0.83 0.0106 1.55 0.023

5 3 50 1.2 0.0075 1.55 0.028

6 3 50 1.2 0.01 1.177 0.031

Now we show the results of these calculations, which began with the computa-
tion of the coordinate of the opposite face of the remaining simplex:

xðcÞ1 ¼
X6

i¼1;i„ 4

x1i

 !
=5 ¼ ð0:5� 0:5þ 0þ 0þ 0Þ=5 ¼ 0
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xðcÞ2 ¼
X6

i¼1;i„ 4

x2i

 !
=5 ¼ ð0:289þ 0:289� 0:528þ 0þ 0Þ=5 ¼ 0

xðcÞ3 ¼
X6

i¼1;i„ 4

x3i

 !
=5 ¼ ð0:204þ 0:204þ 0:204þ 0þ 0Þ=5 ¼ 0:612=5 ¼ 0:122

xðcÞ4 ¼
X6

i¼1;i„ 4

x4i

 !
=5 ¼ ð0:158þ 0:158þ 0:158� 0:632þ 0Þ=5 ¼ �0:158=5

¼ �0:0317

xðcÞ5 ¼
X6

i¼1;i„ 4

x5i

 !
=5 ¼ ð0:129þ 0:129þ 0:129þ 0:129� 0:645Þ=5 ¼ 0:129=5

¼ �0:026

Now, the current dimensionless coordinate of the new point is obtained (see rela-
tion (5.145)) as follows:

xðkþ2Þ
1 ¼ xð7Þ1 ¼ 2xðcÞ1 � xðeÞ1 ¼ 2xðcÞ1 � xð4Þ1 ¼ 2 � 0� 0 ¼ 0

xðkþ2Þ
2 ¼ xð7Þ2 ¼ 2xðcÞ2 � xðeÞ2 ¼ 2xðcÞ2 � xð4Þ2 ¼ 2 � 0� 0 ¼ 0

xðkþ2Þ
3 ¼ xð7Þ3 ¼ 2xðcÞ3 � xðeÞ3 ¼ 2xðcÞ3 � xð4Þ3 ¼ 2 � 0:122� ð�0:612Þ ¼ 0:8:56

xðkþ2Þ
4 ¼ xð7Þ4 ¼ 2xðcÞ4 � xðeÞ4 ¼ 2xðcÞ4 � xð4Þ4 ¼ �2 � 0:037� 0:129 ¼ �0:203

xðkþ2Þ
5 ¼ xð7Þ5 ¼ 2xðcÞ5 � xðeÞ5 ¼ 2xðcÞ5 � xð4Þ5 ¼ �2 � 0:026� 0:109 ¼ �0:164

Moreover, this new point is added to the remaining points and a new simplex
(123567) will then be obtained. It is given in Table 5.34 where the factors are
given in natural values. Relations (5.96) and (5.97) have been used to transform
xðkþ2Þ

1 ::::xðkþ2Þ
5 into natural values.
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Table 5.34 Simplex regular plan with values of natural factors
(second step of example 5.5.6.1).

n0 z1 z2 z3 z4 z5 � 105 y kgA/kg lq

1 3.5 55.7 1.32 0.0106 1.55 0.029

2 2.5 55.7 1.32 0.0106 1.55 0.042

3 3 39.4 1.32 0.0106 1.55 0.026

5 3 50 1.2 0.0075 1.55 0.028

6 3 50 1.2 0.01 1.177 0.031

7 3 50 1.54 0.009 1.41 0.0325

In this table, we can observe that the 7th experiment has been produced and its
corresponding y value has been given. We can notice that, in simplex 123567,
point number 3 is the less favourable point for the process (in this case it is the
point with the lowest yield). It should therefore be eliminated. Now we can pro-
ceed with the introduction of the temperature as a new process factor. In the pre-
vious experiments, the temperature was fixed at z0

6 ¼ 45 �C. Initially, we consider
that z0

6 ¼ 45 �C and we select the variation interval to be Dz6 ¼ 15 �C. In this situ-

ation, if we apply Eq. (5.95), we have x6 ¼
z6 � 45

15
and obviously xð0Þ6 ¼ 0. In order

to develop the 6-dimensions simplex we use relation (5.140) and then we obtain
h6 ¼ ð6þ 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 6 � ð6þ 1Þ

p
¼ 0:764. At this point, we can establish the values

of the factors for the 8th experiment. For the first five factors the values are de-
rived from the coordinates of the geometric centre of the simplex with 5 dimen-
sions. These dimensionless values xð8Þ1 ; xð8Þ2 ; :::xð8Þ5 corroborate the procedure used
for the calculation of the coordinates of a new point but, here, we consider that
the coordinates of the rejected point are zero. The results of these computations
are as follows:

xðcÞ1 ¼
X7

i¼1;i„ 4

x1i

 !
=6 ¼ ð0:5� 0:5þ 0þ 0þ 0þ 0Þ=6 ¼ 0

xðcÞ2 ¼
X7

i¼1;i„ 4

x2i

 !
=5 ¼ ð0:289þ 0:289� 0:528þ 0þ 0þ 0Þ=6 ¼ 0

xðcÞ3 ¼
X7

i¼1;i„ 4

x3i

 !
=6 ¼ ð0:204þ 0:204þ 0:204þ 0þ 0þ 0:856Þ=6 ¼ 1:468=6

¼ 0:245
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xðcÞ4 ¼
X7

i¼1;i„ 4

x4i

 !
=6 ¼ ð0:158þ 0:158þ 0:158� 0:632þ 0� 0:203Þ=6

¼ 0:158=5 ¼ �0:060

xðcÞ5 ¼
X7

i¼1;i„ 4

x5i

 !
=6 ¼ ð0:129þ 0:129þ 0:129þ 0:129� 0:655� 0:164Þ=6

¼ 0:109=5 ¼ �0:048

xðkþ2Þ
1 ¼ xð8Þ1 ¼ 2xðcÞ1 � xðeÞ1 ¼ 2xðcÞ1 � xð4Þ1 ¼ 2 � 0� 0 ¼ 0

xðkþ2Þ
2 ¼ xð8Þ2 ¼ 2xðcÞ2 � xðeÞ2 ¼ 2xðcÞ2 � xð4Þ2 ¼ 2 � 0� 0 ¼ 0

xðkþ2Þ
3 ¼ xð8Þ3 ¼ 2xðcÞ3 � xðeÞ3 ¼ 2xðcÞ3 � xð4Þ3 ¼ 2 � 0:245� 0 ¼ 0:49

xðkþ2Þ
4 ¼ xð8Þ4 ¼ 2xðcÞ4 � xðeÞ4 ¼ 2xðcÞ4 � xð4Þ4 ¼ 2 � ð�0:06Þ � 0 ¼ �0:12

xðkþ2Þ
5 ¼ xð8Þ5 ¼ 2xðcÞ5 � xðeÞ5 ¼ 2xðcÞ5 � xð4Þ5 ¼ �2 � 0:048� 0:109 ¼ �0:096

For zð8Þ6 we obtain zð8Þ6 þ z6xð8Þ6 ¼ zð8Þ6 þ z6ðx
ð0Þ
6 þ h6Þ ¼ 45þ 15ð0þ 0:764Þ ¼

52.2 �C. The 8th experiment together with the 123567 points gives the simplex
1235678, which is written with the values of the dimensional factors given in
Table 5.35.

Table 5.35 Simplex matrix plan after the introduction of a new
factor (example 5.5.6.1).

i z1 z2 z3 z4 z5 � 105 z6 y kgA/kg lq

1 3.5 55.7 1.32 0.0106 1.55 45 0.029

2 2.5 55.7 1.32 0.0106 1.55 45 0.042

3 3 39.4 1.32 0.0106 1.55 45 0.026

5 3 50 1.2 0.0075 1.55 45 0.028

6 3 50 1.2 0.01 1.177 45 0.031

7 3 50 1.54 0.009 1.41 45 0.0325

8 3 50 1.49 0.0095 1.45 52.2 waited !
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After carrying out the concrete experiment required by the 8th simplex point,
the process analysis continues according to the exemplified procedure, which will
stop when y cannot be increased anymore.

5.5.7
On-line Process Analysis by the EVOP Method

On-line investigation methods for statistical analysis are used when the perfor-
mances of a continuous process carried out in a pilot unit or in an apparatus, have
to be improved. The Evolutionary Operation Process (EVOP) method [5.7, 5.27,
5.28, 5.31] is the most famous method for on-line process analysis. The name of
this method comes from its analogy with biological evolution. This analogy is
based on the observation of the natural selection process in which a small varia-
tion in independent life factors is responsible for genetic mutations and thus for
the evolution of species.

The objective of the EVOP method is to obtain changes in the factors of the pro-
cess so as to get a more favourable state of the process outputs by means of on-
line process investigation. This research is made up of small changes and pro-
grammed step-by-step. Due to the small changes in the factors, it is possible to
have situations in which the effects on the output process variables can be difficult
to detect because they are covered by the random effects (see the Fig. 5.1). To com-
pensate for this difficulty in the EVOP method, the process analysis is carried out
from one stage (phase) to another under a condition that imposes more iterative
cycles for each phase. For each cycle, a variable number of experiments with
unchanged values for the factors is important for controlling the propagation of
errors. At each phase, all the experiments produced correspond to an a priori
selected CFE or FFE plan. After completing the experiments required by one
stage, we process their statistical data and make the necessary decision concern-
ing the position and starting conditions for the next phase of the process analysis.

The number of cycles for each stage must be thoroughly selected because then
the interest is to observe the small changes occurring simultaneously with the per-
manent random fluctuations in the process output. The data from a cycle are
transferred to the next cycle to complete the new phase by calculation of the mean
values and variances. It is well known that the errors in the mean value of n inde-
pendent observations are

ffiffiffi
n
p

smaller than the error of an isolated measure. There-
fore, this fact sustains the transfer of data from one cycle to the next one.

Figure 5.12 gives a graphic introduction to the EVOP method for the example
of a process with two factors; it is important to notice that, in a real case, the dis-
placements of the factors have to be smaller than those suggested in Fig. 5.12.
Despite its apparent freedom, the EVOP method imposes some strict rules; some
of them are described below:

1. For each phase, the number of cycles is not imposed by a
rule or by a mathematical relation.

2. At the beginning of the second cycle, the calculation of the
total effects of the analysis is obligatory; the total effects in
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the example given by Fig. 5.12 are calculated by the following
relation:

ETa ¼ 1
5

ya
2 þ ya

3 þ ya
4 þ ya

4 � 4ya
1

� �
(5.147)

Here, each ya
i value is the mean value for all the cycles car-

ried out with respect to the actual phase of the analysis.
3. At the beginning of the second cycle of each phase, each

mean value ya
i will be completed by its confidence intervals.

4. The cycles are stopped when the intervals of confidence for
all ya

i , remain unchanged.
5. The analysis of the chain of the ETa values completed with

the split up of the total effect can help in selecting the next
phase.

2a 3 

1 

4a  5a 

2b

1 

4b 5b 

2  

1  

3c 4c

2d 3d

1d

4d 5d

X1 

X2 

y=0.7

y=0.8 

y=0.9

Phase 

Plan 22

Cycle 

Figure 5.12 EVOP method particularized for a process with two variables.

This research method can be better illustrated by a concrete example. The inves-
tigated process example described in the next section is an organic synthesis,
which takes place in a perfectly mixed reactor.

5.5.7.1 EVOP Analysis of an Organic Synthesis
We consider the case of a discontinuous organic synthesis, which occurs in a liq-
uid medium undergoing intensive agitation; the temperature is controlled by an
external heating device. The process efficiency is characterized by the conversion
defined here as the ratio between the quantity of the useful species obtained and
the theoretical quantity of the same species. This last value is fixed by the thermo-
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dynamics and the reaction conditions. When using the EVOP method, we mean
to observe the effects of the temperature and of the reaction time on the conver-
sion. We can consider that all the other factors of the process, such as the mixing
intensity, the concentrations of the reactants and catalyst, etc. remain constant,
which is required by the technological considerations of the process.

We assume that the standard temperature and reaction time are fixed to 85 �C
and 180 min. but small changes (– 5 �C and 10 min) have been observed to affect
the process efficiency. However, these variations do not affect the process drasti-
cally. Moreover, to begin the analysis we can observe a similitude between this
concrete case and the example shown in Fig. 5.12. Indeed, the working plan is a
CFE 22 which is noted as 1a2a3a4a5a in Fig. 5.12. The superscript a indicates that
we are in the first phase of the EVOP procedure. The dimensionless coordinates
for each point of the CFE22 plan are: 1a(0,0), 2a(–1,1), 3a(1,1), 4a(1,–1), 5a(–1,–1).
We can identify the first coordinate of 1a to 5a point of the CFE 22 plan which is
x1 = (t – 85)/5 and the second point coordinate is x2 = (s – 180)/10. Table 5.36 con-
tains the results for the first four cycles of the first phase of the particular EVOP
method.

Table 5.36 Reaction conversion for four cycles of the first phase
of the EVOP method.

E
C

1a 2a 3a 4a 5a

1 59.6 65.1 65.3 62.0 62.1

2 62.1 61.3 67.6 65.5 65.8

3 63.5 61.7 62.6 67.9 62.8

4 63.7 60.5 67.2 63.2 62.8

If we consider the coordinates of the points of the CFE plan, we observe that
points 3a and 4a are the maximum values of x1, whereas points 3a and 5a have the
maximum values for x2. Consequently, the effects of the factors and of their inter-
actions will be written as follows:

EAa ¼ 1
2
ðy3 þ y4 � y2 � y5Þ (5.148)

EBa ¼ 1
2
ðy3 þ y5 � y2 � y4Þ (5.149)

EABa ¼ 1
2
ðy2 þ y3 � y4 � y5Þ (5.150)
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We frequently use the concepts of mean values and variances in the application of
the EVOP method. Before showing the concrete computations of this actual appli-
cation, we need to recall here the expression for the confidence interval of a mean
value: l ¼ x – tas=

ffiffiffi
n
p

where s is the variance, x is the mean value of the selection,
n gives the selection dimension and ta is the value of the Student random variable
with a significance level equal to a and with m = n –1 degrees of freedom. Table
5.37 shows the EVOP evolution from one cycle to another respect to the data given
in Table 5.36. The computations from Table 5.37 show that:
. The succession of cycles produces an important reduction in the

mean deviation values and, at the same time, the confidence
intervals tend to reach a final stable state.

. The effect of each factor and of its interactions on the process
response (the conversion in our case) begins to be observable
after running a suitable number of cycles.

. At the end of the fourth cycle, an increase in the conversion
caused by the increase in temperature occurs; this observation is
sustained by the positive values of the confidence interval for the
mean effect of the temperature: lA = EAa(+/–)ts/(nc)0.5 = (3.6,7.9).

. The positive total effect recorded after the fourth cycle, cannot
sustain a further increase in the reaction time because the confi-
dence interval for the mean effect of this factor contains a nega-
tive and a positive value: lB = EBa(+/–)ts/(nc)0.5 = (–1.0, 3.0);
moreover we can observe that the interaction of both studied
factors (temperature and reaction time) has a negative effect:
lAB = EABa(+/–)ts/(nc)0.5 = (–4, 0).

. with the situation given by the data from Table 5.37, we have two
possibilities for the evolution of the research: (i) we can start with
a new phase where the temperature will be increased; (ii) or we
can increase the number of cycles in the actual phase so as to
obtain more confidence with respect to the positive effect of the
temperature.

Table 5.37 Calculation sheet for the analysis of an EVOP process
(example 5.5.7.1). o.d – old deviations, n.d – new deviations.

Calculation elements
Cycle = 1, nc = 1

Experiment conversion mean value Mean deviations (m.d)

1a 2a 3a 4a 5a Sum of o.d: Sa = xx

1 Sum of old cycles
S

– – – – – Precedent m.d: sa = xx

2 Mean value of the
previous cycles
M

– – – – – Sum of n.d: Sn = xx
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Calculation elements
Cycle = 1, nc = 1

Experiment conversion mean value Mean deviations (m.d)

3 New results
N

59.6 64.1 65.8 62.0 62.1 Mean value of n.d:
sn = xx

4 Differences (2) – (3)
D

– – – – –
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

D2
i

s
;

s ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

5 New sum (1) + (3)
SN

59.6 64.1 65.3 62.0 62.1

6 New mean value
(SN)/nc

Calculations of the mean effects The confidence intervals

EAa ¼ 1
2
ðy3 þ y4 � y2 � y5Þ = 0.55 lA = EAa(+/–)ts/(nc)

0.5 = (xx, xx)

EBa ¼ 1
2
ðy3 þ y5 � y2 � y4Þ = 0.65 lB = EBa(+/–)ts/(nc)

0.5 = (xx, xx)

EABa ¼ 1
2
ðy2 þ y3 � y4 � y5Þ = 2.65 lAB = EABa(+/–)ts/(nc)

0.5 = (xx, xx)

ETa ¼ 1
5
ðya

2 þ ya
3 þ ya

4 þ ya
4 � 4ya

1Þ = 3.02 t = t5nc�1;a ¼

Calculation elements
Cycle = 2 , nc = 2

Experiment conversion mean value Mean deviations (m.d)

1a 2a 3a 4a 5a Sum of a.d: Sa = xx

1 Sum of the previous cycles
S

59.6 64.1 65.8 62.0 62.1 Precedent m.d: so = xx

2 Mean value of
previous cycles
M

59.6 64.1 65.8 62.0 62.1 Sum of n.d: Sn = 6.72

3 New results
N

62.1 61.3 67.6 65.5 65.8 Mean value of n.d:
sn = 3.36

4 Differences (2) – (3)
D

–2.5 2.8 –2.3 –3.5 –3.7
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
D2

i

s
;

s ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

5 New sum (1)+(3)
SN

121.7 125.4 132.9 127.5 127.9

6 New mean value
(SN)/nc

60.8 62.7 66.4 63.7 63.9
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Calculations of the mean effects The confidence intervals

EAa ¼ 1
2
ðy3 þ y4 � y2 � y5Þ = 1.75 lA = EAa(+/–)ts/(nc)

0.5 = (–2.17, 5.67)

EBa ¼ 1
2
ðy3 þ y5 � y2 � y4Þ = 1.95 lB = EBa(+/–)ts/(nc)

0.5 = (–1.97, 5.89)

EABa ¼ 1
2
ðy2 þ y3 � y4 � y5Þ = 0.75 lAB = EABa(+/–)ts/(nc)

0.5 = (–3.17, 4.67)

ETa ¼ 1
5
ðya

2 þ ya
3 þ ya

4 þ ya
4 � 4ya

1Þ = 2.70 t = t5nc�1;a ¼ t9,0.05 = 3.69

Calculation elements
Cycle = 3 , nc = 3

Experiment conversion mean value Mean deviations (m.d)

1a 2a 3a 4a 5a Sum of o.d: So = 9.31

1 Sum of the previous cycles
S

121.7 125.4 132.9 127.5 127.9 Precedent m.d:
so = 3.36

2 Mean value of
previous cycles
M

60.8 62.7 66.4 63.7 63.9 Sum of n.d: Sn = 6.44

3 New results
N

63.5 61.7 62.6 67.9 62.8 Mean value of n.d:
sn = 3.1

4 Differences (2) – (3)
D

–2.7 1 3.8 –4.2 1.1
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
D2

i

s
;

s ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

5 New sum (1)+(3)
SN

185.2 187.1 195.5 195.4 190.7

6 New mean value
(SN)/nc

61.7 62.4 65.2 65.1 63.6

Calculations of the mean effects The confidence intervals

EAa ¼ 1
2
ðy3 þ y4 � y2 � y5Þ = 2.15 lA = EAa(+/–)ts/(nc)

0.5 = (–0.69, 4.99)

EBa ¼ 1
2
ðy3 þ y5 � y2 � y4Þ = 0.65 lB = EBa(+/–)ts/(nc)

0.5 = (–2.19, 3.49)

EABa ¼ 1
2
ðy2 þ y3 � y4 � y5Þ = –0.55 lAB = EABa(+/–)ts/(nc)

0.5 = (–3.39, 2.29)

ETa ¼ 1
5
ðya

2 þ ya
3 þ ya

4 þ ya
4 � 4ya

1Þ = 1.90 t = t5nc�1;a ¼ t14,0.05 = 3.32
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Calculation elements
Cycle = 4 , nc = 4

Experiment conversion mean value Mean deviations (m.d)

1a 2a 3a 4a 5a Sum of o.d: So = 12.0

1 Sum of the previous cycles
S

185.2 187.1 195.5 195.4 190.7 Precedent m.d: so = 3.1

2 Mean value of
previous cycles
M

61.7 62.4 65.2 65.1 63.6 Sum of n.d: Sn = 3.982

3 New results
N

63.7 60.5 67.2 63.2 62.8 Mean value of n.d:
sn = 2.82

4 Differences (2) – (3)
D

–2.0 1.9 –2.0 1.9 0.8
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
D2

i

s
;

s ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

5 New sum (1) + (3)
SN

248.7 247.6 262.7 258.6 253.5

6 New mean value
(SN)/nc

62.2 61.9 65.2 65.7 63.4

Calculations of the mean effects The confidence intervals

EAa ¼ 1
2
ðy3 þ y4 � y2 � y5Þ = 5.6 lA = EAa(+/–)ts/(nc)

0.5 = (3.6, 7.9)

EBa ¼ 1
2
ðy3 þ y5 � y2 � y4Þ = 1.0 lB = EBa(+/–)ts/(nc)

0.5 = (–1.0, 3.0)

EABa ¼ 1
2
ðy2 þ y3 � y4 � y5Þ = –2 lAB = EABa(+/–)ts/(nc)

0.5 = (–4, 0)

ETa ¼ 1
5
ðya

2 þ ya
3 þ ya

4 þ ya
4 � 4ya

1Þ = 7.4 t = t5nc�1;a ¼ t19,0.05 = 3.17

5.5.7.2 Some Supplementary Observations
The example presented above successfully illustrates how we develop and use the
EVOP method for a discontinuous process. When we have a continuous process,
it is suggested to transform it artificially into a discontinuous process. For this
purpose, we must take into consideration all the factors of the process represent-
ing flow rates according to a fixed period of time. With these transformations we
can control the effect of the random factors that influence the continuous process.
If, for example, we consider the case of a continuous reactor, then, the conversion
can be obtained from the analysis of 5 to 6 samples (each selected at a fixed period
of time), when the corresponding input and output quantities are related to the
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reactor. Additionally, the other reactor factors are not different from those of the
discontinuous process. The case of the continuous reactor can easily be extended
to all separation apparatuses or pilot units working continuously.

In all experimental process investigations, where the final decision is the result
of the hypotheses based on a comparison of the variances, we must know whether
the observed variances are related to the process or to the experimental analysis
procedure. Indeed, it is quite important to determine, when an experimental
research is being carried out, whether we have to use a method or an instrument
of analysis that produces an artificially high variance on the measured parame-
ters.

Before the era of modern computers, the EVOP process investigation was used
successfully to improve the efficiency of many chemical engineering processes.
Now its use is receding due to the competition from process mathematical model-
ling and simulation. However, biochemical and life processes are two large
domains where the use of the EVOP investigation can still bring spectacular
results.

5.6
Analysis of Variances and Interaction of Factors

The objective of the statistical analysis of variances is to separate the effects pro-
duced by the dependent variables in the factors of the process. At the same time,
this separation is associated with a procedure of hypotheses testing what allows to
reject the factors (or groups of factors) which do not significantly influence the
process. The basic mathematical principle of the analysis of variances consists in
obtaining statistical data according to an accepted criterion. This criterion is com-
plemented with the use of specific procedures that show the particular influence
or effects of the grouping criterion on dependent variables.

Besides, after identifying the effects, it is necessary to compare variances of the
process produced by the variation of the factors and the variances of the process
produced by the random factors [5.5, 5.8, 5.29–5.31].

The number of criteria that determines the grouping of the data is strictly de-
pendent on the number of the factors of the process accepted for the investiga-
tion.

These abstract concepts will be illustrated in the next section with the example
of a catalytic chemical reaction in which we consider that different type of catalysts
are available to perform the reaction and where the conversion for a fixed contact
time is the dependent variable of the process. If we consider that all the other fac-
tors of the process stay unchanged, then, we can take into account a single vari-
able factor of the process: the type of catalyst. The basis of the mono factor var-
iance analysis concerns the collected data containing the maximum number of
conversion measurements respect to each type of catalyst. Now, if the temperature
is also considered as an independent variable (factor), for each fixed temperature,
the collected data must show the conversion values for each catalyst. Now, we can
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5.6 Analysis of Variances and Interaction of Factors

arrange the data in order to start the analysis of the variances of two factors.
Obviously, this example can be generalized to the case of k factors (analysis of the
variances with k-factors). If the residual variance increases from one experiment
to the other, the effect of each factor is not summative, then we can claim that, in
this case, we have an effect of the interaction factors.

For a process with more than two factors, we can consider the interactions of
different factors theoretically. However, in real cases only two and a maximum of
three factors interactions are accepted. All the examples selected in what follows
consider the same major problem: how do we reject the non-significant factors
out of the large range of factors of the process.

5.6.1
Analysis of the Variances for a Monofactor Process

The analysis of the variances of a monofactor process can be used for the indirect
testing of both mean values obtained when the process factors take m discrete
values. Table 5.38 introduces the preparation of the data for the analysis of the
variances of a monofactor process. We can note that each value of the factor must
produce m measurements of the process response.

The data arrangement shown in Table 5.38 can hint that the observable differ-
ences from one value to the other, from one column to the other are caused by the
factor changes and by the problems of reproducibility.

Table 5.38 Experimental data arrangement for starting the
analysis of the variances of a monofactor.

Factor value x = a1 x = a2 x = aj ...... x = am

Trial

1 v11 v21 vj1 ...... vm1

2 v12 v22 vj2 ...... vm2

3 v13 v23 vj3 ...... vm3

...... ...... ...... ...... ...... ......

i v1i v2i vji ...... vmi

...... ...... ...... ...... ...... ......

n v1n v2n vjn ...... vmn

Total v1 v2 vj ...... vm
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In the table, the differences between the columns result from the change in the
values of the factors and the differences between the lines give the reproducibility
problems of the experiments. The total variance (s2) associated to the table data,
here given by relation (5.151), must be divided according to its components: the
variances of inter-lines (or reproducibility variances) and variances of inter-col-
umns (or variances caused by the factor).

s2 ¼

Pm

j¼1

Pn

i¼1
ðvji � v¼Þ2

" #

mn� 1
¼

Pm

j¼1

Pn

i¼1
v2

ji � 1
mn

Pm

j¼1

Pn

i¼1
vij

 !2" #

mn� 1
(5.151)

The result of this division is given in Table 5.39 where the starting data to com-
plete the table have been obtained using the sums S1, S2 and S3:
. the sum of all the squares of all observations (S1):

S1 ¼
Pm

j¼1

Pn

i¼1
v2

ji (5.152)

. the sum of the squares of the total of each column divided by the
number of observations (S2):

S2 ¼

Pm

j¼1
v2

j

n
(5.153)

. the sum of the squares of the all added experimental observations
divided by the total number of observations (S3):

S3 ¼

Pm

j¼1

Pn

i¼1
vij

 !2

mn
¼

Pm

j¼1
vj

 !2

mn
(5.154)

Table 5.39 Analysis of the variances for a monofactor.

Variance origin Sums of the
differences

Degrees
of freedom

Variances Computed value
of the Fischer
variable

Theoretical
value of the
Fischer variable

Between the
columns

S2 – S3 m – 1 s2
1 ¼

S2 � S3

m� 1
F ¼ s2

1

s2
2

Fm�1;mðn�1Þ;a

Between the
lines

S1 – S2 m(n – 1) s2
2 ¼

S1 � S2

mðn� 1Þ

Total S1 – S3 mn – 1
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Table 5.39 also contains the indications and calculations required to verify the
zero hypothesis. This hypothesis considers the equality of the variance containing
the effect of the factor on the process response (s2

1) with the variance that shows
the experimental reproducibility (s2

2).
According to the aspects of the statistical hypothesis about the equality of two

variances (see also Section 5.3) we accept the zero hypothesis if the computation
shows that F<Fm�1;mðn�1Þ;a. If we refuse the zero hypothesis, then we accept that
the considered factor of the process has an important influence on the response.

The numerical application described above, concerns the catalytic oxidation of
SO2 where six different catalysts are tested. The main purpose is to select the
most active catalysts out of the six given in this table. All the other parameters
that characterize the reaction have been maintained constant during the experi-
ments and eight measurements have been produced for each type of catalyst.
Table 5.40 presents the SO2 transformation degrees obtained. Before reaching a
conclusion about these results, we have to verify whether the different transforma-
tion degrees obtained with the six catalysts are significant or not.

Table 5.40 SO2 transformation degree for six different catalysts.
Integral reactor l/d = 50, l = 1 m, cSO2 = 8%v/v, co2 = 10%v/v,
N2 inert gas, dp = 0.003 m, wf = 0.1 m/s.

Catalyst m 1 2 3 4 5 6

Trial number n

1 25.1 22.8 25.5 24.5 25.5 24.7

2 27.0 23.8 27.9 25.2 28.7 27.1

3 29.6 27.1 28.8 27.7 26.2 26.0

4 26.6 22.7 26.9 26.9 25.7 26.2

5 25.2 22.8 25.4 27.1 27.2 25.7

6 28.3 27.4 30.0 30.6 27.9 29.2

7 24.7 22.2 29.6 26.4 25.6 28.0

8 25.1 25.1 23.5 26.6 28.5 24.4

Total 211.6 193.9 217.6 215.0 215.3 211.2

Mean value 26.5 24.1 27.2 26.9 26.9 26.4

To begin the analysis, we consider the zero hypothesis (in which the degrees of
transformation reached with the different catalysts are similar) and to verify it,
we make the computations required in Table 5.39. Then we have: S1 = 33 511.11,
S2 = 33 368.53, S3 = 33 322.20, S2 – S3 = 46.33, S1 – S2 = 142.58, S1 – S3 = 188.91,
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m – 1 = 5, m(n – 1) = 42, mn = 47, s2
1 ¼ 46:33=5 ¼ 9:27; s2

2 ¼ 144:58=42 ¼ 3:16,
F = 9.27/3.16 = 2.93.

The theoretical value of the Fischer random variable corresponding to the
confidence level a ¼ 0:05 is 2.44 (it is a solution of the equation

1� a ¼
RFm�1;mðn�1Þ;a

0
fm�1;mðn�1ÞðFÞdF). Now we can observe that F ¼ 2:93 � F5;35;0:05

¼ 2:44 and consequently we can reject the zero hypothesis, which suggests the
equality of the reproducibility variance and of the variance due to the change in
catalyst. In other words, we can claim that each catalyst tested has a different
influence on the SO2 transformation degree.

5.6.2
Analysis of the Variances for Two Factors Processes

When we investigate the effect of two factors on a process response, then the col-
lected data will be as shown in Table 5.41. Here the differences between the ob-
served values along one line present the effect of the change of x1 from a1 to am,
whereas the differences between the observed values along one column are the
result of the change of x2 from b1 to bn. Each value of the table represents an
observation that corresponds to a grouping of factors. Here, we can have one or
more measurements of the process response, but frequently only one measure-
ment is used.

Table 5.41 Arrangement of the experimental data to start the
analysis of two-factor variances.

Values for the first factor x1 = a1 x1 = a2 x1 = aj ...... x1 = am total

Values for the second factor

x2 = b1 v11 v21 vj1 ...... vm1 vl1

x2 = b2 v12 v22 vj2 ...... vm2 vl2

x2 = b3 v13 v23 vj3 ...... vm3 vl3

...... ....... ...... ...... ......

x2 = bi v1i v2i vji ...... vmi vli

....... ....... ...... ...... ......

x2 = bn v1n v2n vjn ...... vmn vlm

Total vc1 vc2 vcj ...... vcm

418



5.6 Analysis of Variances and Interaction of Factors

In this case, conversely to the residual variance, we can propose two zero
hypotheses: the first is H10: “the variance of the response values determined by
the change of factor x1 has the same value as the residual variance”; the second
one is H20: “the variance of the response values (when x2 factor changes) is similar
to the residual variance”. With these hypotheses we indirectly start the validation
of two others assumptions: (i) the equality of the mean values of the lines (related
to H10), (ii) the equality of the mean values of the columns (related to H20�).

The splitting of the total variance into parts associated to Table 5.41 follows a
procedure similar to that for the analysis of the variances of a monofactor process,
as previously explained. In this case, we introduce the sums of the squares S1, S2,
S3, S4, Sr that are defined using Eqs. (5.155)–(5.159). Then, we compute the var-
iances of the data of the lines (s2

1), the variances of the data of the columns(s2
2) and

the residual variance of all data (s2
rz). Then, the sums for the computation of the

analysis of the variances of two factors processes are:
. the sum of all squares for all experimental data:

S1 ¼
Pm

j¼1

Pn

i¼1
v2

ji (5.155)

. the sum of the squares of all the added columns divided by the
number of observations from a column:

S2 ¼

Pm

j¼1
v2

cj

n
(5.156)

. the sum of the squares of all the added lines divided by the num-
ber of observations from a line:

S3 ¼

Pn

i¼1
v2

li

m
(5.157)

. the sum of the squares of all added experimental observations
divided by the number of total observations:

S4 ¼

Pm

j¼1

Pn

i¼1
vij

 !2

mn
¼

Pm

j¼1
vcj

 !2

mn
(5.158)

. the sum of the residual squares:

Sr ¼ S1 þ S4 � S2 � S3 (5.159)

It is not difficult to observe, when we compare this example with the analysis of
variances of a monofactor processes, that sum S3 is the only one to be completely
new. The other sums, such as S1 and S2, remain unchanged or are named differ-
ently (here, S4 is similar to the S3 of the analysis of variances for a monofactor
process). The corresponding number of degrees of freedom is attached to S2, S3

419



5 Statistical Models in Chemical Engineering420

and Srz. They are respectively m – 1 for S2, n – 1 for S3 and (m – 1)(n – 1) for Srz.
These degrees of freedom will be associated to the Fischer random variable while
the proposed hypotheses are being tested. Using the same principle as used for
S2, S3 and Srz, we can establish that mn – 1 corresponds to the number of degrees
of freedom for sum S4. With these observations, we can completely synthesize the
analysis of variances for two factors processes, as shown in Table 5.42. The
hypotheses H10 : r2

1 ¼ r2
rz , s2

1 ¼ s2
rz and H20 : r2

2 ¼ r2
rz , s2

2 ¼ s2
rz will be

accepted when F1 < Fð1Þðm�1Þ;ðn�1Þðm�1Þ;a and F2 < Fð2Þðn�1Þ;ðn�1Þðm�1Þ;a. It is possible
to have situations where we accept one hypothesis and reject the second one. In
this last case, we have to accept that both considered factors play an important
role in the process response.

The analysis of the catalytic oxidation of SO2 developed previously in this chap-
ter, can be completed as follows: (i) the experiments with catalysts number 2 and
number 6 are eliminated; (ii) new experiments are introduced in order to consider
the temperature as a process factor. All the other factors of the catalytic process
keep the values from Table 5.40. In Table 5.43 we present a new set of experimen-
tal results in order to obtain more knowledge of the effect of the type of catalyst
and the temperature on the degree of oxidation. The correspondence between the
different types of catalysts reported in Tables 5.43 and 5.40 are respectively:
1fi1; 2fi3; 3fi4; 4fi5. As has been explained above, the inlet gas composition,
the gas flow rate and the length of the catalytic bed remain unchanged for all
experiments, the last limitation is imposed in order to obtain the smallest errors
in the measurements for the process response [5.32].

Table 5.42 Synthesis of the analysis of the variances of two factors.

Origin of
the variance

Differences
of sums

Number of
degrees of
freedom

Variances Computed
value of the
Fischer
variable

Theoretical value
of the Fischer
variable

Deci-
sion

Between
the columns

S2 – S4 m – 1 s2
1 ¼

S4 � S2

m� 1
F1 ¼ s2

1=s2
r Fð1Þðm�1Þ;ðn�1Þðm�1Þ;a F1<F(1)

accept
H10

Between
the lines

S3 – S4 n – 1 s2
2 ¼

S3 � S4

n� 1
F2 ¼ s2

2=s2
r Fð2Þðn�1Þ;ðn�1Þðm�1Þ;a F2<F(2)

accept
H20

Residual Srz =
S1+S4 – S2 –S3

(m – 1)(n –1) s2
rz ¼

Srz

ðm� 1Þðn� 1Þ H10 : r2
1 ¼ r2

rz , s2
1 ¼ s2

rz

H20 : r2
2 ¼ r2

rz , s2
2 ¼ s2

rz

Total S1 – S4 mn –1
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Table 5.43 Comparison of SO2 oxidation degree with different
catalysts and at various temperatures.

Catalyst type x1 = 1 x2 = 2 x3 = 3 x4 = 4 Total of each line

Temperature of reaction

x2 = 440 �C 25 28 22 24 vl1 = 99

x2 = 450 �C 27 29 23 23 vl2 = 102

x2 = 460 �C 30 32 26 29 vl3 = 117

Total of each column vc1 = 82 vc2 = 89 vc3 = 71 vc4 = 76

With the experimental data from Table 5.43, we intend to show whether both
the type of catalyst and the temperature have an important influence on the oxida-
tion degree of sulfur dioxide. We begin with calculating the sums from Table 5.42.
Then, we have:

S1 = (252+272+....+232+292) = 8538, S2 = (822+892+712+762) = 8487.3, S3 =
(992+1022+1172) = 8473.5, S4 = (25+27+...+23+29)2 = 8427.0, Sr = S1 + S4 – S2 – S3

= 8538 + 8427.0 – 8487.3 – 8473.5 = 4.2, S2 – S4 = 60.3 with m – 1 = 3 degrees
of freedom, S3 – S4 = 46.5 with n – 1 = 2 degrees of freedom, Srz = 4.2 with
(m – 1)(n – 1) = 6 degrees of freedom, s2

1 = 60.3/3 = 20.1, s2
2 = 46.5/2 = 23.3,

s2
rz = 4.2/6 = 0.7, F1 = s2

1/s2
r = 20.1/0.7 = 28.8, F2 = s2

2/s2
r = 23.3/0.7 = 33.3,

Fð1Þm�1;ðm�1Þðn�1Þ;a ¼ Fð1Þ3;6;0:05 ¼ 4:786;Fð2Þn�1;ðm�1Þðn�1Þ;a ¼ Fð1Þ2;6;0:05 ¼ 5:14.
The results of the computations are given in Table 5.44, which is a particulariza-

tion of the general Table 5.42. The last three columns of Table 5.44, give the test-
ing calculations for H10 and H20 showing that these hypotheses are rejected. We
can thus observe that there are important differences between the residual var-
iance and the variance due to the change in the type of catalyst and temperature.
In other words, both factors are important factors in this process. It should be
mentioned that the analysis of variances does not give a quantitative response
detailing the exact type of catalyst or/and the temperature to be used for the best
yield.

When the investigated process shows a small residual variance we can consider
that the variance results from the action of small random factors. At the same
time, this small variance is a good indication of an excellent reproducibility of the
experimental measurements. Conversely, a great residual variance can show that
the measurements are characterized by poor reproducibility. However, this situa-
tion can also result from one or more unexpected or unconsidered factors; this
situation can be encountered when the interactions between the factors (parame-
ters) have been neglected. In these cases, the variance of the interactions repre-
sents an important part of the overall residual variance.
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Table 5.44 Synthesis of the analysis of variances for two factors – Example 5.6.2.

Origin of
the variance

Differences
of sums

Degrees
of freedom

Variances Computed
value of the
Fischer
variable

Theoretical value
of the Fischer
variable

Deci-
sion

Between
the columns

S2 – S4 = 60.3 m – 1 = 3 s2
1 ¼

S4 � S2

m� 1
= 20.1 F1 ¼ s2

1=s2
r

= 28.7
Fð1Þðm�1Þ;ðn�1Þðm�1Þ;a
= 4.76

F1>F(1)

Reject
H10

Between
the lines

S3 – S4 = 46.2 n – 1 = 2 s2
2 ¼

S3 � S4

n� 1
= 23.3 F2 ¼ s2

2=s2
r

= 33.3
Fð2Þðn�1Þ;ðn�1Þðm�1Þ;a
= 5.14

F2>F(2)

Reject
H20

Residual Sr =
S1 + S4 – S2 –
S3 = 4.2

(m – 1)
(n – 1) = 6

s2
rz ¼

Srz

ðm� 1Þðn� 1Þ = 0.7

H10 : r2
1 ¼ r2

rz , s2
1 ¼ s2

rz

H20 : r2
2 ¼ r2

rz , s2
2 ¼ s2

rz

Total S1 – S4 = 110 mn – 1 = 11

5.6.3
Interactions Between the Factors of a Process

To illustrate the interaction of factors in a concrete process, we will consider the
example of a process with two factors which are called A and B. The experimental
investigation of the considered process is made using a CFE 22 plan. Both param-
eters, A and B will present the levels A1 and A2, B1 and B2, respectively, and, con-
sequently, the process response has four values which are a1, a2, b1, b2, (the sub-
scripts 1 and 2 indicate the higher and lower level of the factor). With these four
values, we can develop the analysis of variances for two factors. First, we have to
divide the residual variance into two parts: the first shows that the differences be-
tween the measured values of the responses are due to the experimental problems
of the reproducibility; and the second indicates the action of the interaction of the
factors on the responses of the process. For this separation we need a great num-
ber of measurements for each grouping of factors. So, for point A1B1, where the
values of the dimensionless factors are x1 = –1 and x2 = –1, we obtain more values
of the process response; moreover, we have the same problem for the other follow-
ing points: A1B2 (x1 = –1, x2 = 1), A2B1 (x1 = 1, x2 = –1), A2B2 (x1 = 1, x2 = 1). The
solution to this problem will result in the possibility to compute the variance
caused by the reproducibility. In other words, we will be able to appreciate the
effect of small random factors on the process response.

The data concerning this example are shown in Table 5.45. For the development
of the analysis of variances, we use sums S1, S2, S3, S4 which have already been
introduced with the analysis with two factors. The supplementary sum S5 (Eq.
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(5.160)), which is the total sum of the squares sum of the repeated values for each
experimental point, is also considered here:

S5 ¼

Pn

i¼1

Pm

j¼1

Pp

k¼1
vðkÞij

� �2

mn� 1
(5.160)

Table 5.45 Data for the analysis of variances of two factors with
interaction effects.

Values of factor A x1 = a1 x1 = a2 ...... x1 = aj ...... x1 = am Total

Values of factor B

x2 = b1 vð1Þ11

vðpÞ11

vð1Þ12

vðpÞ12

......

......
vð1Þ1j

vðpÞ1j

......

......
vð1Þ1m

vðpÞ1m

vl1

x2 = b2 vð1Þ21

vðpÞ21

vð1Þ22

vðpÞ22

...... ...... vð1Þ2j

vðpÞ2j

......

......
vð1Þ2m

vðpÞ2m

vl2

...... ...... ...... ...... ...... ...... ...... ......

x2 = bi vð1Þi1

vðpÞi1

vð1Þi2

vðpÞi2

...... ...... vð1Þij

vðpÞij

......

......
vð1Þim

vðpÞim

vli

...... ...... ...... ...... ...... ...... ...... ......

x2 = bn vð1Þn1

vðpÞn1

vð1Þn2

vðpÞn2

...... ...... vð1Þnj

vðpÞnj

...... ...... vð1Þnm

vðpÞnm

vlm

Total vc1 vc2 ...... vcj ...... vcm

Table 5.46 contains a summary to analyze these variances. Here the basic prob-
lem is the testing of the following statistical hypotheses: H10 : r2

1 ” r2
A ¼ r2

rz,
, s2

1 ¼ s2
rz,H20 : r2

2 ” r2
B ¼ r2

rz , s2
2 ¼ s2

rz, H120 : r2
12 ” r2

AB ¼ r2
rz , s2

12 ¼ s2
rz

these hypotheses can be described as follows:
. the variance of the data produced by changes in factor A and the

variance of the residual data are similar, then, all data represent
the same population (H10);

. the variance of the data produced by changes in factor B and the
variance of the residual data are similar, then, factor B is not sig-
nificant for the evolution of the process (H20);

. the variance of the data produced by the interactions between fac-
tors A and B and the residual data variance are similar, then, the
interaction factor has no effect on the process output (H120).
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Table 5.46 Summary of the analysis of variances for two factors with interaction effects.

Origin of
variance

Differences
of sums

Number
of freedom
degrees

Variances Computed
value of the
Fischer
variable

Theoretical value of
the Fischer variable

Deci-
sion

Between
the columns

S2 – S4 m –1 s2
1 ¼

S2 � S4

m� 1
F1 ¼ s2

1=s2
r Fð1Þðm�1Þ;ðn�1Þðm�1Þ;a F1<F(1)

Accept
H10

Between
the lines

S3 – S4 n – 1 s2
2 ¼

S3 � S4

n� 1
F2 ¼ s2

2=s2
r Fð2Þðn�1Þ;ðn�1Þðm�1Þ;a F2<F(2)

Accept
H20

Interaction
AB

S12 =
S5 + S4 – S2

– S3

(m – 1).
(n – 1)

s2
12 ¼

S12

ðm� 1Þðn� 1Þ F12 ¼ s2
12=s2

r Fð12Þ
ðm�1Þðn�1Þ;mpðn�1Þ;a F12<F(12)

Accept
H120

Residual Srz = S1 – S5 mp(n – 1) s2
rz ¼

Srz

mpðn� 1Þ

We can observe in Table 5.43 that the maximum yield is obtained with catalyst
number two (x2 = 2), the response obtained with this catalyst can be analyzed
deeply with respect to other process parameters such as the input reactor gas flow
rate and the temperature. Two different values or levels of these parameters will
be considered whereas other parameters or factors will remain constant (Table
5.40). Table 5.47 gives the experimental data after the arrangement required by
Table 5.45 together with the partial and total mean values of SO2 oxidation degree.

Table 5.47 Data for the analysis of variances for two factors with interaction effects.
Example of SO2 oxidation factors: temperature (T) and flow rate (G).

Flow rate G1 = 0.1m3/(m3cat s) G2 = 0.14m3/(m3cat s) Total Mean

Temperature

T1 = 450 21.2
21.5 63.75
21.05 21.27

22.65
22.55 68.4
23.20 22.8

132.15 22.02

T2 = 470 21.65
21.95 65.90
22.30 21.76

22.3
22.2 67.1
22.7 22.36

133.0 22.15

Total 129.65 135.20 265.15

Mean 21.60 22.58
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The interest here is to verify whether the temperature, the flow rate and their
interactions produce changes in the SO2 oxidation degree. For the case when fac-
tors interact, it is interesting to determine what the favourable direction for factors
variation is.

The problem is firstly investigated by making the necessary calculations to ana-
lyze the effect of the factors and the interactions with the following procedure:
. we identify: m= 2, n= 2, p = 3;
. we compute: S1 = (21.22 + 21.52 +.... + 22.22 + 22.72) = 5862.27, S2

= (129.62 + 135.22)/6 = 5864.12, S3 = (132.152 + 1332)/6 = 5858, S4

= (265.152)/12 = 5858.7, S5 = (63.752 + 65.92 + 68.42 + 67.12)/3 =
5887.61, S2 – S4 = 5.41, S3 – S4 = 0.05, S12 = SAB = S5 + S4 – S3 – S2

= 23.44, S1 – S5 = 3.56, s2
1 = 5.41/(2 – 1) = 5.42, s2

2 = 0.05/(2 – 1)
= 0.05, s2

12 = 23.41/(1*1) = 23.41, s2
rz = 3.56/(2*3*1) = 0.59, F1 =

5.41/0.59 = 9.18, F2 = 0.05/0.59 = 0.08, F12 = 23.41/0.59 = 39.9,
F1,6,0.05 = 5.99.

. we compute all the data for Table 5.48 where we verify hypotheses
H10; H20;H120;

. we identify that the change in flow rate and the interaction tem-
perature–flow rate are important for the sulphur dioxide oxida-
tion degree.

Table 5.48 Numerical example introduced in Table 5.47.

Variances and
degrees of freedom

Hypotheses Computed value of
the Fischer variable

Theoretical value
of the Fischer
variable

Decision

s2
1 = 5.41, m1 = 1 H10 : r2

1 ” r2
A ¼ r2

rz

, s2
1 ¼ s2

rz

F1 = s2
1/ s2

rz = 9.18 F1,6,0.05 = 5.99 Refuse

s2
2 = 0.05, m2 = 1 H20 : r2

2 ” r2
B ¼ r2

rz

, s2
2 ¼ s2

rz

F2 = s2
2/s2

rz = 0.084 F1,6,0.05 = 5.99 Accept

s2
12 = 23.44, m12 = 1

s2
rz = 0.59, m1 = 6

H120 : r2
12 ” r2

AB ¼ r2
rz

, s2
12 ¼ s2

rz

F12 = s2
12/s2

rz = 39.9 F1,6,0.05 = 5.99 Refuse

The analysis of the effects of the interaction contains the calculation of the con-
fidence interval with respect to the increase in SO2 conversion when – for temper-
ature T1 – the flow rate varies between G1 and G2 and when – for flow rate G1 –
the temperature varies between T1 and T2. If di is the mean value of the increase
in the SO2 conversion degree for case i (i ¼ 1fiT1 ¼ constant and the flow rate
changes between and G2), then the confidence interval for this mean value will
be:

Ii ¼ di � tpþp;asrz=
ffiffiffiffiffi
2p
p

; di þ tpþp;asrz=
ffiffiffiffiffi
2p
pD E

(5.161)
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where tpþp;a is the student random variable value with 2p degrees of freedom and
1� a of confidence level.

In our case t2p;a ¼ t6;0:05 ¼ 4:317; srz ¼ ð0:59Þ1=2 ¼ 0:77; the calculation of the
intervals of confidence from Table 5.49 shows that we do not have a complete
argument to suggest the variation of factors. This conclusion is sustained by the
fact that we have negative and positive values for each confidence interval.

Table 5.49 The confidence intervals for the increase of the SO2
oxidation degree.

Flow rate G1 = 0.1 m3/(m3cat s) G1 = 0.1 m3/(m3cat s) di Ii

Temperature mean value mean value

T1 = 450 �C 21.27 22.8 1.53 (–0.57, 3.63)

T2 = 470 �C 27.76 22.35 0.6 (–1.5, 2.7)

5.6.3.1 Interaction Analysis for a CFE 2n Plan
When we use a CFE 22 plan to determine the interaction effects, we introduce
associated variances that can be easily used to produce answers to the aspects con-
cerning the interaction between the factors of the process [5.33, 5.34].

It is known that the analysis of variances shows which factors and interactions
must be kept and which must be rejected. At the same time, the analysis of the
significance for the coefficients of the statistical model of the process gives the
same results: rejection of the non-significant factors and interactions from the
model and consequently from the experimental process analysis. Here, appar-
ently, we have two competitive statistical methods for the same problem. In fact,
the use of the analysis of the variances before starting the regression analysis,
guarantees an excellent basis to select the relationship between the variables of
the process. Otherwise, a previous analysis of the dispersion (variances) drives the
regression analysis to the cases when its development is made with non-saturated
plans. After these necessary explanations, we can start the problem of detecting
the interactions of the factors for a concrete process by showing the terminology
used. For the example of the process with factors A, B and C, this terminology is
given in Table 5.50. Here the values of the dependent variable of the process (pro-
cess responses) are symbolically particularized according to the higher states (lev-
els) of the factors.

426



5.6 Analysis of Variances and Interaction of Factors

Table 5.50 Terminology used for the interaction analysis using a CFE 23 plan.

C levels C1 C2

B levels B1 B2 B1 B2

A levels A1 A2 A1 A2 A1 A2 A1 A2

Response values (1) a b ab c ac bc abc

In order to obtain the effect on the response values of factor A when it varies
from level A1 to A2, we must extract the results obtained with A1 from the results
obtained with A2. According to Table 5.50, we can write the following relations:

EA ¼ ða� ð1ÞÞ þ ðab� bÞ þ ðac� cÞ þ ðabc� bcÞ

EA ¼ abcþ abþ acþ a� bc� b� c� ð1Þ (5.162)

It is easy to observe that we subtract all results from the sum of responses that
contain symbol “a”. By the same procedure, we can write the effect of factors B
and C. It results in:

EB ¼ abcþ abþ bcþ b� ac� a� c� ð1Þ (5.163)

EC ¼ abcþ acþ bcþ c� ab� a� b� ð1Þ (5.164)

The interaction effect AB is obtained by subtracting the effect of A at the level B1

from the effect of factor A at level B2. This is written mathematically as follows:

EAB ¼ ½ðabc� bcÞ þ ðab� bÞ� � ½ðac� cÞ þ ða� ð1ÞÞ�

EAB ¼ abcþ abþ cþ ð1Þ � ac� bc� a� b (5.165)

The remaining interaction effects AC and BC are written using the same defini-
tion. Then, we obtain the following relations:

EAC ¼ abcþ acþ bþ ð1Þ � ab� bc� a� c (5.166)

EBC ¼ abcþ bcþ aþ ð1Þ � ab� ac� b� c (5.167)

If we consider a formal vector E which includes all the effects on the process
response, then we can build relation (5.168) which includes all the relations from
(5.162) to (5.167):
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½E� ¼

EA
EB
EC

EAB
EAC
EBC

EABC

2
666666664

3
777777775

¼

�ð1Þ þ a� bþ ab� cþ ac� bcþ abc
�ð1Þ � aþ bþ ab� c� acþ bcþ abc
�ð1Þ � a� b� abþ cþ acþ bcþ abc
þð1Þ � a� bþ abþ c� ac� bcþ abc
þð1Þ � aþ b� ab� cþ ac� bcþ abc
þð1Þ þ a� b� ab� c� acþ bcþ abc
�ð1Þ þ aþ b� abþ c� ac� bcþ abc

2
666666664

3
777777775

(5.168)

In our example, we can keep the order of the values given in Table 5.50. However,
if we change this order, then the expressions for relations (5.162)–(5.167) must
agree with this change. Relation (5.168) can easily be written using the 23 matrix
plan. Nevertheless, here, we have to consider the first point of the plan with nega-
tive coordinates. Table 5.51 shows the variation inside the factorial cube which is
at the origin of relation (5.168). It is observable that the multiplication of the
response column with columns A, B,..., ABC gives the corresponding partial
effects EA, EB,....,EABC.

Table 5.51 Use of the CFE 23 for the development of relation (5.168).

I A B C AB AC BC ABC yi

-1,-1,1 1,-1,1

-1,1,1

1,-1,-1

-1,1,-1   1,1,-1  

-1,-1,-1

1,1,1

starting from marked point

1 –1 –1 –1 +1 +1 +1 –1 y1 = (1)

2 +1 –1 –1 –1 –1 +1 +1 y2 = a

3 –1 +1 –1 –1 +1 –1 +1 y3 = b

4 +1 +1 1 +1 –1 –1 –1 y4 = ab

5 –1 –1 +1 +1 –1 –1 +1 y5 = c

6 +1 –1 +1 –1 +1 –1 –1 y6 = ac

7 –1 +1 +1 –1 –1 +1 –1 y7 = bc

8 +1 +1 +1 +1 +1 +1 +1 y8 = abc

As has been developed above, the analysis of variances imposes the calculation
of the variances due to the changes and interactions between the factors. In addi-
tion, we also have to verify the next seven hypotheses where r2

rz ¼ s2
rz is assumed

to be r2
ABC ¼ s2

ABC:

HA : r2
A ¼ r2

rz , s2
A ¼ s2

rz;HB : r2
B ¼ r2

rz , s2
B ¼ s2

rz;HC : r2
C ¼ r2

rz , s2
C ¼ s2

rz

HAB : r2
AB ¼ r2

rz , s2
AB ¼ s2

rz;HAC : r2
AC ¼ r2

rz , s2
AC ¼ s2

rz;HBC : r2
BC ¼ r2

rz

, s2
BC ¼ s2

rz
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The acceptance of a hypothesis from those mentioned above corresponds to
accepting the fact that the factor or interaction linked to the hypothesis is not
important in the investigated process. In this example, the sums of the squares
used for the production of the analysis of variances, is made with a CFE 23 plan
(Table 5.52), they are expressed using the partial effects as follows: SA = (EA)2/8,
SB = (EB)2/8, SC = (EC)2/8, SAB = (EAB)2/8, SAC = (EAC)2/8, SBC = (EBC)2/8, SABC

= (EABC)2/8.

Table 5.52 Synthesis of the analysis of variances for a CFE 23 plan.

Origin of
the variance

Sums of
the squares

Degrees
of freedom

Variances Computed
value of the
Fischer
variable

Theoretical
value of the
Fischer
variable

Decision

Change of
factor A

SA 1 s2
A = SA/1 FA = s2

A/ s2
rz F1,1,a FA<F1,1,a

Accept HA

Change of
factor B

SB 1 s2
B = SB/1 FB = s2

B/ s2
rz F1,1,a FB<F1,1,a

Accept HB

Change of
factor C

Sc 1 s2
c = Sc/1 FC = s2

B/ s2
rz F1,1,a FC<F1,1,a

Accept Hc

Interaction
A B

SAB 1 s2
AB = SAB/1 FAB = s2

AB/ s2
rz F1,1,a FAB<F1,1,a

Accept HAB

Interaction
A C

SAC 1 s2
AC = SAC/1 FAC = s2

AC/ s2
rz F1,1,a FAC<F1,1,a

Accept HAC

Interaction
B C

SBC 1 s2
BC = BC/1 FBC = s2

BC/ s2
rz F1,1,a FBC<F1,1,a

Accept HBC

Interaction
A BC
(residual)

SABC 1 s2
ABC = SABC/1 s2

ABC = SABC/1 = s2
rz

Total ST = S1 – S2 7 xxxx xxxx

The analysis of variances using a CFE 2n plan in which, for each experimental
point, we produce only one measurement, frequently presents an important resid-
ual variance. This result is a consequence of the fact that each point is the result
of a particular combination of interaction effects. If, for each experimental point
of the plan, we produce more experiments, then we have the normal possibility to
compute a real residual variance (5.169). In this situation, the sum is successfully
used as shown in Table 5.52 for the residual variance computation.
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Srz ¼

P2n

i¼1

Pr�1

k¼1
d2

ik

r
(5.169)

In relation (5.169), dik represents the difference between two values from the total
values produced at point “i” (k = 1,r).

In the following example the application of this computation procedure is devel-
oped. The analysis of variances is carried out for the air oxidation of an aromatic
hydrocarbon. In this process, where air is bubbled in the reaction vessel, we
obtain two products: a desired compound and a secondary undesired compound.
Here, it is important to know how the transformation degree of the hydrocarbon
evolves towards the by-product when different process parameters (factors) are
varied as follows:
. the catalyst concentration (A) varies from A1 = 0.1% g/g to

A2 = 0.4% g/g
. the bubbling time (B) for air flow (0.01 m3/m3

liquid s) varies from
B1 = 60 min to B2 = 70 min

. the reaction temperature(C) varies from C1 = 50 �C to C2 = 60 �C

Table 5.53 gives the experimental results of the hydrocarbon conversion in a by-
product. With the data below, we can characterize the particular effect of each
parameter on the process output (hydrocarbon oxidation degree in an undesired
compound) and the conclusion expected here is to suggest a proposal for the
enhancement of the efficiency of the process.

Table 5.53 Analysis of the variances made for a 22 plan for an
aromatic hydrocarbon oxidation in an undesired by-product.

C1 = 50 �C C2 = 60 �C

B1 = 60 min B2 = 70 min B1 = 60 min B2 = 70 min

A1 = 0.1% A2 = 0.4% A1 = 0.1% A2 = 0.4% A1 = 0.1% A2 = 0.4% A1 = 0.1% A2 = 0.4%

12.6 13.5 13.4 14.9 13.2 17.7 15.9 19.2

13.1 12.0 12.4 13.4 15.7 18.2 16.4 18.7

S 25.7 S 25.5 S 25.8 S 28.3 S 28.9 S 35.9 S 32.3 S 37.9

(1) a b ab c ac bc abc

The necessary computations for this example are organized as follows:
1. We compute the values of the particular effects with relations

(5.168). The results are: EA = 14.9, EB = 8.3, EAB = 1.3,
EC = 29.7, EAC = 10.3, EBC = 2.5, EABC = –4.5;
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2. The associated sums of squares have the values:
SA = 14.92/(2*8) = 3.937, SB = 8.32/(2*8) = 4.305,
SC = 29.72/(2*8) = 55.13, SAB = 1.32/(2*8) = 0.105,
SAC = 10.32/(2*8) = 6.630, SBC = 2.52/(2*8) = 0.39,
SABC = 4.52/(2*8) = 1.050, S1 = (13.52 + 12.02 +.... + 19.22 +
18.72) = 3696.82, S2 = ((13.5 + 12.0 +...+ 19.2 + 18.7)2)/16 =
3609, ST = S1 – S2 = 87.82;

3. The sum of the residual squares has been computed accord-
ing to relation (5.169): Srz = (0.52 + 1.52 + 12 + 0.52 + 2.52 +
0.52 + 0.52 + 0.52)/2 = 6.35.

4. All the values of the sums SA, SB,....SABC are one (1) for the
associated number of degrees of freedom. So variances sA,
sB,...sABC have the same values as the corresponding sums;
the sum of residual squares associates value m ¼ 8 to the
number of the degrees of freedom. This fact gives value
s2

rz = Sr/8 = 0.797 for the residual variances.
5. The computed values for the associated Fischer variable (see

also Table 5.52) for the variances of the factors and their in-
teractions present the next values: FA = 17.4, FB = 5.4, FA =
17.4, FC = 69.2, FAB = 0.13, FAC = 8.3, FBC = 0.49, FABC = 1.3.

6. The theoretical value of the Fischer random variable asso-
ciated to this actual case is F1,8,0.05 = 5.32; By comparing this
value with the computed values of the Fischer variable given
here, we can decide that factors A, B, C as well as interaction
AC determine the hydrocarbon oxidation degree in the unde-
sired product.

7. Because we observe that factor B has an independent influence
on the output of the process and considering the data from
Table 5.54, we can assert that, in order to obtain small values of
the conversion to by-product, it is not recommended to increase
the value of B. We can compute the change in the degree of
hydrocarbon oxidation in the undesired product when factors A
and C increase. Indeed, this computation can result in a recom-
mendation concerning the increase in A and C. The next mean
values of the output variable are thus obtained in the points
where we have only A and C, namely: A1C1, A1C2, A2C1, A2C2:
mA1C1 = (12.6 + 13.1 + 13.4 + 12.4)/4 = 12.875, mA1C2 = 15.30,
mA2C1 = 13.45, mA2C2 = 18.45. The changes in the oxidation
degree associated to these mean values are: d1 = mA2C1 – mA1C1

= 0.575 and d2 = mA2C2 – mA2C1 = 3.15. Then, the mean value of
the oxidation degree change is d ¼ ðd1 þ d2Þ=2 ¼ 1:86. This
value is included within confidence interval I ¼ ð0:4; 3:32Þ
according to relation (5.161). Then, if we increase A or C or
A and C, we will increase the conversion of the aromatic
hydrocarbon in the undesired by-product.
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5.6.3.2 Interaction Analysis Using a High Level Factorial Plan
Sometimes we may encounter situations requiring the analysis of the effects of
the factors on the output variables of a process by working with more than two
levels for one or more factors. The analysis of variances for this type of process is
associated with a difficult methodology of data processing and interpretation.
However, the method can be simplified if, at the starting point, we split the pri-
mary experimental data table into different tables in which each factor presents
only two levels. We then analyze each table according to the methods presented in
the previous paragraphs. The splitting up procedure is explained with a concrete
example.

A small perfectly mixed discontinuous reactor is used at laboratory scale to con-
duct the Friedel–Crafts reaction Ar–H + RCl �!AlCl3 Ar–R + HCl. Three factors and
two or more levels of each parameter have been used in an experimental plan in
order to separate and compare their influence on the aromatic hydrocarbon con-
version. The following factors and levels have been used:
. reaction time (A) which has two levels: A1 = 10 h, A2 = 7 h;
. the particular time when the catalyst is introduced into the reac-

tor or “timing” (B) with three levels: B1 = 2 h, B2 = 3 h, B3 = 4 h;
. the mixing intensity (C) given here by the rotation speed of the

mixer driver, which has been modified according to the following
rotation levels: C1 = 10 rot/min, C2 = 15 rot/min, C3 = 20 rot/min,
C4 = 25 rot/min.

The measurements of the hydrocarbon transformation are given in Table 5.54.
Before using these measurements, we need to obtain data showing the interac-
tions and the combination of factors producing the best process efficiency. Before
beginning the analysis, we will divide the initial data into different fractional
tables, each one with two factors. The data translation is very simply done by sub-
tracting a constant number (such as 60 for example) from each value of the table.
Then, the new table of data (Table 5.55) will be split up using the following algo-
rithm:

1. The first variable factor (factor C) is taken from Table 5.54
by summing its values (all different levels) into only one
which will give the new value of the process for the two other
factors.

2. The obtained table will be noted with the interaction name
of the non-rejected factors; so if C is rejected, the name of
the partial table will be AB;

3. We repeat steps 1 and 2 for factor B, then we obtain the
partial table AC. For factor A, table BC is produced.

432



5.6 Analysis of Variances and Interaction of Factors

Table 5.54 Friedel–Crafts reaction efficiency in an experimental
plan with 3 factors and 4 levels.

A1 A2

B1 B2 B3 B1 B2 B3

C1 74.3 68.7 65.1 67.7 68.2 70.5

C2 73.6 65.9 65.7 66.5 69.3 71.0

C3 72.3 65.5 66.9 65.6 69.8 71.3

C4 70.4 65.3 67.8 65.3 71.0 71.1

Table 5.55 Translation of data from Table 5.54.

A1 A2

B1 B2 B3 B1 B2 B3

C1 14.2 8.7 5.1 7.7 8.2 12.5

C2 13.6 5.9 5.7 6.5 9.3 11.0

C3 12.3 5.5 6.9 5.6 9.8 11.3

C4 10.4 5.3 7.8 5.3 11.0 11.1

The computation for the division of Table 5.55 is:
. Elimination of factor C: partial table AB. For each point of the

partial table AB (2*3 points), we compute the value of the
response. Then, we have:
A1B1 = 14.3 + 13.6 + 12.3 + 10.4 = 50.6, A1B2 = 8.7 + 5.9 + 5.5 +
5.3 = 25.4, A1B3 = 5.1 + 5.7 + 6.9 + 7.8 = 25.5, etc.;

. Elimination of factor B: partial table AC. In this case, with the
same procedure used for partial table AB, we obtain:
A1C1 = 14.3 + 8.7 + 5.1 = 20.1, A2C1 = 7.7 + 8.2 + 10.5 = 26.4,
A1C2 = 13.6 + 5.9 + 5.7 = 25.2, etc.

. Elimination of factor A: partial table BC: as explained above,
B1C1 = 14.3 + 7.7 = 22.0, B1C2 = 13.6 + 6.5 = 20.1, B1C3 =
12.3 + 5.6 = 17.9, etc.

The results of these calculation are summarized in Table 5.56, which is composed
of three different partial tables: AB, AC, BC. This new set of data will be used for
the final analysis of variances. For each partial table, the analysis of the variances
of two factors will be carried out. Additionally, the values of the sums of the
squares needed by the procedure of analyzing the variances (see Table 5.42) will
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be computed. As far as each value in the partial tables is the result of an addition
of many original data, all the sums of the squares for each of these tables, will be
divided by the number of data used to produce the values. For example, partial
table AB results from the elimination of factor C, because the C factor has four
levels then all the sums of the squares associated to this table will be divided by
four (number of factor levels). The addition that characterizes the interaction is
obtained by the difference between the sum of the total squares and the sum of
the squares containing the main effects.

Table 5.56 Division of Table 5.55 into three tables.

Two factors, table AB

B1 B2 B3 total

A1 50.6 25.4 25.5 101.5

A2 25.1 38.3 43.9 107.3

total 75.7 63.7 69.4 208.8

Two factors, table AC

C1 C2 C3 C4 total

A1 28.1 25.2 24.7 23.5 101.5

A2 26.4 26.8 26.7 27.4 107.3

total 54.5 52.0 51.4 50.9 207.8

Two factors, table BC

C1 C2 C3 C4 total

B1 22.0 20.1 17.9 15.7 75.7

B2 16.9 15.2 15.3 16.3 63.7

B3 15.6 16.7 18.2 18.9 69.4

total 54.5 52.0 51.4 50.9 206.8

Now we can compute sums S1, S2, S3, S4 (see Table 5.42), which specifically con-
cern partial table AB from Table 5.56. So we have: S1(AB) = (50.62 + 25.42 +....+
43.92)/(4*1) = 1971.6, S2(AB) = (101.52 + 107.32)/(4*3) = 1817.96, S3(AB) = (75.72 +
63.72 + 69.72)/(4*2) = 1826.07, S4(AB) = (50.6 + 25.4 +......+ 43.9)/(4*6) = 1816.47.
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Then we can calculate the following sums (see Table 5.42): SA = S2(AB) –S4(AB) =
1.49, SB = S3(AB) – S4(AB) = 9.58, ST(AB) = S1(AB) – S4(AB) = 155.20 and so SAB = ST(AB)

– (SA + SB) = 144.13.
By a similar procedure, we obtain the sums of squares S1, S2, S3, S4 when factor

B (three levels) has been eliminated. These are: S1(AC) = (28.12 + 26.42 +....+ 23.32 +
27.42)/(3*1) = 1821.94, S2(AC) = S2(AB) = (101.52 + 107.32)/(4*3) = 1817.96, S3(AC) =
(54.52 + 52.02 + 51.42 + 50.92)/(3*2) = 1817.83, S4(AC) = S4(AB) = (50.6 + 25.4 +..+
43.9)/(4*6) = 1816.47, SC = S2(AC) – S4(AC) = 1.36, ST(AC) = S1(AC) – S4(AC) = 5.47. For
the sum of squares that characterizes interaction AC, we have: SAC = ST(Ac) – (SA +
SC) = 2.62. For the third partial table, the computations of these sums give: S1(BC)

= (22.02 + 16.92 +....+ 16.32 + 18.92)/(2*1) = 1841.82, S2(BC) = (75.72 + 63.72 +
69.42)/(4*2) = 1826.07, S3(BC) = S3(AC) = (54.52 + 52.02 + 51.42 + 50.92)/(3*2) =
1817.83, S4(BC) = S4(AC) = S4(AB) = 1816.47. Whereas, for the sum of the squares
that characterizes the BC interaction, we have: SBC = ST(BC) – (SB + SC) = 14.41.

For this application, the residual sum of squares is obtained by eliminating the
sums of squares for A, B, C, AB, AC, BC from the total sum of the squares
ST = S1–S4 where S1 and S4 are computed with the data from the original table
(Table 5.55). Therefore, we obtain S1 = 14.32 + 8.72 +...11.32 + 11.12 = 2000.6,
S4 = (14.3 +8.7 +..+ 11.2 + 11.1)2/24 = 1816.47,ST = 184.13. Consequently, the
residual sum of squares and their associated degrees of freedom will be: Srz = ST –
(SA+ SB + SC + SAB + SAC + SBC) = 10.90, m = (2 – 1)(3 – 1)(4 – 1) = 6.

Now we have all the necessary sums for the development of the analysis of var-
iances. However, we first have to verify the following hypotheses:
. there is no significant difference between the variance due to the

action of factor A and the residual variance

HA : r2
A ¼ r2

rz , s2
A ¼ s2

rz

. there is no significant difference between the variance due to the
action of factor B and the residual variance

HB : r2
B ¼ r2

rz , s2
B ¼ s2

rz

. there is no significant difference between the variance due to the
action of factor C and the residual variance

HC : r2
C ¼ r2

rz , s2
C ¼ s2

rz

. the interaction between factors A and B cannot lead to a new
different statistical population

HAB : r2
AB ¼ r2

rz , s2
AB ¼ s2

rz
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. the interaction between factors A and C cannot lead to a new
different statistical population

HAC : r2
AC ¼ r2

rz , s2
AC ¼ s2

rz

. the interaction of the factors B and C cannot lead to a new
different statistical population

HBC : r2
BC ¼ r2

rz , s2
BC ¼ s2

rz

Table 5.57 contains the synthesis of the analysis of variances for the problem of
the Friedel–Crafts reaction. It is easy to observe that hypotheses HA, HB, HC, HAC

and HBC have been accepted. So, with respect to the specified state of the factors,
the efficiency of the Friedel–Crafts reaction depends only on interaction AB (reac-
tion time and timing (B)).

Table 5.57 Analysis of variances, example 5.6.3 (dependence of
Friedel–Crafts reaction efficiency on temperature, reaction time
and particular time of introduction of the catalyst).

Origin of
variance

Sums for
variance

Degrees
of freedom

Variances Computed
value of the
Fischer
variable

Theoretical
value of the
Fischer
variable

Decision

Change of
factor A

SA = 1.49 1 s2
A = SA/1

= 1.49
FA = s2

A/s2
rz

= 1.49
F1,6,a = 5.99 FA<F1,6,a

Accept HA

Change of
factor B

SB = 9.58 2 s2
B = SB/2

= 4.49
FB = s2

B/s2
rz

= 2.63
F2,6,a = 5.14 FB<F2,6,a

Accept HB

Change of
factor C

Sc = 1.36 3 s2
c = Sc/3

= 0.45
Fc = s2

B/s2
rz

= 0.25
F3,6,a = 4.76 FC<F3,6,a

Accep Hc

Interaction
A B

SAB = 144.13 2 s2
AB = SAB/2

= 72.06
FAB = s2

AB/s2
rz

= 39.56
F2,6,a = 4.76 FAB>F2,6,a

Refuse HAB

Interaction
A C

SAC = 2.62 3 s2
AC = SAC/3

= 0.87
FAC = s2

AC/s2
rz

= 0.48
F3,6,a = 4.76 FAC<F3,6,a

Accept HAC

Interaction
B C

SBC = 14.41 6 s2
BC = SBC/6

= 2.41
FBC = s2

BC/s2
rz

= 1.32
F6,6,a = 4.28 FBC<F6,6,a

Accept HBC

Residual Sr = 10.90 6 s2
rz = Srz/6

= 1.82

The interval of confidence of the variation of the reaction efficiency can be calcu-
lated using Table 5.56. Then, considering the AB interaction, we can compute the
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mean efficiency of the reaction for positions A1B1, A1B2, A1B3; we consequently
have mA1B1

¼ 50:5=4 ¼ 12:65; mA1B2
¼ 25:4=4 ¼ 6:35; mA1B3

25:5=4 ¼ 6:36 and
therefore the variations associated to the efficiency of the reaction are:
d12 ¼ mA1B1

�mA1B2
¼ 6:3; d13 ¼ mA1B1

�mA1B3
¼ 6:29. The mean value of the

variation of the reaction efficiency will be dB ¼ ðd12 þ d13Þ=2 ¼ 6:295 and we
compute the confidence interval for this mean value. The calculation of the theo-
retical value of the Student variable for a ¼ 0:05 and t ¼ 6(this is the number of

degrees of freedom associated to the residual variance) is 1� a ¼
Rt

o
fWðsÞds and

t ¼ t6;0:05 ¼ 2:47 and therefore now, using relation (5.161), we can compute the
confidence interval for this variation of reaction efficiency. The result is IB =
(6.295 – 2.47*(1.82)0.5/(2*3), 6.295 + 2.47*(1.82)0.5/(2*3)) = (4.95, 7.65). In other
words, we can say that, for reaction time A1 = 10 h, if we change the timing of
introduction of the catalyst from B1 = 2 h to B2 = 4 h, then we obtain a variation of
the reaction efficiency between 4.95 and 7.65%. The case when factor A has level
A2 and factor B changes between B1 and B3 can be approached by the same proce-
dure. The final conclusion of this analysis shows that the level A1 for factor A, the
level B1 for factor B and any level for factor C are enough to ensure the conditions
for the most favourable reaction efficiency.

5.6.3.3 Analysis of the Effects of Systematic Influences
The external systematic influence is common in experimental research when the
quality of the raw materials and of the chemicals undergo minor changes and/or
when the first data were obtained in one experimental unit and the remaining
measurements were carried out in a similar but not identical apparatus.

In these situations, we cannot start the analysis of data without separating the
effect of the external systematic influence from the unprocessed new data. In
other words, we must separate the variations due to the actions of some factors
with systematic influences from the original data. For this purpose, the methods
of Latin squares and of effects of unification of factors have been developed in the
plan of experiments.

In the method of Latin squares, the experimental plan, given by the matrix of
experiments, is a square table in which the first line contains the different levels
of the first factor of the process whereas the levels for the second factor are given
in the first column. The rest of the table contains capital letters from the Latin
alphabet, which represent the order in which the experiments are carried out
(example: for pressure level P1, four experiments for the temperature levels T1, T2,
T3, T4 occur in the following sequence: A, B, C, A where A has been established as
the first experiment, B as the second experiment, etc). The suffixes of these Latin
capital letters introduce the different levels of the factors. Table 5.58 presents the
schema of a plan of Latin squares. We can complete the description of this plan
showing that the values of the process response can be written in each letter box
once the experiment has been carried out. Indeed, we utilize three indexes for the
theoretical utterance of a numerical value of the process response (v). For exam-
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ple, for vðAÞij , the i index shows that the level of the P factor is Pi, the j index gives
level Tj for factor T and the final superscript A shows that the progression of the
experiments must be A. Considering Table 5.58, it is important to observe that the
experiments complete each box placed in an intersection between a line and a col-
umn with only a single value.

Table 5.58 Data for the Latin squares method for a process with three factors.

First factor T
(temperature)

T1 T3 T3 T4

Second factor P
(pressure)

P1 A B C D

P2 B C D A

P3 C D A B

P4 D A B C

The correct use of the Latin squares method imposes a completely random
order of execution of the experiments. As far as the experiment required in the
box table is randomly chosen and as a single value of the process response is intro-
duced into the box, we guarantee the random spreading of the effect produced by
the factor which presents a systematic influence.

Once the levels of the factors have been selected, we can begin to write the plan
introducing the order of the experiments by using: (i) the random changes be-
tween lines or between columns; (ii) the line variations using a random number
generator; (iii) the extraction from a black box. Using one of these procedures to
select the order of the experiments allows one to respect the conditions imposed
by the random spreading of the effect produced by the factors.

The variance analysis for a plan with Latin squares is not different from the gen-
eral case previously discussed in Section 5.6.3. Therefore we must compute the
following sums:

S1 – sum of the squares of all individual observations;
S2 – sum of the squares of the sums of the columns divided by

the number of observations in a column;
S3 – sum of the squares of the sums of the lines divided by the

number of observations in a line;
S4 – sum of the squares of the sums of observations with the

same Latin letter divided by the number of the observations
having the same letter;

S5 – the square of the sum of all observations divided by the
number of observations.
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Indeed, these sums allow the calculation of the variances due to each of the factors
introducing the columns, the lines and the letter in the plan. We can introduce
the statistical hypotheses about the effect of the factors on the process response
using the variances of the factors with respect to the residual variance. This resid-
ual variance is computed by s2

rz ¼ ðS1 þ S5 � S2 � S3Þ=½ðn� 1Þðn� 1Þ� where n
is the box number in a line (or a column). We can then verify the following
hypotheses:
. The effect on the process response of the factor which changes

the columns of the plan is not important. Mathematically we can
write:

HC : r2
C ¼ r2

rz , s2
c ¼ s2

rz;

. The effect on the process response of the factor which changes
the lines in a plan is not important. Therefore, we can write:

HL : r2
L ¼ r2

rz , s2
L ¼ s2

rz;

. The factor which changes the letter in the plan does not have a
considerable influence on the process response. Then, according
to the updated cases, we can write:

HA : r2
A ¼ r2

rz , s2
A ¼ s2

rz.

Now every reader knows that to check a hypothesis in which we compare two var-
iances, we have to use the Fischer test. Here the computed value of a Fischer random
variable is compared with its theoretical value particularized by the concrete degrees
of freedom (m1; m2) and the confidence level 1� a. Table 5.59 presents the synthesis
of the analysis of variances for this case of the Latin squares method.

The following example will illustrate this method. The reaction considered is
the chlorination of an organic liquid in a small laboratory scale reactor which
works under agitation and at a constant chlorine pressure; the temperature of the
reactor is controlled by a liquid circulating in a double-shell. The analysis of the
reactor product shows the presence of some undesired components. The concen-
trations of the desired product and by-products are determined by the tempera-
ture, the chlorination degree (more precisely the reaction time) and by the catalyst
concentration. Various procedures can be used for the addition of the catalyst: the
whole catalyst is poured in one go, by fractions diluted with reactants, etc; the
objective is to obtain a catalyst concentration between 0.1 and 0.3% g/g. The addi-
tion of the catalyst can be considered as an example of systematic influence and
then its effect on the concentration of the by-products can be analyzed by the Latin
squares method. Five levels are selected for the temperature and for the chlorina-
tion degree, which are considered as factors which do not have a systematic influ-
ence. The catalyst addition procedure and its concentration with respect to the
reaction mixture can be introduced as a process factor with systematic influence
by a group of five letters: A, B, C, D, E. Table 5.60 gives the factorial program obtained
after the experiments have been extracted from a black box. This table contains all
the measured concentrations of undesired products after each experiment.
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Table 5.59 Analysis of the variances for the case of Latin squares method.

Origin of
the variance

Sums of the
squares

Degrees of
freedom

Variances Computed
value of the
Fischer variable

Theoretical
value of the
Fischer variable

Decision

Effect of a
factor that
changes
the columns

S2 – S5 = SC n – 1 s2
C = SC/(n – 1) FC = s2

C/s2
rz Fn – 1,(n –1)(n – 2),a FC <

Fn – 1,(n – 1)(n – 2),a

HC accepted

Effect of a
factor that
changes
the lines

S3 – S5 = SL n – 1 s2
L = SL/(n – 1) FL = s2

L/s2
rz Fn – 1,(n –1)(n – 2),a FL <

Fn – 1,(n – 1)(n – 2),a

HL accepted

Effect of a
factor that
changes
the letter

S4 – S5 = SA n – 1 s2
A = SA/(n – 1) FA = s2

A/s2
rz Fn – 1,(n –1)(n – 2),a FA <

Fn – 1,(n – 1)(n – 2),a

Hc accepted

Residual Sr = S1 + S5 –
(S2 + S4)

(n – 1)*(n – 2) s2
rz =

Sr/[(n – 1)(n – 2)]
Without the power enabling
one to identify interaction
effects

Total S1 – S5 n2 – 1

Table 5.60 Factorial plan for the Latin squares method – case of
chlorination of an organic liquid.

Temperature 90 70 50 60 80 Total L Total letter

Chlorination degree

40 B r
39.5

A
28.9

D
11.6

C
13.9

E
22.6 116.5 A = 89.4

35 E
32.2

C
25.5

B r
10.0

D
12.5

A
14.6 94.8 B = 129.7

45 D
57.6

E
41.0

C
12.1

A
14.7

B r
25.9 151.3 C = 136.8

30 A
19.6

D
21.2

E
10.3

B
9.8

C
12.1 72.9 D = 138.3

50 C
73.2

B r
44.5

A
11.7

E r
19.7

D
35.4 184.5 E = 125.8

Total C 222.0 161.1 55.7 70.6 110.6 620
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The data in the table above will first be used to determine whether the addition
procedure as well as the major factors of the process influence the dependent pro-
cess variable (concentration of the undesired components in the reaction product).
With the purpose being to obtain the real residual variance from the experiments,
Table 5.60 (the boxes of which contain an r), have been repeated. These results are
shown in Table 5.61.

Table 5.61 Results of repeated experiments, example 5.6.3.

Position (T,D) (90,40) (70,50) (50,35) (60,50) (80,45)

Old value 39.5 44.5 10.0 19.7 25.9

New value 36.9 42.4 11.3 20.5 24.1

As previously explained, the first step to solve this application is the computa-
tion of the sums required by Table 5.59. Then we obtain:

S1 – the sum of the squares of the individual observations:
S1 = 39.52 + 28.92 +......+ 19.72 + 35.42 = 21717.42;

S2 – the sum of the squares of the sums of the columns divided
by the number of observations of the column:
S2 = (2222 + 1612 + 55.72 + 70.62 + 110.62)/5 = 19104.84;

S3 – the sum of the squares of the sums of the lines divided by
the number of observations of the line:
S3 = (116.52 + 94.82 + 151.32 + 72.92 + 184.52)/5 = 16961.13;

S4 – the sum of the squares of sums with the same letter
divided by the number of observations which have the
same letter:
S4 = (89.42 + 129.72 + 156.82 + 138.32 + 125.82)/5
= 15696.28

S5 – the square of the sum of all observations divided by the
total number of observations:
S5 = (39.5 + 28.9 +....+ 19.7 + 35.4)2/25 = 620.02/25
= 15376.

The results of the analysis using the data of Table 5.59 are given in Table 5.62.
Considering the decision column, we conclude that two zero hypotheses have
been refused and one has been accepted.
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Table 5.62 Analysis of the variances for the Latin squares method, example 5.6.3.

Origin of
the variance

Sums of
squares

Degrees of
freedom

Variances Computed
value of the
Fischer variable

Theoretical
value of
Fischer variable

Decision

Effect of
factor that
change the
columns

S2 – S5 = SC

SC = 3728.4
n – 1
n – 1 = 4

s2
C = SC/(n – 1)

s2
C = 933.82

FC = s2
C/s2

rz

FC = 15.82
Fn – 1,(n – 1)(n – 2),a

F4,12,0.05 = 3.26
FC >
Fn – 1,(n – 1)(n – 2),a

HC rejected

Effect of a
factor that
changes
the lines

S3 – S5 = SL

SL = 1585.3
n – 1
n – 1 = 4

s2
L = SL/(n – 1)

s2
L = 396.28

FL = s2
L/s2

rz

FL = 6.71
Fn – 1,(n – 1)(n – 2),a

F4,12,0.05 = 3.26
FL >
Fn – 1,(n – 1)(n – 2),a

HL rejected

Effect of a
factor that
changes
the letter

S4 – S5 = SA

SA = 320.24
n – 1
n – 1 = 4

s2
A = SA/(n – 1)

s2
A = 80.06

FA = s2
A/s2

rz

FA = 1.35
Fn – 1,(n – 1)(n – 2),a

F4,12,0.05 = 3.26
FA <
Fn – 1,(n – 1)(n – 2),a

Hc accepted

Residual Srz = S1 + S5 –
(S2 + S4)
Sr = 707.20

(n – 1)*(n – 2)
= 12

s2
rz = Srz/[(n – 1)(n – 2)] = 58.91 It is not possible to identify the

effects of double interactions.

Total S1 – S5 n2 – 1 = 24

It is important to note that the effect of the factor that changes the letter in the
Latin squares table is negligible. Then, for the investigated chlorination reaction
both the concentration of the catalyst (between 0.1 and 0.3% g/g) and its process
of addition do not have any effect on the concentration of the by-products. Never-
theless, this conclusion cannot be definitive because we can find from Table 5.62
that we have a high residual variance. In this case, we can suggest that the interac-
tion effects are certainly included in the residual variance.

The real residual variance frequently named “reproducibility variance” can be
determined by repeating all the experiments but this can turn out to be quite
expensive. The Latin squares method offers the advantage of accepting the repeti-
tion of a small number of experiments with the condition to use a totally random
procedure for the selection of the experiments. With the data from Table 5.61 and

using the relation s2
rz ¼ ð

PnC

i¼1

PnL�1

j¼1
d2

ijÞ=½ðnCðnL � 1ÞÞ�, where dij are the differences be-

tween the observed values for all the nc columns and nL lines (where the new experi-
ments can be found), we obtain: s2

rz ¼ ð2:62 þ 1:32 þ 1:82 þ 2:12 þ 0:82Þ=ð5 � 1Þ
=1.56. Five degrees of freedom characterize this new computed variance.

Now, it is clear that the residual variance from Table 5.62 contains one or more
interaction effects. Moreover, for this application or, more precisely, for the data
given for the particularization of the Latin squares method, a partial response has
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been obtained. Consequently, a new research plan must be suggested in order to
answer our problem.

The method of the effects of the unification of factors considers that, for a fixed plan
of experiments, we can produce different groups where each contains experi-
ments presenting the same systematic influence [5.8, 5.13, 5.23, 5.35, 5.36]. To
introduce this method, we can consider the case of a process with three factors
analyzed with a CFE 23 plan of experiments. In our example, we will take into
account the systematic influence of a new factor D. To begin this analysis, we will
use the initial plan with eight experiments with the condition to separate these
experiments into two blocks or groups:
. the first block is bound with the first level of the factor of system-

atic influence and the second block corresponds to the next level
of the factor of systematic influence;

. we accept both blocks to be related by a triple interaction variance
(s2

ABC).

For this case of separation into two groups or blocks, it is important to determine
the experiments from the 23 plan which are contained in block D1 and those con-
tained in D2.

Table 5.63 shows the detailed separation of the experiments into groups. Each
experiment corresponding to a different block is identified by a current name and
by a code. The experiments with the sign + in the ABC column correspond to the
block D1, the remaining experiments to block D2.

Table 5.63 The division of a CFE 23 plan into two blocks.

i A B C AB AC BC ABC yi

1 –1 –1 –1 +1 +1 +1 –1 y1 = (1) Block D1

Experiments: 2, 3, 5, 8
Codified names: a, b, c, abc

Block D2

Experiments: 1, 4, 6, 7
Codified names: (1), ab, ac, bc

2 +1 –1 –1 –1 –1 +1 +1 y2 = a

3 –1 +1 –1 –1 +1 –1 +1 y3 = b

4 +1 +1 –1 +1 –1 –1 –1 y4 = ab

5 –1 –1 +1 +1 –1 –1 +1 y5 = c

6 +1 –1 +1 –1 +1 –1 –1 y6 = ac

7 –1 +1 +1 –1 –1 +1 –1 y7 = bc

8 +1 +1 +1 +1 +1 +1 +1 y8 = abc

When we have the possibility to obtain the real residual variances (2–3 experi-
ments repeated in the D1 and D2 blocks), we can suggest to validate the following
hypothesis: HABC : r2

ABC ¼ r2
rz , s2

ABC ¼ s2
rz and if it is rejected, we can conclude
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an important or crucial effect on the process response of the factor which shows a
systematic influence.

The justification for our consideration showing that the action of a factor with
systematic influence is concentrated in the relation which binds the blocks (fre-
quently named contrast) is sustained by the following observations:
. if we accept that block D1 increases the process response, then,

with respect to the D2 block, the results will be:
(a + d), (b + d),
(c + d), (abc + d);

. with Eq. (5.168) we obtain
EA ¼ �ð1Þ þ ðaþ dÞ � ðbþ dÞ þ ab� ðcþ dÞ þ ac�
bcþ ðabcþ dÞ ¼ �ð1Þ þ a� bþ ab� cþ ac� bcþ abc. Similar
expressions are thus obtained for the effects EB, EC, EAB, EAC,
EBC; these effects are not affected by the increase of the response
in block D1.

. for the contrast we obtain EABC = –(1) + (a + d) + (b + d) – ab +
(c + d) – ac – bc + (abc + d) = –(1) + a + b – ab + c – ac – bc + abc +
4d; this result shows a displacement with 4d; so the variance due
to this interaction is the only variance obtained when we utilize a
two block division for a CFE 23 plan.

A division into four blocks made from two unification relations, is also possible
with a CFE 23 plan where the systematic influence of one or more factors is con-
sidered. If interactions AB and AC give the unification relations, then, by using
the block division procedure used above (Table 5.63), the following blocks will be
obtained:

Block 1 or block + +: experiments 1 and 8 with code names (1) and abc;
Block 2 or block – –: experiments 2 and 7 with code names a and bc;
Block 3 or block – +: experiments 3 and 6 with code names b and ac;
Block 4 or block + –: experiments 4 and 5 with code names ab and c.

In this division example, if interactions AB and AC influence the process
response, we can conclude that the displacement of the process response contains
the effect of a systematic influence.

The examples where a CFE 23 plan has been divided into two or four blocks are
not explicit enough to develop the idea that the relations of the unification of
blocks are selected randomly. In the next example, a CFE 24 plan is developed
with the purpose being to show the procedures to select the unification relations
of inter-blocks. In this plan, the actions showing a systematic influence will be
divided into two blocks or into four blocks with, respectively, eight experiments or
four experiments per block. We start this new analysis by building the CFE 24

plan. Table 5.64 contains this CFE 24 plan and also gives the division of the two
blocks when we use the ABCD interaction as a unification relation.
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Table 5.64 The separation of a CFE 24 into two blocks.

i A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD yi

1 –1 –1 –1 –1 +1 +1 +1 +1 +1 +1 –1 –1 –1 –1 +1 y1 = (1)

2 +1 –1 –1 –1 –1 –1 –1 +1 +1 +1 +1 +1 +1 –1 –1 y2 = a

3 –1 +1 –1 –1 –1 +1 +1 –1 –1 +1 +1 +1 –1 +1 –1 y3 = b

4 +1 +1 –1 –1 +1 –1 –1 –1 –1 +1 –1 –1 +1 +1 +1 y4 = ab

5 –1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1 –1 y5 = c

6 +1 –1 +1 –1 –1 +1 –1 –1 +1 –1 –1 +1 –1 +1 +1 y6 = ac

7 –1 +1 +1 –1 –1 –1 –1 +1 –1 –1 –1 +1 +1 –1 +1 y7 = bc

8 +1 +1 +1 –1 +1 +1 +1 +1 –1 –1 +1 –1 –1 –1 –1 y8 = abc

9 –1 –1 –1 +1 +1 +1 –1 +1 –1 –1 – +1 +1 +1 –1 y9 = d

10 +1 –1 –1 +1 –1 –1 +1 +1 –1 –1 +1 –1 –1 +1 +1 y10 = ad

11 –1 +1 –1 +1 –1 +1 –1 –1 +1 –1 +1 –1 +1 –1 +1 y11 = bd

12 +1 +1 –1 +1 +1 –1 +1 –1 +1 –1 –1 +1 –1 –1 –1 y12 = abd

13 –1 –1 +1 +1 +1 –1 –1 –1 –1 +1 +1 +1 –1 –1 +1 y13 = cd

14 +1 –1 +1 +1 –1 +1 +1 –1 –1 +1 –1 –1 +1 –1 –1 y14 = acd

15 –1 +1 +1 +1 –1 –1 –1 +1 +1 +1 –1 –1 –1 +1 –1 y15 = bcd

16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 y16 = abcd

Block E1 or Block E+:
Experiences: 1, 4, 6, 7, 10, 11, 13, 16
Codes: (1), ab, ac, bc, ad, bd, cd, abcd

Block E2 or Block E–:
Experiences: 2, 3, 5, 8, 9, 12, 14, 15
Codes: a, b, c, abc, d, abd, acd, bcd

ABCD
unification

If we now suppose that the aim is to divide the CFE plan 24 into four blocks, we
can select one of the following unification relations: (i) ABCD coupled with one
from the three order interactions (ABC, ACD, BCD, etc.); (ii) ABCD coupled with
one from the two-order interactions (AB, AC, AD, etc.); (iii) two interactions of
three-order, etc. To establish which coupling is the most favourable, it is necessary
to know what type of information disappears in each case. For this purpose we
show here some of the multiplications of the ABCD interaction relations with
their possible coupling interaction relations where A2 = B2 = C2 = D2 = 1.

I: ABCD � BCD ¼ A II: ABCD � ABC ¼ D III: ABCD � ACD ¼ B

IV: ABCD � AB ¼ CD V: ABCD � AC ¼ BD VI: ABCD � AD ¼ BC::::
(5.170)
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From this result we can then conclude that: (i) for a four–three coupling in the data
processing, the information about the effect of the direct factor (A, B, C, D) action
on the process response disappears; it is obvious that, for actual cases, it is diffi-
cult to accept this situation; (ii) when a four–two coupling occurs, the information
that shows the effect of one interaction of order two disappears, however, this situ-
ation can sometimes be accepted in actual cases; (iii) it is not difficult to show that
for a three–three coupling we obtain the case of the four–two coupling.

The division of the CFE 24 plan into four blocks by means of the four–two couple
is useful to identify the weakest order two interactions that can be used with the
order four interactions as unification relations. At the same time, we can also ana-
lyze the three–three couple obtained with the most non-important order three in-
teractions. In fact, it is easy to accept that, for an investigated process, the effects
on the process response of the order three interactions are non-important for
most actual situations. Indeed, when for a CFE 24 plan, the ABC and BCD interac-
tions are the weakest, these interactions can be selected as relations for the unifi-
cation of the inter-blocks. Then, we can rapidly produce the division into four
blocks: E1 ¼ E��;E2 ¼ E�þ;E3 ¼ Eþ�;E4 ¼ Eþþ. Table 5.65 shows the blocks
and the corresponding experiments with their usual numbers and codes.

Table 5.65 The blocks repartition of a CFE 24 plan using the contrasts ABC, BCD.

ABC –1 +1 +1 –1 +1 –1 –1 +1 –1 +1 +1 –1 +1 –1 –1 +1

BCD –1 –1 +1 +1 +1 +1 –1 –1 +1 +1 –1 –1 –1 –1 +1 +1

yi (1) a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Block E1 = E– Block E2 = E–+ Block E3 = E+– Block E1 = E+

(1)
bc
abd
acd

number 1
number 7
number 12
number 14

ab
ac
d
bcd

number 4
number 6
number 9
number 15

a
abc
bd
cd

number 2
number 8
number 11
number 13

b
c
ad
abcd

number 2
number 5
number 10
number 16

For the cases of 25and 26 CFE plans, the division into blocks must respect the
principles previously shown for a 24 plan. Considering a 25 plan, the recom-
mended contrast couplings are of the three–three–four type. If the coupling chain
is ABC–ADE–BCDE, then the main block F1 (analogue to E1 for the case of a CFE
24) will contain experiments (1)–bc–de–abd–acd–abc–ace–bcde.

We establish the repartition of the experiments for the remaining blocks by
multiplying the F1 chain by a, b and c; for these products we have a2 = b2 = c2 =
d2 = 1. So, the F2 will contain the next chain of experiments: a–abc–ade–bd–cd–
bc–ce–abde. The following application presents an actual case for a CFE 24 plan
where the separation has been obtained according to the contrasts ABC and BCD.
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Numerical application. This application concerns the conversion of one reactant
by an esterification reaction occurring in a discontinuous and stirred reactor. It is
a function of the temperature (factor A), the alcohol–acid molar ratio (factor B),
the reaction time (factor C) and the catalyst concentration (factor D). A CFE 24

plan is used to investigate the different effects of the factors. The levels of the fac-
tors have been established in order to obtain a good reactant conversion. These
levels are: temperatures: A1 = 110 �C, A2 = 130 �C; alcohol–acid molar ratio: B1 =
1.2, B2 = 1.5; reaction time: C1 = 3 h, C2 = 4 h; catalyst concentration: D1 = 1% g/g,
D2 = 2% g/g.

Three different qualities of alcohol have been used: recycled, distilled or recti-
fied. It is easy to observe that the quality of the alcohol introduces a systematic
influence towards factor B in the esterification reaction. Indeed, the development
of the experimental research is made with a 24 plan with four blocks. The ABC
and BCD have the contrasts considered for the blocks division. For the experi-
ments grouped in block E1, the first type of alcohol has been used. Distilled alco-
hol is the reactant used in the experiments of the second block (E2) and the recti-
fied alcohol for the experiments of the last two blocks (E3, E4). Table 5.66 presents
the initial data where the division of the blocks is not visible.

Table 5.66 The conversion for an esterification reaction in a CFE 24 plan.

Esterification
reaction
4 blocks

D1 D2

C1 C2 C1 C2

B1 B2 B1 B2 B1 B2 B1 B2

A1 (1)
28

b
31

c
26

bc
32

d
33

bd
33

cd
36

bcd
38

A2 a
20

ab
24

ac
20

abc
30

ad
24

abd
24

acd
37

abcd
31

Table 5.67 shows the conversions characterizing each block and the correspond-
ing columns of the sums, these data are necessary to compute the variance due to
the division into blocks. Indeed, these sums will be used for the computation of
the square sums showing the differences in the reaction conversion produced by
the alcohol quality (SM).
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Table 5.67 Presentation of the blocks in the example of an esterification reaction.

Block E1 Block E2 Block E3 Block E4

Experiment
code

Conversion Experiment
code

Conversion Experiment
code

Conversion Experiment
code

Conversion

(1) 28 a 20 b 31 d 33

abd 24 bd 33 ad 24 ab 24

acd 37 cd 36 abcd 31 ac 20

bc 32 abc 30 c 26 bcd 38

Total 121 Total 119 Total 112 Total 115

The computation for the analysis of the variances is carried out following the
procedure described in Section 5.6.3.1. When we begin to complete Table 5.52 as
recommended by this procedure, we can observe that we must add the effect of
the D factor as well as its interactions. Nevertheless, in this table, we cannot add
the unification of the interactions accepted by the data provided by the division
into blocks. In addition to the data described here, we have to realize the following
computations in order to complete Table 5.52:
. the sum of the squares of the sums of the conversion obtained for

each block divided by the number of blocks:

S1 = (1212 + 1192 + 1122 + 1172)/4 = 13642.75;

. the sum of the squares of each conversion divided by the total
number of the experiments:

S2 = (282 + 312 + 262 +.....+ 242 + 372 + 312)/16 = 13630.56;

. the sum of the squares showing the differences due to the alcohol
quality:

SM = S1 – S2 = 12.19;

. the sum of squares due to the unification of the interactions by
using the following algorithm:

(a) we compute EABC and EBCD using the general procedure
particularized to the data in Table 5.64:
EABC = –(1) + a + b – ab + c – ac – bc + abc – d + ad + bd –
abd + cd – acd – bcd + abcd = –28 + 20 + 31 – 24 + 26 – 20 –
32 + 30 – 33 + 24 + 33 – 24 + 36 – 30 – 38 + 37 = 0;

448



5.6 Analysis of Variances and Interaction of Factors

EBCD = – (1) – a + b + ab + c + ac – bc – abc + d + ad – bd –
abd – cd – acd + bcd + abcd = –28 – 20 + 31 + 24 + 26 + 20 –
32 –30 + 33 + 24 – 33 – 24 – 36 – 37 + 38 + 31 = –13;

(b) we calculate SABC and SBCD using the values of the effects
EABC and EBCD:
SABC = (EABC)2/16 = 0, SBCD = (EBCD)2/16 = 132/16 = 10.65;

(c) we finish the algorithm by computing the squares sum of
SABC and SBCD: SINT = SABC + SBCD = 10.65.

At this point, we have to verify the correctness of the selection of the unification
relations. When SM@SINT we can conclude that our selection for the unification
relations is good; in this case, we can also note that the calculations have been
made without errors. Otherwise, if computation errors have not been detected, we
have to observe that the selected interactions for the unification of blocks are
strong and then they cannot be used as unification interactions. In this case, we
have to carry out a new experimental research with a new plan. However, part of
the experiments realized in the previous plan can be recuperated. Table 5.68 con-
tains the synthesis of the analysis of the variances for the current example of an
esterification reaction. We observe that, for the evolution of the factors, the molar
ratio of reactants (B) prevails, whereas all other interactions, except interaction AC
(temperature–reaction time), do not have an important influence on the process
response (on the reaction conversion). This statement is sustained by all zero
hypotheses accepted and reported in Table 5.68. It should be mentioned that the
alcohol quality does not have a systematic influence on the esterification reaction
efficiency. Indeed, the reaction can be carried out with the cheapest alcohol. As a
conclusion, the analysis of the variances has shown that conversion enhancement
can be obtained by increasing the temperature, reaction time and, catalyst concen-
tration, independently or simultaneously.
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Table 5.68 Synthesis of the variance analysis for CFE 24, example of an
esterification reaction.

Origin of the
variance

Sums of the
differences

Degrees
of freedom

Variances Computed value
of the Fischer
variable

Theoretical
value of the
Fischer variable

Decision

Temperature
variation
A

SA = 138.06 1 s2
A = 138.06 FA = s2

A/s2
rz

= 20.38
F1,6,a = 5.99 FA>F1,6,a

HA refused

Molar ratio
variation
B

SB = 22.56 1 s2
B = 22.05 FB = s2

B/s2
rz

= 2.63
F1,6,a = 5.99 FB<F1,6,a

HB accepted

Reaction time
variation
C

SC = 115.56 1 s2
C = 115.56 Fc = s2

B/s2
rz

= 17.36
F1,6,a = 5.99 FC>F1,6,a

HC refused

Catalyst conc.
variation
D

SD = 76.56 s2
D = 6.56 FD = s2

D/s2
rz

= 11.29
F1,6,a = 5.99 FD>F1,6,a

HC refused

Alcohol type
M

SM = 12.19 3 s2
M = 4.06 FM = s2

M/s2
rz

= 0.59
F3,6,a = 4.76 FM<F1,6,a

HM accepted

Interaction
AC

SAC = 52.56 1 s2
AC = 52.56 FAC = s2

AB/s2
rz

= 7.62
F1,6,a = 5.99 FAC>F1,6,a

HAB refused

Interaction
AB

SAB = 10.56 1 s2
AB = 10.56 FAB = s2

AB/s2
rz

= 1.55
F1,6,a = 5.99 FAB<F1,6,a

HAB accepted

Interaction
BC

SBC = 1.56 1 s2
BC = 1.56 FBC = s2

AB/s2
rz

= 0.23
F1,6,a = 5.99 FBC<F1,6,a

HBC accepted

Interaction
BD

SBD = 18.06 1 s2
BD = 18.06 FBD = s2

AB/s2
rz

= 2.66
F1,6,a = 5.99 FBD<F1,6,a

HBD accepted

Interaction
CD

SCD = 10.56 1 s2
CD = 10.56 FCD = s2

AB/s2
rz

= 1.55
F1,6,a = 5.99 FCD<F1,6,a

HCD accepted

Interaction
ABD

SABD = 0.56 1 s2
ABD = 0.56 FABD = s2

AB/s2
rz

= 0.07
F1,6,a = 5.99 FABD<F1,6,a

HABD accepted

Interaction
ACD

SACD = 6.00 1 s2
ACD = 6.00 FACD = s2

AC/s2
rz

= 0.88
F1,6,a = 5.99 FACD<F1,6,a

HACD accepted

Interaction
ABCD

SABCD = 0.06 1 s2
ABCD = 0.06 FABCD = s2

BC/s2
rz

= 0.01
F1,6,a = 5.99 FACBD<F1,6,a

HC accepted

Residual Sr = 47.36 6 s2
rz = 6.77 All interactions without AC
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5.7
Use of Neural Net Computing Statistical Modelling

At the beginning of this chapter, we introduced statistical models based on the
general principle of the Taylor function decomposition, which can be recognized
as non-parametric kinetic model. Indeed, this approximation is acceptable
because the parameters of the statistical models do not generally have a direct con-
tact with the reality of a physical process. Consequently, statistical models must be
included in the general class of connectionist models (models which directly con-
nect the dependent and independent process variables based only on their numer-
ical values). In this section we will discuss the necessary methodologies to obtain
the same type of model but using artificial neural networks (ANN). This type of
connectionist model has been inspired by the structure and function of animals’
natural neural networks.

Neural nets are computing programs that behave externally as multi-input
multi-output computing blocks. Although artificial neural networks were initially
devised for parallel processing, they are being used on sequential machines (von
Neumann) as well.

They have been used successfully in several diverse engineering fields [5.37–
5.39], such as process control engineering [5.40, 5.41] and non-parametric statis-
tics [5.42–5.44]. A neural network is readily programmed for kinetic prediction
where many strongly interacting factors do affect the process rate or when data
are either incomplete, not defined or even lacking. With reference to the “black
box” used by classical statistics to describe the action of internal parameters of pro-
cesses and their interaction on the process exit, the ANN methodology is strongly
different because it explains the mechanism working inside the black box.

5.7.1
Short Review of Artificial Neural Networks

As mentioned in the introduction, ANNs are models inspired by the structure and
the functions of the biological neurons, since they can also recognize patterns, dis-
ordered structure data and can learn from observation.

A network is composed of units or simple named nodes, which represent the neu-
ron bodies. These units are interconnected by links that act like the axons and den-
drites of their biological counterparts. A particular type of interconnected neural net is
shown in Fig. 5.12. In this case, it has one input layer of three units (leftmost circles),
a central or hidden layer (five circles) and one output (exit) layer (rightmost) unit. This
structure is designed for each particular application, so the number of the artificial
neurons in each layer and the number of the central layers is not a priori fixed.

The system behaves like synaptic connections where each value of a connection
is multiplied by a connecting weight and then the obtained value is transferred to
another unit, where all the connecting inputs are added. If the total sum exceeds a
certain threshold value (also called offset or bias), the neuron begins to fire [5.45,
5.46].
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Figure 5.13 Layers of units and connection links in an artificial neuronal network.
I1–i3: input neurons, h1–h5: hidden neurons, bi, bo: exit and output bias neurons,
wi2h1: weight of transmission, i2–h1, x1–x3: input process variables and y: output
process variable.

The changes brought about in the pattern of neurons constitute the basis for
learning.

In biological neurons, learning is carried out by changing the synaptic resis-
tance associated to a change in the activation pattern of neurons.

Neural networks are able to learn because they can change the connection
weights between two units which are in direct contact. After learning, the knowl-
edge is somehow stored in the weights.

However, artificial neurons are much simpler than natural ones, the analogy
serves to highlight an important feature of ANNs: the ability to learn through
training. Just as the brain learns to infer from observations, an ANN learns the
key features of a process through repeated training with data and, like in natural
learning, its performance improves as it gains experience with a process.

The Latin expression “repetitio est mater studiorum”, can be used here to
describe the learning process with an ANN. The ANN repeats on and on, gradual-
ly adjusting the output to the imposed data output.
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5.7.2
Structure and Threshold Functions for Neural Networks

The information flow between two biological neurons is affected by a variable
synaptic resistance. In artificial systems, each connecting link has an associated
weight. If two units are linked by a connection, the activation value of the emitting
units is multiplied by the connecting weight before reaching the receiving unit.

The input value for an arbitrary unit, j, is then the sum of all activations coming
from the units of the preceding layer, multiplied by the respective weights, wkj,
plus the bias value hij. Thus, the total input to unit j, will be written as (5.171)
where n represents the number of the neurons preceding neuron j and ok shows
the output.

Ij ¼
Pn

k¼1
wkjok þ hij (5.171)

Even though, most networks use the same type of input, their output generation
may differ. In general, the output is computed by means of a transfer function,
also called activation function. Concerning the behaviour of the transfer function,
a gradual approach is required [5.47]. Therefore, a continuous threshold function
is selected, chiefly because its continuity and derivability at all points are required
features for the current optimization of the algorithms of learning. This type of
function is well suited to the learning procedure that will be described later. A typ-
ical continuous threshold function is the following exponential sigmoid:

oj ¼
1

1þ e�blJ
(5.172)

where oj is the activation value of neuron j, lj is the total input to neuron j (as cal-
culated by relation 5.171) and b is a constant which frequently takes a unitary val-
ue. The use of b, allows some modifications of the width of the region of the sig-
moid, a feature which is useful in setting the learning ability of the net. Table 5.69
shows some other sorts of threshold functions that can be successfully used for
developing an application.

Table 5.69 Common threshold functions used in ANN modeling.

Type Function expression Symbol signification

Linear oj ¼
aþ bIj ; 0 £ Ij � 1

1 ; Ij ‡ 1

�
Ij = total input to neuron j

Saturating linear oj ¼
Ij ; 0 � Ij � 1

1 ; Ij ‡ 1
0 ; Ij £ 0

8
<

: oj = output from neuron j

Sigmoid classic oj ¼
1

1þ e�lJ
IT

j – transpose of Ij

Hyperbolic tangent oj ¼ tanh ðIjÞ rj standard deviation of Ij

Radial basis oj ¼ exp½�IT
J =ð2r2

j � a, b – numerical constants
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The function of the neural net depends not only on the information and pro-
cessing mode of each isolated unit, but also on its overall topology. The topology
considered in Fig. 5.12 must to be considered only as a didactic example. In the
case of questions about the necessity of the hidden layer, we can easily give an
answer: a hidden layer allows one to increase the network memory and provides
some flexibility in the learning process. With the very simple topology considered
in Fig. 5.13, the net is able to map linear and nonlinear relationships between
inputs and outputs. The number of units in the input layer is determined by the
variables that affect the response (x1, x2, x3 in Fig. 5.13). The number of units in
the hidden layer will be established during the learning process from a compro-
mise between predicting errors and the number of iterations needed to attain
them. In addition to the above units, two bias units are used (in Fig. 5.13, one for
the hidden layer and one for the output unit). Their inputs are zero and their out-
puts or activation values are equal to one. Their use provides the threshold values
to the hidden layer and to the output unit.

It is not difficult to observe that the application of an ANN to a problem involves
four steps:

1. selection of the network topology (i.e. the layout of the neu-
rons and their inter-connections),

2. specification of the transformation operator for each neuron
from the topology,

3. initial assignment of weights wkj, which are updated as the
network learns,

4. initial learning, called training, which involves choosing the
data and the training method.

As neural network theory has been developed, the empiricism associated with the
choices at each step, has given ways to heuristic rules and guidelines [5.48, 5.49].
Nevertheless, experience still plays an important part in designing a network. The
network depicted in Fig. 5.13 is the most commonly used and is called the feed-
forward network because all signals flow forward.

Even though a number of techniques have been developed for the development
of networks, they still remain iterative trial and error procedures. The heuristic
approach described here can be used to reduce the trial and error selection process.

A hidden layer, with its appropriate units is capable of mapping any input pre-
sentation [5.50] and is thus necessary to restrict the topology to one layer only. So
as to determine the optimum hidden units, the learning rate (vl) and the momen-
tum term (ms) will be assigned arbitrarily but with constant values and the gain
term will be fixed at a value of one. With all the parameters fixed, various net
topologies exhibit the same trends relative to each other, “vis-�-vis” the overall
absolute error as a function of the number of iterations in the training mode
[5.51]. Thus, it was found possible to determine the optimum net architecture
within 50–100 iterations and without using the whole graph which describes the
variation of the absolute error as a function of the number of iterations for each
topology.
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The number of iterations will be used as the criterion whenever on-line predic-
tions are to be made, such as for chemical process control where computation
time is important. The selection of vl and ms and the gain term is essentially a trial
and error procedure. Contrary to the usual approach, each of these parameters
has not been fixed at a constant value for the entire training period. These were
initially assigned with arbitrary values (vl = 0.8, ms = 0.8, gain = 1 for example, al-
though these values are not a priori imposed). Then, they were updated while the
parameters “jolted” the overall absolute error out of the local minima, which is
typically encountered in the mechanism of the descendent gradient. Once the net
parameters and the net architecture have been fixed, the minimum number of
training data sets required for adequate mapping will be determined by trial and
error procedures. The net is then ready to learn the data presented using the back-
propagation algorithm.

5.7.3
Back-propagation Algorithm

As described below, the required behaviour is taught to the neural net by back
propagation. This procedure is carried out by exposing the network to sets consist-
ing of one input vector and its corresponding output vector. By an iterated proce-
dure of trial and error, the convergence to determine the weight values that mini-
mizes a prescribed error value is then achieved.

Back propagation is a kind of rapid descendent method of optimization. How-
ever, some authors prefer other optimization algorithms rather than back propa-
gation, for example the Levenberg–Marquardt method [5.52]. The back-propaga-
tion algorithm with the delta rule is called a supervised learning method, because
weights are adapted to minimize the error between the desired outputs and those
calculated by the network. The error is calculated, for convenience, from the fol-
lowing expression in terms of squared deviations:

Uðwp
kjÞ ¼

1
2

Xr

p¼1

Xn

j¼1

ðyp
j � op

j Þ
2 (5.173)

where y
p
j is the desired value output unit j for the sample pair p, op

j is the observed
value for the same unit j and sample pair p, and p is the sum index for the total
number of pairs r.

The adjustment on weights wkj is done using the sensitivity of the error with
respect to that weight, as:

Dwkj ¼ �c
¶U

¶wkj
(5.174)

The expression for the weight change is obtained from Eqs. (5.171) and (5.172)
replacing them in the relation (5.174):

Dwhj ¼ acðyj � ojÞojð1� ojÞoh (5.175)
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where the indexes h and j refer to the nodes of the hidden and of the output layer
respectively. Equation (5.175) allows one to modify the weights between the hid-
den and the output layers. On the other hand, the group of equations for the
change of the weights between the hidden and output layer is obtained also, as:

Dwin k ¼ acoinokð1� okÞ
P

j
djwhj (5.176)

where the subscripts “in, h, j” now refer to the input layer, the hidden layer and
the output layer, respectively. As for the output layer, dj can be expressed as:

dj ¼ aðyj � ojÞojð1� ojÞ (5.177)

In this case a and c represent, respectively, the rate factor in output and the scal-
ing factor of the net. These relations are also related to the sigmoid threshold
function.

In order to modify the weights between the input and hidden layer it is neces-
sary to know the weights between the hidden units and the output units. There-
fore, during back propagation, first we change the connection weights between
the output and hidden layer, and then we change the remaining weights converse-
ly to the direction of information flow during the normal operation of the net-
work: from hidden layer to input layer backwards.

While training is performed, the weights are initialized with values between –
0.5 and 0.5 [5.48, 5.53] using a random procedure. The input–output experimental
pairs are successively shown to the net and the weights are changed simulta-
neously. When all pairs have been shown to the network, the error is computed. If
it is larger than the value allowed, all the pairs are shown to the network again in
order to induce more changes in the weights. This cycle is repeated until conver-
gence is achieved.

5.7.4
Application of ANNs in Chemical Engineering

The ANN techniques can be successfully applied in the field of chemical engineer-
ing. The examples presented here give a brief overview of the capacity of ANNs to
solve some chemical engineering problems. Readers interested in investigating
this topic further can refer to Bulsari’s book [5.41] or to other authors referenced
in the bibliography [5.39, 5.54]. In addition, to complete the information pre-
sented here, an important number of Internet sites can be used as well as some of
the current chemical engineering scientific publications, which have given impor-
tant attention to this subject.

Three major ways can be identified for the use of an ANN in chemical engineer-
ing:

1. as a substitute for the complicated models of transport phe-
nomena or stochastic based models;
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2. as data support, especially for the equilibrium and kinetic
data needed by models based on transport phenomena. This
kind of model is recognized as a hybrid neural –regression
model;

3. as a model for control and process operation.

In all the above-mentioned cases, once the learning processes have been com-
pleted, ANNs have an assistant function which gives one or many answers to an
argument of the complex modeled process (parameters, factors or independent
variables). When we use an ANN as a substitute for models for stochastic or com-
plicated transport phenomena, the learning process must be as shown in Fig. 5.14
which shows the coupling of an ANN and a complicated mathematical process.
The mathematical model gives the input and output vectors for the ANN, which,
in normal cases, are represented by the measured data. When the learning process
has been completed, the process mathematical model (PMM) and the optimizing
algorithm (OA) are decoupled and the ANN is ready to produce the simulation
results for the process. This procedure is also used to produce the ANN simula-
tors needed for the control of the processes or their usual automatic operation.

user layer 

input layer 

output layer 

y1 

y2 

Optimisation algorithm

wi j ac 
wi j cox1 

x2 

x3 

p1 

p2 

p3 

p4 

Solver for the  

   Process Mathematical Model

Figure 5.14 The architecture of assembly ANN-PMM-OA for the learning step
(ANN – substitute for the complicated PMM).
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In Fig. 5.14, it is shown that a previous formal user layer is necessary before
using the input layer [5.55, 5.56]. Nevertheless, it is not necessary to have the
same number of units in the input layer and in the user layer when each unit
introduces a parameter or a process variable for the model.

The design of the input layer, which is a parameter for the ANN topology, will
be coupled to the general problem of the topology of the ANN design.

The hybrid neural–regression model, shown in Fig. 5.15, uses one or more
ANN(s) as generator for some of the numerical values needed by the base model
process. As shown in Eq. (5.172) and in the equations reported in Table 5.69, the
obtained answer of the net is uncertain, particularly for the inputs near zero. For
those situations, the ANN will be assisted by one or more regression equations.
However, why should a regression equation be used instead of neural net comput-
ing alone? In fact, the neural system is capable of giving a precise guess in the
case of a kinetic yield at given P, T and one or more ys

i or yx
i variables (see Fig.

5.15) and time or position needed by the complex modeled process. However, this
response is not reliable when the value to be found is the time derivative of a
neural net-generated curve because in this curve there exist points for which there
is a maximum of the rate function.
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Figure 5.15 Principle of mass transfer model integration with
a neural net (hybrid neural-regression model).

Neural networks can be used when traditional computing techniques can also
be applied, but they can perform some calculations that would otherwise be very
difficult to realize with current computing techniques. In particular, they can
design a model from training data. A neural network can also be adapted to per-
form many different analogue functions such as pattern recognition, image pro-
cessing, and trend analysis. These tasks are difficult to perform with conventional
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digital program computers. An important function of the neural network is its
ability to discover the trends in a collection of data. Indeed, trend analysis is very
important in dynamic chemical engineering problems, in process control, as well
as in chemical formulation, data mining, and decision support. Neural networks
are also particularly useful as data sensor analysis and processing of industrial
units or integrated chemical plants as well as in commercial activity in industrial
chemistry. If the researcher has a good algorithm capable of completely describing
the problem, then traditional calculation techniques can, in most cases, give the
best solution, but if no algorithm or other digital solution exists to address a com-
plex problem with many variables, then a neural network that learns from exam-
ples may provide a more effective solution to the problem.
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