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Mathematical Modelling Based on Transport Phenomena

The transport phenomena of mass, heat or momentum, are characterized by an
assembly of general equations which can be easily particularized. Each particular-
ization of these equations to an actual example defines the mathematical model of
the example.

We consider that the notion introduced with the term transfer of property
makes reference to the exchange between two fluids, which are separated by a
thin wall (interface or membrane). We observe that the transfer includes the
motion of the property in each fluid – a process frequently called transport (trans-
port of property) as well as the transfer of the property through the wall.

In the case of momentum transfer, we have a particular situation where the
property transport occurs towards the walls and its transformation is controlled by
the geometry of the wall.

The problems of mathematical modelling based on transport phenomena
always begin with the establishment of equations which are all based on the gen-
eral equation for the conservation of properties [3.1–3.5].

The general equation of property conservation. For a phase defined by volume V
and surface A, we consider a property which crosses the volume in the direction
of a vector frequently named the transport flux~JJt. Inside the volume of control,
the property is uniformly generated with a generation rate Jv. On the surface of
the volume of control, a second generation of the property occurs due to the sur-
face vector named the surface property flux ~JJSA. Figure 3.1 illustrates this and
shows a cylindrical microvolume (dV) that penetrates the volume and has a micro-
surface dA.

Inside this microvolume and through its microsurface, the property is gener-
ated and transported as in the surface A and control volume V.

In volume V and for a small time interval ds when the property concentration
(C ¼ P=V, where P is the property quantity) changes by accumulation (from C to
Cþ dC), the values of the components that explain the property conservation are
defined as follows:
. quantity of the generated property (PG):

PG ¼ ð
RRR

V JVdVÞdsþ ð
RR

A JSA~nndA
*

Þds (3.1)
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Figure 3.1 Introductory scheme for the equation of a general property balance.

. quantity of the accumulated property (PA):

PA ¼
RRR

V Cþ dC

ds
ds� C

� �

dV ¼
RRR

V

dC

ds
dV

� �

ds (3.2)

. surplus (excess) PV of the transported property, output quantity of
the property – input quantity of the property):

PV ¼ ð
RR

A Jtn
*

d~AAÞds (3.3)

Based on the law of property conservation that asserts the equality between the
difference of the generated and accumulated quantities and the surplus of the
transported quantity, we have:

PG – PA = PV (3.4)

Now we can obtain the relation (3.5) that is recognized as the integral law of the
conservation of a property.

RR
A J

*

td~AAþ
RRR

V

¶C

¶s
dV ¼

RR
A
~JJSAd~AAþ

RRR
V JVdV (3.5)

This relation can be transformed into its differential form if we make a random
selection of the control volume V:

¶C

¶s
þ div~JJt ¼ div~JJSA þ JV (3.6)
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This equation is similar to the relation obtained when making the property bal-
ance with respect to the microvolume dV. For a small interval of time we can write
the following relations for the different classes of balance of quantity:
. quantity of the generated property (PG):

PG ¼ ðJVdVÞdsþ ðJSAdAÞsrtds� ðJSAdAÞentds (3.7)

. quantity of the accumulated property (PA):

PA ¼
¶C

¶s
dV

� �

ds (3.8)

. net quantity of the transported property (PV)

PV ¼ ðJtdAÞsrtds� ðJtdAÞentds (3.9)

By coupling relations (3.7)–(3.9) with (3.4) we obtain:

JV þ
½ðJSAÞsrt � ðJSAÞent�dA

lndA
� ¶C

¶s
¼ ½ðJtÞsrt � ðJtÞent�dA

lndA
(3.10)

where lndA is the measure of the microvolume dV and ln is the normal length of
the microcylinder that defines the balance space.

Due to the random selection and random dimension of the control volume, we
can assume that it is very small and so ln approaches zero. Consequently, we can
now write relation (3.11). This is identical to Eq. (3.6) that is recognized as the
differential form of the property conservation law

¶C

¶s
þ div~JJt ¼ div~JJSA þ JV (3.11)

All the terms of relations (3.5) and (3.6) are important but special attention must
be given to the transport flux vector.

Generally, this vector contains three components, which correspond to the
mechanisms characterizing the behavior of the property carriers during their
movement. The molecular, convective and turbulent moving mechanisms can to-
gether contribute to the vector flux formation [3.6]. In the relation below (3.12),
DC is the ordinary diffusion coefficient of the property.DCt represents the diffu-
sion coefficient of the turbulences and ~ww is the velocity flow vector, then the gen-
eral relation of the transport flux of the property is:

~JJt ¼ �DCgrad
��!

Cþ w!C� DCtgrad
��!

C (3.12)

With Eqs. (3.12) and (3.6) we obtain the relation (3.13). It is recognized as the
equation field of the property concentration. In fact, it represents the property
conservation law for a random point from a homogeneous medium:

¶C

¶s
þ divðw!CÞ ¼ div½ðDC þ DCtÞgradC

���!� þ divJSA
�!þ JV (3.13)
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3 Mathematical Modelling Based on Transport Phenomena

Frequently the integral form of the conservation law of the property is particular-
ized as total and partial mass balance and also as energy or thermal balance [3.7].
For each particularization, a control volume must be selected in order to have a
form capable of permitting the computation of each integral from the relation
(3.5). As an initial condition, we have to declare the property, the transport vector
and the property generation rate. Figure 3.2 presents the way to obtain the equa-
tions of the differential balance of total mass, mass species and energy (heat). The

38

Total mass balance:

P=m; =ρΓ ; ρ= wJ t  ; .......AwG;GG
d

dm
1111m2m1m ρ=− =

τ

Species mass balance:

P=mk; Γ=ρk; kt wJ ρ=  ; .......AwG;GG
d

)m(d
1111m2k2m1k1m

k ρ=ω−ω=
τ

ω

ρ1

w2, ωk2

ρ2

A2

w1,ωk1

A1

Energy balance ; )
2

wugz(mEP
2

++== ;

)
2

wugz(e
2

++=ρΓ                  = ; )
2

wugz(wqJ
2

cdt ++ + ρ=  −
 

; )w(pJ SA

 

ρυ= − ;

mv WJ = ; m21

2

2

2

121m WQ)]hh()ww(
2
1)zz(g[GE

++−+−+−
τ�

� ;

22m11m hGhG
)mh(

−=
�τ

�

e m

dVJAdJdV =AdJ
A V A V VSAt��          +��� ��

τ�
Γ�

+���
→   

1

2

3

m
w2,ρ2A1

w1,ρ1 A2

Q

Wm

A2

1/2w2
2, ρ2

u2,p2, 2,gz2

1/2w2
1,ρ                                                         1

u1,p1, 1,gz1

A1

→→→

→ →

=

υ

υ

Figure 3.2 Particularization of the integral balance equation
of the property (3.5) for mass and energy conservation.



3 Mathematical Modelling Based on Transport Phenomena

symbols used in Fig. 3.2 have the following meanings: q1, q2 – densities; w1, w2 –
flow velocity for the flow area A1, A2; Gm1, Gm2 – mass flow rate; xk1, xk2 – mass
concentrations (fractions) for k species (component); u1, u2 – specific internal
fluid energy; p1, p2 – pressure values; t1, t2 – value of the flowing fluid specific
volume; z1, z2 – positions that characterize the local potential energy; h1, h2 –
enthalpy for the flowing fluid; g – gravitational acceleration.

We observe from Fig. 3.2 that these transformations of integral equations of the
property conservation have been obtained taking into consideration a very simple
apparatus, here represented by a frustum conical pipe with flow input at the larger
base and output at the smaller base.

Now we can see how the differential form of the property conservation law can
generate the equations of the velocity distribution for a flowing fluid (Navier-
Stokes equations), the temperature or the enthalpy distribution (Fourier second
law) and the species concentration distribution inside the fluid (second Fick’s
law).

In all these particularization cases, we use the molecular and convective partici-
pations in the composition of the vector of transport.

The equation for the momentum transport in vectorial form, gives (by particu-
larization) the famous Navier-Stokes equation. This equation is obtained consider-
ing the conservation law of the property of movement quantity in the differential
form: ~PP ¼ m~ww. At the same time, if we consider the expression of the transport
vector:~JJt ¼~ssþ ~wwðr~wwÞ and that the molecular momentum generation rate is given
with the help of one external force~FF, which is active in the balance point, the par-

ticularization becomes:
¶ðr~wwÞ
¶s
þ div½~ssþ ~wwðr~wwÞ� ¼ divð�p~nnÞ þ r~FF, where p is

defined as the local hydrodynamic pressure. The flux of the momentum quantity
can be interpreted as a tension that characterizes the fluid deformation. Indeed, it
is a tensor. When the conservable property is the mass from an infinitesimal con-
trol volume (P ¼ m;C ¼ m=V ¼ r) where the convective flux is dominant, then
the particularization of the differential form of the property conservation law

becomes the flow continuity equation:
¶r
¶s
þ divðr~wwÞ ¼ 0.

The Navier-Stokes equations and the flow continuity equation together give the
general flow model; other cases associate various forms of the energy conservation
equation to this model.

For the particularization of the differential conservation law to the heat trans-
port, we consider first that the transported property is the sensible heat
(P ¼ mcpt,C ¼ rcpt) and secondly that it is carried out by molecular and convec-
tive mechanisms (~JJt ¼~qqm þ ~wwrcpt).

When the conservable property is represented by the local quantity of the spe-
cies A (P ¼ nmA;C ¼ nmA=V ¼ cA) transported by molecular and convective
mechanisms, relation (3.6) becomes the equation of field of the species concentra-
tion. Figure 3.3 gives the three particularizations of the differential form of the
property conservation law. Here we present the basic equations of momentum,
heat and mass transport using their vectors and Cartesian expressions. However,
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Figure 3.3 Particularization of the differential balance equation of a
property (3.6) for momentum, heat and mass transport.



3 Mathematical Modelling Based on Transport Phenomena

these equations, which characterize the fundamental properties of transport, can-
not be used when we have conjugated actions. For example, if in a homogeneous
system we simultaneously have gradients of species A concentration, temperature
and pressure, then the molecular flux for the species A transport contains all par-
ticipations and is written as follows:
~JJmA ¼ �D½~��cA þ kt

~�� lnðTÞ þ kp
~�� lnðpÞ�, where DAkt and DAkp are, respectively,

the thermal-diffusion coefficient and pressure-diffusion coefficient of species A.
When we use the updated transport flux of species in the particularization of the
balance of the differential property (Eq. (3.6)) a new expression of the field of the
species concentration is obtained. The turbulence has to be considered when we
have an important convective transport, which in many cases is the dominant
transport mechanism. The contribution of this mechanism to the transport capac-
ity of the medium is introduced in relation (3.3) by the addition of the coefficient
of turbulent diffusion of the property.

When the transport is considered without turbulence we have, in general, DC; t

is the cinematic viscosity for the momentum transport; a ¼ k=ðrcpÞ is the thermal
diffusivity and DA is the diffusion coefficient of species A. Whereas with turbu-
lence we have, in general, DCt; tt is the cinematic turbulence viscosity for the
momentum transport; at ¼ kt=ðrcpÞ is the thermal turbulence diffusivity and DAt

is the coefficient of turbulent diffusion of species A; frequently tt ¼ at ¼ DAt due
to the hydrodynamic origin of the turbulence.

Indeed, this is a very simplistic treatment for the general flow mechanism, so, it
is important to note here that the turbulence is in fact a vast scientific domain
where interdisciplinary characterization methods are frequently needed.

Chemical engineers have developed very powerful methods for the hydrody-
namic characterization of flows in different regimes by using specific apparatus;
this methodology allows one to model the turbulent flow in industrial or laborato-
ry devices.

We cannot finish this short introduction on the property transport problems
without some observations and commentaries about the content of Figs. 3.2 and
3.3. First, we have to note that, for the generalization of the equations, only vector-
ial expressions can be accepted. Indeed, considering the equations given in the
figures above, some particular situations have been omitted. For example, we
show the case of the vector of molecular transport of the momentum that in Fig.
3.3 has been used in a simplified form by eliminating the viscous dissipation. So,
in order to generalize this vector, we must complete the sij expression with consid-
eration of the difference between the molecular and volume viscosities g� gv:

sij ¼ �
1
2

t
¶ðrwiÞ
¶xj

þ
¶ðrwjÞ
¶xi

 !

þ 2
3
ðg� gvÞdivðw!Þdij.

However, we remark here that the simplifications of the expressions in the Carte-
sian coordinates system have been accepted as in the case of an isotropic and non-
property dependent diffusion coefficient of a property. Indeed, the independence
of the general diffusion coefficient with respect to the all-internal or external soli-
citations of the transport medium appears unrealistic in some situations.
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3 Mathematical Modelling Based on Transport Phenomena

For actual cases, the equations from these tables have to be particularized to the
geometry of the device used and to all conditions of the process including the con-
ditions that show the process state at the wall and interphases.

Interphase transfer kinetics. At this point, we need to characterize the process that
leads to the transfer of the property through the interphase. The transport of the
momentum from one phase to another is spectacular when the contacting phases
are deformable. Sometimes in these situations we can neglect the friction and the
momentum transfer generates the formation of bubbles, drops, jets, etc. The char-
acterization of these flow cases requires some additions to the momentum equa-
tions and energy transfer equations.

Boundary layers appear in flow situations near the walls or other non-deform-
able structures that exist in the flow field [3.8]. Their formation and development,
stability and local thickness are of great interest to engineers and researchers
because all the gradients of property concentration are concentrated here. Conse-
quently, we can write a very simple expression for the flux of the property.

In a general case, when a property crosses the interphase, we must consider
that the property flux is identical between both contacted phases. Indeed, we con-
sider ideal behaviour of the interphase or, in other words, we must accept the
interphase to be not resistive to the transfer. We can criticize this fact but fre-
quently it is accepted as a datum.

So when we accept the ideality of the interphase and when it is positioned to
the coordinate xi we can write:

Jt1 ¼ �DC1
dC

dx

� �

x¼xi

¼ Jt2 ¼ �DC2
dC2

dx

� �

x¼xi

¼ Jt (3.14)

Now we have to take into account the boundary layers at the left and right sides of
the interphase where we have already shown the gradient of concentration of the
property of the phase. With this last consideration, we can write a set of relations
(3.15) that introduce the notion of the partial coefficient of the transfer of property
(3.16):

�DC1
dC1

dx

� �

x¼xi

¼ �DC2
dC2

dx

� �

x¼xi

¼ Jt ¼

�DC1
dC1

dx

� �

x¼xi

ðC1¥ � Cx¼xi
Þ ðC1¥ � Cx¼xi

Þ ¼ kC1ðC1¥ � Cx¼xi
Þ ¼ kC2ðCx¼xI

� C2¥Þ (3.15)

kC1 ¼
�DC1

dC1

dx

� �

x¼xi

ðC1¥ � Cx¼xi
Þ ; kC2 ¼

�DC2
dC2

dx

� �

x¼xi

ðCx¼xi
� C2¥Þ

(3.16)

It is of interest that, for the computation of the transfer coefficients, various proce-
dures have been advanced and in the past an immense quantity of data and refer-
ence materials have been collected on this subject.
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3.1 Algorithm for the Development of a Mathematical Model of a Process

3.1
Algorithm for the Development of a Mathematical Model of a Process

The relationships among the variables for a concrete process can be known
through the particularization of the processes of transport phenomena. The math-
ematical model has to describe the state and evolution of the process while knowl-
edge of the previous description of the operating conditions of the studied case is
necessary. Indeed, terms such as flow, heat, diffusion and reaction clearly show
that the transport phenomena are not absent from the investigated process. The
verbal or written description must be clear and decisive with regard to identifying
the effect of the independent variables on the exits of the process (dependent vari-
ables). At the same time, this description must correctly show how the dominant
transport phenomena between all the unitary steps occur while the concrete pro-
cess takes place. The observation spirit, a good engineering background, a good
knowledge of the case and a fluent engineering language must be associated with
the researcher’s acute sense of responsibility in describing the process.

Indeed, the description of the process is recognized as the first step in the build-
ing of the mathematical modelling of a process. The result obtained here is recog-
nized as a descriptive model or model by words. During this step, dependent and in-
dependent process variables resulting from the identification of the actions and
interactions of the elementary phenomena that compose the state and evolution
of the investigated process will be listed. At the same time, the effect of each inde-
pendent variable on each dependent variable must be described.

The second step begins with a verbal or written analysis showing the coupling of
the flow phenomena, heat and mass transfer, chemical reaction thermodynamics
and kinetics. Here, a fraction of the factors of the process (independent variables
of the process) selected by the first step will be eliminated, whereas a new limited
number of factors will be added to the list. This step concerns one of the most
delicate problems in mathematical modelling: the identification or creation of the
mathematical clothes of the process by summation from the elementary models
of the phenomena involved in the process. To finish this step, a mathematical
form that characterizes the operating process is definitively established. This
mathematical form is recognized as the general mathematical model of the process.
Indeed, if the general descriptive models have been correctly decomposed into
parts, then, each one of the parts will be characterized by its own general mathe-
matical model.

The coupling of the general mathematical model with the evolution of the mate-
rial and spatial conditions is given by its association with the investigated condi-
tions of univocity of the process. This is the basis of the third step in the building
of the mathematical model of a process. At the end of this step, we will have a
particularized mathematical model. This step will be specified for each one of the
decomposed models of the parts; i.e. for each of the particular devices in a unit.
For this particularization, we use the following conditions of univocity:
. the geometric conditions establish the dimensions of the apparatus

where the process is carried out from the geometric viewpoint.
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3 Mathematical Modelling Based on Transport Phenomena

Indeed, we made the choice of the coordinates system (cartesian,
cylindrical or spherical) which will be used for our actual case and
the model equation will be transformed for the selected coordi-
nates system.

. the material conditions describe the physicochemical properties of
the medium where the process takes place as well as the variation
of these properties with temperature, pressure and composition
using numerical values or analytic relations. Here we select the
values or relations for the density, viscosity, thermal coefficient ca-
pacity, thermal conductivity, and diffusion coefficient of each
component.

. the dynamic conditions give the initial spatial distribution and its
evolution with time for each transported property. They also give
the flux for each geometrical frontier as well as for each line or
surface of symmetry of the system. Three major types of frontier
have been established for the dynamic conditions:
– the boundary conditions of type I: give the numerical values of

the transported property or the function describing the varia-
tion of these values with time for each frontier of the system.

– the boundary conditions of type II: give the flux values of the
transported property to each frontier and to each symmetry
line and surface of the system. Each flux can be described by a
constant value or is dependent on time.

– the boundary conditions of type III: give the values of the prop-
erty state but here these values are out of the frontiers. At the
same time, these conditions give the values or calculus rela-
tions for the coefficients of transfer at the interphase. With
these data and using relation (3.15), we can compute the flux
of the property at the frontiers. If we denote by C1¥ the prop-
erty concentration for phase 1 and we assume a non-resistive
interphase (the phases are in equilibrium with kd, as distribu-
tion coefficient of the property) then, relation (3.15) becomes:

kC1 C1¥ �
C2 x¼xint

kd

� �

¼ �DC2
dC2

dx

� �

x¼xint

For all the situations, the dynamic conditions for the symmetry lines
and surfaces of the system contain the specification that the prop-
erty flux is zero. From the viewpoint of the property concentra-
tion, this fact shows that here it has a maximal or a minimal
value.
– the tendency conditions show the state of a dynamic process

after a very long time. If a stationary state is possible for the
process, then the tendency conditions show the transition
from a dynamic process model to a stationary process model
(steady state).

44



3.1 Algorithm for the Development of a Mathematical Model of a Process

In the fourth step of the building of a mathematical model of a process the
assemblage of the parts (if any) is carried out in order to obtain the complete math-
ematical model of the process. Now the model dimension can be appreciated and
a frontal analysis can be made in order to know whether analytical solutions are
possible.

         Case and processes descriptions

      The concrete case and its characteristic

      component processes

       - Involved transport phenomena

       - Equations with adaptability power

- Fundamental part of the variables of the processes (inputs and

exits)

        General mathematical model

            -  Model reduction to basic functional state

            - Univocity conditions attachment

       Particularized mathematical model

                     Numeric development

   Mathematical model in use (Simulator NV)

              Experimental validation

         Data for research strategy coverage or for process optimization.

   The decomposition into parts of the general descriptive model

Part 1 Part 2 Part 3 Part 4 Part 5

   The complete mathematical model

            Assemblage of parts

As a transfer functions
As complete differential

   equations

As equations for the

elementary processes

  Verified mathematical model (Simulator V)

         General case descriptive model

Figure 3.4 Steps in the building of a mathematical model for a concrete case.
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Considering that, in this last step, we have a complete mathematical model of
the process, we can now think about its valorization, by selecting the most conve-
nient and acceptable possible solution for the model transformation into a numer-
ical state. Indeed, the fifth step of this procedure results in a problem of computer
software creation. Then, we have to choose the numerical solutions for the model
integration as well as to select the input and output data state for the running of
the computer program. We also have to select the representation of the solutions
obtained with the output data processing. The final output of this step is a non-
verified simulator (Simulator NV). The degree of sophistication of the simulator
obviously depends on the model complexity. When we have some experimental
data characterizing the relationship between one or more dependent variables and
the independent process variables, then we can verify, after a normal calibration,
whether the model produces identical or very similar data. If the model results
match the experimental data, then we can affirm that we have a verified process
simulator (Simulator V). Figure 3.4 shows this gradual development schematically,
step by step, from the model establishment to simulator V. Here, we cannot logi-
cally separate the model creation part from the software creation part (numeric
model transposition). It is also clear that the sense of the presented scheme is to
show how we develop the model of one part of the general decomposed model.
When we recompose the parts, we use the principle of maximum coupling. So,
some parts will be introduced in the global model by their transfer functions,
other parts with the help of their governing differential equations assemblies.

This procedure for building a mathematical model for a concrete case has also
been mentioned in some scientific papers where the object is mathematical mod-
elling by the use of transport phenomena [3.9–3.13].

3.1.1
Some Observations about the Start of the Research

Young researchers’ first finished models are a source of great joy because they
show their creative power. Moreover, when the models developed are successfully
validated by experimentation, we can claim that the new researchers have actually
stepped into real research activity.

Concerning the situation of the models that fail the test of experimental valida-
tion, we generally have two cases. The first case concerns a model that is unable
to describe the whole project and which, normally, has to be rejected. The second
case concerns a model that reproduces the general trends of the process but
shows important differences with respect to the experimental data. This model
will be again subjected to the building procedure where, with small or large mod-
ifications, it will improve its performance.

A special case occurs when some material or transport parameters are still
unknown at the starting point and yet, at the same time, we have a lot of experi-
mental data for the model validation. In this situation, we consider both data and
model by formulating a parameter identification problem. The validation test for
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3.1 Algorithm for the Development of a Mathematical Model of a Process

this type of model will be transformed into hypotheses concerning the identified
values of parameters.

Another special case occurs when the model is obtained by assembling different
parts, and when each part has been successfully validated. In this case, the global
validation is in fact a model calibration with the experimental data available.

In an actual research programme carried out with modelling coupled with
experimental work, we cannot work randomly, without a research plan. The plan-
ning research method, given in this book in Section 5.3.2, has the capacity to be
used for solving the most refined requirements. For this purpose, we must accept
a model simulation to be as good as an experiment. With this procedure, we can
derive an indirect but complex statistical model presenting a high interest for a
computer-guided process from a model of transport phenomena. In the same
way, we can use the model of transport phenomena as a database for a neural net-
work model. Therefore, the data produced by the real model will be used in the
learning procedure by the neural network model. Excellent behaviour of the
neural network model is expected because the learning data volume can be very
rich. We point out here that in the building of a model for a concrete chemical
fabrication in an industrial unit, more aspects may be considered, each requiring
qualified knowledge. Indeed, the procedures and methods coming from different
scientific branches have to be coupled to the basic process model.

It is evident that, in these situations, problems concerning coupling hierarchy be-
tween the different parts can appear. Generally, for a fabrication that involves a chemi-
cal reaction, the top of the hierarchy is occupied by the reactor and separator models.

Figure 3.5 shows the most important scientific branches of chemical engineer-
ing research, which have to be taken into account for the modelling. Indeed, the
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3 Mathematical Modelling Based on Transport Phenomena

mathematical model of a process must answer the specific questions of each area
division. In each case, the response comes as a result of the coupling of the com-
putation procedures characterizing each branch. This is a complex and high-level
research that gives consistency to a new scientific activity named Advanced Pro-
cesses Simulators.

3.1.2
The Limits of Modelling Based on Transport Phenomena

Since the start of Section 3.1 we have been presenting how the transport phenom-
ena equations are used for the mathematical modelling of a process and how we
transform this model into a process simulator.

Actually, research by modelling is more and more extensively used in many ap-
plications because complex devices’ models, composed of different elements, can
be made by assembling models the solutions of which are frequently available.
This behaviour presents an impressive growth and is sustained by the extraordin-
ary developments in numerical calculations and by the implementation of com-
monly used computers with a high capacity and calculus rate. Nevertheless, mod-
elling based on the equations of transport phenomena cannot be applied to every
system, because they can present some limitations, which are summarized here.

The first limit derives from the model construction and can be called the con-
structive limit. It is explained by the quantity of simplifications accepted for model
construction. The flow reduction by use of ideal models and the treatment of the
transfer processes in equilibrium by using abstract notions – as for example, theo-
retical plate in distillation – represent only two of countless similar examples.

The second limit is named the cognition limit and arises from the less controlled
assumptions concerning the complicated and ill acquainted phenomena involved
in the process. Considering the interface as an equilibrium Gibbs interface and
introducing the turbulent flow from the turbulent diffusion coefficient are two
famous examples which illustrate this class of cognition limits.

The third limit is represented by the validity limits of the transfer phenomena
equation. With respect to this last limitation, Fig. 3.6 shows the fixation of these
limits with regard to the process scale evolution.

At this time, only a small number of nanoscale processes are characterized with
transport phenomena equations. Therefore, if, for example, a chemical reaction
takes place in a nanoscale process, we cannot couple the elementary chemical
reaction act with the classical transport phenomena equations. However, research-
ers have found the keys to attaching the molecular process modelling to the chem-
ical engineering requirements. For example in the liquid–vapor equilibrium, the
solid surface adsorption and the properties of very fine porous ceramics computed
earlier using molecular modelling have been successfully integrated in modelling
based on transport phenomena [4.14]. In the same class of limits we can include
the validity limits of the transfer phenomena equations which are based on pa-
rameters of the thermodynamic state. It is known [3.15] that the flow equations
and, consequently, the heat and mass transport equations, are valid only for the
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domain where the Truesdell criterion stays below unity. The Truesdell number

given by Tr ¼ 2ge

p
, where g is the medium viscosity, e the molecular oscillation

frequency and p the medium pressure, is a combination of the Knudsen (Kd) and
Mach (Ma) criteria.

Therefore, gases with very small pressure and some very viscous liquids can
have a Truesdell number value over unity.

The fourth limit is the limit of contradiction. It takes place when sophisticated
and complex models produced by academic and specialized research are used in
industrial applications. Indeed, in industrial production, engineers can expect the
current exploitation problems but they do not have any time to face new prob-
lems.

In fact, this limit depends on the standard of teaching of modelling research in
technical universities. They have a key role in educating engineers capable of
working with modelling and simulation as well as in research and development.
The work of a process engineer in the future will be more and more concerned
with modelling and using computers. Indeed, process engineers must have a con-
siderable knowledge of physics and chemistry, as well as of processes, numerical
calculation, modelling, programming and of the use of commercial programs.

The skills of graduating students are generally not very good in the fields of
modelling and simulation. The goal of universities should be to produce more
modelling-oriented engineers with good engineering, chemistry, physics, pro-
gramming and mathematical skills.
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3 Mathematical Modelling Based on Transport Phenomena

3.2
An Example: From a Written Description to a Simulator

In this section, we will show the process of the construction of a mathematical
model, step by step, in accordance with the procedure shown in Fig. 3.4. The case
studied has already been introduced in Figs. 1.1 and 1.2 of Chapter 1. These fig-
ures are concerned with a device for filtration with membranes, where the gradi-
ent is given by the transmembrane pressure between the tangential flow of the
suspension and the downstream flow. The interest here is to obtain data about the
critical situations that impose stopping of the filtration. At the same time, it is
important to, a priori, know the unit behaviour when some of the components of
the unit, such as, for example, the type of pump or the membrane surface, are
changed.

Descriptive model and its division into parts. The first steps in the model construc-
tion are related to Fig. 3.7. The pump PA assures simultaneously the suspension
transport and the necessary transmembrane pressure. The excessive accumula-
tion of the solid in the retentate is controlled by its permanent removal as a con-
centrated suspension from the reservoir RZ. The clear liquid (permeate) flow rate
and the solid concentration in the exit suspension are permanently measured and
these values are transferred to the control and command computer CE. The
instantaneous values of the operation pressure and input rate of fresh suspension
are established by the computer (this works with software based on the mathema-
tical model of the process) and corrected with the command execution system
CSE.

PA

concentrated suspension

flow rate, pressure

C

 fresh suspension

VC

VC

RZ

CSE

SAD

filtrate

CE

D

Figure 3.7 Membrane filtration plant.
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If in stationary operation conditions, membrane clogging does not occur or is
negligible, then the modelling case becomes banal. Nevertheless, when surface
clogging cannot be eliminated by the tangential flow rate, we must introduce a
continuous increase in the hydrodynamic resistance of the membrane [3.16–3.18].
In this situation, if the pressure filtration stays unchanged, the filtrate rate will
decrease with time. When unacceptable values of the filtrate rate are reached, the
process must be stopped and the membrane cleaned or replaced. This mode of
operation is uneconomical. One solution to this problem is to increase the trans-
membrane pressure in order to maintain the flow rate but, in this case, the pump-
ing flow rate has to be reduced because pumps generally present a pre-established
and characteristic flow rate–pressure relation which is, a priori, unchangeable.
Consequently, when the pressure is continuously increased, the clogging rate will
increase faster than when a high tangential velocity is used in the unit.

The clogging effect can be considered as a reduction in the value of the surface
filtration constant for practical purposes. Indeed, when clogging takes place, the
surface filtration constant can be given by its initial value k0 multiplied by a
decreasing time function. This assumption is frequently used when the function
is obtained from experiments [3.19, 3.20]. In our example, if we do not consider
the friction (and heat transfer) we can note that only a concrete mass transfer
problem can be associated with the membrane separation process. The first step
before starting to build the general mathematical model, concerns the division of
the system into different elementary sections. Indeed, we have a model for the
filtration device (i.e. the membrane and its envelope), for the pump (P) and for
the reservoir of concentrated suspension (RZ) (Fig. 3.7).

General mathematical model. Considering that all we have is a mass transfer phe-
nomenon, then, in such a system, the solid concentration changes in each plant
device. With the considered coordinates system and after the notations given in
Fig. 3.8, we can write the mathematical model of the filter unit as a particulariza-
tion of the flow equations and the solid transport equation:

The Navier-Stokes equation in the x direction:

¶wx

¶s
þ wx

¶wx

¶s
¼ � 1

r
¶p
¶x
þ gsp

¶2wx

¶x2
þ ¶2wx

¶y2
þ ¶2wx

¶z2

 !

(3.17)

The Bernoulli equation with respect to an elementary local length dx:

¶p
¶x
¼ � 1

2
rsusp¶x

¶�wwx

¶x

� �2

� k

de

�ww2
x

2
rsusp (3.18)

The formula of the definition of the suspension mean flow velocity:

�wwx ¼
1
hl

Rh

0

Rl

0
wxðz; yÞdzdy (3.19)

The total mass balance equation with respect to the elementary local length dx:
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dGpr

dx
¼ rf lh

¶wx

¶x
(3.20)

The transfer equation for the permeate given by the use of its flux expression
through the membrane surface:

dGpr

dx
¼ k0lðpx � p0Þf ðcsrs; sÞ (3.21)

The simplified solid concentration field equation:

¶cs

¶s
þ wx

¶cs

¶x
¼ 0 (3.22)

L

z

y x

l

Gvp, csrz
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Figure 3.8 Decomposition of the filtration unit into sections
and their corresponding description with relationships of the
basic variables.
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It is important to note that, except for the heat transfer problems, which have
not been considered here, the model contains, in a particular form, all the trans-
port phenomena relationships given at the start of this chapter. From the mathe-
matical viewpoint, we have an assembly of differential and partly differential equa-
tions, which show the complexity of this example. However, this relative mathe-
matical complexity can be matched with the simplicity of the descriptive model.
Indeed, it will be convenient to simplify general mathematical models in order to
comply with the descriptive model. Two variants can be selected to simplify the
flow characterization in the membrane filtration unit.

The first variant considers that the model suspension flow corresponds to a plug
flow model. In this case, the velocity wx is a function of the coordinate x only. Its
value is obtained from the ratio between the local suspension flow rate and the
flow section [3.21]. With this assumption, the general mathematical model of the
filter becomes:

w0 ¼
Gvp

lh
, wx ¼

Gvx

lh
(3.22)

px ¼ px�dx �
k

de

ðw0 þ wxÞ
2

8
rsuspdx (3.23)

dGpr

dx
¼ k0lðpx � paÞf ðcs; px; sÞ (3.24)

Gvx ¼ Gvp �Gpr
rf

rsusp
(3.25)

¶cs

¶s
þ wx

¶cs

¶x
¼ 0 (3.26)

In the second variant, the plug flow model is considered as a series of tanks with
perfect mixing flow [3.22, 3.23]. In this case, the real filter will be supposedly
replaced by a series of some small filters (three in this analysis) with perfect mix-
ing flow. Figure 3.9 shows the scheme, relations and notations used. The filtrate
transfer equation has been used for the mathematical characterization of each
small filter for the total material balance equation and non-steady-state solid bal-
ance equation:
. first small filter:

Gpr1 ¼ k0A1ðp1 � paÞf ðcs1; p1; sÞ (3.27)

Gv1 ¼ Gvp �Gpr1
rf

rsusp
(3.28)

dcs1

ds
¼

Gvp

V1
csrz �

Gv1

V1
cs1 (3.29)
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. second small filter:

Gpr2 ¼ k0A2ðp2 � paÞf ðcs2; p2; sÞ (3.30)

Gv2 ¼ Gv1 �Gpr2
rf

rsusp
(3.31)

dcs2

ds
¼ Gv1

V2
cs1 �

Gv2

V2
cs2 (3.32)

. third small filter:

Gpr3 ¼ k0A3ðp3 � paÞf ðcs3; p3; sÞ (3.33)

Gv3 ¼ Gv2 �Gpr3
rf

rsusp
(3.34)

dcs3

ds
¼ Gv2

V3
cs2 �

Gv3

V3
cs3 (3.35)

Gv3 ¼ Gvf ; cs3 ¼ csf (3.36)

The general mathematical process model has to be completed with the models for
the recycled suspension reservoir and for the pump. The suspension reservoir is a
classical perfect mixing unit (see Fig. 3.8) so its model includes the unsteady total
and solid balances. These balances are given below by relations (3.37) and (3.38).
After Fig. 3.8, the mathematical model of the pump gives the relationship be-
tween the pump exit flow rate and its pressure (relation (3.39)):

dVrz

ds
¼ Gv0

rs0

rsusp
þGvf �Gvp �Gve (3.37)
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dcsrz

ds
¼ Gvf

Vrz
csf þ

Gv0

Vrz
�
ðGvp þGveÞ

Vrz
csrz (3.38)

Gvp ¼ a� bp2
r (3.39)

For the whole unit we have to complete the general mathematical model with con-
straints that can be given by the device construction and/or operating conditions:

For the correct pump operation, the suspension level in the recycled reservoir
must be within a range around a minimal value (Vrz min), which is lower than the
geometric volume (V0):

Vrz min � Vrz � V0 (3.40)

The pump cannot operate under a minimal flow rate value:

Gvp � Gvp min (3.41)

The ratio of solid concentration between the recycled and fresh suspension must
be limited in order to reach a good flow in the filter unit and a rational recycling;
this constraint can also be applied to flow rates Gv0 and Gvf:

1 � csrz

cs0
� b (3.42)

The filtrate rate or the working pressure must be limited to imposed selected con-
stant values. For a two-dimensional model (x; sÞ these constraints are given by
relations (3.43) and (3.44)

Gpr=x¼L ¼ Gprimp (3.43)

pr ¼ pr0 (3.44)

In the case of a mono-dimensional model (s), relations (3.45) and (3.46) comply
with the technological requirements

Gpr1 þGpr2 þGpr3 ¼ Gprimp (3.45)

pr ¼ pr0 (3.46)

Table 3.1 shows all general mathematical models resulting from the analysis of
the filtration plant operation. The equations include the parts assembly in the
model (Fig. 3.4) and an overall formula that shows the relationships that compose
each model.
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Table 3.1 Mathematical models for the filtration plant analysis.

Model

Two-dimensional x,s Monodimensional s

Constant filtrate
flow rate operation

Constant pressure
operation

Constant filtrate
flow rate operation

Constant pressure
operation

(3.22)–(3.26) +
(3.37)–(3.43)

(3.22)–(3.26) +
(3.37)–(3.42) and (3.44)

(3.27)–(3.36) +
(3.37)–(3.42) and (3.45)

(3.27)–(3.36) +
(3.37)–(3.42) and (3.46)

Particularized mathematical model. The univocity conditions given by the system
geometry, the material conditions and the initial and frontiers state of the process
variables have to be related with the models shown in Table 3.1:
. geometrical conditions: for the membrane and the two-dimensional

model: l = 0.15 m; L = 10 m; h= 0.075 m; for the membrane and
the monodimensional model: A1 = A2 = A3 = 0.5 m2; V1 = V2 = V3

= 0.04 m3 ; for the suspension reservoir : V0 = 1 m3, Vrz min =
0.15 m3.

. material conditions: liquid density rf ¼ 1000 kg/m3, solid density
rs ¼ 1500 kg/m3, liquid viscosity gf ¼ 10�3 kg/(m s), initial value
of the filtration constant k0 ¼ 6 � 10�4 m3/(m2 h Pa), solid con-
centration of the fresh suspension Cs0 = 10 kg/m3. The remaining
values of the material properties will be computed by use of suit-
able relations (see Fig. 3.10).

. initial and/or boundary conditions: for the two-dimensional model,
we attach the following initial and boundary conditions to the dif-
ferential and partly differential equations:

Eq. (3.24) : x = 0, Gprx = 0 (3.47)

Eq. (3.26) : 0 � x � L; s ¼ 0; cs ¼ cs0; x ¼ 0; s � 0; cs ¼ csrz (3.48)

Eq. (3.37) : s = 0, Vrz = 0.5 (3.49)

Eq. (3.38) : s = 0 , csf ¼ cs0 (3.50)

For the monodimensional model, only initial conditions are requested. The fol-
lowing data express the initial model conditions and definition functions for rela-
tions (3.49) and (3.50):

Eq. (3.39): Gvp ¼ 5 � 10�2 � 3 � 10�3p2
r (3.51)

s ¼ 0; pr ¼ pr0 ¼ 2 (3.52)
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Gvp min ¼ 6 � 10�3 (3.53)

Fðcs; p; sÞ ¼ exp �0:5
cs

100

� � p
pr0

� �
s

3600

� �

(3.54)

The complete model. The parts assemblage is already given in Table 3.1. Here the
result of the assembly of the models of the devices is an enumeration of the rela-
tions contained in each model.

The numerical model-Simulator NV-Simulator V. At this point, we must find the
more suitable variant for passing from the differential or partly differential model
equations to the numerical state. For the case of the monodimensional model, we
can select the simplest numerical method – the Euler method. In order to have a
stable integration, an acceptable value of the integration time increment is recom-
mended. In a general case, a differential equations system given by relations
(3.55)–(3.56) accepts a simple numerical integration expressed by the recurrent
relations (3.57):

dy1

dx
¼ F1ðy1; ::::::yN; xÞ:

:

:

8
>>><

>>>:

dyN

dx
¼ FNðy1; ::::::yN; xÞ (3.55)

y1ðx0Þ ¼ y10; y2ðx0Þ ¼ y20; ::::; yNðx0Þ ¼ yN0 (3.56)

y1k ¼ y1k�1 þ F1ðy1k�1; y2k�1; ::::; yNk�1; xkÞ:
:

:

8
><

>:

yNk ¼ yNk�1 þ FNðy1k�1; y2k�1; ::::; yNk�1; xkÞ (3.57)

Figure 3.10 shows the details of the numerical-solving algorithm for the monodi-
mensional. This numerical transposition has the capacity of being related with
any available software. In Fig. 3.10, we can note that only the case of constant fil-
trate rate has been presented. Otherwise, when we operate at constant pressure,
the filtrate rate decreases with the time due to the continuous clogging phenome-
non. To simulate a constant pressure filtration, some changes in the computing
program of Fig. 3.10 are necessary; these modifications are shown in Fig. 3.11. It
is easily observable that here the stop criterion has been completed with the
decreasing of the solid concentration in the recycled suspension.

57



3 Mathematical Modelling Based on Transport Phenomena58

3
.   1.  Constants: A1,A2,A3,V1,V2,V3,V0,k0, f, s0, ,Gvp0,pr0,Gvpmin,

                                  Vrz min,V00, f, solid,pa,Gv0,Gprimp,rap

   2. Values:  A1=A2=A3=0.5;V1=V2=V3=0.04;k0=6*10^-4;cs0=10; f=1000; s0=1005;

            =10;Gvp0=38*10^-3;pr0=2;V0=1;Gvpmin=6*10-3; Vrzmin=0.1;V00=0.5;

      f=10^-3 ; solid=1500;pa=1; Gv0=3.8*10^-3;prmax=3.7; Gprimp=3.58*10^-

           3; rap=10

    3. Functions: ]
3600

)
p

p
)(

100

c
(5.0exp[),p,c(F

0r

s

s

    ;  +  fssusp )c(

                                 )1(c
solid

f

s  

 
 ;  ))

c
(5.21()c(

25.0

solid

s

fssusp  

    4. Variables: n , k

    5. Sequences:

5.1      n=0

5.2  cs10=cs0; cs20=cs0 ; cs30=cs0 ; csrz0=cs0 ; cs30=csf ; Vrz0=V00 ; pr=pr0 ; Gvp=Gvp0

5.3      n=1

5.4     ])/)c([(04.0p
25.0

f1n1ssusp1 ηη=∆ −

5.5  ])/)c([(04.0p
25.0

f1n21ssusp2 ηη=∆ −

5.6   ])/)c([(04.0p
25.0

f1n3ssusp3 ηη=∆ −

5.7      p1=pr-∆p1 ; τ=n∆τ
5.8     Gpr1=k0A1(p1-pa)F(cs1n-1,p1,τ)

5.9      Gv1=Gvp-Gpr1 f/ρsusp(cs1 n-1)

5.10     cs1 n=cs1 n-1 +(Gvpcs rz n-1/V1-Gv1cs1n-1/V1)∆τ
5.11     p2=pr-∆p2 ;

5.12  Gpr2=k0A2(p2-pa)F(cs2n-1,p2,τ)

5.13    Gv2=Gv1-Gpr2ρf/ρsusp(cs2 n-1)

5.14  cs2 n=cs2 n-1 +(Gv1cs 1n-1/V2-Gv2cs2n-1/V2)∆τ
5.15  p3=pr-∆p3 ;        

5.16  Gpr3=k0A3(p3-pa)F(cs3n-1,p3,τ)

5.17    Gv3=Gv3-Gpr3ρf/ρsusp(cs3 n-1)

5.18    cs3 n=cs3 n-1 +(Gv2cs 2n-1/V3-Gv3cs3n-1/V3)∆τ
5.19    Gvf=Gv3 ; csf=cs3 n ; k=0

5.20  Gve=Gv0/rap

5.21  Vrzn=Vrz n-1+ [Gv0ρs0/ρsusp(csf n-1)+Gvf-Gvp-Gve]∆τ
5.22  csrz n=csrz n-1 +(Gvfcs f/Vrz+Gv0cs0/Vrz-(Gvp+Gve)csrz n-1/Vrz)∆τ
5.23  Write: p1,p2,p3,cs1n, cs2 n, cs3 n , Gpr1,Gpr2, Gpr3 , pr,Gve,Gvp,τ
5.24  For  Vrz≤Vrz min then k=1 and rap=rap+k

5.25  For Vrz≥V0  then  k=-1 and rap=rap+k

5.26  For  Vrz min≤ Vrz≤V0  then k=0 and  rap=rap+k

5.27  Gpr =Gpr1+Gpr2+Gpr3

5.28  For  pr≥prmax then  STOP

5.29  For  Gpr<Gpr imp then pr=pr+pr/30 ; Gvp=5*10^-2 – 3*10^-3pr
2;

            n=n+1 ; Jump to 5.4

ρ ρ ∆τ
η ρ

ρ ρ
∆τ

η ρ

τ τ
ρ = ρ

ρ
ρ− η = η + ρ

ρ

Figure 3.10 Numerical algorithm for the monodimensional
model of the membrane filtration unit. Plant operating case:
Constant filtrate flow rate Gpr ¼ Gpr imp.
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It is obvious that the application of the two-dimensional model will introduce a
supplementary mathematical diversity and complexity. Indeed, if we change the
order of the relations in a given algorithm or the network integration parameters
(Ds; Dx), the proposed integration procedure can rapidly produce integration
instabilities in this concrete case. The two-dimensional integration can be main-
tained in the stability area, taking into consideration some observations concern-
ing the physical meaning of the evolution of the solid concentration of the pro-
cessed suspension (cs). This model algorithm is presented in Fig. 3.12. When the
intention is to use this algorithm for simulation of a constant pressure filtration,
the changes given by Fig. 3.11 will be introduced. It is important to specify that
the geometric plant dimensions and the flow rate of the fresh suspension are
closely related. So, we cannot arbitrarily change any of these parameters indepen-
dently. Once all the steps of the building of the process model have been success-
fully completed, the results produced with the models and their associated com-
puter programs (software) can be presented.

Simulations and their results. It is not easy to assign the correct data to start the
software running. Some of these data can be measured, others can be selected
from practical design and others will be created. However, all these data must
comply with the real investigated process.

First, we show that three calculation aspects seem to be interesting and must
consequently be mentioned here: initially for the integration a small Ds value has
to be used (Ds ¼ 1 s); secondly we admit that a good stability with the integration
network parameters has been observed in the case of the two-dimensional model:
Ds ¼ 1 s and Dx ¼ 0:1 m. Finally, we consider that the clogging rate can be
selected by a careful modification of the argument of the exponential function
that characterizes this process (Fðcs; p; sÞ).

We have selected four examples with different operating conditions: (a) a con-
stant filtration flow rate with rapid clogging of the membrane; (b) a constant filtra-
tion flow rate with slow clogging of the membrane; (c) a constant pressure with
rapid clogging of the membrane; (d) a constant pressure with slow clogging of
the membrane. Each graphic representation of the simulations contains five
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5.28 For Gpr>0.5*Gv0 then n=n+1

Jump to 5.4

For Gpr<0.5*Gv0 and csrz n>5*cs0 then n=n+1

Jump to 5.4

5.29

For csrz n<4.95*cs0 then STOP

Figure 3.11 Changes to be introduced in the algorithm of Fig. 3.10 for the simulation
of a constant pressure filtration (constraint pr ¼ pr0 according to Eq. (3.46)).



3 Mathematical Modelling Based on Transport Phenomena

 1.   Constants: l , h , L , ∆x , ∆τ , λ0 ,V0 , k0 , ρf , ρs0 , ∆τ , Gvp0 , pr0 , Gvpmi n , Vrz min, V00 ,

ηf  , ρsolid , pa  , Gv0 , Gprimp  , rap

 2.   Values:  l=0.15; h=0.075 ; L=10 ; ∆x=0.1 ; ∆τ=1 ; λ0=0°024 ; k0=6*10^-4 ; cs0=10;

ρf=1000; ρs0=1005; ∆τ=10;Gvp0=38*10^-3;pr0=2;V0=1;Gvpmin=6*10-3; Vrzmin=0.1;

V00=0.5; ηf=10^-3;  ρsolid=1500;pa=1;Gv0=3.8*10^-3;  prmax=3.7;Gprimp=3.58*10^-3;

rap=10

3.  Functions:  F(cs,p,τ)=exp[-0.5(cs/100)(p/pr0)τ/3600)] ; ρsusp(cs)=ρf+cs(1-ρf/ρsolid) ;

ηsusp(cs)=ηf [1+2.5(cs/ρsolid)^0.25]      

 4.  Contours:  n , k

  5.  Sequences:

5.1    M=L/∆x
5.2   n=0 :  cs 0,0= cs 1,0= cs 2,0= cs 3,0= cs 4,0= cs 5,0= cs 6,0= cs 070= cs 8,0= cs 9,0= cs 10,0=cs0 ; cs rz=cs0

;  Gvp=Gvp0 ; pr=pr0 ; num=25 ; de=[lh/(l+h)]^0.5

5.3    n=1 :
            cs 0,1=cs0+0.5 ; p0=pr ; Gpr0=0 ; τ=n∆τ

5.4       m=1

5.4.1    w0=Gvp/(lh)
5.4.2   Gv m =Gvp-Gv0/num;

          w m=Gv m/(lh) ; λ=λ0[ηsusp(cs m-1 n)/ηf]^0.25;

          p m=p m-1-(λ/de)(((w0+w m)^2)/8 )ρsusp(cs m-1 n)∆x;
          Gpr m =Gpr m-1+k0l(p m –pa)F(cs m-1 n,p m,τ)∆x; G'

v m=Gv m-Gpr m ;  Ere=(G'
v m-Gv m)/Gv m

          For Ere≤0 and  ABS(Ere)≥0.01 then : k=-1 ; num =num+k; Jump to 5.42

          For  Ere≥0 and  Ere≥0.01 then : k=+1 ; num =num+k;  Jump to 5.42
          cs m n=cs m-1 n/(1-∆x/(w m∆τ)  ; Write : p m ,Gpr m , Gv m , cs m n 

          For  m≤M then :  m=m+1;  Jump to 5.4.1

5.5       csf n= cs M n ; Gve=Gv0/rap; Gvf=Gv M

5.6      Vrzn=Vrz n-1+ [Gv0ρs0/ρsusp(csf n-1)+Gvf-Gvp-Gve]∆τ

5.7       csrz n=csrz n-1 +(Gvfcs f/Vrz+Gv0cs0/Vrz-(Gvp+Gve)csrz n-1/Vrz)∆τ

5.8      Write : Gpr M , pr , cs M n , csrzn , Gve , Gvp ,τ
5.9      For Vrz≤Vrz min then : k=1 and  rap=rap+k ; For Vrz≥V0  then: k=-1 and  rap=rap+k

5.10     For  Vrz min≤ Vrz≤V0  then : k=0 and rap=rap+k

5.11     For  pr≥pr0  then  STOP

5.12     For Gpr≤Gpr imp then :  pr=pr+pr/10 ;  Gvp=5*10^-2 – 3*10^-3pr
2; Jump to 5.13

5.13     m=0

5.14     n=2
5.15.0     cs 0 n = csrz n  ; τ=n∆τ ; m=1

5.15.1     w0=Gvp/(lh)

5.15.2     Gv m =Gvp-Gv0/num ; w m=Gv m/(lh) ; λ=λ0[ηsusp(cs m-1 n)/ηf]^0.25 ;
               p m=p m-1-(λ/de)(((w0+w m)^2)/8 )ρsusp(cs m-1 n)∆x ;

               Gpr m =Gpr m-1+k0l(p m –pa)F(cs m-1 n,p m,τ)∆x;G'
v m=Gv m-Gpr m; Ere=(G'

v m-Gv m)/Gv m

               For Ere≤0 and ABS(Ere)≥0.01 then : k=-1 ; num =num+k ; Jump to 5.15.2
               For Ere≥0 and  Ere≥0.01 then : k=+1 ; num =num+k ; Jump to 5.15.2

                cs m n=cs m-1 n+∆x/(w m∆τ)(cs m n-1-cs m n-2)  ; Write : p m ,Gpr m , Gv m , cs m n

               For  m≤M then :  m=m+1 ; Jump to 5.15.1
5.16     csf n= cs M n;Gve=Gv0/rap;Gvf=Gv M;Vrzn=Vrz n-1+[Gv0ρs0/ρsusp(csf n-1)+Gvf-Gvp-Gve]∆τ

5.17     csrz n=csrz n-1 +(Gvfcs f/Vrz+Gv0cs0/Vrz-(Gvp+Gve)csrz n-1/Vrz)∆τ

5.18     Write : Gpr M, pr ,cs M n , csrzn ,Gve ,Gvp ,τ ; For Vrz≤Vrz min then k=1 and  rap=rap+k
5.19     For  Vrz≥V0  then k=-1 and  rap=rap+k ;  For  Vrz V0  then  k=-1 and   rap=rap+k

5.20     For  pr≥pr0 then STOP

5.21     For  Gpr≤Gpr imp then pr=pr+pr/10; Gvp=5*10^-2–3*10^-3pr
2;  n=n+1

5.22    Jump  to 5.15.0

Figure 3.12 Numerical algorithm for the two-dimensional
model of the membrane filtration plant. Plant operating case:
Constant filtrate rate Gpr = Gprimp.
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3.2 An Example: From a Written Description to a Simulator

operation cases: F1: filtration type a where the concentrated suspension evacua-
tion is controlled by the suspension level of the reservoir RZ; F1S: the same filtra-
tion as F1 but here the evacuation of the concentrated suspension is controlled by
the instantaneous mass balance; F2/2, F2/1.8, F2/1.6: filtration type c with the
corresponding trans-membrane pressures of 2, 1.8 and 1.6 bar. The curves that
show an oscillatory state correspond to the simulations where the process control
requires some intervention on the pressure pump and/or on the control of the
suspension level in the recycling reservoir. Each intervention that increases and
decreases the pressure to maintain the filtrate flow at a fixed value is an oscillatory
process. This process is rapidly detected and processed by the model. Table 3.2
gives the oscillations that characterize the filtration with the control of the pres-
sure. These data give the limitations of the simulation cases. At the same time,
they do not reproduce reality because it is not possible to change the pressure of
the pump each second. This fact imposes a condition which has to be introduced
in the computation program: a change in the pressure can be produced after a
minimum 30 s time interval. This constraint has been used for the simulations
named F1, F1S, LF1 and LF1S.

The simulations shown in Figs. 3.10 and 3.12 were made for the following oper-
ating conditions: 1, for the monodimensional model, the filter was considered to
be composed of three identical membranes with a 0.5 m2 surface, the minimum
permeate flow was imposed at 3.8 � 10–4 m3/s, the initial value of the filtration
constant k0 = 33 � 10–4 m3/m2 bar; 2, in the second case, a 10 m long, 0.075 m
high and 0.15 m wide filter was analyzed with a constant permeate flow rate while
keeping the initial value of the filtration constant. A concentration of 10 kg/m3

was used for the fresh suspension.
It is important to specify here that complete clogging is reached between 3800

and 4200 s only in cases F1 and F1S. For the other cases – F2/2, F2/1.8 and
F2/1.6 – the total clogging occurs later, between 6800 and 7300 s. However, after
2500–3000 s the filtrate flow rate becomes too low and unacceptable, as shown in
Fig. 3.17 below.

As mentioned above, three factors are considered in the function which charac-
terizes clogging: first, the time factor, which is a consequence of the Poisson dis-
tribution of the pore surface that blocks evolution; then the pressure factor, which
accelerates the process of pore blocking; and finally the solid concentration factor.

The main difference between the operation at constant filtrate flow rate and at
constant pressure can be observed in Fig. 3.13. In the case of a constant filtrate
flow rate, the solid concentration inside the unit increases permanently, whereas,
at constant pressure, the solid concentration increases very quickly initially (up to
1200 s) and then decreases for all the remaining time. If we look at both Figs. 3.13
and 3.15 we can see that it is not possible to start with the considered conditions
with a 2 bar constant pressure because, in these conditions, a negative value of the
exit flow rate appears for the concentrated suspension (Fig. 3.15) and the solid
concentration increases tremendously from 10 to 120 kg/m3.
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Tab. 3.2 Data for the exit of some variables of filtration and their evolution with time.

s (s) p1(s) cs1(s) cs2(s) cs3(s) Gpr1(s) Gve(s) Gvp(s)

2500

Si
m

u
la

ti
on

ca
se

:
LF

1S

1.806 108.4 111.6 115.3 0.0012857 3.2289e-05 0.039674

2501 1.713 108.0 111.5 115.0 0.0011395 0.00038912 0.039674

2502 1.801 108.4 111.6 115.3 0.0012783 1.1126e-05 0.039725

2503 1.708 108.1 111.6 115.0 0.0011325 0.00040927 0.039725

2504 1.796 108.4 111.6 115.3 0.001271 9.9759e-006 0.039777

2505 1.704 108.1 111.6 115.0 0.0011256 0.00042937 0.039777

2506 1.792 108.5 111.6 115.3 0.0012637 3.1018e-005 0.039828

2507 1.700 108.1 111.6 114.9 0.0011186 0.00044941 0.039828

2508 1.787 108.5 111.6 115.3 0.0012564 5.2e-005 0.039879

2509 1.695 108.2 111.6 114.9 0.0011117 0.00046939 0.039879

2510 1.783 108.6 111.6 115.2 0.0012492 7.2924e-005 0.039929

2511 1.691 108.2 111.6 114.9 0.0011048 0.00048933 0.039929

2500

S
im

u
la

ti
on

ca
se

:
F

2/
2

1.950 107.3 110.4 113.7 0.0010906 0.00056126 0.038

2501 1.950 107.2 110.4 113.7 0.0010906 0.00056133 0.038

2502 1.950 107.2 110.3 113.6 0.0010905 0.00056141 0.038

2503 1.950 107.2 110.3 113.6 0.0010905 0.00056148 0.038

2504 1.950 107.1 110.3 113.6 0.0010905 0.00056155 0.038

2505 1.950 107.1 110.2 113.5 0.0010905 0.00056163 0.038

2506 1.950 107.0 110.2 113.5 0.0010904 0.0005617 0.038

2507 1.950 107.0 110.2 113.4 0.0010904 0.00056177 0.038

2508 1.950 107.0 110.1 113.4 0.0010904 0.00056185 0.038

2509 1.950 106.9 110.1 113.4 0.0010904 0.00056192 0.038

2510 1.950 106.9 110.0 113.3 0.0010904 0.00056199 0.038

2511 1.950 106.9 110.0 113.3 0.0010903 0.00056207 0.038

2500

S
im

u
la

ti
on

ca
se

:
F

1

2.217 95.2 98.5 102.3 0.0012667 0.00038 0.03459

2501 2.104 95.0 98.5 102.1 0.0011692 0.00038 0.03459

2502 2.211 95.2 98.5 102.2 0.0012615 0.00038 0.034667

2503 2.098 95.0 98.5 102.0 0.0011641 0.00038 0.034667

2504 2.206 95.3 98.5 102.2 0.0012563 0.00038 0.034744

2505 2.0933 95.0 98.5 102.0 0.001159 0.00038 0.034744

2506 2.200 95.3 98.5 102.2 0.0012512 0.00038 0.03482

2507 2.088 95.0 98.5 102.0 0.001154 0.00038 0.03482

2508 2.194 95.3 98.5 102.2 0.001246 0.00038 0.034896

2509 2.082 95.1 98.5 102.0 0.001149 0.00038 0.034896

2510 2.189 95.3 98.5 102.1 0.0012409 0.00038 0.034971

2511 2.077 95.1 98.5 101.9 0.0011439 0.00038 0.034971
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Figure 3.13 Evolution of the solid concentration in the filter
unit when the membrane surface is rapidly clogged.
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Figure 3.14 Evolution of the pressure of the pump, when a
rapid clogging takes place.

When a positive exit rate of the concentrated suspension is obtained in the start-
ing conditions, an important reduction in the filtrate flow rate will be expected, as
shown in Fig. 3.17.

From Fig. 3.15 we can note that, by analogy to the 2 bar constant pressure case,
example F1S shows a new special case where we have positive and small negative
values in the concentrated suspension flow rate at the plant exit. This result can
be explained by the background noise in the measurement of the flow of suspen-
sion. Nevertheless, the mean value of the flow rate is small but positive. If the effi-
ciency of the filtration at constant pressure is given by the solid concentration
ratio between the exit and fresh suspensions, then, as shown in Fig. 3.13, the ratio
is always lower than 2 for operation case F2/1.6. For cases F1 and F1S, this ratio
increases permanently, non-uniformly and attains values over 12 g/l in the prox-
imity of the complete clogging state.
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Figure 3.15 Evolution of the flow rate of the concentrated
suspension when rapid clogging occurs.

0 500 1000 1500 2000 2500 3000 3500 4000

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

 F1

 F1S

 F2/2

 F2/1.8

 F2/1.6

G
V

P
 [
l/
s
]

τ  [s]

F1

F1S

F2/2

F2/1.8

F2/1.6

Figure 3.16 Evolution of the pump flow rate when rapid clogging occurs.

Figures 3.14 and 3.16 describe the function of the pump in the unit. When the
pressure is constant, we have a constant pump exit flow rate, but, when the pres-
sure increases to maintain the filtrate flow rate, the exit pump flow rate decreases
too (see for instance relation (3.52)). In these figures, we can also observe that, for
F1 and F1S, more than 110 oscillations are produced by the simulator every 30 s;
these large oscillations require a pressure correction.

Figure 3.17 shows the evolution of the permeate flow rate when we work at con-
stant pressure. We can observe (curves F1 and F1S) that controlling the pressure
pump with a precision of –0.1 bar (for instance see Table 3.2) produces a mean
fluctuation of the flow rate that begins with –20% and progressively decreases to
as little as –5% when we approach the total clogged state. In this case of slow sur-
face clogging, it must be mentioned that the operating time before the total
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permeate flow rate decay is very large (40 000 s). Here, the initial filtration coeffi-
cient used was the same as that used when fast clogging occurred. Indeed, we can
conclude that some properties of the suspension or interaction forces between the
suspension and filter have changed and the function that describes the clogging
process is not similar in both sets of operating conditions. Also, it may be noticed
from Fig. 3.18 that the evolution of the concentration for different operating con-
ditions is spectacular: (a) the solid concentration when the filtration pressure is
2 bar is unacceptable. This increase is correlated with the negative flows of the
evacuated suspension (Fig. 3.21) and defines an impossible operating case; (b) the
evolution of the solid concentration for the operation at constant permeate flow
together with the controlled flow of evacuated concentrated suspension (through
the level of the solution at the storage tank (LF1)).
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Figure 3.17 Evolution of permeate flow with rapid clogging of the membrane surface.
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Figure 3.18 Evolution of the solid concentration in the filter unit when the membrane
surface is slowly clogged.
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It may be noticed that operating at 1.6 bar is not attractive from a technical or
from an economic point of view. It is obvious that this state is determined by the
increase in the evacuated suspension flow and the slow decrease in the permeate
flow (Fig. 3.20).

Concerning Figs. 3.19 and 3.20, if we neglect the changing rate of the pump
pressure and exit pump flow rate then we can appreciate that these figures are
similar to Figs. 3.14 and 3.16, respectively.
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Figure 3.19 Evolution of pressure of the pump when slow clogging occurs.
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Figure 3.20 Evolution of the pump flow rate when slow clogging occurs.

Referring to the dynamics of the exits of concentrated suspension and filtrate it
is interesting to observe (Figs. 3.21 and 3.22) that the cases with slow membrane
clogging reproduce almost identically the corresponding cases where a rapid
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membrane clogging occur. Otherwise, from these representations we observe that
the tendency of the operation case at 1.6 bar is near to the stationary state where
all filtration dependent and independent variables stay unchanged with time.
However, as explained above with respect to the solid concentration in the exit
concentrated suspension (see the above definition of the filtration efficiency) this
operation appears to be inefficient.
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Figure 3.21 Evolution of the flow rate of concentrated suspen-
sion when slow clogging occurs during the filtration.
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Figure 3.22 Evolution of the permeate flow when slow clogging of
the membrane occurs.
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To close this analysis, we note the validity of the operation with an increasing
oscillatory pressure for a constant filtrate flow rate. The operation on oscillating
pressure is very interesting for the enhancement of the performance of the filtra-
tion process [3.24].

To conclude this section it is important to give some general conclusions about
modelling and how this example helps in the comprehension of the process of
construction of a model: (1) to make a mathematical model of a process a good
specialized technical knowledge of chemical engineering, software and of the
actual case is necessary; (2) the model building has to be realized on a step by step
basis with accurate rules for each action; (3) to pass from the complete model to
the simulator it is necessary to take into account multiple factors. Among these
we can mention the capacity to write a complex program according to the scientif-
ic disposable soft; to correctly assign data for the start of the simulator; to integrate
the simulator with other simulators when necessary and (4) the choice of the sim-
ulation examples is a problem that can be solved only by a specialist who can also
interpret the results.

From this example, we can establish some generalities about the modelling of a
process:

1. The model of a process is a relation between the “outputs”
and “inputs” (feed conditions, design parameters and adjus-
table parameters of the process) with a view to scaling-up the
process from laboratory to industrial scale, predicting the
process dynamics (case of this concrete example) and opti-
mizing the operating conditions.

2. In the modelling of an actual case, the chemical engineers
apply a methodology which involves establishing:
. the conservation equations (mass, energy, momentum and

electric charge);
. the equilibrium laws at the interface(s);
. the constitutive laws (e.g., ideal gas law);
. the kinetic laws of transport and reaction;
. the initial and boundary conditions;
. the optimization criteria.

3. With this methodology, the problem is analyzed from the
smallest to the largest scales, as appearing in the process
description. As an example, in the case of a catalytic reactor,
we consider the process on the following scales:
. pore scale (catalyst and adsorbent): 1–1000 nm;
. particle scale: 10 lm–1 cm;
. reactor/separator scale: 1–10 m.
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3.3
Chemical Engineering Flow Models

The modelling example of the previous section shows that to simplify the general
mathematical model of the studied process, the real flow in the filter unit has
been considered in terms of its own simplified model. Indeed, it is difficult to
understand why we have used a flow model, when in fact, for the flow characterization,
we already have the Navier-Stokes equations and their expression for the computational
fluid dynamics. To answer this question some precisions about the general aspects
of the computational fluids dynamics have to be given.

Computational fluid dynamics (CFD), is the science of determining a numerical
solution to the equations governing the fluid flow. In order to obtain a numerical
description of the complete flow field of interest, the solutions are obtained in a
dynamic regime (i.e. continuously changing in space or time). CFD obtains solu-
tions for the governing Navier-Stokes fluid flow equations and, depending upon
the case under study, it solves additional equations involving multiphase, turbu-
lence, heat transfer and other relevant processes. In CFD, partial differential
Navier-Stokes and associated equations are converted into algebraic form (numeri-
cally solvable by computing) on a mesh that defines the geometry and flow
domain of interest. Appropriate boundary and initial conditions are applied to the
mesh, and the distributions of quantities such as velocity, pressure, turbulence,
temperature and concentration are determined iteratively at every point in space
and time within the domain. CFD analysis typically requires the use of a comput-
er to perform the mathematical calculations. Graphical output shows the results
of the analysis. Most of the CFD software available today requires more comput-
ing capability than can be obtained from a typical personal computer. CFD has
proven its capability in predicting the detailed flow behaviour for a wide-range of
engineering applications, typically leading to improved equipment or process
design. CFD is used for early conceptual studies of new designs, detailed equip-
ment design; scale-up, troubleshooting and system retrofitting. Examples in
chemical and process engineering include separators, mixers, reactors, pumps,
pipes, fans, seals, valves, fluidized beds, bubble columns, furnaces, filters and
heat exchangers.

Concerning our problem of the modelling of the flow process, even if the CFD
seems to be the most complete approach, the use of flow models for its character-
ization is sustained by the following statements:

1. For the majority of the specific apparatus, the flows present a
turbulent comportment and, for such flow, a numerical solu-
tion is covered by high uncertainty because some hypotheses
have to be accepted a priori [3.25]; in all the studied cases, the
real apparatus has a complicated geometry that imposes very
complex and frequently uncertain univocity conditions in
the real CFD-based flow computation.
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2. For many cases a flow model is, in fact, the real solution to
an equivalent complicated CFD model. Other arguments can
be given to recommend the use of the simplest type of flow
model: (a) the simple and rapid possibility of these flow mod-
els to be qualitatively and quantitatively identified as a result
of experimental measurements; (b) the accuracy and supple-
ness of the data produced by modelling when the flow mod-
els are adequately selected and identified; (c) in general,
researchers with a large experience of these models, are able
to rapidly assign a model after a verbal description of the real
flow, in spite of non-identified parameters. The theoretical
basis of these flow models is expressed by the possibility to
characterize the flow with the residence time distribution of
the fluid particles that compose the flow passing through the
considered device.

3.3.1
The Distribution Function and the Fundamental Flow Models

The residence time of a signal that passes through a device, is in fact a random
variable which is completely characterized by its probability distribution. This
probability distribution, known as the residence time distribution, can be found
for an actual apparatus after its exit response in the form of an input signal. Gen-
erally it is utilized as a signal, a substance (indicator) which is introduced in the
input flow as a Dirac’s impulse, unitary impulse or harmonic impulse. Figure
3.23 shows the scheme of an experiment dealing with the passing of a signal
through a real or a scaled down (laboratory model) device. When a signal impul-
sion is given to the input flow of the device, the quantity of the substance that is
contained in the signal coming out in the exit flow will be:

Cm ¼
R¥

0 cðsÞEðsÞds (3.58)

where EðsÞ represents the differential function of the residence time distribution
and cðsÞ is the instantaneous concentration of the substance (signal) in the exit
flow. With respect to the flow, function EðsÞ is in fact the fraction of the signal
that comes out from the device after a residence time which ranges between s and
sþ ds. The residence time can also be considered from the statistical viewpoint
where it is a random variable, then EðsÞ represents its density of probability, which
is frequently called distribution function. Indeed, EðsÞmust verify the norma con-
dition:

R¥
a EðsÞds ¼ 1 (3.59)
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TD

0≥τ0τ =

Output flow

     

CE

SC

RZ

EV

SAD

real or scale down device

Input flow

 signal

Figure 3.23 Schematic arrangement for a signal introduction in a device.
CE: computer, RZ: reservoir with signal solution, SAD: data acquisition system,
SC: command system, EV: electric valve, TD: signal concentration transducer.

We can use the experimental data that result from the measuring of the signal
concentration in the exit flow, then EðsÞ will be computed with relation (3.60)
where N gives the number of experiments necessary for the signal concentration
to disappear:

EðsÞ ¼ cðsÞ
R¥

0 cðsÞds
¼ cðsÞ
PN

i¼1
cðsiÞDs

(3.60)

Function FðsÞ is directly connected to the residence time distribution. It is recog-
nized as the repartition function of the residence time random variable. So, FðsÞ
shows the fraction of the fluid elements that stayed in the device for a time less
than or equal to s. Between FðsÞ and EðsÞ the following integral and differential
link exists:

FðsÞ ¼
R s

0 Eðs�Þds or EðsÞ ¼ dFðsÞ
ds

(3.61)

Function FðsÞ represents the apparatus response to a unitary impulsion signal
where C0 is the concentration in the input flow. By measuring the signal concen-
tration in the exit flow we can write FðsÞ with the relation (3.62). When the condi-
tion of “pure unitary signal” is respected, we can easily observe that Fð0Þ ¼ 0 and
Fð¥Þ ¼ 1. In this case, function FðsÞ can be written as:

FðsÞ ¼ cðsÞ
c0

(3.62)
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For ideal flow models such as perfect mixing flow, plug flow and all other ideal
models, a combination of functions EðsÞ and FðsÞ can be obtained directly or indi-
rectly using the model transfer function TðpÞ. Before obtaining an expression for
EðsÞ for the perfect mixing flow, we notice that the transfer function of a flow
model is in fact the Laplace’s transformation of the associated EðsÞ function:

TðpÞ ¼ LðEðsÞÞ ¼ csortðpÞ
centðpÞ

(3.63)

For the computation of EðsÞ and TðpÞ, in the case of a perfect mixing model, we
use the representation and notation given in Fig. 3.24. Including the mass balance
of the species in the signal, we derive the following differential equation:

dc
ds
¼ �Gv

V
c (3.64)

the characteristic conditions for an impulse d in the input flow are:

cinp ¼ c0 for s ¼ 0 and cinp ¼ 0 for s ‡ 0 (3.65)

and then Eq. (3.64) becomes:

c
c0
¼ exp �Gv

V
s

� �

(3.66)

Now, combining relations (3.66) and (3.61), we obtain the expression for the time
distribution function of the perfect mixing flow model:

EðsÞ ¼ cðsÞ
R¥

0 cðsÞds
¼

c0exp �Gv

V
s

� �

R¥
0 c0exp �Gv

V
s

� �

ds

¼ Gv

V
exp �Gv

V
s

� �

¼ 1
sm

expð�s=smÞ

(3.67)

Signal

τ=0

Gv, c0

Gv, c

V

c

δ

Figure 3.24 Physical model for perfect mixing (PM) flow.

We can obtain the repartition function of the residence time for the model of
perfect mixing flow from relations (3.67) and (3.62). This function is:
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FðsÞ ¼
R s

0 EðsÞds ¼
R s

0 s�1
m exp � s

sm

� �

ds ¼ 1� exp � s

sm

� �

(3.68)

by definition, the transfer function is:

TðpÞ ¼ LðEðsÞÞ ¼ csortðpÞ
centðpÞ

¼
R¥

0 expð�psÞs�1
m exp � s

sm

� �

ds ¼ 1
smpþ 1

(3.69)

In a more general case where the input signal is given by a function centðsÞ the
balance of the species characterizing the signal can be written as follows:

dc
ds
¼ �Gv

V
ðc� centÞ (3.70)

The Laplace’s transformation of the differential equation (3.70) gives relation
(3.71) where p is the Laplace’s argument:

pcsortðpÞ � pcð0�Þ ¼
Gv

V
ðcsortðpÞ � centðpÞÞ (3.71)

In general, we have cð0Þ ¼ 0 for all the signal types; then, we can transform the
previous relation to show the transfer model function:

csortðpÞ
centðpÞ

¼ TðpÞ ¼ 1
smpþ 1

(3.72)

From this last relation we remark that the transfer model function can be obtained
from the differential model equation that, in fact, is a particularization of the bal-
ance of the concerned species in the actual model.

The species balance in a plug flow (Fig. 3.25) is carried out in an elementary dx
length of the control volume; the result is the partial differential equation (3.73)
where w is the velocity of the fluid moving with a plug flow pattern. Then, the
relation between the flow rate and the section crossed by flow becomes:

¶c
¶s
¼ �w

¶c
¶x

(3.73)

Signal 

τ=0

Gv, w

Gv, w

Velocity distribution

L

Figure 3.25 Physical model of the plug flow (PF).

The boundary conditions for a d signal in the input associated to the plug flow
model (Eq. (3.73)) are written as follows:
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s ¼ 0� ; 0 � x � L ; c ¼ 0 (3.74)

s ¼ 0 ; x ¼ 0 ; c ¼ c0 (3.75)

s ¼ 0þ ; x ¼ 0 ; c ¼ 0 (3.76)

Now, we can write the plug flow model transfer function. With the Laplace’s trans-
formation of relation (3.73) and with Eqs. (3.74)–(3.76) we have:

pcðpÞ � pcð0�Þ ¼ w
dcðpÞ

dx

� dcðpÞ
cðpÞ ¼ p

dx
w

csortðpÞ
centðpÞ

¼ TðpÞ ¼ exp �p
L
w

� �

¼ expð�psmÞ

The residence time distribution EðsÞ and the residence time repartition will be
obtained starting with the inverse transformation of the transfer function TðpÞ:

EðsÞ ¼ dðs� smÞ (3.77)

where the d impulse function is given by relation (3.78):

dðs� smÞ ¼
0 for x ¼ L ; s < sm

1 for x ¼ L ; s ¼ sm

0 for x ¼ L ; s > sm

8
<

:
(3.78)

Here, it is important to notice that, in the case of a combined model composed of
PM and PF models, the transfer function is obtained from multiplication of the
individual transfer functions:

TðpÞ ¼ T1ðpÞT2ðpÞT3ðpÞ:::::TNðpÞ (3.79)

Table 3.3 shows the transfer functions that characterize the simplest and the com-
bined models which are most commonly obtained by a combination of PM and
PF models.

When we have a combination of recycled flow, by-pass connections, the pres-
ence of dead regions and a complex series and/or parallel coupling of the basic
PM and PF models in a system, we have an important class of flow models recog-
nized as combined flow models (CFM).
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Table 3.3 The transfer function and model equation for some flow models

Model name Model equation Transfer Function Symbol

1 Perfect mixing Flow dc
ds
¼ �Gv

V
ðc� centÞ TðpÞ ¼ 1

smpþ 1
sm ¼

V
Gv

2 Plug flow Model ¶c
¶s
¼ �w

¶c
¶x

TðpÞ ¼ expð�psmÞ sm ¼
L
w

3 Cellular perfect mixing
Equal N cellules

dci

ds
¼ �Gv

V
ðci � ci�1Þ TðpÞ ¼ 1

ðsmpþ 1ÞN
V – cellule
volume

4 Cellular perfect mixing
Non-equal N cellules

dci

ds
¼ �Gv

Vi
ðci � ci�1Þ TðpÞ ¼

YN

i¼1

1
smipþ 1

Vi – cellule i
volume

5 Series perfect mixing-
Plug flow

TðpÞ ¼ expð�psmdÞ
smpþ 1

smd – mean
residence
time at PFM

3.3.2
Combined Flow Models

The construction of a combined model starts with one image (created, supposed
or seeded) where it is accepted that the flow into the device is composed of distinct
zones which are coupled in series or parallel and where we have various patterns
of flow: flow zones with perfect mixing, flow zones with plug flow, zones with
stagnant fluid (dead flow). We can complete this flow image by showing that we
can have some by-pass connections, some recycled flow and some slip flow situa-
tions in the device.

The occurrence of these different types of flow can be established using the
curve that shows the evolution of the species concentration (introduced as a signal
at the input) at the device exit. It is important to notice that we can describe a flow
process with an arbitrary number of regions and links. This procedure can result
in a very complex system which makes it more difficult to identify the parameters
of the CFM. In addition, we seriously increase the dimension of the problem,
which results in quite a complex process of model building. Table 3.4 presents
some simple combined models showing the model response by an analytic
expression and by a qualitative graphic representation when we have a signal d as
input. Concerning the relations of Table 3.4, h represents the dimensionless time
s=sm and CðhÞ is the ratio cðhÞ=c0. In fact, CðhÞ is equivalent to EðsÞ and, conse-
quently, the dimensionless repartition function for the residence time FðhÞ will be
obtained by the integration of the function CðhÞ from zero to h. In Table 3.4, the
models that result from the simplifications of three general types of combined
models presented here below, are shown.
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Table 3.4 The response curves to a d signal for some simple CFM.

i Model name Model schedule Response C(h) vs. h

1 Plug flow with stagnant zone.
Parameters: b, d
b + d = 1

Gv

bV

dV

Gv

C(θ)

θ τ=bV/Gv

2 Perfect mixing flow with
stagnant zone
Parameters: m, d

Gv

V

C(θ )

 

C(θ)=(1/m)exp(-m/θ)

3 Plug Flow with by-pass
connection
Parameters: Gv1, Gv2

Gv = Gv1 + Gv2

V

Gv2

Gv1
Gv C(θ)

 

Gv1 /Gv

Gv2/Gv

4 Perfect mixing flow with
by-pass
Parameters: Gv1, Gv2

Gv = Gv1 + Gv2

Gv

Gv2

Gv1 C(θ)

 

Gv2/Gv

(Gv1/Gv)exp(-Gv1θ/Gv)

5 Plug flow with parallel
connection
Parameters: Gv1, Gv2, b1, b2
Gv = Gv1 + Gv2

b1 + b2 = 1
b2V

Gv1

Gv2

Gv

C(θ)

Gv2/Gv

θ

Gv1/Gv
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i Model name Model schedule Response C(h) vs. h

6 Plug flow with recycling
Parameters: k
a = k/(k + 1)

V

Gv

kGv

C(θ)

a/k

a2/k
a3/k

θ

7 Plug flow with parallel perfect
mixing
Parameters: m, b, Gv1, Gv2

m + b = 1

bV

Gv

mV

C(θ)

Gv1/Gv

8 Plug flow with series perfect
mixing
Parameters: b, m
b + m= 1 mV

Gv

bV C(θ )

1/b

1/m

C(θ)=(1/m)exp(-mθ+1)

b

θ

The first kind of CFM is characterized by Eqs. (3.80)–(3.82) and is shown in Fig.
3.26. For this CFM configuration, we can notice a lack of recycled flow or by-pass
connections. The second type of CFM is introduced by Fig. 3.27 and is quantita-
tively characterized by relations (3.83)–(3.85) which show the dimensionless evo-
lution of CðhÞ and FðhÞ. Here we observe that we do not have any PF participants
and recycled flow. The third CFM class is given in Fig. 3.28 and described by rela-
tions (3.86)–(3.88). Here the by-pass connections and PM participants are miss-
ing.
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Gv2

Gv

b1+b2+b3+d1+d2+m=1

Gv, c(τ)

Gv4

Gv3

Gv1

Gv, c0

b1V

b2V

b3V

mV

d2Vd1V

Figure 3.26 Block-scheme for the general mixing CFM.

Gv, c0 GV , c(τ)

Gv1

Gv2

DelaybV

dV

mV

Figure 3.27 Block-scheme for the general by-passing CFM.

b1V

b2V

Gv, c0

Gv1  c1

GV2 c2

Gv, c(τ)

Figure 3.28 Block-scheme for the general recycling CFM.
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TðpÞ ¼
X2

i¼1

(GV1Gv3

G2
v

exp � Gv

Gv1
biðpþ kÞsm

� �

1þmGv

Gv4
ðpþ kÞ

þ

Gv1Gv3

G2
v

exp � Gv

Gv1
b1ðpþ kÞsm �

Gv

Gv3
b3ðpþ kÞsm

� �)
(3.80)

CðhÞ ¼
X2

i¼1

(
GviGv3

G2
v

exp � Gv

Gvi
b1ksm �

Gv

Gv3
b3ksm

� �

� d h� Gv

Gv1
b1� Gv

Gv3
b3 þGv1Gv3

mG2
v

� �

exp½� Gv

Gvi
b1ksm�

ksm þ
Gv4

mGv

� �

h� Gv

Gvi
bi

� �

� m h� Gv

Gv1
b1

� �)

(3.81)

FðhÞ ¼
X2

i¼1

(
GviGv3

mG2
v

exp � Gv

Gvi
b1sm

� �

ksm þ
Gv4

mGv

� � � 1� exp �ksm þ
Gv4

mGv

� �

h� Gv

Gvi
bi

� �� �

� m h� Gv

Gvi
bi

� �

þGviGv3

G2
v

exp � Gv

Gvi
biksm �

Gv

Gv3
b3ksm

� �

� W h� Gv

Gvi
bi� Gv

Gv3
b3

� �)

(3.82)

TðpÞ ¼ expð�pe� kðe� srtÞÞ
sm

g
ðpþ kÞ þ 1

(3.83)

CðhÞ ¼ gexp �kðe� srtÞ � ðksm þ gÞ h� e

sm

� �� �

� d h� e

sm

� �

(3.84)

FðhÞ ¼ expð�kðe� srtÞÞ
ksþ g

1� exp �ðksm þ gÞ h� e

sm

� �� �� �

� W h� e

sm

� �

(3.85)

It is important to notice that all the relations characterizing these three CFMs
have been established by considering that a first order chemical reaction takes
place in volume V and according to the accepted structure of the flow. So, here, k
represents the kinetic reaction constant. When the reaction is not taken into
account, we consider k ¼ 0. In relations (3.83)–(3.85),srt is the time delay
expressed in a natural value, e describes the system phase difference in time units
and g is the mixing coefficient. This last parameter equals one for a perfect
mixing flow and zero for plug flow. In other cases, g can be estimated with
m=ðmþ bþ dÞ as shown in Fig. 3.27.
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TðpÞ ¼

Gv

Gv1
exp �ðpþ kÞsm

b1Gv

Gv1

� �

1þGv2

Gv1
exp �ðpþ kÞsm

b1Gv

Gv1
þ b1Gv

Gv2

� �� � (3.86)

CðhÞ ¼ Gv

Gv1
exp �ksm

b1Gv

Gv1

� �

�

XN

N¼1

Gv2

Gv1
exp �ksm

b1Gv

Gv1
þ b2Gv

Gv2

� �� �� �N�1

d h� Nb1Gv

Gv1
þ ðN� 1Þb2Gv

Gv2

� �

(3.87)

FðhÞ ¼ Gv

Gv1
exp �ksm

b1Gv

Gv1

� �

�
XN

N¼1

Gv2

Gv1
exp �ksm

b1Gv

Gv1
þ b2Gv

Gv2

� �� �� �N�1

d h� Nb1Gv

Gv1
þ ðN� 1Þb2Gv

Gv2

� �

(3.88)

The general problem of building a model for an actual process begins with a flow
description where we qualitatively appreciate the number of flow regions, the
zones of interconnection and the different volumes which compose the total vol-
ume of the device. We frequently obtain a relatively simple CFM, consequently,
before beginning any computing, it is recommended to look for an equivalent
model in Table 3.4. If the result of the identification is not satisfactory then we
can try to assimilate the case with one of the examples shown in Figs. 3.26–3.28.
If any of these previous steps is not satisfactory, we have three other possibilities:
(i) we can compute the transfer function of the created flow model as explained
above; (ii) if a new case of combination is not identified, then we seek where the
slip flow can be coupled with the CFM example, (iii) we can compare the created
model with the different dispersion flow models.

The CFM can be completed with a recycling model (the trajectory of which can
be considered as a CFM, such as a PF with PM, series of PM, etc.), or with models
with slip flows and models with multiple closed currents.

The next section will first show the importance of flow in a concrete modelling
problem such as the slip flow effect on the efficiency of a permanent mechanically
mixed reactor. Then the characterization of the combined flow models where the
slip flow occurs will be presented.

3.3.3
The Slip Flow Effect on the Efficiency of a Mechanically Mixed Reactor in a
Permanent Regime

In this section, we consider a permanent and mechanically mixed reactor, where a
chemical transformation occurs and the consumption rate of one reactant is given
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by a formal kinetics of n order: vr ¼ kcn. The flow conditions expressed by the geo-
metric position and rotation speed of the stirrer and by the position on the reactor
of the input and exit flow, define an internal flow structure with three regions: the
surface region, named slip flow, where the reactants come rapidly to the exit with-
out an important conversion; the middle region, where a perfectly mixing flow
exists and consequently an important reactant conversion takes place; the bottom
region, where we have a small flow intensity and which can be recognized as a
stagnant region. Figure 3.29 gives a graphic presentation of the description of the
reactor operation as well as the notation of the variables. The performances of this
simplified and actual reactor (SPMR) example will be compared with those of a
permanent perfect mixing reactor (PMR) having the same volume.

(1-z)Gvm

zGv

mV

GVm, cAk

c’

Gvm , cA0

slip region

mixing

stagnant region

Figure 3.29 Stirred reactor with slip and stagnant flow zones.

The reactant A balance equations for these reactors (PMR and SPMR) can be
written as follows:

Vvr max ¼ GvmðcA0 � cA minÞ (3.89)

mVvr ¼ GvmðcA0 � cAkÞ (3.90)

If we compute the ratio between Eqs. (3.89) and (3.90) we have:

m ¼ cA0 � cAk

cA0 � cA min

vr max

vr
(3.91)

Here the reaction rate will be vr max ¼ kðcA minÞn and vr ¼ kðc¢Þn respectively. The
value of the reactant concentration for the mixing zone of the SPMR will be
obtained as a result of its comparative mass balance. If we consider that the slip
flow is not present (PMR case) or when it is present but the reactant flow rate is
identical, then we can write:

zGvmc¢ ¼ GvmcAk � ð1� zÞGvmcA0 (3.92)
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So, for the reactant concentration in the mixing zone of the SPMR we establish
the relation:

c¢ ¼ cAk � ð1� zÞcA0

z
(3.93)

Rearranging the five previous equations (3.89) to (3.93), in order to introduce and
replace the relation between vr and vr max, we have:

m ¼

cA0

cAk
cA0

cA min

2

6
6
4

3

7
7
5

n�1

cA0=cAk
� 1

cA0=cA min
� 1

#

:
z

1� ð1� zÞ � cA0=cAk

"" #n

(3.94)

If we introduce 1� cAk=cA0 ¼ X and 1� cA min=cA0 ¼ Xm where X and Xm repre-
sent the reactant transformation degree for SPMR and PMR operation modes,
then relation (3.94) becomes:

m ¼ X
Xm

zð1� XmÞ
z� X

� �n

(3.95)

Figure 3.30 shows clearly the effect of m and z on the reactant transformation
degree for a SPMR. Only for a zero-order kinetics process, does the slip flow not
affect the degree of the reactant transformation. For other Xm values, each graphic
construction based on Fig. 3.30 shows the same rules of evolution (at m<0.5, z
and X increase simultaneously, and, when n increases, X increases slowly; for
m>0.5, X keeps a constant value determined by z). When the PM core of SPMR is
exchanged with a CFM model, we obtain a special SPMR type in which the perfor-
mances can be appreciated by the model developed above.
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3.3.4
Dispersion Flow Model

The models of flow dispersion are based on the plug flow model. However, in
comparison with the PF model, the dispersion flow model considers various per-
turbation modes of the piston distribution in the flow velocity. If the forward and
backward perturbations present random components with respect to the global
flow direction, then we have the case of an axial dispersion flow (ADF). In addi-
tion, the axial and radial dispersion flow is introduced when the axial flow pertur-
bations are coupled with other perturbations that induce the random fluid move-
ment in the normal direction with respect to the global flow.

With reference to these different types of flow, there is often confusion asso-
ciated with the terms: “dispersion”, “diffusion” and “turbulence”. When we talk
about a species in a fluid, diffusion and turbulence produce the molecular or turbu-
lent jumps in the existing flowing area. However, concerning dispersion, it is not
conditioned by the concentration gradient (as diffusion can be) nor even by a char-
acteristic level of the global flow velocity (as turbulence can be). The dispersion
flow is a result of the effects of the basic flow interaction with various discrete
fixed or mobile forms that exist or appear along the flow trajectory [3.26]. The
drops moving downward or upward in a flowing or stationary fluid, the bubbles
flowing within a liquid, as well as an important roughness of the pipe walls, are
some of the phenomena responsible for the dispersion flow. Another case is in a
fluid flowing through a packed bed. In these examples, dispersion occurs because
we have a microflow situation with a completely different intensity with respect to
the basic flow. It is not difficult to observe that, for all the devices where a differen-
tial contact solid–fluid or solid–fluid–fluid or fluid–fluid occurs, the dispersion
flow is the characteristic flow type. As for turbulence, the dispersion characteriza-
tion associates a coefficient called dispersion coefficient to these microflows respon-
sible for the dispersion phenomenon. When the dispersion participation is very
important, the turbulence and molecular components of the vector of total prop-
erty transport can be neglected. Consequently, we can write the following expres-
sion for the vector of the property transport:

JtA
�! ¼ w!CA � Dlgrad

��!
CA (3.96)

The equation of the ADF model flow can be obtained by making a particular spe-
cies mass balance, as in the case of a plug flow model. In this case, for the begin-
ning of species balance we must consider the axial dispersion perturbations super-
posed over the plug flow as shown in Fig. 3.31. In the description given below, the
transport vector has been divided into its convective and dispersion components.
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dx

)dcc(d
SD
l

− 

velocity distribution
S

dx
dcSD

l

wSc )dcc(wS −

dx

input

Figure 3.31 Scheme of the axial dispersion flow description.

After the particularization of the species balance in the control volume with sec-
tion flow S and elementary length dx, as shown in Fig. 3.31, we obtain relation
(3.97), which corresponds to the ADF model equation:

¶c
¶s
¼ �w

¶c
¶s
þ Dl

¶2c
¶x2

(3.97)

The axial dispersion flow model can be valid when we do not have the gradient of
the property with respect to the normal flow direction. In other words, for this
direction, we have a perfect mixing state. When this last condition is not met, we
have to consider a flow model with two dispersion coefficients: a coefficient for
the axial dispersion and another one for the radial dispersion. In this case, the
flow model equation becomes:

¶c
¶s
¼ �w

¶c
¶s
þ Dl

¶2c
¶x2
þ Dr

r
¶
¶r

r
¶c
¶r

� �

(3.98)

The values of the dispersion coefficients will be established for most actual cases
by experiments, which pursue the registration and interpretation of the exit time
distribution of a signal that passes through a physical reduced model of the real
device. However, in some cases, the actual device can be used. The method for
identifying the dispersion coefficient [3.27, 3.28] is, in fact, the classical method of
flow identification based on the introduction in the device input of a signal; (fre-
quently as a d impulsion or a unitary impulsion) the exit response is then
recorded from its start until it disappears. It is evident that this experimental part
of the method has to be completed by calculation of the dispersion model flow
and by identification of the value of the dispersion coefficient. For this last objec-
tive, the sum of the square differences between the measured and computed val-
ues of the exit signal, are minimized.

For the mathematical solution of the dispersion model flow, we add the univo-
city conditions that include the signal input description for the initial conditions
to Eq. (3.97) or (3.98). A more complete description of this mathematical model
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can be given with the example of the axial dispersion flow. In this case, we assign
the dispersion flow conditions to the input and the exit of the apparatus Eq. (3.99)
and to the model equation (3.97). The initial signal input conditions are given by
relation (3.100) for the case of a d signal and by relation (3.101) when a unitary
impulse signal is used.

�wwlc� Dl
¶c
¶z
¼ 0 ; z ¼ 0; s � 0

Dl
¶c
¶z
¼ 0 ; z ¼ Hd; s � 0

(3.99)

c ¼ 0 ; 0 � z � Hd; s ¼ 0

c ¼ c0 ; z ¼ 0; s ¼ 0
(3.100)

c ¼ c0 ; z ¼ 0; s � 0

c ¼ 0 ; 0 � z � Hd; s ¼ 0
(3.101)

For the unitary impulse signal (relation (3.100)) the axial dispersion flow model
has an analytical solution:
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(3.102)

where h is the dimensionless time (h ¼ s=sm) and the proper values of kn are the
solutions of Eqs. (3.103) and (3.104):

2kntg
kn

2
¼ Pe ; n ¼ 1; 3; 5; :::; 2kþ 1; ::: (3.103)

2knctg
kn

2
¼ Pe ; n ¼ 2; 4; 6; :::; 2k; ::: (3.104)

This solution can be used to set up the value of the Peclet criterion
(Pe ¼ wHd=Dl ¼ H2

d=ðDlsmÞ) if we only consider the first term of Eq. (3.102). In
this situation we obtain relations (3.105) and (3.106). It is not difficult to observe
that, from the slope of relation (3.105), we can easily obtain the Pe value:
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2k1tg
k1

2
¼ Pe (3.106)
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When the value of the mean flow velocity cannot be correctly estimated, as in the
case of two or three phases contacting, the Pe number will be estimated consider-
ing the mean residence time (sm), the transport trajectory length (Hd) and the dis-
persion coefficient (DlÞ. For the case of a unitary signal impulse Eq. (3.100), the
mean residence time will be estimated using relation (3.107):

sm ¼
R¥

0
1� cðsÞ

c0

� �

ds ¼

PN

i¼1
ðc0 � cðsiÞÞsi

PN

i¼1
ðc0 � cðsiÞÞ

(3.107)

where N represents the number of the last appearance of c0 � cðsiÞ � 0 in the dis-
crete data obtained.

Relation (3.108) gives the analytical solution of the axial dispersion model which
contains relations (3.97), (3.99) and (3.100). Here the proper values of kk are the
solutions of the transcendent equation (3.109):
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Pe
4

� �2 (3.109)

If we consider the random variable theory, this solution represents the residence
time distribution for a fluid particle flowing in a trajectory, which characterizes
the investigated device. When we have the probability distribution of the random
variable, then we can complete more characteristics of the random variable such
as the non-centred and centred moments. Relations (3.110)–(3.114) give the
expressions of the moments obtained using relation (3.108) as a residence time
distribution. Relation (3.114) gives the two order centred moment, which is called
random variable variance:

m1 ¼ 1 (3.110)

m2 ¼ 1þ 2
Pe
þ 2

Pe2
e�Pe � 2

Pe2
(3.111)

m3 ¼ 1þ 6
Pe
þ 6

Pe2
� 24

Pe3
þ 18e�Pe

Pe2
þ 24e�Pe

Pe3
(3.112)

m4 ¼ 1þ 12
Pe
þ 48

Pe2
� 336

Pe4
� 108e�Pe

Pe2
þ 360e�Pe

Pe3
þ 312e�Pe

Pe4
þ 24e�Pe

Pe4
(3.113)
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r2 ¼ m2 � m1 ¼
2
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� 2
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e�Pe (3.114)

Because the device response to the signal input is given by the discrete coupled
data ci � si, the mentioned moment, can be numerically computed as follows:
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r2 ¼ m2 � m1 ¼
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i
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The coupling of relations (3.110)–(3.114) with (3.115)–(3.120) shows four possibil-
ities for the identification of the Pe number. With the same data, each possibility
must produce an identical result for the Pe criterion.

3.3.5
Examples

Actually, it is acknowledged that all the main chemical engineering devices are
well described by known equations and procedures to compute axial and radial
mixing coefficients. As an example, we can remember the famous Levenspiel’s
equation to compute the axial mixing of a mono-phase flow in a packed bed
(Pe ¼ wdp=Dl ¼ 2), an equation verified by experiments. Undeniably, the problem
of identifying a flow model can be developed using a laboratory model of the real
device if the experiments can be carried out easily. For the construction of such a
physical model, we must meet all the requirements imposed by the similitude
laws. It is important to note that we assume that the laboratory model undergoes
one or more changes in order to produce a flow model in accordance with the
mathematical process simulation. Indeed, it contains a selected flow model, which
produces the best results for the investigated process. Consequently, the most ac-
ceptable flow model has been indirectly established by this procedure.
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In order to show how a chemical device can be scaled-up and how a solution to
the problem of identifying the best flow model can be given, we suggest the fol-
lowing protocol:

(i) for an actual case (reaction, separation, heating, coupled transport, etc.), we
can establish the best flow model (that guarantees the best exits for the fixed
inputs in the modeled process) by using the mathematical modelling and simula-
tion of a process; (ii) we design and build a laboratory device, that can easily be
modified according to the results obtained from the experiments carried out to
identify the flow model; (iii) with the final physical model of the device, we exam-
ine the performance of the process and, if necessary, we start the experimental
research all over again to validate the model of the process; (iv) when the final
physical model of the device is made, the scaled-up analysis is then started, the
result of this step being the first image of the future industrial device. It is impor-
tant to notice that the tricky points of an actual experimental research have to be
discussed: (i) the input point of the signal and the exit point of the response must
be carefully selected; (ii) the quality of the input signal must respect some require-
ments: indeed, if we use the expressions from Table 3.4 or those given by the
assembly of Eqs. (3.80)–(3.88) to interpret the data, then the signal must be a d or
a unitary impulse; other signal types induce important difficulties for solving the
flow model and for identifying the parameters; (iii) the response recording must
be carried out with transducers and magnification systems which do not intro-
duce unknown retardation times. This methodology will be illustrated in the next
sections with some examples.

3.3.5.1 Mechanically Mixed Reactor for Reactions in Liquid Media
The physical model of the reactor is a 350 mm high cylindrical vessel, with a
diameter of 200 mm and an elliptical bottom. The operation volume is:
V ¼ 12 � 10�3 m3. The entrance of the reactants is placed near the middle of the
reactor, more exactly at 130 mm from the bottom. The reactor’s exit is positioned
on the top of the vessel but below the liquid level. At the vessel centre is placed a
mixer with three helicoidal paddles with d=D ¼ 0:33. It operates with a rotation
speed of 150 min–1. In order to establish the reactor flow model, this is filled with
pure water which continuously flushes through the reactor at a flow rate of
6:6 � 10�5 m3/s (similar to the reactants’ flow rate). At time s ¼ 0, a unitary
impulse of an NaCl solution with a c0 ¼ 3:6 kg/m3 is introduced into the reactor
input. The time evolution of the NaCl concentration at the exit flow of the reactor
is measured by the conductivity. Table 3.5 gives the data that show the evolution
of this concentration at the reactor exit.

The proposal of an adequate flow model of the reactor and the identification of
the parameters are the main requirements of this application. Solving this type of
problem involves two distinct actions: first the selection of the flow model and sec-
ond the computations involved in identifying the parameters.
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Table 3.5 Evolution of the NaCl concentration at the reactor’s exit.

i 1 2 3 4 5 6 7 8 9 10 11 12

si (s) 0 1.8 3.6 4.8 18 36 72 108 144 180 216 252

ci = c(si) 0 0 0 0.18 0.342 0.651 1.281 1.828 2.142 2.405 2.556 2.772

The selection of the flow model. In accordance with the description given above,
we expect a flow model in which a small plug-flow region is associated with an
important perfect mixing flow region, whereas a stagnant region is considered at
the bottom of the reactor. If this proposal is correct, then, in the general CFM
shown in Table 3.4 we must consider:

Gv1 = Gv4 = Gv ; Gv2 = Gv3 = 0 ; b3 = b1 = d1 = 0 ; b1 = b ; d2 = d and b + m + d =
1. With k = 0 (because, here, the chemical reaction does not occur), the logarith-
mic transformation of relation (3.82), which gives the response FðhÞ ¼ cðhÞ=c0 for
an unitary impulse, can be written as follows:

ln 1� cðhÞ
c0

� �

¼ � 1
m
ðh� bÞ � Wðh� bÞ (3.121)

The computations to identify the parameters are given algorithmically, step by step,
by the procedure below:
. We start with the computation of the value of the mean residence

time: sm ¼ V=Gv ¼ 12 � 10�3=6:66 � 10�5 ¼ 180 s.
. Using the data given in Table 3.5 we build the dependence

relation ci ¼ cðhiÞ=c0 vs hi where hi ¼ si=sm and
CðhiÞ ¼ cðhiÞ=c0.Table 3.6 presents this dependence. Here di

values are also computed as ln 1� cðhiÞ=c0ð Þ because they are
needed for the flow model equation (3.121).

Table 3.6 Dimensionless NaCl concentration at the reactor’s exit.

i 1 2 3 4 5 6 7 8 9 10 11 12

hi 0 0.01 0.02 0.03 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4

cðhiÞ=c0 0 0 0 0.05 0.095 0.181 0.356 0.508 0.596 0.668 0.713 0.775

di 0 0 0 –0.05 –0.1 –0.2 –0.44 –0.71 –0.91 –1.1 –1.23 –1.45

. the graphic representation of di ¼ ln 1� CðhiÞð Þ vs hi in Fig.
3.32, shows that all the data do match a line with a slope equal to
�1=m and with the origin intersect at b=m. At the same time,
function Wðh� bÞ shows its b value.
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Figure 3.32 Evolution of the ln 1� CðhiÞð Þ vs hi.

. the values of m, b and d can be calculated from Fig. 3.32 above,
giving respectively m ¼ 0:936; b ¼ 0:00054; d ¼ 0:06345.
These results show that 6.34% of the reactor is a stagnant region
and 0.054% is a plug-flow region, the remainder being a perfect
mixing region.

3.3.5.2 Gas Flow in a Fluidized Bed Reactor
Catalytic butane dehydrogenation can be successfully carried out in a laboratory
scale fluidized bed reactor operating at 310 �C and at atmospheric pressure. The
catalytic particles have diameter 310 lm and density 2060 kg/m3. Such a reactor is
150 mm in diameter and has a fixed 500 mm long catalytic bed. When the catalyst
bed is fluidized with butane blown at a velocity of 0.1 m/s, it becomes 750 mm
thick.

The establishment of the flow model or a cold model of the reactor is carried
out using air instead of butane and working at the same gas velocity as implemen-
ted to fluidize the catalytic bed. In these conditions, a slow motion of the solid,
without any important bubbling phenomena, is observed at the bottom of the flui-
dized bed, while a bubbling phenomenon associated with violent solid motion
occurs in the middle and upper parts of the fluidized bed. At time s ¼ 0, a unitary
signal, which consists of replacing the air flow by an identical flow of pure nitro-
gen, is generated at the reactor input. Table 3.7 presents the evolution of the nitro-
gen concentrations at the bed exit.
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Table 3.7 Evolution of the nitrogen concentration at the exit of the fluidized bed reactor.

i 1 2 3 4 5 6 7 8 9 10 11 12

si sec 0 1 2 3 4 5 6 7 8 9 10 11

ci ¼ cðsiÞ 0.79 0.79 0.79 0.79 0.874 0.924 0.947 0.973 0.981 0.984 0.994 0.996

To solve this example we use the same methodology as applied in the previous
section: we begin with the flow model selection and finish by identifying the pa-
rameters.

The model selection. According to the description of the fluidization conditions
given above, we can suggest a combined flow model of a plug-flow linked in series
with a perfect mixing. We obtain the mathematical description of this CFM from
the general CFM presented in Table 3.4 by: Gv1 ¼ Gv4 ¼ Gv; Gv 2 ¼ Gv4 ¼ 0; b3 ¼
b1 ¼ d1 ¼ 0 ; d2 ¼ d and bþmþ d ¼ 1. With this consideration, we have the
simplified model characterized by relation (3.121). If the figure obtained from the
graphical representation of di ¼ ln 1� CðhiÞð Þ vs hi is linear then, the proposed
model can be considered as acceptable.

With the computation of the algorithm identifying the parameters of the model
we obtain:
. The gas fraction of the bed:

e ¼ e0 þ ðH�H�0=H ¼ 0:4þ 0:25=0:75 = 0.66 m3 gas/m3 bed.
. The mean residence time: sm ¼ eH=wf ¼ 0:66 � 0:75=0:1 ¼ 5 s.
. The relation: cðhiÞ=c0 vs hi is computed in Table 3.8 and plotted.

Here c00 ¼ 0:79 kmol N2/kmol gas and c0 ¼ 1 kmol N2/ kmol
gas. Table 3.8 also contains the computed line that shows the
dependence of the ln 1� CðhiÞð Þ vs hi.

Table 3.8 Evolution of the dimensionless nitrogen concentration at the reactor’s output.

i 1 2 3 4 5 6 7 8 9 10 11 12

hi 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

cðsiÞ � c00

c0 � c00
0 0 0 0 0.399 0.643 0.747 0.874 0.924 0.954 0.975 0.983

ln 1� CðhiÞð Þ 0 0 0 0 –0.51 –1.03 –1.55 –2.07 –2.58 –3.09 –3.56 –4.03

. Figure 3.33 shows that the hypothesis of a CFM composed of a
series of PF and PM is acceptable because the experimental
dependence of ln 1� CðhiÞð Þ vs hi is linear and we clearly observe
the function Wðh� bÞ.
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Figure 3.33 The evolution of ln 1� CðhiÞð Þ vs hi.

. As in the case of application 3.3.5.1, we identify m= 0.375 and
d = 0.586. The value b = 0.039, shown in Fig. 3.33, comes from
the origin intersect of the line Y ¼ �2:66864X� 0:10294, this
value does not have a special significance. The d value can be
increased with the b value. So it will become d = 0.625.

3.3.5.3 Flow in a Fixed Bed Catalytic Reactor
The laboratory scale physical model of the catalytic sulfur dioxide oxidation is a
0.05 m-diameter reactor containing 3 mm-diameter pellets of catalyst over a
height of 0.15 m. The bed is flushed through at 430 �C by a gas flow that contains
0.07 kmol SO2/kmol total gas, 0.11 kmol O2/kmol total gas and 0.82 kmol
N2/kmol total gas. The gas spatial velocity is 0.01 m/s.

In order to obtain a reactor model flow that characterizes the gas movement
around the catalyst grains, a current of pure nitrogen is blown through the fixed
catalyst bed at the same temperature and pressure as in the reaction. At s ¼ 0 we
apply a signal (unitary impulse) to the reactor input introducing a gas mixture
containing nitrogen and sulfur dioxide with a concentration of c0 ¼ 0:1 kmol
SO2/kmol gas. Then, we measure the evolution of the sulfur dioxide concentra-
tion at the reactor exit. Table 3.9 gives these measured concentrations. In this
case, it is necessary to validate if the collected data verify a PF model. If they do
not, we have to identify the parameters of the axial mixing model to correct the PF
model.
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Table 3.9 Evolution of the sulfur dioxide concentration at the exit of the reactor.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

si (s) 0 1.2 2.4 3.0 3.6 4.8 6 7.2 8.4 9.6 10.8 12 13.2 14.4

ci ¼ cðsiÞ 0 0 0 0 0.01 0.03 0.06 0.08 0.085 0.09 0.095 0.097 0.099 0.1

Then, for this application, we directly start with the computations that serve to
identify the parameters.

The computation of the values of the following parameters and relations are
needed to solve the problem:
. the mean residence time of an elementary fluid particle in the

catalyst bed sm ¼ ðe0HÞ=wl ¼ 0:4 � :015=0:01 ¼ 6 s;
. the dimensionless dependence CðhiÞ ¼ cðhiÞ=c0 vs hi is com-

puted and reported in Table 3.10;

Table 3.10 Evolution of the dimensionless signal at the exit of the reactor.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi 0 0.2 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

cðhiÞ
c0

0 0 0 0 0.1 0.3 0.6 0.8 0.85 0.90 0.95 0.98 0.99 1.00

. the graphic representation of the dependence CðhiÞ ¼ cðhiÞ=c0 vs
hi is needed to appreciate whether we have a PF or ADF flow type.
Figure 3.34 clearly shows that here, an ADF flow model type can
be adequate;
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Figure 3.34 Evolution of the dimensionless concentration at the exit of the reactor.
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. for the computation of the axial dispersion coefficient, we use an
approximate calculation introduced by Eqs. (3.105) and (3.106).
These relations are coupled with the numerical data reported in
Table 3.10 and then we form the function here given by relation
(3.122). It minimizes the sum of the squares of the differences
between the computed and experimental values of CðhiÞ. We
further show that this problem of axial dispersion coefficient
identification is transformed into a variant of a least squares
method for parameter identification.
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minimization requested by the problem (3.122) takes the common form

Fða; bÞ ¼
P14

i¼1
ðahi þ b� yiÞ2 ¼ min, which has the quality to accept a very simple

solution. So, in order to obtain “a” and “b”, we must solve the equation system
(3.123). From these values, we obtain the value of k1. Now, using relation (3.106)
we can calculate the Peclet dispersion number.
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Table 3.11 shows the computation of the Pe number and of the axial dispersion
coefficient by the direct minimization of relations (3.122) and (3.106). It is easily
observable that this table contains in fact a MathCAD transposition of the k1, Pe
and Dl identification.
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Table 3.11 MathCAD computation of Pe; k1; Dl parameters.
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3.3.6
Flow Modelling using Computational Fluid Dynamics

As has been shown at the beginning of this chapter, researchers have been expect-
ing important progress on the modelling of flows in chemical reactors with the
development of computational fluid dynamics (CFD). The principle of CFD is to
integrate the flow equations for one particular case after dividing the flow volume
into a very high number of differential elements. This volume-of-fluid technique
can be used for the “a priori” determination of the morphology and characteristics
of various kinds of flow.

Chemical engineers were not the pioneers in this field because chemical engi-
neering flow problems can be very complex. Some of the first users of CFD were
car, plane and boat designers. One of the reasons for this was that CFD could tell
the designers exactly what they wanted to know, that is the flow patterns obtained
while their new designs moved. Indeed, the possibility to use Euler’s equations
for flow description has been one of the major contributions to the development
of these applications. These kinds of CFD techniques have also been projected
and have been successfully used to analyze heat flow from a body immersed into
the flowing fluid [3.29, 3.30].
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As far as chemical engineers are concerned, we must notice that there is a con-
siderable academic and industrial interest in the use of CFD to model two-phase
flows in process equipment. The problem of the single bubble rising in the fluid
[3.31, 3.32] has been resolved using some simplification in the description of bub-
ble–liquid momentum transfer. Considerable progress has been made in the CFD
modelling of bubbling gas-fluidized beds and bubble columns. The CFD model-
ling of fluidized beds usually adopts the Eulerian framework for both dilute (bub-
ble) and dense phases and makes use of the granular theory to calculate the rheo-
logical parameters of the dense phase [3.33–3.37].

The use of CFD models for gas–liquid bubble columns has also raised consider-
able interest; only Euler-Euler and Euler-Lagrange frameworks have been
employed for the description of the gas and liquid phase states [3.38–3.42]. Bubble
trays, considered as particular kinds of bubble columns, have lately presented
enormous interest for the flow description by CFD. The flow patterns on a sieve
tray have been analyzed in the liquid phase, solving the time-averaged equations
of continuity and momentum [3.43].

The jump to the fully two-phase flow on a sieve tray requires the acceptance of
some conditions [3.44]:
. the lift forces for the bubble must be neglected;
. the added mass forces do not have an important participation in

the flow processes;
. the interphase momentum exchange must be expressed using

the drag coefficient.

Then the simulation of real chemical engineering flows concerns a number of
important difficulties beyond the pattern of turbulent flows. One of these complex
problems concerns the description of viscosity; however, this can be resolved using
rheological equations. Another difficulty is the so-called micromixing problem,
which must be characterized at the level considering the integration of a very little
unit.

In the case of one homogeneous reactor, where two reactants are continuously
fed, mixed, reacted, and flushed out through an outlet, CFD can calculate the con-
centrations in each fluid element, just as it can calculate the temperature. Never-
theless, CFD cannot consider the reaction of both components as a function of
the local mixing

Theoretically, CFD could quantify everything. It could predict the effect of add-
ing reagents quickly or slowly. To achieve a specified yield, we would find out
exactly how slow the addition has to be, how intense the mixing is, and what
equipment would achieve that mixing. But to get a good prediction, as always, you
need good input data. These data include the initial conditions, rate flows and
kinetics of the reactions as well as the physical properties of the solutions. In
order to get good inputs, of course, it is necessary to come back to laboratory activ-
ity.
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3.4
Complex Models and Their Simulators

During a process modelling, the development of the model and the simulation of
the process using a simulator, as shown in Section 2.2, represent two apparently
indivisible operations. Both activities have rapidly evolved with time as a conse-
quence of the development of basic technical sciences. Three main phases can be
kept in mind with respect to this vigorous evolution:

In the first phase, the modelling and simulation of the apparatus was carried out
considering each as independent units in the whole installation. Indeed, here,
modelling was assisted by the efforts made in the high technological design of
each of the specific apparatuses found in chemical plants. All types of models
have been used for this purpose and the current huge computation capacities of
universities and of research-design centres have sustained these scientific efforts.
At present, the theoretical basis and algorithmic implementation of process mod-
elling based on transport phenomena have been established. The general theory
of computer programming has given the fundamentals of the development of eas-
ily usable means for the transposition of the models into process simulators and
as guidelines for designers. Various utilitarian software languages have backed
this new scientific branch and, among them, FORTRAN (FORmula TRANslation)
can be considered as the most notorious. It is estimated that the full start of this
phase began around 1968, when the series production of high power computers
started.

The second phase began with the start of commercial activities in the modelling
and simulation of processes. These commercial activities were born in the USA in
1980–1985 when the first simulators for oil distillation appeared. DistillR�, Max-
still�, and Hysim� are some of these scientific software packages, which reach
the level of the interactive simulation of a complex process model. During these
years, modelling and simulation succeeded in automatically assembling the parts
of a complex model according to the formal description of each part and their
links. At the same time, an important data base began to be fed with the descrip-
tion of the different unitary operations of processes in terms of physical and
chemical properties, consumption kinetics or appearance and equilibrium distri-
bution at interphases.

The modelling tools in current commercial simulators may roughly be classi-
fied into two groups depending on their approach: block-oriented (or modular)
and equation-oriented.

Block-oriented approaches mainly address the modelling at the level of flow-
sheets. Every process is abstracted in a block diagram consisting of standardized
blocks, which model the behaviour of a process unit or a part of it. All the blocks
are linked by signal-like connections representing the flow of information, mate-
rial and energy, employing standardized interface and stream formats. Models of
process units are pre-coded by a modelling expert and incorporated into a model
library for later use. The modelling at the level of the flow-sheet is either support-
ed by a modelling or by a graphical language. In both cases, the end user selects
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the models from the library, provides the model parameters and connects them to
the plant model. However, the chemical engineering knowledge accumulated up
to now, as well as the structure of the models, are easily accessible. Common
exceptions include the models of physical properties, which can be selected in the
literature independently from the process unit model.

Equation-oriented modelling tools support the implementation of the unit mod-
els and their incorporation into a model library by means of declarative modelling
languages or by providing a set of subroutine templates. In this case, the tools for
the modelling expert or for the end user are similar. Hence, modelling at the unit
level requires a profound knowledge in such diverse areas as chemical engineer-
ing modelling and simulation, numerical mathematics, and computer science.
The development of new process models is therefore often restricted to a small
group of experts.

Figure 3.35 presents the page of a modern commercial simulator (Hysim�
1995) where we can identify the different elements of the process specified in this
block-oriented simulator.

Figure 3.35 Presentation page of a block-oriented simulator for the analysis
of a coupled FCC reactor-fractionator (Hysim� 1995).

It is not difficult to observe that, in this example, we have the coupling of a spe-
cific reactor for petroleum fractionation together with a complex distillation col-
umn. If we intend to show the complexity of the process that will be simulated,
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then it is important to say that more than 20 components can be found in the
input of this installation in the reactor, separation column, condenser, reboiler
and external flash device.

Despite the considerable progress made over the last decade, when steady-state
flow-sheeting with modular process simulators became routinely employed by a
large community of process engineers, there is considerable incentive to extend
the range of model-based applications by improving the handling of models and
by increasing the level of detail for representing the processes. Many studied cases
of process engineering – not only in academia but especially in the research and
development laboratories of the chemical industry – have shown the potential of
employing non-standard models such as dynamic models, extremely detailed
models of standard equipment, or models of non-standard equipment. The mod-
ular approach to modelling and simulation, though powerful and easily accessible
to many engineers for the solution of standard flow-sheet problems, does not ade-
quately support the solution of more complicated problems. This is largely due to
the lack of pre-coded models for many unit operations at an adequate level of
detail. In addition, most of the coded models neglect the mass or heat transfer,
assuming the equilibrium state at interphases. Examples of models that are not
available in present simulators, include multiphase reactors, membrane pro-
cesses, polymerization reactors, biochemical reactors, hydrodynamic separators
and the majority of units involving particulates. Therefore, costly and time-con-
suming model development for a particular unit is often required in some pro-
jects.

Equation-oriented languages largely contribute to the implementation of mod-
els, but they do not assist the user in developing the types of models that use engi-
neering concepts. Indeed, equation-oriented languages are not useful in providing
for the documentation of the modelling process during the lifecycle of a process
or for the proper design and documentation of model libraries. In consequence,
the reuse of previously validated models of a unit by a new group of users is then
almost impossible.

The consistency and reliability of well designed model libraries is inevitably get-
ting lost over time. Now, even though the market for these simulators is in full
evolution, spectacular progress is not expected because the basic models of the
units stay at mesoscale or macroscale.

Despite this last observation, for this type of simulation and modelling research,
two main means of evolution remain: the first consists in enlarging the library
with new and newly coded models for unit operations or apparatuses (such as the
unit processes mentioned above: multiphase reactors, membrane processes, etc.);
the second is specified by the sophistication of the models developed for the appa-
ratus that characterizes the unit operations. With respect to this second means,
we can develop a hierarchy dividing into three levels. The first level corresponds
to connectionist models of equilibrium (frequently used in the past). The second
level involves the models of transport phenomena with heat and mass transfer
kinetics given by approximate solutions. And finally, in the third level, the real
transport phenomena the flow, heat and mass transport are correctly described. In
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this last case, oversimplifying hypotheses, such as non-resistive interfaces, are
avoided

The third phase of the evolution for the modelling and simulation activities is
represented by the current consumption of commercial software by scientific edu-
cation. High level instruction languages such as MathCAD�, Matlab�, the CFD
software, finite element softwares (for the integration of complex differential
equation systems), high data volume graphic processors and softwares based on
artificial intelligence represent some examples that show the important evolution
of education and scientific research by modelling and simulation.

Considering the complexity and the diversity of the problems in chemical engi-
neering research and design and taking into account the present evolution of
modelling and simulation, we cannot claim that it will be possible to use universal
chemical engineering simulators in the future.

The experimental researchers and the scientists that are only interested in in-
depth modelling of physical phenomena are not attracted by complex simulators.
The former seek models for data interpretation; the latter create models to propose
solutions for a good knowledge of a concrete case. From other viewpoints, chemi-
cal engineering, because of its diversity, includes countless models. Most of them
are quite interesting when they can add a lot more new situations based on parti-
cularization or modification to their starting cases. As far as the situations of this
subject in chemical engineering are quite varied, it will be interesting to describe
new modelling and simulation examples in the following sections. The examples
shown below demonstrate firstly, how a model based on transport phenomena
equations is developed and secondly, how we can extract important data for a pro-
cess characterization by using a model simulation.

3.4.1
Problem of Heating in a Zone Refining Process

Among the methods of advanced purification of a crystallized of amorphous solid
material, the zone refining methods occupy an important place. The principle of
the method is based on the fact that an impurity from the processed material in a
melting crystallization process, according to the distribution law, presents differ-
ent concentrations in solid and liquid phases [3.45]. If the melting solid (liquid
phase) is subjected to a movement along a stick, then the impurity will be concen-
trated in the position where the liquid phase is stopped. This process is also called
refining. To make the solid melt and to move the melt, the solid is locally heated
by means of a mobile heat inductor or a small mobile and cylindrical electrically
heated oven. However, we can reach the same result by pulling the stick through
a small heating source. From the heat transfer viewpoint, this example corre-
sponds to a conductive non-steady state heating with an internal heating source
(heat inductor) or with an external heating source (heating with an oven).

From the mathematical viewpoint, it is important to assume that a very rapid
heat transfer occurs at the extremities of the stick, and that a rapid cooling system
is activated when the heating source is stopped. In addition, as far as we only take
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into account the melted region, we do not consider the coupling with the liquid–
solid phase change.

Figure 3.36 shows the heating principle of the zone refining purification proce-
dure and also introduces the geometric and material conditions that characterize
the process. It also shows how the stick transfers heat to the contiguous medium.
For a correct introduction to this problem, we assume that the production of heat
by the inductor has Gaussian behaviour, so, for the heat generation rate, we can
write Eq. (3.124) where the source amplitude (watt/m3) is A, f ðsÞ is a dimension-
less function that keeps the maximum temperature for the inductor constant and
k1 and k2 are the constants with L�1 dimension:

Qg ¼ Af ðsÞexp �ðk1ðz� k2wsÞ2Þ
� �

(3.124)

ta

ρ ,  , cpz
Rr

Direction of motion

 heat inductor
stick

   τ

Qg=Af(z-wτ) q=α(t-ta)
l

λ

Figure 3.36 Heating scheme for a solid stick purified by a zone refining process.

From Fig. 3.36 we observe that the stick is characterized by its density r, ther-
mal conductivity k and sensible heating capacity cp. The geometric dimensions of
the stick are radius R and length l. The temperature distribution inside the stick
results from relation (3.125) as a particularization of Eq. (3.6):

rcp
¶t
¶s
¼ k

¶2t
¶r2
þ 1

r
¶t
¶r
þ ¶2t
¶z2

 !

þQg (3.125)

The univocity conditions that complete this general mathematical model can be
written as follows:
. the initial distribution of the temperature into the stick:

s ¼ 0 � R £ r £R t ¼ ta (3.126)

. the boundary thermal flux expression (type III conditions from
the general class of boundary conditions):

s � 0 r ¼ �R r ¼ R 0 � z £ l: � k
¶t
¶r
¼ q ¼ aðt� taÞ (3.127)
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. the expression that gives the behaviour of the device of heat
absorption placed at the stick extremity:

s � 0 z ¼ l � k
¶t
¶z
¼ kabðtab � trabÞ (3.128)

For a correct perception of relation (3.128), we must notice that this is a heat sink
that keeps its constant temperature due to a rapid heat exchange between the sur-
face with a cooling medium maintained at constant (trab) temperature. The assem-
bly of relations (3.124)–(3.126) represents in fact an abstract mathematical model
for the above described heating case because the numerical value is given neither
for the system geometry nor for the material properties. Apart from the tempera-
ture, all the other variables of the model can be transformed into a dimensionless
form introducing the following dimensionless coordinates:

. the dimensionless time T ¼ ks

rcpr2
sometimes called Fourier

number;
. the dimensionless radius coordinate X ¼ r=R;
. the dimensionless axial coordinate Z ¼ z=l;

With these transformations, the abstract model can now be described by assem-
bling the following relations (3.129)–(3.133):

Qg ¼ Af
TrcpR2

k

� �

exp �k1Z � l� k2w
TrcpR2

k

� �2

(3.129)

T � 0 X ¼ �1 X ¼ 1 0 � Z £ 1 � k

R
¶t
¶X
¼ q ¼ aðt� taÞ (3.130)

T � 0 Z ¼ 1 � k

l
¶t
¶Z
¼ kabðtab � trabÞ (3.131)

T � 0 X ¼ �1 X ¼ 1 0 � Z £ 1 � k

R
¶t
¶X
¼ q ¼ aðt� taÞ (3.132)

T � 0 Z ¼ 1 � k

l
¶t
¶Z
¼ kabðtab � trabÞ (3.133)

Then, the heating model of the stick can simply be transposed by an adequate
software for process simulation. Indeed, some conditions have to be chosen: the
material properties (k; r; cp); the dimensionless stick geometry; the parameters
of the heating source (A; k1; k2; wÞ and the external heat transfer parameter
(a).The FlexPDE/2000� simulator (PDE Solutions Inc. USA) based on the finite
element method for integration of partial differential equations or systems has
been used for the development of the simulation program. The simulator can give
the results in various graphic forms. The source text of the program used to solve
this model (Fig. 3.37) shows a very attractive macro language.
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Title Heating in the zone refining

Coordinates: cylinder('Z','X')

select

cubic  { Use Cubic Basis }

variables  temp(range=0,1800)

definitions  λ  = 0.85  {thermal conductivity} cpc  = 1  { heat capacity }  long = 18

radius=1

  α  = 0.4   {free convection boundary coupling}  Ta = 25 {ambient temperature}

  A = 4500   {amplitude}

source = A*exp(-((z-1*t)/.5)**2)*(200/(t+199))

  initial value

  temp = Ta

equations

  div( λ *grad(temp)) + source = pc *dt(temp)

boundaries region 1 start(0,0)

    natural(temp) = 0 line to (long,0)

    value(temp) = Ta line to (long,1)

    natural(temp) = - α *(temp - Ta) line to (0,1)

    value(temp) = Ta line to finish

  feature

    start(0.01*long,0) line to (0.01*long,1)

time -0.5 to 19 by 0.01

monitors

  for t = -0.5 by 0.5 to (long + 1)

  elevation(temp) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"

  contour(temp)

plots

  for t = -0.5 by 0.5 to (long + 1)

  elevation(temp) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"

histories

  history(temp) at (0,0)  (4,0)  (8,0)  (12,0)  (16,0)   (18,0)

  end

Figure 3.37 FlexPDE� text for the example 3.4.1.

The first simulations present the heating dynamics along the stick, i.e. the evolu-
tion of temperature with time for two points positioned at X ¼ 1 (surface of the
stick) and X ¼ 0 (stick centre). If we note the temperature range from Figs. 3.38–
3.41 as well as the values of the material properties we see that the simulated heat-
ing case corresponds to the zone refining of a material with a very high melting
point such as an inorganic material (silicium). Figure 3.38, presents the time
motion of the heating front along the stick. It is easy to observe how the tempera-
ture increases in each point of the stick due to heating. After the passage of the
heating inductor along the stick, the temperature rapidly decreases due to the
axial and radial heat transport. This local heating dynamics (heating followed by a
good cooling resulting from a high temperature difference) can also be observed
at the stick extremities. Consequently, all the temperature curves present an
important elongation to the right part where the heat sink at constant temperature
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ta is placed, at the end of the stick. At the same time, Fig. 3.38 shows the impor-
tance of the heat flowing in the radial direction, from the centre to the external
medium. Using Figs. 3.39 and 3.40, we can compute the radial and the axial
temperature gradient with the time values from Fig. 3.38. For example for T ¼ 5
and l=R ¼ 10(middle of the stick) the radial temperature gradient is dt=dX ¼
330 drg/ul (ul = units of length); this value is larger than the axial temperature
gradient that, in this case, is dt=dZ ¼ 199 drg/ul.

l/R=4 l/R=8 l/R=12 l/R=16

16

8
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t 
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Figure 3.38 Evolution of the temperature for some points along the heated stick.
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Figure 3.39 Evolution of the temperature of the surface of the stick along its
length for various dimensionless times.
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Figure 3.40 Evolution of the temperature at the centre of the stick and along its
length and for various dimensionless times.
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Figure 3.41 Effect of the external flow on the stick heat flow.

With respect to the data contained in Figs. 3.38–3.41, we can rapidly make a
conversion to a concrete situation. For example for a stick with k= 2 watt/(m deg),
r = 3000 kg/m3, cp ¼2000 j/(kg deg) and with a radius R = 0.01 m, the dimension-
less time T = 5 corresponds to a real time s ¼ 1500 s. If the stick is 100 cm long,
then, with an inductor motion speed of 10 dimensionless units for 1500 s (see the
distances between the maximums of the temperature in Figs. 3.38–3.40) we
obtain a value of 15000 s for the time corresponding to the motion of the inductor
along the stick. This shows that the zone refining purification is not an efficient
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method as far as time is concerned. Before closing these observations concerning
heating with an inductor, we show that, in this case, the radial heat flow is perma-
nently oriented from the stick to the adjacent medium. On the contrary, for the
case of an electric oven heating, the direction of the heat flow is from the outside
to the inside in the region of the stick covered by the oven.

The second simulation has been oriented to show the effect of an external flow
around the stick on the thermal dynamics. It is known that the external flow
around an entity, where a transport property is occurring, has a direct action on
the coefficient of transfer of the property which characterizes the passing through
the interface [3.3, 3.4, 3.45, 3.46]. The data obtained with the simulator when we
change the values of the heat transfer coefficient from the stick to the external me-
dium allows a quantitative estimation of the effect of this parameter. For this sim-
ulation, the temperature of the surface of the stick is considered as a dependent
variable of the process. The heat source, the heat transfer coefficient a for the
external fluid flow around the stick, the material properties and the stick geometry
represent the independent variables of the process. Figure 3.41 shows the evolu-
tion of the stick heat flow for two values of the dimensionless time: T ¼ 5 and
T ¼ 15. A spectacular reduction of the temperature of the stick surface occurs
when the external flow becomes higher and the value of the heat transfer
increases from a ¼ 8 w/(m2drg) to a ¼ 40 w/(m2drg). This phenomenon shows
that an easy control of the stick-cooling rate is possible with the variation of a.
Indeed, this fact can be very important for an actual process [3.45].

The third simulation example concerns the descriptive model of the cooling pro-
cess of a hot stick that is maintained in a large volume of air. In the initial stages
of the process, one of the stick’s ends is maintained at high temperature for suffi-
cient time for it to reach a steady state. The distribution of the temperature along
the stick can then be calculated by relation (3.134). In a second step, the stick is
placed in air and an unsteady cooling process starts. Concerning relation (3.134),
we can notice that t0 is the temperature of the heated end of the stick, and that all
the other parameters have already been defined by the equations described above
at the beginning of this section.

t ¼ ta þ ðt0 � taÞexp �
ffiffiffiffiffiffi
2a

kR

r

z

 !

(3.134)

In this case, the simulator’s text given in Fig. 3.37 has been modified, first consid-
ering A = 0, this statement is equivalent to the elimination of the source, and sec-
ondly by choosing the relation (3.134) as the initial value of the variable of the pro-
gram named temp. The simulation results given in Figs. 3.42 and 3.43, show that
a rapid cooling of the stick takes place, this phenomenon is mainly caused by the
external conditions.
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Figure 3.42 Cooling dynamics of the stick for high t0 and
small heat transfer coefficient (a = 8 w/(m2drg).
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Figure 3.43 Cooling dynamics of the stick for slow t0 and high
heat transfer coefficient (a = 32 w/(m2drg).
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The zone refining process is extremely efficient for separating liquid or solid
mixtures. In the old days, it was essentially applied in purifying germanium to be
used in transistors. In multi-pass zone refining processes, the purification is car-
ried out by slowly moving a series of closely spaced heaters along a relatively long
solid ingot as shown in Fig. 3.36 or by restarting the heater movement when it
reaches the end of the stick. The multi-pass zone refining process allows time sav-
ing because the following crystallization begins before the preceding one is com-
pleted. Many useful purifying operations can be carried out if the number and the
size of the zones are properly selected. The distribution of impurities along an
ingot depends on the value of the distribution coefficient, on the length of the
molten zone, and on how many times the heaters move along the stick. Zone
refining with a variable zone length is a topical scientific subject.

3.4.2
Heat Transfer in a Composite Medium

The description of heat transfer through a composite material can be a rather
complicated task because this composite solid medium can contain various solids
which are not uniformly dispersed and which have different thermal conductivity
and sensible specific heat. Indeed, if we have a discrete setting of various solids in
the total solid, the problems of heat transport become very complex when the
number of solids and the number of agglomerations increase. These cases of
totally or partly disordered composite media are not dealt with in this section. In
an ordered solid composite medium, the heat can be generated or accumulated,
captured or eliminated at the boundaries by a molecular-like mechanism. When
the carriers pass from one zone of the solid to another, they change the frequency
of discrete motion and the pathway length of each individual species because of
the local properties. The heating or cooling problems of a block composed of two
or more bricks (parallelepiped or other form) that exchanges energy with the adja-
cent medium represent the concrete case considered here. In the first modeling
problem, we consider the case of a block of four bricks with different thermal con-
ductivity, sensible specific heat and density. It is heated by a source with a Gaus-
sian heat flow placed at the centre of the group of bricks. The group exchanges
heat with the external medium at the upper and lower surface. At the surface lev-
el, the external medium is considered to be perfectly mixed and indeed, without
any transfer resistance. No heat flow leaves the other block surfaces because they
are completely isolated. The upper and lower contact surfaces of the bricks do not
introduce any additional heat transfer resistance, so here the instantaneous heat
flux equality is a priori accepted. The study of this model is attractive because: (i)
the descriptive model given here can be explained by an interesting mathematical
model; (ii) no significant problems are encountered if we carry out support mod-
ifications in order to find other important heat transfer cases; (iii) by analogy, we
can obtain the data with respect to the characterization of some mass transfer
cases occurring in a similar way.
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For the general mathematical model construction, we consider the system of
coordinates, the geometrical dimensions, the material properties and the initial
temperature distribution for the block. Figure 3.44 gives a graphical introduction
to the descriptive process model. We can now proceed with the particularization
of the transport phenomena equations. Indeed, the concrete general mathemati-
cal process model contains:
. the partial differential equation that gives the temperature distri-

bution in the solid block:

rcp
¶t
¶s
¼ k

¶2t
¶x2
þ ¶2t
¶y2
þ ¶2t
¶z2

 !

þQg (3.135)

. the geometric and material conditions:

on the right region:

0 � x � l ; �L � z � 0 ; �h
2
� y � h

2
; k ¼ k ; cp ¼ cp1 ; r ¼ r1 (3.136)

0 � x � l ; 0 � z � L ; �h
2
� y � h

2
; k ¼ k2 ; cp ¼ cp2 ; r ¼ r2 (3.137)

on the left region:

�l � x � 0 ; �L � z � 0 ; � h
2
� y � h

2
; k ¼ k3 ; cp ¼ cp3 ; r ¼ r3 (3.138)

0 � x � l ; 0 � z � L ; � h
2
� y � h

2
; k ¼ k4 ; cp ¼ cp4 ; r ¼ r4 (3.139)

. boundary conditions:

at the top surface:
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2
£ y £

h
2

; t ¼ ta (3.140)

at the bottom surface:

s � 0 ; z ¼ �L ; �l £ x£ l ; �h
2
£ y £

h
2

; t ¼ ta (3.141)

for other surfaces:

s � 0 ; x ¼ l ; �h
2
£ y £

h
2

; �L£ z £ L ;
dt
dx
¼ 0 (3.142)

s � 0 ; y ¼ �h
2

; �l £ x£ l ; �L£ z£ L ;
dt
dy
¼ 0 (3.143)
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s � 0 ; x ¼ �l ; �h
2
£ y £

h
2

; �L£ z£ L ;
dt
dx
¼ 0 (3.144)

s � 0 ; y ¼ h
2

; �l £ x £ l ; �L £ z £ L ;
dt
dy
¼ 0 (3.145)

. the heat flux continuity at the walls that separate the bricks:

s � 0 ; x ¼ 0 ; �h
2
£ y £

h
2
; �L £ z £ 0 ; k1

dt
dx

� �

x¼0þ
¼ k3

dt
dx

� �

x¼0�
(3.146)

s � 0 ; x ¼ 0 ; �h
2
£ y £

h
2
; 0 £ z £ L ; k2

dt
dx

� �

x¼0þ
¼ k4

dt
dx

� �

x¼0�
(3.147)

s � 0 ; z ¼ 0 ; 0£ x£ l ; �h
2
£ y £

h
2
; k2

dt
dz

� �

z¼0þ
¼ k1

dt
dz

� �

z¼0�
(3.148)

s � 0 ; z ¼ 0 ; �l £ x £ 0 ; �h
2
£ y £

h
2
; k4

dt
dz

� �

z¼0þ
¼ k3

dt
dz

� �

z¼0�
(3.149)

. temperature conditions to start the heating (initial conditions of
the problem):

s ¼ 0 ; �l £ x£ l ; �h
2
£ y £

h
2

; �L£ z £ L ; t ¼ ta (3.150)

. the relation that characterizes the local value of the rate of heat
production (it is the case of a small power source as, for example,
a small electrical heater placed in the centre of the block):

Qg ¼ Aexpð�kðx2 þ y2 þ z2ÞÞ (3.151)

Now we can transform the model relations into dimensionless forms. For this
purpose, we use the dimensionless temperature as a measure of a local excess
with respect to the adjacent medium Tp ¼ ðt� taÞ=ta; the dimensionless time

recognized as the Fourier number T ¼ k1s

r1cp1l2
; the dimensionless geometric coor-

dinates given by X ¼ x=l ; Y ¼ y=h ; Z ¼ z=L or as X ¼ x=l ; Y ¼ y=l ; Z ¼ z=l.
Table 3.12 contains the dimensionless state of the mathematical model of the pro-
cess.
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Figure 3.44 Description of the example of heating of four bricks.

Table 3.12 Dimensionless mathematical models for the case of
the heating of a block of four bricks.

¶Tp
¶T
¼ ¶2Tp

¶X2
þ l2

h2

¶2Tp
¶Y2
þ l2

L2

¶2Tp
¶Z2

 !

þQg ¢ ; Qg ¢ ¼
Qgð4L lhÞ2=3

X1ta
(3.135)

Materials conditions:

0 � X � 1 ; �1 � Z � 0 ; � 1
2
� Y � 1 ; k ¼ k1 ; cp ¼ cp1 ; r ¼ r1

(3.136)

0 � X � 1 ; 0 � Z � 1 ; � 1
2
� Y � 1

2
; k ¼ k2 ; cp ¼ cp2 ; r ¼ r2

(3.137)

�1 � X � 0 ; �1 � Z � 0 ; � 1
2
� Y � 1

2
; k ¼ k3 ; cp ¼ cp3 ; r ¼ r3

(3.138)

0 � X � 1 ; 0 � Z � 1 ; � 1
2
� Y � 1

2
; k ¼ k4 ; cp ¼ cp4 ; r ¼ r4

(3.139)
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Boundary conditions:

T � 0 ; Z ¼ 1 ; �1 £X£ 1 ; � 1
2
£Y £

1
2

; Tp ¼ 0 (3.140)

T � 0 ; Z ¼ �1 ; �1 £X£ 1 ; � 1
2
£Y £

1
2

; Tp ¼ 0 (3.141)

T � 0 ; X ¼ 1 ; � 1
2
£Y £

1
2

; �1 £Z £ 1 ;
dTp
dX
¼ 0 (3.142)

T � 0 ; Y ¼ � 1
2

; �1£X £ 1 ; �1£Z £ 1 ;
dTp
dY
¼ 0 (3.143)

T � 0 ; X ¼ �1 ; � 1
2
£Y £

1
2

; �1 £Z £ 1 ;
dTp
dX
¼ 0 (3.144)

T � 0 ; Y ¼ 1
2

; �1 £X£ 1 ; �1 £Z £ 1 ;
dTp
dY
¼ 0 (3.145)

T � 0 ; X ¼ 0 ; � 1
2
£Y £

1
2

; �1 £Z £ 0 ; k1
dTp
dX

� �

x¼0þ
¼ k3

dTp
dX

� �

x¼0�

(3.146)

T � 0 ; X ¼ 0 ; � 1
2
£Y £

1
2

; 0 £Z £ 1 ; k2
dTp
dX

� �

x¼0þ
¼ k4

dTp
dX

� �

x¼0�

(3.147)

T � 0 ; Z ¼ 0 ; 0 £ x£ l1 ; � 1
2
£Y £

1
2

; k2
dTp
dZ

� �

z¼0þ
¼ k1

dTp
dZ

� �

z¼0�

(3.148)

T � 0 ; Z ¼ 0 ; �1 £X£ 0 ; � 1
2
£Y £

1
2

; k4
dTp
dZ

� �

z¼0þ
¼ k3

dTp
dZ

� �

z¼0�

(3.149)

T ¼ 0 ; �1£X £ 1 ; � 1
2
£Y£

1
2

; �1£Z £ 1 ; Tp ¼ 0 (3.150)

Qg ¼ A exp �kðl2X2 þ h2Y2 þ L2Z2Þ
	 


(3.151)

In the first simulation, we consider a particular case of the heating dynamics of
the four blocks when the heat is produced by a source at the centre of the blocks.
In this example, we have different thermal conductivities for the material of each
block. Figure 3.45 shows the simulation of a parallelepiped brick with its corre-
sponding dimensionless length and width. The only difference between the
dimensionless model shown in Table 3.12 and the model used in the simulator
(Fig. 3.45) is the use of a partly dimensionless model in the simulator text. To
show the complex dynamics of the temperature observed in Fig. 3.45, seven dis-
playing points have been selected. These are: A – bottom right brick:
Aðl=2;�h=2;�L=2Þ; B – bottom right brick: Bðl=2;h=2;�L=2Þ; C – bottom left
brick: Cð�l=2;h=2;�L=2Þ; D – bottom left brick: Dð�l=2;�h=2;�L=2Þ; E – top
right brick: Eðl=2;�h=2; L=2Þ; F – top right brick : Fðl=2;h=2; L=2Þ; G – top left
brick: G(–l/2, h/2, L/2); H – centre of block: Hð0; 0; 0Þ.
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title 'Simulator for the heating of a block of four bricks

select  regrid=off  { use fixed grid }   ngrid=5

coordinates  cartesian3

variables  Tp

definitions  long = 1 wide = 1   ρλ ,c, p          { - values supplied later }

                   Q = 3.8*10
7
*exp(-x^2-y^2-z^2)              { Thermal source }

initial values  Tp = 0.

equations

    div[ λ *grad(Tp)] + Q = )c( pρ  dt(Tp)        { the heat  transport equation }

       extrusion z = -long,0,long      { divide Z into two layers }

boundaries
 surface 1 value(Tp)=0  { bottom surface temp } surface 3 value(Tp)=0  {  top surface temp }

  Region 1            { define full domain boundary in base plane }

  layer 1 λ =1  2000c p = 2000=ρ     { bottom right brick }   layer 2   λ  =0.1

1800  1800=ρ    { top right brick }

       start(-wide,-wide)

          value(Tp) = 0          { fix all side temps }

    line to (wide,-wide)   { walk outer boundary in base plane }

                 to (wide,wide)

                    to (-wide,wide)        to finish

   Region 2            { overlay a second region in left half }

   layer 1 λ =0.2 1500  1200=ρ     { bottom left brick }  layer 2  λ =0.4

1500.   1500=ρ   { top left brick }

       start(-wide,-wide)

          line to (0,-wide)              { walk left half boundary in base plane }

             to (0,wide)

               to (-wide,wide)                  to finish

time 0 to 3 by 0.01 { establish time range and initial time steep }

plots

    for t = endtime contour(Tp) on surface z=0  as "XY Temp" range=(0,6)

;contour(Tp) on surface x=0  as  "YZ Temp" range=(0,6) ;contour(Tp) on surface y=0

as "XZ Temp" range=(0,6)

histories

    history(Tp) at (wide/2,-wide/2,-long/2) ;(wide/2,wide/2,-long/2) ; (-wide/2,wide/2,-

long/2) ;   (-wide/2,-wide/2,-long/2)  ;  (wide/2,-wide/2,long/2);

(wide/2,wide/2,long/2) ;  (-wide/2,wide/2,long/2) ; (0,0,0)                  range=(0,6)

end

c =p

c =p

c =p

Figure 3.45 FlexPDE working text of the simulator for the heating of a block of four bricks.

Figure 3.46 presents the temperature distribution in the plane y ¼ 0, which
separates the left parts from the right parts of the bricks’ assembly. The shape of
the group of the isothermal curves shows a displacement towards the brick with
the higher thermal conductivity. Using the values obtained from these isothermal
curves, it is not difficult to establish that the exit heat flux for each brick from the
bottom of the assembly (plane Z ¼ �1 ) and for the top of the assembly (plane
Z ¼ 1) depends on its thermal conductivity and on the distribution of the isother-
mal curves. If we compare this figure to Fig. 3.47 we can observe that the data
contained in Fig. 3.46 correspond to the situation of a steady state heat transfer.
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Figure 3.46 Temperature distribution at T = 3 for plane y = 0.

Figure 3.47 shows the evolution of the heating process of the composite block
and how it attains a complex steady state structure with the surface zones covered
by complicated isothermal curves (see also Fig. 3.46). Secondly, this figure shows
how the brick with the higher thermal conductivity is at steady state and remains
the hottest during the dynamic evolution. As explained above, this fact is also
shown in Fig. 3.46 where all high isothermal curves are placed in the area of the
brick with highest thermal conductivity. At the same time an interesting vicinity
effect appears because we observe that the brick with the smallest conductivity
does not present the lowest temperature in the centre (case of curve G compared
with curves A and B). The comparison of curves A and B, where we have k ¼ 0:2,
with curves C and D, where k ¼ 0:4, also sustains the observation of the existence
of a vicinity effect. In Fig. 3.48, we can also observe the effect of the highest ther-
mal conductivity of one block but not the vicinity effect previously revealed by
Figs. 3.46 and 3.47. If we compare the curves of Fig. 3.47 with the curves of
Fig. 3.48 we can appreciate that a rapid process evolution takes place between
T ¼ 0 and T ¼ 1. Indeed, the heat transfer process starts very quickly but its
evolution from a dynamic process to steady state is relatively slow.
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Figure 3.47 Temperature evolution inside the bricks that compose the
heated block.
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Figure 3.48 Temperature distribution along the Z axis for various
dimensionless times.

The second simulation has been oriented to the analysis of the cooling process of
the composite block. So, for the initial time, we have a block of four bricks heated
to a constant temperature. All surfaces of the blocks except for Z ¼ �1 and Z ¼ 1,
are isolated before placing the assembly of blocks in a cooling medium. We
assume that we can use the boundary conditions of type I. To make the simulator
respond to this new model with the written text shown in Fig. 3.45, we erase the
generated heat (Q ¼ 0) and we adequately change the initial temperature condi-
tions. The examples given by Figs. 3.49–3.51 consider that the cooling of the com-
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posite block begins when the dimensionless temperature is Tp ¼ 6. Figure 3.49
shows that each brick presents its proper thermal dynamics. We can notice that
the vicinity effects are similar to those already discussed in the previous example.
However, here the cooling rate of each brick does not occur in accordance with
the thermal conductivity but with the thermal diffusivity.

Figure 3.49 Cooling dynamics of a brick assembly for L/l = 1
and Va = 8.13.

The curves E and F that refer to the brick with k=ðrcpÞ ¼ 2:57 � 10�7 m2/s show a
higher cooling rate than curves A and B where we have k=ðrcpÞ ¼ 1:1 � 10�7 m2/s. At
the same time, curve G, where we have k=ðrcpÞ ¼ 0:23 � 10�7 m2/s, shows a high-
er cooling rate than curves C, D, E, F. Table 3.13 contains data from some simula-
tions where the block is considered to be composed of bricks which have the same
thermal diffusivity. It clearly shows that each brick presents an identical tempera-
ture field. It is obvious that, for this simulation, the temperature at the centre of
each brick and at the centre of the block have the role of the dependent variables
of the process when the medium temperature, the cooling temperature at the
beginning, the material diffusivity and the block geometrical dimensions are the
inputs or independent variables of the process. In addition, we can say that, in
spite of the type I boundary conditions for the bottom and top surfaces, the data
shown in Table 3.13 allow one to appreciate that the block cooling process can be

characterized by the integral relation: Tpmean ¼ Tp0exp � kAt

mcp
s

 !

where Tpmean is

the mean block temperature, k is the heat transfer coefficient with respect to the
non-isolated surfaces, m represents the block mass and At is the value of the non-
isolated surfaces.
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Table 3.13 Evolution of the temperature at the centre of the block and at the
centre of each brick.
Studied case: k1=ðr1cp1Þ ¼ k2=ðr2cp2Þ ¼ k3=ðr3cp3Þ ¼ k4=ðr4cp4Þ = 10–7 m2 /s.

T 0 0.25 0.5 0.75 1.0 1.25 1.50 1.75 2.0

Tp – block centre 6 5 2.0 0.8 0.4 0.15 0.05 0 0

Tp – each brick centre 6 2 0.8 0.3 0.08 0.04 0 0 0

If we significantly reduce the dimension of the Z axis, then we transform the
three-dimensional cooling problem into an unsteady state and monodimensional
problem. Figures 3.50 and 3.51 show the results of the simulations oriented to
demonstrate this fact. We can notice that all curves present the same tendency as
the analytical solution or Schmidt numerical solution of the monodimensional
cooling problem:

¶t
¶s
¼ k

rcp

¶2t
¶z2

;
k

rcp
¼
X4

1

ki

ricpi
;

s ‡ 0; z ¼ �L and z ¼ l ; t ¼ ta; s ¼ 0;�L � z � L; t ¼ t0

Figure 3.50 The cooling dynamics of the bricks assembly for L/l = 0.1.
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Figure 3.51 The cooling dynamics of the bricks assembly for L/l = 0.01.

The above-mentioned trend occurs in spite of the different conditions that charac-
terize the calculation of each curve. As is known, the dimensionless time that charac-
terizes cooling depends on the width of each brick. However, this dimensionless value
has not changed in the simulations used for drawing Figs. 3.50 and 3.51. Conse-
quently, these figures are characterized by the same dimensionless time axis division.
In addition, the heat transfer surface used for the simulation also has the same value.
Indeed, both figures are reported to use the same base of comparison.

In the third simulation example, we carried out an analysis of some of the aspects
that characterize the case of the mass transfer of species through a membrane
which is composed of two layers (the separative and the support layers) with the
same thickness but with different diffusion coefficients of each entity or species.
To answer this new problem the early model has been modified as follows: (i) the term
corresponding to the source has been eliminated; (ii) different conditions for bottom
and top surfaces have been used: for example, at the bottom surface, the dimension-
less concentration of species is considered to present a unitary value while it is zero at
the top surface; (iii) a new initial condition is used in accordance with this case of
mass transport through a two-layer membrane; (iv) the values of the four thermal
diffusion coefficients from the original model are replaced by the mass diffusion
coefficients of each entity for both membrane layers; (v) the model is extended in
order to respond correctly to the high value of the geometric parameter l=L.

It is clear that, for this problem, the normal trend is to use the monodimen-
sional and unsteady state model, which is represented by the assembly of relations
(3.152)–(3.156). It accepts a very simple numerical solution or an analytical solu-
tion made of one of the methods classically recommended such as the variable
separation method:
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¶c
¶s
¼ D

¶2c
¶z2

(3.152)

s ¼ 0 ; �L£ z£ L ; c ¼ 0 (3.153)

s ‡ 0 ; z ¼ �L ; c ¼ c0 (3.154)

s ‡ 0 ; z ¼ 0 D1
dc
dz

� �

�
¼ D2

dc
dz

� �

þ
(3.155)

s ‡ 0 ; z ¼ L ; c ¼ 0 (3.156)

In addition, it is known that the transport of species through the membrane and
its support are characterized by the coefficients of diffusion, which are experimen-
tally determined with methods based on this model [3.47–3.51].

However, we cannot a priori use this model without the previous establishment
of conditions which accept the transformation of the three-dimensional and
unsteady state model into a one-dimensional model. These conditions can be
studied using the simulations as a tool of comparison. At the same time, it is
interesting to show the advantages of the dynamic (unsteady) methods for the
estimation of the diffusion coefficient of the species through the porous mem-
brane by comparison with the steady state methods.

Figures 3.52–3.54 show three cases of simulation of the process where the diffu-
sion coefficients for the support and membrane take, respectively, the following
values D1 ¼ D3 ¼ Dsp ¼ 10�8 m2/s D2 ¼ D4 ¼ Dmb ¼ 10�9 m2/s. All simulated
cases keep the total volume of the membrane assembly constant but differ from
each other due to parameter l=L which takes the values: 10, 100, and 1000.
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Figure 3.52 Dimensionless species concentration along the Z axis at various times
(for l/L = 10).
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Figure 3.53 Dimensionless species concentration along the
Z axis at various times (for l/L = 1000).
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Figure 3.54 Dimensionless species concentration along the
Z axis at various times (for l/L = 100).

Figure 3.52 significantly differs from the next two figures, especially with
respect to the evolution of C/C0 with time. For this situation, where the value of
the ratio length/thickness is not very high (10) we can accept that the diffusion
occurs in all directions and also that it is very rapid in the membrane support.
This last fact is responsible for this apparent fast evolution with time. For the
other two situations, we can observe that the diffusion process tends to attain the
stationary state when the concentration profile is C ¼ C1 � ð1� C1Þ � Z for

120



3.4 Complex Models and Their Simulators

�1 £Z £ 0 and C ¼ C1 � ð1� ZÞ for 0 £Z £ 1 respectively. Here, the dimensionless
species concentration for the steady state diffusion at the plane Z = 0 is given by
C1. If we write the equality of the species flux for the support and for the mem-

brane, we obtain:
1� C1

C1
¼ Dmb

Dsp

dsp

dmb
. Unfortunately, we cannot measure the

dimensionless concentration C1 and, consequently, this relation cannot be used to
determine Dmb, even if Dsp is known. At the same time, it is not simple to estab-
lish the end of the dynamic evolution and the beginning of the steady state diffu-
sion. As an example, if we know the end of the unsteady state and the beginning
of the steady state (as given in the simulations), the ratio Dmbdsp=Dspdmb = 0.1
(dmb ¼ dsp; Dmb ¼ 10�9 m2/s Dsp ¼ 10�8 m2/s ) for Figs. 3.52–3.54 then, for the
steady state, ð1� C1Þ=C1 must be 0.1.

If we observe the value of (1–C1)/C1 at T = 2 we have 0.135 for Fig. 3.52, 0.157
for Fig. 3.53 and 0.189 for Fig. 3.54; for all cases the persistency of the dynamic
evolution is shown. Otherwise, if we insist on the development of the steady state
method to determine the diffusion coefficient, then it is not difficult to observe
that, from the experimental point of view, we must use the measurements of the
flow rate of species (diffusion). Nevertheless, this type of experiment is not charac-
terized by its reproducibility and simplicity.

Concerning the problem of the validity of the monodimensional and unsteady
state model for the transport of an entity through the membrane, the simulations
with l/L >100 show that the transport in the Z direction is dominant. At the same
time, Figs. 3.55 and 3.56, which give the state of the dimensionless concentration
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of the species for plane Z = 0 (between the support and membrane) show that the
X and Y concentration gradients are not absent in this case.

Because these gradients are not negligible, we cannot fully recommend, the
monodimensional unsteady state model as a theoretical model that supports the
use of dynamic methods for the characterization of the diffusion in a porous
membrane. Even if over 60% of the membrane surface is covered by a constant
dimensionless concentration of species, this event is not sufficient to allow the
acceptance of the unsteady model. Nevertheless, looking closely at Figs. 3.55 and
3.56 we can notice that only 20% of the surface contains high concentration gradi-
ents. However, the boundary conditions chosen impose the absence of transport
of the species throughout all surfaces except for Z = –1 and Z = 1. It is evident
that these last observations sustain the validity of the monodimensional and
unsteady state model. As a conclusion to this discussion, it is clear that the validity
of the monodimensional and unsteady state model as a support for the dynamic
methods to characterize the diffusion in a porous medium is not really affected.
At the same time, these critical observations can be considered as a support of the
various procedures that bring the necessary corrections to this model.

If both parts of the membrane (the support and the separative layers) can be
characterized by values lower than 1 for the Knudsen number (Kn ¼ k=2rp where
k is the mean free path of species or molecules and rp is the mean pore radius),
then all the aspects mentioned here must be taken into consideration. To describe
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the motion of a species in a porous structure, other models must be used when
the Knudsen number value is higher than 1 or when the support is highly porous
and the separative layer is dense.

One of the most convenient ways to investigate this process is to accept the
monodimensional unsteady state model of transport inside the membrane and to
measure the time lag characterizing the transitional process preceding the steady-
state. Traditional time lag theory has been intensively used to study gas and
vapour permeation through dense films. In most cases, the derived equations
describing the time lag for diffusion through composite media accept the equilib-
rium assumption at interfaces. This assumption is valid when the mass transfer
process at the interface is much faster than the transfer within the two adjacent
phases. This model has also been used in describing transport through supported
liquid membranes. In some cases, the interface resistance cannot be neglected,
and can be described with chemical reaction or sorption–desorption rates at the
surface.

3.4.3
Fast Chemical Reaction Accompanied by Heat and Mass Transfer

The problem of the modeling of a reactor where a homogeneous reaction (in the
gas or liquid phase) takes place can be relatively simple to solve after selecting the
type of reactor and its corresponding flow model. It is evident that, in accordance
with the accepted flow model, the reactor model will contain the particularizations
of the equation of the energy conservation and of the equations of the field of the
species concentration. The source term of the equation of the concentration of
one species is expressed by the kinetics reaction rate. Here we consider that the
homogeneous reaction is carried out in a reactor where the hydrodynamics corre-
sponds to a plug flow (PF) model and where the reaction Aþ BfiC occurs in the
presence of an inert component D. In accordance with the descriptive model of
the reactor given in Fig. 3.57, the following relations and conditions show the
associated mathematical model for a steady state operation and an elementary
reactor’s length dz:
. the balance equations of species A consumption:

w
dXA

dz
¼ vrA (3.157)

. the links between local concentration of B, C, D and A:

yB = yB0(1–XA) (3.158)

yC = yC0(1+XA) (3.159)

yA = yA0(1–XA) (3.160)

yD = 1–yA–yB–yC (3.161)
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. the heat balance equation:

w
dt
dz
¼ DHrA

rcp
vrA �

4k
rcpd

ðt� texÞ (3.162)

. the expression of the reaction kinetics:

vrA ¼ k1cm
A0cn

B0ð1� XAÞmþn � k2cp
C0ð1þ XAÞp (3.163)

. the concentration and temperature conditions at the reactor
input:

z ¼ 0 ; XA ¼ 0 ; yA ¼ yA0 ; yB ¼ yB0 ; yC ¼ yC0 ; t ¼ t0 ; tex ¼ tex0 (3.164)

. the heat balance for the fluid that flows outside of the reactor:

dtex

dz
¼ f ðGex; rex; cpex; k; d; tÞ (3.165)

tex

(A,B,C,D)0

w

cAz

source of heat and species

d

(A,B,C,D)f

cA0

XA

l

t

Figure 3.57 Scheme of a plug-flow reactor and homogeneous reaction.

In the PF homogeneous reactor, XA is the conversion of species A into C,
(XA ¼ ðcA � cA0Þ=cA0, where cA is the local molar concentration of A), y represents
the molar fraction of species (yA ¼ cA=ðcA þ cB þ cC þ cDÞ, etc.) and k1; k2;m;n; p
characterize the kinetics as reaction constants with their partial reaction orders.

The unsteady state model will be completed by adding the unsteady evolution
as ¶XA=¶s; ¶t=¶s and ¶tex=¶s respectively on the left part of the equations
(3.155), (3.160) and (3.163). At the same time, the initial conditions must be ade-
quately changed and new univocity conditions will be attached to this new prob-
lem.
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The modeling procedure explained above is not valid for all types of homoge-
neous reactions, for example, a very fast exothermic reaction such as the combus-
tion of gaseous or vaporized hydrocarbon with oxygen in air or the reaction of
chloride and hydrogen in inert nitrogen, etc. We will develop an example of such
reactions below:
. A gaseous mixture, which contains three components – a com-

bustible, a comburent and an inert gas, is fed into a tubular reac-
tor which has an efficient cooling in order to maintain the walls
at constant temperature;

. The gaseous mixture comes into the reactor with uniform radial
velocity (plug flow) and the gas velocity increases linearly with
temperature inside the reactor. Indeed, we can consider the con-
version as a function of r, ws and s (XAðr;ws; sÞ) and, conse-
quently, we can build the model taking r and s into account;

. To start the reaction in the reactor input, we have a small surface
with the function of a heat inductor where the temperature of the
gaseous mixture increases very rapidly to attain the inductor tem-
perature. Inside the reactor the inductor surface operates as a
stripping heat surface;

. The process occurs symmetrically with respect to a plane that con-
tains the z axis; at the same time, the temperature and the reac-
tant conversion will present the maximum values in the centre of
the reactor due to a high speed reaction. Therefore, we perma-
nently have the right conditions for components and heat diffu-
sion in the reactor.

Combustion reactions are known to occur through a free radical mechanism and
from this viewpoint, their kinetics is complicated. At the same time, the coupling
of the reaction kinetics with the flow dynamics, as well as the species and heat
diffusion is very important for most real cases [3.52–3.55]. For simplification, we
consider that the formal kinetics of this reaction is first order with respect to the
limiting reactant and that its expression must show a strong dependence on tem-
perature. Now, using the descriptive model (Fig. 3.58), we can build the general
mathematical model of the process. Concerning our fast highly exothermic reac-
tion, relation (3.166) often employs the quantitative description of the reactant
consumption rate. Here c is the limitative species concentration and c is a para-
meter related to the reaction activation energy:

vrðc; sÞ ¼ kc � exp½cð1=t0 � 1=tÞ� ¼ kc � exp½c=t0ð1� 1=TpÞ� (3.166)

For small c values, we obtain small or moderate reaction rates, whereas when c

increases, it corresponds to the start of the fast reaction or high temperatures,
when the reaction rate can attain a dangerous level.

125



3 Mathematical Modelling Based on Transport Phenomena

tw z=wτ

heat stripping

w0 t0

x

y
z

r1

t0+∆tfixe

r

surface lines of t or XA

 

Figure 3.58 Description of a plug flow reactor with a constant
wall temperature where a fast exothermic reaction occurs.

The mathematical model of the process is built only in x and y coordinates (or
only in the r coordinate) because the z coordinate is self-defined using s and w.
Then, the general mathematical model contains the following equations and con-
ditions:
. the equation of concentration field for the limitative reactant:

¶c
¶s
¼ DA

¶2c
¶x2
þ ¶2c
¶y2

 !

þ vrðc; tÞ (3.167)

. the expression of temperature field inside the reaction mixture:

¶t
¶s
¼ at

¶2t
¶x2
þ ¶2t
¶y2

þvrðc; tÞ
DHr

rcp

! 

(3.168)

. the equations of the local gas velocity and plug flow reaction front
position:

w ¼ w0
ð271þ tÞ
ð271þ t0Þ

; z ¼ ws (3.169)

. the respective initial conditions for the temperature and concen-
tration domains:

s ¼ 0 ; 0 � x � r1 ; 0 � y � r1 ; c ¼ 0 ; t ¼ t0 (3.170)

. the univocity conditions:
1. for the reactor input:

s � 0 ; 0 � x / r1 ; 0 � y � r1 ; x2 þ y2 ¼ r2 ; c ¼ c0 ; t ¼ t0 (3.171)
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2. for the surface of thermal process control:

s ¼ 0 ; 0 � x � r1 ; 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2

p
Þ � r1

h

360
; t ¼ t0 þ Dt ;

dc
dr
¼ 0

s � 0 ; 0 � x � r1 ; 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2

p
Þ � r1

h

360
;

dt
dr
¼ 0 ;

dc
dr
¼ 0 (3.172)

3. for the reactor walls:

s � 0 ; x ¼ r1 ; y ¼ r1 ; yr1˛360� h ; k
dt
dr
¼ �aðt� twÞ ;

dc
dr
¼ 0 (3.173)

The set of Eqs. (3.166)–(3.173) represents the general mathematical model of the
described fast exothermic reactions taking place in an externally cooled plug flow
reactor. If we use the dimensionless expressions of time T ¼ DAs=r2

1, coordinates
X ¼ x=r1,Y ¼ y=r1, Z ¼ z=l, R ¼ r=r1, temperature Tp ¼ t=t0 and conversion XA

as dimensionless concentration of the limitative reactant, then the process model
can be described by the relations contained in Table 3.14.

Table 3.14 Dimensionless mathematical model for the heat and mass transfer in a
plug flow reactor for a fast exothermic reaction.

¶XA

¶T
¼ ¶2XA

¶X
þ ¶2XA

¶Y

 !

þ bRð1� XAÞexp c 1� 1
Tp

 !" #
(3.174)

¶Tp

¶T
¼ Sc

Pr

¶2Tp

¶X
þ
¶2Tp

¶Y

 !

þ bTð1� XAÞexp c 1� 1
Tp

 !" #
(3.175)

w
w0
¼

aþ Tp

aþ 1
; Z ¼ Ped

r1

l

� �
T (3.176)

T ¼ 0 ; 0 � Z � 1 ; 0 � Y � 1 ; 0 � Y � 1 ; XA ¼ 0 ; Tp ¼ 1 (3.177)

T � 0 ; 0 � X � 1 ; 0 � Y � 1 ; X2 þ Y2 ¼ R2 ; XA ¼ 1 ; TP ¼ 1 (3.178)

T � 0 ; 0 � X � 1 ; 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
� h

360
; Tp ¼ 1þ Dt

t0
;

dXA

dR
¼ 0 (3.179)

T � 0 ; 0 � X � 1 ; 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
� h

360
; Tp ¼ 1þ Dt

t0
;

dXA

dR
¼ 0 (3.180)

T � 0 ; 0 < X � 1 ; 0 � Y � 1 ; Y1˛360� h ;
dTp

dR
¼ BiðTp � TwÞ ;

dXA

dR
¼ 0 (3.181)

Specifications: br ¼ ðkr2
1Þ=DA – Fourier number for the reaction,

Sc ¼ m=DA – Schmidt number Pr ¼ ðcpmrÞ=k – Prandtl number,
Bi ¼ ðar1Þ=k – Biot number, bT ¼ brðDHrc0Þ=ðrcpt0Þ, r – density ,
t – kinematic viscosity, cp – specific sensible heat,
k – thermal conductivity.
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The first simulation program set is obtained after the model particularization
using the numerical values of the parameters and the geometry and material
properties as shown in Fig. 3.59. This program aims to show some characteristic
aspects of this type of reactor with respect to the heat and reactant conversion
dynamics using a graphic representation. In addition, the simulation allows one
to know the evolution of the exit variables of the process (temperature and species
concentration), when one or more of the input variables of the model are changed.
For this concrete case and among these input variables, we can identify: (i) the
input flow rate of reactants; (ii) the value of the limitative reactant concentration
at the reactor feed; (iii) the value of the input temperature of the reactants; (iv) the
temperature of the reactor walls; (v) the limitative reactant type, here introduced
by the parameters that characterize the reaction kinetics.

Title  'PF reactor for fast exothermic reaction'

Select  painted      { make color-filled contour plots }

Variables  Temp(range=0,5) XA(range=0,1)

definitions

  Lz = 1  r1=1  heat=0       gamma = 16  beta = 0.2  betat = 0.3

  BI = 1  T0 = 1   TW = 0.92  VRS = (1-XA)*exp(gamma-gamma/Temp)

  xev=0.96   yev=0.25 { some plot points }

 initial value  Temp=T0    XA=0

equations

  div(grad(Temp)) + heat + betat*VR = dt(Temp)

  div(grad(XA)) + beta*VRS = dt(XA)

  boundaries

  region 1

  start (0,0)  natural(Temp) = 0  natural(XA) = 0  line to (r1,0)  { a mirror plane on X-axis }

 { "Strip Heater" at fixed temperature } value(Temp)=T0 + 0.2*uramp(t,t-0.05)

  { ramp the boundary temp, because  discontinuity is costly to diffuse }

  natural(XA)=0 { no mass flow }

  arc(center=0,0) angle 5     {..  on outer arc }

  region  2

  natural(Temp)=BI*(TW-Temp)   natural(XA)=0   { no mass flow }

 arc(center=0,0) angle 85    { ... on outer arc }

 natural(Temp) = 0  natural(XA) = 0  line to (0,0) finish {another mirror plane on Y- axis }

 time 0 to 1

 plots  for cycle=10                  { watch the fast events by cycle }

 contour(Temp) contour(XA)  for t= 0.2 by 0.05 to 0.3{ show some surfaces during burn }

 surface(Temp)  surface(C) as

histories history(Temp) at (0,0) (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev)

history(C) at (0,0)  (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev)

end

Figure 3.59 FlexPDE� software for a fast exothermic reaction in a PF reactor.

The violent runaway of the reaction is clearly shown in Figs. 3.60 and 3.61,
where the evolution of the reactant conversion and of the temperature is given for
some points positioned in a fourth of the reactor section because of symmetry. As
we can notice, time gives supplementary information about conversion with
respect to the position in the z-axis of the reactor. From these figures, we can also
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observe that, after an induction period, when the reactant conversion reaches
0.15, the reaction becomes violent and in a very short time all the limiting reactant
is consumed. The temperature evolution with time after the end of the reaction
shown in Fig. 3.60 corresponds to the heat diffusion process. Indeed, the points
positioned near the walls show a more rapid cooling than the points placed at the
Z-axis of the reactor. With reference to the evolution through the Z-axis, the
description of events is similar: after a short distance, when the conversion attains
the above-mentioned value, the manifestation of the violent reaction that corre-
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Figure 3.61 Evolution of the conversion of the reactant in the PF reactor
when a fast exothermic reaction takes place.
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sponds to a small z distance begins; in the remaining length, the gas mixture con-
tinues flowing and gas cooling takes place.

It is not difficult to observe in Fig. 3.59 that we can still change some parame-
ters in order to increase the reaction temperature: (i) by increasing the tempera-
ture of the reactants at the reactor input (we use a T0 value higher than 1); (ii) by
increasing the input concentration of the limiting reactant (we increase the value
of beta in the simulation software); (iii) by increasing the wall temperature (Tw)).
In addition, we can consider an enhancement of the heat transfer through the
walls by increasing the Biot number. Figures 3.62–3.64, which have been obtained
with other start values for T0; Tw; Bi; c0, can be compared to Figs. 3.60 and 3.61.
They aim to show the moments of reaction runaway more completely.

Figure 3.62 shows the temperature field of a quarter of the radial section of the
reactor before the reaction firing. Combining the values of T0; Tw and Bi results
in an effective cooling of the reactor near the walls during the initial instants of
the reaction (T ¼ 0� 0:05). In Fig. 3.63 is shown the temperature field when the
dimensionless time ranges between T ¼ 0:05 and T ¼ 0:11. Here, the reaction
runaway starts and we can observe that an important temperature enhancement
occurs at the reactor centre, at the same time the reactant conversion increases
(Fig. 3.64). The evolution of the reaction firing and propagation characterize this
process as a very fast process. We can appreciate in real time that the reaction is
completed in 10 s. It is true that the consideration of isothermal walls can be criti-
cized but it is important to notice that the wall temperature is not a determining
factor in the process evolution when the right input temperature and the right
input concentrations of reactants have been selected.

Figure 3.62 Temperature field before the reaction runaway for
T = 0.05. (T0 = 1.05, Tw = 0.9, Bi = 10, c0/c00 = 1.4.)
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Figure 3.63 Temperature field for the time of reaction
T = 0.11. (T0 = 1.05, Tw = 0.9 Bi = 10, c0/c00 = 1.4.)

Figure 3.64 Conversion field for T = 0.11.
(T0 = 1.05, Tw = 0.9, Bi = 10, c0/c00 = 1.4.)

With reference to the timing of the reaction firing, Table 3.15 presents the result
of the simulations carried out with this purpose. The direction of the firing is
already shown in this table. This can occur from the centre to the wall (C>W) or
from the wall to the centre (W>C). Nevertheless, we will not investigate the tech-
nological problem involved with some of these input conditions now. We will
mention this important fact: when the wall temperature is higher than that of the
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input reactants, the reaction ignition virtually starts at the input of the reactor.
However, in terms of simulation, this behaviour can be modulated with the reac-
tion kinetics.

Table 3.15 Time of reaction firing when Bi = 10 and c0=c00 ¼ 1.

T0 1 1.1 1.1 0.9 0.5 0.3 0.85 0.92 0.98 0.95

Tw 0.92 0.85 0.75 2 2 2 1.1 1 0.98 0.95

T Start
Finish

0.25
0.3

0.08
0.1

0.08
0.12

0.01
0.04

0.01
0.09

0.01
0.13

0.26
0.32

0.42
0.48

0.28
0.3

0.7
0.78

Sense C >W C>W C>W W>C W>C W>C W>C W = C C>W C>W

As far as controlling the process is concerned, it seems to be interesting to have
similar values for T0 and Tw. In this case, after the reaction ignition in the
whole radial section of the reactor input, the fast reaction propagation occurs
towards the reactor centre. Before closing the discussions about these first simula-
tions, we have to notice that modifications of the model and the associated soft-
ware allow the application of this example to many other cases. For example,
when the wall temperature is higher than the reactor temperature, we can simu-
late the cases of endothermic homogeneous reactions such as hydrocarbon crack-
ing. Such application needs two major software modifications: a negative bt value
and a more complete kinetics. It is important to specify that the developed model
can simulate the firing reaction where the limiting reactant is uniformly distribut-
ed into the reactor input. For the case when we have a jet-feed of limitative reac-
tant where a firing reaction occurs [3.55], a new model construction is recom-
mended.

The second set of simulations is oriented towards the analysis of the simulta-
neous heat and mass transfer when two fluids are separated by a porous wall
(membrane). The interest here is to couple the species transport through a wall
associated with the heat transfer and to consider that the wall heat conduction is
higher than the heat transported by the species motion. The process takes place
through a cylindrical membrane and we assume the velocity to be quite slow in
the inner compartment of the membrane. The process is described schematically
in Fig. 3.65. The transformation of the above general model in order to corre-
spond to this new description gives the following set of dimensionless equations:
. the dimensionless concentration field of transferred species:

¶CA

¶T
¼ ¶2CA

¶X
þ ¶2CA

¶Y

 !

(3.182)
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. the dimensionless evolution of the temperature:

¶Tp

¶T
¼ Sc

Pr

¶2Tp

¶X
þ
¶2Tp

¶Y

 !

(3.183)

. the movement expression for the z axis:

w
w0
¼ b

aþ Tp

aþ 1
(3.184)

. the initial and univocity conditions:

T ¼ 0 ; 0 � Z � 1 ; 0 � Y � 1 ; 0 � X � 1 ; CA ¼ 0 ; Tp ¼ 1 (3.185)

T � 0 ; 0 � X � 1 ; 0 � Y � 1 ; Z ¼ 0 ; CA ¼ 0 ; TP ¼ 1 (3.186)

T � 0 ; X ¼ 1 ; Y ¼ 1 ;
dTp

dR
¼ BiðTp � TwÞ: (3.187)

T � 0 ; X ¼ 1 ; Y ¼ 1 ;
dCA

dR
¼ BiD

1
ð1þ BipÞ

ð1� CAÞ (3.188)

Z

y

x

A flux

gas without  A

constant wall temperature Tw external concentration (Cex=1 ) of A

input temperature  T0

 input concentration of A (C0=0)

slow laminar flow

Figure 3.65 Explanatory scheme for heat and mass transport through a porous wall.

In the set of relations (3.182)–(3.188), b represents the coefficient for the veloci-
ty increase due to the species transport through the wall, Bi is the heat transfer
Biot number (Bi ¼ ðar1Þ=k), BiD is the mass transfer Biot number for the gaseous
phase (BiD ¼ ðkr1Þ=DA) and Bip is the Biot number for the porous wall
(Bip ¼ ðkdwÞ=DAw). Two new parameters dw and DAw, respectively, represent the
wall thickness and the wall effective diffusion coefficient of species. The model
described by the set of relations (3.182)–(3.188) can easily be modified to respond
to the situation of a membrane reactor when a chemical reaction occurs inside the
cylindrical space and when one of the reaction products can permeate through the
wall. The example particularized here concerns the heat and mass transfer of a
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gaseous fluid. Figures 3.66 and 3.67, respectively, present the dynamic evolution
of the heat thermal field and the concentration of species A. As was explained in
the previous example, the time parameter can be transformed into the z position
using relation (3.184). It is interesting to observe that the steady state permeation
of A is attained (the enhancement of the species concentration is linear) at dimen-
sionless time T = 0.2 (which is relatively fast in real time). At T = 1 thermal equi-
librium is reached and the heat transfer phenomenon disappears.

2

1

3

4
5

Figure 3.66 Temperature evolution inside the cylindrical
membrane (Bi = 10, BiD = 2, Bip = 100 , Tw = 5).

2

1

3

4
5

Figure 3.67 Evolution of concentration of A inside the cylind-
rical membrane (Bi = 10, BiD = 2, Bip = 100, Tw = 5).
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In order to extract more data with respect to the gas composition in the cylindri-
cal membrane, we carried out simulations taking a long-term gaseous permeation
into account. Figure 3.68 shows this evolution for two different values of the
membrane Biot number, which, in fact, is a measure of the membrane mass
transfer resistance. We can observe that, over a long period, the dimensionless
species concentration increases linearly, indicating that the permeate flux through
the membrane wall has a constant value. This observation is in good agreement
with the high value of the Biot number.

0
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0,5
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T

Bip=100

Bip=1000

CA

Figure 3.68 Evolution with time of the dimensionless concentration of species A.

If a light gas permeates through a 1 mm thick membrane, the Biot number cor-
responds to the highest value in Fig. 3.68. If we assume the pressure to be equal
to 1 and normal temperature, then the gas flux will be 10–7 kmole/(m2 s). With
some light modifications, the software used for these simulations can be adapted
to simulate the cases where the values of the Biot number of the membrane
change with time. The Biot number evolution can occur in different situations
when the membrane transport properties change, such as when the membrane is
continuously clogged (e.g. in hydrocarbon dehydrogenation reactions in which
coke is formed). The simulations presented here, as well as the observations
exposed during the model presentation, show that it is not difficult to model and
to simulate more complex cases such as membrane reactors. In such multifunc-
tional chemical engineering devices, one or more reaction products or reactants
can permeate through the membrane with different selectivity [3.56].

In membrane reactors, the reaction and separation processes take place simul-
taneously. This coupling of processes can result in the conversion enhancement
of the thermodynamically-limited reactions because one or more of the product
species is/are continuously removed. The performance of such reactors depends
strongly on the membrane selectivity as well as on the general operating condi-
tions which influence the membrane permeability.
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3.5
Some Aspects of Parameters Identification in Mathematical Modelling

The notion of model parameters defines one or more numerical values that are
contained as symbolic notations in the mathematical model of a process. These
numerical values cannot be obtained without any experimental research. In reali-
ty, the most important part of experimental research is dedicated to the identifica-
tion of the models’ parameters. Generally, all the experimental works, laboratory
methods and published papers beginning with the words “determination of......”
are in fact particular problems of identification of parameters. The chemical and
biochemical sciences use various and countless models that introduce various
types of parameters into their description. We can single out the real parameters
that have a physical dimension so as to accept a dimensional formula. Indeed,
they are related with a process state or with material properties that characterize
the process. They differ from abstract parameters, which can have a dimensional
formula but are an artificial creation. The parameters characterize the investigated
process and not the mathematical model in which they appear as a consequence.
At the same time, they can be considered as a special class of input variables of
the process. Indeed, when we start with a problem of parameter identification,
then we a priori accept a mathematical model, which contains these parameters
for the process evolution. The problem of identifying parameters is formulated
schematically in Fig. 3.69.

inputs –the same as those for ED
computed outputs

x1i

x2i

xni

i=1,s

y1i

y2i

ymi

i=1,s

mathematical model of the process

(MM)

 parameters   p1 , p2 , ….pl

measured inputs measured outputs

x1i

x2i

xni

i=1,s

ex

i1y

ex

i2y

ex

miy
i=1,s

     experimental device (ED)

Research

Figure 3.69 Introduction to a problem of identifying the parameters of a process.
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We can notice that, when a total number of “s” experimental measures have
been made for the outputs, the result of the experimental investigation of the pro-
cess is given by the vector:

Yex
i ¼

yex
1i

yex
2i

yex
mi

2

4

3

5 ; i ¼ 1; s

The vector Yex
i is obtained for s coupled values of the input process variables, so

we can consider the vector inputs as follows:

Xi ¼
x1i

x2i

xni

2

4

3

5 ; i ¼ 1; s

At the same time, the mathematical model of the process (MM) can produce – for
the established values of the vector locations of the input process – the following
values of the output vector:

Yi ¼
y1i

y2i

yni

2

4

3

5 ; i ¼ 1; s

If the values of the vector of parameters P ¼ p1; p2; :::::::pl½ � are known and if we
obtain analogous results for the measured and MM outputs for the same input
variables, then we can consider that the set of parameter values of model p1; p2; :::

pl are good enough.
The theory and the practice of parameter identification concern the assembly of

procedures and methods showing the estimation of the values of p1; p2; :::pl with
the objective of having similar values for vectors Yex

i and Yi. Generally, the param-
eters of a process are linked with various types of dependences called constraints.
Constraints show that each parameter presents a region where a minimal and a
maximal value is imposed and can be classified according to equality, inequality
and inclusion constraints. Inclusion constraints are frequently transformed into
inequality constraints because the latter have the quality of being easily intro-
duced into the overall identification problem.

The formulation of the mathematical problem of parameter identification for
an actual case needs the use of the following general particularizations given
below:

1. One relation or an assembly of relations that contains the condi-
tion necessary to impose the absence of important differ-
ences between the computed outputs and experimental out-
puts. This relation or assembly of relations frequently con-
tains the requirement of a minimal dispersion (variance)
between computed and experimental process outputs. So we
need to minimize the function:
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Uðp1; p2; ::::plÞ ¼
Pm

k¼1

Ps

i¼1
ðyki � yex

ki Þ
2 (3.189)

In the case of process exit coded by k, this equation can also be written as follows:

Uðp1; p2; :::::plÞ ¼
Pm

k¼1

Ps

i¼1
½ðFkðp1; p2; :::pl; x1i; x2i; ::::xniÞ � yex

ki �
2 ¼ min (3.190)

where Fkðp1; p2; :::pl; x1i; x2i; ::::xniÞ; k ¼ 1;m give the computed yki values of the
model. If a minimal dispersion between the computed and experimental results
is necessary for each process output, then we must minimize the following
assembly of functions:

Ukðp1; p2; :::::plÞ ¼
Ps

i¼1
½Fkðp1; p2; :::pl; x1i; x2i; ::::xniÞ � yex

ki �
2 ¼ min ; k ¼ 1; 2; :m

(3.191)

In addition to the formulation that minimizes the dispersion described above,
other mathematical expressions have been suggested with the purpose of obtain-
ing the values of the parameters by requiring the model to reproduce the experi-
mental data.

2. An assembly of relations that contains the introduction of
expressions for equality type constraints; this assembly links
some or all of the parameters of the model. From the mathe-
matical viewpoint we can write these relations as follows:

Hjðp1; p2; ::::plÞ ¼ 0::::::j ¼ 1; :::::l (3.192)

We observe here that we have “l” independent relations for “l” number of parame-
ters. However, it is not strictly necessary to have the same number of parameters
and relations that characterizes the equality type inter-parameter links.

3. An assembly of relations that contains the inequality type con-
straints which are considered for all parameters of an incom-
plete group of parameters or for only one parameter. We
write these relations as follows:

Gjðp1; p2; ::::plÞ � 0::::::j ¼ 1; :::::l (3.193)

Ljðp1; p2; ::::plÞ � 0::::::j ¼ 1; :::::l (3.194)

It is important to notice that the equality and inequality type constraints described
above can be absent in a problem of parameter identification.

The methods for identifying the parameters of a model can be classified in
terms of the complexity of the mathematical model and constraints accepted for
its parameters.

All the methods used for the identification of parameters are in fact the particu-
larizations of the general methods to determine an extreme function. This func-
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tion can be simple or complicated and can be given by one or more algebraic
equations or can be introduced by an assembly of relations that contains differen-
tial equations or partial differential equations. The classification for these meth-
ods is given in Table 3.16.

Table 3.16 Classification of the methods for identifying the parameters of a model.

n Type of method Method name Required conditions Examples

1 Analytical
methods

Pure analytical
method

1. Deterministic mathematical
model given by analytical func-
tions that are differentiable
with respect to each parameter

2. Without constraints

The latest
small squares
method

Lagrange coeffi-
cients method

1. Deterministic mathematical
model given by analytical func-
tions that are differentiable respect
to each parameter

2. With constraints of equality type

Variational
methods

1. Deterministic mathematical
model given by analytical or
numerical functions that are dif-
ferentiable respect to each para-
meter

2. With or without constraints

2 Mathematical
programming
methods

Method of
geometrical
programming

1. Deterministic mathematical
model given as:

Uðp1:::plÞ ¼
Pl

j¼1
CjPjðp1::plÞ

where Pjðp1::plÞ ¼
Pl

i¼1
paij

i

2. Without constraints.

Methods of
dynamic
programming

1. Mathematical model that describe
a process with sequential states

2. With or without constraints

Methods of
linear program-
ming

1. Deterministic mathematical
model given as:
Uðp1::plÞ ¼ a1p1 þ a2p2 þ ::alplÞ

2. With inequality type constraints

The simplex
method

3 The gradient
methods

Various methods 1. Deterministic process mathe-
matical model especially given
by differential equations

2. With or without inequality type
constraints

The very high
slope method
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n Type of method Method name Required conditions Examples

4 The combined
methods

Various variants 1. Process mathematical models
with distributed inputs

2. Capacity to be associated with a
Kalman filter

3. Without inequality type con-
straints

The maximum
likelihood
method

It is important to point out that to identify the parameters of the model, the
experimental research made with physical laboratory models (apparatus) has pre-
viously established the experimental working methods that allow the identifica-
tion of the actual process parameters. These experimental methods tend to be pro-
moted as standardized methods and this reduces the dimension of the problem
that is formulated for identifying the parameters of the model to the situations
where Uðp1; p2; ::::plÞ contains one, two or a maximum of three parameters to be
estimated simultaneously.

3.5.1
The Analytical Method for Identifying the Parameters of a Model

This type of method includes the classical methods, which are based on the obser-
vation that the minimal value of function Uðp1; p2; ::::plÞ is quite near zero.
Indeed, we can derive the conditions of a minimal value of Uðp1; p2; ::::plÞ which
can be written as a system of algebraic equations (3.195) where the unknowns are
parameters p1; p2; ::::pl.

¶Uðp1; p2::::plÞ
¶p1

¼ 0

¶Uðp1; p2::::plÞ
¶p2

¼ 0

¶Uðp1; p2::::plÞ
¶pL

¼ 0

8
>>>>>><

>>>>>>:

(3.195)

The applicability of this method is limited by the form of function Uðp1; p2; ::::plÞ
that must present an analytical expression with respect to each parameter
(p1; p2; ::::pl). At the same time, the dimension and the nonlinearity of system
(3.195) can also be considered as the limitative factors of this method. Various
concrete formulations of system (3.195) can be obtained for the mathematical
model of an actual process. For example, if, in Fig. 3.69, we consider that we have
only one output where yex

i and yi i ¼ 1; s are, respectively, the measured and the
computed output values of the process and if we accept that the mathematical
model of the process is given by Eqs. (3.196), then the function which must be
minimized is given by relation (3.197):
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y ¼ p0 þ p1f1ðx1; x2; :::::xnÞ þ p2f2ðx1; x2; :::::xnÞ þ ::::::::þ plflðx1; x2; :::::xnÞ (3.196)

Uðp1; p2:::::plÞ ¼
Ps

i¼1
½p0 þ p1f1ðx1i::xniÞ þ ::::pLfLðx1i; x2i:::xniÞ� � yex

i

	 
2 ¼ min
(3.197)

For this case the system (3.195) leads to the following algebraic system:

sp0 þ p1
Ps

i¼1
f1ðx1i; x2i::xniÞ þ p2

Ps

i¼1
f2ðx1i; x2i::xniÞ þ :::þ pL

Ps

i¼1
fLðx1i; x2i::xniÞ ¼

Ps

i¼1
yex

i

p0
Ps

i¼1
f1ðx1i; x2i::xniÞ þ p1

Ps

i¼1
½f1ðx1i; x2i::xniÞ�2 þ p2

Ps

i¼1
f2ðx1i; x2i::xniÞf1ðx1i; x2i::xniÞ þ ::

pL
Ps

i�1
fLðx1i; x2i::xniÞf1ðx1i; x2i::xniÞ ¼

Ps

i¼1
yex

i f1ðx1i; x2i::xniÞ

p0
Ps

i¼1
f2ðx1i; x2i::xniÞ þ p1

Ps

i¼1
f1ðx1i; x2i::xniÞf2ðx1i; x2i::xniÞ þ p2

Ps

i¼1
½f2ðx1i; x2i::xniÞ�2 þ ::

pL
Ps

i�1
fLðx1i; x2i::xniÞf1ðx1i; x2i::xniÞ ¼

Ps

i¼1
yex

i f1ðx1i; x2i::xniÞ

p0
Ps

i¼1
fLðx1i; x2i::xniÞ þ p1

Ps

i¼1
f1ðx1i; x2i::xniÞfLðx1i; x2i::xniÞ þ p1

Ps

i¼1
f1ðx1i; x2i::xniÞfLð::Þ þ ::

pL
Ps

i�1
½fLðx1i; x2i::xniÞ�2 ¼

Ps

i¼1
yex

i fLðx1i; x2i::xniÞ

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

(3.198)

The solution of this system allows the estimation of the numerical values of pa-
rameters p1; p2; ::::pl. This system is in fact the expression of the least small
squares method. This method is used for the development and solution of exam-
ple 3.5.1.1.

3.5.1.1 The Pore Radius and Tortuosity of a Porous Membrane for Gas Permeation
Gaseous permeation can be used for the characterization of porous membranes
using an apparatus working with the technique of fixed volume–variable pressure
as shown in Fig. 3.70. The technique, which was initially developed for dense
polymer membranes, is based on the recording of the pressure evolution with
time of a downstream compartment, which is separated from an upstream com-
partment filled with a pure gas by a flat membrane. Before starting the experi-
ments, both compartments are put under very low pressure and, at the initial
time of the measurements, a relatively high pressured pure gas is introduced into
the upstream compartment [3.59].

The pressure evolution of the downstream compartment versus time is
recorded in a curve which generally has a typical “s” shape which presents an ini-
tial small nonlinear increase and later becomes time linearly dependent. At the
end of the experiment, when the gradient becomes negligible, the curve presents
a nonlinear decrease [3.60].
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Figure 3.70 Scheme of a gas permeation apparatus. 1 – upstream compartment,
2 – membrane, 3 – downstream compartment (Vinf), 4 – pure gas entrance valve,
5 and 6 – vacuum valves, 7 – pressure transducer (Pinf), 8 – data acquisition system,
9 – computer, 10 – curve pressure vs. time.

Once the descriptive model has been realized, we need to make the mathemati-
cal model of the process, which can be used to identify the mean pore radius of
the membrane pores and the associated tortuosity. Before starting with the estab-
lishment of the model, we consider that the elementary processes allowing the
gas flow through the membrane are a combination of Knudsen diffusion with
convective flow. If we only take into account the linear part of the curve of the
pressure increase with time then we can write:

p1 ¼ a1 þ bs (3.199)

Indeed, the gas flow rate that permeates through the membrane is:

GM ¼ Vinf
dc
ds
¼ Vinf

RT
dpinf

ds
¼ Vinf

RT
b (3.200)

and then we obtain for the measured gas flux:

NA ¼
GM

eSm
¼ Vinf

RTeSm
b (3.201)

the slope b of the pressure–time dependence is estimated with the variation of pi

with si, and, consequently, we can transform the equation above as follows:

Nex
Ai ¼

Vinf

RTeSm
p1iþ1 � p1i

siþ1 � si
(3.202)
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As explained above, we consider that the gas transport is carried out by the Knud-
sen and hydrodynamic flow through the porous media, then the theoretical
expression for the gas flux is given by the following relation:

NA ¼ �
2
3

rw

ffiffiffiffiffiffiffiffiffi
8RT
pM

r

þ r2w
p

8g

 !
dp

RTdx
(3.203)

Because NA is constant, we can separate out the variables of the relation (3.203),
then the integral relation (3.205) concerning the gas flux through the membrane
is obtained after integrating the whole thickness of the membrane:

NA

Rd

0
dx ¼

Rp2

p1

2
3

rw

ffiffiffiffiffiffiffiffiffi
8RT
pM

r

þ r2w
p

8g

 !

dp (3.204)

NA ¼
4
ffiffiffi
2
p

3d

rw
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RTpM
p ðp2 � p1Þ þ

r2w

16gd
ðp2

2 � p2
1Þ (3.205)

Relation (3.205) can be written in the form (3.206) where it shows the expression
for the model of instantaneous gas flux through the membrane:

NAi ¼
4
ffiffiffi
2
p

3d

rw
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RTpM
p ðp2i � p1iÞ þ

r2w

16gd
ðp2

2i � p2
1iÞ (3.206)

If p1i increases linearly with time; then p2i can be calculated by p2i ¼ p0 � bisi in
Eq. (3.206). Here, bottom and top compartments have been considered to have
the same volume. It is not difficult to observe that the parameters requiring iden-
tification are rw and r2w where r is the mean pore radius and w the tortuosity. In
this case, in accordance with relation (3.189), the function for the minimization
will be written as follows:

Uðrw; r2wÞ ¼

Ps

i¼1

4
ffiffiffi
2
p

3d
rwffiffiffiffiffiffiffiffiffiffiffiffiffi

RTpM
p ðp2i � p1iÞ þ

r2w

16gd
ðp2

2i � p2
1iÞ �

V inf
RTeSm

p1iþ1 � p1i

siþ1 � si

� �2

By introducing the notations A ¼ 4
ffiffiffi
2
p

3d

rw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTpM
p ; B ¼ r2w

16gd
; a ¼ V inf

RTeSm
and by

computing the conditions that impose the minimal value of the function

Uðrw; r2wÞ, we obtain equations system (3.207) where N represents the number of
experiments considered for the parameter identification.

A
PN

i¼1
ðp2i � p1iÞ2 þ B

PN

i¼1
ðp2

2i � p2
1iÞðp2i � p1iÞ ¼ a

PN

i¼1
ðp1iþ1 � p1i

siþ1 � si
Þðp2i � p1iÞ

A
PN

i¼1
ðp2i � p1iÞðp2

2i � p2
1iÞ þ B

PN

i¼1
ðp2

2i � p2
1iÞ

2 ¼ a
PN

i¼1
ðp1iþ1 � p1i

siþ1 � si
Þðp2

2i � p2
1iÞ

8
>>>><

>>>>:

(3.207)

The solution to equation system (3.207) will allow calculation of the values of rw

and r2w, which are obtained after the estimation of A and B.

143



3 Mathematical Modelling Based on Transport Phenomena

In our actual example, the first step for this calculation is the determination of r
w and r2w by using data from Tables 3.17 and 3.18. These data have been obtained
with an experimental device with Vinf ¼ Vsup ¼ 7 � 10�5 m3 d ¼ 4 � 10�3 m and
for the following gases: He (M = 2 kg/kmol, g = 10–5 kg/ (m s)) and N2 (M =
28 kg/kmol, g = 1.5�10–5 kg/ (m s)). The starting pressure at the upstream com-
partment is p0 ¼ 2 � 105 N/m2 and 1.5�103 N/m2 for the downstream compart-
ment.

Table 3.17 Pressure evolution in the downstream compartment
for He permeation.

C .n 1 2 3 4 5 6

s (s) 10 20 50 70 90 110

p1 (N/m2) 104 2.5*104 4*104 5.52*104 7*104 8.41*104

Table 3.18 Pressure evolution in the downstream compartment
for N2 permeation.

C .n 1 2 3 4 5 6

s (s) 40 80 120 160 200 240

p1 (N/m2) 2.06*104 3.41*104 4.72*104 6.06*104 7.41*104 8.7*104

The algorithm for the experimental data processing follows the steps:
1. We introduce the fixed data of the problem:

Vinf ;Vsup; d;Sm; e;M;g; p0;R; T; N;
2. We give the evolution of p1i versus si, i = 1,N;
3. We compute the mean slope of the p1i versus si dependence:

b ¼ p1N�1 � p12

sN�1 � s2
;

4. We establish the corresponding p2i value for each si:
p2i ¼ p0 � bisi, i = 1,N;

5. We compute:a ¼ Vinf=ðRTeSmÞ;
6. We obtain the values of the following sums:

S1 ¼
PN

i¼1
ðp2i � p1iÞ2 , S2 ¼

PN

i¼1
ðp2

2i � p2
1iÞðp2i � p1iÞ,

S3 ¼ a
PN

i¼1

p1iþ1 � p1i
siþ1 � sI

� �
ðp2i � p1iÞ; S4 ¼

PN

i¼1
ðp2

2i � p2
1iÞ

2 ,
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S5 ¼ a
PN

i¼1

p1iþ1 � p1i

siþ1 � sI

� �

ðp2
2i � p2

1iÞ;

7. We solve system (3.207) for A and B which is written as
follows:

AS1 þ BS2 ¼ S3

AS2 þ BS4 ¼ S5

�

(3.208)

8. We compute rw and r2w by using the computed A and B.

Figure 3.71 contains the MathCAD� working text of this problem in the case of N2

permeation. The values obtained for rw ¼ 1:2 � 10�10 m and r2w ¼ 0:85 � 10�20 m2

are almost the same as those calculated for He permeation.

Figure 3.71 Software working text for example 3.6.1.1.
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3.5.2
The Method of Lagrange Multiplicators

This high confidence method is used when one or more equality constraints are
imposed on the parameters of the process [3.61]. So, if our problem is to obtain
the minimal value of function Uðp1; p2; :::pLÞ and the parameters’ requirement to
verify the constraints fiðp1; p2; ::pLÞ, i = 1, g simultaneously, then the solution is
obtained from the formulation of the following auxiliary function:

Lðp1; p2:::pL; k1; :::kgÞ ¼ Uðp1; p2; :::pLÞ þ
Pg

i¼1
kifiðp1; p2:::::pLÞ (3.209)

Function Lðp1; p2; :::pL; k1; :::kgÞ supports the same minimization as Uðp1; p2; :::pLÞ
but here, the number of parameters is increased with k1; k2; ::; kg which are called
the Lagrange multiplicators. Then, the equation system that must be solved here
is written as:

¶Lðp1; p2; ::pL; k1; :::kgÞ
¶pk

¼ 0 ; k ¼ 1; L

¶Lðp1; p2; ::pL; k1; :::kgÞ
¶ki

¼ 0 ; i ¼ 1; g

8
>><

>>:
(3.210)

From Eq. (3.210) we can obtain one or more set(s) of values for p1; p2; :::; pL which
give for function Uðp1; p2; :::pLÞ one or more extreme values. If we have various
extremes for this function, we choose the set of parameters which gives a physical
meaning of the problem. With respect to the Lagrange method, we can observe
that each equality type constraint introduces its parameter in the building of
Lðp1; p2; :::pL; k1; :::kgÞ. Indeed, this method is strictly recommended when we
have equality type constraints.

3.5.2.1 One Geometrical Problem
A chemical engineer who is designing a drug factory has to solve a problem which
concerns the building of a spherical reservoir over a conical support as shown in
Fig. 3.72. For this construction, the total volume must not exceed 5 m3. At the
same time, the relation between the sphere diameter and the cone height is
imposed in accordance with the golden section principle (Ds ¼ I=5Þ.

The building process must be carried out minimizing the operations such as
surface finishing, colouring, etc. After a few days, the engineer concludes that it is
not possible to build such a structure, even though, the motivation for the
response remains unknown. In order to know the reasons that motivated the engi-
neer’s decision we will use the parameters identification method of Lagrange mul-
tiplicators. To do so, we have to minimize the function that represents the surface
of the building:

FðD;G; IÞ ¼ pDGþ pDI=2þ pðI=5Þ2 (3.211)
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with the constraint that imposes a fixed building volume :

CðD;G; IÞ ¼ pGðD=2Þ2 þ pðI=3ÞðD=2Þ2 þ p=6ðI=5Þ3 � V (3.212)

The associated Lagrange function LðG; I;D; kÞ ¼ FðG;H;DÞ þ kCðG;H; IÞ gives
the following equation system:

Gþ 0:5 Iþ 0:5kG Dþ 0:166kI D ¼ 0
0:5Dþ 0:08Iþ 0:0833kD2 þ 0:004kI2 ¼ 0

0:25kD ¼ �1
0:25GD2 þ 0:0833ID2 þ 0:001333 I3 ¼ V=p

8
>><

>>:
(3.213)

Considering that the fixed volume is V ¼ 5 m3, the solution to this system results
in the following values for the heights and diameter: G ¼ �1:45 m, I ¼ 8:8 m and
D ¼ 1:43 m. We can notice here that the value of G is not realistic.

Ds

G

I

D

Figure 3.72 Scheme of example 3.6.2.1.

3.5.3
The Use of Gradient Methods for the Identification of Parameters

Among the methods used to identify the parameters of a process, the gradient
methods play an important role because of their excellent adaptation to software
making. These methods are generally quite efficient for solving problems that
require the establishment of extreme positions for the assemblies of linear or non-
linear functions. This statement is especially true when the functions of assem-
blies are given through differential or partial differential equations. This is the
major reason why these methods are widely used. They are based on the establish-
ment of the values of momentary parameters that produce the highest variation of
the minimized or maximized function. From the geometrical viewpoint, this fact
is equivalent to a displacement of the function along its gradient towards the
extreme position. It is known that the gradient in a point of the surface of
response has an orthogonal state with respect to the surface. The different gradi-
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ent methods are classified depending on: (i) the procedure for the localization of
the calculation point; (ii) the length of the step that characterizes the motion of
the calculation point; (iii) the number of tests along the established direction;
(iv) the criteria used to stop the calculation; (v) the global method simplicity.

The most important aspect of these methods, which follow the localization of
an extreme for a given function, is represented by the identification of the most
rapid variation of the function for each calculation point on the direction. For this
problem of parameter identification, the function is given by the expression
Uðp1; p2; :::pLÞ. The graphic representation of Fig. 3.73 shows the function–gradi-
ent relation when the vector gradient expression is written as in relation (3.214).

~gradgradU ¼ ¶U

¶p1

~ii1 þ
¶U

¶p2

~ii2 þ ::::::þ
¶U

¶pL

~iiL ¼ vect
¶U

¶p1
;
¶U

¶p2
; ::::

¶U

¶pL

� �

(3.214)

Here~ii1;~ii2; :::::; ~iiL are the axis vectors expressed in unitary coordinates.
From the theoretical viewpoint, the scalar value of the partial derivate ¶U=¶pi is

the vector gradient projection to the axis pi. Indeed, it can be described with their
module and the spatial angle between the vector of the gradient and the axis pi as
in relation (3.215):

gr~aadU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL

i¼1

¶U

¶pi

� �2
v
u
u
t cos ð ~gradgradU;~iiiÞ (3.215)
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Figure 3.73 Function Uðp1; p2; p3Þ, the M point gradient and
its axis projections.

Concerning the problem of the direction of the advancement, it is important to
select the length of the step of progression. It is evident that this selection first
depends on the relations characterizing the response surface. When the processes
are described with a complex model, this surface can only be given in a numerical
form. A small length of the advancing step imposes a long and difficult computa-
tion. When the advancing step is big, it is possible to cross over the wanted
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extreme. These problems can be avoided using a variable length step; at the begin-
ning, we use a big length step and, when an extreme neighbourhood is detected,
the length of the step is progressively decreased. The step dimension Dpi; i ¼ 1; ::
L must verify first the condition that all calculation points are placed onto the gra-
dient line beginning at the starting point and, secondly, if the constraints are
active, the step dimension must respect them. The length of the step for the vari-
able (parameter) pi is computed using the partial derivates of the problem func-
tion with respect to the current calculation point:

Dpi ¼
k ¶U
¶piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PL

i¼1

¶U
¶pi

� �2
s (3.216)

Here k is a constant value, which is the same for the displacement of all variables
(parameters). It is not difficult to appreciate that the value of k is very important
for the step length.

Concerning the requirement to have an orthogonal gradient to the surface
response of the process, we can notice that it first imposes the base point; if, for
one of these �L’ directions, the length of the step is too big, then the vector that
starts from the base point should not respect the orthogonal condition between
the surface of the response and the new point where we will stop the motion. The
selection of an adequate step length presumes that the derivates of the function
related to the new point stay close to the derivates of the base point.

Despite the differences that exist between various gradient methods, the algo-
rithm to determine the extreme point for a given function remains identical with
respect to some general common guidelines [3.62, 3.63]:

1. we choose a base point;
2. starting from this point we establish the direction of the de-

velopment;
3. we find the step length to prepare the motion along the gra-

dient line;
4. we establish the position of the new point and consider

whether it is a current point or must be transformed into a
new base point;

5. we compare the value of the function for the new point and
for the new base point with the value of the function of the
former base point; the value of the new function is normally
lower;

6. we select the new development direction for the new base
point and the computation gives the area of the minimum
function value; here small motion steps are recommended.
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3.5.3.1 Identification of the Parameters of a Model by the Steepest Slope Method
The steepest slope method is a particular class of gradient method. This method
will be illustrated with an example of the minimization of a function with two pa-
rameters with an explicit graphic interpretation. Figure 3.74 gives an excellent
introduction to the steepest slope method (SSM) by showing some curves with
constant U. They are placed around the minimum function and near the first
base point. The motion progresses along the gradient line which is localized for
each selected point. The development of this method starts at the first base point
M0ðp0

1; p
0
2Þ beginning the exploration of the steepest slope by computation. We

increase p0
1 by dp0

1 and establish the value of Uðp0
1 þ dp0

1; p
0
2Þ. Now we repeat the

computation by increasing p0
2 by dp0

2 and then Uðp0
1; p

0
2 þ dp0

2Þ is obtained. With
Uðp0

1 þ dp0
1; p

0
2Þ and Uðp0

1; p
0
2 þ dp0

2Þ we can estimate the values of the two partial
derivates:

¶U

¶p1

� �

0
¼ Uðp0

1 þ dp0
1; p

0
2Þ �Uðp0

1; p
0
2Þ

dp0
1

(3.217)

¶U

¶p2

� �

0

¼ Uðp0
1; p

0
2 þ dp0

2Þ �Uðp0
1; p

0
2Þ

dp0
2

(3.218)

Φ0

Φ1

Φ2

Φmin

grad  Φ

∆p1
0

Μ0

Μ1

M2

p1

p2

Figure 3.74 Scheme for the SSM graphic introduction.

These derivates allow the selection of the length of the step displacement or, in
other words, they control the computation of each parameter modification. Dp0

1

and Dp0
2 are recognized when we finish the exploring computation so when we

have established the vector ~gradgradU. The values of Dp0
1 and Dp0

2 are proportional to
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the module of the vector ~gradgradU but they are in the opposite direction. If the mod-
ifications of the values of these parameters can be determined using the partial
derivates shown in relation (3.219), then we can assert that the observations ad-
vanced previously were correct.

Dp0
1 ¼ �a

¶U

¶p1

� �

0

Dp0
2 ¼ �a

¶U

¶p2

� �

0

(3.219)

For a more general case, we can write the relation (3.219) in the form shown in
Eq. (3.220), a is a constant in both relations:

Dp0
i ¼ �a

¶U

¶pi

� �

0
i ¼ 1; L (3.220)

If, after each calculation step, we compute the net change (DU) of function U and
it is negative, then we are progressing and we can continue (look at the line which
join the points M0 and M1 in Fig. 3.74). If DU � 0, then the displacement has to
be stopped and we begin a new exploration considering the last point position
until we can establish a new good direction (such as M1M2 in Fig. 3.74). Step by
step the computation tends to approach the minimum value of the investigated
function. This fact is observed by the decrease in the values of the current advanc-
ing factor en.

en ¼ abs
¶U

¶p1

� �

n

þabs
¶U

¶p2

� �

n

(3.221)

In addition to SSM, other methods like the total gradient method (TGM) present
the capacity to localize the minimal value of function Uðp1; p2; :::pLÞ. The TGM
operates like an SSM but it establishes the direction of the gradient at each calcu-
lation point; at the same time, it progressively decreases the length of the step. If
we have one or more constraints in the SSM formulation, then these will be repre-
sented in Fig. 3.74 by lines or curves, which cannot be affected or crossed by the
gradient line. In the case of a two-parameter problem these constraints can result
in a closed surface that includes the minimum function value. For this situation,
it is important for the first base point to be inside the constraint surface. Other-
wise we cannot move the calculation point to the minimum value of the function
due to what the displacement along the constraint becomes imposed so a free
gradient line is not detected. In other words, this situation determines an infinite
displacement around the constraint surface.

We can extend the observations given here for a two-parameter problem to cases
with more parameters. As an example, when the problem has three parameters,
then, the problem of closed constraint surface becomes the problem of closed con-
straint volume.

Fortunately, the problems where one or more parameters are identified towards
experimental research, we do not have those constraints; consequently these pre-
cautions with respect to the base point selection and with respect to the length of
displacement are not important.
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Some important considerations have to be taken into account in order to effi-
ciently use the SSM and all other gradient methods with rapid displacement
towards a minimum function value [3.64]: (i) the good selection of the base point;
(ii) the modification of the parameters’ dimension from one step to another; (iii)
the complexity of the process surface response; (iv) the number of constraints
imposed on the parameters. In some cases we can couple the minimization of the
function with the constraint relations in a more complex function, which will be
analyzed again. In this case, the problem is similar to the Lagrange problem but it
is much more complex.

3.5.3.2 Identifying the Parameters of an Unsteady State Perfectly Mixed Reactor
We carried out a decomposition reaction in the experimental device shown in Fig.
3.75. The reaction is endothermic and takes place in a permanently perfectly
mixed (PM) reactor. As shown in Fig. 3.75, reactant A is fed at the reactor input in
a liquid flow at constant concentration value. The heat necessary for the endother-
mic decomposition is supplied by an oil bath, which is electrically heated in order
to maintain a constant temperature (te). The reactor operates at constant volume
because input and output flows are similar.

3

te

5

1

4

Gv

cA

6

Gv

cA0

7

2 Tc

Figure 3.75 Laboratory scale plant with a continuous PM reactor.
1 – reactor, 2 – reservoir, 3 – oil bath, 4 – syphon and cooling device,
5 – collector, 6 – electrical heating device, 7 – pump.
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The following input process variables are given or have been measured:
. the input and output flow rate are: Gv = 10–6 m3/s
. the value of the reaction enthalpy: DHr = 60 000 kj/kg of

A species;
. the activation energy of the reaction: E = 1 400 000 j/kmole of

A species;
. the temperature of the feed flow: t0 = 140 �C;
. the initial temperature of the liquid in the reactor: t00 = 200 �C ;
. the concentration of species A in the reactor feed: cA0 = 50 kg/m3;
. the initial concentration of species A in the reactor:

cA00 = 0 kg/m3;
. the sensible heat capacity of the mass of liquid reacting:

cp = 3000 j/(kg �C);
. the density of the liquid media: q = 800 kg/m3;
. the value of the heat transfer area between the oil bath and the

reactor’s vessel: At = 0.03 m2

When the oil bath reaches the set point of constant temperature, the experiment
begins by starting the pump and activating the sample collecting device at the
reactor’s exit. During the experiments, the temperature of the liquid reacting mix-
ture is continuously recorded. We measure the concentration of species A for
each collected sample. The result of one set of experiments is given in Table 3.19.
In this example, the reaction constant k0, the reaction order n and the heat trans-
fer coefficient from oil to liquid mass reaction k are poorly estimated and then
their values are calculated from the obtained experimental data.

Table 3.19 Evolution of the temperature and concentration of A
with time at the exit flow of the reactor.

s (s) 150 300 600 1500

cA (kg/m3) 3.4 4.3 4.7 4.95

t (�C) 185 135 80 64

To make the calculation for the identification of parameters k0;n; k by using the
highest slope method (MHSM), we must determine the function that will be
minimized and the mathematical model of the process which correlates these pa-
rameters with the computed values of cA and t. Because we have the dependences
cA � s and t� s we can consider for the minimization the functions below written
as:

U1ðk0;n; kÞ ¼
P4

j¼1
cAðk0;n; k; sjÞ � cexp

A ðsjÞ
� �2

(3.222)
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U2ðk0;n; kÞ ¼
P4

j¼1
tðk0;n; k; sjÞ � texpðsjÞ
� �2

(3.223)

The relations defining functions U1ðk0;n; kÞ and U2ðk0;n; kÞ contain the values of
cAðk0;n; k; sjÞ and tðk0;n; k; sjÞ, which are obtained here from the mathematical
model of the reactor. The MHSM supply the values of k0;n; k for the mathemati-
cal model.

The process is described by the mathematical model of a nonisothermal,
unsteady state, continuous and perfectly mixed reactor. It is defined by the below
differential equations:

dcA

ds
¼ Gv

V
ðcA0 � cAÞ � k0exp � E

RT

� �

cn
A (3.224)

dt
ds
¼ Gv

V
ðt0 � tÞ � kA

Vrcp
ðt� trÞ þ

k0exp � E
RT

� �

rcp
cn

Að�DHrÞ (3.225)

s ¼ 0 cA ¼ cA00 t ¼ t00 (3.226)

The solution to the problem of identifying parameters frequently needs the inte-
gration of the mathematical model of the process. The software used for this pur-
pose is shown in Fig. 3.76. The starting point of MHSM is M0; it has the corre-
sponding coordinates M0 ¼ M0ðk0

0 ¼ 0:03;n0 ¼ 0:5; k0 ¼ 250Þ in the k0;n; k axis
system. If it is not possible to operate MHSM while simultaneously minimizing
functions U1ðk0;n; kÞ and U2ðk0;n; kÞ, we have to introduce a unique and dimen-
sionless minimizing function.

Title Unsteady state continuous PM reactor

Select  ngrid=1   variables ca(range=0,50)   tt(range=20,400)

definitions

  Gv=10**(-6)   V=10**(-3) ca0=50    k0=unknown (will be established by MHSM)

  E=1400000    deltaH=60000 k= unknown (will be established by MHSM)

  A=0.03     ro=880    cp=3000      n= unknown (will be established by MHSM)

   t00=200               tr=340             R=8310 t0=140 c00=0

 initial values  ca = c00     tt=t00

equations
 dt(ca)  = Gv*(ca0-ca)/V-k0*exp(-E/(R*(tt+273)))*(ca**n)   { The ODE }

 dt(tt)=Gv*(t0-tt)/V-k*A*(tt-tr)/(V*ro*cp)+k0*exp(-E/(R*(tt+273)))*(ca**n)*(-deltaH*1000)/ro/cp

boundaries  region 1           { define a fictitious spatial domain }

 start (0,0) line to (1,0) to (1,1) to (0,1) to finish

 time 0 to 2000          { define the time range }

histories { Plot the solution: } history(ca) at (0.5,0.5)   history(tt) at (0.5,0.5                    

end

Figure 3.76 Numerical FlexPDE� state of the mathematical
model of the process (CPM reactor).

The example presented in Table 3.20 shows that the numerical transposition of
a concrete example with the MHSM is not a straightforward problem. We can also
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notice that to start the MHSM, the selection of the first base point must be the
result of a primary selection process. Here, we can intuitively suggest the values
of the parameters and, using the mathematical model of the process, we can find
the proposal that shows a likeness and proximity between the computed and the
experimentally measured values for the dependent process variables. The accepted
proposal will be considered as the base point for the MHSM:

1. To identify the problems in which the process presents var-
ious exits, the use of a function for the minimization of each
exit frequently attains contradictory situations when, for
example, we must increase the value of a parameter in one
function whereas the same parameter must be decreased in
a second function. Nevertheless, if we can suggest a global
function with rational participation of each partial function
we can easily go on.

2. For the case when the dimensionless state of a global func-
tion is preferred for the computation, then we can operate
with dimensionless process variables and with a dimension-
less mathematical model of the process. However, we can
also operate with dimensional variables but with partly
dimensionless functions.

Table 3.20 The MHSM particularization developed to solve application 3.6.3.2.

STARTING POINT :M0ðk0
0 ¼ 0:03; n0 ¼ 0:5; k0 ¼ 250Þ

The computed values for dependences cA � s and t� s

s (s) 150 300 600 1500

cA (kg/m3) 3.0 4.2 5.2 6.2

t (�C) 165 120 70 35

U1 and U2 values:
U1(k0

0 ¼ 0:03;n0 ¼ 0:5; k0 ¼ 250) =
(3 – 3.4)**2 + (4.2 – 4.3)**2 + (5.2 – 4.5)**2 + (6.2 – 4.95)**2 = 2.2225 ;
U2ðk0

0 ¼ 0:03;n0 ¼ 0:5; k0 ¼ 250Þ =
(165 – 185)**2 + (120 – 135)**2 + (70 – 80)**2 + (35 – 60)**2 = 1350

E1//k0: k01
0 ¼ 1:1 � k0

0 ¼ 0:033; M01
0 ðk0

0 ¼ 0:033;n0 ¼ 0:5; k0 ¼ 250Þ
The computed values for dependences cA � s and t� s (first exploration)

s (s) 150 300 600 1500

cA (kg/m3) 2.8 3.8 4.6 5.6

t (�C) 160 110 62 26
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U1 and U2 values:
U1ðk01

0 ¼ 0:033;n0 ¼ 0:5; k0 ¼ 250) = 1.045 ; (U2ðk01
0 ¼ 0:033;n0 ¼ 0:5; k0 ¼ 250) = 2685

U1 decrease but U2 increase and so increasing k0 is not recommended
E2// n: n01 ¼ 1:1n0 ¼ 0:55; M02

0 ðk0
0 ¼ 0:03;n01 ¼ 0:55; k0 ¼ 250Þ

The computed values for dependences cA � s and t� s (second exploration))

s (s) 150 300 600 1500

cA (kg/m3) 3. 4 4.8 5.6

t (�C) 165 115 62 30

U1 and U2 values:
U1ðk0

0 ¼ 0:03;n01 ¼ 0:55; k0 ¼ 250) = 0.685
U2ðk0

0 ¼ 0:03;n01 ¼ 0:55; k0 ¼ 250) = 2024

U1 decrease but U2 increase and so increasing n is not recommended
E3// k: k01 ¼ 1:1k0 ¼ 275; M03

0 ðk0
0 ¼ 0:03;n01 ¼ 0:5; k0 ¼ 275Þ

The computed values for dependences cA � s and t� s (third exploration)

s (s) 150 300 600 1500

cA (kg/m3) 3. 4.2 5.2 6.0

t (�C) 172 128 77 50

U1 and U2 values:
U1ðk0

0 ¼ 0:03;n0 ¼ 0:5; k01 ¼ 275Þ = 1.525 ;
U2ðk0

0 ¼ 0:03;n0 ¼ 0:5; k01 ¼ 275Þ) = 327.
U1 increase and U2 decrease and so increasing k is not recommended
E4//k0: k02

0 ¼ 0:9 � k0
0 ¼ 0:027; M04

0 ðk02
0 ¼ 0:027;n0 ¼ 0:5; k0 ¼ 250Þ

The computed values for dependences cA � s and t� s (fourth exploration)

s (s) 150 300 600 1500

cA (kg/m3) 3.1 4.7 6.1 7.15

t (�C) 176 125 75 40

U1 and U2 values:
U1ðk02

0 ¼ 0:027;n0 ¼ 0:5; k0 ¼ 250Þ = 7.12
U2ðk02

0 ¼ 0:027;n0 ¼ 0:5; k0 ¼ 250Þ) = 606
U1 increase and U2 decrease and so decreasing k is not recommended
E5//n: n02 ¼ 0:9 � n0 ¼ 0:45; M05

0 ðk0
0 ¼ 0:03;n02 ¼ 0:5; k0 ¼ 250Þ

The computed values for dependences cA � s and t� s (fifth exploration)

s (s) 150 300 600 1500

cA (kg/m3) 3. 4.5 5.9 7.1

t (�C) 170 120 72 40
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U1 and U2 values:
U1ðk0

0 ¼ 0:03;n02 ¼ 0:45; k0 ¼ 250Þ) = 6.25
(U2ðk0

0 ¼ 0:03;n02 ¼ 0:45; k0 ¼ 250Þ) = 914
U1 increase and U2 decrease and so decreasing n is not recommended
All exploring essays have produced contradictory conclusions. So we decide to unify U1 and U2

as a dimensionless function
Uðk0;n; kÞ ¼ U1ðk0;n; kÞ=c2

A0 þU2ðk0;n; kÞ=ðtðsÞ � t00Þ2

The values of dimensionless function for exploration cases

base Increasing
k0

Increasing
n

Increasing
K

Reduction
k0

Reduction
n

U1 0.000889 0.00418 0.000274 0.00061 0.002800 0.002505

U2 0.01167 0/01588 0.01750 0.002828 0.005240 0.007907

U 0.012559 0.01588 0.01774 0.003438 0.00804 0/0104

Decision : reject reject Accepted accepted accepted

The computation of the partial derivates :

¶U

¶k0

� �

0
¼

U0
K0
�U0

0

Dk0
¼ 0:00804� 0:012559
ð0:027� 0:03Þ=0:03

¼ 0.04519

¶U

¶n

� �

0
¼ U0

n �U0
0

Dn
¼ 0:0104� 0:012559
ð0:45� 0:5Þ=0:5

¼ 0.02159

¶U

¶k

� �

0
¼ U0

k �U0
0

Dk
¼ 0:003438� 0:012559
ð275� 250Þ=250

¼ –0.09079.

Point advancing : ik0 = 0.498 ; in = 0.0219/0.09079 = 0.238 ; ik = –1.
Increase k by 3 units: k(1) = 250 + 3 = 253 w/(m2grd).
dn= ik*(dk/k)/in*n= –1(3/250/0.238)*0.5 = –0.025 ;n (1) = 0.5–(–0.025) = 0.525;
dk0 = –1(3/250/0.498)*0.03 = –0.00072; k0

(1) = 0.03 – (–0.00072) = 0.0307
The computed values for dependences cA � s and t� s for M1(0.0307, 0.525, 253)

s (s) 150 300 600 1500

cA (kg/m3) 3.0 4 4.85 5.6

t (�C) 185 115 65 30

U value: U1
1 = 0.0003009 ; U1

2 = 0.011712 ; Uð1Þ = 0.0120129 ; Uð1Þ � Uð0Þ. New point M2 coordi-
nates: kð2Þ0 ¼0.0307 + 0.0007 = 0.314, nð2Þ = 0.525 + 0.25 = 0.55, kð2Þ = 253 + 3 = 256.
The computed values for dependences cA � s and t� s for M2(0.0314, 0.55, 256)

s (s) 150 300 600 1500

cA (kg/m3) 2.8 3.7 4.5 5.2

t (�C) 160 110 60 32
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U value: U
ð2Þ
1 = 0.000329 ; U

ð2Þ
2 = 0.021055 ; Uð2Þ = 0.02189 ; Uð2Þ � Uð1Þ.

New exploring start
Decreasing k0: k1

0 ¼ 0:9k0
0 ¼ 0:9:0:03146 = 0.02826

The computed values for dependences cA � s and t� s for Mð1Þ2 (0.0286, 0.55, 256)

s (s) 150 300 600 1500

cA (kg/m3) 3.1 4.2 5.2 5.95

t (�C) 165 120 65 38

U value: U
ð2Þ
1k0 = 0.00054 ; U

ð2Þ
2k0 = 0.011539 ; U

ð2Þ
k0 = 0.012079 ; Correct advancing direction.

Increasing n:: n1 = 0.55 + 0.05 = 0.6
The computed values for dependences cA � s and t� s for Mð2Þ2 (0.0314, 0.6, 256)

s (s) 150 300 600 1500

cA (kg/m3) 2.8 3.55 4.2 4.7

t (�C) 168 108 59 29

U value: U
ð2Þ
1n = 0.000485 ; U

ð2Þ
2n = 0.02093 ; Uð2Þn = 0.0211315 ; Correct advancing direction.

Increasing k: k1 = 256 + 24 = 280
The computed values for dependences cA � s and t� s for Mð3Þ2 (0.0314, 0.6, 280)

s (s) 150 300 600 1500

cA (kg/m3) 2.95 3.7 4.4 4.95

t (�C) 166 120 75 50

U value: U
ð2Þ
1k = 0.000261 ; U

ð2Þ
2n = 0.00615 ; U

ð2Þ
k = 0.00641315 ; Correct advancing direction.

The computation of the partial derivates :
¶U

¶k0

� �

2
¼

U
ð2Þ
k0 �U

ð2Þ
0

Dk0
¼ 0.09612

¶U

¶n

� �

0
¼ Uð2Þn �U

ð2Þ
0

Dn
= 0.006325 ;

¶U

¶k

� �

0
¼ U

ð2Þ
k �U

ð2Þ
0

Dk
= –0.16510.

Point advancing : ik0 = 0.58 ; in = –0.38 ; ik = –1.
Increase k by 3 units: k(3) = 256 + 3 = 259
dn= ik*(dk/k)/in*n= –1(3/256/(–0.38)*0.5 = 0.16; n(3) = 0.55 + 0.16 = 0.71
dk0 = –1(3/256/0.58)*0.0314 = –0.006; k0

(3) = 0.0314 + (–0.006) = 0.0254
The computed values for dependences cA � s and t� s for M3(0.0254, 0.71, 259)

s (s) 150 300 600 1500

cA (kg/m3) 3.05 3.84 4.5 4.95

t (�C) 170 115 61 32

U value: U
ð3Þ
1 = 0.00024 ; U

ð3Þ
2 = 0.011712 ; Uð3Þ = 0.0153 ; Uð1Þ � Uð0Þ. New point M4

kð4Þ0 ¼0.0254 – 0.006 = 0.0194 , nð4Þ = 0.71 + 0.16 = 0.87 , kð4Þ = 259 + 3 = 262
The computed values for dependences cA � s and t� s for M4(0.0194, 0.87, 262)
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s (s) 150 300 600 1500

cA (kg/m3) 3.1 4.1 4.6 4.95

t (�C) 180 120 62 32

U value: U
ð3Þ
1 = 0.00056 ; U

ð3Þ
2 = 0.0077 ; Uð3Þ = 0.00776 ; Uð1Þ � Uð0Þ. New point M5

kð5Þ0 ¼0.0194–0.006 = 0.0134 , nð5Þ = 0.87 + 0.16 = 1.03 , kð5Þ = 265 + 3 = 268
Running the algorithm allows the estimation of the most favourable parameters which are:
k0 ¼ 0:0106;n ¼ 0:97; k ¼ 301 w/(m2 deg)

3.5.4
The Gauss–Newton Gradient Technique

The process of parameter identification using the Gauss–Newton gradient tech-
nique is especially meant for the cases where we have a complex mathematical
model of a process that imposes an attentive numerical processing.

For a process with a complex mathematical model, where the exits can be
described by partial differential equations, we have the general form below:

Yðz; s;PÞ ¼ F Y; z; s;
¶Y
¶z
;
¶2Y
¶z2

;
¶Y
¶s
;P

 !

(3.227)

where Yðz; sÞ and Fðz; sÞ are the columns of N-dimensional vectors (Y – responses
vector, F – functions vector) while z and s show the space and time where and
when the process takes place. The unknown parameters are contained in the M-
dimensional vector P. In addition, the model must be completed with the univo-
city conditions expressed by the following vectors:
. the vector of initials conditions:

Yðz; 0Þ ¼ Y0ðzÞ (3.228)

. the vectors of the limitative conditions for z = 0 and z = zf:

G Yz¼0; 0; s;
¶Y
¶z
=z¼0;

¶2Y
¶z2

=z¼0;P

 !

¼ 0 (3.229)

H Yz¼zf ; 0; s;
¶Y
¶z
=z¼zf ;

¶2Y
¶z2

=z¼zf ;P

 !

¼ 0 (3.230)

The identification of the unknown M parameters requires supplementary condi-
tions, which are obtained with experimental research. They are given in the col-
umn vector Yexpðz; sÞ. This column has the same dimension as Yðz; sÞ. As is
known, the identification of the parameters requires minimization of the disper-
sion vector that contains the square of the differences between the observed and
computed exits of the process:
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UðPÞ ¼
PR

r¼1

PS

s¼1
½Yexpðzs; srÞ � Yðzs; sr;PÞ�2 (3.231)

In the relation (3.231) s represents the number of experimental points located on
the zs coordinate while r characterizes the time position when a measure is exe-
cuted. The base of the development of the Newton–Gauss gradient technique
resides in the Taylor expansion Yðz; s;PÞ near the starting vector of parameters
P0:

Yðz; s;PÞ ¼ Yðz; s;P0Þ þ ðP� P0Þ
¶ðYðz; s;P0ÞÞ

¶P

� �T

þ:::::::::::: (3.232)

If we replace relation (3.232) in Eq. (3.231) we have:

UðPÞ ¼
XR

r¼1

XS

s¼1

Yexpðzs; srÞ � Yðzs; sr;P0Þ � ðP� P0Þ
¶ðYðzs; sr;P0ÞÞ

¶P

� �T
" #2

(3.233)

The dispersions vector attains its minimal value with respect to vector P when its
derivate has a zero value with respect to this vector; it is written as follows:

¶UðPÞ
¶P

¼
XR

r¼1

XS

s¼1

2 Yexpðzs; srÞ � Yðzs; sr;P0Þ � ðP� P0Þ
¶ðYðzs; sr;P0ÞÞ

¶P

� �T
" #

¼ 0ð Þ

(3.234)

The relation (2.334) can be also written as:

XR

r¼1

XS

s¼1

Yexpðzs; srÞ �
XR

r¼1

XS

s¼1

Yðzs; sr;P0Þ � ðP� P0Þ
XR

r¼1

XS

s¼1

¶ðYðzs; sr;P0ÞÞ
¶P

� �T

¼ 0

(3.235)

and, in addition, for non-repeated measures it can be particularized as:

Yexpðzs; srÞ � Yðzs; sr;P0Þ � ðP� P0Þ
¶ðYðzs; sr;P0ÞÞ

¶P

� �T

¼ 0 (3.236)

After the separation of vector P, the last relation can be written in a state that
announces the iterative process of Gauss–Newton:

P ¼ P0 þ ½Yexpðzs; srÞ � Yðzs; sr;P0Þ�
¶ðYðzs; sr;P0ÞÞ

¶P

� �T ¶ðYðzs; sr;P0ÞÞ
¶P

� �" #�1

(3.237)

The most important form of relation (3.237) is given by its transposition as an
iterative Gauss–Newton procedure:

Piþ1 ¼ Pi þmi½Yexpðzs; srÞ � Yðzs; sr;PiÞ�
¶ðYðzs; sr;PiÞÞ

¶P

� �T ¶ðYðzs; sr;PiÞÞ
¶P

� �" #�1

(3.238)

160



3.5 Some Aspects of Parameters Identification in Mathematical Modelling

where mi represents a multiplicator which is selected in order to respect the
movement of vector UðPÞ towards the minimum direction. This condition is writ-
ten as UðPiþ1Þ £UðPiÞ. In accordance with the established relations, the computa-
tion adjusts the selected starting vector P0, by an iterative procedure. The compu-
tation can be finished when the convergence condition is attained. It requires a
vector of accepted errors:

Piþ1 � Pij j £Er (3.239)

When the vector of accepted errors contains dimensionless values with respect to
each parameter, we have a special case where these values can all be equalled,
with a small e. With this condition we can write the relation (3.239) as follows:

e‡
PM

j¼1
ðpijþ1 � pijÞ=pij

�
�
�

�
�
� (3.240)

Here pij gives the value of the parameter having the number i for the iteration
with the number j. The parameter mi of the relation (3.238) can be estimated
using a variation of the Gauss–Newton gradient technique. The old procedure for
the estimation of mi starts from the acceptance of the vector of parameters being
limited between a minimal and maximal a priori accepted value:
P min � P � P max. Here we can introduce a vector of dimensionless parameters
Pnd ¼ ðP� P minÞ=ðP max � P minÞ, which is ranged between zero and one for the
minimal and the maximal values, respectively. With these limit values, we can
compute the values of the dimensionless function for Pnd ¼ 0; 0:5; 1 as Uð0Þ, Uð0:
5Þ and Uð1Þ and then they can be used for the estimation of mi:

mi ¼

1 when Uð1Þ � Uð0Þ

0:5 when Uð1Þ � Uð0Þ but Uð0:5Þ � Uð0Þ

mi ¼
3Uð0Þ � 2Uð0:5Þ þUð1Þ

4Uð0Þ � 8Uð0:5Þ þ 4Uð1Þ

�
�
�
�

�
�
�
�

8
>>>>><

>>>>>:

(3.241)

It is important to notice that the modern methods of Gauss–Newton gradient
operate with variable mi values, which are obtained for each calculation step by
using a more or less complicated particular procedure.

It is easily observable that, for the case of identification of only one parameter,
relation (3.238) becomes the famous Newton method for solving a transcendent
equation of type UðpÞ ¼ 0. Indeed, this particularization gives the following chain
of iteration:

pjþ1 ¼ pj �
yðzs; sr; pjÞ � yexpðzs; srÞ

dyðzs; sr; pjÞ
dp

� �2 (3.242)

In this particular case of only one-parameter identification, the identification
method by research is in competition with the Gauss–Newton method. However,
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the choice of one particular method depends on different conditions. For instance,
when the mathematical model of the process presents a simple form it is limited
to an algebraic or a simple differential equation, the Newton method will then be
preferred because it is the most rapid method to identify the parameters. All other
methods available for solving transcendent equations can be used to identify a sin-
gle parameter. These methods, along with the Newton method, become difficult
to operate when we have many different experimental results because we will
have many s and r in the relation (3.242). In these cases, a particularization of the
relation (3.235) can be a good solution.

3.5.4.1 The Identification of Thermal Parameters for the Case of the Cooling of a
Cylindrical Body
The problem analysed here considers the case of a cylinder made of an unknown
material. Its dimensions are R ¼ 0:02 m and H ¼ 0:3 m, and it is maintained in
an oven at a constant temperature of 250 �C. After a long time, it is take out of the
oven and kept in air at 20 �C, where the cooling process starts. A reservoir of boil-
ing water is placed on the top of the cylinder as shown in Fig. 3.77:

z

C1

S1

r

S2

S3

C2

C3

Figure 3.77 The recording of the exit variables for the cooling
of a cylindrical body.

During the cooling process, the temperature at points C1(0.05, 0), S1(0.05, 0.02),
C2(0.15, 0), S2(0.15, 0.02), C3(0.25, 0) et S3(0.25, 0.02) is measured and recorded.
The points marked C are placed in the centre of the cylinder along its axis and the
points marked S are placed at the surface. The specific sensible heat of the mate-
rial of the cylinder is c ¼ cp ¼ 870 j/ (kg deg). The evolution of the temperature at
points S and C is given in Figs. 3.78 and 3.79. The heat exchange between the
cylinder and the adjacent air is characterized by the evolution of the measured
temperature. The heat transfer coefficient from the cylinder to the air and the

162



3.5 Some Aspects of Parameters Identification in Mathematical Modelling

thermal conductivity of the material must be determined. If we consider the
Gauss–Newton gradient technique, the vector that contains the measured exits is
written as shown in relation (3.243). The vector of the computed exits of the pro-
cess has a similar expression but here the list of arguments of the vector of vari-
ables will be completed with the parameters k(thermal material conductivity) and
a(heat transfer coefficient from cylinder to air).

Yexpðzs; srÞ ¼
tcðzs; srÞ
tsf ðzs; srÞ

� �

(3.243)

To begin the identification of the parameters with the Gauss–Newton method, the
mathematical model of the process must be available. This model allows compu-
tation of the values of the temperature at the centre and the surface of the cylin-
der. At the same time, to estimate the starting vector of parameters (P0), the meth-
od needs a first evaluation of the thermal conductivity k0 and of the heat transfer
coefficient a0.

The mathematical model of the process is given by the assembly of relations
(3.244)–(3.248) that represent the particularization of the transport phenomena to
the descriptive model introduced by Fig. 3.77. It is not difficult to observe that this
model is a case of a three-dimensional unsteady heat conduction (s; r; z) cylinder.

¶t
¶s
¼ k

rcp

¶2t
¶r2
þ 2

r
¶t
¶r
þ ¶2t
¶z2

 !

(3.244)

s ¼ 0 ; 0£ z£H ; 0 £ r £R ; t ¼ t0 (3.245)

τ 

C1

C2

C3

tc

 sec

Figure 3.78 Evolution of the measured temperature at points C1, C2 and C3.
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S1

S2

S3

ts

τ sec

Figure 3.79 The evolution of the measured temperature at points S1, S2 and S3.

s � 0 ; 0 � z £H ; r ¼ R ; k
dt
dr
¼ aðt� teÞ (3.246)

s � 0 ; z ¼ H ; 0 < r < R ; t ¼ tF (3.247)

s > 0 ; z ¼ 0 ; 0 < r < R ; k
dt
dr
¼ aðt� teÞ (3.248)

The numerical values of all material properties (except thermal conductivity), geo-
metric data and all initial and boundary conditions required by the process have
been established by the mathematical model. These values are r = 6100 kg/m3,
cp = 870 j/(kg deg), R = 0.02 m, H = 0.3 m, t0 = 250 �C and tF = 100 �C.

The relation (3.249) used for the iterative calculation allowing the identification
of the unknown parameters is given here below. It is a particularization of the
general Gauss–Newton algorithm (3.238):

k

a

�
�
�
�

�
�
�
�
iþ1;j

¼ k

a

�
�
�
�

�
�
�
�
i;j

þmi

ð¶tc

¶k
Þi;j ð

¶tc

¶a
Þi;j

ð¶ts

¶k
Þi;j ð

¶ts

¶a
Þi;j

" #

:
ð¶tc

¶k
Þi;j ð

¶ts

¶k
Þi;j

ð¶tc

¶a
Þi;j ð

¶ts

¶a
Þi;j

" #2

4

3

5

�1
tcexp:j � tc:calc:i;j

ts:expj � ts:calc:i;j

�
�
�
�
�

�
�
�
�
�

(3.249)

The computation obtained with this particularization is given in Fig. 3.80. In this
example we consider that the experimental data of the first group (C1,S1) is the
starting point.
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Figure 3.80 The particularization of the Gauss–Newton algorithm for the application.
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We can observe that it is important to have a simulator of the model of the

process ((3.244)–(3.248)) in order to estimate the value of the vector tci;j
tsi;j

�
�
�
�
�
�. The

simulator allows the computation of the matrix of derivates
ð¶tc

¶k
Þi;j ð

¶tc

¶a
Þi;j

ð¶ts

¶k
Þi;j ð

¶ts

¶a
Þi;j

" #

, used

in the iteration processes, as shown in the numerical example given here.

The model simulator of the process is based on the description given in Fig.
3.77; it considers the transformations recommended earlier as well as an adapta-
tion to the model conditions ((3.43)–(3.46)). In the following example the
FRC(k,a) gives the values of tci;j and tsi;j respectively.

The positions of the points are: C1,S1; time = 1000 s/ tc exp = 69, ts exp = 52/ P0: k =
30, a = 15/FRC(30,15), tc calc = 65, ts calc = 39/ kþ dk ¼35/ FRC(35,15) tck = 81, tsk
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We used here a too large displacement of k and a for the construction of the
matrices (relation (3.242)). However, the real computation uses a small displace-
ment of the parameters. This explains the differences between both values of the
vectors of errors as well as the evolution of the vector of the parameters along both
iterations. The software of the mathematical model of the process is given by
FRCðk; aÞ. In this specific computation, we introduced definite values of k and a

for the calculation of the corresponding temperatures (tc calc, ts calc, tck, tsk etc) for
points C1 and S1 respectively .

The final result of identification allows the estimation of a ¼ 9:7–0:88 w/(m2

deg) and k ¼ 49:8–2:35 w/(m deg). Considering the value of k, we can appreciate
that the cylinder is certainly made of a type of steel, whereas the value of a shows
that the occurring heat transfer is the natural convection between the cylinder and
the adjacent air. This last observation is in good agreement with the descriptive
model of the process given at the beginning of this section.
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3.5.4.2 Complex Models with One Unknown Parameter
The identification of the parameters of a process can be examined from two com-
pletely different viewpoints. The former is given by laboratory researchers, who
consider the identification of parameters together with a deep experimental analy-
sis; it is then frequently difficult to criticize the experimental working methods,
the quality and quantity of the experimental data. The latter is given by research-
ers specialized in mathematical modelling and simulation. These researchers con-
sider that the mathematical aspects in the identification of parameters are prevail-
ing. Nevertheless, this last consideration has some limits because, in all cases, a
similar number of parameters and independent experimental data are necessary
for a correct identification.

It is important to notice that, from both viewpoints, as well as in all working
procedures, experimental data are required and that, at the same time, mathema-
tical models are absolutely needed for data processing. Generally, when the math-
ematical model of a process is relatively complex, a good accuracy and an impor-
tant volume of experimental data are simultaneously required. Therefore, in these
cases the quality of the determination of parameters is the most important factor
to ensure model relevance. The strategy adopted in these cases is very simple: for
all the parameters of the process that accept an indirect identification, the
research procedure of identification is carried out separately from the real process;
whereas for the very specific process parameters that are difficult to identify indi-
rectly, experiments are carried out with the actual process.

When we have N measures for the exit variables in a process, the technical prob-
lem of identification of the unknown parameter resides in solving the equation
UðpÞ ¼ 0. From the theoretical viewpoint, all the methods recommended for the
solution of the transcendent equation can be used to determine parameter p. The
majority of these methods are of iterative type and require an expression or an
evaluation of the UðpÞ derivate. When we evaluate the derivate numerically, as in
the case of a complex process model, then important deviations can be introduced
into the iteration chain. Indeed, the deviation propagation usually results in an
increasing and non-realistic value of the parameter. This problem can be avoided
by solving the equation UðpÞ ¼ 0 by integral methods such as the method of mini-
mal function value (MFV). When UðpÞ values are only obtained in the area of
influence of parameter p, the MFV method is reduced to a dialogue with the
mathematical model of the process and then the smallest UðpÞ value gives the
best value for the parameter.

The following example details how the MFV method is used to identify the dif-
fusion coefficient of species with respect to their motion in a particle of activated
carbon.

Diffusion of Species Inside a Particle of Activated Carbon
Among the inexhaustible plant resources for the production of activated carbon,
we have the nutshell, which can be transformed by pyrolysis and activation with
overheated water vapour. In this example, activated carbon has been used to retain
some hydrocarbon traces from water using a batch reactor. The interest here is to
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characterize the diffusion of the chemical species that are adsorbed on the acti-
vated carbon and its dependence on the operating conditions.

Experiment. Nutshells, granulated to a maximum 6 mm diameter, were used as
raw material. The reaction was carried out in a pyrolysis reactor heated with an
electrical resistance and the temperature evolution inside the bed of solid was
measured with a thermocouple. The integral expression of the pyrolysis dynamics
was determined by the loss of weight with respect to the initial quantity of nut-
shells loaded into the reactor. The experimental data are presented in Fig. 3.81.
The final weight loss corresponds to the removal of some non-oxygenated com-
pounds, (which burned with a blue flame, color indicating the absence of oxygen)
from the raw material. 100 g of pyrolysed material, divided into three parts, was
prepared for each batch loaded into the reactor. One third, which followed a differ-
ent activation treatment, was used for comparison with the other samples. The
activation was performed by flowing the overheated steam through the fixed bed
of pyrolysed material. Two different activation treatments, which differ in the over-
heated steam temperature and flow were used. The nine different activated car-
bons prepared are reported in Table 3.21. They were identified depending on the
operating conditions as: S1, S2, S3, S1A1, S1A2, S2A1, S2A2, and S3A1 and
S3A2.

S1

S2

S3

t/tM

m/m0

          τ   min

t/tM

m/m0

Figure 3.81 Dynamics of the weight loss and of the increase
in the temperature for the nutshell pyrolysis (dimensionless).

The samples called S were used without any activation whereas the samples
called SxAy were used after activation.

Characterization of the activated carbon by adsorption: nearly saturated water with
benzene and activated carbon were introduced into a batch reactor with a 0.06 and
0.14 ratio of solid/liquid phases. In each experiment, the evolution of the concen-
tration of benzene in water was determined spectrophotometrically and by potas-
sium permanganate titration. Tables 3.22 and 3.23 as well as Figs. 3.82–3.84 show
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the dynamics of the concentration of the organic compound in the water for the
different types of activated carbon. The mass balance of species allows one to
know the mean benzene concentration adsorbed by the activated carbon particles
for each experiment and in each time interval.

Table 3.21 Activation conditions for the pyrolysed material.

No. Time
(min)

A1 A2

t (�C) Steam flow (kg/s) t (�C) Steam flow (kg/s)

1 0 300 0.83·10–4 300 0.83·10–4

2 20 700 1.25·10–4 600 1.25·10–4

3 40 700 1.25·10–4 600 1.25·10–4

4 60 700 2.83·10–4 600 2.83·10–4

5 80 700 2.83·10–4 600 2.83·10–4

6 100 700 0.83·10–4 600 0.83·10–4

Table 3.22 Evolution of the concentration of benzene in water for
a solid/liquid ratio of s/l = 0.06.

No. Time
(min)

c/co

S1 S2 S3 S1A1 S1A2 S2A1 S2A2 S3A1 S3A2

1 0 1 1 1 1 1 1 1 1 1

2 10 0.81 0.86 0.91 0.8 0.76 0.85 0.77 0.89 0.83

3 25 0.73 0.80 0.86 0.7 0.66 0.77 0.69 0.82 0.75

4 50 0.59 0.71 0.75 0.53 0.51 0.62 0.54 0.74 0.63

5 80 0.56 0.59 0.62 0.50 0.49 0.58 0.51 0.61 0.59

6 120 0.55 0.57 0.59 0.49 0.48 0.55 0.50 0.59 0.57

7 160 0.54 0.56 0.57 0.49 0.48 0.54 0.50 0.57 0.54

8 210 0.53 0.55 0.56 0.49 0.48 0.53 0.50 0.55 0.54

9 260 0.53 0.55 0.56 0.53 0.55 0.54

10 360 0.55 0.56
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Table 3.23 Evolution of the concentration of benzene in water for
an s/l = 0.14 solid/liquid ratio.

No. Time
(min)

c/co

S1 S2 S3 S1A1 S1A2 S2A1 S2A2 S3A1 S3A2

1 0 1 1 1 1 1 1 1 1 1

2 10 0.75 0.82 0.84 0.7 0.68 0.79 0.77 0.83 0.85

3 25 0.69 0.73 0.74 0.50 0.48 0.66 0.49 0.71 0.75

4 50 0.57 0.62 0.64 0.41 0.38 0.55 0.40 0.59 0.65

5 80 0.49 0.59 0.61 0.32 0.30 0.46 0.32 0.51 0.56

6 120 0.39 0.50 0.52 0.27 0.25 0.38 0.27 0.45 0.47

7 160 0.34 0.41 0.43 0.25 0.23 0.32 0.24 0.39 0.39

8 210 0.30 0.34 0.36 0.25 0.23 0.29 0.23 0.34 0.32

S1 (0.06)

S1A1 (0.06)

S1A2 (0.06)

S1 (0.14)

S1A1 (0.14)

S1A2 (0.14)

      τ  min

c/c0

Figure 3.82 Evolution of the benzene concentration in water
for the adsorption with activated carbon S1, S1A1 and S1A2.
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S2 (0.06)

S2A1 (0.06)

S2A2 (0.06)

S2A1 (0.14)

S2A2 (0.14)

   τ  min

c/c0

S2 (0.14)

Figure 3.83 Dynamics of the benzene adsorption for the S2,
S2A1 and S2A2 activated carbon.

S3 (0.06)

S3A1 (0.06)

S3A2 (0.06)

S3 (0.14)

S3A1 (0.14)

S3A2 (0.14)

   τ min

c/c0

Figure 3.84 Dynamics of the benzene adsorption for the S3,
S3A1 and S3A2 activated carbon.

From these representations we can notice that: (i) the 600 �C pyrolysis results in
an activated carbon with the best adsorption speed; (ii) the activation increases the
speed of adsorption of the organic compound, probably as a consequence of the
increase in the effective diffusion coefficient and not as a result of the opening of
new pores (in which case the final equilibrium concentrations for S1, S2, S3,
S1A1, S1A2, S2A1, S2A2, S3A1, S3A2 should be different); (iii) the use of more
intense steam activation conditions (higher temperature) leads to a small increase
in the speed of adsorption of the organic compound.
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We can consider that the measured values of the concentration at the end of the
experience at constant temperature represent the equilibrium concentrations.
These data are given in Tables 3.22 and 3.23. The equilibrium constant is deter-
mined according to its definition by the following relation:

kd ¼

mlcech

ms

c0 � cech
¼ r � cech

co � cech
¼ r

co

cech
� 1

(3.250)

Table 3.24 shows the computed data for kd, for both solid/liquid ratios and the
mean values if we consider the hypothesis of a linear equilibrium isotherm.

Table 3.24 Adsorption equilibrium constants for all activated carbon species at 25 �C.

S1 S2 S3 S1A1 S1A2 S2A1 S2A2 S3A1 S3A2

kd(0.06) 0.0677 0.0733 0.0764 0.0576 0.0676 0.0677 0.0600 0.0733 0.070

kd(0.14) 0.0600 0.0721 0.0787 0.0466 0.0418 0.0572 0.0418 0.0721 0.066

kd(mean) 0.0639 0.0727 0.0775 0.0521 0.0547 0.0625 0.0509 0.0727 0.068

From this table, the weak dependence between the distribution constant, the py-
rolysis and activation conditions can be noticed.

Identification of the effective diffusion coefficient with the mathematical model of
batch adsorption. The model assumes that the carbon particles are spherical and
porous (ep– voids fraction). Using c (kg A/m3 fluid inside the pores) and q (kg A/kg
adsorbent) to express the concentration of the transferable species through the
pores and through the particle respectively, we can write the following expression
for transport flux:

JA;r ¼ � Def
¶c
¶r
þ rpDs

¶q
¶r

� �

(3.251)

where Def represents the effective diffusion coefficient through the pores, Ds is
the surface diffusion coefficient and qp is the particle density. When the adsorp-
tion flow of species has been defined, it is necessary to give the net speed of
adsorption using a general expression such as: vad ¼ G c; qð Þ.

The unit for the net speed of adsorption is kmoles or kg of A by unit of solid
weight and by unit of time. For example, for the net speed of adsorption, the Lang-
muir model gives:

G c; qð Þ ¼ ka q¥ � qð Þ � kds � q (3.252)
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Here q is the maximal concentration of the adsorbed species into the solid, ka is
the rate of adsorption; kds is the rate of desorption. The ratio kd = ka/kds is usually
called the equilibrium constant. With the considerations given above, we can now
write the expression for the concentration fields c and q:

ep
¶c
¶s
¼ 1

r2

¶
¶r

r2Def
¶c
¶r

� �

� rpG c; qð Þ (3.253)

¶q
¶r
¼ 1

r2

¶
¶r

r2Ds
¶q
¶r

� �

þG c; qð Þ (3.254)

For a full definition of the model of transport through the particle, it is necessary
to set up the univocity conditions for the above equations:
. the concentration fields c and q inside of the particle at the start

of the process:

s ¼ 0 ; 0 < r < R ; c ¼ q ¼ 0 (3.255)

. the absence of transport of the species into the centre of the
particle:

s > 0 ; r ¼ 0 ;
¶c
¶r
¼ ¶q

¶r
¼ 0 (3.256)

. the equality of the convection and conduction flux at the surface
of the particle:

s > 0 ; r ¼ R ; k cl � cRð Þ ¼ Def
¶c
¶r

�
�
�
�
R

þrpDs
¶q
¶r

�
�
�
�
R

(3.257)

For the adsorbed species on the external surface of the particle, the next condition
has to be fulfilled:

s > 0 ; r ¼ R ;
¶q
¶r

�
�
�
�
r¼R

¼ G cR; qRð Þ (3.258)

The next equation presents the balance of the adsorbable species for the fluid out-
side the particle:

V
¶cl

¶s
¼ �

mp

rp

 !
3
R

Def
¶c
¶s
þ rpDs

¶q
¶r

� �

R

(3.259)

Here mp is the total mass of the particles with radius R placed in the contactor
with a useful volume V. In some cases, the surface diffusion is considered the
slowest process because organic components such as hydrocarbons are generally
strongly adsorbed on activated carbon [3.65, 3.66]. Indeed, we can consider here that,
at the surface of the particle, the adsorption equilibrium is achieved faster than the
surface diffusion process. In these conditions the batch model equations are:

¶q
¶s
¼ 1

r2

¶
¶r

r2Ds
¶q
¶r

� �

(3.260)
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r ¼ R ; kl cl � cRð Þ ¼ rpDs
¶q
¶r

(3.261)

r ¼ R ; G c; qð Þ ¼ 0 ; r ¼ 0 ;
¶q
¶r
¼ 0 (3.262)

V
dcl

ds
¼ 3

R

mp

rp

 !

rpDs
¶q
¶r

�
�
�
�
R

(3.263)

s ¼ 0 ; cl ¼ cl;0 ; q ¼ 0 (3.264)

where Ds is the effective coefficient of the surface diffusion.The minimization of
the squares of the differences between the experimental and the theoretical values
of the transferable species allows the identification of Ds. The calculation is made
following the next steps:

1. Suggest a value for Ds;
2. Propose cR � cl;
3. Determine qR from Eq. (3.262);
4. Numerical integration of Eq. (3.261) and determination of

q(r, s), 0 <r <R.;

5. Calculation of
¶q
¶r

�
�
�
�
R

and verification of the condition given by

the relation (3.261). If it is not verified go back to 2;

6. Determine clðsÞ ¼ cl;th from Eq. (3.263);

7. Calculate cl;exp � cl;th

� �2

i
;

8. Increase s to cover the entire period of the experiment and
go to step 2;

9. Calculate r Dsð Þ ¼ 1
n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

l¼1
cl;exp � cl;th

� �2

i

s

;

10. Propose a new value for Ds and go to step 2;
11. Identify the minimum value of the dispersion, r Dsð Þ, in

order to obtain the best value of the effective coefficient of
the surface diffusion.

Figure 3.85 and Table 3.25 show the identified values of the effective diffusion
coefficient for all adsorption experiments. The activation technique applied can be
shown to allow the enhancement of Ds, so the speed of the transport process will
be higher. Table 3.25 also contains the values of Ds identified by the Newton–
Gauss method.
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Figure 3.85 The state of the dispersion between the experimental
and the theoretical values of c/c0 versus Ds · 1010 m2/s.

Table 3.25 Identified Ds values for all activated carbons (first line
– from Fig. 3.85, second line – by Newton–Gauss method.

S1 S2 S3 S1A1 S1A2 S2A1 S2A2 S3A1 S3A2

r 0.009 0.011 0.020 0.001 0.015 0.006 0.013 0.016 0.0065

DS � 1010 m2/s 3 2 2 5 6 2 4 2 2

DS � 1010 m2/s 3.12
– 0.42

2.09
– 0.31

1.92
– 0.27

5.57
– 0.62

6.15
– 0.76

2.11
– 0.29

3.88
– 0.25

1.98
– 0.11

2.06
– 0.19

The increase in the activation time (A2 regime) results in the best values of Ds

with respect to all other cases. It can be observed that the best speed of adsorption
is reached with an activated carbon produced by the first type of pyrolysis treat-
ment (S1 samples), whereas no improvement is observed in the adsorption prop-
erties, when the activated carbon has been produced by a process in which the
raw material (S3) presented the lowest loss of mass.

In conclusion, we can assert that the pyrolysis and activation process applied for
the manufacture of activated carbons from nutshells resulted in good quality
adsorbents. We have demonstrated the influence of both processes on the speed
of the benzene adsorption from water solutions. The hypothesis that the effective
surface diffusion is the slowest step of the global process was used and the estima-
tion of the effective diffusion coefficient resulted in values ranging between 2 and
6 � 10–10 m2/s.
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3.5.5
Identification of the Parameters of a Model by the Maximum Likelihood Method

The maximum likelihood method (MLM) is used effectively to identify the
unknown parameters of mathematical models when the parameters are distribut-
ed. If we consider Fig. 3.1, the actions of the normal distributed perturbations on
the process cannot be neglected. Indeed, all process exits will be distributed with
individual parameters that depend on the distribution functions associated to the
perturbations.

In order to show the effect of the distributed perturbations on the model exits,
we begin the analysis by writing the mathematical model of the process as:

X ¼ f ðX;U;V; sÞ (3.258)

where X is the state vector (internal characterization of the process), U the control
vector (for all or for the most important inputs of the process) and V is defined as
the disturbance (perturbation) vector of the process. In all cases, all the experi-
mental measurements have been affected by the errors which are distributed nor-
mally; the process contains one or more variables with probability distributed
actions, etc. The formal measurements of vectors depend on the vectors them-
selves and on their state, they will be given by:

Y ¼ gðX;U;V; sÞ (3.259)

They are composed of the numerical values contained in the following sequence:

YN ¼ hy1; y2; ::::yNi (3.260)

This sequence shows the instant values of the exit of the process conditioned by
the vector parameter P ¼ Pðp1; p2; :::pLÞ. Indeed,YN=P is the exit random vector
conditioned by the vector parameter P. In this case p(YN/P), which is the probabil-
ity density of this variable, must be a maximum when the parameter vector P is
quite near or superposed on the exact or theoretical vector P. Therefore, the max-
imum likelihood method (MLM) estimates the unknown parameter vector P as P̂P,
which maximizes the likelihood function given by:

L ¼ ln½pðYN=PÞ� (3.261)

Now we can consider that the prediction error (measurement errors) given for the
k exit is shown by:

ek ¼ ðyk � yk) (3.262)

where yk is the expected mean value. When the mean value is “white” or zero
EðekÞ ¼ 0; (E operator to calculate the mean value). It can be shown that the max-
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imization of L from relation (3.261) is equivalent to the minimizations of the LMDL

given by:

LMDL ¼
1

2N

XN

k¼1

eT
KR�1

k eK þ lnðdetðRkÞÞ

 �

(3.263)

Here, Rk is the prediction error covariance matrix (it will be chosen from the start
of the minimization) and N represents the number of the experiments carried
out. The Kalman filter approach [3.66, 3.67] must be used in different situations:
(i) in the estimation of the ek vector when yk is unknown in Eq. (3.262), (ii) in the
correction of the model state when it is possible to compensate some inaccuracies
due to the model deficiencies and experimental plant disturbances [3.68]. In this
latter case, if the model state is not corrected, considerable errors in parameter
estimation can arise, even if the model structure is very close to the correct one.
The extended Kalman Filter approach is also necessary [3.69, 3.70] when the math-
ematical models of the process show a nonlinear state.

The principle of the MLM is shown in Fig. 3.86. It is important to specify that
the minimization of the MLM can be carried out by various techniques. The MLM
algorithm works as follows:

1. It makes an initial choice of the estimated vector parameter
(indeed, for i = 0 it chooses P̂P0).

2. It uses the Kalman filter and performs a simulation with
P̂P ¼ P̂Pi and then it computes LMDL = LMDLi.

3. It uses a minimization technique to update a new estimation
of vector parameter: P̂Piþ1 ¼ P̂Pi þ DP̂Pi.

4. It verifies whether convergence has happened: if not, it goes
back to point 2 and adds i = i + 1.

εk

process Kalman

Filter

MLM

V

U Yk

− 

K
Y

^

P

mathematical

model

Figure 3.86 Structure of the MLM method.

177



3 Mathematical Modelling Based on Transport Phenomena

When a model state is described by nonlinear equations, the extended Kalman
filter has been applied using the well-known Kalman filter equations for the line-
arization of equations. If the state vector is enlarged with the parameter vector Pk

(Pk is used because it corresponds to the discrete version of the state model) and if
it is considered to be constant or varying slowly, then it is possible to transform
the problem of parameters estimation into a problem of state estimation. The
Pkþ1 ¼ Pk þ nk with nk white noise correction represents the model suggested for

P. It will introduce Xk ¼
Xk

Pk

�
�
�
�

�
�
�
� in the augmented state vector. Then, the discrete

version of the state model will be written as:

Xkþ1 ¼ Xk þ Ds � FðXk;Uk;VkÞ (3.264)

The structure of the augmented (extended) Kalman filter is shown in Fig. 3.87,
which also presents the schematic methodology for obtaining the exit-computed
vector Yk. It can be observed that coupling the process with computation proce-
dures allows parameter identification and control of the process.

k
P

       Process
KFE

F(Xk,..) IT g(…)

DT

Uk

Vk nk

Yk ε k

k
Y

k
X

k
X

1k
X

+ 

1k
P

+

Figure 3.87 The extended Kalman filter method.

The vector Yk can be calculated either with the normal Kalman Filter (KF) which
gives Xk for the discrete equation state (FðXk;Uk;VkÞ) or with the extended Kal-
man filter (KFE) which gives P̂Pkþ1 in the calculation system. For this estimation, it
is also necessary to obtain the state of the system Xk from the next state Xkþ1.
This estimation is made by block IT (inversion translator); another IT block gives
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the P̂Pkþ1 used for state system estimation with P̂Pk from KFE. Both methods need
the Kalman filter to be started. Indeed, an introduction of the Kalman filter equa-
tions is required in order to correctly appreciate how the MLM and KFE methods
operate.

3.5.5.1 The Kalman Filter Equations
This method is frequently used for filtering, smoothing and identifying parame-
ters in the case of a dynamic time process. It has been developed taking into
account the following conditions: (i) acceptance of the gaussian distribution of the
disturbances and exits of the variables of the process; (ii) there is a local linear
dependence between the exit vector and the state vector in the mathematical
model of the process.

The Kalman filter problem. Considering the relations (3.258) and (3.259)) we can
write the following discrete-time system:

Xkþ1 ¼ FkXk þGkWk

Yk ¼ HkXk þ Vk

�

(3.265)

where the input disturbance vector Wk is N(0,Qk), the exit disturbance vector Vk is
N(0,Rk) and the initial input vector X0 is N (m0,S0). In the expression Nða; bÞ, a

represents the mean value and b is the dispersion or covariance with respect to
the mean value.

The dimensions of the state vector Xk and of the observation vector (exit vector)
are N and M respectively. This short introduction is completed by assuming that
Rk is positive (Rk>0).

The problem considered here is the estimation of the state vector Xk (which
contains the unknown parameters) from the observations of the vectors Yk =
[y0, y1....yk ]. Because the collection of variables Yk = ( y0,y1,....yk) is jointly gaussian,
we can estimate Xk by maximizing the likelihood of conditional probability distri-
butions pðXk=YkÞ, which are given by the values of conditional variables. More-
over, we can also search the estimate X̂Xk, which minimizes the mean square error
ek ¼ Xk � X̂Xk. In both cases (maximum likelihood or least squares), the optimal
estimate for the jointly gaussian variables is the conditional mean and the error in
the estimate is the conventional covariance.

In what follows, we will develop the conditional mean and covariance for the
couple Xk and Yk. This is followed by a description of the Kalman filter and a rapid
and practical method for a recursive or iterative calculation of the conditional
mean and covariance for the random variable vector Xk/Yk.

In many different softwares such as SCILAB�, computational programs are
available for calculating: (i) the steady-state Kalman filter which can be used when
the matrices of the systems in (3.265) do not vary with time; (ii) the unsteady-state
Kalman filter which can be used when the matrices of the systems in (3.265) vary
with time; (iii) the square-root Kalman filter for time or non-time-varying matrices
of the systems when high numerical accuracy is required.
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Mean and covariance for conditional gaussian random vector. The minimum mean
square estimate of a gaussian random vector when we only have observations of
some of its elements is the conditional mean of the remaining elements. The
error covariance of this estimate is the conditional covariance. Consequently, if Z
is a random gaussian vector composed of sub-vectors x and y, then we may write:

Z ¼ x
y

� �

is N
mx

my

� �

;
Cx Cxy

Cyx Cy

� �� �

(3.266)

where mx and my are the mean of x and y, Cx is the covariance of x with itself, Cxy

is the covariance of x with y, etc. It is know that the marginal and conditional dis-
tributions of a gaussian random vector are also gaussian. Indeed, the distribution
of x for a given y has a probability density p(x/y) of normal type:

pðx=yÞ ¼ Nðmx=y;Cx=yÞ (3.267)

In this case the conditional mean (mx/y) and the conditional covariance (Cx/y) may
be calculated as follows:

mx=y ¼ mx þ Cx=yC�1
y ðy�myÞ (3.268)

Cx=y ¼ Cx � CxyC�1
y Cyx (3.269)

These two relations are the basis for other important developments of the Kalman
filter equations. Concerning the problem considered above, the calculation of the
minimum mean square error can be carried out either:

1. By considering the individual observations on the concen-
trated vector Yk . Because Xk and Yk are both gaussian, then
Eqs. (3.268) and (3.269) represent the vector used to obtain
the conditional mean and covariance of Xk for a given Yk.
However, when the dimension of the vector is too large,
problems with matrix multiplication and inversion can
appear.
or

2. By developing a special recursive update for the estimation
of xk from Xk based on the linear system (3.265) and a special
property derived from Eqs. (3.268) and (3.269). More pre-
cisely, if the best estimate of xk based on the observations Yk

is given (denote this estimate x̂xk=k) with a new observation
yk+1, it is shown how to obtain the best estimate x̂xkþ1=kþ1 and
its error covariance matrix CEk+1/k+1.

Linear systems over a gaussian random vector. If x or X is a gaussian vector with
mean value mx and covariance Cx (the minimum square error estimate for x is x̂x
and x̂x = mx) which is considered to be in a formal linear system completed with a
zero-mean gaussian vector (v is N (0, R)) then we have:
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y ¼ Hxþ v (3.270)

The mean and covariance of y are calculated, by their definition, as follows:

my ¼ E yj j ¼ E Hxþ vj j ¼ Hmx (3.271)

Cy ¼ E y�my

�
�
�

�
�
� � y�my

�
�
�

�
�
�
T
¼ E Hðx�mxÞ þ vj j � Hðx�mxÞ þ vj jT¼ HCxHT þ R

(3.272)

Consequently, the minimum mean square error estimate for y is ŷy = Hmx and the
associated covariance of this is Cy = HCxHT + R.

Recursive estimation of gaussian random vectors. We consider here a gaussian ran-
dom vector composed of three sub-vectors x,y and z:

x
y
z

2

4

3

5 is N
mx

my

mz

2

4

3

5 ;

Cx Cxy Cxz

Cyx Cy Cyz

Czx Czy Cz

2

4

3

5

0

B
@

1

C
A

From Eqs. (3.268) and (3.269) the minimum mean square estimate of x for a given
y is:

x̂xðyÞ ¼ mx þ CxyC�1
y ðy�myÞ (3.273)

and the associated error covariance can be computed as follows:

CxðyÞ ¼ Cx � CxyC�1
y Cyx (3.274)

It is important to note that E½x̂xðyÞ� ¼ mx

Now if z is also observed, then the minimum mean square error estimate of x
for a given y and z is:

x̂xðy; zÞ ¼ mx þ Cxy Cxz

 �

� Cy Cyz

Czy Cz

� ��1
y�my

z�mz

� �

(3.275)

and the error covariance:

Cxðy; zÞ ¼ Cx � Cxy Cxz

 �

� Cy Cyz

Czy Cz

� ��1
Cyx

Czx

� �

(3.276)

When y and z stay independent then Cyz = Czy = 0, and the relation (3.275) can be
simplified as follows:

x̂xðy; xÞ ¼ mx þ CxyC�1
y ðy�myÞ þ CxzC�1

z ðz�mzÞ ¼ x̂xðyÞ þ CxzC�1
z ðz�mzÞ

(3.277)
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The use of Eq. (3.277) needs a recursive method to calculate x̂xðy; zÞ for a given x̂xðyÞ
and z. The problem is that Eq. (3.275) depends on y and z, which are independent
vectors. Fortunately, changing variables makes it possible to change the estima-
tion procedure for Eq. (3.275) and then Eq. (3.277) can be modified considering
the random vector m defined by:

m ¼ z� ẑzðyÞ ¼ z� ½mz þ CxyC�1
y ðy�myÞ� ¼ ðz�mzÞ � CxyC�1

y ðy�myÞ (3.278)

Here ẑzðyÞ is the minimum mean square estimate of z for a given observation of y
and this is used in Rel. (3.278) by means of Rel. (3.268). This new random vector,
m, has several interesting properties, which are important for the development of
the Kalman filter equations:

1. Because mm is zero, m, is a zero-mean random value:
mm ¼ E½ðz�mzÞ � CxyC�1

y ðy�myÞ� ¼ 0.
2. Since

Cmy = E [m(ymy)
T] = E½ðz�mzÞðy�myÞT � CzyC�1

y ðy�myÞ ·
ðy�myÞT� ¼ Czy � CzyCyC�1

y ¼ 0
we consider that m and y are independent .

3. Because CtxðŷyÞ is given by relation
CmxðŷyÞ ¼ E½mðmx þ CxyC�1

y ðy�myÞT� =
E½mðy�myÞTC�1

y Cyx� ¼ 0,
and considering the previous property (2.), we obtain that m

is independent with respect to y and x̂xðyÞ.

Now, if we replace z by m in Eq. (3.275), we can rewrite the result as follows:

x̂xðy; zÞ ¼ x̂xðy; mÞ ¼ mx þ Cxy Cxm


 �
� Cy 0

0 Cm

� ��1
y�my

m

� �

¼ mx þ CxyC�1
y ðy�myÞ þ CxmC�1

m m ¼ x̂xðyÞ þ CxmC�1
m m̂m (3.279)

It is easy to observe that from Eq. (3.274) we can obtain:

Cxm ¼ E½ðx�mxÞðz�mz � CxyC�1
y ðy�myÞ ¼ Cxz � CxyC�1

y Cyz (3.280)

and the variable correlation for m is then:

Cm ¼ E½ðz�mz � CzyC�1
y ðy�myÞÞðz�mz � CzyC�1

y ðy�myÞÞT�
¼ Cz � CzyC�1

y Cyz (3.281)

It may be noticed that the equality of x̂xðy; zÞ and x̂xðy; mÞ is the result of the conser-
vation of all information while the variables in Eq. (3.278) are being replaced.
Indeed, we are simply adding a constant vector to z, and this vector makes m and y
independent of each other. The error covariance here noted as CCxðy; mÞ associated
with Eq.(3.277) is:
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CCxðy; mÞ ¼ Cx � Cxy Cxm


 �
� Cy 0

0 Cm

� ��1

� Cyx

Cmx

� �

¼ Cx � CxyC�1
y Cyx � CxmC�1

y Cmx ¼ CxðyÞ � CxmC�1
m Cmx (3.281)

The Kalman Filter Equations are here obtained from the formulation of the Kalman
filter with the purpose of finding a recursive estimation procedure for the solution
of a problem (estimation of state vector). Before detailing the procedure, we have
to introduce other new notations. The minimum square estimate of xk for the giv-
en observations Yl = [y0,y1,...yl] is defined by x̂xkl. Furthermore CCk/l represents the
error covariance associated with x̂xk=l.

With these notations, we can now explain the estimation of x̂xk=k from the esti-
mate x̂xk=k�1 and the new observation yk. From Eqs. (3.279) and (3.281) we obtain:

x̂xk=k ¼ x̂xk=k�1 þ CxkmkC�1
mk mk (3.282)

CCk=k ¼ CCk=k�1 � CxkmkC�1
mk Cmkxk (3.283)

If mk is extracted from Eqs. (3.265), (3.270) and (3.271) then we have:

mk ¼ yk �Hkx̂xk=k�1 (3.284)

The covariance matrices from Eqs. (3.282) and (3.283) may be calculated using the
definition of some established relations. The following relations are then
obtained:

Cmk ¼ E ðyk �Hkx̂xk=k�1Þðyk �Hkx̂xk=k�1ÞT
h i

¼ E ½ðHkðxk � x̂xk=k�1Þ þ mk�½ðHkðxk � x̂xk=k�1Þ þ mk�T
h i

¼ HkCCk=k�1HT
k þ Rk

(3.285)

Cxkmk ¼ E ðxk � EðxkÞÞmT
k

h i
¼ E ðxk � EðxkÞ þ EðxkÞ � x̂xk=k�1ÞmT

k

h i

¼ E ðxk � x̂xk=k�1ÞmT
k

h i
¼ E ðxk � x̂xk=k�1Þðyk �Hkx̂xk=k�1ÞT

h i

¼ E ðxk � x̂xk=k�1Þðxk � x̂xk=k�1ÞTHT
k

h i
¼ CCk=k�1HT

k

(3.286)

Substituting Eqs. (3.286), (3.285) and (3.284) into Eqs.(3.283) and (3.282) we have:

x̂xk=k ¼ x̂xk=k�1 þ Kgkðyk �Hkx̂xk=k�1Þ (3.287)

CCk=k ¼ CCk=k�1 � KgkHkCCk=k�1 (3.288)
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where the Kalman gain of the filter is given by Kgk ¼ CCk=k�1HT
k

½HkCCk=k�1HT
k þ Rk��1. It is important to observe the subtraction of Rk>0 consid-

ered in the definition of the disturbance vector. If Rk>0, Kgk always exists. How-
ever, if we accept that Rk is not necessarily positive, we can have problems making
the inverse matrix necessary to calculate Kgk.

Using Eqs. (3.271), (3.272) and (3.265) to complete Eqs. (3.287) and (3.288), we
can establish the next two auxiliary equations:

x̂xkþ1=k ¼ Fkx̂xk=k ; CCkþ1=k ¼ FkCCk=kFT
k þGkQkGT

k (3.289)

Combining relations (3.287), (3.288) and (3.289) results in a set of recursive equa-
tions, which are called the Kalman filter equations:

x̂xkþ1=k ¼ Fkx̂xk=k�1 þ FkKgkðyk �Hkx̂xk=k�1Þ (3.290)

CCkþ1=k ¼ FkCCk=k�1FT
k � FkKgkHkCCk=k�1FT

k þGkQkGT
k (3.291)

To be operational, the Kalman filter equations must be completed with the start-
ing conditions x̂x0=�1 and CC0/–1, which correspond to k = 0 in relations (3.290) and
(3.291). These conditions are obtained from the statistical starting of the initial
state vector:

x̂x0=�1 ¼ m0 CC0=�1 ¼ s0 (3.292)

The optimized values for the unknown model state parameters are obtained by
coupling the Kalman filter equations with the mathematical models of the process
that give matrices Fk, Hk and Gk. The coupling above has to be completed step by
step: we must first use an initial estimator vector for the process state (which is
the starting point in the previous method) and then consider a judicious error cov-
ariance matrix and experimental data. Depending on the problem formulation
stated by Eq. (3.265) there are situations where the Kalman procedure does not
give satisfactory results. Indeed, in some cases, the Kalman filter can provide state
estimates which diverge from the actual evolution of the vector. However, gener-
ally, this divergence is not the result of a fault of the Kalman filter, but, rather, is
due to the process model provided by the user. In such cases, the user may re-
examine the model formulation in order to give a better version of the model used
for the estimation problem. From the mathematical viewpoint, the Kalman filter
is only valid for time invariant formulations of the model in Eq. (3.265). This
assertion implies that the studied system must be controllable and observable.
These two conditions allow the matrix of error covariance CCk/k–1 to converge
towards a finite and positive constant matrix. Consequently, the error in the esti-
mate x̂xk=k�1 is bounded as k fi ¥ because of the CCk/k–1 bounding.

Another consequence of the steady state analysis of the Kalman filter is that we can
use the steady state Kalman gain instead of the time varying Kalman gain. The advan-
tage of such an approach is that considerable computational savings are possible
because we do not need to recalculate the Kalman gain for each new observation.
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3.5.5.2 Example of the Use of the Kalman Filter
The example analyzed here is one of the simplest problems because it is two-
dimensional with respect to the vectors state. The example illustrates the Kalman
tracking for a system model, which is controllable and observable. To this aim, we
use the following system model and prior statistics:
. the process state vector:

xkþ1 ¼
1:1 0:1
0 0:8

� �

xK þ
1 0
0 1

� �

wk

. the measurement vector:

yk ¼
1 0
0 1

� �

xk þ vk

. prior statistics:

EðwkwT
k Þ ¼

0:03 0:01
0:01 0:03

� �

; EðvkvT
k Þ ¼

2 0
0 2

� �

; Eðx0Þ ¼
10
10

� �

;

E½ðx�m0Þðx�m0ÞT� ¼
2 0
0 2

� �

For actual cases, the model of the process is given a priori and the process state
vector can be built according to the rule presented here for the case of the Gauss–
Newton method. The dispersion due to the normal disturbances of the process
input or the dispersion that characterizes the errors of the exit measurements
must be appreciated and proposed, as shown in our case. In this example, it is not
difficult to observe that the model presents two exit variables: y1 (that decreases
with the state parameters) and y2 (that increases with the state parameters). The
observations of the process (measured data of y1 and y2) have been generated
using the system formulation and values for xk from a random number generator
that add the random multiplication of its dispersion to the mean value. Ten obser-
vations have been generated by using adequate software and have been exploited
as input for the Kalman filter. The result of these observations and the estimations
carried out by the Kalman procedure are illustrated in Fig. 3.88. In this figure, we
can observe the actual state path and the Kalman estimation of the state path as
solid and dashed lines respectively. The actual locations of the state and estimated
values are indicated as white and black circles. The ellipses in the figure are
centred near the positions of the actual state path and their borders represent the
two standard deviations of the estimation error calculated from the matrices of
error covariance. The numerical values of the standard deviations are also given in
the figure.
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Figure 3.88 Numerical example of the Kalman filter tracking.

3.6
Some Conclusions

All theoretical aspects, engineering observations and commentaries and actual
examples presented in this chapter illustrate some basic or particular aspects of
the modelling and simulation of processes based on transfer phenomena in the
field of chemical engineering

The essential features of the presented aspects can be described as follows:
1. Mathematical models are developed for teaching, for engi-

neering calculations and for finding solutions to the techni-
cal problems of design using rigorous procedures where the
core resides in the particularization of the transport phenom-
ena equations to the actual case modelled. The main purpose
of modelling is to provide engineers and practitioners with
prediction parameters of direct practical interest, i.e. the
value of concentrations and temperature, shear rates, heat
and mass transfer rates, as functions of the operating condi-
tions including equipment geometry and dimensions, the
properties of the media and the process features.

2. Mathematical models have been developed by considering
classical flow models. At the same time, the capacity of com-
putational fluid dynamics to be coupled with heat and mass
transfer processes and with a reaction has been considered.

3. Every mathematical model is a simplified mirror image of a
real phenomenon. To sustain the modeling assumptions, all
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exemplified models are characterized by experimental or
simulated data. This characterization also shows the strongly
cognitive capacity of the developed models.

4. Modelling usually includes several consecutive steps of cal-
culations; therefore, to make the method practical, the soft-
ware simplification of the main equations has to be accepted
with respect to the practical application. In many cases, we
can reduce the simulation complications without impairing
the reliability of the obtained results.

5. Model-based estimation techniques applied to identify or
simply estimate parameters are presented as mathematical
formulations and are sustained by practical applications.
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