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Multivariate analysis (MVA) is the statistical analysis of

many variables at once. Many problems in the pharmaceu-

tical industry are multivariate in nature. The importance of

MVA has been recognized by the U.S. FDA in the recent

guidance on process analytical technology [1]. MVA has

beenmademuch easier with the development of inexpensive,

fast computers, and powerful analytical software. Chemo-

metrics is the statistical analysis of chemical data, which is an

important area of MVA. Spectral data from modern instru-

ments is fundamentally multivariate in character. Typically

pharmaceutical process monitoring requires more than one

variable. Furthermore, the powerful statistical methods of

chemometrics are essential for the analysis and application of

spectral data including NIR and Raman. In this chapter, we

will review the subject of chemometrics and MVA and its

application in the pharmaceutical industry.

With spectral data, it is not uncommon to measure several

thousand variables at one time. However, it is often hard

to conceptualize so many variables; therefore, we will begin

our discussion of MVA with a few simple examples that

illustrate important statistical concepts which are essential

in chemometrics. The first problem is a set of pharmaceutical

quality data. Measurements of density and assay have been

measured for 43 lots of material. The data is shown in

Table 33.1. Inspection of the data reveals that the density

values are near 1.0, while the assay values are closer to 100.A

goal of the data analysis is to understand the variation within

the data set. It will be advantageous to have the two variables

in the data set with similar magnitudes; therefore, we will

scale each of the two variables by its own standard derivation.

The standard deviation, s, of a set of measurements (x1, . . .,
xn) is given by

s ¼
P ðxi�xÞ2

n�1

 !1=2

ð33:1Þ

where x is the average value of the n measurements. The

denominator in equation 33.1 is n – 1, because once the

average is calculated, there are n – 1 degrees of freedom.

We note that the standard deviation has the same units as the

variable of interest.

A plot of the scaled data is shown in Figure 33.1. The x-

axis is the scaled density and the y-axis is the scaled assay

values. Each point represents 1 of the 43 lots of material.

From the plot in Figure 33.1, one data point is far away from

all of the others. Statisticians call data points that do not

belong to the data set outliers. Outliers are important to

identify and remove from the analysis of the data set, because

a single outlier can greatly influence the statistical analysis

and obscure underlying trends in the data.We note that while

outliers are often removed in a research and development

environment duringmethod development, great cautionmust

be used in removing outliers during validation or use in actual

production.

The scaled data are replotted in Figure 33.2, with the

outlier point removed. The reader will also note that the

origin of the graph has been moved to the center point of

the data set. This operation is called mean centering, when

the average of the overall data set is subtracted from the

data. As mentioned earlier, in MVA we are concerned with
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investigation of the variation within the data set. The average

values of the data set are not of primary importance. Two

arrows in the figure illustrate the two directions of variation

within the data set. P1 is the largest direction of variation and

P2 is the second direction of variation. It is important to note

that P1 and P2 are perpendicular to each other. In MVA, P1

and P2 are the first and second principal components of the

data set, respectively.

For each one of the data points, the projection of the data

point onto the P1 or P2 vector is called a score value. Plots of

score values for different principal components, typically P1

versus P2 are called score plots. Score plots provide

important information about howdifferent samples are related

to each other. Principal component plots, also called loading

plots, provide information about how different variables are

related to each other. Because we are working with scaled

variables, the PCs and scores are dimensionless variables.

The mathematics of PCA can be clearly described using

linear algebra [2]. An excellent discussion of linear algebra

can be found in the references [3]. By convention, the data

matrix, X, has p columns and n rows, and each column

represents another variable and new rows for each observa-

tion or sample. The average data matrix, X, is the average of
each individual column (i.e., variable) in the data set. Mean

centering is written as

ðX�XÞ ð33:2Þ
The covariance matrix is written as

C ¼ ðX�XÞTðX�XÞ ð33:3Þ
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FIGURE 33.1 Scaled pharmaceutical quality data. Both the

density and assay are scaled by the standard deviation of the data

for each variable. Because the variables are scaled by the standard

deviation, they are dimensionless.
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FIGURE 33.2 Scaled pharmaceutical quality data showing both

the first and the second principal components for the data set. The

first principal component is the direction of the maximum variation

within the data set. The second principal component is perpendic-

ular to the first PC. The scores for each sample point are given by the

projection of the data point onto the principal component vector.

TABLE 33.1 Pharmaceutical Quality Data Example

Density (g/cm3) Assay (mg)

0.801 121.410

0.824 127.700

0.841 129.200

0.816 131.800

0.840 135.100

0.842 131.500

0.820 126.700

0.802 115.100

0.828 130.800

0.819 124.600

0.826 118.310

0.802 114.200

0.810 120.300

0.802 115.700

0.832 117.510

0.796 109.810

0.759 109.100

0.770 115.100

0.759 118.310

0.772 112.600

0.806 116.200

0.803 118.000

0.845 131.000

0.822 125.700

0.971 126.100

0.816 125.800

0.836 125.500

0.815 127.800

0.822 130.500

0.822 127.900

0.843 123.900

0.824 124.100

0.788 120.800

0.782 107.400

0.795 120.700

0.805 121.910

0.836 122.310

0.788 110.600

0.772 103.510

0.776 110.710

0.758 113.800
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where an upper script T represents a matrix transpose. The

covariance matrix is a square, symmetric, p� p matrix. The

covariance matrix provides information about the relation-

ship between different variables. For example, the i, j element

of the covariance matrix quantifies the relative change be-

tween the i, j variables. If an element of the covariance matrix

is zero, there is no relationship (correlation) between the two

variables.

Related to the covariance matrix is the correlation matrix

where all the variables have been scaled for their standard

deviations. The correlation matrix is useful when one or

more of the variables have much higher numerical values

than the other variables. The scaling of the variables means

that all variables will contribute to the analysis in roughly the

same way. Mathematically the correlation matrix, R, is

written as

rik ¼ sikffiffiffiffi
sii

p ffiffiffiffiffi
sjj

p ¼

Xn
i¼1

ðxji�xiÞðxjk�xkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxji�xiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxjk�xkÞ2

q

R ¼
1 r1p

1

rp1 1

0
@

1
A

ð33:4Þ

where the elements of the correlation matrix are given by rij.

R is a square p� pmatrix, where p is the number of variables.

The diagonal elements of R are equal to one.

PCA is the systematic analysis of the covariance or

correlation matrix. It can be shown that the eigenvalues are

positive and the eigenvectors are orthogonal for both matri-

ces [4]. The eigenvector equation for C is

Cui ¼ liui ð33:5Þ
where ui is the ith eigenvector and li is the corresponding

eigenvalue. By convention, the eigenvalues are placed in

descending order, where l1 is the largest eigenvalue. In PCA,
the eigenvectors are also called principal components. It can

be shown that the first PC represents the largest source of

variance in the data set. The percentage variation explained

by the ith PC is given by

100� l1P
i li

ð33:6Þ

It is common with spectral data that the data set can be well

approximated by a few principal components. As explained

earlier, score values provide information about the relation-

ship between different observations. The PCs form a basic set

which can be used to approximate the original data set. For a

single mean-centered observation, xj,

xj ¼
Xp
i¼1

tjiPCi ¼
XA
i¼1

tjiPCi þE ð33:7Þ

where tji are the score values, A is the number of principal

components, E is the error when the number of principal

components is less than the number of variables. Because the

PCs are orthogonal, a direct expression for the score values

can be given by the following equation.

tji ¼ ðxj�XÞ. PCi ð33:8Þ
Equation 33.7 is derivable from equation 33.6 by taking a dot

product of both sides and exploiting the orthogonality of the

principal components. The previous example is somewhat

trivial because only two variables were involved.

Let us now consider another examplewithmore variables.

In Table 33.2, a set of data describing the properties of 43 raw

materials is shown. The variables that describe the raw

materials are labeled QV1–QV8. The variables QV1–QV8

describe different properties of the raw material such as

moisture, assay, and particle size. Using commercial soft-

ware, we can do a PCA analysis of the data set using the same

approach that was used for the first data set, that is, scaling by

standard deviation and mean centering. A few of the critical

results are shown in Figures 33.3 and 33.4. The loading

(principle component) plot shows some results that are

clearly interpretable, Figure 33.3. The principle component

plot shows how different variables relate to each other. In the

plot the reader can observe that QV5 and QV8 are close to

each other and therefore are well correlated to each other.

QV1 and QV7 are also correlated. A plot of the score values

for each 1 of the 43 raw materials is shown in Figure 33.4.

The origin of the score plot corresponds to the average of the

entire data set. The samples that are farther away from the

origin are more likely to be possible outliers. The ellipse in

Figure 33.4 is called the Hotelling T2 ellipse and is showing

the 95% probability level for outliers. The Hotelling T2

ellipse is based on scaled, squared score values [2]. The

T2 value for observation i given below.

T2
i ¼

XA
a¼1

t2ia
S2ta

S2ta ¼

XN
i¼1

t2ia

N

ð33:9Þ

where A is the number of principal components and tia is the

ath principal component score value for the ith sample. S2ta is

the variance of ta, because the average of the score values is

zero [2]. T2 is closely related to the often-used parameter

Mahalanobis distance. An important property of the T2

statistic is that it is directly proportional to an F value, which

is a statistical parameter that is rigorously related to a

probability value.1 The numerical value of the F value is

dependent on the number of samples, principal components,

1 T2
i

ðN�AÞN
AðN2�1Þ is approximately F-distributed, see Ref. 2.
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and probability level desired, a. Examination of equa-

tion 33.9 for two PCs shows that

FðaÞ ¼ C
t21
S21

þ t22
S22

� �
ð33:10Þ

where C is a constant. Equation 33.9 is an equation for an

ellipse in the t1, t2 space. By convention, the Hotelling T2

ellipse is usually drawn at the 95% probability level.

PCA can be viewed as a method for approximating the

original data set. The approximation is based on a linear

combination of the principle components where the ampli-

tude coefficients are the previously described scores. The

approximation is exact when the number of principle com-

ponents equals the number of variables in the data set. For

most spectral data sets, a small number of principle compo-

nents (also called factors) can be used to approximate the

spectral data set very well. The determination of the correct

TABLE 33.2 Multivariable Quality Data Set

Primary ID QV1 QV2 QV3 QV4 QV5 QV6 QV7 QV8

1 110 2 2 180 1.5 10.5 10 70

2 110 6 2 290 2 17 1 105

3 110 1 1 180 0 12 13 55

4 110 1 1 180 0 12 13 65

5 110 1 1 280 0 15 9 45

6 110 3 1 250 1.5 11.5 10 90

7 110 2 1 260 0 21 3 40

8 110 2 1 180 0 12 12 55

9 100 2 1 220 2 15 6 90

10 130 3 2 170 1.5 13.5 10 120

11 100 3 2 140 2.5 8 140 m

12 110 2 1 200 0 21 3 35

13 140 3 1 190 4 15 14 230

14 100 3 1 200 3 16 3 110

15 110 1 1 140 0 13 12 25

16 100 3 1 200 3 17 3 110

17 110 2 1 200 1 16 8 60

18 70 4 1 260 9 7 5 320

19 110 2 0 125 1 11 14 30

20 100 2 0 290 1 21 2 35

21 110 1 0 90 1 13 12 20

22 110 3 3 140 4 10 7 160

23 110 2 0 220 1 21 3 30

24 110 2 1 125 1 11 13 30

25 110 1 0 200 1 14 11 25

26 100 3 0 0 3 14 7 100

27 120 3 0 240 5 14 12 190

28 110 2 1 170 1 17 6 60

29 160 3 2 150 3 17 13 160

30 120 2 1 190 0 15 9 40

31 140 3 2 220 3 21 7 130

32 90 3 0 170 3 18 2 90

33 100 3 0 320 1 20 3 45

34 120 3 1 210 5 14 12 240

35 110 2 0 290 0 22 3 35

36 110 2 1 70 1 9 15 40

37 110 6 0 230 1 16 3 55

38 120 1 2 220 0 12 12 35

39 120 1 2 220 1 12 11 45

40 100 4 2 150 2 12 6 95

41 50 1 0 0 0 13 0 15

42 50 2 0 0 1 10 0 50

43 100 5 2 0 2.7 1 1 110
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number of factors can be done by a variety of numerical

methods. Toomany factors in the PCAmodel will over fit the

data and the model will not predict reliably. Most multivar-

iate analysis software packages will suggest a suitable num-

ber of principle components. The suggested number is

usually a good starting point; however, it is best practice to

verify the optimum number of principal components with

additional independent test data.

Classification is an important application of chemo-

metrics. Classification is the sorting of data into different

groups. These groups can be quite diverse such as different

sources or different quality grades of the same raw material.

Chemometrics methods for raw material identification

using NIR or Raman spectra as important but are relatively

simple and are discussed elsewhere [5]. In this chapter, we

will discuss soft independent modeling of class analogies

(SIMCA) [6]. A method for classification of similar classes

usingmultivariate analysis. PCA score plots sometimes show

data sets to consist of several subgroups. For example,

Figure 33.5 shows the score plot for the mid-IR spectra for

a series of oils. Color coding the score plot clearly illustrates

the differences between the four oils (olive, corn, safflower,

and corn margarine).

SIMCA is designed to improve on this separation of

classes by using the residuals from the PCA analysis.

Residuals are the difference between the PCA model and

the data. In the SIMCA analysis, a separate PCA model is

built for each class in the training set. The average residual

value for each class (S0) is also calculated. Test or

validation data are then fit to each PCA class model. The

correct class is the class that has the best fit to the PCA

model. The comparison is quantified by the use of the

scaled residual S0 (DmodX) values. The equations are

given below

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼1

e2ik

ðK�AÞ

vuuuuut

S0 ¼

X
i; j

e2ij

ðN�A�1ÞðK�AÞ

0
BBB@

1
CCCA

1=2
ð33:11Þ

FIGURE 33.4 Score plot of the data set in Table 33.2. The ellipse is the Hotelling T2 ellipse at 95%

probability level. Samples outside the ellipse have a probability of greater than 95%of being statistical

outliers.

FIGURE33.3 Loading plot for the data set in Table 33.2. The first principal component is plotted on

thex-axis and the second principal component is on the y-axis. Variables that are close to each other are

highly correlated.
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N is the number of samples, A is the number of principal

components, K is the number of variables, si is the root mean

square residual value for the ith sample, and eij is the spectral

residual, that is, the difference between the spectra and the

PCAmodel for observation i and variable j. If the test sample

residual is close to the average residual for the entire class,

then the sample has a high probability of belonging to the

class. The relationship to actual probability values is possible

because the scaled residual values Si=S0ð Þ2 in equation 33.11
are described by an F-distribution. The results of a SIMCA

analysis are often displayed in a Cooman’s plot. In a

Cooman’s plot, two classes are compared as shown in

Figure 33.6.

A typical Cooman’s plot is shown below. PCAmodels for

corn oil and olive oil are used to predict the classification of a

set of test samples. The test samples include olive, corn, corn

margarine, safflower, and walnut oils. The different classes

are color coded as shown in the legend. The x-axis on the

Cooman’s plot is the DmodX (distance to model) value for

the corn oil; the y-axis is the same for olive oil. The red

vertical line is the 5% probability level for the corn oil model,

samples to the right of this line are probable outliers for the

corn oil models. The red vertical line is the same for olive oil.

Note most olive and corn oil test samples are correctly

classified. Test samples form other classes are well separated

from the oil and corn oil groups.

In many cases, spectral data requires mathematical

transformations beforemultivariate analysis is performed [7].

The mathematical transformations are collectively referred

to as spectral preprocessing. Derivative preprocessing is the

most common form of spectra preprocessing with NIR

spectra. Derivative preprocessing will eliminate or at least

minimize the background variation associated with the NIR

spectra of many pharmaceutical materials. The effects of a

first derivative preprocessing on a typical NIR spectra are

shown in Figure 33.7 (top and bottom). The first derivative

removes the slowly varying baseline typical ofNIR spectra of

powders, positive and negative peaks correspond to regions

where the slope of the raw spectrumhas a positive or negative

value. There are several methods for the calculation of

spectral derivatives; however, they all start with the definition

of first or second derivative from elementary calculus.

FIGURE 33.6 Cooman’s plot comparing the olive and corn oil classes using a test set. Legend

triangle: corn oil, diamond: olive oil, asterisk: safflower oil, and plus: walnut.

FIGURE33.5 Score plot of mid-IR spectral data for a series of oils. Legend group 1: corn oil, group

2: olive, group 3: safflower, and group 4: corn margarine.
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f 0ðxÞ ¼ f ðxþDxÞ�f ðxÞ
Dx

f
00 ðxÞ ¼ f ðxþ 2DxÞ�2f ðxþDxÞþ f ðxÞ

ðDxÞ2

f
00 ðxþDxÞ � f

00 ðxÞþ ðDxÞf ð3ÞðxÞ

ð33:12Þ

The two most common approaches for the calculation of

derivatives are gap or Savitzky–Golay derivatives [8]. A gap

derivative is based on the calculation of a running average for

n points to the right and the left of a center point. The average

values for the right- and left-hand sides are then used to

calculate a finite difference derivative. There is an optional

gap or separation between the right- and left-hand sides. Gap

derivatives are described in Figure 33.8. A first-order gap

derivative uses an n-point average to calculate a finite

difference first derivative. Commonly the gap is set to zero

in many applications.

Savitzky–Golay derivatives are based on fitting N points

of the data to either a quadratic or cubic polynomial. The

derivative is found by differentiation of the polynomial. For

both methods of numerical differentiation, it is important to

properly determine the number of points used in the aver-

aging. Too fewpoints can compromise the signal to noise; too

many points will filter out important high frequency compo-

nents of the data.

Standard normal variant (SNV) is a preprocessingmethod

that is used to autoscale individual spectra [9]. The equation

for SNV is given below.

x�m

s
ð33:13Þ

where m is the average value for the spectrum of interest and

s is the standard derivation of the numbers, which make up

the spectrum. During SNV preprocessing, the average value

FIGURE 33.7 Effects of first derivative spectral preprocessing. Top: Several raw NIR spectra.

Bottom: First derivative spectrum.

FIGURE 33.8 Illustration of gap derivative algorithm.
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for each spectra is subtracted, then the spectrum is divided by

the standard derivation for the sample spectrum. After SNV

preprocessing, the range of each spectra will be approxi-

mately �2 to 2. SNV processing can be used to correct for

laser intensity variation in Raman spectra, and several kinds

of path length variation in NIR spectra. The effects of SNV

preprocessing are illustrated in Figure 33.9.

Multiplicative scatter correction (MSC) is a preprocessing

method designed to eliminate background variation in NIR

spectra due to scattering [10]. The effects of MSC are similar

to SNV in many real-world applications; however, it is a

distinct method.MSC uses the average spectrum of the entire

data set and not individual spectra. The sample spectra

are then regressed against the average spectrum producing

slope and offset values at each wavelength for all samples in

the data set. The slope and offset values are then used to

correct the data set. Results of MSC preprocessing are

illustrated in Figure 33.10. MSC preprocessing will remove

the variation due to scattering in the data set but not

change the average spectral value as SNV preprocessing

does. The equations for MSC preprocessing are given below.

xj ¼ aj1þ bjmþ «j

x0j ¼ ðxj�ajÞ=bj
ð33:14Þ

m is the average spectrum, bj is the slope, and aj is the offset

values for each wavelength. An important advantage ofMSC

preprocessing is that it can be used on filter wheel data, where

the wavelength spacing is irregular and only a few wave-

lengths are typically measured.

There are many other preprocessing method used in

chemometrics such as wavelets, orthogonal signal correc-

tion, and extended MSC (EMSC) [3, 11]. In practice, com-

binations of different preprocessing can also be used. How-

ever, the threemethods discussed derivatives, SNV, andMSC

are still the most commonly used preprocessed methods in

the real-world applications.

Partial least squares (PLS) is an extension of PCAwhere

both the X and Y data are considered [12, 13]. In PCA, only

the X data is considered. The goal of the PLS analysis is to

build an equation that predicts Y values (laboratory data)

based onX (spectral) data. The PLS equation or calibration is

based on decomposing both the X and Y data into a set of

scores and loadings, similar to PCA. However, the scores for

both theX andY data are not selected based on the direction of

maximum variation but are selected in order to maximize the

correlation between the scores for both the X and Y variables.

As with PCA, in the PLS regression development the number

of components or factors is an important practical consid-

eration. A short description of the PLS algorithm is given

below, a more detailed discussion of the PLS algorithm can

be found elsewhere [12, 13]. Commercial software can used

to construct and optimize both PCA and PLS calibration

models.

FIGURE 33.9 Effects of SNV preprocessing on spectrum from Figure 33.7.

FIGURE 33.10 Effects of MSC preprocessing on spectrum from Figure 33.7. Note difference in

y-axis from Figure 33.9.
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PLS decomposition of both X and Y data into scores and

loadings is given in equation 33.15.

X ¼ TPT þE

Y ¼ UQT þ f
ð33:15Þ

The score matrices for X and Y, that is, T and U, are

calculated together. This self-consistent approach allows for

a set of scores and loadings that represent the variation in the

Y data set. Therefore, the scores and loadings are much better

than PCA scores and loadings for quantitative prediction.

The algorithm proceeds by mean centering the data and then

finding the first loading spectrum and first component scores.

The prediction of a PLS method is summarized in the

regression vector or coefficient, B. The predictions are

related to the x sample data by

y ¼ B � x ð33:16Þ
Wewill now consider an example of a PLS calibration using

NIR data. NIR transmission spectra from 155 tablets have

been measured [14]. The tablet calibration set included

samples with a range of assay values and lots of production

samples in order to capture the typical variations seen in the

tablets. After scanning with the NIR instrument, the amount

of active ingredient in each tablet was measured by HPLC.

The weight of the tablet was about 800mg and the

target value for the drug content was 200mg. We will use

chemometrics to develop a model for the amount of active.

This model could be used to monitor the stability of tablets

over time in a nondestructive manner. For brevity, we will

only outline the analysis procedure. Typical NIR transmis-

sion spectra for the pharmaceutical tablet are shown in

Figure 33.11. The broad, overlapping spectra with a consid-

erable background is typical of NIR spectra. Derivative

preprocessing can be used to remove the unnecessary back-

ground and elucidate the underlying peaks in the spectra.

A first derivative spectrum is shown in Figure 33.12.

A calibration curve showing the predictions of the PLS

model versus the laboratory data is shown in Figure 33.13.

The clear quality of the calibration curve is evident. The

calibration curve can be evaluated by several methods in-

cluding outlier detection and removal and optimization of the

spectral range used for PLS calibration. A detailed discussion

of these issues can be found in the references [12, 13].

Common examples of quantitative methods done with NIR

data and PLS regression are moisture, particle size, and

assay [7].

Method validation for NIR or Raman spectroscopic meth-

ods using chemometrics is outlined in United States Phar-

macopoeia (USP) Chapter h1119i [15]. The criteria for

method validation are the same as other quantitative analyt-

ical methods, such as accuracy, precision, intermediate

precision, linearity, specificity, and robustness. Since these

methods are statistical in nature and are based on a previously

FIGURE 33.11 NIR transmission spectrum of a pharmaceutical tablet.

FIGURE 33.12 Spectrum from Figure 33.11 after first-derivative preprocessing.
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validated analytical method, the validation of MVAmethods

is somewhat different than traditional analytical methods. In

this chapter, we will briefly discuss chemometric method

validation, a more detailed discussion can be found

elsewhere.

Accuracy of the MVA method refers to how closely the

MVA method and the original laboratory method compare.

The accuracy of a chemometric method is evaluated by

comparing the predictions of the MVAmodel with the actual

laboratory data for a set of validation samples. The validation

samples should be from lots of material not used in the

original calibration set. There are several mathematical ways

to express the accuracy. The most commonly used approach

is the standard error of prediction (SEP). The SEP is defined

in equation 33.14.

SEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ðNIR�LABÞ2

n

s
ð33:17Þ

where n is the number of validation samples. The SEP value

should be close to the actual error of the original laboratory

method. The actual error of the laboratory method should

include normal sources of variation such as different

analysts, different instruments, different materials analyzed

on different days.

The linearity of a multivariate method is an important

topic. Typically the linearity of a chromatographic method is

evaluated by the R2 (coefficient of determination) value of a

recoverymeasurement.R2 is the fraction of variation in the y-

variable explained by the linear fit; r is the correlation

coefficient that quantifies the correlation between the x and

y variables [16]. R2 is often used in the analysis of chroma-

tography recovery studies [16]. In contrast, R2 is not a good

statistical parameter for multivariate methods. The linearity

of a multivariate method is evaluated by the inspection of the

residual values, that is, the difference between the predictions

of the multivariate model and the actual laboratory data. A

linear model will have residuals that are random, that is,

normally distributed. A nonlinear model will have residuals

that are not normally distributed. The USP Chapter h1119i
states that the linearity should be evaluated by examination of

the residuals, but no specific threshold or criteria are given. In

the opinion of this author, visual inspection of the residuals

using a normality plot is recommended. In Figure 33.14, a

normality plot of residuals is shown. The data points in

Figure 33.14 do follow a straight line, indicating a normal

distribution of residuals, consistent with a linear model or

FIGURE 33.13 Calibration curve for PLS method for tablet assay value.

FIGURE 33.14 Normal probability plot for residuals. When the residuals fall on straight line, the

calibration under consideration is linear.
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calibration [13]. In some cases, the linearity of the model can

be improved by removing some of the points in the normality

graph, which are probable outliers.

Method specificity is the extent the multivariate calibra-

tion is specific to the analyte of interest. With a PLS cali-

bration, the specificity is documented by the regression

coefficient of the calibration. The regression coefficient

shows which wavelengths are most important for the PLS

calibration. Important wavelengths may have either positive

or negative regression coefficient values. Themost important

wavelengths should correspond to the absorption peaks of the

analyte of interest. For example, the regression coefficient for

a moisture model will have peaks at the known water

absorbance band locations. In practice, the regression coef-

ficient is often documented in the method development

report. A regression coefficient from the PLS calibration for

tablet assay described earlier in this chapter is shown in

Figure 33.15.

The range of a multivariate calibration method is deter-

mined by the range of laboratory values in the calibration and

validation data sets. A method is validated over the range of

laboratory values of the samples used in the independent

validation set. The range of the validation samples can also

depend upon the application of the method. For example, in-

process testing or testing where a limited number of samples

are available may require a fairly small range of values

because samples outside of a small range are not available

or do not exist.

This chapter has briefly summarized the essential princi-

ples of chemometrics and their application to spectral data.

There are many applications of chemometrics that have not

been discussed here due to space limitations. Two important

examples of this are chemical imaging and batchmonitoring.

Raman and NIR chemical imaging have been applied to

pharmaceutical products including tablets and drug-coated

stents [17]. Both Raman and NIR chemical imagingmethods

typically require chemometrics for the creation of useful

images. Batch monitoring involves the use of multivariate

control charts based on score plots developed from a col-

lection of good batches [18]. Batch monitoring can be used

with spectral or process data. Batchmonitoring has been used

to monitor a variety of complex pharmaceutical products

to improve yields and provide improved process understand-

ing [2]. In summary, chemometrics is a vital part of

process analytical technology, quality by design, and the

overall future of both pharmaceutical development and

manufacturing.
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