Section 6

Deformable Body Mechanics

6.1 Quick reference — mechanical notation
Principal symbols are used to represent mechanical engineering
terms. Symbols may have several different meanings — the
commonly used ones are shown below.

Table 6.1
Symbol Meaning
a Acceleration
Crack length
Strain hardening constant
Bore radius of cylinder
A Cross-sectional area
Creep constant
Ay Eutectoid temperature
b Rim radius of a cylinder
B A general constant
c Maximum distance from neutral axis
C A general constant
CE Carbon equivalent
CVN Charpy V-notch energy
d Diameter
Depth
e Misalignment radial
E Young’s modulus
f Force
Frequency
for Critical whirling speed
F Force
Fer Buckling load (Euler)
g Acceleration due to gravity
G Shear modulus
Ge Toughness (critical strain energy release rate)
Gic Toughness (plane)
h Height
Depth
HAZ Heat affected zone
HB Brinel hardness
HRC Rockwell C hardness
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Table 6.1 (Cont.)

Symbol

Meaning

HV
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Vickers hardness

Second moment of area
Second moment of area
(parallel axis theory)

Polar moment of area

Spring constant

Equivalent shear stress (Von Mises)
Bulk modulus

Fracture toughness

Stress intensity factor

Plane strain fracture toughness
K range in a fatigue cycle
Length

Mass

Exponent in crack growth or strain hardening
expression

Bending moment

Couple

Nominal strain

Number of fatigue cycles
Number of fatigue cycles to failure
Pressure

Critical pressure (external-pressure buckling)
Load

Creep activation energy
Radius

Radius of plastic crack-zone tip
Reaction force

Radius

Nominal stress

Stress concentration factor
Thickness

Time

Time to failure

Tension

Torque

Displacement

Velocity

Volume

Shear force

Uniformly distributed load
Weight

Width of a cracked component
Co-ordinate direction
Co-ordinate direction

Crack geometry factor
Distance from neutral axis
Co-ordinate direction
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6.2 Engineering structures — so where

are all the pin joints?
Much of engineering mechanics is based on the assumption that
parts of structures are connected by pinjoints. Similarly, members
are continually assumed to be ‘simply supported’ and structural
members pretend to be infinitely long, compared with their
section thickness. The question is: do such members really exist?

They are certainly not immediately apparent — look at a bridge or
steel tower and you will struggle to find a single joint containing a
pin. The structural members will be channels, I-beams, or box
sections surrounded by a clutter of plates, gussets, and flanges, not
simple beams of nice prismatic section. So where is the relevance of
all those clean theories of statics and vector mechanics?

Fortunately, the answer exists already, hidden in 200 years of
engineering experience. Calculations based on simple bending
theory, for example, have been validated against actual maxi-
mum stresses and deflections experienced in real structures and
proved sufficiently accurate (say £ 10%) to represent reality.
Once a factor of safety is introduced (see Section 7.5), then
the simplified calculations are as accurate as they need to be.
They are, to all intents and purposes, correct.

Simply supported assumptions work the same way.
The complicated-looking supports of a bridge deck do act like
simple supports when you consider the length of the beamlike
members they are supporting. Equally, the members themselves
dissipate stresses induced by constraint from the ‘real’ supports
within a short distance from the support, so they act like long
thin members, even though they may not be.

The design of engineering structures is built around findings
like this. They have been proven quantitatively, by using strain-
gauges and measuring deflections, and by advanced techniques
such as FE analysis and photo-elastic models. Complete struc-
tures, aeroplanes, ships, and buildings have been investigated
to demonstrate the validity of taught theories of statics and
mechanics. The results is that all these types of structures in
the world are designed using equations which are unerringly
similar — proof enough of the validity of the theories behind
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them. Try to improve theoretical techniques, by all means, but
don’t ignore what has been found already, including those
assumptions about pin joints and simply supported beams.

6.3 Simple stress and strain

load P
Stress, & = —— = — (units are N/m?)
area A
changeinlength )
Strain, e = M = | —aratio, therefore no units
original length I
tress
Hooke’sLaw : 5 re.ss = constant
strain
= Young’smodulus, E (units are N /m?)
C)
g Slope = E
i
‘Strair’ (e
Figure 6.1

. s . lateral strain
Poisson’sratio,y = ———————
longitudinal strain

8d/d

= ST (aratio, therefore no units)
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Figure 6.2
hear load
Shear stress, 7 = shearload _ Q (units are N /m?)
area A

Shear strain,y = angle of deformation under shear stress

hear st
Modulus of rigidity, G = Shearswess _ T

shearstrain ~ y

= Constant,G (unitsare N/m?)

Shear lpad Q .

Q — :

Figure 6.3

Thermal stress, o =2 Ee = Eat

where

a = linear coefficient
temperature change

~
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Figure 6.4
6.4 Simple elastic bending

Simple theory of elastic bending is:

= applied bending moment

= second moment about the neutral axis

= radius of curvature of neutral axis

= Young’s modulus

= stress due to bending at distance y from neutral axis
The second moment of area is defined, for any section, as

I = Jysz

Imx~g ~[X

I for common sections is calculated as follows in Fig. 6.5.
Section modulus Z is defined as

zZ==
y

Strain energy due to bending U is defined as

1
M?3ds
U= J 2El
0
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For uniform beams subject to constant bending moment this
reduces to

U M3l
2El
Rectangular sectian Circular section
b M
m:l
b=z
Ma b d A
B
[ ==
. 3
X X poo A
HA B“
Thick ube section Thin tube seclion
Iy
NA_ o A _
|
MNA
s = E{F]“ -rf)
N =R

HA™
1 abouwt another axs (X0 can be found using the parallel axis theorem:

HArea 4

A
Loy = ya + A r
]

Figure 6.5
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Figure 6.5 (cont.)

6.5 Slope and deflection of beams
Many engineering components can be modelled as simple
beams.

The relationships between load W, shear force SF, bending
moment M, slope, and deflection are

Deflection = §(or y)

dy
Slope = —
ope dx
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dzy
M =El
dx?
d3y
F=El—
dx3
d4y
W =El
dx*

Values for common beam configurations are shown in Fig 6.6.

Sae
Conditans of support Porig | Sewig | oo Deflection
and loating (maximum) | maximun) | W (maimuri
w W " w
L 30
wi® W M w
7 L BE
w W au n
T 2 I 8w
we? W BM 5w
] z L 3846
WL W Al w
T 2 L 1926
wi? W 12 we
17 z L FAE
L #
Z Z l-t-ﬂ.-ﬁh--‘ wm uw 164 W
P 16 16 kT 107E
L —16—lgt
% W .3?5L-1
g ' w 5W M W
3 } ) L 1876
p=dw 11
T =l :

Figure 6.6
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6.6 Torsion
For solid or hollow shafts of uniform cross-section, the torsion
formula is

Go

T

~I~
x|

= torque applied (N m)

= polar second moment of area (m*
= shear stress (N/mz)

= radius (m)

= modulus of rigidity (N/m?)

= angle of twist (rad)

QRSN

Complementary shear

Applied torque T

Figure 6.7
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E e J=L(z8+ 0t}

J=}(B1 + i3+ OF)
EL

f, = liet+ o)

] J=$(28t,+ D)
J

P—HIL:
TI

J=F(281,+D1;)

Lﬂ

I
_I_i !
=

The polar sseond motion of area (J) m* is a measure of the stitness of a mamber in pure twisting

Figure 6.8 Torsion Formulae
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For solid shafts
J_ nD*
32
For hollow shafts
D*—d*
| _ni—d')
32
For thin-walled hollow shafts
J = D%
where
r = mean radius of shaft wall
t = wall thickness
Strain energy in torsion

2 2
U:LIZGJB
2GJ 2/

Shaft under combined bending moment, M, and torque,
T, from bending

MD
o=—
2/
from torsion
D
T=—
2J

This results in an ‘equivalent’ bending moment (M,) of

1
M, = 5(\/ M?+4T?)

A similar approach can be used to give an equivalent
torque T,

T, = V/M2+T?2
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6.7 Thin cylinders
Most pressure vessels have a diameter:wall thickness ratio of
>20 and can be modelled using thin cylinder assumptions. The
basic equations form the basis of all pressure vessel codes and
standards.

Basic equations are
d

Circumferential(hoop)stress, oy = pz—t

1
Hoop strain, ey = z (op—voy)
o . pd
Longitudinal(axial )stress, o, = —

4t

1
Longitudinal strain, ey, = E(O'L—VO'H)

Figure 6.9



146 Engineers’ Data Book

6.8 Cylindrical vessels with hemispherical

ends
&y
|
1 1
& d | B
P
I I

Figure 6.10

For the cylinder

pd d pd

oyc =— and o c = —

HC =5 I e =35 i
Hoop strain

— L )
EHC =E OHC—VOLC

For the hemispherical ends

pd P
=— and =—(1-
Oys 4[5 and eys 4[SE ( V)

The differences in strain produce discontinuity stress at a
vessel head/shell joint.
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6.9 Thick cylinders

o (lensila)

_— Stress distributions

o [comprassiva)

a=p

Figure 6.11

Components such as hydraulic rams and boiler headers are
designed using thick cylinder assumptions. Hoop and radial
stresses vary through the walls, giving rise to the Lamé
equations.

B B
(J':A—i——2 ando'r:A——2
Iz r

where A and B are ‘Lamé’ constants

E E E
oL, VO VO
& = —F (= —(—
E E E

Lamé constant (A) is given by

4 PIRPaRS
RR

P, = internal pressure
P, = external pressure
R; = internal radius
R, = external radius
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6.10 Buckling of struts

Long and slender members in compression are termed struts.
They fail by buckling before reaching their true compressive
yield strength. Buckling loads W}, depend on the loading case.

W W
l lF'inan;’Tled
Finned ends ends
45
: 22l £l
: o EE T
L Bt
I
i
I
W
/;’f’f'li.-".-".-"." Fixed ends Fixed/Tree ends
i I
I
) |_ fl 4x?E : i =28
== = =2L =
CE ! o
= | 1
I I
£ i /! £ r v
Figure 6.12

The equivalent length, I, of the strut is the length of a single
‘bow’ in the deflected condition.
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6.11 Flat circular plates

Many parts of engineering assemblies can be analysed by
approximating them to flat circular plates or annular rings. The
general equation governing slopes and deflections is

d1d/d)|_Ww
dr|rdr\'dr)| D

where
EP
D—_— "
12(1-v?)
¥ = maximum deflection
2 slope
dr
W = applied load
t = thickness

D = flexural stiffness

E = Young’s modulus

0, = maximum radial stress

6. = maximum tangential stress
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6.12 Stress concentration factors

The effective stress in a component can be raised well above its
expected levels owing to the existence of geometrical features
causing stress concentrations under dynamic elastic conditions.
Typical factors are as shown in 6.14.

Haole in plate under
uni-axial stress

«  Cancentration factor, Fad

Hale in plate under
bi-axial stress

& Fa25
T
Maotch in rectangular section
undear banding
M ( )M F=4-7, depending on sharpness tha nolch
Y
o 00S 015 02 03
Fillet radius in shaft e
Ll r N
tndar bending o 10 | 18 15 14 13
et 15 22 16 14 13
3 o 1, 1.4
M(_ - }M_ ap | 28 5
Approximate value of stress concentration
factar, F

Figure 6.14
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The maximum stress is at the edge of the hole

Hole in plate under uni-axial
siress

- 12Mr
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Hole m plate under inplane
Bending

F=Fr nomingl
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o1~ telel] 11 = (e [2 - - el ]

E} Fa3-313 /e + 366 el? - 1.53 (7

Offcentre hoke in plate under
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& = Fa yoming

Tromingl 110 - 28)

Frf ok, (%)4 (—"] 4F_‘|:ZE}

Elliptical hole in plate undar
uni-axial slress for 0.5 = — - <10

Fats .2

- @ _ 2.483a
Fyx-0351-0021 [T 248
Fy=-3621-5163 (T , 44342

Fyx-227+5.2 f1-42

Figure 6.15 Approximate stress concentration factors
(Elastic Stresses)
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F = stress concentration factor for Vonotch

Faf, -[DDZ . 014(135) ][Fu-1_|Fu

where FLr = stress concentration factor far
LUkneteh in torsion

<001 and g = 1357

faar

r
0-2h

enotch in circular shaft under
torsion

’\\* Fu = strass concentration for Lkactch
] b 2H 2K 2N
- - —* [ aF +F, +F. +F,
(TH, Bz ronenf@ny a0
I 5 . forO.EE.stz

F, =046+ 335 .’E- ot
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- .10
Fy=-69+203 [0 , 16
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torsion Fa=-3+ 5'3‘«’_ T

F=12-113fF, 33”

" £ 57
B 4.4+?.r5ﬂl'f !

7 = Fay

ERANNALRIAC
for02s slamd03s gﬂ

r , 8150
F1=H.B—15.E_‘|E+ —_—
T, 9.6r
F2=-11.2-9?JE+ -

Rectangular hole with round
corners in “infinite” plate dnder F=0.2+ 33-5JE = 2%
unizxial siress . 5

r.,15
F=32-23 )5+

Figure 6.15 (Cont.)
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Figure 6.15 (Cont.)



