
Section 6

Deformable Body Mechanics

6.1 Quick reference – mechanical notation
Principal symbols are used to represent mechanical engineering

terms. Symbols may have several different meanings – the

commonly used ones are shown below.

Table 6.1

Symbol Meaning

a Acceleration
Crack length
Strain hardening constant
Bore radius of cylinder

A Cross-sectional area
Creep constant

A1 Eutectoid temperature
b Rim radius of a cylinder
B A general constant
c Maximum distance from neutral axis
C A general constant
CE Carbon equivalent
CVN Charpy V-notch energy
d Diameter

Depth
e Misalignment radial
E Young’s modulus
f Force

Frequency
fcr Critical whirling speed
F Force
Fcr Buckling load (Euler)
g Acceleration due to gravity
G Shear modulus
Gc Toughness (critical strain energy release rate)
G1c Toughness (plane)
h Height

Depth
HAZ Heat affected zone
HB Brinel hardness
HRC Rockwell C hardness
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Table 6.1 (Cont.)

Symbol Meaning

HV Vickers hardness
l Second moment of area
lx Second moment of area

(parallel axis theory)
J Polar moment of area
k Spring constant
ke Equivalent shear stress (Von Mises)
K Bulk modulus
Kc Fracture toughness
Kl Stress intensity factor
K1c Plane strain fracture toughness
DK K range in a fatigue cycle
l Length
m Mass

Exponent in crack growth or strain hardening
expression

M Bending moment
Couple

n Nominal strain
N Number of fatigue cycles
Nf Number of fatigue cycles to failure
p Pressure
pcr Critical pressure (external-pressure buckling)
P Load
Q Creep activation energy
r Radius
ry Radius of plastic crack-zone tip
R Reaction force

Radius
s Nominal stress
SCF Stress concentration factor
t Thickness

Time
tf Time to failure
T Tension

Torque
u Displacement
v Velocity
V Volume

Shear force
w Uniformly distributed load
W Weight

Width of a cracked component
x Co-ordinate direction
y Co-ordinate direction
Y Crack geometry factor
z Distance from neutral axis

Co-ordinate direction

134 Engineers’ Data Book



6.2 Engineering structures – so where
are all the pin joints?

Much of engineering mechanics is based on the assumption that

partsof structuresareconnectedbypin joints.Similarly,members

are continually assumed to be ‘simply supported’ and structural

members pretend to be infinitely long, compared with their

section thickness. The question is: do suchmembers really exist?

They are certainly not immediately apparent – look at a bridge or

steel tower and you will struggle to find a single joint containing a

pin. The structural members will be channels, I-beams, or box

sections surrounded by a clutter of plates, gussets, and flanges, not

simple beamsofnice prismatic section. Sowhere is the relevanceof

all those clean theories of statics and vector mechanics?

Fortunately, the answer exists already, hidden in 200 years of

engineering experience. Calculations based on simple bending

theory, for example, have been validated against actual maxi-

mum stresses and deflections experienced in real structures and

proved sufficiently accurate (say � 10%) to represent reality.

Once a factor of safety is introduced (see Section 7.5), then

the simplified calculations are as accurate as they need to be.

They are, to all intents and purposes, correct.

Simply supported assumptions work the same way.

The complicated-looking supports of a bridge deck do act like

simple supports when you consider the length of the beamlike

members they are supporting. Equally, the members themselves

dissipate stresses induced by constraint from the ‘real’ supports

within a short distance from the support, so they act like long

thin members, even though they may not be.

The design of engineering structures is built around findings

like this. They have been proven quantitatively, by using strain-

gauges and measuring deflections, and by advanced techniques

such as FE analysis and photo-elastic models. Complete struc-

tures, aeroplanes, ships, and buildings have been investigated

to demonstrate the validity of taught theories of statics and

mechanics. The results is that all these types of structures in

the world are designed using equations which are unerringly

similar – proof enough of the validity of the theories behind
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them. Try to improve theoretical techniques, by all means, but

don’t ignore what has been found already, including those

assumptions about pin joints and simply supported beams.

6.3 Simple stress and strain

Stress; s ¼ load

area
¼ P

A
ðunits are N=m2Þ

Strain;«¼ change in length

original length
¼ dl

l
a ratio; therefore no units

� �

Hooke’sLaw :
stress

strain
¼ constant

¼ Young’smodulus; E ðunits areN=m2Þ

Figure 6.1

Poisson’s ratio;n¼ lateral strain

longitudinal strain

¼ dd=d

dl=l
a ratio; therefore no unitsð Þ
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Shear stress;t¼ shear load

area
¼ Q

A
ðunits areN=m2Þ

Shear strain;g¼ angle of deformation under shear stress

Modulusof rigidity;G ¼ shear stress

shear strain
¼ t

y

¼ Constant;G ðunits areN=m2Þ

Thermal stress, st ffi E« ¼ Eat

where

a ¼ linear coefficient

t ¼ temperature change

Figure 6.2

Figure 6.3
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6.4 Simple elastic bending
Simple theory of elastic bending is:

M

I
¼ s

y
¼ E

R

M ¼ applied bending moment

I ¼ second moment about the neutral axis

R ¼ radius of curvature of neutral axis

E ¼ Young’s modulus

s ¼ stress due to bending at distance y from neutral axis

The second moment of area is defined, for any section, as

I ¼
ð
y2dA

I for common sections is calculated as follows in Fig. 6.5.

Section modulus Z is defined as

Z ¼ l

y

Strain energy due to bending U is defined as

U ¼
ðl

0

M2ds

2El

Figure 6.4
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For uniform beams subject to constant bending moment this

reduces to

U ¼ M2l

2El

Figure 6.5
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6.5 Slope and deflection of beams
Many engineering components can be modelled as simple

beams.

The relationships between load W, shear force SF, bending

moment M, slope, and deflection are

Deflection ¼ dðor yÞ
Slope ¼ dy

dx

Figure 6.5 (cont.)
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M ¼ El
d2y

dx2

F ¼ El
d3y

dx3

W ¼ El
d4y

dx4

Values for common beam configurations are shown in Fig 6.6.

Figure 6.6
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6.6 Torsion
For solid or hollow shafts of uniform cross-section, the torsion

formula is

T

J
¼ t

R
¼ Gu

l

T ¼ torque applied (N m)

J ¼ polar second moment of area (m4)

t ¼ shear stress (N/m2)

R ¼ radius (m)

G ¼ modulus of rigidity (N/m2)

u ¼ angle of twist (rad)

Figure 6.7
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Figure 6.8 Torsion Formulae
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For solid shafts

J ¼ pD4

32

For hollow shafts

J ¼ pðD4�d4Þ
32

For thin-walled hollow shafts

J ffi pD3t

where

r ¼ mean radius of shaft wall

t ¼ wall thickness

Strain energy in torsion

U ¼ T2l

2GJ
¼ GJ u2

2l

Shaft under combined bending moment, M, and torque,

T, from bending

s ¼ MD

2l

from torsion

t ¼ TD

2J

This results in an ‘equivalent’ bending moment (Me) of

Me ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þT2

p
Þ

A similar approach can be used to give an equivalent

torque Te

Te ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þT2

p
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6.7 Thin cylinders
Most pressure vessels have a diameter:wall thickness ratio of

>20 and can be modelled using thin cylinder assumptions. The

basic equations form the basis of all pressure vessel codes and

standards.

Basic equations are

CircumferentialðhoopÞstress;sH ¼ pd

2t

Hoop strain; «H ¼ 1

E
ðsH�vsLÞ

LongitudinalðaxialÞstress;sL ¼ pd

4t

Longitudinal strain; «L ¼ 1

E
ðsL�vsHÞ

Figure 6.9
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6.8 Cylindrical vessels with hemispherical
ends

For the cylinder

sHC ¼ pd

2tc
and sLC ¼ pd

2tc

Hoop strain

«HC ¼ 1

E
ðsHC�vsLCÞ

For the hemispherical ends

sHS ¼ pd

4ts
and «HS ¼ pd

4tsE
ð1�vÞ

The differences in strain produce discontinuity stress at a

vessel head/shell joint.

Figure 6.10
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6.9 Thick cylinders

Components such as hydraulic rams and boiler headers are

designed using thick cylinder assumptions. Hoop and radial

stresses vary through the walls, giving rise to the Lam�e
equations.

s ¼ Aþ B

r2
and sr ¼ A� B

r2

where A and B are ‘Lam�e’ constants

«H ¼ sH

E
� vsr

E
� vsL

E

«L ¼ sL

E
� vsr

E
� vsH

E

Lam�e constant (A) is given by

A ¼ P1R
2
1�P2R

2
2

R2
2�R2

1

P1¼ internal pressure

P2¼ external pressure

R1¼ internal radius

R2¼ external radius

Figure 6.11
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6.10 Buckling of struts
Long and slender members in compression are termed struts.

They fail by buckling before reaching their true compressive

yield strength. Buckling loads Wb depend on the loading case.

The equivalent length, l, of the strut is the length of a single

‘bow’ in the deflected condition.

Figure 6.12
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6.11 Flat circular plates
Many parts of engineering assemblies can be analysed by

approximating them to flat circular plates or annular rings. The

general equation governing slopes and deflections is

d

dr

1

r

d

dr
r
dy

dr

� �� �
¼ W

D

where

D ¼ Et3

12ð1�v2Þ

ŷ ¼ maximum deflection

dy

dr
¼ slope

W ¼ applied load

t ¼ thickness

D ¼ flexural stiffness

E ¼ Young’s modulus

ŝr ¼ maximum radial stress

ŝz ¼ maximum tangential stress
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Figure 6.13
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6.12 Stress concentration factors
The effective stress in a component can be raised well above its

expected levels owing to the existence of geometrical features

causing stress concentrations under dynamic elastic conditions.

Typical factors are as shown in 6.14.

Figure 6.14
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Figure 6.15 Approximate stress concentration factors

(Elastic Stresses)
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Figure 6.15 (Cont.)
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Figure 6.15 (Cont.)
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