
Section 2

Units

2.1 The Greek alphabet
The Greek alphabet is used extensively to denote engineering

quantities. Each letter can have various meanings, depending on

the context in which it is used.

Table 2.1 The Greek alphabet

Name Symbol Used for

Capital Lower case

alpha A a Angles, angular acceleration
beta B b Angles, coefficients
gamma G g Shear strain, kinematic viscosity
delta D d Differences, damping coefficient
epsilon E e Linear strain
zeta Z z
eta H h Dynamic viscosity, efficiency
theta Q u Angles, temperature
iota I i
kappa K k Compressibility (fluids)
lambda L l Wavelength, thermal

conductivity
mu M m Coefficient of friction, dynamic

viscosity, Poisson’s ratio
nu N n Kinematic viscosity
xi X j
omicron O o
pi P p Mathematical constant
rho R r Density
sigma S s Normal stress, standard

deviation, sum of
tau T t Shear stress
upsilon ¡ y
phi F w Angles, heat flowrate, potential

energy
chi x x
psi Y c Helix angle (gears)
omega W v Angular velocity, solid angle
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2.2 Units systems
Unfortunately, the world of mechanical engineering has not

yet achieved uniformity in the system of units it uses. The

oldest system is that of British Imperial units – still used in

many parts of the world, including the USA. The CGS (or

MKS) system is a metric system, still used in some European

countries, but is gradually being superseded by the Systeme

International (SI) system. Whilst the SI system is understood

(more or less) universally, you will still encounter units from

the others.

2.2.1 The SI system
The strength of the SI system is its coherence. There are four

mechanical and two electrical base units, from which all other

quantities are derived. The mechanical ones are:

Length: metre (m)

Mass: kilogram (kg)

Time: second (s)

Temperature: Kelvin (K)

Remember, other units are derived from these; e.g. the Newton

(N) is defined as N¼ kg m/s2.

2.2.2 SI prefixes
As a rule, prefixes are applied to the basic SI unit, except for

weight, where the prefix is used with the unit gram (g), not the

basic SI unit kilogram (kg). Prefixes are not used for units of

angular measurement (degrees, radians), time (seconds), or

temperature (�C or K).

Prefixes should be chosen in such a way that the numerical

value of a unit lies between 0.1 and 1000.

For example 28 kN rather than 2.8� 104N

1.25mm rather than 0.00125m

9.3 kPa rather than 9300 Pa
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2.2.3 Conversions
Units often need to be converted. The least confusing way to do

this is by expressing equality:

For example: to convert 600mm H2O to Pascals (Pa)

Using 1mm H2O¼ 9.80665 Pa

Add denominators as

1 mmH2O

600 mmH2O
¼ 9:80665 Pa

xPa

Solve for x

x Pa ¼ 600� 9:80665

1
¼ 5883:99 Pa

Hence 600mm H2O¼ 5883.99 Pa

Setting out calculations in this way can help avoid confusion,

particularly when they involve large numbers and/or several

sequential stages of conversion.

Table 2.2 SI prefixes

Multiplication factor Prefix Symbol

1 000 000 000 000 000 000 000 000 ¼ 1024 yotta Y
1 000 000 000 000 000 000 000 ¼ 1021 zetta Z

1 000 000 000 000 000 000 ¼ 1018 exa E
1 000 000 000 000 000 ¼ 1015 peta P

1 000 000 000 000 ¼ 1012 tera T
1 000 000 000 ¼ 109 giga G

1 000 000 ¼ 106 mega M
1 000 ¼ 103 kilo k
100 ¼ 102 hecto h
10 ¼ 101 deka da
0.1 ¼ 10�1 deci d

0.01 ¼ 10�2 centi c
0.001 ¼ 10�3 milli m

0.000 001 ¼ 10�6 micro m
0.000 000 001 ¼ 10�9 nano n

0.000 000 000 001 ¼ 10�12 pico p
0.000 000 000 000 001 ¼ 10�15 femto f

0.000 000 000 000 000 001 ¼ 10�18 atto a
0.000 000 000 000 000 000 001 ¼ 10�21 zepto z

0.000 000 000 000 000 000 000 001 ¼ 10�24 yocto y
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2.3 Units and conversions
2.3.1 Force
The SI unit is the Newton (N) – it is a derived unit.

Note: Strictly, all the units in the table except the Newton (N)

representweightequivalentsofmass,andsodependong.The true

SI unit of force is theNewton (N)which is equivalent to1 kgm/s2.

2.3.2 Weight
The true weight of a body is a measure of the gravitational

attraction of the earth on it. Since this attraction is a force, the

weight of a body is correctly expressed in Newtons (N).

Mass is measured in kilogram (kg)

Force (N)¼mass (kg)� g (m/s2)

1 kg¼ 2.20462 lbf

1000 kg¼ 1 tonne (metric)¼ 0.9842 tons (imperial)

1 ton (US)¼ 2000 lb¼ 907.185 kg

Table 2.3 Force (F)

Unit N lb gf kgf

1 Newton (N) 1 0.2248 102.0 0.1020

1 pound (lb) 4.448 1 453.6 0.4536

1gram-force (gf) 9.807�10�3 2.205� 10�3 1 0.001

1 kilogram-force (kgf) 9.807 2.205 1000 1

1 kg

9.81 N

Figure 2.1
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2.3.3 Pressure
The SI unit is the Pascal (Pa).

1 Pa¼ 1N/m2

1 Pa¼ 1.45038� 10�4 lbf/in2 (i.e. psi)

In practice, pressures are measured in MPa, bar, atmospheres,

torr or the height of a liquid column, depending on the

application.

Table 2.4 Density (r)

Unit kg/m3 g/cm3 lb/ft3 lb/in3

1 kg per m3 1 0.001 6.243� 10�2 3.613�10�5

1g per cm3 1000 1 62.43 3613� 10�2

1 lb per ft3 16.02 1.602� 10�2 1 5.787�10�4

1 lb per in3 2.768�104 27.68 1728 1
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Figure 2.3

Table 2.5 Pressure (P )

Unit Atm in H2O cm Hg N/m2(Pa) lb/in2(psi)a lb/ft2

1 atmosphere

(atm)

1 406.8 76 1.013�105 14.70 2116

1 in of water at

4�C
2.458� 10�3 1 0.1868 249.1 3.613�10�2 5.02

1 cm of mercury

at 0�C
1.316� 10�2 5.353 1 1333 0.1934 27.85

1N per m2 9.869� 10�6 4.015� 10�3 7.501�10�4 1 1.450�10�4 2.089� 10�2

1 lb per in2 (psi) 6.805� 10�2 27.68 5.171 6.895�103 1 144

1 lb per ft2 4.725� 10�4 0.1922 3.591�10�2 47.88 6.944�10�3 1

aWhere g¼ 9.80665m/s2.

bNote that the United States unit ksi (‘kip’ per square inch) may be used. 1 ksi¼ 1000 psi,

not 1 kg/square inch.
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And for liquid columns:

1mm Hg¼ 13.59mm H2O¼ 133.3224 Pa¼ 1.333224mbar

1mm H2O¼ 9.80665 Pa

1 torr¼ 133.3224 Pa

For conversion of liquid column pressures; 1 in¼ 25.4mm.

2.3.4 Temperature
The SI unit is degrees Kelvin (K). The most commonly used unit

is degrees Celsius (�C).
Absolute zero is defined as 0K or �273.15 �C, the point at

which a perfect gas has zero volume.

The imperial unit of temperature is degrees Fahrenheit (�F).
�C¼ 5/9 (

�F�32)
�F¼ 9/5 (

�C)þ 32

Figure 2.4
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Figure 2.5
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2.3.5 Heat energy
The SI unit for heat energy (in fact all forms of energy) is the

Joule (J).

Specific energy is measured in Joules per kilogram (J/kg).

1 J/kg¼ 0.429923� 10�3 Btu/lb

Specific heat capacity is measured in Joules per kilogramKelvin

(J/kg K).

1 J/kg K¼ 0.238846� 10�3 Btu/lb �F
1 kcal/kg K¼ 4186.8 J/kg K

Heat flowrate is also defined as power, with the SI unit of

Watts (W).

1W¼ 3.41214Btu/h¼ 0.238846 cal/s

2.3.6 Power
The Watt is a small quantity of power, so kW is normally used.

Table 2.7 Power (P )

Unit Btu/h Btu/s ft-lb/s hp cal/s kW W

1 Btu/h 1 2.778� 10�4 0.2161 3.929� 10�4 7.000� 10�2 2.930�10�4 0.2930

1 Btu/s 3600 1 777.9 1.414 252.0 1.055 1.055� 10�3

1 ft-lb/s 4.628 1.286� 10�3 1 1.818� 10�3 0.3239 1.356�10�3 1.356

1 hp 2545 0.7069 550 1 178.2 0.7457 745.7

1 cal/s 14.29 0.3950 3.087 5.613� 10�3 1 4.186�10�3 4.186

1 kW 3413 0.9481 737.6 1.341 238.9 1 1000

1W 3.413 9.481�10�4 0.7376 1.341�10�3 0.2389 0.001 1

Table 2.6 Heat energy

Unit J Btu ft lb hph Cal kWh

1 Joule (J) 1 9.481�10�4 0.7376 3.725� 10�7 0.2389 2.778� 10�7

1 British thermal

unit (Btu)

1055 1 777.9 3.929� 10�4 252 2.93� 10�4

1 foot-pound (ft lb) 1.356 1.285� 10�3 1 5.051�10�7 0.3239 3.766� 10�7

1 horsepower-hour

(hph)

2.685�106 2545 1.98�106 1 6.414�105 0 7457

1 calorie (cal) 4.187 3.968� 10�3 3.087 1.559� 10�6 1 1.163� 10�6

1 kilowatt hour

(kWh)

3.6� 106 3413 2.655� 106 1.341 8.601�105 1
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Figure 2.6

Figure 2.7 Comparative power outputs
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2.3.7 Flow
The SI unit of volume flowrate is m3/s.

1m3/s¼ 219.969 UK gall/s¼ 1000 litres/s

1m3/h¼ 2.77778� 10�4m3/s

1UK gall/min¼ 7.57682� 10�5m3/s

1UK gall¼ 4.546 litres

The SI unit of mass flowrate is kg/s.

1 kg/s¼ 2.20462 lb/s¼ 3.54314 ton (imp)/h

1 US gall¼ 3.785 litres

2.3.8 Torque
The SI unit of torque is the Newton metre (N.m). You may also

see this referred to as ‘moment of force’.

Figure 2.8

Figure 2.9

1N.m¼ 0.737 lbf ft (i.e. ‘foot pounds’)

1 kgfm¼ 9.81N.m
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2.3.9 Stress
Stress is measured in Pascals – the same SI unit used for

pressure, although it is a different physical quantity. 1 Pa is an

impractical small unit so MPa is normally used.

1MPa¼ 1MN/m2¼ 1N/mm2

1 kgf/mm2¼ 9.80665MPa

2.3.10 Linear velocity (speed)
The SI unit is metres per second (m/s).

2.3.11 Acceleration
The SI unit of acceleration is metres per second squared (m/s2).

1m/s2¼ 3.28084 ft/s2

Standard gravity (g) is normally taken as 9.81m/s2.

Figure 2.10

Table 2.8 Velocity (v)

Unit ft/s km/h m/s mile/h cm/s

1 ft per s 1 1.097 0.3048 0.6818 30.48
1 km per h 0.9113 1 0.2778 0.6214 27.78
1m per s 3.281 3.600 1 2.237 100
1mile per h 1.467 1.609 0.4470 1 44.70
1 cm per s 3.281�10�2 3.600� 10�2 0.0100 2.237�10�2 1
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2.3.12 Angular velocity
The SI unit is radians per second (rad/s).

1 rad/s¼ 0.159155 rev/s¼ 57.2958 degree/s

The radian is the SI unit used for plane angles.

A complete circle is 2p radians

A quarter-circle (90�)is p/2 or 1.57 radians

1 degree¼ p/180 radians

2.3.13 Volume and capacity
The SI unit is cubic metres (m3), but many imperial units are still

in use.

1m3¼ 35.3147 ft3¼ 61 023.7 in3

2.3.14 Area
The SI unit is square metres (m2) but many imperial units are

still in use.

Figure 2.11

Table 2.9 Area (A)

Unit sq in Sq ft Sq yd sq mile cm2 dm2 m2 A ha km2

1 square
inch

1 – – – 6.452 0.06452 – – – –

1 square
foot

144 1 0.1111 – 929 9.29 0.0929 – – –

1 square
yard

1296 9 1 – 8361 83.61 0.8361 – – –

1 square
mile

– – – 1 – – – – 259 2.59

1cm2 0.155 – – – 1 0.01 – – – –
1dm2 15.5 0.1076 0.01196 – 100 1 0.01 – – –
1m2 1550 10.76 1.196 – 10000 100 1 0.01 – –
1a – 1076 119.6 – – 10000 100 1 0.01 –
1ha – – – – – – 10000 100 1 0.01
1km2 – – – 0.3861 – – – 10000 100 1
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Other metric units of area:

Japan: 1 tsubo ¼ 3.306m2

1 se ¼ 0.9917 a

1 ho-ri ¼ 15.42 km2

Russia: 1 kwadr. archin ¼ 0.5058m2

1 kwadr. saschen ¼ 4.5522m2

1 dessjatine ¼ 1.0925 ha

1 kwadr. werst ¼ 1.138 km2

Figure 2.13

Figure 2.12 Making sense of microns (m)
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2.3.15 Viscosity
Dynamic viscosity (m) is measured in the SI system in Pascal

seconds (Pa s).

1 Pa s¼ 1N s/m2¼ 1 kg/m s

A common unit from another units system is the centipoise (cP),

or standard imperial units may be used:

Kinematic viscosity (n) is a function of dynamic viscosity.

Kinematic viscosity¼ dynamic viscosity/density, i.e. n¼m/r The

SI unit is m2/s. Other imperial and CGS units are also used.

1m2/s¼ 10.7639 ft2/s¼ 5.58001� 106 in2/h

1 Stoke (St)¼ 100 centistokes (cSt)¼ 10�4m2/s

2.4 Consistency of units
Within any system of units, the consistency of units forms a

‘quick check’ of the validity of equations. The units must match

on both sides.

Example:

To check kinematic viscosity (n)¼ dynamic viscosityðmÞ
density ðrÞ

m2

s
¼ Ns

m2
�m3

kg

Replacing N with kgm/s2

m2

s
¼ kgm s

s2m2
�m3

kg

Table 2.10 Dynamic viscosity (m)

Unit Centipoise poise kgf-s/m2 lb-s/ft2 kg/m-s lbm/ft-s

1 centipoise 1 10�2 1.020� 10�4 2.089� 10�5 10�3 6.720� 10�4

1 poise 100 1 1.020� 10�2 2.089� 10�3 0.100 6.720� 10�2

1N-s per m2 9.807� 103 98.07 1 0.2048 9.807 6.590

1 lb (force)-s per ft2 4.788� 104 4.788� 102 4.882 1 47.88 32 174

1 kg per m-s 103 10 0.1020 2.089� 10�2 1 0.6720

1 lb (mass) per ft-s 1.488� 103 14.88 0.1518 3.108� 10�2 1.488 1
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Cancelling gives

m2

s
¼ m4s

s2m2
¼ m2

s

OK, units match.

2.4.1 Foolproof conversions: using unity brackets
When converting between units it is easy to make mistakes by

dividing by a conversion factor instead of multiplying, or vice

versa. The best way to avoid this is by using the technique of

unity brackets.

A unity bracket is a term consisting of a numerator and

denominator in different units which has a value of unity.

e:g:
2:205 lbs

kg

2
4

3
5or kg

2:205 lbs

2
4

3
5 are unity brackets

as are
25:4 mm

in

2
4

3
5or in

25:4 mm

2
4

3
5or Atmosphere

10 1 325 Pa

2
4

3
5

Remember that as the value of the bracket is unity it has no

effect on any term that multiplies.

Example: Convert the density of steel r¼ 0.29 lb/in3 to

kg/m3

Step 1: State the initial value: r ¼ 0:29 lb

in3

Step 2: Apply the ‘weight’ unity bracket:

r ¼ 0:29 lb

in3
kg

2:205 lb

� �

Step 3: Then apply the ‘dimension’ unity brackets (cubed):

r ¼ 0:29 lb

in3
kg

2:205 lb

� �
in

25:4 mm

� �3
1000 mm

m

� �3
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Step 4: Expand* and cancel:

r ¼ 0:29 6lb

6in3
kg

2:205 6lb

2
4

3
5 6in3

ð25:4Þ3 6mm3

2
4

3
5 ð100Þ3 6mm3

m3

2
4

3
5

r ¼ 0:29 kgð1000Þ3
2:205ð25:4Þ3m3

r ¼ 8025:8 kg=m3 : Answer

* Take care to use the correct algebraic rules for the expansion.

For example:

ða:bÞN ¼ aN :bN not a:bN

So; for example;

�
1000 mm

m

�3

expands to
ð1000Þ3:ðmmÞ3

ðmÞ3

Unity brackets can be used for all unit conversions provided you

follow the rules for algebra correctly.

2.4.2 Imperial-metric conversions

Table 2.11 Imperial–metric conversions

Fraction (in) Decimal (in) Millimetre (mm)

1/64 0.01562 0.39687
1/32 0.03125 0.79375
3/64 0.04687 1.19062
1/16 0.06250 1.58750
5/64 0.07812 1.98437
3/32 0.09375 2.38125
7/64 0.10937 2.77812
1/8 0.12500 3.17500
9/64 0.14062 3.57187
5/32 0.15625 3.96875
11/64 0.17187 4.36562
3/16 0.18750 4.76250
13/64 0.20312 5.15937
7/32 0.21875 5.55625
15/64 0.23437 5.95312
1/4 0.25000 6.35000
17/64 0.26562 6.74687
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Table 2.11 (Cont.)

Fraction (in) Decimal (in) Millimetre (mm)

9/32 0.28125 7.14375
19/64 0.29687 5.54062
15/16 0.31250 7.93750
21/64 0.32812 8.33437
11/32 0.34375 8.73125
23/64 0.35937 9.12812
3/8 0.37500 9.52500
25/64 0.39062 9.92187
13/32 0.40625 10.31875
27/64 0.42187 10.71562
7/16 0.43750 11.11250
29/64 0.45312 11.50937
15/32 0.46875 11.90625
31/64 0.48437 12.30312
1/2 0.50000 12.70000
33/64 0.51562 13.09687
17/32 0.53125 13.49375
35/64 0.54687 13.89062
9/16 0.56250 14.28750
37/64 0.57812 14.68437
19/32 0.59375 15.08125
39/64 0.60937 15.47812
5/8 0.62500 15.87500
41/64 0.64062 16.27187
21/32 0.65625 16.66875
43/64 0.67187 17.06562
11/16 0.68750 17.46250
45/64 0.70312 17.85937
23/32 0.71875 18.25625
47/64 0.73437 18.65312
3/4 0.75000 19.05000
49/64 0.76562 19.44687
25/32 0.78125 19.84375
51/64 0.79687 20.24062
13/16 0.81250 20.63750
53/64 0.82812 21.03437
27/32 0.84375 21.43125
55/64 0.85937 21.82812
7/8 0.87500 22.22500
57/64 0.89062 22.62187
29/32 0.90625 23.01875
59/64 0.92187 23.41562
15/16 0.93750 23.81250
61/64 0.95312 24.20937
31/12 0.96875 24.60625
63/64 0.98437 25.00312
1 1.00000 25.40000

Units 35



2.5 Dimensional analysis
2.5.1 Dimensional analysis (DA) – what is it?
DA is a technique based on the idea that one physical quantity is

related to others in a precise mathematical way.

2.5.2 What is it used for?
It is used for:

. Checking the validity of equations;

. Finding the arrangement of variables in a formula;

. Helping to tackle problems that do not possess a complete the-

oretical solution – particularly those involving fluidmechanics.

2.5.3 Primary and secondary quantities
These are quantities which are absolutely independent of each

other. They are:

M Mass

L Length

T Time

For example: Velocity (n) is represented by length divided by

time, and this is shown by:

v½ � ¼ L

T

Note the square brackets denoting the ‘dimension of’.

Table 2.12 Dimensional analysis – quantities

Quantity Dimensions

Mass (m) M
Length (I) L
Time (t) T
Area (A) L2

Volume (V) L3

First moment of area (I) L3

Second moment of area (I) L4

Velocity (v) LT�1

Acceleration (a) LT�2
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Hence velocity is called a secondary quantity because it can

be expressed in terms of primary quantities.

2.5.4 An example of deriving formulae using DA
To find the formulae for periodic time (t) of a simple

pendulum we can assume that t is related in some way to m,

l, and g, i.e.

t ¼ F fm; l; gg

Introducing a numerical constant C and some possible

exponentials gives:

t ¼ Cmalbgd

C is a dimensionless constant so, in dimensional analysis

terms this equation becomes

½t� ¼ ½malbgd �

Substitute primary dimensions gives:

T ¼ MaLbðLT�2Þd
¼ MaLbþdT�2d

Table 2.12 (Cont.)

Quantity Dimensions

Angular velocity (v ) T�1

Angular acceleration (a) T�2

Frequency (f ) T�1

Force (F ) MLT�2

Stress (Pressure) (s, p) ML�1T�2

Torque ( T) ML2T�2

Modulus of elasticity (E ) ML�1T�2

Work (W) ML2T�2

Power (P) ML2T�3

Density (r) ML�3

Dynamic viscosity (m) ML�1T�1

Kinematic viscosity (n) L2T�1
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In order for the equation to balance

For M, a must¼ 0

For L, bþ d¼ 0

For T, �2d¼ 1

Giving b ¼ 1
2 and d ¼ �1

2=
�

So we know the formula is now written:

t ¼ Cl
1=2
g�

1=2

or t ¼ C

ffiffiffiffiffiffi
l

g
:

s
the answer

Note how dimensional analysis can give you the ‘form’ of the

formula but not the numerical value of the constant C.

Note also how the technique has shown us that the mass (m)

of the pendulum bob does not affect the periodic time (t) (i.e.

because a¼ 0).

2.6 Essential engineering mathematics
2.6.1 Powers and roots

an:am ¼ anþm an

am
¼ an�m abn ¼ anbn

�
a

b

�n

¼ an

bn

anð Þm ¼ dmð Þn ¼ anm ð ffiffiffi
an

p Þn ¼ a a

1

n ¼ ffiffiffi
an

p

an=m ¼ ffiffiffiffiffi
anm

p
n

ffiffiffiffiffi
ab

p
¼ n

ffiffiffi
a

p
:n

ffiffiffi
b

p

2.6.2 Logarithms

loga a ¼ 1 loga 1 ¼ 0 logaMð ÞN ¼ logaMþlogaN

ðlogb NÞ ¼ logaN

logab
logbb

N ¼ N blogbN ¼ N

2.6.3 The quadratic equation
A quadratic equation is one in the form ax2þ bxþ c¼ 0 Where

a, b, and c are constants.
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The solution is : x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p

2a

2.6.4 Trigonometric functions

sina ¼ y
r

cosa ¼ x
r

tana ¼ y
x

cota ¼ x
y

seca ¼ r
x

coseca ¼ r
y

The signs of these functions depend on which quadrant they are

in:

Quadrant Sin Cos Tan Cot Sec Cosec

I þ þ þ þ þ þ
II þ � � � � þ
III � � þ þ � �
IV � þ � � þ �

2.6.5 Trig functions of common angles

0 � 30 � 45 � 60 � 90 �

Sin 0 1

2

ffiffiffi
2

p
=2

ffiffiffi
3

p
=2 1

Cos 1
ffiffiffi
3

p
=2

ffiffiffi
2

p
=2

1

2
0

Tan 0
ffiffiffi
3

p
=3 1

ffiffiffi
3

p 1
Cot 1 ffiffiffi

3
p

1
ffiffiffi
3

p
=3 0

Sec 1 2
ffiffiffi
3

p
=3

ffiffiffi
2

p
2 1

Cosec 1 2
ffiffiffi
2

p
2

ffiffiffi
3

p
=3 1
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sina ¼ 1

coseca
cosa ¼ 1

seca
tana ¼ 1

cota
¼ sina

cosa

sin2aþcos2a ¼ 1 sec2a�tan2a ¼ 1

cosec2a�cot2a ¼ 1

2.6.6 Differential calculus

Derivatives Integrals

d

dx
ðu� v� . . .Þ ¼ du

dx
� dv

dx
� . . .

ð
df ðxÞ ¼ f ðxÞþC

d

dx
ðuvÞ ¼ udv

dx
þ vdu

dx
d

ð
f ðxÞdx ¼ f ðxÞdx

d

dx

u

v

� 	
¼ 1

v

du

dx
� u

v2
dv

dx

ð
af ðxÞdx ¼ a

ð
f ðxÞdx

ða ¼ constantÞ
d

dx
unð Þ ¼ nun�1 du

dx

ð
udv ¼ uv�

ð
vdu

d

dx
ln uð Þ ¼ 1

u

du

dx

ð
undu ¼ unþ1

nþ1
þC ðn „�1Þ

d

dx
tan uð Þ ¼ sec2u

du

dx

ð
du

u
¼ lnuþC

d

dx
sin uð Þ ¼ cos u

du

dx

ð
eudu ¼ euþC

d

dx
cos uð Þ ¼ �sin u

du

dx

ð
sin du ¼ �cos uþCð
cos u du ¼ sin uþCð
tan u du ¼ �ln cos uþC

2.7 Maths and the real world?
2.7.1 What’s it all about?
‘Please sir, what use is this?’ Fair question. Most people who

are forced to use maths have little idea what it is really about.

This also applies to people who are quite good at it and to many

who teach it, or do little else. To them all, it is seen as an obscure

and rather tiresome series of symbols and enforced equations

surrounded by a bewildering number of different ways to put

various numbers in to obtain (sometimes) the answer that you

are supposed to get.

40 Engineers’ Data Book



Good news. The reason you find maths awkward is simply

because it is abstract. There’s no reason to be surprised at this –

lots of things are – language, for example, is abstract, and you

use it all the time. Think about this explanation.

. Maths is an abstract depiction of nature.

Thinking of it as a depiction of nature is the first essential step.

Think of the other way of doing it – Art, which is also a

depiction of nature, and you might find it easier. These two

systems are all there are, it’s just that most people have little

problemwith accepting that a painting of a tree represents a tree,

but find it more difficult to conceive that a jumble of numbers,

symbols and equations can equally represent what a tree is, and

does. This is the difficulty with maths – yourmind is better tuned

to looking at pictures and images and things rather than equa-

tions, because it is easier.

Why does maths depict nature?

Because nature is a 100% rule-based game. Everything that

exists, and happens, does so because it has passed the test of

compliance with an unbreakable set of rules, as they stand.

Anything that doesn’t comply can’t exist, or happen, so simply

looking around you provides first-hand evidence that enough

things comply with these rules to result in all the things you can

see, hear and feel.

How many of these rules are there?

Millions of millions without a doubt. Some are simple and

others are almost infinitely complex. Think of them as the rules

of a complex game, like rugby or cricket. The simpler rules are

quite adequate at deciding that when a cricket ball is caught

before it hits the ground the batsman is out. More complex rules

conclude what should happen if the umpire’s hat falls off and

knocks over the stumps assisted, or not, by a disoriented pigeon.

The game functions under these rules, hence proving their

existence and effectiveness.

The rules of nature are a little more complex. They have to be

good for billions of items and trillions of actions. They have to

cover genetics, mechanics, acoustics, optics, aesthetics (that’s

Units 41



an interesting one) and all the others, acting as an immutable,

always-correct lowest common denominator of the world as

it is.

How do we know that these rules involve maths?

Because the simplest ones, that we can observe directly, seem to

work. Two boxes, each containing three apples spookily always

results in a total of 2� 3¼ 6 apples. This is the simple test that

proves the relationship – count the apples and you get 6, then

multiple 2� 3 and you get 6. See? It works. The rules are not all

that simple of course, but the matching continues:

. Atoms and molecules arrange themselves, without help or

persuasion, into patterns that can be described by fairly simple

formulae. This is encouraging – success at this lowest scale

probably means that bigger and more complex things will be

the same.

Throw a ball in the air and, before very long, it will stop and

come down. By applying our previous logic chain, it happens, so

the rules must allow it. Maths is an abstract depiction of the

rules, so there must be a mathematical way to describe what is

happening. All you have to do is find it. Once you have found it

think of the advantages: it will tell you what will happen if the

ball is twice as heavy, thrown twice as high, or at an angle, so

there will be no need to waste time trying it out in practice.

Now it’s time for the big step. Once you accept that all the

rules of everything can be depicted by maths you are ready to

use it to find out things that are impossible to find out in any

other way. You can predict what will happen in things too small

to see, or in places to which you have no access (the planets, the

sun and other suns). You have the tools to manage invisible

things such as electromagnetic waves (radio, ultraviolet, infra-

red and the rest). Once you know the rules they follow, they are

under your control (oh, don’t forget, the rules are governing you,

as well).

Where is this book containing all the rules?

There isn’t one. The discovery of the rules is ongoing – it’s

doubtful if we’ve discovered 0.00001% of them, but its a
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standing target, because they are all there, static and unchang-

ing, waiting to be discovered.

Ok, how do I use the rules?

Maths is used for everything that involves any of the ‘big four’

parameters shown in Fig. 2.14.

. Quantity

. Structures

. Space

. Change

STRUCTURES

CHANGE

QUANTITY

SPACE

Maths is useful 

for things 

involving any of 

these ‘big four’ 

parameters.

Figure 2.14 The main uses of maths
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It won’t give you a guaranteed answer to everything, because it

is an abstract depiction of reality rather than a perfect one. It is

perfect at its rule-based core but it is our use of it that brings the

imperfection, because we didn’t write the rules. Pure maths is

more important than applied maths because there couldn’t be

the second without the first. Applied maths is used in engineer-

ing throughout the world as an essential tool in the design of

things and processes, and therefore is practically more useful.

This is why maths is in your degree syllabus.

2.7.2 Why bother with calculus?
Let’s be honest, 99.999% people in the world don’t understand

the first thing about calculus – nor do they need to. Moving on to

the mechanical engineering world where the percentage is a bit

higher (but not much) you soon find that using it (mainly to pass

exams) is an altogether different thing from actually under-

standing what it is all about.

In an engineering career, perhaps the only reason for getting

involved with calculus is that you have to. Fortunately, most

engineers won’t need to. It is only in the higher echelons of

engineering technology (fundamental design, for example) that

you will need it. In this top 1% of the industry it becomes an

issue – leaving the remaining 99% (which of course is most of it)

to continue without it, once the necessary exams have been

passed and forgotten.

Does all maths involve calculus?

Certainly not – most of it doesn’t. It is difficult to put an accurate

value on it but perhaps 70–80%ofmaths does not need calculus in

any major way. Trigonometry for example, being mainly con-

cernedwith lengths, distances andanglesbetweenobjects, doesn’t

require much calculus in the mainstream 80% of the subject.

Contrast this with the fact that virtually all engineering-based

exams feature calculus heavily. Students are left with little

choice but to study it in some considerable depth. Derivatives

and integrals are memorized and regurgitated, elaborate solu-

tions rehearsed for line-by-line presentation and the (hopefully

correct) answers presented, with a flourish, at the end.
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So what is calculus all about?
Easy, you need calculus to understand things that change. One

of the most common types of change is physical movement – the

distance from a moving object to some static point changes with

time, so there is a change.

As you would expect, simple movement patterns (in a straight

line or circle for example) are not too difficult to understand but it

getsmore difficultwhen you try to describe the curved path taken

whenyou throwaball, or thepathof theearth round the sun, or the

movement of atoms in a metal, as you heat it up.

Things don’t have to physically move for the concept of

‘movement’ to be involved. Look at the shape in Fig. 2.15. As it

is a 3-dimensional shape, it is not easy to calculate the volume of

such a strange shape. The answer lies in thinking of it as a simple

2-dimensional flat shape rotated about the axis y–y. This will

produce the 3-D volume. Note that, physically, nothing has

actually been rotated (there has been no movement that you

could watch), the movement has taken place conceptually.

Here’s another type of movement that is non-real. Howwould

you solve this problem?

3þ2� 6 ¼ ?

You would do it, knowingly or unknowingly, in steps. From

the ‘BODMAS’ rules of maths (i.e. Brackets – Other operations

– Division –Multiplication –Addition – Subtraction) you would

do it in the following steps:

Step 1: Rewrite it as 3þ (2� 6)¼ ?

Step 2: Calculate the terms in brackets 3þ 12¼ ?

Step 3 Do the sum: 3þ 12¼ 15 [answer]

See how you moved through the steps? – that’s the movement.

Nothing physical, but movement just the same.

Suspend belief for a moment and imagine that moving

forward through steps 1 to 3 is called something special but

meaningless (differentiation) – that’s just the name we have

given to the idea of moving forward. If you always want to go

only from step 1 to step 3, that’s all you need. Now turn things

around – suppose you already had the answer of 15 but were
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curious as to where it came from. Your interest may be driven by

the urge to have this answer again (if you liked it) or to stop it

appearing again, if it causes you problems. You know that it is

linked to other numbers but need to know which ones, and how.

To do this you would need to move backwards. Once again,

y

y

This 3-dimensional

‘volumetric’ shape

is produced by rotating this

2-dimensional flat shape

around axis y-y

Figure 2.15 Volumes of revolution
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we’ll give this a random name – call it integration – the opposite

of differentiation, the name we gave to moving forward.

In the final act – combining the two concepts of dealing with

rates of change with the two main and opposite options of

moving forward or backwards – we have it. This is calculus.

Catch it before it slips away:

. You have a constantly changing function and want to find out

about its rate of change. This is the derivative.

OR
. You already know the rate of change of a system and want to

find the given values that describe the system’s input. You get

this by working backwards – called integration.

Or, perhaps examples will explain it better:

Very clever – how does it do that?

Put formally, it relies on the fact that you can get the answer to

something by using a set of approximations of increasing

accuracy. Sounds convincing, but how does this translate into

practice? The whole thing is based on the concept that anything

can be broken into infinitesimally small pieces and that these

pieces, as they are small, must be simple. Although this is the

basis of calculus, it disappears rapidly from sight as soon as you

start actually doing it. It is easy to forget about it, but it lives

behind the scenes, controlling everything.

How small is infinitesimal?

Almost infinitely small. On a scale of 93 million miles between

the earth and the sun, one of the infinitesimal distances could be
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the thickness of a hair. It is this smallness that makes the whole

thing work. On the scale of infinitesimal smallness, irregular

shapes (that are difficult to deal with) can be approximated by

regular ones which can be dealt with. By adding all the small

regular shapes together to make the larger shape, the large shape

suddenly becomes manageable. Figure 2.16 shows the idea.

If you think of the large irregular shape as being caused by

something in the real world that continually changes direction

with time, such as the path of a cannonball fired off a cliff at a

passing ship, then you can see the advantages.

Being human, we like to have things expressed as real

numbers before we can deal with them. The thing that does

this is the concept of limits. Limits capture the small-scale

behaviour of infinitesimal points of a curve, for example, whilst

translating it into real numbers. Think of this when you see the

limits on an integration (at the top and bottom of the squiggly

line) – that is what the integral sign is doing. You don’t see this

change from ‘real-world things’ to ‘real-world numbers’ when

you are finding a derivative, but it is there, just the same, hiding

behind the symbols.

Reminder – why do we need calculus?

We need calculus to deal with anything that involves a system

that is in a state of constant change. Without calculus it is

impossible to predict how that system has previously changed to

reach its present state or the state it will adopt in the future.

These infinitesimal rectangles effectively 
simulate the shape of the curved path 

There are only 40 rectangles under this curve and the error is very small. With

a larger number of rectangles (say 10,000+) the error becomes negligible 

Figure 2.16 A curve described by multiple rectangles

48 Engineers’ Data Book


