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Abstract. Let T1, . . . , Td be homogeneous trees with degrees q1+1, . . . , qd+1 ≥ 3, respectively.
For each tree, let h : Tj → Z be the Busemann function with respect to a fixed boundary point (end).
Its level sets are the horocycles. The horocyclic product of T1, . . . , Td is the graph DL(q1, . . . , qd )
consisting of all d-tuples x1 · · · xd ∈ T1 × · · · × Td with h(x1)+ · · · + h(xd ) = 0, equipped with a
natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic
and probabilistic properties of these graphs and their isometry groups. If d = 2 and q1 = q2 = q
then we obtain a Cayley graph of the lamplighter group (wreath product) Zq oZ. If d = 3 and q1 =
q2 = q3 = q then DL is a Cayley graph of a finitely presented group into which the lamplighter
group embeds naturally. In general, when d ≥ 4 and q1 = · · · = qd = q is such that each prime
power in the decomposition of q is larger than d−1, we show that DL is a Cayley graph of a finitely
presented group. This group is of type Fd−1, but not Fd . It is not automatic, but it is an automata
group in most cases. On the other hand, when the qj do not all coincide, DL(q1, . . . , qd ) is a vertex-
transitive graph, but is not a Cayley graph of a finitely generated group. Indeed, it does not even
admit a group action with finitely many orbits and finite point stabilizers. The `2-spectrum of the
“simple random walk” operator on DL is always pure point. When d = 2, it is known explicitly
from previous work, while for d = 3 we compute it explicitly. Finally, we determine the Poisson
boundary of a large class of group-invariant random walks on DL. It coincides with a part of the
geometric boundary of DL.
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1. Introduction

Let X be a locally finite, infinite, connected graph. We write x ∼ y if x, y are neighbours
(connected by an edge), and deg(x) for the number of neighbours of x. We assume that
X has no loops, that is, x 6∼ x for all x ∈ X. Suppose that X is written as a disjoint union
of non-empty sets Hk , k ∈ Z (the horocycles), where each element in Hk has neighbours
both in Hk−1 and in Hk+1, but none in any other Hl . (This condition is tailored to our
purposes and can be generalized.) The associated surjection h : X→ Z, where h(x) = k
if x ∈ Hk , is a graph homomorphism of X onto the two-way-infinite path Z. We call it
a Busemann function, although this terminology is justified completely only in specific
cases (see below), and we say that (X, h) is a Busemann pair. Now let X1, . . . , Xd be a
family of such graphs with associated Busemann functions h : Xj → Z (we use the same
symbol h for each of them). Then their horocyclic product is

d∏
j=1

h Xj = {x1 · · · xd ∈ X1 × · · · ×Xd : h(x1)+ · · · + h(xd) = 0}(1.1)

with neighbourhood

x1 · · · xd ∼ y1 · · · yd ⇔(1.2)
there are i 6= j such that xi ∼ yi, xj ∼ yj and xk = yk for all k 6= i, j.

In particular, one must have h(xi)−h(yi) = h(yj )−h(xj ) = ±1. Thus, x = x1 · · · xd 7→

H(x) = (h(x1), . . . , h(xd)) is a graph homomorphism of
∏

h Xj onto the simplicial
lattice Ad−1 = {k = (k1, . . . , kd) ∈ Zd : k1+· · ·+kd = 0}. In that lattice, two points are
neighbours if they differ by a vector ei − ej , where i 6= j and ei ∈ Zd is the unit vector
with a 1 in its i-th coordinate.

There is an analogous construction for groups (cf. Kaimanovich and Woess [32,
p. 356]). Let 01, . . . , 0d be topological (e.g. in particular, discrete) groups, each one
equipped with a continuous homomorphism h : 0j → Z (or→ R; we again use the same
symbol h for each of them). Then their horocyclic product is

d∏
j=1

h 0j = {g1 · · · gd ∈ 01 × · · · × 0d : h(g1)+ · · · + h(gd) = 0},(1.3)

which is a closed subgroup of the direct product of the 0j . For finitely generated groups
0j , this kind of construction was used previously by Bestvina and Brady [7]. However, our
approach has a different “history”, and below, the groups will be non-discrete isometry
groups of homogeneous trees. Here, horocyclic products of groups will arise as isometry
(automorphism) groups of horocyclic products of graphs.
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If (X1, h) and (X2, h) are two Busemann pairs, then a Busemann isometry g from the
former to the latter is a graph isomorphism g : X1 → X2 such that x1 7→ h(gx1)− h(x1)

is constant. We write h(g) for this constant. The group Aut(X, h) of a given Busemann
pair (X, h) consists of all Busemann isometries X → X. Given (Xj , h) as above (j =

1, . . . , d), the group
d∏
j=1

h Aut(Xj , h) acts on
d∏
j=1

h Xj by graph isometries via

gx = (g1x1) · · · (gdxd), where g = g1 · · · gd and x = x1 · · · xd .(1.4)

There are many examples of Busemann pairs, as well as generalizations of the defini-
tion. Some of them will be outlined in the final §7.

The basic example of a Busemann pair arises when the underlying graph is a tree T ,
that is, a connected graph without cycles, where 2 ≤ deg(x) < ∞ for every vertex x.
There are several choices (one for each element in the boundary of the tree, see below) to
equip the edge set of T with an orientation such that each vertex x has a unique predeces-
sor x− and deg(x) − 1 successors y ∈ T such that y− = x. Then it is easily understood
that in the induced partial order, the ancestor relation 4, any two vertices x, y ∈ T have
a greatest common ancestor x f y. If o ∈ T is a reference vertex (origin), then we define
h(x) = d(x, o f x)− d(o, o f x), where d(·, ·) denotes the usual graph metric (cf. e.g.,
the seminal paper of Cartier [17]). Then (T , h) is the typical example of a Busemann pair.

In the present paper, we shall deal with homogeneous trees T = Tq , where each
vertex has degree q + 1 (q ≥ 2). In this case, the horocyclic structure (i.e., the ancestor
relation) is unique up to isomorphism. We write DL(q1, . . . , qd) for the horocyclic product
of the trees T1 = Tq1 , . . . , Td = Tqd . The “DL” stands for Diestel and Leader, who were
the first [23] to introduce the graph DL(2, 3) in an attempt to answer a question raised
by Woess [44, 41]: “is there a locally finite vertex-transitive graph which is not quasi-
isometric with a Cayley graph of any finitely generated group?” A very recent paper
by Eskin, Fisher and Whyte [25] confirms that the graphs DL(q1, q2) for q1 6= q2 are
such examples. (Recall that a graph is called vertex-transitive if its isometry group acts
transitively on the vertex set. Recall also that being quasi-isometric—see §3.B for the
definition—is far more general than being isometric.)

The purpose of this paper is to present a picture of many interesting features of the
graphs DL(q1, . . . , qd).

In §2, we first recall in more detail the horocyclic structure of the homogeneous tree
Tq and the group Aff(Tq) = Aut(Tq , h) of all its Busemann self-isometries. This group
has been called the affine group of the tree by analogy with the affine group over R acting
on the hyperbolic upper half-plane. We determine the full isometry group Aut(DL) of DL =

DL(q1, . . . , qd). We prove that it is a finite extension of the groupA =
d∏
j=1

h Aff(Tqj ). The

groupA acts transitively on DL and is amenable as a locally compact, totally disconnected
group with the topology of pointwise convergence.

If the qj do not all coincide, we show that the group A is also non-unimodular (i.e.,
the left Haar measure is not right-invariant). Consequently, by a theorem of Soardi and
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Woess [41], the graph DL is non-amenable, i.e., it satisfies a strong isoperimetric inequal-
ity (the Cheeger inequality). We also conclude that Aut(DL) cannot have a co-compact
lattice, that is, there is no discrete (closed) subgroup that acts on DL with finitely many
orbits. In particular, if the qj do not all coincide, then DL is vertex-transitive, but is not the
Cayley graph of a finitely generated group.

In §3, we study DLd(q) = DL(q, . . . , q), the horocyclic product of d copies of Tq .
We use an approach that is reminiscent of the method for constructing lattices in Lie
groups over local fields, as outlined on the first page of the book by Margulis [35]. When
q = p1 · · ·pr is the factorization of q as a product of prime powers, and pι ≥ d − 1
for all ι ∈ {1, . . . , r}, the graph DLd(q) is a Cayley graph of a group of affine matrices
over a ring of Laurent polynomials whose coefficients come from a suitable finite ring.
There is some degree of freedom in the choice of the ring of coefficients. When d = 2
or d = 3, we can take the ring Zq = Z/qZ of integers modulo q, and for d = 2 this
is a way to describe the lamplighter group Zq o Z, while for d = 3 we obtain a finitely
presented group into which the lamplighter group embeds. This group has appeared in
previous work by Baumslag [5] and others. The graph DLd(q) is quasi-isometric with
DLd(qs) for every s ≥ 1, so DLd(q) is always quasi-isometric with a Cayley graph of a
finitely generated group. On the other hand, [23] and [25] suggest that the vertex-transitive
graph DL(q1, . . . , qd) is not quasi-isometric with any Cayley graph when the qj do not all
coincide.

In §4, we consider DL(q1, . . . , qd) as a (d − 1)-dimensional cell complex and explore
its homotopy type, which is that of a union of countably many (d − 1)-spheres glued
together at a single point. This should be compared with a deep theorem of Bestvina and
Brady [7]. Thus, when DL is a Cayley graph of a group, then this group is of type Fd−1,
but not of type Fd , and in particular it is finitely presented when d ≥ 3. We deduce that,
for each d, the lamplighter group can be embedded in a metabelian group of type Fd . In
general, it is known [10] that every metabelian group embeds in a metabelian group of
type F3, while embeddability in Fd for larger d is conjectured.

In §5, we turn our attention to a more analytic-probabilistic object. The simple random
walk on any locally finite, connected graphX is the Markov chain whose transition matrix
P = (p(x, y))x,y∈X is given by

p(x, y) =

{
1/deg(x) if y ∼ x,
0 otherwise.(1.5)

P acts on functions f : X→ R by

Pf (x) =
∑
y

p(x, y)f (y).(1.6)

In our case, deg(·) = (d − 1)(q1 + · · · + qd) is constant, and we are interested in the
spectrum of P on the space `2(DL) of all square-summable complex functions on DL. The
spectral radius ρ(P ) is equal to 1 if and only if q1 = · · · = qd . As a set, spec(P ) is
an interval contained in [−1/(d − 1), ρ(P )] and, with the exception of a “degenerate”
case, it coincides with it. In particular, for DLd(q) the spectrum of P is the same as the
spectrum of P ’s projection to the lattice Ad−1. This last spectrum is absolutely contin-
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uous. On the other hand, for arbitrary q1, . . . , qd , the spectrum of P on DL(q1, . . . , qd)

is pure point: there is an orthonormal basis of `2(DL) that consists of finitely supported
eigenfunctions of P . This extends previous results regarding the lamplighter group and
the basic Diestel–Leader graphs DL(q1, q2) (see Grigorchuk and Żuk [29], Dicks and
Schick [22] and Bartholdi and Woess [3]). For the case d = 2, the eigenvalues and
eigenfunctions were computed explicitly in those references. Here, we present explicit
computations for d = 3 and DL3(q), while the general case seems intractable (except
numerically).

Finally, in §6, we study the general class of random walks on DL whose transition
matrix is irreducible, invariant under the group A, and has finite first moment. Using
results of Cartwright, Kaimanovich and Woess [19] and Brofferio [12] concerning random
walks on Aff(Tq), we show that those random walks on DL converge almost surely to
the geometric boundary of DL. This boundary is the ideal boundary added to DL when
considering the closure of DL in

∏
i T̂i , where T̂i is the well-known end compactification

of Ti . We then use the ray criterion of Kaimanovich (see [32]) to prove that the active
part of the boundary (i.e., the support of the limit distribution of the random walk) is
the “largest possible” model for distinguishing limit points of the random walk: it is the
Poisson boundary.

2. Isometry groups

We start with a picture of the homogeneous tree T2 in horocyclic layers (Fig. 1), since it
will be useful throughout the paper to keep this description in mind. Note that the negative
direction is “upwards” in the picture.

Along with that picture comes a more detailed description of the geometry of T = Tq .
Any pair of vertices x and y is connected by a unique geodesic path x y whose length

(number of edges) is the distance d(x, y). A geodesic ray is a one-sided infinite geodesic
path (isometric embedding of a half-line graph). Two rays are called equivalent if their
symmetric difference (as sets of vertices) is finite. An end of T is an equivalence class of
rays. The boundary ∂T of T is the set of ends of T . For each ξ ∈ ∂T and each x ∈ T
there is a unique geodesic ray x ξ that represents ξ and starts with x. We choose an origin
(root) o ∈ T and write |x| = d(x, o). If w, z ∈ T̂ = T ∪ ∂T then their confluent c(w, z)
is the last common element on ow and o z, a vertex of T unless w = z ∈ ∂T . With the
ultrametric

θ(w, z) =

{
q−|c(w,z)| if w 6= z,
0 if w = z,

T̂ becomes a compact space.
We now select an end ω ∈ ∂T and write ∂∗T = ∂T \ {ω}. Given ω, we can define

the predecessor x− of x ∈ T as the neighbour of T that lies on x ω. Thus, the ancestor
relation is

x 4 y ⇔ x ∈ y ω,(2.1)

and for x, y in general position, xfy is the greatest common ancestor. We write u(x, y) =
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Fig. 1

d(x, x f y). Then the horocycle index of x (the Busemann function with respect to ω) is

h(x) = u(x, o)− u(o, x),

and the k-th horocycle is Hk = {x ∈ T : h(x) = k}. In particular,

d(x, y) = u(x, y)+ u(y, x) and h(x)− h(y) = u(x, y)− u(y, x).(2.2)

As in Figure 1, we can label the edges of T with the elements of Zq so that the edges
between a vertex and its q successors carry distinct labels, and so that on the geodesic
from any vertex to ω, only finitely many labels are non-zero. This labelling will be used
several times in what follows.

For T = Tq , its affine group Aff(Tq) is the stabilizer of ω in Aut(Tq). It is an amenable
and non-unimodular closed subgroup of Aut(Tq) that acts transitively on Tq , and all its el-
ements are Busemann isometries. We have h(g) = h(go) for g ∈ Aff(Tq). See Cartwright,
Kaimanovich and Woess [19] for more details about the structure of Aff(Tq).

We shall need some basic facts about the modular function of an isometry group of
a locally finite graph X which is closed with respect to pointwise convergence. For more
details, see Trofimov [43] and Woess [44]. If 0 ≤ Aut(X) is such a group, and x ∈ X,
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then 0x denotes the stabilizer of x in 0, while 0x is the orbit of x under 0. Since 0 is
locally compact, it carries a left Haar measure dg. The modular function 1 on 0 is the
unique multiplicative homomorphism 0→ R+ which satisfies

1(g0)

∫
0

f (gg0) dg =

∫
0

f (g) dg

for every g0 ∈ 0 and every continuous, compactly supported function f on 0. Inserting
for f the indicator function of 0x (which is an open, compact subgroup of 0), one finds
the formula

1(g) = |0x(gx)|/|0gxx|(2.3)

for g ∈ 0 and for arbitrary x ∈ X, where |0xy| is the (finite) number of elements in the
0x-orbit of y; see e.g. [43, 44]. In particular, one has the following.

(2.4) Lemma. If 0 acts transitively on X then 0 is unimodular if and only if |0xy| =
|0yx| for some (⇔ every) x ∈ X and all its neighbours y.

In the following, we fix integers q1, . . . , qd ≥ 2, and write oj for the origin of Tj = Tqj ,
while the symbol o will be used for the origin o = o1 · · · od of DL = DL(q1, . . . , qd). If
x, y ∈ DL, then we say that a neighbour y of x has type ei − ej if y−i = xi and yj = x−j .
In this case, x is a neighbour with type ej − ei of y. We write Ni,j (x) for the set of
neighbours with type ei − ej of x.

(2.5) Proposition. The group

A = A(q1, . . . , qd) =

d∏
j=1

h Aff(Tqj )

acts transitively on DL = DL(q1, . . . , qd) via (1.4). It is amenable. Furthermore, A is
unimodular if and only if q1 = · · · = qd .

Proof. Let x = x1 · · · xd be in DL. Then there are gj ∈ Aff(Tqj ) such that gjoj = xj ,
j = 1, . . . , d . Setting g = g1 · · · gd as in (1.4), we get g ∈ A, since

∑
j h(gj ) =∑

j h(xj ) = 0. Thus, go = x, and the action is transitive. Amenability of A follows
from the fact that it is a closed subgroup of the direct product of the locally compact
amenable groups Aff(Tqj ).

Regarding unimodularity, let x be in DL. By construction, Ax must map every neigh-
bour y of x of type ej − ei to a neighbour of x of the same type, and every permutation
of this kind can be achieved. Now x has exactly qj neighbours of type ej − ei . Therefore,
|Axy| = qj , and (by exchanging x ↔ y and i ↔ j ) |Ayx| = qi . If we vary i, j (i 6= j )
and apply Lemma 2.4, then we see that our group is unimodular if and only if all qj coin-
cide. ut

Besides the elements ofA, there may be further isometries of DL. Let S = S(q1, . . . , qd)

be the group of all permutations σ of {1, . . . , d} such that qσ(j) = qj for all j . Then S
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acts on DL by
σx = xσ−1(1) · · · xσ−1(d),(2.6)

that is, σ permutes identical trees in the horocyclic product. Thus, S also acts on A by
group automorphisms (σ, g) 7→ gσ = σgσ−1. If all qj are distinct, then S(q1, . . . , qd)

is of course trivial. We shall prove the following.

(2.7) Theorem. The full isometry group of DL(q1, . . . , qd) is the semidirect product of S
with A with respect to the action (σ, g) 7→ gσ ,

Aut(DL) = S nA.

Thus, Aut(DL) is amenable, and it is unimodular if and only if all qi coincide.

For the proof, we need a description of the (graph-theoretical) link N(x) of a vertex
x ∈ DL, that is, the subgraph of DL spanned by the neighbours of x. Under the graph
homomorphism H : DL→ Ad−1, where H(x) = k = (h(x1), . . . , h(xd)), the link N(x)
maps onto the link N(k) in the lattice Ad−1. This last link has (d − 1)-cliques (complete
graphs on d − 1 vertices) as its building blocks. Namely, for i ∈ {1, . . . , d}, write

S+i (k) = {k+ ei − ej : j 6= i} and S−i (k) = {k+ ej − ei : j 6= i}.

Each of those spans a complete subgraph of N(k). We have N(k) =
⋃d
i=1 S

+

i (k) =⋃d
i=1 S

−

i (k),

S+i (k)∩S
+

j (k) = S
−

i (k)∩S
−

j (k) = ∅ and S+i (k)∩S
−

j (k) = {k+ei−ej } (i 6= j).

We write S±i (x) for the set of all points in N(x) which are mapped to S±i (k) by H. Note
that S+i (x) ∩ S

−

j (x) = Ni,j (x). The edges in N(x) are as follows.
(1) If y, z ∈ S+i (x) then there are j, k 6= i such that H(y) = k + ei − ej and

H(z) = k+ ei− ek . In this case, there is an edge between y and z if and only if j 6= k and
yi = zi , in which case z is a neighbour of type ej − ek of y (i.e., z−j = yj and y−k = zk).
Thus, the subgraph of N(x) that is mapped onto an edge in S+i (k) is the graph D(qi, qi)
consisting of qi independent edges with their endpoints; see Figure 2a.

(2) If y, z ∈ S−i (x) then there are j, k 6= i such that H(y) = k + ej − ei and
H(z) = k + ek − ei . In this situation, there is an edge between y and z if and only if
j 6= k; furthermore, z is a neighbour of type ek − ej of y (i.e., z−k = yk and y−j = zj ).
Thus, the subgraph of N(x) that is mapped onto the edge [k + ej − ei,k + ek − ei] in
S+i (k) is the complete bipartite graph K(qj , qk); see Figure 2b.

...........................................................................................................................................................................
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...........................................................................................................................................................................

Fig. 2a. D(3, 3)
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Fig. 2b. K(2, 3)

• •

• •

• •

• •

•

•

•



Horocyclic products of trees 779

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...... .........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

...............................................................................................................................................

................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................

............
............

............
............

............
............

............
............

............
............

............
.......

................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................

............
............
............
............
............
............
............
............
............
............
............
.......

.......................................................................................................................................................

.......................................................................................................................................................

S+1 (x)

S−1 (x)

S+2 (x)

S−2 (x)

S+3 (x)

S−3 (x)

•

••

•

• •

•

••

•

• •

••

Fig. 3a. N(x) in DL(2, 2, 3)
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Fig. 3b. N2(x) in DL(3, 2)
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Figure 3a shows the link of a vertex of DL(2, 2, 3). When d ≥ 3, the link is connected.
When d = 2, it consists of q1 + q2 isolated points, and in this case, it will be more useful
to consider the 2-link N2(x) spanned by all points at distance 1 and 2 from x. Each of the
q1 neighbours v of type e1− e2 of x = x1x2 is connected by an edge to each of the q2−1
points x1y2, where y2 6= x2 is a sibling of x2 in T2, that is, y−2 = x−2 . In turn, there is
an edge between each of those neighbours v of x and its q1 neighbours of the same type
e1 − e2. Exchanging the role of e1 and e2, one finds the other part of N2(x). See Figure
3b, where we have also drawn the edges from x to its neighbours in dotted lines.

(2.8) Lemma. For every x ∈ DL and every g in the stabilizer Aut(DL)x of x, there is
σ ∈ S such that for all i, j (i 6= j ), we have gNi,j (x) = Nσ−1(i),σ−1(j)(x).

Proof. Our g acts as a graph isometry on N(x), and also on N2(x). If d = 2 (see Figure
3b) then g must permute the two connected components of N2(x). This permutation must
be trivial unless q1 = q2. Thus, the statement follows when d = 2.

If d ≥ 3, then by the above, each S−i (x) is a complete (d − 1)-partite subgraph
of N(x). That is, its vertex set is partitioned into the sets Nj,i(x) having cardinality qj ,
j 6= i, such that every pair of vertices in Nj,i(x) × Nk,i(x), k 6= j , is connected by an
edge, while there are no edges between different vertices within eachNj,i(x). Also, S−i (x)
is a maximal complete (d − 1)-partite subgraph of N(x) (i.e., it is not contained in any
bigger complete (d−1)-partite subgraph). This property must be preserved by isometries
of N(x), and gS−i (x) must again be a maximal complete (d − 1)-partite subgraph of
N(x), whose d − 1 classes must have the same cardinalities qj as the sets Ni,j (x), j 6= i.
Thus, there is a permutation σ of {1, . . . , d} such that gS−i (x) = S−

σ−1(i)
(x), and from

|{j 6= i : qj = qi}| = |{k 6= σ−1(i) : qk = qi}| we deduce qi = qσ−1(i) for each i.
Therefore, σ ∈ S.

For each j 6= i, we must have gNj,i(x) = Nk,σ−1(i)(x) and gNi,j (x) = Nl,σ−1(j)(x)

for some k 6= σ−1(i), l 6= σ−1(j). We still have to show that k = σ−1(j), and conse-
quently l = σ−1(i). Now note that with respect to its (“inner”) graph metric, N(x) has
diameter 3, and that the only points at distance 3 from all y ∈ Ni,j (x) are precisely those
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in Nj,i(x). Therefore

Nl,σ−1(j)(x) = gNi,j (x) = Nσ−1(i),k(x)

as sets, and thus (l, σ−1(j)) = (σ−1(i), k). This completes the proof of the lemma. ut

We shall also need the following preparatory lemma.

(2.9) Lemma. If g ∈ Aut(DL) satisfies gNi,j (x) = Ni,j (gx) for all i, j (i 6= j ), then
there is h ∈ A such that g|N(x) ≡ h|N(x).

(As a matter of fact, it will turn out below that g itself must belong to A.)

Proof. For each pair (i, j), the isometry g maps the qi elements of Ni,j (x) to those of
Ni,j (gx). By the structure of S+i (x) and S+i (gx), this map must be independent of j
(j 6= i). That is, there is a map hi between the successors of xi in Ti and those of (gx)i
such that (gy)i = hiyi for all y ∈ Ni,j (x) and all j 6= i. This permutation can be
extended to an isometry of Ti , again denoted hi , that maps xi to (gx)i and maps the
branches of Ti “below” xi to those “below” (gx)i according to the map of yi to (gy)i .
Setting h = h1 · · ·hd according to (1.4), we obtain the required element of A. ut

Proof of Theorem 2.7. Consider an arbitrary g ∈ Aut(DL). Set x = g−1o, where o is
the root of DL. Then there is gx ∈ A such that x = g−1

x o, whence gg−1
x o = o. By

Lemma 2.8, there is σ ∈ S, acting on DL by (2.6), such that g′ = σ−1gg−1
x ∈ Aut(DL)o

satisfies g′Ni,j (o) = Ni,j (o) for all i, j . We claim that g′ is type-preserving, that is, for
all x ∈ DL,

g′Ni,j (x) = Ni,j (g
′x) ∀i, j ∈ {1, . . . , d} (i 6= j).(2.10)

(Note that this does hold for every g′ ∈ A.) Since DL is connected and (2.10) is true for
x = o, it is sufficient to show the following.

If (2.10) holds for some x ∈ DL then it holds for every y ∈ N(x).(2.11)

So suppose that (2.10) holds for some x. Let h ∈ A be as in Lemma 2.9, associated
with g′, and set g′′ = h−1g′. Then g′′v = v for every v ∈ {x} ∪ N(x). Let y ∈ N(x), so
that y ∈ Ni,j (x) for some i, j . Since g′′y = y, Lemma 2.8 implies that there is τ ∈ S
such that g′′Ni,j (y) = Nτ−1(i),τ−1(j)(y) for all i, j .

Since x ∈ Nj,i(y) and g′′x = x, we find that τ(i) = i and τ(j) = j . Also, if k 6= i, j ,
then Nk,i(y) = Nk,j (x) is stabilized by g′′. Thus, τ(k) = k. We see that τ is the identity,
and as h ∈ A,

g′Ni,j (y) = hg
′′Ni,j (y) = hNi,j (y) = Ni,j (hy) = Ni,j (g

′y),

as claimed. This proves (2.11) and consequently (2.10).
We now use (2.10) to show that g′ ∈ A. Our claim is the following.

If x, y ∈ DL satisfy xi = yi for some i ∈ {1, . . . , d} then (g′x)i = (g′y)i .(2.12)
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Indeed, if this holds, then define gi ∈ Aff(Tqi ) as follows. Given xi ∈ Ti , choose x ∈ DL
with i-th coordinate xi , and set gixi = (g′x)i . This is independent of the specific choice
of x by (2.12). We therefore get g′ = g1 · · · gd ∈ A.

For any d and i, j ∈ {1, . . . , d} with i 6= j , we can define recursively N (0)
i,j (x) = {x}

and N (k)
i,j (x) =

⋃
{Ni,j (y) : y ∈ N (k−1)

i,j (x)}, where x ∈ DL. We observe that

vj = wj for all v,w ∈ N (k)
i,j (x).

The proof of (2.12) is different in the cases d = 2 and d ≥ 3. In both cases, we may
assume without loss of generality that i = 1 in (2.12). Suppose therefore that x, y ∈ DL
satisfy x1 = y1.

Case 1: d = 2. Consider x2, y2 and their common ancestor u2 = x2 f y2 in T2. Since
x1 = y1, we have h(x2) = h(y2), whence d(x2, u2) = d(y2, u2) = h(x2) − h(u2) =:
k ≥ 0. We can find u1 ∈ T1 such that x1 4 u1 and h(x1) − h(u1) = −k, so that
u = u1u2 ∈ DL and x, y ∈ N (k)

2,1(u). Since g′ is type-preserving, we have

g′N
(k)
2,1(u) = N

(k)
2,1(g

′u) 3 g′x, g′y.

Using the above observation, we get (g′x)1 = (g′y)1, which proves (2.12).

Case 2: d ≥ 3. The subgraph of DL(q1, . . . , qd) spanned by the set {v = v1 · · · vd ∈ DL :
v1 = x1} is connected; indeed, it is isomorphic to DL(q2, . . . , qd). Thus, there is a path
from x to y in DL all of whose vertices have the same first coordinate x1: if v,w are
successive vertices on this path then w ∈ Ni,j (v) where i, j 6= 1, and v1 = w1 = x1. But
then (2.10) implies g′w ∈ Ni,j (g′v), so that g′v and g′w differ only in the i-th and j -th
coordinates. In particular, (g′w)1 = (g′v)1, whence inductively (g′y)1 = (g′x)1.

We conclude that g = σg′, where σ ∈ S and g′ ∈ A, so that we have completed the
description of Aut(DL).

If h ∈ A and g = σg′ ∈ Aut(DL) with σ ∈ S and g′ ∈ A, then ghg−1
=

σ(g′hg′−1)σ−1 is type-preserving, so that (2.12) implies ghg−1
∈ A. It is now obvi-

ous that the factor group Aut(DL)/A is S. ut

We briefly remind the reader of the concept of amenability of a locally compact group
(≡ existence of a finitely additive, left invariant probability measure on the group); see
Paterson [37]. Recall that a locally finite graph X is called amenable if its isoperimetric
constant is 0, that is, the number

κ = inf{|∂F |/Vol(F ) : F ⊂ X finite},

where | · | is cardinality, ∂F is the set of edges between F and X \ F , and Vol(F ) =∑
x∈F deg(x). By the well-known criterion of Følner, a finitely generated group is amen-

able if and only if one (⇔ each) of its Cayley graphs is amenable in the latter sense.

(2.13) Corollary. The graph DL(q1, . . . , qd) is amenable if and only if all qi coincide.
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Proof. By a theorem of Soardi and Woess [41], a vertex-transitive graph is amenable if
and only if its automorphism group (or equivalently, any closed transitive subgroup) is
both amenable and unimodular. Theorem 2.7 yields the result. ut

A co-compact lattice in a locally compact group is a discrete, countable subgroup such
that the factor space is compact. The following is standard.

(2.14) Lemma. If X is a locally finite, vertex-transitive graph, then a subgroup 0 of
Aut(X) is a co-compact lattice if and only if 0 acts on X with finitely many orbits and
finite vertex stabilizers.

Proof. We prove the “only if” part; the “if” part is then an easy exercise. If 0 is co-
compact then there is a relatively compact set K ⊂ Aut(X) such that Aut(X) = 0K .
If o ∈ X is arbitrarily chosen (a “root”), then relative compactness of K means that
F = Ko ⊂ X is finite. Transitivity of Aut(X) implies that 0 F = X, whence 0 acts with
finitely many orbits.

Suppose that for some x the stabilizer 0x contains a sequence of distinct elements.
Since the stabilizer of x in Aut(X) is compact, that sequence must have an accumulation
point. This contradicts discreteness of 0. ut

A non-unimodular group cannot contain a co-compact lattice. Recall that when 0 is a
finitely generated group and S = S−1

⊂ 0 is a finite set of generators, then the Cayley
graph X(0, S) of 0 with respect to S has vertex set 0, and the edges are all [x, y], where
x, y ∈ 0 and x−1y ∈ S. The group 0 acts by left multiplication on X(0, S), the action
is transitive, and all vertex stabilizers are trivial. In view of Theorem 2.7, we now get the
following.

(2.15) Corollary. Assume that the qj do not all coincide; then Aut(DL) does not possess
any co-compact lattice. Therefore, DL(q1, . . . , qd) cannot be a Cayley graph of a finitely
generated group.

3. Cayley graphs

We now study in more detail the case when q1 = · · · = qd = q all coincide. In this
case, we write DLd(q) for the horocyclic product of d trees with degree q + 1. The fact
that DL2(q) = DL(q, q) is a Cayley graph of the lamplighter group Zq o Z, where Zq =
Z/qZ, has been explained (and exploited) in the papers by Woess [46] alone and with
Bartholdi [3] and Brofferio [14]. We now study the general case. For investigations in a
similar spirit, but with different methods and applied to different graphs (one-skeletons
of affine buildings), see e.g. Cartwright and Steger [20].

Let Lq be a commutative ring of order |Lq | = q with multiplicative unit 1, and choose
` ∈ Lq . Consider the ring Lq((t+ `)) of all formal Laurent series

f = f(t+ `) =
∞∑

k=−∞

ak(t+ `)
k, ak ∈ Lq , ∃n0 ∈ Z : ak = 0 ∀k < n0.(3.1)
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If an0 6= 0 in this representation, then we write v`(f) = n0 for the valuation of f with
respect to t+ `, setting v`(0) = ∞. The corresponding absolute value is

|f|` = q
−v`(f).

It defines a complete ultrametric on Lq((t + `)). Every closed ball in this ultrametric has
radius qn for some n ∈ Z and is also open.

We shall write Lq((t + `))∗ for the multiplicative group of invertible elements in
Lq((t+ `)).

Following the explanation given in [19], we can identify Lq((t+ `)) with the “lower”
boundary ∂∗Tq , where the vertex set of Tq is the set of all closed balls x = B`(f, qn) with
radius qn, n ∈ Z, and centre f ∈ Lq((t + `)). Relating this to the description of §2, the
predecessor of vertex x as above is x− = B`(f, qn+1). The vertices on the n-th horocycle
are, by definition, precisely all balls with radius q−n, which form a partition of Lq((t+`)).

Conversely, starting with Tq , for any k ∈ Z, we can label the edges between each
vertex in Hk and its q successors with the elements of Lq as in Figure 1, so that the
sequence of labels on the geodesic from ω to x ∈ Hn is (ak)k<n with only finitely many
ak non-zero. Then x = B`(g, q−n), where g(t) =

∑
k<n ak (t+ `)

k .
Using this description, one sees that the group Aff(Lq((t+ `))) of all affine matrices

g =

(
a b
0 1

)
, a ∈ Lq((t+ `))

∗, b ∈ Lq((t+ `))(3.2)

embeds into Aff(Tq) as a closed subgroup that acts transitively on the tree. Namely, the
image of a ball x = B`(f, qn) as above under such a matrix is the ball

gx = B`(b+ a · f, qn−m), where m = v`(a).(3.3)

In the same way, we can also consider the ring Lq((t−1)) of all formal Laurent series
f =

∑
k ak t−k over Lq in the variable t−1 with the valuation v∞(f) = n0 if n0 is mini-

mal such that an0 6= 0. Again, we have the identification with ∂∗Tq , but in this specific
case, we define the n-th horocycle to consist of all closed balls in Lq((t−1)) with radius
q−n−1. Again, the group Aff(Lq((t−1))) embeds into Aff(Tq) as a closed subgroup that acts
transitively.

Now suppose that there are distinct elements `1, . . . , `d−1 ∈ Lq such that their pair-
wise differences `i − j̀ (i 6= j ) are invertible. Consider the ring

Rd(Lq) = Lq [(t+ `1)
−1, . . . , (t+ `d−1)

−1, t](3.4)

of all polynomials over Lq in the variables (t + `1)
−1, . . . , (t + `d−1)

−1, t. They are of
the form

P = P(t+`1, . . . , t+`d−1) =
∑

k1,...,kd−1∈Z
ak1,...,kd−1(t+`1)

k1 · · · (t+`d−1)
kd−1 ,(3.5)

where only finitely many of the coefficients ak1,...,kd−1 ∈ Lq are not zero.
Note thatRd(Lq) depends not only on d and Lq , but also on the choice of the `i . The

same is true for the group 0d(Lq) in the next theorem.
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(3.6) Theorem. If Lq contains distinct elements `1, . . . , `d−1 such that their pairwise
differences are invertible, then the Diestel–Leader graph DLd(q) is the Cayley graph of
the group 0 = 0d(Lq) of affine matrices(

(t+ `1)
k1 · · · (t+ `d−1)

kd−1 P
0 1

)
, k1, . . . , kd−1 ∈ Z, P ∈ Rd(Lq),(3.7)

with respect to the generators(
t+ `i b

0 1

)±1

, b ∈ Lq , i ∈ {1, . . . , d − 1},(
(t+ `i)(t+ j̀ )

−1 b(t+ j̀ )
−1

0 1

)
, b ∈ Lq , i, j ∈ {1, . . . , d − 1}, i 6= j.

Proof. Each of Lq((t+`i)) (i = 1, . . . , d−1) and Lq((t−1)) is the completion ofRd(Lq)
in its respective ultrametric. Indeed, for each k ∈ Z and distinct i, j ∈ {1, . . . , d − 1}, we
can write (t+ j̀ )

k as a Laurent series in t+ `i as well as in t−1, namely

(t+ j̀ )
k
=

∞∑
n=0

(
k

n

)
( j̀ − `i)

k−n(t+ `i)
n
=

∞∑
n=−k

(
k

k + n

)
`n+kj t−n.(3.8)

Also, for each non-negative k ∈ Z and j ∈ {1, . . . , d−1}, we can write tk as a polynomial
in t+ j̀ ,

tk =
k∑
n=0

(
k

n

)
(− j̀ )

k−n(t+ j̀ )
n.(3.9)

A straightforward computation shows that for all k1, . . . , kd−1 ∈ Z,

v`i ((t+ `1)
k1 · · · (t+ `d−1)

kd−1) = ki, i = 1, . . . , d − 1,

v∞((t+ `1)
k1 · · · (t+ `d−1)

kd−1) = −k1 − · · · − kd−1,
(3.10)

summing up to 0. In particular, it follows from (3.10) that the diagonal embedding

Rd(Lq) ↪→
d−1∏
i=1

Lq((t+ `i))× Lq((t
−1)),(3.11)

where P 7→ (P1, . . . ,Pd) with Pi = P for all i, is discrete in this last direct product.
Following the above explanations, we can identify the vertices of the tree Tq with

balls in the respective ultrametric. Thus, we get d copies of Tq . The first d−1 correspond
to Lq((t + `i)) ≡ ∂∗Tq (i = 1, . . . , d − 1), and recall that in each of these cases, we
define the n-th horocycle to consist of all closed balls with radius q−n (n ∈ Z). The last
copy of Tq corresponds to Lq((t−1)) ≡ ∂∗Tq , but also recall that this time, we define the
n-th horocycle to consist of all closed balls with radius q−n−1.

Each of the d groups Aff(Lq((t+ `i))), i = 1, . . . , d − 1, and Aff(Lq((t−1))) is a closed
subgroup of Aff(Tq) that acts transitively on the tree. By (3.11), the diagonal embedding
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of 0d(Lq) into their direct product is discrete. By (3.10), combined with (3.3), the action
of 0d(Lq) on (Tq)d is such that the subgraph DLd(q) is preserved. The last step in show-
ing that DLd(q) is a Cayley graph of our group consists in exhibiting a correspondence
between graph and group that is bijective and compatible with the group action:

Claim. For all k1, . . . , kd−1 ∈ Z, each P ∈ R has a unique decomposition into Laurent
polynomials P = P(1)k1,...,kd−1

+ · · · + P(d)k1,...,kd−1
, where

P(i)k1,...,kd−1
=

∑
n<ki

an,i (t+ `i)
n, i = 1, . . . , d − 1,

P(d)k1,...,kd−1
=

∑
n≥−(k1+···+kd−1)

an,d tn
(3.12)

with an,i ∈ Lq and 6= 0 only for finitely many n (i = 1, . . . , d).

Proof of the claim. By multiplying with (t + `1)
−k1 · · · (t + `d−1)

−kd−1 , one sees that it
is sufficient to prove this for k1 = · · · = kd = 0. The existence of a decomposition (3.12)
is an easy exercise which we leave to the reader. Uniqueness requires a bit more care. To
this end, we have to prove that

P(1)0,...,0 + · · · + P(d)0,...,0 = 0(3.13)

implies that P(i)0,...,0 = 0 for all i. Suppose that for some i ∈ {1, . . . , d − 1}, we have

P(i)0,...,0 6= 0. Write Q for the left-hand side of (3.13) after subtracting P(i)0,...,0. Then

v`i (P
(i)
0,...,0) < 0, but by (3.8) and (3.9),

v`i (P
(i)
0,...,0) = v`i (Q) ≥ 0,

a contradiction. Thus, P(i)0,...,0 = 0 for i = 1, . . . , d − 1, and consequently also for i = d,
concluding the proof of the claim. ut

Our choice for the origin is now o = o1 · · · od , where oi = B`i (0, 1) for i = 1, . . . , d − 1
and od = B∞(0, q−1). Let

g =

(
(t+ `1)

k1 · · · (t+ `d−1)
kd−1 P

0 1

)
∈ 0d(q).

In view of the claim we obtain a bijective correspondence g ↔ x = x1 · · · xd = go,
where

xi = gioi = B`i (P
(i)
k1,...,kd−1

, q−ki ), i = 1, . . . , d − 1,

xd = gdod = B∞(P
(d)
k1,...,kd−1

, qk1+···+kd−1−1).

Here, when writing go, we mean the image of g under the diagonal embedding, while
gioi refers again to gi = g, but this time acting on the i-th tree of the horocyclic product:
as isometries of Ti = Tq , the gi are distinct.

Compatibility with the group action is straightforward: (gh)o = g(ho) for all g, h∈0.
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Finally, using (3.3), one checks that for each b ∈ Lq ,
( t+`i

0
b
1

)
maps the origin o to

one of its neighbours of type ei − ed , where i 6= d . Analogously,
( (t+`i )(t+ j̀ )

−1

0
b(t+ j̀ )

−1

1

)
maps o to one of its neighbours of type ei − ej , where i 6= j . ut

We now study how we can implement Theorem 3.6 for specific values of q and d .

A. DL3(q) and a finitely presented extension of the lamplighter group

If q ≥ 2 is arbitrary and d = 2 (two trees) or d = 3 (three trees), then we can use for Lq
the ring Zq of integers modulo q. Indeed, we may choose `1 = 0 and `2 = 1.

Thus, for the lamplighter group, we start with the ring R2(Zq) = Zq [t−1, t] of all
Laurent polynomials P = P(t) =

∑L
k=K ak tk (with integers K ≤ L and ak ∈ Zq ).

(3.14) Corollary. The graph DL2(q) = DL(q, q) is the Cayley graph of the lamplighter
group Zq o Z, represented as the group 02(Zq) of affine matrices(

tk P
0 1

)
, k ∈ Z, P ∈ Zq [t−1, t],

with respect to the generators (
t b

0 1

)
, b ∈ Zq ,

and their inverses.

For DL3(q), we use R3(Zq) = Zq [t−1, (t+ 1)−1, t], which consists of all

P = P(t, t+ 1) =
L∑

k=K

N∑
m=M

ak,m tk(t+ 1)m,

where K,L,M,N ∈ Z, K ≤ L, M ≤ N , ak,m ∈ Zq .

(3.15) Corollary. The Diestel–Leader graph DL3(q) = DL(q, q, q) is the Cayley graph
of the group 0 = 03(Zq) of affine matrices(

tk(t+ 1)m P
0 1

)
, k,m ∈ Z, P ∈ Zq [t−1, (t+ 1)−1, t],

with respect to the generators(
t b

0 1

)
,

(
t+ 1 b

0 1

)
,

(
t−1
+ 1 b t−1

0 1

)
, b ∈ Zq ,

and their inverses.

The group 03(Zq) is finitely presented (see Baumslag [4, 5] and also below in §4). Thus,
by Corollaries 3.14 and 3.15 we recover a concrete way of embedding the infinitely pre-
sented group Zq o Z into the finitely presented, metabelian group 03(Zq).
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How can we extend the above to DLd(q)with larger d? If d ≥ 4, we cannot always find
d − 1 elements `i ∈ Zq whose pairwise differences are invertible. We note the following
cases where we can still work with Zq .

(i) When q is odd and d = 4 then we can use `1 = 0, `2 = 1 and `3 = −1 ≡ q − 1
(modulo q). Thus,R4(Zq) = Zq [t−1, (t+1)−1, (t−1)−1, t], and DL4(q) is a Cayley graph
of the associated group of affine matrices.

(ii) When q is prime and d ≤ q + 1 then we can use `1 = 0, . . . , `d−1 = d − 2.
Again, DLd(q) is a Cayley graph of the group of affine matrices 0d(Zq) associated with
Rd(q) = Zq [t−1, (t+ 1)−1, . . . , (t+ d − 2)−1, t].

The last case (where Zq = Fq , the field of order q) points towards a more general
answer.

B. DLd(q) and quasi-isometries

For arbitrary q ≥ 2, let q = p1 · · ·pr be its factorization as a product of prime powers.
(Caution: the pι are prime powers, not necessarily primes themselves!) Suppose first that
pι ≥ d − 1 for all ι ∈ {1, . . . , r}, and let Fpι be the field of order pι. Now construct the
ring

Fq = Fp1 × · · · × Fpr(3.16)

with coordinatewise addition and multiplication. Let `ι,1, . . . , `ι,d−1 be distinct elements
of each Fpι , and set j̀ = (`1,j , . . . , `r,j ) ∈ Fq for j = 1, . . . , d − 1. Then all the
differences `i − j̀ (i 6= j ) are invertible elements of Fq . Therefore, we can apply
Theorem 3.6 with the ring

Rd(Fq) = Fq [(t+ `1)
−1, . . . , (t+ `d−1)

−1, t]

of all Laurent polynomials over Fq in t+ `1, . . . , t+ `d−1.

(3.17) Corollary. Let q = p1 · · ·pr be the factorization of q into prime powers, and
suppose pι ≥ d − 1 for all ι ∈ {1, . . . , r}. Then DLd(q) is a Cayley graph of the group
0 = 0d(Fq) of affine matrices(

(t+ `1)
k1 · · · (t+ `d−1)

kd−1 P
0 1

)
, k1, . . . , kd−1 ∈ Z, P ∈ Rd(Fq).

When d ≥ pι for some ι ∈ {1, . . . , r}, then we cannot use the above construction. How-
ever, we can show that DLd(q) is quasi-isometric with DLd(qs) for arbitrary s ≥ 1, and
when s is sufficiently large, it is a Cayley graph by Corollary 3.17.

Recall that a quasi-isometry between two metric spaces (X1, d1) and (X2, d2) is a
mapping φ : X1 → X2 such that there are constants A > 0, B ≥ 0 with

A−1d2(φx1, φy1)− B ≤ d1(x1, y1) ≤ Ad2(φx1, φy1)+ B and
d(x2, φX1) ≤ B for all x1, y1 ∈ X1, x2 ∈ X2.

(3.18)



788 Laurent Bartholdi et al.

For connected graphs, quasi-isometry refers to the discrete graph metric, and for finitely
generated groups, it refers to the word metric, i.e., the graph metric of one of its Cayley
graphs: for a finitely generated group 0, any two of its Cayley graphs with respect to
finite, symmetric generating sets are quasi-isometric (with B = 0, i.e., bi-Lipschitz).
Quasi-isometry of groups has been an object of intensive study in geometric group theory
since its introduction by Gromov [30]. For the following, recall the group A(q1, . . . , qd)

defined in Proposition 2.5.

(3.19) Proposition. For arbitrary q1, . . . , qd ≥ 2 and s ≥ 2, the graphs DL(qs1, . . . , q
s
d)

and DL(q1, . . . , qd) are quasi-isometric. The quasi-isometry has the following property:
if 0 ≤ A(q1, . . . , qd), then the subgroup

0s = {g = g1 · · · gd ∈ 0 : h(gi) ∈ sZ, i = 1, . . . , d}

embeds into A(qs1, . . . , q
s
d), and if 0 acts transitively and/or with trivial stabilizers

on DL(q1, . . . , qd), then it also acts transitively and/or with trivial stabilizers on
DL(qs1, . . . , q

s
d).

Proof. In the tree Tqi , consider the horocycles Hsn, n ∈ Z. Their union becomes the
vertex set of Tqs , if we introduce new edges as follows: if n ∈ Z and x ∈ Hsn, then draw
an edge between x and x−s ∈ Hs(n−1), where x−k is defined recursively by x−1

= x−

(the predecessor of x), and x−k−1
= (x−k)−. See Figure 4, where q = 2 and s = 3.

........
........
........
........
........
........
........
........
...................................................................... ........

........
........
........
........
........
........
........
...................................................................... ........

........
........
........
........
........
........
........
...................................................................... ........

........
........
........
........
........
........
........
......................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.............................................................................. .........

.........
.........
.........
.........
.........
.........
.........
..............................................................................

............
............
............
............
............
............
............
............
..........................................................................................................

.......................................................................... ................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
............................................................................................................................................................................................................................ ........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................................................................................................................................................................................................... ........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........................................................................................................................................................................................................... .........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...................................................................................................................................................................................................................................................• • • • • • • • • • • • • • • •

• •

Hsn

Hs(n−1)

Fig. 4

In this way, by inverting the arrow in Figure 4, we get a mapping φi : Tqsi → Tqi
which is one-to-one from the horocycle Hn(Tqsi ) onto Hsn(Tqi ) for each n ∈ Z. Further-
more,

s · (d(x, y)− 2)+ 2 ≤ d(φix, φiy) ≤ s · d(x, y) and
h(φix) = s · h(x) for all x, y ∈ Tqsi .

(3.20)

(Here, d(·, ·) refers to the respective graph metric in each of the two graphs involved.)
Clearly, φi is a quasi-isometry, and by (3.20), we can embed the group {g ∈ Aff(Tqi ) :
h(g) ∈ sZ} into Aff(Tqsi ) by g 7→ φ−1

i ◦ g ◦ φi .
We now define φ : DL(qs1, . . . , q

s
d) → DL(q1, . . . , qd) by φ = φ1 · · ·φd , that is,

the action of φ on the i-th coordinate xi of x = x1 · · · xd ∈ DL(qs1, . . . , q
s
d) is given by

xi 7→ φixi (i = 1, . . . , d). It is now straightforward that φ is a quasi-isometry with the
asserted properties. ut
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(3.21) Corollary. For arbitrary q and d ≥ 2, the graph DLd(q) is quasi-isometric with
DLd(qs), which is a Cayley graph of the group 0d(Fqs ), when s is sufficiently large.

Proof. As above, let q = p1 · · ·pr be the factorization of q into prime powers. Now
choose s sufficiently large such that psι ≥ d − 1 for all ι ∈ {1, . . . , r}. Then DLd(qs) is a
Cayley graph of the group 0d(Fqs ) by Corollary 3.17. ut

(3.22) Remarks. (a) In conclusion, we are not able to prove that every Diestel–Leader
graph DLd(q) is itself a Cayley graph. The first open case is DL4(2), the horocyclic product
of four trees with the same branching number 2 (≡ degree 3).

(b) Proposition 3.19 leads to the following question: is it true that two Diestel–Leader
graphs are quasi-isometric if and only if there are r, s ≥ 1 such that (up to permutation
of their “coordinate” trees) they are of the form DL(qr1, . . . , q

r
d) and DL(qs1, . . . , q

s
d)? For

the case d = 2, compare with Wortman [47, §4] and the results of Eskin, Fisher and
Whyte [25].

(c) The following generalizes the conjecture of Diestel and Leader [23] that DL(2, 3) is
not quasi-isometric to any Cayley graph: is it true that DL(q1, . . . , qd) for d ≥ 2 is quasi-
isometric with a Cayley graph of some finitely generated group if and only if q1 = · · ·

= qd? For d = 2, see once more [25].

4. The DL complex

We compute homotopical properties of DL in this section, and combine this information
with the results of the previous section to derive conclusions on groups acting on DL.

We defined DL as a graph in the introduction; for our purposes, it is now better to view
DL as a cell complex (in which cells are represented by subsets of the vertex set), whose
1-skeleton is the graph defined by (1.1) and (1.2).

Let therefore T1 = Tq1 , . . . , Td = Tqd be our homogeneous trees with their respective
Busemann functions. We now turn DL = DL(q1, . . . , qd) into a cell complex, whose
vertex set DL0 (0-skeleton) is given by (1.1). Now choose for each i ∈ {1, . . . , d} a subset
Ei ⊂ Xi of cardinality 1 or 2; if Ei = {x, y}, then x ∼ y has to be an edge of Ti . To this
choice there corresponds an s-dimensional cell

γ (E1, . . . , Ed) = {x1 · · · xd ∈ DL0 : xi ∈ Ei for all i},

whenever |γ (E1, . . . , Ed)| ≥ 2, with s = |E1| + · · · + |Ed | − d − 1. The faces of
γ (E1, . . . , Ed) are all γ (E1, . . . , Ej−1, Fj , Ej+1, . . . , Ed) for all possible choices of j
and Fj ⊂ Ej with |Fj | = 1 and |Ej | = 2.

The 1-skeleton of DL is given by the condition (1.2), and the dimension of the DL
complex is d − 1. If d = 2 then there are no cells of dimension ≥ 2, and we recover the
original construction of DL as a graph.

(4.1) Remark. A cell is always of the form γ (E1, . . . , Ed), where each Ei is either {xi}
or {xi, yi} with xi ∼ yi and h(yi) = h(xi)+ 1.

If d ≥ 3 then besides the 1-dimensional cells (the edges), there are also two kinds
of 2-dimensional cells: there must be precisely three indices j < k < l such that
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|Ej | = |Ek| = |El | = 2. The requirement that |γ (E1, . . . , Ed)| ≥ 2 is met when∑
h(xi) ∈ {−1,−2}. If now

∑
h(xi) = −1, then γ (E1, . . . , Ed) is a triangle, with

vertices x1 · · · xj−1yjxj+1 · · · xd , x1 · · · xk−1ykxk+1 · · · xd and x1 · · · xl−1ylxl+1 · · · xd . If∑
h(xi) = −2, then γ (E1, . . . , Ed) is also a triangle but of a different kind: its vertices

have the form x1 · · · yj · · · yk · · · xd , x1 · · · yj · · · yl · · · xd and x1 · · · yk · · · yl · · · xd .
If d ≥ 4, then in addition, there are also three kinds of 3-dimensional cells: there

is now a set I of four indices with |Ei | = 2 if i ∈ I , and we must have
∑

h(xi) ∈
{−1,−2,−3}. If

∑
h(xi) = −1, then γ (E1, . . . , Ed) is a tetrahedron, spanned by the

vertices z1 · · · zd with zj = yj for precisely one j ∈ I , and all other zi = xi . If∑
h(xi) = −2, then γ (E1, . . . , Ed) is an octahedron, spanned by the vertices z1 · · · zd

with zj = yj for precisely two j ∈ I (there are 6 =
( 4

2

)
choices). If

∑
h(xi) = −3, then

γ (E1, . . . , Ed) is again a tetrahedron, spanned by the vertices z1 · · · zd with zj = yj for
precisely three j ∈ I .

In general, if d ≥ s + 1 there are s kinds of s-dimensional cells, according to the
values of

∑
h(xi) ∈ {−1, . . . ,−s}, and |Ei | = 2 for all i in a set I ⊂ {1, . . . , d} of

cardinality s + 1.

(4.2) Definition. Choose R ∈ N and points b = b1 · · · bd , t = t1 · · · td , t ′ = t ′1 · · · t
′

d ∈∏
i Ti such that for all i ∈ {1, . . . , d} we have (a)

∑
i h(bi) = −R, (b) bi = ti f t ′i (the

greatest common ancestor), and (c) h(ti) = h(t ′i) = h(bi)+ R.
The octahedron Ot,t ′,b is the subcomplex of DL spanned by the vertices x1 · · · xd such

that xi lies on the path ti t ′i for all i.
The “downward” geodesics in Ti of length R starting at bi can be ordered lexico-

graphically by the sequence (“word”) of length R of the labels (in {0, . . . , qi − 1})
along their edges. The octahedron Ot,t ′,b is basic if for all i the geodesic bi t ′i is the
immediate successor of bi ti , that is, the label words along bi ti and bi t ′i have the form
(j − 1)(qi − 1) · · · (qi − 1) and j0 · · · 0, respectively, where j ∈ {1, . . . , qi − 1}. See
Figure 5.
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Fig. 5

If d = 3, octahedra are usual octahedra: six extremal vertices and eight triangular
faces with side lengths R. Each face is subdivided into basic triangles with side lengths 1,
that is, 2-cells; see Figure 6. For arbitrary d , octahedra have 2d vertices and 2d top-
dimensional faces.
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Fig. 6. A basic octahedron in DL(q1, q2, q3). The face spanned by b1b2t3, b1t2b3 and t1b2b3
consists of all x1x2x3 ∈ DL with xi ∈ bi ti .

(4.3) Lemma. Let li, l
′

i be distinct geodesics from ωi to the “lower” boundary ∂∗Ti in Ti ,
and set P = (l1 ∪ l′1)× · · · × (ld ∪ l′d) ∩ DL.

Let bi be the bifurcation point of li and l′i; set R = −
∑
i h(bi); and let ti, t ′i be the

points respectively on li, l
′

i with h(ti) = h(t ′i) = h(bi)+ R.
If R > 0, then P retracts to the octahedron Ot,t ′,b. If R ≤ 0, then P is contractible.
Furthermore, every octahedron is homeomorphic to a sphere of dimension d − 1.

Proof. Assume first R > 0. Then clearly O = Ot,t ′,b is a subset of P . Consider a point
x = x1 · · · xd in P \ O. We will retract it to O. Consider (1) in increasing order, the co-
ordinates i ∈ {1, . . . , d} such that h(xi) < h(bi) and, at the same time, (2) in decreasing
order, the coordinates j such that h(xj ) > h(ti). Move x, at unit speed, down on coor-
dinate i and up on coordinate j , until xi = bi or xj ∈ {tj , t ′j }; when this happens, move
to the next i or j . If there are no more j ’s available, keep moving up on the selected
coordinate j .

This process defines a retraction, i.e., a continuous map ρ : P × [0, ∞) → P with
ρ(x, 0) = x and limt→∞ ρ(x, t) ∈ O.

If R ≤ 0, then this process also produces a retraction, but now towards a single point
in P .

The last claim of the lemma is clear: an octahedron is topologically the d-fold join1

of a pair of points, that is, a (d − 1)-dimensional sphere. ut

1 Recall that the join of two spaces X, Y is X ? Y = X × [0, 1] × Y/{(x, 0, y) ∼
(x, 0, y′), (x, 1, y) ∼ (x′, 1, y)}; it is classical that the join of an (n − 1)-dimensional sphere
and an (m− 1)-dimensional sphere is an (m+ n− 1)-dimensional sphere.
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The following result bears a strong similarity to Theorem 4.1 of Bestvina and Brady [7].
However, there does not seem to be a natural discrete ambient group acting on

∏
Ti that

would be required for their theorem to apply directly.

(4.4) Theorem. The Diestel–Leader graph DL(q1, . . . , qd) has the homotopy type of a
wedge of countably many (d − 1)-spheres, that is, the topological space obtained by
glueing together all those spheres at a single point. These spheres correspond bijectively
to basic octahedra.

Proof. Embed each tree Ti in the upper half-plane H in such a way that ωi is the “upper”
boundary point in H, the “lower” boundary ∂∗Ti lies in R, and so that its edges are ordered
lexicographically, i.e., the edges labelled 0, 1, . . . , qi − 1 appear in left-to-right order
below any vertex. Let �i be the set of all geodesics in Ti going from ωi to R.

The tree Ti , topologically, may be obtained from the disjoint union of the geodesics
in �i by glueing them along specified half-geodesics from a vertex to ωi . Therefore, the
product T1 × · · · × Td may be viewed as a disjoint union of hyperplanes glued along
“hyper-octants”, and is naturally embedded in Hd .

Similarly, DL is obtained by considering the disjoint union of the planes l1 × · · · ×
ld ∩ DL for all li ∈ �i , and glueing them along subspaces. It is naturally embedded in a
codimension-one contractible subspace W of Hd .

The homotopy type of DL, therefore, is that of a wedge of “pieces”, which are glued
together at a single point. Each “piece” is specified by two lexicographically consecutive
geodesics li, l

′

i in each tree Ti , and is of the form P = (l1 ∪ l′1)× · · ·× (ld ∪ l′d)∩DL. It is
naturally a subspace of W . By Lemma 4.3, this piece P is either contractible, or retracts
to an octahedron, which is basic by the choice of li, l

′

i . Furthermore all basic octahedra
appear in this way.

Finally, it is obvious that there are countably many basic octahedra, since there are
countably many choices of bi , ti and t ′i . ut

Recall that a group 0 is of type Fd if it is the fundamental group of an aspherical cell
complex (i.e. a K(0, 1)) whose d-skeleton is compact. (“Aspherical” means that it is
a topological space whose fundamental cover is contractible.) In particular, “type F1”
means “finitely generated”, and “type F2” means “finitely presented”.

(4.5) Corollary. If DLd(q) is a Cayley graph of a group 0, then 0 is of type Fd−1, but
not of type Fd . In particular, if d ≥ 2, it is finitely generated, and if d ≥ 3, it is finitely
presented.

Proof. The cell complex 0\DL is compact, and by Theorem 4.4 it approximates up to
dimension d − 1 a classifying space K(0, 1). This proves that 0 is of type Fd−1. On the
other hand, K(0, 1) has as many d-cells as there are 0-orbits on basic octahedra, and
there are infinitely many of them, so 0 is not of type Fd . ut

In particular, the group 03(Zq) is finitely presented, and contains as a subgroup the lamp-
lighter group 02(Zq) ∼= Zq o Z.
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The first example of a finitely presented group that is not of type F3 was discovered by
Stallings [42]. It was only later, in particular through the work of Bieri [8], that Stallings’
group was interpreted as the kernel of an epimorphism to Z.

Explicit embeddings of the lamplighter group were already known: Johnson [31] em-
beds it first in the groupG of permutations of Z that are translations outside of a finite set
(as the subgroup generated by the transposition (1, 2) and the translation n 7→ n+2); and
then naturally embeds G in the group G̃ of permutations of a three-branched star which
are translations outside of a finite set; he finally exhibits a presentation of G̃. (This group
does not act transitively and with trivial stabilizers on DL3(q).) Homological properties
of some metabelian groups were studied by Bux [15], and the groups he considers are
closely related to the matrix groups appearing in Theorem 3.6.

The Cayley graph of 03(Zq) contains unbounded “dead ends”, as was first noticed
by Cleary and Riley [21]. It is easy to see geometrical properties of this group in its DL
description.

Baumslag [4, 5] proves that every finitely generated metabelian group can be embed-
ded in a finitely presented metabelian group. His construction is quite explicit: the group
into which Zq o Z embeds has presentation

0 = 〈a, s, t | aq , [s, t], [a, at ], a−taas〉.(4.6)

In fact, this presentation can be interpreted in terms of “lamplighters” quite naturally as
follows.

Consider the abelian group V of all finitely supported functions Z2
→ Zq (the config-

urations of “lamps”). Thus, V is generated by all point masses δx,y at (x, y) ∈ Z2 (with
δx,y(x, y) = 1 ∈ Zq and 0 elsewhere). Let W be the subgroup generated by all elements
of the form δx,y + δx+1,y − δx,y+1, where (x, y) ∈ Z2. The group Z2

= 〈s, t〉 acts by
translations on V preserving W, and one has 0 ∼= 〈s, t〉 n (V/W), by identifying the
element a of the presentation (4.6) with δ0,0, and more generally as

x ty with δx,y .
Using Corollary 3.15, it is easy to identify 0 with DL3(q), under the correspondence

a ↔

(
1 1
0 1

)
, s ↔

(
t−1 0
0 1

)
, t ↔

(
(1+ t)−1 0

0 1

)
.

We also remark that in our context it may be more adequate to replace Z2 with A2 via
the correspondence (x, y) 7→ (x, y,−x − y).

More generally, a presentation of 0d(q) may be read off from DL, as follows.

(4.7) Theorem. Under the hypotheses and with the notation of Corollary 3.17, if d ≥ 3,
the group 0d(q) admits the presentation

0d(q) = 〈gi,j,λ, 1 ≤ i, j ≤ d (i 6= j), λ ∈ Zq | gi,j,λgj,i,−λ, (a)
gj,i,λgk,j,µgi,k,ν whenever λ+ µ+ ν = 0, (b)
gi,j,λgj,k,µgk,i,ν whenever (c)

λ+ µ+ ν = 0 and λ`k + µ`i + ν j̀ = 0 and d 6= i, j, k,

gi,j,λgj,d,µgd,i,ν whenever µ+ ν = 0 and λ+ µ`i + ν j̀ = 0〉. (d)
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Proof. By Theorem 4.4, the 2-skeleton of DL is simply connected if d ≥ 3. Therefore
a presentation of 0d(q) may be read off from this 2-skeleton. The generators are the
0d(q)-orbits of edges, and the relations are the 0d(q)-orbits of 2-cells. These orbits can
be identified with the neighbourhood of a given vertex. There are d(d − 1)q generators,
since this last number is the vertex degree in DLd(q).

The group element gi,j,λ maps o to its neighbour x of type ei − ej with label λ, that
is, xj = o−j , x−i = oi , and the label on the edge [oi, xi] of Ti is λ. Thus, the inverse of
gi,j,λ is gj,i,−λ. This corresponds to the relations in line (a).

There are d(d − 1)(d − 2)q2 relations of length 3 corresponding to the first kind of
triangles indicated in Remark 4.1; these are given by the relations in line (b). There are
also d(d − 1)(d − 2)q relations of length 3 corresponding to the second kind of triangles
indicated in Remark 4.1; these are given by the relations in lines (c) and (d). ut

Note that the generators gi,d,λ and gi,j,λ seem to have different roles in the above presen-
tation. This asymmetry can be masked as follows: define polynomials 3i = t + `i for
i < d, and 3d = 1. Then the presentation can be written as

0d(q) = 〈gi,j,λ, 1 ≤ i, j ≤ d (i 6= j), λ ∈ Zq | gi,j,λgj,i,−λ,

gj,i,λgk,j,µgi,k,ν whenever λ+ µ+ ν = 0,
gi,j,λgj,k,µgk,i,ν whenever λ3k + µ3i + ν3j = 0〉.

Moreover, combining with Corollary 4.5, we obtain:

(4.8) Corollary. The lamplighter group Zq o Z can, for all d, be embedded in a met-
abelian group of type Fd .

Proof. We will use some algebraic number theory in the proof.
Factor q = p1 · · ·pr as a product of prime powers. It suffices to embed Zpι o Z in

a metabelian group of type Fd . Indeed, Zq ∼= Zp1 × · · · × Zpr , so that by identifying Z
with the principal diagonal of Zr via k ↔ (k, . . . , k), we can embed Zq oZ into the direct
product of the Zpι o Z. But type Fd is inherited by products.

Write therefore pι = pn as a prime power, and let s be such that ps ≥ d . The field
Fps contains elements `′1, . . . , `

′

d whose pairwise differences are invertible.
There exists a unique non-ramified extension K of Qp, with ring of integers O and

maximal ideal M = pO, such that O/M ∼= Fps . Furthermore, K is a Qp-vector space
of dimension s, and O is a free Zp-module of rank s. For all i, let `′′i be an arbitrary
preimage of `′i in O under the natural projection O→ Fps . Then the pairwise differences
`′′i − `

′′

j lie in O \M, and are therefore invertible in O.
Now set L = O/Mn; since Zp/pnZp ∼= Zpn , this is a free Zpn -module. Let `i be the

image of `′′i in L. The pairwise differences of the different `i are again invertible in L.
In the group 0d+1(L)—which has type Fd by Corollary 4.5—consider the elements

x =
( 1

0
1
1

)
and y =

( t+`1
0

0
1

)
. Then x has order pn, and the subgroup 〈x, y〉 of 0d+1(L)

is isomorphic to Zpn o Z. ut

Note that it is not possible to embed Zq oZ in a metabelian group of type F (i.e., one with a
compactK(0, 1)). Indeed, recall the following from Bieri and Groves [9]: a groupG is of
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type FPn, for n ∈ N∪{∞}, if the trivialG-module Z admits a ZG-projective resolution of
bounded rank in each dimension up to n; this condition is weaker than type Fn. A groupG
is of type FP if it is of type FP∞ and has finite cohomological dimension; this condition
is weaker than type F , but it also implies that G is torsion-free. In [9] it is proven that a
metabelian group of type FP∞ is virtually of type FP , and therefore is virtually torsion-
free.

(4.9) Remark. Assume that 0 is one of the groups with Cayley graph DLd(q), con-
structed in §3. Then 0 is in most cases an “automata group”, as we shall explain below.
But it is never an “automatic group” in the sense of Epstein et al. [24]. Indeed, by Corol-
lary 4.5, 0 is of type Fd−1 but not of type Fd ; in particular, it is not of type FP∞. On the
other hand, automatic groups are always of type FP∞, by [24, Theorem 10.2.6].

We briefly recall the definition of automata groups. Fix an alphabet 6. Automata
groups are permutation groups of the set of infinite words 6∞. A family of automatic
transformations is given by a machine with bounded memory computing the permutation
in real time. It can be modelled by a finite set A of states and a function 8 : A × 6 →
6 × A such that for all a ∈ A the composition ((τ, b) 7→ τ) ◦ 8 ◦ (σ 7→ (a, σ )) is a
permutation of 6. The associated transformations Ta , for a ∈ A, act on infinite strings
σ = σ1σ2 · · · ∈ 6

∞ by

Ta(σ ) = τ1Tb(σ2σ3 · · ·) if 8(a, σ1) = (τ1, b).

The product and inverse of automatic transformations are easily seen to be automatic.
Assume now that the group 0 = 0d(Lq) is constructed as in Theorem 3.6 by use of

elements `1, . . . , `d−1 ∈ Lq whose pairwise differences are invertible. Assume further-
more that all `i ∈ Lq are invertible. Identify 6 with Lq , and 6∞ with Lq [[t]], the ring of
formal power series in t over Lq .

For j ∈ {1, . . . , d − 1}, consider the finite set of states A(j) ∼= Lq with associated
affine transformations T (j)a of 6∞ ≡ Lq [[t]] of the form

T
(j)
a (f(t)) = a + (t+ j̀ )f(t), where a ∈ Lq .(4.10)

Note here that invertibility of j̀ implies that also the inverse transformation of T (j)a pre-
serves Lq [[t]]. If we write f(t) = b0+ tg(t) with constant term b0 ∈ Lq and g(t) ∈ Lq [[t]],
then

T
(j)
a (f(t)) = ( j̀b0 + a)+ t · T (j)b0

(g(t)),

and therefore each T (j)a is an automatic transformation, with

8j (a, b) = ( j̀b + a, b).

Since 0 is generated by {T (j)a : j = 1, . . . , d − 1, a ∈ Lq}, all of its elements are
automatic transformations. We note again that in the construction above we need j̀ to be
invertible. The inverse of T (j)a is again defined by an automaton: let us write (T (j)a )−1

=

U
(j)
a ; then we have U (j)a (b0 + tg(t)) = `−1

j (b0 − a) + t · U (j)
`−1
j (b0−a)

(g(t)), so U (j)a is the
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transformation defined on the set of states A
(j) ∼= Lq by the map8(a, b) = (`−1

j (b− a),

`−1
j (b − a)).

For more general information on automata groups, see the survey by Bartholdi, Gri-
gorchuk and Nekrashevych [2].

We finally remark that DL(q1, . . . , qd) has rational growth function
∑
x∈DL td(x,o),

where d(·, ·) is the graph metric. We intend to come back to this point on another occasion.

5. The spectrum of simple random walk

Recall the definition (1.5), (1.6) of the SRW operator P . It acts on the space `2(DL) of
all square-summable functions f : DL → C with the standard inner product 〈f, g〉 =∑
x f (x)g(x). Since P is stochastic and self-adjoint, we have ‖P ‖ = ρ(P ) ≤ 1, where

ρ(P ) is its spectral radius. We set ρ′(P ) = min spec(P ), and write D = (d − 1)
∑
i qi

for the (constant) vertex degree of DL.

A. Polyhedra and horizontal functions

We now generalize the method of [3], where the spectrum of SRW on the horocyclic
product of two trees was considered.

A function f : DL→ R is called horizontal if it is finitely supported and∑
yj∈Tj : h(yj )=h(xj )

f (x1 · · · xj−1yjxj+1 · · · xd) = 0(5.1)

for every x = x1 · · · xd ∈ DL and j ∈ {1, . . . , d}.

(5.2) Lemma. The subspace of `2(DL) spanned by the horizontal functions is dense.

Proof. Since the point masses δx (x ∈ DL) generate a dense subspace of `2(DL), and
since DL is vertex-transitive, it is sufficient to show that δo (with o = o1 · · · od ) can be
approximated in the `2-norm by horizontal functions.

For each j , pick a vertex bj = bnj of Tj on the horocycle H j
−n of Tj that is not an

ancestor of oj . Now let fj = f
(n)
j be the function on Tj defined by

fj (xj ) =


1 if xj = oj ,
−q−nj if bj 4 xj ∈ H

j

0 ,

0 in all other cases.

Let f = f (n) be defined by f (x1 · · · xd) = f1(x1) · · · fd(xd). This function is horizontal,
and

‖f (n) − δo‖
2
=

d∏
j=1

(q−nj + 1)− 1→ 0 as n→∞. ut
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(5.3) Definition. Let a1, . . . , ad be vertices of T1, . . . , Td , respectively, such that N =
−
∑d
j=1 h(aj ) ≥ 2. The polyhedron S = S(a1, . . . , ad) is the induced subgraph of DL on

the set
{x1 · · · xd ∈ DL : aj 4 xj ∀j = 1, . . . , d}

with height N = N(S).

Note that S is finite; the octahedra O of Definition 4.2 are unions of 2d polyhedra of the
same height. Set

h = h(S) = (h(a1), . . . , h(ad)) ∈ Zd ,
Bh = {k ∈ Ad−1 : kj ≥ h(aj ) for j = 1, . . . , d}.

(5.4)

If S and S̃ are two polyhedra with the same height N = N(S) = N(̃S), then the graphs
Bh(S) and Bh(̃S) are isomorphic. As a representative of their isomorphism class, we single
out the following one, by a slight abuse of notation:

BN = B(0,...,0,−N) = {k ∈ Ad−1 : k1, . . . , kd−1 ≥ 0, kd ≥ −N}.

It contains
(
N+d−1
d−1

)
elements. If x = x1 · · · xd is an element of S(a1, . . . , ad) and H(x) =

(h(x1), . . . , h(xd)) then H(x) − h − Ned ∈ BN . In particular, for each j , we have xj ∈
T (aj ) = {yj ∈ Tj : aj 4 yj } and d(xj , aj ) ≤ N. The boundary ∂S of S, that is, the set of
all points in S having a neighbour in DL \ S, consists of all points x ∈ S for which there
is at least one j such that xj = aj . The interior of S is So = S \ ∂S. Analogously, we set
∂Bh = {k ∈ Bh : kj = h(aj ) for some j} and Boh = Bh \ ∂Bh, the boundary and interior
of the graph Bh (cf. Fig. 7).
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Fig. 7

For k ∈ Bh, the k-th level of S is defined by

Lk = Lk(a1, . . . , ad) = {x ∈ S : h(xj ) = kj , j = 1, . . . , d} =
d∏
j=1

(Tj (aj ) ∩H
j
kj
),

whereH j
m denotes them-th horocycle of the tree Tj . As in Figure 1, we can label all edges

of Tj by the elements of Zqj so that for each vertex of Tj , the edges to its successors all
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carry distinct labels. Write vj,l for the successor of aj such that the edge from aj to vj,l
has label l ∈ Zqj . We choose a function ϕj : Zqj → R with∑

l∈Zqj

ϕj (l) = 0 and
∑
l∈Zqj

(ϕj (l))2 = 1.(5.5)

For j ∈ {1, . . . , d} and k ∈ Z, we denote by f jk = f
j
k [aj , ϕj ] : Tj → R the function

f
j
k (xj ) =

{
ϕj (l)q(h(aj )−k+1)/2 if k > h(aj ) and vj,l 4 xj ∈ H

j
k ,

0 otherwise,
(5.6)

and we define for each k = (k1, . . . , kd) ∈ Ad−1 the following function on DL:

fk,S(x) = fk[S, ϕ1, . . . , ϕd ](x) =
d∏
j=1

f
j
kj
(xj ), x = x1 · · · xd ∈ DL.(5.7)

Since fk,S ≡ 0 on DL \ So, we can also consider fk,S as a function on S = S(a1, . . . , ad)

which is 0 on ∂S.

(5.8) Lemma. The functions fk,S, where k ∈ Boh and h = h(S), are horizontal and
orthonormal in `2(DL), and

Pfk,S =
1
D

d∑
i=1

∑
j 6=i

√
qiqj fk+ei−ej ,S.

Proof. It is immediate by construction that the fk,S, k ∈ Boh , are horizontal and orthonor-
mal. Regarding the action of P , first note that for each xj ∈ Tj , we have∑

yj : y−j =xj

f
j
k (yj ) =

√
qjf

j

k−1(xj ),

and when x−j 6= aj then also f jk (x
−

j ) =
√
qjf

j

k+1(xj ). Thus, for x ∈ DL \ ∂S we have

Pfk,S(x)=
1
D

d∑
i=1

∑
j 6=i

∑
y∈Nj,i (x)

fk,S(y)

=
1
D

d∑
i=1

f iki (x
−

i )
∑
j 6=i

( ∑
yj∈Tj : y−j =xj

f
j
kj
(yj )

) ∏
l 6=i,j

f lkl (xl)

(using now that x /∈ ∂S)

=
1
D

d∑
i=1

√
qif

i
ki+1(xi)

∑
j 6=i

√
qjf

j

kj−1(xj )
∏
l 6=i,j

f lkl (xl)

=
1
D

d∑
i=1

∑
j 6=i

√
qiqjfk+ei−ej ,S(x).
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When x ∈ ∂S, there is j ′ such that xj ′ = aj ′ . Thus, the double sum in the last line
vanishes. On the other hand, we split the sum in the second line into three pieces. The first
is the sum over all pairs (i, j) with i 6= j and both i, j 6= j ′. Then

∏
l 6=i,j f

l
kl
(xl) = 0,

since this product contains the factor f j
′

kj ′
(aj ′) = 0. The second is the sum over all pairs

(i, j) with i 6= j ′ and j = j ′. Then
∑
y−j =xj

f
j
kj
(yj ) = 0 since xj ′ = aj ′ . The third is the

sum over all pairs (i, j) with i = j ′ and j 6= j ′. But then f iki (x
−

i ) = f
j ′

kj ′
(a−
j ′
) = 0. Thus,

we also have Pfk,S(x) = 0 when x ∈ ∂S. ut

(5.9) Corollary. If q1 = · · · = qd = q then for all k ∈ BoN ,

Pfk,S =
1

d(d − 1)

d∑
i=1

∑
j 6=i

fk+ei−ej ,S.

B. The spectra of Q and P

Lemma 5.8 leads us to consider the self-adjoint convolution operator on `2(Zd) defined
by

Qf (k) =
1
D

d∑
i=1

∑
j 6=i

√
qiqj f (k+ ei − ej ).(5.10)

It leaves the subspace `2(Ad−1) invariant.

(5.11) Proposition. The spectrum of Q is an interval [ρ′(Q), ρ(Q)] with endpoints
ρ(Q) =

∑
i,j :j 6=i

√
qiqj/D and ρ′(Q) ≥ −1/(d − 1).

(i) If there is an i such that
√
qi >

∑
j 6=i

√
qj then ρ′(Q) > −1/(d − 1).

(ii) If d = 2 then ρ′(Q) = −ρ(Q).
(iii) If for each i there is j 6= i such that qi = qj then ρ′(Q) = −1/(d − 1).
(iv) In particular, if q1 = · · · = qd then spec(Q) = [−1/(d − 1), 1].

Proof. For t = (t1, . . . , td) ∈ [0, 2π ]d , the conjugate of the operator Q by the Fourier
transform is the operator of multiplication with the function

Q̂(t) =
1
D

∑
i,j : j 6=i

√
qiqj cos(ti − tj ).

It is well known that spec(Q) coincides with the set of values of Q̂. As a continuous
image of the connected set [0, 2π ]d , it must be an interval. The upper bound ρ(Q) is
attained for t = 0. For the lower bound, rewrite

Q̂(t) =
1
D

(∣∣∣ d∑
j=1

√
qj e

i tj
∣∣∣2 − d∑

j=1

qj

)
≥ −

1
D

d∑
j=1

qj = −
1

d − 1
.

(Here, i is the complex unit.)
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In case (i), we have ∣∣∣ d∑
j=1

√
qj e

i tj
∣∣∣ ≥ √qi −∑

j 6=i

√
qj > 0,

whence inft Q̂(t) > −1/(d − 1).
In case (ii), we find Q̂(π, 0) = −ρ(Q).
In case (iii), suppose without loss of generality that there are 2 ≤ r(1) ≤ · · · ≤

r(s) = d such that r(l) − r(l − 1) ≥ 2 and qj = qr(l) for r(l − 1) < j ≤ r(l).
For those j , we set tj = 2πj/(r(l) − r(l − 1)), so that

∑r(l)
j=r(l−1)+1 e

i tj = 0, whence
Q̂(t1, . . . , td) = −1/(d − 1). ut

Now consider the vector space V0(Bh) of all functions f : Bh → C with f ≡ 0 on ∂Bh,
and the symmetric operator (matrix) Qh : V0(Bh)→ V0(Bh) defined by

Qhf (k) =
{
Qf (k) if k ∈ Boh,
0 if k ∈ ∂Bh.

Again by slight abuse of notation, we writeQN forQ(0,...,0,−N), acting on V0(BN ). Since
Bh and BN are isomorphic when 〈h, 1〉 = −N , we have spec(Qh) = spec(QN ) in this
case.

(5.12) Lemma. spec(Q) =
⋃
N≥2

spec(QN ).

Proof. The operatorQ is the simple random walk operator on Ad−1. In particular, spec(Q)
is the spectrum of Q acting on `2(Ad−1).

Consider functions in V0(BN ) as functions on Ad−1 with value 0 outside of BoN . For
each f ∈ V0(BN ), we have QN f (k) = Qf (k) for each k ∈ Ad−1 \ ∂BN , while f ≡ 0 on
∂BN . Therefore

〈QN f , f 〉 = 〈Qf , f 〉
{
≤ ρ(Q)〈f , f 〉
≥ ρ′(Q)〈f , f 〉.

Consequently, ρ′(Q) ≤ ρ′(QN ) ≤ ρ(QN ) ≤ ρ(Q), and

spec(QN ) ⊂ [ρ′(Q), ρ(Q)] = spec(Q).

On the other hand, choose λ ∈ spec(Q) and ε > 0. As Q is self-adjoint there exists a
finitely supported f ∈ `2(Ad−1) of norm 1 such that ‖λf −Qf‖ < ε. There is an h such
that f ∈ V0(Bh) and Qf = Qhf . Thus, expanding f with respect to an orthonormal basis
of V0(Bh) consisting ofQh-eigenfunctions, we see that there must be an eigenvalue λ′ of
Qh such that |λ− λ′| < ε. Since spec(Qh) = spec(QN ), where N = −〈h, 1〉, the proof
is complete. ut

(5.13) Lemma. Let S = S(a1, . . . , ad) and S̃ = S(ã1, . . . , ãd) be two polyhedra, both of
height ≥ 2, and set h = h(S), h̃ = h(̃S). Furthermore let ϕ1, . . . , ϕd and ϕ̃1, . . . , ϕ̃d be
functions on Zqj satisfying (5.5). For k ∈ Boh and l ∈ Boh̃ , write fk,S = fk[S, ϕ1, . . . , ϕd ]
and f̃l,̃S = fl [̃S, ϕ̃1, . . . , ϕ̃d ]. Suppose that one of the following conditions is satisfied.
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(1) (a1, . . . , ad) 6= (ã1, . . . , ãd), or
(2) (a1, . . . , ad) = (ã1, . . . , ãd) and ϕj ⊥ ϕ̃j in `2(Zqj ) for some j ∈ {1, . . . , d}.

Then
{fk,S : k ∈ Boh} ⊥ {f̃l,̃S : l ∈ Boh̃}.

Proof. (1) If S ∩ S̃ = ∅ then the above two sets are obviously orthogonal.
Suppose now S ∩ S̃ 6= ∅. There is j such that aj 6= ãj , and aj , ãj are comparable in

the ancestor relation 4. Without loss of generality, suppose a1 6= ã1 and a1 4 ã1. Then
ã1 < v1,l , where the latter is one of the successors of a1 in T1.

Let k ∈ BoN and l ∈ Bo
Ñ

be given. If k 6= l then certainly fk,S ⊥ f̃l,̃S, as these
functions are supported on disjoint sets.

Assume therefore k = l. By construction (5.6), the function f 1
k1

on the subtree of T1

is constant on the support of f̃ 1
k1

. Also by construction, the sum of f̃ 1
k1

over its support is
zero. Thus, ∑

x1∈T1 : h(x1)=k1

f 1
k1
(x1)f̃

1
k1
(x1) = 0,

that is, f 1
k1
⊥ f̃ 1

k1
. Hence, again by construction (5.6),∑

x

fk,S(x)f̃l,̃S(x) =
∏
j

∑
xj

f
j
kj
(xj )f̃

j
kj
(xj ) = 0.

(2) If (a1, . . . , ad) = (ã1, . . . , ãd) then S̃ = S and h̃ = h. If k, l ∈ BoN are distinct
then fk,S and f̃l,S have disjoint supports and are perpendicular. In the last remaining case,
we compute

〈fk,S, f̃k,S〉 =
d∏
j=1

〈ϕj , ϕ̃j 〉 = 0. ut

Now let {ψm,N : m ∈ BoN } be an orthonormal basis of V0(Bn) consisting of eigenfunc-
tions (-vectors) of QN with associated eigenvalues λm,N , parametrized by all m ∈ BoN .
The following is immediate from Lemma 5.8 and the fact that for 〈h, 1〉 = −N , the
natural isomorphism BN → Bh is given by k 7→ k+ h+Ned .

(5.14) Corollary. Let S = S(a1, . . . , ad), h = h(S) and N = N(S). The functions
gm,S : DL→ R, defined by

gm,S =
∑

k∈BoN

ψm,N (k)fk+h+Ned ,S, m ∈ BoN ,

are orthonormal and horizontal vectors in `2(S) as well as in `2(DL). They satisfy

span{gm,S : m ∈ BoN } = span{fk,S : k ∈ Boh} and Pgm,S = λm,N · gm,S.
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Remember that each function gm,S, with m ∈ BoN , depends not only on the polyhedron
S = S(a1, . . . , ad), but also on the functions ϕ1, . . . , ϕd of (5.5), that is,

gm,S = gm[S, ϕ1, . . . , ϕd ].(5.15)

For each qj , we now select functions ϕjk , k ∈ Zqj \ {0}, that satisfy (5.5) and are
mutually orthogonal:

ϕ
j
l (s) =


0, s = 0, . . . , l − 2,
(qj − l)

/√
(qj − l)(qj + 1− l), s = l − 1,

−1
/√

(qj − l)(qj + 1− l), s = l, . . . , qj − 1.
(5.16)

(5.17) Proposition. The set

BS = {gm [̃S, ϕ1
l1
, . . . , ϕdld ] : S̃ ⊂ S, m ∈ Bo

N(̃S)
, lj ∈ Zqj \ {0}},

where S̃ runs through all polyhedra with height N(̃S) ≥ 2 contained in S, is an orthonor-
mal basis of the vector space V0S of all functions which are horizontal and supported
by S.

Proof. Lemma 5.13 and Corollary 5.14 imply that the elements of BS are orthonor-
mal, hence linearly independent. What remains is to show that BS spans the whole of
V0(S). We can replace each gm [̃S, ϕ1

l1
, . . . , ϕdld

] ∈ BS with fm+h+Ned [̃S, ϕ1
l1
, . . . , ϕdld

],
since these last functions are also linearly independent and span the same vector space by
Corollary 5.14.

Recall that Lk denotes the k-th level of the polyhedron S with height N = N(S).
A function f in the space of all complex functions supported by Lk is horizontal if and
only if it satisfies each of the equations∑

yj∈Tj : h(yj )=h(xj )

f (x1 · · · xj−1yjxj+1 · · · xd) = 0,

for all j ∈ {1, . . . , d} and xi ∈ Ti(ai)∩H
j
ki

for each i 6= j . The number of these equations

is
∑d
j=1

∏
i 6=j q

ki−h(ai )
i , but they are not independent. By inclusion-exclusion, we find

dim V0(Lk) =
d∏
i=1

(q
ki−h(ai )
i − 1).

The proof will be complete when we can show that V0(Lk) is spanned by all the functions
fk [̃S, ϕ1

l1
, . . . , ϕdld

], where S̃ ⊂ S, which are supported in Lk. To this end, we count all
functions of this last type (which are linearly independent).

First of all, the interior of S̃ = S(ã1, . . . , ãd) has to intersect Lk. This means that for
each j , we need to have h(aj ) ≤ h(ãj ) < kj . There are

∑kj−h(aj )−1
r=0 qrj points ãj of this

type. Thus, the number of feasible polyhedra S̃ is
∏d
j=1(q

kj−h(aj )
j − 1)/(qj − 1).
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The remaining choices that we have are those of the functions ϕjl , where l ∈ Zqj \

{0} and j ∈ {1, . . . , d}. There are
∏d
j=1(qj − 1) such choices, so that the total number

of functions fm [̃S, ϕ1
l1
, . . . , ϕdld

] supported in Lk is
∏d
j=1(q

kj−h(aj )
j − 1). This number

coincides with the dimension of V0(Lk), as claimed. ut

We can now show that as sets, the spectra of P on `2(DL) and Q on Ad−1 coincide,
although their “inner structure” is completely different. Indeed, spec(Q) is continuous,
i.e., the associated spectral (Plancherel) measure is absolutely continuous with respect to
Lebesgue measure, while for spec(P ), we have the following.

(5.18) Theorem. The spectrum of the operator P is pure point. It is the closure of the set
of eigenvalues

specp(P ) = {λm,N : N ≥ 2,m ∈ BoN } =
⋃
N≥2

spec(QN ).

Each eigenvalue has infinite multiplicity. An associated orthonormal basis consisting of
finitely supported eigenfunctions of P is given by

B = {gm[S, ϕ1
l1
, . . . , ϕdld ] : S polyhedron in DL with n(S)≥2, m∈BoN(S), lj ∈Zqj \ {0}},

where gm[S, ϕ1
l1
, . . . , ϕdld

] is defined in Corollary 5.14 and (5.15).

Proof. Pick any function f on DL which is horizontal. Its support is then contained in an
appropriate polyhedron S. Proposition 5.17 implies that f is in the span of BS. Hence
every horizontal function is a linear combination of functions in B. Therefore B is an
orthonormal basis by Lemma 5.2, and the whole spectrum must consist of the closure of
the set of associated eigenvalues. ut

In particular, we get ρ(P ) = ρ(Q), that is, the spectral radius of P is

ρ(P ) =
2
D

∑
i,j : i<j

√
qiqj , where D = (d − 1)

∑
i

qi .(5.19)

This formula might also have been derived in a completely different way, by use of The-
orem 1(b) of [41].

For DL(q1, q2), the eigenvalues of P can be computed explicitly [3]. In general, this
amounts to the explicit computation of the eigenvalues of QN on BN . For d ≥ 3, this
is the precise discrete analogue to computing the eigenvalues of the Laplacian on the
(d − 1)-dimensional Euclidean simplex whose side lengths are proportional to √qiqj
(respectively). An explicit solution to this last problem is known only for equilateral tri-
angles in dimension d − 1 = 2, but in no other case: this solution goes back to the work
of Lamé in the 19th century (see e.g. Lamé [33]), and has reappeared in the literature
several times (with or without knowledge of Lamé’s work): see Pinsky [38], Práger [39,
40], McCartin [36].
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C. The spectrum of P on DL(q, q, q)

We now consider briefly the case of DL(q, q, q), where we know from Corollary 5.9 that
Q is the transition operator of SRW on A2.

Let S3 be the permutation group of {1, 2, 3}. For σ ∈ S3 and k = (k1, k2, k3) ∈ Z3,
we write σk = (kσ−1(1), kσ−1(2), kσ−1(3)). Also, we write A3 for the subgroup of even
permutations in S3. Now we define the following functions for N ≥ 2:

ψm,N (k) =
1
√

6N

∑
σ∈S3

sign(σ ) exp
(

sign(σ )
2π i

3N
〈m, σk〉

)
, m,k ∈ A2.(5.20)

(5.21) Proposition. We have the following:

ψm,N = 0 on ∂BN for each m ∈ BoN ,(a)
〈ψm,N , ψm′,N 〉 = δm(m′) on BN for all m,m′ ∈ BoN ,(b)

QNψm,N = λm,N · ψm,N on BN , where(c)

λm,N =
1
3

(
cos
(

2π(m1 −m2)

3N

)
+ cos

(
2π(m2 −m3)

3N

)
+ cos

(
2π(m3 −m1)

3N

))
.

Proof. (a) The boundary of BN consists of the points k(e1 − e3) (first part), k(e2 − e3)

(second part) and N(e1 − e3) + k(e2 − e1) = (N − k, k,−N) (third part), where k =
0, . . . , N .

Let τi,j ∈ S3 be the transposition of i and j (i 6= j ). Then

ψm,N (kei − kej )

=
1
√

6N

∑
σ∈A3

(
exp

(
2π i

3N
〈m, σ (kei − kej )〉

)
− exp

(
2π i

3N
〈m,−στi,j (kei − kej )〉

))
= 0.

Thus, ψm,N = 0 on the first and second parts of ∂BN . Regarding the third part, note that
for m ∈ A2,

〈m, (N − k, k,−N)〉 + 〈m, τ1,2(N − k, k,−N)〉 = (m1 +m2 − 2m3)N ≡ 0 mod 3N.

Therefore, pairing each element σ ∈ A3 with στ1,2 as in the above sum shows that
ψm,N = 0 on the third part of ∂BN .

(b) We have by construction

ψm,N (k) = sign(σ )ψm,N (sign(σ )σk),

and since each of 〈m, (N,N,−2N)〉, 〈m, (N,−2N,N)〉 and 〈m, (−2N,N,N)〉, for
m ∈ A2, is a multiple of 3N , we get

ψm,N (k) = ψm,N (k+ (N,N,−2N)) = ψm,N (k+ (N,−2N,N))
= ψm,N (k+ (−2N,N,N)).
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That is, up to a change of sign, ψm,N is invariant under the group of motions of A2
generated by the translations k 7→ k + N(ei + ej − 2el), where {i, j, l} = {1, 2, 3},
and the reflections k 7→ −τi,jk, where 1 ≤ i < j ≤ 3. Now B3N is the union of nine
distinct images of BN under elements of that group, and those images meet only at their
respective boundaries, where ψm,N = 0. Therefore

〈ψm,N , ψm′,N 〉B3N = 9〈ψm,N , ψm′,N 〉BN ,

where the inner products are taken over B3N and BN , respectively. Also, ψm,N = 0 on
∂B3N . Recall that

∑3N−1
k=0 exp( 2π i

3N rk) = 0 when r ∈ Z is not a multiple of 3N . We now
obtain, setting k = (k1, k2,−k1 − k2) if k1 and k2 are given,

〈ψm,N , ψm′,N 〉BN

=
1

54N2

∑
σ,τ∈S

sign(στ)
3N−1∑
k1,k2=0

exp
(

2π i

3N
〈sign(σ )σ−1m− sign(τ )τ−1m′,k〉

)

=
1
6

∑
σ,τ∈S

sign(σ−1τ)δm(sign(σ−1τ)στ−1m′)

=

∑
σ∈S

sign(σ )δm((sign(σ )σm′) = δm(m′),

as BoN ∩ (sign(σ )σ )BoN = ∅ for σ 6= id.
(c) is a straightforward computation. ut

(5.22) Corollary. The spectrum of the SRW operator P on DL(q, q, q) is the interval
[−1/2, 1]. It is the closure of the set of eigenvalues

{λm,N : N ≥ 2, m ∈ A2 with m1, m2 > 0, m3 > −N}

given by Proposition 5.21(c).

The associated orthonormal basis of finitely supported eigenfunctions can be computed
explicitly by use of the functions ψm,N of (5.20), according to Theorem 5.18.

We remark here that the groups 03(Zq) and 0d(Fq) (d ≥ 3) constructed in Corollaries
3.15 and 3.17 are the first examples of finitely presented groups where SRW has a pure
point spectrum.

D. Spectral measure and return probabilities on DL(q, q, q)

If B is the orthonormal basis of Theorem 5.18 and we write λ(g) for the eigenvalue
associated with g ∈ B, then we see that the n-step transition probabilities p(n)(x, y) =
p(n)(y, x) = 〈P nδx, δy〉 satisfy

p(n)(x, y) =
∑
g∈B

λ(g)ng(x)g(y) =
∑

λ∈specp(P )

λnµx,y(λ), where

µx,y(λ) =
∑

g∈B : λ(g)=λ

g(x)g(y).
(5.23)
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Thus, we obtain the (x, y)-element µx,y of the spectral measure of the self-adjoint op-
erator P (see e.g. Grigorchuk and Żuk [29] for spectra of Markov operators on graphs,
and [3] in the context of DL-graphs). Since spec(P ) is pure point, µx,y is an infinite
sum of weighted point masses µx,y(λ)δλ. We want to have a closer look at the measure
µx,x = µo,o, which plays the role of the Plancherel measure.

The eigenvalues found in Proposition 5.21 satisfy the obvious relation λm,N = λ`m,`N
for each ` ∈ N. Besides, we also have λm,N = λτ1,2m,N (exchanging of m1 and m2), and
when N and m ∈ BoN are such that 2m1+4m2 = 3N then λm,N = −1/3. In general, it is
a very delicate task to determine all (m′, N ′) for which λm′,N ′ = λm,N , where (m, N) is
given. Thus, instead of a complete description, we pull back µo,o to a measure µ̃ on the
parameter space

M = {(m, N) : N ≥ 2, m ∈ BoN , gcd(N,m1, m2) = 1},(5.24)

by considering only the first, obvious relation above. (Since m3 = −m2 − m1, the
parametrization is in reality over all N ≥ 2 and m1, m2 ≥ 1 with m1+m2 ≤ N − 1.) We
note that for any polyhedron S, we have gm [̃S, ϕ1

l1
, ϕ2
l2
, ϕ3
l3

](o) 6= 0 if and only if o ∈ So

and (since the edge from each oj to its predecessor in Tj has label 0) if l1 = l2 = l3 = 1.
We write gm [̃S] = gm [̃S, ϕ1

1 , ϕ
2
1 , ϕ

3
1 ]. Thus, for (m, N) ∈M, we compute

µ̃(m, N) =
∞∑
`=1

Z(`m, `N), where Z(m, N) =
∑

S : o∈So,N(S)=N

(gm [̃S](o))2.

Now let S = S(a1, a2, a3), o ∈ So, N(S) = N and h = h(S). Then aj 4 oj , aj 6= oj
(j = 1, 2, 3), and k = −h−Ne3 ∈ B

o
N . From Corollary 5.14 we get

gm [̃S](o) = ψm,N (k)f0(o) = ψm,N (k)(q − 1)3/2q−N/2.

If we vary S in such a way that N(S) = N and o ∈ So, then this amounts to varying
k = −h(S)−Ne3 in BoN . Thus

Z(m, N) =
∑

k∈BoN

ψm,N (k)2(q − 1)3q−N = (q − 1)3q−N ,

and therefore

µ̃(m, N) = (q − 1)3/(qN − 1).(5.25)

The Plancherel measure µo,o is the image of µ̃ under the mapping M → spec(P ),
(m, N) 7→ λm,N . (If m1 6= m2 then this mapping is at least two-to-one.) We get in
particular the following nice expression for the n-step return probabilities.

(5.26) Corollary. With M and λm,N defined as in (5.24) and Proposition 5.21, respec-
tively, the n-step return probabilities for SRW on DL(q, q, q) are given by

p(n)(x, x) =
∑

(m,N)∈M
λnm,N (q − 1)3/(qN − 1)

∼ An1/6 exp(−Bn1/3) as n→∞, for some A,B > 0.

Here an ∼ bn means that an/bn→ 1 as n→∞.
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We omit the computational details of the asymptotic formula, which follow the method
of [3, §5]. Since for d ≥ 4, the precise information about the spectral measure is not
available, we cannot extend the above corollary to all DL-graphs. However, a rougher
estimate is available. If (an) and (bn) are two sequences of positive numbers, then we
write an 4 bn if there are constants C,D > 0 such that an ≤ CbDn. If an 4 bn
and bn 4 an, then we say that (an) and (bn) have the same asymptotic type, and write
an ≈ bn. Thus, SRW on DL(q, q, q) satisfies p(n)(x, x) ≈ exp(−n1/3) by the above, and
the same is true for DL(q, q) (when n is even, since DL(q, q) is bipartite); see [6, 3]. Also,
for arbitrary d, when q1, . . . , qd do not all coincide then ρ(P ) < 1, that is,

p(n)(x, x) ≈ exp(−n) on DL(q1, . . . , qd),

again considering only even n when d = 2.

(5.27) Proposition. For each d ≥ 3, SRW on DLd(q) satisfies p(n)(x, x) ≈ exp(−n1/3).

Proof. We follow a well-known method (see e.g. [45, §14–15]). It is a general fact that
on a vertex-transitive graph with exponential growth, p(n)(x, x) 4 exp(−n1/3) (see [45,
Corollary 14.5(b)]). Thus, we only need to prove the lower bound. This is based on the
following estimate, where we take x = o, andAm is a suitably chosen finite set of vertices
of our graph (see e.g. [45, §15]).

p(2n)(o, o) ≥ Pro[Zn ∈ Am]2/|Am|,

where Zn is the random position of the random walk starting at o. (For details of the
probabilistic notions, see §6 below.)

Now let aj = o−mj be the m-th predecessor of oj , and set Am = S(a1, . . . , ad). The
cardinality of this set is of the order of Cmd−1qdm. Let Zj,n ∈ Tj be the j -th coordinate
of Zn. If Zn /∈ Am then there must be k ≤ n and j ∈ {1, . . . , d} such that h(Zj,k) < −m.
Thus, if we set

Sn = max{|h(Zj,k)| : j = 1, . . . , d, k ≤ n},

then Pro[Zn ∈ Am] ≥ Pro[Sn ≤ m]. Since H(Zn) = (h(Z1,n), . . . , h(Zd,n)) defines
a translation invariant random walk on Ad−1 ∼= Zd−1, Lemma 1.2 of Alexopoulos [1]
implies that there are constants C′,D′ > 0 such that

Pro[Sn ≤ m] ≥ C′ exp(−D′n/m2).

Therefore

p(2n)(o, o) ≥ C̃ exp(−D̃(n/m2
+m+ logm)).

Setting m = bn1/3
c, we obtain the claimed lower estimate. ut
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6. The Poisson boundary of a random walk

In this section, we consider a larger class of random walks than those of §5. On DL =
DL(q1, . . . , qd), consider a stochastic transition matrix

P = (p(x, y))x,y∈DL

with the following properties:

(i) Irreducibility: For each x, y ∈ DL there is N such that the (x, y)-element of PN

satisfies p(N)(x, y) > 0.
(ii) Group-invariance: the group

0 = {g ∈ A : p(gx, gy) = p(x, y) for all x, y ∈ DL}

acts transitively on DL, where A is as in Proposition 2.5.
(iii) Finite first moment: for the graph metric d(·, ·) of DL,

m1(P ) =
∑
x

p(o, x)d(o, x) <∞.

Let (Zn)n≥0 be the random walk on DL governed by P , and let Prx0 be the probability
measure on the associated trajectory space for the initial point Z0 = x0. Thus,

Prx0 [Zk+n = y | Zk = x] = p(n)(x, y)

whenever Prx0 [Zk = x] = p(k)(x0, x) > 0.

Since DL is a vertex-transitive graph with exponential growth, the random walk is
transient, that is,

Prx[d(Zn, Z0)→∞] = 1

(see Woess [45, Theorem 5.13]). Our first question is whether one can give a more precise
geometric description of how (Zn) tends to infinity in DL.

(6.1) Definition. The geometric compactification D̂L of DL is the closure of DL in the
product

∏d
j=1 T̂j of the end compactifications. The geometric boundary of DL is

∂DL = D̂L \ DL =
{
ζ = ζ1 · · · ζd ∈

d∏
j=1

T̂j : ζj = ωj for at least one j
}
.

To justify the last fact, first observe that (
∏d
j=1 T̂j ) \ (

∏d
j=1 Tj ) consists of all ζ =

ζ1 · · · ζd ∈
∏d
j=1 T̂j such that ζj ∈ ∂Tj for at least one j (while it may well be that some

ζi are vertices in Ti). Now, if such a ζ is the limit of a sequence xn = x1,n · · · xd,n ∈ DL,
then we can distinguish the following cases:

(1) If there are coordinates i such that |h(xi,n)| → ∞ then there must be some j such
that h(xj,n)→−∞ and consequently xj,n→ ωj .



Horocyclic products of trees 809

(2) If |h(xi,n)| is bounded for each i, then there still must be some coordinate j such
that d(oj , xj,n) → ∞. But in this case, we must also have u(oj , xj,n) → ∞ (see (2.2)).
Therefore xj,n→ ωj .

In general, up to a permutation of the coordinates, the situation will be as follows:
there are indices 1 ≤ r ≤ s ≤ d such that ζj = ωj for 1 ≤ j ≤ r (and h(xj,n) may be
bounded or unbounded from below as well as from above!), ζj ∈ ∂∗Tj for r < j ≤ s (and
h(xj,n)→∞), and ζj ∈ Tj for s < j ≤ d (and xj,n = ζj for all but finitely many n).

For a detailed description of boundary and convergence in the case d = 2 (two trees),
see [14, (5.3)] or Bertacchi [6].

For j ∈ {1, . . . , d}, let 0j be the image of 0 under the projection A → Aff(Tj ).
This group acts transitively on Tj . Write Zj,n for the image of Zn under the projection
DL→ Tj . Then (Zj,n) is an irreducible random walk on Tj whose transition probabilities
pj (xj , yj ) are 0j -invariant. We also consider the image

H(Zn) = (h(Z1,n), . . . , h(Zd,n)) ∈ Ad−1.

This defines a random walk on Ad−1 whose transition probabilities are invariant under
translation by elements of Ad−1. In the same way, (h(Zj,n))n≥0 is a translation invariant
random walk on Z. Its increments are i.i.d. integer random variables with expected value

αj = αj (P ) = Eo(h(Zj,1)) =
∑
x∈DL

p(o, x)h(xj ),

which is finite, since |αj | ≤ m1(P ). Note that
∑
j αj = 0, so that there must be a j with

αj ≤ 0. Applying the results of [19] and (for convergence to the boundary when αj = 0)
Brofferio [12, Theorem 3.1], one finds the following under the above assumptions (i)–(iii).

(6.2) Proposition. For each j ∈ {1, . . . , d}, we have for the distance on Tj ,

lim
n→∞

d(Zj,n, Z0,n)

n
= |αj | Prx-almost surely,

and there is a ∂Tj -valued random variable Zj,∞ such that

lim
n→∞

Zj,n = Zj,∞ Prx-almost surely

in the topology of T̂ , for every x ∈ DL. One has the following.

(a) If αj ≤ 0 then Zj,∞ = ωj almost surely.
(b) If αj > 0 then Zj,∞ is a ∂∗Tj -valued random variable whose Prx-distribution is a

continuous measure (i.e., it carries no point mass) supported by the whole of ∂∗Tj .

Proof. The results in [19] and [12] are formulated for random walks on Aff(Tq), that is,
for Rno, where Rn = g0X1 · · ·Xn (group product) and the Xn are i.i.d. group-valued
random variables. The only point that we have to clarify is that our situation arises as a
special case of that form.
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There is a standard method for turning a 0-invariant random walk on a transitive graph
into Rno, where (Rn) is a random walk on 0; see e.g. Kaimanovich and Woess [32, Prop.
2.15]. Indeed, if dg is the left Haar measure on the (locally compact, totally disconnected)
group 0, then

µ(dg) = p(o, go)dg(6.3)

defines a probability measure on 0. Now let (Xn)n≥1 be i.i.d. µ-distributed in 0. Then
Zn = g0X1 · · ·Xno defines a Markov chain on the graph with Z0 = g0o and transition
matrix P . ut

Let us write 3j (αj ) = {ωj } if αj ≤ 0, and 3j (αj ) = ∂∗Tj if αj > 0, and define the
following Borel subset of ∂DL:

3 =

d∏
j=1

3j (αj ).(6.4)

(6.5) Corollary. Under assumptions (i)–(iii), there is a 3-valued random variable Z∞
such that

lim
n→∞

Zn = Z∞ Prx-almost surely

in the topology of D̂L, for every x ∈ DL. The Prx-distribution νx of Z∞ is a Borel
probability measure supported by the whole of 3. It is a continuous measure unless
3 = {ω1 · · ·ωd} is trivial, which happens precisely when αj = 0 for all j .

The measures νx satisfy νx =
∑
y p(x, y)νy and are mutually absolutely continuous.

(The last statement is immediate by factoring through the first step of the random walk,
and using irreducibility.)

Thus, we see that the space 3 together with the family of harmonic measures ν• =
(νx)x∈DL is a boundary of the random walk (Zn) in the sense of [32], a notion going back
to Furstenberg [28]. Indeed, the group 0 defined in (ii) acts on3, i.e.,3 is a 0-space, and
we have the convolution identity µ ∗ νo = νo for the probability measure µ on 0 defined
in (6.3). This identity holds since δg ∗ νo = νgo for every g ∈ 0.

We now want to decide whether this is the “best” (biggest) model, as a measure space,
for distinguishing limit points at infinity of our random walk. To formulate this question
more precisely, we recall that a P -harmonic function is a function h : DL→ R such that
h(x) =

∑
y p(x, y)h(y). Now, if ϕ ∈ L∞(3, ν•), then

h(x) =

∫
3

ϕ dνx

defines a mapping fromL∞(3, ν•) to the space of all bounded harmonic functions. When
the mapping is bijective, (3, ν•) is called the Poisson boundary of the random walk.
This boundary is unique up to isomorphism of measure spaces. For precise details in the
present setting of a group-invariant random walk on a transitive graph, we refer to [32];
additional information can be found in the references given there. The following theorem
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should be compared with the main result (based on a different method) of Brofferio [13],
who considers the Poisson boundary of random walks on finitely generated groups of
affine mappings with rational coefficients: those groups act on a “weighted” horocyclic
product of distinct trees with hyperbolic upper half-plane.

(6.6) Theorem. Under assumptions (i)–(iii), (3, ν•) is the Poisson boundary of the ran-
dom walk (Zn) on DL.

Proof. For the proof, we apply the ray criterion of Kaimanovich (see [32, Thm. 5.18]).
Formulated in our specific terms of 3 and DL, it says the following.

Suppose that3 is a 0-space carrying a family of probability measures ν• = (νx)x∈DL

such that δg ∗ νo = νgo and νo =
∑
x p(o, x)νx . Then (3, ν•) is the Poisson bound-

ary of the random walk (Zn), provided that there is a sequence of measurable map-
pings 5n : 3→ DL such that, in the graph metric of DL,

lim
n→∞

1
n
d(Zn,5n(Z∞)) = 0 Pro-almost surely.

We now construct 5n. We know that αj ≤ 0 for some j , and assume without loss of
generality that αd ≤ 0. Let now ξ = ξ1 · · · ξd ∈ 3 be given, so that ξj ∈ ∂Tj for each j ,
and ξj = ωj for at least one j . By Proposition 6.2, ξd = ωd .

For integer k ≥ 0, denote by ξj (k) the element on the geodesic oj ξj at distance k
from oj . Similarly, if ξj ∈ ∂∗Tj and k ≥ 0, denote by ξj [k] the element on the geodesic
oj ξj which lies on the horocycle H j

k of Tj and, in case there are two such elements (only
when k = 0), is furthest possible from oj . Finally, if ξj = ωj and k ≤ 0 then the geodesic
oj ξj intersects Hk at the point ξj [k] = ωj (|k|). See Figure 8.
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Note that

d(ξj [k], ξj (|k|)) = d(oj , ξj [0]).(6.7)

We define

5n(ξ) = x1 · · · xd , where xj = 5j,n(ξj ) = ξj [kj ] with
kj = dαjne, j = 1, . . . , d − 1, and kd = −k1 − · · · − kd−1.

Note that this is well defined: when αj > 0 we have ξj ∈ ∂∗Tj and kj > 0, so that
H
j
kj

intersects oj ξj in a unique point. When j < d and αj ≤ 0 we have ξj = ωj and

kj ≤ 0, so thatH j
kj

also intersects oj ωj in a unique point. This also holds for j = d , since
kd ≤ −α1n− · · · − αd−1n = αdn ≤ 0.

We now apply the results and methods of [19]. Since m1(P ) < ∞, we also have
m1(Pj ) < ∞, where Pj is the transition matrix of (Zj,n)n≥0 on Tj . This implies via the
law of large numbers that

1
n
d(Zj,n+1, Zj,n)→ 0 and

1
n
h(Zj,n)→ αj Pro-almost surely.

Applying [19, Def. 1 and Prop. 1], one finds that (Zj,n)n is almost surely a regular se-
quence in Tj , that is,

1
n
d(Zj,n, Zj,∞(dαjne))→ 0 Pro-almost surely.

Now (6.7) implies that in the metric of Tj also

1
n
d(Zj,n,5j,n(Zj,∞))→ 0 Pro-almost surely.

Since for arbitrary x, y ∈ DL we have d(x, y) ≤
∑d
j=1 d(xj , yj ), we conclude that in the

metric of DL,
1
n
d(Zn,5n(Z∞))→ 0 Pro-almost surely,

so that the criterion applies. ut

Since Zj,n → ωj almost surely, when αj ≤ 0, we may omit this part in the description
of the Poisson boundary, and can consider the harmonic measures νx as measures on the
product of all ∂∗Tj where αj > 0.

(6.8) Corollary. The Poisson boundary of the random walk (Zn) satisfying (i)–(iii) can
be identified with the space ∏

j :αj>0

∂∗Tj .

If αj = 0 for all j then the Poisson boundary is trivial, and all bounded harmonic func-
tions are constant.
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In particular, for SRW on DL(q1, . . . , qd), if we set q̄ = (q1 + · · · + qd)/d , then the
Poisson boundary can be identified with∏

j : qj>q̄
∂∗Tj ;

it is trivial precisely when all qj coincide.

Indeed, for SRW, we compute αj = (qj − q̄)d/D, where D is the vertex degree in DL.

7. Outlook

Here are some further examples of Busemann pairs that are not necessarily trees or tree-
like.

In some graph-theoretical papers, such graphs are said to have property Z, because
they admit a graph homomorphism onto the canonical Cayley graph of Z, that is, the
two-way-infinite path. See in particular the interesting papers by Cameron, Praeger and
Wormald [16], Evans [26], and Malnič, Marušič, Seifter and Zgrablić [34], where di-
graphs (oriented graphs) are studied whose isometry group acts transitively on the set of
oriented paths of length s, for every s. Of course, in our setting we consider the underly-
ing undirected graph, where the edge orientation is forgotten. Besides the homogeneous
trees (with orientation according to the ancestor relation), DL(q1, q2) itself provides an
example of this type.

If 0 is any finitely generated group which admits a group homomorphism onto the
additive group Z, then suitable Cayley graphs of 0 will have property Z, i.e., they will
be Busemann pairs. For example, we can take the usual lattice Zd where two points are
neighbours if they are at distance 1, and define h(k1, . . . , kd) = k1 + · · · + kd .

A more interesting example is the amenable Baumslag–Solitar group BSq = 〈a, b |
ab = bqa〉. It has a natural homomorphism onto the infinite cyclic group generated by a,
and its Cayley graph with respect to the set of generators {a±1, (ab)±1

} has property Z.
Indeed, it is a discretization of the horocyclic product of the hyperbolic plane H and the
tree Tq , and fully merits the name of Busemann pair.

The horocyclic product of the hyperbolic plane H and a tree is called a treebolic space
HT(q, r) in forthcoming work of Bendikov, Saloff-Coste, Salvatori and Woess. Here, one
considers the tree Tr as a 1-complex, where each edge is a homomorphic copy of the unit
interval, the tree metric is extended in the natural way to the interior of each edge, and
the Busemann (horocycle) function with respect to the reference end becomes R-valued.
Then HT(q, r) consists of all pairs (z, w) ∈ H × Tr with Im z = qh(w). This is a 2-
dimensional complex with a natural metric inherited from H and Tr . The group BSq acts
by isometries and with compact quotient on HT(q, q) (cf. Farb and Mosher [27]). Tree-
bolic space is another example of a Busemann pair, with real-valued Busemann function.

In a similar way, the construction of horocyclic products of two hyperbolic planes
leads to Sol -groups, resp. Sol -manifolds (cf. [25]). They are also Busemann pairs with
real-valued Busemann function.
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More generally, one can also consider “Busemann pairs” where the horocycle func-
tion h takes its values in Zd (or Rd , or any Abelian group). The horocyclic product of
two or more spaces of this type (all with the same d) is then defined in the same way
as in (1.1). (This construction has already been suggested in [32, p. 356].) For example,
Ãd -buildings have a boundary at infinity and a Busemann (horocycle) function with re-
spect to a given boundary point that is Zd -valued (cf. e.g. Cartwright [18]). The resulting
horocyclic products are the object of current investigations by J. Parkinson et al.
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