Infinite groups 2018: Sheet 1

October 8, 2018

Exercise 1. Let G be a finitely generated group and let S be an infinite set of generators of G. Show that there exists a finite subset F of S so that G is generated by F.

Recall that an exact sequence is a sequence of groups and group homomorphisms $% \mathcal{S}_{\mathrm{rec}} = \mathcal{S}_{\mathrm{rec}} + \mathcal{S}_{\mathrm{rec}$

$$\dots G_{n-1} \xrightarrow{\varphi_{n-1}} G_n \xrightarrow{\varphi_n} G_{n+1} \dots$$

such that $\operatorname{Im} \varphi_{n-1} = \operatorname{Ker} \varphi_n$ for every *n*. A short exact sequence is an exact sequence of the form:

$$\{1\} \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\psi} H \longrightarrow \{1\}.$$
 (1)

In other words, φ is an isomorphism from N to a normal subgroup $N' \triangleleft G$ and ψ descends to an isomorphism $G/N' \simeq H$.

Exercise 2. Suppose that we have a short exact sequence of groups

$$1 \to G_1 \xrightarrow{i} G_2 \xrightarrow{\pi} G_3 \to 1$$

such that the groups G_1, G_3 are finitely generated. Prove that G_2 is also finitely generated.

Exercise 3. Let H be the group of permutations of \mathbb{Z} generated by the transposition t = (01) and the translation map s(i) = i + 1. Let H_i be the group of permutations of \mathbb{Z} supported on $[-i, i] = \{-i, -i + 1, \dots, 0, 1, \dots, i - 1, i\}$, and let H_{ω} be the group of finitely supported permutations of \mathbb{Z} (i.e. the group of bijections $f : \mathbb{Z} \to \mathbb{Z}$ such that f is the identity outside a finite subset of \mathbb{Z}),

$$H_{\omega} = \bigcup_{i=0}^{\infty} H_i \,.$$

Prove that H_{ω} is a normal subgroup in H and that $H/H_{\omega} \simeq \mathbb{Z}$. Prove that H_{ω} is not finitely generated.

Recall that the wreath product $A \wr C$ of two groups A and C is the semidirect product

$$(\oplus_C A) \rtimes C$$

where C acts on the direct sum by pre-compositions: $f(x) \mapsto f(xc^{-1})$. Thus, the elements of the wreath product $A \wr C$ are pairs (f, c), where $f : C \to A$ is a map with finite support, and $c \in C$. The product structure on this set is given by the formula

$$(f_1(x), c_1) \cdot (f_2(x), c_2)) = (f_1(xc_2^{-1})f_2(x), c_1c_2).$$

For each $a \in A$ we define the map $\delta_a : C \to A$ so that the image of $1 \in C$ is $a \in A$, and all the other elements of C are mapped to $1 \in A$.

- *Exercise* 4. 1. Let $a_i, i \in I$, and $c_j, j \in J$, be sets of generators of A and C, respectively. Prove that the set of elements $(1, c_j), j \in J$, and $(\delta_{a_i}, 1), i \in I$, generate $G_A := A \wr C$. In particular, if A and C are finitely generated, so is $A \wr C$.
 - 2. Let G be the wreath product $\mathbb{Z} \wr \mathbb{Z} \cong N \rtimes \mathbb{Z}$, where N is the (countably) infinite direct sum of copies of \mathbb{Z} . Prove that G is 2-generated, and that the normal subgroup N is not finitely generated.

Exercise 5. Prove that every short exact sequence

$$1 \to N \to G \xrightarrow{r} F(X) \to 1$$

splits.

Exercise 6. Suppose that $g \in Bij(X)$ is a bijection such that for some $A \subset X$,

 $g(A) \subsetneq A$.

Prove that g has infinite order.

Exercise 7. Let F_2 be the free group of rank two.

- State and prove a generalization of the Ping-pong lemma to n elements g_1, g_2, \ldots, g_n .
- Prove that for every n, the group F_2 has a subgroup isomorphic to F_n .
- Prove that every free group of countable rank can be embedded as a subgroup of F_2 .