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Chapter 19

The impulse that this tugboat imparts to this ship will cause it to turn
in a manner that can be predicted by applying the principles of
impulse and momentum.



Planar Kinetics of a
Rigid Body: Impulse
and Momentum

CHAPTER OBJECTIVES
B To develop formulations for the linear and angular momentum
of a body.

B To apply the principles of linear and angular impulse and
momentum to solve rigid-body planar kinetic problems that
involve force, velocity, and time.

m To discuss application of the conservation of momentum.

® To analyze the mechanics of eccentric impact.

19.1 Linear and Angular Momentum

In this chapter we will use the principles of linear and angular impulse
and momentum to solve problems involving force, velocity, and time as
related to the planar motion of a rigid body. Before doing this, we will first
formalize the methods for obtaining a body’s linear and angular
momentum. assuming the body is symmetric with respect to an inertial
x—vy reference plane.

Linear Momentum. The linear momentum of a rigid body is
determined by summing vectorially the linear momenta of all the particles
of the body. i.e., L = Zm;v. Since Zm;v; = mvg (see Sec. 15.2) we can
also write

L = mvg; (19-1)

This equation states that the body’s linear momentum is a vector gquantity
having a magnitude mv;, which is commonly measured in units of
kg - m/s or slug - ft/s and a direction defined by v the velocity of the
body’s mass center.



496

CHAPTER 19  PLanar KINETICS OF A RiGID Booy: IMPULSE AND MOMENTUM

Angular Momentum. Consider the body in Fig. 19-1a, which is
subjected to general plane motion. At the instant shown, the arbitrary
point P has a known velocity vp, and the body has an angular velocity e.
Therefore the velocity of the ith particle of the body is

VE:VP+\';;P="'P+MXF

The angular momentum of this particle about point P is equal to the
“moment” of the particle’s linear momentum about P, Fig. 19-1a. Thus,

(HP):' =r X m;v;

Expressing v; in terms of vp and using Cartesian vectors, we have

(Hp)ik = my(xi + yj) X [(0p),d + (vp)] + wk X (xdi + yj)]
(Hp);

Il

—my(vp), + mx(vp), + muwr’

Letting m;—=dm and integrating over the entire mass m of the body,
we obtain

Hp = —(/3‘ dm)(’v.ﬂ)x =+ (fx dm)wP]_v + (jfzd’”)“’

Here Hp represents the angular momentum of the body about an axis
(the z axis) perpendicular to the plane of motion that passes through
point P. Since ym = f vdmand xm = f x dm, the integrals for the first
and second terms on the right are used to locate the body’s center of
mass ( with respect to P, Fig. 19-1bh. Also, the last integral represents the
body’s moment of inertia about point F. Thus,

Hp = —ym(vp), + Im(vp), + lpw (19-2)

This equation reduces to a simpler form if P coincides with the mass
center G for the body,* in which case ¥ = ¥ = 0. Hence,

[He = tge (19-3)

*It also reduces to the same simple form, Hp = lpw, if point P is a fived point (see
Eq. 1Y-9) or the velocity of P is directed along the line PG.
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Here the angular momentum of the body about G is equal to the product
of the moment of inertia of the body abour an axis passing through G and
the bodyv’s angular velocity. Realize that Hy, is a vector quantity having a
magnitude I, which is commonly measured in units of kg-m?/s or
slug - ft* /s, and a direction defined by e, which is always perpendicular to
the plane of motion.

Equation 19-2 can also be rewritten in terms of the x and vy components
of the velocity of the body’s mass center, (v;), and (v,;),. and the body’s
moment of inertia /;;. Since G is located at coordinates (.7), then by the
parallel-axis theorem, Ip = I; + m(x*> + ¥7). Substituting into Eq. 19-2
and rearranging terms, we have

Hp = ¥m[—(vp), + Y] + Im[(vp), + Xo] + lgw (19-4)

From the kinematic diagram of Fig. 19-1b. v; can be expressed in terms
of vpas
“'G = Vp + w X F
(UU]_\.i + (I:G)_\'j = {v;:)_ri + (Up}..‘_.j + wk X Cﬁ + t';j}

Carrying out the cross product and equating the respective i and j
components vields the two scalar equations

{U(})k = ('UP)J' - :'E(U

“J(;)_\' = (’UF)_\) s ?I:L'

Substituting these results into Eq. 19-4 yields

(C+ Hp = —ym(vg), + xm(vg), + lgw (19-5)

As shown in Fig. 19-lc¢, this result indicates that when the angular
momentum of the body is computed about point P, it is equivalent to the
moment of the linear momentum mvg, or its components m(vg), and
m(vg),, about P plus the angular momentum I; . Using these results, we
will now consider three types of motion.

3 y

mvg), L =mvg

g_;ﬂ:. 7.3 y
i

H;=1 |
P chak..! ;;’ X
T g
.. Body momentum
diagram
()

Fig. 19-1
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Translation

(a)

Rotation about a fixed axis
(b)
Fig. 19-2

Translation. When a rigid body is subjected to either rectilinear or
curvilinear translation, Fig. 19-2a, then @ = 0 and its mass center has a
velocity of vg; = v. Hence, the lincar momentum, and the angular
momentum about 7, become

L = mvg

19-6
HG =0 ( )

If the angular momentum is computed about some other point A, the
“moment” of the linear momentum L must be found about the point.
Since d is the “moment arm™ as shown in Fig. 19-2a, then in accordance
with Eq. 19-5, H, = (d)(mvg) D).

Rotation About a Fixed Axis. When a rigid body is rotating
about a fixed axis, Fig. 19-2b, the linear momentum, and the angular
momentum about G, are

L = myvg (19-7)

HG = IGCE)

It is sometimes convenient to compute the angular momentum about
point O. Noting that L (or v;) is always perpendicular to rg. we have

(C+) Hy = Iqw + rglmug) (19-8)

Since vy = rqw, this equation can be written as Hy = (Ig + mri)e.
Using the parallel-axis theorem,*

| Hp = Ipo (19-9)

For the caleulation, then, either Eq. 19-8 or 19-9 can be used.

*The smmilarity between this denvation and that of Eq. 17-16 (EM, = [pa) and
Eq. 18-5 [T = 11,0") should be noted. Also note that the same result can be obtained
from Eq. 1Y-2 by selecting point P at O, realizing that (vg), = (vy), = O
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General plane motion

(c)
Fig. 19-2

General Plane Motion. When a rigid body is subjected to general
plane motion, Fig. 19-2¢, the linear momentum, and the angular
momentum about (G, become

L=mbe (19-10)

HG = IGw

If the angular momentum is computed about point A, Fig. 19-2¢, it is
necessary to include the moment of L and H; about this point. In this case,

(C+) Hy = lgo + (d)mvg)

Here d is the moment arm, as shown in the figure.
As a special case, if point A is the instantaneous center of zero velocity
then, like Eq. 19-9, we can write the above equation in simplified form as

Hy = Leo | (19-11)

where [ 1s the moment of inertia of the body about the IC. (See Prob, 19-2.)

As the pendulum swings downward, its angular
momentum about point O can be determined by
computing the moment of ;e and mvg; about O.
This is Hy = dzw + (muyg)d. Since v; = wd, then
Hy = low + mlwd)d = (I + md* e = o

499
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EXAMPLE 191

At a given instant the 5-kg slender bar has the motion shown in
Fig. 19-3a. Determine its angular momentum about point G and
about the IC at this instant.

SOLUTION

Bar. The bar undergoes general plane motion. The IC is established
in Fig. 19-3b, so that

~ 2m/s
- 4 m cos 30°

g = (0.5774 rad/s)(2 m) = 1.155 m/s

= 0.5774 rad /s

Thus,

(C+)H = Igw = [{5(5 kg)(4 m)* |(0.5774 rad /s) = 3.85 kg *m* /s D Ans.

Adding /@ and the moment of mvg about the IC vields

(C+) Hie = I +dinvg)

= [fi(ﬁ kg4 m)l](O.S?M rad/s) +(2 m)(5 kg)(1.155 m/s)

15.4 kg -m?*/s ) Ans.

We can also use
(C+) Hye = hew
[ 5 (5 ke)4 m)® + (5 ke)(2 m)*] (0.5774 rad /s)

154kg-m?/s) Ans.

=
L
—
£
Il
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19.2 Principle of Impulse and Momentum

Like the case for particle motion, the principle of impulse and momentum
for a rigid body can be developed by combining the equation of motion
with kinematics. The resulting equation will yield a direct solution to
problems involving force, velocity, and time.

Principle of Linear Impulse and Momentum. The equation
of translational motion for a rigid body can be written as
2F = mag = m(dvg/dn. Since the mass of the body is constant,

% d
iF = P (mvg)

Multiplying both sides by dr and integrating from t = 1, vg = (vg), to
f= Vg = (vg)s yields

s
2/‘ Fdt = mvg), — mivg),
Ju

This equation is referred to as the principle of linear impulse and
momentum. It states that the sum of all the impulses created by the
external force system which acts on the body during the time interval 7, to
1> is equal to the change in the linear momentum of the body during this
time interval, Fig. 19-4.

Principle of Angular Impulse and Momentum. If the body
has general plane motion then XMg = lza = I5ldw/di). Since the
moment of inertia is constant,

d
ZMG » E[lcw)

Multiplying both sides by dr and integrating from ¢t = ¢, @ = @ to
t= th,w = w, gives

Iz
2/ MG dr = fG&j"j‘ - !G[U| (19-[2)
1y

In a similar manner, for rotation about a fixed axis passing through
point O, Eq. 17-16 (£M, = I,a) when integrated becomes

fa
2/ MG dt = [l-_';ﬂ:.lz - IO{I)] (19—13)
f

Equations 19-12 and 19-13 are referred to as the principle of angular
impulse and momentim. Both equations state that the sum of the angular
impulses acting on the body during the time interval 1, to 1, is equal to
the change in the body’s angular momentum during this time interval.

I

CG

m(vg)
Initial
momentum
: dig jgram
(a)
]
"!r' .Fl dt _|_
]
J: M, dr
G
W[fl |
I F‘ dt \ i
i Tmpulse i
I diagram J; Egitl
(b)
[l
e,

( m)

Final
maomentum
diagram

(e}
Fig. 194
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Tgon

CG

m(¥e)y

Tnitial
maomentum
diagram

Wi — n)

/;
e \ ,,
't mpulse 1
diagram '[,F'l %

(h)

.rGﬁ.lg

(ﬁh

Final
mormentum
diagram

(c)
Fig. 19-4 (repeated)

To summarize these conecepts, if motion occurs in the x—y plane, the
following three scalar equations can be written to describe the planar
motion of the body.

2
m(ve) + 2/ Fodt = m(Vg)s
f
]
m(vgy) + 2/ Fydt = m(vg,)s (19-14)
h

Iy
Iow + 2 [ Mg dt = lgw,
o1y

The terms in these equations can be shown graphically by drawing a
set of impulse and momentum diagrams for the body. Fig. 19-4. Note that
the linear momentum mvy; is applied at the body’s mass center, Figs. 19-4a
and 19-4¢; whereas the angular momentum /5@ is a free vector, and
therefore, like a couple moment, it can be applied at any point on the
body. When the impulse diagram is constructed, Fig. 19-4b, the forces F
and moment M vary with time, and are indicated by the integrals.
However, if F and M are constant integration of the impulses yields
F(r; — ;) and M(r; — 1)), respectively. Such is the case for the body’s
weight W, Fig. 19-4b.

Equations 19-14 can also be applied to an entire system of connected
bodies rather than to each body separately. This eliminates the need to
include interaction impulses which occur at the connections since they
are internal to the system. The resultant equations may be written in
symbolic form as

(E syst. linear i (2 sysl, lim:au‘) _ (2 syst. lincm‘)
momentum / impulse /-2 momentuin / 5

syst. linear ( SysL. linﬂﬂf) :( sysL. linca:)
(2 ))_l+ 2 impulse /o) 2“n‘lm‘m‘fntum 2

momentum
(Esysl‘ angular) o (Esyst. angular) B (Esyst. angular)
momentum / 5 mpulse /(-2 momentum /5,
(19-15)

As indicated by the third equation, the system’s angular momentum and
angular impulse must be computed with respect to the same reference
point O for all the bodies of the system.
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Procedure For Analysis

Impulse and momentum principles are used to solve kinetic
p P P

problems that involve velocity, foree, and time since these terms are
involved in the formulation.

Free-Body Diagram.

e Establish the x, y, z inertial frame of reference and draw the free-
body diagram in order to account for all the forces and couple
moments that produce impulses on the body.

® The direction and sense of the initial and final velocity of the body’s
mass center, v, and the body’s angular velocity @ should be
established. If any of these motions is unknown, assume that the sense
of its components is in the direction of the positive inertial coordinates.

¢ Compute the moment of inertia I or /.

e As an alternative procedure, draw the impulse and momentum
diagrams for the body or system of bodies. Each of these diagrams
represents an outlined shape of the body which graphically accounts
for the data required for each of the three terms in Egs. 19-14 or
19-15, Fig. 19-4. These diagrams are particularly helpful in order to
visualize the “moment” terms used in the principle of angular
impulse and momentum, if application is about the /C or another
point other than the body’s mass center G or a fixed point O.

Principle of Impulse and Momentum.

= Apply the three scalar equations of impulse and momentum.

® The angular momentum of a rigid body rotating about a fixed axis is the

moment of mvg; plus I; @ about the axis. This is equal to Hy = I,

where [, is the moment of inertia of the body about the axis.

All the forces acting on the body’s free-body diagram will create

an impulse; however, some of these forces will do no work.

Forces that are functions of fime must be integrated to obtain

the impulse,

¢ The principle of angular impulse and momentum is often used to
eliminate unknown impulsive forces that are parallel or pass
through a common axis, since the moment of these forces is zero
about this axis.

Kinematics.

e If more than three equations are needed for a complete solution,
it may be possible to relate the velacity of the body’s mass center
to the body’s angular velocity using kinematics. If the motion
appears to be complicated, kinematic (velocity) diagrams may be
helpful in obtaining the necessary relation.

Mech.MuslimEngineer.Net
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EXAMPLE | 19:2

The 20-1b disk shown in Fig. 19-5a is acted upon by a constant couple
moment of 41b-ft and a force of 10 Ib which is applied to a cord
wrapped around its periphery. Determine the angular velocity of the
disk two seconds after starting from rest. Also, what are the force
components of reaction at the pin?

SOLUTION
Since angular velocity, force, and time are involved in the problems,
we will apply the principles of impulse and momentum to the solution.

Free-Body Diagram. Fig. 19-5b. The disk’s mass center does not
move: however, the loading causes the disk to rotate clockwise.
The moment of inertia of the disk about its fixed axis of rotation is

; 1( 20 Ib

== W)(o.vs ft)> = 0.1747 slug - f®
= 5

1
Iy = Emr 5

Principle of Impulse and Momentum.

-]
(L) mva)y + E/ Fodt = m(vy,),
h

0+ A28 =0

(+T) m(t’dy)i -+ 2/ P}d’ — ﬂl{?}ﬂ}.}z
h

10 1b

®) 0+ Ay2s) — 201b(25) — 101b(25) = 0O

Fig. 19-5 2
(C +} IA&H == E/ MA dt = .{.‘wl
5

0+ 41b-ft(2s) + [101b(2 $)](0.75 ft) = 0.1747w-

Solving these equations yields

A, =0 Ans.
A, = 301b Ans.
@y = 132rad/s ) Ans.

o)l alaiyl - clilsyall dial



19.2  PRINCIPLE OF IMPULSE AND MOMENTUM 505

EXAMPLE | 19.3

The 100-kg spool shown in Fig. 19-64 has a radius of gyration
kg = 0.35 m. A cable is wrapped around the central hub of the spool,
and a horizontal force having a variable magnitude of P = (r + 1IN
is applied, where ¢ is in seconds. If the spool is initially at rest,
determine its angular velocity in 5 s. Assume that the spool rolls
without slipping at A.

P=(+10)N

_______

(a)

SOLUTION

Free-Body Diagram. From the free-body diagram, Fig. 19-6b, the
variable force P will cause the friction force F to be variable, and thus
the impulses created by both P and F, must be determined by
integration. Force P causes the mass center to have a velocity vg; to the
right, and so the spool has a clockwise angular velocity w.

Principle of Impulse and Momentum. A direct solution for @ can
be obtained by applying the principle of angular impulse and
momentum about point A, the IC, in order to eliminate the unknown
friction impulse.

(C+) Ly + E/M,, dt = Iy,
5s

0+ [f (t+ 10)N d::|(0.75 m + 0.4 m) = [100 kg (0.35 m)* + (100 kg)(0.75 m)*|ew,
0

62.5(1.15) = 68.5w,

@, = 1.05rad/s ) Ans.

NOTE: Try solving this problem by applying the principle of impulse
and momentum about G and using the principle of linear impulse and
momentum in the x direction.

Mech.MuslimEngineer.Net
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EXAMPLE | 19.4

The cylinder B, shown in Fig. 19-7a has a mass of 6 kg. It is attached to
a cord which is wrapped around the periphery of a 20-kg disk that has
amoment of inertia 7, = 0.40 kg - m?. If the cylinder is initially moving
downward with a speed of 2 m/s, determine its speed in 3 5. Neglect the
mass of the cord in the calculation.

(a)

SOLUTION I

Free-Body Diagram. The free-body diagrams of the cylinder and
disk are shown in Fig. 19-7b. All the forces are constant since the weight
of the cylinder causes the motion. The downward motion of the
cylinder, vg, causes w of the disk to be clockwise.

Principle of Impulse and Momentum. We can eliminate A, and A,
from the analysis by applying the principle of angular impulse and
momentum about point A. Hence

Disk
(C+) Liw, + 2 [Md dr = Liw;
N Y3886 N 0.40 kg * m*(w;) + T(3 s.](O.Z m) = (040 kg * m*)w,
Cylinder
Fig. 19-7 +1 mg(vg), + = / Fyodt = mg(vg)

—6kg(2m/s) + T(3s) — 5886 N(3s) = —6 kg(vgh

Kinematics. Since w = vg/r,thenw, = (2 m/s)/(0.2 m) = 10rad/s
and w, = () /0.2 m = 5(vg)s. Substituting and solving the equations
simultancously for (vg), vields

(vg)r = 13.0m/s | Ans.

oMyl olaiyl - eyilSyall dial
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SOLUTION I

Impulse and Momentum Diagrams. We can obtain (vg)s directly by
considering the system consisting of the cylinder, the cord, and the disk.
The impulse and momentum diagrams have been drawn to clarify
application of the principle of angular impulse and momentum about
point A, Fig. 19-7¢.

Principle of Angular Impulse and Momentum. Realizing that
@ = 10rad/s and wy = 5(vg)n, We have

syst. ungu]ar) ( syst. angular) ( syst, angulur)
+ i -
« )(2 momentum /4, 2’ impulse /42 2 momentum / 4o

(6 kg)(2 m/s)(0.2 m) + (0.40 kg - m*)(10 rad/s) + (58.86 N)(3 $)(0.2 m)
= (6 kg)(#p)a(0.2 m) + (0.40 kg - mD)[5(vg)a]
(vg), = 13.0m/s | Ans,

Y L i
6 kg(2m/s) S58.86 N(3s) bke(vg)

(€)

Fig. 19-7

Mech.MuslimEngineer.Net
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EXAMPLE [ 19.5

bl

¥
A ¥
ks
- A (2]
< )4
= W&
rp
_.,f_”C\
F——p.-‘\__j

(b)
Fig. 19-8

The Charpy impact test is used in materials testing to determine the energy
absorption characteristics of a material during impact. The test is
performed using the pendulum shown in Fig. 1984, which has a mass m,
mass center at (5, and a radius of gyration k; about (. Determine the
distance rp from the pin at A to the point P where the impact with the
specimen S should occur so that the horizontal force at the pin A is
essentially zero during the impact. For the calculation, assume the
specimen absorbs all the pendulum’s kinetic energy gained during the time
it falls and thereby stops the pendulum from swinging when 6 = 0.

SOLUTION

Free-Body Diagram. As shown on the free-body diagram,
Fig. 19-8b, the conditions of the problem require the horizontal force
at A to be zero. Just before impact, the pendulum has a clockwise
angular velocity e, and the mass center of the pendulum is moving to
the left at (vg), = Tw,.

Principle of Impulse and Momentum. We will apply the principle
of angular impulse and momentum about point A. Thus,

!A(ﬂ| -+ EfMA dt = !4(02

(C+) fdﬂh == (det)rp =10
mvg), + E[F di = m(vg)
[ 4 —naﬁwl}+dei‘=0

Eliminating the impulse | F dr and substituting I, = mkg + mr” yields
[mk% + mrile, — m(rw)rp = 0

Factoring out mw, and solving for rp, we obtain

rp=7r+ Ans.

=
~1| 2%

NOTE: Point P, so defined, is called the center of percussion. By placing
the striking point at P, the force developed at the pin will be minimized.
Many sports rackets, clubs, etc, are designed so that collision with the
object being struck occurs at the center of percussion. As a consequence,
no “sting” or little sensation occurs in the hand of the player. (Also see
Probs. 17-66 and 19-1.)

oMyl olaiyl - eyilSyall dial
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- FUNDAMENTAL PROBLEMS

F19-1. The 60-kg wheel has a radius of gyration about its
center O of k, = 300 mm. If it is subjected to a couple moment
of M = (3yN-m, where ¢ is in seconds, determine the
angular velocity of the wheel when ¢ = 4 s, starling from rest.

F19-1

F19-2. The 300-kg wheel has a radius of gyration about its
mass center O of ky = 400 mm. If the wheel is subjected to
a couple moment of M = 300 N -m. determine its angular
velocity 6 s after it starts from rest and no slipping occurs.
Also, determine the friction force that the ground applies to
the wheel.

M =300N -

F19-2

F19-3. If rod OA of negligible mass is subjected to the
couple moment M = 9N-m, determine the angular
velocity of the 10-kg inner gear 1 = 5 s after it starts from
rest. The gear has a radius of gyration about its mass center
of ky = 100 mm, and it rolls on the fixed outer gear. Motion
occurs in the horizontal plane.

F19-3

F19-4. Gears A and B of mass 10 kg and 50 kg have radii
of gyration about their respective mass centers of
ky = B0 mm and ky = 150 mm. If gear A is subjected to the
couple moment M = 10 N+-m when it is at rest, determine
the angular velocity of gear B when ¢ = 5.

02m

F19-4

F19-5. The 50-kg spool is subjected to a horizontal force of
P = 150 N. If the spool rolls without slipping, determing its
angular velocity 3 s after it starts from rest. The radius of
gyration of the spool about its center of massis kg = 175 mm.

F19-5

F19-6. The reel has a weight of 150 1b and a radius of
gyration about its center of gravity of kg = 1.25 ft. If it is
subjected to a torque of M = 25 Ib-ft, and starts from rest
when the torque is applied, determine its angular velocity in
3 seconds, The coefficient of kinetic friction between the
reel and the horizontal plane is u, = 0,15,

F19-6

Mech.MuslimEngineer.Net
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“leropiems

19-1. The rigid body (slab) has a mass m and rotates with
an angular velocity @ about an axis passing through the
fixed point O. Show that the momenta of all the particles
composing the body can be represented by a single vector
having a magnitude muv; and acting through point P, called
the cenmter of percussion, which lies at a distance
Tpig = K%/ Fizjo from the mass center G. Here ki; is the radius
of gyration of the body, computed about an axis
perpendicular to the plane of motion and passing through G.

mvg

Prob. 19-1

19-2. At a given instant, the body has a linear momentum
L = mv,; and an angular momentum Hg; = /;e computed
about its mass center. Show that the angular momentum of
the body computed about the instantaneous center of zero
velocity JC can be expressed as Hy- = [, where [
represents the body's moment of inertia computed about
the instantaneous axis of zero velocily. As shown, the IC is
located at a distance rgc away from the mass center G,

Prob. 19-2

19-3. Show that if a slab is rotating about a fixed axis
perpendicular to the slab and passing through its mass
center (7, the angular momentum is the same when

computed about any other point P.

Prob. 19-3

“19-4. The cable is subjected to a force of P = (10£) Ib.
where 118 in seconds. Determine the angular velocity of the
spool 3 s after P is applied, starting from rest. The spool has
a weight of 150 Ib and a radius of gyration of 1.25 ft about

its center of gravity.

P=(107) b

Prob. 194

oMl alaiyl - dyilSall dial



19-5. The impact wrench consists of a slender 1-kg rod
AB which is 580 mm long. and cylindrical end weights
at A and B that each have a diameter of 20 mm and a mass
of 1 kg. This assembly is free to turn about the handle and
socket, which are attached to the lug nut on the wheel of a
car, If the rod AB is given an angular velocity of 4 rad/s
and it strikes the bracket € on the handle without
rebounding, determine the angular impulse imparted to
the lug nut.

Prob. 19-5

19-6. The space capsule has a mass of 1200 kg and a
moment of inertia I; = 900 kg-m® about an axis passing
through & and directed perpendicular to the page. If it is
traveling forward with a speed v = 800 m/s and executes
a turn by means of two jets, which provide a constant thrust
of 400 N for 0.3 s, determine the capsule’s angular velocity
just after the jets are turned off.
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19-7. The airplane is traveling in a straight line with a
speed of 300 km/h, when the engines A and B produce a
thrust of 7, = 40 kN and Ty = 20 kN, respectively.
Determine the angular velocity of the airplane inr=35s.The
plane has a mass of 200 Mg, its center of mass is located at
G, and its radius of gyration about (G is kg =15 m.

Prob. 19-7

*19-8.
gyration k; = 0.6 ft about its center of mass G. The
kinetic energy of the assembly is 31 ft - Ib when it is in the
position shown. If it rolls counterclockwise on the surface
without slipping, determine its linear momentum at
this instant,
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19-9. The wheel having a mass of 100 kg and a radius of
gyration about the z axis of k. = 300 mm, rests on the
smooth horizontal plane. If the belt is subjected to a force of
P =200 N, determine the angular velocity of the wheel and
the speed of its center of mass (), three seconds after the
force is applied.

P=200N
Prob. 19-9

19-10. The 30-kg gear A has a radius of gyration about its
center of mass O of k=125 mm. If the 20-kg gear rack B is
subjected to a force of P = 200 N, determine the time
required for the gear to obtain an angular velocity of
20 rad /s, starting from rest. The contact surface between the
gear rack and the horizontal plane is smooth.

Prob. 19-10

CHAPTER 19  PLanar KINETICS OF A RiGID Booy: IMPULSE AND MOMENTUM

19-11. The 30-kg reel is mounted on the 20-kg cart. If the
cable wrapped around the inner hub of the reel is subjected
to a force of 7= 50 N, determine the velocity of the cart and
the angular velocity of the reel when ¢ = 4 s. The radius of
gyration of the reel about its center of mass O is kg = 250 mm.
Neglect the size of the small wheels.

Proh. 19-11

#19-12. The spool has a weight of 75 [b and a radius of
gyration k, = 120 fi. If the block B weighs 60 Ib, and a
force P = 251bis applied to the cord, determine the speed
of the block in 3 s starting from rest. Neglect the mass of
the cord.

Prob. 19-12
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19-13. The slender rod has a mass m and is suspended at
its end A by a cord. If the rod receives a horizontal blow
giving it an impulse 1 at its bottom B, determine the location y
of the point P about which the rod appears to rotate during
the impact.

T &

Prob. 19-13

19-14. 1f the ball has a weight W and radius r and is thrown
onto a rough surface with a velocity v, parallel to the
surface, determine the amount of backspin. ey, il must be
given so that it stops spinning at the same instant that its
forward velocity is zero. It is not necessary to know the

coefficient of friction at A for the calculation.

Prob. 19-14
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19-15. The assembly shown consists of a 10-kg rod AB
and a 20-kg circular disk C. If it is subjected to a torque of
M = (20/%%) N.m, where ¢ is it in seconds, determine its
angular velocity when ¢ = 3 5. When ¢ = () the assembly is
rotating at e, = [—6k] rad /s,

Prob. 19-15

#19-16. The frame of a tandem drum roller has a weight
of 4000 1b excluding the two rollers. Each roller has a weight
of 1500 1b and a radius of gyration about its axle of 1.25 ft. If
a torque of M = 300 Ib-ft is supplied to the rear roller A,
determine the speed of the drum roller 10 s later, starting
from rest.

Prob. 19-16
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19-17. A motor transmits a torque of M = 0.05N-m to
the center of gear A, Determine the angular velocity of each

of the three (equal) smaller gears in 2 § starting from rest.

The smaller gears (B) are pinned at their centers, and the
masses and centroidal radii of gyration of the gears are

given in the figure.

my = 0.3 kg
; ky = 15 mm

Prob. 19-17

19-18. The man pulls the rope off the reel with a constant
force of 8 1b in the direction shown. IT the reel has a weight
of 250 Ib and radius of gyration k; = 0.8 ft about the
trunnion (pin) at A, determine the angular velocity of the
reel in 3 s starting from rest. Neglect friction and the weight

of rape that is removed.

Prob. 19-18

CHAPTER 19  PrLanar KINETICS OF A RIGID Bobpy: IMPULSE AND MOMENTUM

19-19. The double pulley consists of two wheels which are
attached to one another and turn at the same rate. The
pulley has a mass of 15 kg and a radius of gyration
kp = 110mm. If the block at A has a mass of 40 kg,
determine the speed of the block in 3 s after a constant
force " = 2 kN is applied to the rope wrapped around the
inner hub of the pulley. The block is originally at rest.
Neglect the mass of the rope.

75 mm

Prob. 19-19

#19-20. The cable is subjected Lo a force of P =20 Ib. and
the spool rolls up the rail without slipping. Determine the
angular velocity of the spool in 5 s, starting from rest. The
spool has a weight of 100 Ib and a radius of gyration about
its center of gravity O of k=075 ft.

Prob. 19-20
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19-21. The inner hub of the wheel rests on the horizontal
track. If it does not slip at A, determine the speed of the
10-1b block in 2 s after the block is released from rest. The
wheel has a weight of 30 Ib and a radius of gyration
kg = 1.30 1. Neglect the mass of the pulley and cord.

Prob. 19-21

19-22. The 1.25-1b tennis racket has a center of gravity at G
and a radius of gyration about G of k; = 0.625 fi. Determine
the position P where the ball must be hit so that ‘no sting” is
felt by the hand holding the racket, i.e.. the horizontal force
exerted by the racket on the hand is zero.

Prob. 19-22

19.2  PRINCIPLE OF IMPULSE AND MOMENTUM 515

19-23. The 100-kg reel has a radius of gyration about its
center of mass G of k=200 mm. If the cable B is subjected
to a force of P =300 N, determine the time required for
the reel to obtain an angular velocity of 20 rad/s. The
coefficient of kinetic friction between the reel and the
plane is g = 0.15.

Prob. 19-23

#19-24. The 30-kg gear is subjected to a force of P=(20¢) N,
where 1 1s in seconds. Determine the angular velocity of the
gear at t = 4 s, starting from rest. Gear rack B is fixed to the
horizontal plane, and the gear’s radius of gyration about its
mass center 15 kg =125 mm.

P=(20)N

Prob. 19-24
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19-25, The double pulley consists of two wheels which are 19-27. 'The square plate has a mass m and is suspended at
attached to one another and turn at the same rate. The pulley its corner A by a cord. IT it receives a horizontal impulse I at
has a mass of 30 kg and a radius of gyration k, = 250 mm. corner B. determine the location y of the point P about
If two men A and B grab the suspended ropes and step off which the plate appears to rotate during the impact.

the ledges at the same time, determine their speeds in 4 s
starting from rest. The men A and B have a mass of 60 kg and
70 kg. respectively. Assume they do not move relative to the
rope during the motion. Neglect the mass of the rope.

Prob. 19-27
Prob. 19-25 #*19-28. The crate has a mass m,. Determine the constant
. ) speed vy it acquires as it moves down the conveyor. The
19“2:5- Il the shaft s ‘5“]3]":‘3'-'3d to a l(?rquc of M= rollers each have a radius of r, mass m, and are spaced d
(15 N-m, where ¢ is in seconds, determine the angular apart. Note that friction causes each roller to rotate when

velocity of the assembly when ¢ = 3 s, starting from rest.
Rods AB and BC each have a mass of Y kg.

the crate comes in contact with it

L - m gl M=(15F)N-m

Prob. 19-26 Prob. 19-28
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19.3  CONSERVATION OF MOMENTUM

19.3 Conservation of Momentum

Conservation of Linear Momentum. If the sum of all the
linear impulses acting on a system of connected rigid bodies is zero in a
specific direction, then the linear momentum of the system is constant, or
conserved in this direction, that 1s,

momentum momentum

( 3 Syst. lmear) _ (E syst. lmear) (19-16)
| 2

This equation is referred to as the conservation of linear momentum.

Without inducing appreciable errors in the calculations, it may be
possible to apply Eg. 19-16 in a specified direction for which
the linear impulses are small or nonimpulsive. Specifically, nonimpulsive
forces occur when small forces act over very short periods of time.
Typical examples include the force of a slightly deformed spring.
the initial contact force with soft ground, and in some cases the weight
of the body.

Conservation of Angular Momentum. The angular momentum
of a system of connected rigid bodies is conserved about the system’s
center of mass G, or a fixed point O, when the sum of all the angular
mmpulses about these points is zero or appreciably small (nommpulsive),
The third of Egs, 19-15 then becomes

1

(zsyst. angular) _ (Zsysr. angular) (19-17)
. a1 o2 I

momentum momentum

This equation is referred to as the conservation of angular momentum.
In the case of a single rigid body, Eq. 19-17 applied to point G becomes
(lzw), = (Igw),. For example, consider a swimmer who executes a
somersault after jumping off a diving board. By tucking his arms and
legs in close to his chest, he decreases his body’s moment of inertia and
thus increases his angular velocity (fpw must be constant). If he
straightens out just before entering the water, his body’s moment of
inertia is increased, and so his angular velocity decreases. Since the
weight of his body creates a linear impulse during the time of motion,
this example also illustrates how the angular momentum of a body can
be conserved and yet the linear momentum is not. Such cases occur
whenever the external forces creating the linear impulse pass through
either the center of mass of the body or a fixed axis of rotation.
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Procedure for Analysis

The conservation of linear or angular momentum should be applied
using the following procedure.

Free-Body Diagram.

= Establish the x, y inertial frame of reference and draw the free-
body diagram for the body or system of bodies during the time of
impact. From this diagram classify each of the applied forces as
being either “impulsive™ or “nonimpulsive.”

s By inspection of the free-body diagram, the conservation of linear
momentim applies in a given direction when ne external
impulsive forces act on the body or system in that direction;
whereas the conservation of angular momentum applies about a
fixed point O or at the mass center & of a body or system of
bodies when all the external impulsive forces acting on the body
or system create zero moment (or zero angular impulse) about O
or G.

® As an alternative procedure, draw the impulse and momentum
diagrams for the body or system of bodies. These diagrams are
particularly helpful in order to visualize the “moment” terms
used in the conservation of angular momentum equation, when it
has been decided that angular momenta are to be computed
about a point other than the body’s mass center G.

Conservation of Momentum.

* Apply the conservation of linear or angular momentum in the
appropriate directions.

Kinematics.

e If the motion appears to be complicated, kinematic (velocity)
diagrams may be helpful in obtaining the necessary kinematic
relations,
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EXAMPLE | 19.6

The 10-kg wheel shown in Fig. 19-9¢ has a moment of inertia
I; = 0.156 kg - m®. Assuming that the wheel does not slip or rebound,
determine the minimum velocity vg; it must have to just roll over the
obstruction at A,

SOLUTION

Impulse and Momentum Diagrams. Since no slipping or
rebounding occurs, the wheel essentially pivors about point A during
contact. This condition is shown in Fig. 19-9b, which indicates,
respectively, the momentum of the wheel jusr before impact, the
impulses given to the wheel during impact, and the momentum of the
wheel just after impact. Only two impulses (forces) act on the wheel.
By comparison, the force at A is much greater than that of the weight,
and since the time of impact is very short, the weight can be considered
nonimpulsive. The impulsive force F at A has both an unknown
magnitude and an unknown direction #. To eliminate this force from
the analysis, note that angular momentum about A is essentially
conserved since (98.1ANd = 0.

Conservation of Angular Momentum. With reference to Fig. 19-95,
(C+) (Hy) = (Hyh
r'm(vg) + Ipw = mvg) + Tpws
(0.2m — 0.03 m)(10 kg)(vg), + (0.156 kg - m?)(w,) =
(0.2 m)(10 kg)(ve)s + (0.156 kg - m)(ews)

I

Kinematics. Since no slipping occurs, in general w = vg/r =
v;/0.2 m = Svg. Substituting this into the above equation and
simplifying yiclds

() = 0.8921(wg), (1)

Conservation of Energy.* In order to roll over the obstruction, the
wheel must pass position 3 shown in Fig. 19-9¢. Hence, if (v5), [or (v6)]
is to be a minimum, it is necessary that the kinetic energy of the wheel
at position 2 be equal to the potential energy at position 3. Placing the
datum through the center of gravity, as shown in the figure, and
applying the conservation of energy equation, we have

{n} + {n} ={B} + {n}
110 kg)(we) + 30,156 kg-mH)i } + {0} =
{0} + {(98.1 N)(0.03m)}
Substituting @, = 5(vg); and Eq. 1 into this equation, and solving,
(v = 0729 m/s — Ans.

*This principle does not apply during impact, since energy is lost during the collision.
However, just after impact. as in Fig. 19-Y¢, il can be used.
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EXAMPLE 197

v =400 m/s

B 0.75m
0.25m
. gk

(a)

Fig. 19-10

The 5-kg slender rod shown in Fig. 19-10a is pinned at O and is
initially at rest. It a 4-g bullet is fired into the rod with a velocity of
400 m /s, as shown in the figure, determine the angular velocity of the
rod just after the bullet becomes embedded in it.

SOLUTION

Impulse and Momentum Diagrams. The impulse which the bullet
exerts on the rod can be eliminated from the analysis, and the angular
velocity of the rod just after impact can be determined by considering
the bullet and rod as a single system. To clarify the principles involved,
the impulse and momentum diagrams are shown in Fig. 19-105b. The
momentum diagrams are drawn just before and just after impact.
During impact, the bullet and rod exert equal but opposite internal
impulses at A. As shown on the impulse diagram, the impulses that are
external to the system are due to the reactions at O and the weights of
the bullet and rod. Since the time of impact, Az, is very short, the rod
moves only a slight amount, and so the “moments” of the weight
impulses about point @ are essentially zero. Therefore angular
momentum is conserved about this point.

o — R
| | |
| 05m |
(v - 095m 075m ¢ gy
J- - (Vo)
0
=4 — L= mp(vg)

Al

Conservation of Angular Momentum. From Fig. 19-10b, we have
(C+) 2(Hp), = X(Hp)
mglvg) cos 30°(0.75 m) = mgz(ve)(0.75 m) +mp(vg)-(0.5 m) + [hma
(0.004 kg)(400 cos 30° m/$)(0.75 m) =
(0.004 kg)(vg)-(0.75 m) + (5 kalvs)H (05 m) + [-1'5(5 ke)( 1 m)z]m; {1}
or
1.039 = 0.003(vg): + 2.50(v5)s + 0.4167ew,

Kinematics. Since the rod is pinned at O, from Fig. 19-10c we have
(02 = (05 mw, (vp) = (0.75 mw,
Substituting into Eq. 1 and solving vields

w; = 0.623 rad/s Ans.
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*19.4  Eccentric Impact

The concepts involving central and oblique impact of particles were
presented in Sec. 15.4. We will now expand this treatment and discuss
the eccentric impact of two bodies. Eccentric impact occurs when the
line connecting the mass centers of the two bodies does not coincide with
the line of impact.* This type of impact often occurs when one or both of the
bodies are constrained to rotate about a fixed axis. Consider. for example,
the collision at C between the two bodies A and B, shown in Fig. 19-11a. 1t
is assumed that just before collision B is rotating counterclockwise with an
angular velocity (ewg),, and the velocity of the contact point C located on A
1s (u,);. Kinematic diagrams for both bodies just before collision are shown
in Fig. 19-11b. Provided the bodies are smooth, the impulsive forces they
exert on each other are directed along the line of impact. Hence, the
component of velocity of point C on body B, which is directed along the line
of impact,is (vg); = (wg),r, Fig. 19-115. Likewise,on body A the component
of velocity (u,), along the line of impact is (v,),. In order for a collision to
occur, (V) = (vg)).

During the impact an equal but opposite impulsive force P is exerted
between the bodies which deformes their shapes at the point of contact. The
resulting impulse is shown on the impulse diagrams for both bodies, Fig. 19-11c.
Note that the mmpulsive force at point C on the rotating body creates
impulsive pin reactions at ). On these diagrams it is assumed that the
impact creates forces which are much larger than the nonimpulsive weights
of the bodies, which are not shown. When the deformation at point Cis a
maximum, C on both the bodies moves with a common velocity v along the
line of impact, Fig. 19-11d. A period of restitution then occurs in which the
bodies tend to regain their original shapes. The restitution phase creates an
equal but opposite impulsive force R acting between the bodies as shown
on the impulse diagram, Fig. 19-11e. After restitution the bodies move apart
such that point C on body B has a velocity (vg), and point C on body A
has a velocity (uy),, Fig. 19-11f, where (vg)y = (04)2

In general, a problem involving the impact of two bodies requires
determining the mwe unknowns (v,), and (2g),. assuming (v,), and (vg); arc
known (or can be determined using Kinematics, energy methods, the
equations of motion, ete.). To solve such problems, two equations must be
written. The first equation generally involves application of the conservation
of angular momentum to the two bodies. In the case of both bodies A and B,
we can state that angular momentum is conserved about point O since the
impulses at C are internal to the system and the impulses at O create zero
moment (or zero angular impulse) about O. The second equation can be
obtained using the definition of the coefficient of restiturion, e, which is a
ratio of the restitution impulse to the deformation impulse.

*When these lines comcide, central impact oceurs and the problem can be analyzed as
discussed in Sec. 15.4.
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T Line
| of impact

B

Plane of impact

(a)

Fig. 19-11

Here is an example of cceentric impact
occurring between this bowling ball
and pin.
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_r[), di f Or_r dt
%
o\ i S P I—> [ o, d
~te i \ 0

\ () | \

/1‘. '..:' : |
(vsh = (wyhr %\ ;?“‘[ /

-

ey
4 " c ‘f;dr
gl A 0
- Velocity Deformation Velocity al maximum Restitution
before collision impulse deformation impulse
(b) (c) (d) (e)

Is is important to realize, however, that this analysis has only a very
limited application in engineering, because values of e for this case have
been found to be highly sensitive to the material, geometry, and the velocity
ofeach of the colliding bodies. To establish a useful form of the coefficient
of restitution equation we must first apply the principle of angular
impulse and momentum about point O to bodies B and A separately.
Combining the results, we then obtain the necessary equation. Proceeding
in this manner, the principle of impulse and momentum applied to body B
from the time just before the collision to the instant of maximum

— deformation, Figs. 19-11b.19-11¢, and 19-11d, becomes
o\ j 5 ; ;
e\
SY (wp): | n (C+) Tolwg), + r/P dt = Ipw (19-18)
N\ !
| | - Here [; is the moment of inertia of body B about point O. Similarly,
i(: - applying the principle of angular impulse and momentum from the
/ | instant of maximum deformation to the time just after the impact, Figs. 19-11d,
\ 4 3 1 p E
vy e 4 19-11e, and 19-11f. yields
(vg) = (wg)r 'xﬁ,‘f
(C+H low + ffﬁdf = Iplop): (19-19)
Solving Eqs. 19-18 and 19-19 for fP dt and j‘R di, respectively, and
(4 formulating e, we have
: Velocity
after collision /Rtf.’
0] Hwgh — ro  (Vgh — ¥
o= - -
Fig. 19-11 (cont.) / par @~ resh v = (g
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19.4  ECCENTRIC IMPACT 523

In the same manner, we can write an equation which relates the
magnitudes of velocity (v4), and (v,). of body A. The result is

B il Y
(Ua)p — v

Combining the above two equations by eliminating the common velocity »
vields the desired result, i.e.,

= (Vg — (bah |
(P — (vph

(+7) (19-20)

This equation is identical to Eq. 15-11, which was derived for the central
impact between two particles. It states that the coefficient of restitution
is equal to the ratio of the relative velocity of separation of the points of
contact (C) just after impact to the relative velocity at which the points
approach one another just before impact. In deriving this equation, we
assumed that the points of contact for both bodies move up and to the
right both before and after impact. If motion of any one of the contacting
points occurs down and to the left, the velocity of this point should be
considered a negative quantity in Eq. 19-20.

During impact the columns of many highway signs are intended to break out of their
supporls and easily collapse at their joints. This is shown by the slotted connections al
their base and the breaks at the column’s midsection.
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EXAMPLE |19:8

The 10-1b slender rod is suspended from the pin at A, Fig. 19-12a. If a
"\:{:_ 2-1b ball B is thrown at the rod and strikes its center with a velocity of
30 ft/s, determine the angular velocity of the rod just after impact. The

151t coefficient of restitution i1s ¢ = 0.4
30t /s
S

@ SOLUTION

1.5 Conservation of Angular Momentum. Consider the ball and rod as

a system, Fig. 19-12h. Angular momentum is conserved about point A

TR since the impulsive force between the rod and ball is internal. Also, the
weights of the ball and rod are nonimpulsive. Noting the directions of
the velocities of the ball and rod just after impact as shown on the
kinematic diagram, Fig. 19-12¢. we require

C+) (Hy), = (Hy)

melvp) (1.5 ft) = mplvg) (1.5 ) + mp(vs)(1.5 ) + Towa

21b 3 21b
(32_2 it /Sz)(m ft/s)(1.5f1) = (—32_2 f{ /53){1:3)3(1.5 ft) +

10 1b I 101b
—_— 15f) + |—=| ——= |3 i)’ |w,
(32.2 ftf:r)wc)z( ) [12(32.2&/52)( }}"‘
Since (vgh = 1.5w, then
2.795 = 0.09317(vg)s + 0.9317w, (1)

Coefficient of Restitution. With reference to Fig. 19-12¢, we have

A
b = 5 1.5 (e, — (vg)
N & ek e

i (=) T g — (o) 30ft/s — 0
(vg)y = 30ft/s
—

0 C('; > 120 = 1.5w, — (vp) )
[}
(Vi) Solving Egs. 1 and 2, vields

x (vg)s = —6.52ft/s = 6.52 ft/s —
c

Fig. 19-12 w, = 3.65rad/s?) Ans.
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“leromews

19-29. A man has a moment of inertia /. about the z axis.
He is originally at rest and standing on a small platform which
can turn freely. If he is handed a wheel which is rotating at w
and has a moment of inertia / about its spinning axis,
determine his angular velocity if (a) he holds the wheel
upright as shown, (b) turns the wheel out, # = 90°, and (c)
turns the wheel downward, # = 180°. Neglect the effect of
holding the wheel a distance 4 away from the z axis.

Prob. 19-29

19-30. Two wheels A and B have masses my and mpg, and
radii of gyration about their central vertical axes of k; and
kg, respectively. If they are freely rotating in the same
direction at e, and e, about the same vertical axis,
determine their common angular velocity after they are
brought into contact and slipping between them stops.

19-31. A 150-Ib man leaps off the circular platform with a
velocity of v, = 5 ft/s.relative to the platform. Determine
the angular velocity of the platform afterwards, Initially the
man and platform are at rest. The platform weighs 300 1b
and can be reated as a uniform circular disk.

=51t/s

Prob. 19-31

*19-32. The space satellite has a mass of 125 kg and a
moment of inertia /. = 0.940 kg m”, excluding the four
solar panels A, B, C, and D. Each solar panel has a mass of
20 kg and can be approximated as a thin plate. If the
satellite is originally spinning about the z axis at a constant
rate w. = 0.5rad/s when @ = 90°, determine the rate of
spin if all the panels are raised and reach the upward
position, # = 07, at the same instant.

=

Prob, 19-32

19-33. The 80-kg man is holding two dumbbells while
standing on a turntable of negligible mass, which turns
freely about a vertical axis, When his arms are fully
extended, the turntable is rotating with an angular velocity
of 0.5 rev/s. Determine the angular velocity of the man
when he retracts his arms to the position shown. When his
arms are fully extended, approximate each arm as a uniform
6-kg rod having a length of 650 mm. and his body as a 68-kg
solid cylinder of 400-mm diameter. With his arms in the
retracted position, assume the man is an 80-kg solid cylinder
of 450-mm diameter. Each dumbbell consists of two 5-kg
spheres of negligible size.

020 m
I 65 m

Prob. 19-33
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19-34, The 75-kg gymnast lets go of the horizontal bar in a
fully stretched position A, rotating with an angular velocity
of wy = 3 rad/s. Estimate his angular velocity when he
assumes a tucked position B Assume the gymnast at
positions A and B as a uniform slender rod and a uniform
circular disk, respectively.

Prob. 19-34

19-35. The 2-kg rod ACB supports the two 4-kg disks at
its ends. If both disks are given a clockwise angular velocity
{wq); = (wg), = 5rad/s while the rod is held stationary and
then released, determine the angular velocity of the rod
after both disks have stopped spinning relative to the rod
due to frictional resistance at the pins A and B. Motion is in

the horizontal plane. Neglect friction at pin C.

F 0.75m | 0.75m |

Proh. 19-35

*19-36. The 5-Ib rod AB supports the 3-1b disk at its end. If
the disk is given an angular velocity w;, = 8 rad/s while the
rod is held stationary and then released, determine the
angular velocity of the rod after the disk has stopped
spinning relative to the rod due to frictional resistance at
the bearing A. Motion is in the horizontal plane. Neglect
friction at the fixed bearing 5.

3ft

Prob. 19-36

19-37. The pendulum consists of a 5-Ib slender rod AB
and a [10-Ib wooden block. A projectile weighing 0.2 b is
fired into the center of the block with a velocity of 1000 ft /s,
If the pendulum is initially at rest, and the projectile embeds
itself into the block. determine the angular velocity of the

pendulum just after the impact.

Proh. 19-37
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19-38. The 20-kg cylinder A is free to slide along rod BC.
When the cylinder is at x = 0, the 50-kg circular disk D is
rotating with an angular velocity of 5 rad/s. If the cylinder is
given a slight push. determine the angular velocity of the
disk when the cylinder strikes B at x = 600 mm. Neglect the
mass of the brackets and the smooth rod.

Prob. 19-38

19-39. The slender bar of mass m pivots at support A
when itis released from rest in the vertical position. When it
falls and rotates 90°, pin C will strike support B, and the pin
at A will leave its support. Determine the angular velocity
of the bar immediately after the impact. Assume the pin at
B will not rebound.

Prob. 19-39

19.4  ECCENTRIC IMPACT 527

#19-40. The uniform rod assembly rotates with an angular
velocity of @y, on the smooth horizontal plane just before
the hook strikes the peg P without rebound. Determine the
angular velocity of the assembly immediately after the impact.
Each rod has a mass of m.

Prob. 19-40

19-41. A thin disk of mass m has an angular velocity o,
while rotating on a smooth surface. Determine its new
angular velocity just after the hook at its edge strikes the
peg P and the disk starts to rotate about P without
rebounding.

Prob. 19-41
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1942, The vertical shaft is rotating with an angular
velocity of 3 rad/s when # = (0°, If a force F is applied to the
collar so that # = 90°, determine the angular velocity of the
shaft. Also, find the work done by force F. Neglect the mass
of rods GH and EF and the collars I and J. The rods AB and

CD each have a mass of 10 kg.

Prob. 19-42

19-43. The mass center of the 3-1b ball has a velocity of
(V) = 61f1/s when it strikes the end of the smooth 5-1b
slender bar which is at rest. Determine the angular velocity
of the bar about the z axis just after impact if e = 0.8,

r=0351t

Prob. 1943

*19-44. A 7-g bullet having a velocity of 800 m/s is fired
into the edge of the 5-kg disk as shown. Determine the
angular velocity of the disk just after the bullet becomes
embedded in it. Also, calculate how far # the disk will swing
until it stops. The disk is originally at rest.

v=800m/s

Prob. 19-44

19-45. The 10-1b block is sliding on the smooth surface
when the corner D hits a stop block S. Determine the
minimum velocity v the block should have which would
allow it to tip over on its side and land in the position shown.
Neglect the size of §. Hint: During impact consider the
weight of the block to be nonimpulsive.
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19-46. The two disks each weigh 10 Ib. If they are released
from rest when # = 30°, determine 6 after they collide and
rebound from each other. The coefficient of restitution is
e = 0.75. When # = 0°, the disks hang so that they just
touch one another.

Prob. 19-46

19-47. The pendulum consists of a 10-Ib solid ball and 4-Ib rod.
If it is released from rest when 8, = 07, determine the angle 6,
after the ball strikes the wall, rebounds, and the pendulum
swings up to the point of momentary rest. Take ¢ = 0.6,

Prob. 1947

“19-48. The 4-1b rod AB is hanging in the vertical position. A
2-1b block, sliding on a smooth horizontal surface with a velocity
of 12 ft /s, strikes the rod at its end B, Determine the velocity of
the block immediately after the collision. The coefficient of
restitution between the block and the rod at Bise = 0.8.

N

Im

Prob. 1948

19.4  ECCENTRIC IMPACT 529

1949, The hammer consists of a 10-kg solid cylinder C
and 6-kg uniform slender rod AB. If the hammer is released
from rest when # = 90° and strikes the 30-kg block D when
# = (I°, determine the velocity of block D and the angular
velocity of the hammer immediately after the impact. The
coefficient of restitution between the hammer and the block
ise=0.6.

Prob. 1949

19-50. The 6-1b slender rod AB is originally at rest,
suspended in the vertical position. A 1-Ib ball is thrown at
the rod with a velocity v = 50 ft/s and strikes the rod at C.
Determine the angular velocity of the rod just after the =
impact. Take ¢ = 0.7and d = 2 L.

ft

v=50"ft/s

Prob. 19-50
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19-51. The solid ball of mass m is dropped with a velocity v,
onto the edge of the rough step. If it rebounds horizontally
off the step with a velocity v,, determine the angle # at
which contact occurs, Assume no slipping when the ball
strikes the step. The coefficient of restitution is e,

Prob. 19-51

#19-52, The wheel has a mass of 50 kg and a radius of
gyration of 125 mm about its center of mass G. Determine
the minimum value of the angular velocity @, of the wheel,
so that it strikes the step at A without rebounding and then
rolls over it without slipping.

19-53, The wheel has a mass of 50 kg and a radius of
gyration of 125 mm about its center of mass G. If it rolls
without slipping with an angular velocity of @y = 5 rad/s
before it strikes the step at A, determine its angular velocity
after it rolls over the step. The wheel does not lose contact
with the step when it strikes it.

Probs. 19-52/53

19-54. The disk has a mass m and radius r. Tf it strikes the
step without rebounding, determine the largest angular
velocity e, the disk can have and not lose contact with the step.

]

Prob. 19-54

19-55. A solid ball with a mass m is thrown on the ground
such that at the instant of contact it has an angular velocity
e and velocity components (vg), and (v, as shown. If
the ground is rough so no slipping occurs, determine the
components of the velocity of its mass center just after
impact. The coefficient of restitution is e.

Prob. 19-55

#19-56. The pendulum consists of a 10-1b sphere and 4-1b
rod. If it is released from rest when # = 90°, determine the
angle @ of rebound after the sphere strikes the floor. Take
e = 0.8.

031

03] <

Prob. 19-56
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. CONCEPTUAL PROBLEMS

P19-1. The soil compactor moves forward at constant
velocity by supplying power to the rear wheels. Use
appropriate numerical data for the wheel, roller, and body
and calculate the angular momentum of this system about
point A at the ground. point 8 on the rear axle, and point G,
the center of gravity for the system.

P19-1

P19-2. The swing bridge opens and closes by turning 90°
using a motor located under the center of the deck at A that
applies a torque M to the bridge. If the bridge was supported
at its end B, would the same torque open the bridge at the
same time, or would it open slower or faster? Explain your
answer using numerical values and an impulse and
momentum analysis. Also. what are the benefits of making
the bridge have the variable depth as shown?

s %a'sa aaaan

P19-2

P19-3. Why is it necessary to have the tail blade B on the
helicopter that spins perpendicular to the spin of the main
blade A? Explain your answer using numerical values and
an impulse and momentum analysis.

P19-3

P19-4. The amusement park ride consists of two gondolas
A and B, and counterweights C and D that swing in opposite
directions, Using realistic dimensions and mass, calculate
the angular momentum of this system for any angular
position of the gondolas. Explain through analysis why it is
a good idea to design this system to have counterweights
with each gondola.

P194
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- CHAPTER REVIEW

Linear and Angular Momentum

The linear and angular momentum of a
rigid body can be referenced to its mass
center (.

If the angular momentum is to be
determined about an axis other than the
one passing through the mass center, then
the angular momentum is determined by
summing vector H,; and the moment of
vector L about this axis.

Translation

L — m'UG
H; =10
Hﬂ = (mﬁg)‘d

Principle of Impulse and Momentum

The principles of linear and angular impulse
and momentum are used to solve problems
that involve force, velocity, and time. Before
applying these equations, it is important to
establish the x, » z inertial coordinate
system. The free-body diagram for the body
should also be drawn in order to account
for all of the forces and couple moments
that produce impulses on the body.

Rotation about a fixed axis

L= mvg
Hg = Igw
Hg = !o(ll

A
General plane motion

L= mig
HCF =: fg(l’)

H.& — n‘tgw - (mvc}d

L3

m(vg,), + Ef Fodt = m(vg)s
1
Iz

m(‘UGJ.}' + Ef l“t-‘.d.il == m(ﬂa}.}z
1

2
!ij A= Ef Modi' — Iﬁwz
n
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Conservation of Momentum

Provided the sum of the linear impulses
acting on a system of connected rigid
bodies is zero in a particular direction,
then the linear momentum for the system
is conserved in this direction. Conservation
of angular momentum occurs if the
impulses pass through an axis or are
parallel to it. Momentum is also conserved
if the external forces are small and thereby
create nonimpulsive forces on the system.
A free-body diagram should accompany
any application in order to classify the
forces as impulsive or nonimpulsive and to
determine an axis about which the angular
momentum may be conserved.

Eccentric Impact

If the line of impact does not coincide with
the line connecting the mass centers of
two colliding bodies. then eccentric impact
will occur. If the motion of the bodies just
after the impact is to be determined, then
it is necessary to consider a conservation
of momentum equation for the system and
use the coeflicient of restitution equation,

CHAPTER REVIEW

(2 Syst. ]ime:lr)I = (E syst. Iinear)

momentum momentum

sysl,angular) _ ( syst. angular
(E ol Z

momentum momentum

s (Ughy — (402
(v — (vgh
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Review
Planar Kinematics

and Kinetics of a
Rigid Body

Having presented the various topics in planar kinematics and kinetics in
Chapters 16 through 19, we will now summarize these principles and
provide an opportunity for applying them to the solution of various types
of problems.

Kinematics. Here we are interested in studying the geometry of
motion, without concern for the forces which cause the motion. Before
solving a planar kinematics problem, it is first necessary to classifv the
motion as being either rectilinear or curvilinear translation, rotation
about a fixed axis, or general plane motion. In particular, problems
involving general plane motion can be solved either with reference to a
fixed axis (absolute motion analysis) or using translating or rotating
frames of reference (relative motion analysis). The choice generally
depends upon the type of constraints and the problem’s geometry. In all
cases, application of the necessary equations can be clarified by drawing a
kinematic diagram. Remember that the velocity of a point is always
tangent to its path of motion, and the acceleration of a point can have
components in the n—t directions when the path is curved.

Translation. When the body moves with rectilinear or curvilinear
translation, all the points on the body have the same motion.

Yg = V4 dp = Ay

Rotation About a Fixed Axis. Angular Motion.

Variable Angular Acceleration. Provided a mathematical relationship is
given between any two of the four variables 8, o, a, and 1, then a third
variable can be determined by solving one of the following equations
which relate all three variables.

1t {
m=;’_r a=% adf = wdw

Constant Angular Acceleration. The following equations apply when it
is absolutely certain that the angular acceleration is constant.

8 =8y + wyt + et =wy+ar = wf+ 2al — 6)
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Motion of Point P. Once @ and a have been determined, then the
circular motion of point P can be specified using the following scalar or
vector equations,

U= wr V= Xr

i bl
a, = ar 4, = wr A= XTr— wT

General Plane Motion—Relative-Motion Analysis. Recall
that when fransiating axes are placed at the “base point” A, the relative
motion of point B with respect to A is simply circular motion of B about A.
The following equations apply to two points A and B located on the same
rigid body.

Vg = ¥yt Vg = Vy T @ X Iy,

il
ap = @y tag, = ay Tt X rgy — 0Ty,

Rotating and translating axes are often used to analyze the motion of rigid
bodies which are connected together by collars or slider blocks.

Vg = vy + @ X g + (Vgpa)y:

ag=a, + O Xrgy + QX (@ X rgy) + 20 X (va)y: + @pade

Kinetics. To analyze the forces which cause the motion we must use
the principles of kinetics. When applying the necessary equations, it is
important to first establish the inertial coordinate system and define the
positive directions of the axes. The directions should be the same as those
selected when writing any equations of kinematics if simultaneous
solution of equations becomes necessary.

Equations of Motion. These equations are used to determine
accelerated motions or forces causing the motion. If used to determine
position, velocity., or time of motion. then kinematics will have to
be considered to complete the solution. Before applying the equations
of motion, always draw a free-body diagram in order to identify all
the forces acting on the body. Also, establish the directions of the
acceleration of the mass center and the angular acceleration of the
body. (A kinetic diagram may also be drawn in order to represent mag
and [;e graphically. This diagram is particularly convenient for
resolving mag; into components and for identifying the terms in the
moment sum 2 (Al)p.)
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The three equations of motion are
2F,. = mlag),
X1F, = mlag),

EM{; - !:—*ﬂ or EMP = E(.e‘ﬂ,’t)p

P

In particular, if the body 1s rofating about a fixed axis, moments may
also be summed about point O on the axis, in which case

EMO = E(J{l{,k}o — J"UO.'

Work and Energy. The equation of work and energy is used to
solve problems involving force, velocity, and displacement. Before
applying this equation, always draw a free-body diagram of the body in
order to identify the forces which do work. Recall that the kinetic energy
of the body is due to translational motion of the mass center, v, and
rotational motion of the body, w.

T+ 3SUi =T

where
r= _r,'fnm;‘;- + -Jilcw‘!
Ur = ] Fcos 8 ds (variable force)
Up = F.cos 0(s; — &) (constant force)
Uy = —WAy (weight)

U, = —(bks? — dks?) (spring)

Uy = MO (constant couple moment)

If the forces acting on the body are conservative forces, then apply the
conservation of energy equation. This equation is easier to use than
the equation of work and energy, since it applies only at twe points on the
path and does not require calculation of the work done by a force as
the body moves along the path.

where V =V, + V, and
V. = Wy gravitational potential energy)

V., = %kjg (elastic potential energy)
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Review 2 PLANAR KINEMATICS AND KINETICS OF A RiGID Bobpy

Impulse and Momentum. The principles of linear and angular
impulse and momentum are used to solve problems invelving force,
velocity, and time. Before applying the equations, draw a free-body
diagram in order to identify all the forces which cause linear and angular
impulses on the body. Also, establish the directions of the velocity of the
mass center and the angular velocity of the body just before and just
after the impulses are applied. (As an alternative procedure, the impulse
and momentum diagrams may accompany the solution in order to
graphically account for the terms in the equations. These diagrams are
particularly advantageous when computing the angular impulses and
angular momenta about a point other than the body’s mass center.)

mva) + 2 [ Fdt = m(vg),

(He), + 2 [ Mgdr= (Hg),

or

(Hp), + 3 [ Modt = (Hop),

Conservation of Momentum. If nonimpulsive forces or no
impulsive forces act on the body in a particular direction, or if the
motions of several bodies are involved in the problem, then consider
applying the conservation of linear or angular momentum for the
solution. Investigation of the free-body diagram (or the impulse diagram)
will aid in determining the directions along which the impulsive forces
are zero, or axes about which the impulsive forces create zero angular
impulse. For these cases,

m(ve)y = m(vg)s

(Hgp); = (Hp)s

The problems that follow involve application of all the above concepts.
They are presented in random order so that practice may be gained at
identifying the various types of problems and developing the skills
necessary for their solution.
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. REVIEW PROBLEMS

R2-1. Blocks A and B weigh 50 and 10 Ib, respectively. If
P = 100 1b, determine the normal force exerted by block A
on block B. Neglect friction and the weights of the pulleys,
cord, and bars of the triangular frame,

Prob. R2-1

R2-2. The handcart has a mass of 200 kg and center of
mass at . Determine the normal reactions at each of the
wheels at A and B if a force P = 50N 15 applied to the
handle. Neglect the mass and rolling resistance of the wheels.

R2-3. The truck carries the 800-1b crate which has a center
of gravily at G,.. Determine the largest acceleration of the
truck so that the crate will not slip or tip on the truck bed.
The coefficient of static friction between the crate and the
truck is pu, = 0.6.

10 ft

Prob. R2-3

*R2-4. The spool has a weight of 30 Ib and a radius of
gyration k, = 0.65 fi. If a force of 40 1b is applied to the
cord at A, determine the angular velocity of the spool in
t = 3 s starting from rest. Neglect the mass of the pulley
and cord.

R2-5. Solve Prob. R2—4 if a 40-1b block is suspended from
the cord at A. rather than applying the 40-1b force.

Probs. R2-4/5
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R2-6. The uniform plate weighs 40 1b and is supported by
a roller at A. If a horizontal force F = 70 lb is suddenly
applied to the roller, determine the acceleration of the
center of the roller at the instant the force is applied. The
plate has a moment of inertia about its center of mass of
I = 0414 slug - ft 2. Neglect the weight of the roller.

R2-7. The center of the pulley is being lifted vertically
with an acceleration of 4 m/s” at the instant it has a velocity
of 2 m/s. If the cable does not slip on the pulley’s surface,
determine the accelerations of the cylinder B and point C
on the pulley.

a,=4m/fs
vy=2m/s

80 mm

Prob. R2-7

539

*R2-8. The double pendulum consists of tworods. Rod AR
has a constant angular velocity of 3 rad/s, and rod BC has a
constant angular velocity of 2 rad/s. Both of these absolute
motions are measured counterclockwise. Determine the
velocity and acceleration of point € at the instant shown.

Prob. R2-8

R2-9. The link OA is pinned at O and rolates because of
the sliding action of rod R along the horizontal groove. If R
starts from rest when # = 07 and has a constant acceleration
ap = 60 mm/s’ to the right, determine the angular velocity
and angular acceleration of OA whent = 2,

400 mm

Prob. R2-9
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R2-10. The drive wheel A has a constant angular velocity
of w,. At a particular instant, the radius of rope wound on
each wheel is as shown. If the rope has a thickness T,
determine the angular acceleration of wheel B,

Prob. R2-10

R2-11. The dresser has a weight of 80 lb and is pushed
along the floor. If the coefficient of static friction at A and B
is i, = 0.3 and the coefficient of kinetic friction is p, = 0.2,
determine the smallest horizontal force P needed to cause
motion. If this force is increased slightly, determine the
acceleration of the dresser. Also, what are the normal
reactions at A and B when it begins to move?

Prob. R2-11

Review 2 PLanar KINEMATICS AND KINETICS OF A RIGID Boby

*R2-12. If the ball has a weight of 15 1b and is thrown
onto a rough surface so that its center has a velocity of 6 /s
parallel to the surface, determine the amount of backspin. e,
the ball must be given so that it stops spinning at the same
instant that its forward velocity is zero. It is not necessary o
know the coefficient of kinetic friction at A for the calculation.

Proh. R2-12

R2-13. The dragster has a mass of 1500 kg and a center of
mass at (. If the coefficient of kinetic friction between the
rear wheels and the pavement is g, = 0.6, determine if it is
possible for the driver to lift the front wheels, A, off the
ground while the rear wheels are slipping. If so, what
acceleration is necessary to do this? Neglect the mass of the
wheels and assume that the front wheels are free to roll.

R2-14. The dragster has a mass of 1500 kg and a center of
mass at G. If no slipping oceurs, determine the friction force
Fy which must be applied to each of the rear wheels B in
order to develop an acceleration ¢ = 6 m/s>. What are the
normal reactions of each wheel on the ground? Neglect the
mass of the wheels and assume that the front wheels are
free to roll.

Probs. R2-13/14
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R2-15. If the operator initially drives the pedals at
20 rev/min, and then begins an angular acceleration of
30 rev/min®, determine the angular velocity of the flywheel F
when ¢ = 3 s. Note that the pedal arm is fixed connected to
the chain wheel A, which in turn drives the sheave B using
the fixed connected clutch gear D. The belt wraps around the
sheave then drives the pulley E and fixed-connected flywheel.

*R2-16. If the operator initially drives the pedals at
12rev/min., and then begins an angular acceleration of
8 rev,/min”, determine the angular velocity of the flywheel £
after the pedal arm has rotated 2 revolutions. Note that the
pedal arm is fixed connected to the chain wheel A, which in
turn drives the sheave B using the fixed-connected clutch
gear 0. The belt wraps around the sheave then drives the
pulley E and fixed-connected flywheel.

rq = 123 mm rp = 173mm

o = N mm v = 30 mm

Prohs. R2-15/16

R2-17. The drum has a mass of 50 kg and a radius of gyration
about the pin at @ of k, = 0.23 m. Starting from rest, the
suspended 15-kg block Bis allowed to fall 3 m without applying
the brake ACD. Determine the speed of the block at this
instant. If the coefficient of kinetic friction at the brake pad C
is ;= 0.5, determine the force P that must be applied at the
brake handle which will then stop the block after it descends
another 3 m. Neglect the thickness of the handle.

R2-18. The drum has a mass of 50 kg and a radius of
gyration about the pin at O of k; = 023 m. If the 15-kg
block is moving downward at 3m/s, and a force of
P = 100 N is applied to the brake arm, determine how far
the block descends from the instant the brake is applied
until it stops. Neglect the thickness of the handle. The
coefficient of kinetic friction at the brake padis u, = 0.5,

s

0.75m
25 m
{L15m -
é"."" e
0.5 m

Probs. R2-17/18

R2-19. The 1.6-Mg car shown has been “raked” by
increasing the height i = 0.2 m of its center of mass. This
was done by raising the springs on the rear axle. If the
coefficient of static friction between the rear wheels and the
ground is i, = 0.3, show that the car can accelerate slightly
faster than its counterpart for which h = 0. Neglect the

mass of the wheels and driver and assume the front wheels

at B are free to roll while the rear wheels slip.

JB
Lem—f—1.3m

Prob. R2-19

*R2-20. The disk isrotating at a constant rate w = 4 rad/s,
and as it falls freely, its center has an acceleration of
32.2 fi/s”. Delermine the acceleration of point A on the rim
of the disk at the instant shown.

R2-21. The disk is rotating at a constant rate @ = 4 rad/s,
and as it falls freely, its center has an acceleration of 32.2 fi/s%,
Determine the acceleration of point B on the rim of the disk
at the instant shown.

B

A
8= frtad ”b\ Probs. R2-20/21

R2-22. The board rests on the surface of two drums. At
the instant shown, it has an acceleration of 0.5 m/s” to the
right, while at the same instant points on the outer rim of
each drum have an acceleration with a magnitude of 3 m/s*.
1T the board does not slip on the drums, determine its speed
due to the motion.

Prob. R2-22
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- For the calculation, treat the roll as a cylinder.
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R2-23. A 20-kg roll of paper. originally at rest, is pin-
supported at its ends to bracket AB. The roll rests against a
wall for which the coefficient of kinetic friction at C is
e = 0.3, 1f a force of 40 N is applied uniformly to the end

_of the sheet, determine the initial angular acceleration of

the roll and the tension in the bracket as the paper unwraps,

Prob. R2-23

*R2-24. Al the instant shown, link AB has an angular
velocity wsy = 2rad/s and an angular acceleration
a,y = 6rad/s’, Determine the acceleration of the pin at €
and the angular acceleration of link CB at this instant.
when 7 = 60°.

wap = 2rad/s
a,g = 6rad/s’

Prob. R2-24

Review 2 PLanar KINEMATICS AND KINETICS OF A RiGID Boby

R2-25. The truck has a weight of 8000 Ib and center of
gravily at G,. It carries the 800-1b crate, which has a center of
gravity at G, Determine the normal reaction at each of its
four tires if it accelerates at @ = 0.5 ft/s*. Also, what is the
frictional force acting between the crate and the truck, and
between each of the rear tires and the road? Assume that
power is delivered only to the rear tires. The front tires are
free to roll. Neglect the mass of the tires. The crate does not
slip or tip on the truck.

e e L] ——
im

=

10 ft

Prob. R2-25

R2-26. The 15-Ib cylinder is initially at rest on a 5-1b plate.
It a couple moment M = 40 Ih - ft is applied to the cylinder,
determine the angular acceleration of the eylinder and the
time needed for the end B of the plate to travel 3 [l and
strike the wall. Assume the cylinder does not slip on the
plate, and neglect the mass of the rollers under the plate.

7 M = 40 Ib-ft

o .
® ®© 0 ® ® @ @ @ @
A |—3rl—-

Prob. R2-26
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R2-27. At the instant shown, two forces act on the 30-1b
slender rod which is pinned at O. Determine the magnitude
of force F and the initial angular acceleration of the rod so
that the horizontal reaction which the pin exerts on the rod
is 5 Ib directed to the right.

——Q o
3t

e 2} |1

2ft

AU

Prob. R2-27

*R2-28. The 20-Ib solid ball is cast on the [loor such that it
has a backspin @ = 15rad/s and its center has an initial
horizontal velocity v; = 20 ft/s. If the coefficient of kinetic
friction between the floor and the ball is wpy = 0.3,
determine the distance it travels before il stops spinning.

R2-29. Determine the backspin «w which should be given
to the 20-Ib ball so that when its center is given an initial
horizontal velocity v; = 20 ft/s it stops spinning and
translating at the same instant. The coefficient of kinetic
friction is gy = 0.3,

ve = 201ts

A
Probs. R2-28/29

543

R2-30. The wheelbarrow and its contents have a mass of
40 kg and a mass center at G, excluding the wheel. The
wheel has a mass of 4 kg and a radius of gyration
ko = 0.120m. If the wheelbarrow is released from rest
from the position shown, determine its speed after it travels
4 m down the incline, The coefficient of Kinetic friction
between the incline and A is py, = 0.3, The wheels roll
without slipping at B.

Prob. R2-30

R2-31. At the given instant member AB has the angular
motions shown. Determine the velocity and acceleration of
the slider block C at this instant.

Prob. R2-31
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*R2-32. The spool and wire wrapped around its core have
a mass of 20 kg and a centroidal radius of gyration
kg = 250 mm. If the coefficient of kinetic friction at the
ground is gy = 0.1, determine the angular acceleration of
the spool when the 30-N - m couple moment is applied.

Prob. R2-32

R2-33. The car has a mass of 1.50 Mg and a mass center
at . Determine the maximum acceleration it can have if
{(a) power is supplied only to the rear wheels, (b) power is
supplied only to the front wheels. Neglect the mass of the
wheels in the calculation, and assume that the wheels that
do not receive power are free to roll. Also, assume that
slipping of the powered wheels occurs, where the coefficient
of kinetic friction is g, = (.3,

Prob. R2-33

R2-34. The tire has a mass of 9 kg and a radius of gyration
kg = 225 mm. If it is released from rest and rolls down the
plane without slipping, determine the speed of its center O
whent = 3 s,

Prob. R2-34

Review 2 PLanar KINEMATICS AND KINETICS OF A RIGID Boby

R2-35. The bar has a mass m and length 1. If it is released
from rest from the position # = 30°, determine its angular
acceleration and the horizontal and vertical components of
reaction at the pin O,

Prob. R2-35

*R2-36. The pendulum consists of a 30-Ib sphere and a
10-Ib slender rod. Compute the reaction at the pin O just
after the cord A8 is cut.

Prob. R2-36

R2-37. Spool B is at rest and spool A is rotating at 6 rad/s
when the slack in the cord connecting them is taken up. If
the cord does not siretch, determine the angular velocity of
cach spool immediately after the cord is jerked tight. The
spools A and B have weights and radii of gyration
W—l = 30 Ib, k,\ =08t and Wﬁ = 151b, kﬂ = 0.6 fi,
respectively.

Proh. R2-37
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R2-38. 'The rod is bent into the shape of a sine curve and
is forced to rotate about the y axis by connectling the
spindle § to a motor. If the rod starts from rest in the
position shown and a motor drives it for a short time with
an angular acceleration @ = (I.Se’}radfsl. where 18 in
seconds, determine the magnitudes of the angular velocity
and angular displacement of the rod when r = 3 5. Locate
the point on the rod which has the greatest velocity and
acceleration, and compute the magnitudes of the velocity
and acceleration of this point when ¢ = 3s. The curve
defining the rod is z = 0.25 sin(wy), where the argument for
the sine is given in radians when y is in meters.

z =025 sin (wy)

Probh. R2-38

R2-39. The scaffold § is raised by moving the roller at A
toward the pin at B. If A is approaching B with a speed of
1.5 ft/s, determine the speed at which the platform rises as a
function of #. The 4-ft links are pin connected at their
midpoint.

Prob. R2-39

*R2-40. The pendulum of the Charpy impact machine has
amass of 50 kg and a radius of gyration of ky = 1,75 m. If it
is released from rest when # = 07, determine its angular
velocity just before it strikes the specimen S, ¢ = 90°.

Prob. R2-40

R2-41. The gear rack has a mass of 6 kg, and the gears
each have a mass of 4 kg and a radius of gyration & = 30 mm
at their centers. If the rack is originally moving downward at
2 m/s, when s = 0. determine the speed of the rack when
s = 600 mm. The gears are free (o turn aboult their centers,
Aand B.
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R2-42. A 7-kg automobile tire is released from rest at A
on the incline and rolls without slipping to point B, where it
then travels in free flight. Determine the maximum height &
the tire attains. The radius of gyration of the tire about its
mass centeris k; = 0.3 m.

Prob. R2-42

R2-43. The two 3-Ibrods EF and HT are fixed (welded) to
the link AC at E. Determine the internal axial force E,.
shear force E,. and moment M. which the bar AC exerts on
FE at E if at the instant # = 30° link AB has an angular
velocily @ = Srad/s and an angular acceleration
« = 8 rad/s” as shown.

o= 3rac.|,{'s2
NE ~ w=5rad/s

Prob. R2-43

*R2-44. The uniform connecting rod BC has a mass of
3 kg and is pin-connected at its end points. Determine the
vertical forces which the pins exert on the ends 5 and C of
the rod at the instant (a) # = 0°, and (b) # = 90°, The crank
AB is turning with a constant angular velocity wap = 5 rad/s.

Prob. R2-44

R2-45. If bar AB has an angular velocily w,; = 6rad/s,
determine the velocity of the slider block € at the
instant shown,

wyy = 6rad/s p

Prob. R2-45

R2-46. The drum of mass m, radius r, and radius of
gyration k, rolls along an inclined plane for which the
coctficient of static friction is p. If the drum is released from
rest, determine the maximum angle ¢ for the incline so that
it rolls without slipping.

Prob. R2-46
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R2-47. Determine the velocity and acceleration of rod R
for any angle # of cam C if the cam rotates with a constant
angular velocity e. The pin connection at O does not cause
an interference with the motion of A on C.

Prob. R2-47

*R2-48. When the crank on the Chinese windlass is
turning, the rope on shaft A unwinds while that on shalt B
winds up. Determine the speed at which the block lowers if
the crank is turning with an angular velocity w = 4 rad/s.
What is the angular velocity of the pulley at C? The rope
segments on each side of the pulley are both parallel and
vertical, and the rope does not slip on the pulley.

w =4 rad/s

Probh. R2-48

R2-49. The semicircular disk has a mass of 30 kg and is
released from rest from the position shown. The coefficients
of static and kinetic friction between the disk and the beam
are p, = (L5 and pu, = 0.3, respectively. Determine the
initial reactions at the pin A and roller B, used to support
the beam. Neglect the mass of the beam for the calculation,

R2-50. The semicircular disk has a mass of 50 kg and is

released from rest from the position shown. The coefficients
of static and kinetic friction between the disk and the beam
are p, = 0.2 and w, = 0.1, respectively. Determine the
initial reactions at the pin A and roller B used to support
the beam. Neglect the mass of the beam for the calculation.

—iasi 175 m ]

Probs. R2-49/50

R2-51. The hoisting gear A has an initial angular velocity
of 60rad/s and a constant deceleration of 1rad/s%
Determine the velocity and deceleration of the block which
is being hoisted by the hub on gear B when = 3 s.

Prob. R2-51

Mech.MuslimEngineer.Net




FE
Chapter 20

f i

Design of industrial robots requires knowing the kinematics of their
three-dimensional motions.
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Three-Dimensional

Kinematics of a
Rigid Body

CHAPTER OBJECTIVES

® To analyze the kinematics of a body subjected to rotation about
a fixed point and general plane motion.

m To provide a relative-motion analysis of a rigid body using
translating and rotating axes.

20.1 Rotation About a Fixed Point

When a rigid body rotates about a fixed point, the distance r from the
point to a particle located on the body is the same for any position of the
body. Thus, the path of motion for the particle lies on the surface of a
sphere having a radius r and centered at the fixed point. Since motion
along this path occurs only from a series of rotations made during a finite
time interval, we will first develop a familiarity with some of the properties
of rotational displacements.

The boom can rotate up and down,
and because il is hinged at a point on
the vertical axis about which it turns,
it is subjected to rotation about a
fixed point.
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Euler’'s Theorem. Euler’s theorem states that two “component”
rotations about different axes passing through a point are equivalent to a
single resultant rotation about an axis passing through the point. If more
than two rotations are applied, they can be combined into pairs, and cach
pair can be further reduced and combined into one rotation.

Finite Rotations. If component rotations used in Euler’s theorem
are finite, it is important that the order in which they are applied be
maintained. To show this, consider the two finite rotations @, + @,
applied to the block in Fig. 20-1a. Each rotation has a magnitude of 90°
and a direction defined by the right-hand rule, as indicated by the arrow.
The final position of the block is shown at the right. When these two
rotations are applied in the order &, + €, as shown in Fig. 20-15. the
final position of the block is not the same as it is in Fig. 20-1a. Because
finite rotations do not obey the commutative law of addition
(0, + 6, # 0, + 8)), they cannot be classified as vectors. If smaller, yet
finite, rotations had been used to illustrate this point, e.g., 10° instead of
90°, the final position of the block after cach combination of rotations
would also be different; however, in this case, the difference is only a
small amount.

(b
Fig. 20-1
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Infinitesimal Rotations. When defining the angular motions of a
body subjected to three-dimensional motion, only rotations which are
infinitesimally small will be considered. Such rotations can be classified as
vectors, since they can be added vectorially in any manner. To show this,
for purposes of simplicity let us consider the rigid body itself to be
a sphere which is allowed to rotate about its central fixed point O,
Fig. 20-24. It we impose two infinitesimal rotations df, + 46, on the body,
it is seen that point P moves along the path df, X r + d#, X r and ends
up at P". Had the two successive rotations occurred in the order d@, + 4@,
then the resultant displacements of P would have beend®, X r + 48, X r.
Since the vector cross product obeys the distributive law, by comparison
(d®, + df) X r = (df, +~ dB}) X r. Here infinitesimal rotations @ are
vectors, since these quantities have both a magnitude and direction for
which the order of (vector) addition is not important, i.e.,
d@, + df#, = df, + d6,. As a result. as shown in Fig. 20-2a, the two
“component” rotations d@, and 4@, are equivalent to a single resultant
rotation df = 46, + d6,, a consequence of Euler's theorem.

Angular Velocity. If the body is subjected to an angular rotation
d@ about a fixed point, the angular velocity of the body is defined by the
time derivative,

w=0 (20-1)

The line specifying the direction of @, which is collinear with 4@, is
referred to as the instantaneous axis of rotation, Fig. 20-2b. In general, this
axis changes direction during each instant of time. Since 4@ is a vector
quantity, so too is w, and it follows from vector addition that if the body
is subjected to two component angular motions, @, = 8, and @, = 6,
the resultant angular velocity is @ = @, + w-.

Angular Acceleration. The body’s angular acceleration is
determined from the time derivative of its angular velocity, i.e.,

a= o (20-2)

For motion about a fixed point, & must account for a change in both the
magnitude and direction of @, so that, in general, e is not directed along
the instantaneous axis of rotation, Fig. 20-3.

As the direction of the instantaneous axis of rotation (or the line of
action of @) changes in space, the locus of the axis generates a fixed space
cone, Fig. 20—4. If the change in the direction of this axis is viewed with
respect to the rotating body, the locus of the axis generates a body cone.
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Instantaneous
axis of rotation

(a)

~ Space cone

Tnstantaneous
axis of
rotation

~ Body cone

.

At any given instant, these cones meet along the instantaneous axis of
rotation, and when the body is in motion, the body cone appears to roll
either on the inside or the outside surface of the fixed space cone.
Provided the paths defined by the open ends of the cones are described
by the head of the w vector, then @ must act tangent to these paths at any
given instant, since the time rate of change of w is equal to «. Fig. 204.

To illustrate this concept, consider the disk in Fig. 20-54 that spins about
the rod at @,, while the rod and disk precess about the vertical axis at w,,.
The resultant angular velocity of the disk is therefore @ = @, + @, Since
both point O and the contact point P have zero velocity, then both e and
the instantaneous axis of rotation are along OF. Therefore, as the disk
rotates, this axis appears to move along the surface of the fixed space cone
shown in Fig. 20-5b. If the axis is observed from the rotating disk, the axis
then appears to move on the surface of the body cone. At any instant,
though, these two cones meet each other along the axis OP. If @ has a
constant magnitude, then e indicates only the change in the direction of e,
which is tangent to the cones at the tip of ¢ as shown in Fig. 20-5b.

Velocity. Once w is specified, the velocity of any point on a body
rotating about a fixed point can be determined using the same methods
as for a body rotating about a fixed axis. Hence, by the cross product,

Y@ Xr (20-3)

Here r defines the position of the point measured from the fixed point €J,
Fig. 20-3.

Acceleration. Ifwand @ are known at a given instant, the acceleration
of a point can be obtained from the time derivative of Eq.20-3, which vields

[a=a><r+m><{m><r)J (20-4)

*20.2 The Time Derivative of a Vector
Measured from Either a Fixed

T s or Translating-Rotating System

. axis of rotation

In many types of problems involving the motion of a body about a fixed
point, the angular velocity e is specified in terms of its components. Then,
if the angular acceleration e of such a body is to be determined, it is often
easier to compute the time derivative of e using a coordinate system that
has a roration defined by one or more of the components of w. For
example, in the case of the disk in Fig. 20-5a, where @ = @; + w,, the x,
¥, z axes can be given an angular velocity of w,. For this reason, and for
other uses later, an equation will now be derived, which relates the time
derivative of any vector A defined from a translating-rotating reference
to its time derivative defined from a fixed reference.
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Consider the x, v, z axes of the moving frame of reference to be rotating
with an angular velocity €, which is measured from the fixed X, ¥, Z
axes, Fig. 20-6a. In the following discussion, it will be convenient to
express vector A in terms of its i, j, k components, which define the
directions of the moving axes. Hence,

A=Ai+Aj+Ak

In general, the time derivative of A must account for the change in
both its magnitude and direction. However, if this derivative is taken
with respect to the moving frame of reference, only the change in the
magnitudes of the components of A must be accounted for, since the
directions of the components do not change with respect to the moving
reference. Hence,

(Ay: = Ad + A + Ak (20-5)

When the time derivative of A is taken with respect (o the fixed frame
of reference, the directions of i, j, and k change only on account of the
rotation €1 of the axes and not their translation. Hence, in general,

A=Ai+Aj+Ak+Ai+Aj+Ak

The time derivatives of the unit vectors will now be considered. For
example, i = di/dr represents only the change in the direction of i with
respect to time, since i always has a magnitude of 1 umit. As shown in
Fig.20-6b, the change.di,is tangent to the path described by the arrowhead
of i as i swings due to the rotation £, Accounting for both the magnitude
and direction of di, we can therefore define i using the cross product,
i = £ X i. In general, then

i=ikxi j=0% k=60:Xk

These formulations were also developed in Sec. 16.8, regarding planar
motion of the axes. Substituting these results into the above equation
and using Eq. 20-5 yields

A=A, + O xA (20-6)

This result is important, and will be used throughout Sec. 20.4 and
Chapter 21. It states that the time derivative of any vector A as abserved
from the fixed X, ¥, Z frame of reference is equal to the time rate of change

of A as observed from the x, y, z translating-rotating frame of reference,

Eq.20-5, plus £ X A, the change of A caused by the rotation of the x, y, 2
frame. As a result, Eq. 20-6 should always be used whenever £ produces
a change in the direction of A as seen from the X, ¥, Z reference, If this
change does not occur, i.e., & = 0, then A = {A)M.‘., and so the time rate
of change of A as observed from both coordinate systems will be the same.
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EXAMPLE [ 20:1

The disk shown in Fig. 20-7 spins about its axle with a constant angular
velocity @, = 3 rad/s, while the horizontal platform on which the disk
is mounted rotates about the vertical axis at a constant rate
w, = | rad/s. Determine the angular acceleration of the disk and the
velocity and acceleration of point A on the disk when it is in the
position shown.

w,= 3rad/s

SOLUTION

Point O represents a fixed point of rotation for the disk if one
considers a hypothetical extension of the disk to this pomnt. To
determine the velocity and acceleration of point A, it 1s first necessary
to determine the angular velocity e and angular acceleration « of the
disk, since these vectors are used in Egs. 20-3 and 20-4,

Angular Velocity. The angular velocity, which is measured from X,
Y, Z,is simply the vector addition of its two component motions, Thus,

w =+ o, = {3j - 1k} rad/s
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Angular Acceleration. Since the magnitude of @ is constant, only a
change in its direction, as seen from the fixed reference. creates the
angular acceleration a of the disk. One way to obtain e« is to compute
the time derivative of each of the two components of e using Eq. 20-6.
At the instant shown in Fig. 20-7, imagine the fixed X, ¥, Z and a
rotating x, y, z frame to be coincident. If the rotating x, y, z frame is
chosen to have an angular velocity of ) = @, = {=1k} rad/s, then
. will always be directed along the y (not ¥) axis, and the time rate of
change of @, as seen from x, y, z is zero:i.e.,(@,),,- = 0 (the magnitude
and direction of w, is constant). Thus,

@, = (@),. + @, X &, = 0+ (—1k) X 3j) = {3i} rad/s*

By the same choice of axes rotation, £} = @), or even with £ = 0,
the time derivative (@,),,. = 0, since @, has a constant magnitude and
direction with respect to x, y, z. Hence,

@, = (@) T @, X @, =0+ 0=10
The angular acceleration of the disk is therefore

o= =l Tl = {3i} rad/s* Ans.

Velocity and Acceleration. Since w and « have now been
determined. the velocity and acceleration of point A can be found
using Egs. 20-3 and 20-4. Realizing that r, = {1j + 0.25k } m,
Fig. 20-7, we have

va=eoXr,=(3j— 1k) X (1j + 0.25k) = {1.75i} m/s  Ans.

A —a X1y + X (X1

(3i) X (1j + 0.25k) + (3j — 1k) X [(3j — 1K) X (1j + 0.25K)]
= {-250j — 225k} m/s* Auns.

Il
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EXAMPLE | 20.2

At the instant # = 60°, the gyrotop in Fig. 20-8 has three components
of angular motion directed as shown and having magnitudes defined as:
Spin: @, = 10 rad/s, increasing at the rate of 6 rad /s’
Nutation: @, = 3 rad/s, increasing at the rate of 2 rad/s”
Precession: w, = 5rad/s, increasing at the rate of 4 rad/s”
Determine the angular velocity and angular acceleration of the top,

SOLUTION

Angular Velocity. The top rotates about the fixed point O. If the
fixed and rotating frames are coincident at the instant shown, then the
angular velocity can be expressed in terms of i, j. k components, with
reference to the x, y, z frame: i.e.,

7.z © = —w,i + wsinfj + (v, + o, cos Hk
w,= 10rad/s = —3i + 10sin 60% + (5 + 10 cos 60%)k
o, =6rad/s’ = {=3i + 8.66j + 10k} rad/s Ans.

Angular Acceleration. As in the solution of Example 20.1, the
angular acceleration e will be determined by investigating separately
the time rate of change of each of the angular velocity components as
observed from the fixed X ¥, Z reference. We will choose an } for the
X, ¥, z reference so that the component of w being considered is viewed
as having a constant direction when observed from x, y, z.

Careful examination of the motion of the top reveals that e, has
a constant direction relative to x, vy, z if these axes rotate at
Fig. 20-8 ( = w, + w,. Thus,

w,=5rad/s I
i, = 4 rad/s? Tl ,
Always in—"¢)

7 din:cl.iunk

o, = Srad/s
i, = 2rad/s

= Always i x-v plane

‘bs = (‘b.s).x}': o (wrr = 5 wp) x @,
= (6sin 60°] + 6 cos 60°k) + (—3i + 5k) X (10 sin 60°% + 10 cos 60°k)
= {-43.30i + 20.20j — 2298k } rad/s’
Since @, always lies in the fixed X-VY plane, this vector has a constant

direction if the motion is viewed from axes x, y, z having a rotation of
Q) = w,(not £ = w; + w,). Thus,

@, = (@,),. T @, X @, = —2i + (5k) X (=3i) = {-2i — 15] }rad/s*

Finally, the component e, is always directed along the Z axis so that here
it is not necessary to think of x, y, z as rotating, i.e., {2 = 0. Expressing
the data in terms of the i, j, k components, we therefore have

@, = (@), + 0 X w, = {4k} rad/s®
Thus, the angular acceleration of the top is

@ =o +a,+o,= {453 + 520§ — 190k} rad/s* Ans
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20.3 General Motion

Shown in Fig. 20-9 is a rigid body subjected to general motion in three
dimensions for which the angular velocity is @ and the angular acceleration
is ee. If point A has a known motion of v, and a,, the motion of any other
point B can be determined by using a relative-motion analysis. In this
section a translating coordinate system will be used to define the relative
motion, and in the next section a reference that is both rotating and
translating will be considered.

If the origin of the translating coordinate system x, y, z (£} = 0) is
located at the “base point™ A, then, at the instant shown, the motion of
the body can be regarded as the sum of an instantaneous translation of
the body having a motion of v, and a,, and a rotation of the body about
an instantaneous axis passing through point A, Since the body is rigid,
the motion of point B measured by an observer located at A is therefore Eetarthneoys
the same as the rotation of the body about a fixed point. This relative PR o otktion
motion occurs about the instantancous axis of rotation and is defined
by vy = @ X rgy, Eq.20-3, and ag;, = @ X rgyy + @ X (@ X r5),
Eq.20-4. For translating axes, the relative motions are related to absolute

-

\m
z X
motions by vy = v, + vg, and ay = a, + agy,, Egs. 16-15 and 16-17,s0 \
that the absolute velocity and acceleration of point B can be determined \
from the equations B
\ | F&y.
y v
v, — A 7Y -
A~
o
X a,
Vg = Va4t @ X rgy | (20-7) y
g (6]
X
Fig. 20-9
and

These two equations are essentially the same as to those describing the
general plane motion of a rigid body, Eqs. 16-16 and 16-18. However,
difficulty in application arises for three-dimensional motion, because a
now measures the change in borh the magnitude and direction of w.
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If the collar at C in Fig. 20—10a moves towards B with a speed of 3 m/s,
determine the velocity of the collar at D and the angular velocity of
the bar at the instant shown, The bar is connected to the collars at its
end points by ball-and-socket joints.

SOLUTION
Bar CD is subjected to general motion. Why? The velocity of point D
on the bar can be related to the velocity of point C by the equation

VD:VC'F(UXTDJJC

The fixed and translating frames of reference are assumed to coincide
at the instant considered, Fig. 20-106. We have

vp = —vpk ve = {3j} m/s
rpe = {1i+2j— 05k} m  @=awitojtok
Substituting into the above equation we get

i k
—vpk =3j + o, o, w.
12 05
Expanding and equating the respective i, j, k components vields
—0.5a) = 2a, = ( (1)
(b) 05w, + lw. +3=20 (2)
20, — lo, + vp =0 (3)

Fig. 20-10
These equations contain four unknowns.” A fourth equation can be
written if the direction of e is specified. In particular, any component of
w acting along the bar’s axis has no effect on moving the collars. This is
because the bar is free (o rotate about its axis. Therefore, if w is specified
as acting perpendicular to the axis of the bar, then @ must have a unique
magnitude to satisfy the above equations. Perpendicularity is guaranteed
provided the dot product of @ and rpe is zero (see Eq. C-14 of
Appendix C). Hence,

@ Ty = (@i + o,j + wk)-(1i +2j - 05k) =0
lo, + 20y — 0.5w, = 0 (4)
Solving Egs. 1 through 4 simultancously yields
w, = —486rad/s w, = 2.29rad/s w. = —0.571rad/s Ans.
vp = 12.0m/s | Ans.

*Although thas is the case, the magnitude of vy, can be obtained. For example, solve
Egs. 1 and 2 for w, and w, in terms of w. and substitute into Eq. 3. Tt will be noted that
w._ will cancel out, which will allow a solution for vy,
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“leromews

20-1. At a given instant. the satellite dish has an angular
motion @, = 6 rad/s and @, = 3 rad/s* about the 7 axis. At
this same instant # = 25°, the angular motion about the x axis
is w>» = 2 rad/s.and @, = 1.5 rad/s”. Determine the velocity
and acceleration of the signal horn A at this instant.

20-2. Gears A and B are [ixed. while gears C and D are
free to rotate about the shaft S. If the shaft turns about the
z axis at a constant rate of w; = 4 rad/s, determine the
angular velocity and angular acceleration of gear C.

20-3. The ladder of the fire truck rotates around the z axis
with an angular velocity w; = 0.15 rad/s. which is increasing
at 0.8 rad/s>. At the same instant it is rotating upward at a
constant rate w, = 0.6 rad/s. Determine the velocity and
acceleration of point A located at the top of the ladder at
this instant.

*20-4. The ladder of the fire truck rotates around the z axis
with an angular velocity of w; = 0.15 rad/s, which is
increasing at 0.2 rad/s”. At the same instant it is rotating
upwards at @, = 0.6rad/s while increasing at 0.4 rad/s”.
Determine the velocity and acceleration of point A located
at the top of the ladder at this instant.

Probs. 20-3/4

20-5. Gear B is connected to the rotating shaft, while the
plate gear A is fixed, If the shaft is turning at a constant rate
of w. = 10rad/s about the z axis, determine the magnitudes
of the angular velocity and the angular acceleration of gear B,
Also, determine the magnitudes of the wvelocity and
acceleration of point P,

’.-“"" 200 mm
w. = 10 rad fs_,‘}ﬁ 1
e
P

Prob. 20-5
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560 CHAPTER 20 THREE-DIMENSIONAL KINEMATICS OF A RiGID Booy

20-6, Gear A is fixed while gear B is free (o rotate on the
shaft §.1f the shaft is turning about the z axis at w. = 5 rad/s,
while increasing at 2 rad/s’, determine the velocity and
acceleration of point P at the instant shown, The face of
gear B lies in a vertical plane.

Prob. 20-6

20-7. At a given instant, the antenna has an angular
motion @, = 3r1ad/s and @, = 2 rad/s* about the z axis. At
this same instant 8 = 30°, the angular motion about the x axis
is @, = l.5rad/s, and @, = 4rad/s’. Determine the
velocity and acceleration of the signal horn A at this instant.
The distance from O to Aisd = 3 11,

Prob. 20-7

*20-8. The cone rolls without slipping such that at the
instant shown w. = 4rad/s and . = 3 rad/s% Determine
the velocity and aceeleration of point A at this instant.

20-9. The cone rolls without slipping such that at the
instant shown o, = 4rad/s and . = 3 rad/s”. Determine
the velocity and acceleration of point # at this instant,

m. =4 rad/s
w. = 3rad /s

j
i

B3
Probs. 20-8/9
20-10. At the instant when @ = 907, the satellite’s body is
rotating with an angular velocity of w; = 15 rad/s and angular

acceleration of @ = 3 rad/s”, Simultaneously. the solar panels
rotate with an angular velocity of w, = 6rad/s and angular
acceleration of @, = 1.5 rad/s”. Determine the velocity and
acceleration of point B on the solar panel at this instant.

20-11. At the instant when # = 90° the satellite’s body
travels in the x direction with a velocity of v, = {500i } m/s
and acceleration of a, = {50i} m/s% Simultaneously, the
body also rotates with an angular velocity of @, = 15 rad/s
and angular acceleration of @, = 3 rad/s”. At the same time,
the solar panels rotate with an angular velocity of w, = 6 rad/s
and angular acceleration of @, = 1.5 rad/ s* Determine the
velocity and acceleration of point B on the solar panel.

Probs. 20-10/11
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*20-12. The disk is free to rotate on the shaft 5. If the
shaft is turning about the z axis at w. = 2rad/s, while
increasing at 8rad/s’, determine the velocity and
acceleration of point A at the instant shown.

$ 8 rad /s?
2rad/s

Prob. 20-12

20-13. The disk spins about the arm with an angular
velocity of w, = 8 rad/s. which is increasing at a constant
rate of &, = 3rad/s” at the instant shown. If the shaft
rotates with a constant angular velocity of w, = 6 rad/s,
determine the velocity and acceleration of point A located

on the rim of the disk at this instant.

wm, = 8rad/s
i, = 3 rad /s*

Prob. 20-13

20.3 GENEraL MoTiON 561

20-14. The wheel is spinning aboul shaft AB with an
angular velocity of w, = 10rad/s, which is increasing at a
constant rate of @, = 6 rad/s’, while the frame precesses
about the z axis with an angular velocity of @, = 12 rad/s,
which is imcreasing at a constant rate of @, = 3 rad/s”.
Determine the velocity and acceleration of point C located

on the rim of the wheel at this instant,

w,= 0rads 7

w, = 12 rad/s
w, =3 rad /s

Prob. 20-14

20-15. At the instant shown. the tower erane rotates about
the z axis with an angular velocity @, = 0.25 rad/s, which is
increasing at 0.6 rad/s%. The boom OA rotates downward
with an angular velocity @, = 0.4 rad/s. which is increasing
at 0.8 rad/s”. Determine the velocity and acceleration of
point A located at the end of the boom at this instant.

Prob, 20-15
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*#20-16. If the top gear B rotates at a constant rate of w,
determine the angular velocity of gear A. which is free to
rotate about the shaft and rolls on the bottom fixed gear C.

Prob. 20-16

20-17. When # = 0°, the radar disk rotates about the
y axis with an angular velocity of # = 2 rad/s. increasing at
a constant rate of @ = 1.5 rad/s”. Simultaneously, the disk
also precesses about the z axis with an angular velocity of
w, = Srad/s, increasing at a constant rate of @, = 3 rad/s,
Determine the velocity and acceleration of the receiver A
at this instant.

— 20 ft w, = Srad/s
ay, =3 rad /s

f=72 rad /s

p&s rad/s*
J

Y

Prob. 20-17

20-18. Gear A is fixed to the crankshaft §, while gear Cis
fixed. Gear B and the propeller are free to rotate. The
crankshaft is turning at 80 rad/s about its axis. Determine
the magnitudes of the angular velocity of the propeller and
the angular acceleration of gear B.

Prob. 20-18

20-19. Shaft BD is connected to a ball-and-socket joint at B,
and a beveled gear A is attached toits other end. The gearis
in mesh with a fixed gear C. If the shaft and gear A are
spinning with a constant angular velocity o, = §rad/s,
determine the angular velocity and angular acceleration of
gear A.

Prob. 20-19
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#20-20. Gear B is driven by a motor mounted on turntable C.
It gear A is held fixed. and the motor shaft rotates with a
constant angular velocity of @, = 30 rad/s, determine the
angular velocity and angular acceleration of gear B.

20-21. Gear B i3 driven by a motor mounted on turntable C.
If gear A and the moltor shaft rotate with constant angular
speeds of @, = (10k] rad /s and @, = (30} rad /s, respectively,
determine the angular velocity and angular acceleration of
gear B.

@, = 30 rad /s

4

}{}.ISm

Probs. 20-20/21

20-22. The crane boom OA rotates aboul the z axis with a
constant angular velocity of w, = 0.15 rad/s. while it is
rotating downward with a constant angular velocity of
w>, = 0.2 rad/s. Determine the velocity and acceleration of
point A located at the end of the boom at the instant shown.

Prob. 20-22

20.3  GENERAL MoTION 563

20-23. The differential of an automabile allows the two
rear wheels to rotate at different speeds when the automobile
travels along a curve. For operation, the rear axles are
attached to the wheels at one end and have beveled gears A
and B on their other ends. The differential case 2 1s placed
over the left axle but can rotate about C independent of the
axle. The case supports a pinion gear E on a shaft. which
meshes with gears A and B. Finally, a ring gear G is fixed to
the differential case so that the case rotates with the ring gear
when the latter is driven by the drive pinion H.This gear. like
the differential case. is free to rotate about the left wheel axle.
If the drive pinion is turning at @y = 100rad/s and the
pinion gear F is spinning about its shaft at wy = 307ad/s.
determine the angular velocity, w, and wy, of each axle.

Wy
From motor

Prob. 20-23
#20-24. The truncated cone rotates about the z axis at a
constantrate w. = 0.4 rad/s withoutslipping on the horizontal
plane. Determine the velocity and acceleration of point A on
the cone.

Prob. 20-24
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20-25. Disk A rotates at a constant angular velocity of
10 rad/s. If rod BC is joined to the disk and a collar by ball-
and-socket joints, determine the velocity of collar B at the
instant shown. Also, what is the rod’s angular velocity g if
it is directed perpendicular to the axis of the rod?

z

¥

Prob. 20-25

20-26. If the rod is attached with ball-and-socket joints to
smooth collars A and B at its end poeints, determine the speed
of B at the instant shown if A is moving downward at a constant
speed of v, = 8 fi/s. Also, determine the angular velocity of
the rod if it is directed perpendicular to the axis of the rod.

20-27. If the collar at A is moving downward with an
acceleration a, = {—3k} fi/s%, at the instant its speed is
w1, = 8f1/s, determine the acceleration of the collar at B at
this instant.

Probs. 20-26/27

#20-28. Tf wheel Crotates with a constant angular velocity
of we = 10rad/s, determine the velocity of the collar at B
when rod AB is in the position shown.

20-29. At the instant rod AB is in the position shown
wheel C rotates with an angular velocity of @ = 10 rad/s

and has an angular acceleration of apy = 1.5 rad/s%
Determine the acceleration of collar B at this instant.

-
&

300 mm

g 100 mm

-
A 500 mm

Probs. 20-28/29

20-30. 1f wheel D rotates with an angular velocity of
wp = 6rad/s, determine the angular velocity of the follower
link BC at the instant shown. The link rotates about the z axis
atz = 2ft.

4

wpy = Grad /s

Prob. 20-30
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20-31. Rod AB is attached to the rotating arm using ball-
and-socket joints. If AC is rotating with a constant angular
velocity of 8 rad/s about the pin at C, determine the angular
velocity of link B0 at the instant shown.

*20-32. Rod AR is attached to the rotating arm using ball-
and-socket joints. If AC is rotating about point C with an
angular velocity of 8 rad/s and has an angular acceleration of
a - = {6k} rad ,fsz at the instant shown, determine the angular
velocity and angular acceleration of link BD at this instant.

wye = §rad/s
~

6 ft

‘)/(2 f

Probs. 20-31/32

20-33. Rod AB is attached to collars at its ends by ball-and-
socket joints. If collar A moves upward with a velocity of
vy = {8k }ft/s. determine the angular velocity of the rod and
the speed of collar B at the instant shown. Assume that the
rod's angular velocity is directed perpendicular to the rod.

20-34. Rod AR is attached to collars at its ends by ball-and-
socket joints. If collar A moves upward with an acceleration of
a, = {4k }ft/s* determine the angular acceleration of rad AB
and the magnitude of acceleration of collar B. Assume that the
rod's angular acceleration is directed perpendicular to the rod,
and use the result of Prob. 20-33 for e 5.

] wy=8fi/s

3 ft
.-/r

Probs. 20-33/34

20.3 GeneraL MaTioN 565

20-35. Solve Prob. 20-25 if the connection at B consists of
a pin as shown in the figure below, rather than a ball-and-
socket joint. Hint: The constraint allows rotation of the rod
both about bar DE (j direction) and about the axis of the
pin (m direction}. Since there is no rotational component in
the u direction. i.e.. perpendicular to m and j where
u=j X n,an additional equation for solution can be
obtained from w-u = 0. The vector m is in the same
direction as rge X rpje.

Prob. 20-35

#20-36. The rod assembly is supported at B by a ball-and-
socket joint and at A by a clevis. If the collar at B moves in
the x—z plane with a speed vy = 51i/fs, determine the
velocity of points A and C on the rod assembly at the
instant shown. Hinr: See Prob. 20-35.

Prob. 20-36
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*20.4 Relative-Motion Analysis Using
Translating and Rotating Axes

The most general way to analyze the three-dimensional motion of a rigid
body requires the use of x, y, z axes that both translate and rotate relative
to a second frame X, ¥, Z. This analysis also provides a means to determine
the motions of two points A and B located on separate members of a
mechanism, and the relative motion of one particle with respect to another
when one or both particles are moving along curved paths.

As shown in Fig. 20-11. the locations of points A and B are specified
relative to the X, ¥, Z frame of reference by position vectors r, and rg.
The base point A represents the origin of the x, v, z coordinate system,
which is translating and rotating with respect to X, Y, Z. At the instant
considered, the velocity and acceleration of point A are v, and a,, and
the angular velocity and angular acceleration of the x, y, z axes are £} and
Q) = df) /di. All these vectors are measured with respect to the X, ¥, 2
frame of reference, although they can be expressed in Cartesian
component form along either set of axes.

Fig. 20-11
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20.4 ReLaTive-MoTION ANALYSIS UsING TRANSLATING AND ROTATING AXEs

Position. If the position of “B with respect to A" is specified by the
relative-position vector rg;,, Fig. 2011, then, by vector addition,

Ty =Ty + Ty (20-9)

where

ry = position of B
ry = position of the origin A

rg;4 = position of “B with respect to A”

Velocity.  The velocity of point B measured from X, ¥, Z can be
determined by taking the time derivative of Eq. 20-9,

Ty = Ty T Ty

The first two terms represent vz and v, . The last term must be evaluated
by applying Eq. 20-6, since ry, is measured with respect to a rotating
reference. Hence,

I-'E‘,-'A. - (i-B,f'A].n_.': + QX Tpia = (VB;'A)J'}': + £} X Tpia (20_1 OJ

Therefore,

(20-11)

XYL

Ve = Vot & X1y + (Vau)

where

vy = velocity of B
v, = velocity of the origin A of the x, y, z frame of reference

(Vg/a)y: = velocity of “B with respect to A” as measured by an
observer attached to the rotating x, v, z frame of reference

{} = angular velocity of the x, y, z frame of reference

Fga = position of “B with respect to A”

Mech.MuslimEngineer.Net
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568 CHAPTER 20 THREE-DIMENSIONAL KINEMATICS OF A RiGID Booy

Complicated spatial motion of the concrete
bucket B occurs due ta the rotation of the
boom aboul the Z axis, motion of the
carriage A along the boom, and extension
and swinging of the cable AB. A
translating-rotating x, v z coordinate

system can be established on the carriage,

and a relative-motion analysis can then be
applied Lo study this motion.

Acceleration. The acceleration of point B measured from X, ¥, Z is
determined by taking the time derivative of Eq. 20-11.

- - 8 I d
Vg = V4 + O X Y 0 Xty + E{"-‘ia‘d)&?:

The time derivatives defined in the first and second terms represent ay
and a,, respectively. The fourth term can be evaluated using Eq. 20-10,
and the last term is evaluated by applying Eq. 20-6, which yields

d ;
E(vﬁ‘}.&)@z = ("'B,"A}_r}“: + £ X {VB,M)A}-: = (aB_J’A)Jy: + £} X (VB,M).ry:

Here (ag),,. is the acceleration of B with respect to A measured from x,
¥, Z. Substituting this result and Eq. 20-10 into the above equation and
simplifying, we have

ap = a, + @ Xrp + Q@ X (Q X rg) + 20 X (Vg + @y

(20-12)

where

ap = acceleration of B

a, = acceleration of the origin A of the x, y, z frame of
reference

(@g/4) 20 (Vgia)y: = Telative acceleration and relative velocity of “B
with respect to A” as measured by an observer
attached to the rotating x, v, z frame of reference

Q. © = angular acceleration and angular velocity of the
X, v, z frame of reference

rgy = position of “B with respect to A”

Equations 20-11 and 20-12 are identical to those used in Sec. 16.8 for
analyzing relative plane motion.* In that case, however, application is
simplified since © and € have a constant direction which is always
perpendicular to the plane of motion. For three-dimensional motion, €
must be computed by using Eq. 20-6, since ) depends on the change in
both the magnitude and direction of £).

*Refer to Sec. 16.8 for an interpretation of the terms.
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20.4 ReLaTive-MoTioN ANaLYsIS UsiNG TRANSLATING AND ROTATING AXES 569

Procedure for Analysis

Three-dimensional motion of particles or rigid bodies can be analyzed
with Eqs. 20-11 and 20-12 by using the following procedure.

Coordinate Axes.

# Seclect the location and orientation of the X, ¥, Z and x, y, z coordinate
axes. Most often solutions can be easily obtained if at the instant
considered:

(1) the origins are coincident
(2) the axes are collinear

(3) the axes are parallel

e [If several components of angular velocity are involved in a problem,
the calculations will be reduced if the x, y, z axes are selected such
that only one component of angular velocity is observed with respect
to this frame (£,,.) and the frame rotates with Q defined by the
other components of angular velocity.

Kinematic Equations.

& After the origin of the moving reference, A, is defined and the
moving point B is specified, Egs. 20-11 and 20-12 should then be
written in symbolic form as

Vg = ¥y + £ X 1rg)s + (Vgia)y-
ag=a, + Q X rgia + 2 X (L X rgy) + 20 X (Vgia): + (@gada:

e [f r, and £ appear to change direction when observed from the
fixed X, ¥, Z reference then use a set of primed reference axes, x', y',
z' having a rotation £’ = . Equation 20-6 is then used to
determine ) and the motion v, and a, of the origin of the moving x,
¥, 7 axes.

¢ Ifrg, and €2, appear to change direction as observed from x, y, z,
then use a set of double-primed reference axes x", ", 2" having

0" = Q,,. and apply Eq. 20-6 to determine £2,,. and the relative
motion (Vg ). and (@),

e After the final forms of €, V4, 8y, flx}.‘._, (Vg/a)yeo and (ag),,. are
obtained, numerical problem data can be substituted and the
kinematic terms evaluated. The components of all these vectors can
be selected either along the X, ¥, Z or along the x, y, z axes. The choice
is arbitrary, provided a consistent set of unit vectors is used.
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EXAMPLE | 204

A motor and attached rod AB have the angular motions shown in
Fig. 20-12. A collar C on the rod is located 0.25 m from A and is
moving downward along the rod with a velocity of 3 m/s and an
aceeleration of 2 m/s*. Determine the velocity and acceleration of €
at this instant.

SOLUTION

Coordinate Axes.

The origin of the fixed X, ¥, Z reference is chosen at the center of
the platform, and the origin of the moving x, y, z frame at point A,
Fig. 20-12. Since the collar is subjected to two components of angular
motion, w, and wy,, it will be viewed as having an angular velocity of
. = wy iny,y, z. Therefore, the x, y, z axes will be attached to the

platform so that £ = w,.

w, = 5rad /s

i, = 2 rad /s’

.X, £ xt' "

wy = 3radfs
diyy = 1 rad /s’
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Kinematic Equations. Equations 20-11 and 20-12, applied to
peints C and A, become

Yo — ¥y + L) X l‘CJ,r‘,, = (VCH'A)I_'I.':
ac = a; + 4 X1y + O X () Xrey) + 20 X (Vepdy: + @cude
Motion of A. Here r, changes direction relative to X, ¥, Z. To find

the time derivatives of ry we will use a set of x', ', ' axes coincident
with the X, ¥, Z axes that rotate at 2" = w,,. Thus.

N=w

{5k } rad/s (£ does not change direction relative to X, ¥, Z.)

P
Q = o, = {2k} rad/s’
ry= {21} m

Vg =14 = (f)eyer + @, X1y =0+ 5k X2i= {10j} m/s
4, =Ty = [(F)yyr + @, X (F)yy] + @, X1y + 0, X ¥y

[0 + 0] + 2k X 2i + 5k X 10j = {—50i + 4j} m/s*

Il

Motion of C with Respect to A. Here r¢y, changes direction
relative to x, y, z, and so to find its time derivatives use a set of x", y",
7" axes that rotate at " = . = ey Thus,

Q,, = wy = {3i} rad/s (£2,,. does not change direction relative to x, y, z.)
Q.. = @y = {1i} rad/s?
rem = { =025k} m
(Veyadae = (Cciadyy: = [Egiadeys + @y X T
= =3k + [3i X (-025k)] = {0.75j — 3k} m/s
{a(_‘l."rl}ij': = (fCIA)A}': = [(II:C,’A)A“‘}*':" + oy X (*Cﬁd);’_\f‘zq + wy X T/ + anyy X (Et‘fﬂ.};yz
= [—2k + 3i X (—3Kk)] + (1i) X (—0.25k)} + (3i) x (0.75] — 3k)
= {18.25j + 0.25k } m/s?
Motion of C.
Ve = Vg + & Xreu + (Vo)
= 10j + [5k X (—0.25k)] + (0.75] — 3k)
= {10.75) — 3k} m/s Ans,
ac=a, + Q Xy + 0 X (D Xrey) + 29 X (Vo + @ciadie
= (=50i + 4j) + [2k X (—0.25k)] + 5k X [5k X (—0.25k)]
+ 2[5k X (0.75j — 3k)] + (18.25j + 0.25k)
= {—57.5i + 22.25j + 0.25k } m/s? Ans.
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EXAMPLE | 20.5

The pendulum shown in Fig. 20-13 consists of two rods; AB is pin
supported at A and swings only in the ¥—Z plane, whereas a bearing at B
allows the attached rod BD to spin about rod AB. At a given instant, the
rods have the angular motions shown. Also, a collar C, located 0.2 m from B,
has a velocity of 3m/s and an acceleration of 2 m/s> along the rod.
Determine the velocity and acceleration of the collar at this instant.

SOLUTION |

Coordinate Axes. The origin of the fixed X, ¥, Z frame will be placed
at A. Motion of the collar is conveniently observed from B, so the origin
of the x, y, z frame is located at this point. We will choose £ = @, and
Q.. = w.

Kinematic Equations,

Ve = Vg + Q Xrgp + (Voply:

Fig. 20-13 ac =ap+ € X rep + X (X 1) + 20 X (Veplge + (Aesphee

Motion of B. To find the time derivatives of ry let the x', ¥/, 2’ axes rotate with {' = . Then
Q' = = {4i} rad/s Q' = &, = {151} rad/s*
rg = {—05k} m
Vg = Iy = (Fg)yyw + @ X 15 = 0 + 4i X (—0.5k) = {2j} m/s
ag = ¥z = [(Fp)yyo + @) X (Fg)yye] + @) X rp + @) X Iy
= [0 + 0] + 1.5i X (—0.5k) + 4i % 2j = {0.75j + 8k} m/s’
Motion of C with Respect to B. To find the time derivatives of r¢5 relative to x, y, z, let the x”, ¥, 2" axes
rotate with £},,. = @,. Then
Q.= o, = {5k} rad/s Q. =&, = {6k} rad/s’
repp = {0.2)} m
(Veymlae = (Feplye = (Feyploysr + @1 X 1oy = 3j + 5k X 0.2 = {—1i + 3j} m/s
(el = Fepy: = [(Fepleys + @y X (Fepp)yryr] + @y X Fepp + @a X (Feiphy.
= (2j + 5k X 3j) + (—6k X 0.2§) + [5k X (—=1i + 3j)]
= {-28.8i — 3j} m/s*
Motion of C.
Ve = vp + £} X rep + (Vo = 2 + 4 X 0.2 + (=1 + 3j)
= {—1i+5j+ 08k} m/s Ans,
ac=ag + O X rep + O X (Q X rep) + 20 X (Ve + (Bcip)y.
= (0.75j + 8k) + (1.5 X 0.2j) + [4i X (4i X 0.2j)]
+ 2[4i X (=li + 3j)] + (—28.8i — 3j}
= {—28.8i — 545§ + 323k} m/s? Ans.
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SOLUTION I
Coordinate Axes. Here we will let the x, y, z axes rotate at

Q=@ +w = {4+ 5k} rad/s
Then ,,. = 0.

Motion of B. From the constraints of the problem @, does not
change direction relative to X, ¥, Z; however, the direction of @, is
changed by w,. Thus, to obtain € consider x', y', z’ axes coincident
with the X, ¥, Z axes at A,sothat £’ = w,. Then taking the derivative
of the components of {2,

Q= @ t+ @ = [(‘;’I}x‘y‘:' + o X o]+ [(‘;"?Jx')":' + @y X @]
[1.5i + 0] + [—6k + 4i X 5k] = {1.5i — 20j — 6k} rad/s?

Also, w; changes the direction of ry so that the time derivatives of ry
can be found using the primed axes defined above. Hence.

Vg =t = (Fplyyy + @ X1y
=0+ 4i X (—05k) = {2j} m/s
ag = g = [(Fplyys + @ X (Bplyyo] + @) X rg + @) X iy
= [0+ 0] + 1.5i X (—0.5K) + 4i X 2j = {0.75j + 8k} m/s’

Motion of C with Respect to B.

Q.. =

o, =

rep = {02j} m
(Ve/phye = 133} m/s
(ac/p)n: = {2i} m/s

Motion of C.
Ve =vg + & X rem + (Ve
= 2j + [(4i + 5k) X (0.2j)] + 3j
{—=1i +5j + 0.8k } m/s Ans.
ac = ap +  Xrep + QX (2 X rep) + 20 X (Vegp)y. + (acp),y:
(0.75§ + 8k) + [(1.5i — 20j — 6k) X (0.2j)]
+ (4i + 5k) X [(4i + 5k) X 0.2j] + 2[(4i + 5k) X 3j] + 2j
= {—28.8i — 5.45j + 323k} m/s? Ans.

Il
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“leromems

20-37. Solve Example 20.5 such that the x, y. z axes move
with curvilinear translation, € =0 in which case
the collar appears to have both an angular velocity
Q.. = @ + e, and radial motion.

Z¥E

20-38. Solve Example 20.5 by fixing x, y. z axes to rod BD
so that 2 = e + @-. In this case the collar appears only to
move radially outward along BD: hence £,,. = 0.

20-39. At the instant # = 60°, the telescopic boom AB of
the construction lift is rotating with a constant angular
velocity about the z axis of @ = 0.5 rad/s and about the
pin at A with a constant angular speed of w, = 0.25 rad/s.
Simultaneously, the boom is extending with a velocity of
1.5 ft/s,and it has an acceleration of 0.5 ft /s*. both measured
relative to the construction lift. Determine the velocity and
acceleration of point B located at the end of the boom at
this instant,

#2040, Attheinstant® = 6(°, the construction lift is rotating
about the z axis with an angular velocity of w, = 0.5 rad/s and
an angular acceleration of w; = 0.25 rad/ s while the
telescopic boom A B rotates about the pin at A with an angular
velocity of @, = 0.25rad/s and angular acceleration of
@, = 0.1 rad/s’. Simultaneously. the boom is extending with a
velocity of 1.5 ft/s. and it has an acceleration of 0.5 ft/s%, both
measured relative to the frame. Determine the velocity and
acceleration of point B located at the end of the boom at this
instant.

Probs. 20-39/40

20-41. At a given instant, rod BD is rotating about the
y axis with an angular velocity wg, = 2rad/s and an
angular acceleration gy = Srad/s%. Also, when # = 60°
link AC is rotating downward such that ¢ = 2rad/s and
# = 8rad/s’. Determine the velocity and acceleration of
point A on the link at this instant,

Wi =
= 2
wgpn = Srad/s

Prob. 2041

2042, At the instant # = 30° the frame of the crane and
the boom AB rotate with a constant angular velocity of
w; = 1.51ad/s and w, = 0.5 rad/s, respectively. Determine
the velocity and acceleration of point B at this instant.

20-43. At the instant 0 = 30°, the frame of the crane is
rotating with an angular velocity of @, = 1.5rad/s and
angular acceleration of @, = 0.5 rad/s?, while the boom AB
rotates with an angular velocity of w, = 0.5rad/s and
angular acceleration of @, = 0.25 rad/s>. Determine the
velocity and acceleration of point B at this instant.

Probs. 20-42/43
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*20-44. At the instant shown, the boom is rotating about
the z axis with an angular velocity @, = 2 rad/s and angular
acceleration @, = 0.8 rad/s’. At this same instant the
swivel is rotating at s = 3 rad/s when @s = 2 rad/s both
measured relative to the boom. Determine the velocity and
acceleration of point P on the pipe at this instant.

) = 2rad/s
@ = 0.8 rad /s’

Prob. 20-44

20-45. During the instant shown the frame of the X-ray
camera is rotating about the vertical axis at w. = Srad/s
and @, = 2 rad/s". Relative to the frame the arm is rotating
al @y = 2rad/s and @y =1 rad/s>. Determine the
velocity and acceleration of the center of the camera C at
this instant.

w. = 5rad/s
@, = 2rad/s?

Prob. 20-45

20-46. The boom AB of the crane is rotating about the
z axis with an angular velocity w. = 0.75 rad/s, which is
increasing at @. = 2 rad/s’. At the same instant, # = 60°
and the boom is rotating upward at a constant rate
6 =105 rad/s®. Determine the velocity and acceleration of
the tip B of the boom at this instant.

“20-47. The boom AB of the crane is rotating about the
z axis with an angular velocity of w, = 0.75 rad/s, which is
increasing at . = 2 rad/s. Al the same instant, 6 = 60°
and the boom is rotating upward at 6 = 0.5 rad /s, which is
increasing at # = 0.75 rad/s”. Determine the velocity and
acceleration of the tip B of the boom at this instant.

Z

~w.=075rad/s
o, = 2 rad /5

Probs. 20-46/47

20-48. At the instant shown, the motor rotates about the z axis
with an angular velocity of @; = 3rad/s and angular
acceleration of @, = 1.5 rad/s”. Simultaneously, shaft OA
rotates with an angular velocity of w, = 6 rad/s, and angular
acceleration of @, = 3 rad/s?, and collar C slides along rod AB
with a velocity and acceleration of 6 m/s and 3 m /s>, Determine
the velocity and acceleration of collar € at this instant.

Prob. 20-48
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20-49. The motor rotates about the z axis with a constant
angular velocity of @, = 3 rad/s. Simultaneously, shaft OA
rotates with a constant angular velocity of @, = 6rad/s.
Also, collar C slides along rod AS with a velocity and
acceleration of 6m/s and 3 m/s®. Determine the velocity
and acceleration of collar C at the instant shown.

Prob. 2049

20-50. At the instant shown, the arm OA of the conveyor
belt is rotating about the z axis with a constant angular
velocity w, = 6 rad/s, while at the same instant the arm is
rotating upward at a constant rate w, = 4rad/s. If the
conveyor is running at a constantrate ¥ = 5 fi/s, determine
the velocity and acceleration of the package P al the instant
shown. Neglect the size of the package.

20-51. At the instant shown, the arm OA of the conveyor
belt is rotating about the z axis with a constant angular velocity
w; = brad/s, while at the same instant the arm is rotating
upward at a constant rate w,» = 4 rad/s. If the conveyor is
runningatarate # = 5 /s, whichisincreasingat ¥ = 8 fi/s%,
determine the velocity and acceleration of the package P at
the instant shown. Neglect the size of the package.

z

Probs. 20-50/51

#*20-52. The boom AB of the locomotive crane is rotating
about the z axis with an angular velocity w; = (.5 rad/'s,
which is increasing at @, = 3 rad/s”. At this same instant,
f# = 30° and the boom is rotating upward at a constant rate
of # = 3rad/s. Determine the velocity and acceleration of
the tip B of the boom at this instant.

20-53. The locomotive crane is traveling to the rightat 2 m/s
and has an acceleration of 1.5 m/s% while the boom is rotating
about the z axis with an angular velocily @ = 0.5 rad/s.
which is increasing at @, = 3 rad/s>. At this same instant,
f## = 30° and the boom is rotating upward at a constant rate
# = 3rad/s. Determine the velocity and acceleration of the
tip B of the boom at this instant.

o A

@y = 0.5 rad /s ‘t

®; =3 rad/s* "l'-

Probs. 20-52/53

20-54. The robot shown has four degrees of rotational
freedom, namely, arm (JA rotates about the x and z axes, arm
AR rotates about the x axis, and CB rotates about the v axis,
Al the instant shown, w, = 1.5rad/s, @, = 1 rad/s",
w; = 3rad/s, @ = 0.5 rad/s’, w, = 6rad/s, &, = 3 rad/s%
and w; = w, = (. If the robot does not translate, e, v =a=1,
determine the velocity and acceleration of point C at this instant.

s, r]J;\ : H m.‘_ g
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| | CHAPTER REVIEW

Rotation About a Fixed Point

When a body rotates about a fixed point O,
then points on the body follow a path
that liecs on the surface of a sphere
centered at 0.

Instantaneous axis

Since the angular acceleration is a time of rotation

rate of change in the angular velocity,
then it is necessary to account for both
the magnitude and directional changes
of @ when finding its time derivative. To
do this. the angular velocity is often
specified in terms of its component
motions, such that the direction of some
of these components will remain
constant relative to rotating x, y, z axes.
If this is the case. then the time derivative
relative to the fixed axis can be
determined using A = (A),,. + € X A, ¥p =@ Xr

Once @ and « are known, the velocity ap=aXr+eX@@xr)
and acceleration of any point P in the
body can then be determined.

General Motion

If the body undergoes general motion, Vg = Va + @ X Ty
then the motion of a point & on the body
can be related to the motion of another ag = ay +a X Ky o X (@ X )

point A using a relative motion analysis,
with translating axes attached to A.

Relative Motion Analysis Using
Translating and Rotating Axes

The motion of two points A and 5 on a Vg =¥y + QX Pay + (Vo
body, a series of connected bodies, or
each point located on two different paths,
can be related using a relative motion
analysis with rotating and translating
axes at A.

ag=a, + O Xy, + QX (@ Xrgy) + 20 X (Vg T @ppa)o:

When applying the equations. to find v,
and ag, it is important to account for both
the magnitude and directional changes of
Ty, rg. S, and €, when taking their
time dcriv_ativcs to find vy, ag, (Vgiadi.
(8p4) .- Q.and Q.. To do this properly,
one must use Eq. 20-6.
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The forces acting on each of these motorcycles can be determined using the
equations of motion as discussed in this chapter.
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hree-Dimensional Kinetics
of a Rigid Body

CHAPTER OBJECTIVES

® To introduce the methods for finding the moments of inertia and
products of inertia of a body about various axes.

m To show how to apply the principles of work and energy and
linear and angular momentum to a rigid body having three-
dimensional motion.

B To develop and apply the equations of motion in three
dimensions.

® To study gyroscopic and torque-free motion.

*21.1 Moments and Products of Inertia

When studying the planar kinetics of a body, it was necessary to introduce
the moment of inertia /;, which was computed about an axis perpendicular
to the plane of motion and passing through the body’s mass center G. For
the kinetic analysis of three-dimensional motion it will sometimes be
necessary to calculate six inertial quantities. These terms, called the
moments and products of inertia, describe in a particular way the
distribution of mass for a body relative to a given coordinate system that
has a specified orientation and point of origin.
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Fig. 21-1

THREE-DIMENSIONAL KINETICS OF A RiGiD Bopy

Moment of Inertia. Consider the rigid body shown in Fig. 21-1.
The moment of inertia for a differential element dm of the body about
any one of the three coordinate axes is defined as the product of the
mass of the element and the square of the shortest distance from the axis
to the element. For example, as noted in the figure. r, = Vy* + 2% s0
that the mass moment of inertia of the element about the x axis is

dl,, = rpdm = 0 + 2 dm

The moment of inertia /,, for the body can be determined by integrating
this expression over the entire mass of the body. Hence, for each of the

axes, we can write
%, 5 2
o j rrdm = / (y° + z°)dm
m

L = / rydm = / (x* + ) dm (21-1)

I{zz:"/

Here it is seen that the moment of inertia is always a positive quantity,
since it is the summation of the product of the mass dm, which is always
positive, and the distances squared.

—
Il

mla

dm = f (x* + ¥ dm

Product of Inertia. The product of inertia for a differential element
dm with respect to a set of twe orthogonal planes is defined as the product
of the mass of the element and the perpendicular (or shortest) distances
from the planes to the element. For example, this distance is x to the
y—2 plane and it is y to the x—z plane, Fig. 21-1. The product of inertia dI,,
for the element is therefore

dl

o = Xy dm

Note also that di,, = dI,,. By integrating over the entire mass. the

products of inertia of the body with respect to each combination of
planes can be expressed as

L=, = [ xy dm
am

&:Bzfﬁm (21-2)
m

- ="1.= /xz dm
m
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(a) (b)

Fig. 21-2

Unlike the moment of inertia, which is always positive, the product of
inertia may be positive, negative, or zero. The result depends on the
algebraic signs of the two defining coordinates, which vary independently
from one another, In particular, if either one or both of the orthogonal
planes are planes of symmetry for the mass, the product of inertia with
respect to these planes will be zero. In such cases, elements of mass will
occur in pairs located on each side of the planc of symmetry. On one side
of the plane the product of inertia for the element will be positive, while
on the other side the product of inertia of the corresponding element will
be negative, the sum therefore vielding zero. Examples of this are shown
in Fig. 21-2. In the first case, Fig. 21-2a, the y—z plane is a plane of
symmetry, and hence 7, = 1. = 0. Calculation of /,_ will yield a positive
result, since all elements of mass are located using only positive y and z
coordinates. For the cylinder, with the coordinate axes located as shown
in Fig. 21-2b, the x-z and y-z planes are both planes of symmetry. Thus,
I,=1.=1L,=0.

Xy

Parallel-Axis and Parallel-Plane Theorems. The techniques
of integration used to determine the moment of inertia of a body were
described in Sec. 17.1. Also discussed were methods to determine the
moment of inertia of a composite body, i.e., a body that is composed of
simpler segments, as tabulated on the inside back cover. In both of these
cases the parallel-axis theorem is often used for the calculations. This
theorem, which was developed in Sec. 17.1, allows us to transfer the
moment of inertia of a body from an axis passing through its mass
center G to a parallel axis passing through some other point. If G has
coordinates xg, vg, 7 defined with respect to the x, y, z axes, Fig. 21-3,
then the parallel-axis equations used to calculate the moments of inertia
about the x, y, z axes are

’r_u = ”x'_t')-(} zfi ”3(_"’.3—? = Z?})
Ly = (yy)g + mag + 25) (21-3)

Xy

I.= (L) T n.l,[_r%; + yzc)
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a

Xa

Y

Fig. 21-3 (repeated)

The dynamics of the space shultle
while 1t orbits the carth can be
predicted only if its momenis and
praducts of inertia are known
relalive Lo ils mass center.

The products of inertia of a composite body are computed in the same
manner as the body’s moments of inertia. Here, however, the parallel-
plane theorem is important. This theorem is used to transfer the products
of inertia of the body with respect to a set of three orthogonal planes
passing through the body’s mass center to a corresponding set of three
parallel planes passing through some other point (2. Defining the
perpendicular distances between the planes as x;, yg and zg, Fig. 21-3,
the parallel-plane equations can be written as

!.1-_1- = U,-'_.-')r_; + micyg
v: = Wydg + myeic (21-4)

L, = () + mzgxg

—

The derivation of these formulas is similar to that given for the parallel-
axis equation, Sec. 17.1.

Inertia Tensor. The inertial properties of a body are therefore
completely characterized by nine terms, six of which are independent of
one another. This set of terms is defined using Egs. 21-1 and 21-2 and
can be written as

'rxA' =1 T 1.
= "_1-.1 ."_‘._,'. = !J._.
=, iy /.

This array is called an inertia tensor.® 1t has a unique set of values for a
body when it is determined for each location of the origin ¢ and
orientation of the coordinate axes.

In general, for point O we can specify a unique axes inclination for
which the products of inertia for the body are zero when computed with
respect to these axes. When this is done, the inertia tensor is said to be
“diagonalized” and may be written in the simplified form

L0 0
0 1, 0
0 0 I

Here I, = I, I, = Iy, and I. = [ are termed the principal moments of
ineriia for the body, which are computed with respect to the principal
axes of inertia. Of these three principal moments of inertia, one will be a
maximum and another a minimum of the body’s moment of inertia.

*The negative signs are here as a consequence of the development of angular momentum,
Egs. 21-10.
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The mathematical determination of the directions of principal axes of
inertia will not be discussed here (see Prob. 21-22). However, there are
many cases in which the principal axes can be determined by inspection.
From the previous discussion it was noted that if the coordinate axes are
oriented such that rwe of the three orthogonal planes containing the axes
are planes of symmetry for the body, then all the products of inertia for
the body are zero with respect to these coordinate planes, and hence
these coordinate axes are principal axes of inertia. For example, the
X, ¥, z axes shown in Fig. 21-2b represent the principal axes of inertia for
the cylinder at point O.

Moment of Inertia About an Arbitrary Axis. Consider the
body shown in Fig. 21-4, where the nine elements of the inertia tensor
have been determined with respect to the x, y, z axes having an origin at O.
Here we wish to determine the moment of inertia of the bady about the
Oa axis, which has a direction defined by the unit vector u,. By definition
Iy, = I b*dm, where b is the perpendicular distance from dm to Oa. If
the position of dm is located using r. then b = rsin 8, which represents
the magnitude of the cross product u, X r. Hence, the moment of inertia
can be expressed as

loa = fl(uu X )| *dm = /(uu X 1) (U, X D)dm

Provided w, = u,i + u,j + u.k and r= xi + yj + zK, then u, X r =
(i, — wy)i + (ux — wz)j + (uy — w)k.  After substituting and
performing the dot-product operation, the moment of inertia is

o, = /[(H_\-: - u:}’]z +lux — “x-’"-:': + Oy — “.\'X)E]dm
L

m

— 2u.u, / xy dm — 2uu. / yzdm — 2uu, / zx dm
- L : m oom

Recognizing the integrals to be the moments and products of inertia of
the body, Egs. 21-1 and 21-2, we have

uf/{)l + z0dm + u%/ (:_2 + .x:)dm + u;/{_r: + _}‘3} dim
m m

(21-5)

Lig= Lz -+ !‘._Fu;‘f + Ll - 2l uny, — 2 o, — 2w,

Thus, if the inertia tensor is specified for the x, y, z axes. the moment of
inertia of the body about the inclined O« axis can be found. For the
calculation, the direction cosines u,, u,. i, of the axes must be determined.
These terms specify the cosines of the coordinate direction angles a, 8. ¥
made between the positive Oa axis and the positive x, 3, z axes,
respectively (see Appendix B).
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THREE-DIMENSIONAL KINETICS OF A RiGiD BoDy

EXAMPLE | 211

2kg
(T{],L{],Dl}

\ e D

L \ dkg
(—02.02,02)

Determine the moment of inertia of the bent rod shown in Fig. 21-5a
about the Aa axis. The mass of each of the three segments is given in
the figure.

SOLUTION
Before applying Eq. 21-5, it is first necessary to determine the moments
and products of inertia of the rod with respect to the x, y, z axes. This

" is done using the formula for the moment of inertia of a slender rod.

I = $5mP, and the parallel-axis and parallel-plane theorems, Eqs.21-3
and 21-4. Dividing the rod into three parts and locating the mass center
of each segment, Fig. 21-5b, we have
Iy = [H2)(0.2 + 20.1*] + [0 + 2(0:2)7]
+ [HEHO4H + 4(0.2)° + (0.2)] = 0.480kg-m®
= [H@O27 + 200.1)] + [$2)(0.2)* + 2((—0.1)* + (0.2)) ]
+ [0 + 4((—0.2)* + (0.2)Y)] = 0.453 kg +m*
L.=[0+0] + [$@00.2)? + 2(=0.12] + [54)04) +
4(—02) + (02)] = 0400 kg-m’

o~
I

Ly =10+ 0] + [0 + 0] + [0 + 4(—0.2)(02)] = —0.160 kg - m*
. = [0+ 0] + [0 + 0] + [0 + 40.2)(0.2)] = 0.160 kg - m”’
L, = [0+ 0] + [0 + 200.2)(—0.1)] +

[0 + 4(0.2)(—0.2)] = —0.200 kg * m*

The Aa axis is defined by the unit vector

- —0.2i + 0.4j + 0.2k
llAa _— — = = S
™ V(=022 + (04) + (02)

—0.408i + 0.816j + 0.408k

Thus,

u, = —0408 u, = 0816 u. = 0.408

Substituting these results into Eq. 21-5 yields
= ’xx""'z + ",_\')'”_\2' £ ,F::,-,;;:‘ = 2ty — Lo, — 2100,
= 0.480(—0.408)* + (0.453)(0.816)° + 0.400(0.408)

= 2(—=0.160)(—0.408)(0.816) — 2(0.160)(0.816)(0.408)
= 2(—0.2000(0.408)(—0.408)

Ir'-a

= 0.169 kg *m* Ans.
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21-1. Show that the sum of the moments of inertia of a
body./,, + 1, + L. isindependent of the orientation of the
X, ¥, £ axes and thus depends only on the location of the
origin.

21-2. Determine the moment of inertia of the cone with
respect to a vertical ¥ axis passing through the cone’s center
of mass. What is the moment of inertia about a parallel

axis y" that passing through the diameter of the base of the
cone? The cone has a mass m.

Prob. 21-2

21-3. Determine the moments of inertia /, and /, of the
paraboloid of revolution. The mass of the paraboloid is m.

*21-4. Determine the radii of gyration k, and k, for the
solid formed by revolving the shaded area about the y axis,
The density of the material is p.

Prob. 214

21-5. Determine by direct integration the product of
inertia /.. for the homogeneous prism. The density of the
material is p. Express the result in terms of the total mass m
of the prism.

21-6. Determine by direct integration the product of
inertia I, for the homogeneous prism. The density of the
material is p. Express the result in terms of the total mass m
of the prism.

Prob. 21-3

Probs. 21-5/6
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21-7. Determine the product of inertia [, of the object 21-10. Determine the mass moment of inertia of the
formed by revolving the shaded area about the line x = 5ft. homogeneous block with respect (o its centroidal x" axis.
Express the result in terms of the density of the material, p. The mass of the block is m.

*21-8, Determine the moment of inertia [, of the object
formed by revolving the shaded area about the line x = 5 1.
Express the result in terms of the density of the material, p.

Prob. 21-10
Probs. 21-7/8

21-9. Determine the elements of the inertia tensor for the ; ; < Y

; : 21-11. Determine the moment of inertia of the cylinder
cube with respect ta the x, y, z coordinate system. The mass ith — st the eolindar The evlindec
of the Cibe T . :LSSr::,pec o the a—a axis of the cylinder. The cylinder has a

Prob. 21-9 Prob. 21-11
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#21-12. Determine the moment ofinertia/,, of the composite #21-16. The bent rod has a mass of 4 kg/m. Determine
plate assembly. The plates have a specific weight of 6 Ih/fi’, the moment of inertia of the rod about the Oa axis.

21-13. Determine the product of inertia /,. of the composite

plate assembly. The plates have a weight of 6 1b/fi%,

Probs. 21-12/13

21-14. Determine the products of inertia /., [,,,,and I, of the
thin plate. The material has a density per unit area of 50 kg/m?.

z

Prob. 21-16

21-17. The bent rod has a weight of 1.5 1b/fr. Locate the
center of gravity G(X. ¥) and determine the principal
moments of inertia 7.-, I.., and L. of the rod with respect to
the x', y', z' axes. '

Prob. 21-14

21-15. Determine the products of inertia /,,, /,. and /. of
the solid. The material is steel, which has a specific weight of
490 Ib /£t

01251t ¥

\>E).125 it

Prob. 21-15 Prob. 21-17
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21-18. Determine the moments of inertia about the x, y, z #21-20. The assembly consists of a 13-Ib plate A, 40-1b
axes of the rod assembly. The rods have a mass of 0.75 kg /m. plate B. and four 7-Ib rods. Determine the moments of inertia
of the assembly with respect to the principal x, y, z axes.

Prob. 21-20

Prob. 21-18

21-21. Determine the moment of inertia of the rod-
and-thin-ring assembly about the z axis. The rods and ring
21-19. Determine the moment of inertia of the composite have a mass per unit length of 2 kg/m.
body about the aa axis. The cylinder weighs 20 1b, and each
hemisphere weighs 10 Ib.

mim

— 2 ft —

Prob. 21-19 Prob. 21-21
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21.2 Angular Momentum

In this section we will develop the necessary equations used to determine
the angular momentum of a rigid body about an arbitrary point. These
equations will provide a means for developing both the principle of
impulse and momentum and the equations of rotational motion for a
rigid body.

Consider the rigid body in Fig. 21-6. which has a mass m and center of
mass at 6. The X, ¥, Z coordinate system represents an inertial frame of
reference, and hence, its axes are fixed or translate with a constant
veloeity. The angular momentum as measured from this reference will be
determined relative to the arbitrary point A. The position vectors ry
and p, are drawn from the origin of coordinates to point A and from A
to the ith particle of the body. If the particle’s mass is m;, the angular
momentum about point A is

(Hy) = py Xy,

where v, represents the particle’s velocity measured from the X, ¥, Z

coordinate system. If the body has an angular velocity w at the instant

considered, v; may be related to the velocity of A by applving Eq.20-7,1.e.,
Vi= vy T @ X py

Thus,
(Hy); = pa X mivy + @ X py)

= (pym) X vy + py X (@ X pim;

Summing the moments of all the particles of the body requires an
integration, Since m; — dm, we have

H, = (fpﬂd:it) Xovy + /,,s;v._.l X (e X py)dm (21-6)

Fa

v
Inertial coordinate system

Fig. 21-6
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Fig. 21-7

Fixed Point O. If A becomes a fixed point O in the body, Fig. 21-7a,
then v, = 0 and Eq. 21-6 reduces to

| H, = /po X (e X po)dm (21-7)

Center of Mass G. If A is located at the center of mass G of the
body, Fig. 21-7b, then Jmp,; dm = 0 and

‘ He /Pr; X (@ X pg)dm (21-8)

Arbitrary Point A. 1In general, A can be a point other than O or G,
Fig. 21-T¢, in which case Eq. 21-6 may nevertheless be simplified to the
following form (see Prob. 21-23).

H, = pou X mvg + Hg (21-9)

Here the angular momentum consists of two parts—the moment of the
linear momentum mv; of the body about point A added (vectorially) to
the angular momentum Hg;. Equation 21-9 can also be used to determine
the angular momentum of the body about a fixed point O. The results, of
course, will be the same as those found using the more convenient Eq. 21-7.

Rectangular Components of H. To make practical use of
Eqgs. 21-7 through 21-9, the angular momentum must be expressed in
terms of its scalar components. For this purpose, it is convenient to
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21.2  ANGULAR MOMENTUM

choose a second set of x, v, z axes having an arbitrary orientation relative
to the X, ¥, Z axes, Fig. 21-7, and for a general formulation, note that
Eqgs. 21-7 and 21-8 are both of the form

H= /pX{oJXp)dm

Expressing H, p, and @ in terms of x, y. z components, we have

Hi+ Hj+ Hk= ]ui + i+ 2K X [(@d + @ + 0.k
m

X (xi + yj + zk)]dm

Expanding the cross products and combining terms yields

Hi+HI+t HE= [w_.-f(yl + 29dm — m.'./x)-' dm — w;‘/xz dm}i
" m 3 e "
+ [—w_‘./xy dm + w\.‘/‘{,\c2 + zhdm — w:]_v:, dm }J
= [—(oj./z_r = w_‘./).'z dm + w:] (x* + _r:)dm}k

Equating the respective i, j, k components and recognizing that the
integrals represent the moments and products of inertia, we obtain

H, = Lo, — Lo, — .0
H, = Lo, + T, — I, (21-10)
Ho= =l — Toas—t I o

These equations can be simplified further if the x, v, z coordinate axes
are oriented such that they become principal axes of inertia for the body
at the point. When these axes are used, the products of inertia
I, = I, = I = 0, and if the principal moments of inertia about the x, y,
z axes are represented as I =1, I, = I, and I. = I, the three
components of angular momentum become

(H, = ILw, H,=Ilw, H =Ilo| (21-11)
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The motion of the astronaut is controlled
by use of small directional jets attached
to his or her space suil. The impulses
these jets provide must be carefully
specified in order lo prevent tumbling
and loss of arientation.

v
Inertial coordinate system

Fig. 21-8

Principle of Impulse and Momentum. Now that the
formulation of the angular momentum for a body has been developed,
the principle of impulse and momentum, as discussed in Sec. 19.2, can be
used to solve kinetic problems which involve force, velocity, and time. For
this case, the following two vector equations are available:

mi{vg) + 3 [-E-df = mi{¥Vg)a (2]—'2}
ot

I

(Hy), + 3 / M, dr = (Hp), (21-13)

1)

In three dimensions ecach vector term can be represented by three scalar
components, and therefore a total of six scalar equations can be written.
Three equations relate the linear impulse and momentum in
the x, v, z directions, and the other three equations relate the body’s
angular impulse and momentum about the ¥, y, z axes. Before applying
Egs. 21-12 and 21-13 to the solution of problems, the material in
Secs. 19.2 and 19.3 should be reviewed.

’21.-3 Kinetic En—e-rgy : 11

In order to apply the principle of work and energy to solve problems
mvolving general rigid body motion, it 1s first necessary to formulate
expressions for the kinetic energy of the body. To do this, consider the
rigid body shown in Fig. 21-8, which has a mass m and center of mass at G.
The kinetic energy of the ith particle of the body having a mass m; and
velocity v;, measured relative to the inertial X, ¥, Z frame of reference, is

T: = 3ma7 = 3mdv; V)
Provided the velocity of an arbitrary point A in the body is known. v; can
be related to v, by the equation v; = vy + @ X p,, where @ is the
angular velocity of the body, measured from the X, ¥, Z coordinate

system, and p, is a position vector extending from A to /. Using this
expression, the kinetic energy for the particle can be written as

T, = ém,{v& + @ X pilivy + @ X py)
= vy v Om; + vy (@ X pom; + 3@ X py) (e X pom;

The kinetic energy for the entire body is obtained by summing the kinetic
energies of all the particles of the body. This requires an integration.
Since m; — dm, we get

T =3m(ve-va) + vy ((o X /P,:.dm) +3 /(m X pa)-(@ X pyldm
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The last term on the right can be rewritten using the vector identity
axb-c=a-bxXc whereca=w, b= p,,and ¢ = w x p,. The final
result is

T =3m(v,-v,) + vy~ (m X /p,,dm:l

-+

ral—

" /‘pﬁ X (@ X pdm (21-14)

This equation is rarely used because of the computations involving the
integrals. Simplification occurs, however, if the reference point A is either
a fixed point or the center of mass.

Fixed Point O. If A is a fixed point O in the body, Fig. 21-7a, then
vy = 0, and using Eq. 21-7, we can express Eq. 21-14 as

Tzéﬁ)'Ho

If the x, ¥, z axes represent the principal axes of inertia for the body, then
o =wit+wojt ok and Hy, = lo,i+ Loj+ Lok Substituting
into the above equation and performing the dot-product operations
yields

F’ = %I,lf‘-'f + %!}.wﬁ = ‘i:f:tu?] (21-15)

Center of Mass G. 1If A is located at the center of mass G of the
body, Fig. 21-7b, then fp,. dm = 0 and, using Eq. 21-8, we can write
Eq.21-14 as

ik — '%mb‘%; + %“’HG

In a manner similar to that for a fixed point, the last term on the right
side may be represented in scalar form, in which case

bl

T = %””"G k= -J,:f)mi = —é!\w:' 35 éf_._m:.'_' (21-16)

Here it is seen that the kinetic energy consists of two parts; namely. the
translational kinetic energy of the mass center, %mvé, and the body's
rotational kinetic energy.

Principle of Work and Energy. Having formulated the kinetic
energy for a body, the principle of work and energy can be applied to
solve kinetics problems which involve force, velocity, and displacement.
For this case only one scalar equation can be written for each body,
namely,

| T\ + 30U, =T, | (21-17)

Before applying this equation, the material in Chapter 18 should be
reviewed.

Mech.MuslimEngineer.Net

21.3  KINETIC ENERGY

593



594

CHAPTER 21

EXAMPLE | 21.2

THREE-DIMENSIONAL KINETICS OF A RiGiD BoDy

&4

s

The rod in Fig. 21-9a has a weight per unit length of 1.51b/ft
Determine its angular velocity just after the end A falls onto the hook
at E. The hook provides a permanent connection for the rod due to
the spring-lock mechanism §. Just before siriking the hook the rod is
falling downward with a speed (vg), = 10 ft/s.

SOLUTION
The principle of impulse and momentum will be used since impact occurs.

Impulse and Momentum Diagrams. Fig. 21-95. During the short

time Ar, the impulsive force F acting at A changes the momentum of
the rod. (The impulse created by the rod’s weight W during this time
18 small compared to _] F dt, so that it can be neglected, i.e., the weight
1s a nonimpulsive foree,) Hence, the angular momentum of the rod 1s
conserved about point A since the moment of [ F dr about A is zero.
Conservation of Angular Momentum. Egquation 21-9 must be used
to find the angular momentum of the rod, since A does not become a
fixed point until after the impulsive interaction with the hook. Thus,
with reference to Fig. 21-9b, (H,);, = (H,),, or

Toia X m(Vg)| = T X m(ve)s + (Hgh (1)
From Fig. 21-9a, x4 = {—0.667i + 0.5j} ft. Furthermore, the primed
axes are principal axes of inertia for the rod because /. =1, = L.,» = (.

Hence, from Egs.21-11,(Hg;), = yw,i + Iy, j + ok The principal
moments of inertia are I, = 0.0272 slug - fi%, l,- = 0.0155 slug - ft%,
. = 0.0427 slug - fi* (see Prob. 21-17). Substituting into Eq. 1, we have

: 45 ol , 45N
(—0.667i + 0.5§) X [(32.2){ 101:)] = (—0.667i + 0.5j) % an)( 10)14

+ 0.0272,i + 0.01550,j + 0.0427w_k

Expanding and equating the respective i. j. k components yields

—0.699 = —0.0699(v5); + 0.0272w, (2)
—0.932 = —0.0932(v), + 0.01550, (3)
0 = 0.0427w. (4)

Kinematics. There are four unknowns in the above equations;
however, another equation may be obtained by relating @ to (vg),
using kinematics. Since w. = 0 (Eq.4) and after impact the rod rotates
about the fixed point A, Eq. 20-3 can be applied. in which case
(VG)Z = X Tia . OF
—(Ughk = (wd + o) X (—0.667i + 0.5])
—(vgh = 0.5w, + 0.667w, (5)
Solving Eqgs. 2, 3 and 5 simultaneously yields
(vg)r = {841k} ft/s @ = {—4.091 — 9.55j} rad/s Ans.
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EXAMPLE | 29.3

A 5-N -m torque is applied to the vertical shaft CD shown in Fig, 21-10a,
which allows the 10-kg gear A to turn freely about CE. Assuming
that gear A starts from rest, determine the angular velocity of CD after
it has turned two revolutions, Neglect the mass of shaft CD and axle CE
and assume that gear A can be approximated by a thin disk. Gear B
is fixed.

SOLUTION
The principle of work and energy may be used for the solution. Why?

Work. If shaft CD,the axle CE,and gear A are considered as a system
of connected bodies, only the applied torque M does work. For two
revolutions of CD, this work is 2U,_; = (5 N-m)(4m rad) = 62.83 1.

Kinetic Energy. Since the gear is initially at rest. its initial kinetic
energy is zero. A kinematic diagram for the gear is shown in Fig. 21-10b.
If the angular velocity of CD is taken as w¢p. then the angular velocity IRt EoS
of gear A 1S wy = @¢p + . The gear may be imagined as a portion ;  axis of rotation
of a massless extended body which is rotating about the fixed point C. |
The instantaneous axis of rotation for this body is along line CH,
because both points C and H on the body (gear) have zero velocity .
and must therefore lie on this axis. This requires that the components ¢l mt
wep and wqp be related by the equation wep/0.1 m = wep/0.3 m or
wep = 3wep. Thus,

.

wy = “‘(ﬂ(_ﬂEi are fuCDk = ‘_SCﬁCDi + wCDk (]) (b)

The x, y, z axes in Fig. 21-10a represent principal axes of inertia at C )
for the gear. Since point C is a fixed point of rotation, Eq. 21-15 may Fig. 21-10
be applied to determine the kinetic energy. i.e.,

T =%Lod + 3Ll + 11wl (2)

Using the parallel-axis theorem, the moments of inertia of the gear
about point C are as follows:

I, = 3(10 kg)(0.1 m)*> = 0.05 kg -m’
I, = I = {(10kg)0.1 m)* + 10 kg(0.3 m)* = 0.925 kg - m’
Since w, = —3wcp, w, = 0, w. = wep, EQ. 2 becomes

T, = 3(0.05)(—3wep) + 0 + 3(0.925)wep)* = 0687507

Principle of Work and Energy. Applying the principle of work and
energy, we obtain

Ty 5e=1;
0 + 62.83 = 0.6875wfp
wep = 9.56 rad/s Ans.
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“leropiems

21-22. If a body contains no planes of symmetry, the
principal moments of inertia can be determined
mathematically. To show how this is done. consider the rigid
body which is spinning with an angular velocity e, directed
along one of its principal axes of inertia, If the principal
moment of inertia about this axisis 1. the angular momentum
can be expressed as H = lw = lw.i + lw.j + Iw_k. The
components of H may also be expressed by Egs. 21-10,
where the inertia tensor is assumed to be known. Equate
the i, j, and k components of both expressions for H and
consider w,, w,, and w. to be unknown. The solution of these
three equations is obtained provided the determinant of the
coefficients is zero. Show that this determinant, when
expanded, vields the cubic equation

P e T B

+ Uy + Tl ¥ Tl — By — B, — B
= Uyl = 2Lyl = 1Ty,
—dyl, = TRy =10

The three positive roots of 1, obtained from the solution of
this equation. represent the principal moments of inertia [,
I, and L.

Prob. 21-22

21-23. Show that if the angular momentum of a body is
determined with respect to an arbitrary point A, then Hy
can be expressed by Eq. 21-9. This requires substituting
Pr = p; + peu o Eg. 21-6 and expanding, noting
that f Pedm =0 by definition of the mass center and
Vo = Yy T X pgy.

Prob. 21-23

#21-24. The 15-kg circular disk spins about its axle with a
constant angular velocity of @, = 10 rad/s. Simultaneously.
the yoke is rotating with a constant angular velocity of
wy = Srad/s. Determine the angular momentum of the
disk about its center of mass O, and its kinetic energy.

wz=5rad,’s

Prob. 21-24
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21-25. The cone has a mass m and rolls without slipping
on the conical surface so that it has an angular velocity
about the vertical axis of ew. Determine the kinetic energy
of the cone due to this motion.

Prob. 21-25

21-26. The circular disk has a weight of 15 Ib and is
mounted on the shaft AR at an angle of 45° with the
horizontal. Determine the angular velocity of the shaft
when ¢ = 35 if a constant torque M = 2 1b- {t is applied to
the shaft. The shaft is originally spinning at @, = Brad/s
when the torque is applied.

21-27. The circular disk has a weight of 15 Ib and is
mounted on the shaft AB at an angle of 45° with the
horizontal. Determine the angular velocity of the shafi
when ¢ = 25 if a torque M = (de™) b ft, where ¢ is in
seconds, 15 applied to the shaft. The shaft is originally
spinning at @, = 8 rad/s when the torque is applied.

i) = 8 :I':'ldl."lS

=)’

Probs. 21-26/27

21.3  KineTic ENERGY 597

#21-28. The space capsule has a mass of 5 Mg and the
radii of gyration are k, = & = 1.30 m and k, = 0.45 m,
If it travels with a velocity vy = {400j + 200k} m/s,
compute its angular velocity just after it is struck by a
meteoroid having a mass of 0.80 kg and a velocity
v, = {=300i + 200j = 150k} m/s. Assume that the
meteoroid embeds itself into the capsule at point A and
that the capsule initially has no angular velocity.

Prob. 21-28

21-29. The 2-kg gear A rolls on the fixed plate gear C.
Determine the angular velocity of rod OB about the z axis
after it rotates one revolution about the z axis, starting from
rest. The rod is acted upon by the constant moment
M = 5N-m. Neglect the mass of rod OB. Assume that
gear A is a uniform disk having a radius of 100 mm,

Prob. 21-29
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21-30, The rod weighs 3 Ib/ft and is suspended from
parallel cords at A and B. If the rod has an angular velocity
of 2 rad/s about the z axis at the instant shown, determine
how high the center of the rod rises at the instant the rod
momentarily stops swinging.

'l e fes
I w=2radfs

Prob. 21-30

21-31. Rod AB has a weight of 6 1b and is attached to two
smooth collars at its ends by ball-and-socket joints. If collar A
is moving downward with a speed of 8 ft/s when z = 3 fi,
determine the speed of A at the instant ; = 0. The spring
has an unsiretched length of 2 fi. Neglect the mass of the
collars, Assume the angular velocity of rod AB is
perpendicular to its axis.

/ ¥
E=ati 50
B A== -}
Proh. 21-31

THREE-DIMENSIONAL KINETICS OF A RiGiD BoDy

#21-32. The 5-kg circular disk spins about AB with a
constant angular velocity of @, = 15 rad/s. Simultaneously,
the shaft to which arm OARB is rigidly attached. rotates with
a constant angular velocity of @, = 6rad/s. Determine the
angular momentum of the disk about point O, and its
kinetic energy.

£

Prob, 21-32

21-33. The 20-kg sphere rotates about the axle with a
constant angular velocity of m, = 60 rad/s. If shaft AB is
subjected (o a torque of M = 50 N -m, causing it to rotate,
determine the value of w, after the shafi has turned 90°
from the position shown. Initially. @, = 0. Neglect the mass

of atm CDE,

Prob. 21-33
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21-34, The 200-kg satellite has its center of mass at
point G. Its radii of gyration aboult the z'. x', y* axes are
k. = 300 mm, k. =k, = 500 mm, respectively. At the
instant shown. the satellite rotates about the x’, y'. and z'
axes with the angular velocity shown, and its center of mass
G has a velocity of v; = {=250i + 200§ + 120k} m/s.
Determine the angular momentum of the satellite about
point A at this instant.

21-35. The 200-kg satellite has its center of mass at point G,
Itsradii of gyration about the z'.x'.y" axes are k.. = 300 mm,
k. = k,» = 500 mm, respectively. At the instant shown, the
satellite rotates about the v*,v*, and z' axes with the angular
velocity shown, and its center of mass & has a velocity
of vg= {-250i + 200§ + 120k} m/s. Delermine the
kinetic energy of the satellite at this instant.

ot
L2

Probs. 21-34/35

#21-36. The 15-kg rectangular plate is free to rotate about
the y axis because of the bearing supports at A and B. When
the plate is balanced in the vertical plane, a 3-g bullet is
fired into it. perpendicular to its surface. with a velocity
v = {—2000i } m/s. Compute the angular velocity of the
plate at the instant it has rotated 180° If the bullet strikes
corner I} with the same velocity v, instead of at C, does the
angular velocity remain the same? Why or why not?

Prob. 21-36

21.3  KineTic ENERGY 599

21-37. The circular plate has a weight of 19 1b and a
diameter of L5 it. If it is released from rest and falls
horizontally 2.5 ft onto the hook at 8, which provides a
permanent connection, determine the velocity of the mass
center of the plate just after the connection with the hook
is made.

251t

Prob. 21-37

21-38. The 10-kg disk rolls on the horizontal plane without
slipping. Determine the magnitude of its angular momentum
when it is spinning about the y axis at 2 rad/s.

21-39. If arm OA is subjected to a torque of M = SN-m,
determine the spin angular velocily of the 10-kg disk after
the arm has turned 2 rev, starting from rest. The disk rolls
on the horizontal plane without slipping. Neglect the mass
of the arm.

Probs. 21-38/39
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Inertial coordimate system

Fig. 21-11

v

*21.4 Equations of Motion

Having become familiar with the techniques used to describe both the
inertial properties and the angular momentum of a body. we can now
write the equations which describe the motion of the body in their most
useful forms,

Equations of Translational Motion. The translational motion
of a body is defined in terms of the acceleration of the body’s mass
center, which is measured from an inertial X, ¥, Z reference. The equation
of translational motion for the body can be written in vector form as

XF = mag; (21-18)

or by the three scalar equations

LF, = mlag),
IF, = mlag), (21-19)
LF. = mlag)-

Here, XF = XF,i + XF,j + XF.krepresents the sum of all the external
forces acting on the body.

Equations of Rotational Motion. In Sec. 15.6, we developed
Eq. 15-17, namely,

IM, = Ho (21-20)

which states that the sum of the moments of all the external forces
acting on a system of particles (contained in a rigid body) about a fixed
point (Jis equal to the time rate of change of the total angular momentum
of the body about point . When moments of the external forces acting on
the particles are summed about the system’s mass center (G, one again
obtains the same simple form of Egq. 21-20, relating the moment
summation 2M;; to the angular momentum H,;. To show this, consider
the system of particles in Fig. 21-11, where X, ¥, Z represents an inertial
frame of reference and the x, y z axes, with origin at G, translate with
respect to this frame. In general, (7 is accelerating, so by definition the
translating frame is not an inertial reference. The angular momentum of
the ith particle with respect to this frame is, however,

(H)g = 16 X mivyg

where 1 and v;; represent the position and velocity of the ith particle
with respect to . Taking the time derivative we have

(H)g = tyg X mivyg + Tyg X m¥ye
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By definition, v;/; = ;. Thus, the first term on the right side is zero
since the cross product of the same vectors is zero. Also, a; = Vi,
so that

(H)g = (g X miae)

Similar expressions can be written for the other particles of the body.
When the results are summed, we get

HG = S'(rf,.*t; X omaye)

Here H;; is the time rate of change of the total angular momentum of the
body computed about point G.

The relative acceleration for the ith particle is defined by the equation
& = & — a;, where a, and a; represent, respectively, the accelerations
of the ith particle and point (G measured with respect to the inertial frame
of reference. Substituting and expanding, using the distributive property
of the vector cross product, yields

Hg = Z(6 X may) — (Emtyg) X ag

By definition of the mass center, the sum (Zm;1;) = (Sm)F is equal to
zero, since the position vector T relative to G is zero. Hence, the last term
in the above equation is zero. Using the equation of motion, the product
m;a; can be replaced by the resultant external force F; acting on the ith
particle. Denoting Mg = X(r; X F)). the final result can be written as

SM; = Hg (21-21)

The rotational equation of motion for the body will now be developed
from either Eq. 21-20 or 21-21. In this regard, the scalar components of
the angular momentum Hg or Hg are defined by Eqs. 21-10 or, if principal
axes of inertia are used either at point O or G, by Eqs. 21-11. If these
components are computed about x, y, z axes that are rotating with an
angular velocity £ that is different from the body’s angular velocity e,
then the time derivative H = dH/dr, as used in Eqgs. 21-20 and 21-21,
must account for the rotation of the x, y, z axes as measured from the
inertial X, ¥, Z axes. This requires application of Eq. 20-6. in which case
Eqgs. 21-20 and 21-21 become

EMO = (I:Il’.])x_v; + &) X H(_j

. (21-22)
IM; = (Hp),,. + & X Hg
Here {I-'D,\._‘.: is the time rate of change of H measured from the x, y, z
reference.

There are three ways in which one can define the motion of the x, v, z
axes. Obviously, motion of this reference should be chosen so that it will
yield the simplest set of moment equations for the solution of a particular
problem.
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x, ¥, Z Axes Having Motion ) = 0. If the body has general
motion, the x, v, z axes can be chosen with origin at G, such that the axes
only franslate relative to the inertial X, ¥, Z frame of reference. Doing
this simplifies Eq. 21-22, since £1 = 0. However, the body may have a
rotation e about these axes, and therefore the moments and products of
inertia of the body would have to be expressed as functions of time. In
most cases this would be a difficult task, so that such a choice of axes has
restricted application.

x, ¥y, z Axes Having Motion {} = w. Thex, y, 7 axes can be
chosen such that they are fived in and move with the body. The moments
and products of inertia of the body relative to these axes will then be
constant during the motion. Since £ = w, Egs. 21-22 become

IM, = (H(J)xy; + @ X Hy
) (21-23)
IM; = (Hg),: + @ X Hg

‘We can express each of these vector equations as three scalar equations
using Eqgs. 21-10. Neglecting the subscripts O and G yields
IM, = Lo, — U, — L)oo, — (o, - oon)
— I — @) — (0. + 0,0,)
M, = o, — (. — oo, — (o — o) (21-24)
— Lo — o)) — Lo, + o,0)
M. =L — I, - I oo, - (0 - o)
= .-'I..}.(wf o m_%) = . (wy T w.w,)

If the x, v, z axes are chosen as principal axes of inertia, the products of
inertia are zero, I, = I, etc., and the above equations become

M, = Lo, — (I, — L)oo,
IM, = Ly, — (I — L)oo, (21-25)

La. = (I, = L))o,

14
S
Il

This set of equations is known historically as the Euler equations of
motion, named after the Swiss mathematician Leonhard Euler, who first
developed them. They apply only for moments summed about either
point O or G.
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When applying these equations it should be realized that ., ©,, ©.
represent the time derivatives of the magnitudes of the x, y, z components
of @ as observed from x, v, z. To determine these components, it is first
necessary to find w,, w,, w. when the x, y, 7 axes are oriented in a general
position and then take the time derivative of the magnitude of these
components, i.e., (@),,.. However, since the x, y, z axes are rotating at
£} = w.thenfrom Eq.20-6.itshould be noted thatw = (w),,. + @ X w.
Since w X w = 0, then @ = (w),,.. This important result indicates that
the time derivative of e with respect to the fixed X, ¥, Z axes, that is @,
can also be used to obtain (@),,.. Generally this is the easiest way to
determine the result. See Example 21.5.

X, ¥, 2z Axes Having Motion {1 # w. To simplify the
calculations for the time derivative of e, it 15 often convenient to choose
the x, v, z axes having an angular velocity £ which is different from the
angular velocity @ of the body, This is particularly suitable for the
analysis of spinning tops and gyroscopes which are svmmetrical about
their spinning axes.* When this is the case, the moments and products of
inertia remain constant about the axis of spin.

Equations 21-22 are applicable for such a set of axes. Each of these
two vector equations can be reduced to a set of three scalar equations
which are derived in a manner similar to Eqgs. 21-25,7 i.e.,

IM, = Loy — 1L,Q.w, + Lo,
IM, = Loy — LOw. + 1,00, (21-26)
M. =lo — [ Qo + 1O,

Here 1, 1. )_represent the x, y, z components of £}, measured from
the inertial frame of reference, and @,, @,, . must be determined
relative to the x, y, z axes that have the rotation . See Example 21.6.
Any one of these sets of moment equations, Eqs. 21-24, 21-25, or
21-26, represents a series of three first-order nonlinear differential
equations. These equations are “coupled,” since the angular-velocity
components are present in all the terms. Success in determining the
solution for a particular problem therefore depends upon what is
unknown in these equations. Difficulty certainly arises when one
attempts to solve for the unknown components of e when the external
moments are functions of time. Further complications can arise if the
moment equations are coupled to the three scalar eguations of
translational maotion, Egs. 21-19. This can happen because of the
existence of kinematic constraints which relate the rotation of the body
to the translation of its mass center, as in the case of a hoop which rolls

*A detailed discussion of such devices is given in Sec. 21.5.
See Prob. 2142,
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without slipping. Problems that require the simultaneous solution of
differential equations are generally solved using numerical methods with
the aid of a computer. In many engineering problems, however, we are
given information about the motion of the body and are required to
determine the applied moments acting on the body. Most of these
problems have direct solutions, so that there is no need to resort to
computer techniques.

Procedure for Analysis

Problems mvolving the three-dimensional motion of a rigid body
can be solved using the following procedure.

Free-Body Diagram.

e Draw a free-body diagram of the body at the instant considered
and specify the x, v, z coordinate system. The origin of this
reference must be located either at the body’s mass center G, or
at point O, considered fixed in an inertial reference frame and
located either in the body or on a massless extension of the body.

e Unknown reactive force components can be shown having a
positive sense of direction.

e Depending on the nature of the problem, decide what type of
rotational motion £} the x, y, z coordinate system should have,
ie, & =0, &2 = w, or £} # w. When choosing, keep in mind
that the moment equations are simplified when the axes move in
such a manner that they represent principal axes of inertia for the
body at all times.

e Compute the necessary moments and products of inertia for the
body relative to the x, y, z axes.

Kinematics.

e Determine the x, y, z components of the body’s angular velocity
and find the time derivatives of e.

e Note that if £ = w, then @ = (@),,.. Therefore we can either
find the time derivative of « with respect to the X, ¥, Z axes, o,
and then determine its components @, ,, _, or we can find the
components of e along the x, v, 7 axes. when the axes are oriented
in a general position, and then take the time derivative of the

magnitudes of these components, (@), ..

Equations of Motion.

e Apply either the two vector equations 21-18 and 21-22 or the six
scalar component equations appropriate for the x, y, z coordinate
axes chosen for the problem.
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EXAMPLE | 21.4

The gear shown in Fig. 21-124 has a mass of 10 kg and is mounted at
an angle of 10° with the rotating shaft having negligible mass. If
I. = 0.1 kg-m* I, = I, = 0.05 kg m?, and the shaft is rotating with a
constant angular velocity of @ = 30 rad/s, determine the components
of reaction that the thrust bearing A and journal bearing B exert on
the shaft at the instant shown.

SOLUTION

Free-Body Diagram. Fig. 21-12b.The origin of the x, y, z coordinate
system is located at the gear’s center of mass G, which is also a fixed
point. The axes are fixed in and rotate with the gear so that these axes
will then always represent the principal axes of inertia for the gear.
Hence {} = w.

Kinematies. As shown in Fig. 21-12¢, the angular velocity @ of the
gear is constant in magnitude and is always directed along the axis of
the shaft AB. Since this vector is measured from the X, ¥, Z inertial
frame of reference, for any position of the x, y, z axes,
w, =0 o, = —30sin10° @ = 30cos 10°

These components remain constant for any general orientation of
the x, v, z axes,and sow, = @, = @, = 0. Alsonote thatsince £ = @,
then @ = (@),,.. Therefare, we can find these time derivatives relative
to the X, ¥, Z axes. In this regard e has a constant magnitude and
direction (+Z) since @ = 0, and so @, = @, = @. = 0. Furthermore,
since G is a fixed point, (ag), = (ag), = (ﬂgj: = (.

Equations of Motion. Applying Egs. 21-25 () = ) yields
IM, = Lo, — (I, — Dow,
—(Ap)0.2) + (By)0.25) = 0 — (0.05 — 0.1)(=30 sin 10730 cos 10°)
—0.24 + 0258y = —7.70 (1)
M, = Lo, — (I — Do.w,
Ax(0.2) cos 10° — By(0.25) cos 10° =0 = 0

Ay = 1.25By (2)
EA’f: = I:.d"':. -, - ’y)wx"‘-'_v
Ay(0.2) sin 10° — By(0.25) sin 10° = 0 — O Fig. 21-12

Ay = 1.25By (check)
Applying Eqgs. 21-19, we have

3Fy = mlag)y; Ay + By =0 (3)
SFy = m(ag)y; Ay + By —98.1 =0 (4)
3F; = mag)z Az=0 Ans.
Solving Egs. 1 through 4 simultaneously gives

Ay =8By =0 Ay =T716N By=265N Ans.
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EXAMPLE | 21.5

The airplane shown in Fig. 21-134 is in the process of making a steady
horizontal turn at the rate of w,. During this motion, the propeller is
spinning at the rate of w,. If the propeller has two blades, determine
the moments which the propeller shaft exerts on the propeller at the
instant the blades are in the vertical position. For simplicity, assume the
blades to be a uniform slender bar having a moment of inertia / about
an axis perpendicular to the blades passing through the center of the
bar, and having zero moment of inertia about a longitudinal axis.

SOLUTION

Free-Body Diagram. Fig. 21-13b. The reactions of the connecting
shaft on the propeller are indicated by the resultants Fy and Mg. (The
propeller’s weight is assumed to be negligible.) The x, y, z axes will be
taken fixed to the propeller, since these axes always represent the
principal axes of inertia for the propeller. Thus, £2 = @. The moments
of inertia /, and /, are equal (I, = I, = Iyand I, = 0.

Kinematics. The angular velocity of the propeller observed from

the X, Y, Z axes, coincident with the x, y, z axes, Fig. 21-13¢, is

® = o, + v, = i+ o,k so that the x, y, z components of @ are
w = w  w, =0 w. = wy,

Since £} = w, then @ = (w),,.. To find @, which is the time
derivative with respect to the fixed X, ¥, Z axes, we can use Eq. 20-6
since w changes direction relative to X, ¥, Z, The time rate of change
of each of these components @ = @, + @, relative to the X, ¥, Z axes
can be obtained by introducing a third coordinate system x', ¥', z',
which has an angular velocity ' = e, and is coincident with the
Fig. 21-13 X, Y, Z axes at the instant shown. Thus
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® = (@), +o,Xeo
= (d"s)_:." yha o {‘;Jp)x' ¥zl r mp X (ms T mp}
=0+0+w X+t Xo,

=0+ 0+ o,k Xoitl=wuj

Since the X, ¥, Z axes are coincident with the x, y, z axes at the instant
shown, the components of @ along x, y, z are thercfore
o, =0 w=ww o =0

These same results can also be determined by direct calculation of
(@),,.: however, this will involve a bit more work. To do this, it will be
necessary to view the propeller (or the x, v, z axes) in some general
position such as shown in Fig. 21-13d. Here the plane has turned
through an angle ¢ (phi) and the propeller has turned through an

angle i (psi) relative to the plane. Notice that e, is always directed (d)
along the fixed Z axis and w, follows the x axis. Thus the general
components of w are Fig. 21-13

W = W, Wy = @, sin @, = w,cos il

Since w, and w,, are constant, the time derivatives of these components
become

a, =0, @y wpcnsa,&lﬁ €, = —wpsinn,bqff
But ¢ = iy = 0° and 0= e, at the instant considered. Thus,
w, =w w =0 w, = w,
w, =0 W, = ww, © =0
which are the same results as those obtained previously.
Equations of Motion. Using Eqgs. 21-25, we have
M, = Li, — (I, — Dayw. = (0) — (I — 0)0)w,

M, =0 Ans.
M, = Lo, — (I. — L)oo, = Keo) — 0 — Do,

M, = 2lw,w, Ans.
SM. = Lo, — (I, — Low, = 00) — (I = Dw,(0)

M. =0 Ans.
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EXAMPLE | 21.6

The 10-kg flywheel (or thin disk) shown in Fig. 21-14a rotates (spins)
about the shaft at a constant angular velocity of w, = 6 rad/s. At the
same time, the shaft rotates (precessing) about the bearing at A with
an angular velocity of w, = 3 rad/s. If A is a thrust bearing and B is a
journal bearing, determine the components of force reaction at each
of these supports due to the motion.

w, = 3rad/s

SOLUTION |

Free-Body Diagram. Fig.21-14b. The origin of the x, y, z coordinate
system is located at the center of mass G of the flywheel. Here we will
2 let these coordinates have an angular velocityof £) = w, = {3k} rad/s.
05 d A
Al g~

Although the wheel spins relative to these axes, the moments of inertia
remain constant,* i.e.,

A IJ. = !:
!}‘

1(10kg) (0.2 m)* = 0.1 kg - m?
$(10kg)(0.2 m)> = 0.2 kg + m?

Kinematics. From the coincident inertial X, ¥, Z frame of
: reference, Fig. 21-14¢, the flywheel has an angular velocity of
B, @ = {6j + 3k} rad/s, so that

(b)
Fig. 21-14

10(9.81) N

w, =0 w, =6rad/s o =3radfs

The time derivative of @ must be determined relative to the x, y, z
axes. In this case both @, and w, do not change their magnitude or
direction, and so

oy, =0 @,=0 @ =10
Equations of Motion. Applying Egs. 21-26 (£ # w) yields
IM, = Lo, — [ o, + 100,
—A(0.5) + B.(0.5) = 0 — (0.2)(3)6) + 0 = —3.6

M, = Lo, — LOw. + 10w,

I

0=0-0+0
M, = La, — 1LQ,0, + 0,0,

A05) = B(05)=0—-0+0

*This would not be true for the propeller in Example 21.5.
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Applying Egs. 21-19, we have

XFy = mlagy: A, +B. =10
SFy = mlag)y; Ay = —10(0.5)(3)
3 Fz = mlag)z, A.+ B. — 10(9.81) = 0

Solving these equations, we obtain

A, =0 A,=—450N A,= 526N Ans.
B, =0 B. = 454N Ans.

NOTE: If the precession @, had not occurred, the z component of
force at A and B would be equal to 49.05 N. In this case, however, the
difference in these components is caused by the “gyroscopic moment™
created whenever a spinning body precesses about another axis. We
will study this effect in detail in the next section.

SOLUTION 1
This example can also be solved using Euler’s equations of motion,
Eqs. 21-25. In this case = @ = {6j + 3k} rad/s, and the time w, = 3 rad/s

derivative (@),,. can be conveniently obtained with reference to the

Zrog ot
fixed X, ¥, Z axes since @ = (w),,.. This calculation can be performed % ;
by choosing x', y', z' axes to have an angular velocity of ' = w,, A
Fig. 21-14c¢, so that X ¥

® = (@) + @, X @ =0+ 3k X (6§ + 3k = {—18i} rad/s’

w, = —18rad/s &, =0 @. =0

The moment equations then become
=6rad/s

EM.K = ]A.‘cbx - (‘r\' - I:)w_\'wi. Y+}"._‘r' ‘ (I’.‘)
—A(0.5) + B.(0.5) = 0.1(—18) — (0.2 — 0.1)(6)(3) = —3.6 Fig. 21-14
M, = Lo, — (I = [Hw.w,

0=0—-40

M, = Lo, — (U, — L)ow,
A05) — B,(05)=0-0

The solution then proceeds as before.
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| |PRoBLEMS

#21-40. Derive the scalar form of the rotational equation
of motion about the x axis if 8 # @ and the moments and
products of inertia of the body are ner constans with respect
to time.

21-41. Derive the scalar form of the rotational equation
of motion about the x axis if £ # @ and the moments and
products of inertia of the body are constant with respect
to time.

21-42. Derive the Euler equations of motion for £) # e,
i.e., Egs. 21-26.

21-43. The 4-1b bar rests along the smooth corners of
an open box. At the instant shown, the box has a
velocity v = {3j}ft/s and an acceleration a = {—6j } /s
Determine the x, y, z components of force which the corners
exert on the bar.

Prob. 21-43

#21-44. The uniform plate has a mass of m = 2 kg and is
given a rotation of @ = 4 rad /s about its bearings at A and B.
Ifa=02mand c=0.3 m, determine the vertical reactions
at the instant shown. Use the x, y, z axes shown and note

] )
e = - (55 (555

21-45. 1If the shaft AB is rotating with a constant angular
velocity of @ = 30 rad/s, determine the X, ¥, Z components
of reaction at the thrust bearing A and journal bearing B at
the instant shown. The disk has a weight of 15 Ib. Neglect
the weight of the shaft AB.

w = 30rad/s

Prob. 21-45

21-46. The 40-kg flywheel (disk) is mounted 20 mm off its
true center at G.If the shaft is rotating atl a constant speed
@ = Brad/s, determine the maximum reactions exerted on
the journal bearings at A and B.

21-47. The 40-kg flywheel (disk) is mounted 20 mm off its
true center at G. If the shaft is rotating at a constant speed
w = 8rad/s. determine the minimum reactions exerted on
the journal bearings at A and B during the motion.

Prob. 21-44

Probs. 21-46/47
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*21-48. The man sits on a swivel chair which is rotating
with a constant angular velocity of 3 rad/s. He holds the
uniform 5-1b rod AB horizontal. He suddenly gives it an
angular acceleration of 2 rad /s*. measured relative to him,
as shown. Determine the required force and moment
components at the grip, A, necessary to do this. Establish
axes at the rod’s center of mass G, with +z upward. and +y
directed along the axis of the rod towards A.

Prob. 21-48

21-49. The 5-kg rod AB is supported by a rotating arm.
The support at A is a journal bearing, which develops
reactions normal to the rod. The support at B is a thrust
bearing, which develops reactions both normal to the rod
and along the axis of the rod, Neglecting friction. determine
the x, y. z components of reaction at these supports when
the frame rotates with a constant angular velocity of
w = 10rad/s.

Prob. 21-49

21.4 EauaTions oF MoTioN 611

21-50. The rod assembly is supported by a ball-and-socket
joint at Cand a journal bearing at [, which develops only x
and y force reactions. The rods have a mass of 0.75 kg/m.
Determine the angular acceleration of the rods and the
components of reaction at the supports at the instant
@ = 8rad/s as shown.

w = 8rad/s

“1m 5]

Prob. 21-50

21-51. The uniform hatch door, having a mass of 15 kg
and a mass center at G, is supported in the horizontal plane
by bearings at A and B. If a vertical force F = 300N is
applied to the door as shown, determine the components of
reaction al the bearings and the angular acceleration of the
door. The bearing at A will resist a component of force in
the y direction, whereas the bearing at B will not. For the
calculation, assume the door to be a thin plate and neglect
the size of each bearing. The door is originally at rest.

Prob. 21-51
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*21-52. The conical pendulum consists of a bar of mass m
and length L that is supported by the pin at its end A. If the
pin is subjected to a rotation e, determine the angle # that
the bar makes with the vertical as it rotates.

Prob. 21-52

21-53. The car travels around the curved road of radius p
such that its mass center has a constant speed v;. Write the
equations of rotational motion with respect to the x, v, z
axes, Assume that the car’s six moments and products of
inertia with respect to these axes are known.

Prob. 21-53

THREE-DIMENSIONAL KINETICS OF A RiGiD BoDy

21-54. 'The rod assembly is supported by journal bearings
at A and B. which develop only x and z force reactions on
the shaft. If the shaft AB is rotating in the direction shown
at @ = {—3j} rad/s. determine the reactions at the
bearings when the assembly is in the position shown. Also,
what is the shaft’s angular acceleration? The mass of each
rodis 1.5 kg/m.

Prob. 21-54

21-55. The 20-kg sphere is rotating with a constant angular
speed of @, = 150 rad/s about axle CD. which is mounted
on the circular ring. The ring rotates about shaft AB with a
constant angular speed of w, = S0rad/s. If shaft AB is
supported by a thrust bearing atl A and a journal bearing
at B, determine the X, ¥, Z components of reaction at these
bearings at the instant shown. Neglect the mass of the ring
and shaft.

Prob. 21-55
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#21-56, The rod assembly has a weight of 5 Ib/ft. It is
supported at B by a smooth journal bearing. which develops x
and y force reactions, and at A by a smooth thrust bearing,
which develops x, y. and z force reactions, If a 50-lb - ft
torque is applied along rod A B, determine the components
of reaction at the bearings when the assembly has an
angular velocity @ = 10 rad/s at the instant shown.

z

e o
~

w = 10rad/s
B

1 s0ib
S~

4t J zlﬂ
y |
1L -2 ft—]

21t Al i
e |

Prob. 21-56

21-57. The blades of a wind turbine spin about the shaft §
with a constant angular speed of w,. while the frame precesses
about the vertical axis with a constant angular speed of w,,.
Determine the x, y, and z components of moment that the
shaft exerts on the blades as a function of 0. Consider each
blade as a slender rod of mass m and length /.

Prob. 21-57

21.4 EauaTions oF MoTioN 613

21-58. The cylinder has a mass of 30 kg and is mounted on
an axle that is supported by bearings at A and B. If the axle
is turning at @ = {—40j} rad/s, determine the vertical
components of force acting at the bearings at this instant.

(5]

Prob. 21-58

21-59. The thin rod has a mass of 0.8 kg and a total length
of 150 mm. It is rotating about its midpoint at a constant
rate f# = 6rad/s, while the table to which its axle A is
fastened is rotating at 2 rad /s. Determine the x, y, z moment
components which the axle exerts on the rod when the rod
is in any position #.

Prob. 21-59

Mech.MuslimEngineer.Net




614

CHAPTER 21

Zz

THREE-DIMENSIONAL KINETICS OF A RiGiD BoDy

Precession d

(b)

*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a
body (top) which is symmetrical with respect to an axis and rotating about
a fixed point. These equations also apply to the motion of a particularly
interesting device, the gyroscope.

The body’s motion will be analyzed using FEuler angles ¢, 8,
(phi. theta. psi). To illustrate how they define the position of a body,
consider the top shown in Fig. 21-15a4. To define its final position,
Fig. 21-15d. a second set of x, y, £ axes is fixed in the top. Starting with the
X, Y, Z and x, y, z axes in coincidence, Fig. 21-154, the final position of the
top can be determined using the following three steps:

1. Rotate the top about the Z (or z) axis through an angle
¢ (0= ¢ < 2m), Fig. 21-15b.

2. Rotate the top about the x axis through an angle (0 = ¢ = m),
Fig. 21-15¢.

3. Rotate the top about the z axis through an angle (0 = < 27)
to obtain the final position, Fig. 21-154.

The sequence of these three angles, ¢, 6, then ¢, must be maintained, since
finite rotations are not veciors (see Fig. 20-1). Although this is the case,
the differential rotations d¢b, d@, and dyfr are vectors, and thus the angular
velocity w of the top can be expressed in terms of the time derivatives of
the Euler angles. The angular-velocity components ¢, 8, and 4 are known
as the precession, nutation, and spin, respectively.

* Nutation §

(c)

Fig. 21-15
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Their positive directions are shown in Fig. 21-16. Tt is seen that these
vectors are not all perpendicular to one another; however, @ of the top
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis,
there is no need to attach the x, v z axes to the top since the inertial
properties of the top will remain constant with respect to this frame
during the motion. Therefore @ = w, + w,, Fig. 21-16. Hence, the
angular velocity of the body is

o= i+ wjt ok
= 6i + (Psin@)j + (dcosd + Pk (21-27)
And the angular velocity of the axes is
Q= Q0,i+ Q,j+ 0.k
= 6i + (dsin 8)j + (f cos O)k (21-28)

Have the x, v, z axes represent principal axes of inertia for the top, and so
the moments of inertia will be represented as I, = I, = land .. = L.
Since £ # w, Eqs. 21-26 are used to establish the rotational equations of
motion. Substituting into these equations the respective angular-velocity
components defined by Egs. 21-27 and 21-28, their corresponding time
derivatives, and the moment of inertia components, yields

SM, = I — ¢ sin @ cos A) + L sin B(c cos 8 + 1)
SM, = I sin 0 + 266 cos 0) — 1.0(ch cos 6 + ) (21-29)
SM. = L(y + ¢ cosB — bf sin 6)

Each moment summation applies only at the fixed point O or the center
of mass G of the body. Since the equations represent a coupled set of
nonlinear second-order differential equations, in general a closed-form
solution may not be obtained. Instead, the Euler angles ¢. 8, and  may
be obtained graphically as funetions of time using numerical analysis and
computer techniques.

A ‘Specid| case, however, does exist for which simplification of
Egs. 21-29 is possible. Commonly referred to as steady precession, it
occurs when the nutation angle #, precession ¢, and spin # all remain
constant. Equations 21-29 then reduce to the form

IM, = —Id” sin 0 cos 8 + L sin 0(ch cos 6 + ) (21-30)
SM, =0
SM, =0
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Equation 21-30 can be further simplified by noting that, from Eq.21-27,
w. = ¢ cos O + s, so that

SM, = —Id*sin B cos @ + L (sin ).

or

SM, = ¢ sinf(Lw, — I cos ) (21-31)

It is interesting to note what effects the spin 4 has on the moment
about the x axis. To show this. consider the spinning rotor in Fig. 21-17.
Here 8 = 907, in which case Eq. 21-30 reduces to the form

M, = .r’:_(qu'.x

M, = L0, (21-32)

Y

Fig. 21-17

From the figure it can be seen that €2, and e. act along their respective
positive axes and therefore are mutually perpendicular. Instinctively, one
would expect the rotor to fall down under the influence of gravity!
However, this is not the case at all, provided the product /.{} . is
correctly chosen to counterbalance the moment XM, = Wr,; of the
rotor’s weight about O). This unusual phenomenon of rigid-body motion
is often referred to as the gyroscopic effect.
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21.5 Gyroscoric MoTion 617

Perhaps a more intriguing demonstration of the gyroscopic effect
comes from studying the action of a gyvroscope, frequently referred to as
a gyro. A gyro is a rotor which spins at a very high rate about its axis of
symmetry. This rate of spin is considerably greater than its precessional
rate of rotation about the vertical axis. Hence, for all practical purposes,

the angular momentum of the gyro can be assumed directed along its &
axis of spin. Thus, for the gyro rotor shown in Fig. 21-18, @. == (1, and ‘
the magnitude of the angular momentum about point O, as determined Q, M, ¥
from Eqgs.21-11, reduces to the form Hy = Lw.. Since both the magnitude L
and direction of Hy are constant as observed from x, y, z, direct application {..,."..L _H_.. -
of Eq. 21-22 yields Hy
X
M, = Q, X Ho% (21-33) Fig. 21-18

Using the right-hand rule applied to the cross product, it can be seen
that €, always swings H,, (or @_) toward the sense of XM, . In effect, the
change in direction of the gyro’s angular momentum, dH,, is equivalent
to the angular impulse caused by the gyro’s weight about O, ie.,
dHy = M, di, Eq. 21-20. Also, since H,; = Lo_and EM,, Q. and H,
are mutually perpendicular, Eq. 21-33 reduces to Eq.21-32.

When a gyro is mounted in gimbal rings, Fig. 21-19, it becomes free of
external moments applied to its base. Thus, in theory, its angular
momentum H will never precess but, instead, maintain its same fixed
orientation along the axis of spin when the base is rotated. This type of
gyroscope is called a free gyro and is useful as a gyrocompass when the
spin axis of the gyro is directed north. In reality, the gimbal mechanism is
never completely free of friction, so such a device is useful only for the
local navigation of ships and aircraft. The gyroscopic effect is also useful
as a means of stabilizing both the rolling motion of ships at sea and the
trajectories of missiles and projectiles. Furthermore, this effect is of
significant importance in the design of shafts and bearings for rotors
which are subjected to forced precessions.

— Bearings
NN

Gilnba[f——-\/

The spinning of the gyro within the frame
of this toy gyroscope produces angular
momentum Hy. whichis changing direction
as the [rame precesses w, aboul the
vertical axis. The gyroscope will not fall
down since the moment of its weight W
about the support is balanced by the
Fig. 21-19 change in the direction of Hg.
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EXAMPLE | 21.7

The top shown in Fig. 21-20a has a mass of 0.5 kg and is precessing
about the vertical axis at a constant angle of # = 60°. If it spins with
an angular velocity @, = 100 rad/s, determine the precession @,,.
Assume that the axial and transverse moments of inertia of the top
are 0.45(107%) kg-m® and 1.20(107%) kg -m?, respectively, measured
with respect to the fixed point O.

w, = 100 rad /s

Fig. 21-20

(b)

SOLUTION

Equation 21-30 will be used for the solution since the motion is steady
precession. As shown on the free-body diagram, Fig. 21-20b, the
coordinate axes arec established in the usual manner, that is, with the
positive z axis in the direction of spin, the positive Z axis in the direction
of precession, and the positive x axis in the direction of the moment
3 M, (refer to Fig.21-16). Thus,

IM, = —Id*sin 6 cos 6 + Leb sin 6(h cos 6 + i)
4.905 N(0.05 m) sin 60° = —[1.20(107) kg - m* $?] sin 60° cos 60°
+ [0.45(107%) kg * m?]¢h sin 60°(¢h cos 60° + 100 rad/s)

" ¢ — 1200 + 654.0 = 0 (1)
Solving this quadratic equation for the precession gives

¢ = ll4rad/s (high precession) Ans.
and )

¢ = 572rad/s (low precession) Ans.

NOTE: In reality, low precession of the top would generally be
observed, since high precession would require a larger kinetic energy.
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EXAMPLE | 21.8

The 1-kg disk shown in Fig. 21-21a spins about its axis with a constant
angular velocity wp = 70 rad/s. The block at B has a mass of 2 kg.
and by adjusting its position s one can change the precession of the
disk about its supporting pivot at @ while the shaft remains
horizontal. Determine the position s that will enable the disk to have
a constant precession @, = 0.5rad/s about the pivot. Neglect the
weight of the shaft.

w, = 05 rad/s

wp=70radjs "

981N (b)

Fig. 21-21

SOLUTION

The free-body diagram of the assembly is shown in Fig. 21-21b. The
origin for both the x, y, z and X, ¥, Z coordinate systems is located at
the fixed point O. In the conventional sense, the Z axis is chosen along
the axis of precession, and the z axis is along the axis of spin, so that
) = 90°. Since the precession is steady, Eq. 21-32 can be used for the
solution.

M, = L)y,

Substituting the required data gives

(9.81 N) (0.2m) — (19.62 N)s = [4(1 kg)(0.05 m)* | 0.5 rad /s(—70 rad/s)
5= 0.102m = 102 mm Ans.
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CHAPTER 21

THREE-DIMENSIONAL KINETICS OF A RiGID BODY

21.6 Torque-Free Motion

When the only external force acting on a body is caused by gravity, the
general motion of the body is referred to as forque-free mortion. This type
of motion is characteristic of planets, artificial satellites, and projectiles—
provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution
of the body’s mass will be assumed axisymmetric. The satellite shown in
Fig. 21-22 is an example of such a body, where the z axis represents an
axis of symmetry. The origin of the x, y, z coordinates is located at the
mass center G, such that [.. = [. and [,, = [,, = [. Since gravity is the
only external force present, the summation of moments about the mass
center is zero. From Eq. 21-21, this requires the angular momentum of
the body to be constant, i.e.,

H,; = constant

At the instant considered, it will be assumed that the inertial frame of
reference is oriented so that the positive Z axis is directed along H; and
the y axis lies in the plane formed by the z and Z axes, Fig. 21-22. The
Euler angle formed between Z and z is 8, and therefore, with this choice
of axes the angular momentum can be expressed as

H; = Hpsinfj + Hgeos Bk
Furthermore, using Egs. 21-11, we have
Hg = lw,i + loyj + Lok

Equating the respective i, j. and k components of the above two
equations vields

(]
(3]

Fig. 21—
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@y =0 o =——— g —— (21-34)

or

HgsinB |, Hgcos#
=% ' 1

o (21-35)

In a similar manner, equating the respective i, j, k components of
Eq. 21-27 to those of Eq. 21-34, we obtain

=0
Hg sin 6

ke
¢ sin ;

H cos @

deosO + o = >

Solving, we get

f# = constant

p = — (21-36)

Thus, for torque-free motion of an axisymmetrical body, the angle #
formed between the angular-momentum vector and the spin of the body
remains constant. Furthermore, the angular momentum Hg;, precession ¢,
and spin ¢ for the body remain constant at all times during the motion,

Eliminating Hg; from the second and third of Eqgs. 21-36 yields the
following relation between the spin and precession:

. 7=a. '
= 7 =¢h cos f (21-37)

<
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Anxis of 4
precession

Space cone

Axis of

spin
Body cone
I=1.
(a)
[nstantaneous 2
axis of rotationsZ » o of
precession
/.»;I'H of
spin

Fig. 21-23

Tnstantaneous
axis of rotation

THREE-DIMENSIONAL KINETICS OF A RiGID BoDY

These two components of angular motion can be studied by using the
body and space cone models introduced in Sec. 20.1. The space cone
defining the precession is fixed from rotating, since the precession has a
fixed direction, while the outer surface of the body cone rolls on the
space cone’s outer surface. Try to imagine this motion in Fig. 21-23a. The
interior angle of each cone is chosen such that the resultant angular
velocity of the body is directed along the line of contact of the two cones.
This line of contact represents the instantaneous axis of rotation for the
body cone, and hence the angular velocity of both the body cone and
the body must be directed along this line. Since the spin is a function of
the moments of inertia / and /. of the body, Eq. 21-36, the cone model in
Fig. 21-23a is satisfactory for describing the motion, provided 7 > [..
Torque-free motion which meets these requirements is called regular
precession. If I < I, the spin is negative and the precession positive. This
motion is represented by the satellite motion shown in Fig. 21-23b
(I < I). The cone model can again be used to represent the motion:
however, to preserve the correct vector addition of spin and precession
to obtain the angular velocity w, the inside surface of the body cone must
roll on the outside surface of the (fixed) space cone. This motion is
referred to as retrograde precession.

Satellites are often given a spin before they are launched. IT their angular momentum
is not collinear with the axis of spin, they will exhibil precession. In the photo on the
left, regular precession will occur since f = 1, and in the photo on the right, retrograde
precession will occur since / < [
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The motion of a football is observed using a slow-motion projector.
From the film, the spin of the football is seen to be directed 30" from
the horizontal, as shown in Fig. 21-24a. Also, the football is precessing
about the vertical axis at a rate ¢ = 3 rad/s. If the ratio of the axial to
transverse moments of inertia of the football is 4, measured with
respect to the center of mass, determine the magnitude of the football’s
spin and its angular velocity. Neglect the effect of air resistance.

& =3rad/s

-

ta

Fig. 21-24

SOLUTION

Since the weight of the football is the only force acting, the motion is
torque-free. In the conventional sense, if the z axis is established
along the axis of spin and the Z axis along the precession axis, as
shown in Fig. 21-24b, then the angle @ = 60°, Applying Eq. 21-37, the
spin is

s T= 6_!—%13 .
= 7 deosh = _}! (3) cos
= 3rad/s Auns.
Using Eqgs. 21-34, where H,; = ¢ (Eq.21-36), we have
w, =0
Hgsin@ 37 sin 60°
L
; I Il
Hg 6 31cos 60°
W, = : ;DS = c?i = 4.50 rad/s

3
Thus,

o = Vi) + (@) + (@)
= V(0 + (2.60) + (4.50)
= 520rad/s Ans.
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THREE-DIMENSIONAL KINETICS OF A RiGID BoDy

| |PROBLEMS

*21-60. Show that the angular velocity of a body, in
terms of Euler angles ¢, #, and i, can be expressed as
@ = (dsin @ sin g + 6 cos )i + (b sin 0 cos ¢y — 6 sin g)j +
(b cos 0 + )k, where i. j.and k are directed along the x. y.
z axes as shown in Fig. 21-154.

21-61. A thin rod is initially coincident with the Z axis
when it is given three rotations defined by the Euler angles
¢ = 30°.0 = 45°, and y = 60°. If these rotations are given
in the order stated. determine the coordinate direction
angles @, B, v of the axis of the rod with respect to the X, V.
and Z axes. Are these directions the same for any order of
the rotations? Why?

21-62. The turbine on a ship has a mass of 400 kg and
is mounted on bearings A and B as shown. Its center of
mass is at G, its radius of gyration is k. = 0.3 m, and
k, =k, = 0.5m. If it is spinning at 200 rad/s. determine
the vertical reactions at the bearings when the ship
undergoes each of the following motions: (a) rolling,
w, = 0.2rad/s, (b) turning, @, = 0.8rad/s, (c) pitching.
w; = 1.4 rad/s.

Prob. 21-62

21-63. The 10-kg disk spins about axle AB at a constant
rate of w, = 100rad/s. If the supporting arm precesses
about the vertical axis at a constant rate of w, = Srad/s.
determine the internal moment at O caused only by the
gyroscopic action.

w, = 5rad/s

Prob. 21-63

#21-64. The 10-kg disk spins about axle AB at a constant
rate of w, = 250 rad/s. and # = 30°. Determine the rate of
precession of arm OA. Neglect the mass of arm OA, axle AB,
and the circular ring D,

21-65. When OA precesses at a constant rate of
@, = 5rad/s, when # = 90° determine the required spin of
the 10-kg disk C. Neglect the mass of arm OA, axle AB, and
the circular ring D.

Probs. 21-64/65
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21-66. The car travels at a constant speed of v~ = 100 km/h *21-68. The top consists of a thin disk that has a weight of

around the horizontal curve having a radius of 80 m. If each 81b and a radius of 0.3 ft. The rod has a negligible mass and a
wheel has a mass ol 16 kg, a radius of gyration k; = 300 mm length of 0.5 ft. If the top is spinning with an angular velocity
about its spinning axis, and a radius of 400 mm_ determine the @, = 300rad/s, determine the steady-state precessional
difference between the normal forees of the rear wheels, angular velocity @, of the rod when ¢ = 407,

caused by the gyroscopic effect. The distance between the

. 21-69. Solve Prob. 21-68 when 6 = 90°,
wheelsis 1.30 m.

Probs. 21-68/69
Prob. 21-66
21-70. The top has a mass of 90 g, a center of mass at G,
and a radius of gyration & = 18 mm about its axis of
. . symmetry. About any transverse axis acting through point O
21.'—6‘!’. A wheel_ofmass mi and l.‘adlLlS r rpll‘s with constant the radius of gyration is k, = 35 mm. If the top is connected
spin e about a circular path having a radius a. If the angle to a ball-and-socket joint at O and the precession is

of inclination is #. determine the rate of precession. Treat

@, = 0.5 rad/s, determine the spin w..
the wheel as a thin ring. No slipping occurs. # / E :

Prob. 21-67 Prob. 21-70
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21-71. The 1-1b top has a center of gravity at point G. I it
spins about its axis of symmetry and precesses about the
vertical axis at constant rates of w, = 60rad/s and
w, = 10rad/s, respectively, determine the steady state
angle 6. The radius of gyration of the top about the z axis is
k. = 1in.,and about the x and y axesitis k, = k, = 4in,

“

'-zu_v = 60 rad/s

Prob. 21-71

*21-72. While the rocket is in free flight, it has a spin of
3 rad/s and precesses about an axis measured 10° from the
axis of spin. If the ratio of the axial to transverse moments
of inertia of the rocket is | /15, computed about axes which
pass through the mass center (7, determine the angle which
the resultant angular velocity makes with the spin axis.
Construct the body and space cones used to describe the
motion. Is the precession regular or retrograde?

Prob. 21-72

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

21-73. The 0.2-kg football is thrown with a spin
w. = 35 rad/s. If the angle # is measured as 60°, determine
the precession about the Z axis. The radius of gyration
about the spin axis is k. = 0.05 m, and about a transverse
axisitisk, = 0.1 m,

Proh. 21-73

21-74. The projectile shown is subjected to torque-free
motion. The transverse and axial moments of inertia are /
and [, respectively. If # represents the angle between the
precessional axis Z and the axis of symmetry z, and g3 is the
angle between the angular velocity w and the z axis, show
that B and # are related by the equation tan 6 = (//1, ) 1an .

Proh. 21-74
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21-75, The 4-kg disk is thrown with aspin w. = 6rad/s. If
the angle 6 is measured as 160°, determine the precession
about the Z axis.

7z

125 mm

A"m: =frad/s
\
\,

4

Prob. 21-75

#21-T6. The rocket has a mass of 4 Mg and radii of gyration
k. = 0.85m and k, = 2.3 m. It is initially spinning about
the z axis at @, = 0.05 rad/s when a meteoroid M strikes it
at A and creates an impulse I = {300i } N-s. Determine
the axis of precession after the impact.

RN A o,
T
[ AT

Prob. 21-76

21-77. The football has a mass of 450 g and radii of gyration
aboult iis axis of symmetry (z axis) and its transverse axes (x or
yaxis) of k. = 30 mm and k, = k, = 50 mm, respectively. If
the football has an angular‘rnomenti.un of H; = 0.02 kg+m?/s,
determine its precession ¢ and spin i, Also, find the angle
that the angular velocity vector makes with the z axis.

Hy; =002 kg - m?/fs

b R

as* 8

Prob. 21-77

21.6 Toraue-Free MoTION 627

21-78. The projectile precesses about the Z axis al a
constant rate of ¢ = 15 rad/s when it leaves the barrel of a
gun. Determine its spin 4 and the magnitude of its angular
momentum Hg;. The projectile has a mass of 1.5 kg and radii
of gyration about its axis of symmetry (z axis) and about
its transverse axes (x and y axes) of & = 65 mm and
k, = k, = 125 mm, respectively.

Prob. 21-78

21-79. The space capsule has a mass of 3.2 Mg, and about
axes passing through the mass center & the axial and
transverse  tadii  of gyration are k. = 090m and
k, = L1.85 m, respectively. If it is spinning at &, = 0.8 rev/s,
determine its angular momentum. Precession occurs about
the 7 axis.

Prob. 21-79
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THREE-DIMENSIONAL KINETICS OF A RiIGID BoDy

“lomaprer peview

Moments and Products of Inertia

A body has six components of inertia for
any specified x. y, 7 axes. Three of these
are moments of inertia about each of the
axes, .., I, I, and three are products of
inertia, each defined from two orthogonal
planes, I, /.., I... If either one or both of
these planes are planes of symmetry, then
the product of inertia with respect to
these planes will be zero.

The moments and products of inertia can
be determined by direct integration or by
using tabulated values. If these quantities
are Lo be determined with respect to axes
or planes that do not pass through the
mass center. then parallel-axis and
parallel-plane theorems must be used.

Provided the six components of inertia
are known, then the moment of inertia
about any axis can be determined using
the inertia transformation equation,

Principal Moments of Inertia

At any point on or off the body, the x, v, z
axes can be oriented so that the products
of inertia will be zero. The resulting
moments of inertia are called the principal
moments of inertia, one of which will be a
maximum and the other a minimum.

L= /rf dm = f(yl + 2y dm Iy=1,= fxy dm

J’_‘TZ/rf.dmZ /[.r1+:')dm L, =1, = fyzdm

L= fr;-dmz 2+ yhdm Iy = /xzdm
L L i

foa = XA‘“.% + -'r_r_v“_E + I::zuzz - zlq.u_,u_‘. - 2{1&“}.“: T Al

Principle of Impulse and Momentum

The angular momentum for a body can be
determined about any arbitrary point A.

Once the linear and angular momentum
for the body have been formulated, then
the principle of impulse and momentum
can be used to solve problems that
involve force. velocity. and time.

. 0 0
0 4 0
0 0 L
f1
mivg) + 2 | Fdt = m(vg)s (Hp)
1l where
H, = fﬂu X (e X pydm
rii
Fixed Point 0 H, =
H.=

H; = /pc X (@ X pe)dm
C:nrer of Mass

H, = pgps X mvg + Hy
Arbitrary Point

Principle of Work and Energy

The kinetic energy for a body is usually
determined relative to a fixed point or the
body’s mass center.

T =3Lo} + 3] + 3107
Fixed Point

Hy = Ly, — ,.r_rwy i

i
=+ 2/ Mocﬂ' —_— (HQ}Q
il

L,
_‘{1',1"-'-’1- + f_,_.}.(!)_\. = ’r,r:‘:'-':
L, — Lyw, + Lo,

T = imvy + 1wl + Lol + 1Ll

Center of Mass
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These formulations can be used with the
principle of work and energy to solve
problems that involve force. velocity, and
displacement.

Equations of Motion

There are three scalar eguations of
translational motion for a rigid body that
moves in three dimensions.

The three scalar equations of rotational
motion depend upon the motion of the x,
v, z reference. Most oflen, these axes are
oriented so that they are principal axes of
inertia. If the axes are fixed in and move
with the body so that £ = e, then the
equations are referred to as the Euler
cquations of motion,

A [ree-body diagram should always
accompany the application of the
equations of motion,

Gyroscopic Motion

The angular motion of a gyroscope is
best described using the three Euler
angles ¢b, #, and . The angular velocity
components are called the precession ¢,
the nutation £, and the spin 1.

Iff = Oand dand o.,l.'! are constant, then the
motion is referred to as steady precession.

It is the spin of a gyro rotor that is
responsible for holding a rotor from falling
downward, and mstead causing it to precess
about a vertical axis. This phenomenon is
called the gyroscopic effect.

Torque-Free Motion

A body that i1s only subjected to a
gravilational force will have no moments
on it about its mass center. and so the
motion is described as torque-free motion.
The angular momentum for the body
about its mass center will remain constant.
This causes the body to have both a spin
and a precession. The motion depends
upon the magnitude of the moment of
inertia of a symmetric body about the spin
axis, I, versus that about a perpendicular
axis, I,

M,

M,

T| + EU;_I = T2

3F, = mlag),

EFL = Jn(af!')_l
XF. = miag).
EM.t = Lo, — (= Loy,

IM, = L, — (I, — Low,
M. = lLa, — (I, — WHow,

1 =w
IM, = 1o, — 10w + 10w,
M, = Loy, — 10w, + 10w,
IM, = Lo, — D0, + Qo

O+ w

= —Id7 sin £ cos 0 + L sin f(ch cos B + i)

=0,IM. =0

fi = constant

. 1.
=—H.cosf
U T §
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Chapter 22

The analysis of vibrations plays an important role in the study of the behavior
of structures subjected to earthquakes.
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Vibrations

CHAPTER OBJECTIVES

m To discuss undamped one-degree-of-freedom vibration of a rigid
body using the equation of motion and energy methods.

m To study the analysis of undamped forced vibration and viscous
damped forced vibration.

*22.1 Undamped Free Vibration

A vibration is the oscillating motion of a body or system of connected
bodies displaced from a position of equilibrium. In general, there are two
types of vibration, free and forced. Free vibration occurs when the motion
is maintained by gravitational or elastic restoring forces, such as the
swinging motion of a pendulum or the vibration of an elastic rod. Forced
vibration is caused by an external periodic or intermittent force applied
to the system. Both of these types of vibration can either be damped or
undamped, Undamped vibrations exclude frictional effects in the analysis.
Since in reality both internal and external frictional forces are present, the
motion of all vibrating bodies is actually damped.
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Equilibrium
position

(a)
W =mg
F=kx
-+
Ny
(b)

Fig. 22-1

~ Equilibrium

I position
.GL? ¥

(a)

IF=W—&_\:

I
Y

(b)
Fig. 22-2

The simplest type of vibrating motion is undamped free vibration,
represented by the block and spring model shown in Fig. 22-1a.
Vibrating motion occurs when the block is released from a displaced
position x so that the spring pulls on the block. The block will attain
a velocity such that it will proceed to move out of equilibrium when
x = 0, and provided the supporting surface is smooth, the block will
oscillate back and forth.

The time-dependent path of motion of the block can be determined by
applying the equation of motion to the block when it is in the displaced
position x. The free-body diagram is shown in Fig. 22-1b. The elastic
restoring force F' = kxis always directed toward the equilibrium position,
whereas the acceleration a is assumed to act in the direction of positive
displacement. Since ¢ = d’x/dt* = X, we have

L 3F, = ma,; —kx = mx

Note that the acceleration is proportional to the block’s displacement.
Motion described in this manner is called simple harmeonic motion.
Rearranging the terms into a “standard form” gives

¥+ wix =0 (22-1)

The constant w), is called the natural frequency, and in this case

= (22-2)

Equation 22-1 can also be obtained by considering the block to be
suspended so that the displacement y is measured from the block’s
equilibrium position, Fig. 22-2a. When the block is in equilibrium, the
spring exerts an upward force of ¥ = W = mg on the block. Hence,
when the block is displaced a distance v downward from this position,
the magnitude of the spring force is F = W + ky, Fig. 22-2b. Applying
the equation of motion gives

+lEF_\. = ma,; W —ky+ W=my

or

_|_
£
=
E

Il

(=]

which is the same form as Eq.22-1 and w, is defined by Eq. 22-2.
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Equation 22-1 is a homogeneous, second-order, linear, differential
equation with constant coefficients. It can be shown, using the methods
of differential equations, that the general solution is

x = Asinaw,t + Bcos m,l (22-3)

Here A and B represent two constants of integration. The block’s velocity
and acceleration are determined by taking successive time derivatives,
which vields

v =1 = Aw, cos w,t — Bw, sin a1 (22-4)

a =¥ = —Aw? sin w,t — Bw? cos w,t (22-5)

When Egs. 22-3 and 22-5 are substituted into Eq. 22-1, the differential
equation will be satisfied, showing that Eq.22-3 is indeed the solution to
Eq.22-1.

The integration constants in Eq. 22-3 are generally determined from
the initial conditions of the problem. For example, suppose that the block
in Fig. 22-1a has been displaced a distance x, to the right from its
equilibrium position and given an initial (positive) velocity v, directed
to the right. Substituting x = x; when ¢+ = 0 into Eq. 22-3 yields 8 = x,.
And since v = v, when ¢ = 0, using Eq. 22-4 we obtain A = »/w,. If
these values are substituted into Eq. 22-3, the equation describing the
motion becomes

AR
x = —sinw,t + x| COS w,t (22-6)
m}i

Equation 22-3 may also be expressed in terms of simple sinusoidal
motion. To show this, let

A= Ccosdo (22-7)
and
B = Csing (22-8)

where C and ¢ are new constants to be determined in place of A and B.
Substituting into Eq. 22-3 yields

x = Ccos¢sinw,t + Csind cos w,t

And since sin(@ + ¢) = sin 8 cos ¢p + cos 8 sin ¢, then

x = Csinfew,t + ¢ I (22-9)

It this equation is plotted on an x versus w,r axis, the graph shown in
Fig. 22-3 is obtained. The maximum displacement of the block from its
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equilibrium position is defined as the amplitude of vibration. From either
the figure or Eq. 22-9 the amplitude is C.The angle ¢ is called the phase
angle since it represents the amount by which the curve is displaced from
the origin when 7+ = (0. We can relate these two constants to A and B
using Eqgs. 22-7 and 22-8. Squaring and adding these two equations, the

amplitude becomes
C=VA®>+ B (22-10)
If Eq. 22-8 is divided by Eq. 22-7. the phase angle is then

B
¢ = tan_]; (22-11)
it sl 1 | Note that the sine curve, Eq. 22-9, completes one cyele in time
Pcn{md_uf time (1) t = 1 (tau) when w,7 = 277, or
x = Csin (w,f + )
¢
2
¢ 7= ﬁ—"" (22-12)
7] [l I
c This time interval is called a period, Fig. 22-3. Using Eq. 22-2, the period
can also be represented as
mn :
Fig, 223 T =27 \/% (22-13)

Finally, the frequency fis defined as the number of cycles completed per
unit of time, which is the reciprocal of the period; that is,

s 2214
===%5 (22-14)
or
1 I
f= 2aNm (22-15)

The frequency is expressed in cycles /s. This ratio of units is called a hertz
(Hz), where 1 Hz = 1 cycle/s = 27 rad/s,

When a body or system of connected bodies is given an initial
displacement from its equilibrium position and released, it will vibrate
with the natural frequency. w,. Provided the system has a single degree
of freedom, that is, it requires only one coordinate to specify completely
the position of the system at any time, then the vibrating motion will
have the same characteristics as the simple harmonic motion of the block
and spring just presented. Consequently, the motion is described by a
differential equation of the same “standard form” as Eq. 22-1.1.e.,

X+ wix =0 (22-16)

Hence, if the natural frequency w, is known, the period of vibration 1,
frequency f, and other vibrating characteristics can be established using
Egs. 22-3 through 22-15.
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Important Points

¢ Free vibration occurs when the motion is maintained by
gravitational or elastic restoring forces.

# The amplitude is the maximum displacement of the body.
& The period is the time required to complete one cycle.

# The frequency is the number of cycles completed per unit of time,
where 1 Hz = 1 cycle/s.

= Only one position coordinate is needed to describe the location
of a one-degree-of-freedom system.

Procedure for Analysis

As in the case of the block and spring, the natural frequency w, of a
body or system of connected bodies having a single degree of
freedom can be determined using the following procedure:

Free-Body Diagram.

¢ Draw the free-body diagram of the body when the body is
displaced a small amount from its equilibrium position.

® Locate the body with respect to its equilibrium position by using
an appropriate inertial coordinate q. The acceleration of the
body’s mass center a; or the body’s angular acceleration e should
have an assumed sense of direction which is in the positive
direction of the position coordinate.

® [f the rotational equation of motion XM, = X (l,)p is to be used,
then it may be beneficial to also draw the kinetic diagram since it
graphically accounts for the components m(ag),, m(ag),, and Igex,
and thereby makes it convenient for visualizing the terms needed
in the moment sum X (l;)p.

Equation of Motion.

¢ Apply the equation of motion to relate the elastic or gravitational
restoring forces and couple moments acting on the body to the
body’s accelerated motion.

Kinematics.

® Using kinematics, express the body’s accelerated motion in terms
of the second time derivative of the position coordinate, g.

® Substitute the result into the equation of motion and determine
w, by rearranging the terms so that the resulting equation is in
the “standard form.” § + w2q = 0.
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EXAMPLE [[224

Determine the period of oscillation for the simple pendulum shown in
Fig. 22-4a. The bob has a mass m and is attached to a cord of length /.
Neglect the size of the bob.

SOLUTION

Free-Body Diagram. Motion of the system will be related to the
position coordinate (g =) #, Fig. 22-4b. When the bob is displaced by a
small angle @, the restoring force acting on the bob is created by the
tangential component of its weight, mg sin #. Furthermore, a, acts in the
direction of increasing s (or 0).

Equation of Motion. Applying the equation of motion in the
tangential direction, since it involves the restoring force, yields

+2F, = ma;; —mg sin 0 = ma, (1)

Kinematics. a, = d’s/di* = §. Furthermore, s can be related to 8
by the equation s = I, so that ¢, = [A. Hence, Eq. 1 reduces to

§+§me=0 )

The solution of this equation involves the use of an elliptic integral.
For small displacements, however, sin # = #, in which case

§+§9:0 3)

Comparing this equation with Eq.22-16 (¥ + @2x = 0), itis seen that
w, = Vg/l. From Eq.22-12, the period of time required for the bob to
make one complete swing is therefore

2 [
T = T 27:'\/I Ans.
oy £

This interesting result, originally discovered by Galileo Galilei
through experiment, indicates that the period depends only on the
length of the cord and not on the mass of the pendulum bob or the
angle 6.

NOTE: The solution of Eq. 3 is given by Eq. 22-3. where w, = Vg/I
and @ is substituted for x. Like the block and spring, the constants A
and B in this problem can be determined if, for example, one knows
the displacement and velocity of the bob at a given instant.
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22.1  UNDAMPED FREE VIBRATION 637

The 10-kg rectangular plate shown in Fig. 22-54 is suspended at its
center from a rod having a torsional stiffness &k = 1.5 N-m/rad.
Determine the natural period of vibration of the plate when it is given a
small angular displacement # in the plane of the plate.

SOLUTION

Free-Body Diagram. Fig. 22-5b. Since the plate is displaced in its T=W
own plane, the torsional restoring moment created by the rod is
M = ké. This moment acts in the direction opposite to the angular
displacement 6. The angular acceleration # acts in the direction of
positive 0.

Equation of Motion.

My = lga; —ko = I8
or
i+X9=0
Iy
Since this equation is in the “standard form.” the natural frequency is (b)
w, = Vk/I. Fig, 22-5

From the table on the inside back cover, the moment of inertia of
the plate about an axis coincident with the rod is I, = sm(a® + b2).
Henee,

I, = é{lo ke)[©2m)* + (0.3 my*| = 0.1083 kg * m’

The natural period of vibration is therefore,

- T y
Gl s g Wl g JOIIED. o b0 Aris
w, k 1.5
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EXAMPLE | 223

The bent rod shown in Fig. 22-64 has a negligible mass and supports a
5-kg collar at its end. If the rod is in the equilibrium position shown,
determine the natural period of vibration for the system.

SOLUTION

Free-Body and Kinetic Diagrams. Fig. 22-6b. Here the rod is
displaced by a small angle # from the equilibrium position. Since
the spring is subjected to an initial compression of x,, for equilibrium,
then when the displacement x > x, the spring exerts a force of
F, = kx — kxy on the rod. To obtain the “standard form,” Eq. 2216, 5a,
must act upward, which is in accordance with positive ¢ displacement.

Equation of Motion. Moments will be summed about point B to
eliminate the unknown reaction at this point. Since 6 is small,
C+E‘MB = E{MR)B;
kx(0.1 m) = kxg(0.1 m) + 49.05 N(0.2m) = —(5 kg)a,(0.2 m)

The second term on the left side, —kx,(0.1 m), represents the moment
created by the spring force which is necessary to hold the collar in
equitlibrinm, i.e., at x = 0. Since this moment is equal and opposite to
the moment 49.05 N(0.2 m) created by the weight of the collar, these
two terms cancel in the above equation, so that

kx(0.1) = —5a,(0.2) (1)

Kinematics. The deformation of the spring and the position of the
collar can be related to the angle 8, Fig. 22-6¢. Since 8 is small,
x = (0.1 m)# and y = (0.2 m)d. Therefore.a, =y = 0.24. Substituting
nto Eq. 1 yields

400(0.10) 0.1 = —5(0.26)0.2

Rewriting this equation in the “standard form” gives

g+ 200 =0
Compared with ¥ + wjx = 0 (Eq.22-16), we have

o} =20 w,=447rad/s

The natural period of vibration is therefore

=== 140 Ans,
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EXAMPLE | 224

A 10-1b block is suspended from a cord that passes over a 15-1b disk,
as shown in Fig. 22-7a. The spring has a stiffness & = 200 1b/ft.
Determine the natural period of vibration for the system.

(b)
SOLUTION

Free-Body and Kinetic Diagrams. Fig. 22-7b. The system consists
of the disk, which undergoes a rotation defined by the angle f, and the
block, which translates by an amount s. The vector I, 8 acts in
the direction of positive 8. and consequently mga, acts downward in the
direction of positive s.
Equation of Motion. Summing moments about point O to climinate
the reactions O, and O,, realizing that I, = Smr?, yields

C+IMp = (Mo

10 1b(0.75 ft) — F.(0.75 ft)

1 I151b 4 10 1b _
=—|— 07510 + | —— J5 i 1
2 (32.2 ft/sz)( AR (32_2 fl.fsz)a"(ﬂ 51t ( )

Kinematics. As shown on the kinematic diagram in Fig. 22-7¢, a
small positive displacement # of the disk causes the block to lower by
an amount s = 0.75¢; hence.a, = ¥ = 0.756. When @ = (°, the spring
foree required for equilibrium of the disk is 10 Ib, acting to the right.
For position #, the spring force is F; = (200 1b/ft)(0.756 ft) + 10 Ib.
Substituting these results into Eq. 1 and simplifying yields

f + 3680 = 0

Hence,
w? = 368 w, = 19.18 rad/s

Therefore, the natural period of vibration is

rT=—=——=(.,3285s Ans.
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| [PROBLEMS

22-1. A spring has a stiffness of 600 N /m. If a 4-kg block is
attached to the spring, pushed 50 mm above its equilibrium
position, and released from rest, determine the equation
which describes the block’s motion. Assume that positive
displacement is measured downward.

22-2. When a 2-kg block is suspended from a spring, the
spring is stretched a distance of 40 mm. Determine the
frequency and the period of vibration for a 0.5-kg block
attached to the same spring,

22-3. A springis stretched 200 mm by a 15-kg block. I the
block is displaced 100 mm downward from its equilibrium
position and given a downward velocity of 0.75 m/s,
determine the equation which describes the motion. What is
the phase angle? Assume that positive displacement is
downward.

#22-4, When a 20-1b weight is suspended from a spring,
the spring is stretched a distance of 4 in. Determine the
natural frequency and the period of vibration for a 10-Ib
weight attached to the same spring.

22-5. When a 3-kg block is suspended from a spring, the
spring is stretched a distance of 60 mm. Determine the
natural frequency and the period of vibration for a 0.2-kg
block attached to the same spring.

22-6. An 8-kg block is suspended from a spring having a
stiffness & = 80 N/m. If the block is given an upward velocity
of 0.4 m/s when it is 90 mm above its equilibrium position,
determine the equation which describes the motion and the
maximum upward displacement of the block measured from
the equilibrium position. Assume that positive displacement is
measured downward.

22-7. A 2-1b weight is suspended from a spring having a
stiffness & = 2 Ib/in. If the weight is pushed 1 in. upward
from its equilibrium position and then released from rest.
determine the equation which describes the motion.
What is the amplitude and the natural frequency of the
vibration?

*22-8. A 6-Ib weight is suspended from a spring having a
stiffness & = 3 Ib/in. If the weight is given an upward
velocity of 20 ft/s when it is 2 in. above its equilibrium
position, determine the equation which describes the
motion and the maximum upward displacement of the
weight, measured from the equilibrium position. Assume
positive displacement is downward.

22-9. A 3-kg block is suspended from a spring having a
stiffness of k = 200 N/m. If the block is pushed 50 mm
upward from its equilibrium position and then released from
rest, determine the equation that describes the motion. What
are the amplitude and the natural frequency of the vibration?
Assume that positive displacement is downward.

22-10. Determine the frequency of vibration for the
block. The springs are originally compressed A.

Prob. 22-1)

22-11. The semicircular disk weighs 20 1b. Determine the
natural period of vibration if it is displaced a small amount
and released.

11t

Prob. 22-11
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#22-12, The uniform beam is supported at its ends by
two springs A and B, each having the same stiffness k. When
nothing is supported on the beam. it has a period of vertical
vibration of (.83 s. If a 50-kg mass is placed at its center, the
period of vertical vibration 1s 1.52 s. Compute the stiffness
of each spring and the mass of the beam.

Prob. 22-12

22-13, The body of arbitrary shape has a mass m, mass
center at G, and a radius of gyration aboul & of kg I it is
displaced a slight amount @ from its equilibrium position
and released. determine the natural period of vibration.

Prob. 22-13

22.1  UnNbpampeD Free VIBRATION 641

22-14. The connecting rod is supporied by a knife edge at
A and the period of vibration is measured as 7, = 3.38s. It
is then removed and rotated 1807 so that it is supported by
the knife edge at B. In this case the period of vibration is
measured as 7z = 3.96 5. Determine the location d of the
center of gravity &, and compute the radius of gyration k.

mim

Prob. 22-14

22-15. The thin hoop of mass m is supported by a
knife-edge. Determine the natural period of vibration for
small amplitudes of swing,.

7]
AN
y
)
Prob. 22-15
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#22-16. A block of mass m is suspended from (wo springs
having a stiffness of k| and k. arranged a) parallel Lo each
other, and b) as a series. Determine the equivalent stiffness
of a single spring with the same oscillation characteristics
and the period of oscillation for each case.

22-17. 'The 15-kg block is suspended from two springs having
a different stiffness and arranged a) parallel to each other. and
b} as a series. If the natural periods of oscillation of the parallel
system and series system are observed to be 0.5 s and 1.5 s,
respectively, determine the spring stiffnesses &) and k.

(a) (b)
Probs. 22-16/17

22-18. The pointer on a metronome supports a .4-1b
slider A, which is positioned at a fixed distance from the
pivot (0 of the pointer. When the pointer is displaced, a
torsional spring at O exerts a restoring torque on the
pointer having a magnitude M = (1.26) b~ fi. where #
represents the angle of displacement from the vertical,
measured in radians. Determine the natural period of
vibration when the pointer is displaced a small amount #
and released. Neglect the mass of the pointer.

- A—r— -
A i

AT

0.25 1t

“k=121b-ftjrad Prob.22-18

22-19. The 50-kg block is suspended from the 10-kg pulley
that has a radius of gyration about its center of mass of
125 mm. If the block is given a small vertical displacement
and then released. determine the natural frequency of
oscillation.

k= 1500 N/m

= 150 mm

Prob. 22-19

#22-20. A uniform board is supported on two wheels
which rotate in opposite directions at a constant angular
speed. If the coefficient of kinetic friction between the
wheels and board is ¢, determine the frequency of vibration
of the board if it is displaced slightly, a distance x from the
midpoint between the wheels, and released.

Prob. 22-20
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22-21. If the 20-kg block is given a downward velocity of
6 m/s at its equilibrium position, determine the equation
that describes the amplitude of the block’s oscillation.

Prob. 22-21

22-22. The bar has a length / and mass m. It is supported
at its ends by rollers of negligible mass. If it is given a
small displacement and released. determine the natural
frequency of vibration.

Prob. 22-22

221 UnNDAMPED FReE VIBRATION 643

22-23. The 50-1b spool is attached to two springs. If the
spool is displaced a small amount and released, determine
the natural period of vibration. The radius of gyration of
the spool is k; = 1.5 ft. The spool rolls without slipping.

k= 31b/it
Y AW Y A ".I\ )

Ay N

k=11b/ft

Prob. 22-23

#22-24. The cart has a mass of m and is attached to two
springs, each having a stiffness of &, = k, = k, unstretched
length of [y, and a stretched length of / when the cart is
in the equilibrium position. If the cart is displaced a
distance of x = x, such that both springs remain in tension
{(xg < [ — Iy, determine the natural frequency of oscillation.

22-25. The cart has a mass of m and is attached to two
springs, each having a stiffness of &k, and k,, respectively.
It both springs are unstretched when the cart is in the
equilibrium position shown, determine the natural frequency
of oscillation.

Dk ¢ P4k

e

Probs. 22-24/25
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22-26. A flywheel of mass m, which has a radius of
gyration about its center of mass of kg, is suspended from a
circular shaft that has a torsional resistance of M = C0. If
the flywheel is given a small angular displacement of # and
released. determine the natural period of oscillation.

Prob. 22-26

22-27. 1If a block D of negligible size and of mass m is
attached at C, and the bell crank of mass M is given a small
angular displacement of 6. the natural period of oscillation
is 7). When D is removed, the natural period of oscillation is
73. Determine the bell crank’s radius of gyration about its
center of mass. pin B. and the spring’s stiffness k. The spring
is unstretched at # = 0°, and the motion occurs in the
horizontal plane.

Prob. 22-27

22-28, The platform AB when empty has a mass of 400 kg,
center of mass at G, and matural period of oscillation
7) = 2385 If a car, having a mass of 1.2 Mg and center of
mass at G, is placed on the platform, the natural period
of oscillation becomes 7, = 3.16 s. Delermine the moment of
inertia of the car about an axis passing through G-.

Prob. 22-28

22-29. A wheel of mass m is suspended from three equal-
length cords. When it is given a small angular displacement
of # about the z axis and released, it is observed that the
period of oscillation is 7. Determine the radius of gyration
of the wheel about the z axis,

L

L~ H‘:}’

Prob. 22-29
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*22.2 Energy Methods

The simple harmonic motion of a body, discussed in the previous section,
is due only to gravitational and elastic restoring forces acting on the body.
Since these forces are conmservative, it is also possible to use the
conservation of energy equation to obtain the body’s natural frequency
or period of vibration. To show how to do this, consider again the block
and spring model in Fig. 22-8. When the block is displaced x from the
equilibrium position, the kinetic energy is 7" = %mvz - %mi-l and the
potential energyis V = %kj’:. Since energy is conserved, it is necessary that

T + V = constant

1mi* + 1kx* = constant (22-17)

The differential equation describing the accelerated motion of the

block can be obtained by differentiating this equation with respect to
time:ie.,

mxx + kxx =0

x(mX + kx) = 0

Since the velocity & is not always zero in a vibrating system,

¥+ wx=10 w, = Vi/m

which is the same as Eq. 22-1.

If the conservation of energy equation is written for a system of
connected bodies, the natural frequency or the equation of motion can
also be determined by time differentiation. It is not necessary to
dismember the system to account for the internal forces because they do
no work.

Equilibrium
position

Fig. 22-8
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The suspension of a railroad car consists of a sct
of springs which are mounted between the frame
of the car and the wheel truck. This will give the
car a natural frequency of vibration which can be
determined.

The natural frequency w, of a body or system of connected bodies
can be determined by applying the conservation of energy equation
using the following procedure.

Energy Equation.

® Draw the body when it is displaced by a small amount from its
equilibrium position and define the location of the body from its
equilibrium position by an appropriate position coordinate q.

® Formulate the conservation of energy for the body, T+ V =
constant, in terms of the position coordinate.

® In general, the Kinetic energy must account for both the body’s
translational and rotational motion, T = $mvg + 3 lqe”®, Eq.18-2.

® The potential energy is the sum of the gravitational and elastic
potential energies of the body, V=V, + V,, Eq. 18-17. In
particular, V, should be measured from a datum for which ¢ = 0
(equilibrium position).

Time Derivative.

® Take the time derivative of the energy equation using the chain
rule of calculus and factor out the common terms. The resulting
differential equation represents the equation of motion for the
system. The natural frequency of w, is obtained after rearranging
the terms in the “standard form,” § + w g = 0.
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647

The thin hoop shown in Fig. 22-94 is supported by the peg at O.
Determine the natural period of oscillation for small amplitudes of
swing. The hoop has a mass m.

SOLUTION

Energy Equation. A diagram of the hoop when it is displaced a
small amount (g =) @ from the equilibrium position is shown in
Fig. 22-9b, Using the table on the inside back cover and the parallel-
axis theorem to determine /,, the kinetic energy is

T= :_E;_ Fotis = -,_i:{mrz + mri9® = mri*

If a horizontal datum is placed through point O, then in the displaced
position, the potential energy is

V = —mg(rcos0)

The total energy in the system is
T+ V= mr26* — mgrcosf
Time Derivative.

mr(20)0 + mgr(sin )0 = 0
mr(2rf + gsin @) = 0

Since 4 is not always equal to zero, from the terms in parentheses,

] +%$in8 =0

For small angle #,sin 8 = 6.

so that

Ans.

(a)

Datum
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EXAMPLE |22.6

A 10-kg block is suspended from a cord wrapped around a 5-kg disk.
as shown in Fig. 22-10a. If the spring has a stiffness k£ = 200 N/m,
determine the natural period of vibration for the system.

k = 200 N /m

SOLUTION

Energy Equation. A diagram of the block and disk when they are
displaced by respective amounts s and # from the equilibrium position
is shown in Fig. 22-10b. Since s = (0.15 m)d, then v, = § = (0.15 m)é.
Thus, the kinetic energy of the system 1is

T

Sy} + 3low]
110 kg)[(0.15 mBP® + 1[4(5 ke)(0.15 m)* |(6)°
0.1406(6)’

Establishing the datum at the equilibrium position of the block and
realizing that the spring stretches s, for equilibrium, the potential
energy is

= dk(sy + 8 — Ws
= 3(200 N/m)[s,, + (0.15 m)8]* — 98.1 N[(0.15 m)d]
The total energy for the system 1s therefore.
T+ V = 0.1406(6)" + 100(s,, + 0.156)> — 14.7150

Time Derivative.

0.28125(8)8 + 200(s, + 0.156)0.150 — 14,726 = 0

Since s, = 98.1/200 = 0.4905 m, the above equation reduces to the
“standard form™

6+ 1668 = 0
so that
w, = V16 = 4rad/s
Thus,
2 2
fz—ﬂz—#ZI.S?s Anz
w, 4
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“leropiews

22-30.  Determine the differential equation of motion of
the 3-kg block when it is displaced slightly and released. The
surface is smooth and the springs are originally unstretched.

Prob. 22-30

22-31. Determine the natural period of vibration of the
pendulum. Consider the two rods to be slender. each having
a weight of 8 Ib/ft.

piopd

=1 I i

It

Prob. 22-31

#22-32, The uniform rod of mass m is supported by a pin
at A and aspring at B, If the end Bis given a small downward
displacement and released, determine the natural period of
vibration.

I ! !
Prob. 22-32

22-33. The 7-kg disk is pin connected at ils midpoint.
Determine the natural period of vibration of the disk if the
springs have sufficient tension in them to prevent the cord
from slipping on the disk as it oscillates. Hint: Assume that
the initial stretch in each spring is 8. This term will cancel
out after taking the time derivative of the energy equation.

2 k= 600 N/m

Prob. 22-33
22-34. The machine has a mass m and is uniformly
supported by four springs, each having a stiffness k.
Determine the natural period of vertical vibration,

Prob. 22-34

22-35. Determine the natural period of vibration of the 3-kg
sphere. Neglect the mass of the rod and the size of the sphere.

% k=500 N/m

300 mrn—-‘— 300 mrn—-l

Prob. 22-35
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#22-36. The slender rod has a mass m and is pinned at its
end O. When it is vertical, the springs are unstretched.
Determine the natural period of vibration.

Prob. 22-36

22-37. Determine the natural frequency of vibration of
the 20-1b disk. Assume the disk does not slip on the inclined
surface.

Prob. 22-37

22-38. If the disk has a mass of 8 kg. determine
the natural frequency of vibration. The springs are originally
unstretched.

Prob. 22-38

22-39. The semicircular disk has a mass m and radius r.
and it rolls without slipping in the semicircular trough.
Determine the natural period of vibration of the disk if it is
displaced slightly and released. Hint: Iy =4 mr?.

Prob. 22-39

#22-40. The gear of mass m has a radius of gyration about
its center of mass O of k. The springs have stiffnesses of k,
and k,, respectively. and both springs are unstretched when
the gear is in an equilibrium position. If the gear is given a
small angular displacement of 0 and released, determine its
natural period of oscillation.

Prob. 22-40
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*22.3 Undamped Forced Vibration

Undamped forced vibration is considered to be one of the most important
types of vibrating motion in engineering. Its principles can be used to
describe the motion of many types of machines and structures,

Periodic Force. The block and spring shown in Fig. 22-11a provide
a convenient model which represents the vibrational characteristics of a
system subjected to a periodic force F = Fysin wyt. This force has an
amplitude of F; and a forcing frequency wy. The free-body diagram for
the block when it is displaced a distance x is shown in Fig. 22-115.
Applying the equation of motion, we have

- EF‘L = M, Fﬂ, sin wyl — kx = HI'J\:‘

or
i+ Lx = 2l 22-18
% m',L om R gl (22-18)

This equation is a nonhomogeneous second-order differential equation.
The general solution consists of a complementary solution, x., plus a
particular solution, x,,.

The complementary solution is determined by setting the term on the
right side of Eq. 22-18 equal to zero and solving the resulting
homogeneous equation. The solution is defined by Eq. 22-9, i.e.,

x, = Csinfw,t + ¢) (22-19)

where w, is the natural frequency, @, = Vk/m, Eq.22-2.
Since the motion is periodic, the particular solution of Eq. 22-18 can be
determined by assuming a solution of the form

x, = X sin gt (22-20)

where X is a constant. Taking the second time derivative and substituting
inte Eq. 22-18 viclds

. k : Fy .
—Xowg sin agt + — (X sin wyf) = — sin gt
m m

Factoring out sin ayr and solving for X gives

Fy/m "ol k
_ o/ . o/ : (22-21)
kfmy — w5 1 — (wy/w,)”
Substituting into Eq. 22-20, we obtain the particular solution
Fy/k
o/ ~sin wyt (22-22)

=

Mech.MuslimEngineer.Net
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pusition =

|

(a)

F = Fysinayt

‘rV=I mg

kx * I = Fjsin oy
—

N=W
(b)

Fig. 22-11

Shaker tables provide forced vibration
and are used to separate oul granular
materials.
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The general solution is therefore the sum of two sine functions having
different frequencies.

Folk
———sinwy (22-23)
. I = (an/a,)” )

The complementary solution x, defines the free vibration, which depends

on the natural frequency w, = Vk/m and the constants C and ¢. The
particular solution x, describes the forced vibration of the block caused
by the applied force F = F, sin wyt. Since all vibrating systems are subject
to friction, the free vibration, x,., will in time dampen out. For this reason
the free vibration is referred to as rransient, and the forced vibration is
called sready-state, since it is the only vibration that remains.

From Eg. 22-21 it is seen that the amplitude of forced or steady-state
vibration depends on the frequency ratio wy/w,. If the magnification
factor MF is defined as the ratio of the amplitude of steady-state
vibration, X, to the static deflection, F/k, which would be produced by
the amplitude of the periodic force Fy, then, from Eq. 22-21,

x=x.+x, = Csinfw,t + ¢) +

The soil compactor operates
by forced vibration developed
by an internal motor. It is
important that the [orcing
frequency not be close o the
natural frequency of vibration
of the compactor, which can be
determined when the motor is
turmed off;otherwise resonance
will occur and the machine will
become uncontrollable,
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X | MF
= = - 22-24
FU)/k I = ("—"'(}.('/"-“irr}~ ( ) 3

MF

This equation is graphed in Fig. 22-12. Note that if the force or
displacement is applied with a frequency close to the natural frequency 5L
of the system. i.c., wy/w, = 1, the amplitude of vibration of the block
becomes extremely large. This occurs because the force F is applied to
the block so that it always follows the motion of the block. This condition
is called resonance, and in practice, resonating vibrations can cause
tremendous stress and rapid failure of parts.*

Periodic Support Displacement. Forced vibrations can also ¢
arise from the periodic excitation of the support of a system. The model
shown in Fig. 22-13a represents the periodic vibration of a block which is
caused by harmonic movement 8 = &g sin wyt of the support. The free-
body diagram for the block in this case is shown in Fig. 22-13b. The
displacement & of the support is measured from the point of zero
displacement, i.e., when the radial line OA coincides with OB. Therefore,

general deformation of the spring is (x — &, sin wyr). Applying the .
equation of motion yields
X F, = mag —k(x — 8y sin wyl) = mx Fig. 22-12

or —

2 k o Jf"BU L &y
X+ X = o sinowgt (22-25)

{ Equilibrium
o A 3 position
A T

provided Fy is replaced by k§,. If this substitution is made into the
solutions defined by Eqgs. 22-21 to 22-23. the results are appropriate for
describing the motion of the block when subjected to the support B
displacement 8 = & sin wyt.

By comparison, this equation is identical to the form of Eq. 22-18, (
| 8

(a)

1
k(x — 8y sin agt) %
-

N=W
#*A swing has a natural period of vibration, as determined in Example 22.1. If someone (b)
pushes on the swing only when it reaches its highest point, neglecting drag or wind
resistance, resonance will oceur since the natural and forcing frequencies are the same. Fig. 22-13
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EXAMPLE | 2257

The instrument shown in Fig. 22-14 is rigidly attached to a platform P,
which in turn is supported by four springs, each having a stiffness
k= 800N/m. If the floor is subjected to a vertical displacement
d = 10 sin(87) mm, where ¢ is in seconds, determine the amplitude of
steady-state vibration. What is the frequency of the floor vibration
required to cause resonance? The instrument and platform have a
total mass of 20 kg.

Fig. 22-14

SOLUTION
The natural frequency 1s

[k [4800N/m)
W, = \/; = Nke 12.65 rad /s

The amplitude of steady-state vibration is found using Eq. 22-21.
with kf; replacing Fy.

5 84 _ 10
| — (wp/w,)* 1 — [(8rad/s)/(12.65 rad/s)]*

= 16.7mm Ans

Resonance will occur when the amplitude of vibration X caused by
the floor displacement approaches infinity. This requires

wy = w, = 12.6rad/s Ans.
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22.4 Niscous DampPeD FrRee VIBRATION

*22.4 Viscous Damped Free Vibration

The vibration analysis considered thus far has not included the effects of
friction or damping in the system, and as a result, the solutions obtained
are only in close agreement with the actual motion. Since all vibrations
die out in time, the presence of damping forces should be included in the
analysis.

In many cases damping is attributed to the resistance created by the
substance, such as water, oil, or air, in which the system vibrates. Provided
the bady moves slowly through this substance, the resistance to motion is
directly proportional to the body’s speed. The type of force developed
under these conditions is called a viscous damping force. The magnitude
of this force i1s expressed by an equation of the form

F=ci (22-26)

where the constant ¢ is called the coefficient of viscous damping and has
units of N+s/m or lb-s/ft.

The vibrating motion of a body or system having viscous damping can
be characterized by the block and spring shown in Fig. 22-154. The effect
of damping is provided by the dashpot connected to the block on the
right side. Damping occurs when the piston P moves to the right or left
within the enclosed cylinder. The cylinder contains a fluid, and the
motion of the piston is retarded since the fluid must flow around or
through a small hole in the piston. The dashpot is assumed to have a
coefficient of viscous damping c.

If the block is displaced a distance x from its equilibrium position, the
resulting free-body diagram is shown in Fig. 22-155b. Both the spring and
damping force oppose the forward motion of the block, so that applying
the equation of motion yields

i>EF_\. = md,; —kx — cx = mX

or
m¥ +cx + kx =0 (22-27)

This linear, second-order, homogeneous, differential equation has a

solution of the form
x=1e"

where e is the base of the natural logarithm and A (lambda) is a constant.
The value of A can be obtained by substituting this solution and its time
derivatives into Eq. 22-27, which yields

mA2eM + che™ + kM =0
or

MmAT + A+ k=0

Mech.MuslimEngineer.Net

Equilibrium
position

655

2 5
B g e
(a)

N=W
(b)

Fig. 22-15




656

CHAPTER 22  VIBRATIONS

Since ¢*

can never be zero, a solution is possible provided
mAT+ A + k=0

Hence, by the quadratic formula, the two values of A are
. =i ¢ I ( ¢ )2 K
; 2m 2m m

I (Ly _k
2 2m \ 2m m

The general solution of Eq. 22-27 is therefore a combination of
exponentials which involves both of these roots, There are three possible
combinations of A; and A, which must be considered. Before discussing
these combinations, however, we will first define the critical damping
coefficient ¢, as the value of ¢ which makes the radical in Egs. 22-28

equal to zero;i.e.,
R
e\ ok
2 n

[ k
¢, = 2m,[— = 2ma,
m

Overdamped System. Whenc > ¢, the roots A; and A, are both
real. The general solution of Eq. 22-27 can then be written as

(22-28)

or

(22-29)

L

x = AN + BeM! (22-30)

Motion corresponding to this solution is nenvibrating. The effect of
damping is so strong that when the block is displaced and released, it
simply creeps back to its original position without oscillating. The system
is said to be overdamped.

Critically Damped System. Ifc=c,then, = =—¢ /2m=—w,.
This situation is known as critical damping, since it represents a condition
where ¢ has the smallest value necessary to cause the system to be
nonvibrating. Using the methods of differential equations, it can be shown
that the solution to Eq. 22-27 for critical damping is

x = (A + Bhe™ (22-31)
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22.4 Viscous DAMPED FREE VIBRATION 657

Underdamped System. Most often ¢ < ¢, in which case the
system is referred to as underdamped. In this case the roots A, and A, are
complex numbers, and it can be shown that the general solution of
Eq.22-27 can be written as

x = D[e ™ gin(wgt + $)] (22-32)

where D and ¢ are constants generally determined from the initial
conditions of the problem. The constant w, is called the damped natural
frequency of the system. It has a value of

where the ratio ¢/¢, is called the damping factor.

The graph of Eq. 22-32 is shown in Fig. 22-16. The initial limit of
motion, D, diminishes with each cycle of vibration, since motion is
confined within the bounds of the exponential curve. Using the damped
natural frequency wy, the period of damped vibration can be written as

—
T, == (22-34)

Wy

Since w,; < w,, Eq. 22-33, the period of damped vibration, 7,, will be
greater than that of free vibration, 7 = 27 /w,.

——
De™ Lo/ Zmpr
s
D
X =
X e
— 13 /P\ y—— {
i Iy fy \_/___'3_.\-&“" —
\'—— _ D lemy
n A , A
7 x = Dle” " Psin (wgt + $)]
i

Fig. 22-16
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*22.5 Viscous Damped Forced Vibration

The most general case of single-degree-of-freedom vibrating motion
occurs when the system includes the effects of forced motion and induced
damping. The analysis of this particular type of vibration is of practical
value when applied to systems having significant damping characteristics.

If a dashpot is attached to the block and spring shown in Fig. 22-11a,
the differential equation which describes the motion becomes

mx + cx + kx = Fysin wyt (22-35)

A similar equation can be written for a block and spring having a
periodic support displacement, Fig, 22-13a, which includes the cffects
of damping. In that case, however, Fy is replaced by k8. Since Eq. 22-35
is nonhomogeneous, the general solution is the sum of a complementary
solution, x,, and a particular solution, x,. The complementary solution
is determined by setting the right side of Eq. 22-35 equal to zero and
solving the homogeneous equation, which is equivalent to Eq. 22-27.
The solution is therefore given by Eq. 22-30,22-31, or 22-32, depending
on the values of A, and A,. Because all systems are subjected to friction,
then this solution will dampen out with time. Only the particular
solution, which describes the steady-state vibration of the system, will
remain. Since the applied forcing function is harmonic, the steady-state
motion will also be harmonic. Consequently, the particular solution will
be of the form

Xp = X' sin(wgt — ¢') (22-36)

The constants X" and ¢’ are determined by taking the first and second
time derivatives and substituting them into Eq. 22-35, which after
simplification yields

—X'mwﬁ sinfowgt — ') +
X'ewgeos(wgt — ") + X'ksinfwyt — ¢b') = Fy sin wyf
Since this equation holds for all time, the constant coefficients can be

obtained by setting wyt — ¢’ = 0 and wyt — &' = /2, which causes the
above equation to become

X’CWU —i Fu sin (f)‘

—X'mef + X'k

Fycos ¢’
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The amplitude is obtained by squaring these equations, adding the
results, and using the identity sin’’ + cos’p’ = 1, which gives

Fo :
X’ = o T a (22_3?)
\/(k — mwj)” + cTwy
Dividing the first equation by the second gives
— Lty
¢' = tan” | ——— (22-38)
k — maog
Since w, = Vk/mand ¢, = 2muw,, then the above equations can also be
written as
e Fo/k
VI = (@y/@,)'F + [2(e/c)Ne/w)
22-39
| _I[z{c/c{-nmﬂ/w,o} @)
¢'=tan | —————
I == (Cﬂ[)flfﬂ”)“

The angle ¢’ represents the phase difference between the applied force
and the resulting steady-state vibration of the damped system.

The magnification factor MF has been defined in Sec. 22.3 as the ratio
of the amplitude of deflection caused by the forced vibration to the
deflection caused by a static force Fyy. Thus,

X' 1

MF = -

Fo/k VI = (o) + [2(e/c)@o/w,)]
The MF is plotted in Fig. 22-17 versus the frequency ratio w,/w, for
various values of the damping factor ¢/c,.. It can be seen from this graph
that the magnification of the amplitude increases as the damping factor
decreases. Resonance obviously occurs only when the damping factor is
zero and the frequency ratio equals 1.

MF

(22-40)

Fig. 22-17
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EXAMPLE | 22.8

The 30-kg electric motor shown in Fig. 22-18 is confined to move
vertically, and is supported by four springs, each spring having a
stiffness of 200 N/m. If the rotor is unbalanced such that its effect is
equivalent to a 4-kg mass located 60 mm from the axis of rotation,
determine the amplitude of vibration when the rotor is turning at
wy = 10rad/s. The damping factor is ¢ /¢, = 0.15.

Fig. 22-18

SOLUTION
The periodic force which causes the motor to vibrate is the centrifugal
force due to the unbalanced rotor. This force has a constant magnitude of

Fy = ma, = mrwg = 4 kg(0.06 m)(10 rad/sf = 24N

The stiffness of the entire system of four springs is £ = 4(200 N/m) =
800 N /m. Therefore, the natural frequency of vibration is

wy, 0 4/ 30kg ¥ 5

Since the damping factor is known, the steady-state amplitude can be
determined from the first of Egs. 22-39,1.e.,

B Fo/k

VI = o/ + [2(e/cNwof @)

B 24/800

T VI = (10/5.1647F + [2(0.15)10/5.164)

¥

= 00107 m = 10.7 mm Ans.
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*22.6 Electrical Circuit Analogs

The characteristics of a vibrating mechanical system can be represented
by an electric circuit. Consider the circuit shown in Fig. 22-19a, which
consists of an inductor L, a resistor R, and a capacitor C, When a voltage
E(r) 1s applied, it causes a current of magnitude { to flow through the
circuit. As the current flows past the inductor the voltage drop is L(di/dy),
when it flows across the resistor the drop is Ri, and when it arrives at the
capacitor the drop is (1/C) [ i dt. Since current cannot flow past a capacitor,
it is only possible to measure the charge g acting on the capacitor. The
charge can, however, be related to the current by the equation i = dg/dr.
Thus, the voltage drops which occur across the inductor, resistor, and
capacitor become L d°q/df*, R dq/dt. and q/C, respectively. According to
Kirchhoff’s voltage law, the applied voltage balances the sum of the voltage
drops around the circuit, Therefore,
d dg 1
d—g i R?‘: +—g = E0) (22-41)
Consider now the model of a single-degree-of-freedom mechanical
system, Fig. 22-19b, which is subjected to both a general forcing function
F(r) and damping. The equation of motion for this system was established
in the previous section and can be written as

d*x dx
+oe— + kx = Fli 22-42
n e C = () ( )

By comparison. it is seen that Egs. 22-41 and 22-42 have the same form,
and hence mathematically the procedure of analyzing an electric circuit
is the same as that of analyzing a vibrating mechanical system. The
analogs between the two equations are given in Table 22-1.

This analogy has important application to experimental work, for it is
much easier to simulate the vibration of a complex mechanical system
using an electric circuit, which can be constructed on an analog computer,
than to make an equivalent mechanical spring-and-dashpot model.

L

TABLE 221

_Electrical-Mechanical Analogs
Electrical Mechanical
Electric charge q Displacement X
Electric current i Velocity dx /dt
Voltage E(1) Applied force F(ir)
Inductance L Mass "
Resistance R Viscous damping c

coefficient

Reciprocal of capacitance 1/C Spring stiffness k

Mech.MuslimEngineer.Net
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| | PROBLEMS

22-41. 1If the block is subjected to the periodic [orce
F = Fy cos wt, show that the differential equation of
motion is ¥ + (k/m)y = (Fy/m) cos wi. where y is
measured from the equilibrium position of the block. What
is the general solution of this equation?

—

F= F,cos e

Prob. 22-41

22-42, The block shown in Fig. 22-15 has a mass of 20 kg,
and the spring has a stiffness & = 600 N /m. When the block
is displaced and released. two successive amplitudes are
measured as x; = 150 mm and x, = 87 mm. Determine
the coefficient of viscous damping, ¢.

22-43, A 4-1b weight is attached to a spring having a
stiffness &k = 101b/ft. The weight is drawn downward a
distance of 4 in. and released from rest. If the support moves
with a vertical displacement & = (0.5 sin 4¢) in., where ¢ is in
seconds, determine the equation which describes the
position of the weight as a function of time.

#22-44. A 4-kg block is suspended from a spring that has a
stiffness of & = 600 N/m. The block is drawn downward
50 mm from the equilibrium position and released from rest
when = 0. If the supporlt moves with an impressed
displacement of & = (10 sin 4f) mm, where ¢ is in seconds,
determine the equation that describes the vertical motion
of the block. Assume positive displacement is downward.

22-45. Use a block-and-spring model like that shown in
Fig. 22-13a. but suspended from a vertical position and
subjected to a periodic support displacement 8 = & sin wy,
determine the equation of motion for the system. and obtain
its general solution. Define the displacement y measured
from the static equilibrium position of the block when 1 = (.

22-46. A 5-kg block is suspended from a spring having a
stiffness of 300 N/m. If the block is acted upon by a
vertical force F = (7sin8) N, where ¢ is in seconds.
determine the equation which describes the motion of the
block when it is pulled down 100 mm from the equilibrium
position and released from rest at r = 0. Assume that
positive displacement is downward.

F=Tsin 8t
Prob. 22-46

22-47. The electric motor has a mass of 50 kg and is
supported by four springs, each spring having a stiffness of
100 N/m, If the motor turns a disk D which is mounted
eccentrically. 20 mm from the disk’s center, determine the
angular velocity w at which resonance occurs, Assume that
the motor only vibrates in the vertical direction.

> 4= 100 N/m & =100 N/m*=

Prob. 22-47
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#22-48. The 20-Ib block is attached to a spring having a
stiffness of 20 1b/ft. A force F = (6 cos 21) Ib, where 1 is in
seconds, is applied to the block. Determine the maximum
speed of the block after frictional forces cause the free
vibrations to dampen out.

Q000
, k=201b/ft
RS=f =g —
r F= 6cos2t
O 060
Prob. 22-48

2249, The light elastic rod supports a 4-kg sphere. When
an 18-N vertical force is applied to the sphere. the rod
deflects 14 mm. If the wall oscillates with harmonic
frequency of 2 Hz and has an amplitude of 15 mm. determine
the amplitude of vibration for the sphere,

.—mjm—.l
- O

Prob. 22-49

22-50. The instrument is centered uniformly on a platform P,
which in turn is supported by four springs, each spring having a
stiffness & = 130 N/m. If the floor is subjected to a vibration
w = 7THz, having a vertical displacement amplitude
dy = 0.17 I, determine the vertical displacement amplitude
of the platform and instrument. The instrument and the
platform have a total weight of 18 Ib.

e

!
'

Proh. 22-50

22.6 ELecTRICAL CIRCUIT ANALOGS 663

22-51. The uniform rod has a mass of m. If it is acted upon
by a periodic force of F = Fysinwt, determine the
amplitude of the steady-state vibration.

F=Fy sin wf
Prob. 22-51

#22-52, Using a block-and-spring model. like that shown in
Fig. 22-134, but suspended from a vertical position and
subjected to a periodic support displacement of & = 8, cos wy,
determine the equation of motion for the system, and obtain
its general solution. Define the displacement y measured from
the static equilibrium position of the block when ¢ = 0.

22-53. The fan has a mass of 25 kg and is fixed to the end
of a horizontal beam that has a negligible mass. The fan
blade is mounted eccentrically on the shaft such that it is
equivalent to an unbalanced 3.5-kg mass located 100 mm
[rom the axis of rotation. If the static deflection of the beam
is 50 mm as a result of the weight of the fan, determine the
angular velocity of the fan blade at which resonance will
oceur. Hint: See the first part of Example 22.8.

22-54. In Prob. 22-53, determine the amplhitude of steady-
state vibration of the fan if its angular velocity is 10 rad/s.

22-55. What will be the amplitude of steady-state vibration
of the fan in Prob. 22-53 if the angular velocity of the fan
blade is 18 rad/s? Hint: See the first part of Example 22.8.

Probs. 22-53/54/55
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#22-56. The small block at A has a mass of 4 kg and is
mounted on the bent rod having negligible mass. If the rotor
at B causes a harmonic movement 8, = (0.1 cos 151) m,
where 1 is in scconds, determine the steady-state amplitude
of vibration of the block.

050

A

Prob. 22-56

22-57. The electric motor turns an eccentric flywheel
which is equivalent to an unbalanced 0.25-1b weight located
10 in. from the axis of rotation. If the static deflection of the
beam is 1 in. because of the weight of the motor, determine
the angular velocity of the flywheel at which resonance
will occur. The motor weighs 150 Ib. Neglect the mass of
the beam.

22-58. What will be the amplitude of steady-state
vibration of the motor in Prob. 22-57 if the angular velocity
of the flywheel is 20 rad/ s?

22-59. Determine the angular velocity of the flywheel in
Prob. 22-57 which will produce an amplitude of vibration of
0.25 in.

Probs. 22-57/58/59

#22-60. The engine is mounted on a foundation block
which is spring supported. Describe the steady-state
vibration of the system if the block and engine have a total
weight of 1500 |b and the engine, when running, creates an
impressed force F = (50sin 27) Ib, where ¢ is in seconds.
Assume that the system vibrates only in the vertical
direction, with the positive displacement measured
downward, and that the total stiffness of the springs can be
represented as £ = 2000 1b/ L.

22-61. Determine the rotational speed w of the engine in
Prob. 22-60 which will cause resonance.

Probs. 22-60/61

22-62. The motor of mass M is supported by a simply
supported beam of negligible mass, If block A of mass mi is
clipped onto the rotor. which is turning at constant
angular velocity of w, determine the amplitude of the
steady-state vibration. Hint: When the beam is subjected
to a concentrated force of P at its mid-span, it deflects
& = PL'/48EI at this point. Here E is Young's modulus of
clasticity, a property of the material, and [ is the moment
of inertia of the beam’s cross-sectional area.

Prob. 2262
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22-63. A block having a mass of 0.8 kg is suspended from a
spring having a stiffness of 120 N /m. IT a dashpot provides a
damping force of 2.5 N when the speed of the block is
0.2 m/s. determine the period of free vibration.

*22-64. The block, having a weight of 15 Ib, is immersed in a
liquid such that the damping force acting on the block has a
magnitude of F = (0.8]v|) Ib, where v is the velacity of the
block in ft/s. If the block is pulled down 0.8 ft and released
from rest, determine the position of the block as a function
of time. The spring has a stiffness of k = 40 Ib/ft. Consider
positive displacement to be downward.

Prob. 22-64

22-65, A 7-Ib block is suspended from a spring having a
stiffness of k = 75 Ib/ft. The support to which the spring is
attached is given simple harmonic motion which may be
expressed as § = (0.15 sin 2¢) ft. where £ is in seconds. If the
damping factor is ¢/c, = 0.8, determine the phase angle ¢
of forced vibration.

22-66. Determine the magnification factor of the block,
spring, and dashpot combination in Prob. 22-65.

22-67. A block having a mass of 7 kg is suspended from a
spring that has a stilfness £ = 600 N /m. If the block is given
an upward velocity of 0.6 m/s from its equilibrium position
at ¢ = 0, determine its position as a function of time.
Assume that positive displacement of the block is downward
and that motion takes place in a medium which furnishes a
damping force F = (50|v|) N, where v isinm/s.

226 ELecTrRICAL CIRCUIT ANALOGS 665

#22-68. The 4-kg circular disk is attached to three springs,
each spring having a stiffness k = 180 N/m. If the disk is
immersed in a fluid and given a downward velocity of
0.3 m/s at the equilibrium position, determine the equation
which describes the motion. Consider positive displacement
to be measured downward, and that fluid resistance acting
on the disk furnishes a damping force having a magnitude
F = (60]|v|) N, where v is the velocity of the block in m/s.

Prob. 22-68

22-69. If the 12-kg rod is subjected to a periodic force
of F = (30sin 6r) N, where  is in seconds, determine the
steady-state vibration amplitude 0, of the rod about the
pin B. Assume # is small.

F=(30sin66N

Prob. 2269
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22-70. The damping factor, ¢/c,, may be determined
experimentally by measuring the successive amplitudes
of vibrating motion of a system. If two of these maximum
displacements can be approximated by x; and x,, as
shown in  Fig. 22-16, show that the ratio
In (x,/x:) = 2m(e/c)/ V1—(c/c.)*. The quantity In (x;/x5)

is called the logarithmic decrement.

22-71. If the amplitude of the 50-Ib cylinder’s steady-
vibration is 6 in., determine the wheel's angular velocity a,

k = 200 Ib/ft = = = 2001b/ft

Prob. 22-71

#22-72. The 10-kg block-spring-damper system is damped.
IT the block is displaced to x = 50 mm and released from
rest, determine the time required for it to return to the
position v = 2 mm.

¢=80N-s/m

I

Prob. 22-72

22-73. The 20-kg block is subjected to the action of the
harmonic force F = (90 cos 6) N, where f is in seconds.
Write the equation which describes the steady-state motion.

| F = 90 cos 6t
—

PP . II{__IJ‘
3

k=400 N /m o101 1 c=125N.s/m

Prob. 22-73

22-74. A bullet of mass m has a velocity of v, just before it
strikes the target of mass M. If the bullet embeds in the
target, and the vibration is to be critically damped,
determine the dashpot’s critical damping coetficient, and
the springs’ maximum compression. The target is free to
move along the two horizontal guides that are “nested” in
the springs.

22-75. A bullet of mass m has a velocity v just before it
strikes the target of mass M. If the bullet embeds in the
target, and the dashpot’s damping coefficient is 0 < c << ¢,
determine the springs’ maximum compression. The target is
free to move along the two horizontal guides that are
“nested” in the springs.

Probs. 22-74/75
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#22-76. Determine the differential equation of motion for 22-78. Draw the electrical circuit that is equivalent to the
the damped vibratory system shown. What type of motion mechanical system shown. What is the differential equation
occurs? Take k = 100 N/m, e = 200 N+s/m.m = 25 kg. which describes the charge ¢ in the circuit?

Prob. 22-78

Prob. 22-76 22-79. Draw the electrical circuit that is cquiva!fani to I?IIB:
mechanical system shown. Determine the differential
equation which describes the charge g in the circuit.

22-77. Draw the electrical circuit that is equivalent to the
mechanical system shown. Determine the differential
equation which describes the charge ¢ in the circuit.

F=F,cosmf
—

Prob. 22-77 Prob. 22-79
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CHAPTER REVIEW

Undamped Free Vibration

A body has free vibration when
gravitational or elastic restoring forces Equilibrium
cause the motion. This motion is pusition
undamped when friction forces are X
neglected. The periodic motion of an
undamped, freely vibrating body can be
studied by displacing the body from the
equilibrium position and then applying
the equation of motion along the path.

For a one-degree-of-freedom system,
the resulting differential equation can
be written in terms of its natural
frequency w,.

- 5 1
Itwx=0 T f=;*=

Energy Methods

Provided the restoring forces acting on
the body are gravitational and elastic,
then conservation of energy can also be
used to determine its simple harmonic
motion. To do this, the body is displaced
a small amount from its equilibrium
position. and an expression for its
kinetic and potential energy is written,
The time derivative of this equation can
then be rearranged in the standard
form ¥ + wlx = 0.

Undamped Forced Vibration

When the equation of motion is applied Equilibrium

to a body. which is subjected to a periodic position

force, ar the support has a displacement o

with a frequency wy, then the solution of k F = Fysin gt
the differential equation consists of a

complementary solution and a particular

solution. The complementary solution is

caused by the free vibration and can be

neglected. The particular solution is

caused by the forced vibration,

Resonance will occur if the natural Fy/k
frequency of vibration , is equal to the Xy 3
forcing frequency y. This should be I = (wo/w,)
avoided, since the motion will tend to

become unbounded.
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Viscous Damped Free Vibration

A viscous damping force is caused by
fluid drag on the system as it vibrates. If
the motion is slow, this drag force will be
proportional to the wvelocity, that is,

= ci. Here ¢ is the coefficient of
viscous damping. By comparing its value
to the critical damping coeflicient
¢, = 2mw,, we can specify the type of
vibration that occurs. If ¢ > ¢,. it is an
overdamped system: if ¢ = ¢, it is a
critically damped system:if ¢ < ¢, il is
an underdamped system.

Viscous Damped Forced Vibration

The most general type of vibration for a
one-degree-of-freedom system occurs
when  the system is damped and

subjected to periodic forced motion.

The solution provides insight as to how
the damping factor, ¢/c., and the
frequency ratio, @y/w,. influence the
vibration.

Resonance  is avoided  provided
¢fe, # 0and wy/w, # 1.

Electrical Cirenit Analogs

The vibrating motion of a complex
mechanical system can be studied by
maodeling it as an electrical circuit, This is
possible since the differential equations
that govern the behavior of each system
are the same.

Equilibrium
position

Tad
ke

Mech.MuslimEngineer.Net






