Homological algebra

André Henriques

Sheet 4

Exercise 20. Let k be a field, and let R = k[x]. Consider the module $M := k[x, x^{-1}]/x \cdot k[x]$. A typical element of M can be written as a Laurent polynomial $\sum_{n < 0} a_n x^n$. Compute

$$\operatorname{Tor}_{*}^{R}(M, M).$$

Exercise 21. Let k be a field, and let R := k[x, y]/(xy). View k as an R-module by letting x and y act by zero. Compute the ring structure of

$$\operatorname{Ext}_{R}^{*}(k,k) = \bigoplus_{n} \operatorname{Ext}_{R}^{n}(k,k).$$

Is this ring commutative?

Exercise 22. Let k be a field, and let $R = k[x]/x^3$. Let M := k[x]/x and $N := k[x]/x^2$. According to the horseshoe lemma, the short exact sequence $0 \to M \to N \to M \to 0$ can be extended a sort exact sequence of projective resolutions

Write down explicitly all the modules and all the maps in the above commutative diagram.

Exercise 23. Consider the functor which assigns to an abelian group A its set of 2-torsion points:

$$F(A) = \{ a \in A : \exists n \in \mathbb{N} \text{ s.t. } 2^n a = 0 \}.$$

Prove that this functor left exact. Compute all the group and all the maps in the long exact sequence of derived functors

$$\begin{split} 0 &\to R^0 F(\mathbb{Z}) \to R^0 F(\mathbb{Z}) \to R^0 F(\mathbb{Z}/2\mathbb{Z}) \\ &\to R^1 F(\mathbb{Z}) \to R^1 F(\mathbb{Z}) \to R^1 F(\mathbb{Z}/2\mathbb{Z}) \\ &\to R^2 F(\mathbb{Z}) \to \dots \end{split}$$

associated to the short exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$.