C1.1: Model Theory

November 23, 2019

1 Introduction

Model theory hinges on a duality between sentences or and structures for a fixed language; more generally, a duality between formulas (with n free variables), and definable sets (subsets of A^{n} for A an L-structure.)
For a sentence ψ, we can look at the class of models of ψ; conversely given a structure N, we can look at the complete theory $\operatorname{Th}(N):=\{\psi: N \models \psi\}$.
This generalizes the duality between algebra and geometry seen in many areas of mathematics; for instance a polynomial f, or rather the equality $f\left(x_{1}, \ldots, x_{n}\right)=0$, can be viewed as a formula; the solution set in \mathbb{R}^{n} is a geometric object corresponding to it. The special feature of model theory is going beyond atomic formulas, in particular allowing quantifiers.
In previous mathematics classes, you have run into many universal theories: the theories of groups, rings, integral domains, vector spaces over some field. On the other hand you have seen specific structures, such as the field of real numbers.
How to bridge the gap between them?
Prelude: the compactness theorem. All of model theory is dependent on the compactness theorem. During the course, you will see various applications. We will begin with some proofs, complementing the one you have seen using completeness. A proof can be given along the lines of the completeness theorem, merely replacing the proof-theoretic notions of consistency with the model-theoretic one of finite satisfiability. When the language is countable, it can be recast in terms of Baire category. There are also algebraic proofs (using ultrapowers), where all choices are performed in advance via the choice of an ultrafilter.

Between a complete theory and a structure.
We will cover, roughly, section 2.3 of Chang and Keisler, on countable models of complete theories.
In particular we can ask: when is a countable structure determined entirely (up to isomorphism) by its complete theory? The Ryll-Nardweski theorem gives a simple and very satisfactory answer. The notion of types, and methods of realizing and omitting types, required for the proof, will shed light on more general theories too.
A theory with a unique model (up to isomorphism) of cardinality κ is called κ-categorical. It is called totally categorical if it is κ-categorical for all infinite κ. The subject becomes much deeper here, and a much finer description is achieved. We will not be able to cover much of it, but will try to give a taste of a few of the ideas.
Between a universal theory and a complete theory.
But how do you ever find the complete theory of an infinite structure? And given a universal theory, is there any reasonable way to describe a complete theory containing it? The two apparently different questions are often answered by the same general construction, the model completion of a universal theory. We will study it both theoretically and via some examples. The model completion of the theory of integral domains is the theory of algebraically closed fields; for ordered domains is the theory of real closed fields. Knowing this shows that these theories are complete, and thus answers the question of the complete theories of the fields \mathbb{R} and \mathbb{C}. Beyond this, we will see that it also helps understand their definable sets (formulas in n variables, rather than sentences with 0 variables); leading to connections with geometry that are quite active in current research.

Contents

1 Introduction 1
Languages 5
Structures. 7
Interpretation of formulas in a structure 8
Embeddings and isomorphisms 10
The compactness theorem 12
2 The method of diagrams 20
3 Theories, models and preservation theorems 26
Quantifier elimination 31
4 Categoricity 36
Categoricity and completeness 36
Vector spaces 36
Dense linear order 38
Algebraically closed fields 40
5 Types 46
6 Atomic models and \aleph_{0}-categoricity 51
7 Countable saturated models 60
The perfect set theorem 63
8 Saturated models 64
Beth's definability theorem 67
The theory of the real field 68
9 Compactness via ultraproducts (optional chapter) 69
Products 70
Ultraproducts 70
10 Homework assignments 75
Sheet 0 75
Sheet 1 75
Sheet 2 75

Sheet 3 . 75
Sheet 4. 75

Languages

Alphabet, variables, terms, formulas.

A language L is specified by its alphabet, which consists, by definition, of the following data: :
(i) relation symbols $P_{i},(i \in I)$, function symbols $f_{j},(j \in J)$, and constant symbols $c_{k},(k \in K)$ with some index sets I, J, K. Further, to each $i \in I$ and $j \in J$ is assigned a positive integer ρ_{i}, μ_{j}, respectively, called the arity of the relation symbol P_{i} or the function symbol f_{j}.
The symbols in (i) are called non-logical symbols. It is sometimes convenient to view constant symbols as 0-place function symbols.
The formulas of L will be formed using the non-logical symbols, and the following. (iv,v) are called the logical symbols.
(ii) $\bumpeq-$ the equality symbol $\{1$
(iii) $v_{1}, \ldots, v_{n}, \ldots$ - the variables;
(iv) \wedge, \neg - Boolean connectives;
(v) \exists - the existential quantifier;
(vi) (,) - parentheses ${ }^{2}$

Words of the alphabet of L constructed in a specific way are called L-terms and L-formulas:
L-terms are given by recursive definition as follows:
(i) v_{i} is an L-term (any $i \geq 1$);
(ii) c is an L-term (any constant symbol c of L);
(iii) if f is a function symbol of L of arity μ, and $\tau_{1}, \ldots \tau_{\mu}$ are L-terms, then $f\left(\tau_{1}, \ldots, \tau_{\mu}\right)$ is an L-term;
(iv) nothing else is an L-term.

[^0]We define the complexity of a term τ to be just the length of τ as a word in the alphabet of L. It is obvious from the definition that any term of complexity $l>1$ is obtained by an application of (iii) to terms of lower complexity.

We sometimes refer to a term τ as $\tau\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$ to mark the fact that the variables occurring in τ are among $v_{i_{1}}, \ldots, v_{i_{n}}$. It may happen that no variables occur in τ, such terms are called closed.

Atomic L-formulas are the words of the form
(i) $\tau_{1} \bumpeq \tau_{2}$ for any L-terms τ_{1} and τ_{2}
or
(ii) $P\left(\tau_{1}, \ldots, \tau_{\rho}\right)$ for any relational L-symbol P of arity ρ and L-terms $\tau_{1}, \ldots, \tau_{\rho}$.

Notice, that (i) can be seen as a special case of (ii) if we view \bumpeq as a relational symbol of arity 2 .

An L-formula is defined by the following recursive definition:
(i) any atomic L-formula is an L-formula;
(ii) if φ is an L-formula, so is $\neg \varphi$;
(iii) if φ, ψ are L-formulas, so is $(\varphi \wedge \psi)$;
(iv) if φ is an L-formula, so is $\exists v \varphi$ for any variable v;

Nothing else is an L-formula.

Some abbreviations

Let ϕ and ψ be L-formulas.
$(\phi \vee \psi)$ is an abbreviation for the formula $\neg(\neg \phi \wedge \neg \psi)$;
$(\phi \rightarrow \psi)$ is an abbreviation for the formula $\neg(\phi \wedge \neg \psi)$;
$(\phi \leftrightarrow \psi)$ is an abbreviation for the formula $((\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi))$;
$\forall v \psi$ is an abbreviation for the formula $\neg \exists v \neg \psi$.
It is typical of logic that formulas in n-variables are discussed, and n-tuples of elements of a structure occur much more frequently than just elements. Notationally, this sometimes looks unnecessarily complicated. We will thus use 'vector notation', writing a for $\left(a_{1}, \ldots, a_{n}\right)$ and x for $\left(x_{1}, \ldots, x_{n}\right)$ when possible. For instance,
$\underline{A} \vDash\left(\varphi_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \wedge \varphi_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ iff $\underline{A} \vDash \varphi_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{A} \vDash \varphi_{2}\left(\alpha_{1}, \ldots, \tilde{\alpha}_{n}\right)$ will be written thus:
$\underline{A} \vDash\left(\varphi_{1}(\alpha) \wedge \varphi_{2}(\alpha)\right)$ iff $\underline{A} \vDash \varphi_{1}(\alpha)$ and $\underline{A} \vDash \varphi_{2}(\alpha), \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

In practice, we will permit ourselves the use of additional standard defined symbols such as $\vee, \rightarrow, \leftrightarrow, \forall$. We will also write certain function symbols as $x+y, x^{-1}$ according to standard usage.

Types of formulas Formulas that can be formed using (i)-(iii) alone are called quantifier-free.
A formula is universal if it has the form $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right) \psi$, where ψ is quantifierfree. Similarly one of the form $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right) \psi$ is called existential.

Notation. We will write $\varphi\left(x_{1}, \ldots, x_{n}\right)$ for the pair $\left(\varphi,\left(x_{1}, \ldots, x_{n}\right)\right)$ when φ is a formula and $\left(x_{1}, \ldots, x_{n}\right)$ is a tuple of variables, including all the free variables of φ.

You will often see the expression 'let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a formula'; it is used to indicate that the free variables are among those indicated. But strictly speaking, we have specified a tuple of variables and not only a formula. See e.g. Exercise 1.3 (4), for a place where this matters.

We define the complexity of an L-formula φ to be just the number of occurrences of \wedge, \neg and \exists in φ. Thus an atomic formula is of complexity 0 and that any formula of complexity $l>0$ is obtained by an application of (ii),(iii) or (iv) to formulas of lower complexity.

Free variables For an atomic formula $\varphi\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$, all variables occurring in (the terms of) φ are said to be free. For more complex formulas, the set of free variables is defined recursively. The variables which are free in φ and ψ in (ii) and (iii) are, by definition, also free in $\neg \varphi$ and $(\varphi \wedge \psi)$. The variable v in (iv) is called bounded in $\exists v \varphi$ and the list of free variables for this formula is given by the free variables of φ except v.
An L-formula with no free variables is called an L-sentence.
We write $|L|$ for the cardinality of the set of L-formulas.
Exercise 1.1. Show that

$$
|L|=\max \left\{\aleph_{0}, \operatorname{card}(I), \operatorname{card}(J), \operatorname{card}(K)\right\}
$$

Structures.

An L-structure \underline{A} consists of
(i) a set A called the domain or universe of the L-structure; ${ }^{3}$
(ii) an assignment of an r-ary relation (subset) $P^{A} \subseteq A^{r}$ to each relation symbol P of L of arity r;
(iii) an assignment of an m-ary function $f^{\underline{A}}: A^{m} \rightarrow A$ to any function symbol f of L of arity m;
(iv) an assignment of an element $c^{\underline{A}} \in A$ to any constant symbol c of L.

Thus an L-structure is an object of the form

$$
\underline{A}=\left\langle A ;\left\{P_{i}^{\underline{A}}\right\}_{i \in I} ;\left\{f_{j}^{A}\right\}_{j \in J} ;\left\{c_{k}^{A}\right\}_{k \in K}\right\rangle .
$$

$\left\{P_{i}^{\underline{A}}\right\}_{i \in I},\left\{f_{j}^{\mathcal{A}}\right\}_{j \in J}$ and $\left\{c_{k}^{\frac{A}{k}}\right\}_{k \in K}$ are called the interpretations in \underline{A} of the predicate, function and constant symbols correspondingly.
We write $A=\operatorname{dom}(\underline{A})$.
Note that writing $\left\langle A ;\left\{P_{i}^{\underline{A}}\right\}_{i \in I} ;\left\{f_{j}^{\frac{A}{j}}\right\}_{j \in J} ;\left\{c_{k}^{\frac{A}{k}}\right\}_{k \in K}\right\rangle$ implicitly specifies the language L.
For instance, $(\mathbb{R}, 0,-,+)$ is a structure for the language of groups, a language with a constant symbol, a unary function symbol and a binary function symbol. Similarly, $(\mathbb{R}, 0,1,-,+, \cdot)$ is a structure for the language of rings; they have the same domain, but are structures for different languages.

Interpretation of formulas in a structure

Let \underline{A} be an L-structure with domain A.
We begin with the interpretation of terms.
We assign to each L-term $\tau\left(v_{1}, \ldots, v_{n}\right)$ a function

$$
\tau^{\underline{A}}: A^{n} \rightarrow A
$$

by the following rule:
(i) if $\tau\left(v_{1}, \ldots, v_{n}\right)$ is just a variable v_{j} then $\tau \underline{A}$ is the corresponding coordinate function $\left\langle a_{1}, \ldots a_{n}\right\rangle \mapsto a_{j}$;

[^1](ii) if $\tau\left(v_{1}, \ldots, v_{n}\right)$ is a constant symbol c then $\tau^{\underline{A}}\left(a_{1}, \ldots, a_{n}\right)=c^{\underline{A}}$;
(iii) if $\tau\left(v_{1}, \ldots, v_{n}\right)$ is $f\left(\tau_{1}\left(v_{1}, \ldots, v_{n}\right), \ldots, \tau_{m}\left(v_{1}, \ldots, v_{n}\right)\right)$ then $\tau^{\underline{A}}\left(a_{1}, \ldots, a_{n}\right)=f \underline{A}\left(\tau_{1}^{\underline{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, \tau_{m}^{A}\left(a_{1}, \ldots, a_{n}\right)\right)$.

The interpretation of formulas. Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ an L-formula with free variables v_{1}, \ldots, v_{n} and $\bar{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in A^{n}$. Given these data we assign a truth value true, written $\underline{A} \vDash \varphi(\bar{a})$, or false, $\underline{A} \not \models \varphi(\bar{a})$, by the following rules:
(i) $\underline{A} \vDash \tau_{1}(\bar{a}) \bumpeq \tau_{2}(\bar{a}) \quad$ iff $\quad \tau_{1}^{A}(\bar{a})=\tau_{2}^{A}(\bar{a})$;
(ii) $\underline{A} \vDash P\left(\tau_{1}(\bar{a}), \ldots, \tau_{r}(\bar{a})\right) \quad$ iff $\quad\left\langle\tau_{1}^{A}(\bar{a}), \ldots, \tau_{r}^{A}(\bar{a})\right\rangle \in P_{i}^{A}$;
(iii) $\underline{A} \vDash \varphi_{1}(\bar{a}) \wedge \varphi_{2}(\bar{a}) \quad$ iff $\quad \underline{A} \vDash \varphi_{1}(\bar{a})$ and $\underline{A} \vDash \varphi_{2}(\bar{a})$;
(iv) $\underline{A} \vDash \neg \varphi(\bar{a})$ iff $\quad \underline{A} \not \models \varphi \varphi(\bar{a})$;
(v) $\underline{A} \vDash \exists v_{n} \varphi\left(a_{1}, \ldots, a_{n-1}, v_{n}\right) \quad$ iff there is an $a_{n} \in A$ such that $\underline{A} \vDash$ $\varphi\left(a_{1}, \ldots, a_{n}\right)$.

In case φ is a sentence, no assignment is needed. We have thus defined the truth value of φ in \underline{A}. If this value is true, we say that φ holds in \underline{A}, or that \underline{A} is a model of φ.

Exercise 1.2. Describe a language $L_{g r p}$ appropriate to discuss groups (with multiplication, inversion and a unit element), and write a sentence whose models are (precisely) groups.

Consider an L-structure \underline{A} and an L-formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$. Write

$$
\varphi^{\underline{A}}=\left\{\bar{a} \in A^{n}: \underline{A} \vDash \varphi(\bar{a})\right\} .
$$

The notation $\varphi(A)$ is also used. This is called a definable set, namely the set defined by ϕ. It is a subset of A^{n}, not of A ! If we want to emphasize this, we refer to it as a definable relation.

Exercise 1.3. 1. Write a formula ϕ^{\prime} such that $\phi^{\prime}(\underline{A})$ is the complement of $\phi(A)$.
2. Let $p: A^{n} \rightarrow A^{n-1}$ be the projection map, $p\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}\right)$. Then $p(Y)$ is called the projection of Y. Explain why this is also called the shadow of Y (Take $n=3, A=\mathbb{R}$, and a light source from above.) Write a formula $\phi^{\prime \prime}$ such that $\phi^{\prime \prime}(A)$ is the projection of $\phi(A)$ under p.
3. If also given $\psi=\psi\left(v_{1}, \ldots, v_{n}\right)$ write a formula θ such that $\theta(A)$ is the intersection of $\phi(A), \psi(A)$.
4. Write a formula whose interpretation is $\phi(A) \times A$.

Embeddings and isomorphisms

Fix a language L. We have defined L-structures; we will now define the notion of an embedding of L-structures. It is a straightforward generalization of the various cases you have seen in algebra, such as an embedding of groups, rings, or ordered fields.
Let $\underline{A}, \underline{B}$ be L-structures, with universes A, B respectively.
An embedding (or L-embedding) of \underline{A} in \underline{B} is a one-to-one function $\pi: A \rightarrow B$ which preserves corresponding relation, function and constant symbols, i.e. for any relation symbol P, function symbol F, constant symbol c of L we have:
(i) $\bar{a} \in P^{\underline{A}} \quad$ iff $\quad \pi(\bar{a}) \in P^{\underline{B}}$;
(ii) $\pi\left(F^{A}(\bar{a})\right)=F^{\underline{B}}(\pi(\bar{a}))$;
(iii) $\pi\left(c^{\underline{A}}\right)=c^{\underline{B}}$.

We write in this case $\pi: \underline{A} \rightarrow \underline{B}$.
An important case occurs when $A \subseteq B$, and π is the inclusion map, i.e. $\pi(a)=a$ for $a \in A$. In this case we write $\underline{A} \leq \underline{B}$, and say \underline{A} is a substructure of \underline{B}. The definition of an embedding can be rewritten as follows:
(i) $P^{\underline{A}}=P^{\underline{B}} \bigcap A^{k} \quad$ where P is a k-place relation symbol.
(ii) $F^{\underline{A}}=F^{\underline{B}} \mid A^{k} \quad$ where F is a k-place function symbol.
(iii) $c^{\underline{A}}=c^{\underline{B}} \quad$ where c is a constant symbol.

Given \underline{B}, note that to specify \underline{A} it suffices to give the universe A; the interpretation of the relation and function symbols is then completely determined by being a substructure. Moreover, a subset of B is the universe of a substructure of \underline{B} if and only if it is closed under the basic functions, including the 0-place ones; more precisely:

Exercise 1.4. A is the universe of a substructure of \underline{B} if and only if $c \underline{\underline{B}} \in A$ for each constant symbol c, and $F^{\underline{B}}\left(A^{k}\right) \subset A$ for each k-place function symbol of $L, k \geq 1$.

An isomorphism $\underline{A} \rightarrow \underline{B}$ is an embedding $\pi: \underline{A} \rightarrow \underline{B}$ such that $\pi: A \rightarrow B$ is bijective. In this case the inverse map $\pi^{-1}: B \rightarrow A$ is also an isomorphism from \underline{B} to \underline{A}.
An isomorphism $\pi: \underline{A} \rightarrow \underline{A}$ of the structure onto itself is called an automorphism of \underline{A}.

Exercise 1.5. Let $\pi: \underline{A} \rightarrow \underline{B}$ be an embedding.

1. Show that π preserves L-terms, that is for any term $\tau(\bar{v})$

$$
\pi\left(\tau^{\underline{A}}(\bar{a})\right)=\tau^{\underline{B}}(\pi(\bar{a}))
$$

2. Show that π preserves atomic L-formulas, i.e. for any atomic $\varphi\left(v_{1}, \ldots, v_{n}\right)$ for any $\bar{a} \in A^{n}$

$$
\text { (*) } \underline{A} \vDash \varphi(\bar{a}) \text { iff } \underline{B} \vDash \varphi(\pi(\bar{a})) .
$$

3. If π is an isomorphism, show that $\left(^{*}\right)$ holds for any formula φ. (You will need induction for (1) and (3).)

Definition 1.6. An embedding of L structures $\pi: \underline{A} \rightarrow \underline{B}$ is called elementary if π preserves any L-formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$, i.e. for any $a_{1}, \ldots, a_{n} \in$ dom \underline{A}

$$
\underline{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) \text { iff } \underline{B} \vDash \varphi\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{n}\right)\right) .
$$

When $A \subseteq B$ and the inclusion map is elementary, we write:

$$
\underline{A} \preccurlyeq \underline{B} .
$$

Thus $\underline{A} \preccurlyeq \underline{B}$ iff

$$
\underline{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) \text { iff } \underline{B} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Example Let $\mathcal{Z}=\langle\mathbb{Z} ;+, 0\rangle$ be the additive group of integers. Then, given an integer $m>1$, the embedding

$$
[m]: \mathcal{Z} \rightarrow \mathcal{Z}
$$

defined as $[m](z)=m \cdot z$, is not elementary.

Exercise 1.7. 1. Let \underline{A} be any L-structure, B any set of the same cardinality as A; let $f: A \rightarrow B$ a bijection. Then there exists a unique L-structure \underline{B} with universe B, such that f is an isomorphism.
2. If $f: A \rightarrow B$ is a 1-1 function, show there exists an L-structure \underline{B} with universe B, such that f is an L-embedding.
3. Let $\underline{A}, \underline{B}$ be L-structures, and let $f: \underline{A} \rightarrow \underline{B}$ be an embedding. Then $f(A)$ is the universe of a substructure of \underline{B}, isomorphic to \underline{A}.

The compactness theorem

All mention of a syntactical proof system was omitted from this review, though it probably formed a substantial part of your logic class. It will be good to keep in mind that logical implication has a syntactic counterpart, but this will only play a silent role in the background; specific proof systems play no part in model theory. In particular, we will not require the completeness theorem as such.

However, one corollary of the completeness theorem will be very important; this is the compactness theorem. A set S of sentences is called satisfiable if it has a model, i.e. a structure \underline{A} such that the truth value of each sentence $\sigma \in S$ is true. A set S is finitely satisfiable if every finite subset of S is satisfiable. The completeness theorem for first order logic asserts that S is finitely satisfiable if and only if it is consistent (with respect to a certain set of logical axioms and deduction rules.)
The compactness theorem asserts that a set of sentences is satisfiable iff it is finitely satisfiable. It is a good idea to review the (short) proof of the compactness theorem from the completeness theorem.
However, we will recall the proof in a form that yields compactness directly, abstracting away any mention of syntactical proof. The interplay now is between finite satisfiability and existence of a model.
Fix a language L.
Let Σ be a set of L-sentences. We write $\underline{A} \vDash \Sigma$ (A models Σ, or A is a model of Σ) if, for any $\sigma \in \Sigma, \underline{A} \vDash \sigma$.
An L-sentence σ is said to be a logical consequence of Σ if every L-structure \underline{A} satisfying $\underline{A} \vDash \Sigma$ also has: $\underline{A} \vDash \sigma$.
Notationally, it will be convenient to write $\Sigma \vDash \sigma$ when σ is a logical consequence of some finite subset of Σ. We will see towards the end of this chapter that in fact $\Sigma \vDash \sigma$ iff σ is a logical consequence of Σ.
A sentence σ is called logically valid, written $\vDash \sigma$, if $\emptyset \vDash \sigma$, i.e. $\underline{A} \vDash \sigma$ for every L-structure \underline{A}.

A set Σ of L-sentences is said to be satisfiable if it has a model, i.e. there is an L-structure \underline{A} such that $\underline{A} \vDash \Sigma$. Σ is said to be finitely satisfiable (finitely satisfiable) if any finite subset of Σ is satisfiable.
Σ is said to be complete if, for any L-sentence $\sigma, \Sigma \vdash \sigma$ or $\Sigma \vdash \neg \sigma$. When
Σ is a theory, this is equivalent to: $\sigma \in \Sigma$ or $\neg \sigma \in \Sigma$.
Exercise 1.8. Let $\alpha, \alpha_{1}, \ldots, \alpha_{n}, \beta, \beta_{1}, \ldots, \beta_{n}, \gamma$ be closed L-terms, $P, f L$ symbols for n-ary predicate and n-ary function, correspondingly, and $\psi\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ an L-formula with free variables $v_{0}, v_{1}, \ldots, v_{n}$. Prove that

1. $\alpha \bumpeq \beta \vDash \beta \bumpeq \alpha$;
2. $\alpha \bumpeq \beta, \beta \bumpeq \gamma \vDash \alpha \bumpeq \gamma$;
3. $\vDash \alpha \bumpeq \alpha$;
4. $\alpha_{1} \bumpeq \beta_{1}, \ldots, \alpha_{n} \bumpeq \beta_{n}, P\left(\alpha_{1}, \ldots, \alpha_{n}\right) \models P\left(\beta_{1}, \ldots, \beta_{n}\right)$;
5. $\alpha \bumpeq \beta, \alpha_{1} \bumpeq \beta_{1}, \ldots, \alpha_{n} \bumpeq \beta_{n}, f\left(\alpha_{1}, \ldots, \alpha_{n}\right) \bumpeq \alpha \models f\left(\beta_{1}, \ldots, \beta_{n}\right) \bumpeq \beta$;
6. $\psi\left(\beta, \alpha_{1}, \ldots, \alpha_{n}\right) \models \exists v_{0} \psi\left(v_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition 1.9. (1)-(5) are the axioms of equality. A binary relation satisfying these laws is called a congruence.

A weak L-structure \underline{A} is a set A, an assignment of a subset $R^{\underline{A}} \subset A^{n}$ for each binary relation R of L, and of a function $F^{\underline{A}}: A^{n} \rightarrow A$ for each n-place function symbol, such that the interpretation of \bumpeq is a congruence.
Given a weak L-structure \underline{A}, we can form a quotient structure $\underline{B}=\underline{A} / \bumpeq$ as follows. Let $\sim=\bumpeq \underline{A}$. The universe is $B=A / \bumpeq \underline{A}$. Let $p: A \rightarrow B$ be the quotient map, i.e. $p(a)=[a]_{\sim}$ is the \sim-equivalence class of A. Also write $p\left(a_{1}, \ldots, a_{n}\right):=\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$. For a subset Y of A^{n}, let $p(Y)=\{p(a):$ $a \in Y\}$. We pose:

$$
\begin{gathered}
R^{\underline{B}}=p\left(R^{\underline{A}}\right) \\
F^{\underline{B}}(p(a))=p\left(F^{\underline{A}}(a)\right)
\end{gathered}
$$

Exercise 1.10. Let \underline{A} be a weak L - structure.

1. Check that the quotient structure \underline{B} is well-defined (the issue is with the definition of the interpretation of function symbols.).
2. Check that for any term t, we have

$$
t^{\underline{B}}(p(a))=p\left(t^{\underline{A}}(a)\right)
$$

3. For any formula $\phi=\phi\left(x_{1}, \ldots, x_{n}\right)$ and any $a=\left(a_{1}, \ldots, a_{n}\right)$,

$$
\underline{B} \models \phi(p a) \leftrightarrow \underline{A} \models \phi(a)
$$

(Prove this for atomic formulas, and then by induction on the complexity of ϕ.)

A set of L-sentences Σ is said to be deductively closed if

$$
\Sigma \vDash \sigma \text { implies } \sigma \in \Sigma \text {. }
$$

Proposition 1.11. For any finitely satisfiable set of L-sentences Σ there is a complete finitely satisfiable set of L-sentences $\Sigma^{\#}$ such that $\Sigma \subseteq \Sigma^{\#}$.

Proof Let

$$
\mathcal{S}=\left\{\Sigma^{\prime}: \Sigma \subseteq \Sigma^{\prime} \text { a finitely satisfiable set of } L \text {-sentences }\right\}
$$

Clearly \mathcal{S} satisfies the hypothesis of Zorn's Lemma, so it contains a maximal element $\Sigma^{\#}$ say. This is complete for otherwise, say $\sigma \notin \Sigma^{\#}$ and $\neg \sigma \notin \Sigma^{\#}$. By maximality neither $\{\sigma\} \cup \Sigma^{\#}$ nor $\{\neg \sigma\} \cup \Sigma^{\#}$ is finitely satisfiable. Hence there exist finite $S_{1} \subseteq \Sigma^{\#}$ and $S_{2} \subseteq \Sigma^{\#}$ such that neither $\{\sigma\} \cup S_{1}$ nor $\{\neg \sigma\} \cup S_{2}$ is satisfiable. However, $S_{1} \cup S_{2} \subseteq \Sigma^{\#}$, finite, so has a model, \underline{A} say. But either $\underline{A} \vDash \sigma$, so $\underline{A} \vDash\{\sigma\} \cup S_{1}$, or $\underline{A} \vDash \neg \sigma$, so $\underline{A} \vDash\{\neg \sigma\} \cup S_{2}$, a contradiction.

Alternative proof. Here is proof of the same result by a different construction, assuming the language is countable. Let $\left\{\psi_{n}\right\}$ enumerate all sentences of L. We define σ_{n} recursively. We assume σ_{m} has been defined for $m<n$, and let $\Sigma_{<n}=\Sigma \bigcup\left\{\sigma_{m}: m<n\right\}$. Define:
$\sigma_{n}=\psi_{n}$ if $\Sigma_{<n} \bigcup\left\{\psi_{n}\right\}$ is finitely satisfiable;
$\sigma_{n}=\neg \psi_{n}$ if not.
In either case, show as above that $\Sigma_{<n} \bigcup\left\{\sigma_{n}\right\}$ is finitely satisfiable. Hence by induction, Σ_{n} is finitely satisfiable for each n. One verifies as above that $\bigcup_{n} \Sigma_{n}=\Sigma \bigcup\left\{\sigma_{n}: n=0,1,2, \ldots\right\}$ is complete and finitely satisfiable.
Remark Indeed the Henkin proof of compactness (or completeness) does not require the axiom of choice, provided the symbols of the language itself are well-ordered; in this case the sentences can be enumerated as $\left\{\psi_{n}: n<\kappa\right\}$ for some ordinal κ; the above 'alternative proof' continues to work.
Exercise Fill in the details of the above remark (take care of the case that n is a limit ordinal.

Exercise 1.12. Let us allow 0-place relation symbols ($R_{i}: i \in I$); they are also called propositional symbols. Assume there are no other symbols; so that a structure consists just of assigning a truth value to each R_{i}. Thus a structure is just an element of the I-fold product $\{0,1\}^{I}$.

1. In this case, show that a complete finitely satisfiable set of sentences Σ determines a model $M(\Sigma)$ of Σ, simply by assigning 1 to R_{i} if $R_{i} \in \Sigma$ and 0 otherwise.
2. Define a topology on $\{0,1\}^{I}$ by letting a basic open set have the form

$$
B\left(i_{0}, \ldots, i_{k} ; \nu_{0}, \ldots, \nu_{k}\right)=\left\{f: f\left(i_{0}\right)=\nu_{0}, \ldots, f\left(i_{k}\right)=\nu_{k}\right\}
$$

where $i_{0}, \ldots, i_{k} \in I$ and $\nu_{0}, \ldots, \nu_{k} \in\{0,1\}$. Tychonoff's theorem asserts that this topology is compact. Prove this using the compactness theorem.

A set Σ of L-sentences is said to be witnessing if for any sentence in Σ of the form $\exists v \varphi(v)$ there is a closed L-term λ such that $\varphi(\lambda) \in \Sigma$.

Definition 1.13. An L-structure \underline{A} is called minimal if it has no proper substructure.

We will sometimes say L-minimal for clarity. Notably, an L-minimal model of T is just a minimal L-structure, which is a model of T. (This is not the same as 'a minimal model of T ', in the sense of Definition 6. !)

Proposition 1.14. For any complete, witnessing, finitely satisfiable set Σ of L-sentences there exists a L-minimal model \underline{A} of Σ.

Proof Let Λ be the set of closed terms of L. For $\alpha, \beta \in \Lambda$ define $\alpha \sim \beta$ iff $\alpha \bumpeq \beta \in \Sigma$.
This is an equivalence relation by $1.8,1-1.8,3$.
For $\alpha \in \Lambda$, let $\tilde{\alpha}$ denote the \backsim-equivalence class containing α. Let

$$
A=\{\tilde{\alpha}: \alpha \in \Lambda\}
$$

This will be the domain of our model \underline{A}. We want to define relations, functions and constants of L on A.
Let P be an n-ary relation symbol of L and $\alpha_{1}, \ldots, \alpha_{n} \in \Lambda$. Define

$$
\left\langle\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right\rangle \in P^{A} \text { iff } P\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Sigma
$$

By $1.8,4$ the definition does not depend on the choice of representatives in the \backsim-classes.
For a unary function symbol f of L of arity m and $\alpha_{1}, \ldots, \alpha_{m} \in \Lambda$ define

$$
f \underline{A}\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}\right)=\tilde{\tau}, \text { where } \tau=f\left(\alpha_{1}, \ldots, \alpha_{m}\right) .
$$

By 1.8 . 5 this is well-defined.
Finally, for a constant symbol, $c^{\underline{A}}$ is just \tilde{c}.
We now prove by induction on complexity of an L-formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$ that

$$
(*) \quad \underline{A} \vDash \varphi\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right) \text { iff } \varphi\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Sigma .
$$

For atomic formulas we have this by definition.
If $\varphi=\left(\varphi_{1} \wedge \varphi_{2}\right)$ then
$\underline{A} \vDash\left(\varphi_{1}\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right) \wedge \varphi_{2}\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)\right)$ iff $\underline{A} \vDash \varphi_{1}\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)$ and $\underline{A} \vDash \varphi_{2}\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)$
iff (by induction hypothesis) $\varphi_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \varphi_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Sigma \operatorname{iff}\left(\varphi_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \wedge\right.$ $\left.\varphi_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \in \Sigma$. Which proves $\left(^{*}\right)$ in this case.
The case $\varphi=\neg \psi$ is proved similarly.
In case $\varphi=\exists v \psi$
$\underline{A} \vDash \exists v \psi\left(v, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)$ iff there is $\beta \in \Lambda$ such that $\underline{A} \vDash \psi\left(\tilde{\beta}, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)$ iff there is $\beta \in \Lambda$ such that $\psi\left(\beta, \alpha_{1}, \ldots, \alpha_{n}\right) \in \Sigma$. The latter implies, by 1.86 , that $\exists v \psi\left(v, \alpha_{1}, \ldots, \alpha_{n}\right) \in \Sigma$, and the converse holds because Σ is witnessing. This proves $\left(^{*}\right)$ for the formula $(\exists v) \psi$, and finishes the proof of $\left(^{*}\right)$ for all formulas.
Finally notice that $\left({ }^{*}\right)$ implies that $\underline{A} \vDash \Sigma$.

Exercise 1.15. Show that the construction of Propsition 1.14 produces the structure with empty universe if, and only if, every sentence of the form $\neg(\exists x) \psi$ (with $\psi(x)$ any formula) is in Σ. (You can prove this either by quoting the conclusion of Propsition 1.14, or directly by looking at the definition of Λ. You may need to consider the L-sentence $\exists v v \bumpeq v$..)

We sometimes need to expand or reduce our language.
Let L be a language with non-logical symbols $\left\{P_{i}\right\}_{i \in I} \cup\left\{f_{j}\right\}_{j \in J} \cup\left\{c_{k}\right\}_{k \in K}$ and $L^{\prime} \subseteq L$ with non-logical symbols $\left\{P_{i}\right\}_{i \in I^{\prime}} \cup\left\{f_{j}\right\}_{j \in J^{\prime}} \cup\left\{c_{k}\right\}_{k \in K^{\prime}}\left(I^{\prime} \subseteq I\right.$, $\left.J^{\prime} \subseteq J, K^{\prime} \subseteq K\right)$. Let

$$
\underline{A}=\left\langle A ;\left\{P_{i}^{\underline{A}}\right\}_{i \in I} ;\left\{f_{j}^{\underline{A}}\right\}_{j \in J} ;\left\{c_{k}^{\frac{A}{k}}\right\}_{k \in K}\right\rangle
$$

and

$$
\underline{A}^{\prime}=\left\langle A ;\left\{P_{i}^{A}\right\}_{i \in I^{\prime}} ;\left\{f_{j}^{A}\right\}_{j \in J^{\prime}} ;\left\{c_{k}^{\frac{A}{k}}\right\}_{k \in K^{\prime}}\right\rangle .
$$

Under these conditions we call \underline{A}^{\prime} the L^{\prime}-reduct of \underline{A} and, correspondingly, \underline{A} is an L-expansion of \underline{A}^{\prime}.

Remark Obviously, under the notations above for an L^{\prime}-formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$ and $a_{1}, \ldots, a_{n} \in A$

$$
\underline{A}^{\prime} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) \text { iff } \underline{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Exercise 1.16. Let, for each $i \in \mathbb{N}, \Sigma_{i}$ denote a set of L sentences. Suppose

$$
\Sigma_{0} \subseteq \Sigma_{1} \subseteq \ldots \Sigma_{i} \ldots
$$

and each Σ_{i} is finitely satisfiable.
Then the union of the chain, $\bigcup_{i \in \mathbb{N}} \Sigma_{i}$, is finitely satisfiable.
Theorem 1.17 (Compactness Theorem). Any finitely satisfiable set of L sentences Σ is satisfiable. Moreover, Σ has a model of cardinality less or equal to $|L|$.

Proof We introduce new languages L_{i} and complete set of L_{i}-sentences Σ_{i} $(i=0,1, \ldots)$. Let $L_{0}=L$. By Propsition 1.11 there exists $\Sigma_{0} \supseteq \Sigma$, a complete set of L_{0}-sentences.
Given finitely satisfiable Σ_{i} in language L_{i}, introduce the new language

$$
L_{i+1}=L_{i} \cup\left\{c_{\phi}: \phi \text { a one variable } L_{i} \text {-formula }\right\}
$$

and the new set of L_{i+1} sentences

$$
\Sigma_{i}^{*}=\Sigma_{i} \cup\left\{\left(\exists v \phi(v) \rightarrow \phi\left(c_{\phi}\right)\right): \phi \text { a one variable } L_{i} \text {-formula }\right\} .
$$

Claim. Σ_{i}^{*} is finitely satisfiable Indeed, for any finite $S \subseteq \Sigma_{i}^{*}$ let $S_{1}=S \cap \Sigma_{i}$ and take a model \underline{A} of S_{1} with domain A, which we assume well-ordered. Assign constants to symbols c_{ϕ} as follows:

$$
c_{\phi}=\left\{\begin{array}{ll}
\text { the first element in } \phi(\underline{A}) & \text { if } \phi(\underline{A}) \neq \emptyset \\
\text { the first element in } A & \text { if } \phi(\underline{A})=\emptyset
\end{array} .\right.
$$

Denote the expanded structure \underline{A}^{*}. By the definition, for all $\phi(v)$,
$\underline{A}^{*} \vDash \exists v \phi(v) \rightarrow \phi\left(c_{\phi}\right)$. So $\underline{A}^{*} \vDash S$. This proves the claim.
Let Σ_{i+1} be a complete finitely satisfiable set of L_{i+1}-sentences containing Σ_{i}^{*}.
Take $\Sigma^{*}=\bigcup_{i \in \mathbb{N}} \Sigma_{i}$. This is finitely satisfiable by 1.16. By construction one sees immediately that Σ^{*} is also witnessing and complete set of sentences in the language $\bigcup L_{i}=L+\{$ new constants $\}$. Proposition 1.14 gives us a model \underline{A}^{*}, of Σ^{*}. The reduct of \underline{A}^{*} to language L is a model of Σ.
The cardinality of the model we constructed is less or equal to $|L|$ (see also Exercise 1.1).
As noted in the logic class, the contrapositive of the compactness theorem is the statement that logical consequence is intrinsically finitary:

Exercise 1.18. Show that a sentence σ is a logical consequence of some finite subset of a set Σ of sentences, if and only if it is a logical consequence of Σ.

Exercise 1.19. Let $T=T h(\mathbb{N},+, \cdot, 0,1)$. Let $L^{\prime}=\{+, \cdot, c\}$ be the language obtained by adjoining a new constant symbol c, and let

$$
T^{\prime}=T \bigcup\{c \neq 0, c \neq 1, c \neq 1+1, \cdots\} .
$$

Show that T^{\prime} has a model \underline{A}^{\prime}.
Let \underline{A} be the L-reduct of \underline{A}^{\prime}. Show that \underline{A} is a model of T, and is not a minimal L-structure (Definition 1.13). Conclude that $\underline{A}, \mathbb{N}$ are not isomorphic.
This proves Skolem's theorem, that the natural numbers are not characterized by their first-order theory.

Exercise 1.20. Show that \underline{A} is a minimal L-structure iff every element of A is named by a term; i.e. for every $a \in A$ there is a closed L-term λ such that $\lambda^{A}=a$.

Exercise 1.21. Let Σ be a set of quantifier-free sentences. Assume Σ is satisfiable and that for any atomic sentence σ, either $\sigma \in \Sigma$ or $\neg \sigma \in \Sigma$. Show that there exists a unique minimal L-structure, up to isomorphism, which is a model of Σ.

Exercise 1.22. Assume, for each $n \in \mathbb{N}$, that T has a model with at least n elements. Let λ be any set. Show that T has a model \underline{A} whose universe A satisfies $|A| \geq|\lambda|$. (Hint: introduce new constant symbols c_{i} for $i \in \lambda$, and sentences $c_{i} \neq c_{j}$; use compactness.)

Compare to the upward Löwenheim-Skolem theorem, below.
Terminology With the completeness theorem in mind, will use the term consistent synonymously with finitely satisfiable. (and hence, by the compactness theorem, with satisfiable.) This is a matter of terminology, and does not require fixing a proof system.

2 The method of diagrams

We will be interested not just in a single structure \underline{A}, but in embeddings $\underline{A} \rightarrow \underline{B}$. But we do not need to develop techniques from scratch; we can study embeddings of models of one theory, using models of another theory constructed for the purpose.
For an L-structure \underline{M} and $A \subset M$, let $L_{A}=L \cup\left\{c_{a}: a \in A\right\}$ be the expansion of the language L obtained by adjoining a new constant symbol c_{a} for each element $a \in A$. (It will sometimes be convenient to denote the new constant symbol by \underline{a}.)
Let \underline{M}_{A} be the natural expansion of \underline{M} to L_{A} assigning to c_{a} the element a. We define the diagram of A in $M, \operatorname{Diag}_{\underline{M}}(A)$, to be the set of quantifier-free sentences of L_{A} true in \underline{M}_{A}.
Now assume A is the universe of a substructure \underline{A} of \underline{M}. Let $\underline{A}^{+}=\underline{A}_{A}$. Then the diagram of A in \underline{A}^{+}is the same as the diagram of A in \underline{M}, so no reference to \underline{M} is needed; and we write:
$\operatorname{Diag}(\underline{A})=T h_{q f}\left(\underline{A}^{+}\right)=\left\{\sigma: \sigma\right.$ a quantifier-free L_{A}-sentence, such that $\left.\underline{A}^{+} \vDash \sigma\right\}$.
Remark. For a substructure $\underline{A}, \operatorname{Diag}(\underline{A})$ is sometimes defined in the same way, but using only atomic sentences and their negations. But this restricted part of $\operatorname{Diag}(\underline{A})$, call it $\operatorname{Diag}_{0}(\underline{A})$, logically implies all of $\operatorname{Diag}(\underline{A})$. (This can easily be seen by writing a quantifier-free sentence as a disjunction of conjunctions of atomic and negated-atomic sentences. If $\sigma \bigvee_{i=1}^{k} \bigwedge_{j=1}^{l_{i}} \phi_{i j} \in$ $\operatorname{Diag}(\underline{A})$, then for some i_{0}, for each $j, \phi_{i_{0} j} \in \operatorname{Diag}(\underline{A}) ;$ so $\phi_{i_{0} j} \in \operatorname{Diag}_{0}(\underline{A})$; and of course $\left\{\phi_{i_{0} j}: j \leq l_{i_{0}} \vdash \sigma\right.$.)

We also define the complete diagram of \underline{A} :

$$
\operatorname{CDiag}(\underline{A})=\operatorname{Th}\left(\underline{A}^{+}\right)=\left\{\sigma: \sigma L_{A^{-}} \text {-sentence such that } \underline{A}^{+} \models \sigma\right\} .
$$

Theorem 2.1. [Method of Diagrams]
(i) There is a natural bijection between models of $\operatorname{Diag}(\underline{A})$, and L-structures \underline{B} along with an embedding $j: \underline{A} \rightarrow \underline{B}$.
(ii) there is a natural bijection between models of $\operatorname{CDiag}(\underline{A})$ and L-structures \underline{B} along with an elementary embedding $j: \underline{A} \rightarrow \underline{B}$.

Proof Let \mathcal{C} be the class of models of $\operatorname{Diag}(\underline{A})$, and let \mathcal{D} be the class of pairs (\underline{B}, j) with \underline{B} an L-structure and $j: \underline{A} \rightarrow \underline{B}$ an embedding. We will describe maps $\alpha: \mathcal{C} \rightarrow \mathcal{D}$ and $\beta: \mathcal{D} \rightarrow \mathcal{C}$.

Let $\underline{C} \in \mathcal{C}$. Define $\alpha(\underline{C})=\left(\underline{C} \mid L, j_{\underline{C}}\right)$ where $\underline{C} \mid L$ is the restriction (reduct) of \underline{C} to an L-structure, and $j_{\underline{C}}$ is defined by:

$$
j_{\underline{C}}(a)=\underline{a}^{\underline{C}}
$$

It is straightforward to verify that $\alpha(\underline{C}) \in \mathcal{D}$.
Let $(\underline{B}, j) \in \mathcal{D}$. Define $\beta(\underline{B}, j)$ to be the expansion of \underline{B} to L_{A} obtained by interpreting \underline{a} by the element $j(a)$.
Again it is straightforward to verify that $\beta(\underline{B}, j) \in \mathcal{D}$.
Clearly, $\alpha \circ \beta=I d_{\mathcal{D}}$ and $\beta \circ \alpha=I d_{\mathcal{C}}$.
This give the bijection of (i). As for (ii), it suffices to check for $\underline{C} \in \mathcal{C}$ corresponding as above to $(\underline{B}, j) \in \mathcal{D}$, that $\underline{C} \models C \operatorname{Diag}(\underline{A})$ iff j is elementary.
Corollary 2.2. Assume given an L-structure \underline{A} and a set of L-sentences T.
(i) the set $T \cup \operatorname{Diag}(\underline{A})$ is finitely satisfiable iff there is a model \underline{B} of T such that $\underline{A} \subseteq \underline{B}$.
(ii) the set $T \cup \operatorname{CDiag}(\underline{A})$ is finitely satisfiable iff there is a model \underline{B} of T such that $\underline{A} \preccurlyeq \underline{B}$.

Proof. See Lemma 2.3 .
The following lemma can be read to say that "any L-embedding is isomorphic to an inclusion"; it has the consequence that in many proofs regarding embeddings we may take them to be inclusions. It has no model-theoretic content and is purely about the ambient set theoretic presentation of the structures.

Lemma 2.3 (Renaming lemma). Let $\underline{A}, \underline{B}$ be L-structures, and let $f: A \rightarrow$ B be an embedding. Then there exists an L-structure \underline{B}^{\prime} such that $\underline{A} \leq \underline{B}^{\prime}$, and an isomorphism $g: \underline{B}^{\prime} \rightarrow \underline{B}$, such that $f=\left.g\right|_{A}$.

Proof. We seek \underline{B}^{\prime} isomorphic to \underline{B}, but whose universe contains A. We will simply 'rename' or replace the elements of $f(A)$, by their pre-images in A; but in order not to create clases with elements of $B \backslash f(A)$, we also replace them by some elements not in A. For this purpose, as in Exercise 1.7, let $b \mapsto b^{*}$ be any injective function on B, whose image is disjoint from A. For $b \in f(A)$, let b^{\prime} be the unique element of A with $f\left(b^{\prime}\right)=b$. For $b \in B \backslash f(A)$, let $b^{\prime}=b^{*}$. Let $B^{\prime}=\left\{b^{\prime}: b^{\prime} \in B^{\prime}\right\}$. For a relation symbol R, let $R=\left\{\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right):\left(b_{1}, \ldots, b_{n}\right) \in R^{\underline{B}}\right\}$. Similarly for function symbols. Prove as an exercise that the map $b \mapsto b^{\prime}$ is an isomorphism $\underline{B} \rightarrow \underline{B}^{\prime}$, whose inverse g satisfies $f=\left.g\right|_{A}$.

Theorem 2.4 (Upward Lowenheim-Skolem Theorem, Tarski). For any infinite L-structure \underline{A} and a cardinal $\kappa \geq \max \{|L|,||\underline{A}||\}$ there is an L-structure \underline{B} of cardinality κ such that $\underline{A} \preccurlyeq \underline{B}$.

Proof Let M be a set of cardinality κ. Consider an extension $L_{A, M}$ of language L obtained by adding to L_{A} constant symbols c_{i} for each $i \in M$. Consider now the set of $L_{A, M}$-sentences

$$
\Sigma=\operatorname{CDiag}(\underline{A}) \cup\left\{\neg c_{i} \bumpeq c_{j}: i \neq j \in M\right\}
$$

We claim that Σ is finitely satisfiable Indeed, consider a finite subset $S \subseteq \Sigma$. Obviously

$$
S \subseteq S_{0} \cup\left\{\neg c_{i} \bumpeq c_{j}: i \neq j \in M_{0}\right\}
$$

for some $S_{0} \subseteq \operatorname{CDiag}(\underline{A})$ and $M_{0} \subset M$, both finite. By definition $\underline{A}^{+} \vDash S_{0}$. Now, since A is infinite, we can expand \underline{A}^{+}to the model of S by assigning to $c_{i}\left(i \in M_{0}\right)$ distinct elements of A. This proves the claim.
It follows from the compactness theorem that Σ has a model of cardinality $\left|L_{A, M}\right|$, which is equal to κ. Let \underline{B}^{*} be such a model. The L-reduct \underline{B} of \underline{B}^{*}, by the method of diagrams, satisfies the requirement of the theorem.

Lemma 2.5 (Tarski-Vaught criterion). Suppose $\underline{A} \leq \underline{B}$ are L-structures with domains $A \subseteq B$. Then $\underline{A} \preccurlyeq \underline{B}$ iff the following condition holds:
for all L-formulas $\varphi\left(v_{1}, \ldots, v_{n}\right)$ and all $a_{1}, \ldots, a_{n-1} \in A, b \in B$ such that $\underline{B} \vDash \varphi\left(a_{1}, \ldots, a_{n-1}, b\right)$ there is $a \in A$ with $\underline{B} \vDash \varphi\left(a_{1}, \ldots, a_{n-1}, a\right)$

Proof Obviously, given $\bar{a}=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle$ the existence of $b \in B$ as above is equivalent to $\underline{B} \vDash \exists v \varphi(\bar{a}, v)$.

Suppose $\underline{A} \preccurlyeq \underline{B}$. Then $\underline{B} \vDash \exists v \varphi(\bar{a}, v)$ is equivalent to $\underline{A} \vDash \exists v \varphi(\bar{a}, v)$ which is equivalent to the existence of an $a \in A$ with $\underline{A} \vDash \varphi(\bar{a}, a)$. The latter by $\underline{A} \preccurlyeq \underline{B}$ implies $\underline{B} \vDash \varphi(\bar{a}, a)$.
For the converse, we assume that for all φ
(*) $\underline{B} \vDash \exists v \varphi(\bar{a}, v)$ implies that for some $a \in A \quad \underline{B} \vDash \varphi(\bar{a}, a)$
and want to prove that

$$
(* *) \quad \underline{A} \vDash \psi(\bar{a}) \text { iff } \underline{B} \vDash \psi(\bar{a})
$$

for all L-formulas $\psi(\bar{v})$.

Induction on the complexity of ψ. For ψ atomic $\left({ }^{* *}\right)$, this follows from Exercise 1.5. The cases of $\psi=\psi_{1} \wedge \psi_{2}$ and $\psi=\neg \psi_{1}$ are easy. In the case $\psi=\exists v \varphi$ the \Rightarrow side of $(* *)$ follows immediately from the induction hypothesis and the meaning of \exists.
Proof of \Leftarrow :
$\underline{B} \vDash \exists v \varphi(\bar{a}, v)$ implies $\underline{B} \vDash \varphi(\bar{a}, b)$, some $b \in B$, implies $\underline{B} \vDash \varphi(\bar{a}, a)$, some $a \in$ A, implies, by the induction hypothesis, $\underline{A} \vDash \varphi(\bar{a}, a)$, implies $\underline{A} \vDash \exists v \varphi(\bar{a}, v)$.

Theorem 2.6 (Downward Lowenheim-Skolem Theorem). Let \underline{B} be an L structure, S a subset of $B=\operatorname{dom}(\underline{B})$. Then there exists $\underline{A} \preccurlyeq \underline{B}$ such that $S \subseteq A=\operatorname{dom}(\underline{A})$ and $\|\underline{A}\| \leq \max \{\operatorname{card}(S),|L|\}$. In particular, given \underline{B} and a cardinal $\|\underline{B}\| \geq \kappa \geq|L|$ we can have $\underline{A} \preccurlyeq \underline{B}$ of cardinality κ.

Proof Fix some $b_{0} \in B$. For each L-formula $\phi\left(v_{1}, \ldots, v_{n}\right)$ define a function $g_{\phi}: B^{n-1} \rightarrow B$ by

$$
g_{\phi}\left(b_{1}, \ldots, b_{n-1}\right)=\left\{\begin{array}{l}
\text { an element } b \in B: \underline{B} \vDash \phi\left(b_{1}, \ldots, b_{n-1}, b\right) \\
\text { if such one exists } \\
b_{0} \text { if not }
\end{array}\right.
$$

(g_{ϕ} is called a Skolem function for ϕ).
Notice that for ϕ of the form $\tau\left(v_{1}, \ldots, v_{n-1}\right) \bumpeq v_{n}$, where τ is an L-term, g_{ϕ} coincides with the function $\tau \underline{B}$.
Let A be the closure of S under all the g_{ϕ}, i.e.

$$
\begin{gathered}
A=\bigcup_{i \in \mathbb{N}} S_{i}: \quad S_{0}=S \text { and } \\
S_{i+1}=\left\{g_{\phi}\left(b_{1}, \ldots, b_{n-1}\right): b_{1}, \ldots, b_{n-1} \in S_{i}, \phi\left(v_{1}, \ldots, v_{n}\right) L-\text { formulas }\right\}
\end{gathered}
$$

Notice that card $A \leq \operatorname{card} S+|L|$.
Define an L-structure \underline{A} on the domain A interpreting the relation, function and constant symbols of L on A as induced from \underline{B} :
(i) for an n-ary relation symbol P or the equality symbol, $P^{\underline{A}}=P^{\underline{B}} \cap A^{n}$;
(ii) for an m-ary function symbol f and $\bar{a} \in A^{m}, a \in A$, $f \underline{A}(\bar{a})=a$ iff $f \underline{\underline{B}}(\bar{a})=a$;
(iii) for a constant symbol $c, c^{\underline{A}}=c^{\underline{B}}$.
(ii) and (iii) are possible since A is closed under L-terms.

Clearly then $\underline{A} \leq \underline{B}$ and the condition of Tarski-Vaught criterion is satisfied, for if $\underline{B} \vDash \exists v \phi(\bar{a}, v)$ then $\underline{B} \vDash \phi\left(\bar{a}, g_{\phi}(\bar{a})\right)$. Thus $\underline{A} \preccurlyeq \underline{B}$.

Corollary 2.7. Let Σ be a set of L-sentences which has an infinite model. Then for any cardinal $\kappa \geq|L|$ there is a model of Σ of cardinality κ.

Example Let \mathcal{M} be a model of ZF (or any axiomatization of set theory) in the language with one binary predicate symbol \in. Then there is a countable elementary submodel

$$
\mathcal{M}_{0} \preccurlyeq \mathcal{M}
$$

Definition 2.8. Let \underline{A} be a structure, and $f: A^{n} \rightarrow A$ function. We say f is definable if the graph of f is definable, i.e. for some formula $\phi\left(x_{1}, \ldots, x_{n}, y\right), \underline{A} \models \phi\left(a_{1}, \ldots, a_{n}, b\right)$ iff $b=f\left(a_{1}, \ldots, a_{n}\right)$.

Example 2.9. $\mathbb{N}:=(\mathbb{N},+, \cdot,<, 0,1)$ has definable Skolem functions, i.e. if $\phi(x, y)$ is any formula, there exists a definable function $f(x)$ such that $\underline{\mathbb{N}} \models \phi(a, f(a))$ whenever $\underline{\mathbb{N}} \models(\exists x) \phi(a, x)$.
Indeed, let $f(a)=0$ if $\underline{\mathbb{N}} \models \neg(\exists x) \phi(a, x)$. Let $f(a)=b$ if $\underline{\mathbb{N}} \models \neg(\exists x) \phi(a, x)$, and b is the smallest natural number such that $\mathbb{N} \models \phi(a, b)$. Then f is definable; indeed $f(t)=x$ iff

$$
(x=0 \& \neg(\exists x) \phi(t, x)) \bigvee\left(\phi(t, x) \&\left(\forall x^{\prime}<x\right) \neg \phi\left(t, x^{\prime}\right)\right)
$$

Definition A theory T admits Skolem functions if for any n-tuple of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and any formula $\phi(x, y)$, for some term $t, T \models$ $(\forall x)((\exists y) \phi(x, y) \rightarrow \phi(x, t(x)))$. The term t is called a Skolem term for ϕ.

Exercise 2.10. (1) Assume T admits Skolem functions. Let $\underline{A} \leq \underline{B}$. If $\underline{B} \models T$, show that $\underline{A} \preccurlyeq \underline{B}$. (2) Say $\|L\|=\aleph_{0}$. Let M be an L structure. Show that there exists an expansion M^{\prime} of M to a language $L^{\prime},\left\|L^{\prime}\right\|=\aleph_{0}$, such that $T h\left(M^{\prime}\right)$ admits Skolem functions. (You will need the axiom of choice.) (3) Deduce that M in (2) has a countable elementary submodel.

Remark The Löwenheim-Skolem theorem is due to Löwenheim 1915, Skolem 1920. Following further work of Skolem in 1923, a clear statement of the completeness theorem appeared in Gödel's 1929 thesis. Gödel proof used
something like Skolem functions. Skolem in 1934 showed the existence of a proper elementary extension of $(\mathbb{N},+, \cdot)$, by an ultrapower construction that can also be used to prove compactness. Ultraproducts in general were defined by Łos̀ in 1955. The use of constants as witnesses comes from Henkin's 1949 thesis.

Exercise 2.11. Let $L=(<,+, \cdot, 0,1, F)$ be the language of rings, with an additional unary function symbol F. Let $\underline{R}=(\mathbb{R} ;<,+, \cdot, 0,1, f)$ be an L structure, with $(\mathbb{R} ;<,+, \cdot, 0,1)$ the ordered field of real numbers, and $f=F^{\underline{R}}$ a unary function, with $f(0)=0$.

1. Show that there exists a model $\underline{A} \succ \underline{R}$ containing a nonzero infinitesimal element, i.e. an element $\epsilon \neq 0$ such that for any $n \in \mathbb{N}, \underline{A} \models|n \epsilon|<1$.
2. Assume f is continuous at 0 . Show that for any infinitesimal ϵ of any such $\underline{A}, F^{\underline{A}}(\epsilon)$ is also infinitesimal.
3. Prove the converse to (2): f is continuous at 0 iff for any infinitesimal ϵ of any $\underline{A} \succ \underline{R}, F \underline{A}(\epsilon)$ is also infinitesimal.

Exercise 2.12. Let $\phi_{1}, \ldots, \phi_{n}$ be existential formulas. Prove that (i) $\left(\phi_{1} \vee \ldots \vee \phi_{n}\right)$ and $\left(\phi_{1} \wedge \ldots \wedge \phi_{n}\right)$ are logically equivalent to existential formulas;
(ii) $\left(\neg \phi_{1} \wedge \ldots \wedge \neg \phi_{n}\right)$ and $\left(\neg \phi_{1} \vee \ldots \vee \neg \phi_{n}\right)$ are logically equivalent to universal formulas.

3 Theories, models and preservation theorems

Given a set of sentences Σ denote Σ_{\exists} its subset consisting of all existential formulas in Σ. Correspondingly, Σ_{\forall} are the universal formulas of Σ. Thus $\operatorname{Th}_{\exists}(\underline{A})$ is the set of all existential L-sentences which hold in \underline{A}.

Lemma 3.1. Suppose $\underline{A} \leq \underline{B}$ and $a_{1}, \ldots, a_{n} \in A$.
(i) If $\underline{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$, for an existential formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$, then $\underline{B}=\varphi\left(a_{1}, \ldots, a_{n}\right)$.
(ii) If $\underline{B} \models \psi\left(a_{1}, \ldots, a_{n}\right)$, for a universal formula $\psi\left(v_{1}, \ldots, v_{n}\right)$, then $\underline{A}=\psi\left(a_{1}, \ldots, a_{n}\right)$.

Proof (i) Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ be $\exists v_{n+1}, \ldots, v_{m} \theta\left(v_{1}, \ldots, v_{n}, v_{n+1}, \ldots, v_{n}\right)$ and θ quantifier-free. Under this notation $\underline{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ means that there are $a_{n+1}, \ldots, a_{m} \in A$ such that $\underline{A} \models \theta\left(a_{1}, \ldots, a_{m}\right)$. To prove the statement of the lemma it is enough to show that for quantifier-free θ

$$
\underline{A} \models \theta\left(a_{1}, \ldots, a_{m}\right) \Leftrightarrow \underline{B} \models \theta\left(a_{1}, \ldots, a_{m}\right) .
$$

For θ atomic it is proved in Lemma 1.5. If the equivalence holds for θ_{1} and θ_{2}, it holds by definitions for $\neg \theta_{1}$ and ($\theta_{1} \wedge \theta_{2}$). The statement (i) follows by induction.
(ii) Follows immediately from (i).

Lemma 3.2. $\Sigma \cup \operatorname{Diag}(\underline{A})$ is satisfiable iff $\Sigma \cup \operatorname{Th}_{\exists}(\underline{A})$ is satisfiable. (Here \underline{A} is an L-structure; Σ is any set of L-sentences or even of a bigger language L^{\prime}, provided that the new constants used in $\operatorname{Diag}(\underline{A})$ do note appear in L^{\prime}.)

Proof In one direction we have in fact:

$$
\Sigma \cup \operatorname{Diag}(\underline{A}) \vdash \operatorname{Th}_{\exists}(\underline{A})
$$

To see this, let $\exists v_{1}, \ldots v_{n} \theta\left(v_{1}, \ldots, v_{n}\right) \in \operatorname{Th}_{\exists}(\underline{A})$, with θ quantifier-free. Since $\underline{A} \models \exists v_{1}, \ldots v_{n} \theta\left(v_{1}, \ldots, v_{n}\right)$, we have $\underline{A} \models \theta\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots a_{n} \in$ A. Thus $\operatorname{Diag}(\underline{A}) \vDash \theta\left(c_{a_{1}}, \ldots c_{a_{n}}\right) ;$ and $\theta\left(c_{a_{1}}, \ldots c_{a_{n}}\right) \vdash \exists v_{1}, \ldots v_{n} \theta\left(v_{1}, \ldots, v_{n}\right)$. Conversely, consider a finite part of $\Sigma \cup \operatorname{Diag}(\underline{A})$; by taking the conjunction it suffices to consider a single sentence $\theta\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ of $\operatorname{Diag}(\underline{A})$, with θ quantifier-free. Let $\underline{B} \models \Sigma \cup \operatorname{Th}_{\exists}(\underline{A})$. Since $\exists v_{1}, \ldots v_{n} \theta\left(v_{1}, \ldots, v_{n}\right) \in \operatorname{Th}_{\exists}(\underline{A})$, there are $b_{1}, \ldots, b_{n} \in B$ with $\underline{B} \models \theta\left(b_{1}, \ldots, b_{n}\right)$. Let \underline{B}^{\prime} be \underline{B} enriched to an
L_{A}-structure, with $c_{a_{i}}$ interpreted as b_{i}. Then $\underline{B}^{\prime} \models \Sigma \bigcup \theta\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$, as required.

A class C of L-structures is called axiomatizable if there is a set Σ of L-sentences such that

$$
\underline{A} \in C \text { iff } \underline{A} \vDash \Sigma .
$$

We also write equivalently

$$
C=\operatorname{Mod}(\Sigma)
$$

Σ is then called a set of axioms for C.
C is called finitely axiomatizable iff there is a finite set Σ of axioms for C.
An axiomatizable class C is said to be \exists-axiomatizable (\forall-axiomatizable) if Σ can be chosen to consists of existential (universal) sentences only.

Definition 3.3. A theory in a language L is a satisfiable, deductively closed set of L-sentences.

Any satisfiable set of sentences Σ determines a theory, namely the set of logical consequences of Σ. The point of the definition is that we wish to view Σ, Σ^{\prime} as equivalent if each is among the logical consequences of the other.
Given a nonempty class of L-structures C, the theory of C is

$$
\operatorname{Th}(C)=\{\sigma: L \text {-sentence, } \underline{A} \vDash \sigma \text { for all } \underline{A} \in C\} .
$$

If C consists of a one structure \underline{A} then we denote $\operatorname{Th}(\underline{A})$ the theory of this class and call it the theory of \underline{A}.

Exercise 3.4. Show that $\operatorname{Th}(C)$ is deductively closed, for every nonempty class C of L-structures; $\operatorname{Th}(\underline{A})$ is complete, for every structure \underline{A}. But as soon as C contains two non-isomorphic structures, $T h(C)$ may not be complete.

A set of axioms for a theory T is a set of sentences E that have the same logical consequences as T. Equivalently, T is the theory of the class of models of E .
Example The theory of rings is the set of logical consequences, in the language $+,-, \cdot, 0,1$, of the group law for,,+- 0 , the semigroup law for $\cdot, 1$ (associativity and the unit property), and the two distributive laws.

Informally we often say that these axioms are the theory of rings. In practice we always work with sets of axioms and not with the full theory, simply identifying two sets of axioms if they have the same logical consequences.

Exercise 3.5. 1. The class of groups in the language with one binary function symbol \cdot, one unary function symbol ${ }^{-1}$ (taking the inverse) and one constant symbol e is \forall-axiomatizable.
2. The class of finite groups is not axiomatizable.
3. The class of fields of characteristic zero is axiomatizable but not finitely axiomatizable.

Example. Let $L=\{+,-, \cdot, 0,1\}$ be the language of rings. Let $T F$ be the theory of fields.
Let $T_{\text {dom }}$ be the theory of integral domains; this is the theory of commutative rings, with the additional axiom that there are no zero-divisors. Thus $T_{d o m}$ is given by some universal axioms.
In $T F_{\forall}=T_{\text {dom }}$.
To see this, let $M \models T_{\text {dom }}$. The field of fractions construction shows that M embeds in some field K. Since $K \models T F$, we have $M \models T_{\forall}$. Thus any model of $T_{\text {dom }}$ is a model of $T F_{\forall}$. Conversely, any field is an integral domain.

Theorem 3.6. Let C be an axiomatizable class. Then the following conditions are equivalent:
(i) C is \forall-axiomatizable;
(ii) If $\underline{B} \in C$ and $\underline{A} \leq \underline{B}$ then $\underline{A} \in C$.

Proof (i) implies (ii) by Lemma 3.1(ii).
To prove the converse consider $\operatorname{Th}(C)$, the theory of class C, and $\operatorname{Th}_{\forall}(C)$, its universal part. Let $\underline{A} \models \operatorname{Th}_{\forall}(C)$. We need to show that $\underline{A} \in C$ which would yield $\operatorname{Mod}\left(\operatorname{Th}_{\forall}(C)\right)=\operatorname{Mod}(\operatorname{Th}(C))=C$, as required.

Claim. $\operatorname{Th}(C) \cup \operatorname{Th}_{\exists}(\underline{A})$ is finitely satisfiable.
Indeed, otherwise, $\operatorname{Th}(C) \models \neg \sigma_{1} \vee \ldots \vee \neg \sigma_{n}$, for some $\sigma_{1}, \ldots, \sigma_{n} \in \operatorname{Th}_{\exists}(\underline{A})$. Also $\neg \sigma_{1} \vee \ldots \vee \neg \sigma_{n} \equiv \neg\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)$ and $\underline{A} \vDash \sigma_{1} \wedge \ldots \wedge \sigma_{n}$. On the other hand $\neg\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)$ is equivalent to an \forall-formula, and is a logical consequence of $\operatorname{Th}(C)$. So $\underline{A} \models \neg\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)$, a contradiction.

It follows from the claim and Lemma 3.2 that $\operatorname{Th}(C) \cup \operatorname{Diag}(\underline{A})$ is satisfiable. Let \underline{B}^{+}be a model of $\operatorname{Th}(C) \cup \operatorname{Diag}(\underline{A})$ and \underline{B} its reduct to the initial
language. In particular, $\underline{B} \in C$ and, by Theorem $2.1, \underline{A} \leq \underline{B}$. It follows by assumptions that $\underline{A} \in C$.
Note that we have shown, within the proof, that for any theory T, if $\underline{A} \models T_{\forall}$ then \underline{A} embeds into a model of T.

Exercise 3.7. Let T be a theory, $\phi(x)$ a formula. Show that the following conditions are equivalent:

- ϕ is T-equivalent to a universal formula, i.e. there exists a universal formula ϕ^{\prime} such that $T \models(\forall x)\left(\phi \leftrightarrow \phi^{\prime}\right)$.
- σ is preserved under passing to submodels of models of T, i.e. whenever $\underline{A}, \underline{B}$ are models of T with $\underline{A} \leq \underline{B}, a \in A$, and $\underline{B} \models \phi(a)$, we have $\underline{A} \models \phi(a)$.
(Hint: Do this first for sentences ϕ. In this case, the preservation condition is that if $\underline{B} \models \phi$ then $\underline{A} \models \phi$. You need to generalise the proof of the case $T=\langle\emptyset\rangle$. The case of formulas follows from the case of sentences using the usual trick of replacing variables by constants.)

Exercise 3.8. Let C be an axiomatizable class. Then the following conditions are equivalent:
(i) C is \exists-axiomatizable;
(ii) If $\underline{A} \in C$ and $\underline{A} \leq \underline{B}$ then $\underline{B} \in C$.

Exercise 3.9. Let \underline{A} be a finite structure.

1. Find $\sigma_{1} \in T h(\underline{A})$ such that any model of σ_{1} has universe of the same cardinality as \underline{A}.
2. Let $\underline{B} \models T h_{\exists}(\underline{A}) \bigcup\left\{\sigma_{1}\right\}$. If also $\underline{B} \models \sigma_{1}$, show that $\underline{B} \cong \underline{A}$. In particular, any model of $T h(\underline{A})$ is isomorphic to \underline{A}.
3. Show that any model of $T h_{\forall}(\underline{A})+\sigma_{1}$ is isomorphic to \underline{A}.
4. Assume L has finitely many symbols. Find a single existential sentence σ_{2} such that any model of $\left\{\sigma_{1}, \sigma_{2}\right\}$ is isomorphic to \underline{A}.

Hints: (4) is easier than (2); do it first. Suppose $|A|=1$ and $L=\{R\}$ with R a unary relation symbol. Write σ_{2} explicitly- there will be two possibilities. Continue with some special cases with $|A|=2$ till you see the general case.
$(2,3)$ can be done directly, but you can also make use of Theorem 2.1 (i): form $\operatorname{Diag}(\underline{A})$ in L_{A} and $\operatorname{Diag}(\underline{B})$ in L_{B} as usual, ensuring that L_{A}, L_{B} use disjoint sets of new constant symbols. Prove using the method of diagrams that $\underline{A} \cong \underline{B}$ if $\operatorname{Diag}(\underline{A}) \bigcup \operatorname{Diag}(\underline{B}) \bigcup\left\{\sigma_{1}\right\}$ is consistent. Then apply 2.1, and connect to the hypotheses of $(2,3)$.

Definition Let

$$
\begin{equation*}
\underline{A}_{0} \leq \underline{A}_{1} \leq \ldots \leq \underline{A}_{i} \leq \ldots \tag{1}
\end{equation*}
$$

be a sequence of L-structures, $i \in \mathbb{N}$, forming a chain with respect to embeddings.
Denote $\underline{A}^{*}=\bigcup_{n} \underline{A}_{n}$ the L-structure with:
the domain $A^{*}=\bigcup_{n} A_{n}$,
predicates $P^{A^{*}}=\bigcup_{n} P^{\underline{A}_{n}}$, for each predicate symbol P of L,
operations $f \underline{A}^{*}:\left(A^{*}\right)^{m} \rightarrow A^{*}$ sending \bar{a} to b iff \bar{a} is in A_{n} for some n and $f^{A_{n}}(\bar{a})=b$, for each function symbol f of L,
and $c^{\boldsymbol{A}^{*}}=c^{\underline{A}_{0}}$, for each constant symbol from L.
By definition $\underline{A}_{n} \leq \underline{A}^{*}$, for each n. The structure \underline{A}^{*} will be called the limit of the chain. 4_{4}^{4}
A formula equivalent to one of the form $\forall v_{1} \ldots \forall v_{m} \exists v_{m+1} \ldots \exists v_{k+m} \theta$, where θ is a quantifier-free formula, is called an AE-formula.
The negation of an AE-formula is called an EA-formula.
A chain $\underline{A}_{1} \preccurlyeq \underline{A}_{2} \preccurlyeq \underline{A}_{3} \preccurlyeq \cdots$ is referred to as an elementary chain.
Exercise 3.10. 1. Given a chain of the form (1) and an AE-sentence σ assume that $\underline{A}_{n} \vDash \sigma$ for every $n \in \mathbb{N}$. Prove that $\underline{A}^{*} \vDash \sigma$.
2. If, for each $n, \underline{A}_{n} \preccurlyeq \underline{A}_{n+1}$ then $\underline{A}_{n} \preccurlyeq \underline{A}^{*}$, for each n. (Hint for (2): show first that $\underline{A}_{n} \preccurlyeq \underline{A}_{n^{\prime}}$ when $n \leq n^{\prime}$. Then show by induction on the complexity of a formula $\phi\left(x_{1}, \ldots, x_{k}\right)$ that for any n and any $a \in \underline{A}_{n}^{k}$, we have $\underline{A}^{*} \models \phi(a)$ iff $\underline{A}_{n} \models \phi(a)$.)

Exercise 3.11. Assume $\underline{A}_{1} \leq \underline{B} \leq \underline{A}_{2}$ and $\underline{A}_{1} \preccurlyeq \underline{A}_{2}$. Let σ be an EAsentence. Show that if $\underline{A}_{1} \models \sigma$ then $\underline{B} \models \sigma$.

Exercise 3.12. Assume $\underline{A}_{1} \leq \underline{B}_{1} \leq \underline{A}_{2} \leq \underline{B}_{2}$ and $\underline{A}_{1} \preccurlyeq \underline{A}_{2}, \underline{B}_{1} \preccurlyeq \underline{B}_{2}$. Let σ be an EAE-sentence. If $\underline{A}_{1} \models \sigma$, show that $\underline{B}_{1} \models \sigma$.

[^2]Exercise 3.13. Formulas formed using $\forall, \exists, \wedge, \vee$ are called positive. A homomorphism $f: \underline{A} \rightarrow \underline{B}$ is a function $f: A \rightarrow B$ satisfying (ii),(iii) of the definition of L-embedding, and the forward direction of (i): If $\bar{a} \in P^{\underline{A}}$ then $\pi(\bar{a}) \in P \underline{\underline{B}}$. Note that f is not required to be injective. Show that if $f: \underline{A} \rightarrow \underline{B}$ is a surjective homomorphism and ψ is a positive sentence, if $\underline{A} \models \psi$ then $\underline{B} \models \psi$.

We state without proof
Theorem 3.14. Let C be an axiomatizable class. Then the following conditions are equivalent:
(i) C is AE-axiomatizable;
(ii) For any chain of the form (1) with $\underline{A}_{n} \in C$ for all $n \in \mathbb{N}$, the union \underline{A}^{*} is in C.
(The proof in Chang and Keisler of the above two theorems uses saturated models, which will be available to us later on.)

Similarly, C is axiomatizable by positive sentences if and only if it is preserved under homomorphic images.

Quantifier elimination

We say T admits quantifier-elimination ($Q E$) if every formula ϕ is T-equivalent to a quantifier-free one. I.e. for any $x=\left(x_{1}, \ldots, x_{n}\right)$ and any formula $\phi(x)$ of L, there exists a quantifier-free formula $\phi^{\prime}(x)$ such that $T \models(\forall x)\left(\phi \leftrightarrow \phi^{\prime}\right)$.

Example 3.15. 1. $(\mathbb{R},+,-, \cdot, 0,1)$ does not admit $Q E$: the set of nonnegative numbers can be defined via $P(x) \equiv(\exists y)\left(y^{2}=x\right)$, but it cannot be defined in a quantifier-free way.
2. $(\mathbb{R},+,-, \cdot, \leq, 0,1)$ does admit $Q E$ (Tarski).
3. For any finite set of relations on \mathbb{N}, the structure $\left(\mathbb{N},+, \cdot, R_{1}, \ldots, R_{k}\right)$ does not admit QE (Gödel.)

Exercise 3.16. T admits $Q E$ if and only if for any quantifier-free formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ of L, there exists a quantifier-free formula $\psi\left(y_{1}, \ldots, y_{n}\right)$ such that

$$
T \models\left(\forall y_{1}, \ldots, y_{n}\right)(\psi \Longleftrightarrow(\exists x) \phi)
$$

Let $\underline{M} \models T$, and $A \subset M$. Recall L_{A}, \underline{M}_{A}. We write $\operatorname{Diag}_{\underline{M}}(A)$ for the set of quantifier-free L_{A}-sentences true in \underline{M}_{A}.
We say that a set of sentences Σ is complete when it is consistent and implies a complete theory, i.e. for any sentence ϕ in the given language, $\Sigma \models \phi$ or $\Sigma \models \neg \phi$.

Theorem 3.17. Assume $T \bigcup \operatorname{Diag}_{M}(B)$ is complete for any $M \models T$ and finite subset B of the universe of M. Then T admits $Q E$.

Before beginning the proof, let us dispose of a technical point. The assumption asserts the completeness of the quantifier-free theory of M_{B}, when a finite number of constants has been added to the language in order to name the elements of B. In the definition of L_{B}, we do not specify the identity of the new constants; it does not matter what constants we use, as long as they are not in the original language L, and distinct. But what if we use more constants than necessary, say using two distinct constants c_{1}, c_{2} to name the same element b ? Write M_{1} for the expansion of M to $L_{1}=L \bigcup\left\{c_{1}\right\}$ with c_{1} interpreted as b, and M_{12} for the expansion of M to $L_{12}=L \bigcup\left\{c_{1}, c_{2}\right\}$ with c_{1}, c_{2} both interpreted as b. If $\psi\left(c_{1}, c_{2}\right)$ holds in M_{12}, then $\psi\left(c_{1}, c_{1}\right)$ holds in M_{1}; and $\psi\left(c_{1}, c_{2}\right)$ follows logically from $\psi\left(c_{1}, c_{1}\right) \&\left(c_{1}=c_{2}\right)$. In particular, adding a redundant name does not compromise the completeness. This shows that Theorem 3.17 is equivalent to:
Theorem Let T be a theory. Assume $T \bigcup T h_{q f}\left(\underline{A}^{\prime}\right)$ is complete whenever $\underline{A} \models T$, and \underline{A}^{\prime} is any expansion of \underline{A} to a language $L \bigcup\left\{c_{1}, \ldots, c_{n}\right\}$ obtained by adding finitely many new constants. Then T admits QE.

Proof. Let $\phi(x)$ be a formula, and let $c=\left(c_{1}, \ldots, c_{n}\right)$ be new constant symbols corresponding to $x=\left(x_{1}, \ldots, x_{n}\right)$. we have to show that for some quantifier-free formula $\phi^{\prime}(x)$ of L

$$
T \models(\forall x)\left(\phi(x) \Longleftrightarrow \phi^{\prime}(x)\right)
$$

Equivalently,

$$
T \models \phi(c) \leftrightarrow \phi^{\prime}(c)
$$

Let Q be the set of quantifier-free sentences $\phi^{\prime}(c)$ of L^{\prime} such that

$$
T \models \phi(c) \rightarrow \phi^{\prime}(c) .
$$

Claim. $T \bigcup Q \models \phi(c)$.

Proof. Otherwise, there exists $\underline{A}^{\prime} \models T \bigcup Q \bigcup\{\neg \phi(c)\}$; let \underline{A} be the reduct of \underline{A}^{\prime} to L, and let $a=c^{\underline{A}^{\prime}}:=\left(c_{1}^{A^{\prime}}, \cdots, c_{n}^{A^{\prime}}\right)$. Let D_{a} be the set of qf L^{\prime} sentences $\psi(c)$ true in (\underline{A}, a). By assumption, $T \bigcup D_{a}$ is complete; since $T \bigcup D_{a} \bigcup\{\neg \phi(c)\}$ is consistent (being part of $T h(\underline{A}, a)$), it must be that $T \bigcup D_{a} \vdash \neg \phi(c)$. By compactness it follows that $T \bigcup\left\{\sigma_{1}, \ldots, \sigma_{m}\right\} \vdash \neg \phi(c)$ for some finite subset $\sigma_{1}, \ldots, \sigma_{m}$ of D_{a}. Let $\sigma=\bigwedge_{i=1}^{m} \sigma_{i}$; then $\sigma \in D_{a}$, and $T \cup\{\sigma\} \vdash \neg \phi(c)$. Taking the contrapositive, we have $T \cup\{\phi(c)\} \vdash \neg \sigma$; so $\neg \sigma \in Q$. But $\underline{A}^{\prime} \models Q$, so $\underline{A}^{\prime} \models \neg \sigma$, contradicting the definition of D_{a} and the fact that $\sigma \in D_{a}$. This contradiction shows that $T \bigcup Q \models \phi(c)$.

By the compactness theorem, $T \bigcup Q_{0} \models \phi(c)$ for some finite $Q_{0} \subset Q$; consider the conjunction of all sentences in Q_{0}; it is a sentence of L^{\prime}, that can be written as $\phi^{\prime}(c)$ for some formula $\phi^{\prime}(x)$ of L. We have $T \vdash \phi^{\prime}(c) \rightarrow \phi(c)$; by definition of Q we have also $T \vdash \phi(c) \rightarrow \phi^{\prime}(c)$; so $T \vdash \phi(c) \leftrightarrow \phi^{\prime}(c)$.

Lemma 3.18. Let $M \models T$, and let M_{0} be the minimal substructure of M; see Definition 1.13. If $T \bigcup \operatorname{Diag}\left(M_{0}\right)$ is complete, then so is $T \bigcup \operatorname{Diag}_{M}(\emptyset)$.

Proof. Let $N \models T \bigcup \operatorname{Diag}(\emptyset)$. We have to show that $\operatorname{Th}(M)=T h(N)$. Let N_{0} be the minimal substructure of N. By Exercise 1.21 (applied to $\Sigma=$ $\operatorname{Diag}(\emptyset)), M_{0}$ and N_{0} are isomorphic; say $f: M_{0} \rightarrow N_{0}$ is an isomorphism. For each $a \in M_{0}$, let c_{a} be a new constant symbol; let $L^{\prime}=L \bigcup\left\{c_{a}: a \in M_{0}\right\}$; let M^{\prime} be the result of interpreting c_{a} as a, and N^{\prime} the result of interpret$\operatorname{ing} c_{a}$ as $f(a)$. Then $M^{\prime} \models T \bigcup \operatorname{Diag}\left(M_{0}\right)$, and $N^{\prime} \models T \bigcup \operatorname{Diag}\left(M_{0}\right)$. By assumption, $\operatorname{Th}\left(M^{\prime}\right)=T h\left(N^{\prime}\right)$. A fortiori, $\operatorname{Th}(M)=T h(N)$.

Let $M \models T$, and $A \subset M$, as in Theorem 3.17. The substructure generated by A, denoted $\langle A\rangle$, is by definition the substructure of M, whose universe is

$$
\left\{t\left(a_{1}, \ldots, a_{n}\right): n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A, t \in \operatorname{Term}_{n}\right\}
$$

where Term_{n} denotes the set of terms $t=t\left(x_{1}, \ldots, x_{n}\right)$ of the language. This is the smallest substructure of M containing A. It can also be described as the L-reduct of the minimal L_{A}-structure of M_{A}, see Definition 1.13.
A substructure of M is called finitely generated if it is generated by a finite (or empty) subset of M.

Exercise 3.19. Let T be a theory, $M \models T$, and $A \subset M$. Assume

$$
T \bigcup \operatorname{Diag}(<A>)
$$

is complete. Then $T \bigcup \operatorname{Diag}_{M}(A)$ is complete. (Hint: the case $A=\emptyset$ is Lemma 3.18. You can either reduce to this case by moving to the language L_{A}, or follow the proof of the lemma while modifying as needed; or give a direct proof.) Deduce Corollary 3.20.

Corollary 3.20. Assume $T \bigcup \operatorname{Diag}(\underline{A})$ is complete, for any $M \models T$ and any finitely generated substructure $\underline{A} \leq M$. Then T admits $Q E$.

Remark Note that $\operatorname{Diag}(\underline{A})$ (and even $\operatorname{Diag}(\emptyset))$ includes the quantifierfree sentences true in \underline{A}. For instance if T is a theory of fields, then $T_{\underline{A}}$ will include the sentence $1+1=0$ or its negation; so T_{A} will determine whether the characteristic is 2 or otherwise (and similarly for every other prime.) Quantifier-elimination implies that every sentence is equivalent to a quantifier-free sentence, but this does not imply that the theory is complete.
Definition Let T_{0} be a universal theory in a language L. We say that a theory T in L is a model completion of T_{0} if T admits quantifier elimination, and has universal part T_{0} (i.e. $T_{0} \models T_{\forall}, T \forall \models T_{0}$).
The next theorem shows that a universal theory admits at most one model completion. For instance, given the theory of integral domains, the unique model completion is the theory of algebraically closed fields.

Theorem 3.21. Assume T, T^{\prime} are theories of L that admit quantifier elimination, and with $T_{\forall}=T_{\forall}^{\prime}$. Then $T=T^{\prime}$.

Proof. We have to prove that $\operatorname{Mod}(T)=\operatorname{Mod}\left(T^{\prime}\right)$; by the symmetry between T and T^{\prime}, it suffices to prove that $\operatorname{Mod}(T) \subseteq \operatorname{Mod}\left(T^{\prime}\right)$. Let $\underline{A}_{1} \in \operatorname{Mod}(T)$; we will show that $\underline{A}_{1} \in \operatorname{Mod}\left(T^{\prime}\right)$. Define inductively $\underline{A}_{k} \in \operatorname{Mod}(T)$ and $\underline{B}_{k} \in \operatorname{Mod}(T)$, as follows. Assume \underline{A}_{k} has been defined. Since $\underline{A}_{k}=T_{\forall}=T_{\forall}^{\prime}$, there exists $\underline{B} \in \operatorname{Mod}\left(T^{\prime}\right)$ with $A_{k} \leq \underline{B}$. (See remark after the proof of Theorem 3.6.) Let \underline{B}_{k} be such a \underline{B}. Now since $\underline{B}_{k} \models T_{\forall}^{\prime}=T_{\forall}$, there exists $\underline{A} \models T$ with $\underline{B}_{k} \leq \underline{A}$; let $\underline{A}_{k+1}=\underline{B}_{k}$. In this way we defined inductively $\underline{A}_{k}, \underline{B}_{k}$ with

$$
\underline{A}_{1} \leq \underline{B}_{1} \leq \underline{A}_{2} \leq \cdots
$$

Now since all formulas are T-equivalent to quantifier-free ones, for models of T there is no difference between embeddings and elementary embeddings; so the \underline{A}_{i} form an elementary chain.

$$
\underline{A}_{1} \preccurlyeq \underline{A}_{2} \preccurlyeq \cdots
$$

Similarly

$$
\underline{B}_{1} \preccurlyeq \underline{B}_{2} \preccurlyeq \cdots
$$

Let \underline{A} be the limit structure of the \underline{A}_{i}-chain, and \underline{B} the limit structure of the \underline{B}_{i}-chain (as in 1.) Then by Exercise 3.10 (2) we have $\underline{A}_{1} \preccurlyeq \underline{A}$ and $\underline{B}_{1} \preccurlyeq \underline{B}$. But $\underline{A}=\underline{B}$. So $\operatorname{Th}\left(\underline{A}_{1}\right)=\operatorname{Th}(\underline{A})=\operatorname{Th}(\underline{B})=\operatorname{Th}\left(\underline{B}_{1}\right)$ and in particular, $\underline{A}_{1} \models T^{\prime}$.

We now give an alternative proof.
Definition Let $\underline{A} \leq \underline{B}$. We say that \underline{A} is existentially closed in \underline{B} if for any quantifier-free formula $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ and $a_{1}, \ldots, a_{m} \in A$, if $\phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$ holds for some $b_{1}, \ldots, b_{m} \in B$, then $\phi\left(a_{1}, \ldots, a_{n}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ holds for some $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \in A$.
Let T_{0} be a universal theory. A model $\underline{A} \models T_{0}$ is existentially closed if whenever $\underline{A} \leq \underline{B} \models T_{0}, A$ is existentially closed in \underline{B}.

Exercise 3.22. Assume T eliminates quantifiers.

1. Show that any embedding between models of T is elementary.
2. Any model of T is existentially closed as a model of T_{\forall}. (Hint: Let $\underline{A} \models T$. Assume $\underline{A} \leq \underline{B} \models T_{\forall}$. Find $\underline{A}^{\prime} \models T$ with $\underline{B} \leq \underline{A}^{\prime}$. Conclude that $\underline{A} \preccurlyeq \underline{A}^{\prime}$ and hence any qf formula from \underline{A} that has a solution even in \underline{A}^{\prime}, has one in \underline{A}.)
3. If $\underline{A} \models T_{\forall}$ and \underline{A} is existentially closed as a model of T_{\forall}, then $\underline{A} \models T$. (Hint: find $\underline{B} \models T$ with $\underline{A} \leq \underline{B}$. Verify that the Tarski-Vaught criterion holds: let $\underline{B} \models \phi(b)$. Let ϕ_{0} be quantifier-free, with $T \models \phi \equiv \phi_{0}$. Then $\underline{B} \models \phi_{0}(b) ; \underline{A} \models \phi_{0}(a)$ for some $a ; \underline{B} \models \phi_{0}(a) ; \underline{B} \models \phi(a)$.
4. Deduce Theorem 3.21 from the above.

4 Categoricity

Categoricity and completeness

A theory T is said to be categorical in power κ (κ-categorical) if there is a model \underline{A} of T of cardinality κ and any model of T of this cardinality is isomorphic to \underline{A}.

At this stage, categoricity will serve us to prove completeness of certain significant theories, and thus develop a small repertoire of comprehensible theories. Though categoricity is much stronger than completeness, it is purely semantical and sometimes easier to verify. Later on, with saturated models, a similar completeness test can be described which is general enough to apply to any theory.

Theorem 4.1 (Łos̀-Vaught Test). Let T be a theory with no finite models. Let $\kappa \geq|L|+\aleph_{0}$ be a cardinal. If T is κ-categorical, then T is complete.

Proof Let σ be an L-sentence and \underline{A} the unique, up to isomorphism, model of T of cardinality κ. The either σ or $\neg \sigma$ holds in \underline{A}, let it be σ. Then $T \cup\{\neg \sigma\}$ does not have a model of cardinality κ, which by the Lowenheim-Skolem theorems means $T \cup\{\neg \sigma\}$ does not have an infinite model, which by our assumption means it is not satisfiable. It follows that $T \vDash \sigma$.

Example 0 The language of pure equality $L_{=}$has no non-logical symbols (we view the equality symbol as a logical symbol.) The theory of pure equality is axiomatised by \emptyset. This theory is categorical in every power. Indeed, any set A determines a model $\underline{A}=\langle A\rangle$; any bijection is an L-isomorphism; hence by definition of cardinality, any model of the same cardinality is isomorphic to \underline{A}.
Note that $T_{=}$is not complete; however the theory T_{∞} asserting that the model is infinite, is complete by the Łos̀-Vaught test.

Vector spaces

Example 1 Let K be a field (or division ring) and L_{K} be the language with alphabet $\left\{+, \lambda_{k}, 0\right\}_{k \in K}$ where + is a symbol of a binary function and λ_{k} symbols of unary functions, 0 constant symbol. Define $V e c t_{K}$ to be the theory of vector spaces over K, i.e. $V e c t_{K}$ is axiomatised by:

```
\(\forall v_{1} \forall v_{2} \forall v_{3} \quad\left(v_{1}+v_{2}\right)+v_{3} \bumpeq v_{1}+\left(v_{2}+v_{3}\right) ;\)
\(\forall v_{1} \forall v_{2} \quad v_{1}+v_{2} \bumpeq v_{2}+v_{1}\);
\(\forall v \quad v+0 \bumpeq v\);
\(\forall v_{1} \exists v_{2} \quad v_{1}+v_{2} \bumpeq 0\);
\(\forall v_{1} \forall v_{2} \quad \lambda_{k}\left(v_{1}+v_{2}\right) \bumpeq \lambda_{k}\left(v_{1}\right)+\lambda_{k}\left(v_{2}\right) \quad\) an axiom for each \(k \in K\);
\(\forall v \quad \lambda_{1}(v) \bumpeq v\);
\(\forall v \quad \lambda_{0}(v) \bumpeq 0 ;\)
\(\forall v \quad \lambda_{k_{1}}\left(\lambda_{k_{2}}(v)\right) \bumpeq \lambda_{k_{1} \cdot k_{2}}(v) \quad\) an axiom for each \(k_{1}, k_{2} \in K\);
\(\forall v \quad \lambda_{k_{1}}(v)+\lambda_{k_{2}}(v) \bumpeq \lambda_{k_{1}+k_{2}}(v) \quad\) an axiom for each \(k_{1}, k_{2} \in K\).
```

Mod $V e c t_{K}$ is exactly the class of vector spaces over K.
To discuss the theory further let us recall the basic facts and definitions of the theory of vector spaces.
A basis of a vector space \underline{A} is a maximal linearly independent subset of \underline{A}. By Zorn's Lemma any independent subset can be extended to a basis, so a basis exists in any vector space (and in general can be infinite).
If B_{1} and B_{2} are bases of the same vector space, then card $B_{1}=\operatorname{card} B_{2}$.
This allows to define the dimension of a vector space to be the cardinality of a basis of the vector space.
If B_{1} is a basis of \underline{A}_{1} and B_{2} a basis of \underline{A}_{2}, vector spaces over K, and π : $B_{1} \rightarrow B_{2}$ a bijection, then π can be extended in a unique way (linearly) to an isomorphism between the vector spaces. In other words the isomorphism type of a vector space over a given field is determined by its dimension.
Let \underline{A} be a model of $V e c t_{K}$ of cardinality $\kappa>\left|L_{K}\right|=\max \left\{\aleph_{0}\right.$, card $\left.K\right\}$. Then $\|\underline{A}\|=\operatorname{dim} \underline{A}$, the dimension of the vector space (check it). It follows that, if \underline{B} is another model of $V e c t_{K}$ of the same cardinality, $\underline{A} \cong \underline{B}$. Thus we have checked the validity of the following statement.

Theorem 4.2. $V^{\text {ect }}{ }_{K}$ is categorical in any infinite power $\kappa>\operatorname{card} K$.
Recall the set of sentences T_{∞} of $L_{=}$, asserting that there exist infinitely many distinct elements.
Using the Los-Vaught text we obtain:
Corollary 4.3. Vect $_{K} \bigcup T_{\infty}$ is complete.
Exercise 4.4. Show that if U, V are models of $V e c t_{K}$ of equal cardinality > $\max \left(\aleph_{0},|K|\right)$, and \underline{A} is a common subspace of U, V with \underline{A} finite-dimensional, then there exists an isomorphism $f: U \rightarrow V$ which fixes the points of A.
(Hint: choose a basis I_{0} of \underline{A}, and extend it to bases I of U and J of V. Find a bijection $f: I \rightarrow J$ with $f(x)=x$ for $x \in I_{0}$; extend f to an isomorphism $U \rightarrow V$.) Conclude using Corollary 3.20 that $\operatorname{Vect}_{K} \bigcup T_{\infty}$ admits quantifierelimination.

Exercise 4.5. Let U, V be vector spaces over a field K, of equal cardinality $>\max \left(\aleph_{0},|K|\right)$. Let \underline{A} be a common subspace of U, V with \underline{A} finitedimensional. Show that there exists an isomorphism $f: U \rightarrow V$ which fixes the points of A. (Hint: choose a basis I_{0} of \underline{A}, and extend it to bases I of U and J of V. Find a bijection $f: I \rightarrow J$ with $f(x)=x$ for $x \in I_{0}$; extend f to an isomorphism $U \rightarrow V$.) Conclude using Corollary 3.20 that Vect $_{K} \cup T_{\infty}$ admits quantifier-elimination.

Dense linear order

Example 2 Let L be the language with one binary symbol $<$ and DLO be the theory of dense linear order with no end elements:
$\forall v_{1} \forall v_{2} \quad\left(v_{1}<v_{2} \rightarrow \neg v_{2}<v_{1}\right) ;$
$\forall v_{1} \forall v_{2} \quad\left(v_{1}<v_{2} \vee v_{1} \bumpeq v_{2} \vee v_{2}<v_{1}\right)$
$\forall v_{1} \forall v_{2} \forall v_{3}\left(v_{1}<v_{2} \wedge v_{2}<v_{3}\right) \rightarrow v_{1}<v_{3}$;
$\forall v_{1} \forall v_{2} \quad\left(v_{1}<v_{2} \rightarrow \exists v_{3}\left(v_{1}<v_{3} \wedge v_{3}<v_{2}\right)\right)$;
$\forall v_{1} \exists v_{2} \exists v_{3} \quad v_{1}<v_{2} \wedge v_{3}<v_{1}$.
Cantor's Theorem Any two countable models of DLO are isomorphic. In other words DLO is \aleph_{0}-categorical.

To prove that any two countable models of DLO are isomorphic we enumerate the two ordered sets and then apply the back-and-forth construction of a bijection preserving the orders. Compare the proof of Proposition 6.2.
Proof Let $\underline{A}, \underline{B}$ be countable models of DLO. Enumerate

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}, \quad B=\left\{b_{1}, b_{2}, \ldots\right\} .
$$

We will construct inductively new enumerations $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right\}$ and $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right\}$ of the sets so that the correspondence $a_{i}^{\prime} \mapsto b_{i}^{\prime}$ is bijective, and indeed an isomorphism.
Suppose $a_{1}^{\prime}, \ldots, a_{n-1}^{\prime} \in A$ and $b_{1}^{\prime}, \ldots, b_{n-1}^{\prime} \in B$ have been defined, with a_{i}^{\prime} distinct elements of A and b_{j}^{\prime} distinct elements of B, and the correspondence $a_{i}^{\prime} \mapsto b_{i}^{\prime}$ is order-preserving; in other words, for $i, j<n$,
$\left.{ }^{*}\right) a_{i}^{\prime}<a_{j}^{\prime}$ iff $b_{i}^{\prime}<b_{j}^{\prime}$
We define a_{n}^{\prime} and b_{n}^{\prime}. Assume first that n is odd and a_{n}^{\prime} be the first element $A=\left\{a_{1}, a_{2}, \ldots\right\}$ not occurring among $a_{1}^{\prime}, \ldots a_{n-1}^{\prime}$; i.e. $a_{n}^{\prime}=a_{m}$ with $a_{m} \notin$ $\left\{a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}$ and m least such.
We finally take into account the ordering we really care about, namely the order $<^{A}$; in this ordering, either $a_{n}^{\prime}<a_{i}^{\prime}$ for all $i<n$, or $a_{n}^{\prime}>a_{i}^{\prime}$ for all $i<n$, or there exist $l, r<n$ such that $a_{i}^{\prime}<a_{n}^{\prime}$ iff $a_{i}^{\prime} \leq a_{l}^{\prime}$ and $a_{n}^{\prime}<a_{i}^{\prime}$ iff $a_{r}^{\prime} \leq a_{i}^{\prime}$. Choose $b_{n}^{\prime} \in B$ such that $b_{l}^{\prime}<b_{n}^{\prime}<b_{r}^{\prime}$ (and similarly in the first two cases, choose b_{n}^{\prime} below or above all elements $b_{i}^{\prime}, i<n$, respectively.) Note now that $\left({ }^{*}\right)$ continues to hold for $i \leq n$.
Similarly, when n is even, let b_{n}^{\prime} be the first element in $B=\left\{b_{1}, b_{2}, \ldots\right\}$ not occurring among $b_{1}^{\prime}, \ldots b_{n}^{\prime}$. Then find $a_{n+1}^{\prime} \in A$ such that $\left(^{*}\right)$ continues to hold.
Hence we may inductively construct in this way $A=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots a_{n}^{\prime} \ldots\right\}, B=$ $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots b_{n}^{\prime} \ldots\right\}$ satisfying (2) for all n.
Claim: Every element of A occurs as some a_{i}^{\prime}.
Proof: We show by induction on k that a_{k} occurs in this way. We may thus assume that each $a_{l}, l<k$ does occur as some $a_{i(l)}^{\prime}$; let n be an odd integer greater than each $i(l), l<k$. At stage n of the construction, if $a_{k}=a_{i}^{\prime}$ for some $i<n$, we are done. If not, then by construction we have $a_{n}^{\prime}=a_{k}$, and again we are done.
Similarly, every element of B is some b_{j}^{\prime}. Hence $a_{i}^{\prime} \mapsto b_{j}^{\prime}$ is bijective. By (*), it is an isomorphism.

Proposition For any finite linear ordering $\mathcal{C}, \operatorname{DLO} \bigcup \operatorname{Diag}(\mathcal{C})$ is \aleph_{0} categorical.
We offer two proofs.
Proof 1: Repeat the proof of Cantor's theorem, but define $a_{i}^{\prime}=c_{i}^{A}$ and $b_{i}^{\prime}=c_{i}^{B}$ where c_{1}, \ldots, c_{n} are the new constant symbols of $L_{\mathbb{C}}$, and continue the recursive definition at stage $n+1$.
Proof 2: The universe of \mathcal{C} has a finite number n of elements, a_{1}, \ldots, a_{n}; we can number them in such a way that $a_{1}<\cdots<a_{n}$. The language of DLO $\bigcup \operatorname{Diag}(\mathcal{C})$ has n constant symbols, c_{1}, \ldots, c_{n}; and $\operatorname{Diag}(\mathcal{C})$ includes the sentences $c_{1}<c_{2}, \cdots, c_{n-1}<c_{n}$. We will show that any model is isomorphic to $(\mathbb{Q}, 1,2, \cdots, n)$ where c_{i} is interpreted by i.
Let $\underline{A}=\left(A,<, b_{1}, \ldots, b_{n}\right) \models \operatorname{DLO} \bigcup \operatorname{Diag}(\mathcal{C})$ be an arbitrary countable model. Then $(A,<) \vDash D L O$. By Cantor's theorem there exists an iso-
morphism $f:(A,<) \rightarrow(\mathbb{Q},<)$. Define $\underline{B}=\left(\mathbb{Q},<, f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right)$. Then $\underline{A} \cong \underline{B}$. Thus it suffices to prove that $\underline{B} \cong(\mathbb{Q}, 1,2, \cdots, n)$. This can be seen by an explicit isomorphism, defined so as to take the segment $[i, i+1]$ to the segment $\left[b_{i}, b_{i+1}\right]$ in an order preserving way. For instance, define $g: \mathbb{Q} \rightarrow \mathbb{Q}$ by: $g(x)=x+b_{1}$ for $x \leq 0 ; g(x)=\left(b_{2}-b_{1}\right) x+b_{1}$ for $0<x \leq 1$; $g(x)=\left(b_{3}-b_{2}\right)(x-1)+b_{2}$; etc.
Theorem 4.6. DLO is complete and admits $Q E$.
Proof. By Cantor's theorem, the above Proposition, and Corollary 3.20.
Exercise 4.7. Show that DLO is not κ-categorical, where $\kappa=2^{\aleph_{0}}$. (Hint: let $\underline{A}=(\mathbb{R},<)$, let \underline{B} be a countable model of DLO with universe disjoint from A, and define a linear ordering on $C=A \bigcup B$ so that $\underline{A} \leq \underline{C}, \underline{B} \leq \underline{C}$, and any element of A is $<$ any element of B. Show that for some $c \in C$, the interval (c, ∞) is countable. Now find a linear ordering of the same cardinality without this property.)

Algebraically closed fields

Example 3 ACF, the theory of algebraically closed fields is given by the following axioms in the language of fields $L_{\text {fields }}$ with binary operations + , • and constant symbols 0 and 1 :

Axioms of fields:

$$
\begin{aligned}
& \forall v_{1} \forall v_{2} \forall v_{3} \\
&\left(v_{1}+v_{2}\right)+v_{3} \bumpeq v_{1}+\left(v_{2}+v_{3}\right) \\
&\left(v_{1} \cdot v_{2}\right) \cdot v_{3} \bumpeq v_{1} \cdot\left(v_{2} \cdot v_{3}\right) \\
& v_{1}+v_{2} \bumpeq v_{2}+v_{1} \\
& v_{1} \cdot v_{2} \bumpeq v_{2} \cdot v_{1} \\
&\left(v_{1}+v_{2}\right) \cdot v_{3} \bumpeq v_{1} \cdot v_{3}+v_{2} \cdot v_{3} \\
& v_{1}+0 \bumpeq v_{1} \\
& v_{1} \cdot 1 \bumpeq v_{1} . \\
& \\
& \forall v_{1} \exists v_{2} \quad v_{1}+v_{2} \bumpeq 0 \\
& \forall v_{1}\left(\neg v_{1} \bumpeq 0 \rightarrow \exists v_{2} v_{1} \cdot v_{2} \bumpeq 1\right) .
\end{aligned}
$$

Solvability of polynomial equations axioms, one for each positive integer n :

$$
\forall v_{1} \ldots \forall v_{n} \exists v v^{n}+v_{1} \cdot v^{n-1}+\ldots+v_{i} \cdot v^{i}+\ldots+v_{n} \bumpeq 0
$$

Basic facts and definitions of dimension theory in algebraically closed fields We give below a rapid survey of it. The definition of independence differs from the case of vector spaces in that nonlinear polynomials are used; beyond this, the theories are very similar.

We consider a field F with a subring A. (When A is the prime field, i.e. \mathbb{Q} or \mathbb{F}_{p}, it need not be mentioned.)
A finite subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of F is said to be algebraically independent over A if, for any nonzero polynomial in n variables $P\left(v_{1}, \ldots, v_{n}\right) \in$ $A\left[v_{1}, \ldots, v_{n}\right]$

$$
P\left(a_{1}, \ldots, a_{n}\right) \neq 0
$$

When $n=1$, we say that a_{1} is transcendental over A.
A transcendence basis of a field F over A is a maximal algebraically independent subset of F.
By Zorn's Lemma any independent subset can be extended to a basis, so a basis exists in any field.
Proposition If B_{1} and B_{2} are bases of the same field, then card $B_{1}=$ card B_{2}..
This is proved in a way analogous to the case of vector spaces. In fact it is possible to abstract a notion of a dependence relation and prove that linear and algebraic dependence are examples, and that any dependence relation has bases of constant cardinality. (Steinitz.) The main property that needs to be proved, in this formuation, is transitivity of dependence. Let us say that $a \in F$ depends on a set B over A if for some $k \geq 0$ and some algebraiclly independent $b_{1}, \ldots, b_{k} \in B$, the set a, b_{1}, \ldots, b_{k} is not independent. Transitivity is the assertion that if a depends on $B \bigcup\{c\}$ and c depends on B, then a depends on B. For instance if b, c are each transcendental over A, and $P(a, b)=$ $0, P^{\prime}(b, c)=0$ for some nonzero polynomials P, P^{\prime}, then $P^{\prime \prime}(a, c)=0$ for some nonzero polynomial $P^{\prime \prime}$.
The above proposition allows to define the transcendence degree of a field F over A to be the cardinality of any transcendence basis of F over A; it denoted tr.d. ${ }_{A} F$. .

Let K_{1}, K_{2} be algebraically closed fields, each containing the subring A. For $i=1,2$, let B_{i} be a transcendence basis for K_{i} over A. If $\pi: B_{1} \rightarrow B_{2}$ is a bijection, then π can be extended to a field isomorphism $K_{1} \rightarrow K_{2}$, fixing A.

In particular, taking A to be the prime field, the isomorphism type of an algebraically closed field of a given characteristic is determined by its transcendence degree.
As in the case of vector spaces, if $|F|$ is uncountable and $|F|>|A|$, then $|F|=t r . d \cdot A(F)$. We thus have:

Proposition For any countable integral domain A, and any uncountable cardinal $\lambda, A C F_{A}$ is categorical in power λ.

By Corollary 3.20
Corollary 4.8. ACF admits quantifier-elimination.
We can complement ACF by axioms stating that the field is of characteristic zero, one for each positive integer $n:$; the result is called $A C F_{0}$.

$$
\neg(\underbrace{1+\ldots+1}_{n} \bumpeq 0),
$$

Similarly, for any prime p we can add an axiom $p \bumpeq 0$, where p is represented by a term of the form $1+\ldots+1$; we obtain a theory ACF_{p}.
It follows that, if F_{1} and F_{2} are two models of ACF_{0} of an uncountable cardinality κ, then $F_{1} \cong F_{2}$. Thus ACF_{0} is categorical in any such power κ. Likewise for $A C F_{p}$.

Any field F of characteristic zero contains a copy of rational numbers \mathbb{Q}. Indeed,

$$
\underbrace{1^{F}+\ldots+1^{F}}_{n} \in F,
$$

is an element representing integer n, denote it n^{F}. Then the additive inverse of n^{F} represents $-n$, and correspondingly we can represent n^{-1} and in general any rational number m / n by a unique element of F. So we may just assume $\mathbb{Q} \subseteq F$.

Similarly, a field of positive characteristic $p>0$ contains the p-element field \mathbb{F}_{p}.
From the Łos̀-Vaught test we obtain:
Corollary 4.9. $A C F_{p}$ is complete (for any $p=2,3,5, \cdots$ or $p=0$.)

Using Theorem 3.17, or Corollary 3.20, we conclude
Corollary 4.10. The theories $D L O$, Vect $_{F}, A C F$ admit $Q E$.
Example The theory of successor, T_{S}.
The language contains a unary function symbol s and a constant symbol 0 . The axioms are:
(a) $\forall v_{1} \forall v_{2}\left(s\left(v_{1}\right) \bumpeq s\left(v_{2}\right) \rightarrow v_{1} \bumpeq v_{2}\right)$;
(b) $\forall v_{1} \exists v_{2}\left(\neg v_{1} \bumpeq 0 \rightarrow v_{1} \bumpeq s\left(v_{2}\right)\right)$;
(c) ${ }_{n} \forall v \neg s^{n}(v) \bumpeq v$ for any positive integer n, where $s^{n}(v)=s(\ldots(s(v)) \ldots)$, n times;
(d) $\forall v \neg s(v) \bumpeq 0$.

Exercise 4.11. 1. Prove that the theory T_{S} is categorical in all uncountable cardinalities. (Hint: show that any model of T_{S} is the disjoint union of an isomorphic copy of (\mathbb{N}, S), and a number of copies of (\mathbb{Z}, S). It is rare that a structure can be written as the disjoint union of proper substructures, but this is the case here.)
2. Show that T_{S} has QE.
3. (extra credit.) Let L_{S}^{\prime} be the language consisting of the S alone, without 0 , and let T_{S}^{\prime} have axioms (a), $(c)_{n}$ and an axiom (b') stating that the image of S consists of all but one element. Show that T_{S}^{\prime} is a categorical theory, but does not admit QE. (Hint: show that the element 0 of \mathbb{N} is definable using a universal formula, but cannot be defined using an existential formula: there is an extension \underline{A} where 0 is the successor of something.)

Definition A subset X of M is called cofinite (in M) if $M \backslash X$ is finite.
Exercise 4.12. Let $L=\{+, \cdot, 0,1,-\}$ be the language of rings, and let $T F$ be the theory of fields.

1. Let $t\left(x_{1}, \ldots, x_{n}\right)$ be a term of L. Show that there exists a polynomial $F\left(x_{1}, \ldots, x_{n}\right)$ over \mathbb{Z} in the same variables, such that $T F \models$ $(\forall x)\left(t\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)\right)$.
2. $\phi(x)$ be a basic formula in one variable x; so $\phi(x)$ has the form $t_{1}(x)=$ $t_{2}(x)$. Let $M \models T$. Show that ϕ^{M} is either finite, or equal to all of M.
3. Let $\phi(x)$ be a quantifier-free formula in one variable x. Let $M \models T$. Show that $\phi(M)$ is either finite, or cofinite. Conclude that any definable subset of the field \mathbb{C} is finite or cofinite. (You may assume Gauss's theorem that $\mathbb{C} \vDash A C F$, and Chevalley-Robinson-Tarski's theorem that ACF admits QE.)
4. Deduce from (2) that \mathbb{R} does not have QE. (Optional, more difficult: if an infinite field K has QE, then every element of K is a square.)
5. Let $\phi(x)$ be a quantifier-free formula in the language $L=\{+, \cdot,<$ $, 0,1,-\}$. Let $O F$ be the theory of ordered fields: add to the theory of fields the axioms asserting that $<$ is a linear ordering, and $x<y$, implies $x+u<y+u,-y<-x$, and if $u>0$ also $u x<u y$. Follow the above steps to show that for any quantifier-free $\phi, \phi^{\mathbb{R}}$ is a finite union of intervals (open,closed and half-open, and including $(-\infty, \infty)$ $(-\infty, a)$, and (a, ∞).)
6. Assume Tarski's theorem, that $T h(\mathbb{R},+,-, \cdot, 0,1)$ admits QE. Show that any definable subset of the field \mathbb{R} is a finite union of intervals.

Remark. The property in (6) is called o-minimality. A theory T such that (3) holds in every model of T is called strongly minimal. Both are very interesting, and intensively studied classes of theories.
Exercise 4.13. Show that $\operatorname{Th}(\mathbb{N},<)$ does not admit QE. (Hint: find a formula $\phi(x)$ in one variable, true of a unique element of \mathbb{N}. On the other hand look at quantifier-free formulas $\psi(x)$ in this language, in one variable, and show that they define either \emptyset or all of \mathbb{N}.)

Exercise 4.14. Let $K \models A C F$. Let $f_{1}, \ldots, f_{k}, g \in K\left[X_{1}, \ldots, X_{n}\right]$ be polynomials in n variables with coefficients in M. Assume: in some field $L \geq K$, there exists $a=\left(a_{1}, \ldots, a_{n}\right)$ with $f_{1}(a)=\cdots=f_{k}(a)=0$ and $g(a) \neq 0$. Show that such an n-tuple exists in K^{n}. (This is a form of Hilbert's (1893) Nullstellensatz. You may use the fact that any field extends to an algebraically closed field.)
Exercise 4.15. [Disjoint unary predicates]

1. For $n \geq 1$, let L_{n} be the language with n unary predicate symbols P_{1}, \ldots, P_{n}. Show there exists a theory T_{n} asserting that each P_{i} is infinite, the P_{i} are disjoint $\left(\neg(\exists x)\left(P_{1}(x) \& P_{2}(x)\right)\right.$, etc.) and there are infinitely many elements not in any $P_{i}, i \leq n$.
2. Show T_{n} is \aleph_{0}-categorical. Conclude that T_{n} is complete.
3. How many models of cardinality \aleph_{1} (up to isomorphism) does T_{2} have?
4. Let $T=\bigcup_{n} T_{n}$. Show that T is a complete theory.
5. Is $T \aleph_{0}$-categorical? If not how many countable models does T have?

Remark. One of the earliest QE results is that $T h((\mathbb{R},+,<))$ admits quantifier eliminiation. See the wikipedia entry on Fourier-Motzkin elimination. This cannot be proved by the method used in this section, since the theory is not categorical. It can however be proved by a generalization of this method using saturated models that we will encounter later on. The particular case of $\operatorname{Th}((\mathbb{R},+,<))$ is also simple to prove directly 'by hand'.

Exercise 4.16. 1. Prove the Lefschetz principle: a sentence ϕ is true in the field \mathbb{C} iff it is true in the field \mathbb{F}_{p}^{a} for all but finitely many primes p. Here \mathbb{F}_{p}^{a} denotes the algebraic closure of the p-element field; it is a model of $A C F_{p}$.
2. Show that any finite field has the Ax property: any injective polynomial map $K^{n} \rightarrow K^{n}$ is surjective.
3. Show that \mathbb{F}_{p}^{a} has the Ax property. (You may assume \mathbb{F}_{p}^{a} is the union of finite subfields.)
4. Show that \mathbb{C} has the Ax property.

5 Types

We fix a language L, a theory T in L, and set of variables $x=\left(x_{1}, \ldots, x_{n}\right)$. A set of formulas P with free variables among $\left\{x_{1}, \ldots, x_{n}\right\}$ is satisfiable if there exists a structure \underline{A} and $a_{1}, \ldots, a_{n} \in \underline{A}$ such that $\underline{A} \models \phi\left(a_{1}, \ldots, a_{n}\right)$ for all $\phi \in P$. It is satisfiable in a model of T if \underline{A} can be taken to be a model of T, equivalently if $P \bigcup T$ is satisfiable.
If $c=\left(c_{1}, \ldots, c_{n}\right)$ are new constant symbols, and $P^{\prime}=\{\phi(c): \phi \in P\}$, then P is satisfiable iff P^{\prime} is satisfiable.
Definition A partial type of a theory T in variables x is a satisfiable set P of formulas in the variables x, containing T and closed under logical deduction. By abuse of notation, we will sometimes say that a set A of formulas is a partial type when we mean that A generates a partial type, namely the deductive closure of $T \bigcup A$. The only requirement is thus that $T \bigcup A$ be satisfiable.
The main practical benefit of being deductively closed is being closed under conjunctions; i.e. if $\varphi, \psi \in p$ then $(\varphi \wedge \psi) \in p$.. This often allows us to use a single formula from P where otherwise we would need finitely many.

Exercise 5.1. Let T be a complete theory. Let P be a set of formulas, closed under conjunctions. Show that P is satisfiable in a model of T iff

$$
(*) \text { for all } \varphi \in p, T \models \exists \bar{v} \varphi(\bar{v}) \text {. }
$$

Is closure under conjunctions necessary?
Definition A type p in the set of variables x, for the theory T, is a partial type for T satisfying: for any formula $\varphi(x)$, either $\varphi \in p$ or $\neg \varphi \in p$.

For emphasis, we sometimes say complete type in place of just type. A type p in v_{1}, \ldots, v_{n} will also be called an n-type.
Suppose $\bar{a} \in A^{n}$. Then we define the type of \bar{a} in \underline{A}.

$$
\operatorname{tp}_{\underline{A}}(\bar{a})=\{\varphi(x): \underline{A} \models \varphi(\bar{a})\} .
$$

Clearly, $\operatorname{tp}_{\underline{A}}(\bar{a})$ is a complete n-type.
When $\underline{A} \leq \underline{B}$ then $\operatorname{tp}_{\underline{A}}(a)$ and $\operatorname{tp}_{\underline{B}}(a)$ may be different. But it follows immediately from definitions that

$$
\underline{A} \preccurlyeq \underline{B} \text { implies } \operatorname{tp}_{\underline{A}}(a)=\operatorname{tp}_{\underline{B}}(a)
$$

We say that a partial type P is realised in A if there is $\bar{a} \in A^{n}$ such that $P \subseteq \operatorname{tp}_{\underline{A}}(\bar{a})$. When $P=p$ is a complete type, this can also be stated as: $p=\operatorname{tp}_{\underline{A}}(\bar{a})$.
If there is no such \bar{a} in \underline{A} we say that p is omitted in \underline{A}.
Remark If $\pi: \underline{A} \rightarrow \underline{B}$ is an isomorphism, $\bar{a} \in A^{n}, \bar{b} \in B^{n}$, and $\pi: \bar{a} \rightarrow \bar{b}$ then $\operatorname{tp}_{\underline{A}}(\bar{a})=\operatorname{tp}_{\underline{B}}(\bar{b})$.

In particular, if σ is an automorphism of \underline{A}, then for any $a \in A, a, \sigma(a)$ realise the same type.

Exercise 5.2. Let T be the theory of infinitely many disjoint infinite unary predicates, described in Exercise 4.15. Determine all the 1-types of T. Show there is a unique 1-type p_{n} including $P_{n}(x)$, and a unique non-principal 1type.

Proposition 5.3. Let \underline{A} be an L-structure, and $P=\left\{p^{\alpha}: \alpha<\kappa\right\}$ of partial types for $\operatorname{Th}(\underline{A})$. For any cardinal $\kappa \geq \max \{|\underline{A}|,|L|\}$ there is $\underline{B} \succcurlyeq \underline{A}$ of cardinality κ such that all types from P are realised in \underline{B}. In particular, for countable L and a complete theory T of L, given a partial type p there is a countable model \underline{B} of T which realises p.

Proof Consider the expansion L^{+}of $L_{\underline{A}}$ by new constants

$$
\left\{c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}: \alpha<\kappa\right\}
$$

and the theory

$$
T^{+}=\operatorname{CDiag}(\underline{A}) \cup\left\{\varphi\left(c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}\right): \varphi \in p^{\alpha}, \alpha<\kappa\right\}
$$

We claim that T^{+}is finitely satisfiable in \underline{A}. Indeed, any finite subset S of T^{+}contains only finitely many formulas φ from the types. Since types are closed under conjunction, we may assume that there is at most one formula of the form $\varphi\left(c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}\right)$ in S for a type p^{α}. Since $\exists \bar{v} \varphi(\bar{v})$ holds in \underline{A}, we can find in \underline{A} for $\varphi\left(c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}\right)$ an interpretation of $c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}$ which makes each such formula true in the corresponding expansion of \underline{A}.

By the compactness theorem there is a model $\underline{B}^{+} \models T^{+}$of cardinality κ. Since $\underline{B}^{+} \models \operatorname{CDiag}(\underline{A})$ the L-reduct \underline{B} of \underline{B}^{+}is an elementary extension of \underline{A}. Let, for each $\alpha, a_{1}^{\alpha}, \ldots, a_{n}^{\alpha}$ be the elements assigned to $c_{1}^{\alpha}, \ldots, c_{n}^{\alpha}$ in \underline{B}^{+}. By the construction $\left\langle a_{1}^{\alpha}, \ldots, a_{n}^{\alpha}\right\rangle$ realize p^{α} in \underline{B}.
If we start with a countable model \underline{A} of T and $\kappa \leq \aleph_{0}$, then \underline{B} can be chosen countable.

Corollary 5.4. For any partial type there is $p^{\prime} \supseteq p$ which is a complete type in the same variables.

Indeed, put $p^{\prime}=\operatorname{tp}_{\underline{B}}(\bar{a})$ for \bar{a} in \underline{B} realising p.
(Alternatively, one can use Zorn's lemma to take a maximal partial type containing and check that it is complete.)

Example There is a countable elementary extension of the group of integers $\mathbb{Z}=(\mathbb{Z} ;+; 0)$ which is not isomorphic to \mathbb{Z}.
Given $n>0$ denote by $n \mid v$ the formula $\exists w(v=w+\ldots+w)$ (n summands). Let

$$
p=\{v \neq 0\} \bigcup\{n \mid v: n=1,2, \cdots \in \mathbb{N}\} .
$$

p is clearly is finitely satisfiable in \mathbb{Z} (the first k sentences are realized by $k!$.) Thus it is realised in some countable elementary extension. But p is obviously omitted in \mathbb{Z}.

We denote $\mathrm{S}_{n}(T)$ the set of all complete n-types of T.
Remark $S_{n}(T)$ can profitably be viewed as a topological space, the Stone space of the n 'th Lindenbaum algebra of T.; a basic open set has the form

$$
X_{\phi}:=\{p: \phi \in p\}
$$

but here we consider it simply as a set. (Optional problem: show that $S_{n}(T)$ is a compact Hausdorff space. The (topological) compactness of $S_{n}(T)$ follows from the (logical) compactness theorem.)
Definition A partial type p is principal if there is $\varphi \in F_{n}$ such that $T \models$ $\exists \bar{v} \varphi(\bar{v})$ and for any $\psi \in p \quad T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \psi(\bar{v}))$.

Exercise 5.5. When p is a principal type, the formula φ above must be in p.

Exercise 5.6. A principal partial type is realised in any model \underline{A} of T.
Theorem 5.7 (Omitting a type). Let p be a non-principal partial type in a complete theory T of a countable language L. Then there is a countable model of T which omits p.

Proof Let $L^{\prime}=L \cup C, C$ a set of countably many new constant symbols. Let $\bar{c}_{1}, \ldots, \bar{c}_{k}, \ldots$ be an enumeration of all n-tuples of constant symbols of L^{\prime} and $\phi_{1}, \ldots, \phi_{l}, \ldots$ an enumeration of all sentences in L^{\prime}.
We construct a chain of finite sets of L^{\prime}-sentences

$$
S_{0} \subseteq \ldots S_{m} \subseteq \ldots
$$

by induction on $m \geq 1$ so that
(i) $T \cup S_{m}$ are satisfiable,
(ii) for $m \geq 1$ either ϕ_{m} or $\neg \phi_{m}$ is in S_{m},,
(iii) if ϕ_{m} is in S_{m} and has the form $\exists v \varphi(v)$, for some 1-variable L^{\prime}-formula $\varphi(v)$, then $\varphi(c) \in S_{m}$ for some $c \in C$
(iv) for $m \geq 1$ there is a formula $\psi \in p$ such that $\neg \psi\left(\bar{c}_{m}\right) \in S_{m}$.

Start with $S_{0}=\emptyset$.
Suppose $S_{0} \subseteq \ldots S_{m-1}$ are constructed.
If $T \cup S_{m-1} \cup\left\{\phi_{m}\right\}$ is satisfiable then put $S_{m}^{\prime}=S_{m-1} \cup\left\{\phi_{m}\right\}$. Otherwise $S_{m}^{\prime}=S_{m-1} \cup\left\{\neg \phi_{m}\right\}$. It is easy to see that $T \cup S_{m}^{\prime}$ is satisfiable.

Claim. There exists $\psi \in p$ such that $T \cup S_{m}^{\prime} \cup\left\{\neg \psi\left(\bar{c}_{m}\right)\right\}$ is satisfiable.
Proof of Claim. Suppose for all $\psi \in p$ the converse holds. Let $\Phi=\bigwedge S_{m}^{\prime}$. We can represent Φ as $\varphi\left(c_{m, 1}, \ldots, c_{m, n}, d_{1}, \ldots, d_{p}\right)$, where $\varphi\left(v_{1}, \ldots v_{n}, u_{1}, \ldots, u_{p}\right)$ is an L-formula with free variables $v_{1}, \ldots v_{n}, u_{1}, \ldots, u_{p}$ and $\left\langle c_{m, 1} \ldots, c_{m, n}\right\rangle=$ $\bar{c}_{m}, d_{1}, \ldots, d_{p}$ constant symbols not in L and different from $c_{m, i}$'s. We write corresponding formulas in the short form $\varphi\left(\bar{c}_{m}, \bar{d}\right)$ and $\varphi(\bar{v}, \bar{u})$.
Then, by our assumption, for any $\psi \in p$

$$
T \models\left(\varphi\left(\bar{c}_{m}, \bar{d}\right) \rightarrow \psi\left(\bar{c}_{m}\right)\right) .
$$

Since no component of \bar{c}_{m} and \bar{d} do occur in T, it follows

$$
T \models \forall \bar{v} \forall \bar{u}(\varphi(\bar{v}, \bar{u}) \rightarrow \psi(\bar{v})) .
$$

The formula can be equivalently rewritten as $\forall \bar{v}(\exists \bar{u} \varphi(\bar{v}, \bar{u}) \rightarrow \psi(\bar{v}))$, so

$$
T \models \forall \bar{v}(\exists \bar{u} \varphi(\bar{v}, \bar{u}) \rightarrow \psi(\bar{v}))
$$

for every $\psi \in p$. This means that $\exists \bar{u} \varphi(\bar{v}, \bar{u})$ is a principal formula for p. The contradiction proves the claim.

Now take $S_{m}^{\prime \prime}=S_{m}^{\prime} \cup\left\{\neg \psi\left(\bar{c}_{m}\right)\right\}$.
Suppose ϕ_{m} is in $S_{m}^{\prime \prime}$ and has the form $\exists v \varphi(v)$. Choose $c \in C$ which does not occur in $S_{m}^{\prime \prime}$. Then $T \cup S_{m}^{\prime \prime} \cup\{\varphi(c)\}$ has a model: any model \underline{A} of $T \cup S_{m}^{\prime \prime}$ in the language $L \cup\left\{\right.$ constants of $\left.S_{m}^{\prime \prime}\right\}$ can be expanded by assigning to c the values of v for $\exists v \varphi(v)$.
Denote $S_{m}=S_{m}^{\prime \prime} \cup\{\varphi(c)\}$. If ϕ_{m} does not have this form then put $S_{m}=S_{m}^{\prime \prime}$. This S_{m} satisfies (i)-(iv) by the construction.
To finish the proof of the theorem consider now

$$
T^{*}=T \cup \bigcup_{m \in \mathbb{N}} S_{m}
$$

By the properties (i)-(iii) T^{*} is satisfiable, complete and witnessing set of sentences. By Theorem $1.14 T^{*}$ has a L-minimal model \underline{A}. Notice that by (iii) for any closed term λT^{*} says $\lambda=c$ for some $c \in C$. Thus all elements of the L-minimal model \underline{A} are named by symbols from C. Consequently, (iv) says that no n-tuple in \underline{A} realises the partial type p.

A similar proof, with a little more book-keeping, shows that countably many types may simultaneously be omitted.

Theorem 5.8 (Omitting types). Let P be a countable set of partial types in a complete theory T of a countable language L. Assume no element of P is principal. Then there is a countable model of T which omits every type in P.

Proof. In the proof of the omitting types theorem, the goal of omitting p is subdivided into \aleph_{0} smaller tasks, to be taken care of in turn: at stage m, we took care that \bar{c}_{m} will not realize p. If we wish to omit countably many partial types p_{1}, p_{2}, \cdots, with p_{j} a partial type in variables $x_{1}, \ldots, x_{\alpha(j)}$, it suffices to use an enumeration $\left(\bar{c}_{1}, j_{1}\right),\left(\bar{c}_{2}, j_{2}\right), \cdots$ of all pairs (\bar{c}, j), with $j \in \mathbb{N}$ and \bar{c} an $\alpha(j)$-tuple from the new constants c_{1}, c_{2}, \ldots. At the stage m, we ensure that \bar{c}_{m} will not realize $p_{j_{m}}$. The proof is otherwise identical.

6 Atomic models and \aleph_{0}-categoricity

Fix a countable language L. Henceforce T denotes a complete L-theory having an infinite model. By the Lowenheim-Skolem downward Theorem, T has a countable model \underline{A}. As T is complete, we have $T=\operatorname{Th}(\underline{A})$.

Denote F_{n} the set of all L-formulas with free variables $v_{1} \ldots v_{n}$ (abbreviated $\bar{v})$. Denote \equiv_{T} the binary relation on F_{n} defined by

$$
\varphi(\bar{v}) \equiv_{T} \psi(\bar{v}) \quad \text { iff } \quad T \models \forall \bar{v}(\varphi(\bar{v}) \leftrightarrow \psi(\varphi)) .
$$

Equivalently, since T is complete, $\varphi(\underline{A})=\psi(\underline{A})$.

Thus, \equiv_{T} is an equivalence relation respecting the Boolean operations \wedge, \vee and \neg.

Given a theory T and a number $n, F_{n} / \equiv_{T}$ is called the nth Lindenbaum algebra of T. As was mentioned above, its elements are in a one-to-one correspondence with definable subsets of \underline{A} and \wedge, \vee and \neg correspond to the usual Boolean operations \cap, \cup and the complement, on the sets.
T
Let S_{n} be the set of types of T in variables v_{1}, \ldots, v_{n}.
Assume $\varphi \in F_{n}, p \in S_{n}, \varphi \in p$, and p is the unique element of S_{n} including φ.
Equivalently, $T \models \exists \bar{v} \varphi(\bar{v})$ and for any $\psi \in p \quad T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \psi(\bar{v}))$.
In this situation, we will say that p is a principal type, that ϕ is a principal formula, and also that ϕ is a principal formula for p.
Exercise 6.1. $\varphi \in L_{n}$ is a principal formula (for some type) iff $T \models \exists \bar{v} \varphi(\bar{v})$ and for any $\psi \in L_{n}$, either $T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \psi(\bar{v}))$, or $T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \neg \psi(\bar{v}))$

A type which is not principal is called non-principal.
Call a model of T atomic if every n-tuple in \underline{A} satisfies a principal formula. 5

Proposition 6.2. Let $\underline{A}, \underline{B}$ be two countable, atomic models of T. Then $\underline{A} \cong \underline{B}$.

[^3]
Proof Enumerate

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}, \quad B=\left\{b_{1}, b_{2}, \ldots\right\} .
$$

We will construct new enumerations $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right\}$ and $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right\}$ of the sets so that the enumerations establish a correspondence between the sets preserving L-formulas, by the back-and-forth method:
Suppose $a_{1}^{\prime}, \ldots, a_{n-1}^{\prime} \in A$ and $b_{1}^{\prime}, \ldots, b_{n-1}^{\prime} \in B$ satisfy for all $\psi \in F_{n-1}$

$$
\text { (*) } \underline{A} \models \psi\left(a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}\right) \text { iff } \underline{B} \models \psi\left(b_{1}^{\prime}, \ldots, b_{n-1}^{\prime}\right) \text {. }
$$

Notice that $\left(^{*}\right)$ is true for $n=1$ since $\underline{A} \equiv \underline{B}$. Let n be odd and a_{n}^{\prime} be the first member in $A=\left\{a_{1}, a_{2}, \ldots\right\}$ not occurring among $a_{1}^{\prime}, \ldots a_{n-1}^{\prime}$. Let φ be a principal formula for $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$. Then $\underline{A} \models \varphi\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and so, $\underline{A} \models \exists v \varphi\left(a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}, v\right)$. By $\left(^{*}\right) \underline{B} \models \exists v \varphi\left(b_{1}^{\prime}, \ldots, b_{n-1}^{\prime}, v\right)$. Hence we may choose $b_{n}^{\prime} \in B$ such that $\underline{B} \models \varphi\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$.
Now suppose $\psi \in F_{n}$ and $\underline{A} \models \psi\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. Since φ is principal

$$
T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \psi(\bar{v})) .
$$

Hence $\underline{B} \models \psi\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$.
Thus $\left(^{*}\right)$ is satisfied for $a_{1}^{\prime}, \ldots a_{n}^{\prime}$ and $b_{1}^{\prime}, \ldots b_{n}^{\prime}$, too.
Similarly, when n is even, let b_{n}^{\prime} be the first element in $B=\left\{b_{1}, b_{2}, \ldots\right\}$ not occurring among $b_{1}^{\prime}, \ldots b_{n}^{\prime}$. Then we can find $a_{n}^{\prime} \in A$ such that $\left({ }^{*}\right)$ is satisfied for $a_{1}^{\prime}, \ldots a_{n}^{\prime}$ and $b_{1}^{\prime}, \ldots b_{n}^{\prime}$.
Hence we may inductively construct in this way $A=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots a_{n}^{\prime} \ldots\right\}, B=$ $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots b_{n}^{\prime} \ldots\right\}$ satisfying $\left(^{*}\right)$ for all n. Our construction guarantees (as in the proof of Cantor's theorem) that we get all of A and all of B. Now it follows from $\left(^{*}\right.$) that $a_{i}^{\prime} \rightarrow b_{i}^{\prime}$ is an isomorphism (in particular, a well-defined injective map; to see this take ψ in $\left(^{*}\right)$ to be $x_{i} \bumpeq x_{j}$).

Definition A model \underline{A} of T is called prime if for any model \underline{B} of T there exists an elementary embedding $\pi: \underline{A} \rightarrow \underline{B}$.

Proposition 6.3. Any countable atomic model of a complete theory T is prime.

Proof. The proof resembles that of Proposition 6.2, but with the "forth" part of the construction alone.
Let \underline{A} be a countable atomic model of T. Let \underline{B} be any model of T; we have to find an elementary embedding $\underline{A} \rightarrow \underline{B}$.
Enumerate

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}
$$

We will recursively define elements b_{1}, b_{2}, \ldots of B so that $a_{i} \mapsto b_{i}$ is an elementary embedding.
Assume b_{1}, \ldots, b_{n-1} have been defined, and satisfy for all $\psi \in F_{n-1}$

$$
\text { (*) } \underline{A} \models \psi\left(a_{1}, \ldots, a_{n-1}\right) \text { iff } \underline{B} \models \psi\left(b_{1}, \ldots, b_{n-1}\right) \text {. }
$$

Notice that $\left({ }^{*}\right)$ is true for $n=1$ since $\underline{A} \equiv \underline{B}$. Assume inductively it holds at $n-1$.
As \underline{A} is atomic, there exists a principal formula φ realized by a_{1}, \ldots, a_{n}. Then $\underline{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ and so, $\underline{A} \models \exists v \varphi\left(a_{1}, \ldots, a_{n-1}, v\right)$. By (*) $\underline{B} \models$ $\exists v \varphi\left(b_{1}, \ldots, b_{n-1}, v\right)$. Hence we may choose $b_{n} \in B$ such that $\underline{B} \models \varphi\left(b_{1}, \ldots, b_{n}\right)$. Picking such a b_{n} finishes the inductive step of the construction, once we prove $\left.{ }^{*}\right)$ for n.
Thus suppose $\psi \in F_{n}$ and $\underline{A} \models \psi\left(a_{1}, \ldots, a_{n}\right)$. Since φ is principal

$$
T \models \forall \bar{v}(\varphi(\bar{v}) \rightarrow \psi(\bar{v})) .
$$

Hence $\underline{B} \models \psi\left(b_{1}, \ldots, b_{n}\right)$.
Thus $\left(^{*}\right)$ is satisfied for $a_{1}, \ldots a_{n}$ and $b_{1}, \ldots b_{n}$, too.
It follows from $\left(^{*}\right)$ for the special case that ψ is the formula $x_{i} \bumpeq x_{j}$, that $a_{i} \mapsto$ b_{i} is a well-defined map, and is injective. By $\left(^{*}\right)$ again, it is an elementary embedding of \underline{A} into \underline{B}.
Proposition 6.4. Let $\underline{A}, \underline{B}$ be two countable, atomic models of T. Let $c_{1}, \ldots, c_{n} \in A$ and $d_{1}, \ldots, d_{n} \in B$, and assume, for all formulas $\psi\left(u_{1}, \ldots, u_{n}\right)$ we have:

$$
\begin{equation*}
\underline{A} \models \psi\left(c_{1}, \ldots, c_{n}\right) \text { iff } \underline{B} \models \psi\left(d_{1}, \ldots, d_{n}\right) . \tag{2}
\end{equation*}
$$

Then there exists an isomorphism $F: \underline{A} \rightarrow \underline{B}$ such that $F\left(c_{i}\right)=d_{i}$.

Proof. Follow the proof of Proposition 6.2, only start at stage n with $a_{i}^{\prime}=$ $c_{i}, b_{i}^{\prime}=d_{i}$ for $i \leq n$.

Corollary 6.5. Let \underline{A} be a countable atomic model. Then \underline{A} is homogeneous: For any $c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n} \in A$, with $\operatorname{tp}\left(c_{1}, \ldots, c_{n}\right)=t p\left(d_{1}, \ldots, d_{n}\right)$, there exists an automorphism g of \underline{A} with $g\left(c_{i}\right)=d_{i}$.

Let us draw some corollaries.
Theorem 6.6. A countable model of T is prime if and only if it is atomic.
Proof. We already showed that countable atomic models are prime. Conversely, if M_{0} is a prime model of T and a type p is realized in M_{0}, then p is realized in every $M \succ M_{0}$ and hence as M_{0} is prime, in every model of T. By the omitting types theorem, p is principal.

Definition T is a small theory if for each n, it has only countably many n-types; i.e. card $\mathrm{S}_{n}(T) \leq \aleph_{0}$ for all $n \in \mathbb{N}$.

Proposition 6.7. Assume T is small. Then T has a countable atomic model.

Proof. Since T is small, there are only countably many types and in particular countably many non-principal types in $\bigcup_{n} \mathrm{~S}_{n}(T)$. By the omitting types theorem, there is a countable model \underline{A} of T which omits all the non-principal types. This \underline{A} is atomic by definition.

Lemma 6.8. F_{n} / \equiv_{T} is finite if and only if every n-type of T is principal.
Proof. Assume F_{n} / \equiv_{T} is finite, and let $p(x)$ be any n-type, $x=x_{1}, \ldots, x_{n}$. Let $\psi_{1}, \ldots, \psi_{k}$ be a maximal set of pairwise inequivalent (under \equiv_{T}) formulas of F_{n}, with $\psi_{i} \in p$. Let $\psi=\psi_{1} \wedge \cdots \wedge \psi_{k}$. Then $\psi \in p$, and as any formula ϕ in p is T-equivalent to some ψ_{i}, we have $T \vdash \psi \rightarrow \phi$. This proves that p is principal (via ψ.)
Assume conversely that F_{n} / \equiv_{T} is infinite. Let us prove that T has a nonprincipal n-type.
Let $P=\left\{\neg \varphi_{1} \wedge \ldots \wedge \neg \varphi_{k} \in F_{n}: \varphi_{i}\right.$ principal formulae $\}$. We claim that P generates a partial type for T.
Suppose not. Then

$$
T \models \forall \bar{v}\left(\varphi_{1}(\bar{v}) \vee \ldots \vee \varphi_{k}(\bar{v})\right)
$$

for some principal formulas $\varphi_{1}, \ldots, \varphi_{k} \in F_{n}$.

Define for $\psi \in F_{n}$

$$
W_{\psi}=\left\{i \in\{1, \ldots, k\}: T \models(\exists \bar{v})\left(\varphi_{i}(\bar{v}) \wedge \psi(\bar{v})\right)\right\}
$$

Notice that since φ_{i} 's are principal formulas
$T \models \exists \bar{v}\left(\varphi_{i}(\bar{v}) \wedge \psi(\bar{v})\right\} \quad$ iff $\left.T \models \forall \bar{v}\left(\varphi_{i}(\bar{v}) \rightarrow \psi(\bar{v})\right)\right\}$.
It follows that for any $\psi, \chi \in F_{n} \psi \equiv_{T} \chi$ iff $W_{\psi}=W_{\chi}$. Thus card $F_{n} / \equiv_{T}=2^{k}$. This contradicts the assumptions and proves the claim.
Take now a complete n-type extending P. It cannot be principal since the negation of every principal formula is already in P.

Theorem 6.9 (Ryll-Nardzewski). T is \aleph_{0}-categorical iff F_{n} / \equiv_{T} is finite for all $n \in N$.

Proof Assume F_{n} / \equiv_{T} is finite for all $n \in \mathbb{N}$. By the above lemma, every type of T is principal. Hence by definition every model of T is atomic. But any two countable atomic models of T are isomorphic; so all countable models of T are isomorphic.
Conversely, assume F_{n} / \equiv_{T} is infinite. Then there exists a non-principal n type p of T. By the omitting types theorem there is a countable model \underline{A} that omits p. On the other hand, by Lemma 5.3, there is a countable model \underline{B} which realises p. It follows \underline{A} is non-isomorphic to \underline{B} and thus T is not \aleph_{0} categorical.

Remark The Ryll-Nardjewski theorem was in fact proved independently by him in Warsaw, by Engeler in Zurich and by Svenonius in Uppsala, in 1959, following precedents in the form of ω-logic. Vaught at Berkeley made the extension to omitting many types in 1961, in order to give the comprehensive theory of atomic and saturated countable models of countable complete theories.
This leads to a very fruitful connection to group theory.
Definition Let M be any set, and let G be a subgroup of the group $\operatorname{Sym}(M)$ of permutations of M. For $a=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$, and $g \in G$, we define $g a:=\left(g a_{1}, \ldots, g a_{n}\right)$. Two n-tuples $a, b \in M^{n}$ are said to be G-conjugate if there exists $g \in G$ with $g a=b$. This is an equivalence relation on M^{n}. The equivalence classes are called the G-orbits; the set of G-orbits is denoted M^{n} / G.
Definition A subgroup G of $\operatorname{Sym}(M)$ is oligomorphic if for all $n=1,2, \cdots$, M^{n} / G is finite. The term is due to Peter Cameron.

Proposition 6.10. Let M be a countable structure. Then $T h(M)$ is \aleph_{0-} categorical iff $G=\operatorname{Aut}(M)$ is oligomorphic.

Proof. Assume $\operatorname{Th}(M)$ is \aleph_{0}-categorical, and let $n \in \mathbb{N}, x=\left(x_{1}, \ldots, x_{n}\right)$. Then $T h(M)$ has a finite number $\phi_{1}(x), \ldots, \phi_{k}(x)$ of formulas $\phi(x)$ up to equivalence. Since a type $p(x)$ is determined by the set of $\phi_{i}(x)$ it contains, there are at most 2^{k} types $p(x)$. ${ }^{6}$. Now if $a, b \in M^{n}$ and $\operatorname{tp}(a)=t p(b)$, then there exists an automorphism $g \in G$ with $g(a)=b$. Thus the number of G-orbits is at most the number of types, so it is finite.
Conversely, if G is oligomorphic, say with m orbits on M^{n}, since every definable subset of M^{n} is G-invariant the number of definable subsets of M^{n} is at most 2^{m}. Thus $\left|F_{n}(T) / \equiv_{T}\right| \leq 2^{m}$. So T is \aleph_{0}-categorical.

Thus an \aleph_{0}-categorical theory gives rise to an oligomorphic permutation group on a countable set.
Conversely, an oligomorphic permutation group on a countable set gives rise to an \aleph_{0}-categorical theory:

Exercise 6.11. Let T be an \aleph_{0}-categorical theory, $M \models T, G=\operatorname{Aut}(M)$. Let $S \subset M^{n}$. Show that S is definable if and only if it is G-invariant, i.e. $g(S)=S$ for every $g \in G$.

Exercise 6.12. (optional.) Let M be a countable set, and let G be an oligomorphic subgroup of $\operatorname{Sym}(M)$. Let L be a language having one n-ary relation symbol R_{c}^{n} for each orbit c of G on M^{n}. Let \underline{M} be the L-structure with universe M, and with R_{c}^{n} interpreted as c. Show that any qf definable subset of M^{n} is a (finite) disjunction $R_{c_{1}}^{n} \cup \cdots \bigcup R_{c_{k}}^{n}$. Show that the projection to M^{n-1} of any R_{c}^{n} is some $R_{c^{\prime}}^{n-1}$. Thus $T h(\underline{M})$ admits quantifier elimination. Show that this theory is \aleph_{0}-categorical.

Remark in the above exercise, $\operatorname{Aut}(M)$ is not G but the completion of G in an appropriate sense.
Definition A model M is elementarily minimal if M has no proper elementary submodel (I.e. $N \preccurlyeq M$ implies $N=M$.)
Note this differs from the earlier notion of an L-minimal model! Any finite structure is elementarily minimal, but not necessarily L-minimal.

[^4]Exercise 6.13. 1. Show that a prime model of T has size $\leq|L|+\aleph_{0}$.
2. Show that an elementarily minimal model of T has size $\leq|L|+\aleph_{0}$.
3. Let \underline{A} be a prime model of T, and \underline{B} an elementarily minimal model of T. Show that $\underline{A} \cong \underline{B}$. (Give a short direct argument, not requiring countability of L.) Conclude that if T has a prime model and an elementarily minimal model, then any two prime models are isomorphic, and any two minimal models are isomorphic.

Definition A countable model \underline{A} of T is called \aleph_{0}-universal if, for any countable model \underline{B} of T, there is an elementary embedding $\pi: \underline{B} \rightarrow \underline{A}$.

Exercise 6.14.

For each of the following theories, determine whether it has a minimal model, a prime model, a countable \aleph_{0-} universal model. How many isomorphism classes of countable models does each have?

1. T^{∞} (the theory of infinite sets in the language $\{\bumpeq\}$ with no nonlogical symbols.)
2. $A C F_{0}$ (optional; if you do not feel comfortable with the algebra, do as much as you can.)
3. The theory of nonzero \mathbb{Q}-vector spaces.
4. $D L O$
5. $D L O_{\mathbb{Q}}$ (The theory of $(\mathbb{Q},<)_{\mathbb{Q}}$, the rational order in a language including a constant symbol for each rational.)

Exercise 6.15. Let $\phi\left(u_{1}, \ldots, u_{n}\right)$ be any formula, and let $U(\phi)=\left\{p \in S_{n}\right.$: $\phi \in p\}$, where S_{n} is the set of n-types. Show that up to \equiv_{T}, ϕ is determined by $U(\phi)$. Conclude that if S_{n} is finite then there are finitely many formulas in u_{1}, \ldots, u_{n}, up to T-equivalence.

Exercise 6.16. Let $L=\left\{P_{1}, P_{2}, \ldots\right\}$; where the P_{k} are unary predicates.

1. Let \underline{A} be the L-structure whose universe is \mathbb{N}, and such that P_{k} is the set of natural numbers divisible by the k 'th prime p_{k}. For any finite subset S of \mathbb{N}, let P_{S} denote the conjunction $\bigwedge_{k \in S} P_{k}$, and let P_{S}^{\prime} denote $\bigwedge_{k \in S} \neg P_{k}$. Note that for any two disjoint finite sets $S, S^{\prime} \subset \mathbb{N}$, the intersection $P_{S}(\underline{A})$ with $P_{S^{\prime}}^{\prime}(\underline{A})$ is infinite.
2. Write explicitly a sentence $\alpha_{S, S^{\prime}, m}$ asserting that the intersection of P_{S} with $P_{S^{\prime}}^{\prime}$ has at least m points. Let T be the theory axiomatized by all these $\alpha_{S, S^{\prime}, m}$. Show that $T=T h(\underline{A})$ (you may first want to do the next two clauses.)
3. Let $L_{n}=\left\{P_{1}, \ldots, P_{n}\right\}$, and let T_{n} be the theory axiomatized by all $\alpha_{S, S^{\prime}, m}$ with S, S^{\prime} disjoint subsets of $\{1, \ldots, n\}$, and $m \in \mathbb{N}$. Show that T_{n} is \aleph_{0}-categorical, and complete.
4. Conclude that T is complete.
5. Show that T has no principal 1-types, hence no atomic model.
6. Show that T has $2^{\aleph_{0}}$ 1-types.

Exercise 6.17. Let L be the language with a binary relation symbol E and a unary function symbol f. The axioms of T assert that E is an equivalence relation with infinitely many classes; that f is $1-1$ and onto, and $f^{n}(x) \neq x$ for $n=1,2, \ldots$ (where $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$.); and that $E(x, f(x))$. You may assume that T is complete and admits QE. Describe the countable models, including the prime model, the saturated model and the universal models.

Exercise 6.18. Notation is as in problem 6.16.

1. How many models of cardinality \aleph_{n} does T_{1} have?
2. How many models of cardinality \aleph_{1} does T_{n} have? Describe the $\aleph_{1}-$ saturated one.
3. Show that T has $2^{\aleph_{0}}$ non-isomorphic countable models.

Exercise 6.19. Let $L=\left\{<, c_{1}, c_{2}, \ldots\right\}$, and consider three L-structures M_{1}, M_{2}, M_{3}, all with universe \mathbb{Q} and the usual interpretation of $<$, but different interpretations of the c_{i}; namely, $c_{n}^{M_{1}}=n, c_{n}^{M_{2}}=-1 / n, c_{n}^{M_{3}}=\left(1+\frac{1}{n}\right)^{n}$.

1. Show that these are three models of the same complete theory $T=$ $D L O_{\mathbb{N}}$. (Hint: consider finite sublanguages.)
2. Are any two isomorphic? Which of them is prime? Which is universal? (Optional: Which of them is saturated?)
3. (optional). Show that any countable model of $D L O_{\mathbb{N}}$ is isomorphic to one of the above three. (Thus $I\left(D L O_{\mathbb{N}}, \aleph_{0}\right)=3$; in general $I\left(T, \aleph_{0}\right)$ denotes the number of isomorphism classes of models of T of cardinality \aleph_{0}.)
4. (optional.) Find a theory with exactly four isomorphism types of countable models. (Hint: consider the theory in the language $(<, P)$ of a dense linear ordering with a unary predicate P, and additional axioms asserting that both P and the complement of P are dense, and cofinal, i.e. $(\forall x)(\exists y)(P(y) \& x<y),(\forall x)(\exists y)(\neg P(y) \& x<y)$, $(\forall x)(\exists y)(P(y) \& y<x),(\forall x)(\exists y)(\neg P(y) \& y<x)$, and similarly for density. Prove that this theory is \aleph_{0}-categorical. Then add constants for elements $c_{1}<c_{2}<\cdots$ of P.)

7 Countable saturated models

Let T be a complete theory in a countable language $L . \mathrm{S}_{n}(T)$ the set of all complete n-types of T.
Definition A structure \underline{A} is called \aleph_{0}-saturated if, for any expansion \underline{A}^{\prime} of \underline{A} by finitely many constant symbols, every 1 -type in $\operatorname{Th}\left(\underline{A}^{\prime}\right)$ is realised in \underline{A}^{\prime}.

If $|A|=\aleph_{0}$, and \aleph_{0}-saturated, we simply that \underline{A} is saturated.
Recall also that a countable model \underline{A} of T is called \aleph_{0}-universal if, for any countable model \underline{B} of T, there is an elementary embedding $\pi: \underline{B} \rightarrow \underline{A}$.

Theorem 7.1. (i) Any countable saturated model of a complete theory T is \aleph_{0}-universal. (Definition 6.)
(ii) Any two countable \aleph_{0}-saturated models of T are isomorphic.

Proof Exercise. Use an inductive construction similar to the one in the proof of Proposition 6.2
For (i), or (ii)) and Proposition 6.3 (for (i)).
But when does T have a countable saturated model?
Lemma 7.2. Let $T^{\prime}=T\left(c_{1}, \ldots, c_{m}\right)$ be a complete theory extending T in the language $L\left(c_{1}, \ldots, c_{m}\right)$, the extension of L by finitely many extra constants symbols c_{1}, \ldots, c_{m}, and suppose T is small. Then T^{\prime} is small too.

Proof Fix n. For each $p \in \mathrm{~S}_{n}\left(T^{\prime}\right)$ define

$$
p^{*}=\left\{\phi\left(v_{1}, \ldots, v_{n+m}\right) \in F_{n+m}: \phi\left(v_{1}, \ldots, v_{n}, c_{1}, \ldots, c_{m}\right) \in p\right\} .
$$

It follows from the definition that $p^{*} \in \mathrm{~S}_{n+m}(T)$, and if $p_{1} \neq p_{2}$ then $p_{1}^{*} \neq$ p_{2}^{*}. Hence we have mapping $\mathrm{S}_{n}\left(T^{\prime}\right) \rightarrow \mathrm{S}_{m+n}(T)$, which is injective. Since card $\mathrm{S}_{m+n}(T) \leq \aleph_{0}$, by the hypothesis, we have $\mathrm{S}_{n}\left(T^{\prime}\right) \leq \aleph_{0}$.

Theorem 7.3. T has a countable \aleph_{0}-saturated model iff it is small.
Proof. Let \underline{A} be a countable model of T. Enumerate $\left\{a_{1}, \ldots, a_{n}, \ldots\right\}$ elements of \underline{A}. Let $C=\left\{c_{1}, \ldots, c_{n}, \ldots\right\}$ be a set of new constant symbols, \underline{A}_{C} the structure in the language L_{C} obtained by assigning a_{i} to c_{i}, T_{C} the theory of
the structure, and $T_{\left\{c_{1}, \ldots, c_{m}\right\}}$ the fragment of the theory containing formulas with at most the first m constants symbols of C.
By the lemma above, the set of 1-types $\bigcup_{m} \mathrm{~S}_{1}\left(T_{\left\{c_{1}, \ldots, c_{m}\right\}}\right)$ is countable. By Lemma 5.3 we can construct a countable $\underline{B}_{C} \succ \underline{A}_{C}$ which realises all the types of $\bigcup_{m} \mathrm{~S}_{1}\left(T_{\left\{c_{1}, \ldots, c_{m}\right\}}\right)$. Clearly \underline{B} has the property that any 1-type of an expanded theory $\operatorname{Th}\left(\underline{A}_{\left\{c_{1}, \ldots, c_{m}\right\}}\right)$ is realised in \underline{B}_{C}.
Repeating this construction we get an elementary chain

$$
\underline{A}^{(0)} \preccurlyeq \underline{A}^{(1)} \preccurlyeq \ldots \preccurlyeq \underline{A}^{(n)} \ldots
$$

of countable models of T with $\underline{A}^{(0)}=\underline{A}$ and the property that any 1-type in $\operatorname{Th}\left(\underline{A}_{\left\{c_{1}, \ldots, c_{m}\right\}}^{(n)}\right)$ is realised in $\underline{A}_{c_{1}, \ldots, c_{m}}^{(n+1)}$ for any assignment of constant symbols c_{1}, \ldots, c_{m}, any m.
Then the union $\underline{A}^{*}=\bigcup_{n} \underline{A}^{(n)}$ of the elementary chain, by Exercise 3.10 (2), is an elemenary extension of \underline{A} and indeed of each $\underline{A}^{(n)}$. It follows that \underline{A}^{*} is a countable saturated model of T. The converse direction follows from the exercise below.

Exercise 7.4. Assume T has a countable universal model. Show that T is small.

When T is not small, we can conclude it has many non-isomorphic models.
Proposition 7.5. Suppose card $\mathrm{S}_{n}(T)=\kappa>\aleph_{0}$. Then T has a set of κ pairwise non-isomorphic countable models.

Proof For any n-type there is a countable model that realises the type, and in a countable model at most countably many complete types can be realized.

Exercise 7.6. Let T be a complete theory in a countable language. Assume some countable model M of T is both prime and universal. Prove that T is \aleph_{0}-categorical.

Theorem 7.7 (Vaught's never-two theorem). Let T be a complete theory in a countable language. Then the number of isomorphism types of countable models of T is not equal to 2 .

Proof. Suppose for the sake of contradiction that T has precisely two countable models, up to isomorphism. In particular it has $\leq \aleph_{0}$ of them; so by Proposition 7.5, T is small.
Thus T has a prime model, and a saturated model. If they are isomorphic, since the saturated model is universal and the prime model is atomic, every countable model of T is atomic. But in this case any two countable models are isomorphic, so the number is 1 and not 2 .
Thus we have identified the two models of T : the prime and the saturated one. We will now construct a third.
Let p be a non-principal n-type of T, say in the variables x. Let c be a new tuple of constant symbols, and let T^{\prime} be the theory $p(c)$. Then T^{\prime} is also small, so it has a prime model M^{\prime}. Let $a=c^{M^{\prime}}$, and let M be the reduct of M^{\prime} to L. Note that M^{\prime} realizes a non-principal type (namely p) so it is not the atomic model. But $F_{n}\left(T^{\prime}\right)$ contains $F_{n}(T)$ and so is infinite, so T^{\prime} is not \aleph_{0}-categorical, hence has a non-prinicipal type q. This type is not realized in M^{\prime}. Thus M is not saturated. We have found a third model of T.

Exercise 7.8. Go through the above corollary and justify each statement using a previous result.

A model M can be called finitely universal if it realizes all types.
Exercise 7.9. Assume T has finitely many isomorphism types of countable models. Show that T has a countable finitely universal model, that is not saturated.

I do not know whether in this situation the finitely universal model must be universal.
Question. If T has finitely many countable models, up to isomorphism, must it have a universal model that is not saturated?
Remark There exist examples of complete countable theories whose number of countable models is $3,4,5, \cdots$ as well as $1, \aleph_{0}$ and $2^{\aleph_{0}}$. Morley has proved that the number cannot be strictly between \aleph_{1} and $2^{\aleph_{0}}$. It remains unknown whether when $\aleph_{1}<2^{\aleph_{0}}$ there can be a theory with precisely \aleph_{1} isomorphism types of countable models.
Vaught conjectured that the answer is no; Shelah conjectured yes in a strong form. Vaught's conjecture led to a considerable amount of research; many cases were proved, notably for ω-stable theories, i.e. theories T such that T_{M} is small for all countable models M.

The perfect set theorem

Theorem 7.10. Suppose $\mathrm{S}_{n}(T)$ is uncountable. Then card $\mathrm{S}_{n}(T)=2^{\aleph_{0}}$.
Proof Let F_{n} be the algebra of formulas of T in n variables. Call a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ small if

$$
U_{\varphi}=\left\{p \in S_{n}(T): \varphi \in p\right\}
$$

is countable. Otherwise, say φ is big.
Lemma 7.11. For any $\operatorname{big} \varphi$ there are big φ_{0} and φ_{1} such that $\varphi \equiv \varphi_{0} \vee \varphi_{1}$ and there is no n-type containing both of the formulas, that is $T \vDash \neg \exists \bar{v}\left(\varphi_{0} \wedge\right.$ φ_{1}).

Proof Suppose not. Define

$$
q_{\varphi}=\left\{\psi \in F_{n}:(\psi \wedge \varphi) \text { is } \operatorname{big}\right\} .
$$

This is a complete type. Indeed, (i) of the definition of type follows from the fact that every ψ in q_{φ} belongs to a type, since ψ is big .
(ii) follows from the assumption that φ can not be divided into two big parts: $\psi_{1} \wedge \psi_{2} \wedge \varphi$ is big, if $\psi_{1}, \psi_{2} \in q_{\varphi}$.
(iii) is immediate from the same assumption.

Now notice that

$$
U_{\varphi}=\left\{q_{\varphi}\right\} \cup \bigcup\left\{U_{\neg \psi \wedge \varphi}: \psi \in q_{\varphi}\right\}
$$

By assumptions $U_{\neg \psi \wedge \varphi}$ is at most countable, for every $\psi \in q_{\varphi}$, contradicting the fact that φ is big.
Proof of the theorem. Notice first that the number of n-types is not greater than $2^{\aleph_{0}}$ since each type is just a subset of the countable set F^{n}. So we want to show that the number is not less than $2^{\aleph_{0}}$.
Let $\mathcal{M}=\{\mu: \mathbb{N} \rightarrow\{0,1\}\}$ be the set of all $\{0,1\}$-sequences. For each μ and $n \in \mathbb{N}$ define $\mu_{\mid n}$, the initial n-cut of μ, to be the reduction of μ to $\{1, \ldots, n\}$. Define a big formula $\varphi_{\mu, n}$ by induction on n :
For $n=0$ let it be the formula $v_{1}=v_{1}$.
If $\varphi_{\mu, n}$ is defined then $\varphi_{\mu, n+1}$ is either one of the two big formulas that divide $\varphi_{\mu, n+1}$, as given by the lemma above, depending on whether $\mu(n+1)$ is 0 or 1. So if $\mu_{\mid n}=\nu_{\mid n}$ and $\mu_{\mid n+1} \neq \nu_{\mid n+1}$, then $\varphi_{\mu, n}=\varphi_{\nu, n}$, and $\varphi_{\mu, n+1}$ but $\varphi_{\nu, n+1}$ can not belong to a common type. Also $T \vDash \forall \bar{v}\left(\varphi_{\mu, n+1} \rightarrow \varphi_{\mu, n}\right)$.

Let now for each μ

$$
q_{\mu}=\left\{\varphi_{\mu, i_{1}} \wedge \ldots \wedge \varphi_{\mu, i_{n}}: i_{1}, \ldots, i_{n} \in \mathbb{N}\right\} .
$$

This, by definition, is a type. So, there is an extension $p_{\mu} \supseteq q_{\mu}$ which is a complete type. If $\mu \neq \nu$, say n is the first number such that $\mu(n) \neq \nu(n)$, then $\varphi_{\mu, n} \in p_{\mu}, \varphi_{\nu, n} \in p_{\nu}$ are the two mutually inconsistent formulas dividing $\varphi_{\mu, n}$, and so $p_{\mu} \neq p_{\nu}$.
Thus the number of complete types is not less than the number of infinite $\{0,1\}$-sequences, which is $2^{\aleph_{0}}$.

Remark The theorem is a special case of the classical topological fact: A complete separable metric space is either countable or contains a perfect set (a nonempty closed set with no isolated points); the latter has cardinality continuum. , or a similar theorem in a topological version for compact Hausdorff spaces. This was proved by Cantor for closed subsets of the real line. Our U_{ϕ} 's form a basis of such a topology on $\mathrm{S}_{n}(T)$.

Applying Theorem 7.5 and taking into account that, given a countable language L, there is at most $2^{\aleph_{0}}$ countable L-structures, we have:

Corollary 7.12. Suppose for some $n, \mathrm{~S}_{n}(T)$ is uncountable. Then T has exactly $2^{\aleph_{0}}$ non-isomorphic countable models.

8 Saturated models

We continue to assume that L is countable for notational simplicity; but by contrast to the results on atomic models that depended on on the omitting types theorem, this is no longer really essential.
Definition A structure \underline{A} is called \aleph_{1}-saturated if, for any expansion \underline{A}^{\prime} of \underline{A} by countably many contant symbols, every 1 -type in $\operatorname{Th}\left(\underline{A}^{\prime}\right)$ is realised in \underline{A}^{\prime}.

When $|\underline{A}|=\aleph_{1}$, we simply say that \underline{A} is saturated if it is \aleph_{1}-saturated.
Proposition 8.1. Let T be a complete theory in a countable language. T has an \aleph_{1}-saturated model N of cardinality $2^{\aleph_{0}}$. Any model of T of cardinality $\leq \aleph_{1}$ embeds elementarily into N.

Proof. This is very similar to the countable case, but with a different type count:
Claim Let $M \models T,|M| \leq 2^{\aleph_{0}}$. There are then $\leq 2^{\aleph_{0}}$ countable subsets $A \subset M$; for each such A, the number of (even partial) types over A is $\leq 2^{\aleph_{0}}$.

Proof. The first statement: $\left(2^{\aleph_{0}}\right)^{\aleph_{0}}={ }^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}$. For the second, note that $L(A)$ is countable so the set of formulas is countable; a (partial) type is a subset of the set of formulas, so there are at most $2^{\aleph_{0}}$.

From this it follows that there exists $M^{*} \succ M$, realizing every type over a countable subset of M.
We now build a model N as a limit of an elementary chain $M_{\alpha}, \alpha<\omega_{1}$, with $M_{\alpha} \leq 2^{\aleph_{0}}$. If α is a limit ordinal, we let $M_{\alpha}=\bigcup_{\beta<\alpha} M_{\beta}$. If $\alpha=\beta+1$, let $M_{\alpha}=M_{\beta}^{*}$.
Any countable subset of N is contained in some M_{α}, so N is \aleph_{1}-saturated. We have $|N| \leq \aleph_{1} 2^{\aleph_{0}}=2^{\aleph_{0}}$.

Proposition 8.2. Let T be a complete theory. Any two \aleph_{1}-saturated models of T of cardinality \aleph_{1} are isomorphic.

Proof. Let M, N be two \aleph_{1}-saturated models of T of cardinality \aleph_{1}. We seek to construct an isomorphism $F: M \rightarrow N$. An approximation is a partial elementary map $f: A \rightarrow B$ with A a countable subset of M, and B a countable subset of N. Such an approximation can always be extended to another, $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$, with a given element $a \in A$ lying in A^{\prime}. We now set up a back-and-forth construction of approximations $f_{\alpha}: A_{\alpha} \rightarrow B_{\alpha}$ for $\alpha<\omega_{1}$; at the α^{\prime} th (back-and-forth) step, we add the α 'th element of a pre-determined enumeration of M to the domain, and the α 'th element of N to the range; at limit steps, we take unions.

The proof also shows that any approximation can be extended to an isomorphism; in the special case $M=N$, we obtain, as in Corollary 6.5.

Proposition 8.3. Any \aleph_{1}-saturated model of T of cardinality \aleph_{1} is homogeneous.

Corollary 8.4. Assume $\aleph_{1}=2^{\aleph_{0}}$, and let T be a theory with no finite models. Then T is complete if and only if any two saturated model of cardinality \aleph_{1} are isomorphic.

Proof. One direction was proved above. In the other, if T is not complete, it has two satisfiable extensions $T \bigcup\{\sigma\}, T \bigcup\{\neg \sigma\}$. Let T^{\prime} be a complete theory containing $T \bigcup\{\sigma\}$, and $T^{\prime \prime}$ a complete theory containing $T \bigcup\{\neg \sigma\}$; let $M^{\prime} \models T^{\prime}$ and $M^{\prime \prime} \models T^{\prime \prime}$ be saturated models of cardinality \aleph_{1}. Then $M^{\prime}, M^{\prime \prime}$ cannot be isomorphic.

Let M be a structure of cardinality \aleph_{1}. Say M is qf-homogoeous if any isomorphism $f: A \rightarrow A^{\prime}$ between countable substructures extends to an automorphism of M.
Corollary 8.4 can serve as a substitute for the Los̀-Vaught test; it works in principle for any theory. Let us extend it to formulas.

Corollary 8.5. Assume $\aleph_{1}=2^{\aleph_{0}}$. Let T be a complete theory in a countable language. Then T admits quantifier elimination if and only if any saturated model of cardinality \aleph_{1} is qf-homogeneous.

Proof. This follows from Corollary 8.4, Proposition 8.2 and our characterization of quantifier elimination in terms of completeness of the theories T_{A}. But let us give a direct proof. Assume first that T admits quantifier elimination, and let M be a saturated model of cardinality \aleph_{1}. Let $f: A \rightarrow B$ be an isomorphism between countable substructures. Since every formula is equivalent to a quantifier-free one, f preserves all formulas so $f: A \rightarrow B$ is an approximation in the sense of the proof of Proposition 8.2; hence it extends to an isomorphism $F: M \rightarrow M$.
If T does not admit quantifier elimination, there exists a formula $\alpha(x)$ in variables $x=\left(x_{1}, \ldots, x_{n}\right)$ not equivalent to a q formula. So the following partial type is satisfiable:

$$
\{\alpha(x), \neg \alpha(y)\} \bigcup\left\{\phi(x) \leftrightarrow \phi(y): \phi \in F_{L}\right\}
$$

Let M be any saturated model of cardinality \aleph_{1}, in which this partial type is realized, say by (a, b). Let A, B be the substructures generated by a, b. Then there exists an isomorphism $f: A \rightarrow B$ with $f(a)=b$. Since $M \models$ $\alpha(a) \wedge \neg \alpha(b)$, it is impossible to extend f to an automorphism of M.

Remark. In many situations, we can harmlessly assume the continuum hypothesis; for instance, when we would like to prove the completeness of a given theory T in a countable language. This is explained in the axiomatic set theory class: using Gödel's constructible sets, a proof of finitary statements
using CH can be converted to a proof without it. Beth's theorem below, as well as the proof of completeness of RCF using Corollary 8.4, are examples of this.

Beth's definability theorem

Let T be a theory in a language L, and T^{\prime} a theory in a bigger language $L^{\prime}=L \bigcup\{R\}$. We say that R is implicitly defined by T^{\prime} if any model of T can be expanded in at most one way to a model of T^{\prime}. Note that this implies, in particular, that if $M^{\prime} \models T^{\prime}$ and $M=M^{\prime} \mid L$, then any automorphism σ of M must preserve R and hence be an automorphism of M^{\prime} (since $R, \sigma(R)$ are two expansions of M to models of T^{\prime}, we have $R=\sigma(R)$.) We say that R is explicitly defined if for some formula ϕ of $L, T^{\prime} \models \phi \leftrightarrow R$.

Lemma 8.6. R is explicitly defined if and only if there exist formulas $\phi_{1}, \ldots, \phi_{m}$ of L such that

$$
T^{\prime} \models(\forall x, y)\left(\bigwedge_{i} \phi_{i}(x) \leftrightarrow \phi_{i}(y)\right) \rightarrow(R(x) \leftrightarrow R(y))
$$

Proof. For a function $\nu:\{1, \ldots, m\} \rightarrow\{0,1\}$, let $\psi_{\nu}=\bigwedge_{i=1}^{m} \neg^{\nu(i)} \phi_{i}$ (a conjunction of the ϕ_{i} and their negations.) Then for each ν, either $T^{\prime} \models$ $\psi_{\nu} \rightarrow R$ or $T^{\prime} \models \psi_{\nu} \rightarrow \neg R$. Let Z be the set of ν such that the first case holds. Then $T^{\prime} \models R \leftrightarrow \bigwedge_{\nu \in Z} \psi_{\nu}$. So R is explicitly definable.

Theorem 8.7 (Beth's definability theorem). If R is implicitly definable, it is explicitly definable.

Proof. (This proof assumes CH.) Consider the set of formulas

$$
\Gamma=\{R(x), \neg R(y)\} \bigcup\left\{\phi(x) \leftrightarrow \phi(y): \phi \in F_{L}\right\}
$$

Claim $T \bigcup \Gamma$ is not satisfiable.
For let M^{\prime} be an \aleph_{1}-saturated model of T^{\prime} of size \aleph_{1}, and let M be the restriction to L. Note that M is also saturated. If Γ were satisfiable then by saturation of M^{\prime}, it would be realized by some (a, b) from M. Then $t p_{L}(a)=t p_{L}(b)$, so by homogeneity of M, there exists an automorphism $\sigma: M \rightarrow M$ with $\sigma(a)=b$. By the implicit definability of R, we have $\sigma(R)=R$. But $R(a)$ and $\neg R(b)$, a contradiction.

By compactness, there exist $\phi_{1}, \ldots, \phi_{m}$ such that

$$
T^{\prime} \models\left(\bigwedge_{i} \phi_{i}(x) \leftrightarrow \phi_{i}(y)\right) \rightarrow(R(x) \leftrightarrow R(y))
$$

By the lemma, R is explicitly definable.

The theory of the real field.

We will apply our completeness and QE criterion to the ordered field of real numbers.

Theorem 8.8. $T h((\mathbb{R},+, \cdot,<))$ is decidable, and admits quantifier elimination.

Example 8.9. Let $X \subset \mathbb{R}^{3}$ be a set defined by an algebraic equation. Consider also a curve $c=\left(c_{1}(t), c_{2}(t), c_{3}(t)\right)$ in \mathbb{R}^{3} parameterized by a variable t, for instance $c_{i}(t)=t^{i}$. Let $\delta(t)$ be the distance from $c(t)$ to X. It is definable, as a function of t : we have

$$
c(t) \leq d \Longleftrightarrow\left(\exists\left(x_{1}, x_{2}, x_{3}\right) \in X\right)\left(\sum_{i=1}^{3}\left(c_{i}(t)-x_{i}\right)^{2}=d^{2}\right)
$$

and $c(t)=d$ iff $c(t) \leq d \&(\forall u<d)(\neg c(t) \leq u)$. It follows from quantifierelimination that $\delta(t)$ is defined by a quantifier-free formula from t, and hence is an algebraic function, i.e. there exists a polynomial $H(t, u)$ such that $H(t, \delta(t))=0$.

To prove the theorem, we first write a theory T that holds in $T h((\mathbb{R},+, \cdot,<))$. We then show that T is complete and admits QE, using our criteria above.
Definition A real closed field is an ordered field K satisfying the following property: for every $f \in K[t]$ and every $a, b \in K$ with $a<b$ and $f(a) f(b)<0$, there exists $c \in(a, b)$ with $f(c)=0$.
This is not the standard definition, but it is equivalent to it and is convenient for our purposes. It is easy to see that the class of real closed fields is axiomatizable. Asides from the ordered field axioms, for each n, we have an axiom asserting that for any polynomial $f(t)=a_{0}+a_{1} t+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ of degree $\leq n$, and every $a, b \in K$ with $a<b$ and $f(a) f(b)<0$, there exists $c \in(a, b)$ with $f(c)=0$. Let RCF be the theory generated by these axioms.

Proposition 8.10. RCF is complete and has $Q E$.
To prove this, let $M, N \models R C F$ and let A, B be countable subrings, and $f: A \rightarrow B$ an isomorphism. We may assume $A=B$ and f is the identity. We have to extend f so that the domain includes a new element $m \in M$. We define the degree of m / A to be the degree of the least polynomial in $A[X]$ of which m is a root; or ∞ if m is not algebraic over A.
We use the following strategy: first extend $f: A \rightarrow B$ by adding, if possible, an algebraic element to A or to B, and of least possible degree. Only after this has been exhausted, proceed to add an arbitrary ('next') $m \in M$ or $n \in N$.
Assume first that no element of $M \backslash A$ or of $N \backslash A$ is algebraic over A. In this case, choose any $n \in N$ with the same cut as m over A. In other words for $a \in A$, we have $a<m$ iff $a<n$. This is possible by \aleph_{1}-saturation of N. This done, we define an isomorphism $A[m] \rightarrow A[n]$: simply map $f(m) \mapsto$ $f(n)$ for any $f \in A[X]$. We must show that if $f(m)>0$, then $f(n)>0$. Now f has only finitely many roots in A; let r, s be respectively the largest one below m and the smallest above it, i.e. $r<m<s$ (modify the argument using only one inequality if there is no r or no s.) Then f does not change sign in M in the interval $[r, s]$ For otherwise, it would have an additional zero in the interval, which would be in A. Similarly, f does not change sign in N. So $f(m)>0$ iff $f((r+s) / 2)>0$ iff $f(n)>0$.
The proof of the finite degree case is similar: we take the least possible degree on either side. Say $f(m)=0, f \in A[X]$ has degree d and no smaller degree is possible, in M or in N. Find $r<s \in A$ with $r<m<s$ and such that f has no zeroes in (r, m) or in (m, s). Argue that $f(r) f(s)<0$ so that f has a zero n in N too. Now to construct the isomorphism $A[m] \rightarrow A[n]$ we need worry only about polynomials g of degree $<d$, and this goes as before.

9 Compactness via ultraproducts (optional chapter)

Let L be a language, I an index set, and assume given an L-structure \underline{A}_{i} for each $i \in I$.

Products

We first define the full product structure $\underline{B}=\Pi_{i \in I} \underline{A}_{i}$. The universe is the product set $\Pi_{i \in I} A_{i}$. As usual in algebra we define the interpretation of function symbols coordinatewise: $F \underline{\underline{B}}\left(a_{1}, \ldots, a_{n}\right)=b$ where $b(i)=F^{\boldsymbol{A}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$ For a basic relation symbol R, define the interpretation of R by

$$
R^{\underline{B}}\left(b_{1}, \ldots, b_{n}\right) \leftrightarrow(\forall i \in I)\left(b_{1}(i), \ldots, b_{n}(i)\right) \in R^{\underline{A}_{i}}
$$

Exercise 9.1. Let $\underline{B}=\Pi_{i \in I} \underline{A}_{i}$.

1. (r) Show that for any term $t, t \underline{\underline{B}}\left(a_{1}, \ldots, a_{n}\right)=b$ where $b(i)=t^{\underline{A}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$
2. Show that any sentence formed using \forall, \exists, \wedge from atomic formulas is true in \underline{B} if it holds in each \underline{A}_{i}. This generalises the products of groups, rings, vector spaces,
3. A partial order is a transitive relation $<$; it is dense if whenever $a<b$, there exists c with $a<c<b$. Show that the product of dense partial orderings is a dense partial ordering. Is the analogue true for linear orderings?
4. If each \underline{A}_{i} is an integral domain, and $|I|>1$, show that \underline{B} is never an integral domain.

Remark The precise characterization of sentences preserved under products is a little complicated, and we will omit it here. Note however that any sentence of the form $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right)\left(\phi_{1} \wedge \cdots \wedge \phi_{k} \rightarrow \phi\right)$, where $\phi_{1}, \ldots, \phi_{k}, \phi$ are atomic formulas, is preserved under produtcs; this includes the axioms for partial orderings.

Ultraproducts

Consider a family of L-structure $\left(A_{i}: i \in I\right) ; I$ is some nonempty index set. Let $P(I)$ be the set of all subsets of I; we view $P(I)$ as a structure with two binary operations (union, intersection), a unary operation (complement), and two constants (1 interpreted as the full set I, and 0 interpreted as \emptyset.)

$$
P(I)=(P(I), \bigcup, \bigcap, \neg, 0,1)
$$

It forms a boolean algebra, but we will not need to know the axioms of a Boolean algebra here.
When I has a single element, say $I=\{0\}$, we obtain the 2-element Boolean algebra $P(\{0\})$; we denote by it by $\mathbf{2}$.
Fix also a homomorphism $u: P(I) \rightarrow 2$. This means that $u\left(b \bigcup b^{\prime}\right)=$ $u(b) \bigcup u\left(b^{\prime}\right), u(\emptyset)=\emptyset, u(I)=1=\{0\}$, and similarly u respects complements. Note that u must be order-preserving: if $b \subseteq b^{\prime}$, then $b \bigcup b^{\prime}=b^{\prime}$ and it follows that $u(b) \subseteq u\left(b^{\prime}\right) .{ }^{7}$
Let $B=\Pi_{i \in I} A_{i}$, and let $p_{i}: B \rightarrow A_{i}$ be the i 'th projection.
For a tuple $a=\left(a_{1}, \ldots, a_{n}\right)$, let $p_{i}(a)=\left(p_{i}\left(a_{1}\right), \ldots, p_{i}\left(a_{n}\right)\right)$.
Given $a \in B^{n}$, and L-formula $\phi=\phi\left(x_{1}, \ldots, x_{n}\right)$, define

$$
[\phi(a)]=\left\{i \in I: \underline{A}_{i} \models \phi\left(p_{i}(a)\right)\right\}
$$

So $[\phi(a)]$ is an element of $P(I)$. Thus $u([\phi(a)]) \in \mathbf{2}$. We will write $u[\phi(a)]$ for this.

Exercise 9.2. 1. Take ϕ to be the formula $x \bumpeq y$. Define $a \sim_{u} b$ iff $u[a \bumpeq b]=1$. Show that \sim_{u} is an equivalence relation.
2. If $a \sim_{u} a^{\prime}$, then $u[\phi(a)]=u\left[\phi\left(a^{\prime}\right)\right]$.

We now define a weak structure \underline{B}.
The universe will be the product $B=\Pi_{i \in I} A_{i}$. Function symbols in the ultraproduct are interpreted coordinatewise, in the same way as for the product structure in \$9. Relation symbols are interpreted in this way:

$$
a \in R^{\underline{B}} \Longleftrightarrow u(R[a])=1
$$

Lemma 9.3. For any $b \in B^{n}$, and L-formula $\phi=\phi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\phi(b)^{\underline{B}}=u[\phi(b)]
$$

Proof. For atomic formulas, this follows from the definition of $R^{\underline{B}}$.
When ϕ is a Boolean combination of $\phi^{\prime}, \phi^{\prime \prime}$, this follows from the fact that both u and the map

$$
\phi \mapsto \phi^{\underline{B}}
$$

${ }^{7} u^{-1}(1)$ is called an ultrafilter. Of course it carries the same information as u. One can think of the elements of $u^{-1}(1)$ as being "large" in some sense, determined by u.
a Boolean homomorphisms.
Let us verify the claim when $\phi=(\exists y) \psi, \psi=\psi(x, y)$. Assume $\underline{B} \models \phi(b)$. Then for some element c of $B, \underline{B} \models \psi(b, c)$. By induction, $u([\psi(b, c)])=1$. $\operatorname{But}[\psi(b, c)] \subset[\phi(b)]$, so $u[\phi(b)]=1$.
Conversely assume $u[\phi(b)]=1$. For $i \in[\phi(b)], \underline{A}_{i} \models \phi(b(i))=(\exists y) \psi(b(i), y)$, so one can choose $c(i)$ such that $\underline{A}_{i} \models \psi(b(i), c(i))$. Define $c(i)$ in some arbitrary way for $i \notin[\phi(b)]$. ${ }^{8}$ So $[\phi(b)] \subset[\psi(b, c)]$. Since $u([\phi(b)])=1$, we have $u([\psi(b, c)])=1$ so by induction, $\underline{B} \models \psi(b, c)$ and so $\underline{B} \models(\exists y) \psi(b, y)$, as required. The fact that \bumpeq is a congruence follows from Exercise 9.2.

Now let $\underline{A}:=\underline{B} / \sim_{u}$ be the quotient structure (see Exercise 1.10.) \underline{A} is called the ultraproduct or ultralimit of the \underline{A}_{i} along u.

Theorem 9.4 (Łos̀). For any $a \in A^{n}$, and L-formula $\phi=\phi\left(x_{1}, \ldots, x_{n}\right)$

$$
\phi(a)^{\underline{A}}=u[\phi(a)]
$$

In particular for any sentence ϕ,

$$
\underline{A} \models \phi \leftrightarrow u[\phi]=1
$$

Proof. We have $a=\pi(b)$ for some b from B; and: $\phi(a)^{\underline{A}}=\phi(b)^{\underline{B}}=$ $u[\phi(b) \underline{B}]=u\left[\phi(a)^{\underline{A}}\right]$.

Exercise 9.5. Fix $\delta \in I$. Define $u=u_{\delta}$ by $u=1$ iff $\delta \in s$. Check that $u: B \rightarrow \mathbf{2}$ is a homomorphism; it is called the principal homomorphism associated with $\delta .{ }^{9}$ Show for this u that $\underline{A}_{u} \cong A_{\delta}$.

Ultrapower proof of the compactness theorem; countable case. Let $\left\{\sigma_{1}, \sigma_{2}, \ldots\right\}$ be a countable set of sentences, and assume it is finitely satisfiable; thus there exists a model A_{n} of $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Let $u: P(\mathbb{N}) \rightarrow \mathbf{2}$ be a non-principal homomorphism, and let A_{u} be the ultraproduct. Then $u(\{1, \ldots, n\})=0$ for all n; so $u(\{k, k+1, k+2, \ldots\})=1$ for all k. But $\left[\sigma_{k}\right] \supset\{k, k+1, k+2, \ldots\}$. Thus $u\left[\sigma_{k}\right]=1$ so $A_{u} \models \sigma_{k}$.

[^5]Exercise 9.6. Let I be the set of prime numbers, and let $u: P(I) \rightarrow \mathbf{2}$ be a non-principal homomorphism. Let F_{p} be the p-element field, and let F_{u} be the ultraproduct. Show that F_{u} is a field. Show that the set of nonzero squares in F_{u} forms a subgroup of F_{u}^{*} of index 2. (Optional: what can you say about the set of nonzero cubes, $\left\{x^{3}: x \in F_{u}^{*}\right\} ?$)

Exercise 9.7. [Stone-Cech compactification.] Recall the Tychonoff or product topology on $\mathbf{2}^{B}$, the set of functions from B into $\mathbf{2}$. Here $\mathbf{2}$ is taken to have the discrete topology. This is a compact space; see Exercise 1.12 Let I^{*} be the subset of $\mathbf{2}^{B}$ consisting of Boolean homomorphisms $B \rightarrow \mathbf{2}$. We endow I^{*} with the subspace topology.

1. Show that I^{*} is a closed subset of $\mathbf{2}^{B}$; hence it is a compact, Hausdorff topological space.
2. Show that the map $\delta \mapsto u_{\delta}$ embeds I as a discrete subset of I^{*}, and that the image is dense.
3. Conclude that if I is infinite, there exist non-principal elements of I^{*}.
4. For any sentence σ, show that $\left\{u \in I^{*}: \underline{A}_{u} \models \sigma\right\}$ is an open (hence clopen) subset of I^{*}.

Remark The ultrafilter construction extends the given family $\left(A_{i}: i \in I\right)$ to a family $\left(A_{u}: u \in I^{*}\right)$. The ultraproduct A_{u} can be viewed as a limit, in the direction of u, of the family A_{i}.

Exercise 9.8. Prove the compactness theorem, using ultraproducts, for any finitely satisfiable set of sentences Σ. Here are hints for two alternative proofs.

1. Let I be the set of finite subsets of Σ. By assumption, for $w \in I$, there exists a model A_{w} of w. What property does $u: P(I) \rightarrow \mathbf{2}$ need to have, in order to ensure that $A_{u} \models \Sigma$?
2. Let $\left(M_{i}: i \in I\right)$ be a set of structures, such that any finite subset of Σ is satisfiable by at least one M_{i}. Let I^{*} be the Stone-Cech compactification of I as above. Deduce the compactness theorem from the compactness of I^{*} and Ex. 9.7(4).

Exercise 9.9. Assume u is a nonprincipal homomorphism $P(I) \rightarrow$ 2. Let \underline{A} be an L-structure. The ultrapower \underline{A}^{*} with respect to u is defined to be the ultraproduct, where the I-indexed family of structures is constant, $\underline{A}_{i}=\underline{A}$. Define an embedding $f: \underline{A} \rightarrow \underline{A}^{*}$ by mapping a to the element a^{*} represented by the constant function with value a.

1. Show that f is an elementary embedding.
2. Assume I is countable. Show that f is surjective if and only if A is finite.

10 Homework assignments

Subject to change during term; please check webpage.

Sheet 0

Chapter 1 is a review of the basic definitions relevant to formulas and their interpretation in structures. Please read it, and make sure you can answer the exercises. (Not to be handed in.)

Sheet 1

Due Tuesday of week 2. Please hand in by 10 AM to allow time for grading. 1.19, 1.20, 1.21, 1.7. optional: 2.11

Sheet 2

2.10, 3.8, 3.9, 3.10

Optional: 3.11, 3.12

Sheet 3

3.7, 3.16, 3.22, 4.5, 4.13

Optional: 4.12, 4.7.

Sheet 4

4.15, 5.2, 5.5, 6.13, 6.14.

Read the section on categoricity of algebraically closed fields, pp. 40-41. Assuming the results there, do Exercise 4.14 (optional) and Exercise 4.16.

Propsition 6.3 was proved in lecture. Modify this proof using the back-andforth method so as to prove Propsition 6.2. Then compare to the proof of Propsition 6.2 given in the text. (Handing in optional.)

[^0]: ${ }^{1}$ One sometimes considers logic with several sorts, say of apples and thoughts, where one does not even wish to ask whether an apple equals a thought. In this case one introduces an equality symbol for each sort, but not between distinct sorts. This poses no problem when (e.g.) there are finitely many sorts. It does becomes surprsingly complicated when there are parameterized families of sorts, but we will not go into these issues, and always allow an equality symbol.
 ${ }^{2}$ These are used only to ensure unique readability of formulas, and can be dispensed with in many systems. We will not fuss about them, but merely use them as necessary to clarify the construction of a given formula.

[^1]: ${ }^{3}$ It is sometimes assumed that $A \neq \emptyset$, notably since this slightly simplifies the proof systems. As we are not concerned with syntactic proofs in this course, we do not need that assumption; of course, the empty structure itself is not of much interest, but many general statements are nicer when it is allowed. Sometimes people assume L has at least one constant symbol in order to avoid the need to pay attention to this degenerate case.

[^2]: ${ }^{4}$ In category theory this is referred to as a colimit.

[^3]: ${ }^{5}$ The word 'atomic' here refers to the atoms of the Lindenbaum algebra, i.e. minimal nonzero elements, and has nothing to do with atomic formulas.

[^4]: ${ }^{6}$ In fact, there are only $\log _{2}(k)$ types $p(x)$

[^5]: ${ }^{8}$ Here we assume $A_{i} \neq \emptyset$. A slight change in the definition, allowing partial functions, is required if one wishes to include the structure with empty universe.
 ${ }^{9}$ In the terminology of Arrow's theorem, δ is a dictator for the voting process determined by u.

