Course 311: Hilary Term 2006
Part V: Hilbert’s Nullstellensatz

D. R. Wilkins

Contents

5 Hilbert’s Nullstellensatz
5.1 Commutative Algebras of Finite Type . . .. ... ... ...
5.2 Zariski’s Theorem . . . . . . . . . . . .. ... ... ...
5.3 Hilbert’s Nullstellensatz . . . . ... ... ... ... .....



5 Hilbert’s Nullstellensatz

5.1 Commutative Algebras of Finite Type

Definition Let K be a field. A unital ring R is said to be a K-algebra
if K C R, the multiplicative identity elements of K and R coincide, and
ab = ba for all a € K and b € R.

It follows from this definition that a unital commutative ring R is a K-
algebra if K C R and K and R have the same multiplicative identity element.
Note that if L: K is a field extension, then the field L is a unital K-algebra.

Definition Let K be a field, and let Ry and R, be K-algebras. A ring
homomorphism ¢: Ry — Ry is said to be a K-homomorphism if ¢(k) = k for
all k € K.

Given any subset A of a unital commutative K-algebra R, we denote by
K[A] the subring of R generated by K U A (i.e., the smallest subring of R
containing K U A). In particular, if aq,as, ..., a; are elements of R then we
denote by Kay, as, ..., a;] the subring of R generated by KU{ay, as, ..., ax}.
If R = K[A] then we say that the set A generates the K-algebra R.

Note that any element of K[ay,as,...,ax| is of the form f(ay,aq, ..., ax)
for some polynomial f in k independent indeterminates with coefficients in
K. Indeed the set of elements of R that are of this form is a subring of R,
and is clearly the smallest subring of R containing K U {ay,as,...,ax}.

Definition Let K be a field. A unital commutative ring R is said to be a K -
algebra of finite type if K C R, the identity elements of K and R coincide, and
there exists a finite subset ay, as, ..., a; of R such that R = Klay, as, ..., ax.

Lemma 5.1 Let K be a field. Then every K-algebra of finite type is a
Noetherian ring.

Proof Let R be a K-algebra of finite type. Then there exist aq,as,...,a; €
R such that R = Klay,as,...,ar]. Now it follows from the Hilbert Basis
Theorem that the ring K[z, xs,. .., x| of polynomials in the independent
indeterminates x1, z, . .., x; with coefficients in K is a Noetherian ring (see
Corollary 3.25). Moreover R = K|xy,xo,...,x|/a, where a is the kernel of
the homomorphism

e Klxy,x9,...,21) = R

that sends f € K[xq,xs,...,2x] to f(a1,as,...,a;). (Note that the homo-
morphism ¢ is surjective; indeed the image of this homomorphism is a subring
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of R containing K and a; for i = 1,2,..., k, and is therefore the whole of R.)
Thus R is isomorphic to the quotient of a Noetherian ring, and is therefore
itself Noetherian (see Lemma 3.22). |}

If K(a): K is a simple algebraic extension then K(«a) is a K-algebra of
finite type. Indeed K(a) is a finite-dimensional vector space over K (see
Theorem 4.13). If ay,as,...,ar span K(«a) as a vector space over K then
clearly K(«a) = Klay, as, ..., ag.

5.2 Zariski’s Theorem

Proposition 5.2 Let K and L be fields, with K C L. Suppose that L: K is
a simple field extension and that L is a K-algebra of finite type. Then the
extension L: K 1s finite.

Proof The field L is a K-algebra of finite type, and therefore there exist
elements 31, Ba, ..., By of L such that L = K[31, s, ..., Bm]. Also the field
extension L: K is simple, and therefore L = K(«) for some element « of
K. Now, given any element (3 of L there exist polynomials f and g in K(x)
such that g(a) # 0 and 8 = f(a)g(a)™!. Indeed one may readily verify
that the set of elements of L that may be expressed in the form f(a)g(a)™!
for some polynomials f,¢g € K[z| with g(a) # 0 is a subfield of L which
contains K U {a}. It is therefore the whole of L, since L = K («). It follows
that there exist polynomials f; and g¢; in Klx] such that g;(«) # 0 and
Bi = fila)gi(a) ! fori =1,2,...,m. Let e(z) = g1(2)ga(2) ..., gm(x). We
shall show that if the element o of L were not algebraic over K then every
irreducible polynomial with coefficients in K would divide e(z),

Let p € K[z] be an irreducible polynomial with coefficients in K, where
p(a) # 0. Now L = K0, (2, ..., m], and therefore every element of L is
expressible as a polynomial in (1,3, ..., ,, with coefficients in K. Thus
there exists some polynomial H), in m indeterminates, with coefficents in K,
such that

p(Oé)_l = Hp(ﬂhﬁ% s 75771)
Let d be the total degree of H. One can readily verify that

e(a)de(ﬁl, By Bm) = q(a),

for some polynomial q(x) with coefficients in K. But then p(a)g(a) = e(a)?,
and therefore « is a zero of the polynomial pg — e?. If it were the case that
a were not algebraic over K then this polynomial pg — e? would be the zero
polynomial, and thus p(z)q(z) = e(x)?. But it follows from Proposition 4.5



that an irreducible polynomial divides a product of polynomials if and only
if it divides at least one of the factors. Therefore the irreducible polynomial
p would be an irreducible factor of the polynomial e, and so would be an
irreducible factor of one of the polynomials ¢, gs,. .., gn. We see therefore
that if a were not algebraic over K then the polynomial e would be divisible
by every irreducible polynomial in K[z]. But this is impossible, because a
given polynomial in Klz| can have only finitely many irreducible factors,
whereas K [x] contains infinitely many irreducible polynomials (Lemma 4.4).
We conclude therefore that o must be algebraic over K. But any simple
algebraic field extension is finite (Theorem 4.13). Therefore L: K is finite, as
required. ||

Lemma 5.3 Suppose that K C A C B, where A and B are unital commu-
tative rings, and B is both a K-algebra of finite type and a finitely generated
A-module. Then A is also a K-algebra of finite type.

Proof There exist ag,an,...,a,, € B such that B = Koy, ag, ..., qn),
since B is a K-algebra of finite type. Also there exist 1, 3s, ..., 3, € B such
that

B=Ap +AB2+ -+ Aby,

since B is a finitely generated A-module. Moreover we can choose #; = 1.
But then there exist elements A, of A such that oy = > " | A\ for ¢ =
1,2,...,n. Also there exist elements i, of A such that 5;6; = > 7 _, pijr0k
fori,7=1,2...,n. Let

let Ag = K[S], and let
By = Ao + Agfa + -+ + AgBn.

Now each product 3;8; is a linear combination of 3, (s, ..., 3, with coeffi-
cients pi;5; in Ag, and therefore 3;8; € By for all ¢ and j. It follows from
this that the product of any two elements of By must itself belong to B.
Therefore By is a subring of B. Now K C By, since K C Ay and 5, = 1.
Also oy € By for ¢ =1,2,...,m. But B = K(o,ag,- - ). It follows that
By = B, and therefore B is a finitely-generated Ag-module.

Now any K-algebra of finite type is a Noetherian ring (Lemma 5.1). It
follows that Ag is a Noetherian ring, and therefore any finitely-generated
module over Aj is Noetherian (see Corollary 3.21). In particular B is a
Noetherian Ap-module, and therefore every submodule of B is a finitely-
generated Ag-module. In particular, A is a finitely-generated Ag-module.
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Let 71,72, ... ,7, be a finite collection of elements of A that generate A as an
Ag-module. Then any element a of A can be written in the form

a = a1y +agy2 + -+ app,

where a; € Ag for [ =1,2,...,p. But each element of Ay can be expressed as
a polynomial in the elements Ay, and p;;, with coefficients in K. It follows
that each element of A can be expressed as a polynomial in the elements A,
i and y; (with coefficients in K'), and thus A = K[T'], where

T=SU{y:1<1<p}.
Thus A is a K-algebra of finite type, as required. |}

Theorem 5.4 (Zariski) Let L: K be a field extension. Suppose that the
field L is a K-algebra of finite type. Then L: K is a finite extension of K.

Proof We prove the result by induction on the number of elements required
to generate L as a K-algebra. Thus suppose that L = Koy, as, ..., «,], and
that the result is true for all field extensions L;: K; with the property that L,
is generated as a Kj-algebra by fewer than n elements (i.e., there exist ele-
ments 31, B2, ..., Bm of Ly, where m < n, such that L; = K1[01, 02, ..., Bm])-
Let K1 = K(ap). Then L = Kj|ag, a3, -, a,]. It follows from the in-
duction hypothesis that L: K; is a finite field extension (and thus L is a
finitely-generated Kj-module). It then follows from Lemma 5.3 that K7 is a
K-algebra of finite type.

But the extension K;i: K is a simple extension. It therefore follows from
Proposition 5.2 that the extension K;: K is finite. Thus both L: K7 and K1: K
are finite extensions. It follows from the Tower Law (Proposition 4.10) that
L: K is a finite extension, as required. |

5.3 Hilbert’s Nullstellensatz

Proposition 5.5 Let K be an algebraically closed field, let R be a commu-
tative K-algebra of finite type, and let m be a maximal ideal of R. Then
there exists a surjective K-homomorphism &: R — K from R to K such that
m = ker .

Proof Let L = R/m, and let ¢: R — L denote the quotient homomorphism.
Then L is a field (Lemma 3.30). Now m = kerp and 1 ¢ m, and therefore
o|K # 0. It follows that m N K is a proper ideal of the field K. But
the only proper ideal of a field is the zero ideal (Lemma 3.4). Therefore
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mN K = {0}. It follows that the restriction of ¢ to K is injective and maps
K isomorphically onto a subfield of L. Let K; = ¢(K), and let v: K — K;
be the isomorphism obtained on restricting ¢p: R — L to K. Then L: K,
is a field extension, and L is a Kj-algebra of finite type. It follows from
Zariski’s Theorem (Theorem 5.4) that L: K, is a finite field extension. But
then L = K7, since the field K is algebraically closed (Lemma 4.16). Let
£ =1"top. Then & R — K is the required K-homomorphism from R to K.

Theorem 5.6 Let K be an algebraically closed field, and let R be a com-
mutative K-algebra of finite type. Let a be a proper ideal of R. Then there
exists a K-homomorphism &: R — K from R to K such that a C ker§.

Proof Every proper ideal of R is contained in some maximal ideal (The-
orem 3.31). Let m be a maximal ideal of R with a C m. It follows from
Proposition 5.5 that m = ker £ for some K-homomorphism &: R — K. Then
a C ker&, as required. |}

Theorem 5.7 (Weak Nullstellensatz) Let K be an algebraically closed field,
and let a be a proper ideal of the polynomial ring K[X1, Xa, ..., X,]|, where
X1, Xo, ..., X, areindependent indeterminates. Then there exists some point
(a1,aq,...,a,) of A"(K) such that f(ay,aq,...,a,) =0 for all f € a.

Proof Let R = K[X3, Xs,...,X,]. Then R is a K-algebra of finite type. It
follows from Theorem 5.6 that there exists a K-homomorphism ¢: R — K
such that a C keré. Let a; = &£(X;) for i« = 1,2,...,n. Then £(f) =
flai,ag,... a,) for all f € R. It follows that f(ay,aq,...,a,) = 0 for all
f € a, as required. |}

Theorem 5.8 (Strong Nullstellensatz) Let K be an algebraically closed field,
let a be an ideal of the polynomial ring K[X1, X, ..., X,]|, and let f €
KXy, Xy, ..., X,] be a polynomial with the property that f(xy,xa,...,T,) =
0 for all (xq1,x2,...,x,) € V(a), where

Via) ={(z1,22,...,2,) € A"(K) : g(x1,29,...,2,) =0 for all g € a}.
Then f" € a for some natural number r.

Proof Let R = K[X;, Xs,...,X,], and let S denote the ring R[Y] of polyno-
mials in a single indeterminate Y with coefficients in the ring R. Then S can
be viewed as the ring K[X;, Xs, ..., X,,, Y] of polynomials in the n + 1 inde-
terminate indeterminates X1, X5, ..., X,,,Y with coefficients in the field K.



The ideal a of R determines a corresponding ideal b of S consisting of those
elements of S that are of the form

Go+qiY +¢Y? 4+ +4Y"

with go,91,...,9- € a. (Thus the ideal b consists of those elements of the
ring S that can be considered as polynomials in the indeterminate Y with
coefficients in the ideal a of R.)

Let f € R be a polynomial in the indeterminates X, Xy, ..., X,, with the
property that f(z1,22,...,2,) = 0 for all (z1,z2,...,2,) € V(a), and let ¢
be the ideal of S defined by

c=b+(1-fY).

(Here (1 — fY') denotes the ideal of the polynomial ring S generated by the
polynomial 1 — f(X1,Xo,...,X,,)Y.) Let V(c) be the subset of (n + 1)-
dimensional affine space A" (K) consisting of all points (z1, g, ..., %n,y) €
A" (K) with the property that h(xy,zs,...,2,,y) = 0 for all h € ¢. We
claim that V' (c) = 0.

Let (21,22, ...,2,,y) be a point of V(b). Then g(x1,zs,...,z,) = 0 for
all ¢ € a, and therefore (x1,2s,...,z,) € V(a). But the polynomial f has
the value zero at each point of V(a). It follows that the polynomial 1 — fY
has the value 1 at each point of V(b), and therefore

V(e)=V()NV(1— fY)=0.

It now follows immediately from the Weak Nullstellensatz (Theorem 5.7)
that ¢ cannot be a proper ideal of S, and therefore 1 € ¢. Thus there exists
a polynomial h belonging to the ideal b of S such that h — 1 € (1 — fY).
Moreover this polynomial A is of the form

WXy, Xa, o X0 Y) =) g5(X1, Xa, ., XY,
j=0

where g1, g2,..., 9, € .
Let g € a be defined by g = igjf"*j. Now g— f"=¢g—f"h+ fr(h—1).
Also . =
g=fh=) gf (1= fY)el-fY)
=0

since the polynomial 1 — f7Y7 is divisible by the polynomial 1 — fY for all
positive integers j. It follows that g— f" € (1—fY’). But the polynomial g— f"
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is a polynomial in the indeterminates X7, Xs, ..., X,,, and, if non-zero, would
be of degree zero when considered as a polynomial in the indeterminate Y
with coefficients in the ring R. Also any non-zero element of the ideal (1 —
fY) of S is divisible by the polynomial 1 — fY, and is therefore of strictly
positive degree when considered as a polynomial in the indeterminate Y
with coefficients in R. We conclude, therefore that ¢ — f" = 0. But g € a.
Therefore [ € a, as required. |}



