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Introduction

In mathematics, we often encounter objects that are sets with various operations that can be
performed on them. For instance, one may add and multiply integers, and one can do the same
with rational numbers, real numbers, and even complex (or imaginary) numbers. Or, given two
functions that input and output real numbers, we can compose them. We can add vectors, or
multiply them by scalars.

In abstract algebra, we attempt to provide lists of properties that common mathematical ob-
jects satisfy. Given such a list of properties, we impose them as “axioms”, and we study the
properties of objects that satisfy these axioms. The objects that we deal with most in the first part
of these notes are called groups, rings, and fields.

Groups, rings, and fields all sets with binary operations. A binary operation inputs two
elements of the set and outputs a third such element. Addition and multiplication of integers,
for instance, are binary operations, as is composition of real-valued functions of a real number.
Scalar multiplication of a vector in the plane is not however, since it starts not with two vectors,
but rather a scalar (i.e., a real number) and a vector.

We often require our binary operations to have certain properties like associativity or com-
mutativity. If we call our operation “x”, then associativity reads

(xxy)*z=x%x(y*2),

and commutativity reads

XXy = Yy*X.
In imprecise terms, they tell you that the order in which you perform the operations doesn’t
matter. Though the most typically-encountered binary operations tend to be associative, many
are not commutative (i.e., are “noncommutative”). For instance, you may recall that the order of
composition of functions matters: e.g., sin(x?) and sin®(x) are two different things.

The integers Z, the rational numbers QQ, the real numbers R, and the complex numbers C
are all rings, as is the set of n by n matrices with entries in any of these. A ring is a set with
two binary operations called addition and multiplication. In order to be a ring, we require asso-
ciativity of both operations, commutativity of addition, and distributivity of the two operations.
Distributivity can be expressed as follows:

(x+y)-(z+w)=x-z+x-w+y-z+y-w.

Every ring must have an element called “0” (satisfying 0+ x = x for any x) and, for every number
x, there should be another —x which when added to x, gives you 0. Typically, a ring also has an
element called “1”, which satisfies 1 -x =x = x- 1. For instance, in any ring of n by n matrices,
the element “1” is actually the identity matrix.
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You may recall that multiplication of square matrices is noncommutative (if they are at least
2 by 2 in size). For instance, we have

(6 D)6 %)= )= )= %) (1)

On the other hand, the multiplications in Z, Q, R, and C are all commutative. A ring in which
multiplication is a commutative binary operation is a called a commutative ring.

Once we have rings, fields are simple to describe. Fields are commutative rings with one
extra property. That is, a field has inverses under multiplication: if x is in the field and isn’t 0,
then there must be an element x ! = 1 /x as well, and it satisfies x-x1=11In particular, Q, R,
and C are fields as well as rings, but Z is not a field. In a field, fractions add and multiply in the
familiar way:

X
X Z_owdyo X 2
y w w y woyw

Some rings have nonzero elements x and y with product xy equal to 0. These are called

zero-divisors. For instance,
1 0 ‘ 0 0\ /(0O
00 0 1) \0 0)°

and so we can have that the product of two nonzero matrices is the zero matrix. If a commutative
ring has no zero divisors, then we can construct its field of fractions artificially. Its elements
consisting of elements denoted x/y, where x and y are in the original rings. The field of fractions
of Z is Q, and here we have our first example of a construction that is well-known for the simplest
ring of all, the integers, but can be performed more generally (for instance to polynomials),
starting from the axioms of a ring and a few extra properties.

Groups may seem a bit less familiar, but they are also in a sense simpler. Groups have only
one binary operation. Call it whatever you like: addition, multiplication, or just “x”. A group
and its binary operation x must satisfy just three properties: associativity of x, the existence of
an identity element e, and the existence of inverses. The identity element e is like the number 1
is under multiplication, or like O is under addition, in the rings that are familiar to us. It satisfies

exX=X=X%e

for all x in the group. The inverse of an element x is normally denoted x~!, but it is written —x if
our operation is addition. It satisfies

x ax=e=xxxl.
In particular, rings are groups if we forget about the multiplication and just consider the operation
of addition. Fields are groups under multiplication if we throw out 0.

Many less familiar but interesting mathematical objects are groups. The rotations of a cir-
cle form a group under composition (following one rotation by another), and the permutations
(switches of positions) of five balls between five slots are a group under composition as well. The
n by n real matrices with nonzero determinant form a group under multiplication too. The set of
“moves” of a Rubik’s cube (compositions of rotations of sides by 90 degree multiples) form a
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group too: a very complicated one, in fact. So, groups are in some sense a less refined but much
broader class of objects than the rings, with more exotic members.

In our examples, some of the groups have finitely many elements and hence are known as
finite groups. Here’s an interesting property of every finite group. Suppose that a finite group G
has n elements, and let x be one of them. Then x", which is x xxx - - - xx with x appearing n times,
is the identity element e. For instance, if I permute the position of 5 balls in five slots in a certain
manner, over and over, the balls will wind up in the position they started after 120 steps, since
that is the order of the group. In fact, this exaggerates the number of repetitions needed: the balls
end up at the starting point in six or fewer. The same goes with the Rubik’s cube: repeat the
same sequence of moves enough times, and, if you have enough patience (meaning watch out for
carpal tunnel syndrome), you will end back up where you started. This is something that, a priori,
may not seem obvious at all. Yet, this property of finite groups is a very general phenomenon,
derived solely from the group axioms.

Hopefully this encourages you to believe that abstract algebra may be of serious use both in-
side and outside mathematics, and indeed, it is so, in addition to being a fascinating and beautiful
theory in its own right for those so inclined. In the next chapter, we begin our study of abstract
algebra at a much more leisurely pace.






Part 1

A First Course






CHAPTER 1

Set theory

1.1. Sets and functions

In these notes, we assume some basic notions from set theory, for which we give only the
briefest of reviews. We won’t attempt to define a set formally here. Instead, we simply make
some remarks about them. Vaguely, a set is a collection of objects. Not every collection of objects
is a set: the “collection” of all sets is not a set. On the other hand, most reasonable collections of
objects are sets: the integers, the real numbers, the movies in your DVD collection (seemingly, a
soon-to-be dated notion), those are sets.

Sets consist of elements. If X is a set, we write x € X to mean that x is an element of X (or “x
is in X’). Similarly, x ¢ X means that x is not an element of X (which only really makes sense if
both x and the elements of X are elements of some common larger set so they can be compared.)

EXAMPLES 1.1.1.
a. The empty set @ is the set with no elements.

b. The set consisting of elements called 1, 2, and 3 is denoted {1,2,3}, and this notation
extends to any finite collection of objects.

c. The set {1,2,3,...} of positive integers is again a set.

d. The real numbers R form a set.

Any collection of elements of a set X is called a subset of X and is a set itself. We write
Y C X to mean that Y is a subset of X. If Y and Z are different subsets of X, then we write Y # Z
and we say that Y and Z are distinct subsets.

A property P that only some elements of X satisfy allows us to specify a subset of X consisting
of elements of X that satisfy P, which we denote in set-theoretic notation by

{x € X | x satisfies P},

or just {x | x satisfies P} if X is understood.
EXAMPLE 1.1.2. The subset {n € Z | 2 divides n} of Z is the set of even integers.

DEFINITION 1.1.3. Let X be a set and Y be a subset of X. Then X —Y denotes the complement
of Y in X, which is defined as
X-Y={xeX|x¢Y}

If Y is a subset of X that is not X itself, then it is called a proper subset, and we write Y C X
(orY € X). Given two subsets Y and Z of a larger set X, we can form their union ¥ UZ and their
intersection Y N Z, which are also subsets of X.

13
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DEFINITION 1.1.4. Given sets X and Y, the direct product X x Y is the set of pairs (x,y) with
xeXandyeY.

In set-theoretic notation, we may write this as
XxY={(xy)|[xeX,yeY}

DEFINITION 1.1.5. A function f: X — Y from a set X to a set Y is a rule that to each x € X
associates a single element f(x) € Y, known as the value of f at x.

NOTATION 1.1.6. We sometimes refer to a function as a map, and we sometimes write f: x —
y to indicate that f(x) =y, or in other words that f maps (or sends) x to y.

We can, of course, compose functions, as in the following definition.

DEFINITION 1.1.7. Let X, Y, and Z be sets and f: X — Y and g: Y — Z functions. The
composition (or composite function) go f : X — Z of g with f is the function such that (go f)(x) =
g(f(x)) forall x € X.

DEFINITION 1.1.8. Let f: X — Y be a function.
a. The function f is one-to-one (or injective, or an injection) if for every x,y € X such that
f(x) = f(y), one has x = y.

b. The function f is onto (or surjective, or a surjection) if for every y € Y, there exists an
x € X such that f(x) =y.

c. The function f a one-to-one correspondence (or bijective, or a bijection) if it is both one-
to-one and onto.

REMARK 1.1.9. In other words, to say a function f: X — Y is one-to-one is to say that it
sends at most one element of X to any given element of Y. To say that it is onto is to say that
it sends at least one element of X to any given element of Y. So, of course, to say that it is a
one-to-one correspondence is to say that it sends exactly one element of X to each element of Y.

EXAMPLES 1.1.10.

a. The map f: Z — Z defined by f(x) = 2x for every x € Z is one-to-one, but not onto.
b. The function f: R — R defined by f(x) = x> is a bijection.

c. The function f: R — R defined by f(x) = xsin(x) is onto, but not one-to-one.
DEFINITION 1.1.11.

a. A set X is finite if X has only a finite number of elements, and it is infinite otherwise.
b. If X is a finite set, then the order |X| of X is the number of elements it has.

PROPOSITION 1.1.12. Let X and Y be finite sets of the same order, and let f: X —Y be a
function. Then f is one-to-one if and only if it is onto.

PROOF. Let n = |X/|, and denote the elements of X by xi,...,x,. If f(x;) = f(x;) for some
i # j, then the subset {f(x}),...,f(x,)} of Y has fewer than n elements, hence cannot equal Y.
Conversely, if {f(x1),...,f(x,)} has fewer than n elements, then f(x;) = f(x;) for some i # j.
Therefore f is not one-to-one if and only if it is not onto, as desired. O
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Note that every bijection has an inverse.

DEFINITION 1.1.13. If f: X — Y is a bijection, then we define the inverse of f to be the
function f~!: ¥ — X satsifying f~!(y) = x for the unique x such that f(x) = y.

Given a bijection f: X — Y, note that

) =x and f(f ') =y

for all x € X and y € Y. In other words, f~! o f (resp., fo f~1) is the function that takes every
element of Y (resp., X) to itself.

EXAMPLE 1.1.14. The function f: R — R defined by f(x) = x> has inverse f~!(x) =x~1/3.

Often, it is useful to use what is called an indexing set / to define a collection, which is just
some given set, like the natural numbers. Given objects x; for each i € I, we can use set-theoretic
notation to define a set consisting of them

{xi|iel}
that is in one-to-one correspondence with / via the map that takes i to x;.

DEFINITION 1.1.15. Let X be a set and {Y; | i € I} be a collection of subsets of X indexed by
aset/.

a. The intersection and union of the sets Y; are defined as

(Yi={xeX|xeYforallicl} and (JY;={x€X|x€Y;forsomeicl},
i€l i€l
respectively.
b. If Y;NY; = & for every i, j € I with i # j, we say that the sets Y; are disjoint.

c. If the collection of Y; is disjoint, then their union is called a disjoint union and is often
written as
1%
icl
DEFINITION 1.1.16. Let {X; | i € I} be a collection of sets. The direct product [];c; X; of the
X; is the set of tuples
[ 1% = {(xi)ier | xi € Xi}.
iel
In other words, an element of [];-; X; is a choice of one element of X; for each i € I.
1.2. Relations
In this section, we consider several types of a very general construct called a relation.

DEFINITION 1.2.1. A relation R is a subset of X x Y. We often write xRy to indicate that
(x,y) ER.

EXAMPLES 1.2.2.
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a. The circle S' = {x?> +y? = 1} forms a relation in R x R. As is well-known, a pair (x,y) is
in S! if and only if (x,y) = (cos 8,sin ) for some 0 € [0,27).
b. The relation < on R x R is given by {(x,y) | x < y}.
As a first example, we see that functions can be considered as relations.
REMARK 1.2.3. A function f: X — Y gives rise to a relation
Ty ={(x.f(x) | x€X} X xY,

known as the graph of f. Equivalently, each relation R in X X Y such that for each x € X there
exists a unique y € Y with xRy gives rise to a function f defined by f(x) =y (where xRy).

EXAMPLE 1.2.4. The relation in R? corresponding to f: R — R is the graph of f in the usual
sense.

We will consider two other types of relations.

DEFINITION 1.2.5. An equivalence relation ~ on X is a relation in X x X that satisfies the
following properties.

a. (reflexivity) For all x € X, we have x ~ x.
b. (symmetry) For any x,y € X, we have x ~ y if and only if y ~ x.
c. (transitivity) If x,y,z € X satisfy x ~ y and y ~ z, then x ~ z.

EXAMPLES 1.2.6.

a. Equality is an equivalence relation = on any set X. As a relation, it defines the subset
{(x,x) [ xeX}of X xX.

b. The relation < on R is not an equivalence relation, as it is not symmetric.

c. Let n be a positive integer, and consider the relation =, on Z defined by a =, bif a—b
is divisible by n. This is an equivalence relation known as congruence modulo n. We will write
a = b mod n in place of a =, b, as is standard.

DEFINITION 1.2.7. Let ~ be an equivalence relation on a set X. The equivalence class of
xe€Xistheset {y e X |x~y}.

EXAMPLES 1.2.8.
a. The equivalence classes under = on a set X are just the singleton sets {x} for x € X.

b. The equivalence class of 3 under =7 on Zis {...,—11,—4,3,10,17,...}.

DEFINITION 1.2.9. We refer to the set of equivalence classes of Z under congruence modulo
n as the integers modulo n, and denote it Z/n7Z. (Note that number theorists usually denote this
set Z/nZ.) A typical member @ has the form

a={a+bn|beZ}

for some integer a. An equivalence class a is known as a congruence class modulo #.
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LEMMA 1.2.10. The distinct equivalence classes of X under an equivalence relation ~ are
disjoint, and X is the disjoint union of its distinct equivalence classes.

PROOF. The second statement follows from the first once we known that different equiva-
lence classes are disjoint, since every x € X is in some equivalence class. For the first statement,
suppose that x and y are elements of X, and let E, and E, denote their respective equivalence
classes under ~. If E, and E are not disjoint, then there exists z € ExNE,, sox~zand y ~ z.
But then z ~ x by symmetry of ~, and so for any w € X, we have x ~ w implies z ~ w by transi-
tivity of ~. Given that and using y ~ z, we then have y ~ w, again by transitivity. Hence E, C E,.
But since x and y are interchangeable in the last sentence, we have Ey, C E, as well. Therefore,
E\ = Ey, which is to say any two equivalence classes of X are either distinct or equal. U

DEFINITION 1.2.11. Let X be a set and ~ an equivalence relation on X.
a. For any equivalence class E of ~, a representative of E is just an element of E.

b. A set of representatives (of the equivalence classes) of X under % is a subset S of X such
that each equivalence class of X contains exactly one element of S.

EXAMPLE 1.2.12. The set {0,1,2,...,n— 1} is a set of representatives of Z under congruence
modulo n.

DEFINITION 1.2.13. A partial ordering on a set X is a relation < in X x X that satisfies the
following properties.

1. (reflexivity) For all x € X, we have x < x.
ii. (antisymmetry) If x,y € X satisfy x <y and y < x, then x = y.
1. (transitivity) If x,y,z € X satisfy x <yand y < z, then x < z.
A set X together with a partial ordering < is referred to as a partially ordered set.

EXAMPLES 1.2.14.
a. The relation < on R is a partial ordering, as is >.

b. The relation < on R is not a partial ordering, as it is not reflexive.

c. The relation C on the set of subsets Zx of any set X, which is known as the power set of
X, is a partial ordering.

d. The relation = is a partial ordering on any set.
e. The relation =, is not a partial ordering on Z, as 0 and n are congruent, but not equal.
Given a partial ordering < on a set X, we can speak of minimal and maximal elements of X.

DEFINITION 1.2.15. Let X be a set with a partial ordering <.

a. A minimal element in X (under <) is an element x € X such that if z € X and z < x, then
Z=2X.

b. A maximal element y € X is an element such that if z € X and y < z, then z = y.

Minimal and maximal elements need not exist, and when they exist, they need not be unique.
Here are some examples.
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EXAMPLES 1.2.16.

a. The set R has no minimal or maximal elements under <.

b. The interval [0, 1) in R has the minimal element O but no maximal element under <.
c. The power set Zx of X has the minimal element & and maximal element X under C.
d. Under = on X, every element is both minimal and maximal.

e. Consider the set S of nonempty sets of the integers Z, with partial ordering C. The minimal
elements of S are exactly the singleton sets {n} for n € Z.

One can ask for a condition under which maximal (or minimal) elements exist. To phrase
such a condition, we need two more notions.

DEFINITION 1.2.17. Let X be a set with a partial ordering <. A chain in X is a subset C of
X such that if x,y € C, then either x < yory <x.

That is, a chain is a subset under which every two elements can be compared by the partial
ordering.

EXAMPLE 1.2.18. The power set Zx of X = {1,2,3} is not a chain, as we have neither {1,2}
contained in {2,3}, nor {2,3} contained in {1,2}. However, its subset {&,{1},{1,2},{1,2,3}}
does form a chain.

EXAMPLE 1.2.19. Any subset of R forms a chain under <.

The previous example leads us to the following definition, which we mention primarily as a
remark.

DEFINITION 1.2.20. If X is itself a chain under <, then < is said to be a fotal ordering on X.
We need the notion of bounds on subsets of a partially ordered set.

DEFINITION 1.2.21. Let X be a set with a partial ordering <. Let A be a subset of X. An
upper bound on A under < is an element x € X such that a < x for all a € A.

That is, an upper bound on a subset is an element of the set that is at least as large as every
element in the subset. Note that the upper bound need not, but can, be contained in the subset
itself. (And, of course, lower bounds could have been defined similarly.)

EXAMPLES 1.2.22.

a. The subset [0, 1) of R has an upper bound 1 € R under <. In fact, any element x > 1 is an
upper bound for [0,1). The subset [0, 1] has the same upper bounds.

b. The subset Q of R has no upper bound under <.

We now come to Zorn’s lemma, which is equivalent to the so-called “axiom of choice”, and
as such, is as much an axiom as it is a theorem (and more of a theorem than it is a lemma). Some,
though far from most, mathematicians prefer not to include the axiom of choice among the ax-
ioms of set theory, fearing that the resulting collection of axioms may be logically incompatible.
For the purposes of this book, we will have no such qualms, and we state Zorn’s lemma without
proof: the reader may take it as an axiom.
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THEOREM 1.2.23 (Zorn’s lemma). Let X be a set with a partial ordering <, and suppose
that every chain in X has an upper bound. Then X contains a maximal element.

Later on in these notes, we will see a couple of examples where Zorn’s lemma can be used
to produce the existence of maximal elements in situations of use to algebraists. Zorn’s lemma
is the form of the axiom of choice considered most conducive to applications in algebra.

Finally, let us consider the notion of generation. We have the following rather obvious lemma.

LEMMA 1.2.24. Let X be a set and S be a subset. Let P be a subset of Px containing X
such that P is closed under intersection, and let Ps be the (nonempty) subset of elements of P
containing S. Then the intersection of the elements of Ps is the unique minimal element of Ps.
That is, it is the smallest subset of X in P containing S.

We think of P of some property of certain subsets of X that X itself satisfies, where a subset
of X is in P it has the property. As P is closed under intersection, for any subset S of X, we may
speak of the smallest subset that contains S and has property P. We then think of this subset as
the subset of X with property P generated by S. For instance, we have the following.

EXAMPLE 1.2.25. Let X be a set and S C X x X be a relation on X. The set of equivalence
relations on X is closed under intersection, as one may easily check, and X x X is an equivalence
relation. Thus, the intersection all equivalence relations containing § is the smallest equivalence
relation ~g containing S. We call ~g the equivalence relation generated by S.

Two elements x,y € X are equivalent under ~g if and only if there exist a sequence of ele-
ments 2, ...,z, € X with x = zp and y = z, for some n > 1 such that z; = z;11, (z;,2i+1) € S, or
(zit1,2i) € S for every 0 < i < n— 1. To see this, one checks two things: first, that what we have
Jjust described defines an equivalence relation on S, and secondly, that any equivalence relation
on S must contain every such pair (x,y).

1.3. Binary operations

To give context to the term “binary operation”, which we study in this section, here is what
one might refer to simply as an “operation”.

DEFINITION 1.3.1. A (left) operation x of aset X on asetY is a function x: X XY — Y.

NOTATION 1.3.2. The value x(x,y) of (x,y) € X x Y under an operation *: X xY — Y is
denoted x«y. It is often referred to as the product of x and y under x (when confusion does not
arise from this language).

EXAMPLE 1.3.3. The set R acts on R” for any n > 1 by left diagonal multiplication. That is,
we have
a-(xi,...,x,) = (axy,...,ax,)
fora € R and (x1,...,x,) € R". Geometrically, this is the action of scaling of a vector.

If Z is a subset of Y, we can ask if the values xxz forx € X and z € Z land in Z.

DEFINITION 1.3.4. Letx: X XY — Y be a (left) operation of X on Y. A subset Z of ¥ is said
to be closed under * (or, left multiplication by %) if xxz € Z forall x € X and z € Z.



20 1. SET THEORY

EXAMPLE 1.3.5. Consider the operation -: Z x Z — 7Z of multiplication. The subset E of
even numbers in Z is closed under this operation, which is to say left multiplication by integers.
That is, if a € Z and b € E, then ab € E. However, the subset O of odd numbers is not closed
under this operation. For instance,2 € Zand 1 € O,but2-1=2¢ O.

DEFINITION 1.3.6. Let x: X XY — Y be an operation and Z be a subset of Y that is closed
under . Then the restriction of x to an operation of X on Z is the operation xz: X X Z — Z
defined by xxzz =xxzforallx € X and z € Z.

In this text, we will most often encounter binary operations.

DEFINITION 1.3.7. A binary operation on a set X is an operation of X on itself.
REMARKS 1.3.8. Let X be a set.

a. A binary operation x on X is simply a function x: X x X — X.

b. We often refer to a binary operation on X more simply as an “operation” on X, the fact
that X is operating on itself being implied.

EXAMPLES 1.3.9. The following are binary operations.

a. Addition (or subtraction) 4+ on Z, Q, R, C, R", and m-by-n matrices M,,,(R) with entires
in R for any m,n > 1.

b. Multiplication - on Z, Q, R, C, and square n-by-n matrices M,,(R) for any n > 1.
c. Composition o on the set Maps(X,X) of maps from a set X to itself, e.g., X = R.
d. Union U and intersection N on power set #x of any set X.

EXAMPLES 1.3.10.

a. Exponentiation is not a binary operation on C, as (—1)1/ 2, for instance, has two possible
values. It is therefore not well-defined.

b. Addition is not a binary operation on the set R* of nonzero real numbers, as —1+1 =0,
and 0 ¢ R*. We say that R* is not closed under addition.

c. Division in not a binary operation on R, as division by 0 is not defined, but division is a
binary operation on R*.

We can define a binary operation on a finite set via a multiplication table.

EXAMPLE 1.3.11. Consider the set X = {a,b,c}. The following table defines a binary oper-
ation x on X:

< [alb]c]
allblcla
alcl|c
cl|lblalc

The entry in row b and column a is, by way of example, b xa, and therefore, bxa = a. On the
other hand, ax b is located in the row corresponding to a and column of b, and hence axb = c.
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In the previous example, we could have filled in the nine entries in the bottom right 3-by-
3 square arbitrarily with elements of X, as there are no conditions of the values of a binary
operation. Often, it is useful to impose conditions that give additional structure.

DEFINITION 1.3.12. Let X be a set.
a. A binary operation x on X is associative if
(xxy)xz=2xx(y*z)

for all x,y,z € X.

b. A binary operation * on X is commutative if

XKy =Yy*X

for all x,y € X.

EXAMPLES 1.3.13.

a. Addition is associative and commutative on Z, Q, R, C, R"”, M,,,(R), and Maps(R,R).

b. Subtraction is neither associative nor commutative on the sets Z, Q, R, C, R", M,,,(R),
and Maps(RR,R).

c. Multiplication is associative and commutative on Z, Q, R, C, R", Maps(R,R), and is
associative but not commutative on M, (R) for n > 2.

d. Union and intersection are associative and commutative binary operations on &x.

e. Composition on Maps(X,X) is an associative binary operation, but it is not commutative
if X has at least 3 elements.

DEFINITION 1.3.14. Let X be a set and x a binary operation on X. Two elements x,y € X are
said to commute under x if xxy = y*x.

Commutativity of a binary operation on a finite set can be seen on its mutliplication table,
as the table is then symmetric across the diagonal. Associativity is hard to see, but it is a strong
condition. Here are some examples.

EXAMPLES 1.3.15. The following are tables of binary operations on the set {a,b}:

(xllalb] [x]alb] |o]a]D]
albla alalb albl|a
b|b|a blb|a blal|a

Of these, only * is associative, while only * and ¢ are commutative, since a and b do not commute
under *.

EXAMPLE 1.3.16. We can define operations + and - on Z/nZ as follows. Let a,b € Z, and
recall that we denote their equivalence classes under congruence modulo n by @,b € Z/nZ. We
define@+b=a~+banda-b = a-b. These are well-defined, as if ¢ and d are congruent modulo
n to a and b, respectively, then c+d =a+b mod nand c-d =a-b mod n.
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DEFINITION 1.3.17. A set X together with a binary operation x: X x X — X is called a
binary structure, and we write it as a pair (X, *).

REMARK 1.3.18. If (X, ) is a binary structure, then we often refer to X as the underlying
set.

EXAMPLE 1.3.19. The pair (Z/nZ,+) is a binary structure, as is (Z/nZ,-).

DEFINITION 1.3.20. Let (X,*) be a binary structure. A subset A is said to be closed under
the binary operation x if axb € A for all a,b € A.

DEFINITION 1.3.21. Let (X, ) be a binary structure and A a closed subset of X. Then the
restriction of * to A is a binary operation x4: A X A — A defined by ax4 b = axb for all a,b € A.
We usually denote x4 more simply by *.

REMARK 1.3.22. If (X, *) is a binary operation and A is a closed subset of X, then (A,*) is a
binary structure as well.

EXAMPLES 1.3.23.
a. The subsets Z, Q, and R of C are closed under the binary operation +.

b. The subset [—1, 1] of R is not closed under +, though it is under -.

c. The set of all nonempty subsets of a set X is closed under the binary operation U on Py,
but not under the operation N (unless X has fewer than two elements).

d. The matrices in M, (R) with determinant 1 are closed under multiplication. The resulting
binary structure is denoted SL, (RR).

REMARK 1.3.24. If x: X x X — X is a binary operation, then we can also think of it as an
operation. However, the notions of a subset A of X being closed under x as a binary operation and
being closed under x as an operation do not in general coincide. The first says that x restricts to a
binary operation x: A X A — A, while the second says that x restricts to an operation x: X X A —
A. In other words, the first requires only that the product of any two elements of A lands in A
(under x), while the second says that the product xxa lands in A for any x € X and any a € A,
which is a stronger condition.

EXAMPLE 1.3.25. Consider the set Z and the binary operation - of multiplication on it. The
set of odd numbers E is closed under multiplication thought of as a binary operation, since the
product of any two odd numbers is odd. However, it is not closed - thought of as an operation of Z
on itself, since the product of an even number and an odd number is not odd (as in Example 1.3.5).

Look for similarities in the following tables of binary structures with underlying sets of order

3.
(Hoft]2] [x]af[b]c]
00|12 alla c
111120 blblcla
21121011 cllclalb
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In fact, if we replace + by %, 0 by a, 1 by b, and 2 by c, the first table becomes the second. In
a sense, these binary operations are the “same”. We give this notation of sameness a technical
definition. Note that to be the same in this sense, there must exist a bijection between the sets:
i.e., if they are finite, they must have the same number of elements.

DEFINITION 1.3.26. Let (X, ) and (Y, *) be binary structures. We say that they are isomor-
phic if there exists a bijection f: X — Y such that

flaxb) = f(a)= f(b)
for all a,b € X. We then say that f is an isomorphism.

REMARK 1.3.27. If we remove the condition of bijectivity in Definition 1.3.26, then the map
f: X =Y with f(axb) = f(a) x f(b) is called a homomorphism of binary structures.

In the above example f(0) =a, f(1) = b, and f(2) = ¢, and the condition that f(x+y) =
f(x)x f(y) for all x,y € {0, 1,2} is exactly that the multiplication tables match.

EXAMPLES 1.3.28.
a. The map f: Z — Z defined by f(n) = —n defines an isomorphism from (Z,+) to itself.

b. The map f: Z — Z defined by f(n) = 2n is not an isomorphism from (Z, +) to itself. It
satisfies f(m+n) = f(m)+ f(n), but it is not onto.

c. Let Ryg = {x € R| x> 0}. Define f: R — R~ by f(x) = ¢*. This is an isomorphism
from (R, +) to (R~o,-), since
ex—i—y — exey
for all x,y € R.
d. The map f: R — R defined by f(x) = x> is not an isomorphism from (R, +) to itself, as

fA+1)=8#2=f(1)+f(1).
On the other hand, the same map does define an isomorphism from (R, ) to (R, ).
We have the following lemma.

LEMMA 1.3.29. Suppose that f is an isomorphism from (X,%) to (Y,x). Then the inverse
f~Yof f is an isomorphism from (Y, ) to (X,*).
PROOF. Let yj,y; € Y. Then there exists x;,x; € X with f(x;) =y and f(xz) = y» We have

F o0+ (0n) =x1 %22,
and
Fxrxxa) = fx1) * f(x2) = y1 %2,
)
xpxxy = [ (yi %),
as desired. O
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EXAMPLE 1.3.30. The inverse of f: R — R.q with f(x) = ¢* is f~!(x) = log(x), which
satisfies
log(x-y) = log(x) +log(y)
for x,y € Ryg.

In fact, the properties of being isomorphic puts an equivalence relation on any set of binary
structures.

EXAMPLE 1.3.31. The set of representatives for the isomorphism classes (i.e., equivalence
classes under isomorphism) of binary structures on the set {a,b} has 10 elements. That is, one
can construct at most 10 tables for binary operations on {a,b} that give binary structures, no two
of which are isomorphic, as the reader can check.



CHAPTER 2

Group theory

2.1. Groups
In this section, we introduce groups, which can briefly be defined as associative binary struc-

tures with identities and inverses. We begin by defining the two latter terms.

DEFINITION 2.1.1. Suppose that (X,«) is a binary structure.
a. A left (resp., right) identity element of X is an element e € X that satisfies e xx = x (resp.,
xX*xe=Xx).

b. If e € X is both a left and a right identity element of X, we say that it is an identity element
of X.

EXAMPLES 2.1.2.

a. Under addition, O is a left and right identity element in Z, Q, R, C, R", M,(R), and
Maps(RR,R), with 0 in the latter three examples being the zero vector, zero matrix, and constant
function with value 0. Similarly, under multiplication, 1 is a left and right identity element in all
of the latter sets.

b. Under subtraction on the sets from part a, the element 0 is a right identity but there is no
left identity element.

c. Under composition, f(x) = x is an identity element in Maps(R,R).
d. Under union, & is an identity element in Zy.

e. Multiplication is a binary operation on the even integers 27 but 2Z has no left and no right
identity elements.

f. For the binary structure defined on {a,b} by the table
*[lalb]

alla|b

blal|b

a and b are both left identity elements, but there is no right identity element.

One could ask whether or not there can be more than one (left and right) identity element in
a binary structure. The following provides the answer.

LEMMA 2.1.3. Let (X,*) be a binary structure. Suppose that e € Xis a left identity element

and that f € X is a right identity element. Then e = f, and in particular e is an identity element
inX.

25
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PROOF. If f is aright identity element, we have e x f = e. On the other hand, since e is a left
identity element, we have ex f = f. Therefore, we have e = f. 0
The following is an immediate corollary.

COROLLARY 2.1.4. Let (X,*) be a binary structure that contains an identity element e. Then
every (left or right) identity element in X is equal to e.

DEFINITION 2.1.5. Suppose that (X,*) is a binary structure with an identity element e €
X.

a. A left (resp., right) inverse of x € X is an element y € X such that yxx = e (resp., xxy = e).
b. An element that is both a left and a right inverse to x € X is called an inverse of x € X.

EXAMPLES 2.1.6.

a. In Z, Q, R, C, M,(R), and Maps(R,R), the negative —x of an element called x is the
inverse under addition. Under multiplication, x~! = 1/x is the inverse of any x # 0 in Q, R, and
C. The elements that have multiplicative inverses in Z are +1, in M,(R) they are the matrices
with nonzero determinant, and in Maps(IR,R) they are the nowhere vanishing functions.

b. Under subtraction on the sets of part a, an element x is its own left and right inverse.

c. Under composition, an element f € Maps(R,R) has an inverse f~! if and only if it is a
bijection.
d. Under union on ¥, only @ has an inverse, which is itself.

e. For the binary structure defined on {a,b,c} by the table

*alb]c]

alla|b|c
blblala
cllec|b|c

a is an identity element and is its own inverse, b is an inverse of itself, ¢ is a right inverse of b
and therefore b is a left inverse of ¢, but ¢ has no right inverse.

LEMMA 2.1.7. Let (X,*) be a binary structure with an identity element e. Suppose that x € X
has a left inverse y and a right inverse z. Then'y = z.

PROOF. We need only write down the chain of equalities
y=yxe=y*(xxz) = (y*xx)kz=e*xz=12.
O

With the concepts of identity elements and inverses in hand, we now give the full definition
of a group.

DEFINITION 2.1.8. A group is a set G together with a binary operation x: G X G — G such
that

1. % 1S associative,
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ii. there exists an element ¢ € G such that exx = x = x*e, and

iii. for every x € G, there exists an element y € G such that xxy = e = y*x.

In other words, a group is a set with an associative binary operation, an identity element, and
inverses with respect to that identity element.
Here are some examples of groups.

EXAMPLES 2.1.9.
a. Under addition, Z, Q, R, C, M, (R), and Maps(RR,R) are all groups.

b. For X = Q, R, or C, we set X* = X — {0}. Under multiplication, Q*, R*, and C* are
groups.

c. Under multiplication, the set GL,(R) of invertible n by n-matrices (i.e., those with nonzero
determinant) forms a group, known as the general linear group.

d. Under multiplication, the set of nowhere vanishing functions in Maps(R,R) forms a
group.

e. The set {e} consisting of a single element is a group under the binary operation * defined
by exe = e. This group is known as the trivial group.

On the other hand, here are some of many binary structures that are not groups.

EXAMPLES 2.1.10.

a. The integers are not a group under multiplication, nor are Q, R, or C before removing 0.
b. The set Maps(R,R) is not a group under composition, as not every function has an inverse.
c. The set &x of subsets of a set is not a group under union.

The following theorem is used in showing the uniqueness of inverses.

PROPOSITION 2.1.11 (Cancellation theorem). Let G be a group, and let x,y,z € G be such
that
X*y=X*Z (resp., y*x = z%x).
Theny =z

PROOF. We prove the first statement. Let x’ be any (left) inverse to x. Under the given
assumption, we have

y=exy= (X xx)xz=x*(xxy) =X x(xxz) = (X' *x)xz=exz=1

The following is now quickly derived.

LEMMA 2.1.12. Let G be a group. If y,z € G are both inverses to x € G on either the left or
the right (or both), then y = z.

PROOF. Suppose first that y and z are right inverses to x. Then we have

Xky=e=XxXx%Z,
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and the result now follows from the cancellation theorem. A similar argument holds if both y and
z are right inverses. In fact, even if y is a left inverse and z is a right inverse, there is by definition
of the group a third element x’ in the group that is both a left an a right inverse, and so equals
both y and z by what we have just proven. So y and z must be equal. O

NOTATION 2.1.13. Let G be a group and x € G an element. Suppose the operation on G is

not denoted +. Then we (almost invariably) use the following notation.

a. The unique inverse to x is written x~!.

b. LetneZ. Wesetx’ =e. If n> 1, we usually write x”* for x*xx - - - % x, the product being
of n copies of x, which is unambiguously defined by the associativity of «.
If the binary operation on the group is denoted +, then we write the inverse of x as —x and nx
instead of x".

REMARK 2.1.14. Let G be a group and e an element for which the operation is not denoted
as +. The reader should be able to check that for x € G and m,n € Z, one has

KM= X KM= ("), M= hHTr = and ¢" = e.
DEFINITION 2.1.15. Let G be a group.
a. We say that G is abelian if its binary operation is commutative.

b. We say that G is nonabelian if its binary operation is not commutative.

EXAMPLES 2.1.16.
a. Allof Z, Q, R, C, M,,,(R), and Maps(RR,R) are abelian groups under addition.

b. The groups Q*, R*, and C* are abelian (under multiplication).
c. The group GL,(R) is nonabelian if n > 2.

REMARK 2.1.17. From now on, we will drop the use of % for an arbitrary binary operation,
and simply use the more conventional symbol -. However, the reader should keep in mind that
this does not mean that the operation in question is multiplication. Moreover, we shall often write
x -y more simply as xy.

LEMMA 2.1.18. Let G be a group. For x,y € G, we have (xy)~! =y~ Ix~1.

PROOF. We have

O D) =y ) =y () =y ) =y =

~Ix~1is left inverse to xy, and so by Lemma 2.1.12 it equals (xy)~!. U

Therefore y
We end this section with a few more examples of groups.

EXAMPLE 2.1.19. The set Z/nZ of congruence classes modulo n forms a group under the
addition law

a+b=a-+b.

The identity is 0, and the inverse of @ is —a.

Clearly, Z/nZ is an abelian group.
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REMARK 2.1.20. Usually, we simply write a for a. We have kept up the distinction to this
point to make clear the difference between a and its equivalence class. From now on, however, if
we understand that we are working in Z/7Z, e.g., from context, we will write equations such as
5+ 2 =0, with the fact that we are working with equivalence classes as above being understood.

DEFINITION 2.1.21. The symmetric group Sx on a set X is the set
Sx ={f: X — X | f is bijective}
with the binary operation o of composition.

DEFINITION 2.1.22. Let X be a set. An element of Sy is referred to as a permutation of X.
We say that 6 € Sy permutes the elements of X.

REMARK 2.1.23. The group Sy is alternately referred to as the group of permutations of a
set X.

REMARK 2.1.24. The group Sy is nonabelian if X has at least three elements.

EXAMPLE 2.1.25. If X = R, then f(x) = x+ 1 and g(x) = x* both lie in Sg, but do not
commute.

DEFINITION 2.1.26. When X = {1,2,...,n}, then we set S, = Sx, and we refer to S, as the
symmetric group on n letters.

REMARK 2.1.27. The notion of isomorphism of binary structures carries over to groups. An
isomorphism of groups is just an isomorphism of the underlying binary structures, i.e., a bijection
f: G — G’ between groups G and G’ such that

fley)=f(x)-f(v)
for each x,y € G. If G and G’ are isomorphic, we write G = G’ (noting that the property of being
isomorphic forms an equivalence class on any set of groups).

EXAMPLES 2.1.28.
a. The group GL(R) is isomorphic to R* via the map f: R* — GL|(R) defined by f(a) =
(a).
b. Let X be a set with exactly n elements, say X = {x1,x2,...,x,}. Then we define an iso-
morphism
[i8 = 8x,  flo)(x) =xs(),
which is to say that f takes a permutation ¢ € S, that takes i to some other number j to the

permutation in Sx that maps x; to x;. In other words, it doesn’t matter whether we’re permuting
n cars or n apples: the groups are isomorphic.

To every group, we have an associated opposite group.

DEFINITION 2.1.29. The opposite group G°P of a group G is the set G together with the
operation xxy = yx for x,y € G.

EXAMPLE 2.1.30. The opposite group of an abelian group is the original group.
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2.2. Subgroups

DEFINITION 2.2.1. A subset H of a group G is a subgroup if it is closed under the binary
operation on G and is a group with respect to the restriction of that operation to a binary operation
on H. If H is a subgroup of G, we write H < G.

More succinctly, a subset of a group is a subgroup if it is a group with respect to the operation
on the group.

REMARK 2.2.2. The relation < is a partial ordering on the set of subgroups of a group.

DEFINITION 2.2.3.

a. The set {e} containing only the identity element of G is a subgroup of G known as the
trivial subgroup (as it is a trivial group that is also a subgroup).

b. A subgroup H of G that is not the trivial subgroup is called nontrivial.

DEFINITION 2.2.4. If H is a subgroup of G with H # G, then we say that H is a proper
subgroup of G, and we write H < G.

EXAMPLES 2.2.5. The groups Z, Q, and R under addition are all subgroups of C.

To check that a group is a subgroup, one usually employs the following criteria.

THEOREM 2.2.6. A subset H of a group G is a subgroup under the restriction on the binary
operation - on G if and only if

(0) ec H,

(1) H is closed under -,

(2) ifh€ H, then ™' € H.

PROOF. If H is a subgroup of G with respect to -, then it is by definition closed under -.
Since H is a group under -, there exists an element f € H with f-h = h for all h € H. By the
cancellation theorem, we then have f = e, so e € H. Also, for each h € H, we have an element
W e Hwithh-l =e. Ase=h-h"!, the cancellation theorem again tells us that /' = h1, so
h~! € H. Therefore, the conditions (0)-(2) hold.

Conversely, if conditions (0)-(2) hold, then H is a binary structure under - by (1) and (0)
and (2) leave us only to verify associativity in the definition of a group. However, this follows
automatically on H from the associativity of - on the larger set G. Ul

EXAMPLES 2.2.7. The subset 2Z of Z is a subgroup under +. To see this, note that 0 is even,
the sum of two even integers is even, and the negative of an even integer is also even.

EXAMPLE 2.2.8. The subset
SL,(R) ={A € GL,(R) | det(A) =1}
of GL,(R) is a subgroup under -, known as the special linear group. We use Theorem 2.2.6 to
check this:
(0) We have detl, = 1, so I, € SL,(R).
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(1) If A, B € SL,(R), then
det(A-B) =det(A)-det(B) =1

soA-B e SL,(R).

(2) If A € SL,(R), then

det(A™!) =det(4) ' =1

so A~! € SL,(R).

EXAMPLE 2.2.9. Let

S'={zeC| [zl =1}={"" |6 €R}.

Here ¢2™? corresponds to the point (cos@,sin@) on the unit circle in the usual model of the
complex plane. In fact, recall that

e?™9 — cos0 +isin® € C

and

|cosO +isin@| = \/cosz(e) +sin%(0) = 1.
Then S is a subgroup of C* under -. To see this, we check:
(0) We have |1| = 1.
(1) If z,w € S', then z = €*™? and w = ¢*™V for some 0,y € R. We have
w = 2Ti(0+Y) o gl
(2) If z = ¢*™9  then
1= 2mi(=6) ¢ g1
Theorem 2.2.6 has the following shorter formulation.

COROLLARY 2.2.10. A nonempty subset H of a group is a subgroup under the restriction of
the binary operation - on G if and only if h-k~' € H for all h,k € H.

PROOF. If H is a subgroup of G and h,k € H, then k~' € H and, consequently, hk~! €
H by Theorem 2.2.6. Conversely, suppose hk~! € H for all h,k € H. As H is nonempty, let
h € H. Using this critersion, we have successively that e = hh~' € H, k! = ek~! € H, and
hk = h(k~1)~! € H, so Theorem 2.2.6 implies that H is a subgroup. O

DEFINITION 2.2.11.
a. A group G is finite if its underlying set is finite. Otherwise, we say that G is infinite.

b. The order |G| of a finite group G is the order (number of elements in) of the underlying
set. If G is infinite, we say that its order is infinite.

The following provides an interesting example.

LEMMA 2.2.12. Let n > 1. The group S,, is finite of order n!.
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PROOF. For an arbitrary element ¢ € S,,, we have n choices for the value ¢(1). Then o(2)
can be any of the remaining n — 1 values, and 6(3) is one of the then remaining n — 2 values, and
so forth, until one value is left for 6(n). Therefore, the order of S, isn-(n—1)---1 =n!. O

EXAMPLE 2.2.13. As a further subgroup of S' (so also a subgroup of C*), we have
Uy ={zeC* | " =1} = {1 | ke 7).

To see the equality of the latter two sets, note that (¢2™*/")" = 1. On the other hand 7" = 1
implies that |z|” = 1, so |z| = 1, which means that z = ¢**® for some 6 € R. But the only way
that (¢>*9)" = 1 can hold is for 16 to be an integer, which means exactly that & = k/n for some
n € Z. Note that |u,| = n, since e2™*/" = ¢2mJ/" if and only if j = k mod n. That this order
equals |Z/nZ| = n is no coincidence. In fact, these two groups are isomorphic, as well shall see
in the following section.

2.3. Cyclic groups

DEFINITION 2.3.1. Let G be a group, and let g € G. The cyclic subgroup of G generated by

g is the group
(¢) ={g"[neZ}.

LEMMA 2.3.2. Let g € G. Then (g) is the smallest subgroup of G containing g.

PROOF. Since the smallest subgroup of G containing G is itself a group, it must contain g"
for all n € Z, so it contains (g). On the other hand, we see that (g) is a subgroup of G since
it contains e = g°, is closed under multiplication (as g” - g" = g”*"), and contains inverses (as
(¢")~' = g™™). Being that (g) is a subgroup of G contained in the smallest subgroup containing
g, it is itself the smallest subgroup. 0

EXAMPLES 2.3.3.

a. The cyclic subgroup (2) of Z generated by 2 is 27Z.

b. The cyclic subgroup of GL;(RR) generated by
0 —1
=)

(A) = {,A,~ D, —A}.

1S

DEFINITION 2.3.4.
a. A group G is called cyclic if there exists g € G with G = (g).

b. Anelement of g of a group G is called a generator if G = (g). We then say that g generates
G and that G is generated by g.

REMARK 2.3.5. Of course, any cyclic subgroup of a group G is itself a cyclic group.

EXAMPLES 2.3.6.
a. The group Z is cyclic, generated by 1.
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b. The group Z/nZ is cyclic for any n > 0, again generated by 1.

c. The group i, is cyclic with generator ¢%/".

d. The trivial group is a cyclic group of order 1.
REMARK 2.3.7. Every cyclic group is abelian, since powers of a generator commute.

DEFINITION 2.3.8. Let G be a group. The order of an element g € G is the smallest positive
integer n such that g" = e, if it exists. If such an n exists, then g is said to have finite order, and
otherwise g is said to have infinite order.

PROPOSITION 2.3.9. Let g be an element in a group. Then the order of (g) and the order of
g are equal if either is finite (and both infinite otherwise). Moreover, for any i, j € Z, we have

g =g/ ifand only if

e i = jmod n, if g is finite of order n, and

e i = j, if g has infinite order.

PROOF. First, suppose that g has finite order n. If g/ = g/, then g'~/ = e. Note that g" = ¢ as
well. Dividing i — j by n, we have

i—j=qn+r
for some quotient g € Z and remainder 0 < r < n — 1. We then have
e=gJ=g""=(g")g =4,

but r < n and n is minimal, so r = 0. That is, i — j is a multiple of n, so i = j mod n. In particular,
the distinct elements of (g) are exactly e, g, ..., g1, so (g) has order n.

If g has infinite order, then for g’ = g/ to hold, one must have g'~/ = e, which forces i = ;.
Therefore, all of the powers of g are distinct, and (g) is infinite. O

LEMMA 2.3.10. Suppose that G is a cyclic group. If G is infinite, then G is isomorphic to 7.
Otherwise, G is isomorphic to 7./nZ, where n = |G]|.

PROOF. Let g be a generator of G. Suppose first that G is infinite. We define a map
f:Z—G,  fliy=g forallicZ.

This is one-to-one since f(i) = f(j) implies g’ = g/, which can only happen if i = j by Propo-
sition 2.3.9. It is onto as every element of (g) has the form g' = f(i) for some i. It is then an
isomorphism of groups as

fli+)) =8 =g'e/ = f(i) f())-
If |G| = n, then we define
f:Z/nZ -G,  f(i)=g forallicZ.

This is well-defined as f(i+qn) = g't9" = g, so it is independent of the choice of representative

of i modulo n. It is one-to-one as g' = g/ implies i = j in Z/nZ by Proposition 2.3.9. It is then
onto and an isomorphism for the same reasons as in the infinite case. U
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As a result, the group p, is isomorphic to Z/nZ (under the map taking eXk/n 1o k). The
groups nZ for n > 1 are all isomorphic to Z itself, but for this one must take the map Z — nZ
that is multiplcation by n.

THEOREM 2.3.11. Every subgroup of a cyclic group is cyclic.

PROOF. Let H be a subgroup of a cyclic group G with generator g. Let kK > 1 be minimal
such that g¥ € H. We claim that H = (g*). Since H is closed under multiplication and inverses,
it must contain every power of g, so it contains the subgroup (g’). Now suppose that g’ € H
for some i € Z. Again, divide i by k and get g € Z and 0 < r < k—1 with i = gk +r. Then
g'=(8")9g", so

g =4¢()€eH,
in that H is a subgroup. But minimality forces r = 0, so i is a multiple of k, proving the claim. []

COROLLARY 2.3.12. The subgroups of 7 are exactly the nZ = (n) with n a nonnegative
integer.

Let’s consider the subgroups of Z/nZ for some n > 1, which we now know to be cyclic.
Recall that the greatest common divisor ged(i, j) of two integers i and j that are not both zero is
defined to be the smallest positive integer dividing both i and j. We also set ged(0,0) = 0.

LEMMA 2.3.13. Given i, j € Z, we have
(ged(i, j)) ={ai+bj|a,beZ}.

PROOF. In the case that i = j = 0, we have that both sides equal (0), so the lemma holds,
and therefore we may assume that at least one is nonzero. Since ged(i, j) divides both i and j,
we have i, j € (gcd(i,j)). As a subgroup, the latter group is closed under addition and taking
of negatives, so ai + bj is in it as well. In other words, H = {ai+ bj | a,b € Z} is contained in
(ged(i, )

Conversely, note that the set H is a (nontrivial) subgroup of Z in that it satisfies all of the
properties of one, so it equals (d) for some d > 1. Since i,j € (d) by definition, we have that
d divides both i and j, and therefore is less than or equal to ged(i, j). On the other hand, we
know that d € (ged(i, j)), so ged(i, j) < d, and therefore d = ged(i, j). In other words, we have
H = (ged(i, ). O

PROPOSITION 2.3.14. Every subgroup of Z/nZ has the form (d) for some d > 1 dividing n.
In fact, for any j € Z, we have (j) = (gcd(j,n)).

PROOEF. The second statement implies the first, so we focus on it. Since ged(j,n) divides j,
we have that (j) < (ged(j,n)). On the other hand, we have by Lemma 2.3.13 that

ged(j,n) € {aj+bn|a,beZ}

inside Z, which means that gcd(j,n) = aj mod n for some a € Z. In other words, in Z/nZ, we
have ged(j,n) € (j), so (ged(j,n)) < (j), as desired. O

REMARK 2.3.15. The subgroup (n) of Z/nZ is just the trivial subgroup (0) = {0}.

Recall that two integers are said to be relatively prime if their greatest common divisor is 1.
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COROLLARY 2.3.16. Let G be a group and g € G an element of order n.
a. Fori € 7, the order of g' is n/d, where d = gcd(i,n), and (g') = (g?).

b. The generators of (g) are the g' with i relatively prime to n.

PROOF. Consider the isomorphism ¢ : G — Z/nZ under which g' is taken to i. This carries
the subgroup (g') bijectively to the subgroup (i), which by Proposition 2.3.14 equals (d). But
the latter group has elements 0,d,2d, ..., (n/d — 1)d, so has order n/d. As ¢ is a bijection, part
a is then seen to hold. Part b then follows immediately from part a, as the i for which (g') = (g)
are the i with ged(i,n) = 1. O

DEFINITION 2.3.17. The Euler phi-function is the map ¢ : Z~o — Z~g such that ¢(n) is the
number of relatively prime integers to n between 1 and n.

REMARK 2.3.18. The Euler phi-function ¢ has the properties that ¢ (mn) = ¢(m)@(n) when-

ever gcd(m,n) = 1 and that @(p”) = p"~!(p — 1) for a prime number p and r > 1. Its values on
1,2,3,4,5,...are 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8, 16, .. ..

REMARK 2.3.19. It follows from Corollary 2b that the number of generators of a cyclic group
G of order n is exactly @(n), where @ is the Euler phi-function.

2.4. Generators

The relation < is a partial ordering on any set of subgroups of a group. The following
proposition asserts the existence of minimal elements of certain such subsets. It is a consequence
of Lemma 1.2.24, but prove it here for convenience.

PROPOSITION 2.4.1. Let G be a group, and let S be a nonempty subset of G. Then there
exists a smallest subgroup (S) of G containing S.

PROOF. The set Ps of subgroups of G containing S is nonempty, for it contains G itself. Set
(S)= () H.
Hex
As each H € X contains G, so does (S). Moreover, an arbitrary intersection of subgroups of G is
easily verified to itself be a subgroup of G, so (S) is a subgroup. Finally, if H is any subgroup of

G containing S, then H € X, so (S) < H by definition of the intersection, so (S) is the smallest
such subgroup (i.e., the unique minimal element of X). U

DEFINITION 2.4.2. The smallest subgroup (S) containing a set S is the subgroup of G gener-
ated by S.

While this definition is rather abstract, we do have the following more concrete description
of the elements of (S).

PROPOSITION 2.4.3. Let S be a nonempty subset of G. An element g € G is contained in (S)
if and only if g may be written as a product of powers of elements of S: i.e.,

_ gy
8§=4581 85"

for some k>0, s; € Sandm; € Z for 1 <i<k.

.. mk
Sk
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PROOF. First, let g be an element that is a product of powers of elements of S. Since (S) is a
subgroup, it is closed under integer powers and products, so g € (S).

Conversely, note that the set H of elements that are products of powers of elements of § is
a subgroup of G, as it contains e = s for s € S, is closed under products by definition, and is
closed under inverses as

my Jmy mgN—1 _  —myg  —my —m
(5778375, ") " =5 52751 -

As H is a subgroup of G containing S but contained in (S) and (S) is the minimal such subgroup,

we have H = (S). Thus, any element of (S) may be written as a product of powers of elements
of S, as desired. [

DEFINITION 2.4.4. We say that a subset S of G generates G if G = (S), and then § is said to
be a set of generators of G.

DEFINITION 2.4.5. We say that a group G is finitely generated if there exists a finite set of
generators of G.

REMARK 2.4.6. If G can be generated by a finite set {g1,g2,...,8x}, we usually write

<g17g27 cee 7gn>
instead of

<{glag27 cee 7gn}>>
and we say that G is generated by g1, g2,...,8x-

EXAMPLE 2.4.7. A cyclic group is finitely generated: in fact, it is generated by a single
element.

EXAMPLE 2.4.8. Any finite group is finitely generated, as it is generated by itself.

EXAMPLE 2.4.9. Consider the subgroup G of GL;(R) that is

G:{((—()l)i (—bl)f) (i,j,bez}.
It can be generated by the set
G D)6 )6 n))
G 1) =6 1)
GGG D=5 )

The group G is not cyclic as it is infinite but contains elements of order 2, but all infinite cyclic
groups are isomorphic to Z. In fact, G cannot be generated by any two of its elements: the proof
of this more tricky fact is left to the reader.

To see this, note that

and
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EXAMPLE 2.4.10. The group Q can be generated by the set {rll | n > 1}. However, Q is not
finitely generated. For, any integer N > 1 and nonzero integers a;, b; with b; > 0 for 1 <i < N.

Any element of
a) ap an
by by by

must have denominator, when put in reduced form, that is a divisor of b1b; - - - by. But clearly not
every fraction has such a denominator, so (Q cannot be finitely generated.

2.5. Direct products

Given any two groups, we can form a new group out of them, known as the direct product,
whose underlying set is in fact exactly the direct product of the underlying sets of the groups in
question.

DEFINITION 2.5.1. Let G and G’ be groups. The direct product of G and G’ is the binary
structure G x G’ that is the direct product of the sets G and G’ together with the binary operation
defined by

(a,d)- (b,b) = (a-b,d -b)
fora,bc Gandd',b' € G'.

One might expect the direct product of G and G’ to be a group, and in fact it is. The straight-
forward check is left to the reader.

LEMMA 2.5.2. The direct product G x G’ of two groups is a group.

Of course, using this construction, we can think up more examples of new groups than we
can mention, e.g., S, X GL,(R) for any m,n > 1. The following remarks are easily verified from
the definition of the direct product.

REMARK 2.5.3. The group G x G’ is abelian if and only if both G and G’ are abelian.
REMARK 2.5.4. If f: G — H is a group isomorphism and G’ is another group, then the map
fl:GxG - HxG
given by f'(g,&') = (f(g),g’) for g € G and g’ € G’ is an isomorphism as well.

REMARK 2.5.5. Direct product forms an associative and commutative binary operation on
any set of isomorphism classes of groups. That is, for any groups G, G2, and G3, we have

(G1 XGy) xG3 =G x (G, xG3) and Gy x Gy = Gy X Gy.
In particular, the associativity means it makes sense to speak of the group
Gy xXGyx---xXGy
for any groups G, Gy, ... Gy,.
REMARK 2.5.6. If each of the groups G1,Ga,..., Gy is finite, then

n
‘Gl XG2>< XGn‘ :H’G,’|.
i=1
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NOTATION 2.5.7. We write G" for the direct product G x G X --- X G of n copies of G.
REMARK 2.5.8. More generally, for any collection
{G,’ | iel }

of groups G; for i in some indexing set /, we can put a binary operation on the direct product set

[16G:

iel
given by coordinate-wise multiplication
(ai)ier - (bi)ier = (ai-bi)ier,
and the resulting group is known as the direct product of the G;.
Letn > 1, and let G; be a group for each 1 <i <n. Let
G=G; xXGyXx---xXGy.

For g € G, let g(i) € G denote the element

¢V =(e,....e,g,e,....¢) €G
that is nontrivial in only the ith coordinate of G and g in the ith coordinate.

PROPOSITION 2.5.9. Suppose that S; is a generating set of G; for each 1 <i < n. Then
S = LnJ{g(” |g€S;}
i=1
is a generating set of G.
PROOF. Suppose g; € G; for each 1 <i < n. Then
(81,82 -.8n) =885 gl € (8).
U

For example, if each G; is cyclic with generator g;, then the set {gl@ | 1 <i<n} generates
G. While it is immediate from Proposition 2.5.9 that finite direct products of finitely gener-
ated groups are finitely generated, infinite direct products of nontrivial groups are never finitely
generated.

EXAMPLE 2.5.10. The group
G=[]z/2z)
i=1

is not finitely generated. We give a very brief sketch of the proof: one checks that any finite set
of elements X in G must have the property that there exist positive integers j and k such that for
each x = (x;) € X, we have x; = x;. Then every element in (X) has this property, and since not
every element of G has this property, we have (X) # G.

The following result gives a general recipe for determining the order of (g1, g2,...,8xn)-
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THEOREM 2.5.11. Suppose that g; € G; for each 1 < i <n. The order of g = (g1,82,---,8&n)
is the least common multiple of the orders of the g; if each of the elements g; has finite order, and
otherwise g has infinite order.

PROOF. We have
g" =(g1.82,---,8n)
and this is the identity if and only if m is a multiple of the orders of each of the g;, so infinite if
any one of them is infinite, and otherwise a multiple of the least common multiple. U

EXAMPLE 2.5.12. Let G = Z /27 X 7./37 x Z/AZ x Z/4Z. Then every element of G has
order dividing lem(2,3,4,4) = 12.

The latter example illustrates a more general phenomenon.

DEFINITION 2.5.13. The exponent of a group G is the smallest integer n > 1 such that g" =e
for all g € G, if it exists. Otherwise, it is infinite.

COROLLARY 2.5.14. If G; has exponent n; for each 1 < i < n, then the exponent of G is the
least common multiple of the n;.

We mention the following result, the proof of which we leave to the reader.

PROPOSITION 2.5.15. Suppose that {G; | i € I} is a collection of groups and, for each i € I,
we are given H; < Gj. Then we have
[1# <][]G:

il icl
Note, however, that not all subgroups of a direct product are direct products of subgroups.
EXAMPLE 2.5.16. There are 5 subgroups of the Klein four group 7./27. x 7./ 27
{0},2/22 % 2,/2Z,((1,0)),{(0,1)), and{(1, 1)).

The first four sit inside Z/27 x 7Z./27Z as direct products of subgroups in the two individual
coordinates, while the final subgroup does not.

Finally, we note the following interesting fact.
THEOREM 2.5.17. Let m and n be relatively prime positive integers. Then the natural map
Omn: Z/mnZ — ZL/mZ x Z/nZ

induced by a— (a,a) is an isomorphism. On the other hand, if m and n are not relatively prime,
then Z./mnZ and 7./ mZ. x 7./n’Z are not isomorphic.

PROOF. Suppose that m and n are relatively prime. Note that
Oun(a+b) = (a+b,a+b) = (a,a)+ (b,b) = Opy(a) + 6 (D),

SO Oy, preserves the operation. If (a,a) = (b,b) in Z/mZ x Z/nZ, then m and n both divide
a — b, so mn does, as they are relatively prime. Therefore, 6,,, is injective. Since both groups
have the same order mn, it is surjective as well.
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If m and n are not relatively prime, then their least common multiple is

lem(m,n) L
cmimn) = ———— mn.

" ged(m,n)
Corollary 2.5.14 then implies that the exponent of Z/mZ x Z/nZ is less than mn, the exponent
of Z/mZ x Z/nZ. As the exponent of a group is preserved by an isomorphism, the two groups
in question cannot be isomorphic. U

The following equivalent corollary is known as the Chinese remainder theorem (CRT).

COROLLARY 2.5.18 (Chinese Remainder Theorem). Let k > 2 and m,,...,my be mutually
relatively prime positive integers, which is to say that every pair of them is relatively prime. For

any by, ...,by € Z, there exists an integer a, unique up to congruence modulo mymy - - -my, such
that a = b; mod m; for each 1 <i <k.

PROOF. The existence in the case k = 2 is equivalent to the surjectivity of 6,,,,, in The-
orem 2.5.17, while the uniqueness is its injectivity. The case of general k follows by an easy
induction on k. 0

REMARK 2.5.19. We can give an explicit recipe for the construction of solutions of congru-
ences modulo relatively prime integers (in the case of two congruences, and then by recursion).
The construction is contained in the following direct proof that the map 6,,, in Theorem 2.5.17
is surjective:

Suppose that b € Z/mZ and ¢ € Z/nZ. Let x,y € 7 be such that mx+ ny = 1 mod mn, which
we can find since ged(m,n) = 1. Then x is inverse to m in Z/nZ, and y is inverse to n in Z/mZ.
Therefore, we have that

Opn(cmx+bny) = (b,c) € Z/mZ x Z/n’ZL.
EXAMPLE 2.5.20. Suppose we want to find a € Z with
a=2mod7 and a=1modS5.

We note that 3 is an inverse of 7 modulo 5, and it is also an inverse of 5 modulo 7. So, in the
proof of surjectivity in Theorem 2.5.17, we havem =7, n=5,b=2,c=1,x=3,and y =3, so

cmx+bny=1-7-342-5-3=51=16 mod 35.

Therefore a = 16 is the unique integer satisfying the two congruences. Moreover, note that x and
y are independent of b and ¢, so we can use these x and y in solving any two congruences modulo
7 and 5.

EXAMPLE 2.5.21. We can use Theorem 2.5.17 to find isomorphisms between direct products
of cyclic groups. For instance, using this and Remarks 2.5.4 and 2.5.5, we have that

Z)127 % Z./87. = ZJAZ x 7./3Z x Z./8Z = T.JAZ x 7./ 24Z.
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2.6. Groups of isometries

DEFINITION 2.6.1. Let n > 1. An isometry of R”" is a bijection f: R" — R" that preserves
distances, which is to say, for every x,y € R", we have

1f(x) = fO)] = |x—yl,
where the absolute value denotes the distance from 0 in R”.

Since the property of preserving distances is preserved by composition, the following lemma
is easily seen.

LEMMA 2.6.2. The set .7, of isometries of R" forms a group under composition.
PROPOSITION 2.6.3. If f € .#}, then there exists a € R such that f(x) =a+x or f(x) =a—x.

REMARK 2.6.4. The function f(x) = a+ x is known as a translation, while the function
f(x) =a—xis known as a reflection (about the point x = a).

The group of isometries of R? is a much more complicated group. We state, without proof,
the following theorem.

THEOREM 2.6.5. Every isometry f of R? has one of the following four forms.

i. f is a translation: there exists a € R? such that f(x) = x +a.
ii. fisa reflection: there exists a line L in R? such that f(x) is the reflection of x across L.

iii. f isa rotation: there exista € R* and 6 € [0,27) such that f is given by counterclockwise
rotation by 0 radians about the center a.

iv. fis a glide reflection: f is the composition of a reflection and followed by a translation
by a nonzero distance in a direction parallel to the line of reflection.

REMARK 2.6.6. Isometries of R? are either orientation-preserving (i.e., the translations and
the rotations) or orientation-reversing (i.e., the reflections and glide-reflections). An isome-
try that preserves orientation will map the letter “S” drawn in the plane to another letter than
looks like an “S”, while an orientation-reversing isometry will map it to a backwards “S”. The
composition of two orientation-preserving or two orientation-reversing isometries is orientation-
preserving, while the composition of an orientation-preserving isometry with an orientation-
reversing isometry (in either order) is orientation-reversing.

DEFINITION 2.6.7. Suppose that X C R". We say that f € ., is a symmetry of X if for every
x € R" one has f(x) € X if and only if x € X.

The condition of f being a symmetry of X insures that the restriction of f to a map from X
to X is a bijection.

DEFINITION 2.6.8. For n > 3, the dihedral group D,, is the group of symmetries of a regular
n-gon, which we can take to be inscribed about the unit circle around the origin of R? with a
vertex at (1,0).

Note that a different choice of regular n-gon in R? simply leads to an isomorphic group.
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PROPOSITION 2.6.9. For n > 3, the dihedral group D,, is a group of order 2n, consisting of
n rotations about the origin by multiples of 27” radians and n reflections. In the case that n is
odd, these reflections are through lines through a vertex and a midpoint of the opposite side. In
the case that n is even, 5 of these reflections are through two opposite vertices and the other 5 of
them are through midpoints of two opposite sides.

PROOF. The above-described rotations and reflections are all easily seen to be symmetries of
the regular n-gon in question. We must see that these are the only ones. Any nonzero translation
or glide reflection moves the origin of R?, and therefore moves the center of the polygon, hence
gannot be a symmetry. Any rotation must be about the origin, or it too will move the center, and
any rotation about the origin must take a vertex to a vertex, hence be by an angle that is a multiple
of 27 /n. Any reflection must for the same reason be a reflection across a line through the origin.
If the line determining such a reflection does not cross a midpoint or vertex, then it will move the
closest vertex on either side it passes through to a point which is less than the distance of a side
of the polygon away, hence not to another vertex. Therefore, it must pass through the origin and
either a midpoint or a vertex, and all such lines of reflection are described in the statement of the
proposition. U

PROPOSITION 2.6.10. Let r € D, be counterclockwise rotation about the origin by radi-

ans, and let s € D, be the reflection across the x-axis. These two elements satisfy r'" = 1, s> = 1,

and
1

Sr=r s,
and every element in D,, may be written uniquely in the form ris* with0 < j <n—1and 0 <k < 1.

PROOF. The proposition boils down to the assertions that the r/ are all of the rotations and

the /s are all of the reflections. Since r/ is exactly rotation counterclockwise by ! radians,
the first of these assertions holds It is easy to see that if we first rotate across the x-axis and
then rotate counterclockwise by ! radians, it is the same as reflecting across the line that is

7 radians counterclockwise from the x-axis. These lines pass alternately through vertices and
midpoints for even and odd j, respectively, and hence are all of the reflections. O

COROLLARY 2.6.11. We have D, = (r,s), for r and s as in Proposition 2.6.10.

There are many other interesting objects of which one can consider the symmetries, even in
the plane. A pattern of finite, nonzero width and height that is repeated over an over infinitely in
one direction has a symmetry group that is known as a “frieze group”, while a pattern of finite,
nonzero width and height that is repeated over and over in two non-parallel directions is known
as a “wallpaper group”.

2.7. Symmetric groups

Let n be a positive integer. In this section, we study the symmetric group S,. Recall that an
element of S, is a bijection 6: X,, — X,,, where X,, is the set {1,2,...,n}. It is common to denote
the element o of S, by

G:(G(ll) 0(22) - G?n))'
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EXAMPLE 2.7.1. The permutation
(12345
°=3 5214
is the element of Ss with values (1) =3, 6(2) =5,0(3) =2,0(4) =1,and 6(5) = 4.

This notation for permutations is amenable to composition.

EXAMPLE 2.7.2. Let ¢ be as in Example 2.7.1, and let

o 1 23 45
S \2 1 4 3 5)°
To compute 07, we write a three-by-three matrix with the top two rows given by the notation

for T and the next row determined by where o takes the elements 1 through 5, i.e., we put (i)
below i for each i in the second row. This reads

1 23 45
21 4 35
53124

The first and third rows of the latter matrix then yield o7:
(1 2 3 45
°T=\531 2 4)
Taking inverses is even easier: one merely switches the two rows.
EXAMPLE 2.7.3. Let ¢ be as in Example 2.7.1. Switching its two rows, we obtain
3521 4
1 23 4 5)
and reordering the top row in the order 1 through 5, while preserving the columns by reordering
the bottom row in the same fashion, we obtain

ol (1 2 3 4 5)
4 3 15 2)
DEFINITION 2.7.4. Let o € §,,. The orbit of x € X, under o is
Os(x) = {0/(x) | j € Z}.
EXAMPLE 2.7.5. Let ¢ be as in Example 2.7.1 and 7 be as in Example 2.7.2. Then
Os(1)=1{1,2,3,4,5},
while
O:(1) ={1,2}, 0:(3)={3,4}, 0:(5)={5}.

PROPOSITION 2.7.6. The relation ~ on X,, given by x ~ y if and only if y = &' (x) for some
i € Z is an equivalence relation.
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PROOF. For x € X, we have x = Go(x), so x ~ x. For x,y € X with x ~ y, there exists i € Z
with y = 6'(x), and then x = 67(y), so y ~x. For x,y,z € X with x ~ y and y ~ z, we have
i,j € Z such thaty = ¢'(x) and z = ¢/(y). We then have

2=0(y) = 0/(c'(x)) = 0"/ (x),
SO X ~ Z. .

By definition, O4(x) is the equivalence class of x under the equivalence relation defined in
Propositiion 2.7.6.

DEFINITION 2.7.7.

a. For k > 2, a k-cycle in §,, is an element of S, that has one orbit with k elements, and for
which all the other orbits have only one element each.

b. A cycle is a permutation that is a k-cycle for some k > 2.

c. The length of a cycle o is the integer k > 2 such that o is a k-cycle.

EXAMPLE 2.7.8. The element ¢ of Example 2.7.1 is a 5-cycle, but 7 as in Example 2.7.2 is
not a cycle.

We have another notation for permutations, which depends on their orbit decomposition. We
begin with the case of a cycle.

NOTATION 2.7.9. Suppose that ¢ is a k-cycle, and let x be an element in its largest orbit. We
use

(xro(x) - 0" (x)

to denote the element o.

REMARK 2.7.10. When a group G is viewed as a subgroup of a symmetric group (i.e., as
consisting of permutations of some set), any non-identity element of G is called a nontrivial
element of G, and the identity element is called trivial, or the trivial element.

There are k different ways to write a k-cycle in the form of Definition 2.7.9.
EXAMPLE 2.7.11. The 5-cycle ¢ of Example 2.7.1 is equal to
(13254)=(32541)=(25413)=(54132)=(41325).

EXAMPLE 2.7.12. Every nontrivial element of S3 is a cycle: these elements are (12), (13),
(23), (123), and (132).

However, not every nontrivial element of S is a cycle, as a permutation in S4 can have two
orbits of order 2.

DEFINITION 2.7.13. We say that two cycles ¢ and 7 in S, are disjoint if the largest orbit of
o has empty intersection with the largest orbit of 7.

We prove the following lemma.

LEMMA 2.7.14. Any two disjoint cycles commute.
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PROOF. Let 0,7 € S, be disjoint cycles. Let O and O; denote their largest orbits. If x € Og,
then x,0(x) ¢ Oz, so
ot(x) =0o(x) =t0(x).
Similarly, o and T commutate on elements of O;. Finally, if x lies in the complement of O5 U O,
then 67(x) =x = 706(x). So T and ¢ commute. O

REMARK 2.7.15. We see from the proof of Lemma 2.7.14 that in any product 7 of disjoint
cycles, an element x € X,, will be fixed by all but at most one of the cycles, and if there is such a
cycle, the value 7(x) will equal the value of that cycle on x (and otherwise 7(x) = x).

We next see that the cycles generate S,,.

PROPOSITION 2.7.16. Every nontrivial permutation in S, may be written as a product of
disjoint cycles in a unique way, up to the order of the cycles.

PROOF. Let 0 € §,,, and suppose that ¢ has m orbits of order greater than 1. Choose repre-
sentatives x; of each of these orbits for 1 <i < m, and set k; = |Og(x;)|. We then consider the
product

t=(x10(x0) - o)1) (2 o) - o)) (v O xm) - () )

of disjoint cycles, and we claim that T = 6. For x € X,,, we have either x = ¢/ (x;) for some
I <i<mand 0 < j <k —1, or x lies in an orbit of order 1. In the former case, we have
7(x) = /1! (x;) = o(x). In the latter, we have 7(x) = x = o(x) as well. Hence, we see that &
may be written as a product of disjoint cycles.

We leave uniqueness primarily to the reader. We merely note that, first, the elements ap-
pearing in the individual cycles above are the elements in the orbits and so must be in any such
decomposition of ¢. Given that, the individual cycles are forced to be as above by the values of
o. U

EXAMPLE 2.7.17. Consider the permutation
L_(1 23456
~\2 6 435 1)
Then A(1) =2, A(2) =6, A(6) = 1, so one of the cycles in the decomposition of 4 is (12 6).

Also, A(3) =4 and A(4) = 3, so another is (3 4). On the other hand, A(5) =5, so 5 is not moved
(or is “fixed”) by A. We therefore have

A=(126)(34).
Proposition 2.7.16 has the following interesting application to orders of elements.

PROPOSITION 2.7.18. The order of an element of S, is the least common multiple of the
orders of the disjoint cycles of which it is a product.

PROOF. Suppose that o € S, decomposes as a product of m disjoint cycles 71, 7o,..., Ty of
length ky,ks, ..., ky. Then Lemma 2.7.14 implies that

i i
o =11,
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for every i € Z, and by disjointness, the only way for ¢’ = e to occur is if T;- =eforalll<j<m.
But 7; has order kj, so this will happen if and only if i is a multiple of each k;, and therefore of
the least common multiple of the k;. Hence the order of o is this least common multiple. U

)

62=(12)(47) and o= (1724)(36).

EXAMPLE 2.7.19. In S7, the element

23456
G:(1427)(36):< T e 5 s 3

3
6

A

has order 4. Note that

EXAMPLE 2.7.20. The exponent of a finite group is the least common multiple of the orders
of its elements. Since the order of an element is the least common multiple of the orders of its
cycles, which have orders 2, . .., n, the exponent of S, is lem(1,2,...,n). E.g., the exponent of S7
is3-4-5-7 =420.

In fact, G has a smaller generating set than the cycles, which is to say the set of transpositions.
DEFINITION 2.7.21. A transposition in S, 1s a 2-cycle.
PROPOSITION 2.7.22. Every element of S, is a product of transpositions.

PROOF. As every permutation is a product of cycles, we need only show that every cycle is
a product of transpositions. In fact,

(e1 X2+ x) = (1 x2) (X2 x3) -+ (k-1 Xx),
as is easily checked. U

REMARK 2.7.23. In fact, the symmetric group S, is generated by transpositions of the form
(xx+1) with 1 <x <n— 1. That is, the previous proposition tells us that

(xx+1-y)=@xx+1)(x+1x+2)---(y—1y)
for any 1 <x <y < n, and then for such x and y we have
(xy)=0=1y)-(=2y=1y)--(xx+1--y),
so all transpositions are contained in the subgroup generated by transpositions of the form (x x -+
1), which again by Proposition 2.7.22 is all that we need.

2.8. Homomorphisms

In order to compare groups, it is useful to consider a generalization of the concept of isomor-
phism that actually has a simpler definition, as the condition of bijectivity is removed.

DEFINITION 2.8.1. Let G and G’ be groups. A homomorphism ¢ from G to G’ is a function
0:G— G
such that

¢(ab) = ¢(a)9(b)
for all a,b € G.
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EXAMPLES 2.8.2.

a. Let ¥, : Z — Z be the multiplication-by-n map, defined by y;,(a) = na for all a € Z. Then
Y, is a homomorphism since

Yu(a+Db) =n(a+b) =na+nb = yy,(a)+ y,(b).

b. The reduction map ¢,,: Z — Z/nZ defined by ¢,(a) = a+ nZ is a surjective homomor-
phism.

c. The determinant map
det: GL,(R) — R*
satisfies
det(AB) = det(A) det(B)
for all A, B € GL,(R), so is a (surjective) homomorphism.

d. For m < n, we have an (injective) homomorphism t: S,, — S, that takes a permutation
o of X;, ={1,2,...,m} to the permutation 7 € S, that satisfies 7(i) = o (i) for | <i <m and
t(j)=jform< j<n.

e. For A € M,;(R), we define a left-multiplication-by-A map
II/A . MSZ(R) — Mrt(R)

by w4 (B) = AB for B € My (R). By distributivity of multiplication of matrices, this is a homo-
morphism. It need not in general be injective or surjective.

f. The set
C!(R) = {f: R = R | f is everywhere differentiable}

forms a group under addition. In fact, it is a subgroup of Maps(R,R). The derivative map
d: C'(R) — Maps(R,R), of)=f
1s a homomorphism.

Here are several standard homomorphisms between groups.

DEFINITION 2.8.3. Let G and G’ be groups with identity elements e and €/, respectively.

a. The trivial homomorphism ¢ : G — G’ is given by ¢(g) = ¢/, the identity of G', for all
geG.

b. The identity homomorphism idg: G — G on any group G, given by idg(g) = g for all
g€G.

c. For H < G, we the inclusion map 1y : H — G with 1y (h) = hforall h € H.
The following easily-proven lemma is useful to know.

LEMMA 2.8.4. Let G, G, and G be groups, and let ¢ : G — G' and v: G' — G" be homo-
morphisms. Then
yoop: G— G’

is also a homomorphism.
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PROOF. For a,b € G, we have

voo(ab) = y(9(a)¢(b)) = y(9(a)) y(9(b)) = wod(a) woo(b).
U

In the following, G and G’ will be groups, and we will use e and ¢’ to denote their respective
identity elements.

LEMMA 2.8.5. Let ¢ : G — G’ be a homomorphism. Then ¢(e) = ¢', and ¢(g™') = ¢(g)~!
forall g € G.

PROOF. We have ¢(e) = ¢(e)¢(e) by the defining property of a homomorphism, and the
cancellation theorem then implies that ¢ (¢) = ¢/. Moreover,

0(8)-9(s™ ) =0(e)=¢

again by the homomorphism property, and uniqueness of right inverses in a group then implies
that ¢(g=!) = ¢(g)~!. The last statement then follows easily from these and the homomorphism
property. U

We have the following easy consequence.
LEMMA 2.8.6. Let ¢ : G — G’ be a homomorphism. Then
0(g)'8y - g) =0(g1)"9(82) - 9(gx)"™
foranyk>1, g1,82,...,8x € G, and ry,ra,...,1ry € Z.
PROOF. For g € G and r € Z, we have g = (g~ !)™" and
0(8) =o(g ),

so it suffices to assume that each r; is nonnegative in the theorem. But then, by writing out the
powers as products, the result amounts simply to proving the result when each r; = 1. On the
other hand,

O(g182--81) = 0(g1)0(g2---8x) == 0(g1)P(g2) -~ 0 (k)

by iterative use of the defining property of a homomorphism. U

DEFINITION 2.8.7. Let ¢ : G — G’ be a homomorphism.
a. The kernel of ¢ is the subset of G that is

kerg = {g € G| d(g) =¢'}.
b. The image of ¢ is the subset of G’ that is
im¢ ={¢(g) | g € G}.

PROPOSITION 2.8.8. Let ¢: G — G' be a homomorphism. Then ker ¢ is a subgroup of G
and im ¢ is a subgroup of G'.
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PROOF. Since ¢(e) = ¢/, we have e € ker ¢. Moreover, if a,b € ker ¢ then

o(ab) = ¢(a)p(b) =¢'-e'=¢/,
so ab € ker ¢, and if a € ker ¢ then

o(a =9 ' =()"=¢,

soa~! € ker¢. It follows that ker ¢ < G.
Next, note that ¢’ = ¢(e), so €’ € G. Also, if ¢(a), 9 (b) € im¢ for some a,b € G, then

¢(a)o(b) = ¢(ab) € im¢
and
¢(a)' =¢(a”") €img.

Hence, we have thatim¢ < G'. OdJ

Clearly, a homomorphism ¢: G — G’ is surjective if and only if im¢ = G'. On the other
hand, we have the following less obvious criterion for injectivity of ¢ in terms of its kernel.

PROPOSITION 2.8.9. A homomorphism ¢ : G — G’ is injective if and only if ker ¢ = {e}.
PROOF. If ¢ is injective and a € ker @, then ¢ (a) = ¢’ = @(e), so a = e by injectivity of ¢.
On the other hand, if ker ¢ is trivial and ¢ (a) = ¢ () for some a,b € G, then
o(ab™ ") =(a)g(b)"' =€,
so ab~! = e, and therefore a = b. O

EXAMPLES 2.8.10.

a. The multiplication-by-n map v, is injective, as ¥, (a) = na = 0 if and only if a = 0. Its
image is nZ.

b. The inclusion map 15 : H — G of a subgroup H in a group G is obviously injective, and
its image is H.

c. The reduction map ¢, : Z — Z/nZ is surjective, and its kernel is nZ.
d. The determinant map det: GL,(R) — R* is surjective with kernel SL, (R).

e. The derivative map d: C'(R) — Maps(RR, R) has kernel equal to the subgroup of constant
functions. Its image is difficult to describe explicitly, but it is not surjective.

We can also speak of the image of a subgroup under a homomorphism.

DEFINITION 2.8.11. Let H be a subgroup of G. Then image of H under a homomorphism
0:G—Gis
O(H)={¢(h) [he H}.
REMARK 2.8.12. The set ¢ (H) is a subgroup of G/, as it is the image of composition ¢ o 1y
of the inclusion map 1y : H — G with ¢.
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DEFINITION 2.8.13. The restriction of a homomorphism ¢ : G — G’ to H < G is the homo-
morphism

¢|HZH—>GI

that is the composition ¢ o 157, where 1y is the inclusion map. In other words, ¢ |y (h) = ¢ (h) for
allhe H.

We can also speak of the inverse image of a subgroup under a homomorphism.

DEFINITION 2.8.14. Let ¢ : G — G’ be a homomorphism. Let H' < G'. The inverse image

of H' under ¢ is
9"'(H')={heH|¢(h) cH'}.

PROPOSITION 2.8.15. Let ¢ : G — G’ be a homomorphism, and let H < G'. Then ¢~ (H')
is a subgroup of G.

PROOF. Note that ¢(e) =e' € H',so e € ¢~ (H'). Also, if a,b € ¢~ (H'), then ¢ (ab™ ") =
¢(a)p(b)~' € H', since H' is a group, so ab~' € ¢~ (H'). In other words, ¢ ! (H’) is closed
under multiplcation and inverses, so is a subgroup of G. U

EXAMPLE 2.8.16. Consider the multiplication-by-n map y,,: Z — Z. We have

-1 m
7)= Z 7} =——F——7
v, (mZ)={a€Z|nacml} acd(mm)
A homomorphism is completely determined by its values on a generating set.

PROPOSITION 2.8.17. Let S be a generating set of G, and let ¢, w: G — G' be homomor-
phisms. Suppose that ¢(s) = y(s) forall s € S. Then ¢ = .

PROOF. Since § generates G, every element of G has the form
2 Tk
sl S2 PR Sk
for some k > 0, s1,52,...,5: € G,and r{,r,...,r, € Z. We have

O(s)'sy - 55) = B (s1)" 9 (s2)" - 9 (s)™ = W(s1) W(s2) - wlsi)™ = w(s)'sy - 5),

as desired. O

This is a very useful property for checking whether or not two homomorphisms are equal.
On the other hand, one might be tempted to try to use it to specify a homomorphism by setting its
values on a generating set arbitrarily. This in general does not work. For instance, the only homo-
morphism ¢ : Z/nZ — 7 is the trivial homomorphism, since one must have n¢(1) = ¢(n) = 0.
That is, one can’t simply take ¢ (1) to be an arbitrary value of Z.

We leave it to the reader to check the following easy assertion, which in particular explains
the problem just described.

LEMMA 2.8.18. Suppose that g € G has finite order and ¢ : G — G' is a homomorphism.
Then the order of ¢(g) divides the order of g.
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2.9. The alternating group

In this section, we study a certain subgroup of §,,, known as the alternating group. Let us
begin with its definition.

DEFINITION 2.9.1. The alternating group A, is the subgroup of S,, consisting of permutations
that can be written as a product of an even number of transpositions.

EXAMPLE 2.9.2. We have (1 2 3) € Az, as (1 23) =(12)(2 3). Even more obviously, we
have (12)(34) € Ay.

The assertion that A, is a subgroup of §,, contained in Definition 2.9.1 is easy to verify, and
we leave it to the reader. What is not so immediate is that not every element in S, can be written
as a product of an even number of transpositions, which is to say that A, # S,. For this reason
and others, we give an alternate characterization of S,,.

DEFINITION 2.9.3. A permutation matrix in GL,(R) is a matrix for which the entries are all
zero aside from one entry in each row and each column, which is 1.

PROPOSITION 2.9.4. The set P, of permutation matrices forms a subgroup of GL,(R) that is
isomorphic to S,,. Explicitly, define
K: Sp — GL,(R)
by taking k(o) to be the matrix with entry

1 ife(j) =i
K(G)""_{o if o (j) #i.

in the ith row and jth column. Then K is injective with image P,.
PROOEF. Let ¢ € §,,. We first remark that k(o) is a permutation matrix: since o is a function,

each j is taken to exactly one i, so each column has exactly one 1, and since o is a bijection, each
i comes from exactly one j, so each row has exactly one 1. Moreover, we have

1 ifo(t(k))=i
0 ifo(t(k))#1i,

and the latter term is exactly x(o7);. Therefore, k is a homomorphism. It is also clearly one-
to-one, since k(o) will have a non-diagonal entry that is nonzero if o # e. Finally, for any
A = (a;j) € P,, we have A = k(0), where () is defined as the unique 7 such that a;; = 1, so K
is onto. O

(k(o)Kk(T))ik = i k(0)ij%(7) jk = K(0)iz(k)K(T)z(kpk = {
=

We next determine the image of A, under the map x of Proposition 2.9.4.

LEMMA 2.9.5. The image of A, under K is equal to the subgroup of permutation matrices
that have determinant 1.

PROOF. Then x((a b)), where 1 < a < b < n, is exactly the identity matrix after one row
operation, which is switching the ith and jth rows. As switching two rows changes the sign of a
matrix, we have detx((a b)) = —1. As detok is a homomorphism, we have that the determinant
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of a product of a product of an even number of transpositions is 1, and the determinant of the
product of an odd number of transpositions is —1. U

For the following definition, we note that the determinant of any permutation matrix is either
lor—1.

DEFINITION 2.9.6.
a. We define the sign function on §,, by
sign = detok: S, — {£1},
with K as in Proposition 2.9.4. Its value on a permutation is the sign of the permutation.
b. We say that o € S, is even if sign(c) = 1 and odd if sign(c) = —1.

REMARK 2.9.7. By Lemma 2.9.5, we have that A,, is exactly the subgroup of even permuta-
tions in S,,.

EXAMPLE 2.9.8. Cycles of even length are odd, while cycles of odd length are even.

2.10. Cosets

DEFINITION 2.10.1. Let H be a subgroup of a group G, and let a be an element of G. The
left H-coset of a is the subset of G that is

aH ={ah|he€ H}.
The right H-coset of a is the set
Ha={ha|heH}.

REMARK 2.10.2. If G is abelian, then aH = Ha for any H < G and a € G, so we may speak
simply of cosets (as opposed to left and right cosets). If the operation on G is addition, we write
a+ H for the H-coset of a.

EXAMPLE 2.10.3. The 2Z-coset 1 +2Z of 1 in Z is the set of odd integers.

EXAMPLE 2.10.4. Let H = ((12)) < S3. Then the left cosets of H are
H=(12)H={(12),e}
(123)H=(13)H={(13),(123)}
(132)H=23)H={(23),(132)}.
The property of two cosets being equal provides an equivalence relation on a group G, as

expressed in the following lemma, the proof of which follows directly from the definitions of left
and right cosets.

LEMMA 2.10.5. Let H be a subgroup of a group G, and let a,b € H. The relation a ~; b
(resp., a ~, b) if and only if aH = bH (resp., Ha = Hb) is an equivalence relation on G, and the
equivalence class of a € H under this relation is aH (resp., Ha).

COROLLARY 2.10.6. If H < G, then G is the disjoint union of its distinct left (or right)
H-cosets.
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We make the following remark.

LEMMA 2.10.7. Let H < G, and let a,b € H. Then aH = bH if and only if a~'b € H, and
Ha=Hb ifand only ifab—' € H.

PROOF. Suppose a~'b € H, and set h = a~'b. Then b = ah, so bk = a(hk) € aH for every
k € H, which implies bH C aH. Moreover, bh~' = a, so aH C bH as well. Conversely, if
aH = bH, then there exists & € H such that b = ah, so a ‘b € H. The case of right cosets is
similar, noting that ab~! € H if and only if a = hb for some h € H. U

NOTATION 2.10.8. For H < G, we let G/H denote the set of left cosets of H in G, and we let
H\G be the set of right cosets of H in G.

EXAMPLE 2.10.9. One might notice that the set of left cosets of nZ in Z is given the notation
Z/nZ by Corollary 2.10.8, which could in theory lead to some confusion with the group Z/nZ.
However, this is no coincidence. The cosets of nZ in Z are the a +nZ with 0 < a < n— 1, which
are exactly the elements of the group Z/nZ. So, 7Z./n’Z as a group is just the set Z/nZ (of cosets)
with a particular binary operation.

DEFINITION 2.10.10. We refer to a set of representatives for the left (resp., right) H-cosets
in G as a set of left (resp., right) coset representatives.

EXAMPLE 2.10.11. The elements e, (1 2 3),(1 3 2) form a set of left coset representatives
for ((12)) in S3.

EXAMPLE 2.10.12. The coset s{r) = (r)s consists of all reflections in D,.. The coset r*(s) =
{rk,rks} consists of the counterclockwise rotation r* about the origin by 27k /n radians and the
reflection r*s across the line through the origin at an angle 7k /n radians counterclockwise from
the x-axis. Note that

(s)rk = {r* r s},

and this is not 7*(s) unless 2k = n.

PROPOSITION 2.10.13. There is a canonical bijection
¢: G/H— H\G

given by ¢(aH) = Ha™! fora € G.

PROOF. First, we check that the map ¢ is well-defined. For a subset A of G, let us use A~
to denote

A ={aacA}).

If aH = bH, then
(2.10.1)  Ha '={ha'|heHY={(ah™ ) ' |heH} ={(ak) ' |kc H} = (aH) .

Since aH = bH, we have that (aH)~! = (bH)~!, which implies noting (2.10.1) for both a and b
that

Ha'=(aH)' = (bH) ' =Hb ™.
Therefore, ¢ is well-defined.
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Next, define y: H\G — G/H by w(Ha) = a~'H for a € G. This is also well-defined, as

Ha = Hb implies that
a 'H=(Ha)"'=Hb) ' =b"'H,

and it is clearly inverse to ¢, so ¢ is a bijection. U

EXAMPLE 2.10.14. Let H = ((1 2)) < S3. Then the bijection ¢ of Proposition 2.10.13 is
givenby ¢(H) = H,

S((123)H)=H(132), and ¢((132)H)=H(123).
DEFINITION 2.10.15. Let H be a subgroup of G.

a. If there are finitely many left cosets of H in G, then we say that H is of finite index in G,
and otherwise H is of infinite index.

b. If H is of finite index in G, then we define the index [G : H| of H in G to be the number of
left cosets of H in G.

EXAMPLES 2.10.16.

a. The index [S3 : H] of H = ((12)) in S3 is 3.

b. The index [Z : nZ] of nZ in Z is n.

c. The group Z is not of finite index in Q.

d. We have [D,, : (s)] =nand [D, : (r)] = 2.

e. We have [S, : A,] =2 for n > 2, and the nonidentity coset is the set of odd permutation
which equals, e.g., (1 2)A,.

EXAMPLE 2.10.17. For any group G, we have |G : G] = 1, and if G is finite, we have [G :
(e)] =G

REMARK 2.10.18. By Proposition 2.10.13, we could just as well have used right cosets
instead of left cosets in the definition of the index.

THEOREM 2.10.19 (Lagrange’s theorem). Let H be a subgroup of a finite group G. Then we
have

G| =[G : H]|H].
In particular, the order of H divides the order of G.

PROOF. Since G is finite, so is H, and every coset aH is in bijection with H via the map
0: H — aH with 6(h) = ah. As G is the disjoint union of its left cosets, we have

Gl= ) laH|= ) |H|=[G:H]H|
aHEeG/H aHEG/H
O

We can use Lagrange’s theorem to determine the indices of subgroups when we know both
the orders of the group and of the subgroup. Here is an example.
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EXAMPLE 2.10.20. There is an injective homomorphism
1: 8,1 —8,

as in Example 2.8.2 that takes a permutation of the set X,,_; C X, to the permutation that has
the same values on the elements of X),_; and which fixes n. Using 1, we may identify S,_; with
the isomorphic subgroup 1(S,,—) of S, consisting of elements ¢ € S, with 6(n) = n. Under this

identification, we have
n!

(n—1)!

EXAMPLE 2.10.21. Since [S, : A,] = 2 for n > 2, we have |A,| = 3n! for such n.

[Sn . Snfl] =

=n.

COROLLARY 2.10.22. Let G be a finite group. Then the order of every element of G divides
the order of G.

EXAMPLE 2.10.23. We have already seen that the orders of the subgroups of Z/nZ are ex-
actly the positive divisors of n.

EXAMPLE 2.10.24. According to the corollary, every element of S,, should have order divid-
ing n!. In fact, we already know from Example 2.7.20 that every element has order dividing the
least common multiple of 1,2,...,n, which clearly divides n!.

Finally, we mention the following interesting corollary of Lagrange’s theorem.
COROLLARY 2.10.25. Every group of prime order is cyclic.

PROOF. Let G be a group of order a prime p. If g € G is not the identity, it must generate
a nontrivial subgroup of G, which can only have order p by Lagrange’s theorem, and therefore
must be G. That is, G = (g), finishing the proof. O

We note that the index satisfies the following multiplicative property.

PROPOSITION 2.10.26. Let H and K be subgroups of G with K < H. Then K has finite index
in G if and only if H has finite index in G and K has finite index in H. Moreover, if K has finite
index in G, then we have

[G:K]=[G:H|H :K].

PROOF. Let S be a set of H-coset representatives in G and T be a set of K-coset representa-
tives in H. Consider the set

U={st|seS,teT}.

We claim that U is a set of left K-coset representatives in G. For this, note that if g € G, we may
choose s € S with g = sh for some h € H, and we may choose t € T with h = tk for some k € K.
In other words, g € stK, so gK = stK. This proves the claim.

Next, note that if stK = s't’K with s,s' € Sand t,t' € T, then since tK C H and K C H, we
have sH = s'"H, so s = s'. But then stK = st'K, so tK = t'K, and therefore t = ¢'. In other words,
we have shown that the map S x T — U given by (s,t) + st is a bijection. Thus, S and T are
finite if and only if U is, and if they are, then |U| = |S||T|, as desired. O
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REMARK 2.10.27. Proposition 2.10.26 implies Lagrange’s theorem by taking the subgroup
K to be the trivial subgroup. That is, for a finite group G and subgroup H, we have
G| =[G :(e)] =[G H|H:(e)]=[G:H||H|.

2.11. Conjugation

DEFINITION 2.11.1. Let G be a group.

a. Let a, x € G. Then axa™! is known as the conjugate of x by a.

b. We say that an element x € G is conjugate to an element y € G if there exists a € G with
y= axa~'.

REMARK 2.11.2. One might recall the related notion of similar matrices in M, (R).

LEMMA 2.11.3. The relation ~ on G given by x ~y if and only if x is conjugate to y is an
equivalence relation on G.

PROOF. We have x = exe !

implies

, 80 x ~ x. If x ~ y, then there exists a € G with y = axa—', which

x=a 'ya=aly(a "),
so y ~ x. Finally, if x ~ y and y ~ z, then there exist a,b € G with y = axa! and z = byb~!, so
z=byb ' = b(axa b~ = (ba)x(ba)!,
and z ~ x. U
DEFINITION 2.11.4. The set
Cy={axa ! |a e G}

of elements of that are conjugate to x € G is called the conjugacy class of x.

As a consequence of the fact that conjugacy forms an equivalence relation, any two conjugacy
classes are either disjoint or equal.

EXAMPLE 2.11.5. Leta = # and b = r's in D,,. Then we have

arla Y =/ /.t = r, a(rjs)a_] S rZH—js,
briv=' =rs.rl sr i =, b(r]s)b_l e, o
Therefore, we have C,i = {r',r~'} for all i € Z, while
Cs={r¥'s|ieZ},

which is all reflections if # is odd, but only half of them if  is even, in which case the remaining
conjugacy class is Cy.

DEFINITION 2.11.6. For any a € G, the conjugation map is the function defined by

Ya: G— G, Ya(x) = axa™!

forx € G.
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REMARK 2.11.7. The process of applying a map ¥, to an element of G is referred to as
conjugation.

LEMMA 2.11.8. For a € G, the conjugation map 7, is an isomorphism.

PROOF. For x,y € G, we have

Ya(¥)Ya(y) = (axa™ ") (aya™") = a(ey)a" = 1 ().
Also, 7,-1 1s the inverse function to Y, so 7, is bijective. U
In particular, we have
a(xlxg---xs)a_l =axja ' axa - axsa”' and (axa_l)_l =ax 'a”!

for any elements of G.
One very interesting example is conjugation in S,. We describe this in the case of a cycle.
LEMMA 2.11.9. Let 6 € Sy, and let T = (x| x3 -+ x) € Sy be a k-cycle. Then
ot6 ' = (0(x1) 6(x2) -+ o (xz)).

PROOF. We check this as functions. Let x € X,,. Then

Xit1 ifo~l(x)=x;,1<i<k—1 Xit1 ifx=0(x;),1 <i<k—1
(o7 (x) = x if 67! (x) = x¢ =4{ X1 if x=0(x)
o !'(x) otherwise o !(x) otherwise

It follows that
o(xiy1) ifx=0(x),1<i<k—1

o(t(o”'(x))=qox) ifx=o0(xw)
X otherwise,
but the latter just the value of the cycle (o(x;) o(xz) -+ 6(xx)) on x. O

REMARK 2.11.10. We can use Lemma 2.11.9 to compute the conjugate of any permutation
T by a permutation o, as T can be written as a product of cycles, T = 77 - - - Ty and
oto '=on0 ' ono o0 L.
EXAMPLE 2.11.11. In S7, we have
(1234)-(237)(45)-(1 234)71 =(347)(15).

That is, we have replaced the entries in the permutation (2 3 7)(4 5) that (1 2 3 4) moves to the
values it takes them to.

DEFINITION 2.11.12. Write T € S, as a product of disjoint cycles T = 77, - - - Ty with lengths
2<k; <k <---ky<n.Then (ky,kp,..., k) is said to be the cycle type of t.

We may use Lemma 2.11.9 to prove the following.

PROPOSITION 2.11.13. Two elements in S, are conjugate if and only if they have the same
cycle type.
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PROOF. By Lemma 2.11.9 and Remark 2.11.10, any two conjugate permutations must have
the same cycle type. On the other hand, we will show that every permutation with cycle type
(k1,ka, ..., kg) is conjugate to a particular permutation & depending only on (ky,k3, ..., ks). Since
conjugacy of elements forms an equivalence relation, we will then have the result.

We first define or. Let m; = k; +ko+---+k;—1 foreach 1 <i < s+ 1. In particular, m; = 0.
Define o; € S, by

o; = (m,'—l-l m;+2 - m,—+ki).
Then the @; are disjoint cycles, and we set & = Q0 - - - Q.

Now suppose that T has cycle type (kj,k2,...,ks). We must show that 7 is conjugate to c.

Write
T=T1T- T,
where the 7; are disjoint cycles:

T = (Xl Xmg2 = X))
Now choose any o € S, such that 6 (i) = x; for each 1 <i < my;. (For each ms < i < n, we are free
to successively choose the ¢ (i) as i increases to be any values between 1 and n not yet chosen.)
Then
1

oo =(o(mi+1)o(mi+2) - o(mi+k)) = mt1 Xm+2 =+ Xm+k;)

1

foreach1 <i<s,socoo™" = 7, as desired. O

REMARK 2.11.14. In other words, the conjugacy class of a permutation is all permutations
with that same cycle type.

2.12. Normal subgroups
We now focus our attention on a very special class of subgroups of a group.

DEFINITION 2.12.1. A subgroup N of a group G is said to be normal if aN = Na for every
a € G. We also say that N is normal in G, and we write N < G to indicate this.

NOTATION 2.12.2. If N is a proper normal subgroup of a group G, then we write N <1 G.

Of course, the trivial subgroup and the improper subgroup of a group G are, by this definition,
normal subgroups. If G is abelian, then every subgroup is normal. We also have the following.

LEMMA 2.12.3. If H is an index 2 subgroup of a group G, then H is normal in G.

PROOF. Since G has just two left H-cosets, one of which is H, the other must be the comple-
ment of H in G. The same holds for the right H-cosets, hence the result. O

Here are a couple more examples, the second of which we can see from Lemma 2.12.3.

EXAMPLES 2.12.4.

a. We have (r') <D, for all n > 3 and i € Z. To see this, note that ' commutes with every

r/, while
rs-rt=r""-rls,

and r—i € (r').
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b. We have that A, < S,, for all n > 2.

REMARK 2.12.5. If H is a subgroup of G that is not normal, then aH # Ha for some a € G.
But note that a € aH N Ha, and distinct right cosets are disjoint, so aH cannot equal any right
coset of G. Therefore, there exists a left coset that is not equal to a right coset.

We can give another characterization of normal subgroups using conjugation. For this, we
use the following definition.

DEFINITION 2.12.6. Let H be a subgroup of G. For a € G, the conjugate subgroup of H by
a is the set of conjugates of a:

aHa ' = {aha ' |h € H}.
That the conjugate subgroup is, in fact, a subgroup is a corollary of Lemma 2.11.8:
COROLLARY 2.12.7. For H < G and a € G, we have that aHa™ ' < G.

PROOF. We have aHa~! = y,(H), and the latter is the image of a (sub)group under a homo-
morphism to G, hence a subgroup of G. U

EXAMPLES 2.12.8.
a. In D,,, we have
s(r)sT ' =(r) and ris)r ! = (r%s).
b. In S4, we have
(234)((12),(34))(234)7' =((13),(24)).
LEMMA 2.12.9. A subgroup N of G is normal if and only if aNa—' = N for all a € G.

PROOEF. Let a € G. The function 6,: G — G given by right multiplication by a, i.e., 6,(g) =
ga is a bijection by the cancellation theorem. Moreover, 6, restricts to bijections aNa~! — aN
and N — Na, so aNa~' = N if and only if aN = Na. U

COROLLARY 2.12.10. A subgroup N of G is normal if and only if ana=' € N for all a € G
andn € N.

PROOF. The only if direction follows from Lemma 2.12.9. On the other hand, the condition
ana~' € N for alla € G and n € N clearly implies that aNa~! < N, which we have seen implies
aN < Na. But it also means Na—! <a~ !N forall a € G, and this equation for a ! reads Na < aN,
which means aN = Na, as desired. J

The following proposition gives an extremely useful criterion for a group to be normal.

PROPOSITION 2.12.11. Let ¢: G — G’ be a homomorphism of groups. Then ker¢ is a
normal subgroup of G.

PROOF. Leta € G and n € ker ¢. Then we have
¢(ana™") = 9(a)9p(m)9(a)™' = 9(a)9(a) ' =¢/,

where ¢’ is the identity of G’. In other words, ana~! € N, so N is normal by Corollary 2.12.10.
U
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EXAMPLE 2.12.12. The special linear group SL,(RR) is a normal subgroup of the general
linear group GL,(R), as it is the kernel of the determinant map.

Here are two other examples.

EXAMPLE 2.12.13. Consider the group

AﬂRﬁ:{Ci?)heR&beR},

which is a subgroup of GL,(R). Then the set

(Dl

is a normal subgroup of G. To see this is either the following calculation

EDEDED -6 )6 1)

or much more simply, that N is the kernel of the restriction of the determinant map to G.
On the other hand, the subgroup

H={(5 1) Iverr}

is not a normal subgroup of G. In fact,

a b\ (x O\ [(a b\ _fax b\ (a7 —a b\ [(x (1-x)b
0 1J\0 1)\0 1 - \0 1 0 1 ~\0 1 ’
and the latter element is not in H if x # 1 and b # 0.

EXAMPLE 2.12.14. Let n > 3. Let 7 € S, be a k-cycle with k > 2. Then (7) is not normal
in S, unless n = k = 3. If (1) were normal in S, then every conjugate of T would have to be a
nontrivial power of 7, of which there are k — 1. On the other hand, the conjugates of 7 are exactly
the k-cycles, of which there are

n! (n—1)!
K= = n—n =" 1

which forces n = k in order that (t) might possibly be normal. But for n = k, we have

n!

WZ(”—I)!,

and the latter term is greater than n if n > 3, so n = k = 3. On the other hand, we have already
seen that

A3 =((123)) =((132))<Ss.
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2.13. Quotient groups

The sets of left and right cosets of a normal subgroup are of course the same set, and in this
section we prove that this set can be given the structure of a group.

DEFINITION 2.13.1. Let A and B be subsets of a group G. Then we define the product of A
and B as

AB={ab|a€A,bc B}
Moreover, if g is an element of G, we define
gA={galacA} and Ag={ag|acA}.
REMARK 2.13.2. If H is a subgroup of G, then HH = H.

THEOREM 2.13.3. Let N be a normal subgroup of a group G. Then the product of cosets as
subsets of G provides a binary operation on G that satisfies

aN -bN = aNbN = abN.
Moreover, G/N is a group under this operation.
PROOF. Leta,b € G. Since N is normal in G, we have Nb = bN. Therefore, as sets we have
aNbN = a(Nb)N = a(bN)N = abNN = abN,

as desired. The associativity of the operation is a direct consequence of the associativity of the
operation on G, as (ab)cN = a(bc)N for any a,b,c € G. Then N = eN is easily seen to be the
identity element of G/N, and the inverse of aN is a N, since

aN-a 'N=aa 'N=N=a"'N-aN.
Therefore G/N is a group under this operation. U

DEFINITION 2.13.4. Let N be a normal subgroup of a group G. The quotient group of G by
N is the group that is the set G/N with the binary operation aN - bN = abN for a,b € G.

EXAMPLES 2.13.5.

a. The set of cosets of nZ in Z is a group under addition of cosets, and it is exactly the group
Z/nZ constructed before, since

(a+nZ)+ (b+nZ)=(a+b)+nZ
by definition.
b. The quotient groups D, /(r) for n > 3 and S, /A, for n > 2 are all cyclic groups of order 2.

c. Suppose that n > 4 is even. Let H = (r?>) <D,,. Then [D,, : H] = 4, and the four distinct
cosets are H, rH, sH, and rsH. Since the square of each of these cosets is H, we have an
isomorphism between D,,/H and the Klein four-group

Dy /H=7/2Z x )27
that takes rH to (1,0) and sH — (0, 1).
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REMARK 2.13.6. If N is not normal in G, then G/N is not a group under the product of left
cosets. In fact, for a,b € N, the set aNbN will not in general be a left coset. E.g., if one takes
b =a"! and a to be such that aNa ! contains an element not in N, then aNa !N will contain but
not equal N, so it is not a left coset.

Moreover, if one simply tries to define aN - bN = abN, then the resulting operation is not well-
defined, as it depends on the choice of coset representatives. E.g., assuming it were well-defined
and again taking a and b as above, we can find n € N such that ana! ¢ N, so

N=aN-a 'N=anN-a 'N =ana"'N # N,
which contradicts well-definedness.

Note that the function G — G/N that takes g € G to its N-coset gN is a homomorphism by
definition of the quotient group. We give it a name.

DEFINITION 2.13.7. Let N be a normal subgroup of a group G. The quotient map ny: G —
G/N is the homomorphism defined by 7y (g) = gN for g € G.

REMARK 2.13.8. The kernel of the quotient map 7y : G — G/N is N.

COROLLARY 2.13.9. A subgroup N of G is normal if and only if there exists a group G' and
a group homomorphism ¢ : G — G’ such that N = ker ¢.

We end with the following result on the subgroups of quotient groups.

PROPOSITION 2.13.10. Let G be a group and N be a normal subgroup of G. Then the

subgroups of G/N are exactly the quotient groups H /N, where H is a subgroup of G containing
N. Moreover, such a subgroup H of G is normal in G if and only if H/N is normal in G/N.

PROOF. We first note that if H is a subgroup of G containing N, then N is normal in H, so
we may form the quotient group H/N. Its binary operation agrees with the restriction of the
operation on G/N (multiplication of N-cosets), so it is a subgroup of G/N.

Conversely, if Q is a subgroup of G/N, then set

H={heG|hN € Q}.
Then nN = N € Q, in that it is the identity element of G/N and Q is a subgroup, so N C H.
That H is a subgroup of G follows directly from the fact that Q is a subgroup of G/N, since if
hN,kN € Q, then hN - (kN)~' € Q, so hk~'N € Q, which means that hk~! € H.
Finally, let H be a subgroup of G containing N. Then, for a € G, we have
aN-(H/N)={ahN |h€ H} =aH
and
(H/N)-aN = {Nha |h € H} = Ha,
so H/N < G/N if and only if H < G. O
THEOREM 2.13.11 (First Isomorphism Theorem). Let ¢ : G — G’ be a homomorphism of
groups. Then the function

¢: G/ker¢p =5 im¢, ¢ (akerp) = ¢(a)

for a € G is a well-defined group isomorphism.
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PROOF. First, note that if a,b € G are such that aker¢ = bker ¢, then a = bk for some
k € ker ¢, so
¢(akerg) = ¢ (bk) = ¢(b)¢ (k) = ¢(b) = ¢ (bker9),
and hence ¢ is well-defined. Moreover, if ¢(aker¢) = 0, then ¢(a) = 0, so a € ker¢, and
therefore we have that ¢ is injective. Since ¢ has image im ¢, so does ¢, and hence ¢ is surjective

by definition. U

REMARK 2.13.12. We have that ¢ = tj¢ © oo Theerg» as is represented in the following dia-

gram:

G 4 G

G/ker¢p —— im¢

EXAMPLE 2.13.13. The determinant map det: GL,(R) — R* induces an isomorphism
det: GL,(R)/SL,(R) =% R*.
To give another example, we make the following definition.

DEFINITION 2.13.14. Let Gy, Ga,...,Gy be groups. The ith projection map is the surjective
homomorphism
k
m: | 1Gj— G, (81,82, 8k) = &i-
j=1

REMARK 2.13.15. The projection map 7; of Definition 2.13.14 has kernel

k
kerm; = {(gl,gz,...,gk) € HGJ ’ gji=ej forallj;«éi},
j=1

where e; is the identity element of G;. By the first isomorphism theorem, 7; induces an isomor-
phism

k
T (HGJ)/](GI‘E,‘ = G;.
i=1

For instance, if k =2 and i = 1, we can think of 7; as an isomorphism
G1 X G2 ~
— =Gy,

{61} X G2

EXAMPLE 2.13.16. We have
L/AZ X 1] A7
(2) x(2)
To see this, define a map ¢: Z /47 x Z]47Z — 7./27 x Z/27 by ¢(a,b) = (a,b). Then ¢ is
surjective with kernel (2) x (2), so the first isomorphism theorem applied to ¢ provides the
isomorphism.

~ 7,/27, x 7,27.






CHAPTER 3
Ring theory

3.1. Rings

In this section, we define rings and fields. These are sets with two binary operations, known
as addition and multiplication.

DEFINITION 3.1.1. Let R be a set with a pair (+,-) of binary operations. We say that R
satisfies the left distributive law (with respect to + and -) if

a-(b+c)=(a-b)+(a-c)

for all a,b,c € R, and we say that R satisfies the right distributive law if
(a+b)-c=(a-c)+(b-c)

for all a,b,c € R.

The distributive law being one of the standard axioms of arithmetic, it is satisfied by many
common objects, such as Z, Q, R, C, and so on. We give one less standard example.

EXAMPLE 3.1.2. The set Maps(R, R) satisfies the left and right distributive laws with respect
to the pair of operations (+,-). It satisfies the right distributive law with respect to (+,0) and
(+,0), where o is composition.

We now define a ring.

DEFINITION 3.1.3. A set R with a pair (+,-) of binary operations is a ring if
1. R is an abelian group under +,

i1. the binary operation - is associative,

iii. R has an identity element 1 under -, and

iv. R satisfies the left and right distributive laws.

REMARK 3.1.4. When + and - are used to denote the binary operations of a ring, we refer +
as addition and - as multiplication. Unless otherwise stated, the operations of R will be denoted
+and -.

REMARK 3.1.5. As in the case of groups, we often write ab for a - b for a,b in aring R. We
also use a- b+ ¢ to denote (a-b)+c for a,b,c € R.
EXAMPLES 3.1.6.

a. The sets Z, Q, R, and C are all rings with respect to the usual operations of addition and
multiplication.

65
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b. The sets Maps(R,R) and M, (R) for n > 1 are also rings with respect to addition and
multiplication.

c. The set nZ for n > 1 is a ring with respect to addition and multiplication.
d. The set Z/nZ is a ring with respect to its operations of addition and multiplication.

REMARK 3.1.7. Since the first binary operation on a ring R is denoted +, the identity element
is denoted O as usual, and the additive inverse of a € R is denoted —a. The sum of n copies of a
is denoted na for n > 1, and —(na) is also denoted —na.

We have the following properties in any ring.

LEMMA 3.1.8. Let R be a ring, and let a,b € R. Then we have
a. 0-a=a-0=0,
b. a-(—b)=(—a)-b= —ab, and
c. (—a)-(—=b)=ab.
PROOF.
a. We have
0O-a+b-a=(0+b)-a=b-a
by the right distributive law and the fact that O is an additive identity. Therefore, the Cancellation

theorem tells us that 0-a = 0. Similarly, a-0 = 0 using the left distributive law instead of the
right.
b. We have
a-(=b)+ab=a-(—b+b)=a-0=0
by the left distributive law, the definition of the additive inverse, and part a. The other equality is
similar.

c. This follows from part b, which tells us that
(—a)-(=b) = —(a-(=b)) = —(—(ab)) = ab.
O

On a set with one element, there is only one possible binary operation, and using it as both
addition and multiplication turns that set into a ring.

DEFINITION 3.1.9. The zero ring is the ring {0}. We say that a ring R is a nonzero ring if R
has more than one element.

That a ring R has an identity under - is to say exactly that there is an element 1 € R with
l-a=a-1=aforall a € R. By Lemma 2.1.4, the multiplicative identity in a ring is unique.

EXAMPLES 3.1.10. The rings Z, Q, R, C, Maps(R,R), M,(R) for n > 1, Z/nZ for n > 1,
and {0} are all rings with unity. However, nZ is not a ring for n > 2.

REMARK 3.1.11. One easily checks that (na) - (mb) = (nm)ab for n,m € Z and a,b € R for
any ring R. One has (n-1) - (m-1) = nm- 1. We often denote n - 1 by n, though we remark that it
is possible that n- 1 = m - 1 for n # m, as will happen in any finite ring, for instance.
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REMARK 3.1.12. If Risaring with 1 =0, thenx=1-x=0-x=0 for all x € R, so R is the

Zero ring.

We now introduce the notion of a subring of a ring, which does not play quite as prominent
of a role in ring theory as does the notion of a subgroup of a group in group theory.

DEFINITION 3.1.13. A subring S of aring R is a subset of R that is a ring with respect to the
restrictions to S of the binary operations of addition and multiplication on R.

We leave it to the reader to check the following.

LEMMA 3.1.14. A subset S of a ring R is a subring if it is closed under the operations of
addition and multiplication on R, contains 0 and 1, and contains —a for all a € S.

Clearly, the property of being a subring is a transitive one.
EXAMPLES 3.1.15.

a. The set {0} is a subring of any ring.

b. The ring nZ is not a subring of Z, as it does not contain 1.

c. The ring Z is a subring of Q, which is in turn a subring of R, which is in turn a subring of

C.
Most of the study of ring theory is focused on commutative rings.

DEFINITION 3.1.16. A ring R is a commutative ring if multiplication on R is commutative.
We then say that the ring R is commutative.

DEFINITION 3.1.17. A ring R that is not commutative is a noncommutative ring.

EXAMPLES 3.1.18. The rings Z, Q, R, C, Maps(R,R), Z/nZ for n > 1, and {0} are all
commutative rings. However, M, (R) is a noncommutative ring for all n > 2.

The notion of a field is really just a special case of the notion of a ring, but it is an important
one.

DEFINITION 3.1.19. A field is a nonzero commutative ring for which every nonzero element
has a multiplicative inverse.

In other words, a field is a nonzero commutative ring for which the nonzero elements form a
group under multiplication (in fact, an abelian group).

DEFINITION 3.1.20. A subfield of a field F is a subring of F' that is a field.

EXAMPLES 3.1.21.

a. The rings Q, R, and C are fields. Of course, Q is a subfield of R and C, and R is a subfield
of C.

b. The ring Z is not a field.

The analogous object to a field in the more general theory of possibly noncommutative rings
is known as a division ring.
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DEFINITION 3.1.22. A division ring (or skew field) D is a nonzero ring such that every
nonzero element is invertible under multiplication.

Clearly, all fields are division rings. As with fields, we have multiplicative groups of division
rings, which no longer need be abelian.

DEFINITION 3.1.23. The group of nonzero elements in a division ring D is known as the
multiplicative group of D and is denoted D*.

We end this section with one example of a noncommutative division ring.

DEFINITION 3.1.24. The ring of quaternions H is the set of distinct elements a + bi+cj+dk
with a,b,c,d € R, together with addition defined by

(a+bi+cj+dk)+(d +bi+j+dk)=(a+d)i+(b+b)j+(c+ )k
and multiplication defined by
(a+bi+cj+dk)-(d+bi+cj+dk)=(ad —bb' —c’ —dd')
+ (ab' +bd +cd' —dc )i+ (ac’ —bd' +cd' +db') j+ (ad + b’ — cb’ +da' )k
fora,b,c,d,a’,b',c’,d' € R.
REMARK 3.1.25. The ring H is an R-vector space with basis 1, 7, j, k, where
o-(a+bi+cj+dk) = aa+ (ab)i+ (oc)j+ (od)k

for a,a,b,c,d € R. Note that we have ij = k = —ji, jk =i = —kj, ki = j = —ik, and i* = j> =
k*=—1in H.

THEOREM 3.1.26. The quaternion algebra is a division ring.

PROOF. We give only a sketch. Distributivity is a direct consequence of the definitions of
the operations of addition and multiplication. In fact, it is also easy to see that o -xy = x- (aty) =
(ax) -y for & € R and x,y € H. Using the distributive law and the latter fact, associativity of
multiplication follows from a check of associativity on the subset {i, j,k} of H*. Finally, any
nonzero a+ bi+ cj+ dk € H has inverse

(a+bi+cj+dk)™ = (a®+b*++d*) " a—bi—cj—dk),
so H is a division ring. U
3.2. Families of rings

In this section, we consider various sorts, or families, of rings one can construct out of other
rings. We begin with matrix rings.

DEFINITION 3.2.1. If R is a nonzero ring, the matrix ring M, (R) consisting of n-by-n matrices
with entries in R is the set with the addition (a;;) + (b;;) = (a;; + b;j) and multiplication

(aij) - (bij) = ( i aikbkj> :
k=1
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We leave the proof of the following to the reader.
LEMMA 3.2.2. Let R be a ring and n > 1. Then M,,(R) is a ring.
LEMMA 3.2.3. The ring M, (R) is noncommutative if R is a ring and n > 2.

PROOF. Suppose n =2. Let A = (0 0) and B = ( ) Then AB = I, the identity matrix in
M,(R), while BA = 0. The general case follows from the case n = 2 by taking matrices that
contain the same entries as A and B in their upper lefthand corners and are zero in all other
entries. U

Another important class of rings is the polynomial rings.

DEFINITION 3.2.4. Let R be a ring, and fix an indeterminate (i.e., a symbol) x. The poly-
nomial ring R[x] with R-coefficients is the set of finite formal (i.e., two are different if they are
written differently) sums of powers of x with coefficients in R, i.e.,

Rx] = {Zax’|a,€Rf0rallz>O a,—Oforallz>NforsomeN>O}

1

together with the binary operations of addition and multiplication given by

Za,x + Zb]xf Z a,—l—b)
i=0

Anelement f = Y7 ax' of R[x] is called a polynomial, the a; are referred to as coefficients, and
x 1s called a variable.

REMARK 3.2.5. If a; =0 for all i > N, then we more commonly write f.\’:O aix' for f=
Y2 oaix'. We will also sometimes write

f=ag+aix+ax*+---+ax",

identifying x° with “1” and x' with “x”

DEFINITION 3.2.6. The degree deg f of a nonzero polynomial f = ¥ a;x' € R[] is the
smallest integer N such that a; = 0 for all i > N. When needed, we consider the degree of 0 to be

—0Q,

REMARK 3.2.7. A polynomial of degree O is said to be constant, a polynomial of degree 1 is
linear, a polynomial of degree 2 is quadratic, followed by cubic, quartic, quintic, and so forth.

DEFINITION 3.2.8. If f is a polynomial of degree n > 0, then its leading coefficent is the
coefficient of x” in f. If constant coefficient is the coefficient of x° = 1.

EXAMPLE 3.2.9. The polynomials 2 + 3x — x* and 1+ x are elements of Z[x]. One has, as
usual,

(243x—x2) - (14x) =24+ 2+3)x+ (3 —1)x> —x> =2+ 5x+ 227 — x°.



70 3. RING THEORY

The following is a direct consequence of the definitions of addition and multiplication in
polynomial rings.

LEMMA 3.2.10. Let R be a ring, and let f,g € R[x| be polynomials. Then deg fg < deg f -
degg. Moreover, we have

deg(f +¢) < max{deg f,degg},
and equality holds in the last statement if deg f # degg.

DEFINITION 3.2.11. The polynomials a = a+0-x+0-x>+--- for a € R are referred to as
constant polynomials. These are exactly 0 and the polynomials of degree 0. The set of constant
polynomials forms a subring of R[x], which we also denote R.

We leave it to the reader to check the following.
LEMMA 3.2.12. Let R be a ring. Then the polynomial ring R(x| is in fact a ring.

REMARK 3.2.13. The ring R[x| is commutative if and only if R is commutative. The 1 is a
multiplicative identity in R, then 1 is a multiplicative identity in R[x] as well.

We may also consider polynomial rings in several variables.

DEFINITION 3.2.14. Letn > 1 and x1,x»,...,x, be indeterminates. The polynomial ring in n
variables over a ring R is defined to be

Rxi,x2,. . x0] = (((RPx1]) [ra]) -+ ) el
We write an element of this ring as
Ny N N,

.. . il iz... i
Z Z Z Aijiy...in %1 Xo Xy

i1=0i=0  i,=0
where the coefficients lie in R. The elements x|'x5 - - - x/ are called monomials.

We will see below that this construction is independent, up to isomorphism, of the ordering
of the variables.

REMARK 3.2.15. In multiplying in R[x{,x7,...,x,|, the variables x; all commute with each
other and the elements of R. A quantity such as xyx1x; equals xlx%.

EXAMPLE 3.2.16. In the ring Z[x,y], we have polynomials like x*> +2xy and 1 —x +y, and
we have
(X2 +2xy) (1 —x+y) = x>+ 2xy — x> + X%y + 2x)°.

Finally, we consider direct products.

DEFINITION 3.2.17. Let I be an indexing set, and let {R; | i € I} be a nonempty collection
of rings. Then the direct product [[;c; R; of the R; over i € I is the binary structure is the di-
rect product of the sets R; together with the binary operations of coordinate-wise addition and
multiplication. If I = X,, = {1,2,...,n}, we write
[TRi =RixRyx-- xR,
icl
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That the direct product of rings is a ring is a simple consequence of its definition, and we
state it without proof.

LEMMA 3.2.18. Any direct product of rings is a ring.

REMARKS 3.2.19. Let {R; | i € I} be a nonempty collection of rings, and set R = [[;; R;.
a. The ring R is commutative if and only if each R; is commutative.

b. The zero element of R is the element (0);c;.

c. The element (1);e; is the multiplicative identity in R.

d. The element e¢; which is O in every coordinate but the ith, where it is 1, satisfies e? =e¢,
but e; is not the multiplicative identity of R (unless / has only one element).

EXAMPLE 3.2.20. If R is any ring, then R" is the product of n copies of R.

3.3. Units

Not all rings with unity are fields, but one can still ask which elements are invertible under
multiplication. These elements are known as units.

DEFINITION 3.3.1. A unit in aring is a nonzero element u € R such that u has a multiplicative
inverse in R. We also say that u is invertible.

EXAMPLES 3.3.2.
a. The element 1 is a unit in every nonzero ring.
b. The units in a field F are the elements of F*.

c. The only units in Z are 1 and —1.

PROPOSITION 3.3.3. The units in a nonzero ring R with unity form a group under multipli-
cation.

PROOF. Let R* denote the set of units in R. If u,v € R*, then let ',V € R* be multiplicative
inverses to u and v respectively. We have

w- (Vi) =1=(0"t)-uv,

so multiplication is a binary operation on R*, which we already know to be associative. Clearly,
1 is a unit and an identity in R*, and by definition, every unit has an inverse in R*, so R* is a
group. U

DEFINITION 3.3.4. The group of units in a nonzero ring R with unity is denoted R*.

REMARK 3.3.5. If F is a field, then its unit group and its multiplicative group coincide, and
hence the notation F'* for both is unambiguous.

EXAMPLE 3.3.6. The group of units in M,,(R) for a ring R with unity is its subset GL,(R) of
invertible matrices. E.g., if R = R, then these are the matrices with nonzero determinant.
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EXAMPLE 3.3.7. If R =[], R; is a direct product of rings R; with unity over an indexing set
I, then
R* =T]R".
icl
PROPOSITION 3.3.8. The units in Z/nZ for n > 1 are exactly the images of those i € 7

relatively prime to n.

PROOF. Let i € Z. By Proposition 2.3.14, we have (i) = (gcd(i,n)) as subgroups of Z/nZ.
The set of ij with j € Z/nZ are exactly the elements of (i). Therefore, i is a unit in Z/nZ if and
only if 1 is an integer multiple of gcd(i,n) in Z/nZ. Since ged(i,n) is a divisor of n, this can and
will only happen if ged(i,n) = 1, which is to say that i is relatively prime to n. U

COROLLARY 3.3.9. The group (Z/nZ)* has order ¢ (n), where @ is the Euler ¢-function.
COROLLARY 3.3.10. Forn > 1, the ring Z/nZ is a field if and only if n is prime.

We now have the following corollaries by the corollary of Lagrange’s theorem that the order
of an element of a group divides the order of the group. What is remarkable is that they are
nonobvious statements of simple arithmetic.

COROLLARY 3.3.11 (Euler’s theorem). Let n > 1. Then
a®" =1 modn
for every a € 7 relatively prime to n.

Note that every nonzero element of Z/pZ is relatively prime to p. Hence we also also have
the following special case of Euler’s theorem.

COROLLARY 3.3.12 (Fermat’s little theorem). Let p be a prime number. Then
@’ ' =1mod p
for every a € 7Z not divisible by p.

These raise the following questions. What is the order of a unit in Z/nZ? We know it to be
a divisor of ¢(n), but is there a simple formula for it in terms of a and n? This is one of many
questions in the field of mathematics known as number theory. Let us give a few examples of
arithmetic in Z/n’Z.

EXAMPLE 3.3.13. Suppose we wish to calculate 3362 in Z /117Z. Fermat’s little theorem tells
us that 319 = 1 mod 11, so

3362 = (310)3632 = 32 = 9 mod 11.
In other words, 319 =9 in Z/117Z.

EXAMPLE 3.3.14. What is the order of 2 in (Z/101Z)*? Since 101 is prime, the order of 2
must be a divisor of 100. We have 2° < 101, and 2!° = 1024 = 14 mod 101. Moreover, we have

220 = (14)2 = 196 = —6 mod 101,
2% =22025=_6.32=—-192= 10 mod 101,
20 =10? = —1 mod 101.
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Therefore, the order of 2 in Z/1017Z must be 100.

3.4. Integral domains

DEFINITION 3.4.1. A left (resp., right) zero divisor in a ring R is a nonzero element a € R
such that there exists a nonzero element b € R with ab = 0 (resp., ba = 0). A zero divisor in a
ring R is an element that is either a left or a right zero divisor.

REMARK 3.4.2. Note that O is never considered to be a zero divisor (at least under our con-
ventions). In fact, 1 is never a zero divisor either, as 1-b = b for all b € R.

EXAMPLE 3.4.3. The ring M,(R) has zero divisors. For instance, we have

(00) (D=0 5)-

EXAMPLE 3.4.4. If R = R| X R, for some nonzero rings R; and R;, then R has zero divisors,
since if a € Ry is nonzero and b € R, is nonzero, we have (a,0) - (0,0) = (0,b) - (a,0) = 0. For
instance, Z" has zero divisors for n > 2, though 7Z does not.

One might ask for a ring that contains a left zero divisor that is not a right zero divisor. For
this, let us make the following general definition.

DEFINITION 3.4.5. Let A be an abelian group under addition. The endomorphism ring of A
is the set
End(A) ={f: A— A| f is a group homomorphism}
under addition and composition of functions.

REMARK 3.4.6. If A is an abelian group, then End(A) is a ring, with 1 being the identity
function on A. In general, End(A) may be a noncommutative ring.

EXAMPLE 3.4.7. Let A =[], Z, an abelian group under addition. Define L,R € End(A) by
L(ay,az,as,...) = (az,a3,a4,...) and R(ay,a,as,...)=(0,ay,az,...).
Moreover, let M € End(A) be defined by
M(ay,az,as,...) = (a1,0,0,...).

Then

LM(ay,az,a3,...) =L(a;,0,0,...) =0 and MR(ay,ay,as3,...) =M(0,a;,a;,...) =0,
so L is a left zero divisor and R is a right zero divisor. On the other hand,

LR(ay,a3,a3,...) =L(0,a1,a2,...) = (a,a2,a3,...),

so LR = 1. Therefore, L cannot be a left zero divisor, for if XL = 0 for some X € End(A), then
0= (XL)R=X(LR) = X. Similarly, R is not a right zero divisor.

EXAMPLE 3.4.8. In the ring Z/6Z, the elements 2, 3, and 4 are zero divisors, since 2-3 =
3-4=0.

More generally, we have the following.
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LEMMA 3.4.9. Forn > 1, the zero divisors in 7 /nZ are exactly its nonzero elements that are
not relatively prime to n.

PROOF. Let @ € Z/nZ be nonzero, and let b = n/ gcd(a,n). Then ab = 0, and we know that
b # 0 if and only if gcd(a,n) # 1. On the other hand, if @ = 0, then ab is a multiple of n, so
b is a multiple of n/ ged(a,n). Therefore, a is a zero divisor if and only if gcd(a,n) # 1, which
occurs if and only if a is not relatively prime to n U

As a corollary, if p is a prime number, then Z/pZ has no zero divisors. In fact, we shall see
momentarily that every field has no zero divisors.

DEFINITION 3.4.10. A nonzero commutative ring R with unity is called an integral domain
if R contains no zero divisors.

LEMMA 3.4.11. Every field is an integral domain.

PROOF. Let F be a field, and let a € F be such that there exists a nonzero element b € F' with
ab=0. Then 0 = (ab)b™! = a. O

By definition, any subring of an integral domain is also an integral domain.

EXAMPLES 3.4.12. The fields Q, R, C, and Z/pZ for any prime p are all integral domains.
That Z is an integral domain is either an easy check or the fact that it is a subring of Q with unity.
Since Z/nZ contains zero divisors for composite n > 1, it is not an integral domain.

PROPOSITION 3.4.13. Let R be an integral domain. Then R|x| is an integral domain. More-
over, if f,g € R[x| are nonzero, then deg fg = deg f + deg g, and the units in R|x| are exactly the
units in R.

PROOF. Let f,g € R[x]‘be nonzero polynomials of degree N and M respectively. Write f =
Y oaix' and g = YL bjx/. Then

N+M

k
fe=Y ad,  a=Y ab
k=0 i=0

FO<i<N+M,thena;=0ifi > N and by n—; =01if i <N, so cy+ym = anby. Since R is
an integral domain, we then have ¢y # 0, so fg # 0. Therefore, we have deg fg =N + M. If
fg =1, then this forces N = M = 0, and therefore f = ag, g = by, and apbg = 1, which means
that f € R*. O

One particularly nice use of integral domains is that they obey cancellation laws.

LEMMA 3.4.14. Let R be an integral domain, and let a,b,c € R be such that ab = ac. Then
eithera=0orb=c.

PROOF. If ab = ac, then a(b — c¢) = 0 by the distributive law (and Lemma 3.1.8), so as R
contains no zero divisors, at least one of a and b — ¢ must be 0. O

We have already seen that Z/nZ is an integral domain if and only if 7 is prime, and so if and
only if Z/nZ is a field. We have the following stronger result.
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THEOREM 3.4.15. If R is a finite integral domain, then R is a field.

PROOF. Let a € R be nonzero. Lemma 3.4.14 tells us that the elements ab with b € R are all
distinct. Since there are then |R| of them, the set {ab | b € R} is R itself. In particular, there exists
b € R with ab = 1, proving that a has a multiplicative inverse. U

Finally, we introduce the notion the characteristic of a ring.

DEFINITION 3.4.16. Let R be a ring. The characteristic char(R) of R is the smallest n > 1
such that na = 0 for all a € R if such an n exists, and otherwise we set char(R) = 0.

EXAMPLES 3.4.17.
a. The ring Z/nZ has characteristic n, while Z, Q, R, and C all have characteristic 0.

b. The characteristic of M, (R) for a ring R is equal to the characteristic of R for every n > 1.

LEMMA 3.4.18. The characteristic of a nonzero ring R with unity is the smallest n > 1 such
that n =0 in R if such an n exists, and is 0 otherwise.

PROOF. We cannot have 1-a = 0 unless a = 0, so char(R) # 1 as R is nonzero. Recall that
n € R is considered to be n- 1. If n = 0 in R, then clearly na = 0 for all a € R. On the other hand,
that n = 0 is the special case of na =0 witha=1. If n =n-1# 0 for all n > 1, then by definition,
we have char(R) = 0. O

PROPOSITION 3.4.19. The characteristic of an integral domain is either O or prime.

PROOF. We employ Lemma 3.4.18. If R is an integral domain and n = 0 in R for some com-
posite n > 1, then n = mm’ = 0 for some prime m and m’ dividing n, which by the nonexistence
of zero divisors implies that either m or m’ is zero. In other words, the smallest n > 1 with n # 0
in R cannot be composite, so must be prime. U

3.5. Ring homomorphisms

In this section, we introduce the notion of a ring homomorphism, which is a function from
one ring to another that is compatible with both addition and multiplication: in other words, it is
a homomorphism of binary structures both for (R,+) and for (R, -).

DEFINITION 3.5.1. Let R and S be rings. A function ¢: R — § is a ring homomorphism if
¢ (1) =1 and it satisfies

¢(a+b)=¢(a)+¢(b) and ¢(ab) = ¢(a)¢(b)
for all a,b € R.
We give some examples of ring homomorphisms.
EXAMPLES 3.5.2.
a. The reduction map ¢,,: Z — Z/nZ with ¢,(a) = a is a surjective ring homomorphism.

b. The multiplication-by-n map y,,: Z — 7Z with y,(a) = na is not a ring homomorphism
unless n = 1.
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Here are several standard ring homomorphisms.

DEFINITION 3.5.3. Let R and S be rings.

a. The identity homomorphism idg: R — R is the ring homomorphism given by idg(a) = a
for all a € R.

b. If S is a subring of R, we have the inclusion map 1g: S — R with 15(b) = b for all b € S.

An inclusion map is always injective, but will only be surjective if the subring is the whole
ring. Here are some other examples.

EXAMPLES 3.5.4. Let R be a nonzero ring.

a. There is an injective ring homomorphism t: R — R[x] that sends a € R to the constant
polynomial a € R[x].

b. There is a surjective ring homomorphism 7 : R[x] — R that sends f € R[x] to its constant
coefficient. Note that T o1 = idg, but 1 o T # idg.

We mention another useful class of ring homomorphisms of polynomial rings, arising from
maps on coefficients.

EXAMPLES 3.5.5. Let R and S be rings, and let ¢ : R — S be a ring homomorphism. This
induces maps on polynomial rings and matrix rings, as follows.

a. The map ¢ : R[x] — S[x] induced by ¢ on polynomial rings is given by the formula

N . N .
¢ < Y aix’) =Y 0(a)
i=0 i=0
for a; € R for 0 <i <N for some N > 0.

b. The map ¢ : M,(R) — M,(S) induced by ¢ on matrix rings is given by the formula

¢ ((aij)) = (¢(aij))
for (a;j) € Mu(R).

REMARK 3.5.6. If R is a subring of S, then we may use the map of polynomial rings induced
by the inclusion map of R into S to view R[x| as a subring of S[x].

REMARK 3.5.7. The product of ring homomorphisms ¢;: R; — S; over an index seti € [ is a
ring homomorphism between the corresponding products.

LEMMA 3.5.8. Let R be a ring and S be an integral domain, and let ¢ : R — S be a nonzero
homomorphism. If u € R*, then ¢ (u) € S*.

PROOF. Let v be a multiplicative inverse to # in R. By the previous lemma
O(uw)e(v) = ¢(uv) = ¢(1) =1,
and, similarly, we have ¢ (v)¢ (1) = ¢ (vu) = 1. O

We also have the following.
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DEFINITION 3.5.9. If R =[],/ R; is a product of rings, then there are projection maps
mi: R—Ri,  m((ai)ier) = ai
which are ring homomorphisms.

REMARK 3.5.10. If R =[];¢; R; 1s a product of rings, the inclusion maps t;: R; — Rfori €/
given by taking a € R; to the element with ith coordinate a and jth coordinate O for j # i are not
ring homomorphisms if at least two R; are nonzero rings, since 1(1) # 1 € R.

As with group homomorphisms, we have notions of kernel and image of a ring homomor-
phism.

DEFINITION 3.5.11. Let ¢: R — S be a ring homomorphism. Then the kernel of ¢ is
kerg ={reR| ¢(r) =0},
and the image of ¢ is
im¢ ={¢(r) | r € R}.

One can check very easily that im ¢ is a subring of S for any ring homomorphism ¢: R — S.
However, while ker ¢ is a subgroup of R closed under multiplication, it will not contain 1 unless

¢ =0.
EXAMPLES 3.5.12. Let R be a ring. We consider the homomorphisms of Example 3.5.4.

a. The inclusion 1: R — Rlx] has ker1 = 0 and im1 the subring of constant polynomials in
R[x], which we also denote R.

b. The projection 7: R[x] — R has im1 = R and kernel consisting of the polynomials with O
constant coefficient, which is the to say, the multiples of x.

Note that since any ring homomorphism is, in particular, a homomorphism of abelian groups
under addition, we have the following.

LEMMA 3.5.13. A ring homomorphism ¢ : R — S is injective if and only if ker = {0}.

We will have much more to say about kernels later. For now, let us finish with a corollary for
fields.

LEMMA 3.5.14. Let ¢ : F — F' be a nonzero ring homomorphism, where F and F' are fields.
Then ¢ is injective and ¢ (x) ™' = ¢ (x~1) for all x # 0.

PROOF. For any x € F*, we have
9(1) =¢(x-x"") =¢(x)-o(x"),

s0 ¢(x) is nonzero and has multiplicative inverse ¢ (x~!). In particular, Lemma 3.5.13 tells us
that ¢ is injective. U

As usual, we can speak about injective and surjective ring homomorphisms, as well as iso-
morphisms.

DEFINITION 3.5.15. A ring homomorphism ¢ : R — S is an isomorphism if it is bijective.
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For instance, let us check that a polynomial ring in two variables is independent of the or-
dering of the variables, up to an isomorphism. We leave it to the reader to treat the case of more
than two variables using the following lemma and the construction in Example 1a.

LEMMA 3.5.16. Let x and y be indeterminates. The map & : (R[x])[y] — (R]y])[x] satisfying

M N ) ) N M i )
(3.5.1) G(Z <Zai,~x’>yf> =) <Zaijy’)X’7
j=0 \i=0 i=0 \ j=0

where the a;; are elements of R. is an isomorphism.

PROOF. Note that every element of (R[x])[y] may be expressed in the form on the left of
(3.5.1), since a polynomial in y with coefficients in R[x| has finite degree (at most M), and each
of the finitely many nonzero coefficients then has a degree, and we choose N to be at least the
maximum of these degrees. Similarly, every element of (R[y])[x] may be written in the form on
the right of (3.5.1), so the map is onto. By definition, it is one-to-one, and we leave it to the
reader to check that it is a ring homomorphism. U

As usual, the inverse of an isomorphism of rings is an isomorphism of rings.

3.6. Subrings generated by elements

DEFINITION 3.6.1. Let R be a subring of a ring S, and let X be a set of elements of S. The
subring of S generated over R by X is the smallest subring of S containing R and X.

Since the intersection of subrings containing a given set of elements is a subring, Defini-
tion 3.6.1 makes sense. When we have a finite set X, we often speak of the subring generated
over R by the elements of X, as opposed to X itself. We will only be interested in a special case
in which the elements we are adding to the subring commute with every element in that subring.
We note the following, which we leave to the reader to verify.

DEFINITION 3.6.2. Let R be a subring of aring S, and let o € S commute with every element
of R. The ring given by adjoining o to R is

N
R[] = {Zr,-oc’|rieRforallO§iSNforsomeNZO}.
i=0

REMARK 3.6.3. We often read R[] as “R adjoin a.”
We leave it to the reader to check the following.

LEMMA 3.6.4. Let R be a subring of a ring S, and let o0 € S commute with every element of
R. The R[a] is the subring generated over R by o.

DEFINITION 3.6.5. Let R be a subring of S. If ay,0,...,0, € S commute with each other
and every element of R, we set

Rlai, 0., ] = (((Rleu])[00]) ---) o]

REMARK 3.6.6. The ring R0, .., ,] in Definition 3.6.5 is the smallest subring of S con-
taining R and each ¢, so generated over R by the «;.
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EXAMPLES 3.6.7.

a. The ring Z[i] = {a+ bi | a,b € Z} is a subring of C known as the Gaussian integers. Note
that since i> = —1, it is unnecessary to consider polynomials of higher degree.

b. The ring

ZN2] = {gai%MiEZ,Ogign—l}

i=0
is a subring of R.
c. The ring
Z0i,V2) = {a+bi+cV2+dV2i|a,b,c,d € 7}
is a subring of C.

d. The ring Q[x?] is a subring of Q[x] consisting of polynomials of the form

N .
Z a; x21
i=0
with every a; € Q.
We may relate this to the evaluation of polynomial rings at ring elements.

DEFINITION 3.6.8. Let R be a subring of a ring S, and let & € § commute with every element
of R. For f =YY  c;x' € R[x], we define the value of f at & € R to be

N
fla)y=Y co'.
i=0
For any a € R, the evaluation-at-o map is defined by
eq: Rix] = Rla],  eq(f) = f(a)
for all f € R[x].
The following is a result of the definitions of addition and multiplication in R[x].

LEMMA 3.6.9. Let R be a subring of a ring S, and let o0 € S commute with every element of
R. The evaluation-at-o. map ey : R[x] — R[] is a ring homomorphism.

PROOF. Let f =Y jcix' € R[x], and let g = Y'M  dix' € R[x] for some n > 0. Then we have

D D D
ea(f+8)=(f+8)(a) =Y (ci+d)a' =Y cia'+ ) diot' = eq(f) +ealg),
i=0 i=0 i=0

where D = max{M,N}, and

MiN [ k
ea(fg) =) ( Cidki) ok,
0

k=0 \i=
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Since o@ commutes with every element of R, we have cidi_;0k = ciald,_;of 1 for all i < k, so
the latter term equals

N , M .
<ZC,'OCl) . (ZdjOH) :€a<f)'eoc(g)~
i=0 J=0
]

REMARK 3.6.10. The evaluation-at-zero map is none other than the ring homomorphism
constructed in Example 3.5.4a that takes a polynomial to its constant term.

EXAMPLE 3.6.11. If X is a set and R is a ring, then the set Maps(X, R) of functions from X to
R forms a ring under the usual operations of pointwise addition and multiplication on R. Given
a € X, we again have an evaluation-at-a map

€,: Maps(X,R) — R,

given by &,(f) = f(a) for f € Maps(X,R) and a € X, which is a ring homomorphism.

EXAMPLE 3.6.12. Let R be a commutative ring, and let a € R. The evaluation map e, on R|x|
can be viewed as the composition g, o K, where

K: Rlx] - Maps(R,R),  k(f)(a) = f(a)

for f € R[x] and a € R. In other words, Kk takes a polynomial to the function it defines. It is a ring
homomorphism since R is commutative.

Note that even if R is commutative, k is not always injective. For instance, if R = Z/pZ for a
prime number p, then f = x” —x is a nonzero polynomial in R[x|, but p(a) =0 forall a € Z/pZ,
so k(p) =0.

3.7. Fields of fractions

As is seen by the most basic case of the integers Z, not all rings are fields. Yet, Z is contained
in many fields, the smallest being Q, the rational numbers. The field Q consists exactly of
fractions 7, where a and b are integers and b is nonzero. One can ask more generally, given an
ring R, does one have a good notion of a fraction % with a,b € R and b # 0? And, if so, can one
form a field out of them? As we shall, see in the case of an integral domain, the answer is yes.

LEMMA 3.7.1. Let R be an integral domain, and set
X ={(a,b) e RxR| b #0}.
The relation ~ on X given by (a,b) ~ (c,d) if and only if ad = bc is an equivalence relation.
PROOF. For (a,b) € X, we have ab = ba, so (a,b) ~ (a,b), so ~ is reflexive. If (c,d) € X
with (a,b) ~ (c¢,d), then ad = bc implies cb = da, so (c¢,d) ~ (b,a) as well, and ~ is symmetric.

Finally, if (e, f) € X as well and (a,b) ~ (c,d) while (¢,d) ~ (e, f), we have ad = bc and cf = de.
Multiplying the former equality by f and then applying the latter, we obtain

adf = bcf = bde.

Since d # 0 and R is an integral domain, this implies af = be, which means that (a,b) ~ (e, f),
and therefore ~ is transitive. U
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Note that the last step shows the need for having an integral domain in order to have an
equivalence relation in Lemma 3.7.1.

DEFINITION 3.7.2. Let R be an integral domain. We let Q(R) denote the set of equivalence
classes of elements of X under the relation ~ of Lemma 3.7.1. The equivalence class of (a,b)
with a,b € R and b # 0 will be denoted 7, and it is called the quotient of a by b. By using the
symbol £, we are implicitly representing the quotient by (a,b), and this representative is called a
fraction. We then refer to a as the numerator of ; and b as the denominator of 7.

The following is immediate.

LEMMA 3.7.3. Let R be an integral domain, and let a,b,x € R with b and x nonzero. Then

we have
ax

a
b bx
in Q(R).
LEMMA 3.7.4. Let R be an integral domain. There are well-defined operations + and - on
Q(R) given by

c_1+£_ad+bc

b d  bd
and

a ¢ _ac

b d bd

PROOF. Let X be as in Lemma 3.7.1. Define 4+ on X by
(a,b)+ (c,d) = (ad +bc,bd)
and - on X by
(a,b)-(c,d) = (ac,bd).
To prove the proposition, we must show that if (a,b) ~ (a’,b’) and (¢,d) ~ (¢’,d"), we have
(a,b)+ (c,d) ~ (d',b')+(',d") and (a,b)-(c,d)=(d,b)-(c,d).
We check that
(ad +be)b'd' = ab'dd’ + cd'bb’ = bd'dd" +dc'bb’ = bd(d'd' + ')
and
acb'd’ = ab'cd’ = ba'c'd = bdd ',

as desired. O

COROLLARY 3.7.5. Let R be an integral domain and a,da’,b € R with b # 0. In Q(R), one
has

b b b
PROOF. Noting Lemma 3.7.3, we have
ab+db (a+d)b a+d
2

a d a+d
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THEOREM 3.7.6. Let R be an integral domain. Under the operations + and - of Lemma 3.7.4,
the ring Q(R) is a field.

PROOF. First, we note that addition is commutative since

a+c_ad+bc_cb+da_c+a
b d bd ~ db d b
and it is associative since
(a+c)+ _ad+bc e (ad+bc)f+bde
b d) f  bd f bdf
_adf+b(cf+de) a cf+de_a+<c+e>
N bdf b df b \d [/’
Next, we note that
0O a a140-b a
——f——:—:—7
1 b 1-b b

50 0= in Q(R). We also have
—a a —ab+ab 0 0

b b b? o
the latter step by noting that 0- 1 = b -0 = 0. Hence, Q(R) is an abelian group under addition.
We note that multiplication is associative, as
ace _a ce a (c e)

=5 (a7

(2.2)2_%.5 gee 4 ¢
b d/ f bd f bdf b df b
We check distributivity as follows:

c_z_(g £>:g'cf+de:acf+ade:acf ade:%+%:g.£+c_z‘s
b \d f b df bdf bdf bdf bd bf b d b f
Note that

l a a

I

sol= % in Q(R). Finally, note that § # 0 = % if and only if a # 0, and in this case we can form
g. We then have

a ab 1
b ab 1
SO 157 = (#)~". Therefore, Q(R) is a field. O

=1

Y

b
a

DEFINITION 3.7.7. Let R be an integral domain. The field Q(R) is called the quotient field,
or the field of fractions, of R.

REMARK 3.7.8. The field Q(R) is not a quotient of R in the sense it is the set of equivalence
classes for an equivalence relation on R itself. Rather, it is a set of quotients of elements of R in
the sense of division, and in fact it contains R. That is, quotient rings and quotient fields are quite
different should not be confused with each other.
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DEFINITION 3.7.9. Let F be a field. The field F(x) of fractions of F[x] is called the field of
rational functions in one variable over F.

. . -
EXAMPLE 3.7.10. The fraction ;‘2111 is an element of Q(x), as is {577, and

x+1 +x2—x_x2+1 B
241 X241 x2+1

The following theorem says, in essence, that Q(R) is the smallest field containing R.

THEOREM 3.7.11. Let R be an integral domain.
a. The map 1g: R — Q(R) given by 1g(r) = 7 i
to identify R with a subring of Q(R), setting r = 1.

T is an injective ring homomorphism. We use it

b. If F is any field containing R, then is an injective ring homomorphism, then there is a
unique injective homomorphism Q(R) — F that restricts to the inclusion map R — F.

PROOF. That 1 is a ring homomorphism is easily checked, and it is injective since *

~0
11
implies by definition that » = 0. Now, suppose that R is contained a field F. Define 6: Q(R) — F

by
0 (g) —ab !

This is well-defined, as if ad = bc for some c¢,d € R with d # 0, then ab—! = cd~'. Moreover,
for any quotients § and § in Q(R), we have

e(g +§) = (ad+bc)(bd) ™" = (ad+bc)- (bd) ' =ab~' +cd ™ = 9(%) +9(§)
and

0(8-5) e - ea () o[

so O is a ring homomorphism. If 6(%) =0, then ab—! = 0, which implies that a = 0, and hence
% = 0. Therefore, 0 is injective. Also, note that

0(a) = 9(%) =a-1"'=a

Finally, if x: Q(R) — F is any homomorphism with which restricts to the inclusion map R — F,
then we have

ay ra 1y 1,1 afa
1(5) =27 5) =x@2@) ' =ar =6 (5).
soxy =0. U
Let us make our comment prior to the theorem more precise.

COROLLARY 3.7.12. Let R be an integral domain and K a field containing it. Then there is
a smallest subfield F of K containing R, and it is isomorphic to the field of fractions of R via a
map Q(R) — K that extends the identity map on R.
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PROOF. The smallest field F containing R is simply the intersection of all fields contained
in K and containing R. We then apply Theorem 3.7.11 to the inclusion map 1: R — F. The
image of the induced map 6: Q(R) — F is a field containing R and contained in K, so must be
F itself. O

Corollary 3.7.12 allows us think more concretely about fields of fractions by speaking of
fields of fractions inside a given field.

DEFINITION 3.7.13. Let R be an integral domain and K a field containing it. The field of
fractions of R in K is the smallest subfield F' of K containing R.

The next corollary tells us that it’s okay to think of elements of a field F of the form ab~!
witha € F and b € F* as fractions .

COROLLARY 3.7.14. If F is a field, then it is isomorphic to its own field of fractions.

PROOF. By Corollary 3.7.12, there is a field containing F in F, which of course is F itself,
that is isomorphic to the field of fractions Q(F). O

In other words, the field of fractions of F is F'.

COROLLARY 3.7.15. Let R and S be integral domains, and let ¢: R — S be an injective
ring homomorphism. Then there is a unique homomorphism Q(¢): Q(R) — Q(S) such that

Q(¢)(a) = ¢(a) foralla € R.

PROOF. As the composite map tgo ¢: R — Q(S) is injective, Theorem 3.7.11 tells us that
there is a unique injective homomorphism Q(¢): Q(R) — Q(S) with Q(¢) o1 = 150 ¢, as desired.
U

EXAMPLE 3.7.16. The quotient field of Z[i] is isomorphic to Q(i). To see this, note that Q()
is a field containing Zli], and so there is an inclusion homomorphism Q(Z[i]) — Q(i) that takes a
fraction of the form i’igi with a,b,c,d € Z and (c,d) # (0,0) to itself, but every element in Q(i)
has the form g+ ri with ¢g,r € QQ, and any such element can be written as such a fraction with
d=0.

EXAMPLE 3.7.17. The quotient field of Z[x] is Q(x), the quotient field of Q[x]. To see this,
note that the inclusion map o : Z[x] — Q[x] sending a polynomial to itself induces an injective
homomorphism Q(a): Q(Z[x]) — Q(x) by Corollary 3.7.15. Moreover, for f, g € Z[x], we have

Q((x)(g) = JEC by definition. If f,g € Q[x], then there exists a nonzero a € Z such that af,ag €
Z|x]. (Here, a is the least common multiple of the denominators of the coefficients of P and Q,
written as fractions in lowest terms.) Then 5 = % in Q(x), so 5 is in the image of the map

QO(a). Therefore, Q(a) is an isomorphism.

3.8. Ideals and quotient rings

In this section, we introduce the notion of an ideal of a ring. An ideal plays the role that a
normal subgroup does in group theory, which is to say that we can take a quotient of a ring by an
ideal and obtain another ring. The issue with simply using a subring can be seen in the following
example.
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EXAMPLE 3.8.1. Consider the quotient group Q/Z under addition. The multiplication in Q
does not induce a well-defined multiplication on Z. To see this, note that one would like

(a+Z)-(b+Z)=(ab+1Z)
for any a,b € Q. But then we would have

0+Z=(0+7) <%+Z) —(1+2)- (%-FZ) - %—i—Z,

which is clearly not the case.
To fix this, we introduce the notion of an ideal. We begin with left and right ideals.

DEFINITION 3.8.2. A subset I of a ring R that is a subgroup under addition is called a left
(resp., right) ideal it R-1 C I (resp., I-R C I).

DEFINITION 3.8.3. A two-sided ideal, or more simply, an ideal, of a ring R is any subset of
R that is both a left and a right ideal.

In other words, a left ideal J of R is an additive subgroup for which r-b € J for all » € R and
b € J, and a right ideal K is one for which ¢-r € K forall r € R and ¢ € K. An ideal / of R is an
additive subgroup for which both r-ac€landa-relforallr € Randa € I.

REMARK 3.8.4. Note that / C R-1, so the condition that R-1 C I (resp., I - R C I) amounts to
R-1=1(resp.,I-R=1).

In fact, we have the following simple criterion for a nonempty subset to be an ideal.

LEMMA 3.8.5. Let R be a ring, and let I be a nonempty subset of R. Then I is a left (resp.,
right ideal) if and only if the following hold:

i. 1is closed under addition: if a,b € I, then a+b € I, and

ii. 1is closed under left (resp., right) multiplication by elements of R: if r € R and a € I, then
ra € I (resp., ar € 1).

PROOF. We need only see that a set I satisfying (i) and (ii) is a subgroup. For this, we must
show that it contains 0, which it does since 0 = 0-a for any a € I, and that it contains additive
inverses, which it does since —a = —1-a for any a € I. O

REMARK 3.8.6. Every left and every right ideal in a commutative ring R is an ideal of R.

EXAMPLES 3.8.7.

a. The subset nZ of Z is an ideal of Z for each n € Z. That is, any integer multiple of an
integer multiple of n is an integer multiple of n.

b. The subset Z of Q is not an ideal, as 1/2-Z ¢ 7Z, for instance.

c. Let R be a nonzero ring. Consider the set of matrices in M, (R) that are O in all entries
outside their first columns. This is a left ideal of M,(R), but it is not a right ideal for n > 2.
Similarly, the set of matrices in M,,(R) that are O in all entries outside their first rows is a right
ideal of M, (R).
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d. Let R be aring. The set of all polynomials with zero constant coefficient is an ideal of R,
equal to the set of multiples of x in R[x].

DEFINITION 3.8.8. The zero ideal of a ring R is the subset {0}. The improper ideal of R is
the ring R itself. An ideal is said to be nonzero if it is not equal to zero, and an ideal is said to be
proper if it is not equal to R.

We note the following.

LEMMA 3.8.9. Let R be a ring, and let I be a left (or right) ideal of R. Then I = R if and only
if I contains a unit, and in particular if and only if I contains 1.

PROOF. If I =R, then clearly / contains 1 and therefore a unit. If u € [ is a unit, then u-l eR,
sol=u"l-uecl Andifl1 €l thena=a-1€forallacRr. O

The following classifies, as a special case, all ideals in a field.

COROLLARY 3.8.10. The only left and only right ideals in a division ring are {0} and D.
PROOF. If ] is a nonzero left or right ideal of D, it then contains a unit, so is D. O
We shall see later that the converse to Corollary 3.8.10 also holds. We give one more example.

LEMMA 3.8.11. Let R and S be rings with unity. Then any left ideal of R X S has the form
I x J, where I is a left ideal of R and J is a left ideal of S.

PROOF. Let K be an ideal of R x S. Let
I={a€R|(a,0) €K} and J={beS|(0,b) €K},

which are left ideals of R and of S, respectively. If (a,b) € K, then (1,0) - (a,b) = (a,0),s0a €1
and (1,0) - (a,b) = (0,b), so b € J. Therefore, K C I x J. Conversely, if (a,b) € I x J, then
(a,0) € K and (0,b) € K, s0 (a,b) = (a,0)+ (0,b) € K,s0 I x J CK. O

The following is the ring-theoretic analogue of Proposition 2.12.11.

PROPOSITION 3.8.12. Let ¢ : R — S be a homomorphism of rings. Then ker ¢ is an ideal of
R.

PROOF. We know from Proposition 2.8.8 that ker ¢ is a subgroup of R under addition. More-
over, if r € R and a € ker ¢, then

¢(ra) = ¢(r)¢(a) = ¢(r)-0=0,
so ra € ker ¢. Similarly, we have ¢ (ar) =0, so ar € ker ¢ as well. O

We may now construct the analogue of a quotient group, known as a quotient ring.

THEOREM 3.8.13. Let R be a ring, and let I be a two-sided ideal of R. Then the quotient
group R/I has a well-defined multiplication on it, given by

(r+1)-(s+1)=(rs+1)

for r,s € R. Moreover, with the usual addition of cosets and this multiplication, R/I becomes a
ring.
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PROOF. Suppose that a,a’,b,b’ € R witha+1=d'+1 and b+ 1 = b’ + 1. Then there exist
x,y € I withd' =a+xand b’ = b+y. We have
(db' +1)=(a+x)(b+y)+I=ab+ay+xb+xy+1=ab+]1,

since ay,xb,xy € I in that [ is a two-sided ideal. Therefore, the multiplication on R/I is well-
defined. That it is associative is a direct consequence of the associativity of multiplication on R.
Distributivity is again a consequence of distributivity on R, but we write out the proof of the left
distributive law:

(a+I)-(b+1)+(c+1D))=(a+I)- (b+c+I)=alb+c)+I=(ab+ac)+1
=(ab+1)+ (ac+1)=(a+I)-(b+1)+ (a+1) (c+]1).
O

DEFINITION 3.8.14. The quotient of a ring R by an ideal [ is the ring R/I defined by Theo-
rem 3.8.13. We say that R/I is the quotient ring of R by I (or the factor ring of R by I).

EXAMPLES 3.8.15.
a. The quotient of the ring Z by the ideal nZ is the ring Z /n’Z.

b. The quotient of any ring R by the zero ideal is isomorphic to R. The quotient of any ring
R by R is isomorphic to the zero ring.

The following is immediately verified.

DEFINITION 3.8.16. The map 7;: R — R/I defined by m;(a) = a+1 is called the quotient
map from R to R/I.

REMARK 3.8.17. For R aring, I and ideal of R, and a,b € R, we may sometimes write a = b
mod / to mean that a+1 = b+ 1, or simply just a = b when it is understood that we are working
with the images of @ and b under 7y, i.e., in the ring R/I.

The following is easily verified.

LEMMA 3.8.18. Let I be an ideal in a ring R. The quotient map m;: R — R/ is a surjective
ring homomorphism with kernel I.

We have the analogue of the first isomorphism theorem.
THEOREM 3.8.19. Let ¢: R — S be a homomorphism of rings. Then the map
¢: R/kerg — im¢
defined by ¢ (a+ker9) = ¢(a) for all a € R is an isomorphism of rings.

PROOF. We know that ¢ is an isomorphism of additive groups by Theorem 2.13.11. Let
I =ker¢. For a,b € R, we have

0((@+1)(b+1)) = d(ab+1) = ¢(ab) = ¢(a)9(b) = ¢(a+1)9(b+1),

so ¢ is a ring homomorphism as well, therefore, a ring isomorphism. U
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EXAMPLE 3.8.20. The kernel of the homomorphism 7: R[x] — R of Example 3.5.4a is the
ideal I of polynomials with zero constant coefficient. In that it is onto, eg induces an isomorphism
between R[x]/I and R.

Note that if ¢ is a surjective map, then ¢ carries ideals to ideals.

PROPOSITION 3.8.21. Let ¢: R — S be a surjective homomorphism of rings. If I is a left
(resp., right) ideal of R, then ¢ (1) is a left (resp., right) ideal of S.

PROOF. We show this for left ideals 7 of R. Let s € S. Then s = ¢(r) for some r € R, and if
a€l, thens¢(a)=¢(ra) € ¢(I), so ¢(I) is a left ideal of S. O

We also have the following generalization of Proposition 3.8.12, the proof of which we leave
to the reader.

PROPOSITION 3.8.22. Let ¢: R — S be a ring homomorphism, and let J be a left (resp.,
right) ideal of S. Then ¢~'(J) is a left (resp., right) ideal of R.

We can now classify the ideals in quotient rings.

THEOREM 3.8.23. Let R be a ring, and let I be an ideal of R. Then the quotient map
77 R — R/I induces a one-to-one correspondence between the left, right, and two-sided ideals
of R containing I and the left, right, and two-sided ideals of R/I, respectively.

PROOF. We prove this for left ideals. If J is a left ideal of R containing /, then 7;(J) is a
left ideal of R/I by Proposition 3.8.21. If m;(J) = m;(K) for some left ideal of R containing K,
then any j € J satisfies j = k+i for some k € K and i € I, and therefore j € K since I C K. We
therefore have J C K, and similarly K C J, so J = K. On the other hand, if N is any left ideal of
R/I, then J = £~ '(N) is a left ideal of R, and it contains I since I = 7~ '({0}). Since m;(J) = N,
we are done. U

3.9. Principal ideals and generators

DEFINITION 3.9.1. A left ideal J of a ring R with unity is said to be principal if there exists
an element a € R such that
J=Ra={ra|r€R}.
Similarly, a right ideal K of a ring R is principal if there exists an element a € R such that
K =aR = {ar | r € R}. We then say that J (resp., K) is the left (resp, right) ideal generated by a.

REMARK 3.9.2. Note that Ra for a € R is always a left ideal of R, since ra —sa = (r —s)a for
r,s € R, 30 Ra is an additive subgroup, and s(ra) = (sr)a, so Ra is closed under left multiplication
by elements of R.

We also have the notion of a principal ideal.

DEFINITION 3.9.3. An ideal I of a ring R with unity is principal if there exists an element
a € R such that

N
I = {Znasﬂri,siGRforlgigNandNZO}.
i=1

We then say that [ is generated by a and write I = (a).
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REMARK 3.9.4. The set RaR = {ras | r,s € R} will not in general be a two-sided ideal, as
ras+7'as’ for r,r,s,s' € R need not itself be an element of RaR.

EXAMPLES 3.9.5.

a. For each n > 1, the ideal nZ is the principal ideal (n).

b. For every ring R, the zero ideal is the principal ideal (0).

c. For every ring R with unity, we have R = (1), so R is a principal ideal of R, known as the
imp

d. The ideal (x) in R[x] is the ideal consisting of all polynomials with nonconstant coefficient.

e. The ideal generated by (a,b) € Z x Z is equal to the set {(ax,by) | x,y € Z}.

EXAMPLE 3.9.6. Let R be a nonzero ring, and let n > 1. For integers s,¢ with 1 < s, <n, let
Ey = (eij) € M,(R) be the matrix with e; = 1 and e;; = 0 for (i, j) # (s,1). If A = (a;j) € Mu(R)
is any matrix, then the (i, j)th entry of AEg is ajs if j = s and O otherwise. Therefore, the left
ideal generated by E; is

M, (R)Ess = {(bij) € My(R) | bjj=0for 1 <i,j <N, j+#s},

the set of matrices that are zero outside of the sth column. Similarly, the (i, j)th entry of EA is
a,; if i = s and O otherwise, so EsM,(R) is the right ideal of matrices that are zero outside of the
sth row.

The two-sided ideal (Ejs) of M,(R) is in fact all of M,(R). To see this, note that E ;EsE;; =
E;j for any j € Z. We then have

n n
A=Y AEjj =) (AEj)EsEs; € (E).
Jj=1 j=1

Note, however, that the set X = M,,(R)E¢ M, (R) is not M, (R), since each column of a matrix in
X has entries which are all equal to each other.

DEFINITION 3.9.7. A nonzero ring R is simple if its only ideals are 0 and R.

REMARK 3.9.8. The reader can check using Example 3.9.6 that if D is a division ring and
A € M,(D) is nonzero, then the ideal (A) is all of M,,(D). So, M, (D) is simple, but note that it is
not a division ring if n > 2, and it does have proper, nonzero left ideals.

The following three results also clearly have analogues for right ideals that we leave unstated.

PROPOSITION 3.9.9. Let D be a ring that contains no nonzero, proper left ideals. Then D is
a division ring.

PROOF. Let u € D be nonzero. By assumption, we have Du = D, so there exists v € D such
that vu = 1. Then Dv = D, so there exists w € D such that wy = 1. We then have w = wvu = u,
sou=v1eDx. O

LEMMA 3.9.10. Let R be a ring, and let a,b € R. Then Ra C Rb if and only if there exists
r € R such that a = rb.
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PROOF. If Ra C Rb, then since a € Rb, we have a = rb for some r € R. Conversely, if a = rb
and 1’ € R, then r'a = (r'r)b € Rb, so Ra C Rb. O

LEMMA 3.9.11. Let R be a ring that has no zero divisors. Let a,b € R. Then Ra = Rb if and
only if b = ua for some u € R*.

PROOF. Note that a = 0 if and only if b = 0, so we may suppose that a and b are nonzero
with Ra = Rb. Since b € Ra, we have that there exists u € R with b = ua. Similarly, there exists
v € R with a = vb. But then a = vua and b = uvb, so (1 —vu)a = (1 —uv)b. Since R has no left
zero divisors, we have uv = vu = 1. Conversely, if b = ua, then clearly b € Ra, so Rb C Ra. On
the other hand, a = u~'b, so Ra C Rb as well. O

EXAMPLE 3.9.12. In Q[x], we have (f) = (g) if and only if f = cg for some ¢ € Q*, since
Qlx]* =Q~.

We have various operations that can be performed on ideals.

LEMMA 3.9.13. Let I and J be left ideals (resp., right ideals) of a ring R.
a. The set

I+J={a+blacl,beJ}
is a left ideal (resp., right ideal) of R.
b. The intersection I NJ is a left (resp., right ideal) of R.

PROOF.

a.Ifaecl,beJ, and r € R, then r(a+b) =ra+rb, and ra € I, rb € J since I and J are
ideals, so r(a+b) € I +J. Moreover, I +J is a subgroup of R under addition by Lemma 4.1.4.

b. Ifa,bcINJand r € R, then clearly a—b € INJ and ra € INJ, so I NJ is a left ideal of
R.

O

REMARK 3.9.14. The argument of Lemma 3.9.13b carries over to show that an arbitrary
intersection of left (resp., right) ideals of a ring R is a left (resp., right) ideal of R.

Clearly, addition of ideals forms an associative and commutative binary operation on the set
of ideals of a ring. More generally, we have the following result.

LEMMA 3.9.15. Let T be an indexing set, and let {I; | t € T} be a collection of left (resp.,
right ideals) of a ring R. Then the set

N
ZI’ = {Zati |tieT,a, €1, for each 1 <i <N for some N > 0}
teT i=1

of finite sums of elements of the ideals I, is an ideal of R, equal to the intersection of all ideals of
R containing I; for everyt € T.
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PROOF. Note that ) ;.7 I; consists exactly of finite sums of elements in the union U,erl;. It
is a subgroup, as the sum of two finite sums is a finite sum, and the negative of two finite sums is
as well. Moreover, it is an ideal, as forany N > 0, € T and a;, € I;, for 1 <i <N, we have

N N
r- Zali = Zra[i,
i=1 i=1

and ra;, € I; since I, is a left ideal of R. Therefore ) ;-7 I; is a left ideal, and similarly, it is a right
ideal.

Finally, note that if J is any ideal of R containing each I;, then it must contain any finite
sum of elements in these ideals, i.e., in U;crl;. Therefore, J contains ) ,.7I;. Therefore, the
intersection of all ideals of R containing each /; is an ideal of R containing ), I;, and Y ;¢ I; is
itself an ideal of R containing each I;, so it equals the intersection.

DEFINITION 3.9.16. Let R be a ring, and let {/; | t € T'} be a collection of left (resp., right)
ideals. The sum of the ideals I; with € T is the left (resp., right) ideal } ;7 ; of R.

We will define generators solely for two-sided ideals, though they have obvious analogues
for left and right ideals.

DEFINITION 3.9.17. Let X be a subset of a ring R with unity. The ideal (X) generated
by X is the sum of the ideals (x) for x € X. If I is an ideal of R and I = (X), we say that
X is a set of generators of /, and X generates I. The elements of X are called generators. If
X ={ay,ay,...,a,} is a finite set, then we write (ay,as,...,a,) for (X).

REMARKS 3.9.18.
a. Every ideal is generated by the set of all of its elements.

b. We could equivalently have defined (X) to be the smallest ideal containing X using Lemma 1.2.24.

Since the set-theoretic product of two ideals will not in general be closed under addition, we
depart from earlier notation to make the following definition.

DEFINITION 3.9.19. Let I and J be ideals of a ring R. Then the product 1J of I and J is the
ideal of R generated by all ab witha € I and b € J.

In particular, we may speak of powers I" = II---1I of an ideal I for any n > 1. Products are
easily calculated in terms of generators, as seen in the following examples.

EXAMPLES 3.9.20.
a. If Ris aring and x,y € R, then (x) - (y) = (xy).
b. In the ring Q[x,y|, we have
(x,y) - (2, x+y) = (3,29, x> + xy,xy + 7).
DEFINITION 3.9.21. We say that two ideals I and J of a ring R are coprime if I +J = R.

DEFINITION 3.9.22. For k > 1, we say that ideals Iy, ...,I; of a ring R are pairwise coprime
if;+I;=Rforall 1 <i<j<k.
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We prove a general form of the Chinese Remainder Theorem.

THEOREM 3.9.23 (Chinese Remainder Theorem). Let Iy,...,I; be pairwise coprime two-
sided ideals of a ring R for some k > 1. Then there is an isomorphism

R/(Il ﬁ[2ﬂ~~ﬂlk) l)R/I] XR/IZ X oo XR/Ik
that sends the coset of a € Rto (a+11,a+1,...,a+ ;).

PROOF. The kernel of the map R — Hé‘:] R/I; induced by the diagonal map is clearly 7; N
LN ---N1I,. We need only see that it is surjective. Consider the case that k = 2. Let a,b € R.
Then there existd € I) and c € I, suchthata+1y =c+liand b+ =d+ 1. If wesetx =c—+d,
thenx+Ij =c+l andx+5L =d+Dh,soxmapsto (a+1,b+1).

For any k > 3, suppose by induction we know the result for k — 1, so R/(L,N---N1I};) =
R/I x ---R/I,. We therefore need only see that I} and I, N--- NI} are coprime. Note that
LN ---N1; contains the product I>---I;. For each 2 <i <k, let a; € I} and b; € I; be such
that a; +b; = 1. Then 1 = (ay +by)--- (ar + by) is an element of I} plus by...by € I--- I}, as
needed. ]

DEFINITION 3.9.24. An ideal I of a ring R with unity is said to be finitely generated if
it has a finite set of generators, which is to say that I = (aj,ay,...,a,) for some n > 1 and
ai,a,...,a, €1.

EXAMPLE 3.9.25. If R[x,y], the ideal (x,y) is the ideal of elements with O constant term, as
every monomial other than 1 is either divisible x or y. It is not principal, since no element of
R[x,y] not in R* divides both x and y, but it is finitely generated.

EXAMPLE 3.9.26. Let n > 2. The ideal (n,x) of Z[x] is the set of all sums nf + xg with
f,& € Z[x], which is equal to the set of polynomials with Z-coefficients and constant coefficient
divisible by n. This is not principal, since n and x are both multiples only of 1, which are not
contained in (n,x)

EXAMPLE 3.9.27. Consider the ideal (4,6) of Z. It contains 2 = 6 —4, so (2) C (4,6) and
we have 4,6 € (2), so (4,6) C (2). Therefore, (4,6) is a principal ideal of Z, equal to the ideal

(2).
In fact, note the following.

LEMMA 3.9.28. The ideals of Z are exactly the subgroups of Z. under addition, i.e., the nZ
with n > 0. In particular, every ideal of Z is principal.

PROOF. Ideals are by definition subgroups under addition, and if 7 is an ideal of Z, the
condition that Z - I C [ is a consequence of this, since it merely says that Z-multiples of elements
of I are contained in /. That the subgroups of Z have the form nZ is Corollary 2.3.12. U

This leads to the following definition.

DEFINITION 3.9.29. An integral domain R is a principal ideal domain, or PID, if every ideal
in R is principal.
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So far, we have the following examples.

EXAMPLES 3.9.30.
a. The ring Z is a principal ideal domain.

b. Every field is a principal ideal domain.

c. If R and S are principal ideal domains, then every ideal R X S is principal, though it is not
a domain.

3.10. Polynomial rings over fields

We now focus on polynomial rings over a field. One of the key properties of polynomials
with coefficients in a field is that we can divide them. The following is a the division algorithm
in these rings.

THEOREM 3.10.1 (Division algorithm). Let F be a field. Suppose that f,g € F|[x| are poly-
nomials with g # 0. Then there exist unique polynomials q,r € F[x| such that f = qg+r and
degr < degg.

PROOF. The case that f = 0 is trivial, so we assume that f is nonzero. We verify this by
induction on the degree n of f. Note that if n < degg, and in particular if n = 0, then we may
take g =0and r = f if degg > 0and g = fg~' and r = 0 if deg g = O (recalling that we consider
the degree of 0 to be less than that of every nonzero polynomial). So suppose that n > m = degg.
Let a, be the nonzero coefficient of x"* in f and b,, be the nonzero coefficient of x” in g. Then
fl=f- anb;,lx”‘mg has degree at most n, and the coefficient of x" is a,, — anbnj1 -b,, =0, so in
fact we have deg f’ < n. By induction, therefore, there exist ¢’ and r in R[x] such that /' =¢'g+r
and degr < m. Setting g = a,b,,' +¢', we have

f=anb,'g+f = (anby,' +q)g+r=qg+r,

as desired.
If gg+r=q'g+7r forsome ¢, € F[x] with degr’ < degg, then we have
(3.10.1) (g—q)g+(r—r)=0.

If ¢ # ¢, we would have
deg(q—¢')g > degg > deg(r—1'),

in contradiction to (3.10.1). So, we must have ¢ = ¢/, and then (3.10.1) yields r = 7/, establishing
uniqueness. U

We next show that polynomial rings in one variable over a field form another class of principal
ideal domains.

THEOREM 3.10.2. Let F be a field. Then F|x] is a principal ideal domain. In fact, any
nonzero ideal I of F is generated by any nonzero polynomial that has minimal degree among all
polynomials in I.
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PROOF. By Theorem 3.4.13, F|x] is an integral domain. Let I be a nonzero ideal in F x|,
and let g be a nonzero polynomial in F[x] of minimal degree. We claim that I = (g). Let f € I.
Using the division algorithm, we write f = gg + r with ¢,r € F|[x] with degr < degg. Then
r = f —qg € I, which by the minimality of the degree of g forces r = 0. Thus f € (g), and as f
was arbitrary, we have I = (g). O

DEFINITION 3.10.3. Let F be a field. A nonconstant polynomial f € F|x] is irreducible if
there does not exist any g € F[x] with 0 < deg g < deg f that divides f. A nonconstant polynomial
that is not irreducible is called reducible. A noncontant divisor of a polynomial is referred to as
a factor.

EXAMPLE 3.10.4. By definition, any polynomial of degree 1 is irreducible in F[x]. The
polynomial x> 4 1 is irreducible in Q[x] but not in Clx], where we have
1= (x4i)(x—i).

On the other hand, x? is reducible for any F, since 2=x-x

DEFINITION 3.10.5. Let R be a ring. We say that a € R is a root (or zero) of a polynomial
f €Rx]if f(a) =0.

DEFINITION 3.10.6. In a commutative ring R, we say that an element b divides an element
a in R if there exists some ¢ € R such that a = bc. Equivalently, b divides a if a € (b). We
sometimes write b | a to denote that b divides a.

We note the following.

PROPOSITION 3.10.7. Let F be a field, and let f € F|x]. Then a € F is a root of f if and only
if x —a divides f.

PROOF. If x — a divides f, then there exists g € F[x] with f = (x —a)g. We then have
f(a) = (a—a)g(a) =0, noting Lemma 3.6.9. Conversely, if a is a zero of f, then the division
algorithm implies that there exists some g € F[x] and ¢ € F such that f = g(x —a) +c. We then
have

0=f(a)=qla)(a—a)+c=c,
so x — a divides f. U

We obtain the following corollaries.

COROLLARY 3.10.8. Let F be a field and f € F x| be a polynomial of degree greater than 1.
If f has a root in F, then f is reducible.

PROOF. If a € F is a root of f, then Proposition 3.10.7 implies that f = g(x — a) for some
g € F[x] with degg =deg f —1 > 0, so f is not irreducible. O

Since a reducible polynomial of degree 2 or 3 must have a linear factor, we therefore have
the following.

COROLLARY 3.10.9. Let F be a field and f € F|x| be a polynomial of degree 2 or 3. Then f
is reducible if and only if it has a root in F.
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COROLLARY 3.10.10. Let F be a field, and let f € F|x| be a nonzero polynomial. Then f
has at most deg f distinct roots in F.

PROOF. Suppose that f = (x—ay)...(x—ay)g, where g € F[x] has no roots, and ay, ay, ...,
an € F. Clearly, we may write f in this form, as otherwise we can factor out from g a linear
term x — b for some B with g(b) = 0. Moreover, we must have m < n by degree considerations.
Finally, if f(c) = 0 for some ¢ € F, then since F is an integral domain, we must have ¢ —a; =0
for some i, which is to say that the a; are the only roots of f. 0

EXAMPLES 3.10.11.

a. The polynomial x? has 0 as its only root.
b. The polynomial x% 4 1 has no roots in Q, but it has two roots, £1, in C.
c. The polynomial
4_ 2 _ (2 2
X=x"=2x—1=x"+x+1)(x*—x—1)

is not irreducible in Q[x], but it has no roots in Q.

3.11. Maximal and prime ideals

Recall that Z/nZ. is a field for n prime, but Z /nZ is not a field for n composite. In this section,
we shall see how we can interpret this as a property of the ideal nZ.

DEFINITION 3.11.1. An ideal m of a ring R is maximal if it is a proper ideal of R that is not
properly contained in any proper ideal of R.

In other words, a proper ideal m of R is maximal if there does not exist an ideal N of R such
thatm C N C R.

EXAMPLES 3.11.2.

a. The maximal ideals of Z are exactly the pZ for p prime, as mZ contains nZ if and only if
m divides n. In particular, as p is a prime number, pZ is not contained in nZ for any n > 2 with

n % p.
b. In a field, the unique maximal ideal is (0).

c. In Z x Z, the maximal ideals have either the form pZ x Z or Z x pZ for some prime
number p.

PROPOSITION 3.11.3. Let F be a field. The maximal ideals of F|x| are exactly the ideals of
the form (f) with f € F[x] irreducible.

PROOF. Let f € F[x]. If f =0, then (f) = 0, which is not maximal. If f is a nonzero
constant, then (f) = (1) = Fx]. If f is reducible, then f = gh with g,h € F[x] nonconstant, and
then (f) C (g), but g ¢ (f) since degg < deg f, so (f) is not maximal.

If f is irreducible and 7 is an ideal containing (f), then I = (g)for some g € F[x] as F[x] is a
PID. There then exists & € F[x] such that f = gh. Since f is irreducible, we then have that either
g or h is constant, which is to say that I = (g) = F[x] or I = (g) = (f). In other words, (f) is
maximal. U
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The following gives an alternate characterization of maximal ideals of rings.

THEOREM 3.11.4. A proper ideal w in a commutative ring R with unity is maximal if and
only if R/m is a field.

PROOF. By Theorem 3.8.23, the ideals in R/m are in one-to-one correspondence with the
ideals in R containing m, which are just m and R. Since R/m has just two ideals, they must be
0 and R/m. Therefore, every nonzero element of R/m generates the ideal R/m, so is a unit. It
follows that R/m is a field. O

REMARK 3.11.5. The same argument can be applied to noncommutative rings R to conclude
that if m is maximal then R/m has no nonzero proper ideals. However, as we have remarked
above, this does not imply that R/m is a division ring.

EXAMPLE 3.11.6. Recall that Z /nZ is a field if and only if n > 2 is prime, which is to say if
and only if nZ is a maximal ideal of Z.

EXAMPLE 3.11.7. Since x? + 1 is irreducible over Q, the ideal m = (x*> + 1) is maximal in
Q[x]. Clearly, m is contained in the kernel of the evaluation map e;: Q[x] — Q(i) defined by
ei(f) = f(i), but then it must be the entire kernel as the kernel is proper and m is maximal.
By the first isomorphism theorem for rings, the field Q[x]/(x*> + 1) is isomorphic to Q[i]. In

particular, Q[f] is equal to the subfield Q(i) of C consisting of fractions figi witha,b,c,d € Q and

(c,d) #(0,0). One can also see this directly: the multiplicative inverse of c +diis 75 —

d .
cz-i—dzl'

EXAMPLE 3.11.8. The ring Q[x]/(x?) is not a field, or even an integral domain, since x - x €
(x?).
EXAMPLE 3.11.9. In Z|x], the ideals (p,x), where p is a prime number, are maximal. To see
this, consider the homomorphism
0: Zx] — Z/pZ
given by ¢(f) = f(0) + pZ. This is surjective with kernel consisting of those f with constant
coefficient a multiple of p, which is to say the ideal (p,x).

Given a proper ideal I of a ring R: is I necessarily even contained in a maximal ideal? As-
suming the axiom of choice, the answer is yes. We require a preliminary lemma.

LEMMA 3.11.10. Let € be a chain of ideals in a ring R, ordered with respect to inclusion of
subsets of R. Then the ideal
N=JJ

Jee
is an ideal of R.

PROOF. If x,y € N, then x € J and y € K for some J,K € €. Then JUK is either J or K, so
isin ¢, and we then have x —y € JUK, sox—y € N. Thus, N is a subgroup of R under addition.
For a € R and x € N, we have that x € J for some J € ¥, and then ax and xa are elements of J,
since J is an ideal. In particular, they are also elements of N. Therefore, N is an ideal. U
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THEOREM 3.11.11. Let I be a proper ideal of a ring R with unity. Then there exists a maximal
ideal m of R that contains I.

PROOF. Let X be the set of proper ideals of R containing I, which we endow with the usual
partial ordering C. Suppose that ¥’ C X is a chain. Consider the ideal

N=JJ
Jet

of R. Note that 1 ¢ N since 1 ¢ J for all J € €, so N is proper. In other words, N € X, and it is
an upper bound for €. Zorn’s lemma then tells us that X contains a maximal element, which is
necessarily a maximal ideal of R. U

In commutative rings with unity, maximal ideals are part of a broader class of ideals known
as prime ideals.

DEFINITION 3.11.12. Let R be a commutative ring. A proper ideal p of R is said to be a
prime ideal (or prime) if for all b,c € R with bc € p, either b € p or ¢ € p.

EXAMPLES 3.11.13.
a. If A is an integral domain, then (0) is a prime ideal.

b. In Z, the prime ideals are exactly (0) and the pZ for p prime. That is, if ab € (p) with p
prime, then p divides ab, so p divides a or p divides b, and hence either a € (p) or b € (p).

We have the following analogue of Theorem 3.11.4.

THEOREM 3.11.14. Let R be a commutative ring. Then a proper ideal p of R is prime if and
only if R/ is an integral domain.

PROOF. The ideal p is prime if and only if ab € p implies than a € p or b € p, which translates
to the fact that ab = 0 imples a = 0 or b = 0 in the ring R/p. U

COROLLARY 3.11.15. Let R be a commutative ring. Then every maximal ideal of R is prime.

PROOF. If m is a maximal ideal of R, then Theorem 3.11.4 then tells us that R/m is a field.
Theorem 3.11.14 yields that m is prime. U

As for polynomial rings over fields, we have the following theorem.

PROPOSITION 3.11.16. Let F be a field. The prime ideals in F [x] are exactly (0) and those
(f) such that f € F|x] is irreducible.

PROOF. Note that if f is nonconstant and reducible, then f = gh for some nonconstant g, s €
F[x] of degree less than deg f, so g,h ¢ (f). Therefore, (f) is not prime.

On the other hand, if f is nonconstant and irreducible, then Proposition 3.11.3 tells us that
(f) is maximal, and Corollary 3.11.15 then tells us that (f) is prime. O

EXAMPLE 3.11.17. In Z[x], the ideal (x) is prime, since Z[x]/(x) = Z, but (x) is not maximal.
This follows either from the fact that Z is not a field, or the fact that (x) is properly contained in
(p,x) for any prime p.






CHAPTER 4

Advanced group theory

4.1. Isomorphism theorems

We have already proven the first isomorphism theorem. In this section, we shall use it in
deriving two others.

DEFINITION 4.1.1. Let H and K be subgroups of a group G. We define the join HV K of H
and K to be the subgroup of G generated by H UK.

REMARK 4.1.2. Note that the join H V K contains (and is generated by) the set
HK ={hk |h€e H ke K}
and HVK = HK and only it HK < G.
EXAMPLE 4.1.3. Take H = ((1 2)) and K = ((1 3)) as subgroups of S3. We have
HK ={e,(12),(13),(132)},
which is not a subgroup of S3, while H V K = S3.
LEMMA 4.1.4. We have that HK < G if and only if HK = KH.

PROOF. Suppose firstthat HK < G. Leth € H and k € K. Since h,k € HK, we have kh € HK,
as HK < G. Thus KH C HK. On the other hand, we have (hk)~! =k~ 'h~! € KH, so the inverse
of every element of HK is contained in KH. But every element of HK is the inverse of some
element of HK since HK < G, so HK C KH as well. Thus, we have HK = KH.

Now suppose that HK = KH. We always have e = ¢-e € HK. Moreover, if h,h’ € H and
k,k' € K, then

hk- W'k = h(kh" K,
and since KH = HK, there exists h”’ € H, k" € K such that kh' = h"k”, so
h(kh k' = h(W" kK"K = hh" - K"K € HK.

Moreover, we have
(hk)™' =k~ 'h! e KH,
but KH = HK, so (hk)~! € HK. Thus, we have that HK < G. O

COROLLARY 4.1.5. Suppose that H and N are subgroups of G with N normal. Then we have
HN < G. If H is normal in G as well, then we have HN < G.

99
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PROOF. By Lemma 4.1.4, it suffices to show that HN = NH. But N < G, so hN = Nh for all
h € H, which means that
HN=|JhN=|J)Nh=NH.
heH heH
Moreover, if H < G, then for any g € G, we have
gHNg_1 = gHg_1 -gNg_1 =HN.
O

THEOREM 4.1.6 (Second Isomorphism Theorem). Let H be a subgroup of a group G, and
let N be a normal subgroup of G. Then we have an isomorphism

H/(HNN) = HN/N.
PROOF. Define
¢: H— HN/N, ¢(h) =hN.
Then
kerg ={he€ H|he N} =HNN.
Moreover, if h € H and n € N, then hnN = hN = ¢(h), so ¢ is surjective. The result therefore
follows by the first isomorphism theorem. U
EXAMPLE 4.1.7. Consider the subgroups H = Z x Z x {0} and N = {0} x Z x Z of G = Z>.
We have HN = G, and HNN = {0} x Z x {0}. Note that
ZxZx{0} .

H/(HNN) = ———-— —Z
/( ) {0} xZ x {0}
via the map that takes (a,b,0)(H NN) to a. On the other hand, we have
L XL X
HN/N=——— =7
/ {0} XxZ < Z

via the map that takes (a,b,c)N to a.

REMARK 4.1.8. Suppose that H and K are subgroups of a group G with K < H. If K and H
are both normal subgroups of G, then K << H. On the other hand, the property of being a normal
subgroup is not transitive. One may have K << H and H < G but K € G!

EXAMPLE 4.1.9. Take G = Ay,
H=((12)(34),(13)(24)),
and K = ((12)(3 4)). Since
(12)(34)-(13)(24)=(14)(23)=(13)(24)-(12)(34),

the group H is an abelian group of order 4 (isomorphic to the Klein four-group) consisting of the
three cycles of cycle type (2,2) and the identity. Now K <1 H since H is abelian, and H </ G since
conjugation preserves cycle type. On the other hand, K is not a normal subgroup of G since

(123)-(12)(34)-(123)"1 = (14)(23) ¢K.
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THEOREM 4.1.10 (Third Isomorphism Theorem). Let H and K be normal subgroups of a
group G with K < H. Then we have an isomorphism

G/H = (G/K)/(H/K).

PROOF. We first remark that H/K < G/K since it is a subset of G/K that is a group under
the operation on G/K. Moreover, H/K < G/K since if h € H and a € G, then aha=! = I for
some i’ € H, so

aK -hK-a 'K =HWK e HJK.
We may now define
0:G— (G/K)/(H/K)
by
6(a) = (aK)(H/K).
By the group laws on G/K and (G/K)/(H/K), we have
0(ab) = (abK)(H/K) = (aK -bK)(H/K) = (aK)(H/K) - (bk)(H/K) = 0(a)6(D).

Then 6(a) = H/K if and only if aK = hK for some h € H, so if and only if « € H. Thus
ker & = H. On the other hand, 0 is surjective by definition. The result now follows from the first
isomorphism theorem. l

REMARK 4.1.11. For H, K and G as in the third isomorphism theorem, the composite map
G—G/K— (G/K)/(H/K)— G/H,

where the first and second maps are quotient maps and the third is the inverse of the isomorphism
in the third isomorphism theorem, is exactly the quotient map G — G/H.

EXAMPLE 4.1.12. Let G = Z, H = mZ and K = nZ, where m,n > 1 and m divides n, so that
K(H. Then G/H =7Z/mZ, G/K =7Z/nZ, and H /K = mZ/nZ. We note that

(G H[K) = o = 2 = 2 = G

the map in the last isomorphism being induced by the natural reduction-modulo-m map from
Z./nZ to 7 /mZ and the first isomorphism theorem.

EXAMPLE 4.1.13. Let G=7°, H=7Zx7Z x {0} and K = Z x {0} x {0}. Then G/H = Z via
the map that takes (a,b,c)H to ¢, while G/K = Z x Z via the map that takes (a,b,c)K to (b,c),
and H /K has image Z x {0} under this map. Then

YAV

(G/K)/(H/K) = s =5 .

where the latter map takes (b,c)(Z x Z) to c.

We also have the following, known as the butterfly (or Zassenhaus) lemma, which we state
without proof.
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THEOREM 4.1.14 (Butterfly lemma). Let H, K, A, B be subgroups of a group G with A < H
and B < K. Then there is a canonical isomorphism
A(HNK) ~ B(HNK)
(A(HNB)  B(ANK)’

4.2. Commutators and simple groups
DEFINITION 4.2.1. Let G be a group and a,b € G. The commutator of a and b is
la,b] = aba ‘b1

DEFINITION 4.2.2. The commutator subgroup [G,G| of a group G is the subgroup of G
generated by its commutators, which is to say

[G,G] = ([a,b] | a,b € G).
REMARK 4.2.3. If G is an abelian group, then [G, G] = {e}.
EXAMPLE 4.2.4. In D,,, we have
[r ris) = ri(rls)(r~) (sr/) = P2
[Fis,ris] = (r's)(r/s)(sr— ) (sr—7) = r Jsr/~is = 2=,
Therefore, we have that
[Dp, Dn) = <”2>7

which has index 2 and 4 in D,, in the cases that n is odd and even, respectively.

EXAMPLE 4.2.5. We have

[GL,(R),GL,(R)] C SL,(R).

since det(ABA~'B~!) = 1 for any A, B € GL,(R). The opposite equality also holds, but we shall
not prove it here.

LEMMA 4.2.6. The commutator subgroup of G is a normal subgroup of G.
PROOF. Let a,b,g € G. We have
gla,blg”" = gaba™'b~'g7" = (ga)b(ga)~'b™" - bgb~ g™ =[ga,b][b,g] € [G,G].

Since every element of [G, G] is a product of powers of elements of the form [a,b] with a,b € G
and every such element is sent to another element of [G,G]| by the conjugation homomorphism
Y., the image of ¥, is contained in [G,G]. Since this holds for all g € G, we have that [G,G] is
normal. U

EXAMPLE 4.2.7. Let n > 3. We claim that [S,,S,] = A,. Note that
[6,(ab)]=c(ab)o"(ab) = (c(a) 6(b))(ab)

for o € S, and a,b € X,, with a < b. It follows that [G,G] contains all products of two trans-
posiitons in S,,. Moreover, these generate A, by definition, so A, C [S,,S,|. Furthermore, every
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element of [S,,S,] is even as every such element is a product of elements of the form [o, | with
0,7 € S, and these satisfy
sign([o, 7]) = sign(o) sign(7) sign(c) ~'sign(7) ! = 1.
THEOREM 4.2.8. Let N be a normal subgroup of G. Then G/N is an abelian group if and
only if [G,G] < N.

PROOF. Let a,b € G. We have abN = baN if and only if a~'b~'ab € N, so if and only if
[a=!,b71] € N. But [G, G] is the smallest subgroup of G containing [c,d] for every ¢,d € G, so N
is normal if and only if [G,G] is contained in N. O

DEFINITION 4.2.9. The maximal abelian quotient, or abelianization, G of a group G is the
quotient group
=G/[G,q].

We have the following consequence of Theorem 4.2.8.

COROLLARY 4.2.10. Let G be a group and H be an abelian group, and suppose ¢ : G — H
is a homomorphism. Then there exists a homomorphism ¢ : G** — H with ¢ o mG,G) = ¢, where

mGa: G— G™ is the quotient map.

PROOF. By the first isomorphism theorem, there exists a unique map y: G/ker ¢ — H with
VO Mierg = ¢. By Theorem 4.2.8, we have that [G,G| C ker¢. and now the third isomorphism
theorem provides a composite map

B: G* =G/[G,G] = (G/[G,G))/(ker¢/[G,G]) =~ G/ ker¢
such that Zgerp = f o g ] Set ¢ = woB. Then
P oM =WoPBomgs = WO Mkerp = 9,
as desired. U

EXAMPLE 4.2.11. The abelianization of Dy, is D,,/{r?), and if n is even this group is isomor-
phic to Z /27 x 7./27 under the map ¢ induced by the homomorphism

¢: D, —>7Z/27 x71]27

that takes r's’ to (i, j). If n is odd, then D,,/(r?) is isomorphic to Z/2Z via the map from D,, that
takes r's/ to j.

EXAMPLE 4.2.12. We have Salb Su/An, and so Sab & 7./27 via the map induced by the sign
map.

Here is another nice class of normal subgroups.

DEFINITION 4.2.13. The center of a group G is the subgroup

Z(G) ={z€ G| za=azforall a € G}.
Since az = za for all z € Z(G) and a € G, we clearly have that aZ(G) = Z(G)a for all a € G,

and hence we have that Z(G) < G. We leave the verification of the following examples to the
reader.
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EXAMPLES 4.2.14.
a. If G is abelian, then Z(G) = G.

b. For n > 3, we have Z(S,) = {e}.
c. For n >3, we have Z(D,)) = (#/?) if n is even and Z(D,) = {e} if n is odd.
d. For n > 2, we have that Z(GL,(R)) is the subgroup of scalar matrices.

DEFINITION 4.2.15. A nontrivial group G is called simple if it has no nontrivial, improper
normal subgroups.

EXAMPLE 4.2.16. An abelian group G is simple if and only if it is cyclic of prime order,
since otherwise it will have a nontrivial, improper subgroup, which is automatically normal since
G is abelian.

EXAMPLES 4.2.17. The groups S, and D, for n > 3 are not simple, since they contain im-
proper, nontrivial normal subgroups. Moreover, A4 is not simple, as it contains the normal sub-
group ((12)(34),(13)(24)) of order 8, as seen in Example 4.1.9.

We have the following easy lemma.
LEMMA 4.2.18. If G is simple and nonabelian, then Z(G) = {e}.

PROOF. If G is nonabelian, then Z(G) # G, and if G is also simple, then since Z(G) is normal,
we must have Z(G) = {e}. O

We note that if a group is not simple, we can find a nontrivial quotient of it by a nontrivial
normal subgroup that is.

DEFINITION 4.2.19. We say that a normal subgroup M of a group G is a maximal normal
subgroup if it is not contained in any larger proper normal subgroup of G.

EXAMPLE 4.2.20. Any subgroup of index 2 in a group is a maximal normal subgroup, since
such a subgroup is normal and is not contained in a larger proper normal subgroup, being that its
index would have to be smaller than 2, but greater than 1.

PROPOSITION 4.2.21. Let N be a normal subgroup of G. Then G/N is simple if and only if
N is maximal.

PROOF. This is an immediate consequence of Proposition 2.13.10, since G/N is simple if
and only if it has no proper normal subgroups, which are in bijection with the proper normal
subgroups of G containing N. U

EXAMPLE 4.2.22. Since A, is a maximal normal subgroup of S,,, the quotient S,, /A, is simple
(which we already knew since it is isomorphic to Z/27Z).

Finite simple groups are considered the building blocks of all finite groups. Their classifica-
tion was the major project in group theory during the 20th century, and it was finally finished at
the beginning of the 21st. Many examples of nonabelian finite simple groups are simple enough
to give, though proving they are simple is another matter.
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EXAMPLE 4.2.23. The groups A, are simple for all n > 5. In fact, As is a finite simple group
with the smallest possible order, which is 60, and it is the unique such group up to isomorphism.
We defer the proofs of these facts until later.

We mention one more broad class of examples of finite simple groups.

EXAMPLE 4.2.24. We remark that Z/pZ has two binary operations of addition and multipli-
cation, and these satsify the distributive property. Hence we may consider the set GL,(Z/pZ) of
invertible n by n matrices with entries in Z/pZ, and this forms a group under multiplication. We
also have its subgroup SL,(Z/pZ) of matrices with determinant 1. It is not necessarily simple,
as it is possible that it can have nontrivial center: the group of scalar matrices with determinant
1. Le., al € SL,(Z/pZ) if and only if " = 1 in Z/pZ. The quotient of SL,(Z/pZ) by its center
is called PSL,(Z/pZ). 1t turns out that PSL,,(Z/pZ) is simple for all primes p for all n > 3 and
for all primes p > 5 and n = 2.

4.3. Automorphism groups
DEFINITION 4.3.1. An automorphism of a group G is an isomorphism ¢ : G — G.

The subgroup test shows quickly that the set of automorphisms of G forms a subgroup of G
under composition.

PROPOSITION 4.3.2. The set of automorphisms Aut(G) of a group G forms a group under
composition.

PROOE. Since composition of functions is associative, to check that Aut(G) is a group, we
need only check that it contains an identity element, which it clearly does, and that it contains
inverses, which is does since the inverse of an isomorphism is an isomorphism. U

DEFINITION 4.3.3. The automorphism group Aut(G) of a group G is the group of automor-
phisms of G under conjugation.
EXAMPLES 4.3.4.

a. We have Aut(Z/nZ) = (Z/nZ)* for n > 1 via the map that takes ¢ € Aut(Z/nZ) to ¢(1).
In fact, we have ¢ (a) = a¢(1) for any a € Z/nZ, and so ¢ is multiplication by ¢(1). This can be
invertible if and only if a is a unit in Z/nZ.

b. The same discussion as in part a tells us that Aut(Z) = Z* = (—1).

c. We have Aut(Z") = GL,(Z). That is, if ¢ € Aut(Z") and e; is the ith element in the
standard basis of Z", then ¢ (e;) determines the ith ¢ olumn of a matrix in GL,(Z). The inverse
map is given by allowing GL,(Z) to act on Z" by left multiplication, viewing an element of Z"
as a column vector.

We give the example of the automorphisms of the dihedral group as a proposition.

PROPOSITION 4.3.5. Forn > 3, the group Aut(D,) is isomorphic to the subgroup Aff(7Z /nZ)

of GLa(Z,/nZ) given by
{ (g ?) ’a € (Z/nZ)* b € Z/nZ} .
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PROOF. The isomorphism f: Aff(Z/nZ) — Aut(D,) is given by

f: (g ‘{)  Qu

where ¢, ,(r) = r* and @,,(s) = r’s. Since D, is generated by r and s, there exists at most one
element of Aut(D,) taking these values on r and s. Since F;.; is free, we can define ®: F,.; — D,
by ®(r) = r* and ®(s) = r’s for a and b as above. Note that D(r") = r" = e, ®(s?) = (1’s)? = e,
and ®((rs)?) = (r**bs)? = e, so by the presentation D, =2 (r,s | r"*,s%, rsrs), we have the existence
of ¢, 5. In that a is invertible modulo n, we have

(r",rbs)y = (r,/’s) = (r,s) = Dy,

s0 ¢, 5 is onto and hence in Aut(D,) as D, is finite.

Now, any ¢ € Aut(D,) must send r to another element of order n, so r* with a € Z prime
to n. It must also send s to an element of order 2 that cannot be in the subgroup (¢(r)) = (r),
since ¢ is surjective. Thus, ¢(s) = r’s for some b € Z. Thus, f is onto, and it is one-to-one by
definition. To see it is a homomorphism, note that

a b\ (d b\ (ad b+al
01 0 1) \O 1 ’

Oup (O 1y (1)) = q)a?b(ra’) —ad 04 Pup (P 1y (5)) = ‘Z’a,b(i’bls) _ jabl+bg

while

l

DEFINITION 4.3.6. An automorphism of G is called an inner automorphism (or inner) if it is
equal to a conjugation map ¥, : G — G for some a € G.

LEMMA 4.3.7. The set Inn(G) of inner automorphisms of G is a subgroup of Aut(G) under
composition.

PROOF. That the inner automorphisms form a subgroup amounts to the facts that y, = idg,
that ¥, = %%, and that y,-1 = 7, ! fora € G. U

DEFINITION 4.3.8. The inner automorphism group Inn(G) is the subgroup of G consisting
of inner automorphisms.

LEMMA 4.3.9. For a group G, the inner automorphism group Inn(G) is a normal subgroup
of G.

PROOF. For ¢ € Aut(G) and g,x € G, we have
(90%09 (x) =9(g0 " (x)g ") = 0(2)xd(8) " = Yo()(¥);
S0 Y91 = Y(g) lies in Inn(G). O

DEFINITION 4.3.10. The outer automorphism group of G is the quotient group Out(G) =
Aut(G)/Inn(G).
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REMARK 4.3.11. An automorphism is sometimes called outer if it is not inner. However, the
outer automorphism group is not a group of automorphisms, but rather cosets thereof.

REMARK 4.3.12. If G is an abelian group, then every inner automorphism of G is trivial, so
Out(G) = Aut(G).

EXAMPLE 4.3.13. The group Inn(D,) for n > 3 is generated by the images 7, and ¥; of r
and s under y: D, — Aut(D,). We have ¥,(s) = r’s and %(r) = r~!, and of course ¥.(r) = r
and 7;(s) = 5. Using the isomorphism of Proposition 4.3.5, we that Inn(G) is isomorphic to the
subgroup of GL,(Z/nZ) given by

K:{(S ’f) ‘a:il,bEZZ/nZ}.

The quotient group Out(D,,) is then in bijection with pairs (i, j) € (Z/nZ)* /{—1) X Z/(n,2)Z.
We leave it to the reader to check that

_@/mzy< /=1y if n is odd,
Out(Dy) = {(Z/HZ)X/<_1> X 7,/27 if nis even

using the fact that ( (1) ”{2> is in the center of the group H of Proposition 4.3.5 if n is even.

DEFINITION 4.3.14. A subgroup N of a group G is characteristic if ¢(N) = N for every
¢ € Aut(G).

LEMMA 4.3.15. Let G be a group.

a. If H is the unique subgroup of G of a given order, then H is characteristic.
b. The center Z(G) of a group G is characteristic.

c. The commutator subgroup |G, G| of a group G is characteristic.

PROOF. Let ¢ € Aut(G). For part a, note that ¢(H) has the same order as H. For part b,
note that ¢(a)¢(x) = ¢(x)¢(a) for any a € Z(G) and x € G, but ¢ is onto, so ¢(a) commutes
with every element of G. So, ¢: Z(G) — Z(G), and ¢~ € Aut(G) has the same property, so
¢0(Z(G)) = Z(G). For part c, note that [G, G] is generated by commutators [a,b] with a,b € G,
and ¢ ([a,b]) = [¢(a),d(b)] € [G,G]. We can see that ¢ (|G, G]) actually equals [G, G] by noting
that ¢ is onto. U

LEMMA 4.3.16. If K is a characteristic subgroup of a normal subgroup N of a group G, then
K < G. If, moreover, N is characteristic in G, then K is characteristic in G.

PROOF. Let a € G. Then the restriction of y, to N provides an element of Aut(N) as N is
normal, and so aKa~! = ¥,(K) = K as K is characteristic. Thus K < G.

If N is characteristic in G and ¢ € Aut(G), then the restriction of ¢ to N is an automorphism of
N as N is characteristic in G, and so ¢ (K) = K as K is characteristic in N. Thus K is characteristic
in G. U
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4.4. Free abelian groups

The theory of free abelian groups is the analogue of the theory of vector spaces when the
scalars are taken to be not real or complex numbers, but rather integers. In this section, we
briefly explore this theory.

DEFINITION 4.4.1. An abelian group G (under addition) is said to be a free abelian group if it
has a generating set X of G such that for any n > 1, distinct x;,x2,...,x, € X,and c1,¢2,...,c, €74

with
n
Z CiX; = 07
i=1
onehasc; =cp =---=c¢, =0. Such a set X is called a basis of G, and G is said to be free on X.

EXAMPLE 4.4.2. The group Z" is free on the set {e},es,...,e,}, where e; € Z" is the tuple
that is O in every coordinate but the ith, where it is 1.

EXAMPLE 4.4.3. The group Z/nZ is not free for n > 1, since one has na = 0 for every
a € Z/nZ.

REMARK 4.4.4. Much as in linear algebra, freeness of an abelian group G on a set X implies
that there is a unique way to represent any nonzero element a € G as a sum

n
a= Z CiXi
i=1

for some n > 1, distinct elements x;,xy,...,x, of X, and nonzero elements c{,c»,...,c, of Z.

DEFINITION 4.4.5. If x1,x2,...,x, € G, where G is a free abelian group, then we refer to a

sum
n
Y cix;
i=1
with ¢1,¢3,...,¢c, € Z as an integral linear combination of elements of G.

Let us begin with a very general construction of a direct sum of groups, which we will then
specialize immediately to the case of interest that the groups are all Z.

DEFINITION 4.4.6. Let I be an indexing set and {G; | i € I} a collection of abelian groups.
Let

@Gi = {(a,-),'g € HGi | a; € Gj, a; = 0 for all but finitely many i € I}.
icl icl
Then ,¢; G, is a subgroup of [];c; G; known as the direct sum of the groups G;.
REMARK 4.4.7. When [ is finite, we have @;c; G; = [1;¢; Gi.

NOTATION 4.4.8. The symbol &; ; (or 9;;), for i and j in some set /, is taken to mean

1 ifi=
0ij = e
0 ifizj.
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EXAMPLE 4.4.9. For any indexing set /, the direct sum

EBZ = {(a,-)ig € HZ | a; € Z, a; = 0 for all but finitely many i € I}.
icl i€l
is a free group under coordinate-wise addition with basis {e; = (8;j)ier | j € I}.

DEFINITION 4.4.10. The basis {¢; | i € I} in Example 4.4.9 is known as the standard basis
of Djes Z.

Free groups have the property that homomorphisms are defined uniquely by their values on
a basis, as we now show.

PROPOSITION 4.4.11. Let G be an abelian group. Then G is free on a subset X if and only if,
for every function ¢ : X — G', where G’ is an abelian group, there exists a unique homomorphism

0: G— G with ¢(x) = ¢(x) forall x € X.

PROOF. Suppose first that G is free on a basis X. Then for cy,cs,...,c, € Z and distinct
elements x1,x2,...,x, € X, define

) (li} cl-xi> = i_ilci(ﬁ(xi).

The map ¢ is then a well-defined map on all of G by Remark 4.4.4, and it is easy to check that
it is a homomorphism. Moreover, if y: G — G’ is any homomorphism with y(x) = ¢(x) for all

x € X, then
W(;Cm) = ;Cill/(xi) = l__Zlcl'Wi) =9 (;Cixi)'

Conversely, suppose that G and X have the property of the proposition. We claim that G is
free on X. First, suppose that x; € X and ¢; € Z for 1 <i < n and some n > 1 are such that

n
a= Z cix; =0.
i=1

Define ¢ : X — Z" by ¢(x;) = e;. Then
n
0=9(a) =) cie;,
i=1

which forces ¢; = O for all i, as the e; form a basis of Z".

Next, let H be the subgroup of G generated by X. We define two homomorphisms G — G.
One is given by idg, while is the composition of the map 7w: G — H uniquely determined by
m(x) = x for all x € X with the inclusion map t: H — G. By assumption, then, we must have
idg = t o7, and as the latter map has image H, we have G = H. Thus, G is free on X. ]

REMARK 4.4.12. The existence of unique homomorphisms of a free abelian group G with
prescibed values on a basis X, as found in Proposition 4.4.11, is often referred to as the universal
property of G.
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COROLLARY 4.4.13. Suppose that G is a free abelian group on a basis X = {x; | i € I}, where
I is an indexing set. Then there is a unique isomorphism

Y @Z =G
icl
such that y(e;) = x; for all i € I, where {e; | i € I} is the standard basis of G.

PROOF. We can define y as in the statement of the corollary by Proposition 4.4.11, which
also implies the existence of a unique homomorphism ¢: G — @;c; Z such that ¢ (x;) = e; for
all i € I. Since ¢ o y(e;) = ¢; and yo @(x;) = x; for all i € I, the same proposition implies that
¢ oy and yo ¢ are the identity homomorphisms. In particular, y is an isomorphism. U

DEFINITION 4.4.14. The general linear group GL,(Z) of degree n is the group of n-by-n ma-

trices with integer entries which have inverses with integer entries, with respect to the operation
of matrix multiplication.

REMARK 4.4.15. A n-by-n matrix A with integer entries has an inverse with integer entries
if and only if det(A) = £1.

For two free abelian groups to be isomorphic, their bases must have the same cardinality.
Equivalently, an abelian group cannot have bases of two different cardinalities. We prove this
only in the special case of finitely generated abelian groups.

THEOREM 4.4.16. Suppose that G is a free abelian group with basis X having n elements.
Then every basis of G has n elements.

PROOF. By Corollary 4.4.13, we have that G = []"_, Z. We then have that
G/26=]]z/2z,
i=1

and so has order 2". If G had a different basis with a finite number of elements m, then G/2G
would have order 2™, forcing m = n. On the other hand, if G had an infinite basis indexed by a
set I, then the same argument would tell us that

G/2G=P7z/2Z,
il
which is infinite, so impossible. U

DEFINITION 4.4.17. If G is a finitely generated, free abelian group, we refer to the number
of elements in any basis of it as its rank.

We have the following analogue of the change-of-basis theorem in linear algebra.

PROPOSITION 4.4.18. Let G be a free abelian group with basis X = {x1,x,...,x,}. Then
X' ={x],x},...,x,} is also a basis of G if and only if there exists a matrix A = (a;j) € GL,(Z)

such that
n
/
Xp= Y aijx;
j=1

foreach 1 <i<n.
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PROOF. Since X generates G, we may write each x} as

n
/ — .. .
Xi = Z aijXj
Jj=1

for some a;; € Z and then form an n-by-n matrix A = (a;;). If X" also generates G, then we may
write

ngE

n n
Xj = Z b,’j)C} = Z bijajkxk
j=1 j=1
for some b;; € Z and then form B = (b;;). Since X is a basis, this tells us that BA = I, so
A € GL,(Z).

Conversely, if there exists a B with BA = I, then

n n n
X = Z (Zb;jajk>xk = Zb,'jx;-,
1 " j=1 j=1

k=

k=1

so the x& generate G, and moreover they form a basis as, if

n

we then have

SO
n
Z ajjci = 0
i=1
for each i, or in other words the vector ¢ = (cy,¢3,...,c,) satisfies Ac = 0, which means BAc = 0,
orc=0. 0

4.5. Finitely generated abelian groups
We begin with the following corollary of Theorem 4.4.18.

LEMMA 4.5.1. Suppose that X = {x1,x2,...,X,} is a basis of a free abelian group G, and let
ci € Zfor2<i<n. ThenX = {x|,xz,...,xn} with

/
X]=X1+cxp+ -+ cpxp
is also a basis of G.

PROOF. Take A € GL,(Z) to be A =1+Y} ,c;E1j, where E;; is the n-by-n matrix with
exactly one nonzero entry, which is a 1 in the ith row and jth column. It is easy to see that
det(A) =1,s0A € GL,(Z). We then apply Proposition 4.4.18. O

We are now ready to prove the following result.
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LEMMA 4.5.2. Let G be a finitely generated, free abelian group of rank n, and let H be a
nontrivial subgroup. Then there is an isomorphism

0:G—7ZxG,

where G' is a subgroup of G that is free abelian of rank n — 1, such that
¢(H)=dZ xH',

for some d > 1, where H = HNG'.

PROOEF. Consider the set % of all bases of G. Let d > 1 be minimal such that there exists
X' ={¥,x3,...,x,} € % such that

n
y:dx'+2djxj €H
i=2
for some ds, . ..,d, € Z, and fix such an X" and y. We may divide each d; for 2 <i < n by d to
obtain
di = qid+r;
with ¢; € Z and 0 < r; < n. Then
y=d (X +qoxo+ -+ qpxn) +raxo + -+ rpxn.
Let x; =X +¢gox2 + -+ gnxn. Then X = {x1,x2,...,x,} is a basis by Lemma 4.5.1. The mini-
mality of d now forces r, = --- = r, = 0. In other words, we have y =dx; € H.
Let G' = (xa,...,X,), which is free abelian of rank n — 1, and define a homomorphism
¢:G—ZxG,  ¢la)=(cr,a—cix),

for a € G, where ¢; € Z is such that
n
a—= Z CiX;
i=1

for some ¢y, ... ,c, € Z. We have that ¢ (a) = 0 if and only if ¢; = 0 and @ — ¢;x; = 0 by definition,
which occurs exactly when a = 0 as X is a basis. Therefore, ¢ is injective. Moreover, for a’ € G/
and ¢ € Z, we clearly have that

o(cx)+d') = (c,d),
so ¢ is surjective. Therefore, ¢ is an isomorphism.

Finally, we compute ¢ (H ). Suppose a € H is written as above, and let c; = gd +r with g € Z
and 0 <r<d. Thenb=a—qdx, € H, and

b=rx+ i CiX;.
i=2
By the minimality of d, we must have r = 0. In other words, we have b € H' and
a=q(dx))+b,
so ¢(a) € dZ x H'. Conversely, if (m,b) € dZ x H’, then
(m,b) = @ (mx1 +b),
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and mx; € H since d divides m, so mx; +b € H. Therefore, o(H) = dZ x H', as desired. O

We also note the following easy corollary of Theorem 2.5.17, obtained by applying it recur-
sively.

COROLLARY 4.5.3. Let m be a positive integer, and for some k > 0, write

o,

m=py'py - pit
for distinct prime numbers pi,p2,...,prx and ry,ry,...,ry > 2. Then
Z/mL=7]p) L X L|pP L --- X L] p{* L.
We can now classify the finitely generated abelian groups up to isomorphism.

THEOREM 4.5.4 (Structure theorem for finitely generated abelian groups). Let G be a finitely
generated abelian group. Then there exist k,r > 0 and positive integers dy,ds, ... ,d; > 2 such
that there is an isomorphism

G=7"x(Z/d\Z)x ---x (Z]dZ).

In fact, the integers d; may be chosen so that d;. divides d; for each 1 < i < k— 1, and then
these are the unique r,k, and dy,d,,...,d; with those properties. Alternatively, we may choose
the isomorphism so that each d; is a power of a prime number, in which case the decomposition
is again unique up to reordering.

PROOF. We prove the result by induction on the number of elements # in a finite generat-
ing set of G, where we may consider the trivial group to be generated by the empty set. The
case n = 0 is then just the case that r = k = 0, and we have the result. Suppose we know the
result for all abelian groups that can be generated by n elements. Let G be an abelian group for
which X = {x;,x2,...,x,+1} is a minimal set of generators. Then there exists a unique surjective
homomorphism y: Z"*! — G such that y(e;) = x; for 1 <i<n-+1. Let H = kery < Z"!,

By Lemma 4.5.2, we have an isomorphism

¢0: 7" -7 x7"

such that ¢ (H) = dZ x H' for some H' < Z" and d > 1. By the first isomorphism theorem, we

have
7 X 7"

dZ x H'
Now, since Z" /H' can be generated by n elements, it may be written by induction as
Z'"H 27" < (Z)d\Z) x -+ x (L) dy 17

forsome dy,dy,...,d,_1 >2 withr+k—1<n. Letting d; = d if d > 2 and noting that G = Z" /H’
if d = 1, we therefore have the first statement of the theorem.

By Corollary 4.5.3, we may can decompose each Z/d;Z into a finite direct product of groups
of the form Z/p*Z with p prime and k > 2, proving the last decomposition. On the other hand,
suppose we have decomposed G up to isomorphism as

G%Z’xPlez---xP,,

G=7"/H =~ ~7/d7 x 7" |H'.
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where py,pa,...,p; are distinct prime numbers and each P; for 1 <i <t is a finite abelian p;-
group, which in turn we have written as

PEZ)pML XL P L) p, T

for some s; > 1 and mj; > mjp > -+ >my;; > 1. Let k =max{s; | 1 <i<t},setm;; =0if j > s,

and let
t

i=1
foreach 1 < j <k. Thend,,d,,...,d; > 2, and d;; | divides d; for each 1 <i < k— 1, as desired.
Moreover, Theorem 2.5.17 implies that

Z)d;Z2=2 (Z/pVZ) x (Z)py VL) x -+~ x (Z/p;" Z),

which yields the desired decomposition of G by gathering terms and applying these isomor-
phisms.

Finally, we address uniqueness of the latter two decompositions. First, we claim that in any
decomposition of G (without restriction on the d;), we must have the same r. For this, let

Gior = {a € G | na =0 for some n > 1}.
If we have written
G=7" x(Z)d\Z)x (Z]dryZ.) X --- x (Z]dxZ)
for some r,k > 0 and dy,d>,...,d; > 2, then
Gior ={0} x (Z/d\Z) X (Z[dr ) % - - X (L[ di L),

and G/Gor = Z". But Z" 22 7Z° for s # r, so the r in the decomposition must be unique. Moreover,
if Gor = {0}, which is to say that |G| = 1, then uniqueness of the decomposition is simply that
r is unique such that G = Z', which we have just proven.

Now, suppose k > 1 and we have chosen the d; either to be prime powers, which we list in
descending order, or such that d; 1 divides d; for all 1 <i < k—1 (so also in descending order).
In the former case, d; is the largest order of any element of prime power order in G, and in the
latter, d; is the exponent of G. Therefore, if we have a second decomposition,

G=7" x(Z/d\Z)x (Z]doZ) x ---(Z]dyZ),

written in the same form as the first, then we must have d; = d|. Take the quotient, therefore, by
the subgroup Z" x Z/d,7Z x {0} x {0} in each decomposition. Then we have

Z)dlx - X L)L 2T )dST % - x L] d) 7.

By induction on the order of Gy, assuming that we have proven the uniqueness for all G’ with
|Glor| < |Gior|, we must have k = k" and d; = d; for all 2 < i < k, proving uniqueness. O

In the course of the proof of , we considered a subgroup of an abelian group G that we denote
Gior- We give it a formal definition.

DEFINITION 4.5.5. Let G be an abelian group.
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a. The rorsion subgroup of G is the subgroup
Gior = {a € G| na=0forsomen > 1}
of G.

b. An element of Gy, is called a torsion element of G.
REMARK 4.5.6. If G is a finite abelian group, then G = Gy;.
We leave the proof of the following direct corollary of Theorem 4.5.4 to the reader.

COROLLARY 4.5.7. If G is a finitely generated abelian group, then G = 7" X Gy for some
r > 0. Moreover, Gy is a finite abelian group, and it is isomorphic to a direct product of cyclic
groups.

4.6. Group actions on sets

DEFINITION 4.6.1. An action of a group G on a set X is an operation
*:GXxX =X

satisfying the following properties
1. exx=xforall x € X,

ii. ax(bxx) = (ab)xxforalla,b € G and x € X.
We then say that G acts on X and that the operation « is a G-action, and we refer to X as a G-set.

[I3RA]

REMARK 4.6.2. As with binary operations, we typically denote “x” more simply by “-”.
EXAMPLES 4.6.3.

a. The symmetric group Sx acts on X. In particular, S, acts on X,, = {1,2,...,n}.

b. The group of isometries of R" acts on R”".

c. The wallpaper group of a tiling of the plane acts on R2.

d. For n > 3, the group D,, acts on the set of vertices of the regular n-gon of which it is the
symmetry group, as well as the set of its edges.

e. The group GL,(R) acts on R” by left multiplication of column vectors.
Here are a couple of more abstract examples.

EXAMPLES 4.6.4.

a. A group G acts on itself by left multiplication: axx = ax for a,x € G.

b. A group G acts on itself by conjugation: a*x = axa~! for a,x € G.

REMARK 4.6.5. A group G does not act on itself by right multiplication. If we defined
a*x = xa, then
ax(bxx) =ax(xb) = (xb)a = x(ba),
while (ab) xx = x(ab). The action by right multiplication is an example of what is known as a
right action (as opposed to a usual, or left, action).
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DEFINITION 4.6.6. We say that an action of a group G on a set X is transitive if for every
x,y € X, there exists a € G with ax = y. We then say that G acts transitively on X.

EXAMPLES 4.6.7.
a. The group Sx acts transitively on X.

b. The group D,, acts transitively on the set of vertices of a regular n-gon, as well as the set
of edges.

c. The group of isometries of R” acts transitively on R”.

d. The group GL,(IR) does not act transitively on R”, as an invertible matrix times a nonzero
vector is always nonzero.

e. Any group G acts transitively on itself by left multiplication. This is simply the cancella-
tion theorem: if x,y € G, then a = yx™! satisfies ax = y.

f. The action of G on itself by conjugation is not transitive if G is nontrivial. For example,
the identity element is not a conjugate of any other element.

g. The group Sx acts on the power set of X,
oxY ={o(y)|yeY}

for Y C X, but this action is not transitive if X is nonempty. For instance, o Y always has the
same cardinality as Y, so it cannot be the empty set if ¥ is nonempty.

h. The group G acts on the set G/H of left cosets a subgroup H of G by left multiplication:
a-bH = abH,
and this is a transitive action.
DEFINITION 4.6.8. Let G be a group and X be a G-set. The orbit of x € X is the set
G-x={gx|geG}.
REMARK 4.6.9. Recall that the orbit of x € X, under o € §,, was defined as
Os(x) = {o'x | i€ Z},
and we can reinterpret this orbit as the orbit (o) - x.
The following lemma is nearly immediate.

LEMMA 4.6.10. An action of a group G on a set X is transitive if and only if G-x = X for
every (equivalently, some) x € X.

EXAMPLES 4.6.11.

a. Since Sy acts transitively on X, we have that Sy - x = X for every x € X.

b. Consider the action of S,, on the power set of X,,. We have
Sp{1,2,...k}={Y C X, | |Y| =k}.

c. The orbit of v € R” under GL,(R) is R* — {0} if v# 0 and {0} if v =0.
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d. The orbit of x € G under the action of G on itself by conjugation is the conjugacy class Cy
of x.

e. The orbit of H < G under the action of G of its set of subgroups by conjugation is the set
of all conjugate subgroups to G:
{aHa™'|a € G}.

We remark that the property of being in the same orbit is an equivalence relation on a G-set
X, and therefore we obtain a partition of X as a disjoint union of its orbits.

PROPOSITION 4.6.12. Let X be a G-set. The relation x ~g y if and only if G-x = G-y for
x,y € X is an equivalence relation on G, and the equivalence class of x € X under ~ is the orbit
Gx of x. Therefore, G is the disjoint union of its distinct orbits.

PROOF. That ~¢ is an equivalence relation is checked immediately. We remark that for
x,y€ X,wehave G-x=G-yif and only if y € G - x, since ax = by for some a,b € G if and only
if cx =y for some ¢ € G (that ¢ being b~ 'a). Therefore, the equivalence class of x € X is exactly
the orbit G - x, and the final statement is just Lemma 1.2.10. O

DEFINITION 4.6.13. Let X be a G-set for some group G. Leta € G and x € X. We say that a
fixes x if ax = x.

DEFINITION 4.6.14. We say that an action of a group G on a set X is faithful if the only
element a € G that fixes all x € X is the identity element. We then say that G acts faithfully on X,
and X is a faithful G-set.

In other words, G acts faithfully on X if ax = x for all x € X implies a = e.

EXAMPLES 4.6.15.
a. The group Sy acts faithfully on X, since a nontrivial permutation of X does not fix every
element of X.

b. For n > 3, the group D,, acts faithfully on the set of vertices of the regular polygon, as well
as the set of edges.

c. The group G acts on itself faithfully by left multiplication, since if ax = x for any x € G,
then a = e.

d. The action of a group G on itself by conjugation is faithful if and only if the group has
trivial center. To see this, note that

Z(G)={a € G|axa ' =xforall x € G}.

DEFINITION 4.6.16. Let G be a group and X be a G-set. The stabilizer, or isotropy subgroup,
of G, of an element x € X is the set of elements of G that fix x. That is, we have

Gr={aecG|ax=x}.
REMARK 4.6.17. The stabilizer G, is indeed a subgroup of G, since e € Gy, and for a,b € G,

we have (ab)x = a(bx) = ax = x, so ab € Gy, while

ax=a"ax) =ex=rx,
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soa”! € G,.
LEMMA 4.6.18. A group G acts faithfully on a set X if and only if

() G ={e}.

xeX

PROOF. We have a € G, if and only if ax = x. Thus a € Gy for all x € X if and only if ax = x
for all x € X, and the action of G on X is not faithful if and only if the latter occurs for some a € G
with a # e. So, [\,cx Gx contains a non-identity element if and only if G acts non-faithfully on
X. O

EXAMPLES 4.6.19. We give some examples of stabilizers.

a. The stabilizer of n under the action of S, is the image of S,_; under the homomorphism
t:S,—1 — S, of Example 2.10.20.

b. The stabilizer of a vertex under the action of D, on a regular n-gon consists exactly of
the subgroup of order 2 generated by the unique reflection in D,, for which the line of reflection
passes through the vertex.

c. The stabilizer of 4 under the action of (¢) < S5, where 6 = (12 3)(45), is (6?).

d. The stabilizer of x € G under the action of G on itself by left multiplication is trivial:
Gy={acG|ax=x}={e}

The following definition gives an interesting class of examples of stabilizers.

DEFINITION 4.6.20. The stabilizer of x € G under the action of G on itself by conjugation is
the subgroup of elements in G that commute with x and is known as the centralizer Z, of x

Z,={a€G|ax=xa}.
EXAMPLE 4.6.21. The centralizer Z; ; 3) in Ss is
Z123)=((123),(45)).
We end by comparing orbits and stabilizers.
THEOREM 4.6.22. Let X be a G-set, and let x € X. Then there is a bijection
V:: G/Gy — G-x,
given by W (aGy) = ax for any a € G.

PROOF. First, we note that y, is well-defined, since if b € aGy, then b = ag for some g € G,,
and
Y, (bGy) = bx = agx = a(gx) = ax = Y (aGy).
Moreover, it is one-to-one since, if ax = bx, then x = a'bx, so a~'b € G,, and therefore aG, =
bG,. Finally, it is onto by definition. O
COROLLARY 4.6.23. If G is a finite group, then every element x € X has a finite orbit, and
|G-x| =[G : Gy

In particular, the number of elements in the orbit of x divides |G)|.
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EXAMPLE 4.6.24. The centralizer of (1 2 3) in Ss has order 6, while the orbit of (1 2 3) is
the set of 3-cycles in Ss, of which there are 20, and we note that |Ss5| = 20 6.

We find an application in the class equation.

PROPOSITION 4.6.25 (The class equation). Let G be a finite group. Then
G| =1Z(G)|+ }_[G: Z4,

xeX
where X is set of representatives of the conjugacy classes in G with more than one element.
PROOF. By Corollary 4.6.23, we have that [G : Z,] = |Cy| for x € X. Moreover, |Cy| = 1 if

x € Z(G). The equality we wish to prove is therefore reduced to the known fact that |G| is the
sum of the orders of its distinct conjugacy classes. U

Here is one application.
PROPOSITION 4.6.26. The group As is simple.

PROOF. Any normal subgroup of a group is a disjoint union of conjugacy classes in that
group including the conjugacy class {e}. Let us determine the conjugacy classes in As. The con-
jugacy classes in S5 of nontrivial elements in A5 are the products of 2 transpositions, the 3-cycles,
and the 5-cycles. The centralizer of (1 2 3) in As is the group ((1 2 3)), so |C(; 2 3)| = 8 = 20,
and Cj , 3) is thus the set of 3-cycles. The centralizer of (12)(34) is ((12)(34),(13)(24)),so
|C(1 2)(3 4)| = 15, and C(; )3 4) 1 thus the set of products of two transpositions. The centralizer
of (12345)is((12345)),50[C(;2345)| =12 and so there are two conjugacy classes of 5
cycles, each with 12 elements. We then have that the distinct conjugacy classes of elements in
As have 1, 12, 12, 15, and 20 elements. Aside from 1 and 60, no sum of these numbers including
1 divides 60, so As has no nontrivial, improper normal subgroups. U

4.7. Permutation representations

In this brief section, we give a characterization of group actions on sets as permutation rep-
resentations.

THEOREM 4.7.1. Let X be a G-set, and define 6,: X — X by 0,(x) = ax for any a € G. Then
o, € Sx, and the map
p: G — Sx
such that p(a) = o, for all a € G is a homomorphism. Conversely, if p: G — Sx is a homomor-
phism, then the operation defined by

axx = p(a)(x)
onac Gandxe GisaG-action.
PROOF. We have
(041004)(x) =x = (0400,1)(x),
S0 Oy is a bijection, which is to say 0, € Sx. For a,b € G and x € X, we have

p(ab)(x) = 0ap(x) = (ab)x = a(bx) = 64(0p(x)) = (040 0p)(x) = (p(a) o p (b)) (%),
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so p is a homomorphism.
Conversely, given p, we check that e xx = p(e)(x) = idx (x) = x, while
ax(bxx) = p(a)(p(b)(x)) = p(ab)(x) = (ab) *x,
S0 * is a G-action. O

DEFINITION 4.7.2. If X is a G-set, then the homomorphism px associated to X by Theo-
rem 4.7.1 is called its permutation representation.

EXAMPLE 4.7.3. The action of Sx on X gives rise to a permutation representation p: Sy —
Sx satisfying p(o)(x) = o(x) for all x € X. In other words, we have p = idg, .

EXAMPLE 4.7.4. Consider the action of GL,(R) on R”. The permutation representation
p: GL,(R) — Sg»

takes A € GL,(R) to amap Ty : R" — R”" that satisfies Ty (v) = Av. In other words, the image of
p is the subgroup of Sg» consisting of invertible linear transformations.

The following lemma is almost immediate.

LEMMA 4.7.5. A group G acts faithfully on a set X if and only if px is injective. In fact, the
kernel of px is the intersection of the stabilizers Gy over all x € X.

PROOF. We have py(a) = idy if and only if ax = px(a)(x) = x for all x € X. O

EXAMPLE 4.7.6. The permutation representation attached to G acting on itself by conjuga-
tion is a homomorphism y: G — Sg given by a — ¥,, and its image is the inner automorphism
group, a subgroup of Aut(G) < Sg. The kernel of yis Z(G).

We now prove Cayley’s theorem, which tells us that every group is a subgroup of a symmetric
group.
THEOREM 4.7.7 (Cayley). Every group G is isomorphic to a subgroup of Sg.

PROOF. Consider the permutation representation pg: G — S associated to the action of G
on itself by left multiplication. By Example 4.6.4, p¢ is injective, and therefore, G is isomorphic
to impg < Sg- O

REMARK 4.7.8. Note that if G has order n, Cayley’s theorem tells us that G is isomorphic
to a subgroup of S,,. However, this is not always the smallest permutation group in which it is
contained. For example, the action of D,, on its vertices is faithful, and so a choice of numbering
of these vertices identifies D,, with a subgroup of §,,, as opposed to S;,,. Even more simply, S, is
obviously a subgroup of itself, and not just isomorphic to a subgroup of §,,;.

4.8. Burnside’s formula

NOTATION 4.8.1. Let X be a G-set, and let S be a subset of G. Then we set
XS={xeX|ax=xforallacS}.

If S = {a} for some a € X, we sometimes write X for X},
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REMARK 4.8.2. For x € X and a € G, where X is a G-set, the statement that ax = x is
equivalent both to a € G, and to x € X“.

EXAMPLES 4.8.3.

a. Take 0 = (1 3)(2 5) € Sg, and let X = Xg. We have X° = {4,6}.

b. Let X be the D,-set that is the set of vertices of the regular n-gon inscribed on the unit
circle in R? with a vertex at (1,0). Then X* = {(1,0)} if nis odd and X* = {(—1,0),(0,1)} if n
is even, while X" = @

c. Let X =R", and let A € GL,(R). Then X4 = {v € R" | Av = v} is the eigenspace of A with
eigenvalue 1 (so {0} if 1 is not an eigenvalue). We have XS(®) = {0},

We now state Burnside’s formula.

THEOREM 4.8.4 (Burnside). Let G be a finite group, and let X be a finite G-set. Let r be the
number of distinct orbits in X under G. Then

r= | X4
|G| aé;
PROOF. We will count the set of pairs
S={(a,x)|aeGxeX,ax=x} CGxX

in two different ways. First, note that

s=[[{(ax) |xex},

acG
so we have
S|= ¥ 1X°).
acG
On the other hand, note that
s=][{(ax)|ac G,
xeX
so we have G
5= ¥ (6= ¥ 19
xeX xeX |G |

the latter statement being Corollary 4.6.23 and Lagrange’s theorem. If & is an orbit in X, then it
is the orbit of all x € &, so we have

|Gl

Ly~ 9L g |ﬁ|

Since X is the disjoint union of its orbits ¢ and there are r orbits, we obtain |S| = r|G|, and
therefore we have
rlGl =) X1,

aceG
as desired. O
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Burnside’s formula has an amusing use in certain problems involving counting.

EXAMPLE 4.8.5. Suppose we have a table with which is a regular octagon, with one chair
placed at each side. Let us consider two seatings of eight people at the table to be the equivalent
if and only if every person has the same two neighbors under both seatings (though possibly on
different sides). We can ask: how many equivalence classes of seatings are there?

Let X denote the set of all seatings, so |X| = 8!. Two seatings are equivalent if and only if
there is an element of Dg that takes the positions of the people under one seating to the their
positions under the other. In other words, the seatings are in one-to-one correspondence with
the orbits under the action of Dg on X. We note that X¢ = X, and X¢ = & if a # e since any
nontrivial element of Dg will change the position of at least one person (in fact, at least six
people). Applying Burnside’s formula, we have that the number of equivalence classes r of
seatings is 8!/16 = 2520.

EXAMPLE 4.8.6. How many different ways are there to color the faces of a cube either red
or blue that actually look different? (Here: two colorings are the same if one is a rotation of
another.)

Let X denote the set of all colorings, so |X| = 2° = 64. The group of rotations (orientation-
preserving isometries) of a die has 5 types of elements: the identity, 6 rotations of order 4 through
the centers of opposite faces, 3 rotations of order 2 of the same form, 6 rotations of order 2
through the centers of opposite edges, and 8 rotations of order 3 through the centers of opposite
vertices. Respectively, these elements a have |X“| = 64,8,16,8, and 4. We then have

1 240
r= 24(64—1—6 8+3-164+6-8+8-4) = = 10.
This means there are exactly 10 different-looking colorings. Note that, as is often the case with
these sorts of problems, it would have been easier to simply count them directly.

4.9. p-groups

DEFINITION 4.9.1. A group G is said to be a p-group if every element of G is finite of order
a power of p.

Note that we have already classified the finite abelian p-groups up to isomorphism.
EXAMPLE 4.9.2. The group D, is a nonabelian 2-group of order 8.

All finite groups of p-power order are clearly p-groups. We shall see that the converse is true
as well. For this, we require the following useful lemma.

LEMMA 4.9.3. Let G be a finite group of p-power order, and let X be a G-set. Then
1X| = |X€| mod p.

PROOEF. By Corollary 4.6.23, every orbit in X has order dividing |G|, hence a power of p.
Note that the orbits of order 1 are exactly the {x} with x € X©. On the other hand, the other orbits
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all have order divisible by p, so if Y is a set of representatives of the orbits of G, then it contains
X6, and we have

X|=3 |G-y =) [{x}/modp,

yey xeX©¢
U

In general, if the order of a finite group G is n, then while we know that every element of
G has order dividing n, we do not have the converse (unless G is cyclic). On the other hand,
Cauchy’s theorem, which we now prove, tells us that G contains elements of every prime order
dividing n.

THEOREM 4.9.4 (Cauchy). Let p be a prime number, and let G be a finite group of order
divisible by p. Then G contains an element of order p.

PROOF. We consider the set
X ={(a1,a2,...,a,) € G’ |a1ay---a, = e}.

Note thatif (ay,az,...,a,) € X, thenay,az,...,a,—1 € G can be chosen arbitrarily, and then a), =
(a1az...a,—1)~ ! is determined by those a;. It follows that [X| = |G|P~!. Lett= (12 ... p) €S,,.
We let 7, and hence (7), act on X by

T-(a1,a2,...,ap) = (az,...,ap,a1).
Note that this is an action, as
(az---ap)a) =e,
since a being left inverse to a; - - - a, implies that it is also right inverse to a; - - -a,. Then
X =X"={(a,a,...,a) € G | a” = ¢}.
By Lemma 4.9.3, we have
1X| = [X®| mod p.

Since p divides |G|, it divides |X|, and hence it divides the order of X (¥, But X (¥ is in bijection
with the set of elements of G of order dividing p, and e is such an element. So, we must have at
least p distinct elements in G of order dividing p, hence at least p — 1 of order p. U

Cauchy’s theorem has the above-mentioned corollary.
COROLLARY 4.9.5. Every finite p-group has p-power order.

PROOF. If G is a finite group and ¢ is a prime dividing |G|, then G has an element of order ¢
by Cauchy’s theorem. So if G is a p-group, then by definition the only prime that can divide |G|
is p. U

The following result is very useful in the study of p-groups.

PROPOSITION 4.9.6. The center Z(G) of a nontrivial finite p-group is nontrivial.
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PROOF. Consider the action of G on itself by conjugation. The set of elements of G fixed by
every element of G under conjugation is exactly the center of G. By Lemma 4.9.3, we therefore
have that |G| = |Z(G)| mod p. Since |G| is a nontrivial power of p, this means that Z(G) is not
the trivial subgroup. ]

We give an application of Proposition 4.9.6 to the study of the structure of p-groups of order
2

p-.
THEOREM 4.9.7. Every group of order p?, where p is a prime, is abelian.

PROOF. Let G be a group of order p?. By Proposition 4.9.6, we have that Z(G) is nontrivial,
so has either order p or p>. We must show that it is the latter, since Z(G) = G if and only if G is
abelian. So, suppose by way of contradiction that |Z(G)| = p, and let b € G be an element that
is not in the center of G. Then H = Z(G)(b) has order greater than p, hence is all of G. But H
is abelian, since b commutes with every element of Z(G) and certainly every element of Z(G)
commutes with itself. So, G = H is abelian as well, contradicting |Z(G)| = p. O

In particular, this tells us that there are only two isomorphism classes of groups of order p?,
those of Z/p*Z and Z/ pZ x 7./ pZ.

4.10. The Sylow theorems
DEFINITION 4.10.1. Let G be a group, and let p be a prime number.
a. A subgroup of G is called a p-subgroup if it is a p-group.

b. A p-subgroup of G is called a Sylow p-subgroup of G if it is not properly contained in any
p-subgroup of G.

REMARK 4.10.2. If G is a finite group and p” is the largest power of p dividing |G|, then

every p-subgroup of G has order dividing p".
EXAMPLES 4.10.3.

a. In S5, the Sylow 5-subgroups are the subgroups generated by the 5-cycles, the Sylow
3-subgroups are the subgroups generated by the 3-cycles, and the Sylow 2-subgroups are the
subgroups of order 8 the form

((abcd),(ac))

with a, b, c,d distinct elements of X5.
' b.Ifn>3andn= 2%m with m odd, then every Sylow 2-subgroup of D, has the form D, =
(r's,r™) for some 0 < i < m.

The Sylow theorems, which we now state in one compact result that we refer to as Sylow’s
theorem, constitute an extremely useful tool for the study of finite groups.

THEOREM 4.10.4 (Sylow). Let G be a finite group, let p be a prime number, and let n be
exponent of the highest power of p dividing |G|. Then the following hold.

a. Every Sylow p-subgroup of G has order p".
b. Every two Sylow p-subgroups of G are conjugate.
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c. The number of Sylow p-subgroups divides |G| and is congruent to 1 modulo p.
We defer the proof of the Sylow’s theorem to below.

NOTATION 4.10.5. Let G be a finite group and p a prime number. We let Sylp(G) denote the
set of Sylow p-subgroups of G, and we let n,(G) = |Syl,,(G)|.

The fact that n,(G) both divides |G| and is congruent to 1 modulo P can be very useful in
determining the possible isomorphism classes of groups of a given order.

EXAMPLE 4.10.6. It is easy to see from our description of the Sylow p-subgroups of Ss
that every two Sylow p-sugroups of S5 are conjugate, as the elements generating such groups
are conjugate. We have ns5(Ss) = 6 = 1 mod 5. We also have n3(S5) = 10 = 1 mod 3, and
ny(Ss) = 15, which is odd.

To understand the second part of Sylow’s theorem, we introduce the concept of a normalizer.

DEFINITION 4.10.7. Let G be a group and H be a subgroup. The normalizer Ng(H) of H in
G is the subgroup

Ng(H)={ac G|aHa ' = H}
of G.
REMARKS 4.10.8.

a. By definition, Ng(H) is the stabilizer of H under the action of G on its set of subgroups
by conjugation, so in particular is a subgroup.

b. We have H < Ng(H) and Ng(H) is the largest subgroup of G in which H is normal.
c. We have Ng(H) = G if and only if H < G.

EXAMPLES 4.10.9.

a. We have Np, ((r)) = D,, and Np, ({s)) = (s) if n is odd and (s, ”/?) if n is even.

b. The normalizer of ((1234))in S5 is ((1234),(13)).

The following lemma is crucial for proving the first part of Sylow’s theorem.

LEMMA 4.10.10. Suppose that G is a finite group, and let H be a subgroup of G of order a
power of a prime p. Then
[G:H|=[Ng(H): H] mod p.

PROOF. Let ¥ = G/H. Then H acts on .Z by left multiplication: /- (aH) = haH for h € H,
a € G. We have that aH € Z" if and only if h(aH) = aH for every h € H, which is to say that
aha—' € H for every h € H, which means exactly that aH a~! = H. In other words,
" ={aH |a € Ng(H)} = Ng(H)/H.
By Lemma 4.9.3, we have that
2| = | 2| mod p,
which is exactly the statement of the lemma. U
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Let us fix a prime p throughout the rest of this section. We prove a strengthening of the first
part of Sylow’s theorem.

THEOREM 4.10.11 (First Sylow theorem). Let G be a group, and let n be the exponent of the
highest power of p dividing G. Every subgroup of G of order p* with k < n is a normal subgroup
of a subgroup of G of order p**1.

PROOF. Suppose that H < G has order p*. By Lemma 4.10.10, its index in its normalizer is
congruent to (G : H] modulo p, so is divisible by p. But then Ng(H)/H has order divisible by p,
and so by Cayley’s theorem there exists a subgroup of it of order p. By Proposition 2.13.10, there
then exists a subgroup K of Ng(H) in which H is normal and such that |[K/H| = p. Lagrange’s
theorem then implies that |K| = p**!, as desired. O

Theorem 4.10.11 tells us, in particular, that every p-subgroup of G of order less than p” is
not maximal, so part a of Sylow’s theorem holds. In fact, recursion tells us that:

COROLLARY 4.10.12. Every p-subgroup of a finite group G is contained in a Sylow p-
subgroup of order p", where n is the exponent of the highest power of p dividing G. In particular,
every Sylow p-subgroup has order p".

The first Sylow theorem also has the following simple corollary.

COROLLARY 4.10.13. Let G be a group, and let n be the exponent of the highest power of p
dividing G. The G has subgroups of order p* for every 1 < k < n.

PROOF. Suppose without loss of generality that p divides |G|. By Cauchy’s theorem, G has
an element of order p, so it has a subgroup of order p. By recursion, the first Sylow theorem then
tells us that G has subgroups of every p-power order dividing G. 0

We next prove the second part of Sylow’s theorem, which we state as a separate result.

THEOREM 4.10.14 (Second Sylow theorem). If P and Q are Sylow p-subgroups of a finite
group G for some prime p, then P and Q are conjugate subgroups of G.

PROOF. We consider the action of Q on the set of left cosets G/P viah-aP = (ha)P for h € Q
and a € G. By Lemma 4.9.3, we have that |(G/P)?| = |G/P| mod p. Since p does not divide
|G/P|, we therefore have that p does not divide |(G/P)2|. In particular, there exists an element
bP € (G/P)C. Since hbP = bP for all h € Q, we have b~'hb € P for all h € Q, so b~ 'Qb < P.
Since P and Q have the same order, we therefore have that Q = bPb~! is a conjugate of P in
G. O

COROLLARY 4.10.15. Suppose that G is a finite group, and let P be a Sylow p-subgroup of
G. Then P is normal in G if and only if n,(G) = 1.

PROOF. We know that every conjugate of a Sylow p-subgroup is a Sylow p-subgroup, as it
has the same order, so it is an immediate corollary of Theorem 4.10.14 that P is normal in G if
and only if n,(G) = 1. O

The second Sylow theorem also has, after a short argument, the following consequence.
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PROPOSITION 4.10.16. Let G be a finite group, let p be a prime number, and let P be a Sylow
p-subgroup. Then n,(G) =[G : Ng(P)|. In particular, the number of Sylow p-subgroups of G
divides |G)|.

PROOF. Consider the action of G on the set Syl p(G) of Sylow p-subgroups of G by conjuga-
tion By Theorem 4.10.4b, we have that Syl p(G) has just one orbit under this action, which is all
of Syl,(G). Since the stabilizer of P is Ng(P), the result follows from Corollary 4.6.23. O

We will require a special case of the following lemma.

LEMMA 4.10.17. Let Q be a Sylow p-subgroup and P be a p-subgroup of a finite group G.
Then PN Ng(Q) =PNQ.

PROOF. Let H = PN Ng(Q). We need only show that H < Q. Since H < Ng(Q), we have
that hQh—! = Q for all h € H, so HQ = QH, and therefore HQ is a subgroup of G with Q as a
normal subgroup. The second isomorphism theorem implies that

][0
[HNQ|’
and yields in particular that HQ is a p-subgroup of G. On the other hand, Q is a Sylow p-

subgroup of G, so HQ cannot be larger, and therefore must equal Q. Thus, we have the required
containment H < Q. [

|HO| =

Finally, we prove the third part of Sylow’s theorem.

THEOREM 4.10.18 (Third Sylow theorem). The number n,(G) of Sylow p-subgroups of a
finite group G divides |G| and is congruent to 1 modulo p.

PROOF. The first part is just Proposition 4.10.16 and Lagrange’s theorem. For the second
part, we assume that p divides |G/, as the result is otherwise trivial. Let P be a Sylow p-subgroup
of G, and let P act on Syl,(G) by conjugation: if Q € Syl,,(G) and a € P, then a takes Q to

aQa‘l. By Lemma 4.9.3, we then have
ny(G) =[8Syl,(G)"| mod p.
LetQ ¢ Sylp(G)P, which tells us that P < Ng(Q). By Lemma 4.10.17, we then have that
P=PNNg(Q) <0,

which forces P = Q as P and Q have the same order by Corollary 4.10.12. Thus, we have that
|Sy1p(G)P| =1, and so n,(G) = 1 mod p. O

4.11. Applications of Sylow theory

We can use Sylow’s theorem to classify, or simply to give information on, the structure of
groups of a given order. For instance, Sylow’s theorem can be used to show that there are no
simple groups of certain small orders or of orders with certain sorts of prime factorizations, as
we see in the following examples.
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EXAMPLE 4.11.1. There are no simple groups of order 42. If G is a group of order 42 , then
n7(G) divides 42 and is 1 modulo 7, which forces n7(G) = 1. By Corollary 4.10.15, we have that
the unique subgroup of G of order 7 is normal, so G is not simple.

EXAMPLE 4.11.2. Let G be a group of order 30. Suppose that n3(G) > 1 and ns(G) > 1.
Then the third part of Sylow’s theorem tells us that n5(G) = 6 and n3(G) = 10. Now, any Sylow
5-subgroup has order 5, hence is cyclic with 4 elements of order 5, and any two distinct Sylow
5-subgroups have trivial intersection. Therefore, G contains 24 elements of order 5. On the other
hand, the same argument with 3 replacing 5 tells us that G contains 20 elements of order 3. This
is clearly impossible. In particular, there are no simple groups of order 30.

EXAMPLE 4.11.3. There are no simple groups of order p", where p is a prime and n > 2.
This follows from Corollary 4.10.13, which tells us that such a group has a subgroup of order
p" ! and the first Sylow theorem, which tells us that the subgroup is normal in a subgroup of
order p", which is necessarily the whole group.

We can also study groups with orders having a particularly nice form. The following result
is useful for that.

PROPOSITION 4.11.4. Let G be a group. Suppose that H and K are normal subgroups of G
with HK = G and HNK = {e}. Then the function y: H x K — G given by y(h,k) = hk for
h € K and k € K is an isomorphism.

PROOF. Let i € H and k € K. Then [h, k] equals both (hk~'h~1)k~1, from which it is seen to
be an element of K, as K <1 G, and h(kh_lk_1 ), which is similarly seen to be an element of H. As
HNK = {e}, we therefore have [h,k] = e, and therefore elements of H commute with elements

of K. It follows that y as defined is a homomorphism. It is onto as G = HK and one-to-one as
hk = e implies h,k € HNK, so (h,k) = (e,e). O

Proposition 4.11.4 has the following application in conjunction with Sylow’s theorems.

THEOREM 4.11.5. Suppose that p and q are prime numbers with p < q. Then every group of
order pq has a normal subgroup of order q and is in fact cyclic if g % 1 mod p.

PROOF. Note that n,(G) divides p and is 1 modulo ¢, which forces n,(G) = 1 since p < g.
By Corollary 4.10.15, G has a unique, normal Sylow g-subgroup K of order g. On the other hand,
n,(G) divides ¢ and is 1 modulo p. Supposing that g # 1 mod p. then we must have n,(G) =1
as g is a prime. Let H be the unique, normal subgroup of order p. Now, both H and K are cyclic,
so let i,k € G with H = (h) and K = (k). By Proposition 4.11.4, we have that

G=ZHXKZXZZ/pZx7/qL=17]pqZ,
the last step being the Chinese remainder theorem. U

We can use this to give a more complicated example of a proof that all groups of a given
order are cyclic.

EXAMPLE 4.11.6. All groups of order 255 are cyclic. Since 255 = 3-5-17, the structure
theorem for finitely generated abelian groups tells us that every abelian group of order 255 is
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cyclic. So, we must show that every group G of order 255 is abelian. By the third Sylow
theorem, n17(G) = 1, so G has a unique subgroup N of order 17, which is normal. Then G/N has
order 15 and so is cyclic by Theorem 4.11.5. By Theorem 4.2.8, the subgroup N must contain
the commutator subgroup |G, G| of N.

Again by the third Sylow theorem, we have either n3(G) = 1 or n3(G) =85 and ns(G) = 1 or
ns(G) =51. If n3(G) = 85, then G has at least 170 elements of order 3, and if n5(G) = 51, then
G has at least 204 elements of order 5. Clearly, both of these cannot hold at the same time, so
either n3(G) = 1 or ns(G) = 1. But then G has either a normal subgroup of order 3 or a normal
subgroup of order 5. Call this subgroup Q. Then G/Q has order 3-17 or 5- 17, and in either
case, Theorem 4.11.5 tells us that it is cyclic. As before, we then have that Q contains |G, G/, but
QNN is trivial since Q and N have relatively prime order, so [G,G] = {e}, which is to say that
G is abelian.

Let us also expand our study of groups of order 30.

EXAMPLE 4.11.7. Every group G of order 30 has a normal subgroup of order 5. To see this,
let P be a subgroup of order 3 and Q a subgroup of order 5. By Example 4.11.2, either P or Q
1s normal, and therefore PQ is a subgroup of G of order 15. By Theorem 4.11.5, it is cyclic. We
thus have that |[Ng(Q)| is either 15 or 30, so ng(Q) = 1 or 2, and 2 is impossible by the third
Sylow theorem. Thus, Q is normal.

We can also rule out a whole class of possible orders of simple groups with the following
result.

PROPOSITION 4.11.8. There are no simple groups of order p*q, where p and q are distinct
prime numbers.

PROOF. Let G be a group of order p?q. If p > ¢, then n,(G) = 1 by the third Sylow theorem,
so G has a normal Sylow p-subgroup (which is abelian of order p?). If ¢ > p, then ng(G) =1
or p%. We need only check the latter case. In this case, p> = 1 mod ¢, so ¢ divides p> — 1, but it
does not divide p — 1 as g > p, so ¢ divides p + 1, which forces p = 2 and ¢ = 3. Then G has
order 12. Now, if n3(G) = 4, a simple element count shows that one cannot have ny(G) = 3, so
G has a normal Sylow 2-subgroup. U

Another method for exhibiting the non-simplicity of groups of a given order comes from the
use of permutation representations.

PROPOSITION 4.11.9. Let G be a finite simple group of order properly divisible by p. Then
G is isomorphic to a subgroup of Sg where d = n,(G). In particular, |G| divides d!.

PROOF. Let G act on the set .Z of left cosets of the normalizer Ng(P) of some Sylow p-
subgroup P of G by left multiplication. This is a transitive action, so the permutation represen-
tation G — S ¢ is nontrivial, hence injective as G is simple. As |.Z| = d by the third Sylow
theorem, we have S ¢ = S, so G is isomorphic to a subgroup of S;. Ul

We provide a couple of examples.
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EXAMPLE 4.11.10. There are no simple groups G of order 160. That is, if G were such a
group, then n,(G) = 5 by the third Sylow theorem, and therefore G is isomorphic to a subgroup
of S5. But 120 does not divide 5!.

EXAMPLE 4.11.11. There are no simple groups of order 396 = 223%11. If G were such a
group, then n;;(G) = 12, and the normalizer of a Sylow 11-subgroup P in G has order 33 = %
by the third Sylow theorem. It follows by Proposition 4.11.9 that G is isomorphic to and thus
may be identified with a subgroup of Sj,. By definition Ng(P) is contained in Ng,,(P). But P is
generated by an 11-cycle, and the number of such Sylow 11-subgroups of S, is easily counted
to be 12-9! (as there are % such cycles and 10 per subgroup), which again by the third Sylow

theorem implies that the order Np(G) is 110, which is not a multiple of 33.

The following weakening of the second isomorphism theorem to allow arbitrary finite sub-
groups is a useful tool.

LEMMA 4.11.12. Let H and K be finite subgroups of a group G. Then we have
_ JH|IK
HNK|

PROOF. By definition, we have |[HK| < |H||K|. If h,h’ € H and k,k’ € K are such that hk =
WK, then setting a = (W) ~'h = K'k~!, we have that « € HN K. Moreover, note that i’ = ha™!
and kK’ = ak. Conversely, given h € H, k € K, and a € HNK, then defining /' = ha=! and ¥’ = ak,
we see that hk = h'k’. Therefore, if we define an equivalence relation on the set H x K by
(h,k) ~ (W ,K') if and only if hk = W'k, the number of pairs in each equivalence class is |[H N K],
and as a result there are |H||K|/|H N K| equivalence classes. On the other hand, the number of
equivalence classes is by definition |HK|, proving the desired equality. 0

|HK]

Let us apply Lemma 4.11.12 to an example.

EXAMPLE 4.11.13. There are no simple groups of order 48. Suppose G is a group of order
48. By the third Sylow theorem, we have ny(G) = 1 or 3. If ny(G) = 1, then the unique Sylow
2-subgroup is normal. If ny(G) = 3, let H and K be distinct subgroups of G of order 16. Then
the fact that |HK| < 48 and Lemma 4.11.12 force |[H N K| = 8. Then HNK has index 2 in H and
K, hence is normal in both, so its normalizer Ng(H N K) contains HK, which has order 32, so
equals G. But then H N K is normal in G, so again G is not simple.

The latter example used a special case of the following, which tells us that a group G of order
48 with ny(G) = 3 # 1 mod 4 has two Sylow 2-subgroups with intersection of order 8.

PROPOSITION 4.11.14. Let G be a finite group, and let n be the exponent of the highest power

of p dividing |G|. Let P be a Sylow p-subgroup of G. Let r < n be a positive integer such that
|IPNQ| < p"~" for every Sylow p-subgroup Q of G with Q # P. Then we have n,(G) =1 mod p".

PROOF. Let P be a Sylow p-subgroup, and consider the action of P on Sylp(G) by conju-
gation. Let Q € Syl ,(G) with Q # P. Lemma 4.10.17 tells us that the elements in P that fix Q

under conjugation (i.e., the a € P such that aQa ' = Q) are exactly those in PN Q. For i such
that p' = [P : PN Q], this implies that there are exactly p' conjugates of Q by elements of P, so
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the order of the P-orbit of Q is p’. Under the assumption of the proposition, we have that |[PN Q|
divides p"~", so i > r. Therefore, P-orbit of Syl ,(G) other than the singleton orbit {P} has order
divisible by p”, which implies that n,,(G) = | Syl ,(G)| = 1 mod p". O

4.12. Simplicity of alternating groups

Before we proceed to simplicity, we first show that we can use group actions to give an
alternate definition of the sign of a permutation (and therefore of alternating groups) that does
not use the determinant map, which we did not define above.

PROPOSITION 4.12.1. Let S, act on the set X of polynomials p = p(x1,x2,...,x,) in n vari-
ables x1,x2,...,x, by

C-p= p(xcr(l)?xa(Z)a cee 7xc7(n))
for o €S, and p € X. Take
A= H (xj—x,-)eX
1<i<j<n

The function €: S, — {+1} given by
c-A=¢g(0)A
forall o €S, is equal to the homomorphism sign.

PROOF. For 6,7 € §,, and p € X, we have

0T p=p(Xe(x(1))sXo(c(2))s - - X6 (2(n))) = O P(Xz(1)sX2(2)s -+ -+ X2(n) = O - (T D),
and clearly e- p = p for the identity e, so S, acts on X. Note that since o € §, takes each term
xj—x; with i < j to plus or minus another term of the same form in a one-to-one fashion (in that
o is one-to-one), we do indeed have 0 - A = +A. That € is a homomorphism follows from the
fact that S;, acts on X, since

e(ocr)A=o071(A) =0(e(1)A) =¢(1)0(A) = €(0)e(7)A.

It remains only to check that £(7) = —1 for any transposition 7 = (k £) with 1 <k < ¢ <n. For
this, note that 7(x; —x;) = xj —x; unless {i, j} N{k,l} = @. If {i, j} = {k,{}, then T(x; —x) =
—(x¢ —xz). The remaining terms have the form +(x; — x,,) or £ (xx — x,,,) for some m # k,¢. We
consider these in pairs. If m < k, then we have

T((xp — Xm) (X — X)) = (% — Xom) (X0 — X)) = (X0 — Xom) (X — Xpm).-
If m > ¢, we have
T((Xm — 1) (om — x¢)) = (X — X¢) (X — Xx) = (Xm — X)) (X — %),
and if k < m < ¢, we have
T((em — x%) (X — X)) = (m — x¢) (X — X)) = (X — Xx) (X0 — Xpm).-
Therefore, the product of the contributions to £(7) from the various terms is —1, as required. [

We once again exhibit that As is simple, and moreover, that it is the only simple subgroup of
order 60, up to isomorphism.
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LEMMA 4.12.2. If G is a group of order 60 with ns(G) > 1, then G is simple.

PROOF. The assumption forces ns(G) = 6 by the third Sylow theorem. So, the normalizer
of any Sylow p-subgroup has order 10. Let N be a proper normal subgroup of G. If 5 | [N,
then N contains a Sylow 5-subgroup of G and hence all Sylow 5-subgroups of G by the second
Sylow theorem. But then N has at least 14 6-4 = 25 elements, so is of order 30. But N has
a unique subgroup of order 5 by Example 4.11.7, which is normal in G by Lemma 4.3.15a and
Lemma 4.3.16. This contradicts n5(G) = 6. It follows that 5 1 |[N|. Now, if N has order 6 or 12,
then again it has a normal Sylow subgroup which is then by the same reasoning itself normal in
G. So, we may assume that |[N| € {2,3,4}. Then |G/N| € {15,20,30}, and in all of these cases,
G /N has a normal subgroup of order 5 by the third Sylow theorem and Example 4.11.7. But then
G itself has a normal subgroup with order divisible by 5, which we have already shown is not the
case. Thus N must be the trivial subgroup. U

As a corollary, we recover Proposition 4.6.26 that As is simple. Let us prove that this is the
only subgroup of order 60.

PROPOSITION 4.12.3. The group As is isomorphic to every simple group of order 60.

PROOF. Let G be a simple group of order 60, which we know exists by Proposition 4.6.26.
We show that G is isomorphic to As. From the third Sylow theorem, the possibilities for 1, (G)
are 3, 5, and 15, which is also the index of the normalizer N of a Sylow 2-subgroup P. Since G
is not isomorphic to a subgroup of S3, we can eliminate n,(G) = 3.

If n,(G) =5, then G is isomorphic to a subgroup of Ss, so G may be identified with a normal
subgroup of S5 of index 2. It follows that GNAs is a normal subgroup of As which is either As or
of index 2 in As. The latter being impossible by the simplicity of A5, we must have that G = As.

Suppose now that n,(G) = 15. Since 15 # 1 mod 4, Proposition 4.11.14 tells us that |[PNQ| =
2 for some Q € Syl,(G) with Q # P. Set M = Ng(PNQ), which is not G since G is simple. Since
|M| is a multiple of 4 that is greater than 8 by Lemma 4.11.12, we must have |M| = 12 or 20, from
which it follows that M has index at most 5, and therefore G is isomorphic to a subgroup of Ss.
The same argument as before would tell us that G = As, but note that we assumed n,(G) = 15,
so we reach a contradiction. U

We now prove that the alternating groups on at least 5 elements are simple.
THEOREM 4.12.4. The groups A,, for n > 5 are simple.

PROOF. We prove this by induction on n > 5, the case n = 5 having been proven in Propo-
sition 4.6.26. Let G = A, for some n > 6. For any i € X, the stabilizer G; is isomorphic to
A,_1, which is simple by induction. Suppose that N is a nontrivial normal subgroup of G. If
there exists i € X,, and 7 € N — {e} with 7(i) = i, then N N G; is a nontrivial normal subgroup
of Gj, and it follows that G; < N by the simplicity of G;. For any j € X,,, we can find 0 € A4,
with o (i) = j, and then G; = 6G;0~! < N by normality of N. As every element of A, can be
written as a product of an even number of transpositions, every element of A, may be written as
a product of products of two transpositions, and any product of two transpositions lies in G; for
some j € X, since n > 4. Thus, we must have that N = G = A,,.
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Now, we show that N must contain a permutation that fixes some element of X,,. Let T € N.
If 7(i) = 7'(i) for any T’ € N and i € X,,, then 7/t~ ! fixes i. If the cycle decomposition of T
contains a k-cycle with k > 3, say (aj az ... ai), then we may choose ¢ € A, that fixes a; and
ap but not asz. If 7 is a product of disjoint transpositions that does not fix any element, then write
T = (a1az)(azay) ... (am—1ay) and take ¢ = (ajaz)(aszas) (using the fact that n > 6). It follows
in both cases that T/ = 6to ! # 7, but 7' (a;) = 7(ay), as desired. dJ

4.13. Free groups and presentations
We begin with a general definition of a free group by its “universal property”.

DEFINITION 4.13.1. A group F is free on a subset X if, whenever f: X — G is a function,
where G is a group, there exists a unique homomorphism
¢f1 F—=G
such that ¢(x) = f(x) for all x € G. The existence of this unique homomorphism is referred to
as the universal property of F.

PROPOSITION 4.13.2. Let F be free on a set X and F' be free on a set X', and suppose
f: X — X' is a bijection. Then the homomorphism ¢;: F — F' given by the universal property
is an isomorphism.

PROOF. Let g be the inverse to f, and let ¢,: F' — F be the homorphism given by the
universal property for F'. Then ¢, 0 ¢7(x) = x for all x € X and ¢ o ¢z (x') = x’ for all X’ € X.
Since the identity homomorphisms of F and F’ also take elements of X and X’ to themselves,
respectively, the the universal property for F and for F/ imply that ¢)5’, o@r=1idr and ¢yo q)g, =idpr,
respectively. Therefore, we have that gbé’, = ¢)f_ I s0 ¢r 18 an isomorphism. U

EXAMPLE 4.13.3. The integers Z are a free group on the subset {1}, since for any group G
and element x € G, we can define ¢: Z — G with ¢(1) = x by ¢(n) = x" for all n € Z, and this
is the unique homomorphism taking 1 to x.

EXAMPLE 4.13.4. The group Z", although a free abelian group, is not a free group. For
example, take n = 2. Then the map f: {(1,0),(0,1)} — D3 with f(1,0) = r and f(0,1) = s
cannot be extended to a homomorphism ¢ : Z> — D3, for such a function would have to satisfy

rs=¢(0,1)¢(1,0) =¢(1,1) = ¢(1,0)9(0,1) = sr,
which does not hold in Ds.

To show the existence of free groups on larger sets, we construct them explicitly.

DEFINITION 4.13.5. A word on in a set X is a symbol

ny . .ny Ny
xl x2 .-.xk
with x1,x2,...,xx € X and ny,ny,...,n; € Z, where k > 0. If k = 0, we sometimes denote this

word by e, and it is called the empty word.

REMARK 4.13.6. We write the word x! for x € X more simply as x.
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DEFINITION 4.13.7. The product of two words w = x'x5%---x* and v = y|"y5? .- y/" in X

1s the concatenation
m2 . o

1y — _ e g g mj
W-V=WV=X X, X Y1 Yo Y-

Clearly, concatenation is an associative binary operation on the set of words, and e is an
identity element for this operation.

Recall from Example 1.2.25 that there is a smallest equivalence relation containing any rela-
tion on a set. So, let us define an equivalence relation on the set of words by a set of generators.

DEFINITION 4.13.8. The standard equivalence relation ~ on the set Wx of words on X is the
smallest equivalence relation such that

(4.13.1) wy ~ waly
and
(4.13.2) wx Ty~ wx Xty

for all w,v € Wx,x € X, and m,n € Z.

Two words are then equivalent if and only if one can be obtained from the other by a finite
sequence of operations on the word consisting each of adding or removing an x° for some x € X
or changing X" in a word to x"x" or changing x"x" in a word to x™*" for some x € X and
m,n € 7.

DEFINITION 4.13.9. We say that a word x|'x3*---x* in X is reduced if x; # x;; for all
1<i<k—1landn;#0forall 1 <i<k.

PROPOSITION 4.13.10. Every word is equivalent to a unique reduced word.

PROOF. The relation (4.13.2) tells us recursively for any n > 1 that

(4.13.3) wxv ~w(x-x---x)v and wx v ~w(x! x ey,

¢

for all w,v € Wx and x € X, with n symbols “x” appearing on the right-hand sides. If we start
with a word w in X, we may use (4.13.3) to expand it and (4.13.1) to remove any 0-powers of
elements of X, to obtain an equivalent word of the form

XLl
We may use (4.13.1) and (4.13.3) to remove terms of the form x,-xl.;ll or x; lx,-H with x; = x4 1,
relabeling after each step, until no such terms exist. We may then gather terms by again applying
(4.13.2) to obtain a reduced word equivalent to w.

The process we have described does not change a reduced word. Moreover, the operations
of adding in or removing an x° from a word or changing x"*" to x"x" for some m,n € Z or
vice-versa do not change the result of the process. Therefore, each word is equivalent to a unique
reduced word. U

NOTATION 4.13.11. The set of equivalence classes of words on a set X is denoted Fx.

PROPOSITION 4.13.12. The set Fx is a group under concatenation of words, and it is gener-
ated by the set X.
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PROOF. We give only a sketch. First, we must check that if w ~ w' and v ~ V' are two
pairs of equivalent words in X, then wv ~ w/V/. This follows quickly from the definition of the

equivalence relation ~. So, the binary operation is well-defined, associative, and has identity e.

Moreover, the inverse of the equivalence class of a word x}'x5* - - -xZ" is the equivalence class of

the word
x,;n" . -x;nzxfnl )
That X generates Fy is simply Proposition 2.4.3. U
REMARK 4.13.13. Itis typical to denote an element of Fx by any word representing it, which
means that we will use the symbol “=""instead of “~”” when interpreting these words as elements
of F; X -
EXAMPLES 4.13.14.

a. The free group Fi,y consists exactly of all x" for n € Z, and only x"=e,s0F ) = 2.
b. The free group F, 1 with x # y consists of all words
KM L My
where we can take n; # 0 for i > 2 and m; # 0 for j < k. We have, e.g.,

2y 3y 328 = 20,

LEMMA 4.13.15. The group Fx is a free group on the set X.

PROOF. By Definition 4.13.1, we must show that for any group G and function f: X — G,

the function
G (KX 0%) = ()™ f(x2)"2 - f ()™

is the unique well-defined homomorphism such that ¢(x) = f(x) for all x € X. That ¢ is a
homomorphism is a direct consequence of its definition and the definition of multiplication of
words by concatenation, once it is seen to be well-defined. That it is well-defined is a conse-
quence of the fact that the only relations that are imposed on words are those that exist in any
group. That is, for words v and w, x € X, and m,n € Z, we have

0r(vxPw) = ¢r (V)9 (x)dp(w) = 0, (V) £ (x)°0p(w) = 0 (V) o (W),
Gr(vx" W) = @ (v) f(X)" D (W) = O (v) f(X)" f ()" Dp (W) = @p(vx"x"W),

S0 @y is constant on equivalent words. U
DEFINITION 4.13.16. The group Fx of Proposition 4.13.12 is the free group on a set X.
Proposition 4.13.2 then immediately implies the following.

COROLLARY 4.13.17. If X and Y are sets with the same cardinality, then Fx and Fy are
isomorphic.

The following then provides an object that is well-defined up to isomorphism.
NOTATION 4.13.18. The free group on a set with n elements is denoted F;,.

The following gives the relationship between free groups and free abelian groups.
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PROPOSITION 4.13.19. The free abelian group on a set X is isomorphic to the abelianization
of the free group on X.

PROOF. Define n: Fx — @,cx Z by m(x) = ex, where e, is the standard basis element of
D, cx Z corresponding to x. This is a surjective homomorphism. As the image of 7 is abelian,
the map 7 factors through a sujrective homomorphism 7 : F;}‘b — @ cx Z, and therefore the
maximal abelian quotient of Fy surjects onto @, .x Z. In F)?b, we may rearrange the terms of the
image of x’f'xgz .- -xZ" for x; € X and n; € Z with 1 <i < k so that it is the image of a like element
with x1,...,x; are all distinct. Now, such an element is sent to Zf-‘zl njey, under 7, and so it is 0 if
and only if all n; = 0. If follows that 7 is an isomorphism. U

THEOREM 4.13.20. The free group F, on n elements cannot be generated by fewer than n
elements.

PROOF. If F, could be generated by n — 1 elements, then F2® could be generated by n — 1
elements by Proposition 4.13.19. But F2° is isomorphic to the free abelian group on n elements,
so Theorem 4.4.16 tells us that F2° cannot be generated by n — 1 elements. U

We omit the proof of the following theorem.
THEOREM 4.13.21. Every subgroup of a free group is also a free group.

One of the most important uses of free groups is to give presentations of groups. First, we
make the following definition, recalling Lemma 1.2.24 to see that it is well-defined.

DEFINITION 4.13.22. The normal closure of a subset S of a group G is the smallest normal
subgroup of G containing S, equal to the intersection of all normal subgroups of G containing S.

DEFINITION 4.13.23. A presentation of a group G on a set S and a subset T of Fs is a
surjective homomorphism Fs — G with kernel equal to the normal closure of the set 7. We say
that G is presented by the generating set S and the relation set 7', and we write G = (S | T').

REMARK 4.13.24. If G is presented by S and 7', then the first isomorphism theorem tells us
that G = Fg/R by an isomorphism sending s € S to the coset of s in Fg/R, where R is the normal
closure of T'.

In fact, we have the following stronger result.

PROPOSITION 4.13.25. Suppose that G and G' are groups with G presented by S and T.
Suppose we are given a subset {x, | s € S} of G'. Then there exists a homomorphism ¢ : G — G’
with ¢(s) = x, for all s € S if and only if the unique homomorphism ®: Fs — G’ with ®(s) = x;
forall s € S satisfies T C ker®.

PROOF. The existence and uniqueness of ® is by the universal property of Fg. If T C ker®,
then the normal closure R of T is contained in ker ® since ker @ is a normal subgroup of F,; con-
taining 7. In this case, the first isomorphism theorem implies that ® induces a map ®: Fs/R — T
with ®(sR) = x; for all s € S. Since G = Fg/R by an isomorphism sending s to sR, the compo-
sition ¢: G — G’ is the desired map. Similarly, if ¢ exists, then we may compose it with the
surjection Fy = G taking s € S to s to obtain a map ®: Fg — G’ with R, and hence T, in its
kernel. U
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DEFINITION 4.13.26. If G is presented by finite sets S = {s1,s2,...,s¢fand T ={ry,r,..., 14},
then G is said to be finitely presented.

NOTATION 4.13.27. We write
G= <S1,S2,...,sk | rl,rz,...,rd>.
to denote that G has a presentation by sets S = {s1,s2,...,8¢} and T = {ry,rp,...,rq}.

EXAMPLES 4.13.28. We give several examples of presentations:
a. Fs=(S]2),

b. Z* = (a,b | aba"'b71),

c. Z/nZ = {a|a"),

d. D, = (r,s | " s%, rsrs).

REMARK 4.13.29. One sometimes writes

/ / /
(81,82,...,8k |1 =r|,n=15,...,1g =Ty)

for a finite presentation

1 -1

1.7 -1
(S1,82, .38k | 1] P11y Ty Ty Tg).

EXAMPLE 4.13.30. We have
Z" = (x1,...,xn | xixj = xjx; for 1 <i< j<n).

Note that we can start with the presentation, rather than a group, in order to define new
groups.

EXAMPLE 4.13.31. The quaternion group Qs is the group of order 8 with the presentation
Qs =(i,j|i*=e,i? = ij=ji"").
The elements of Qg are usually labelled {+1, 4, +j, +k}, withk=ij, —1 = P2, —i=P,—j=/,
and —k = ji = k. We remark that Qg 2 D,.
Sometimes, we just end up with complicated presentations of familiar groups.

EXAMPLE 4.13.32. Consider the group

G = (x,y | Xy, x%y).

1 2

Then e = (x?y) ~'x*y = y~!x%y, which forces x> = ¢, and then y = x?y = e. Since in fact x> = ¢
and y = e imply x2y = x*y = ¢, the group G also has a presentation

G=(x,y[xy),
and so is just (x) = Z/27.
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REMARK 4.13.33. To determine whether or not two presentations yield isomorphic groups
is a very difficult question. So difficult, in fact, that it has been shown that there does not exist
a single recursive computer algorithm into which one can input any two finite group presenta-
tions that will always output whether or not they are yield isomorphic groups. Moreover, there
exist presentations of groups G from which one cannot write a computer algorithm to determine
whether or not a word in the generators of G is equal to the identity of G.

DEFINITION 4.13.34. Let G| and G, be groups. A free product G| * G of G| and G, is a
group for which there exist homomorphisms 1;: G; — G * G, for i € {1,2} such that for any
group K and group homomorphisms ¢;: G; — K with i € {1,2}, there exists a unique homomor-
phism ®: G| x Gy — K with ®oy; = ¢, fori € {1,2}.

PROPOSITION 4.13.35. Let G| and G, be groups. Then the free product of G| and G, exists
and is unique up to isomorphism. Moreover, if G; has a presentation G; = (S; | T;) for each
i € {1,2}, then the free product is isomorphic to

G1 *GQ = <Sl HSZ | Tl HT2>,
where 11 denotes the disjoint union.

PROOF. We verify that the group N = (S 115, | T; I T») is a free product of G| and G,. We
leave the uniqueness of the free product up to isomorphism as an exercise for the reader. Let
m;: Fs, — G; be the surjections defining the presentation of G; for i € {1,2}. Define homomor-
phisms y;: Fs, — N by letting x;(s) equal the image of s in N for all s € S;. By definition of N,
we have that 7; is contained in the kernel of J;, so the first isomorphism theorem provides maps
1;: G; — N such that 1;(7;(s)) is the image of s in N for any s € S;.

Now, for i € {1,2}, let ¢;: G; — K be a homomorphism to some group K. Then we have a
unique map ¥': Fyyis; — K determined by ¥(s) = ¢;(7;(s)) forall s € S; fori € {1,2}. Ifr € T;
for some i, then ¥(¢) = ¢;(e) = e, so the the first isomorphism theorem yields a homomorphism
®: N — K such that ®(1;(g)) = ¢;(g) for all g = m;(s) for some s € S for i € {1,2}. However,
the elements of 7;(S;) generate G;, so we have that ® o 1; = ¢; for each i. Moreover, ® is unique,
as its values on the images of the elements of S| I1.S, are determined by the latter equalities. [

REMARK 4.13.36. An element of the free product of groups G and H is an equivalence class
of words gih1g2hy - - - grhy with g; € G; and h; € H; for 1 <i < k (under an equivalence relation
under which the identity elements of the two groups are each identified with the identity element
of the free product and which otherwise only imposes the relations of the original groups within
words), with multiplication induced by concatenation.



CHAPTER 5

Advanced ring theory

5.1. Unique factorization domains

In this section, we investigate the role that prime numbers play in the integers in greater
generality. Recall that every nonzero integer can be written as plus or minus a product of distinct
prime powers, and these prime powers are unique. Note that the units in Z are +1, so we can
say that every nonzero integer can be written as a product of prime powers times a unit. In this
section, we investigate this property for a larger class of integral domains.

First, we introduce an analogue of prime numbers.

DEFINITION 5.1.1. Let R be an integral domain. A nonunit and nonzero element p € R is
said to be an irreducible element if for every a,b € R with p = ab, either a or b is a unit.

DEFINITION 5.1.2. Two elements a and b of a nonzero commutative ring R with unity are
said to associates if a = ub with u € R*.

Of course, the property of being associate is an equivalence relation on an integral domain R.
The equivalence class of 0 is {0} and that of 1 is R*. We have the following simple lemma, which
tells us that the equivalence class of an irreducible element consists of irreducible elements.

LEMMA 5.1.3. If R is an integral domain, and p € R is irreducible, then so is every associate
of p.

PROOF. That is, if u € R* and up = ab for a,b € R, then p = (u~'a)b. As p is irreducible,
either u 'la € R* or b € R*. Finally, if ulae R*, thena e R*. O

EXAMPLES 5.1.4.

a. The irreducible elements of Z are £p for prime numbers p. The elements p and —p are
associates.

b. The irreducible elements of F[x], for a field F, are the irreducible polynomials of F, since
the units of F[x] are the nonzero constant polynomials. Every nonzero polynomial has a unique
associate with leading coefficient equal to 1.

c. In the subring of C that is
ZIV-2]={a+bv-2|a,becl},
a number of prime integers are no longer irreducible. For instance 2 = —(y/—2)2, and /2 is
not a unit. Also, 3 = (1++/—2)(1 —+/—2), and neither 1 4+ +/—2 nor 1 —+/—2 is a unit, for if,

e.g., u € Z[v—2] withu(l1++/—2) =1, then 3u = 1 — /-2, which is clearly impossible. On the
other hand, it turns out that 5 is irreducible, though we do not prove this now.

139
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DEFINITION 5.1.5. An integral domain R is a unique factorization domain, or a UFD, if
every nonzero, nonunit element a € R can be written as a product

a=pip2--Pr
with py,pa,..., p, irreducible elements of R for some r > 1, and moreover, this expression is
unique in the sense that if

a=4q192-"4s
with g1,¢2,...,qs irreducible for some s > 1, then s = r and there exists a permutation o € S,

such that 9o (i) and p; are associates forall 1 <i<r.

REMARK 5.1.6. If one wants to allow units, one can rephrase Definition 5.1.5 to read that
every nonzero element a € R can be written as a = up;---p, with u € R* and p1,pa,...,pr
irreducible in R for some r = 0 in a unique manner such that any such decomposition of a =
vq1 - --qs has s = r and, after a reordering of the irreducibles, each ¢; is an associate of p;.

EXAMPLE 5.1.7. The ring Z is a unique factorization domain.
As we shall see later, F[x] for a field F is a unique factorization domain as well.

EXAMPLE 5.1.8. Consider the subring F[x?,xy,y?] of F[x,y]. It consists exactly of the poly-
nomials in F[x,y] that can be written as polynomials in x2, xy, and y%. These latter three elements
are irreducible in F[x?, xy, y?], but we have

2 ey? = xy-ay,
so factorization is not unique.
A more standard example is the following.
EXAMPLE 5.1.9. Consider the subring Z[+/—5] of C. We have
6=2-3=(1+v-5)(1-v-5).

The element 2 divides only elements of the form a + by/—5 with a,b € Z even, so it does not
divide 1 ++/—5 or 1 —+/—5. On the other hand, 2 is irreducible since if a + bv/—5 divides 2,
then so does its complex conjugate, and then

(a+bvV—=5)(a—byv—=5) = a* +5b*
divides 2, which happens only if a = +1 and b = 0. Therefore, Z[v/—5] is not a unique factor-

ization domain.

One advantage of unique factorization domains is that they allow us to define a concept of
greatest common divisor.

DEFINITION 5.1.10. Let R be a UFD. Let a;,ay, .. .,a, € R be nonzero. A principal ideal (d)
for d € R is said to be the greatest common divisor, or GCD, of ay,a»,...,a, if d divides a; for
each 1 <i < randif d’ also divides each a;, then d’ divides d.

The element d in the definition of GCD, if it exists, is only defined up to unit. On the other
hand, (d) is independent of this choice.
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LEMMA 5.1.11. Let R be a UFD. Then every collection ay,as,...,a, of nonzero elements of
R has a GCD.

PROOF. We sketch the proof. Factor each g; into a unit times a product of irreducibles.
If there exists an irreducible element p; that divides each a;, an associate of it is one of the
irreducibles appearing in the factorization of a;. We then have b; € R with a; = pb; for each
i, and the factorization of b; has one fewer irreducible element than that of a;. We repeat this
process until the collection no longer has a common irreducible divisors, obtaining irreducibles
P1,P2,---,Pr such thatd = pyp> - - - pr divides every q;.

We claim that (d) is the GCD of aj,as,...,a. If not, then there exists d’ that does not divide
d which divides every a;. This means that there exists an irreducible element g € R and some
n > 1 such that ¢" divides d’ but not d. Then ¢" divides every a;, which means since ¢" does
not divide d that g actually divides each c¢; such that a; = dc;, in contradiction to the definition of
d. U

One advantage of having the notion of a GCD is that in quotient fields, it allows us to talk
about fractions being in lowest terms.

DEFINITION 5.1.12. Let R be a UFD, and let a,b € R with b # 0. We say that the fraction §
is reduced, or in lowest terms, if the GCD of @ and b is (1).

LEMMA 5.1.13. Let R be a UFD. Every fraction in Q(R) may be written in lowest terms.

PROOF. Let a,b € R with b # 0. Let (d) be the GCD of a and b. Then there exist a’,b’ € R
with a = dad’ and b = db’, and we have that the GCD of &' and &' is (1). We therefore have that

%ﬁ = %, and the former form of the fraction is in lowest terms. OJ

Let us study factorization in principal ideal domains.

DEFINITION 5.1.14. Let X be a set, and let < be a partial ordering on X.

a. An ascending chain in X is a sequence (a;);> of elements of X such that a; < a;; for all
i>1.

b. We say that X satisfies the ascending chain condition, or ACC, if every ascending chain
(a;)i>1 in X is eventually constant: i.e., there exists j > 1 such that a; = a; for all i > j.

The following is an equivalent characterization of the ACC.

PROPOSITION 5.1.15. A nonempty set X with a partial ordering < satisfies the ACC if and
only if every subset of X contains a maximal element.

PROOF. If every subset of X contains a maximal element, then clearly ascending chains are
eventually constant: i.e., their underlying sets are finite. For the other direction, it suffices to
show that if X satisfies the ACC, then it contains a maximal element. Let C be a nonempty chain
in X, and suppose it does not have an upper bound. For each x € C, there exists y € C with y > x,
as otherwise x would be an upper bound. We may therefore recursively pick a; € X with a; < a; 1
for each i, but this is impossible. Thus C has an upper bound, and therefore X has a maximal
element by Zorn’s lemma. U
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DEFINITION 5.1.16. We say that a commutative ring R is noetherian if the set of its ideals
satisfies the ascending chain condition with respect to containment of ideals.

REMARK 5.1.17. We may rephrase the condition that R be noetherian by saying that if
(I,)n>1 is an ascending chain of ideals, then there exists m > 1 such that the union / of the
I, with n > 1 equals [; for all i > m.

REMARK 5.1.18. One may define a noncommutative ring to be left noetherian (resp., right
noetherian rings) if it satisfies the ACC on left ideals (resp., right ideals). In general, a noetherian
ring is taken to be one that is both left and right noetherian.

THEOREM 5.1.19. A commutative ring R is noetherian if and only if every ideal of R is finitely
generated.

PROOF. Suppose that every ideal of R is finitely generated. Let (1,),>1 be a chain of ideals of
R. Let I be the union of the 1, for n > 1, which is an ideal by Lemma 3.11.10. Since / is finitely
generated, I = (aj,an,...,a,), with a; € I with 1 <k < r for some r > 1. For each k, there exists
my > 1 with ay € I, and if we let m be the maximum of the my, then a; € I, for every ay. Since
[ is the smallest ideal of R containing each a;, we have I C I,,, which forces I = I,,,.

Conversely, suppose R is noetherian, and let / be an ideal of R. Let x; € I, and sup-
pose inductively that we have constructed x,x2,...,x, € R with the property that if we set
Iy = (x1,x2,...,x;) forevery 1 <k <n, then [y C I, forevery 1 <k <n-—1. If I, # I, then
let x,11 € I with x| ¢ I,. Then I,;; = (x1,x2,...,X%,+1) properly contains I,. If this process
repeats indefinitely, then we have constructed an ascending chain (7,,),,> that is not eventually
constant, which would contradict the assumption that R is noetherian. Therefore, there exists
m > 1suchthatI,, =1, and so I = (ay,as,...,a,) is finitely generated. O

COROLLARY 5.1.20. Every principal ideal domain is noetherian.

PROPOSITION 5.1.21. Let R be a principal ideal domain. Then every nonzero, nonunit a € R
may be written as a = p1p> - -- pr with the p; € R irreducible for all 1 <i < r and some r > 1.

PROOF. We claim first that every nonunit a € R is divisible by an irreducible element of R. If
a is not irreducible, set agp = a and write a = a1 b; with aj,b; ¢ R*. Suppose that a; divides a;_;
for some i > 1, which implies recursively that a; divides a. If g; is irreducible, then we have the
claim. If not, then write a; = a;11b;1 for some nonunits a;.1,b;+; € R*. Since a;; properly
divides a;, we have that (a;) C (a;+1). By Corollary 5.1.20, this process must terminate, which
is to say that some a,, is eventually irreducible, and therefore a is divisible by an irreducible
element.

Next, we construct another sequence out of our reducible element a. That is, we write a =
aiby with ay irreducible, and assume inductively that we have written

a=ajay...a,by,

with ay,as,...,a, € R irreducible and nonunit b,, € R for some n > 0. If b, is irreducible for
any n, we are done. Otherwise, we obtain a sequence of elements (b;);>; with b; = a;1b;1 for
all i > 1, which means that (b;) C (b;;1) for each i. Again this would contradict the fact that R

is noetherian, so eventually the process does terminate, and we have written a as a product of
irreducible elements. U
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LEMMA 5.1.22. Let R be a PID, and let a € R be nonzero. Then (a) is maximal if and only if
a is an irreducible element.

PROOF. Clearly, a cannot be a unit for either condition to hold. If a = bc with b and ¢
non-units, then (a) C (b) C R, so (a) is not maximal. And if (a) is not maximal, then there
exists an proper ideal I = (¢) of R properly containing (a), so we may write a = bc with b € R.
Since the containment is proper, b is not a unit, and c¢ is not a unit by definition. Therefore, a is
reducible. U

In a principal ideal domain, irreducible elements play the role that prime numbers play in Z.

LEMMA 5.1.23. Let R be a PID, and let p € R be irreducible. If a,b € R are such that p | ab,
then p |aorp|b.

PROOF. Leta,b € R with p | ab. Then ab € (p), and (p) is maximal by Lemma 5.1.22. Since
every maximal ideal of R is prime, we have that (p) is prime, and therefore either a € (p) or

b e (p). O
We now prove a key theorem.
THEOREM 5.1.24. Every principal ideal domain is a unique factorization domain.

PROOF. Let a € R be a nonzero, nonunit element. By Proposition 5.1.21, we may write

a=pip2-pPr
with p1, pa,..., p, irreducible. We have only to show that this decomposition is unique in the
appropriate sense. So, suppose that

a=4qgiq2---(gs

with g1,¢>,...,qs irreducible. If r = 1, then a is irreducible, so s = 1 and p; = g;. Suppose by
induction we have proven uniqueness whenever there is a decomposition of a with fewer than
r > 2 irreducibles. In particular, we may assume that s > r.

As a consequence of Lemma 5.1.23, we have that p, divides some ¢g; for some 1 <i <.
Since g; is irreducible, this means that g; = wp, with w € R*. Since R is an integral domain, we
then have

pP1pP2 " Pr—1 =Wq192 - 4i-19i+1 """ {s.
As s > 2 by assumption, note that wq; is an associate to g; and the expression on the right is a

product of s — 1 irreducible elements. By induction, we have r = s, and there exists a bijective
function

o:{1,2,....r—1} = {1,2,...;i—Li+1,....r}
with g4(;y and p; associates for each 1 <i <r—1. We may extend o to an element of S, by
setting o(r) = i, and then do(r) = ¢i 1s an associate of p, as well, proving uniqueness. U

Given that every polynomial ring over a field is a PID, we have the following corollary. It is
an interesting exercise to prove it directly.

COROLLARY 5.1.25. For any field F, the ring F [x] is a unique factorization domain.
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Corollary 3.10.2 tells us what we may already have known from experience, that we can
factor one-variable polynomials into irreducible factors over a field, and there is only one way to
do this.

5.2. Polynomial rings over UFDs

Now that we know that every PID is a UFD, the question arises: is every UFD also a PID?
The answer, in fact, is no. For this, let us examine polynomial rings over integral domains in a
bit more detail.

DEFINITION 5.2.1. Let R be an integral domain. A polynomial f € R[x] is said to be primitive
if the only elements of R that divide all of the coefficients of f are units.

In a UFD, we can actually talk about the GCD of the coefficients of a polynomial.

DEFINITION 5.2.2. Let R be a UFD. The content of the a polynomial in R[x] is the GCD of
its coefficients.

REMARK 5.2.3. If R is a UFD, then a polynomial in R[x| is primitive if and only if the GCD
of its coefficients is (1).

DEFINITION 5.2.4. A polynomial in R[x] for a nonzero ring R with unity is said to be monic
is its leading coefficient is 1.

REMARK 5.2.5. Monic polynomials in R[x], where R is a UFD, are primitive.

LEMMA 5.2.6. Let R be a UFD. If (c) is the content of f € Rx] for, then there exists a
primitive polynomial g € R[x| with f = cg.

PROOF. By definition, ¢ divides each coefficient of f, so f = cg for some g € R[x]. Letd € R
be such that (d) is the content of g. Then g = dh for some & € R[x], so we have f = cdh. But this
implies that cd divides every coefficient of f, so cd divides the content c, forcing d to be a unit.
Therefore, g is primitive. U

EXAMPLE 5.2.7. The polynomial f = 25x?+ 10x — 15 in Z[x] has content 5, and so it is not
primitive. In fact, f = Sg, where g = 5x*> +2x— 3, and g is primitive.

LEMMA 5.2.8 (Gauss’s Lemma). Let R be a UFD. Then the product of any two primitive
polynomials in R[x| is primitive.

PROOF. Let
n . m .
f= Za,-xl and g= Z bx’!
i=0 =0

be primitive polynomials in R[x]. The kth coefficient of fg is c; = Y5 qa;by_;. If p is an irre-
ducible element of R, then since f and g are primitive, there exist minimal nonnegative integers
r and s such that p { a, and p { b. Since p | a; for i < rand p | bj for j < s, which is to say that
P | byys—i for r <i < r+s, we have that p divides every term of ¢, except a,bs, which it does
not divide. Therefore, p does not divides c,s. Since p was arbitrary, fg is primitive. 0
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Note that we can speak about polynomials being irreducible in R[x] for any integral domain
R, since we have a notion of irreducible element in such a ring. For a field F, this coincides with
the usual notion of an irreducible polynomial.

PROPOSITION 5.2.9. Let R be an integral domain, and let F = Q(R).

a. If f € R[x| is a primitive polynomial that is irreducible as an element of F|x|, then f
is irreducible in R[x]. In particular, if f cannot be written as a product of two nonconstant
polynomials in R|x|, then it is irreducible in R|x].

b. Suppose that R is a UFD. If f € R[x| is irreducible, then it is irreducible as an element of
Fx] as well. In fact, if f € R|x| and f = gh for nonconstant g, h € F|x|, then there exists o € F*
such that g’ = ag and ' = o~ 'h are in R|x] and therefore f = g'h’ in R|x].

PROOF. First, we treat part a. If f € R[x] is primitive and f € R[x| is reducible (which is to
say, not irreducible and not a unit or zero), then we can write f = gh for nonunits g, € R[x]. If
g or h is constant, then f is not primitive, so neither is constant, and therefore f is reducible in
Flx].

Next, we turn to part b. Suppose that f € R[x] can be written as f = gh with g,h € F|x]
nonconstant. Let (d) (resp., (e)) be a multiple of all of the denominators of the coefficients of
g (resp., h), written in lowest terms. Then def = g'h’, where g’,i’ € R[x] are nonconstant. The
content of def is contained in (de), so the content of g’'# is as well. By unique factorization in
R, we may write de = d'¢/, where d’ € R divides the content of g’ and ¢’ divides the content of
', and we may then divide g’ by d’ and 4’ by ¢’ to obtain g” and 4" in R[x] such that f = g"h".
Therefore, f is reducible in R[x], and the remaining statement of the lemma holds as well. U

We are now ready to prove the following.
THEOREM 5.2.10. If R is a UFD, then R|x] is a UFD as well.

PROOF. Let f € R[x] be a nonzero element that is not a unit. Write

f=nta-fr

with f; € R[x] nonconstant, where r is maximal such that this can be done. Note that such a
maximal r exists as the degree of f is finite. For 1 <i <r, let (¢;) be the content of f;, and
define g; € R[x] by f; = cigi. Setc =cjcp---¢,, and set g = g1g2--- g,. Now, if any g; were not
irreducible in F[x] for F = Q(R), then it would not be irreducible in R[x] by Proposition 5.2.9b.
Moreover, since g; is primitive, it would then be written as a product of two nonconstant poly-
nomials in R[x|, which would contradict the maximality of r. Therefore, each g; is irreducible.
Since R is a UFD, we may also write ¢ = pyp;--- px with p; € R irreducible for 1 <i < k and
some k > 0, and so

f=pip2---pr8182- - &r

is a factorization of f into irreducibles in R[x].
Now, if

f=aq192---qihihy---hy
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with g; € R irreducible and %; € R[x] irreducible and nonconstant, then (g1¢2 - - - ¢;) is the content
of f by Gauss’s lemma, and so g1¢» - --¢; agrees with ¢ up to unit in R. Since R is a UFD, it
follows that / = k and there exists o € Sy such that each g ;) is an associate of p;. Next, we have

8182 & = uhyhy - hy
for some unit u € R*, and by uniqueness of factorization in F[x], we have that s = r, and there
exists T € S, such that hf(i) =v,g; for some v; € F* for each 1 <i < r. But the content of each g;
and each h; is (1), since these elements are irreducible in R[x], and therefore writing v; = 7! with
ai,b; € R, the fact that b;h; ;) = a;g; implies that (a;) = (b;), since both sides must have the same
content. In other words, v; € R™, and so /;(;) and g; are associates in R|[x], finishing the proof of
uniqueness. 4

EXAMPLES 5.2.11.
a. Since Z is a UFD, so is Z[x|. However, Zx] is not a PID, since (p,x) is not principal.

b. Since Q[x] is a UFD, so is Q[x,y]. Again, Q[x,y] is not a PID, since (x,y) is not principal.
c. If R is any UFD, then R[x|,x3, - - x| is a UFD for any n > 1.

5.3. Irreducibility of polynomials
In this section, we investigate criteria for determining if a polynomial is irreducible or not.

DEFINITION 5.3.1. Let R be an integral domain. We say that a polynomial f =}, a;x' be
a polynomial in R[x] that satisfies a, ¢ p, a; € p forall 0 < i <n—1, and ag ¢ p* for some n > 1
and prime ideal p in R is an Eisenstein polynomial (with respect to p).

THEOREM 5.3.2 (Eistenstein criterion). Let R be an integral domain, and let f € R[x| be an
Eiseinstein polynomial.

a. If R is a UFD, then f is irreducible in Q(R)[x].
b. If f is primitive, then it is irreducible in R|x].

PROOF. Suppose f =Y a;x' is of degree n and Eisenstein with respect to a prime ideal
p of R. By Proposition 5.2.9, it suffices for each part to show that f is not a product of two
nonconstant polynomials in R[x]. So, let g =Y (bix' and h = Z’j:() c;jx/ be polynomials in R|[x]
with f = gh, where s+t = n. We then have

k
ar =Y bici_i
i=0

for all 0 < k < n. In particular, ay = bocy is an element of p but not p>. Since p is prime, at least
one of by and ¢ lies in p, but as ag ¢ p?, at least one does not lie in p as well.

Without loss of generality, suppose that by € p and co ¢ p. As a, = bsc; ¢ p, we have by & p.
Let k > 1 be minimal such that by ¢ p. If k < n, then a; € p and b; € p for i < k, so we have
bico € p, which therefore forces cp € p by the primality of p. Therefore, kK = n, which means that
h is constant, proving the result. U
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We will most commonly be concerned with the Eisenstein criterion in the case that R = Z.

EXAMPLE 5.3.3. For any prime number p and integer n > 1, the polynomial x" — p is irre-
ducible by the Eisenstein criterion. That is, we take our prime ideal to be (p) in the ring Z.

EXAMPLE 5.3.4. For a prime number p, set
xP—1

=P P24
x—1

p =

This polynomial has as its roots in C the distinct pth roots of unity that are not equal to 1. Over
Q, we claim it is irreducible. For this, consider the polynomial

(1P =1 = p
@ 1:—: !
plet1) x ig’) i+1 o

which has coefficents divisible by p but not p* except for its leading coefficient ap—1, whichis 1.
Therefore, @, (x+ 1) is Eisenstein, hence irreducible. But if ®,, were to factor into g and A, then
®,(x+ 1) would factor into g(x+ 1) and ~(x+ 1), which have the same leading coefficients as g
and h, and hence are nonconstant if and only if g and 4 are. In other words, ®,, is irreducible as
well.

REMARK 5.3.5. The condition in the Eisenstein criterion that the constant coefficient not lie
in the square of the prime ideal is in general necessary. For instance, x* — p?> € Z[x] is never
irreducible for a prime p.

Often, we can tell if a polynomial is irreducible by considering its reductions modulo ideals.

PROPOSITION 5.3.6. Let R be an integral domain, and let p be a prime ideal of R. Let
f € R[x] with leading coefficient not in p. Let f denote the image of f in (R/p)[x] given by
reducing its coefficients modulo p.

a. If R is a UFD and f is irreducible in Q(R/p)x], then f is irreducible in Q(R)][x].

b. If f is primitive and f is irreducible in R/p[x], then f is irreducible in R|x].

PROOF. If R is a UFD and f is reducible in Q(R)[x], then by Proposition 5.2.9, we have
that f = gh for some nonconstant g, € R[x]. Similarly, if f is primitive and reducible in R[x|,
then f = gh for nonconstant g, € R[x]. In either case, since the leading coefficient of f is not
in p and p is prime, we have that the leading coefficients of g and % are not in p as well. That
is, the images of g and & in (R/p)[x] are nonconstant, which means that f is a product of two
nonconstant polynomials, hence reducible in Q(R/p)[x]. O

REMARK 5.3.7. For R = Z, Proposition 5.3.6 tells us in particular that if f € Z[x] is monic
and its reduction f € IF,,[x] modulo p is irreducible for any prime p, then f is irreducible.

EXAMPLE 5.3.8. Let f = x* +x* + 1001 € Z[x]. We claim that f is irreducible in Q[x]. For
this, consider its reduction modulo 2. The polynomial f = x*+x* +1 € (Z/27Z)[x] is either
irreducible, has a root in (Z/2Z)[x], or is a product of two irreducible polynomials of degree 2.
But £(0) = f(1) = 1, and x*> +x+ 1 is the only irreducible polynomial of degree 2 in (Z/27)[x],
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and (x> +x+4 1) =x*+x> +1 # f, so f is irreducible. By Proposition 5.3.6, f is irreducible in
Q[x].

EXAMPLE 5.3.9. The converse to Proposition 5.3.6 does not hold. For instance, X24x+1is
irreducible in Q[x], but it has a root in (Z/37Z)|x].

We also have the following simple test for the existence of roots of polynomials over UFDs.

PROPOSITION 5.3.10. Let R be a UFD and f =Y ja;x' € R[x] with ag,a, # 0. Suppose
that a € Q(R) is a root of f, and write « in reduced form as o = 5 for some c,d € R. Then c
divides ag and d divides a,, in R.

PROOF. Since x — § divides f in Q(R)[x] and § is in reduced form, it follows from Proposi-
tion 5.2.9 that f = (dx — c)g for some g € R[x]. Writing g = Z;’;Ol b;gi, we see that ag = —cby
and a, = db,_;. ]

EXAMPLE 5.3.11. Let f = 2x> —3x+5 € Z[x]. We check that f(1) =4, f(—1) =6, f(5) =
—10 mod 25, f(—5) = 20 mod 25, and f(%), f(—%), f(%), and f(—%) are all represented by
reduced fractions with denominators equal to 4. Proposition 5.3.10 therefore tells us that f has
no roots in @, hence is irreducible, being of degree 3.

5.4. Euclidean domains

DEFINITION 5.4.1. A norm f on an ring R is a function f: R — Z>¢ with f(0) = 0. We say
that f is positive if the only a € R for which f(a) =01isa=0.

DEFINITION 5.4.2. Let R be an integral domain. A Euclidean norm v on R is a norm on R
such that for all nonzero a,b € R, one has

i. v(a) <v(ab), and

ii. there exist ¢, € R with a = gb+ r and either v(r) < v(b) or r =0.

REMARK 5.4.3. Property (i1) of Definition 5.4.2 is known as the division algorithm.

DEFINITION 5.4.4. A Euclidean domain R is an integral domain such that there exists a
Euclidean norm on R.

EXAMPLES 5.4.5.
a. The integers Z are a Euclidean domain with Euclidean norm v(a) = |a| for any nonzero
ac Z.

b. Every polynomial ring F[x] over a field F is a Euclidean domain, the degree function
providing a Euclidean norm on F [x|.

LEMMA 5.4.6. In a Euclidean domain R with Euclidean norm v, the minimal value of v on
all nonzero elements of R is v(1), and v(u) = v(1) for u € R if and only if u € R*.

PROOF. By the definition of a Euclidean norm, we have v(1) < v(a-1) = v(a) for all nonzero
a€R. IfucR, then v(u) < v(u-u=') = v(1), so v(u) = v(1). Conversely, if b € R with
v(b) = v(1), then we may write 1 = gb + r for some ¢,r € R with either v(r) < v(1) or r =0.
By what we have shown, the latter holds, so gb = 1, and b is a unit. O
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EXAMPLE 5.4.7. In Fx], the units are exactly the nonzero constant polynomials, i.e., those
with degree O.

While we will explain below that not every PID is a Euclidean domain, it is the case that
every Euclidean domain is a PID.

THEOREM 5.4.8. Every Euclidean domain is a PID.

PROOF. Let I be a nonzero ideal in a Euclidean domain R with Euclidean norm v. We must
show that / is principal. Let b € I be a nonzero element with minimal norm among all elements
of I. For any a € I, we may write a = gb + r with g,r € R and either v(r) < v(b) or r = 0.
Note that a,b € I, so r € I as well, which precludes the possibility of v(r) < v(b), since v(r) is
minimal among norms of elements of /. Therefore, we have r =0, so a € (b). As a was arbitrary
and b € I, we have I = (b). O

The key property of Euclidean domains is the ability to perform the Euclidean algorithm,
which we see in the following.

THEOREM 5.4.9 (Euclidean algorithm). Let R be a Euclidean domain with Euclidean norm

Vv, and let a,b € R be nonzero elements. Let r_1 = a and ro = b. Suppose recursively that we are
given elements rj € R for —1 < j <iand somei> 0. If r; # 0, write
(5.4.1) Fie1 = qit17i +Titl

with qiy1,riv1 € R and either v(riy1) < v(ri) or riz1 = 0. If riy1 # O, repeat the process with i
replaced by i+ 1. The process terminates with d = r, # 0 and r,+ = 0 for some n > 1, and (d)
is the GCD of a and b. Moreover, we may use the formulas in (5.4.1) and recursion to write d as
d = xa+yb for some x,y € R.

PROOF. We note that the process must terminate, as the values of the v(r;) for i > 0 are
decreasing. Moreover, the result d = r,, satisfies r,_1 = ¢,+17s, so it divides r,,_ by definition,
and then we see by downward recursion using (5.4.1) that d divides every r;_. Finally, if ¢ is
any common divisor of a and b, then it again recursively divides each r; (this time by upwards
recursion and (5.4.1)), so ¢ divides d. Therefore, (d) is the GCD of a and b.

Note that d = r,_» — gur,—1, and suppose that we may write d = zrj +wr ;1 for some —1 <
J<n—21If j = —1, we are done. Otherwise, note that rj, | =r;_1 —qj17j, SO

d :er+W<rj,1 _Qj+1rj) =Wwrj_1 + (Z—Qj+1w)rj,

and we have written d as an R-linear combination of r;_; and r;. Repeat the process for j — 1.
The final result is the desired R-linear combintation of a and b. U

EXAMPLE 5.4.10. Take Z and its usual Euclidean norm. We take a = 550 and b = 154. Then
550 =3-154 + 88, so we set r; = 88. Then 154 = 88 + 66, so we set r», = 66, and 88 = 66+ 22,
so we set r3 =22, and 66 = 3 -22, so we stop at d = r3 = 22, which is therefore the greatest
common divisor of a and b. Working backwards, we obtain

22=88—-66=88—(154—88)=2-88—154=2-(550—3-154)— 154 =2-550—"7-154.

That is, we have written d as a + (—4)b.
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Often Euclidean norms come in the form of multiplicative norms.

DEFINITION 5.4.11. A multiplicative norm N : R — Z>( on a commutative ring R with unity
is a positive norm such that for all N(ab) = N(a)N(D) for all a,b € R.

REMARK 5.4.12. Note that the existence of a multiplicative norm N on a commutative ring
R with unity forces R to be an integral domain, for if ab = 0, then N(a)N(b) = N(ab) = 0, so
either N(a) = 0 or N(b) = 0, and therefore either a =0 or b = 0.

EXAMPLE 5.4.13. The absolute value on Z is a multiplicative norm, as well as a Euclidean
norm.

EXAMPLE 5.4.14. The function N on the Gaussian integers Z[i] given by N (a + bi) = a* + b?
is a multiplicative norm. Clearly, a®> +b? = 0 if and only if a + bi = 0. Given a,b,c,d € Z, we
have

N((a+ bi)(c+di)) = (ac —bd)* + (ad + bc)?* = (ac)? + (bd)* + (ad)? + (bc)?
= (a®+b*)(* +d*) = N(a+bi)N(c+di).

PROPOSITION 5.4.15. The ring Z[i] of Gaussian integers is a Euclidean domain with respect

to the Euclidean norm N(a+ bi) = a®> +b? for a,b € 7.

PROOF. Since N is a multiplicative norm, we need only check the division algorithm. Extend
N to a function on C by defining N(a + bi) = a4+ b? for a,b € R. Let a,b,c,d € Z with (c,d) #
(0,0). Then we have
a—+bi

c+di
for some s, € Q, and let e, f € Z be integers with |s—e| < 1/2 and |t — f| < 1/2. Then we have

N(a+bi— (e+ fi)(c+di)) = N(c+di)N((s—e) + (t — £)i)

< N(c+di) (G)Z (%>2> = N(c+di)/2 < N(c+di),

so the division algorithm is satisfied: a +bi = g(c+di) +r with g = e+ fiand N(r) < N(c+di)
if r=£0. O

COROLLARY 5.4.16. The units in Z[i] are exactly 1,—1,i,—i.

=s+ti

PROOF. Since N is a Euclidean norm on Z[i], the units are exactly those nonzero elements of
norm N(1) = 1. We have a® +b? = 1 if and only if (a,b) = (£1,0) or (a,b) = (0,%1). O

LEMMA 5.4.17. If a,b,c,d € 7 and c + di divides a+ bi in Z[i], then ¢ — di divides a — bi in
Z[i).

PROOF. Write a+ bi = (c+di)(e+ fi) for some e, f € Z. Then a = ce —d f and b = cd +de,
SO
(c—di)(e— fi) = (ce—df)— (cf +de)i=a— bi.
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We can completely determine the irreducible elements in Z[i] as follows.

PROPOSITION 5.4.18. The irreducible elements in 7Z[i] are, up to multiplication by a unit,
1 +i, primes p € Z with p = 3 mod 4, and a + bi for a,b € Z such that p = a> + b* = 1 mod 4
is a prime in 7. Moreover, the primes in 7 that can be written in the form a* + b* are exactly 2
and those that are 1 modulo 4.

PROOF. First, note that if a + bi divides ¢ + di in Z[i] for integers a,b,c,d, then N(a + bi)
divides N(c +di), since N is multiplicative. So, 1+ i is irreducible since N(1 +i) = 2.

Let p be an odd prime in Z. If p is divisible by some irreducible element & = a + bi with
a,b € Z, then since p is prime, only one of two things can happen. Either ab =0, or a and b
are relatively prime in Z, noting Corollary 5.4.16. Suppose ab # 0. By Lemma 5.4.17, we have
that a — bi divides p, and ©T = a — bi is irreducible. If T were associate to 7, then 7 would divide
2a = (a+bi)+ (a—bi) and 2b = —i((a+bi) — (a— bi)). Then 7 divides 2, but that is impossible.
Thus, 7 and 7 both dividing p implies that p is divisible by N(7) = a®> +b?. As p is prime, we
have p = a® +b°.

So, we have shown that either our odd prime p is irreducible in Z[i] or p = a® + b* for some
a,b € 7. Note that the squares in Z /47 are 0 and 1, so any integer of the form a® +5? is 0, 1, or
2 modulo 4. In particular, if p =3 mod 4, then p is irreducible in Z[i].

If p=1mod 4 is prime in Z, then (Z/pZ)* has order divisible by 4. As Z/pZ contains
only two roots of x> — 1, which are —1 and 1, so (Z/pZ)* contains an element of order 4. In
particular, there exists n € Z such that n> = —1 mod p, which is to say that p divides n>+ 1. If p
were irreducible in Z[i], then p would divide either n+ i or n — i, but then it would divide both,
being an integer. Thus p would divide 2i, which it does not. So, p is reducible, which means
equals a® + b? for some a,b € Z. U

LEMMA 5.4.19. Let N be a multiplicative norm on an integral domain R. Then N(u) = 1 for
all u € R*.

PROOF. We have N(1) = N(1)?, and R is an integral domain, so N(1) = 1. Moreover, since
N HYN@u)=N(1) =1,
we have that N(u~!) = N(u)~!, and therefore N(u) = 1. O

EXAMPLE 5.4.20. Consider the multiplicative norm N on Z[/—35] given by
N(a+bv=5) = |a* 4 5b7|.

We have a® + 5b> = 1 if and only if @ = +1 and b = 0, so the only units in Z[y/—5] are +1.
Now, if 2 = af3 for some nonunits &, 8 € Z[/—5], then 4 = N(2) = N(a)N(B), so N(&t) = 2,
but 2 is clearly not a value of N. Therefore, 2 is irreducible, and so is 3. Also, we have that
N(14+/—5) = 6, and since 2 and 3 are not values of N, we have that 1 & /-5 is irreducible as
well. As these elements are all non-associates, the existence of the two factorizations

6=2-3=(1+v=3)(1—v=5)
proves that Z[v/—5] is not a UFD.
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Not all principal ideal domains are Euclidean. We give most of the outline of how one
produces an example.

DEFINITION 5.4.21. An nonzero, non-unit element b of an integral domain R is called a
universal side divisor if every element a € R may be written in the form a = gb + r for some
q,r € Rwithr=0orr € R*.

LEMMA 5.4.22. Let R be a Euclidean domain with Euclidean norm v. Let b € R be a nonzero,
non-unit element such that v(b) is minimal among nonzero, non-unit elements of R. Then b is a
universal side divisor of R.

PROOF. Let a € R. By definition of v, we may write a = gb+ r with v(r) < v(b) or r = 0.
By the minimality of v(b), we must have that r is a unit or 0. O

EXAMPLE 5.4.23. We claim that the ring R = Z[(1 ++/—19) /2] is not Euclidean. Suppose
by contradiction that it is a Euclidean domain, and let v be a Euclidean norm on R. We also have
the multiplicative norm N on R given by

14++/—1 1++v/—1 1—+/—1

Note that if o« € R —Z, then N(a) > 5, so the only units in R are +1.

Let B € R be a universal side divisor, which exists as R is Euclidean, and write 2 = g8 +r
forg € Rand r € {0,1,—1}. We then have that N(f3) divides N(2 —r) as N is multiplicative, so
N(B) divides 4 or 9, and this implies B € {£2,43} by the formula for N. Now take oo = (1 +
vV—19)/2,and set o« = ¢’ +r withg € Rand ' € {0,1,—1}. We have N(at) =N(at—1) =5
and N(a + 1) =7, which are not multiples of N(f) € {4,9}, so we obtain a contradiction.

DEFINITION 5.4.24. A Dedekind-Hasse norm on an integral domain R is a positive norm U
on R such that for every a,b € R, either a € (b) or there exists a nonzero element ¢ € (a,b) such

that u(c) < u(b).

PROPOSITION 5.4.25. An integral domain R is a PID if and only if there exists a Dedekind-
Hasse norm on R.

PROOF. Suppose first that i is a Dedekind-Hasse norm on R. Let I be a nonzero ideal of R,
and let b € I — {0} with minimal norm under pu. If a € I, then since there does not exist a nonzero
element ¢ € (a,b) C I with u(c) < u(b) by the minimality of p(b), we have by definition of a
Dedekind-Hasse norm that a € (b). Thus I = (b).

Suppose on the other hand the R is a PID. Define u: R — Z>o by u(0) =0, pu(u) =1 for
u€R*, and u(pip2---pr) = 28if py,..., px are irreducible elements of R. This is well-defined
as R is a UFD. Given a,b € R, we have (a,b) = (d) for some d € R, since R is a PID. Since d
divides b, we have u(d) < u(b). If u(d) = u(b), then a and b have the same number of divisors
as d and therefore are associates, so a € (b). Thus, u is a Dedekind-Hasse norm. U

EXAMPLE 5.4.26. We have already seen that R = Z[(1 ++1/—19)/2] is not a Euclidean do-
main. To see that R is a PID, it suffices to show that the multiplicative norm N on R given by
(5.4.2) is a Dedekind-Hasse norm on R. We outline the standard unenlightening verification.
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Let o, B € R with & ¢ (). We claim that there exist s,# € R with 0 < N(sa. —1f) < N(B).
Note that we can extend N to a map N: Q(R) — Z>¢ by the formula (5.4. 2) allowing a,b € Q.
Our condition that N on R be a Dedekind-Hasse norm is then that 0 < N(s% 55— ) < 1. We will

find s and ¢. For this, write

o a+byv-19
B ¢
for a,b,c € Z with no common divisor and ¢ > 1.

First one considers the cases with ¢ > 4. If ¢ = 2, then either ¢ or b is odd, then take s = 1
and t = ((a— 1) +bv/—19)/2. If ¢ = 3, then a® 4 19b*> # 0 mod 3, so a® + 19b*> = 3¢q + r with
re{1,2}. Take s = a—bv/—19 and 1 = q. If ¢ = 4, then again either a or b is odd. If only one
is, then write a” 4 19b> = 4¢q +r with 1 < r < 4, and take s = a — b\/—19 and r = ¢q. If both are,
write a® + 196> = 8g+4, and take s = 5 (a— bv/—19) and t = ¢

Now suppose that ¢ > 5. Since (a,b,c) = (1), we have x,y,z € Z such that xa+ yb+zc = 1.
Write ay — 19bx = gc+r, with g € Z and |r| < ¢/2. Take s = y+xv/—19 and r = ¢ — z/—19.
The reader will check that

N(S%_I)ZC_2N<(a—|—b\/T —tc) 2—1-19
if ¢

_ 7 4 _ 23
_§1fc26andatmostg+ =551

W=
s

which is at most % +

5.5. Vector spaces over fields

In this section, we give a very brief discussion of the theory of vector spaces over fields, as it
shall be subsumed by the sections that follow it.

DEFINITION 5.5.1. Let F be a field. A vector space V over F is an abelian group under
addition that is endowed with an operation -: F' x V — V of scalar multiplication such that for
all a,b € F and v,w € V, one has

i. 1-v=v,

ii. a-(b-v) = (ab)-v,

iii. (a+b)-v=a-v+b-v,
iv.a-(v+w)=a-v+a-w.

REMARK 5.5.2. In a vector space V over a field F', we typically write av for a-v, where a € F
andveV.

EXAMPLE 5.5.3. If F is a field, then F" is a vector space over F under the operation
a-(o,00,...,0,) = (aqy,a,...,a,)
fora,a;,00,...,0, € F.

DEFINITION 5.5.4. An element of a vector space V over a field F is called a vector, and the
elements of F under in the operation - are referred to as scalars.
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EXAMPLE 5.5.5. In every vector space V, there is an element O, and it is called the zero
vector.

DEFINITION 5.5.6. The zero vector space 0 is the vector space over any field F that is the set
{0} with the operationa-0 =0 foralla € F.

EXAMPLE 5.5.7. If F is a field, then F[x] is a vector space over F with a- f for a € F and
f € Flx] defined to be the usual product of polynomials in F[x]. ILe., the operation of scalar
multiplication is just multiplication by a constant polynomial.

EXAMPLE 5.5.8. The field C is an R-vector space, as well as a Q-vector space. The field
R is a Q-vector space. The operations of scalar multiplication are just restrictions of the usual
multiplication map on C.

The reader will easily check the following.

LEMMA 5.5.9. IfV is a vector space over a field F, then for a € F and v € V, we have

a 0-v=0,

b.a-0=0,

c. —(av) = (—a)v=a(—v).

DEFINITION 5.5.10. Let V be a vector space over a field F. A subspace W of V is a subset that

is closed under the operations of addition and scalar multiplication to W (i.e., tomaps W xW —V
and F x W — V, respectively) and is a vector space with respect to these operations.

The following is easily proven.

LEMMA 5.5.11. A subset W of a vector space V is a subspace if and only if it is a subgroup
under addition and closed under scalar multiplication.

EXAMPLES 5.5.12.
a. The zero subspace {0} and V are both subspaces of any vector space V.

b. The field F is a subspace of F|[x].

DEFINITION 5.5.13. Let V be a vector space over a field F, and let S be a subset of V. A
linear combination of elements of S is any sum

n
Z a;vi
i=1
with v, vy, ..., v, distinct vectors in S and ay,as,...,a, € F for some n > 0. We say that such a

linear combination is nontrivial if there exists a j with 1 < j<nand a; # 0.

DEFINITION 5.5.14. Let V be a vector space over a field F' and S be a set of vectors in V.
The subspace spanned by S, also known as the span of V, is the set of all linear combinations of
elements of S, or simply the zero subspace if S is empty.

EXAMPLE 5.5.15. For any vector space V, the set V spans V.



5.5. VECTOR SPACES OVER FIELDS 155

DEFINITION 5.5.16. We say that a set S of vectors in a vector space V over a field F spans
V if V equals the subspace spanned by S.

That is, S spans an F-vector space V if, for every v € V, there existn > 0,v; € V,and q; € F
for 1 <i < n such that
n
V= Z a;vi.
i=1

DEFINITION 5.5.17. We say that a set of S of vectors in a vector space V over a field F is
linearly independent if every nontrivial linear combination of vectors in S is nonzero. Otherwise,
S is said to be linearly dependent.

That is, a set S of vectors in an F-vector space V is linearly independent if whenever n > 1,
vieVanda; € F for1 <i<nand
n
Z a;v; = O,
i=1

thena; =0forall 1 <i<n.

LEMMA 5.5.18. Let S be a linearly independent subset of a vector space V over a field F,
and let W be the span of F. If vo € V —W, then SU{vy} is also linearly independent.

PROOF. Letvy,vy,...,v, € S and cg,cy,...,c, € F for some n > 1, and suppose that

n

Z CiVi = 0.

i=0
We cannot have ¢y # 0, as then

n
Vo = —cal ZCiVi ew.
i=1

On the other hand, the fact that co = 0 implies that ¢; = 0 for all 1 <i < n by the linear indepen-
dence of V. Thus, SN {vp} is linearly independent. O

EXAMPLE 5.5.19. In any vector space V, the empty set is linearly independent. If v € V is
nonzero, then {v} is also a linearly independent set.

DEFINITION 5.5.20. A subset B of a vector space V over a field F is said to be a basis of V
over F if it is linearly independent and spans V.

EXAMPLE 5.5.21. The set {ej,ez,...,e,} of F", where ¢; is the element of F" that has a 1 in
its ith coordinate and O in all others, is a basis of F”.

EXAMPLE 5.5.22. The set {x' | i > 0} is a basis of F[x]. That is, every polynomial can be
written as a finite sum of distinct monomials in a unique way.

REMARK 5.5.23. For a field F, it is very hard to write down a basis of [T~ F. In fact, the
proof that it has a basis uses the axiom of choice.

DEFINITION 5.5.24. A vector space V is said to be finite dimensional if it has a finite basis
(i.e., a basis with finitely many elements). Otherwise V' is said to be infinite dimensional.
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The following theorem employs Zorn’s lemma.

THEOREM 5.5.25. Let V be a vector space over a field F. Every linearly independent subset
of V is contained in a basis of V.

PROOF. Let S be a linearly independent subset of V, and let X denote the set of linearly
independent subsets of V that contain S. We order X by containment of subsets. If % is a chain
in X, then its union U = | Jyc4 T is linearly independent since if vy,v2,...,v, € U for somen > 1,
then each v; is contained in some 7; € X for each 1 <i < n, and one of the sets 7; contains the
others, since ¢ is a chain. Since 7 is linearly independent, any nontrivial linear combination
of the elements v; with 1 <i < n is nonzero. Therefore, U is linearly independent as well, so is
contained in X.

By Zorn’s Lemma, X now contains a maximal element B, and we want to show that B spans
V, s0 is a basis of V containing S. Let W denote the span of B. If vg € V — W, then B’ = BU {vo}
is linearly independent by Lemma 5.5.18, so an element of X, which contradicts the maximality
of B. Thatis, V = W, which is to say that B spans V. O

In particular, the empty set is contained in a basis of any vector space, so we have the follow-
ing:

COROLLARY 5.5.26. Every vector space over a field contains a basis.
A similar argument yields the following.

THEOREM 5.5.27. Let V be a vector space over a field F. Every subset of V that spans V
contains a basis of V.

PROOF. Let § be a spanning subset of V. Let X denote the set of linearly independent subsets
of S, and order X by containment. As seen in the proof of Theorem 5.5.25, any union of a chain
of linearly independent subsets is linearly independent, so has an upper bound. Thus, Zorn’s
lemma tells us that X contains a maximal element B. Again, we want to show that B spans V, so
is a basis. If it were not, then there would exist some element of V which is not in the span of B,
but is in the span of S. In particular, there exists an element vy € S that is not in the span of B.
The set BU{vp} is linearly independent, contradicting the maximality of B. O

We also have the following, which can be generalized to a statement on cardinality.

THEOREM 5.5.28. Let V be a vector space over a field F. If V is finite dimensional, then
every basis of V contains the same number of elements, and otherwise every basis of V is infinite.

PROOF. Let By = {vi,vs,...,v,} be a basis of V with a minimal number n of elements, and
let B={wy,wy,...,w;} be another basis of V with m > n. Then B} spans V, so w; is a nontrivial
linear combination of the v; for 1 <i < n:

(5.5.1) wi =Y apwi
i=1
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for some a; € F. Letting j be such that a; # 0, we may write v; as a linear combination of w;
and the v; with i # j. In other words, B, = (By — {v;}) U{w } spans V. Suppose

n

(5.5.2) cjwi+ Y cvi=0

i=1

i#]
for some ¢; € F. Using (5.5.1), we may rewrite the sum in (5.5.2) as a linear combination of the
v, the coefficient of v; in which is ac, which forces c; = 0 as By is a linearly independent set.
But then we see from (5.5.2) that all ¢; = 0 as B— {v;} is linearly independent. So, B; is a basis
of V.

Suppose by recursion that, for k£ < m, we have found a basis By of order n of V that contains
only wi,...,wr_1 and elements of B. Then wy, is a nontrivial linear combination of the elements
of By, and the coefficient of some v; is nonzero in this linear combination by the linear indepen-
dence of B. We therefore have that By,; = (B — {v;}) U{wy} spans V, and a similar argument
to the above shows that it is a basis. Finally, we remark that the basis B,, | must be B itself,
since it contains B, so we have m = n, as desired. U

DEFINITION 5.5.29. The dimension of a finite-dimensional vector space V over a field F' is
the number of elements in a basis of V over F. We write dimg (V) for this dimension.

EXAMPLE 5.5.30. The space F" is of dimension n over F.

The maps between vector spaces that respect the natural operations on the spaces are called
linear transformations.

DEFINITION 5.5.31. A linear transformation T: V — W of F-vector spaces is a function
from V to W satisfying

Tv+V)=TW)+T() and T(av)=aT(v)
foralla € F and v,V €V

REMARK 5.5.32. In other words, a linear transformation is a homomorphism of the underly-
ing groups that “respects scalar multiplication.”

DEFINITION 5.5.33. A linear transformation 7: V — W of F-vector spaces is an isomor-
phism of F-vector spaces if it is there exists an linear transformation T~!: W — V that is inverse
to it.

Much as with group and ring homomorphisms, we have the following:
LEMMA 5.5.34. A linear transformation is an isomorphism if and only if it is a bijection.

EXAMPLES 5.5.35. Let V and W be F-vector spaces.
a. The identity map idy : V — V is an F-linear transformation (in fact, isomorphism).

b. The zero map 0: V — W is an F-linear transformation.
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5.6. Modules over rings

DEFINITION 5.6.1. Let R be a ring. A left R-module, or left module over R, is an abelian
group M together with an operation -: R x M — M such that for all a,b € R and m,n € M, one
has

i. 1-m=m,

ii. (a-b)-m= (ab)-m,

iii. (a+b)-m=a-m+b-n,

iv.a-(m+n)=a-m+a-n.

DEFINITION 5.6.2. Let R be a commutative ring. We refer more simply to a left R-module as

a R-module, or module over R.

REMARK 5.6.3. When one speaks simply of a module over a ring R, one means by default a
left R-module.

NOTATION 5.6.4. When an abelian group M is seen as a left module over a ring R via the
extra data of some operation R x M — M, we say that this operation endows M with the additional
structure of a left R-module.

EXAMPLE 5.6.5. The definition of a module over a field coincides with the definition of a
vector space over a field. In other words, to say that M a module over a field F is exactly to say
that M is a vector space over F.

EXAMPLE 5.6.6. The modules over Z are exactly the abelian groups. That is, suppose that A
is a Z-module, which by definition is an abelian group with an additional operation -: Z X A — A.
We show that this additional operation satisfies n-a = na for n € Z and a € A, where na is the
usual element of the abelian group A. So, let a € A. By axiom (i), we have 1-a = a, and then the
distributivity of axiom (iii) allows us to see that n-a = na for all n > 1. Using axioms (iv) and
(i1), we have

0-a=0-(2a—a)=0-2a—0-a=(0-2)-a—0-a=0-a—0-a=0,
and then finally we have
(—n)-a+n-a=n—-n)-a=0-a=0,

so (—n)-a = —na forn > 1.

EXAMPLE 5.6.7. For a ring R and n > 1, the direct product R" is a left M, (R)-module via

matrix multiplication (A,v) — A-v for A € M,,(R) and v € R",viewing elements of R" as column
vectors.

We also have the notion of a right R-module.

DEFINITION 5.6.8. Let R be aring. A right R-module, or right module over R, is an abelian
group M together with an operation -: M X R — R such that for all a,b € R and m,n € M, one
has

i m-1=m,
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ii. m-(a-b) =m-(ab),

iii. m-(a+b)=m-a+n-b,

iv. (m+n)-a=m-a+n-a.

EXAMPLE 5.6.9. Every left ideal I over aring R is a left R-module with respect to the restric-

tion R x I — I of the multiplication on R. Every right ideal over R is a right module with respect
to the restriction / X R — I of the multiplication on R.

DEFINITION 5.6.10. Let R be aring. The opposite ring R°P to R is the ring that is the abelian
group R together with the multiplication -°P: R x R — R given by a -°°? b = ba, where the latter
product is taken in R.

REMARK 5.6.11. The identity map induces an isomorphism R — (R°P)°P of rings.
The reader will easily check the following.

LEMMA 5.6.12. A right module M over R also has the structure of a left module over R°P,
where the latter operation -°P: R°P: M — M is given by a -°®? m = ma, where the latter product is
that given by the right R-module structure of M.

EXAMPLE 5.6.13. For a field F, the map T: M, (F) — M,(F) given by transpose (that is,
A AT for A € M, (F)) is a ring isomorphism between M, (F) and M,,(F)°P.

We also have the notion of a bimodule.

DEFINITION 5.6.14. Let R and S be rings. An abelian group M that is a left R-module and a
right S-module is called an R-S-bimodule if

(r-m)-s=r-(m-s)
forallr eR,s€ S,andm € M.

EXAMPLES 5.6.15.

a. Any left R-module M over a commutative ring R is an R-R-bimodule with respect to given
left operation and the (same) right operation m - r = rm form € M and r € R.

b. A two-sided ideal of a ring R is an R-R-bimodule with respect to the operations given by
the usual multiplication on R.

c. For m,n > 1, the abelian group M,,,(R) of m-by-n matrices with entries in R is an M,,(R)-
M, (R)-bimodule for the operations of matrix multiplication.

Let us return our focus to R-modules, focusing on the case of left modules, as right modules
are just left modules over the opposite ring by Lemma 5.6.12.

DEFINITION 5.6.16. An R-submodule (or, submodule) N of a left module M over a ring R
is a subset of N that is closed under addition and the operation of left R-multiplication and is an
R-module with respect to their restrictions +: N XN —+Nand-: RXxN — NtoN.

LEMMA 5.6.17. Let R be a ring, M be a left R-module, and N be a subset of M. Then N is
an R-submodule of M if and only if it is nonempty, closed under addition, and closed under left
R-multiplication.
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PROOF. Clearly, it suffices to check that if N is nonempty and closed under addition and
left R-multiplication, then it is an R-submodule. The condition of being closed under left R-
multiplication assures that 0 and inverses of elements of N lies in N, so N is an abelian group
under 4+ on M. The axioms for N to be an R-module under - are clearly satisfied as they are
satisfied by elements of the larger set M. U

EXAMPLES 5.6.18.
a. The subspaces of a vector space V over a field F are exactly the F-submodules of V.
b. The subgroups of an abelian group are the Z-submodules of that group.
c. Any left ideal 7 of R is a left R-submodule of R viewed as a left R-module.
d. Any intersection of R-submodules is an R-submodule as well.
e. For an R-module M and a left ideal /, the abelian group
n
M = {Zaimi lai € I,m; € M for 1 gign}
i=1
is an R-submodule of M.

We also have the following construction.

DEFINITION 5.6.19. Let M be an R-module and {N; | i € I} be a collection of submodules
for an indexing set /. The sum of the submodules N; is the submodule } ;-; N; of M with elements
Y .icrni for n; € N; and all but finitely many »; equal to 0.

If M is an R-module and N is a submodule, we may speak of the quotient abelian group
M/N. 1t is an R-module under the action r- (m+N) = rm+ N for r € R and m € M. This
is well-defined, as a different representative m + n of the coset m+ N for n € N will satisfy
r(m+n)+N=rm+rm+N=rm+N.

DEFINITION 5.6.20. Let M be a left R-module and N be an R-submodule of M. The quotient
module M/N of M by N is the abelian group of cosets together with the multiplication R x
M/N — M/N given by r- (nN) = (rn)N.

EXAMPLE 5.6.21. For an R-module M and a left ideal I, we have the quotient module M /IM.

In particular, note that R/I is a left R-module with respect to r(s+1) = rs+ 1, even if it is not a
ring (i.e., if 1 is not two-sided).

We can also speak of homomorphisms of R-modules.

DEFINITION 5.6.22. Let M and N be left modules over a ring R. A left R-module homomor-
phism ¢ : M — N is a function such that ¢ (r-m) = r¢(m) and ¢ (m+n) = ¢(m) + ¢ (n) for all
reRandm,neM.

NOTATION 5.6.23. If R is commutative (or it is understood that we are working with left
modules), we omit the word “left” and speak simply of R-module homomorphisms.

REMARK 5.6.24. A right R-module homomorphism ¢: M — N is just a left R°’-module
homomorphism.
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DEFINITION 5.6.25. Let M and N be left modules over a ring R.
a. An isomorphism f: M — N of left R-modules is a bijective homomorphism.

b. An endomorphism of a left R-module M is a homomorphism f: M — M of left R-modules.
c. An automorphism of a left R-modules M is an isomorphism f: M — M of left R-modules.

NOTATION 5.6.26. Sometimes, we refer to an R-module homomorphism as an R-linear map,
and an endomorphism of R-modules as an R-linear endomorphism.

EXAMPLES 5.6.27.
a. The zero map 0: M — M and the identity map id: M — M are endomorphisms of an
R-module M, with id being an automorphism.

b. Let V and W be vector spaces over a field F. A left F-module homomorphism ¢: V — W
is just an F-linear transformation.

c. Let N be an R-submodule of a left R-module M. The inclusion map ty: N — M is an
R-module homomorphism, as is the quotient map 7y: M — M/N.

d. If M is an R-S-bimodule, then right multiplication ys: M — M by an element s € S defines
a left R-module endomorphism. In particular, if R is a commutative ring, then multiplication by
r € R defines an R-module endomorphism. Note that if R is noncommutative, then the condition
that left multiplication by r € R be a left module homomorphism M — M is that r(sm) = s(rm)
for all r,s € R and m € M, which need not hold.

e. The identity map F”" — F" provides an isomorphism between F” viewed as a left M, (F)-
module via (A,v) — Av for A € M, (F) and v € F" (viewing v as a column vector) and F” viewed
as a left M, (F)°P-module via (A,v) > vT A,

Note that we may speak of the kernel and the image of a left R-module, as an R-module ho-
momorphism is in particular a group homomorphism. The reader will easily verify the following.

LEMMA 5.6.28. Let ¢ : M — N be a left R-module homomorphism. Then ker ¢ and im ¢ are
R-submodules of M and N, respectively.

We also have analogues of all of the isomorphism theorems for groups. Actually, these
are virtually immediate consequences of said isomorphism theorems, as the fact that one has
isomorphisms of groups follows immediately from them, and then one need only note that these
isomorphisms are actually homomorphisms of R-modules.

THEOREM 5.6.29. Let R be a ring. Let ¢ : M — N be an homomorphism of left R-modules.
Then there is an isomorphism ¢ : M /ker § — im ¢ given by ¢ (m+ker) = ¢ (m).
THEOREM 5.6.30. Let R be a ring, and let N and N' be left R-submodules of an R-module N.
Then there is an isomorphism of R-modules
M/(MNN) = (M+N)/N, m+(MNON)+— m+N.

THEOREM 5.6.31. Let R be a ring, let M be an R-module, and let Q C N be R-submodules
of M. Then there is an isomorphism

M/N = (M/Q)/(N/Q),  m+Nw— (m+Q)+(N/Q).
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We also have the following analogue of Theorems 2.13.10 and 3.8.23.

THEOREM 5.6.32. Let R be a ring, let M be an R-modules, and let N be an R-submodule
of M. Then the map P — P/N gives a bijection between submodules P of M containing N and
submodules of M /N. This bijection has inverse Q + 7ty ' (Q) on submodules Q of M /N, where
iy M — M/N is the quotient map.

5.7. Free modules and generators

DEFINITION 5.7.1. Let S be a subset of an R-module M.

a. The submodule of M generated by S is the intersection of all submodules of M containing
S.

b. We say that S generates M, or is a set of generators or generating set of M, if no proper
R-submodule of M contains S.

REMARK 5.7.2. The R-submodule of M generated by S consists of the elements )7 | a;m;
with m; € Sand a; € R for 1 <i < n and some n > 1. The proof is much as before.

REMARK 5.7.3. The sum Y ;;N; of submodules N; of M is the submodule generated by
UierN;.

NOTATION 5.7.4. The R-submodule of an R-module M generated by for a single element
m € M (or, more precisely, by {m}) is denoted R - m.

DEFINITION 5.7.5. We say that an R-module is finitely generated if it has a finite set of
generators.

DEFINITION 5.7.6. We say that an R-module is cyclic if it can be generated by a single
element.

EXAMPLE 5.7.7. A cyclic R-submodule of R is just a principal left ideal.
We can define direct sums and direct products of modules.

DEFINITION 5.7.8. Let (M;);cs be a collection of left modules over a ring R.
a. The direct product [[;c; M; 1s the R-module that is the direct product of the abelian groups
M; together with the left R-multiplication r- (m;);c; = (rm;)ics for r € R and m; € M; for all i € I.

b. The direct sum @;c;M; is the R-module that is the direct sum of the abelian groups M;
together with the left R-multiplication r- (m;);c; = (rm;);cy for r € R and m; € M; for all i € 1
with all but finitely many m; = 0.

REMARK 5.7.9. If I is a finite set, then the canonical injection
B~ T
icl i€l
is an isomorphism. In this case, the two concepts are often used interchangeably.

NOTATION 5.7.10. A direct sum (resp., product) of two R-modules M and N is denoted
M®N.
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DEFINITION 5.7.11. We say that an R-submodule A of an R-module B is a direct summand
of C if there exists an R-module C such that B= A & C. In this case, C is called a complement to
A in B.

DEFINITION 5.7.12. Let R be a ring.

a. An R-module M is free on a subset X of M if for any R-module N and function ¢ : X — N of
elements of N, there exists a unique R-module homomorphism ¢ : M — N such that ¢ (x) = ¢ (x)
forall x € X.

b. A basis of an R-module M is a subset of M on which it is free.

REMARK 5.7.13. An abelian group A is free on a set X if and only if it is a free Z-module on
X, as follows from Proposition 4.4.11.

In fact, we have the following alternative definition of a free R-module. The proof is nearly
identical to Proposition 4.4.11, so omitted.

PROPOSITION 5.7.14. An R-module M is free on a basis X if and only if the set X generates
M and, for every n > 1 and x1,x2,...,x, € X, the equality

n
Z CiXi = 0
i=1

for some cy,ca,...,c, € R implies that c; = 0 for all i.

REMARK 5.7.15. We might refer to the property that a set X generates an R-module M as
saying that M is the R-span of X. The property that }./', c;x; = 0 implies ¢; = 0, where ¢; € R
and x; € X for 1 <i <n and some n > 1 can be referred to as saying that the set X is R-linearly
independent.

COROLLARY 5.7.16. For any set X, the R-module @ xR is free on the standard basis
{ex | x € X}, where e, for x € X is the element which is nonzero only in its x-coordinate, in which
itis 1.

PROOF. The e, span @,y R by its definition and are clearly R-linearly independent. 0

COROLLARY 5.7.17. Every R-module is a quotient of a free R-module.

PROOF. Let M be an R-module, and choose a generating set X of M (e.g., M itself). Take the
unique R-module homomorphism

v: BR—M
xeX
which satisfies y(e,) = x for all x € X. It is onto as X generates M. O

Noting Corollary 5.5.26, we also have the following.
COROLLARY 5.7.18. Every vector space over a field F is a free F-module.

The following is also a consequence of the universal property. Though we restrict to the finite
case, it can be improved to a statement on cardinality.
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THEOREM 5.7.19. Let R be a commutative ring. A free module M on a set X is isomorphic
to a free module N on a set Y if and only if X and Y have the same cardinality.

PROOF. If X and Y have the same cardinality, then any bijection f: X — Y gives an injection
X — N which extends uniquely to a homomorphism ¢: M — N. Similarly, the inverse of f
extends uniquely to a homomorphism y: N — M, and yo ¢ (resp., ¢ o ) is then the unique
extension to a homomorphism of the inclusion X — M (resp., ¥ — N), therefore the identity.
That is, ¢ and y are inverse isomorphisms.

For the converse, we first suppose that Y is infinite and that there is an isomorphism M — N.
Let B denote the image of X in N, which is then necessarily an R-basis of N. Each elementy €Y
is contained in the span of a finite subset B, of B. The union B’ of these sets By, spans Y. For any
v € B— B/, the set B'U{v} is R-linearly dependent, which cannot happen as B is a basis. Thus,
B = B'. Now, the cardinality |B| of B is at most the cardinality of the disjoint union of the sets By,
for y € Y, each of which is finite. In particular, we have

[X| = |B| < Y x Z| = |1|,
the latter equality holding as Y is infinite. If X is also infinite, then by reversing the roles of X
and Y, this forces [X| =|Y|.

Finally, suppose that Y is finite, without loss of generality. Let m be a maximal ideal of R.
Consider the field F = R/m, and observe that

M/mM = (@R) /m (@R) ~(PF,

xeX xeX xeX

and similarly for Y. An isomorphism M = N induces an isomorphism of F-vector spaces
M/mM = N/mN, which by the above isomorphisms have bases of cardinality |X| and |Y|
respectively. Since Y is finite, Theorem 5.5.28 tells us that X must be finite of order |Y|. U

The following is immediate.

COROLLARY 5.7.20. Let R be a commutative ring, and let M be a free R-module on a set of
n elements. Then every basis of M has n elements.

By Theorem 5.7.22, we may make the following definition.

DEFINITION 5.7.21. The rank of a free module M over a commutative ring R is the unique
n > 0 such that M = R" if it exists. Otherwise, M is said to have infinite rank.

For an integral domain, we can do somewhat better with a bit of work. In fact, the following
result does not require this assumption, but the proof we give does.

THEOREM 5.7.22. Let R be an integral domain. Let M be a free R-module on a set of n
elements, and let Y be a subset of M. Then:

i. if Y generates M, then Y has at least n elements,
ii. if Y is R-linearly independent, then Y has at most n elements, and

iii. Y is a basis if and only if it generates M and has exactly n elements.
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Moreover, a free module on an infinite set cannot be generated by a finite set of elements.

PROOF. Suppose that M is free on n elements. A choice of basis defines an isomorphism
M == R" of R-modules, so we may assume that M = R". Note that R" is contained in the Q(R)-
module Q(R)" via the canonical inclusion, and any generating set Y of R" spans Q(R)". But by
Theorems 5.5.28 and 5.5.27, this forces Y to have at least n elements. If Y has n elements, then
Y would similarly be a basis of Q(R)". So, if we had }'"' | ¢;y; = 0 for some ¢; € R and distinct
yi € Y, then each ¢; = 0, which means that Y is an R-basis of R".

On the other hand, if Y has more than n elements, then by Theorem 5.5.25, the set Y cannot
be linearly independent in Q(R)". That is, there exist &; € Q(R)" and distincty; € Y for 1 <i<m
and m > 1 with }" | a;y; = 0 and not all o; = 0. For each i, write o; = c,-a’f1 with ¢;,d; € R and
d; # 0. Taking d to be the product of the d;, we then have a; = do; € R and not all ¢; = 0. Since

" aiyi = 0, it follows that Y is not a basis.

Finally, if N is a free module on an infinite set X, then N = @, .x R, and so we take N to be
the latter module. We then have that @,y Q(R) is a Q(R)-vector space with an infinite basis.
But then Theorem 5.5.28 tells us that every basis is infinite, which by Theorem 5.5.27 tells us
that a finite set cannot span. U

REMARK 5.7.23. The full analogues of Theorems 5.5.25 and 5.5.27 do not hold for modules
over arbitrary rings, over even abelian groups. That is, take the free Z-module Z. The set {2}
does not span it and is not contained in a basis of Z, and the set {2,3} does span it and does not
contain a basis.

EXAMPLE 5.7.24. The polynomial ring R[x] is a free R-module on the basis {x' | i € Z>}.

REMARK 5.7.25. Consider the ideal I = (2,x) of Z[x]. It is not a free Z[x]-module. To
see this, first note that it is not a principal ideal so cannot be generated by a single element.
As I can be generated by the two elements 2 and x, if I were free, then it would follow from
Theorem 5.7.22 that {2,x} would be a basis for . On the other hand, x-2 —2-x = 0, which
would contradict Proposition 5.7.14.

PROPOSITION 5.7.26. Let M be an R-module, and let m: M — F be a surjective R-module
homomorphism, where F is R-free. Then there exists an injective R-module homomorphism
1: F — M such that wo1 = idp. Moreover, we have M = ker(m) & 1(F).

PROOF. Let X be an R-basis of F, and for each x € X, choose m, € M with w(m,) = x. We
take 1: F — M to be the unique R-module homomorphism with 1(x) = m, for all x € X, which
exists as F' is free. Then wo1(x) = x for all x € X, so wo1 = idr by uniqueness, and 1 must be
injective.

Finally, let A = ker . Note that any m € M satisfies m —1om(m) € A, soM =A+1(F). If
m e ANL(F), then m = 1(n) for some n € F and n = mwo1(n) = w(m) =0, so m = 0. In other
words, we have M =A@ 1(F). O

In particular, every free quotient of an R-module M is isomorphic to a direct summand of M.
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5.8. Matrix representations

We work in this section with (nonzero) homomorphisms of free modules over a ring R. Most
of the time, the case of interest is that of linear transformations of vector spaces over fields, but
there is no additional restriction caused by working is full generality.

LEMMA 5.8.1. Let R be a ring. Let A € M,,,(R) be a matrix for some m,n > 1. Then there is
a unique R-module homomorphism T : R" — R™ satisfying T (v) = Av for all v € R", where Av is
matrix multiplication, viewing elements of R™ and R" as column vectors.

PROOF. Define T'(e;) = Y./ aijfi, where e; (resp., f;) is the jth (resp., ith) standard basis
element of R" (resp., R™). If v = Z’}Zl cjej for some c; € F with 1 < j <n, then

T(v)= Zlch(ej) = Z (Z’laijcj>fi = Av.
j= j=

i=1
The uniqueness follows from the fact that R" is free, so any R-module homomorphism from it is
determined by its values on a basis U

DEFINITION 5.8.2. An ordered basis is a basis of a free R-module together with a total
ordering on the basis.

REMARK 5.8.3. We refer to a finite (ordered) basis on a free R-module as a set {vy,vy,...,v,}
and take this implicitly to mean that the set has cardinality n and that the basis is ordered in the
listed order (i.e., by the ordering v; < v;; forall 1 <i < n).

EXAMPLE 5.8.4. The standard basis {e],e2,...,e,} on R" is ordered in the order of positions
of the nonzero coordinate of its elements.

NOTATION 5.8.5. If B= {v},v2,...,v,} is an ordered basis of a free R-module V, then we
let @p: R" — V denote the R-module isomorphism satisfying ¢p(e;) = v; for all i.

Given ordered bases of free R-modules V and W, an R-module homomorphism 7: V — W
can be described by a matrix.

DEFINITION 5.8.6. Let V and W be free modules over a ring R with ordered bases B =
{vi,v2,...,vy} and C = {wy,w2,...,wp }, respectively. Let T: V — W be an R-module homo-
morphism. We say that a matrix A = (a;j) € Munu(R) represents T with respect to the bases B
and C if

m
T(vj) =Y aijwi

i=1

foralll1 < j<n.
REMARK 5.8.7. Given ordered bases B = {vy,...,v, } of afree module V and C = {wy,...,wp}
of a free module W, the composition
—1
oc'oTogs: R" 2 v Low 2oy g

is given by multiplication by a matrix A by Lemma 5.8.1. This A is the matrix representing 7'
with respect to B and C.
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TERMINOLOGY 5.8.8. Let V be a free R-module with finite basis B, and let 7: V — V be
an R-module homomorphism. We say say that a matrix A represents T with respect to B if A
represents T with respect to B and B. If V = R" and B is the standard basis, we simply say that A
represents T .

LEMMA 5.8.9. Let T': U -V and T: V — W be homomorphisms of finite rank free R-
modules. Let B, C, and D be bases of U, V, and W, respectively. Suppose that A’ represents T'
with respect to B and C and that A represents T with respect to C and D. Then AA' represents
ToT': U — W with respect to B and D.

PROOF. We have that A represents ¢, loTo ¢c and A’ represents @ ToT o ¢p. In other
words, the maps are left multiplication by the corresponding matrices. The map

(PBI oToT'o(pB = (‘PBI oTo(pC)o((pE1 oT/ogDB)7
is then left multiplication by AA’, which is to say that it is represented by AA’. U

DEFINITION 5.8.10. Let B = {vy,...,v,} and B' = {v},...,v,} be ordered bases of a free
R-module V. The change-of-basis matrix from B to B is the matrix Op g = (qi;) that represents
the R-module homomorphism T p/: V — V with Tp p'(vi) =V} for 1 <i < n with respect to B.

REMARK 5.8.11. If v;. = Y1 gijvi for all i, then the change-of-basis matrix Qp g of Defini-
tion 5.8.10 is the matrix (g;;). It is invertible, and Qp p = QE.L,.

REMARK 5.8.12. Let V be free of rank n with bases B and B. By definition, the change-

of-basis matrix Qp p represents @p o Tgp o @p. On the other hand, we also have that that
¢p = Tp pr o @p. Thus, see that

—1 -1
Qp o@p = @g oTppoPp,
is represented by Qp p'.

THEOREM 5.8.13 (Change of basis theorem). Let T: V — W be a linear transformation of
free R-modules of finite rank. Let B and B’ be ordered bases of V and C and C' be ordered bases

of W. If A is the matrix representing T with respect to B and C, then Q. IC,AQB7 g IS the matrix
representing T with respect to B' and C'.

PROOF. We have that A represents @ T'oTo ¢p, and we wish to compute the matrix repre-
senting q)C_,] oT o @p. We have

@' 0T oy = (9a' opc)o (s 0T opp)o (g5 opp),

and these three matrices are represented by O IC,, A, and Qp p, respectively. O






CHAPTER 6

Field theory and Galois theory

6.1. Extension fields

DEFINITION 6.1.1. A field E is an extension field (or extension) of F if F is a subfield of E.
We write E /F (which reads “E over F”) to denote that E is an extension field of F, and we say
that E/F is a field extension, or an extension of fields.

EXAMPLES 6.1.2. We have that R is an extension field of Q, and C is an extension of both
Q and R. We have that Q(i) is an extension of QQ of which C, but not R, is an extension field.

We will often have cause to deal with the field Z/pZ, where p is a prime. When we think of
7,/ pZ as a field, we make a change of notation.

DEFINITION 6.1.3. For a prime p, the field of p elements, F,, is Z/pZ.

LEMMA 6.1.4. Let F be a field. If F has characteristic 0, then F is an extension of Q. If F
has characteristic equal to a prime p, then F is an extension of I .

PROOF. If F has characteristic 0, we define 1: Q — F by t(ab™!) = (a-1)-(b-1)~!, where
a,b € 7Z and b # 0. Since 1 is a ring homomorphism and Q is a field, it is injective, so Q
sits isomorphically inside F. If F' has characteristic p, then we define 1: I, — F by the same
equation, where now a,b € Z and b # 0 mod p. Since F has characteristic p, this is a ring
homomorphism, and again it is injective. U

DEFINITION 6.1.5. An intermediate field of a field extension E /F is a subfield E’ of E con-
taining F. The extension E’/F is said to be a subextension of F in E.

DEFINITION 6.1.6. The ground field (or base field) of a field extension E /F is the field F.

DEFINITION 6.1.7. Let E/F be a field extension. Let A C E. The field generated over F by
the set A (or its elements) is the smallest subfield K of E containing F and A, often denoted F (A).
We say that the elements of A generate K as an extension of F' and that K is given by adjoining
the elements of A to F.

NOTATION 6.1.8. Let E/F be a field extension and o, @y, ..., ®, € E for some n > 0. We
write F (o, 0, ..., 0) for the subfield of E generated by the set o, ap, ..., &, over F.

REMARK 6.1.9. One often says “F adjoin o to refer to a field F (o).

REMARK 6.1.10. Note that the field generated over F by a set of elements A of E is well-
defined, equal to the intersection of all subfields of E containing both F" and A.

169
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REMARK 6.1.11. Note that we distinguish between the field F(x,x;,...,x,) of rational
functions, where xj,xp,...,x, are indeterminates, and F(aj, a,...,0,), where oq,0p,. ..,y
are elements of an extension field of F'. These fields can be quite different. However, in that
F(ay,a,...,0,) is the quotient field of Flay, @, ..., ], every element of F(ay, s, ..., 0) is
a rational function in the elements o; with 1 <i <n.

EXAMPLE 6.1.12. The fields Q(+/2) and Q(i) are extension fields of Q inside R and C,
respectively.

PROPOSITION 6.1.13. Let E/F be a field extension, and let & € E. Then F(Q) is isomorphic
to the quotient field of F|a.

PROOF. Since F[o] is the smallest subring of E containing F and o and F(¢) is the smallest
subfield of E containing F' and ¢, inclusion provides an injective homomorphism

1: Fla] = F(o).
Since F(a) is a field, 1 induces an injective map Q(1): Q(F|[a]) — F(a). Since the image of

Q(1) is a subfield of F () containing F and a and F () is the smallest such field in E, we have
that Q( o) is surjective as well. O

In many cases, an extension field generated by an element is actually equal to the ring gener-
ated by the element. We see this holds in a couple of simple examples.

EXAMPLE 6.1.14. The fields Q(v/2) and Q(i) equal Q[+/2] and Q[i] as subrings of R and
C respectively. E.g., the elements of Q(1/2) all may be written in the form a + bv/2 for some
a,b € Q.

The key in this example is that /2 and i are roots of polynomials with coefficients in Q. Let
us examine this further.

THEOREM 6.1.15. Let E be an extension field of a field F, and let f € F[x] be an irreducible
polynomial that has a root o € E. Then the evaluation map eq: F|x] — F () given by eq(f) =
f(a) induces an isomorphism

eq: Flx]/(f) = F(a)
of fields such that eq(a) = a for all a € F.

PROOF. First, note that we have the inclusion map F — F[x] and the quotient map F [x]/(f),
inducing a nonzero, and hence injective, map of fields F — F[x|/(f). This allows us to view F
as a subfield of F[x]/(f). The map ey has kernel containing f, and if e (g) = g(a) = 0 for some
g € F|[x], then g also has « as a root. Since any GCD of f and g will then have « as a root, we
have that the GCD of f and g is (f), and in particular, f divides g, so g € (f). Therefore, eq is
injective. Since the image of e is a field containing F and a, it must then be equal to F(¢t). O

EXAMPLE 6.1.16. The field Q(i) is isomorphic to the quotient ring Q[x]/(x* + 1).
We now obtain the following theorem as a corollary.

THEOREM 6.1.17 (Kronecker). Let F be a field, f € F|x] a polynomial. Then there exists a
field extension E of F and an element o € E such that f(a) = 0.
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PROOF. First, we may assume that f is irreducible by replacing f by an irreducible poly-
nomial dividing it which has a as a root. We then set E = F[x]/(f), which is a field. Let
o =x+ (f). Then f(a) is the image of f in E, and so f(a) = 0. O

DEFINITION 6.1.18. Let E/F be a field extension. A nonconstant polynomial f € F|x] is
said to split (or factor completely) in E if it can be written as a product of linear polynomials in
E[x].

DEFINITION 6.1.19. Let F be a field. A splitting field E for f € F|[x] over F is an extension
of F such that f splits in E but not any proper subextension of F in E.

EXAMPLES 6.1.20.

a. The field Q(/2) is the splitting field of x> — 2, since it contains both of its roots. It is also
the splitting field of (x —a)? — 2b* for any a,b € Q.

b. The field Q(~+/2) is not the splitting field of x> — 2, since it contains v/2 but not its other

two roots. On the other hand, if ® € C is a primitive cube root of unity, then Q(\S/Q, (1)\3/57 ? \3/5)
is a splitting field for x> — 2 inside C. This field may be written more simply as Q(, v/2).

As a corollary of Kronecker’s theorem, we have the following.

COROLLARY 6.1.21. Let F be a field, and let f € F|x]. Then there exists a splitting field for
f overF.

PROOF. Let n = deg f. The result is clearly true for n = 1. Set K = F[x]/(f). Then f has
a root o in K by Kronecker’s theorem. Set g(x) = (x — )~ f(x) € E[x]. Then there exists a
splitting field E of g over K which is generated by the roots of g over F' by induction. This E is
a splitting field of f over F, since it is generated by the roots of f. U

We next distinguish two types of elements of extension fields of F: those that are roots of
polynomials and those that are not.

DEFINITION 6.1.22. Let E /F be a field extension. An element ¢ € E is called algebraic over
F if there exists a nonzero f € F[x] such that f(o) = 0. Otherwise, o is said to be transcendental
over F.

When speaking of elements of extensions of (Q, we speak simply of algebraic and transcen-
dental numbers.

DEFINITION 6.1.23. An element of C is said to be an algebraic number if it is algebraic over
Q and a transcendental number if it is transcendental over Q.

EXAMPLES 6.1.24. The number v/2 is an algebraic number, since it is a root of x2 =2,
Similarly, i is algebraic, being a root of x*> + 1. However, the real number 7 is transcendental,
and the real number e such that loge = 1 is transcendental as well. We do not prove the latter
two facts here.

EXAMPLE 6.1.25. A real number given by repeated square roots

\/a1+\/a2+~~-+\/a_n




172 6. FIELD THEORY AND GALOIS THEORY

with the a; positive rational numbers is algebraic: it is a root of
(PP —a) )P —a
EXAMPLE 6.1.26. If F is a field and o € F, then « is algebraic over F, being a root of x — &..
Note the following.

PROPOSITION 6.1.27. Let E/F be a field extension, and let a € E. Then a. is transcendental
over F if and only if the evaluation homomorphism ey : F|x] — E is injective.

PROOF. By definition, a € E is transcendental if and only if g(ot) # O for every g € F[x] that
is nonzero. But g(@) = eq(g), so we are done. O

This allows us to give the prototypical example of a transcendental element.

COROLLARY 6.1.28. Let F be a field. The element x of the field F (x) of rational functions of
F is transcendental over F.

PROOF. Let y be an indeterminate. Consider ey : F[y] — F(x) given by eq(g) = g(x). We
have that the polynomial g(x) is zero in F(x) if and only if it is zero in F[x], and therefore if and
only if g =0in F[y|. O

THEOREM 6.1.29. Let E/F be a field extension, and let a € E be algebraic over F. Then
there exists a unique monic, irreducible polynomial f € F[x| such that (o) = 0.

PROOF. Since « is algebraic over F, there exists a polynomial g € F[x] such that g(a) = 0.
Since g factors as a product of irreducible polynomials, and E is in particular an integral domain,
one of the irreducible factors must have & as a root, and by multiplying it by a constant, we may
take it to be monic. So suppose that f is a monic irreducible polynomial in F [x] with f(a) = 0.
Without loss of generality, we may assume that deg f is minimal among all such polynomials. If
f € F|x] satisfies f'(o) = 0, then the division algorithm provides g,r € F|[x] with r = f' — qf
and either degr < deg f or r = 0. Since r(a) = 0, we must have r = 0, but then f = gf, so f
divides f’. If f’ were monic and irreducible, this would force f' = f, as desired. O

DEFINITION 6.1.30. Let E/F be a field extension, and let a € E be algebraic over F. The
minimal polynomial of & over F is the unique monic irreducible polynomial in F [x] which has o
as a root.

EXAMPLES 6.1.31.
a. If F is afield and a € F, then x — « is the minimal polynomial of & over F.

b. The polynomial x*> + 1 is the minimal polynomial of i over Q.

6.2. Finite extensions

REMARK 6.2.1. If E/F is an extension of fields, then E is an F-vector space via the restric-
tion of the multiplication in E to a map F' X E — E, which is then given by a- ot = ax fora € F
and o € E. Moreover, E actually contains F, so F' is a F-subspace of E.
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DEFINITION 6.2.2. An extension E/F of fields is finite if E is a finite-dimensional field
extension of F. Otherwise, E/F is said to be an infinite extension.

EXAMPLE 6.2.3. The field Q(+/2) is an extension of Q with basis {1,/2} and hence is a
basis of Q(v/2) over Q.

EXAMPLE 6.2.4. The field F(x) of rational functions over a field F is infinite. More gener-
ally, if E/F is an extension that contains an element that is transcendental over F, then E is an
infinite extension of F.

DEFINITION 6.2.5. The degree [E : F] of a finite extension E of a field F is defined to be the
dimension dimg E of E as a vector space over F. If E/F is an infinite extension, we say that the
degree of E over F is infinite.

EXAMPLE 6.2.6. The degree [Q(+/2) : Q)] is 2, as v/2 has minimal polynomial x> — 2. The
set {1,/2} forms a basis of Q(1/2) as a Q-vector space.

The following is essential to our studies.

THEOREM 6.2.7. Let F be a field, and let | € F|x| be an irreducible polynomial of degree n.
Then the field F[x]/(f) has degree n over F.

PROOF. Since (f) contains only multiples of f, it contains no nontrivial linear combinations
of the monomials x' with 0 <i < n— 1. In other words, the x' + (f) with 0 <i<n—1 are
linearly independent over F. On the other hand, if g € F[x], then g = ¢f +r with ¢, f € F|[x] and
degr < mn,so g+ (f) =r+(f), and therefore g+ (f) may be written as the image in the quotient
of a linear combination of the monomials x with 0 < i < n— 1. That is, the elements x' + (f)
with 0 <i < n—1 form a basis of F[x]/(f). O

The proof of Theorem 6.2.7, when taken together with Theorem 6.1.15, yields the following.

COROLLARY 6.2.8. Let E/F be a field extension, and let o. € E be algebraic over F. Let n
be the degree of the minimal polynomial of F. Then [F(&) : F] =n, and {1, 0,...,o" '} is a
basis of F(o) over F.

PROPOSITION 6.2.9. If E/F is a finite extension and & € E, then Q is algebraic over F.

PROOF. Since [E : F] is finite, there is an n > 1 such that the set {1, @, ..., o} is F-linearly
dependent. We then have
n
Z C,'(Xl =0
i=0

for some ¢; € F with 0 <i < n. Setting f = Y" jcx' € Flx], we see that f(a) =0, so « is
algebraic. U

COROLLARY 6.2.10. Every finite extension E of a field F has the form E = F (o, 0, ..., Q)
for some algebraic o; € E for 1 <i<n.

PROOF. One may simply take {¢; | 1 <i < n} to be a basis of E over F. Since each o; € E,
we have F(ay,,...,a,) C E, and since every element in E is a linear combination of the a;,
we have the opposite containment. U
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The following theorem, while stated for arbitrary field extensions, has a number of applica-
tions to finite extensions.

THEOREM 6.2.11. Let E be an extension of a field F, and let K be an extension of E. If A is
a basis of E over F and B is a basis of K over E, then
AB={oB|acA,p cB}
is a basis of K over F, and the map A X B — AB given by multiplication in K is a bijection.

PROOF. We first show that AB spans K. By definition of B, any ¥ € K can be written as
m
y=2 cibi
j=1

with ¢; € E and Bj € Bfor 1 < j <mand some m > 1. Each c; is in the F-span of some finite
subset of A. By taking the union of these subsets, we see that there is a single finite subset of A
such that every ¢; with 1 < j < m is in its span. That is, we may write

n
Ccj= Zdijai
i=1

for some d;; € F and o; € E for 1 <i <n and some n > 1. Plugging in, we obtain

y=Y ) dijoB;,

i=1j=1
so the set AB spans K over F.
Now, if some F'-linear combination of the elements of AB equals zero, then in particular (by
throwing in terms with zero coefficients if needed) we may write

n m

Y Y aijoiB;=0
i

i=1j=

for some o; € A, ﬁj €B,andg;; € Ffor1 <i<nand1 < j<m, for some m and n. Since the
B; are E-linearly independent, this implies that

n
Z a;jt; = 0
i=1

for all 1 < j < m. Since the ¢; are F-linearly independent, we then have that a;; = 0 for all i and
j. Therefore, the set AB is a basis of K over F.

Note that we may also conclude that the surjection A X B — AB given by multiplication in K
is injective. If it were not, then we would have two distinct pairs (o, 8), (o, ") € A x B such
that a8 — a’B’ = 0, contrary to what we have shown. O

Theorem 6.2.11 has the following almost immediate corollary.

COROLLARY 6.2.12. Let E be a finite extension of a field F, and let K be a finite extension
of E. Then K /F is a finite extension, and we have

[K:F|=I|K:E|E:F]
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PROOF. Theorem 6.2.11 tells us that any basis of K over F has [K : E][E : F] elements, hence
the result. O

This corollary has in turn the following two corollaries.

COROLLARY 6.2.13. Let E be a finite extension of a field F, and let K be a finite extension
of E. Then [K : E| and |E : F| divide [K : F).

COROLLARY 6.2.14. Let K/F be a finite extension, and let E be a subfield of K containing
F. Then K/E and E /F are finite extensions.

EXAMPLE 6.2.15. By Corollary 6.2.12, we have
[Q(,v2): Q] = [Q(;v2) : Q(V2)I[Q(V2) : q],
and since i ¢ Q(+/2), we have that x*> + 1 is irreducible in Q(v/2)[x], so [Q(i,v/2) : Q(v/2)] = 2.
Therefore, [Q(i,v2) : Q] = 4.
We give another corollary of Corollary 6.2.12 that is a converse to Corollary 6.2.10.

COROLLARY 6.2.16. Let K/F be a field extension, and let oy, 0, ..., 0, € K be algebraic.
Then F (o, 00,...,Q,) is a finite extension of F.

PROOF. The corollary is true for n = 1 by definition of an algebraic element. Suppose by
induction we know it for n— 1, and let E = F (@, &, ..., 0,_1), which is a finite extension of F
by induction. Note that q, is algebraic over E in that it is algebraic over F. Since K = E(¢,),
we therefore have that K is a finite extension of E. That K/F is a finite extension now follows
from Corollary 6.2.12. ]

DEFINITION 6.2.17. A field extension E /F is said to be algebraic if every element of E is
algebraic over F. Otherwise, E /F is said to be a transcendental extension.

PROPOSITION 6.2.18. Every finite extension is algebraic.
PROOEF. If o € E, then F(a) C E, so F(a)/F is finite. Hence, « is algebraic over F. O
In fact, we can do better.

PROPOSITION 6.2.19. Let E be an intermediate field in a field extension K/F. Then K /F is
algebraic if and only if both K /E and E | F are algebraic.

PROOF. Suppose that K/E and E /F are algebraic. Let a € K, and let f = Y ja;x' € E[x]

be its minimal polynomial over E. Since E/F is algebraic, the field E; = F(ay,...,a,) is finite
over of F, and therefore so is £ f((x). In particular, « is algebraic over F, and therefore K/F is
algebraic. The other direction is immediate. U

REMARK 6.2.20. A transcendental field extension can never be finite.
EXAMPLES 6.2.21.
a. The field R is a transcendental extension of Q.

b. The field K = @(\/Q, V2.v2.372,.. .) is an algebraic extension of Q, as the field generated
by any finite list of these roots is equal to Q(\'VE) for n > 2, every element of K is contained such
a field, and each of these fields is algebraic over Q.
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6.3. Composite fields

DEFINITION 6.3.1. Let E| and E» be subfields of a field K. The compositum, or composite
field, E1E, of E| and E, is the smallest subfield of K containing both E; and E).

REMARK 6.3.2. The compositum E|E> of subfields E1 and E; of a field K is the intersection
of all subfields of K containing both E| and Ej.

EXAMPLE 6.3.3. Let K/F be a field extension, and let @, B € K. Then
F(at.B) = F()F (B).
More generally, if E is any subfield of K containing F, then
EF(a) =E().

We prove the following in the case of finite extensions. Note, though, that this finiteness is
not needed, as seen through Corollary 6.3.11 below.

PROPOSITION 6.3.4. Let E| and E; be finite extensions of a field F contained in a field K.
Suppose that A and B are bases of E| and E> as F-vector spaces, respectively. Then E|E, is
spanned by the set AB.

PROOF. Setm=[E|:F|andn=[E,:F|,andletA={a,,...,0,} and B= {1, B2,..., B}
Clearly, we have
EIEZ = F(OCl,(XZ,. . '7am7ﬁ17ﬁ27' .. 7[371)

As the elements of A and B are algebraic, we have E(0;) = E[o] and E(f;) = E|[f;] for any field
E containing F, for all i and j. We then see by a simple recursion that every element of E|E;
may actually be expressed as a polynomial in the elements of A and B with coefficients in F, not
just a rational function. However, any monomial in the elements of A lies in Ej, hence may be
written as a linear combination of the elements of A. Similarly, any monomial in the elements
of B lies in E,, hence may be written as a linear combination of the elements of B. Therefore,
every monomial is the elements of A and B may be written as a product of a linear combination
of elements of A with a linear combination of elements of B, which is the a linear combination of
elements of AB. Since every polynomial is a linear combination of monomials, we are done. [

COROLLARY 6.3.5. Let E| and E; be finite extensions of a field F that are contained in a
field K. Then we have
[E\E,:F|<[E|:F|[Ey: F].

PROOF. Let A (resp., B) be a basis of E| (resp., E») over F. Then AB has at most [E| : F|[E; :
F| elements and spans E|E; over F. ]

COROLLARY 6.3.6. Let E| and E; be finite extensions of a field F that are contained in a
field K, and suppose that [E; : F| and |[E, : F] are relatively prime. Then we have
[E\E,:F|=[E|:F|[Ey: F].
PROOF. Both [E; : F| and [E; : F] divide [E|E; : F], so by their relative primality, their prod-
uct [E| : F][E, : F] does as well. So we have [E|E; : F| > [E; : F][E; : F], while Corollary 6.3.5
provides the opposite inequality. U
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DEFINITION 6.3.7. Let n > 1. An nth root of unity is an element of order dividing 7 in the
multiplicative group of a field.

That is, if F is a field, § € F is an nth root of unity if and only if {" = 1.

EXAMPLE 6.3.8. Let  be a third root of unity in C that is not equal to 1. Note that [Q(w) :
Q] =2, since ®> + ®+ 1 = 0. Then v/2 and @+/2 are both cube roots of 2, and we have

Q(V2,0V2) =Q(w,V2)
We then see that
[Q(V2): Q)[Q(0V2): Q] =9,
while
[Q(0,v2):Q] = [Q(v2) : Q)[Q(w) : Q] = 6
by Corollary 6.3.6.

More generally, we may define the compositum of a collection of fields.

DEFINITION 6.3.9. Let {E; | i € I} be a collection of subfields of a field K for some indexing
set 1. Then the compositum of the fields E; for i € I is smallest subfield of K containing all E;.

Let us give an alternate description of the compositum.

LEMMA 6.3.10. Let {E; | i € I} be a collection of intermediate fields in an extension K/F
for some indexing set I. Then the compositum E of the E; is equal to the union of its subfields
F(oy,m,...,a,), where n > 0 and each o with 1 < j < nis an element of E; for some i € I.

PROOF. Clearly the above-described union U is contained in E and contains each E;. How-
ever, we must show that U is a field, hence equal to E. If a,b € U are nonzero, then a €
F(oy,00,...,0,) and b € F(B1,B2,...,Bn), where n,m > 0 and the ¢; and B are elements
of the E;. Then

a—b,ab_l EF(Otl,(Xz,...,Otn,ﬁl,ﬁz,...,ﬁm),
and the latter field is a subset of U, so U = E. O

We have the following corollary.

COROLLARY 6.3.11. Let {E; | i € I} be algebraic extensions of a field F that are contained
in a field K, where I is an indexing set. Then the compositum E of the fields E; is an algebraic
extension of F.

PROOF. By Lemma 6.3.10, any « € E is an element of a subfield F (o, 0p,...,a,) of E,
where each o;; € E; for some i € 1. Since E; is algebraic, F(c;)/F is finite for all 1 < j <n, and
therefore F(ay, 00, ..., a,)/F is finite by Corollary 6.3.5. O
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6.4. Constructible numbers

In this section, we discuss a classical problem of the ancient Greeks, which we present as a
game. The game begins with a line segment of length 1 that has already been drawn on the plane.
One is given two tools: a straightedge and a compass. At any step of the game, one can either use
the straightedge to draw a line segment or the compass to draw a circle, in ways we will shortly
make more specific. The goal of the game is to draw a line segment of a given desired length in
a finite number of steps.

At any step, we consider a point to have been marked if it is either the endpoint of an already
drawn line segment or the intersection of a drawn line segment or circle with another drawn line
segment or circle. The straightedge allows us to draw a line segment between any two marked
points and also to extend any previously drawn line segment until it meets any point that has
already been drawn on the plane. The compass allows us to draw a circle that contains a given
marked point and has as its center any other marked point.

Given these rules, we may now make the following definition.

DEFINITION 6.4.1. A real number « is said to be constructible if one can draw a line segment
of length || in the plane, starting from a line segment of length 1, using a straightedge and
compass, in a finite number of steps.

We will denote a line segment between two distinct points A and B in R? by AB. Its length
will be denoted by |AB|. We prove a few preliminary results.

LEMMA 6.4.2. Suppose that a line segment AB has been drawn in the plane.
a. We may draw a line segment bisecting AB.

b. We may draw a line segment AC perpendicular to AB.
c. Given a point D in the plane, we may draw a line segment DE parallel to AB.

PROOF. For part a, draw circles with center A and center B, both of radius |E| These
intersect at two points, and the line segment between them is perpendicular to AB and passes
through a midpoint F of that segment.

For part b, by drawing the circle with center A and radius |AF|, we may mark a point G on the
line that contains |[AB| that is on the opposite side of A from F and is such that [AF| = |AG|. As
we have already shown, we may then draw a line segment CH bisecting F G and passing through
A, which provides us with AC.

For part c, if BD is perpendicular to AB, we set H = D. Otherwise, we draw a circle with
center D and passing through B. It intersects AB in a second point H. We draw a line segment
through D bisecting BH using part a. We then use part b to draw a perpendicular DE to BH, and
it is by definition parallel to AB. U

We also have the following.

LEMMA 6.4.3. Suppose we have drawn either a line segment of length o or a circle of radius
a in the plane.

a. We may draw a line segment of length o with any marked point as an endpoint, along any
line that contains at least one other marked point.
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b. We may draw a circle of radius o with center any marked point.

PROOF. First we note that the two assumptions are equivalent. Given a line segment of length
o, we may use its endpoints to draw a circle of radius o. Given a circle of radius & and center
A, since we have at least one marked point other than its center in the plane, we can by drawing
the line segment from the center to that point mark a point B on the circle. The resulting line
segment B then has radius o.

Suppose then that we are given a line segment AB of length o and another line segment CD.
Me make two constructions using Lemma 6.4.2. We draw a line segment CE parallel to AB. We
draw the line segment AC and then the parallel to AC passing through B. It intersects the line
through C and E at a point F such that |AF| = «. The circle with center A passing through F
then determines a point G on the line through A and C such that |AG| = o. We thus have both
parts. U

We prove the following.
THEOREM 6.4.4. The set of constructible numbers is a subfield of R.

PROOF. Suppose that a and B are constructible and positive. Then we may draw a line
segment AB of length « in the plane, and we may then draw a line segment BC of length 8 along
the line defined by AB. If we do this so that it overlaps with AB, then we have constructed a line
segment AC of length ot — B].

On the other hand, given AB of length ¢, draw a line segment AC of length f3 that is perpen-
dicular to AB, and let E be the point on the ray defined by AC such that AE has length 1. Draw
the line segment CB, and use it to draw a parallel line segment from E to a point D on the ray
defined by the segment AB. We then have that the triangle ABC is similar to the triangle ADE, so

__ |aD| [AB| «
|AE|  |AC] B
Therefore, o8 ! is constructible. U

THEOREM 6.4.5. The field of constructible numbers consists exactly of the real numbers that
can be obtained from 1 by applying a finite sequence of the operations of addition, subtraction,
multiplication, division (with nonzero denominators), and the taking of square roots (of positive
numbers), using numbers already obtained from 1 at an earlier point in the sequence.

PROOF. We first show that the square root of a constructible positive number & is con-
structible. For this, draw a line segment AD of length 1 + & and mark a point B at distance
1 from A and « from D along the segment. Find the midpoint O of AD, and draw a circle with
center O and radius |[AO| = (1+ ) /2. Draw a perpendicular to AD at the point B, and let C be a
point where it intersects the drawn circle. Then the triangle ABC is similar to the triangle CBD,
and therefore we have
_|BC| _|BD| _ «

AB|  |BC|  [BC|

[BC|

and hence |BC| = /.
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For the converse, we merely give a sketch. Let E be the set (or actually, field) of numbers that
can be constructed from 1 using field operations and square roots. Suppose that our initial line
segment was between (0,0) and (1,0) on the plane. Suppose that all previously marked points
have coordinates in E. These points have been marked as the intersection points of lines and
circles, where the lines are determined by previously marked points with E-coordinates and the
circles have centers previously marked points with E-coordinates and are chosen to pass through
marked points with E-coordinates. Every drawn line thus has the form ax + by 4+ ¢ = 0 with
a,b,c € E, and every drawn circle has the form x*> +y>+dx+ey+ f =0 with d,e, f € E. The
intersection of two such lines has coordinates obtained by field operations on the coefficients of
the two lines in question. The coordinates of the intersection points of a line and a circle coming
from the solution of a quadratic equation with coefficients are obtained by field operations on
the coefficients of the line and the circle. Finally, the intersection of two circles can be reduced
to the latter case by considering a common chord (or tangent line). It follows that any new line
segment or circle created with these operations has two marked points in E, and therefore every
constructible length lies in E as well. U

Since the square root of a field element defines an extension of degree dividing 2 of the field
in which it lies, we have the following.

COROLLARY 6.4.6. Let o be a constructible number. Then o is an algebraic number, and
[Q(ax) : Q] is a power of 2.
COROLLARY 6.4.7. The field of constructible numbers is an algebraic extension of Q.

The ancient Greeks were in particular very concerned with three problems that they could
not solve with a straightedge and compass. This was for good reason: they involved constructing
line segments of unconstructible length. Yet, the Greeks never managed to prove this, and it was
not until the 19th century that proofs were finally given. We list these three problems now.

EXAMPLES 6.4.8.

a. It is impossible to “double the cube.” That is, given a line segment, one cannot construct
from it a new line segment such that a cube with the new line segment as one of its sides would
have twice the volume of a cube with the original line segment as its side. Assuming the initial
line segment had a constructible length «, the new line segment would have to have length
V2, but then v/2 would be constructible, yet it defines an extension of degree 3 over Q, in
contradiction to Corollary 6.4.6.

b. It is impossible to “square the circle.” That is, given a drawn circle, it is impossible to
construct a square with the same area. If the circle had radius r, then the square would have side
length /7r, which would mean that /7 would be constructible, and hence 7 would be as well,
in contradiction to Corollary 6.4.6, since 7 is transcendental.

c. Itis impossible to “trisect all angles.” That is, given an arbitrary angle between two drawn
line segments with a common endpoint in a plane, it is not always possible to draw a line segment
with the same endpoint having an angle with one of the line segments that is a third of the
original angle. Note that an initial such angle 6 exists if and only if cos 0 is constructible, as
seen by drawing a perpendicular from one line segment at point a distance one from the point
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of intersection until it intersects the line defined by the other. Therefore, the problem is, given
a constructible number a = cos 0, to show that cos(6/3) is constructible. However, we have a
trigonometric identity

cos @ =4cos>(0/3) —3cos(6/3).
Suppose that & = /3. Then cos(r/3) = 1, and cos(/9) would be a root of the polynomial

8x> — 6x — 1, which is irreducible over Q since it is irreducible in Z[x]. (It has no roots, even
modulo 2.) But then cos(7/9) would define a degree 3 extension of @, contradicting Corol-
lary 6.4.6 again.

6.5. Finite fields
In this section, we classify all finite fields, which is to say, fields of finite order.
NOTATION 6.5.1. We use I, to denote Z/pZ when we consider it as a field.
PROPOSITION 6.5.2. Every finite field contains p" elements for some n > 1.

PROOF. Let F be a finite field. Since it is finite, it has characteristic p for some prime number
p, which means that it contains the field I, and moreover is a finite dimensional vector space
over IF,,. Therefore, F has a finite Z/pZ-basis {0, 0p,...,0,}, so that the elements of F are
exactly the elements ¢ Q) + c20p + -+ + ¢, 04, With ¢y,¢2,...,¢, € Z/pZ. We therefore have
[F|=p". O

DEFINITION 6.5.3. Let F be a field and n be a positive integer. The group i, (F') of nth roots
of unity in F is the subgroup of F'* with elements the nth roots of 1 in F.

LEMMA 6.5.4. Let F be a field and n be a positive integer. Then W,(F) is a cyclic group of
order dividing n.

PROOF. Every element in u,(F) has order dividing n. Let m be the exponent of p,(F). Then
every element of w,(F) is an mth root of unity, so is a root of X" — 1, and hence the order of
W, (F) is at most m. On the other hand, since m is the exponent, the classification of finite abelian
groups tells us that u, (F) contains an element of order m, so therefore w,(F) is cyclic of order
m, which divides n. U

PROPOSITION 6.5.5. Let F be a finite field of order p" for some prime p andn > 1. Then F*
is cyclic, and its multiplicative group is equal to Py (F).

PROOF. Since |F*| = p" — 1, every element of F* is a root of the polynomial x”'~! — 1, and
conversely. Therefore, it follows from Lemma 6.5.4 that F* = u,»_;(F) is cyclic. U

COROLLARY 6.5.6. The group (Z/pZ)* of units in 7./ pZ is cyclic of order p — 1.
EXAMPLE 6.5.7. The cyclic group (Z/17Z)* of order 16 is generated by 3.
LEMMA 6.5.8. Let F be a field of characteristic a prime p, and let a.,3 € F. Then we have
(@+p)" =a + 5"
foralln > 0.
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PROOF. It is easy to see that (’l’) =0 mod p for 1 <i< p—1, and so we have the result for
n = 1 by the binomial theorem. By induction, the result for general n follows immediately. [

THEOREM 6.5.9. Let n be a positive integer. There exists a field F,» of order p" containing
Iy, and it is unique up to isomorphism. Moreover, if E is a finite field extension of ¥, of degree
a multiple of n, then E contains a unique subfield isomorphic to I pn.

PROOF. Let F be the set of roots of x”" — x in a splitting field Q of x”" —x over F, Ife,BeF
are nonzero, then clearly (af~1)?" = af~!, so af~! € F. Moreover, we have (a — )" =
a”" — BP" by Lemma 6.5.8, so (& — B)”" = o — . It follows that F is a field in which x”" — x
splits, so it equals Q.

Now, F has at most p" elements by definition. We must show that has exactly p" elements,
so that its degree is n over IF,. Clearly x factors into x”" — x exactly once. Let a € F*, and set

n 1__
K —x P!

g(x) = = Z a1

X—a -
1=

—_

Then we have
p'—1
ga)="Y "' =(p"—1)a"" = —1 20,
i=1

50 x — a is not a factor of g(x), and therefore all roots of x”" — x are distinct.

We prove the remaining claims. First, any finite field extension of I, of degree a multiple m
of n has p™ elements, and Proposition 6.5.5 then implies that that it consists of roots of x”" — x.
In particular, it contains a unique subfield of degree n consisting of the roots of x”" — x. Next,
note that F = Fx]/(f), where f is the minimal polynomial of a generator of u,_(F). Given
any other field F’ of order p", it also consists of the roots of X" —x, so contains a root of f. This
root then generates F’, being a primitive (p" — 1)th root of unity, so F’ = F[x]/(f) as well. O

REMARK 6.5.10. Since F» has order p” and is an F,-vector space, we have [F,» : [F)] = n.

COROLLARY 6.5.11. The field F» contains a subfield isomorphic to IFpym if and only if m
divides n.

From now on, for a prime p and a positive integer n, we will speak of I » as being the unique
(up to isomorphism) field of order p”.

EXAMPLE 6.5.12. The field Fg consists of 0 and 8th roots of unity. We have Fyg = F3({),
where ( is a primitive 8th root of unity (or even a primitive fourth root of unity), so a root of
x*+ 1. Since [Fg : F3] = 2, the minimal polynomial of { must be of degree 2. Over F3, we have
only three irreducible polynomials of degree two: x*+ 1, x> 4+x— 1 and x> —x — 1. The product of
the latter two is x* + 1, which is to say that the 2 of the primitive 8th roots of unity have minimal
polynomial x? 4 x — 1 and the other two x> — x — 1. On the other hand, we have Fo = F3({?) as
well, and {2 is a primitive 4th root of unity with minimal polynomial x> + 1.

The following result is rather useful.
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PROPOSITION 6.5.13. Let g be a power of a prime p. Let m > 1, and let {,, be a primitive
mth root of unity in an extension of F,. Then [Fy((y) : Fy] is the order k of q in (Z/mZ)*. In

other words, we have Fy(Cn) = F .

PROOF. Letk = [Fy(Gn) : Fy]. Then Fy(n) = F . and so m divides g* — 1, and then ¢ has
order dividing & in (Z/mZ)*. On the other hand, since F;({x) is not contained in T ; for any
j < k, we have that ¢/ is not 1 in (Z/mZ)*. That is, ¢ has the desired order K modulo . O

In order to apply the previous result, it is useful to understand the structure of the unit group
of Z/mZ.

PROPOSITION 6.5.14. Let m be a positive integer, and write m = p?p; -~~p,r<k for distinct

primes p; and positive integers r; for 1 <i <k, for some k > 1. Then
k
(z/mz)* = [(Z/pizZ)".
i=1

Moreover, if p is a prime number and r is a positive integer, we have

Z/(p—VZxZ/p'Z ifpisodd

Z rzxg
(Z/p'Z) {Z/2ZxZ/2r2Z ifp=2andr>2.

PROOF. The first statement is a corollary of the Chinese remainder theorem for Z. The
reduction map (Z/p"Z)* — (Z/pZ)* = 7Z/(p — 1)Z (noting Corollary 6.5.6) then has kernel
the multiplicative group (1 + pZ)/(1+ p'Z) of order p"~'. If p is odd, then (1 + p)PH1 —1=
p' mod p'T! by the binomial theorem, so 1+ p has order p"~! in the group. If p =2 and r > 2,
then 5 = 1 +4 similarly generates the subgroup (1 +47)/(1+2"7Z) of order 2"~2. Clearly, this
group does not contain — 1, which has order 2. That is, (1 +27Z)/(1+2"7Z) is generated by the
images of —1 and 5 and so is isomorphic to Z /27 x Z /2"~ *Z. O

6.6. Cyclotomic fields

Let us explore the extensions of Q generated by roots of unity, known as cyclotomic fields.

NOTATION 6.6.1. Let n > 1. We will use §, to denote a primitive nth root of unity in an
extension of Q. We can and therefore do choose these so that &; /m G if m divides n. For

instance, one could take §, = e2mi/n ¢ C,

DEFINITION 6.6.2. Let n > 1. Then nth cyclotomic field is the extension of Q generated by
a primitive nth root of unity &,.

REMARK 6.6.3. The nth cyclotomic field Q(&,) is Galois over Q. That is, Q((,) is the
splitting field of x” — 1 in that all of the roots of x" — 1 are powers of {,.

DEFINITION 6.6.4. The nth cyclotomic polynomial ®,, is the unique monic polynomial in
Q[x] with roots the primitive nth roots of unity.
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Note that &, lies in Q[x] since every conjugate of a primitive nth root of unity is also a root
of @,. In Example 5.3.4, we saw that every

D, =1+x+---+x""
where p is prime, is irreducible using the Eisenstein criterion.

REMARKS 6.6.5. Let n be a positive integer.

a. We have
K —1=[]®a
din
with the sum taken over positive divisors of n.
b. Every conjugate to a primitive nth root of unity is also necessarily a root of x" — 1 that is

not a root of its divisor x” — 1 for any m dividing n, which is to say another primitive nth root of
unity. Therefore &, as defined lies in Q[x].

c. We have
n

@)= [ x-&.
gcdffn])zl
and therefore @, has degree ¢@(n), where ¢ is the Euler-phi function. In particular, we have
deg®, = (P(n>

DEFINITION 6.6.6. The Mobius function W Z~o — {—1,0,1} is defined by
(=D if nis a product of k distinct primes,
(n) = -
0 otherwise.
We note the following.
LEMMA 6.6.7. For any n > 2, one has ¥4, 1(d) = 0.

PROOF. Since p(d) is zero if d is divisible by a square of a prime, we have Y4, t(d) =
Yajm M (d), where m is the product of the primes dividing n. If there are k such primes, then there

are ('j‘) products of j of them, each of which contributes (—1)/ to the sum. In other words,

v (RN e
zmd)—jgo(j)( = (1= 1 =0,

dn
since k > 1. O
THEOREM 6.6.8 (Mobius inversion formula). Let A be an abelian group and f: 7~y — A a
function. Define g: Z~y — A by
g(n) =Y f(d)
dn

fn) =Y n(d)s(3).

dn

forn > 1. Then
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PROOF. We calculate

Y u(ie) =LY p() k) =Y Y n(i) ) =YX ) (k) = f(n),
din dnk|d kln ;{Jl\g k|nc‘%

the last step by Lemma 6.6.7. U
Taking A = Q(x)*, we have the following.
LEMMA 6.6.9. Letn > 1. Then

@, = [T (x™ - 1)H),

d|n
d>1

The lemma can be used to calculate cyclotomic polynomials explicitly.
EXAMPLES 6.6.10.
a. We have @;(x) =x—1.
b. For a prime p and k > 1, we have
xp -1 I

D (x) = = wa o

c. For p and ¢ distinct primes, we have
(xPT—1)(x—1) Dy(xP)
)= T —1) 80
q
For instance, taking ¢ = 2 we obtain

q)2p( )

xP+1
x+1

(IDP(_X)?

and we have
Dy5(x) =3 x4+ P —x+1.

The nth cyclotomic polynomial is in fact irreducible over Q.
THEOREM 6.6.11. Let n > 1. Then the cyclotomic polynomial ®,, is irreducible in Q|x].

PROOF. Write ®, = fg with f,g € Z[x] and f monic irreducible with { as a root. Take any
prime p not dividing n, and note that {7 is also a root of ®,,.

If 7 is a root of g, then g(xP) is divisible by the minimal polynomial f(x) of {. Let f and g
denote the reductions modulo p of f and g respectively. Then g(x”) = g(x)? € I, [x] is divisible
by f(x), so g and f have a common factor. The reduction ¢, = fg of ®, modulo p therefore has
a multiple root in IE‘ . In particular, x* — 1 has a multiple root, but we know that it does not. That
is, if we choose k 2 1 so that p* = 1 mod n, then the cyclic group IF;k of order p* — 1 contains n
distinct nth roots of unity.

Thus, {? is a root of f for any prime p and any root { of f. Since any integer a prime to
n can be written as a product of primes not dividing n, it follows that {“ is a root of f for all a
prime to p. This forces f = ®,, so P, is irreducible. 0
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6.7. Field embeddings

DEFINITION 6.7.1. Let E and E’ be extensions of a field ', and let ¢ : E — E' be an isomor-
phism of fields. We say that ¢ fixes F if () = a forall o € F.

DEFINITION 6.7.2. Let o and B be elements of field extensions of a field F. We say that o
and 3 are conjugate over F if there exists a field isomorphism ¢: F(a) — F(f) fixing F such

that (o) = B.

PROPOSITION 6.7.3. Let E and E' be extensions of a field F, and let a € E, B € E' be
algebraic over F. Then o and B are conjugate over F if and only if the minimal polynomials of
o and B in F[x] are equal.

PROOEF. Suppose that o and 3 are conjugate over F, and let ¢: F(o) — F(f) be a field
isomorphism such that ¢(a) = 8 and ¢ restricts to the identity map on F. Then ¢(g(o)) = g(B)
for all g € F[x]. Let f € F[x] be the minimal polynomial of . Then we have

0=0(0) = o(f(a) = f(B),
so B is aroot of f. As f is irreducible, it must be the minimal polynomial of 3.
Conversely, suppose that o and 8 have the same minimal polynomial f € F[x]. Then we
have isomorphisms from F[x|/(f) to F(a) and F(f) as in Theorem 6.1.15, and composing the
inverse of the first with the latter yields the desired isomorphism F (¢t) — F(B). O

EXAMPLE 6.7.4. Since i and —i are both roots of the irreducible polynomial x> + 1 over R,
they are conjugate elements of C. Therefore, there is a field isomorphism C — C that takes i to
—i and fixes R. Such an isomorphism must take a + bi to its complex conjugate

a+bi=a—bi
and 1s therefore the usual complex conjugation. In particular, complex conjugation is an isomor-

phism of fields, which is also easily verified directly. Moreover, we see that if f € R[x] has a root
o, then @ is a root as well, since f(ot) = f(&).

DEFINITION 6.7.5. An embedding of fields, or field embedding, is an injective ring homo-
morphism @: F — F’, where F and F' are fields.

REMARK 6.7.6. Any nonzero ring homomorphism between fields is injective, so “injective”
can be replaced by “nonzero” in the definition of a field embedding.

DEFINITION 6.7.7. Let ¢ : F — M be a field embedding, and let E /F be an extension field.
We say that a field embedding ®: E — M extends ¢, and is an extension of @, if ®|g = ¢.

EXAMPLE 6.7.8. We have a field embedding 1: Q — R. There are two field embeddings
t': Q(v/2) — R extending 1. Either we take t/(a +bv/2) = a+bv/2 for a,b € Q, or we set
t/(a+b\/2) = a— b\/2. On the other hand, there is no field embedding x: Q(i) — R extending
1, since there is no element of i that would satisfy k(i)? 4 1 = 0, but there is no element of R
with this property.

Let us give a slight extension of one direction of Proposition 6.7.3.
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THEOREM 6.7.9. Let E/F be a field extension, and let & € E be algebraic over F. Let
¢©: F — M be a field embedding, and consider the induced map @: F[x] — M|x|. Let f € F|x]
be the minimal polynomial of . Then there is a bijection between the set of field embeddings
F(a) — M extending ¢ and the set of roots of ¢(f) in M taking an extension ® of ¢ to ®(a).

PROOF. Suppose that f3 is a root of ¢(f). Let eg: M[x] — M denote the evaluation map
at 8. The composition eg o ¢ has kernel containing (f), and the kernel then equals (f) by the
maximality of (f) and the fact that the composition is nonzero. The first isomorphism theorem
yields a field embedding F[x]/(f) — M sending the coset of x to . The map P is then obtained
by composing with the isomorphism F (o) — F[x]/(f) of Theorem 6.1.15, and it sends o to 3.
Moreover, if k is any other lift of ¢ such that k() = 3, we have

deg f—1 . deg f—1 ) deg f—1 .
K( Z Cl'OCl> = Z QD(C,')[BI = CI)( Z C,‘OC’)
i=0

i=0 i=0
forall c; € F for 1 <i<degf,sox=®.

Conversely, suppose ®: F(a) — M is an extension of ¢. Then we have ¢(f)(P(a)) =
P(f(a)) =0. O

COROLLARY 6.7.10. Let E/F be a field extension, let oo € E be algebraic over F, and let
¢©: F — M be a field embedding. Let ¢: F|[x] — M[x] denote the induced map on polynomial
rings. The number of extensions of ¢ to an embedding ®: F(a) — M is the number of distinct
roots of O(f) in M, where f € F|x| is the minimal polynomial of .

REMARK 6.7.11. In the setting of Corollary 6.7.10, we may identify F' with its isomorphic
image ¢@(F). This allows us to think of F as a subfield of M. In this case, f € F[x] may be
thought of as itself having roots in M, and the number of embeddings of F(a) in M is the
number of distinct roots of f in M.

In general, for finite extensions, we have the following.

COROLLARY 6.7.12. Let E/F be a finite extension of fields. Let ¢: F — M be a field em-
bedding. Then the number of extensions ®: E — M of F is finite, less than or equal to [E : F].

PROOE. Since any finite extension E /F is finitely generated, it suffices by the multiplicativity
of degrees of field extensions in Corollary 6.2.12 and recursion to prove the result in the case that
E = F(a) for some o € E. In this case, the degree of the minimal polynomial of ¢ is equal
to [E : F] and is greater than or equal to the number of distinct roots in M of the image of the
minimal polynomial of &. The result is therefore a consequence of Corollary 6.7.10. U

EXAMPLE 6.7.13. As seen in Example 6.7.8, there are exactly two embeddings of Q(\/E) in
R, but no embeddings of Q(i) in R.

EXAMPLE 6.7.14. There are four embeddings of Q(v/2,v/3) in R. If ¢ is such an embed-
ding, then we have (p(\/i) = ++/2 and (p(\/§) = ++/3, and the signs determine the embedding
uniquely.

Finally, we note the following.
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PROPOSITION 6.7.15. Let E/F be an algebraic field extension, and let 6: E — E be a field
embedding fixing F. Then & is an isomorphism.

PROOF. Let B € E, and let f € F|[x] be its minimal polynomial. By Proposition 6.7.3, every
root of f in E is sent by o to another root of f in E. As o is injective and the set of roots of
f in E is finite, o permutes these roots. In particular, there exists a root & of f in E such that
o(a) = B. Therefore, we have o (E) = E, as desired. O

6.8. Algebraically closed fields
We begin with the notion of an algebraically closed field.
DEFINITION 6.8.1. A field L is algebraically closed if contains a root of every nonconstant
polynomial f € L[x].
The following theorem has analytic, topological, geometric, and algebraic proofs (though all

in a sense require some very basic analysis).

THEOREM 6.8.2 (Fundamental theorem of algebra). The field C of complex numbers is alge-
braically closed.

We defer an algebraic proof of this theorem until after our treatment of Galois theory. For the
reader’s enjoyment, here are sketches of three proofs which require some knowledge of subjects
outside of this course. The first two use complex analysis:

REMARK 6.8.3. if p € C[x] has no roots, then p~! is homolorphic and bounded as a function
on C, hence constant by the maximum modulus principle.

REMARK 6.8.4. A nonconstant polynomial p € C[x| defines a nonconstant continuous map
from the Riemann sphere P!(C) to itself. Its image is closed as P!(C) is compact Hausdorff,
while its image is open by the holomorphicity of p and the open mapping theorem, so the image
is P'(C).

Next, algebraic topology:

REMARK 6.8.5. Suppose that p € Clx] is monic of degree n, and choose r > 0 such that
|p(z) — 2| < r* for all z € C with |z| = r. The map F: S' — S! with
_ p(r7)

|p(rz)|
is homotopic to z — z" by a homotopy H: [0,1] x S' — S! given by

t +(1—¢ n
Hig) = 102"

ltp(rz) + (1 =1)(r2)"|
Now F extends to a map C — S! on the simply connected space C by the same formula, so
induces the zero map on 71 (S') = Z. But 7+ z" induces multiplication by n on 7 (S'), so n = 0.

F(z)

PROPOSITION 6.8.6. Let L be an algebraically closed field, and let f € L[x] be nonconstant.
Then f splits in L.
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PROOF. We prove this by induction, as it is clear for deg f = 1. Suppose we know the result
for all polynomials of degree less than n = deg f. Since f has aroot & in L, we have f = (x —&t)g
for some g € L[x] of degree n — 1. By induction, g factors into linear terms. O

COROLLARY 6.8.7. Let M be an algebraic extension of an algebraically closed field L. Then
M=L.

PROOF. Let @ € M. As M is algebraic over L, there exists a nonconstant f € L[x] with
f(a) =0, and by Proposition 6.8.6, the polynomial f is divisible by x — o in L[x| (recalling that
M(x] is a UFD). Therefore, we have o € L. O

We next show that extensions of field embeddings into algebraically closed fields always
exist, when the extension is algebraic.

THEOREM 6.8.8. Let E/F be an algebraic extension of fields. Let ¢: F — M be a field
embedding, where M is an algebraically closed field. Then there exists a field embedding ®: E —
M extending .

PROOF. Let X denote the nonempty set of all pairs (K, o), where K is an intermediate sub-
field of E/F and o: K — M is an extension of ¢. We say that (K,c) < (K’,0’) for (K, o) and
(K',0’) € X if K’ contains K and ¢’|x = ©. Let C be a chain in X, set

L= |J k
(K,0)eC
and define 7: L — M by t|x = o for all (K, o) € C. It is easy to see that 7 is a well-defined field
embedding, since C is a chain, and therefore, (L, 7) € X is an upper bound for C.

By Zorn’s lemma, we therefore have that X contains a maximal element, which we call
(Q,A). We claim that E = Q. To see this, let & € E, and let f € Q[x] be the minimal polynomial
ofaoverQ. If f=Y7, aix' witha; € Qfor0<i<nandn= deg f, then we set

n
g= Z Aa;)x'.
i=0
Since M is algebraically closed, g has a root B in M. By Proposition 6.7.9, we may then extend
A to an embedding A': Q(o) — M. We then have (Q,1) < (Q(a),A’), and the maximality of
Q forces E = Q. Setting ® = A, we are done. OJ

PROPOSITION 6.8.9. The set of all algebraic elements over a field F in an extension E is a
subfield of E, and it is equal to the the largest intermediate extension of E /F that is algebraic
over F.

PROOF. Let M denote the set of all algebraic elements over F in E, and let @, € M. Then
F(a,B)/F is a finite extension, so every element of it is algebraic. In particular, @ — 8 and, if
B # 0, the element OCB_I are elements of F(c, f3), so they are algebraic elements over F, hence
contained in M. Therefore, M is a field. The second statement is then an immediate consequence
of the definition of M. ]

COROLLARY 6.8.10. The set Q of algebraic numbers in C forms a field.
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DEFINITION 6.8.11. An algebraic closure of a field F is an algebraically closed, algebraic
extension of F.

REMARK 6.8.12. Since an algebraic closure is algebraic, every element of the the algebraic
closure of a field F has to be the root of a polynomial with F-coefficients. On the other hand,
since F is algebraically closed, it contains all roots of every polynomial with coefficients in F
(i.e., every polynomial in F[x] factors completely). Thus, if an algebraic closure exists, and we
shall see that it does, it consists exactly of all roots of polynomials in F, and every root of a
polynomial with coefficients in F is actually the root of a polynomial with coefficients in F.

In fact, if a field is contained in an algebraically closed field, then we can see that it does in
fact have an algebraic closure quite directly.

PROPOSITION 6.8.13. Let F be a field, and suppose that M is an algebraically closed exten-
sion field of F. Then M contains a unique algebraic closure of F, equal to the field of elements
of M that are algebraic over F.

PROOF. Let F denote the field consisting of all elements of M that are algebraic over F. We
claim that F is algebraically closed. For this, suppose that f € F[x], and & € M be a root. As o
is algebraic over F, we have by Proposition 6.2.19 that o is also algebraic over F. That is, & is
an element of F. O

COROLLARY 6.8.14. The field Q of algebraic numbers in C is an algebraic closure of Q.

Using Zorn’s lemma, we may prove that every field has an algebraic closure. This is the first
result on extension fields in which we do not have a previously given field that contains the field
of interest, which makes the proof rather more tricky.

THEOREM 6.8.15. Every field F has an algebraic closure.

PROOF. Let F be a field. Let Q be a set that is the disjoint union of finite sets Ry for each
monic irreducible f € F[x], where the number of elements in R is the number of distinct roots of
f in a splitting field. (We will end up identifying the elements of Ry with roots of f, but they do
not start as such.) We may view F as a subset of Q by identifying a € F with the unique element
of R,_,. Let X be the nonempty set of all algebraic extensions of F, the underlying sets of which
are contained in Q in the sense if E € X, then every a € E lies in Ry for f € F x| the minimal
polynomial of oc. We put a partial ordering on X by E < E’ for E,E’ € X if and only if E C E’
and E’ /E is a field extension.

Let € be chain in X, and let K be the union of the fields in ¥. Then K is a field, as any two
elements o, € K satisfy o, B € E for some E € € (taking the larger of the two fields in which
« and f3 are contained by definition), and then & — B € E and a3~ € E if B # 0. Since K € X,
the chain % has an upper bound, and we may apply Zorn’s lemma to the set X to find a maximal
element F € X.

Let f € F[x], and let g € F[x] be a monic, nonconstant irreducible polynomial dividing f.
We then have that E = F[x]/(g) is an extension of F that is algebraic over F. We may view
the underlying set of E as being contained in Q as follows. If & € F[x] is a monic irreducible
polynomial with a root in E, we may identify those of its distinct roots in E that are not contained
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in F with distinct elements of R), that are not in F. Since F € X is maximal, we must have E = F.
In particular, f must factor completely in F [x].

It remains only to show that F is algebraically closed. Any root 8 of an irreducible polyno-
mial g € F[x] in an extension of F is algebraic over F by Proposition 6.2.19. Therefore, g divides
the minimal polynomial f € F[x] of B, which by the argument we have just given splits over F.
In particular, we have 8 € F. U

We next remark that the algebraic closure of any field is in fact unique up to isomorphism.

PROPOSITION 6.8.16. Let M and M’ be algebraic closures of a field F. Then there exists an
isomorphism ®: M — M’ fixing F.

PROOF. Theorem 6.8.8 applied to the case that ¢ = idp, E = M, and M = M’ implies that
there exists a field embedding ®: M — M’ extending F. To see that it is an isomorphism, note
that the image of @ is algebraic over F, being contained in M’, and algebraically closed over
F since a root of a polynomial in F[x] in M maps under ® to a root of the same polynomial.
Therefore, ®(M) is an algebraic closure of F contained in M’, and hence must be M” itself. ]

REMARK 6.8.17. As any two algebraic closures of a field F are isomorphic via an isomor-
phism that fixes F, we usually refer to “the” algebraic closure of F, denoting it by F.

REMARK 6.8.18. If E is an algebraic extension of F and E is the algebraic closure of E, then

it is also an algebraic closure of F. In particular, there exists an algebraic closure of F' containing
E.

6.9. Transcendental extensions

DEFINITION 6.9.1. A field extension E/F is totally transcendental if every element of E — F
is transcendental over E.

TERMINOLOGY 6.9.2. For a ring R and an indexing set /, we may speak of the polynomial
ring R[(x;)ie/] in the variables x; for i € I. It is simply the union over all finite lists i1, ...,i, of
distinct elements of / of the polynomial rings R[x; ,...,x;,|, with the operations being induced
by the operations on these rings. If R is commutative, then the rational function field R((x;);er)
is the fraction field of R[(x;)ic;]. This field is itself the union of the rational function fields
R(xXij,...,Xi,).

PROPOSITION 6.9.3. For any indexing set I, the field F((t;)icr) of rational functions in the
variables t; for i € I is purely transcendental over F.

PROOF. Consider first the extension F(¢)/F given by the F-rational function field in a single
variable 7. Let a = g € F(t)—F, where f,g € F|t] and g # 0. We may view f(x) and g(x) as ele-
ments of F[x]. Then o - g(x) € F(a)[x] is not an element of F[x], so the polynomial f(x) — ag(x)
is nonzero but does have a root 7, which is then algebraic over F (o). Since ¢ is transcendental
over F, this forces o to be as well. This gives the result for a single variable, and the case of
finitely many variables follows immediately by induction. Since F((#;)ics) is the union of the
rational function fields F(t;,,...,t;,) with iy,...,i, € I, the case of finitely many variables yields
the general case. U
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PROPOSITION 6.9.4. Every extension of fields is a totally transcendental extension of an
algebraic extension.

PROOF. Given a field extension K/F, we may consider its subfield E of elements algebraic
over F. If @ € K — F, then o cannot be algebraic over E. That is, if it were, then it would also
be algebraic over F in that E/F is algebraic. U

DEFINITION 6.9.5. Let K/F be a field extension.

a. We say that a collection (;);c; of elements of K, is algebraicaly independent over F, if
f(¢,,...,a;,) # 0 for all nonzero polynomials f € F[xi,...,x,] and distinct elements iy, ..., i,
for some n > 1.

b. We say that a subset S of K is algebraically independent over F, or F-algebraically in-
dependent, if f(sy,...,s,) # 0O for all nonzero polynomials f in n variables over F and distinct
S1y...,8, €S forsomen > 1.

Here are a couple of straightfoward lemmas.

LEMMA 6.9.6. Let K /F be a field extension, and let S C K be algebraically independent over
F. Thent € K is transcendental over the field F (S) generated by S over F if and only if SU{t}
is algebraically independent over F.

LEMMA 6.9.7. . A subset S of a field extension K of F is algebraically independent over F if
and only if each s € S is transcendental over K (S — {s}).

DEFINITION 6.9.8. A subset S of an extension K of a field F is a transcendence basis of K /F
if and only if S is algebraically independent over F and K is algebraic over F(S).

The following equivalent conditions for being a transcendence basis nearly mimic the usual
equivalent conditions for a subset of a vector space to be a basis. (That is, a subset is a basis if
and only if it is a maximal linearly independent subset and if and only if it is a minimal spanning
set.)

PROPOSITION 6.9.9. Let S be a subset of an extension K of a field F. The following are
equivalent:

i. Sis atranscendence basis of K/F,

ii. Sis amaximal F-algebraically independent subset of K,

iii. S is a minimal subset of K such that K is algebraic over F(S).

PROOF. The equivalence of (i) and (i1) is a direct consequence of Lemma 6.9.6, and the
equivalence of (i) and (iii) is a direct consquence of Lemma 6.9.7. O

THEOREM 6.9.10. Every F-algebraically independent subset of an extension K /F is con-
tained in a transcendence basis, and every subset of K that generates an extension over which K
is algebraic contains a transcendence basis.

PROOF. Let A be an F-algebraically independent subset of K. Let X be the set of F-
algebraically independent subsets of K containing A, ordered by inclusion. We may take the



6.10. SEPARABLE EXTENSIONS 193

union of any chain % in X, and it is F-algebraically independent in that any finitely many ele-
ments of the union on which we would test algebraic independence is contained in some element
of the chain. This union is an upper bound, and thus by Zorn’s lemma, X contains a maximal
element B. To finish the proof, we need only see that K is algebraic over F(B). But this is
clear, since if r € K — B is transcendental over F(B), then BU{t} is F-algebraically independent,
contradicting the maximality of B.

Now, let S C K be such that K/F(S) is algebraic. Consider the set Y of F-algebraically
independent subsets of K contained in S, again ordered by inclusion. Every chain has an upper
bound as before, so Y contains a maximal element 7. We need only see that K is algebraic over
F(T). If not, then since K is algebraic over F(S) and T C S, we must have that there exists
s € §—T that is transcendental over F(T ), and then T N {s} € Y, contradicting the maximality
of T. U

COROLLARY 6.9.11. Every extension of fields K/F has an intermediate field E such that
K /E is algebraic and E /F is totally transcendental.

We omit a proof of the following.

THEOREM 6.9.12. If S and T are transcendence bases of an extension K/F, then S and T
have the same cardinality.

In particular, we may make the following definition.

DEFINITION 6.9.13. We say that a field extension K/F has finite transcendence degree if it
has a finite transcendence basis, in which case the number of elements in a transcendence basis is
called the transcendence degree. Otherwise, we say that K/F has infinite transcendence degree.

6.10. Separable extensions

DEFINITION 6.10.1. Let F be a field. Let f € F[x] be nonzero, and let & € F be a root of f.
The multiplicity of a as a root of f is the largest positive integer m such that (x — o)™ divides f
in F[x].

EXAMPLE 6.10.2. Let f =x” —t € F,(¢)[x], which is irreducible. In F,(z)[x], we have
f=xP—t=(x—1"/P)P,
s0 1/7 has multiplicity p as a root of f.

LEMMA 6.10.3. Let F be a field, and let f € F|x] be irreducible. Then every root of f in an
algebraic closure F of F has the same multiplicity.

PROOF. Let @, € F be roots of f. Fix an field isomorphism o: F (o) — F(f) taking o to
B, and extend it to an embedding T: F — F. Let ©: F[x] — F[x] map induced by 7. If m denotes
the multiplicity of ¢, then
((x—a)") = (x—B)"

Since (x — @)™ divides f in F[x] and T(f) = f, the multiplicity of § is then at least m, but this
was independent of the choice of o and 3, so & and 8 have the same multiplicity. U
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COROLLARY 0.10.4. Let F be a field. The number of distinct roots of an irreducible polyno-
mial f € F|x] in an algebraic closure F of F divides the degree of f.

DEFINITION 6.10.5. Let F be a field. We say that a nonconstant polynomial f € Flx] is
separable if every root of f has multiplicity 1.

DEFINITION 6.10.6. Let F be a field and F be an algebraic closure of F. An element o € F
is separable over F if and only if its minimal polynomial is separable over F.

DEFINITION 6.10.7. We say that an algebraic extension E /F is separable if every o € E is
separable over F.

NOTATION 6.10.8. Let K and L be extensions of a field F. We will denote the set of field
embeddings of K into L that fix F by Embg(K,L). If K is algebraic over F and L is taken to be
a fixed algebraic closure of F, we will simply write Embg(K) (despite the dependence on the
algebraic closure).

LEMMA 6.10.9. Let E/F be a field extension, and let o € E be algebraic over F. Then o is
separable over F if and only if F(a)/F is separable.

PROOF. We prove the nontrivial direction, which results from several applications of Theo-
rem 6.7.9. Fix an algebraic closure F of F. For a given § € F(¢t), the number e = |Embg(F(f))|
is at most the degree [F(f) : F|, with equality if and only if f is separable. Since ¢ is separable
over F, we have

|Embr(F ()| = [F() : F].

Moreover, « is separable over F(f3) as well, since its minimal polynomial over F(f3) divides its
minimal polynomial over F. Thus, the number of embeddings of F(a) in F extending a given
embedding of F(f3) into F is exactly [F () : F(B)]. Therefore, we have that

[F(a) : F] = [F(a) : F(B)le,
which means that e = [F(B) : F], so B is separable. O

LEMMA 6.10.10. Let E be an algebraic extension of a field F, and let K be an algebraic
extension of E. If K /F is separable, then so are K /E and E /F.

PROOEF. Suppose that K/F is separable. By definition, if o € E, then a € K, so its minimal
polynomial over F is separable. Moreover, the minimal polynomial of any 8 € K over E divides
the minimal polynomial of 8 over F, so f is separable over E. O

We also have the following.

PROPOSITION 6.10.11. Let E/F be a finite extension. Fix an algebraic closure F of F.
a. The number of embeddings of E into F that fix F divides |E : F).

b. The number of embeddings of E into F that fix F is equal to |E : F| if and only if E/F is
separable.
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PROOF. Let e denote the number of embeddings of E in F. Write E = F(a, 0, ..., 0), and
letE;=F(o,0,...,0;—1) for1 <i<n+1. Then E;;| = E;(e;) for i < n, and by Theorem 6.7.9,
the number ¢; of embeddings of E; | into F extending an embedding ¢; of E; into F is the number
of distinct roots of the minimal polynomial of ¢; over E;. This number, in turn, is a divisor of
[Eit : Ej], with equality if and only if ¢; is separable over E;. Since

€ = He,-
i=1
and
n
[E:F]=]]Ei+ : E,
i=1

we therefore have that e divides [E : F|, with equality if and only if ¢; = [E; : E;] for each i, and
in particular, noting Lemma 6.10.10, if E/F is separable.

Conversely, suppose that e = [E : F]. For 8 € E, the number of distinct roots ¢ of its minimal
polynomial is the number of embeddings of F () into F fixing F. By the above argument, the
number of embeddings d of E into F extending one of those embeddings divides [E : F(f)], and
we have e = cd, so we must have ¢ = [F(B) : F]. Thatis, E /F is separable. O

PROPOSITION 6.10.12. Let K be an algebraic extension of a field F, and let E be an inter-
mediate field in K /F. Then K /F is separable if and only if K/E and E | F are.

PROOF. By Lemma 6.10.10, we are reduced to showing that if K/E and E/F are separable,
then K /F is separable. Proposition 6.10.11 implies this immediately if K /F is finite. In general,
take a € K, and note that any minimal polynomial g of & over E actually has coefficients in some
finite subextension E’ of E, in that E /F is algebraic. Then E’(@)/E’ is separable since g is, and
E'/F is separable by Lemma 6.10.10. As E’(o) /F is finite, we have the result. O

DEFINITION 6.10.13. We say an extension E /F is purely inseparable if E contains no non-
trivial separable subextensions of F'.

Proposition 6.10.12 tells us that it suffices to check the separability of an extension on a
generating set. It also implies the following.

COROLLARY 6.10.14. Let K/F be an algebraic extension. The set E of all separable ele-
ments in K /F is a subfield of K. Moreover, the extension K /E is purely inseparable.

DEFINITION 6.10.15. Let K/F be a finite extension, and let E be the maximal separable
subextension of F in K.

i. The degree of separability [K : F|s of K/F is [E : F].
ii. The degree of inseparability [K : F|; of K/F is [K : E].

Finally, let us investigate circumstances under which all finite extensions of a given field are
separable.

DEFINITION 6.10.16. A field F is perfect is every finite extension of it is separable.
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EXAMPLE 6.10.17. The field I, is perfect. To see this, recall the field IF» for n > 1 is equal
to the set of roots of the polynomial x”" — x, which are all distinct (since there need to be p”
of them). Since the minimal polynomial of any & € Fn, divides xP" — x, that polynomial is
separable, and therefore F,» /I, is separable.

LEMMA 6.10.18. Let E/F be an algebraic field extension. Let f € E|[x] be monic, and let
m > 1 be such that f™ € F|x]. Then, eitherm =0 in F or f € F|x].

PROOF. Suppose that f ¢ F[x]. Write f = Y qa;x' with n =degf and a, = 1. Let i <
n — 1 be maximal such that a; ¢ F. The coefficient ¢ of x(m=Dnti jn M js a polynomial in

the coefficients a;,a;41,...,a,—1 such that ¢ — ma; 1s a polynomial in a;1,...,a,—1, which are
elements of F. Since ¢ € F, we have ma; € F, which forces eitherm =0in F ora; € F. ]

THEOREM 6.10.19. Let F be a field of characteristic 0. Then F is perfect.

PROOF. If f € F|[x] is irreducible, then every root of f in an algebraic closure F occurs with
some multiplicity m > 1. It follows that

d

f=[lx—a)"

i=1
for some d > 1 and distinct @, @, ..., 0, € F, so f = g" for some g € F[x]. Since the charac-
teristic of F' is zero, Lemma 6.10.18 tells us that m = 1. O

The following tells us that the degree of inseparability of a finite field extension is the power
of the characteristic of the fields.

PROPOSITION 6.10.20. Let F be a field of characteristic p. If E/F is purely inseparable
and o € E, then o’ € F for some minimal k > 0, and the minimal polynomial of o over F is
- = (x— a)pk

PROOF. Fix an algebraic closure F of F containing E. Let f € F[x| be the minimal polyno-
mial of some element ¢ of E not in F. Again we have

(x—op)"

.:1&

T
I

f=

l
for some d > 1 and distinct ¢ty &, . .., @y, € F, so f = g™ for some g € F[x]. We must show that
mis a p-power and d = 1.

Write m = p*t with p{t and k > 1. The fact that f = (gpk)’ € F[x] forces g’ eF [x] by
Lemma 6.10.18. Since f is irreducible, we have t = 1.

k
Now set a; = o and write
d

f= H _al

i=1

Then f(x) = h(x” ) for h = [T, (x — a;). The polynomial & lies in F[x] since it has the same set
of coefficients as f, it is irreducible as any factorization of & would give rise to a factorization
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of f, and it has Ocl’k as a root. Also, the q; are distinct elements, since there are no nontrivial
pXth roots of unity in a field of characteristic p, which tells us that raising to the pth power is
injective. As E/F is purely inseparable and any root of & generates a separable extension of F,
we must have d = 1. U

COROLLARY 6.10.21. Let F be a field of characteristic p, and let E /F be a finite extension.
Then [E : F|; is a power of p.

We then have the following.

PROPOSITION 6.10.22. The degree of separability [K : F|s of a finite extension K /F is equal
to the number of embeddings of K fixing F into a given algebraic closure of F.

PROOF. Let E be the maximal separable subextension of F in K. We know that there are
[K : F]s elements of Embr(E). Any o € K — E has minimal polynomial (x — &)”" over E for
some 1 > 1, so & has only one conjugate over E in K. Thus, any ¢ € Embg(E) extends uniquely
to an embedding of E() in F. Replacing E by E () and repeating this last argument, we obtain
recursively that ¢ has a unique extension to all of K. Since every element of Embg(K) is an
extension of its restriction to E, the number of such elements is [K : F|s. U

We have the following multiplicativity of separable and inseparable degrees.

LEMMA 6.10.23. Let K/F be a finite extension and E an intermediate field in K /F. Then
[K:Fl]s=[K:E|K[E:F]s and [K:F]i=[K:E}[E:F].

PROOF. By the multiplicativity of degrees of field extensions, it suffices to consider separable
degrees. It also suffices by recursion to consider this in the case that K can be generated over £
by a single element o. Fix an algebraic closure F' of F. Given a field embedding of E into F
fixing F, the number of extensions of it to K = E (&) for any @ € K is [K : E]s by Corollary 6.7.10
and Proposition 6.10.22. The number of such embeddings being [E : F|s, we have the result. [J

Finally, we show that finite separable extensions can be generated by a single element.

DEFINITION 6.10.24. We say that a finite field extension E /F is simple if there exists @ € E
such that E = F(a). In that case, « is said to be a primitive element for E / F .

THEOREM 6.10.25 (Primitive element theorem). Every finite, separable field extension is
simple.

PROOF. Note that if F is finite, then it is isomorphic to IF» for some prime p and n > 1, and
by Proposition 6.5.5, it equals F (&) for some primitive (p”" — 1)th root of unity in F. So we may
assume that F' is infinite.

Since every finite extension is finitely generated by Corollary 6.2.10, it suffices by recursion
to show that if E/F is a finite field extension with E = F(a,f3) for some «, 3 € E, then there
exists ¢ € F such that E = F(a +cf3).

Since F is infinite, we can and do choose ¢ € F such that
/
o —«o

s
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for all conjugates o’ of o over F with o’ # o and all conjugates B’ of B over F with B’ # . Set
Y=o +cf. Then y# o' +cf’ for all o’ and B’ as above. Let f be the minimal polynomial of c,
and let h(x) = f(y—cx) € F(Y)[x]. Then h(B) = f(o) = 0 and h(B’) # O for B’. Since h shares
the root B with the minimal polynomial g of B over F, but not any other root, and the minimal
polynomial ¢ of B over F(y) divides both of the latter polynomials, we must have ¢ = x — f3,
which is to say that B € F(y), which then implies that o € F(y) as well. We therefore have
F(y)=F(a,B), as desired. O

REMARK 6.10.26. Much as with algebraic closure, we have the notion of a separable closure
of a field. A field L is separably closed if it contains a root of every monic, separable polynomial
with coefficients in L. Algebraically closed fields are therefore separably closed. A separable
closure of a field F is a separable extension F*P of F that is separably closed. If F is a subfield
of any separably closed field L, the set of all roots in L of all monic, separable polynomials in
Fx] is a subfield that is a separable closure of F. Separable closures exist: in fact, given a field
F, take an algebraic closure F of F, and it then contains a separable closure F*°P, which is the
union of all finite separable subextensions of F in F. Of course, if F is perfect, then the notions
of separable closure and algebraic closure of F' coincide.

6.11. Normal extensions

We extend the definition of a splitting field to include sets of polynomials.

DEFINITION 6.11.1. Let F be a field, and let S be a subset of F[x] consisting of nonconstant
polynomials. A splitting field E for S over F' is an extension of F such that every polynomial in
S splits in £ and which contains no proper subextension of F' in which this occurs.

EXAMPLE 6.11.2. The field Q(v/2,/3) is the splitting field of {x* —2,x> —3}. It is then
also the splitting field of (x*> —2)(x* — 3).

EXAMPLE 6.11.3. An algebraic closure F of a field F is a splitting field of the set of all
nonconstant polynomials in F'[x].

REMARK 6.11.4. An algebraic closure F of a field F will always contain a unique splitting
field for any subset S of F[x]. This field is equal to the intersection of all subfields of F in which
every polynomial in S splits.

DEFINITION 6.11.5. We say that an algebraic field extension E/F is normal if E is the
splitting field of some set of polynomials in F'[x].

LEMMA 6.11.6. If E/F is normal, then so is E/F', where F' is any intermediate field in
E/F.

PROOF. If E is the splitting field of a set S of polynomials in F[x]|, then by definition it
contains the splitting field of the set S over F’. If there were a proper subfield of E containing
F’ in which all the polynomials in S split, then E would not be a splitting field over F, so E is a
splitting field of S over F’ as well. U
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THEOREM 6.11.7. An algebraic field extension E /F is normal if and only if every field em-
bedding ® of E that fixes F into an algebraic closure F of F containing E satisfies ®(E) = E.
Moreover, under these conditions, E is equal to the splitting field over F of the set of minimal
polynomials over F of every element of E.

PROOF. Suppose first that E/F is normal, and let S C F[x] be a set of polynomials of which
E is a splitting field. Let ® € Embp(E). By definition, E is generated over F by the roots of
all polynomials in S. Let f € S, and let & € E be a root. By Theorem 6.7.9, we must have
that ®(a) = 8, where 8 is a root of f in F. But every root of f in F lies in the subfield E,
since f splits in E, so ®(a) € E. As every element of E may be written as a rational function
in the roots of polynomials in S with coefficients in F, we therefore have ®(E) C E. Noting
Proposition 6.7.15, we then have that ®(E) = E.

Conversely, suppose that ®(E) = E for every ® € Embr(E). Let a € E, and let f be its
minimal polynomial over F. Then for any root 8 € F of f, we have an isomorphism ¢: F(ct) —
F(B) sending & to . We may then extend the resulting embedding F (o) — F to an embedding
®: E — F. Since ®(E) = E, we therefore have 8 € E. So E contains the splitting field of every
polynomial of F' that has aroot in E. Since E is algebraic and therefore consists entirely of roots
of polynomials in F, it is therefore equal to said splitting field. U

COROLLARY 6.11.8. Let E/F be a normal field extension, and let f € F[x| be an irreducible
polynomial that has a root in E. Then f splits in E.

PROOF. This follows directly from the final statement of Theorem 6.11.7. U
For composite extensions, we have the following.

PROPOSITION 6.11.9. Let F be a field and F an algebraic closure of F. Suppose that E and
K are subfields of F that are normal over F. Then EK /F is normal as well.

PROOF. We note that any ¢ € Embp(EK) restricts to embeddings of E and of K into F.
Since E/F and K /F are normal, we have @(E) = E and ¢(K) = K. Every element in EK is a
rational function in the elements of E UK, so @(EK) is contained in EK (and thus equal to EK)
as well. By Theorem 6.11.7, EK/F is normal. O

DEFINITION 6.11.10. Let E be a field. An automorphism of E is an isomorphism of rings
from E to itself.
EXAMPLES 6.11.11.

a. The identity map idr is an automorphism of any field F', known as the trivial automor-
phism. It is the identity element in Aut(F), and it is often denoted by 1.

b. Complex conjugation is an automorphism of C fixing R.

c. The map ¢: Q(v/2) — Q(v/2) sending a+ bv/2 to a — b\/2 for all a,b € Q is an automor-
phism of Q(v/2).

d. The only automorphism of Q is the trivial automorphism, as the fact that ¢ (1) = 1 forces
¢(a) = a for all a € Q using the properties of a ring homomorphism.
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e. The Frobenius map @, : Fp — Fp defined by ¢, (x) = x” is an automorphism of Fp fixing
Fp.

REMARK 6.11.12. The set of automorphisms of a field form a group under composition.
That is, the composition of two automorphisms is also an automorphism, as is the inverse of one.

DEFINITION 6.11.13. The automorphism group Aut(E) of a field E is the group of automor-
phisms of E with the operation of composition.

Often, we are interested in automorphisms fixing a subfield F of E. It is easy to see that these
form a subgroup of Aut(E).

NOTATION 6.11.14. We let Autr(E) denote the subgroup of Aut(E) for a field E consisting
of automorphisms that fix a subfield F.

REMARK 6.11.15. If E is of characteristic 0, then Autg(E) = Aut(E).

EXAMPLE 6.11.16. Note that C = R(i), and i has minimal polynomial x*> 4+ 1. Any automor-
phism of C fixing R must take i to i or —i, which then determines the automorphism uniquely.
That is, the group Autr(C) consists of exactly two elements, the trivial automorphism and com-
plex conjugation.

The following is an immediate corollary of Theorem 6.11.7, Proposition 6.10.11a, and Propo-
sition 6.10.22.

COROLLARY 6.11.17. Let E be a finite normal extension of a field F. Then Embp(E) =
Autp(E), and the order [E : F|s of this group divides [E : F|.

EXAMPLE 6.11.18. Consider the splitting field E = Q(®, v/2) of x> — 2, where o is a prim-
itive cube root of unity. Since E is normal, any embedding of E in an algebraic closure of Q
containing E has image E, so gives rise to an automorphism of E. Theorem 6.7.9 then tells us
that we may choose such an automorphism uniquely as follows. First, we choose another root
of the minimal polynomial x2+x+1 of @ and send @ to it, i.e., to @ or @?. This yields an au-
tomorphism of Q(®). Then, we extend this automorphism to an automorphism of E by sending
/2 to a root of its minimal polynomial over Q(®). Since the degree of Q(®), i.e. 2, is prime to
the degree of Q(+/2), i.e. 3, over Q, we have [Q(®,v/2) : Q(w)] = 3, so x> — 2 is still irreducible
over Q(w). Therefore, we can send V2 to any of V2, ©V/2, and ©*+/2. That is, there are exactly
6, or [Q(®,v/2) : Q], elements of Autg(Q(®, v/2)).

6.12. Galois extensions

DEFINITION 6.12.1. An algebraic field extension is said to be Galois if it is both normal and
separable.

REMARK 6.12.2. By Theorem 6.10.19, an algebraic extension of a field of characteristic O is
Galois if and only if it is normal.

EXAMPLES 6.12.3.
a. The extensions Q(+/2) and Q(i) of Q are Galois.
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b. The extension Q(+/2)/Q is not Galois. It is separable but not normal.
c. The extension F,(t!/7) /F,(t) is not Galois. It is normal but not separable.
d. The field Q is a Galois extension of Q.

e. For any n > 1, the field F» is a Galois extension of [),.

DEFINITION 6.12.4. Let E/F be a Galois extension. The Galois group Gal(E/F) of E/F is
the group of automorphisms of E that fix F.

REMARK 6.12.5. The group Gal(E/F) is just Autz(E) in our earlier notation. The nota-
tion Gal(E/F) is used only for Galois extensions, whereas Autg(E) can be used for arbitrary
extensions.

NOTATION 6.12.6. We often write
E

F

to indicate that E is a field extension of F, and if E/F is Galois with Galois group G, we indicate
this by the diagram
E

G
F.

Drawings such as these are known as field diagrams and are useful in illustrating examples.

We will be concerned here only with finite Galois extensions. The following is immediate
from Corollary 6.11.17 and Proposition 6.10.11b.

PROPOSITION 6.12.7. Let E/F be a finite Galois extension of fields. Then Gal(E/F) is a
finite group of order [E : F).

LEMMA 6.12.8. Let E be a field, and let G be a subgroup of Aut(E). Then the set of elements
of E that are fixed by every element of G is a subfield of E.

PROOF. Leta,b € E with b # 0. Let 6 € G. Then we have
cla—b)=0c(a)—c(b)=a—b and o(ab™')=0c(a)o(b) ' =ab™!,
soa—b and ab~! are elements of E fixed by G. U
With Lemma 6.12.8 in hand, we may make the following definition.

DEFINITION 6.12.9. Let G be a subgroup of Aut(E). The fixed field EC of E under G is the
largest subfield of E fixed by G.

Note the following.

LEMMA 6.12.10. Let K/F be a Galois extension, and let E be an intermediate field in K /F.
Then K is a Galois extension of E. Moreover, E /F is Galois if and only if it is normal.
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PROOEF. The extension K/E is normal by Lemma 6.11.6 and separable by Lemma 6.10.10.
The extension E /F is also separable by Lemma 6.10.10, hence the second claim. U

PROPOSITION 6.12.11. Let K/F be a finite Galois extension. Then the fixed field of K under
Gal(K/F) is F.

PROOF. Let E = FGal(K/F), Clearly F C E, and we must show the other containment. By
Lemma 6.12.10, the extension K/E is Galois. On the other hand, every element of Gal(K/F)
fixes E, so Gal(K/F) is equal to its subgroup Gal(K/E) of automorphisms fixing E. By Propo-
sition 6.12.7, we have that

[K:F]=|Gal(K/F)|=|Gal(K/E)| = [K : E],
which means that [E : F| = 1, and therefore E = F. O

NOTATION 6.12.12. If K/F is a finite Galois extension and E is an intermediate field, then
the restriction of ¢ € K to an embedding of E into K is denoted o|g.

REMARK 6.12.13. If K/F is a finite Galois extension and E is an intermediate field in K/F
such that E /F is Galois, then o|g is an automorphism of E, so ¢|g € Gal(E/F).

DEFINITION 6.12.14. Let K/F be a finite Galois extension, and let E be an intermediate
field in K/F such that E/F is Galois. Then the restriction map from K to E (over F) is the
homomorphism of groups Gal(K/F) — Gal(E/F) takes ¢ € Gal(K/F) to o|g.

LEMMA 6.12.15. Let K/F be a Galois extension, and let E be an intermediate field in K / F.
Then there exists a bijection of sets

resg: Gal(K/F)/Gal(K/E) — Embrg(E), resg(0cGal(K/E)) = O|g
for o € Gal(K/F), where F is an algebraic closure of F containing K.

PROOF. Let 6,7 € Gal(K/F). We have that o|g = 7| if and only if 6~ ' fixes E, or
equivalently, is an element of Gal(K/E). In other words, o|g = 7| if and only if 6 Gal(K /E) =
7Gal(K/E). Therefore, resg is both well-defined and one-to-one.

Given an embedding 7 of E into F fixing F, we may extend it to an embedding ¢ of K into
F. Since K/F is normal, ¢ is an automorphism of K. That is, ¢ is an element Gal(K/F) with
O|g = 7, so resg is surjective. O

PROPOSITION 6.12.16. Let K/F be a Galois extension, and let E be an intermediate field in
K/F. Then E/F is Galois if and only if Gal(K/E) is a normal subgroup of Gal(K /F). IfE/F is
Galois, then restriction induces an isomorphism

resg: Gal(K/F)/Gal(K/E) = Gal(E/F).

PROOF. If E/F is Galois, then the restriction map from Gal(K/E) to Gal(K/F) is a surjec-
tive homomorphism with kernel exactly Gal(K/E) by Lemma 6.12.15. So, Gal(K/E) is normal
in Gal(K/F), and we have the stated isomorphism.

Conversely, suppose that Gal(K/E) is a normal subgroup of Gal(K/F). We already know
that E/F is separable by Lemma 6.10.10. To show that E/F is normal, it suffices by Theo-
rem 6.11.7 to show that ¢ () € E for all o € E and field embeddings ¢ : E — F fixing F, where
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F is an algebraic closure of F containing E. Since K /E is Galois, and since E is the fixed field of
Gal(K/E), we have () € K, and we will have ¢(a) € E if we can show that o(¢(a)) = ¢ ()
for all o € Gal(K/E). Since K/F is Galois, we may lift ¢ to 7 € Gal(K/F). The desired equality
then amounts to 67(o) = t(a), or 7 'o7(a) = . Since Gal(K/E) is normal in Gal(K /F), we
have that T~ o7 fixes E, and in particular c. O

The final ingredient we need is as follows.

PROPOSITION 6.12.17. Let K/F be a finite Galois extension, and let H be a subgroup of
Gal(K/F). Then we have Gal(K/K") = H.

PROOF. By definition, H fixes K, so we have H < Gal(K/K*). Since K /F is separable, so
is K/K™, and the primitive element theorem tells us that K = K (o) for some o € K. Define

f= H(x—G(OC)) € K|[x].

ocH

For o € H, let 6: K[x] — K|[x] denote the induced homomorphism. We then have &(f) = f
for all 6 € H, which means that f € K”[x]. In particular, the minimal polynomial of ¢ over
K* divides f, and the degree of that polynomial is [K : K], while the degree of f is |H|. This
implies that [K : K] < |H|, which since H < Gal(K/K), forces equality on both counts.  [J

DEFINITION 6.12.18. Let P and Q be sets of subsets of a set X and a set Y, respectively, and
suppose that ¢ : P — Q is a function. We say that ¢ is inclusion-reversing if whenever A, B € P
with A C B, one has ¢(B) C ¢(A).

We may now state the fundamental theorem of Galois theory, which is essentially just a
combination of results we have proven above.

THEOREM 6.12.19 (Fundamental theorem of Galois theory). Let K/F be a finite Galois
extension. Then there are inverse inclusion-reversing bijections

v
{intermediate fields in K /F} —— {subgroups of Gal(K/F)}
0

defined on intermediate fields E in K /F and subgroups H of Gal(K /F) by
v(E)=Gal(K/E) and 6(H)=K".
Moreover, for such E and H, we have
K :E]=|Gal(K/E)| and |H|=[K:K™].

These correspondences restrict to bijections
v
{normal extensions of F in K} —— {normal subgroups of Gal(K/F)}.
0

Moreover, if E is normal over F (resp., H I Gal(K/F)), then restriction induces an isomorphism

Gal(K/F)/Gal(K/E) =% Gal(E/F) (resp., Gal(K/F)/H = Gal(K" /F)).
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PROOF. Let E and H be as in the statement of the theorem. We have that
0(w(E)) = 0(Gal(K/E)) = K9 K/F) =
by Proposition 6.12.11 and
w(6(H)) = w(K") = Gal(K/K") =H

by Proposition 6.12.17, so 8 and y are inverse bijections. The inclusion-reversing properties of
0 and y are immediate from the definitions of Galois groups and fixed fields. The statements
on orders and indices then follow immediately from Proposition 6.12.7, and the statements on
normal extensions and subgroups then become simply Proposition 6.12.16. U

EXAMPLE 6.12.20. The extension Q(+/2,i)/Q is Galois with Galois group isomorphic to
the Klein four group. We have the complete field diagram

Q(v2,i)

7.)27 7.)2Z
7.)27.

z/22)>  Q(v/-2) Q)

7)27
Z[2Z 7.)27

Q.

That is, Gal(Q(v/2,i)/Q) is abelian with two generators ¢ and 7 such that 6(v/2) = —v/2,
o(i) =i, t(v/2) =2, and ©(i) = —i.

EXAMPLE 6.12.21. Let G = Gal(Q(®, v/2)/Q), where o is a primitive 3rd root of unity. We
have the field diagram

Q(@,V?2)
Z/3Z 7.)27.
/ m
Q(w) G Q(V2) Q(wv?2) Q(w?*V2)
% ///
Q

As a consequence of the fundamental theorem of Galois theory, we have G = §3, since there are
only two groups of order 6 up to isomorphism and the cyclic one has a unique subgroup of order
3. It follows that our field diagram contains all of the intermediate fields in Q(®, v/2)/Q. The fact
that the extension Q(+/2) is not Galois for 0 < i < 2 corresponds to the fact Gal(Q(®, v/2)/Q(v/2))
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is not a normal subgroup of G, and the other two non-normal intermediate fields correspond to
conjugate subgroups.

One can also see this explicitly: note that Gal(Q(w, v/2)/Q(w)) is generated by an element
7 such that 7(v/2) = @+/2, and Gal(Q(w,v/2)/Q(v/2 )) is generated by an element ¢ such that
o(®w) = w?. Then 7> =1, 6> = 1, and

oto l(w)=01(w?) =c(0?)=0=1"()
o106 ' (V2) =061(v2) = o(0v2) = 0*V2 =11 (V2),
so0to~ ! = 17!, and G = (0, 1) is a nonabelian group of order 6, isomorphic to D3 22 S;.

More generally, we have the following results on Galois groups of composite fields.

PROPOSITION 6.12.22. Let L/F be an algebraic extension, and let K and E be extensions
of F in L such that K /F is finite Galois. Then EK/E and K/(E NK) are finite Galois, and the
restriction map

resg: Gal(EK/E) — Gal(K/(ENK)), resg(0) = ok for o € Gal(EK/E)
is an isomorphism.

PROOF. First, note that EK /E is normal as it is the splitting field of the same set of polyno-
mials in F[x| that K is over F. Since K/F is finite and separable, we have K = F(f3) for some
B € K, so EK = E(B), and the fact that the minimal polynomial of f is separable over F tells
us that it is over E as well, and therefore EK/E is separable as well. Thus, EK/E is Galois, and
K/(ENK) is Galois by Lemma 6.12.10.

Now, suppose that ¢ € Gal(EK/E) and resg(0) = o|g = 1. By definition, we have o|g = 1
as well, so o fixes every rational function over E in 8, and therefore ¢ fixes EK, which is to say
that 0 = 1, or resg is injective. Now, let H be the image of resg. The elements of K fixed by H
are exactly the elements of K fixed by Gal(EK/E), so we have

and therefore H = Gal(K/K") = Gal(K/(E NK)), so resk is surjective as well. O

PROPOSITION 6.12.23. Let L/F be an algebraic extension, and let K and E be finite Galois
extensions of F in L. Then EK /F and E N K /F are Galois, and the product of restriction maps

n: Gal(EK/F) — Gal(K/F) x Gal(E/F), n(o) = (olk,0|g) for o € Gal(EK/F)
is an injective homomorphism that is an isomorphism if and only if ENK = F.

PROOF. That EK/F is separable is Corollary 6.10.12 applied to EK/E and E/F, and that
it is normal is Proposition 6.11.9. If B € E N K, then both E and K contain all roots in F of its
minimal polynomial, so £ N K also contains these roots, hence is normal over K. That ENK is
separable over F follows from the fact that E is.

The kernel of 7 is exactly those elements of Gal(EK /F) that fix both K and E, and hence fix
all of EK, since every element of EK is a rational function in the elements of E and K. Thus 7 is
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injective. Since 7 is injective, it is surjective if and only if the orders of its domain and codomain
are the same, which is to say if and only if

[EK:F|=I[E:F|[K:F].
By Proposition 6.12.22, we have
[EK:F)=[EK:K|[K:F|=[E:ENK]|K:F],
so 7 is surjective if and only if ENK = F. U

DEFINITION 6.12.24. Let K/F be a Galois extension.

a. We say that K/F is abelian if Gal(K /F) is abelian.

b. We say that K /F is cyclic if Gal(K/F) is cyclic.

EXAMPLES 6.12.25. We revisit Examples 6.12.20 and 6.12.21.

a. The field Q(i,+/2) is the compositum of the normal extensions Q(i) and Q(+/2), which
both have Galois group 7/27 and satisfy Q(i) N Q(v/2) = Q. By Proposition 6.12.23, we have
Gal(Q(i,V/2)/Q) = (Z/27)?. The extension Q(i,/2)/Q is abelian.

b. Take G = Gal(Q(w, v/2)/Q). Take K = Q(®) and E = Q(~+/2). Then G = Gal(EK/Q),
and we set N = Gal(EK/K) and H = Gal(EK/E). The map resg : G — Gal(K /Q) is a surjection
with kernel N that restricts to an isomorphism on H by Proposition 6.12.22. In particular, H is a

complement to N, and G is a semidirect product N x H, nontrivial as E/Q is not normal. In our
case, N =27 /37 and H = 7 /27, so G is nonabelian of order 6, isomorphic to S3.

The following example is worth being stated as a proposition, as it tells us that all Galois
groups of all extensions of finite fields are cyclic.

PROPOSITION 6.12.26. Let q be a prime power and n > 1. Then Fyn /F, is cyclic of degree

PROOF. The group Gal(F,/F,) contains the Frobenius element ¢, with ¢, (o) = a? for all
o € Fyn. For ¢ (a) = a? to equal o would mean that that o is a (¢" — 1)th root of unity, which
in turn could only happen for all o € Fy» if and only if r is a multiple of n. That is, the order of
@, is n. Therefore, G, must be cyclic of order n, generated by ¢@,. We have that [F,» is a subfield
of Fyn if and only if m divides n, in which case Gal(F /Fyn) = (@]") is a cyclic group of order
n/m. In particular, every finite Galois extension of finite fields is cyclic. U

We can also determine the structure of the Galois groups of cyclotomic extensions of Q. We
note that the extension Q(&,)/Q is Galois in that Q(&,) is the splitting field of x" — 1.

TERMINOLOGY 6.12.27. Forn > 1 and a € (Z/nZ)*, we will take {9 to be {? for any a € Z
with a = d+nZ.

DEFINITION 6.12.28. For every n > 1, the nth cyclotomic character is the unique map
Xn: Gal(Q(G)/Q) = (Z/nZ)"
such that 6(§,) = Cn” for all o € Gal(Q(¢,)/Q).
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PROPOSITION 6.12.29. The nth cyclotomic character is an isomorphism for every n > 1.

PROOF. We note first that y, is a homomorphism. That is, for 0,7 € Gal(Q(&,)/Q), we
have

P = o1(5) = o (G = o (G @ = g,

Next, note that J,, is injective since an element of Gal(Q({,)/Q) is determined by its value on
the generator , of the extension. Finally, Theorem 6.6.11 implies that [Q({,) : Q] = ¢(n), so
the orders of the two groups are the same. U

COROLLARY 6.12.30. The nth cyclotomic field is a finite abelian extension of Q.

REMARK 6.12.31. The Kronecker-Weber theorem, a proof of which is beyond the scope of

these notes, states that every finite abelian extension of Q is contained inside some cyclotomic
field.

6.13. Permutations of roots

We first recall that every finite Galois extension is the splitting field of some polynomial (and
in fact we may take that polynomial to be irreducible by the primitive element theorem).

THEOREM 6.13.1. Let K/F be the splitting field of a separable degree n polynomial in F|x].
Then Gal(K/F) is isomorphic to a subgroup of Sp.

PROOF. Let K be the splitting field of f € F[x], and let X be the set of n roots of f. For o € X
and o € Gal(K/F), we have f(o(a)) = o(f(a)) =0, so o(a) € X. In other words, Gal(K /F)
acts on X, and thus we have an induced permutation representation p: Gal(K/F) — Sx. Note
that K is given by adjoining the elements of X to F, so if o € Gal(K/F) fixes every element of X,
it fixes every element of K and is therefore tirival. Thus, the action of Gal(K/F) on X is faithful,
so p is injective. U

COROLLARY 6.13.2. Let K/F be the splitting field of a separable degree n polynomial in
Fx]. Then [K : F| divides n!.
EXAMPLES 6.13.3. Again, we revisit Examples 6.12.20 and 6.12.21.

a. The field Q(/2, ) is the splitting field of (x> —2)(x*> + 1) over Q, which has 4 roots. The
image of Gal(@(\/i, i)/Q) under any permutation representation on these roots is conjugate to

((12),(34)).

b. If we label the roots of x> — 2 in the order v/2, ©v/2, 0?+/2, then we have a permutation
representation

p: G=Gal(Q(w,V2)/Q(w)) =% S;.
We have G = (o, 7) as in Example 6.12.21 with p(c) = (23) and p(7) = (1 2 3).

One might ask if every subgroup of S, and therefore every finite group, occurs as the Galois
group of some extension of fields. As we shall see, the answer is yes.
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DEFINITION 6.13.4. Let F be a field, and let x1,x»,...,x, be indeterminates. For 1 < k <n,
the kth elementary symmetric polynomial s, i in F[x1,x2,...,X,] is

Snk(X1,- -0 %) = Z XiyXip =+~ Xiy -
1<iy<iy<o-<ix<n

REMARK 6.13.5. Put differently, s; is the sum over the subsets of X;, = {1,2,...,n} of order
k of the products of variables with indices in the sets. That is,

Snk(X15. .. ,x0) = Z Hx,—.

PCX, icP
|P|=k

As a consequence, i , is a sum of (Z) monomials.

EXAMPLES 6.13.6. We have 5,1 = x; +x2+ - +x, and s, , = x1x2---x,. For n =73, we
also have s3> = x1x2 +x1x3 +x2x3, and for n = 4, we have

§42 = X1X2 + X1X3 + X1 X4 + X2X3 + XX4 + X3X5 and §4.3 = X1X2X3 + X1 X2X4 + X1 X3X4 + X2X3X4.

PROPOSITION 6.13.7. The function field F(x1,xa,...,x,) is a finite Galois extension of its
subfield F (sp.1,5n2,- .- ,Snn), With Galois group isomorphic to Sy,.

PROOF. Let E = F(Sp,1,51.2,---,50,n) and K = Q(x1,x2,...,x,). The polynomial

n

) =[]0 —x) = Zoy € F

i=1
has roots x; with 1 <i < n. Thus K is the splitting field of f over E. To p € §,,, we can associate
a unique ¢(p) € Autp(K) by

¢(p)<h(.X] 3 K25 7xn)) = h(xp(l)7xp(2)7 cee 7xp(n))
for h € K. As S, acts on the set of subsets of X, of order k, Remark 6.13.5 implies that

O(p)(Snk) = sn for all k, so ¢(p) € Gal(K/E). The map ¢: S, — Gal(K/E) is a homomor-
phism that is injective by definition and surjective by Theorem 6.13.1. U

We have the following consequence.

COROLLARY 6.13.8. Every finite group is isomorphic to the Galois group of some field ex-
tension.

PROOF. Let G be a group, and choose n such that H is isomorphic to a subgroup of S,,,
which exists by Cayley’s theorem. Proposition 6.13.7 yields an extension K/E of fields with
Gal(K/E) = S,. Then G is isomorphic to some subgroup H of Gal(K/E), and we have H =
Gal(K/K™). O

DEFINITION 6.13.9. Let F be a field. The discriminant of a monic, degree n polynomial
fE€Fx|is

1<i<j<n

where f =[], (x — o) in a splitting field of F.
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The following lemma is obvious from the definition of the discriminant.

LEMMA 6.13.10. The discriminant of a monic polynomial f is O if and only if f is insepara-
ble.

In fact, the discriminant of a monic polynomial lies in the ground field of the extension, from
which it easily follows that it is well-defined independently of the choice of splitting field in its
definition.

PROPOSITION 6.13.11. The discriminant of a monic polynomial f € F x| lies in F.

PROOF. By Lemma 6.13.10, we may suppose that f is separable. Let K be a splitting field of
F,andlet 6 € Gal(K/F). As o permutes the roots ¢; of f, it induces an element p € S, such that
o(a) = a,(;). Taking A = []j<;<j<u(xi — x;), we know by Proposition 4.12.1 that p(A) = £A

for the standard action of §,, on polynomials in variables x,x7,...,x,. But then p(Az) = A2, so
plugging in o; for x;, we obtain 6(D(f)) = D(f). Since D(f) is fixed by Gal(K/F), it lies in
F. O

REMARK 6.13.12. The proof of Proposition 6.13.11 shows that an element of Gal(K/F) for
the splitting field K of a separable polynomial f of degree n induces an even permutation of the
roots of f if and only if it fixes [Tj<; j<, (0t — ;).

As a direct consequence of Remark 6.13.12, we have the following.

PROPOSITION 6.13.13. The discriminant D(f) of a monic, separable polynomial f € F|x| is
a square in F* if and only if the Galois group of its splitting field has image a subgroup of A,
via its permutation representation on the roots of f.

We explore the consequences of Proposition 6.13.13 for polynomials of low degree.

EXAMPLE 6.13.14. Let f = x> +ax+b € F[x]. Let a, B be the roots of F in an algebraic
closure of F. The extension F(a)/F is normal, being that it is of degree 1 or 2, so F(at) = F(f3).
Note that —a = @+ 8 and b = a3, so

D(f) = a®+ B> —2ap = a* —4b.
If char F = 2, then a®> — 4b = a?, so Proposition 6.13.13 tells us that F (o) /F is trivial if a # 0
and inseparable (possibly trivial) if a = 0. If char F # 2, the extension F(a)/F is separable, so

Proposition 6.13.13 again tells us that a> — 4b is a square if and only if & € F. This can also be
seen by the quadratic formula, which tells us in particular that F(«) = F (/D) if char F # 2.

The case of degree 3 polynomials is rather more involved.

EXAMPLE 6.13.15. Suppose char F # 3. Let f = x> +ax?> +bx+c € F[x]. Setting y = x+ %
we obtain
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Set p = 3(—a*+3b) and g = 5-(2a® —9ab+27c), and let g = x> + px+q € F[x].
Let K be a splitting field of f over F, and let &, B,y € K be the roots of g. Then oc+ 8 +y =0,
s32(0,B,7) = p, and —a By = q. Note that this implies that

(6.13.1) 0=(a+B+y)>*=0>+B>+7V+2p

and
(6.13.2)

P’ =(aB+ay+py)?=20By(a+B+7)+a’ B+ o’y + By = o’ B2+ &’y + 7.
Note that the formal derivative of g is
3%+ p =s32(x—a,x—B,x—7),

and we can plug « into this, for instance, to obtain

307 +p=(a—p)(o—7).

Doing this also for 8 and y and taking the ordering of the differences into account, we obtain by
(6.13.1) and (6.13.2) that

—D(g) = (30 +p)(38°+p) (37" +p)
=270*B%Y’ +9p(a® B> + &y’ + B*Y)) +3p* (> + B2+ V) + p°
=27¢4*+9p> —6p> + p* =274° +4p°>.

That is, D(g) = —4p> —274%. Since the roots of f and g differ by 3 the differences of the roots
of the two are the same, so

D(f) = —4p® —27¢% = a®b* — 4a°c + 18abc — 4b° — 272

Now, suppose that f is irreducible. Then Gal(K/F) is isomorphic to a subgroup of S3 of
order divisible by 3, so it is either isomorphic to A3 = Z /37 or S3, depending on whether D(f)
is a square or not, respectively. If D(f) € F*2, then K is given by adjoining any single root of
f. IfD(f) & F*2, then K has a unique intermediate extension F(D(f)'/?) of degree 2, and K is
given by adjoining to this any root of f.

We go into a bit less detail for polynomials of degree 4.

EXAMPLE 6.13.16. Let K be the splitting field of a monic, irreducible, separable polynomial
f of degree 4 in F[x]. If D(f) € F*2, then Gal(K/F) is isomorphic to a subgroup of A4 of degree
divisible by 4, so A4 or the Klein 4-group V4. If D(f) ¢ F*?, then Gal(K/F) is isomorphic to
Z/4Z, Dg, or S4.

Let ay, ap, 03,04 be the roots of f, and set B3 = (o1 + ) (03 +0y4), fr = (a1 +3) (2 + ),
and B; = (o) + a4) (02 + 03). The set {Bi, B2, B3} is a union of orbits under Gal(K/F), so we
can set

g(x) = (x—=P1)(x— B2)(x — B3) € F[x]
and let E be the splitting field of g over F.
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Let px: Gal(K/F) — S4 (resp., pe: Gal(E/F) — S3) be the permutation map for the given
ordering of the @; (resp., ;). Then we have 7: S4 — S3 with kernel ((1 2)(34),(1 3)(24)) and
restricting to the identity on ((1 2), (12 3)) such that 7(px (o)) = pe(o|g) forall o € Gal(K/F).

If g splits, then Gal(K/F) = V4. If g factors as a linear polynomial times an irreducible
quadratic, then Gal(K /F) = Dy if f is irreducible over F(D(f)'/?) and Gal(K /F) = 7./4Z oth-
erwise. If g is irreducible and D(g) € F*?2, then Gal(E /F) = 7./37Z, which forces Gal(K /F) = A4
since 4 divides [K : F|]. If g is irreducible and D(g) is not a square in F, then Gal(E/F) = S3,
which forces Gal(K/F) = S.

We next present a proof of the fundamental theorem of algebra that uses Galois theory. We
will use the fact that every polynomial of odd degree has a real root (by the intermediate value
theorem). We also recall that quadratic polynomials in Clx] split completely, as is seen via the
quadratic formula and the fact that complex numbers have square roots in C.

PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA. First, let f € C[x] be monic and
irreducible, and let f € C[x] given by applying complex conjugation to its coefficients. The
polynomial g = ff lies in R[x] since complex conjugation permutes f and f, and it suffices to
show that g has a root in C. So, we can and do assume that f € R[x].

Let n = deg f, and write n = 2km for some odd m and k > 0. If k = 0, then f has odd degree
and hence a real root, so we suppose k > 1. By induction, suppose we know that all polynomials
in R[x] of degree 25=1 times an odd number have a root in C. Let ¢, ¢ty, . . ., 0, be the roots of f
in a splitting field Q of f over C.

For t € R, define

h,(x): H (x—(OCi—l—OCj—i—tOCiOtj)) GQ[X].
1<i<j<n
Any permutation of the o;’s preserves &, so Gal(Q/R) fixes h;, and thus i, € R[x]. Note that
degh, = (’21) =251/ for some odd m/, and thus by induction /4, has a root in C, which necessarily
has the form o; + ot + ;o for some i < j. In fact, we have such a root for every ¢ € R, and
since that is an infinite set of 7, there exist i < j and s, € R such that o; + a; + so;or; and
o; + o +ta;a; are both in C from which it follows that o; + o; € C and o;a; € C. But then
(x — o) (x — a;) € C[x], which being quadratic, has a root in C. O
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CHAPTER 7
Topics in group theory

7.1. Semidirect products

PROPOSITION 7.1.1. Let N and H be groups and ¢ : H — Aut(N) be a homomorphism. Then
there exists a group G with underlying set N X H and group operation

(n,h) - (n',h) = (n@(h)(n), hH)
forall n,n’ € N and h,h' € H. Moreover, H={e} xH < Gand N =N x {e} < G. In fact, in G
we have @(h)(n) = hnh™! for allh € H and n € N.

PROOF. We note that (e,e) € G is an identity, that (@(h~")(n~1),h~") is inverse to (n,h),
and we leave it to the reader to check associativity. Clearly H,N < G by definition of the multi-
plication, and we check that for h € H and n € N, we have

hnh™" = (e,h)(n,e)(e,h™") = (e,n)(n,h™") = (@(h)(n),e) = @(h)(n) € N.
U]
DEFINITION 7.1.2. For groups N and H and a homomorphism ¢: H — Aut(N), the group

defined by Proposition 7.1.1 is known as the semidirect product of N and H relative to ¢ and is
denoted by N X H.

EXAMPLE 7.1.3. If H and N are groups and ¢@: H — Aut(N) satisfies ¢(h) = idy for all
h € H, then H x¢ N is the direct product H X N.

EXAMPLE 7.1.4. Let ¢: (Z/nZ)* — Aut(Z/nZ) be the isomorphism taking a € (Z/nZ)*
to multiplication by a. Set G = Z/nZ x ¢ (Z/nZ)*. Then G = Aff(Z/nZ) via (b,a) — (%),
so G is also isomorphic to Aut(D,,) by Proposition 4.3.5.

PROPOSITION 7.1.5. Let G be a group with normal subgroup N and subgroup H such that
NNH = {e} and NH = G. Define a homomorphism @: H — Aut(N) by ¢(h)(n) = hnh~!. Then
we may define an isomorphism of groups by

V:NxoH— G, y(n,h) =nh
foralln € Nand h € H.

PROOF. Any g € G can be written as nh for some n € N and h € H by assumption, so f is
onto. For n,n’ € N and h,h' € H, we have

Y((n,h)(n' 1)) = y(ng(h) ('), k') = no(h)(n')hh' = nhn'h" = y((n, ) f((n',1)).
If y(n,h) =nh=e,thenn=h"' € NNH,son=h=e. O
215
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The proposition we have just proven has Proposition 4.11.4 as a corollary.

ALTERNATE PROOF OF PROPOSITION 4.11.4. By Proposition 7.1.5, we need only that ¢ : H —
Aut(N) given by @(h)(n) = hnh~! for h € H and n € N is the trivial map. That is, we need
that inh~! = n, or [h,n] = e, for all such i and n. This follows as H and N are normal, so

[h,n) € HNN = {e}. O
DEFINITION 7.1.6. If G is a group with subgroups N and H such that G = N xy H for

@: H — Aut(N) given by ¢(h)(n) = hnh~!, then we say that G is the internal semidirect product
of N and H and write G = N x H to denote this.

DEFINITION 7.1.7. Let G be a group with normal subgroup N. A complement to N in G is a
subgroup H such that G is the internal semidirect product N x H of N and H.

REMARK 7.1.8. There are often many complements to a normal subgroup. In particular, if
G=NxH andn € N, then nHn ! is also a complement to N. If N is abelian, then we have the
equality ¥,,-1 = %, of conjugation maps, but if N is nonabelian, then these may not be equal.
The map ¢: H — Aut(N) given by ¢(h) = ¥,,,,-1 would then satisfy G = N x, H, though not
necessarily internally. Rather, this is simply an expression of the fact that G = N x nHn ™!

The following rather general result can be used to show that two semidirect products are
isomorphic.

PROPOSITION 7.1.9. Let H, H', N, and N’ be groups and ¢ : H — Aut(N) and ¢': H —
Aut(N") be homomorphisms. Suppose that there exist isomorphisms y: H— H' and 6: N — N/,
and define

O: Aut(N) — Aut(N')
by ®(a) =0oao8~! forany o € Aut(N). If ® o ¢ = ¢’ oy, then the map
fiNxgH—=N xyH
defined by f(n,h) = (0(n),y(h)) foralln € N and h € H is an isomorphism.
PROOF. Note that f has an inverse given by £~ (n/,l') = (8~ (n’),y =1 (¥)) for all n’ € N

and /' € H, so we need only show that f is a homomorphism. Letting ny,n, € N and hy,h; € H,
we calculate:

f((n1,h1)(n2, h2)) = f(n1@(h)(n2), hihy) = (8(n1)0(@(h1)(n2)), y(h1) ¥ (h2)),
[, ) f(n2, h2) = (6(n1), w(h)) (0 (n2), w(h2)) = (6 (n1) @' (w(h))(6(n2)), w(h)w(h2)).
To see that the first coordinates of these expressions are equal, we check that
' (w(h1))(6(n2)) = ©(9(h1))(8(n2)) = (8 09 (1) 0 67")(8(2)) = O(¢ (1) (m2))-
Thus, f is a homomorphism. ]

We can use this to completely classify groups of order a product of two distinct primes,
completing the study begun in Theorem 4.11.5.

THEOREM 7.1.10. Let p and q be distinct primes with ¢ = 1 mod p. Then there exists a
unique isomorphism class of nonabelian groups of order pq.
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PROOF. Let G be a nonabelian group. By Theorem 4.11.5, we have that it has a unique
normal subgroup Q of order ¢, and let P be a subgroup of order p. By Proposition 7.1.5, we have
that G = Q x P. We have P = 7,/ pZ and Q = 7 /qZ. Fixing such isomorphisms and recalling the
canonical isomorphism Aut(Z/qZ) = (Z/qZ)*, we are reduced to showing that there is a unique
isomorphism class of semi-direct product (Z/qZ) x¢ (Z/pZ), where @ : Z/pZ — (Z/qZ)* is a
nontrivial homomorphism. The group (Z/qZ)* is cyclic by Corollary 6.5.5. Let a € (Z/qZ)*
be a generator.

Any nontrivial homomorphism ¢: Z/pZ — (Z/q7Z)* must send 1 to an element of order p
in (Z/qZ)*. If we set b =al4=V/? then @(1) = b’ for some i € Z with i # 0 mod p. Let us
denote this particular homomorphism by ¢;, and define y;: Z/pZ — 7./ p’Z to be multiplication
by i. Then @; = @; o y; since both maps send 1 to b'. Proposition 7.1.9 then tells us that the
semidirect products (Z/qZ) x (Z/pZ) defined by ¢; and ¢; are isomorphic. That is, there is a
unique isomorphism class of nonabelian semidirect product of order pgq. U

7.2. Composition series

First, we explain how simple groups may be used in building arbitrary finite groups, starting
with the following definition.

DEFINITION 7.2.1. Any collection (H;);cz of subgroups of a group G with H;_; < H; for
i € Z is called a series of subgroups of G.

DEFINITION 7.2.2. Let ¢ = (H;),cz be a series of subgroups of a group G.
a. We say that € is an ascending series if H; = 1 for i sufficiently small.

b. We say that € is a descending series if H; = G for i sufficiently large.
c. We say that ¥ is a finite series if it is both ascending and descending.
d. The length of a finite series ¢ is difference j — i of the smallest integer j such that H; = G
and largest integer i such that H; = 1.
NOTATION 7.2.3. We use the notation
l=Hy<H <---<H_-1<H=G

to denote a finite series of subgroups H; of a group G with Hy = 1, H; = G. It has length ¢ if
H() 75 H1 and H,_l 75 H,.

REMARK 7.2.4. To say that a series (H;);cz of subgroups of G is finite is stronger than simply
saying it has only finitely many terms. For instance, if G is nontrivial, then H; =1 foralli € Z
provides a series with only one distinct subgroup, but it is not finite as no H; equals G.

REMARK 7.2.5. A descending series in G is often taken to be a list (H;);cz of subgroups of
G with H; < H;_; for all i and H; = G for i sufficiently small. This agrees with the usual notion
in the sense that letting K; = H_; will provide a descending series (K;);cz in the sense of the
original definition.
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DEFINITION 7.2.6. A finite series
l=Hy<H <---<H_1<H =G

of subgroups of G is said to be a subnormal series if H;_1 < H; forall 1 <i<zt. Itis called a
normal series if H; I Gforall 0 <i<r¢—1.

DEFINITION 7.2.7. Two subnormal series (H;)!_, and (K;)!_, are equivalent if there exists
o € §; such that Hi/Hi—l = KG(i)/KG(i)—l forall 1 <i<t.

DEFINITION 7.2.8. A refinement of a subnormal series (H;)!_ in a group G is a subnormal
series (K;)_, such that there exists an increasing function f: {0,...,#} — {0,...,s} such that
H; :Kf(i) for0 <i<t.

THEOREM 7.2.9 (Schreier refinement theorem). Any two subnormal series in a group G have
refinements that are equivalent.

PROOF. Let (H;)!_, and (K;)!_, be subnormal series in G. For 0 <i<rand 0 < j <s, let
M= Hi(Hi—H ﬁKj) and Nijri= Kj(Kj—i-l ﬂHl'>.

Set My, = Ny = G as well. Then My ; S Mgy jpp for0<i<r—1land 0<j<s—2as
Kj d Kj-l—l’ and Mivs—1 <Hip = Ms(i—H) for0<i<tr—1asH; < H; and H;_; < G. Thus
(M;)™, is a subnormal series, as is (N;)?},. In fact, we see from this that (M;); refines (H;); and
(N;); refines (K;);.

It remains to see that (M;); and (N;); are equivalent. For 0 <i<7—1and 0 < j <s—2, note
that

Myivjrr o Hi(Hii VK1) o Ki(Kji N Hivr) o Nejie
Msi+j Hi(Hi+1 ﬂK]’) Kj(Kj+1 ﬂHi) Nl‘j+i

by the butterfly lemma, and

Miiv1) Hiy ~ K1Hivr o K1 (KsNHi1) o Ks—1)i+it1
Myip1y—1  Hi(Hi1NKs—1) K- 1H; K1 (KsNH;) K5 1y4i
for 0 <i<t—1since K; = G. Thus, the two refinements are equivalent. O

DEFINITION 7.2.10. A subnormal series of subgroups
1=Hy<H|<---<H,_1<H =G
of a group G is called a composition series for G if H;/H;_ is simple for each 1 <i <¢. The

simple groups H;/H;_ are referred to as the composition factors of the series.

LEMMA 7.2.11. Let
1=Hy<H|<---<H,_1<H =G
be a composition series for G, and let N be a proper normal subgroup of G.
a. There exists s <t and an increasing function f: {0,...,s} — {0,...,t} with f(0) =0 such
that
1 <1Hf(1) ﬂN<le(2) NN<--- <1Hf(s) NN=N
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is a composition series for N with composition factors
Hyoy ON - Hy
Hyiy NN Hy(j)—1

b. Set H; = H;/(H;N\N) for 0 < i <t. There exists an r <t and an increasing function
f1:40,1,...,r} = {0,1,...,¢} with f(0) = 0 such that

I =Ho<\Hp 1)<+ <Hp(_1) <AHp ) = G/N

is a composition series for G /N with composition factors
Hypoy [ Hpi-1) = Hpay [ Hypr -1

c. In the notation of parts a and b, the images of f and f' to be complementary away from
0,x and r+ s to equal t.

PROOF. Let0 <i<t—1. The quotient (H;N\N)/(H;—1NN) is a subgroup of the simple group
H;/H,_; and therefore necessarily trivial or improper. Let s be the number of simple quotients.
Let £(0) =0, and for 1 < j <s, let () be the smallest positive integer greater than f(j— 1) and
such that (Hy(jy \N)/(Hy(j—1 NN) is simple. Then Hy(j)_1 NN = Hy(;_1) NN, and the result
follows.

Similarly, by the third isomorphism theorem, we have

Hi_y  Hi_1(H;NN)’
which is a quotient of H;/H;_; by the image of H;1; NN in it. Since H;;1/H; is simple, this
image is either trivial or H;y/H,. Thatis, H;,1/H; is either trivial or simple. Let s be the number
of simple terms. Set f/(0) =0, and for 1 < j < r, take f/(j) to be the smallest integer greater
than f'(j — 1) such that Hy(;)/Hy(j)— is simple. Then Hp(jy_y = Hp(j_y).
Note that H; # H;_ if and only if H;\N = H; | NN. Then r+s =t and the images of f and
f" are complementary by construction. U

We leave the straightforward proof of the following lemma to the reader.

LEMMA 7.2.12. Let G be a group, and let N be a normal subgroup. Suppose that N has a
composition series

l=Hy<H|<---<1H;_1<H;=N
and G/N has a composition series
1=00<01<---<1Q,-1<Q,=G/N.

For 1 <i<r, let Hy; denote the unique subgroup of G containing N and such that Hy;/N = Q;,
which exists by Proposition 2.13.10. Then the series

1l=Hy<H|<---<H,_1<H =G

is a composition series of G with composition factors satisfying Hyii/Hsi—1 = Qi/Qi—1 for
1<i<r.
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COROLLARY 7.2.13. Let G be a group and N a normal subgroup. If N and G/N have
composition series, then G has a composition series. Moreover, its list of composition factors

consists of the concatenation of the list of composition factors of N by the list of composition
factors of G.

THEOREM 7.2.14 (Jordan-Holder theorem).

a. Every finite group has a composition series.

b. Let G be a nontrivial group with composition series

I =Ny<IN1 <+ <INy 1 <INy =G
and
1:H0<]H1 <]"'<]Ht71 <]Ht :G
Then s =t and there exists a permutation ¢ € S; such that
Hg(i)/Hg(i)—1 = Ni/Ni—1
forall1 <i<t.

PROOF. To show part a, we work by induction on the order n of the group G. It is clear in
the case that G is trivial, with t = 0. Now, if G is nontrivial of order n, then either it is simple,
and the composition series is 1 < G, or it is not, and there exists a nontrivial normal subgroup
K <G, and then K and G/K have composition series by induction. The result is then immediate
from Lemma 7.2.13.

To see that the composition series is unique in the stated sense of part b, start with two
composition series as in the statement of the theorem. We work by induction on the minimal
length s of a composition series for G. If s = 0, then G is trivial. If s = 1, then G is simple,
so it cannot have a nontrivial normal subgroup, and all composition series must have length 1.
Consider N = N,_1, which has the composition series

I<IN1 <+~ <INg_2 <INs_1 =N,
as well as a composition series

for some r <t and increasing f: X, — X; by Lemma 7.2.11a. Since the minimal length of
a composition series of N is less than s, we have by induction that r = s — 1 and there exists
o € S,_1 such that

Ni/Ni—1 = (Hy(o(i)) "\N) /[ (Hy((i)—1) "N) = Hy o))/ H (o (i) -1
for all i, again by Lemma 7.2.11a.
Let k <t be maximal such that H;_; < N. Then

H, {N"N=H;,_ <H.,NN < H,.

Since Hy/Hj_1 is simple, this forces Hy_; = Hy N N. In particular, k is not in the image of f.
Moreover, we have
Hy/Hy_y = Hy/(HNN) = HN/N = G/N,
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the latter step as N is a maximal normal subgroup of G and H; £ N. As we have found the final
composition factor in the series (;); among those of the series (H;);, it remains only to show
that s =¢. If (H;\N)/(H;—1 N N) nontrivial for any for i # k, then by Lemma 7.2.1 ¢, the group
G/N has a composition series of length at least 2, but G/N is simple, so this is impossible. Thus,
r=1t—1 as well, as needed. O

DEFINITION 7.2.15. The Jordan-Holder factors of a group G are the terms in a list of the
isomorphism classes of the composition factors in a composition series for G.

EXAMPLES 7.2.16.

a. The group Z/p"Z for a prime p has n copies of Z/pZ as its Jordan-Holder factors, which
arise from its unique composition series

0<(p" Ny <(p" ) <---<(p)<Z/p"L.
b. The group Z/6Z has two composition series
0<(2)<Z/67Z and 0<(3)<Z/6Z,
both of which have Jordan-Holder factors 7 /27 and 7. /37.

c. Let G be a nonabelian group order pg with p and ¢ distinct primes and ¢ = 1 mod p. Then
G has a unique composition series 1 < Q <1 G, where Q has order ¢, and it has Jordan-Holder
factors Z/pZ and Z/qZ.

d. For n > 6, the group S, has a unique composition series 1 <A, <1 G with Jordan-Holder
factors A, and Z/27.

REMARK 7.2.17. The set of Jordan-Holder factors of a group tell us a great deal about the
structure of a group, but they do not tell us the group. For instance, Z/n?Z and (Z/nZ)?* have
the same Jordan-Holder factors for any n > 2.

7.3. Solvable groups

DEFINITION 7.3.1. Let G be a group. The derived series of G is the unique descending series
(G%);0 of subgroups of G with G = G and G) = [GU~1), GU~V] forall i > 1.

NOTATION 7.3.2. Often, one writes G’ for G\!) = [G,G] and G” for G = [[G,G],[G,G]].
DEFINITION 7.3.3. A group G is solvable if its derived series is finite.

EXAMPLES 7.3.4.

a. The derived series of an abelian group satisfies G) =1 foralli > 1. Hence, abelian groups
are solvable.

b. The derived series of a nonabelian simple group G satisfies GY) = G for i > 0. Hence,
nonabelian simple groups are not solvable.

EXAMPLE 7.3.5. Let R be a commutative ring. Consider the group

T = Heis(R) = {(1 i1 11,) la,b,c eR} < GL3(R).



222 7. TOPICS IN GROUP THEORY

The reader should verify that this group has commutator subgroup equal to its center, which is
Z2(T) = [T,T] = {(1 ?(j)) |c€R} < GLs(R).
In particular, 7(?) = [Z(T),Z(T)] = 0. In fact, the reader might find a rather canonical isomor-
phism from Heis(Z) to the group presented by (x,y,z | [x,y] = z,[x,2] = [y,2] = ¢).
LEMMA 7.3.6. The groups G\ fori > 1 are characteristic subgroups of a group G.

PROOF. First, Lemma 4.3.15c tells us that G is characteristic in GU~1 for each i > 1, and
then the result follows recursively from Lemma 4.3.16. U

We can now prove the following equivalence of definitions of solvability.
PROPOSITION 7.3.7. The following statements regarding a group G are equivalent:
i. Gissolvable,

ii. G has a normal series with abelian composition factors, and

iii. G has a subnormal series with abelian composition factors.

PROOF. That (1) implies (ii) is a consequence of the facts that the group G are characteristic,
hence normal, and that G("—1) / G is the quotient of GU-1) by its commutator subgroup, hence
abelian. That (i1) implies (iii) is obvious. So, suppose (iii) and let

G:N()[>N] I>I>N[_1 |>N[:1
be a subnormal series of length 7. (Note the reversed indexing, as in Remark 7.2.5.) We claim that
G < N; for each i > 0. For i = 0, we have G = G(¥) = Nj. In general, suppose inductively that
G < N;_;. Then G < [N;_1,N;_1] by definition, and we have [N;_1,N;_1] < N; as N;_1/N;
is abelian. Therefore, we have that G; = N; = 1, and G is solvable. [

We also have the following.

PROPOSITION 7.3.8.

a. Every subgroup of a solvable group is solvable.

b. Every quotient group of a solvable group is solvable.

c. If G is a group and N is a normal subgroup of G such that N and G /N are both solvable,
then G is solvable as well.

PROOF. Let G be a group and N a normal subgroup. If G is solvable, then it has a composition
series with abelian factors, so N and G/N are solvable by Lemma 7.2.11. Part (iii) is a corollary
of Corollary 7.2.13, since the derived series of N and G/N have abelian composition factors. [

PROPOSITION 7.3.9. A group G with a composition series is solvable if and only if it is finite
and its Jordan-Holder factors are all cyclic of prime order.

PROOF. If G has cyclic Jordan-Holder factors, then G is solvable by Proposition 7.3.7. If G
is solvable and has a composition series, then the composition factors are abelian by Proposi-
tion 7.3.7 and the uniqueness in Theorem 7.2.14. As composition factors, they are also simple,
hence cyclic of prime order, from which it follows that G is finite. U
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EXAMPLE 7.3.10. All groups of order pq for distinct primes p and g are solvable, as their
Jordan-Holder factors are Z/pZ and Z /qZ.

DEFINITION 7.3.11. A Hall subgroup of a finite group G is a subgroup H such that |H| and
|G : H] are relatively prime.

7.4. Nilpotent groups

DEFINITION 7.4.1. Let G be a group. The lower central series of G is the unique descending
series (G;);>1 of G with G| = G and

Gi+1 = [G7Gl] = <{[avb] | ac Gvb € Gl}>
foreachi > 1.
REMARK 7.4.2. By convention, G; starts with G| = G, while G starts with G©) = G.

REMARK 7.4.3. For a group G, we have G' = G,, but G’ = [G’,G'] can be smaller than
G3 = [G,G']. In fact, we clearly have Gt < G, foralln> 1.

The reader will easily verify the following by induction.

LEMMA 7.4.4. The groups G; in the lower central series of a group G are characteristic
subgroups of G.

DEFINITION 7.4.5. A group G is nilpotent if its lower central series is finite.

DEFINITION 7.4.6. The nilpotency class of a nilpotent group is the length of its lower central
series, which is to say the smallest n > 0 such that G, = 1.

LEMMA 7.4.7. Let G be a group. Then G < G; for all i.
PROOF. This is almost trivial by induction, as
G =[GV ¢V < [6,6" V) < [G,Gi_1] = G

COROLLARY 7.4.8. Nilpotent groups are solvable.

EXAMPLES 7.4.9.

a. The lower central series of an abelian group satisfies G; = 1 forall i > 1.

b. Let T be as in Example 7.3.5. Then 7} = Z(T) and T, = 1, so T is nilpotent.

c. Let G be the group Aff(R) of upper-triangular matrices in GL;(R) with lower-right entry
1, as in Example 2.12.13). We have

69 D=6 ")

for all a € R* and b € R. It follows easily from this that

G2:G’:{<(1) ’f) }beR}
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and then G; = G, for all i > 1. On the other hand, G’ is abelian, so G” = 1. Thus, Aff(R) is
solvable but not nilpotent. (Note that R can be replaced by any nonzero commutative ring R with
unity in which R* and 1 — R have nontrivial intersection.)

We can give an alternative characterization of nilpotent groups through the ascending series
of the following definition.

DEFINITION 7.4.10. The upper central series of a group G is the unique ascending series
(Z(G))i>o with Z°(G) =1 and Z*1(G) equal to the inverse image of Z(G/Z!(G)) under the
projection map G — G/Z'(G) for all i > 0.

REMARK 7.4.11. For any group G, we have Z!'(G) = Z(G), and Z/(G) < Z"*!(G) for all
i>0.

LEMMA 7.4.12. If G is a nontrivial nilpotent group, then Z(G) # 1.

PROOF. Let n be the nilpotency class of G. Then G, is nontrivial but central in G since
(G,G,] = 1. O

PROPOSITION 7.4.13. A group G is nilpotent if and only if Z:(G) = G for i sufficiently large.
In this case, the nilpotency class of G equals the smallest n such that 7"(G) = G, and we have
Gpi1-i < Z'(G) forall1 <i<n.

PROOF. The result is clear for abelian groupts, which are the nilpotent groups of nilpotency
class 1. Let G = G/Z(G) for brevity of notation.

Suppose that G is nilpotent of nilpotency class n > 2. As G,11 = [G,G,] = 1, we have
1 # G, < Z(G). Since Z(G) is central in G, it follows that

Gi = GiZ(G)/Z(G)

for all i. Since G,_1 is not central in G by definition, we have that G,_; # 1. By induction on #,
we then have

Z71(G)# G i< Z'(G)
for 1 <i<n-—1,and Z" '(G) = G. Taking the inverse images of these groups under the quotient
map from G, we obtain

7(G) £ G < Z1(G)
for 1 <i<n—1as well, and in particular Z"~'(G) < Z*(G) = G.

Conversely, if Z"(G) = G for some minimial n > 2, then zr—1 (G) = G, so G is nilpotent of

nilpotency class n — 1 by induction on n. This means that G, < Z(G), and therefore G, = 1,
so G is nilpotent. U

The following corollary can also be seen directly, using Proposition 4.9.6.
COROLLARY 7.4.14. Finite p-groups are nilpotent.

PROOF. This follows by induction on the order of a nontrivial p-group P, since Z(P) # 1,
and P/Z(P) is a p-group which we suppose by induction to be nilpotent. Then ZH1(P) is the
inverse image of Z'(P/Z(P)) in P, so P is nilpotent as well. O
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THEOREM 7.4.15 (Frattini’s argument). Let G be a finite group and N a normal subgroup.
Let P be a Sylow p-subgroup of N. Then G = N - Ng(P).

1 1

PROOF. For any g € G, we have gPg~" < N, as N is normal, so gPg~" is also a Sylow p-
subgroup of N. As such, it is conjugate to P in N, which is to say there exists a € N such that
agP(ga)~! = P, or ag € Ng(G). In other words, g € N - Ng(P). O

We are now ready to prove the following equivalent conditions for nilpotency.

THEOREM 7.4.16. Let G be a finite group. Then the following are equivalent:
i. the group G is nilpotent,

ii. every proper subgroup of G is a proper subgroup of its normalizer in G,

iii. every Sylow p-subgroup of G is normal,

iv. G is the direct product of its Sylow p-subgroups,

v. every maximal proper subgroup of G is normal.

PROOF. Suppose that G is nilpotent of nilpotence class n, and let H be a proper subgroup
of G. If HZ(G) = G, then H is a proper subgroup of Ng(H) = G. Thus, we may suppose
that HZ(G) # G. As we always have that Ng(HZ(G)) = Ng(H), we may further assume that
Z(G) < H in proving (ii). In this case, H/Z(G) is a proper subgroup of G/Z(G), which has
nilpotence class less than n as G, < Z(G), so (G/Z(G)), = 1. Thus, H/Z(G) is a proper subgroup
of Ng(H/Z(G)) by induction, but the latter group is Ng(H)/Z(G) since Z(G) < Ng(H), and
therefore H/Z(G) is a proper subgroup of Ng(H)/Z(G). Thus, (i) implies (ii).

Next, suppose (i1). If G is a p-group, (iii) obviously holds, so suppose this is not the case. Let
P be a Sylow p-subgroup of G for some p | |G|, and note that P < G. Let N = Ng(P). By part (ii),
we have that P < N. Note also that P is a normal subgroup of Ng(N) in that it is characteristic in
N, which forces Ng(N) = N. Since (ii) holds, N cannot be proper in G, and thus P is normal in
G. Hence, (ii) implies (iii).

Suppose (iii). Let s be the number of primes dividing |G|, and let P;, Ps, ..., P be the distinct
Sylow subgroups of G. If s = 1, then we are done. In general, we set H = P; ... P;_1 < G, and by
induction we have that H = P; X P, X --- X P;_;. We then note that HN P, =1 and HP; = G, so
G = H x P;. Hence, (iii) implies (iv).

Suppose (iv), and let M be a maximal proper subgroup of G. Let P, P;,. .. P be the distinct
Sylow subgroups of G. If M N P; # P; for some i, then M N P; = P; for all j # i, since otherwise
M < MP; < G. Thus, M is the direct product of M N P, and the P; for j # i. By the first Sylow
theorem, M N P; is normal in P;, so M is normal in G. Thus, (iv) implies (v).

Suppose (v). Let P be a Sylow p-subgroup of G, and suppose it is not normal. Let M
be a maximal proper subgroup of G containing Ng(P). Then M is normal in G, and Frattini’s
argument implies that G = MNg(P) = M, a contradiction. So, P is normal and (iii) holds, and so
(iv) holds. It then suffices to note that finite p-groups are nilpotent by Corollary 7.4.14, as this
tells us that (v) implies (i). ]

The following is a useful fact regarding nilpotent groups.
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PROPOSITION 7.4.17. Let G be a nilpotent group, and let S be a subset of G with image in
G a generating set. Then S generates G.

PROOF. We prove this by induction on the nilpotence class n of nilpotent groups G. It is clear
if G is abelian, or n = 1. For n > 2, consider G/G,, and note that its abelianization is G?, so by
induction G/G,, is generated by the image of S. Thus, if we let H = (S), we have G = G,H. This
implies that H is normal in G since G, < Z(G) and thus elements of G, and of H normalize H.
We have that

Gn = [GnHaGn—l] = [H7Gn—1] < H7
the first equality as G,H = G, the second as G, < Z(G), and the third as H < G. It follows that
G=G,H=H=(S),

as claimed. ]

7.5. Groups of order p’
We note the following useful fact.
LEMMA 7.5.1. Let G be a group such that G/Z(G) is cyclic. Then G is abelian, so G =Z(G).

PROOF. Any b € G —Z(G) has image generating G/Z(G), so G = Z(G)(b). As b commutes
with itself and every element of Z(G), it is in the center of G, a contradiction. J

Let us classify the groups of order p? for a prime number p.

THEOREM 7.5.2. Let p be a prime number. There are exactly two isomorphism classes of
nonabelian groups of order p3. These are represented by:

a. if p =72, the dihedral group D4 and the quaternion group Qg, and
b. if p is odd, the Heisenberg group Heis(Z/pZ) and the group

K= {(g 119) € Aff(Z/p*Z) | a =1 mod p}.

PROOF. Let G be a nonabelian group of order p°>. By Lemma 7.5.1, the quotient G/Z(G)
cannot be cyclic. This eliminates the possibility that |Z(G)| = p?, since then G/Z(G) would be
cyclic of order p. Also, |Z(G)| # 1 as G is a p-group. Thus, we have |Z(G)| = p, and G/Z(G)
is a direct product of two cyclic groups of order p. Note that [G,G] < Z(G) since G/Z(G) is
abelian, which forces [G,G| = Z(G) since G is nonabelian. Let a,b € G with images together
generating G/Z(G). Then G = (a,b) by Proposition 7.4.17, since finite p-groups are nilpotent.
Moreover, z = [b,a] generates Z(G), and note that this means ab = baz.

Now, suppose that G has an element of order p>. Without loss of generality, we may suppose
that it is b. Then b” generates Z(G), so we have b” = 7 for some i € Z with 0 < i < p. We then
have ab = b!™Pia, which in particular tells us that (b) is a normal subgroup of G. Suppose that
we can also choose a to have order p. Then G = (b) x (a), and in fact G has a presentation

G=(ab|d’ —pP = e,ab:bl+pia>.
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If p is odd, then we have an isomorphism

ook gw=("5" ) sw= (5 ).

and if p =2, then f: G — D4 defined by f(a) =, f(b) = r works as well.

Suppose now that we cannot choose a and b with G = (a,b) and either a or b of order p. If
p = 2, then this implies that > = b> = (ab)? = z, and from this one checks that G is a quotient
of the group with presentation

(ry | =y = (w)xt =e),
and the latter group is isomorphic to Qg under the map which takes x to i and y to j. If p is odd,
then one sees that
(ba)P = bPaPzPP=1)/2 = pPaP = PizP] — ZP(iF])

for some i, j € Z prime to p. Note that we have used p is odd here, since otherwise p(p—1)/2 =
1, which is not a multiple of p = 2. If we replace a by af where k € Z with ik = — j mod p, then
(ba)P = e, which yields a contradiction.

Finally, suppose that G has no element of order p>. If p = 2, then z = [b,a] = (ba)? = e,
which is a contradiction. If p is odd, then G is a quotient of the group that has presentation

<x7y | X, yP, [xay]pv [xv [x,y]], [yv [x,y]]),
but Heis(7Z/pZ) has this presentation, so it is isomorphic to G in that G has order p°>. O






CHAPTER 8

Category theory

8.1. Categories

The extremely broad concept of a “category” allows us to deal with many of the constructions
in mathematics in an abstract context. We begin with the definition. We will mostly ignore set-
theoretical considerations that can be used to put what follows on a firmer basis, but note that a
class is a collection of objects that can be larger than a set, e.g., the class of all sets, in order that
we might avoid Russell’s paradox.

DEFINITION 8.1.1. A category € is

(1) aclass of objects Obj(%),

(2) for every A,B € Obj(%), a class Homy (A, B) of morphisms from A to B, where we often
use the notation f: A — B to indicate that f is an element of Homy (A, B), and

(3) a composition map
Homy (A, B) x Homy (B,C) — Homg (A, C)

for each A, B,C € Obj(%) that takes (f,g) for f: A — B and g: B — C to the composition go f,
subject to the properties that

i. for each A € Obj(¥’), there exists an identity morphism id4: A — A such that, for all

f:A— Bandg: B— A with B € Obj(%), we have
foidg =f and idgog =g,

and

ii. composition is associative, i.e.,

ho(gof)=(hog)of

for any three morphisms #: C — D, g: B — C, and f: A — B between objects A,B,C,D €
Obj(%).

DEFINITION 8.1.2. We say that a category is small if its class of objects is a set.

REMARK 8.1.3. What we call a category is often referred to as a locally category, and a
category in that terminology allows the morphisms between a pair of objects to form a class, not
just a set.

EXAMPLES 8.1.4.

a. The category Set which has sets as its objects and maps of sets as its morphisms.

229
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b. The category Gp which has groups as its objects and group homomorphisms as it mor-
phisms.

c. Similarly, we have categories Ring, the objects of which we take to be the (possibly zero)
rings with 1 and with morphisms the ring homomorphisms that preserve 1, and Field.

d. If R is a ring, then the category R-mod has objects the left R-modules and morphisms the
left R-module homomorphisms.

e. The category Top which has topological spaces as its objects and continuous maps as its
morphisms.

We may construct new categories out of old. The following provides a useful example.

DEFINITION 8.1.5. Let ¢ and Z be categories. The product category € x & is the category
with objects the pairs (C, D) with C € Obj(%’) and D € Obj(Z) and morphisms (f,g): (C,D) —
(C',D') forany f: C—C'in% and g: D — D' in 9.

DEFINITION 8.1.6. Given a category %, we define the opposite category €°P to have the
same class of objects as ¢ and

Homgop (A, B) = Home (B, A)
for A, B € Obj(%).

DEFINITION 8.1.7. A monoid G is a set with an associative binary operation and an identity
element for the operation.

EXAMPLE 8.1.8. Any monoid G gives rise to a category with one object, morphisms equal
to the elements of G, and composition law given by multiplication. Then G°P is again a monoid
with the same elements but the multiplication reversed. A category with one object is also called
a monoid, and we have a one-to-one correspondence between monoids and these categories.

We will often have cause to single out a particular class of morphisms in a category known
as isomorphisms.

DEFINITION 8.1.9. Let % be a category.

a. A morphism f: A — B in ¥ is an isomorphism if there exists morphism g: B — A in €
such that go f =1id4 and fog =idp.

b. Two objects A and B in € are said to be isomorphic if there exists an isomorphism f: A —
Bin%.

c. If f: A— Bis amorphism and go f =id4 (resp., f og = idp), then we say that g is a right
inverse (resp., a left inverse) to f. If both go f =1id4 and f o g = idp, then we say that g is (an)
inverse to f, or that f and g are inverse to each other (or mutually inverse, or inverses).

EXAMPLES 8.1.10.
a. The isomorphisms in Set are the bijections.

b. The isomorphisms in Gp are the isomorphisms of groups.
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c. The isomorphisms in Top are the homeomorphisms.

DEFINITION 8.1.11.

a. A morphism f: A — B in a category ¥ is a monomorphism if for any g, h: C — A with
C € Obj(%), the property that fog = foh implies g = h.

b. A morphism f: A — B in a category % is an epimorphism if for any g,h: B — C with
C € Obj(%), the property that go f = ho f implies g = h.

EXAMPLES 8.1.12.

a. In Set and R-mod, a morphism is a monomorphism (resp., epimorphism) if and only if it
is injective (resp., surjective).

b. The natural injection Z — Q in Ring is an epimorphism, since a ring homomorphism
@Q — R is completely determined by its value on 1.

REMARK 8.1.13. A morphism f: A — B in a category % is a monomorphism if and only if
the opposite morphism f°P: B — A in €°P is an epimorphism.

We have the following.

LEMMA 8.1.14. Let f: A — Band g: B— A be morphisms in a category € such that go f =
idy. Then f is a monomorphism and g is an epimorphism.

PROOF. Let h,k: C — A be morphisms such that f oh = fok. Then
k=gofok=gofoh=h.

Thus f is a monomorphism. Similarly, g is an epimorphism, or apply Remark 8.1.13. U
In other words, right inverses are monomorphisms and left inverses are epimorphisms.
DEFINITION 8.1.15. Let % be a category and C € Obj(%).

a. A subobject of C is a pair (A, 1) consisting of an object A and a monomorphism t: A — C.

b. A quotient of C is a pair (B, ) consisting of an object B and an epimorphism 7: C — B.

DEFINITION 8.1.16. A subcategory € of a category & is a category with objects consisting
of a subclass of Obj(Z) and morphisms Homg (A, B) for A, B € Obj(%) consisting of a subset
of Homy (A, B) containing id4 for A = B and such that composition maps in € agree with the
restriction of the composition maps in & between the same objects.

EXAMPLES 8.1.17.

a. The category Ab of abelian groups with morphisms the group homomorphisms between
abelian groups is a subcategory of Gp.

b. The category Field is a subcategory of Ring.
8.2. Functors

To compare two categories, we need some notion of a map between them. Such maps are
referred to as functors. There are two basic types.
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DEFINITION 8.2.1. Let ¥ and Z be categories.

a. A covariant functor (or simply functor) F: € — % between two categories ¢ and ¥ is a
map of objects F: Obj(%) — Obj(Z) and a map of morphisms

F: Homy(A,B) — Homg(F(A),F(B))

for each A, B € Obj(%’) such that F(idy) = idp(4) and F(go f) = F(g) o F(f) forall f: A — B
and g: B— C for each A,B,C € Obj(%).

b. As with a covariant functor, a contravariant functor F : € — & is again a map on objects,
but with maps between sets of morphisms of the form

F: Homg (A,B) — Homgy(F (B),F(A))
that satisfies F'(ids) = idp(4) and F(go f) = F(f) o F(g).
We give some examples of functors.

EXAMPLES 8.2.2.

a. We have the forgetful functors Gp — Set, Ring — Set, and Top — Set, which take objects
to their underlying sets and morphisms to the corresponding set-theoretic maps.

b. We have another forgetful functor from R-mod to the category Ab of abelian groups.

c. A homomorphism of monoids G — G’ induces a functor of the corresponding categories,
and conversely.

d. The opposite functor op: € — € °P that is the identity on objects and takes a morphism
f: A — Btoits opposite morphism f°P: B — A in €°P is contravariant.

REMARK 8.2.3. A contravariant functor F': 4 — % may also be viewed as a covariant func-
tor € — Z°P, in particular by composing F with the opposite functor op: & — Z°P.

REMARK 8.2.4. A subcategory ¢ of a category ¥ is endowed with a canonical inclusion
functor that takes an object of € to the same object of Z and is the identity map on morphism.

DEFINITION 8.2.5. Let F: € — & be a functor.

a. The functor F is called faithful if it is one-to-one on morphisms.

b. The functor F is called full if it is onto on morphisms.

c. A functor F is fully faithful if it is both faithful and full.

d. A subcategory is called a full subcategory if it the corresponding inclusion functor is full.
REMARK 8.2.6. Every functor takes isomorphisms to isomorphisms.

REMARK 8.2.7. The inclusion functor attached to a subcategory is always faithful.

REMARK 8.2.8. A fully faithful functor is sometimes referred to as an embedding of cate-
gories, or sometimes a full embedding (and when so, a faithful but not necessarily full functor
might instead be referred to as an embedding).

EXAMPLES 8.2.9.
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a. The category Ab is a full subcategory of Gp.

b. The category Field is a full subcategory of Ring.

c. The above-described forgetful functors to sets are faithful but not full.

d. The category in which the objects are sets but the morphisms are bijections of sets is a

subcategory of Set that has the same objects but is not full.

DEFINITION 8.2.10. A directed graph ¢ is a collection consisting of
(1) aset Viy of vertices of ¢ and,

(2) for every v,w € Vig, a set Ey(v,w) of edges from vto w in ¢.

TERMINOLOGY 8.2.11. In category theory, we often refer to the vertices of a directed graph
as dots and the edges as arrows.

EXAMPLE 8.2.12. The following picture provides the data of a directed graph with 4 vertices
and edge sets with between 0 and 2 elements each:

N
—_.

)

B —

DEFINITION 8.2.13. The category (freely) generated by a directed graph ¥4 is the category [
with Obj(I) = Vi and, for v,w € Obj(I), with Hom; (v, w) equal to the set of all words e, e, --- €]
for some n > 0 (with n = 0 providing the empty word) with e¢; € E¢(v;_1,v;) for v; € Vg for
1 <i<n, with vg = v and v, = w, together with the composition given by concatenation of
words.

EXAMPLE 8.2.14. Consider the directed graph ¢ given by

el e
Vi —— V) — V3.
The category I generated by ¢ has three objects v{,v;,v3 and morphism sets
HOm](Vl',Vi) = {idvi}v HOI’I]](Vi, vi-H) = {ei}7
Homy(vy,v3) = {eze1}, and Homy(v;,v;) =@ if j <.
EXAMPLE 8.2.15. Consider the directed graph ¢ given by
e
TN
Vi V2.
e’ —

€2

Let I be the category generated ¢. For i,j € {1,2} the set Hom;(v;,v;) consists of the words
with alternating letters e; and e, that start with e; and end with ¢; (including the empty word if

i= ).

DEFINITION 8.2.16. A diagram in € is a functor from a category generated by a graph to €.
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REMARK 8.2.17. Let ¢ be a directed graph, let I be the category generated by ¢, and let
% be a category. Given a map F: Vg — € and functions F: Eg(v,w) — Homy (F(v),F(w))
for each v,w, € Vi, there exists a unique functor F': I — % that agrees with F' on Vi and on
Ey(v,w) C Homy(v,w) for every v,w € V.

REMARK 8.2.18. Often, we consider finite graphs, in which every collection of vertices and
edges is finite. The resulting diagrams are known as finite diagrams.

DEFINITION 8.2.19. A commutative diagram in % is a diagram F: I — %, where [ is the
category generated by a graph, which is a constant function on every set of morphisms.

EXAMPLE 8.2.20. To give a functor from / as in Example 8.2.14 to a category ¥ is to pro-
scribe three objects A,B,C in 4 and two morphisms f: A — B and g: B — C. Thus, such a
diagram may be represented by

A=B=C,
and it is automatically commutative.

EXAMPLE 8.2.21. To give a functor from / as in Example 8.2.15 to a category ¥ is to pro-
scribe two objects A, B in %" and two morphisms f: A — B and g: B — A. The diagram

A B
N_~
g

is commutative if and only if fog =1idp and go f = id4.
8.3. Natural transformations

DEFINITION 8.3.1. Let F,G: € — & be two (covariant) functors. A natural transforma-
tion n: F ~ G is a class of morphisms 1n4: F(A) — G(A) for each A € Obj(%) subject to the

condition that
Na
—

F(B) - G(B)
commutes for every f: A — Band A,B € Obj(%). If instead F and G are contravariant functors,
then the direction of the vertical arrows in the diagram are reversed.

EXAMPLE 8.3.2. Consider the functor 7: Ab — Ab that sends an abelian group A to its
torsion subgroup Ao (i.€., the subgroup of elements of finite order) and takes a homomorphism
f+A— Btoits restriction T(f): Atr — Bior- Let I: Ab — Ab denote the identity functor. For
each abelian group A, we can define 14: Ay — A to be the inclusion map. We clearly have
fory=1goT(f) forall f: A— B,sot: T ~> [ is a natural transformation.

EXAMPLE 8.3.3. If we think of groups G and G’ as monoids, so that functors G — G’ are
homomorphisms, then a natural transformation f ~~ f’ between two homomorphisms f, f': G —
G’ is given simply by an element x € G’ such that f’(g) = xf(g)x~! forall g € G.
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DEFINITION 8.3.4. Let F,G: € — 2 be functors. A natural transformation n: F ~» G is
said to be a natural isomorphism if each 14 for A € € is an isomorphism.

REMARK 8.3.5. Every natural isomorphism 1: F ~» G has an inverse n~': G ~» F with
Ny = (na)~! for A € Obj(%).

DEFINITION 8.3.6. Let F,G: € — 2 be functors, and let n4: F(A) — G(A) be morphisms
for each A € Obj(%’). We say that these morphisms are natural if the n4 form a natural transfor-
mation n: F — G.

DEFINITION 8.3.7. Two categories 4 and & are said to be equivalent if there exist functors
F:% — 2 and G: 2 — ¢ and natural isomorphisms 1: GoF ~» idy and n)': F o G ~ idg.
Two such functors F' and G are said to be quasi-inverse, and F and G are said to be equivalences
of categories.

EXAMPLE 8.3.8. A category ¢ with one object 0 and one morphism is equivalent to the
category 2 with two objects 1, 2 and four morphisms, the identity morphisms of 1 and 2 and
isomorphisms 1 — 2 and 2 — 1. We have quasi-inverse functors F and G with F(0) = 1 and
F(idg) = id; and G(1) = G(2) = 0 and G(f) = idy for all f. To see naturality, note that every
morphism between two objects in either category is unique.

The following theorem provides a standard example of equivalence of categories.

THEOREM 8.3.9 (Morita equivalence). The category of left modules over a ring R with unity
is equivalent to the category of left modules over My,(R) for every n > 1.

PROOF. Let A be the R-M,,(R)-bimodule of row vectors of length n with R-entries. Let B be
the M, (R)-R-bimodule of column vectors of length n with R-entries. Define

F:R-mod — M,(R)-mod, F(M)=BogM, F(f)=idsof
for left R-modules M and M’ and f € Homg(M,M"). Also, define
G: M,(R)-mod — R-mod, G(N)=A®y,g)N, G(g)=1ida®g

for left M,(R)-modules N and N and g € Homy, )(N,N’). Since multiplication induces iso-
morphisms

A O, (R) B =R and B®grA =5 M,(R),
both Go F and F o G are naturally isomorphic to identity functors. U

DEFINITION 8.3.10. Given two categories 4 and & with ¢ small, the functor category
Func(%, 2) has objects the functors ¢’ — 2 and morphisms the natural transformations between
functors, defining composition of natural transformations via composition of the morphisms de-
termining them.

DEFINITION 8.3.11. Let ¥ be a category and A € Obj(%’) be an object.

a. We have a functor /4 : € — Sets given by

ha(B) = Homg (A, B)
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and, for g: B — C,
ha(g)(f) =gof
forall f: A— B.

b. We have a contravariant functor 74 : € — Set with
i(B) = Homy(B,A) and hA(g)(f) = fog
for B,C € Obj(%¢),g: B— C,and f: C — A.
DEFINITION 8.3.12. Let % be a small category. The Yoneda embedding is the functor
h%: € — Func(€°P, Set)
defined by A% (A) = h* for A € Obj(%€) and h® (f): h* ~ hB for f: A — Bin € given by
W (f)cls) = fos
for each g: C — A in ¢ and any C € Obj(%).

REMARK 8.3.13. The reader should check that the Yoneda embedding is a well-defined func-
tor.

THEOREM 8.3.14. Let € be a small category. The Yoneda embedding h is fully faithful.

PROOF. We first show faithfulness. Let f,g: A — B be two morphisms with 1% (f) = h% (g).
Then
f=foids =h?(f)a(ida) = h® (g)a(ids) = goids = g.
As for fullness, suppose that 1: h4 ~~ hP for some A, B € Obj(%). We claim that ) = h(e),
where e = 1m4(id4). To see this, note that the fact that 1) is a natural transformation means, in
particular, that the diagram

WA (A) s mB(A)

hA(f)l lhB(f)
1A (C) < hB(C)

commutes for any f: C — A. Applying both compositions to the identity morphism of A, we get
the two equal terms

h(f)onalida) = K¥(f)(e) = foe = h(e)c(f)
and
nc ok (f)(ids) = ne(idaof) = ne(f).
and therefore, the desired equality. U
REMARK 8.3.15. Similarly, we have a fully faithful contravariant functor
hg: € — Func(%,Set)

given by the hy for A € Obj(%) and natural transformations between them. This is just the
Yoneda embedding for the category € °P.
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Theorem 8.3.14 can be thought of as a more general version of the following standard theo-
rem of group theory.

COROLLARY 8.3.16 (Cayley’s theorem). Every group G is isomorphic to a subgroup of the
symmetric group Sg on G.

PROOF. Consider the monoid G formed by G. Recall that in G, morphisms are elements of
G. As h: G — Func(G°P,Set) is a functor, Yoneda’s lemma provides an injective function

h: G— HomFunC(GOP,Set) (h67 hG)

on morphisms with the properties that /1(e) = id,¢ and h(xy) = h(x) o h(y) for x,y € G. Since G
has only the object G, and h%(G) = G, this induces a one-to-one function p: G — Maps(G, G)
with p(x) = h(x)¢ and satisfying p(xy) = p(x) op(y) and p(e) = idg. In particular, we have
p(x 1) op(x) =idg for every x € G, so its image lands in Sg, and the resulting map G — S is
an injective homomorphism. U

We shall later require the following strengthening of Theorem 8.3.14.

THEOREM 8.3.17 (Yoneda’s lemma). For any object A of a small category € and contravari-
ant functor F: € — Set, there is a bijection

HomFunc(‘@”Op,Set) (hAvF) - F<A)
given by M — N (idya) that is natural in A and F.
PROOF. Let B € Obj(%). Given x € F(A), consider the composition
Homy (B,A) 5 Homge(F(A), F(B)) <5 F(A),

where ev, is evaluation at x. This defines a natural transformation E¥: h4 ~ F. If n: h* ~ F
and f: B — A, then

F(f)ona(ida) = ns(idaof) = ns(f)
by the naturality of 7. On the other hand, if x € F(A), then

éz(idA) = er<F(idA)) = er(idF(A)) =X.

Hence the maps 1 — 14 (id4) and x — &* are inverse to each other. U

8.4. Limits and colimits
In this section, % denotes a category, and / denotes a small category.
NOTATION 8.4.1. We write i € I to denote, more simply, that i is an object in /.

DEFINITION 8.4.2. Let F: I — % be a functor. When it exists, the limit of F is a pair
(im F, (¢;);cr) consisting of an object lim F in ¥ and morphisms

¢;: limF — F(i)

for each i € I such that ¢; = F(x) o ¢; for all morphisms x: i — j in I and with the universal
property that if X is any object of & together with morphisms y;: X — F (i) for which y; =
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K o y; for all morphisms k: i — j, then there exists a unique morphism f: X — limF such that
y; = ¢;o fforalliel.

NOTATION 8.4.3. We usually use lim F' to refer more simply to a pair (limF, (¢););c;) that is
a limit of F': I — %, with the maps understood.

REMARK 8.4.4. The universal property of the limit of a functor F as in Definition 8.4.2 may
be visualized by commutative diagrams

LEMMA 8.4.5. If (X, (Wi)ier) and (imF, (@;)icr) are limits of a functor F: I — €, then there
is a unique isomorphism f: X — limF such that y; = ¢;o f foralli € I.

PROOF. There are morphisms f: X — limF and g: limF — X that are unique with the
respective properties that y; = ¢; o f and ¢; = y; o g for all i € I. Note that we have ¢; = ¢;o0 fog
for all i € I. On the other hand, the universal property of X implies that the identity idy is the
unique morphism 4 such that y;oh = y; forall i € I, so fog =1idy. Similarly, go f is the identity
of lim F by its universal property. Therefore, the unique map f is an isomorphism. U

REMARK 8.4.6. Lemma 8.4.5 says that a limit, when it exists, is unique up to unique isomor-
phism (respecting the universal property) and for that reason, we refer to “the”, rather than “a”,
limit.

If I has only identity morphisms, then the limit of a functor F': I — % is determined entirely

by the image objects A; = F (i) for all i € I. Hence the notation in the following definition makes
sense.

DEFINITION 8.4.7. Let I be a category with only identity morphisms, and let F: I — % be a
functor. Set A; = F (i) foreachi € I.

a. The limit [];c;A; of F, when it exists, is called the product of the A;.

b. The maps
Di: HA,' — Al'
icl
resulting from the universal property of the product are known as projection maps.
EXAMPLES 8.4.8. The product coincides with direct product in the categories Set, Gp, Top,
Ring and R-mod. Products of more than one object do not exist in the category Field.

REMARK 8.4.9. A commutative diagram in a category % arises from a functor F: [ — €,
where / is a category generated by a directed graph. Therefore, we may speak of the limit of the
diagram.
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DEFINITION 8.4.10. The limit A| Xp A, of a diagram

(8.4.1) A
lfl
Ay f—2>B

in &, when it exists, is called the pullback of the diagram.

REMARK 8.4.11. The pullback of (8.4.1) is endowed with morphisms p; and p, that make

A xgAr s Ay
PZl lfl
H
A ———B
commute.

EXAMPLE 8.4.12. In Set, Gp, Top, and R-mod, the pullback is the subobject (i.e., subset,
subgroup, subspace, or submodule) with underlying set

{(a1,a2) € A1 x Az | fi(a1) = fa(a2)}
We also have the dual notion to limits:

DEFINITION 8.4.13. Let F: [ — % be a functor. When it exists, the colimit of F is a pair
(colimF, (o) ;cr) consisting of an object colimF € % together with morphisms

o;: F(i) — colimF

for each i € I such that ¢¢j o F (k) = o; for all morphisms x: i — j and with the universal property
that if X is any object of € together with morphisms f;: X — F (i) for which ;0 x = B; for all
morphisms k: i — j, then there exists a unique morphism f: colimF — X such that §; = foq;
foralli el

NOTATION 8.4.14. A colimit of a functor F': I — % is usually denoted simply by the object
colim F, with the morphisms omitted.

REMARK 8.4.15. The properties of the colimit expressed in Definition 8.4.13 may be sum-
marized by the commutativity of the diagrams

forall x:i— jinl.
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We have the obvious analogue of Lemma 8.4.5, which again tells us that we may speak of
“the” colimit.

LEMMA 8.4.16. If (X, (Bi)ier) and (colimF, (@ )icr) are colimits of a functor F : I — €, then
there is a unique isomorphism f: colimF — X such that o; = fo B foralli € I.

REMARK 8.4.17. When it exists, the colimit of F': [ — % in ¥ satisfies
colimF = op (lim(opo F)),
so its underlying object is an limit in €°P.

DEFINITION 8.4.18. The colimit of a functor F': I — % from a category / with only identity
morphisms is called a coproduct, and it is denoted IT;c/F (i).

EXAMPLES 8.4.19.
a. The coproduct in Set and Top of two objects X; and Xj is the disjoint union X; I1X5.

b. The coproduct in Gp of two groups G and G, is the free product G x G».

c. The coproduct in R-mod (and in particular Ab) of two R-modules A; and A, is the direct
sumAj; PA,.

d. The coproduct in the category of commutative rings R and R; is the tensor product R ®
R;.

REMARK 8.4.20. Examples 8.4.19(a-d) generalize directly to arbitrary collections of objects.
REMARK 8.4.21. Much as with limits, we may speak of a colimit of a diagram in a category.

DEFINITION 8.4.22. The colimit of a diagram

(8.4.2) B4,
|-
A,
in % is called the pushout A| 11g Aj.
REMARK 8.4.23. The pushout of the diagram (8.4.2) fits into a diagram

B— 4

lgz lh
Ay —2 5 A TIgA,,
where 1 and 1, are induced by the universal property of the colimit.

EXAMPLE 8.4.24. In Set and Top, the pushout is the quotient (set or topological space) of
the disjoint union of A; and A, under the equivalence relation identifying g (b) with g»(b) for
all b € B.
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DEFINITION 8.4.25. We say that a category % admits the limit (resp., colimit) of a functor
F: I — % if the limit (resp., colimit) exists in &

REMARK 8.4.26. More generally, we may speak of € admitting the limits (or colimits) of
any collection of functors from small categories to % .

DEFINITION 8.4.27. A category is called complete if it admits all limits.
EXAMPLE 8.4.28. The category of finite sets is not complete.

DEFINITION 8.4.29. A category is called cocomplete if it admits all colimits.
REMARK 8.4.30. To say that % is complete is to say that °P is cocomplete.
PROPOSITION 8.4.31. The category Set is both complete and cocomplete.

PROOF. Let F: I — Set be a functor. We merely describe the limit and colimit of F' and
leave the rest to the reader. The limit is

limF = {(a,-)l- e[1FG) | F(¢)(a)=ajif ¢:i— jin 1},
iel
and the colimit is
colimF = T/ F (i)/ ~
where ~ is the minimal equivalence relation satisfying a; ~ a; for ¢; € F(i) and a; € F(j) if
there exists ¢ : i — j with F(¢)(a;) = a;. O

REMARK 8.4.32. In fact, the categories Set, Top, Gp, Ab, Ring, and R-mod admit all limits
and colimits.

The reader will easily verify the following.

PROPOSITION 8.4.33. Let I be a small category and € a (co)complete category. Then the
category Func(I,%) is (co)complete.

COROLLARY 8.4.34. Let I be a small category and € be (co)complete. Let F: [ — € be a
functor, and supposing that € is small, consider the Yoneda embedding h* : € — Func(%°P, Set).
Then h® o F has a (co)limit in Func(%°P, Set).

DEFINITION 8.4.35. A directed set I is a set I together with a partial ordering < on / such
that for any i, j € I, there exists k € I withi < k and j < k.
DEFINITION 8.4.36.
a. The limit of a diagram
= A3 = Ay — Ay
in a category ¥ is referred to as the sequential limit of the objects A;.
b. The colimit of a diagram
Al = Ay > Az — -
in a category ¥ is referred to as the sequential colimit of the objects A;.
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EXAMPLE 8.4.37. In Ab, the sequential limit of the groups Z/ p"Z with respect to homomor-
phisms Z/p"*1Z — 7/ p"7Z given by reduction modulo p" is the group Z p of p-adic integers. The
sequential colimit of these same groups with respect to the maps Z/p"Z — 7./ p"+17Z induced by
multiplication modulo p is the group Q,/Z,, equal to the p-power torsion in Q/Z.

The sequential limit (resp., sequential colimit) is just a special case of the notion of an inverse
limit (resp., direct limit), which is a more usual terminology.

DEFINITION 8.4.38.

a. A directed category I 1s a category with a nonempty directed set / of objects and at most
one morphism i — j for any i, j € I, which exists if and only if i < j.

b. A codirected category is a category I such that I°P is directed.

DEFINITION 8.4.39. Let I be a codirected category. The limit of a functor F: [ — % is

referred to the inverse limit of the objects F (i) over the inverse system of objects F (i) for i € I
and morphisms F () for k: i — jin/, and it is denoted lim, _, F(i).

DEFINITION 8.4.40. Let I be a directed category. The colimit of a functor F': I — % is the
direct limit of the objects F (i) over the directed system of objects F (i) for i € I and morphisms
F(x) for k: i — jin I and is denoted lim. | F (i) (or sometimes just lim F).

EXAMPLES 8.4.41.

a. The inverse limit of the (commutative) rings Z/p"7Z with respect to homomorphisms

Z/p"7Z — 7./ p"Z given by reduction modulo p” is the ring Z, known as the p-adic integers.

b. The direct limit of the abelian groups Z/p"Z with respect to the multiplication-by-p maps
7./p"Z — 7./ p"T17Z is equal to the subgroup of elements of p-power order (under addition) in

Q/Z.

c. The absolute group Gal(Q/Q) of all automorphisms of the field of algebraic numbers Q is
isomorphic to the inverse limit of the collection of all Gal(K /Q) for K a finite, normal extension
of Q inside Q, with respect to the maps Gal(L/Q) — Gal(K/Q) given by restriction with K C L.
Note that the set of field extensions is directed as the compositum of two normal extensions is
normal, and the resulting category is codirected as we use only the restriction morphisms.

For certain diagrams, limits and colimits can be quite boring, especially when the diagram
contains an initial object in the case of limits, or terminal object in the case of colimits.

DEFINITION 8.4.42.

a. An initial object A in % is an object such that for each B € Obj(%), there is a unique
morphism A — Bin €.

b. A terminal object X in € is an object such that for each B € Obj(%’), there is a unique
morphism B — X in €.

c. An zero object 0 in € is an object that is both initial and terminal.

REMARK 8.4.43. Terminal and initial objects are unique up to unique isomorphism when
defined.



8.5. ADJOINT FUNCTORS 243

We provide some examples.

EXAMPLES 8.4.44.

a. The empty set @ is the initial object in the category Set, while any set with one element is
a terminal object.

b. The trivial group is a zero object in the category Gp.
c. The zero ring is a terminal object and Z is an initial object in Ring.
We omit the proof of the following easy lemma.
LEMMA 8.4.45. Let I be a small category and F : I — € a functor.
a. Suppose that I has an initial object i. Then
HimF = F(i).

b. Suppose that I has a terminal object j. Then

colimF = F(j).

8.5. Adjoint functors

The following definition allows us to weaken the property of being quasi-inverse to one of
“adjointness”.

DEFINITION 8.5.1. We say that F: € — Z is left adjoint to G: & — € if there exist bijec-
tions
dc.0: Homy (F(C), D) <% Homy(C,G(D))
for each C € Obj(%¢’) and D € Obj(Z) such that the ¢ p form a natural transformation of functors
€P x P — Set.

We also say that G is right adjoint to F, and we say that F and G are adjoint functors.

REMARK 8.5.2. To say that 1 is a natural transformation in Definition 8.5.1 is a fancier way
of saying that given morphisms f: C' — C in ¢ and g: D — D’ in &, we have a commutative
diagram

N(c,p)
Homy (F(C),D) ———— Homg (C,G(D))
ltHgotoF () lMHG(g)OMOf
N .p
Homg (F(C'), D) ——2)3 Home (C', G(D')).

REMARK 85.3. If F: ¥ — ¥ and G: & — ¥ are quasi-inverse functors, then we have
bijections
¢c.p: Homg(F(C),D) = Hom¢(C,G(D)),  ¢cn(8) =G(g)onc,
for C € Obj(%) and D € Obj(Z), where g: F(C) — D in & and 7 is a natural isomorphism

GoF ~~idy. These form a natural transformation ¢ between functors 4°P x ¥ — Set, so G is
right adjoint to F. Similarly, using n’: F o G ~ idg, we see that G is left adjoint to F.
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EXAMPLE 8.5.4. The forgetful functor Gp — Set is right adjoint to the functor Set — Gp that
takes a set X to the free group Fy on X and amap f: X — Y of sets to the unique homomorphism
¢r: Fx — Fy with ¢¢|x = f. That is, the restriction map

Hom(Fy,G) — Maps(Y,G)

is inverse to the map Maps(Y,G) — Hom(Fy, G) that takes ¢: ¥ — G to F(f), and these bijec-
tions are easily seen to be natural.

Later, we will treat what is perhaps the most standard example of adjointness: that of Hom
and ® in categories of modules.

PROPOSITION 8.5.5. Fix categories I and €, and suppose that all limits F : I — € exist. The
functor lim has a left adjoint A given by taking A € Obj(%) to the constant functor ca, where
ca(i) =A for all i € I, and taking g: A — B for A,B € Obj(%) to the natural transformation
ca~cpgivenby g: ca(i) =A — cp(i) =B foralliel

PROOF. We must describe natural isomorphisms
HomFunc(I,%”) (ca,F) =2 Homg (A, limF)

for A € Obj(%) and F: I — ¥ . Le., given a natural tranformation 1 : c4 ~~ F, we must associate
amap f: A — limF, and conversely. Such a natural transformation 1 consists of maps

n;: CA(i) =A —>F(i)

that are compatible in the sense that n; = F (k) on; for all x: i — j. Thus, the existence of a
unique f is simply the universal property of the limit. On the other hand, if we have f, then we
have maps

diof: A— F(i),

where ¢; is the map limF — F (i) arising in the definition of the limit. These maps then define
the universal transformation 7. U

We now see exactly how adjointness weakens inverseness.

DEFINITION 8.5.6. Two categories ¢ and & are said to be equivalent if there exist functors
F:% — 2 and G: 9 — ¢ and natural isomorphisms 11: Go F ~ idg and ’: F o G ~ idg.
Two such functors F' and G are said to be quasi-inverse, and F and G are said to be equivalences
of categories.

EXAMPLE 8.5.7. A category ¢ with one object O and one morphism is equivalent to the
category & with two objects 1, 2 and four morphisms, the identity morphisms of 1 and 2 and
isomorphisms 1 — 2 and 2 — 1. We have quasi-inverse functors F' and G with F(0) = 1 and
F(idg) =id; and G(1) = G(2) = 0 and G(f) = idy for all f. To see naturality, note that every
morphism between two objects in either category is unique.

NOTATION 8.5.8. Let n: F ~~» F' be a natural transformation between functors F,F': € —
2.
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a. If G: 9 — & is a functor, then we define a natural transformation G(1): GoF ~» Go F’

by
G(n)c=G(ne): G(F(C)) — G(F'(C))
for all objects C of .
b. If H: % — € is a functor, then we define a natural transformation n(H): FoH ~~ F' o H
by
N(H)g =Ny : F(H(B)) — F'(H(B))
for all objects B of €.

DEFINITION 8.5.9. Let F: € — % and G: ¥ — % be functors.
a. A unit for the pair (F,G) is a natural transformation idy ~~> Go F.

b. A counit for the pair (F,G) is a natural transformation F o G ~~ id4.
c. A unit-counit adjunction is a pair (F,G), a unit 1 for (F,G), and a counit i)’ for (F,G)
satisfying
idp. =n'(F)oF(n): F~F
as morphisms in Func(%’, Z) and
idg =G(M)on(G): G~ G

as morphisms in Func(2,%).

PROPOSITION 8.5.10. A functor F: € — & is left adjoint to a functor G: 9 — € if and
only if there exists a unit-counit adjunction for the pair (F,G).

PROOF. Suppose that F is left adjoint to G. We define n: idg ~» Go F as follows. For
C € Obj(%), we have bijections

Homg (F(C),F(C)) — Homg(C,Go F(C))
by adjointness, and we define 7c to be the image of idp(c). For D € Obj(Z), we also have
Homy (F o G(D),D) = Homy (G(D),G(D))

and define n’: F o G ~~ idy by taking 1, to be the image of idg(p) under the inverse of this map.
We leave it to the reader to check that these are natural and form a unit-counit adjunction. The
converse is left to the reader as well. U

8.6. Representable functors

DEFINITION 8.6.1. Let F': ¥ — Set be a contravariant functor. Then F is said to be repre-
sentable if there exists a natural isomorphism 48 ~~ F for some B € Obj(%). (In other words, we
have natural bijections

Homy (A,B) = F(A)
for all objects A of €.) We then say that B represents F .
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Using Yoneda’s lemma and assuming %’ to be small, we can reword Definition 8.6.1 as saying
that there exists B € Obj(%’) such that there are compatible bijections between the set of natural
transformations 24 ~~ F and the set of morphisms A — B for each A € Obj(%).

EXAMPLE 8.6.2. Consider the contravariant functor P: Set — Set which takes a set S to its
power set P(S), the set of all subsets of S and a map f: S — T to the map P(f): P(T) — P(S)
by mapping U C T to f~'(U). Then P is represented by the set {0, 1} via the isomorphism

Maps(S,{0,1}) = P(S)
by ¢ + ¢! ({1}). These isomorphisms form a natural transformation:
Maps(T,{0,1}) —— P(T)
lh{O,l}(f) P(f)
Maps(S,{0,1}) —— P(S)

for f: § — T. Here, the lefthand vertical map takes ¢ to ¢ o f and the righthand vertical map
takes a subset X of T to £~ (X). We check that

(@o) {1 =r"" 07" ({1})).
The following is a corollary of Yoneda’s lemma.

LEMMA 8.6.3. A representable functor is represented by a unique object up to isomorphism.
If B and C represent a contravariant functor F : € — Set, then such an isomorphism f: B — C
is unique making the diagrams

Homg (A,B) —— F(A)

[ |

Homgy (A,C) —— F(A)

commute for all A € Obj(%¥).

PROOF. Let F: ¥ — Set be a representable (contravariant) functor represented by B € Obj (%)
and C € Obj(%). Then we have natural isomorphisms & : h8 ~ F and &’: h® ~+ F. The compo-
sition &' 0 E~1: kB — hC is equal to h (f) for a unique f: B — C by the weak form of Yoneda’s
lemma. U

THEOREM 8.6.4. Let F: € — Z be a functor between small categories.

a. The functor F has a right adjoint if and only if the functor hP o F is representable for each
D € Obj(9). If G is right adjoint to F, then hP o F is representable by G(D).
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b. If F has a right adjoints G and G, then there exists a unique natural isomorphism & : G ~
G’ such that diagrams

N(c,
Homy (F(C), D) —-2 Homy (C, G(D))
| e
Nic,p) ,
Homgy (F(C),D) — Hom¢ (C,G'(D))

commute for all C € Obj(€) and D € Obj(Z), where the horizontal morphisms are the adjunction
isomorphisms.

PROOF. Assume that F has a right adjoint G, and consider the adjunction morphisms
Nc,p): Homg(F(C),D) = Homy(C,G(D)).
In other words,
WP o F(C) = hCP)(C),
so G(D) represents 4P o F. In this case, the uniqueness in part b is an immediate consequence of
Lemma 8.6.3.

Now suppose that i o F is representable for each D by some object G(D) (chosen using
the axiom of choice). Then there exist isomorphisms 1)(¢ p) that are natural in C. We must also
define G on morphisms f: D — D' in &. Such an f induces a natural transformation 4P ~ h
which provides morphisms

hP o F(C) — h” o F(C)
for all C € Obj(%) and thus induces h9(°)(C) — hG(P)(C), and these are natural in C. Thus, we

have a natural transformation 2/¢®) ~ hG(P) Since the Yoneda embedding is fully faithful, we
have a unique morphism G(D) — G(D’) inducing this natural transformation, which we define
to be G(f). We leave to the reader the check that G as defined is a functor. U

DEFINITION 8.6.5. Let F: ¥ — Set be a covariant functor. We say that F is representable
if there exists a natural isomorphism /4 ~~ F for some A € Obj(%). (That is, there are natural
isomorphisms

F(B) = Homg (A, B)
in B € Obj(%’).) In this case, we say that A represents F.
REMARK 8.6.6. A covariant functor F: 4 — Set is representable if and only if the con-

travariant functor F oop: €°P — Set is representable. The same object of € will represent both
objects.

EXAMPLE 8.6.7. Let F': Gp — Set be the forgetful functor. Then F can be represented by
Z. To see this, we define the set map

G — Homgyp(Z,G)

by a — (1 — a) for a € G. Naturality is clear.
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EXAMPLE 8.6.8. Let F: Gp — Set be the functor which sends a group to its subset G|n] of
elements of order dividing n. Then F can be represented by Z/nZ.

EXAMPLE 8.6.9. Consider a functor F: I — % between small categories. To say that the
contravariant functor limh® o F: € — Set is representable is exactly to say that there exists an
object X in % such that one has natural isomorphisms

Homy (A, X) = lim(h% o F)(A) = lim(Homg (A, F(-)))
for A € €. In other words, limh® o F is representable if and only if lim F exists in €.

EXAMPLE 8.6.10. Consider a functor F': [ — % between small categories. View hy as a co-
variant functor ¥ — Hom(%, Set). To say that the functor lim(hy o F): 4 — Set is representable
is exactly to say that there exists an object X € % such that one has natural isomorphisms

Homg (X,A) = lim(hg o F)(A) = lim(Home (F(-),A))

for A € €. In other words, limh¢ o F is representable if and only if colim F exists in &'.

8.7. Equalizers and images

DEFINITION 8.7.1. Let € be a category, and let
f
(8.7.1) A——B.
g
be a diagram in €.
a. The limit eq(f,g) of the diagram (8.7.1), when it exists, is called its equalizer.
b. The colimit coeq(f,g) of (8.7.1) is called its coequalizer.

We have a commutative diagram:
f
ed(f.8) —— A= B—— coeq(.)

EXAMPLES 8.7.2.
a. Let X,Y be sets, and consider maps f,g: X — Y. In Set, we have
eq(f,g) = {xe X | f(x) =g(x)}

and coeq(f,g) is the quotient of ¥ by the minimal equivalence relation ~ generated by f(x) ~
g(x) forall x € X.

b. In R-mod, the equalizer is expressed as in Set. For an R-module homomorphism f: A —
B, we have

coeq(f,8) =B/{(f —g)(a) |acA}.
LEMMA 8.7.3. Let f,g: A — B be morphisms in a category €.
a. Suppose that eq(f,g) exists. Then the induced map h: eq(f,g) — A is a monomorphism.

b. Suppose that coeq(f,g) exists. Then the induced map k: B — coeq(f,g) is an epimor-
phism.
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PROOEF. Suppose that o, B: C — eq(f,g) are morphisms in %" such that hoot = ho 3. Let
I = hoa, and note that foh' = goh'. But then o: C — eq(f,g) is unique such that ' = ho o
by the universal property of eq(f,g). Since /' = ho 3 as well, we have o = . Part b follows
from part a by working in the opposite category. U

THEOREM 8.7.4. A category that admits all products and equalizers is complete, and a cat-
egory that admits all coproducts and coequalizers is cocomplete.

PROOF. For the second statement, by taking the opposite category, we are reduced to the
first statement. Let € be a category that admits all products and equalizers. Let F': I — % be a
functor from a small category I, and consider the equalizer eq(f,g) of the two morphisms

fe [IF@O— JI Fle)
i€l o i—=¢(i)
defined via the universal property of the second product as the unique morphisms satisfying
poof =peu: [1F() = F(e())
Jel
and
poog=F(9)opi: [TF(j)— F(o(i)
jel

for morphisms ¢: i — ¢ (i) in €, where py denotes projection onto the ¢-coordinate in the
second product and p; denotes projection to the i-coordinate in the first.

Leti: eq(f,g) — [Lic; F (i) be the morphism defining the equalizer. We claim that the equal-
izer eq(f,g), together with the maps p;ot: eq(f,g) — F(i) for i € I, satisfies the univeral prop-
erty of lim F. By definition, for any morphism ¢ in % as above, we have

F(¢)o(piot)=ppogot=pyofol=pygol.
Moreover, given X € ¢ and morphisms ;: X — F (i) for i € I such that F(¢) o y; = ¢ ;) for all
i € I, we have a product map y: X — [];c; F (i) such that
PoofoV=Dpyi oV =Wy
and
ppogoy =F(d)opioy=F(P)ow= W,

so there exists a unique morphism 6: X — eq(f,g) with pjo106 = y; for all i € I. That is,
eq(f,g) satisfies the universal property of the limit. O

DEFINITION 8.7.5. In a category % with a zero object 0, the zero morphism 0: A — B be-
tween objects A,B € Obj(%) is the composition of A — 0 — B of morphisms proscribed by the
fact that O is both initial and terminal.

DEFINITION 8.7.6. Let € be a category with a zero object. Let f: A — B be a morphism in
%, and let 0: A — B be the zero morphism.

a. The kernel ker f of f is the equalizer of f and 0.
b. The cokernel coker f of f is the coequalizer of f and 0.
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EXAMPLES 8.7.7.

a. In R-mod, the categorical notions of kernel and cokernel agree with the usual ones.

b. In Gp, kernel is the usual notion, and the cokernel of a group homomorphism f: G — H
with the quotient of H by the normal closure of f(G).

There are different notions of image and coimages in categories. We use the following.

DEFINITION 8.7.8. Let f: A — B be a morphism in a category % .

a. The image of f is an object im f of % together with a monomorphism 1: im f — B such
that there exists a morphism 7: A — im f such that 7 o1 = f and such that if g: C — B us
a monomorphism and e: A — C is a morphism such that eo g = f, then there exists a unique
morphism y: im f — C such that g =10 y.

b. The coimage of f is an object coim f together with an epimorphism 7: A — coim f such
that there exists a morphism t: coim f — B with t o = f and such that if e: A — C is an
epimorphism and g: C — B is a morphism such that f = eo g, the there exists a unique morphism
0: coim f — C such thate = 6o f.

REMARK 8.7.9. In the definition of the image of f: A — B, then 7 is uniquely determined as
1 is a monomorphism and f =1 o . Moreover, if go y =1 as stated, then goyonr =107 = goe,
and g is a monomorphism, so Y o & = e. That is the diagram

A ! B
N
. im f ¢

|¥
C

commutes. Finally, note that y is forced to be a monomorphism since t is. The analogous
statements hold for the coimage.

PROPOSITION 8.7.10. Let f: A — B be a morphism in a category €.
a. If € admits equalizers, then the canonical morphism w: A — im f is an epimorphism.

b. If € admits coequalizers, then the canonical morphism 1: coim f — B is a monomor-
phism.

PROOF. We prove only part a, as part b is proven similarly. Suppose that o, : im f —
D satisfy oo om = B om. Then by definition of the equalizer, there exists a unique morphism
p: A —eq(a,B) such that for the canonical monomorphism c¢: eq(c, ) — im f, we have & =
cop. On the other hand, consider the composite monomorphism g =toc: eq(a,3) — B, where
1: im f — B is the morphism of the image. Note that gop = f, so by definition of the image,
there exists a unique morphism d: im f — eq(c, ) such that god = 1. Then to(cod) =1, so
cod =1id. On the other hand,

go(doc)=10codoc=10c=g.
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As g is a monomorphism, we have d o ¢ = id as well. O
REMARK 8.7.11. If ¢ has finite products, finite coproducts, equalizers, and coequalizers, we
may also make the following definition of the image an coimage of a morphism f: A — B.
a. The image of f is the equalizer of the two morphisms 1;: B — B1l4 B.

b. The coimage of f is the coequalizer of the two projection morphisms p;: A XxpA — A.
This definition agrees with that already given if every morphism in ¢’ factors through an equalizer
morphism and % admits finite limits and colimits. We omit the nontrivial proof.

LEMMA 8.7.12. For any f: A — B in a category € that admits equalizers (or coequalizers)
and for which coim f and im f exist, there is a unique morphism u: coim f — im f such that the
composition

AL coimfSimf 5B
of induced morphisms is f.
PROOF. We suppose that 4 admits equalizers. By Proposition 8.7.10, the canonical mor-
phism 7: A — im f with f o T = f is an epimorphism. By the definition of coim f, there then
exists a unique morphism u: coim f — im f such that # = uos. Thentouos=rtonw = f. If

v: coim f — im f also satisfiestovos = f,thentovos=tom,and¢t: im f — B is a monomor-
phism, so vos = . Thus u = v by the uniqueness of u. U

DEFINITION 8.7.13. We say that a morphism f: A — B in a category that admits an image
and coimage of f is strict if the induced morphism coim f — im f is an isomorphism.

EXAMPLE 8.7.14. Every morphism in the category of R-modules is strict.

8.8. Additive and abelian categories

DEFINITION 8.8.1. An additive category € is a category with the following properties:
i. for A, B € Obj(%), the set of morphisms Hom¢ (A, B) in % has an abelian group law (ad-
dition) with the property that for any diagram

f 81 h
A——B_—C—D,
82
in &, we have
ho(g1+g)of=hogiof+hogyof,
ii. ¢ has a zero object 0,

iii. ¢ admits finite coproducts.

In an additive category %, there always exists the zero morphism is the identity element in
the abelian group Homy (A, B).
EXAMPLES 8.8.2.

a. The categories Ab and R-mod are additive categories, with the usual addition of homo-
morphisms.
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b. The full subcategory R-mod of finitely generated R-modules is an additive category.
In an additive category, we denote the coproduct of two objects A; and Ay by A| B As.

LEMMA 8.8.3. Finite products exist in an additive category, and there are natural isomor-
phisms
Al HA2 = Al X A2
for A1,Ay € Obj(€). The resulting inclusion morphisms 1;: A; — Ay 11 Ay and projection mor-
phisms and p;: A{11Ay — A; obtained by viewing A1 11 A, as a product and coproduct, respec-
tively, satisfy p;jo1; =idy, and p;o1; =0 for i # j, while
t1opr+120pr; =1da;1a, -

PROOF. We have morphisms t;: A; — A1 [I A, by definition. We also have maps p;: A I

Ay — A; defined by
ol idy, ifi=7j
PIEU=Y0  ifist
and the universal property of the coproduct. We then have
(iop1+hop2)oti =1,
and hence 11 o p| + 12 0 p = ida,114,, again by the universal property.
Given an object B € Obj(%’) and morphisms g;: B — A;, we then have a morphism
Y =110g81+10g: B— A 1A,
which is unique such that
pioVY = gi.
Hence A L1 A, satisfies the universal property of the product. U
DEFINITION 8.8.4. An object A in an additive category % together with objects A;, inclusion
morphisms 1;: A; — A, and projection morphisms p;: A — A; for i € {1,2} for which p;o1; is
zero if i # j and idy, if i = j and for which 1] 0 p; + 120 py =idy is called a biproduct of the
objects A and A, and we write it as A| B Aj.

The notion of a biproduct allows us to reinterpret addition in an additive category. First, note
the following definitions.

DEFINITION 8.8.5. Let A be an object in an additive category % .

a. The diagonal morphism Ay: A — A@ A in € is the unique morphism induced by two
copies of id4 : A — A and the universal property of the product.

b. The codiagonal morphism V4: A@A — A in € is the unique morphisms induced by two
copies of id4 : A — A and the universal property of the coproduct.

DEFINITION 8.8.6. Let % be an additive category, and let fi: A; — By and f>: Ay — B, be
morphisms in €. The biproduct, or direct sum, fi @ f, of the maps f; and f, is the morphism
A1 DAy — By @ B; induced as the (morphism defined by the universal property of the) coproduct
of the composite maps A; — B; — B| & B3, the latter morphisms being inclusions.
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REMARK 8.8.7. Equivalently, the direct sum of f] and f> as in Definition 8.8.6 is induced as
the product of the composite maps A; & A, — A; — B;, the initial morphisms being projections.

Of course, we could make these definitions in an arbitrary category using products and co-
products.

LEMMA 8.8.8. Let f,g: A — B be two morphisms in an additive category €. Then we have
f+g=Vpo(fdg)oh.
PROOF. Let llA and p‘;‘ respectively denote the inclusion maps and projection maps for the
biproduct A @ A, and similarly for B. We have
Vgo(f@g)oA=Vo(fdg)o(fop!+1oph)ohy
= VBo(fEBg)ol‘f‘op‘i‘oAA—|—VBo(f@g)ol‘240p‘§oAA.
Taking the first term without loss of generality, we have
Veo((f@g)ot!)o(pfoAs)=Vgo(ifof)oidy =idgof = f.
U

DEFINITION 8.8.9. A functor F': 4 — & between additive categories is called additive if for
each A, B € Obj(%'), the map

Homy (A,B) — Homy (F(A),F(B))
is a group homomorphism.

EXAMPLE 8.8.10. Let % be an additive category. Then for any A € Obj(%), the functors 4"
and h4 may be considered as functors to Ab, rather than Set. The resulting functors are additive.

LEMMA 8.8.11. A functor F: € — 2 of additive categories is additive if and only if F
preserves biproducts, which is to say that the natural morphisms F(A|) ® F(Ay) — F(A] ©A)
and F (A1 ®Ay) — F(A1) @ F(Ay) are inverse isomorphisms for all objects Aj,A; in €.

PROOF. Suppose first that F is an additive functor. Note that F(1; 0 p;) = idp(4,) and F(1; 0
pj) = F(0) for i # j, but F(0) = 0 by additivity of F. Again by additivity of F, we have
F(u)oF(p1)+F(12) o F(p2) = F(ida,ea,) = idp(4,e4,)

It follows that F(A; @A) is a biproduct of F(A}) and F(A3) in 2, so in particular it is a coprod-
uct.

On the other hand, if F' preserves biproducts and f,g: A — B are morphisms in %, then it is
easy to see that F(f @ g) = F(f) ® F(g), and Lemma 8.8.8 tells us that

F(f+g)=F(Vpo(f@g)oda) =Vpp o (F(f)OF(g)oArn) =F(f)+F(g)
U

COROLLARY 8.8.12. Let F: € — 2 be a fully faithful functor of additive categories. Then
F is an additive functor.



254 8. CATEGORY THEORY

REMARK 8.8.13. For additive functors, we may consider a finer notion of representability
than we previously studied. If F': 4 — Ab is an additive contravariant (resp., covariant) functor
of additive categories, then we may consider it to be representable if there exists an object X €
Obj(%) and a natural isomorphism 7 : A% ~ F (resp., 1: hx ~ F). In this case, the morphisms
nNa for A € Obj(%) will be isomorphisms of groups.

LEMMA 8.8.14. A morphism in an additive category that admits kernels is a monomorphism
if and only if it has zero kernel. A morphism in an additive category that admits cokernels is an
epimorphism if and only if it has zero cokernel.

PROOF. Let f: A — B be a monomorphism, and let z: ker f — A be the induced morphism.
Since foh = 0 by definition of the kernel, we have 4 = 0, as f is a monomorphism. This forces
ker f to be 0, since & factors through 0. (Or, one could just apply Lemma 8.7.3.) On the other
hand, suppose that f has trivial kernel, and let g,h: C — A be maps with fog = foh. Then
fo(g—h) =0, and by universal property of the kernel, g — & factors through 0, i.e., is O.

The proof for cokernels is similar, or is the result on kernels in the opposite (additive) cate-
gory. U

PROPOSITION 8.8.15. Let € be an additive category that admits kernels and cokernels. Let
f: A — Bbeamorphismin €. Then

im f = ker(B — coker f)

and
coim f = coker(ker f — A).

PROOF. We prove the first isomorphism. Let g: B — coker f. By Yoneda’s lemma, it suffices
to show that 4™/ and 7*°"¢ are naturally isomorphic. For C € Obj(%’), we have a map

Homg (C,imf) = {a: C— B|yjoa=1poa}

that takes a morphism C — im f and composes it with the morphism im f — B given by definition
of the equalizer of the maps 1;: B — Bll4 B. It is a bijection by the universal property of the
equalizer.

For any D € Obj(%’) and morphisms ¢;, ¢, : B — D such that ¢; o f = ¢, o f, note that there
exists a unique morphism k: BIl4 B — D with ¢; =kot1;. Any a: C — Bsuchthatijoax =nox
then satisfies ¢; o ¢ = ¢ o & for any such ¢;: B— D and any D. On the other hand, note that the ;
themselves satisfy the property that 1y o f = 15 o f and are morphisms t;: B — D with D = B1I4 B.
In other words, we have

{oe:C—Blyoa=noa}
={o: C—B|poa=doaif ¢yof=¢of for some ¢,d,: B— D (for some D € Obj(%))}.
Now, we are in an additive category, so this equals
(8.8.1) {a:C—B|poa=0if g of =0 forsome ¢: B— D}.

By the universal property of coker f, for any ¢: B — D with ¢ o f = 0, there is a morphism
j: cokerf — D with jog=¢. If goax =0, then pox = jogo o =0, and this works for any
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¢: B— D with ¢ o f = 0. On the other hand, g itself satisfies go f = 0 so is such a ¢. It follows
that the set in (8.8.1) equals

{o0: C - B | goa=0}.
By the universal property of kerg, this is in bijection with Hom¢ (C,kerg), taking an ¢ in the
set to the unique morphism to ker g through which it factors. Clearly, the composition of these
bijections is natural in C, so we have the desired natural isomorphism. U

DEFINITION 8.8.16. An abelian category is an additive category % in which
i. every morphism in ¢ admits a kernel and a cokernel and

ii. every morphism in ¥ is strict.

EXAMPLES 8.8.17.
a. The category R-mod is abelian.

b. The full subcategory % of R-mod of finitely generated R-submodules is not necessarily
abelian. E.g., when R is commutative and non-Noetherian, we can take [ to be an ideal of R that
is not finitely generated, and so the kernel of R — R/I is not in %

REMARK 8.8.18. Note that if % is an abelian category, then so is €°P. The roles of mono-
and epimorphisms, kernels and cokernels, and images and coimages switch in % and €°P.

PROPOSITION 8.8.19. The functor category Func(€,2) from a small category € to an
abelian category 9 is abelian.

PROOF. We sketch the proof. First, note that it is additive: we have the zero functor which
sends all objects to the zero object and all morphisms to the zero (identity) morphism of the zero
object, and if F,G: € — 2 are functors, then F & G is given by (F & G)(C) = F(C) ® G(C)
and (F®G)(f) =F(f)®G(f) for f: A— Bin C. This can be used to define the addition on
morphisms (i.e., natural transformations) as before.

Next, the kernel of a natural transformation 1: F ~~ G is defined by (kern)(C) = kern¢ and
(kern)(f) for f: A — B is the kernel of the induced morphism kern — kerng. The cokernel is
defined similarly. Note that

(coimn)4 = coker(kern ~» n)4 = coker(kerny ~ M4) = coimny,

and similarly for images. Finally, since Z is abelian, the natural map coimn ~» im1 is an
isomorphism coim 14 — im7)4 on objects A in €, hence has a natural inverse determined by the
inverses of these morphisms. U

TERMINOLOGY 8.8.20. In an abelian category %', we typically refer to a coproduct (when it
exists) as a direct sum, and we write @,.;A; in place of I1;c/A;.






CHAPTER 9

Module theory

9.1. Associative algebras
Much as with groups, we may speaker of the center of a ring.
DEFINITION 9.1.1. The center Z(R) of a ring R is the subring of R given by the subset
Z(R) ={a€R|ab=baforall b € R}.
We now define the notion of an algebra over a commutative ring.

DEFINITION 9.1.2. Let R be a commutative ring. An (associative) R-algebra A is the pair of
an R-module A and a binary operation - on A which, together with the addition on A, makes A
into a ring, and which satisfies

r(a-b)=(ra)-b=a-(rb)
forallr € Rand a,b € A.

REMARK 9.1.3. An R-algebra A comes endowed with a homomorphism ¢: R — Z(A), given
by ¢(r) =r-1 for r € R and the element 1 € A. In fact, to give an R-algebra A is to give a ring
A and a ring homomorphism ¢ : R — Z(A) with ¢(1) = 1, for then this provides an R-module
structure on A given by r-a = @ (r)a, which makes A into an R-algebra.

REMARK 9.1.4. Often, it is supposed that the map ¢ : R — Z(A) that defines the R-algebra
structure on A is injective. This is automatically the case if R is a field.

EXAMPLES 9.1.5. Let R be a commutative ring.

i. The polynomial ring R[xy,...,x,| is an R-algebra for any n > 1.

ii. The matrix ring M, (R) is an R-algebra for any n > 1.

iii. If F is a field and E 1is a field extension of F, then F' is an E-algebra.
iv. The ring R is a Z-algebra.

EXAMPLE 9.1.6. The ring H = {a+bi+cj+dk | a,b,c,d € R} of quaternions has center
Z(H) = R, hence is an algebra over R. Note that C = {a+ bi | a,b € R} is contained in HI, but
H is not a C-algebra, as C is not contained in the center of H.

DEFINITION 9.1.7. An R-algebra homomorphism f: A — B is a ring homomorphism of
R-algebras A and B that is also a homomorphism of R-modules.

EXAMPLE 9.1.8. For any R-algebra A, the structure homomorphism ¢ : R — A with image
in the Z(A) is a homomorphism of R-algebras.

257
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We provide three other classes of examples.

DEFINITION 9.1.9. Let R be a commutative ring with unity, and let X be a set. The free
R-algebra R(X) on X is the R-algebra with underlying additive group the free R-module on the
words in X and multiplication the unique R-bilinear map given on words in X by concatenation.

REMARK 9.1.10. Another way of describing the free R-algebra on a set X is that it’s a non-
commutative polynomial ring with variables in X.

NOTATION 9.1.11. If X = {xy,...,x,} has n elements, then we write R(x|,...,x,) for R(X).

DEFINITION 9.1.12. Let R be a commutative ring (with unity) and M an R-module. Then
endomorphism ring Endg (M) of M over R is the R-algebra of R-linear endomorphisms of M. It is
a ring under addition and composition of endomorphisms, and has the R-module structure given
by multiplication of scalars: that is,

(r-f)(m) =r- f(m)
forall f € Endg(M),r € R,and m € M.

REMARK 9.1.13. The map ¢ : R — Z(Endg(M)) defining the R-algebra structure on Endg (M)
takes r € R to left multiplication by » on M.

DEFINITION 9.1.14. The automorphism group Autg(M) of an R-module M is the group of
R-automorphisms of M under composition.

REMARK 9.1.15. The unit group of Endg(M) is Autg(M).

EXAMPLE 9.1.16. We have an isomorphism of R-algebras Endg(R") =+ M, (R) by taking
¢ € Endg(R") to the matrix A defined by A-e; = Y| a;je; for the standard basis {ey,...,e,} of
R". We have that ¢ € Autg(R") if and only if A is invertible.

PROPOSITION 9.1.17. Let M be an R-module and A be an R-algebra. There is a bijection
between operations -: A x M — M which make M into a left A-module and R-algebra homomor-
phisms y: A — Endg(M) determined by y(a)(m)=a-mforalla € A and m € M.

We turn to another class of algebras known as group rings. The reader will easily check the
following.

LEMMA 9.1.18. Let R be a commutative ring an G be a group. The set R|G] of elements
Y ecGagg With ag € R for all g € G and almost all ag = 0 and addition and multiplication of
multiplication are given respectively by the formulas

Y agg+ Y beg=Y (a;+bg)g and (Zagg) : (Z bgg> =) (Zahbh1g>g

geG geG geG geG geG g€G \heG

is an R-algebra with R-module structure given by the scalar multiplication

r Z ag8 = Z (rag)g-

geG geG
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REMARK 9.1.19. As an R-module, R[G] is simply the module ¥, Rg. The multiplication
on R[G] is the unique multiplication that restricts to the multiplication on G and makes R|G] into
an R-algebra. The identity element 1 in R|G] is the identity of G.

DEFINITION 9.1.20. The group ring R|G] of a group G with coefficients in a commutative
ring R is the unique R-algebra that is free as an R-module with basis G and has multiplication
that restricts to the multiplication on G.

EXAMPLE 9.1.21. For n > 1, there is an isomorphism
n—1 ) n—1
Rlx]/ (X" — 1) = R[Z/nZ)], Za,x’»—) Zai[i],
i=0 i=0

of R-modules, where [i] denotes the group element corresponding to i € Z/nZ. Similarly, one
has Rlx,x~!] = R[Z].

9.2. Homomorphism groups

REMARK 9.2.1. Let M be a left module over an R-algebra A. Then M is an R-module under
r-m= @(r)m, where ¢ : R — Z(A) is given by the structure of A as an R-algebra.

DEFINITION 9.2.2. Let M and N be left modules over an R-algebra A. The homomorphism
group Homy (M, N) is the R-module of homomorphisms ¢ : M — N under the usual addition of
maps and the scalar multiplication (r-@)(m) =r- ¢ (m) for r € Rand m € M.

REMARK 9.2.3. It is traditional to call Hom4 (M,N) a homomorphism group, even when it
has an additional R-module structure (for when we simply take R = Z, it is just a Z-module, or
abelian group).

EXAMPLE 9.2.4. Let R be a commutative ring. Then Homg(R™,R") is a free R-module of
rank mn, isomorphic to My, (R) via ¢ — A with ¢(e;) =Y.' | aije;.

EXAMPLE 9.2.5. Let m,n > 1. Then Homy(Z/mZ,Z/nZ) = 7./ (m,n)Z. That is, an element
this group is completely determined of ¢ (1), and ¢(1) has to be an element of order dividing m

in Z/nZ, so a multiple of m.

In general, if M and N are A-modules with an additional right module structures that turn
them into bimodules, then we can consider transfer these structures to Homy (M, N), as we briefly
explore.

DEFINITION 9.2.6. Let A and B be algebras over a commutative ring R. We say that an
A-B-bimodule M is R-balanced if rm = mr for allr € Rand m € M.

EXAMPLES 9.2.7.
a. If A is an R-algebra, then A is an R-balanced A-A-bimodule.

b. For a commutative ring R, the M,,,(R)-M,(R)-bimodule M,,,(R) is R-balanced.
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PROPOSITION 9.2.8. Let A, B, and C be R-algebras, let M be an R-balanced A-B-bimodule,
and let N be an R-balanced A-C-bimodule. Then Homy(M,N) is an R-balanced B-C-bimodule
under the actions given by

(b-9)(m)=¢(mb) and (¢-c)(m)=¢(m)c
forbeB, ceC,meM, and § € Homy(M,N).

Homomorphism groups behave well with respect to direct sums and products, as made pre-
cise in the following proposition.

PROPOSITION 9.2.9. Let A be an R-algebra.

a. Let M be a left A-module, and let {N; | j € J} be a collection of left A-modules. Then there
is a canonical isomorphism of left R-modules

Homy, <M,HNj> ~ [T Hom, (M, N;).
jeJ jeJ
b. Let N be a left A-module, and let {M; | i € I} be a collection of left A-modules. Then there
is a canonical isomorphism of left R-modules

Homy, (EBM,-,N) ~ T Homy, (M;, N).
icl icl

PROOF. Given a collection of A-module homomorphisms ¢;: M — N; for j € J, we define
®: M — [1jc;N;j by ®(m) = (¢(m)) jes, which is clearly an A-module homomorphism. Con-
versely, given @, we define ¢; = ; o @ where 7;: [];c;N; is the projection map, and ¢; is then
an A-module homomorphism. The bijection (¢;) jc; — P is clearly a map of R-modules. Thus,
we have part a.

Now, given a collection of A-module homomorphisms y;: M; — N for i € I, we define
Y: @Pic;M; — N by ¥((m;)ier) = Yicymi, which is well-defined as all but finitely many m; = 0
by definition of the direct sum. The map W is then an A-module homomorphism. Conversely,
given ¥, we define y;(m) = ¥(1;(m)), where 1;: M — @,;; M; is the inclusion. These are by
definition inverse associations, and the bijection (y;);c; — ¥ is again clearly an R-module ho-
momorphism. O

Let us consider the example of a dual vector space.

DEFINITION 9.2.10. Let V be a vector space over a field K. The dual vector space is V* =
Homg (V, K).

REMARK 9.2.11. Note that V = @, K for any choice of basis, so
V* = Homg (EBK,K) ~ [THomg (K, K) =[]k
icl icl icl
by part b of Proposition 9.2.9. That is, V and V* are not in general isomorphic, but they will be

so if V is finite-dimensional. However, this isomorphism is not canonical: it depends on a choice
of basis, which we next make explicit.
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DEFINITION 9.2.12. Let V be an n-dimensional vector space over a field K, and let B =
{e1,ea,...,e,} be abasis of V. The dual basis to B is the basis of V* given by B* = { f1, f2,..., fu}s
where for 1 < i, j < n, we have

filej) = &ij
We next consider the double dual V** = (V*)* of an arbitrary vector space. For a finite-
dimensional vector space, it is canonically isomorphic to V.

PROPOSITION 9.2.13. Let V be a vector space over a field K. There is a canonical injec-
tion ®: V — V** of K-vector spaces given by F(v)(f) = f(v) forv eV and f € V*. It is an
isomorphism if V is finite-dimensional.

PROOF. Letv € V and f € V*. First, note that

P)(f+af) =fv)+af(V) = Pv)(f) +a@v)(f),

so @(v) € V**. Second, note that

D(av+V)(f) = flav+V) = af(v) + f(V') = a- D) (f) + (/) (f),

so @ is a K-linear transformation. Third, note that if ®(v) = 0, then ®(v)(f) = f(v) = 0 for
all f € V*. If v # 0, we can extend {v} to a basis B of V and define f € V* by f(v) =1 and
f(w) =0 for all w € B— {v}. Thus, the fact that f(v) = 0 for all f € V* implies that v =0, so ®
is injective.

Now, suppose that V is n-dimensional, let {e},es,...,e,} be a basis, and let { f1, f2,..., fu}
be its dual basis in V*. If ¢ € V**, then set c; = ¢(f;) for each 1 < j < n. Then

o( Y o(fe) (1) = £( L o(hei) = o(£)
i—1 i=1
for all j, so ¢ € ®(V). That is, ® is an isomorphism. O

9.3. Tensor products

DEFINITION 9.3.1. Let A be ring, let M be a right A-module, and let N be a left A-module.
The tensor product M ®4 N of M and N over A is the abelian group that is the quotient of the free
abelian group with basis M x N by its subgroup generated by

i. (m+m',n)— (m,n)— (m',n) forallm,m € M andn € N,
ii. (m,n+n')— (m,n)— (m,n) for all m € M and n,n’ € N, and
iii. (ma,n) — (m,an) forallm € M,n € N, and a € A.

The image of (m,n) in M ®4 N is denoted m ® n.

DEFINITION 9.3.2. Let A be ring, let M be a right A-module, and let N be a left A-module.
An element of M ®4 N of the form m ® n for some m € M and n € N is called a simple tensor.

REMARK 9.3.3. Any tensor product M ®4 N is generated as an abelian group by simple
tensors m®@n form € M and n € N. It is not in general equal to the set of such tensors.
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PROPOSITION 9.3.4. Let A be an algebra over a commutative ring R, let M be a right A-
module, and let N be a left A-module. The tensor product M ®4 N is an R-module under the
unique action that satisfies

rim®@n) =mrn=m® rn.

forallrc R, me M, andn € N.

PROOF. If we consider the free abelian group on M x N as an R-module via r(m,n) = (mr,n)
forr€ R, m € M, and n € N, then the elements providing the relations in Definition 9.3.1 define
an R-submodule. Therefore, the quotient becomes an R-module under this action. U

REMARK 9.3.5. If A is an R-algebra, the tensor product M ®4 N is isomorphic to the quotient
of the free R-module on M x N by the submodule generated by the elements of Definition 9.3.1,
along with the elements r(m,n) — (mr,n) forr € R, m € M, and n € N.

DEFINITION 9.3.6.
a. Let L, M, and N be abelian groups. A map ¢ : M x N — L is said to be bilinear if
o(m+m',n) = @(m,n)+§(n,n) and §(m,n+n')=¢(m,n)+ ¢ (m,n).

for all m,m’ € M and n,n’ € N. Here, the first equality (for all m, m’, and n) is referred to as left
linearity (or linearity in the first variable) and the second as right linearity.

b. Let L, M, and N be left modules over a commutative ring R. A bilinearmap ¢: M xN — L
satisfying

r¢(m,n) = ¢ (rm,n) = ¢(m,rn)

forall r € R, m € M, and n € N, then ¢ is said to be R-bilinear.

DEFINITION 9.3.7. Let A be aring, let M be a right A-module, and let N be a left A-module.
A function ¢ : M x N — L is said to be A-balanced if ¢ (ma,n) = ¢ (m,an) for all a € A.

REMARK 9.3.8. Let A be an algebra over a commutative ring R, let M be a right A-module,
and let N be a left A-module. The tensor product M ®4 N is endowed with an A-balanced R-
bilinear map

WnN:MXN—M®uN, o(m,n) =men,
as seen directly from the relations defining M @4 N.

The tensor product enjoys a universal property, exhibited in the following proposition.

PROPOSITION 9.3.9. Let A be an algebra over a commutative ring R, let M be a right A-
module, and let N be a left A-module. Let ¢ : M X N — L be R-bilinear and A-balanced. Then
there exists a unique R-module homomorphism ®: M ®4 N — L such that ®(m®@n) = ¢ (m,n)
forallme M andn € N.

PROOF. We use the alternate construction of M @4 N of Remark 9.3.5. The map ¢ induces a
unique R-module homomorphism

F: @ R(m,n) — L, F((m,n)) = ¢(m,n),

(m,n)eMxN
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since the direct sum is free. The R-bilinearity of ¢ tells us that the elements (m+m’,n) — (m,n) —
(m',n), (m,n+n'") — (m,n) — (m,n’), and r(m,n) — (mr,n) lie its the kernel. The fact that ¢ is
A-balanced similarly tells us that the elements (ma,n) — (m,an) are contained in its kernel. The
first homomorphism theorem then provides an R-module homomorphism ®: M ®4 N — L with
d(m@n) =@ (m,n) forallm € M andn € N.

If W: M®4 N — Lis an R-module homomorphism also satistying W o 1y y = ¢, then ¥(m®
n) = ¢(m,n) = P(mxn) for all m € M and n € N, but the symbols m ® n generate M ®4 N as
an R-module, since the tensor product is defined as the quotient of the free R-module on M x N.
Therefore, we must have & = . ]

REMARK 9.3.10. The defining property of the map ®: M ®4 N — L of Proposition 9.3.9 is
stated more succinctly as @o 1y y = ¢.

The reader may check the following, which gives the uniqueness of the tensor product up to
unique isomorphism as a module satisfying the universal property of the tensor product.

PROPOSITION 9.3.11. Let A be an algebra over a commutative ring R, let M be a right
A-module, and let N be a left A-module. Let P be an R-module, and let A: M x N — P be an R-
bilinear map such that for any R-bilinear, A-balanced map ¢ : M x N — L, there exists a unique
R-module homomorphism ®: P — L such that ® o A = ¢. Then there is a unique isomorphism
y: P =3 M ®u N such that I[IO}L =1y N-

REMARK 9.3.12. Let A be an algebra over a commutative ring R, let M be a right A-module,
and let N be a left A-module. For any m € M and n € N, we have m ® 0 = 0 = 0 ® n. For the first
equality, note that m®0 = 0(m®0) = 0.

We give an example by way of a proposition.
PROPOSITION 9.3.13. Let m,n > 1. Then (Z/mZ) @z (Z/nZ) = Z/(m,n)Z.
PROOF. Let d = ged(m,n), and write d = am + bn for some a,b € 7. Note that x®y =
xy(1®1),s0 T = (Z/mZ) @y (Z/nZ) is cyclic, and moreover,
d1®1)=(am+bn)(1®1)=a(mx1)+b(1®n) =0,

so the order of T divides d.

We can define a bilinear map ¢ : Z/mZ x Z/nZ — 7./dZ by ¢ (x,y) = xy mod d for x € Z/mZ
and y € Z/nZ. We then have a homomorphism ®: T — Z/(m,n)Z with ®(1® 1) = 1, and it is
therefore surjective. This forces |T'| = d and ® to be an isomorphism, as desired. U

PROPOSITION 9.3.14. Let A be an R-algebra, let M be a right A-module, and let {N; | i € I}
be a collection of left A-modules. Then

M (EDN) =DM s Ny).
iel iel
PROOF. First, define an R-bilinear, A-balanced map

O: M x <@Nl> — @(M@ANZ'), (])(m,Zni) :Zm@)ni.

iel i€l iel i€l



264 9. MODULE THEORY

This induces an R-module homomorphism

®: My (DN) =DM 2N
iel iel
with ®(m®@n;) = m®@n; form € M and n; € I for some i € 1.
Next, define R-bilinear, A-balanced maps

Wit M x Ni — M@y <@Ni), vi(m,n;) = m@n;.
icl
The collection (y;);es gives rise to a unique R-module homomorphism

¥ PM@aN;) — M@, (@Ni>7
icl icl
satisfying W(m ® n;) = m @ n; for m and n; as above by Proposition 9.2.9b. By definition, the
maps @ and ¥ are inverse to each other. U

PROPOSITION 9.3.15. Let M and N be modules over a commutative ring R. Then there is a
unique isomorphism of R-modules

MQrN = NQrM, men+—nm.

PROOF. Consider the R-bilinear map ¢: M x N — N ®g M given by ¢(m,n) = n@m. It
induces an R-module homomorphism ®: M ®@g N — N Qg M satisfying ®(m @n) = n®m by the
universal property of the tensor product. It then has inverse the similarly defined map W: N ®g
M — M®@gN with ¥(n®@m) =m®n. O

REMARK 9.3.16. We can allow a tensor product over an arbitrary R-algebra A in Propo-
sition 9.3.15, but we obtain M ®4 N = N ®400 M as R-modules (noting that A°P has the same
R-module structure as A).

EXAMPLE 9.3.17. Let R be a commutative ring. The tensor product R Qg R" is a free
R-module of rank mn with basis {e;®e; | 1 <i<m,1 < j<n}. This follows immediately
from Proposition 9.3.14 (and Proposition 9.3.15) and the fact that R ®@g R = R. Here, the latter
isomorphism is induced the R-bilinear map (x,y) — xy, its inverse being the map R — R Qg R
withx — x® 1.

PROPOSITION 9.3.18. Let A and B be R-algebras. Let L be a right A-module, let M be an
R-balanced A-B-bimodule, and let N be a left B-module. Then there is a unique isomorphism of
R-modules

(L@aM)@pN ~5 Loy (M@pN),  ((@m)@n— 1@ (men).

PROOF. Let ¢: (L®4 M) x N — P be an R-bilinear, B-balanced map to some R-module P.
This gives rise to a map
v=¢o(iyxidy): LXMXN—P
which is R-linear in each variable separately and satisfies

v(la,m,n) = y(l,am,n) and y(l,mb,n)=y(l,m,bn)
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forallacA,beB,l€L,meM,andn € N. In particular, for each / € L, we obtain an R-module
homomorphism ¥;: M ®g N — P with ¥;(m®n) = y(l,m,n) by the fact that y;: M x N — P
with y;(m,n) = y(I,m,n) is R-bilinear and B-balanced. We then obtain an R-bilinear, A-balanced
map
0: Lx(M®gN)— P, 0(l,m®n) =y (mon)=y(l,mmn)
which in turn induces an R-module homomorphism
O: Ly (M®pN) — P, O(®(men))=vy(l,mn).

Since the elements / ® (m ® n) generate L ®4 (M ®@p N), this is the unique homomorphism that
agrees with y on these simple tensors. Since y(I,m,n) = ¢ (I @ m,n), the R-module L ®4 (M ®p
N) satisfies the universal property of the tensor product L ®4 (M ®p N), hence is canonically
isomorphic to it via the indicated map, as in Proposition 9.3.11. U

LEMMA 9.3.19. Let A be an R-algebra. Let M and M’ be right A-modules, and let N and
N’ be left A-bmodules. Let ¢: M — M’ and y: N — N’ be homomorphisms of left and right
A-modules, respectively. Then there exists a homomorphism of R-modules

PRQY: MRAN — M @, N, (02 w)(m@n)=¢(m)@y(n).
PROOF. The map 6: M x N — M’ x N’ with 8 (m,n) = ¢ (m) ® y(n) is immediately seen to
be R-bilinear, and it is A-balanced since
¢ (ma) @ y(n) = ¢(ma@ y(n) = ¢(m)®ay(n) = ¢(m) @ y(an).
Thus, it induces an R-module homomorphism M ®4 N — M’ @4 N’ with the desired property. [

We can also form the tensor product of R-algebras.

PROPOSITION 9.3.20. Let A and B be algebras over a commutative ring R. The tensor
product A Qg B is an R-algebra under the unique multiplication satisfying

(a®b)(d @b") = ad @bb'.
fora,a € Aand b,b' € B.

PROOF. First, we should check the desired multiplication on A Qg B is well-defined. To start,
given a € A and b € B, we claim that the map A x B — A ®g B given by (d',b') — ad’ @ bb' is
R-bilinear (and therefore R-balanced). To see this, we merely note that a(ra’) ® bb' = r(ad’ @ bb')
and a(d' +d") @ bb' = ad' @ bb’ + aa” @ bb'. Therefore, we obtain a well-defined map

y: AXx B — Endgr(A®gB), v(a,b)(d @b') =ad @bb'.
Note also that y is R-bilinear as well, so we obtain an R-module homomorphism A ®g B —
Endg (A ®g B), which we may rewrite then as a well-defined operation
(AQrB) X (AQrB) — A®gB, (a®@b,d @b") — ad @bb'.

This operation is R-bilinear by what we have said. As it clearly satisfies (1®1)(d’ ®@b') =d @V,
so we need only observe its associativity to finish the proof of the result. This can be checked on

simple tensors, for which it is in an immediate consequence of the associativity of the operations
on A and B. U
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PROPOSITION 9.3.21. Let A and B be algebras over a commutative ring R. An abelian group
M that is a left A-module and a right B-module is an R-balanced A-B-bimodule if and only if it
is an A @ B°P-module under the action (a ® b)m = (am)b.

PROOF. Let M be an R-balanced A-B-bimodule. We endow it with an A x B°P-action by
(a,b)m = amb. This is action is R-bilinear, so it factors through an action of A @ B°P that clearly
satisfies (1® 1)m=m and (a®@b)(m+m') = (a®@b)m+ (a® b)m’ and therefore makes M into
an A @g B°P-module.

Conversely, if M is an A ®g B°P-module, it is in particular an R-balanced A-B-bimodule via
the actions am = (a® 1)m and mb = (1 ® b)m, as the reader may quickly verify. U

When M and N have R-balanced bimodule structures, we can also attain a bimodule structure
on their tensor product.

PROPOSITION 9.3.22. Let A, B, and C be R-algebras over a commutative ring R. Let M
be an A-B-bimodule and N be an R-balanced B-C-bimodule. Then M ®g N is an R-balanced
A-C-bimodule with respect to actions satisfying

a(m®n) = (am)®n and (m®n)c=m® (nc)

forallac A, ceC,meM, andn € N.
PROOF. For a € A and ¢ € C, we can define an R-bilinear map

O: MxN—-MRgN, (m,n) — (am) @ (nc),

noting that
Oac(rm+m',n) = (a(mr+m')) @ (nc) = r(am@nc) +am’ @ nc = rg (m,n) + ¢ (m,n’)
and similarly for the second variable. We thus have an induced map
Pyt MRBN — M®pN, m®n— (am) @p (nc)
of R-modules. The map
AXC® — Endg(M ®pN), (a,c) = Py

then defines an R-algebra homomorphism. In other words, this gives M ®p N the structure of a
left A ®@g C°P-module. O

We give an application.

PROPOSITION 9.3.23. Let A be a ring, let M be a left A-module, and let I be a two-sided
ideal of A. Then there is an isomorphism of left A-modules

M/IM =5 A/I@s M, m+IM— 1®@m.

PROOF. Note that A/I is an A-A-bimodule, so A/l ®4 M has the structure of an A-module
by Proposition 9.3.22. In one direction, we can define an A-module homomorphism ¥: M —
A/I®4M by ¥(m) = 1®@m. In the other, we can define an left A-linear, A-balanced map ¢ : A/I x
M — M/IM by ¢(a+1,m) = am—+ IM, which induces an A-module homomorphism ®: A/l ®4
M — M /IM which is clearly inverse to V. U
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We have the following direct corollary.

COROLLARY 9.3.24. Let A be a ring, and let M be a left A-module. Then M = A Q4 M as
A-modules.

REMARK 9.3.25. Note that Proposition 9.3.23 requires / to be a two-sided ideal, though the
definition of M /IM only requires [ to be a left ideal. That is, we need a right A-action on A/I in
order to define A/I ®4 M. We cannot take M ®4 A /I either, as M is a left A-module.

Here is an interesting comparison of tensor products and homomorphism groups in the case
of vector spaces.

LEMMA 9.3.26. Let V and W be finite-dimensional vector spaces over a field F. Then we
have an F-linear isomorphism

¥: V'@ W = Homp(V,W),  ¥(p@w)(v)=¢()w
foro eV, veV, andweW.

PROOEF. One checks directly that the map y: V* x W — Homp (V,W) with y(¢,w)(v) =
¢ (v)w is F-bilinear, thus induces a map on the tensor product. Let B be a basis of V and C be a
basis of W. For each v € B, and ¢ € Homp(V,W), write

o(v) = Z Ay W

weC

Define ¢,, € V* for w € C by ¢,,(v) = a,,, for v € B. We can then define ®: Homg(V,W) —
V*®r W by

®((P> = Z ¢W®W-

weC
By definition, ¥(®(¢))(v) = ¢(v) and
O (pew)=0W—d(vIv)=0w.
U

We will interpret the following as an adjointness of homomorphism and tensor product func-
tors.

THEOREM 9.3.27. Let A and B be algebras over a commutative ring R. Let M be an R-
balanced A-B-bimodule, let N be a left B module, and let L be a left A-module. Then there is an
isomorphism of R-modules

E: Homy (M ®pN,L) = Homg(N,Homy (M,L))
given by

E(f)(n)(m) = f(m@n)
forall f € Homy(M ®pN,L), m € M and n € N.
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PROOF. First, define = as in the statement of the theorem. Note that
E(f)(m)(am+m') = f((am+m') @n) = fla(m@n)+ (m' @n))
=af(m@n)+ f(m' ®n) = aE(f)(n)(m) +E(f)(n)(m),

s0 E(f)(n) is a homomorphism of A-modules. Moreover,

(x]

E(f)(bn' +n")(m) = f(m® (bn' +n")) = f(mb&n') + f(m@n")
=E(f)(mb)(n') +E(f)(m)(n") = (bE(f))(m)(n') + E(f) (m)(n"),

so E(f) is a homomorphism of B-modules. Thus, E is well-defined. In addition,

E(rf)(n)(m) = (rf)(m@n) = f(r(m@n)) = f(mr&n)
= fm@rn) =E(f)(rn)(m) = (r&(f))(n)(m)
0 E(rf) =rE(f), and since E is also clearly a homomorphism of abelian groups, Z is a homo-
morphism of R-modules.
To finish the proof, we must exhibit an inverse to E. For this, suppose we are given A €
Homg(N,Homy (M, L)) and define ¢ : M x N — L by ¢(m,n) = A(n)(m). This map satisfies
¢(rm+m',n) = A(n)(rm+m') = rA(n)(m) +A(n)(m') = r¢ (m,n) + ¢ (m',n),
¢(m,rn+n') = (ri(n))(m) +A(n')(m) = rA(n)(m) + A (n')(m) = r¢ (m,n) + ¢ (m,n’),
¢ (mb,n) = A(mb)(n) = (A(m)b)(n) = A(m)(bn) = <P(m,bn),
¢(am,n) = A(am)(n) = (aA(m))(n) = aA(m)(n) = a¢(m,n)
forallm,m’ € M,n,n’ €N,r €R,a €A, and b € B. Thus, ¢ induces a unique map ®: M @zN —

L of A-modules with ®(m ®@n) = A(n)(m). The map A — & is then by definition inverse to E,
which tells us that = is a bijection, hence an isomorphism. U

REMARK 9.3.28. If we suppose in Theorem 9.3.27 that N is an R-balanced B-C-bimodule
and L is an R-balanced A-D-bimodule for R-algebras C and D, then the isomorphism Z is one of
R-balanced C-D-bimodules.

REMARK 9.3.29. Let A and B be algebras over a commutative ring R. Fix an R-balanced A-
B-bimodule M. Define a functor #;: B-mod — A-mod by #3/(N) = M ®p N on B-modules N and
ty(g) =idy; ®g on B-module homomorphisms g: N — N’. Define another functor /157 : A-mod —
B-mod by /1y;(L) = Homy (M, L) on A-modules L and hy(f)(h) = foh for f € Homyu(L,L') and
h € Homy (M, L). Then the isomorphism of Theorem 9.3.27 is the adjunction map

Homy (IM(N),L) = HomB(N, ]’lM(L)).

These isomorphisms are natural in N and L, and hence ¢y, is left adjoint to Ayy.

9.4. Exterior powers

In this section, R will denote a commutative ring.
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DEFINITION 9.4.1. Let M be an R-module. For a nonnegative integer k, the kth tensor power
M®* of M over R is the tensor product M @ M Qg - -- ©r M of k copies of M if k is positive and
Rifk=0.

DEFINITION 9.4.2. Let M{,M>,...,M; and N be R-modules for some k > 1. Amap f: M x
My x --- X M — N is said to be R-multilinear if it is R-linear in each of its k variables, which is
to say that
f(m17m27 cee 7mi—17rmi+m;7mi+17' .- 7mk)
= f(my,my, ... omi_y,rmi migy, .. omg) + f(my,my, . omi g mmigy, . my)
for r € R and all m; andm;- eMjforl < j<k.
The reader will quickly check the following.

PROPOSITION 9.4.3. Let M{,M>,...,M; and N be R-modules for some k > 1. For an R-
multilinear map 6 : Hle M; — N, there exists a unique R-module homomorphism
O: M| QrMr Qg QrMy — N
such that @(m; @my ® - @my) = 0(my,my,...,my) for all m; € M; with 1 <i <k.
DEFINITION 9.4.4. Let M be a module over a commutative ring R. For a nonnegative integer
k, the kth exterior power N'M is the quotient of M*¥ by the R-submodule generated by the

elements of the form m; ® my ® - - - ® my, where m; = m;j for some 1 <i < j < k. The image of a
tensor m; @ my X - - - @ my, in /\kM is denoted m Amy N --- Amy.

REMARK 9.4.5. The kth exterior power of a module M is often referred to as the wedge
product of M with itself k times.

DEFINITION 9.4.6. Let M and N be abelian groups. A multilinear map f: M* — N is said to
be alternating if
f(ml,mz,. .. ,mk) =0
for any m; € M for 1 < j < k such that m; = m; | forsome 1 <i<k—1.

REMARK 9.4.7. There is an alternating, R-bilinear map x: M* — AM for any k > 0 such
that k(my,my,...,mg) =my AmaA---Amy forallmje Mfor 1 < j<k

PROPOSITION 9.4.8. Let M and N be R-modules, and let y : MK — N be R-multilinear and
alternating. Then there exists a unique R-module homomorphism ¥: N‘M — N such that
lP(r’/ll Ampy /N --- /\mk) = W(mlamZ; cee 7mk)
forallm; e M for1 <i<k.

PROOF. Since y is R-multilinear, there exists by Proposition 9.4.3 a unique R-module ho-
momorphism @: M®* — N with @(m; @my ® --- @my) = W(my,my,...,my) for all m; € M for
1 <i<k. If mj=mjy forsome 1 <i<k—1,then

O(m @my®---Qmy) = y(my,my,...,my) =0
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as V¥ is alternating, so ® factors through the desired map ¥: N*M — N.

If ¥: A'M — N also has the property of the proposition, then we may compose ¥ with the
quotient map k: M® — N to obtain a map ® = Wo k: M® — N that satisfies the universal
property of Proposition 9.4.3, hence is equal to @. This then forces the equality ¥ = ¥ for the
induced maps on the exterior product. U

We leave the following to the reader.

LEMMA 9.4.9. Let ¢: M — N be a homomorphism of R-modules. Then for any k > 0, there
exists a homomorphism N@: NeM — NN satisfying

(N@)mi Ama A= Amy) = @(my) A@(ma) A+ A @(my).

LEMMA 9.4.10. Let M be an R-module. Then we have

myAma N\ Ay = —mg, ) Amg o) A== AN g,
where T, = (ii+1) € Sy, forall1 <i<kandallmje M for1 < j<k

PROOF. The proof in the general case amounts to the following calculation in the case k = 2.
For any m,n € M, we have

O=(m+n)AN(m+n)=mAm+mAn+nAm+nAn=mAn+nAm,

somAn=—nAm. O
REMARK 9.4.11. The property that m An = —n Am for all m,n € M tells us directly that
mAm= —m/Am,and so 2m A\ m = 0, by taking m = n. In other words, if 2 is invertible in R, the

submodule of M ®r M generated by tensors of the form m @ n + n @ m contains the tensors of the
form m @ m.

THEOREM 9.4.12. Let M be a free R-module of rank n. Then the kth exterior power N'M of
M over R is a free R-module of rank (Z) for any k € 7, where we take (Z) =0fork>n.

PROOF. Let my,...,m, be a basis of M. The Oth exterior power is just R, so the result
holds for k = 0. For k > 1, we know that M®¥ is R-free with a basis of elements of the form
mi, @mj, @ ---@m;, with 1 <i; <n for each 1 < j < k. Since we can switch the orders of
the terms of elements of A*M with only a change of sign, we have that AM is generated by the
mi Amjy A\--- Amy with 1 <iy <ip <.+ <ip <n. But by definition of the exterior product, those
elements with i; =i, | for some j are 0, so it is generated by those with 1 <ij <ip <--- <ip <n.
The number of such elements is (}).

It remains only to see R-linear independence. For this, fix 1 <#{ <, <--- < <n, and define
f: M¥ — R as the unique R-multilinear map satisfying that f (mj,,my,,...,m;) equals O unless
{ir, .. iy = {i},..., i}, in which case it is sign(o) for 6 € S, such that o'(i;) = for 1 < j <k
and o fixes every other element of {1,2,...,n}. (Recall from Proposition 4.12.1 that the sign
map can be defined independently of the definition of the determinant, so as to avoid circularity
in our argument.) That this map is alternating can be easily checked: letm =Y} | r;m; € M, and
consider

f(...,m,m,...):Z ririf(...,mimj,...).

i=1 j=1
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We then note that

f( N T ) —I—f( Sy Mgy, ) =0
fori+# jand f(...,m;,m;,...) = 0 for all i to see that the sum is trivial. The map f then induces
an element F € Homg(/\*M,R). Given some nontrivial R-linear combination x in \*M of the
generators m,, Amy, \--- Amy, with ri <r, <--- <ry, the value F (x) is also the coefficient of
mj, Amj, \--- Amj;, in the linear combination x. So, if x = 0, then the linear combination must be
the zero linear combination, which verifies R-linear independence. J

COROLLARY 9.4.13. The R-module N'R" is one-dimensional with basis vector ey Ney \-+- A\
en, where {e1,ey,...,e,} is the standard basis of R".

9.5. Graded rings

DEFINITION 9.5.1. A graded ring A is a ring determined by a sequence of abelian groups A;
for i > 0 and biadditive maps ¢; j: A; X A; — A for i, j > 0 satisfying

Bt jk (i (risrj)s i) = O jok (ris @ 4 (7 7x))

for r; € Aj, rj €Aj, rp € Ag and i, j,k > 0 and such that Ap is a ring with multiplication ¢y,
where the additive group of A is ;- A; and the multiplication on A is given by

(e oo (o] k
Yoril L Ysi| =YY 0ii(riosi—i),
i=0 i=0 k=0i=0

where the sums are finite and r;,s; € A for all i. The group A; is called the degree i part, or ith
graded piece, of A, and an element of A; is said to be homogeneous of degree i.

DEFINITION 9.5.2. A graded algebra over a commutative ring R is an R-algebra A that is a
graded ring with structure map R — AgNZ(A).

DEFINITION 9.5.3. For a commutative ring R, an homomorphism of graded R-algebras
v: A — B is a homomorphism of rings such that y(A;) C B; for each i > 0.

Clearly if R has a grading, then R is a graded ring with respect to the resulting subgroups and
maps.

DEFINITION 9.5.4. A grading on aring R is a sequence of additive subgroups R; withi > 0
such that Ry is a subring and R = @@~ R; such that the multiplication on R restricts to maps
0ij: RixR; — R;y jforall i, j > 0. We say that R is graded by the R;.

EXAMPLE 9.5.5. Any commutative or noncommutative polynomial ring R on a set X has
a grading under which the nth graded piece is the R-span of of the words in X of length n. In
fact, there are many possible gradings by assigning arbitrary choices of positive degrees to the
different elements of X.

EXAMPLE 9.5.6. Given a ring A and an ideal /, we may form the graded ring gr;A =
@ I/ 1", where the maps I' /T x 17 /! — [ /TH7+1 are given by (x+1H y 4+ 171
xy+IT/+1 If A is an R-algebra, then gr; A is a graded R-algebra via the map R — A/I.

We can form an algebra out of the tensor powers of a module.
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DEFINITION 9.5.7. For a commutative ring R and n > 0, the nth tensor power of an R-module
MisT"(M)=M®" = M Qg -- Qg M, the n-fold R-tensor product of M with itself, which is taken
tobe Rif n = 0.

DEFINITION 9.5.8. For a commutative ring R and nonzero R-module M, the tensor algebra
Tr(M) of M is the graded R-algebra with ith graded piece T'(M) together with the unique R-
bilinear maps ¢; j: T'(M) x T/ (M) — T""/ (M) satisfying

(Pl?‘](ml@.@ml,nl@.n]) :]/]11(8.(8]/}11(8]11@.nj7
where the R-algebra structure map is the identity R — T9(M)

EXAMPLE 9.5.9. The R-tensor algebra of R is isomorphic to R[x] as a graded R-algebra.
That is, we have an isomorphism y: R[x] — Tg(R) of graded R-algebras uniquely determined by
w(x) =1 € T'(R). More generally, the R-tensor algebra of R" is isomorphic to R(xi,...,x,) as a
graded algebra (where the x; have degree 1).

DEFINITION 9.5.10. A graded ideal of a graded ring is an ideal that has a homogeneous
generating set.

The reader can verify the following.

LEMMA 9.5.11. An ideal I of a graded ring A is homogeneous if and only if [ = @, 1,
where I, = A, NI for alln > 0.

LEMMA 9.5.12. The quotient of a graded R-algebra A by a homogeneous ideal I is a graded
R-algebra with ith graded piece A;/(A;NI), where A, is the ith graded piece of A.

DEFINITION 9.5.13. Let R be a commutative ring and M be an R-module.

a. The symmetric algebra Sg(M) on a R-module M is the quotient of 7Tz(M) by the homoge-
neous ideal generated by the elements m @ n —n @ m with m,n € R.

b. The nth graded piece S"(M) of Sg(M) is called the nth symmetric power of M.

NOTATION 9.5.14. For M an R-module and x,y € Tg(M), the image of their product x®y in
Sr(M) is denoted x - y.

EXAMPLE 9.5.15. The symmetric algebra Sg(R") is isomorphic to R[xi,...,X,].

DEFINITION 9.5.16. Let R be a commutative ring and M be an R-module. The exterior
algebra \r M on M is the quotient of Tz (M) by the homogeneous ideal generated by the elements
m®m with m € R.

NOTATION 9.5.17. For M an R-module and x,y € Tg(M), the image of their product x ® y in
Sr(M) is denoted x A y.

LEMMA 9.5.18. The multiplication on \gr M for an R-module M satisfies x \x =0 and x \y =
—yAxforall x,y € Np M.

PROOF. For any x,y € Tr(M), we have
(x+y)®@(x+y) =xQ@x+xQy+yR@x+y®y,
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which reduces the problem to proving that x ® x lies in the homogeneous ideal I generated by the
m & m for m € R. By the distributive property of multiplication, the result is further reduced to
the case of simple tensors. For my,...,m, € R, we claim that

me:--QQm,Qm Q-+ Qmy EI?
and for this it suffices to show that
mj ®(m2®®mn)®ml el

This is clear if n = 1. For n > 2, from the case n = 1 it follows that m; @ my —my ®@m; € I, which
reduces us to showing that

m @ (m3@--@my)@my €1,
which now follows by induction. U

The reader can now verify the following.

LEMMA 9.5.19. For an R-module M and n > 0, the nth graded piece of N\gxM is isomor-
phic to \" M under the R-linear map that takes the image of m; ® --- @ m,, to my A --- Am,, for
mi,...,my, € M.

9.6. Determinants

In this section, R denotes a commutative ring.

DEFINITION 9.6.1. Letn > 1.

a. The determinant det(A) of a matrix A € M,,(R) with columns vy,...,v, € R" is the unique
element of R such that

VIAMA--Av, =det(A)-ef Aea A+ Aey,
where ¢; denotes the ith element in the standard basis of R".

b. The determinant map
det: M,(R) =R

is the map that takes a matrix to its determinant.

REMARK 9.6.2. The determinant map is an alternating, multilinear map if we view M, (R) as
/\'R" by taking a matrix to the wedge product vi Avy A--- A v, of its columns vi,vy, ..., V.

PROPOSITION 9.6.3. The determinant map det: M,(R) — R satisfies

det(A) = ) sign(0)ai4(1Ya26(2) ** * tno(n)

oS,
for any A = (a;;) € My(R).
PROOF. Let vi,vs,...,v, denote the columns of A = (4;;). Then v; = Y!'_ | a;je;. We have

n n n
VIAVIA--- Ay, = Z Z Zaillai22-~-a,~nn-ei1/\eiz/\--~/\el~n,

i=lio=1  iy=1
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but note that all the terms such that the ji, j2,..., j, are not all distinct are zero. The remaining
nonzero terms correspond to permutations ¢ € S, with o(j) = i; for each 1 < j < n. We then
have

VIAVIA- AV =Y Ae(1)186(2)2 " Ao(mn - €a(1) N ea2) N Nean)

oES,
= Z sign(0)ag(1)146(2)2 " Ao €1 Ne2 N Aey
oS,
= Z sign(G)alG(l)aZG(z) “lpg(n)c€1Nea N Ney,
oES,
the latter step coming from rearranging the terms and replacing ¢ by 1. U

LEMMA 9.6.4. Let A,B € M,(R) for some n > 1. Then
det(AB) = det(A) det(B).

PROOF. Let v; be the ith column of A, let w; be the ith column of B, and let z; be the ith
column of AB. Then Aw; = z; for all i. By Lemma 9.4.9, we then obtain
AN Azg=det(A)wg Awg A« Awy.

Since
Wi AWy A« Aw, =det(B)ey Nea A+ Ney,
the result holds. O

DEFINITION 9.6.5. Let R be a ring. Two matrices A and A" in M,,(R) for some n > 1 are
called similar if there exists a matrix Q € GL,(R) such that A’ = 0~'AQ.

REMARK 9.6.6. Let T: R" — R" be a linear transformation represented by the matrix A with
respect to the standard basis of R". If A’ = 0~ 'AQ for Q € GL, (R), then A’ represents T with
respect to the basis B = {vy,...,v,} with vi =Y qijei for 1 < j <n. Conversely, any two
matrices that each represent 7' with respect to some basis are similar.

Lemma 9.6.4 has the following corollary.

COROLLARY 9.6.7. Let R be a commutative ring.

a. For any A € GL,(R), we have det(A)det(A~!) = 1.

b. Let A and B be similar matrices in M, (R). Then det(A) = det(B).

LEMMA 9.6.8. Let A € M,(R), and let AT denote its transpose. Then det(AT) = det(A).

PROOF. Write A = (a; j). By Proposition 9.6.3, we have

det(AT) = Y sign(0)ac(1)19602)2"* A(nn>

cEesS,
but dg(j); = dg(j)o-1(a(j))> SO

As(1)1496(2)2 " "Ao(n)n = A16-1(1)%26-1(2) """ 4no—1(n)-
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Noting that sign(c) = sign(c~!) for all & € S, we have
det(AT) = Y sign(o_l)alcq(l)ach(z) Uy () = det(A).

oEesS,

We also have the following standard properties of the determinant.

LEMMA 9.6.9. Let A € M,(R).

a. Let B be a matrix obtained by switching either two rows or two columns of A. Then
det(B) = —det(A).

b. Let C be a matrix obtained by adding an R-multiple of one row (resp., column) of A to
another row (resp., column). Then det(C) = det(A).

c. Let D be a matrix obtained by multiplying one row or column of A by some ¢ € R. Then
det(D) = cdet(A).
PROOF. By Lemma 9.6.8, it suffices to prove these for columns. Part a follows from the
more general fact that
V(1) AVa(2) N+  AVg(n) = Sign(o)vi Ava A== Avy,
and part b follows from
VIA-AViA-AWj+rv) A Avy,
=(WVIA AV AVIA AV FFVIA AV AV Avy)
=VINA AN AV Ay,
Part ¢ follows from the multilinearity of the exterior product. U

LEMMA 9.6.10. Let A € My(R) be a block diagonal matrix with A € M,,(R) for 1 <i<m
and some m > 1. Then det(A) =], det(A;).

PROOF. We have
Aeg NAey N\ --- NAe, = det(Ar)(eg A--- Nep,) N--- Ndet(Ay,) (ep—n,+1 N\ Nen),
as required. U

DEFINITION 9.6.11. For A € M,(R) and 1 < i,j < n, the (i, j)-minor of A is the matrix
Aij € M, (R) obtained by removing the ith row and jth column from A. The (i, j)-cofactor of
Ais (—1)7 det(A;)).

PROPOSITION 9.6.12 (Cofactor expansion). Let A = (a;j) € My(R). Then for any i with
1 <i<n, we have

(—1)"*a;;det(A;),

I
M=

det(A)

.
I
—_

and for any j with 1 < j <n, we have

det(A) = (—1)i+jaijdet(Aij).

-

~
[y
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PROOF. The first follows from the second by taking the transpose. So, fix j. Denote the ith
column of A by v;. Set
W/((i) = Vk — aikei
for each £, \Ev)hich is (tl)le co(l;nnn ve(cgor given by replacing the ith entry of v by zero. We may
1 1 1 1

then view wy”,...,w JZ1W W as the column vectors of the minor A;; in the ordered basis

€1,.--,€i_1,€i+1,-..,e,. In particular, we have

Wi A Al AW A Al = det(A)er A At At A Ay

We then have
VIAVIA - Avy = (=1 T AVEA - AV AV A Ay

n
= (_l)j_lZaijei/\vl/\"'/\Vj_l/\Vj+l/\---/\vn
i=1

= (—l)jf1 Zaije,-/\wgi) /\-~/\w§.lz1 /\wy;)rl /\~~-/\w§,i)
i=1

n
= (—I)Jil Za,-jdet(Aij)ei/\el N---Nei_1Neipr1 N---Ney
i=1

n
= (—1)l+j Zaijdet(Aij)el Nexy N---Ney,
i=1

where in the third equality we have applied Lemma 9.6.9(b). U

DEFINITION 9.6.13. Let A € M,(R). The adjoint matrix to A is the matrix with (i, j)-entry
(—1)l+J det(Aj,-).
THEOREM 9.6.14. Let A € M,(R), and let B be its adjoint matrix. Then AB = det(A)l,.

PROOF. The (i, j)-entry of AB is Y7_,(—1)*"a; det(A ). If i = j, this is just det(A) by
Proposition 9.6.12. If i # j, then the same proposition tells us that this equals the determinant
of a matrix which has the ith row of the matrix obtained by replacing the jth row of A by the ith
row of A. Since this matrix has two rows which are the same, its determinant is O. O

COROLLARY 9.6.15. A matrix A € M,,(R) is invertible if and only if det(A) € R, in which
case its inverse is A~! = det(A) "' B, where B is the adjoint matrix to A.

As any two similar matrices in M, (R) have the same determinant and any two matrices rep-
resenting a linear transformation are similar, the following is well-defined.

DEFINITION 9.6.16. Let V be a free R-module of finite rank. The determinant of an R-
module homomorphism 7: V — V is the determinant of a matrix representing 7" with respect to
an R-basis of V.

REMARK 9.6.17. Let T: V — V be a homomorphism of free R-modules, and let A be an
R-algebra. Then we have an A-module homomorphism idg ®7: A®rV — A®fr V, which we
usually denote more simply by 7. It satisfies T(a®v) =a®T(v) foranya € Aand v € V.
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DEFINITION 9.6.18.
a. The characteristic polynomial of a matrix A € M,(R) is c4(x) = det(x] —A).

b. The characteristic polynomial of an R-module homomorphism 7: V — V with V a free
R-module of finite rank is ¢z (x) = det(xid —T'), where id denotes the identity map on F x| @ V.

DEFINITION 9.6.19. The trace of a matrix A = (a;;) € M,(R) is
n
tr(A) = Zaii €R.
i=1

The trace is a homomorphism of additive groups.
LEMMA 9.6.20. IfA,B € M,(R), then tr(A+ B) = tr(A) +tr(B).

LEMMA 9.6.21. Let A € M,(R). The constant coefficient of c4(x) is (—1)"det(A), and the
coefficient of X"~ is —tr(A).

PROOF. We have c4(0) = det(—A) = (—1)"det(A). The second part is an easy consequence
of the permutation formula for the determinant applied to x/,, — A, from which it is seen that
only the term corresponding to the identity of S, has degree at least n — 1. This term is equal to
(x—ay1)(x—a) - (x —an), and its "~ '-coefficient is —tr(A). O

COROLLARY 9.6.22. If A and B are similar matrices in M, (R), then tr(A) = tr(B).
The reader may also verify the following directly.

LEMMA 9.6.23. Let A,B € M,,(R). Then tr(AB) = tr(BA).

9.7. Torsion and rank

DEFINITION 9.7.1. Let M be a module over an integral domain R. We say that m € M is an
R-torsion element if there exists a nonzero element a € R with am = 0.

DEFINITION 9.7.2. Let M be a module over an integral domain R. Then M is said to be a
torsion module if all of its nonzero elements are R-torsion elements.

LEMMA 9.7.3. Let M be an module over an integral domain R. The set N of R-torsion
elements of M is an R-submodule of M.

PROOF. Let n > 1, and let m; € M and a;,r; € R— {0} for 1 <i < n be such that rym; = 0.
Then r = ryry---r, is nonzero, and we have that r} ' | a;m; = 0, so Y./, a;m; is R-torsion. O

DEFINITION 9.7.4. Let M be a module over an integral domain R. The R-forsion submodule
M, of M is the set of R-torsion elements of M.

DEFINITION 9.7.5. Let R be aring and M a left R-module. The annihilator of M in R is the
left ideal
Ann(M)={reR|rm=0forallme M}

of R.

The reader will easily verify the following.
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LEMMA 9.7.6. The annihilator Ann(M) of a left R-module over a ring R is a two-sided ideal
of R.

DEFINITION 9.7.7. Let R be a ring and M a left R-module. We say that an R-module M is
faithful if Ann(M) = 0.

REMARK 9.7.8. Let R be an integral domain and M an R-module. If Ann(M) # 0, then M is
R-torsion since any nonzero r € Ann(M) satisfies rm = 0 for all m € M.

LEMMA 9.7.9. Let R be an integral domain, and let M be a finitely generated R-module.
Then Ann(M) # 0 if and only if M is R-torsion.

PROOF. We may suppose that M is R-torsion. Let my,...,m, generate M, and let ry,...,r, €
R — {0} be such that r;m; =0 for 1 <i<n. Then rir;---ry is a nonzero element of Ann(M). O

EXAMPLE 9.7.10. The abelian group @, Z/nZ is both faithful and torsion as a Z-module.
Let us introduce a general notion of rank for modules over integral domains.

DEFINITION 9.7.11. Let R be an integral domain, and let M be an R-module. The rank of
M over R, or R-rank of M, is the largest nonnegative integer n = rankg M such that M contains n
elements that are linearly independent over R, if it exists. If rankg M exists, then R is said to have
finite rank, and otherwise it has infinite rank.

For free modules over integral domains, this agrees with the notion of rank defined above.
We can give an alternative characterization of the rank. For this, we introduce the following
lemma.

LEMMA 9.7.12. Let1: M — Q(R) ®g M be the R-module homomorphism defined by 1(m) =
1®@m form e M. Then kert = M.

PROOF. By Proposition 11.1.31, the module Q(R) ®g M is canonically isomorphic to the
localization of M by S = R — {0}. The map 1 becomes identified with the map M — S~'M given
by m+— 7. The definition of § ~1M tells us that T = 0if and only if there exists r € R — {0} such
that rm = 0, which is to say m € Mi,;. ]

PROPOSITION 9.7.13. Let R be an integral domain, and let M be an R-module. Then M has
finite rank over R if and only if Q(R) ®g M is finite-dimensional over Q(R), in which case

rankr M = dimQ(R) Q(R) QRrM.

PROOF. First, suppose that my,my,...,m, are n elements of M. First, suppose that the ele-
ments m; are R-linearly dependent. Let a; € R not all 0 be such that }!' ; a;m; = 0. Then

n
Z 1 ®@m;) Zal@)ml—Zl@a,m,—O
i=1

so the elements 1 ® m; are Q(R)-linearly dependent.
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Conversely, suppose that the elements 1 @ m; are Q(R)-linearly dependent. Let o; € Q(R)
with Y7 ; oy @ m; = 0 and not all o; = 0. Let d € R be such that a; = da; € R for all i, and set
m =Y ,a;m;. We then have

n n
l1®@m= Zai®mi :dZOCi(XJmi =0,
i=1 i=1
so there exists r € R— {0} with rm =0 by Lemma 9.7.12. That is, the m; are R-linearly dependent.

O

EXAMPLE 9.7.14. Set R = Z[x|, and consider the ideal I = (p,x), viewed as a left R-module.
The usual method shows the existence of a map I ®g Q(R) — QO(R) satisfying f ® & — Z&. This
map is clearly onto, so

rankgl = dimQ(R)I®R Q(R) > 1.

AsfRf=x® %, the map Q(R) — I ®r Q(R) given by # — x® §# is onto, so rankg/ < 1. Thus,

I has R-rank 1, but it is not a free R-module as it cannot be generated by a single element.

9.8. Noetherian rings and modules

DEFINITION 9.8.1. Let R be aring. A left R-module M is said to be noetherian if its set of
submodules satisfies the ascending chain condition.

PROPOSITION 9.8.2. A module M over a ring R is noetherian if and only if every submodule
of M is finitely generated over R.

PROOF. If every submodule of M is finitely generated, then the union of every ascending
chain {N; | i > 1} of submodules of M is finitely generated, and each one of these generators is
contained in some N, so they are all contained in the largest N; among these. Thus, the union is
actually equal to N, so the ACC holds.

On the other hand, if the ACC holds for M, then we can pick m; € M — {0} and then, if
it exists, m;11 € M with m ¢ M; with M; = Zj’:l Rm; for each i. By definition, M; is properly
contained in M;, 1, so by the ACC, eventually we cannot continue the process, which is to say
that for some k, we have M, = M, or in other words that M is generated by {m,my,...,m;}. O

REMARK 9.8.3. Finitely generated modules need not be noetherian. A ring is left noetherian
(i.e., satisfies the ascending chain condition on left ideals) if and only if it is noetherian as a left
module over itself. Yet, any ring is finitely generated as a left module over itself, being that it is
generated by 1.

LEMMA 9.8.4. Let R be a ring, let M be an R-module, and let N be an R-submodule of M.
If S is a generating set of N and T is a subset of M with image generating M /N, then SNT
generates M.

PROOF. If m € M, then there exist n € N, m; € T, and ¢; € R for 1 <i < j for some j such
that

m=n-+

J
cimi,

i=1
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and then there exist n; € S and ¢; € R for 1 <i < k for some k such that

k
n= Z cini,
i=1
so n is an R-linear combination of the m; and the n;. That is, M is generated by SUT. U

COROLLARY 9.8.5. Let R be a ring, let M be an R-module, and let N be a finitely generated
R-submodule of M such that M /N is also finitely generated. Then M is finitely generated.

LEMMA 9.8.6. Let R be a ring and N be a submodule of an R-module M. Then M is noether-
ian if and only if both N and M /N are noetherian.

PROOF. If M is noetherian, then N is noetherian by definition. Moreover, the inverse image P
of any submodule O of M /N under the quotient map 7: M — M/N is a submodule of M, hence
generated by some finite set S. Then 7(S) generates O, so we conclude that M /N is noetherian.

If N and M/N are both noetherian and P is a submodule of M, then PNN and P/(PNN)
are finitely generated as submodules of N and M /N, respectively, so P is finitely generated by
Corollary 9.8.5. That is, M is noetherian. O

COROLLARY 9.8.7. Finite direct sums of noetherian modules are noetherian.

PROOF. If M = N & N’ for R-modules M, N, and N, then N’ = M /N, so by the lemma, M is
noetherian if N and N’ are. The result then follows by induction on the number of summands. [

PROPOSITION 9.8.8. Every finitely generated left module over a left noetherian ring is noe-
therian.

PROOF. Let M be a finitely generated left module over a noetherian ring R, and let N be a
submodule of M. Since M is finitely generated, there is a surjective R-module homomorphism
R* — M for some n. Let P be the inverse image of N in R". The module N is generated by the
image of any set of generators of P under the quotient map P — N. So, we need only show that
any submodule P of R" is finitely generated, which is to say that R" is left noetherian. This is
true as R is a left noetherian R-module, and R" is the direct sum of n copies of R. O

THEOREM 9.8.9 (Hilbert’s basis theorem). The polynomial ring R[x| over a commutative
noetherian ring R is noetherian.

PROOF. Let I be an ideal of R[x]. We must show that [ is finitely generated. Let L be the set
the leading coefficients of the elements of /. Then L is clearly an ideal: if a € L is the leading
coefficient of f € I and r € R, then ra is the leading coefficient of rf € I, and if a,b € L are
the leading coefficients of f and g, respectively, then x4°88 f + x4¢¢/¢ € I has leading coefficient
a+ b. Since R is noetherian, there exist a;,a,...,a; € J such that R = (aj,az,...,a;). Let f; €1
of degree n; > 0 have leading coefficient g; for 1 <i <k. Let n = max{n; | 1 <i<k}.

Next, for m > 0, let L,, be the set of all leading coefficients of polynomials in I of degree m.
This, again, is clearly an ideal of R, so we have L., = (by,1,bp 2, . .., by, ) for some I,, > 1 and
bm,;i € Jy for 1 <i <[,. For each such i, let g,,; € I be a polynomial of degree m with leading
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coefficient b, ;. We claim that / is generated by

n
X={fil1<i<k}U [ J{gmil 1 <i<ln}.
m=0
Let J be the ideal of R[x| generated by X, which is contained in /. Let & € I, and let ¢ € L be
its leading coefficient. We want to show that 4 € J. Write ¢ = Zle ria; with r; € R. If d > n, then
c is the leading coefficient of

k
W= Z r,'xd*""fi eJ,
i=1

so h — I’ has degree less than d. We can then replace & by & — /' and repeat the process until
d <n.
We are reduced to showing that if 4 € I has degree d < n and leading coefficient c, then i € J.

In this case, we have ¢ = 5": 1 8ibg i with s; € S, and c is the leading coefficient of
lq

W= Z Si8d,i € J
i=1

Then h— K’ € J has degree less than d. Replacing i — h' by h and repeating the process, we see
thath € J. 0

COROLLARY 9.8.10. Let R be a noetherian ring. Then R[xy,x2,...,x,]| is noetherian for
everyn > 1.

PROPOSITION 9.8.11. Any finitely generated (commutative) algebra over a field is noether-
ian.
PROOF. Let o7 be a finitely generated algebra over a field F. If aj,a»,...,a, generate <7 as
an F-algebra, then we have a surjective F-algebra homomorphism
mw: Flxy,x0,...,x,] = &

defined by n(f) = f(ai,az,...,a,). Thus o7 is a quotient of B = F[x1,xp,...,x,]. If I is an ideal
of o7, then £~ !(I) is an ideal of %. As 2 is noetherian, this ideal is finitely generated, and the
images of its generators generate /. U

We next consider modules that satisfy the descending chain condition.

DEFINITION 9.8.12. Let X be a set with a partial ordering <. A descending chain on X is
an ascending chain with respect to the opposite partial ordering > defined by x > y if and only if
y <xforx,y € X.. We say that X satisfies the descending chain condition, or DCC, if it satisfies
the ACC with respect to >.

DEFINITION 9.8.13. We say that a module over a ring R is artinian if its set of submodules
satisfies the descending chain condition.

EXAMPLE 9.8.14. Any finite-dimension vector spaces over a field F is an artinian F'-module.
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LEMMA 9.8.15. Let R be a ring and N be a submodule of an R-module M. Then M is artinian
if and only if both N and M /N are artinian.

PROOF. That M being artinian implies N and M /N are artinian is straightforward. If N and
M/N are artinian and (M;);>; is a descending chain in M, then there exists k > O such that
M;NN =M; NN and (M;+N)/N = (M +N)/N for all i > k. But this can only happen if
M; = M, for all i > k as well: if m € M, then m € M; + N, so m = m’ + n for some m’ € M; and
n€ N, butthenn =m—m' € My "N C M;, and therefore m = m’ +n € M;. O

LEMMA 9.8.16. If m is a maximal ideal in a noetherian ring, then R/m" is an artinian R-
module.

PROOF. Note that R/m is a field, hence artinian as an R-module. By induction on n > 1,
we may suppose that R/m”~! is artinian as an R-module. By Lemma 9.8.15, it suffices to show
that m"~! /m” is Artinian over R. Since R is noetherian, m"~! is a finitely generated R-module,
and the images in m”~! /m” of any list of generators span it as an R/m-vector space. Since it is
artinian as an R/m-module, it is also artinian as an R-module. U

9.9. Modules over PIDs
LEMMA 9.9.1. Let R be a PID. Any finitely generated R-submodule of Q(R) is cyclic.

PROOF. Let M be an R-module generated by some subset {0, ...,0,} of Q(R). Letd €
R — {0} be such that da; € R for all i. Then d: M — dM is an isomorphism, and dM is an ideal
of R, hence principal. That is, dM is cyclic as an R-module, so M is as well. O

PROPOSITION 9.9.2. Let R be a PID. Let V be an n-dimensional Q(R)-vector space, and let
M be a finitely generated R-submodule of V. Then there exists a basis {vi,va,...,v,} of V and
k < n such that M is a free R-module with R-basis {vy,va,...,Vi}.

PROOF. We suppose without loss of generality that M is nonzero. Pick a nonzero element
m; € M. Recall that R is noetherian as it is a PID. Then Q(R)m is a 1-dimensional Q(R)-vector
space, and M is noetherian being that it is R-finitely generated, so M N Q(R)m; is R-finitely
generated. Since Q(R)m; is a 1-dimensional Q(R)-vector space with R-submodule M N Q(R)m;,
Lemma 9.9.1 tells us that M N Q(R)m; = Rv; for some v; € Q(R)m. Set M = M /Rvy. This is
an R-submodule of the (n — 1)-dimensional vector space V =V /Q(R)vy, since if x € M is such
that x + Rvy is in the kernel of M — V/, then there exists @ € Q(R) such that x = av;. But then
x € MNQ(R)m;, which is to say x € Rv;.

Now, by induction on n, there exist vy,..., vy € M for some k > 1 such that vo +Rvy,...,vi +
Ry form an R-basis of M. Then vi,vy,...,vx € M generate M by Lemma 9.8.4, and we claim
they are R-linearly independent. That is, if Zf;l c;vi = 0 for some c; € R, then

k
Z ci(vi —I—Rm1) =0,
i=2
and so ¢; =0 for 2 <i < k. As vy # 0, this forces ¢; = 0 as well. To finish, we merely extend
{vi,...,v} to a Q(R)-basis {vi,...,v,} of V, noting that an R-linearly independent subset of V
is also Q(R)-linearly independent. O
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COROLLARY 9.9.3. Every finitely generated, torsion-free module over a principal ideal do-
main is free.

PROOF. Let M be a finitely generated, torsion-free module over a PID R. We have seen in
Lemma 9.7.12 that the canonical map M — Q(R) ®g M is injective, in that My, = 0. The result
is then immediate from Proposition 9.9.2, as Q(R) ®g M is a finite-dimensional Q(R)-vector
space. U

COROLLARY 9.9.4. Any submodule of free module of rank n over a principal domain is free
of rank at most n.

PROOF. Let R be a PID. Let M be a free R-module of rank #, and let N be an R-submodule
of M. Then N — Q(R) ®g M is injective, so we can apply Proposition 9.9.2. O

PROPOSITION 9.9.5. Let M be a finitely generated module over a principal ideal domain R.
Then M = R" ® My, where r is the rank of M.

PROOF. Note that M /My, is free of finite rank by Corollary 9.9.3, so isomorphic to R” for
some r. By Proposition 5.7.26, we have that that M = M, & R". O

LEMMA 9.9.6. Let R be a principal ideal domain, let T € R be an irreducible element. Let
k> 1 and set R = R/(n*). Then any free R-submodule F of a finitely generated R-module M is a
direct summand of M. If F is maximal, then M = F & C, where n¥~1C = 0.

PROOF. We work by induction on k. Let M be an R-module and F a free submodule of M.
If k = 1, then M is a finite-dimensional R-vector space. Then F is a direct summand of M, since
any basis of it extends to a basis of M.

Now take k > 2. Suppose first that A is a maximal free R-submodule of M. Consider the
subgroup

N={meM|r"'m=0}.

We have 7A C N, which is an R/(w*~!)-module. By induction on k, the free R/(7*~!)-module
A is a direct summand of N. We have N = 1A & C for some R-submodule C of A.

Any set of representatives in M of an R/(7)-basis of M/N is R/(x*)-linearly independent,
hence a basis of a free R-submodule of M. The map A/TA — M/N is injective. If it were not
surjective, we could by Lemma 11.2.14 extend the image of a basis of A to a basis of M /N and
lift to obtain a free R-module of higher rank containing F. Therefore, it is an isomorphism. In
particular, A+ N =M, so A+C = M. Note also that ANN = A, s0ANC =0. Thus M =AdC.

It remains to show that an arbitrary free R-module F is a direct summand of M. It suffices to
show that F is a direct summand of a maximal free R-submodule A. For this, note that the map
F/mF — A/mA is injective, since if a € TANF, then nc~la =0, so a € nF by the freeness of
F. We may then choose a set X that is a basis of a complement of F/nF in A/mA. Again by
Lemma 11.2.14, any lift of X to a linearly independent subset of A will span an R-complement
to F. Thus F is a direct summand of A. U

We are now ready to prove the structure theorem for finitely generated modules over principal
ideal domains.
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THEOREM 9.9.7 (Structure theorem for finitely generated modules over PIDs). Let R be a
PID, and let M be a finitely generated R-module.

a. There exist unique nonnegative integers r and k and nonzero proper principal ideals I} C
I, C--- C I of R such that

M=ZR &R/l &R/ & ---®R/I.

b. There exist unique nonnegative integers r and l, and for 1 <i <, distinct nonzero prime
ideals p; of R and positive integers v;1 > vi2 > -+ > V; , for some m; > 1 such that

(9.9.1) M= Rr@@@R/pV”

i=1 j=1
Moreover, r and | are unique, and the tuple (p;, (v; j) ;)i is unique up to ordering in i.

PROOF. By Proposition 9.9.5, it suffices to consider the case that M is torsion. Note that the
uniqueness of r in parts (a) and (b) follows from the fact that r = dimQ( R) QO(R) ®r M =rankg M.
So, let M be a finitely generated torsion R-module.

We first demonstrate the existence of a decomposition as in part b. Let ¢ € R be a generator
of the annihilator Ann(M) of M. Since we have unique factorization in R, we may write ¢ =

uﬂ{” k’ with u € R* and with 7,..., 7, distinct irreducible elements of M and kj,...,k.

positive 1ntegers for some k > 0. By the Chinese remainder theorem, we have an isomorphism

[
c) = QR/m{‘f)

of rings, which in turn provides a direct sum decomposition
M=M/cM=M®®gR/(c) @M@RR/ @M/n ‘M.

In particular, we are reduced to the case that M is a module over the local ring R/(z*) for some
irreducible element 7 of R.

For the moment, suppose that M is a nonzero finitely generated R/(7%)-module for some
k > 1. Note that if k = 1, then M is simply a finite dimensional R/(7)-vector space, so a choice
of basis gives a direct sum decomposition M = @" | R/(x) for some m. For general k, let F be
a maximal free R/(7%)-submodule of M. By Lemma 9.9.6, we have M = F & C, where C is a
finitely generated R/(7¥~!)-module. By induction on k, this gives the decomposition of part b.

We next prove the existence in part a using the decomposition in part b. Let us take 7; to
be an irreducible element generating p; for each i. For j > 1, set b; = nlvl’j nzvz” Jrlv” . By
construction, we have that b;, | b; for each j > 1. Set I; = (b;), and let k be maximal such that
I # R or zero if all I, = R. Applying the Chinese remainder theorem again to see that

[
Pr/x" =R/
i=1

we obtain a decomposition as in part a.
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Next, we exhibit uniqueness. If p = (7) is a nonzero prime ideal of R and v > 0, then the map
R/p — p”/p"*! induced by multiplication by " is an isomorphism. Let N = R/q" for a nonzero
prime ideal q and w > 0. Note that p* + q" = R if p # ¢, being that p and q are generated by
coprime elements. We therefore have

R/p ifp=qgandv<w
vN V+1Ng v v+1 w N V) o~
p'N/p p /(" +9")Np') {o ifp#qorv>w

For any v > 1, we then have that
pYM [}t M = (R/pi)",

where u is the number of j such that v <v; ;. Thus, the p; and v; ; in any decomposition of M as
in part b are the same.

Finally, we reduce the uniqueness in part a to the known uniqueness of part b. Given any
decomposition M = R/I} & --- DR/} as in part a, we can again obtain a decomposition of M into
R modulo power of prime ideals, applying CRT to expand out each R/I;. Since I; D I, 1, this

decomposition then satisfies /; = pYI’j p;z’j . 'plvl’j with v; j > v; j1 for each j > 0. Thus, the de-

composition is as in part b, and by its uniqueness, we obtain the uniqueness of the decomposition
in part a. U

REMARK 9.9.8. The structure theorem for finitely generated abelian groups is the special
case of the structure theorem for finitely generated modules over a PID for the PID Z.

DEFINITION 9.9.9. Let R be a PID, and let M be a finitely generated R-module.

a. The ideals I, 1>, ..., I associated to M by Theorem 9.9.7a are called the invariant factors
of M.

b. The prime powers p;i’j associated to M by Theorem 9.9.7b are called the elementary divi-
sors of M.

9.10. Canonical forms

DEFINITION 9.10.1. Let V be a vector space over a field F, and let 7: V — V be an F-linear
transformation.

a. An eigenvectorv of T with eigenvalue A € F is an element v € V — {0} such that Tv = Av.

b. An element A € F is called an eigenvalue of T if there exists an eigenvector in V with
eigenvalue A.

c. The eigenspace of F for A € F of T is the nonzero subspace
E,(T)={veV|T(v)=Av}
of V.
Note that E (T') = ker(T — Aidy).

LEMMA 9.10.2. Let V be a vector space over a field F. The following are equivalent for an
F-linear transformationT:V —V and A € F:
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i. E;(T)#0,

ii. Aisan eigenvalue of T, and

iii. cr(A)=0.

PROOF. The first two are equivalent by definition. Moreover, T — A idy has a nonzero kernel
if and only if c7(A) = det(Aidy —T) = 0. O

TERMINOLOGY 9.10.3. We may speak of eigenvectors, eigenvalues, and eigenspaces E; (A)
of a matrix in A € M, (F), taking them to be the corresponding objects for the linear transforma-
tion 7: F" — F" that A represents.

The following is the key to the application of the structure theorem for modules over PIDs to
linear algebra.

NOTATION 9.10.4. If T: V — V is a linear transformation and f = Y'*_, c;x’ € F|[x], then we

set
n

f(T)=Y T v =V,
i=1
where T?: V — V denotes the i-fold composition of T with itself.

REMARK 9.10.5. If T is represented by a matrix A and f = YX_, c;ix’ € F[x], then f(T) is
represented by

k
f(A) =Y ciA' € M,(F).
i=1
DEFINITION 9.10.6. Let T: V — V be an F-linear endomorphism of an F-vector space V.

The F[x]-module structure endowed on V by T is that which satisfies f(x)-v = f(T)v for all
T € Flx].

This construction gives us one way to define the minimal polynomial of a linear transforma-
tion.
DEFINITION 9.10.7.

a. Let V be a finite-dimensional F-vector space. The minimal polynomial mr(x) of a linear
transformation 7: V — V is the unique monic generator of the annihilator Ann(V) under the
F [x]-module structure on V induced by T.

b. The minimal polynomial m4(x) is the minimal polynomial of the linear transformation
T: F" — F" that A represents with respect to the standard basis of F”".

LEMMA 9.10.8. The minimal polynomial of an endomorphism T of a finite-dimensional vec-
tor space V divides the characteristic polynomial of T.

PROOF. Letve V. Thendet(xI —T)-v=det(T —T)-v =0 by definition, so ¢y (x) € Ann(V).
Ul

LEMMA 9.10.9. If A and B are similar matrices in M,,(F), then c4(x) = cg(x) and my(x) =
mp(x).
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PROOF. Suppose Q € GL,(F) is such that B= QAQ~'. Then xI — B = Q(xI —A)Q~ !, so
cp(x) = det(x] —B) = det(x] —A) = ca(x).
Moreover, if g € F[x] is such that g(A)v = 0 for all v € F”, then
g(B)Qv=Qg(A)v=0
for all v € F", so g(B) annihilates F" as well. By symmetry, we have my (x) = mp(x). O

LEMMA 9.10.10. Let A be a block diagonal matrix with blocks A; € My, (F) for 1 <i<m
and some m > 1. Then

ca(x) = [Tea ),
i=1
while ma(x) is the least common multiple of the my,(x) with 1 <i <m.

Suppose that we endow a finite-dimensional F-vector space V with the structure of an F[x]-
module through a linear transformation 7: V — V. Since F[x] is a PID, the structure theorem for
modules over a PID tells us that there exists an F'[x]-module isomorphism

m
V=PDFN/(f),
i=1
where m > 0 and the f; € F[x| are monic, nonconstant polynomials for 1 <i<m such that i | f;

for1 <i<m.

LEMMA 9.10.11. Let f =Y ,cix' € F[x] be a monic polynomial of degree n > 1. With
respect to the ordered basis {1,x,...,x"~'} of V.= F[x]/(f) as an F-vector space, the linear
transformation given by multiplication by x on V' is represented by the matrix

0O 0 --- 0 —co
1 0 0 —C1
Ay=10 1 ° : :
N (T )
0O -+ 0 1 —cuq

(This matrix is taken to be (—cq) if n = 1.)
PROOF. Let Ty: V — V be the linear transformation given by left multiplication by x. Note
that Ty(x') = x*! for 0 <i<n—2and
n—1 )
Tf(x"_]) =x"=- Z cix'.
i=0
Thus, if Ay = (a; ), we have a;1 ;= 1 for 1 <i<n—1anda;, = —c;— for 1 <i<n,andall
other entries are zero. O

DEFINITION 9.10.12. For any monic, nonconstant f € F[x], the matrix A rof Lemma9.10.11
is known as the companion matrix to f.
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LEMMA 9.10.13. If f € F|x] is nonconstant and monic, then ca,(x) = ma ,(x) = f.

PROOF. The case n = 1 is clear. Write f = xg + co for some g € F[x]. By induction of the
degree of f, we have

ca, = det(xl —Ay) = xdet(x] —Ag) + (—=1)"legdet(—I,_1) = xg+co = f.
U

We can make the following definition as a consequence of the structure theorem for F'[x|-
modules.

DEFINITION 9.10.14. Let V be a finite-dimensional F-vector space and 7: V —V an F-
linear transformation. Write V = @ | F[x]/(f;) for some m > 0 and monic f; € F[x] with f; | fi+1
for all i < m. The rational canonical form of T is the block-diagonal matrix

Ay

1

Afz

Ay

m

where Ay, 1s the companion matrix of f;.

REMARK 9.10.15. The rational canonical form represents 7 with respect to the basis of V
determined by taking the image under the isomorphism 7" ; F[x]/(f;) = V of the ordered basis
of the direct sum given by concatenating the bases {1,x,... ,xdeg(ff)_l} of the ith summands in
order of increasing i.

We also note the following.

REMARK 9.10.16. By definition of rational canonical form, a matrix in rational canonical
form in one field is already in rational canonical form in any extension field.

DEFINITION 9.10.17. The rational canonical form of a matrix A € M,,(F) is the rational
canonical form of the linear transformation that A represents with respect to the standard basis of
F".

REMARK 9.10.18. By Remark 9.10.15 and the change of basis theorem, A is similar to its
rational canonical form. Moreover, two matrices are similar if and only if they have the same

rational canonical form, since similar n-by-n matrices give rise to isomorphic F'[x]-module struc-
tures on F” and conversely.

DEFINITION 9.10.19. The invariant factors of A € M,,(F) are the invariant factors of F”
viewed as an F[x]-module via the linear transformation represented by A with respect to the
standard basis.

As a simple consequence of Lemmas 9.10.13 and 9.10.10, we have the following.

LEMMA 9.10.20. Let fi, f2,...,fm be the invariant factors of a matrix A (with f; | fir1 for
i <m). Then ma(x) = fi(x) and ca(x) =TT, fi(x).
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As a consequence, the irreducible divisors of ¢4 (x) and my (x) are the same. In particular, we
have:

COROLLARY 9.10.21. Let A € My(F) and A € F. The following are equivalent:

i. An element A € F is an eigenvalue of A € M,,(F).

ii. The polynomial x — A divides the minimal polynomial ma(x).
iii. The polynomial x — A divides the characteristic polynomial c4(x).
This lemma is at times enough to calculate the rational canonical form of a matrix.

EXAMPLES 9.10.22. Let A € M,,(F).

a. If f = ca(x) is a product of distinct monic, irreducible polynomials, then the rational
canonical form of Ais Ay.

b. If f =ma(x) has degree n, then the rational canonical form of A is Ay.

c. If f=ca(x) = ma(x)? and g = my(x) is irreducible of degree 2, then A has d invariant
factors of the form A,.

d. Note that
0 00
0 10
0o o| and 00
10 10

are both 4-by-4 matrices in rational canonical form with characteristic polynomial x* and mini-
mal polynomial x2.

Recall that we have a second decomposition of V for the F[x]-module structure given by 7.

That is, there exist distinct monic, irreducible polynomials p;(x), p2(x),..., p;(x) and positive
integers v; ; for 1 < j < m; for some m; > 1 for 1 <i <[ such that

[ m
V=@PDPDFNH/(pi(x)).

i=1 j=1
If the field F contains all the roots of c4(x), then it contains all the roots of the p;, so being

irreducible, these polynomials must be linear. This occurs, for instance, if F is algebraically
closed. Let us assume this is the case and write p;(x) = x — A; for some A; € F.

LEMMA 9.10.23. Let V = Fx]/((x — A)") for some A € F and n > 0. The linear transfor-
mation given by multiplication by x on 'V is represented by the matrix

A1

A
J),,n =
1

A
with respect to the ordered basis {(x — )" !, (x —A)"2,--- . x—A,1} of V.
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PROOF. The linear transformation 7: V — V that is multiplication by x satisfies
T(x—A))=(x=A)Y T +A(x—2)/
for all j, with (x—A)/ =0in V for j > n. The result follows. O

DEFINITION 9.10.24. A matrix Jj ,, of the form Lemma 9.10.23 is called a Jordan block of
dimension n for A.

DEFINITION 9.10.25. Let V be a finite-dimensional F-vector space, and let 7: V — V an
F-linear transformation such that cr(x) splits in F. Write V = @ | Flx]/((x — 4;)") for some
Ai € Fand n; > 1 for 1 <i < m and some m > 1. The Jordan canonical form of T is a block-
diagonal matrix

Iy
Sy ny

Y -

whereJy, ,,. is the Jordan block of dimension n; for A;.

TERMINOLOGY 9.10.26. If the characteristic polynomial of ¢z (x) splits in F, we say that T
has a Jordan canonical form over F.

The Jordan canonical form is unique up to ordering of the Jordan blocks.

DEFINITION 9.10.27. The Jordan canonical form of a matrix A € M,,(F) is the Jordan canon-
ical form of the linear transformation that A represents with respect to the standard basis of F".

REMARK 9.10.28. Every (square) matrix has a rational canonical form, while every matrix
over an algebraically closed field has a Jordan canonical form.

PROPOSITION 9.10.29. Suppose that T: V — V has a Jordan canonical form over F. Then

A € F is an eigenvalue of T if and only if it is a diagonal entry of the Jordan canonical form of
T.

PROOF. Consider the isomorphism V = @/ | F[x]/((x — A;)") The image v € V of (x —
A;)"-1 in the ith term of the right-hand side of the above isomorphism is an eigenvector with
eigenvalue A;. On the other hand, if A # A;, then (x — A1) f # 0 for nonzero f € F[x]/((x—A;)™),
so A is not an eigenvalue of T'. U

EXAMPLES 9.10.30. Let A € M,,(F), and suppose that the characteristic polynomial of A
splits in F.

a. If c4(x) is a product of distinct linear factors, then the Jordan canonical form of A is
diagonal with entries the distinct eigenvalues of A.

b. If my(x) is a product of distinct linear factors, then the Jordan canonical form of A is
diagonal with entries that are all distinct eigenvalues of A.

c. If my(x) has degree n, then the rational canonical form of A is block-diagonal with Jordan
blocks Jy, ,,, where the A; are all distinct.
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d. If ca(x) = (x —A)" for some A € F and mg(x) =x— A, then A =J, .

DEFINITION 9.10.31. Suppose that 7: V — V. The generalized eigenspace of A € F for T
is the F'[x]-submodule
{veV|(T—-A)"(v)=0 for somen >0}
of V.

REMARK 9.10.32. The generalized eigenspace of A € F under T: V — V contains the
eigenspace Ej (T) of 1.

EXAMPLE 9.10.33. The generalized eigenspace of
S

J
Ap,no e Mn(F)

Jlm Sm

is the span of the elements ¢; of the standard basis of F" for which the ith diagonal entry of A is

Ai.
The following is an easy consequence of the example just given.

PROPOSITION 9.10.34. Let T: V — V be a linear transformation. Then V is the direct sum
of its nontrivial generalized eigenspaces if and only if cr(x) splits in F.

We provide one example of how to obtain the rational and Jordan canonical forms of a matrix.

EXAMPLE 9.10.35. Let

2 -2 8
A=|0 3 -5]¢€ M3(@>
0 0 2
We have
x—2 2 -8
ca(x) =det| 0 x-3 5 |=@x-2)>*x-3).
0 0 x-2
So, Q3 is the direct sum of its generalized eigenspaces for 2 and 3. We compute that
0 -2 8 0 -2 10
A-2=10 1 —5| and (A-22=[0 1 -5],
0O 0 O 0O 0 O

so ker(A —2) = (e1) and ker((A —2)?) = (e1,5e> + e3), where we use angle brackets to denote
the Q-span. Note that (A —2)(5e; +e3) = —2e;. Similarly, we compute ker(A —3) = (2e; —e3).
The Jordan canonical form of the matrix A is then
2 1
2
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with respect to the basis (—2e1,5¢; + e3,2e] —e3).
By the Chinese remainder theorem, we have F> 2 F[x]/((x —2)?(x — 3)) under the F|[x]-
module structure on F induced by A. Note that

(x—2)2(x—3)= (x> —4x+4)(x—3) =x° = Tx* + 16x— 12.

To find a basis of the rational canonical form

0 0 12
1 0 —16
o1 7

of A, we pick a vector v that generates F' 3asan F [x]-module, and then A is in rational canonical
form with respect to the basis {v,Av,A?v}. To find v, note that

0 -2 8\ /-1 -2 8 00 2
A-2)A-3)=|0 1 -5||0 0o —5|=[0 0 o],
00 0 0 0 —1 000

so v = e3 works, and one possible basis is {e3,8¢e; — Se; + e3,42¢; —25¢; +4e3 }.

DEFINITION 9.10.36. We say that a matrix A € F" is diagonalizable if it is similar to a diag-
onal matrix. A linear transformation 7: V — V is diagonalizable if and only if T is representable
by a diagonal matrix with respect to some basis of V.

Clearly, a linear transformation 7: V — V is diagonalizable if and only if V' is the direct sum
of its distinct eigenspaces. The following is then a special case of Proposition 9.10.34.

PROPOSITION 9.10.37. A linear transformation T : V — V is diagonalizable if and only if
mr(x) splits in F.



CHAPTER 10

Topics in Galois theory

10.1. Norm and trace

DEFINITION 10.1.1. Let E/F be a finite extension of fields. For o € E, let my: E — E
denote the F-linear transformation defined by left multiplication by o.

a. The norm map Ng/p: E — F is defined by N /() = detmyq for a € E.
b. The trace map Trg: E — F is defined by Trg p(a) = trmg for o € E.

REMARK 10.1.2. For a finite field extension E /F, the trace map Trg /F 1s @ homomorphism,
and the norm map N /¢ is a homomorphism to F* upon restriction to £”.

PROPOSITION 10.1.3. Let E/F be a finite extension of fields, and let o € E. Let f € F|x]
be the minimal polynomial of o, over F, let d = [F (@) : F), let s = [E : F(&)], and let F be an
algebraic closure of F. Suppose that f factors in F x| as

d
f=Tlx—o)
i=1
for some o, ...,0, € F. Then the characteristic polynomial of m, is f*, and we have

NE/F HOC and TrE/F —SZOC,
i=1

PROOF. If {By,...,Bs} is a basis for E/F(a), then {Bia/ |1 <i<s,0<j<d—1}is
a basis for E/F. The matrix A representing my with respect to this basis (with the lexico-
graphical ordering on the pairs (i, j)) is block diagonal with s blocks all equal to the matrix
for me: F(ot) — F(c) for the ordered basis {1,a,...,a"'}. As we have an isomorphism of
fields F (o) = F[x]/(f) fixing F under which « is sent to the coset of x, the latter matrix is the
companion matrix A .

By Lemma 9.10.10, we have charmy = f*. Lemma 9.6.21 tells us that

S =x! —tr(mg)x? " 4 4 (—1)4 det(myg),

By expanding out the factorization of f* in F[x], we see that Ny /r 0 and Trg /g o are as stated in
this case. U
We can also express the norm as a power of a product of conjugates and the trace as a multiple

of a sum of conjugates.

293
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PROPOSITION 10.1.4. Let E/F be a finite field extension, and let t = [E : F|; be its degree of
inseparability. Then, for a € E, we have

NE/F(a) = H GOCI and TrE/F(a) =1 Z ox.
GGEme(E) GGEme(E)

PROOF. The distinct conjugates of « in a fixed algebraic closure F of F are exactly the To
for T € Embr(F()). These Tar are the distinct roots of the minimal polynomial of ¢ over F,
each occuring with multiplicity the degree [F (@) : F]; of insparability of F(«)/F. Now, as in the
proof of Lemma 6.10.23, each of these embeddings extends to [E : F ()]s distinct embeddings
of E into F, and each extension ¢ € Embg(E) of T sends o to 7(¢et). By Proposition 10.1.3, we
have

Ng/r 0= H (Ta)[EiF(a)][F(a)iFh - H oolEF()li[F(a):Fli _ H oo,
T€Emby (F(at)) G€Emby (E) GEEmby (E)
and similarly for the trace. U

We have the following immediate corollary.

COROLLARY 10.1.5. Let E/F be a finite separable extension of fields. Then, for o € E, we
have

Ngp()= [ oo and Tigpp(a)= ) oo
GEEme(E) GEEme(E)

We also have the following.

PROPOSITION 10.1.6. Let K/F be a finite field extension and E be an intermediate field in
the extension. Then we have

NK/F:NE/FONK/E and TrK/F:TrE/FOTrK/E.
PROOF. Since [K : F|; = [K : E};[E : F;, it suffices by Proposition 10.1.4 to show that
sa= J] o ( I1 ra) :
SEEme(K) O'EEme(E) TGEmbE(K)

We extend each o to an automorphism & of F fixing . We then have

(10.1.1) I1 o( I1 w): I1 [[ (6ov)e
(E) t€Embg (K)

ocEmby o €Emby (E) T€Embg (K)

For the trace map, we simply replace the products by sums.
Let 6,6’ € Embp(E) and 7,7’ € Embg(K), and suppose that

(10.1.2) 601=36"017 € Embp(K)

Since 6 o T|p = O|F, we have that 6 = ¢’. Since & is an automorphism, we then apply its inverse
to (10.1.2) to obtain T = 7’. As there are

|Embg (E)||[Embg(K)| = [E : F]s[K : E]s = [K : F]; = |[Embg (K)|
terms of the product in (10.1.1), we have the result. ]
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EXAMPLE 10.1.7. The norm for the extension Q(v/d)/Q, where d is a square-free integer,
is given by

NQ(\/E)/Q(X‘H’\/E) = (x+yVd)(x—yVd) = x* — dy?
for x,y € Q.
EXAMPLE 10.1.8. For a,b,c € QQ, we have
No(¥a)gla+bV2+c(V2)?)
= (a+bV2+c(V2)*)(a+boV2+co*(V2)}) (a+bo*V 2+ co(V/2)?)
=a +2b° +4¢ — 6abe,
for @ a primitive cube root of unity. The trace is simpler:

TrQ(%)/Q(a +bV2+¢(V2)?) =3a.

DEFINITION 10.1.9. A E-valued linear character of a group G is a group homomorphism
x: G— E*, where E is a field.

DEFINITION 10.1.10. We say that a set of E-valued linear characters X of a group G is E-
linearly independent if it linearly independent as a subset of the E-vector space of functions
G—E.

THEOREM 10.1.11. Any set of E-valued linear characters G — E* of a group G is E-linearly
independent.

PROOF. Let X be a set of linear characters G — E*. Suppose by way of contradiction that
m > 1 is minimal such that there m distinct, linearly dependent elements of G. Choose a; € E
and x; € X with 1 <i < m for which

m
Z a;ixi = 0.
i=1

Also, let h € G be such that xi(h) # xm(h). Set b; = a;(xi(h) — xm(h)) for 1 <i<m—1. For
any g € G, we then have

m

m—1 m m
; bixi(g) = gai(xi(h) — Xm(h))2i(g) ;aixi(hg) — Xm(h) gaili(g) =0.

Since b # 0 and Z?”:_ll biyi has only m — 1 terms, this contradicts the existence of m. ]
In the case of cyclic extensions, the kernels of the norm map bears a simple description.

THEOREM 10.1.12 (Hilbert’s Theorem 90). Let E /F be a finite cyclic extension of fields, and
let o be a generator of its Galois group. Then

ker Ng/p = {% | B eEx}.
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PROOF. Setn = [E : F|. Let B € E, and note that

o(B)\ o B)  NegwrB)
Nere (%57) =TT %) = vy =

B

Next, suppose that o € ker Ng JF> and set

Xy =7+ ac(y)+ac(a)o*(y) +-- +ac(a)--- 6" (o))" (y)

for y € E. The elements of Gal(E/F), which is to say the powers of ¢, are distinct E-valued
characters on E*, and therefore they are E-linearly independent. Thus, there exists Y € E* such
that xy # 0. We then note that

a6 (xy) = o (y) + ac(a)o*(y) + -+ ac(a)--- 6" ()" (y) +Ne/r(@)y = xy,

—1
SO Q= %, finishing the proof. 0
Y

There is also an additive form of Hilbert’s Theorem 90, which describes the kernel of the

trace. We leave the proof to the reader.

PROPOSITION 10.1.13 (Additive Hilbert’s Theorem 90). Let E /F be a finite cyclic extension
of fields, and let ¢ be a generator of its Galois group. Then

ker Tr e = {0(B) ~ B | B € E}.

10.2. Discriminants

In this section, we give a second treatment of discriminants.

DEFINITION 10.2.1. Let F be a field and V a finite-dimensional F-vector space. A F-bilinear
formis a F-bilinear map y: VXV — F.

DEFINITION 10.2.2. A F-bilinear form y on a F-vector space V is said to be symmetric if
v(v,w) = y(w,v) forall vw € V.

EXAMPLE 10.2.3. Given a matrix Q € M,,(F), we can define a bilinear form on F" by
v(v,w) =vIow
for v,w € F" which is symmetric if and only if Q is.
EXAMPLE 10.2.4. If E/F is a finite extension of fields, then y: E x E — F defined by
v(a,B)= TrE/F<aB)
for a, B € E is a symmetric F-bilinear form on E.

DEFINITION 10.2.5. The discriminant D(y) of a bilinear form y on a finite dimensional
F-vector space V relative to an ordered basis (vy,...,v,) of V is the determinant of the matrix
with (i, j) entry equal to y(v;,v;).
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LEMMA 10.2.6. Let w: V XV — F be a F-bilinear form on a finite-dimensional vector space
V of dimensionn > 1. Let vi,...,v, €V, and let T: V — V be a F-linear transformation. Then

det(l//(TV,',TVj)) = (detT)2 -det(l[/(vi,vj))

PROOF. It suffices to show this in the case that the v; form a basis of V, since in this case, for
any wi,...,w, € V there exists a linear transformation U : V — V with U(v;) = w; for all i. We
then have

det(y(Tw;, Tw;)) = det(w(TUv;, TUv;)) = det(TU)*det(w(v;,v;)) = det(T)* det(y(w;,w})).

So, assume that the v; form a basis of V, and let A = (q; j) denote the matrix of T with respect
to the ordered basis (vi,...,v,) of V. We have Tv; = Y} ayv for each i, and therefore we have

n n
TV,,TVJ Z Zaljllf vk,vl

As matrices, we then have
(w(Tvi,Tvj)) = AT (w(vi,vj))A,
and the result follows as det7 = detA = detA”. O

REMARK 10.2.7. It follows from Lemma 10.2.6 that the discriminant of a bilinear form with
respect to a basis is independent of its ordering, since a permutation matrix has determinant +1.

DEFINITION 10.2.8. Let E/F be a finite extension of fields. The discriminant D(fy,...,3,)
of E/F relative to an ordered basis (fi,...,,) of E as a F-vector space is the discriminant of
the bilinear form

(a,B) — Trg/r(af)

relative to the basis.

PROPOSITION 10.2.9. Let E/F be a finite separable extension of fields. Then the discrimi-
nant of E | F relative to an ordered basis (By,...,B,) of E satisfies

D(ﬁl PR 7ﬁn) = (det(ciﬁj))za
where {01, ...,0,} is the set of embeddings of E in an algebraic closure of F that fix F.

PROOF. Note that

TI‘E/F ﬁlﬁj ch Bl cfk ﬁj)

so the matrix (Trg/(Bif;)) equals Q7 Q, where Q € M,(E) satisfies Q;; = 0;(B;). O

DEFINITION 10.2.10. Let F be a field, and let &, ..., o, € F. The Vandermonde matrix for
aip,...,01s
1 oq --- a{l 1
1 o --- ag 1

olay,...,o) =
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LEMMA 10.2.11. Let F be a field, and let Q(ay,...,0,) be the Vandermonde matrix for

elements ay,...,0, of F. Then
detQ(ou,...,o) = [] (oj—o0%).
1<i<j<n

PROOF. We work by induction on n > 1, the case n = 1 asserting the obvious fact that
detQ(a) =1 for any o € F. To compute the determinant of Q = Q(«y,...,®,), in order of
descending i < n — 1 subtract o times the ith column of Q from the (i + 1)th column, which
leaves the determinant unchanged. We then obtain

oo 0 o — o o (0 — o)
1 —ap - o (0p—a) 2 2 A28
detQ = |. : : =| :

: : : — n—2 _

L oy - o 2(ay—oy)| %A O~ (0 — 01)

n

=[[(ei—a1)-O(er,..., 1),
i=2
and the result now follows by induction. U

PROPOSITION 10.2.12. Suppose that E | F is a separable extension of degree n, and let o € E
be such that E = F(a). Then
D(1,0,...,0" 1) =D(f),
where f € F|x| is the minimal polynomial of .
PROOF. Let 01,09,...,0, be the embeddings of E in a fixed algebraic closure of F, and set
«; = o;(a). Then o;(a/ ™) = aij_l, so Lemmas 10.2.9 and 10.2.11 tell us that

D(l,a,...,0" ") =detQ(a1,00,..., )" = ] (otj— )™
1<i<j<n

The latter term is just D(f). O

DEFINITION 10.2.13. Let F be a field and f = Y7 a;x' € F[x]. The derivative f' € F[x] of
fis ff =YY" jiax~!.
REMARK 10.2.14. An irreducible polynomial f € F[x] is inseparable if and only if f/ = 0.

PROPOSITION 10.2.15. Suppose that E | F is a separable extension of degree n, and let o, € E
be such that E = F (), and let f € F|x] be the minimal polynomial of o.. Then

n(n—1)

D(f)=(=1)" 2 Ng/r(f'(a)),
where f' € F|x] is the derivative of f.
PROOF. Let oty,..., 0, be the conjugates of ¢ in an algebraic closure F of F. Then

P =Y 60— a).

i=1j=1
J#i
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so we have i
f(04) = [ (ei— o))
j=1
J#i
for each i, and the conjugates of f'(o) in F are the f'(c;). We then have
n(n—1)
Nege (/@) =TT T~ o) = (-1)“ ()

i=1j=1
J#i
U

COROLLARY 10.2.16. Let L/F be a finite separable extension of fields. Then the discrimi-
nant of L/F relative to an ordered basis (B1,Ba,...,Bn) of L is nonzero.

PROOF. Since L/F is separable, there exists & € L such that L = F (). Then (1, a,...,a" 1)
is an ordered basis of L/F, and there exists an invertible F-linear transformation 7': L — L with
T(a~1) = i for 1 <i < n. By Lemma 10.2.6, we have that

D(B1,B2, -, B) = (detT)*D(1, ax,...,a" ).
It follows Proposition 10.2.12 that D(1, &, ..., a" ') # 0, so we have the result. O
REMARK 10.2.17. Together, Lemma 10.2.6 and Corollary 10.2.16 tell us that the discrimi-

nant of a finite separable field extension L/F (relative to an ordered basis) reduces to a element
of F* /F*? that is independent of the choice of basis.

10.3. Extensions by radicals

DEFINITION 10.3.1. Let F be a field. A Kummer extension E of F is one that is given by
adjoining roots of elements of F.

NOTATION 10.3.2. For a field F of characteristic not dividing n > 1, we let u, denote the
group of nth roots of unity in a given algebraic closure of F.

PROPOSITION 10.3.3. Let F be a field, and let F be a fixed algebraic closure of F. Let n > 1
anda € F. Let E = F(a) for a € F with &" = a, and let d > 1 be minimal such that ol €eF.
a. The extension E /F is Galois if and only if char F does not divide d and E contains .

b. IfE/F is Galois and uy C F, then the map
Xa: Gal(E/F) = Uy, Xa(0) = ——.

is an isomorphism of groups.

PROOF. The minimal polynomial f of ¢ divides x4 — o¢ but not x” — o™ for any m dividing
d. If py has order d, then f is separable as x¢ — a? is. If p; has order m for some m properly
dividing d, then f divides x? — a? = (x" — Ocm)d/ " but not X" — ™ so is inseparable. Note that
char F' does not divide d if and only if u,; has order d, so we suppose for the remainder of the
proof that this holds.
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Any field embedding o of E in F fixing F must send & to {o for some { € uy. If uy C E,
then every such element lies in E, so E/F is Galois. Conversely, if E/F is Galois, then since f
does not divide any x” — o™ with m properly dividing d and u, has order d, it has a root of the
form { o with £ € u, of order d. Then { = (o) -a~! € E, so uy C E.

Finally, if E/F is Galois and p; C F, then the map Y, as defined in the statement is bijective
by what we have already said, and it satisfies

i (“f) = 7(0) 0 (1a(¥)) = 1a(0) (%)
for 0,7 € Gal(E/F), noting that o fixes . O

DEFINITION 10.3.4. Let F be a field containing u, for some n > 1 that is not divisible by
charF. For any a € F* and extension E /F containing an nth root of a, the Kummer character
attached to a is the homorphism y,: Gal(E/F) — u, given by

Xa(0) = %\ZE)
for o € Gal(E/K).

PROPOSITION 10.3.5. Let F be a field of characteristic not dividing n > 1, and suppose that
F contains the nth roots of unity. Let E be a cyclic extension of F of degree n. Then E = F({/a)
for some a € F*.

PROOF. Let {, be a primitive nth root of unity in F. Note that Ng () = " = 1, so Hilbert’s

Theorem 90 tells us that there exists @ € E and a generator ¢ of Gal(E/F) with %a) = {. Note
that

n(n

n ) n_ i
Nesp(@) =[[o'a=T]¢a=¢"" a"=(-1)" o,
i=1 i=1
so setting a = —Ng/p(—@), we have @" = a. Since o has n distinct conjugates in E, we have
that £ = F (). *

NOTATION 10.3.6. Let A be a subset of a field K, and let » > 1 be such that K contains the
nth roots of unity in K. Then K (\'VZ) is the field given by adjoining an nth root of each element
of Ato K.

THEOREM 10.3.7 (Kummer duality). Let F be a field of characteristic not dividing n > 1, and
suppose that F contains the nth roots of unity. Let E be a finite abelian extension of F of exponent
dividing n, and set A= E*"NF*. Then E = F(\"/Z) and there is a perfect bimultiplicative
pairing

(,): Gal(E/F)xAJF*" — 1,
given by (6,a) = x4(0) for c € Gal(E/F) and a € A.

PROOF. Since u, C F, Proposition 10.3.3 tells us that the map taking a € A to its Kummer

cocycle yx, yields an injection

v: A/F*" — Hom(Gal(E/F), iy).
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This gives rise to the bimultiplicative Kummer pairing ( , ), and it implies that any a € A/F*"
of order d dividing n pairs with some element of Gal(E /F) to a dth root of unity.

We claim that y is surjective. Let x: Gal(E/F) — W, be a homomorphism, and let H =
ker x, which by the fundamental theorem of Galois theory corresponds to some cyclic extension
K/F of degree dividing n. By Proposition 10.3.5, we have that K = F () for some o with
a=a" € A, and then y = x* for some k > 1. That is, y = y;, with b = a* € A, so y(b) = y.
Since A/F*" is therefore finite of degree [E : F|, we have that the map

Gal(E/F) — Hom(A/F*", u,)
induced by the pairing is an isomorphism as well, and thus the Kummer pairing is perfect. [

REMARK 10.3.8. One may replace A in Theorem 10.3.7 by any I' C A with A =T'K*". Then
A/K*" should be replaced by the isomorphic I'/(I'N K*").

DEFINITION 10.3.9. A finite field extension E /F is solvable by radicals if there exists s > 0
and fields E; for 0 < i < s with Ey = F, E C E,, and E;| = E;("{/q;) for some «; € E; and
integers n; > 1 for 0 < i < s. If we can take E; = E, then we say that E is a radical extension of
F.

THEOREM 10.3.10. Let F be a field. Let f € F|x] be nonconstant, and suppose that its
splitting field K has degree over F not divisible by char F. Then K is solvable by radicals if and
only if Gal(K /F) is a solvable group.

PROOF. First, take n = [K : F|, and consider L = K({,) and E = F({,) for a primitive nth
root of unity §, (which exists by assumption on char F). Then K/F is solvable by radicals if and
only if L/E is, since , is an nth root of 1. Moreover, L = KE is Galois over E, and Gal(L/E) is
solvable if and only if Gal(K/F) is, since Gal(L/E) is isomorphic to the subgroup Gal(K/KNE)
of Gal(K/F) by restriction, and (K NE)/F is abelian, hence solvable, in that E/F is abelian.
Thus, we have reduced to the case that F' contains the nth roots of unity.

If K/F is solvable by radicals, then there exists a field L containing F that is a radical exten-
sion of F. We claim that we may take L/F to be Galois. Suppose that K = K; where Ky = F
and K;1 | = K;("/q;) with n; dividing n and o; € K; for i < s. Then let Ly = F and let L, be
the field given by adjoining to L; an n;th root of each conjugate of a; over F. Then L;, | is the
compositum of L; and the splitting field of the minimal polynomial of "{/@; over F, so is Galois
over F for each i. Moreover, L = Ly is by definition a radical extension of F. Now, Gal(L/F) is
solvable, since Gal(L;/L;) is abelian in that L; contains the n;th root of unity. Since Gal(L/F)
is solvable, so is Gal(K/F).

Conversely, if Gal(K/F) is solvable, then we have intermediate fields K; with Ko = F, Ky =K,
and K; C K; 1 such that K; | /F is Galois and Gal(K;/K;) is cyclic of degree dividing n. But
then K;, | is a Kummer extension of K;, given by adjoining the n;th root of some ¢; € K;, where
n; = [Kit1 : Kj]. So, K/F is in fact a radical extension. O

COROLLARY 10.3.11. If F is a field of characteristic not dividing 6 and K is the splitting
field over F of a polynomial of degree at most 4, then K/ F is solvable by radicals.

PROOF. We know that Gal(K/F') is isomorphic to a subgroup of S, for n equal to the degree
of the polynomial defining K, and S, is solvable for n < 4, so Gal(K/F) is solvable as well. [J
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EXAMPLE 10.3.12. The splitting field K of the polynomial f = 2x°> — 10x+ 5 € Q[x] has
Galois group isomorphic to Ss, and Ss is insolvable, so K/Q is not solvable by radicals. To see
this, note first that the polynomial is irreducible by the Eisenstein criterion for the prime 5. So,
5 divides [K : Q], and hence the image G in S5 of Gal(K/Q) under a permutation representation
of the roots contains a 5 cycle. Moreover, f’ = 10(x* — 1) has real roots at +1 and f(—1) >0
while f(1) <0, so f has exactly three real roots. In particular, if T € Gal(K/Q) is the restriction
of complex conjugation, then 7 fixes the three real roots and transposes the two imaginary roots,
so G contains a transposition. But S5 is generated by any five cycle and any transposition, so

Gal(K/Q) = G = Ss.

10.4. Linearly disjoint extensions

PROPOSITION 10.4.1. Let K be a field, and let f € K|x] be monic and irreducible. Let M be
a field extension of K, and suppose that f factors as [T}, f{* in M|x], where the f; are irreducible
and distinct and each e; is positive. Then we have an isomorphism

K19 /() @M 5 T[ME/ )
of M-algebras such that if g € K|x], then x((g+ (f))®1) = (g+ (/"))

PROOF. Note that we have a canonical isomorphism K[x] @x M — M|[x] that gives rise to the
first map in the composition

KU/ (f) @ M = MU/ () ﬁM[x1/<ﬁf>,

the second isomorphism being the Chinese remainder theorem. The composition is K. 0
We have the following consequence.

LEMMA 10.4.2. Let L/K be a finite separable extension of fields, and let M be an alge-
braically closed field containing K. Then we have an isomorphism of M-algebras

k:LoxM = ] M,
o: L—M
where the product is taken over field embeddings of L in M fixing K, such that

k(B@1)=(0B)s
forall B € L.

PROOF. Write L = K(0), and let f € K|[x] be the minimal polynomial of 8. Then we define
K as the composition
Mx]  ~
ooy 11 M.

(x=0(0)  o.Iom
where the first isomorphism is that of Proposition 10.4.1 and the second takes x to ¢(6) in the
coordinate corresponding to 6. Any 3 € L has the form g(6) for some g € K|[x], and since any
o: L — M fixing K fixes the coefficients of g, we have k(8 ® 1) is as stated. O

LoxM =
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REMARK 10.4.3. If we compose k of Lemma 10.4.2 with the natural embedding L — L&x M
that takes & € L to o ® 1, then the composition

w:L— ] M
c: L—M

is the product of the field embeddings ¢ of L in M fixing K.

DEFINITION 10.4.4. Let K be a field and L and M be extensions of K both contained in some
field Q. We say that L and M are linearly disjoint over K if every K-linearly independent subset
of L is M-linearly independent.

LEMMA 10.4.5. Let K be a field and L and M be extensions of K both contained in some field
Q. If L and M are linearly disjoint over K, then LNM = K.

PROOF. If x € LN M with x ¢ K, then x and 1 are elements of L that are K-linearly indepen-
dent but not M-linearly independent, so L and M are not linearly disjoint over K. U

From the definition, it may not be clear that the notion of linear disjointness is a symmetric
one. However, this follows from the following.

PROPOSITION 10.4.6. Let K be a field and L and M be extensions of K both contained in
some field Q. Then L and M are linearly disjoint over K if and only if the map ¢ : L&x M — LM
induced by multiplication is an injection.

PROOF. Suppose that ¥i,...,% € M are L-linearly dependent, and write Y7, B;%; = O for
some f; € L. If ¢ is injective, then we must have Y}, f; ® % = 0, which means that the ¥ are
K-linearly dependent.

Conversely, let L and M be linearly disjoint over K. Suppose that we have a nonzero

Bi®7: ckero
1

N
X =

1=

for some B; € L and % € M, with s taken to be minimal. If x # 0, then the 7; are L-linearly
dependent, so they are K-linearly dependent. In this case, without loss of generality, we may
suppose that
s—1
Y+ Z ;Y =0
i=1

for some ¢; in K. Then
s—1

x=Y (Bi— 0B @,

i=0
contradicting minimality. Thus ker ¢ = 0. U

COROLLARY 10.4.7. Let K be a field and L and M be extensions of K both contained in a

given algebraic closure of K. Then L and M are linearly disjoint over K if and only if L&k M is
a field.
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PROOEF. Note that LM is a union of subfields of the form K(a,) with a € L and B € M.
Since o and B are algebraic over K, we have K(o,f8) = K|o, 3], and every element of the
latter ring is a K-linear combination of monomials in & and 8. Thus ¢ of Proposition 10.4.6 is
surjective, and the result follows from the latter proposition. U

COROLLARY 10.4.8. Let K be a field and L and M be finite extensions of K inside a given
algebraic closure of K. Then [LM : K| = [L: K|[M : K| if and only if L and M are linearly disjoint
over K.

PROOF. Again, we have the surjection ¢: L &g M — LM given by multiplication which is
an injection if and only if L and M are linearly disjoint by Proposition 10.4.6. As L ®x M has
dimension [L : K|[M : K| over K, the result follows. O

REMARK 10.4.9. Suppose that L = K(0) is a finite extension of K. To say that L is linearly
disjoint from a field extension M of K is by Propostion 10.4.1 exactly to say that the minimal
polynomial of 6 in K[x] remains irreducible in M|x].

We prove the following in somewhat less generality than possible.

LEMMA 10.4.10. Let L be a finite Galois extension of a field K inside an algebraic closure
Q of K, and let M be an extension of K in Q. Then L and M are linearly disjoint if and only if
LNM =K.

PROOF. We write L = K(6) for some 6 € L, and let f € K[x] be the minimal polynomial of
0. As Gal(LM /M) = Gal(L/(LNM)) by restriction, we have LNM = K if and only if [LM :
M] = [L:K]. Since LM = M(0), this occurs if and only if f is irreducible in M[x]. The result
then follows from Remark 10.4.9. U

10.5. Normal bases

DEFINITION 10.5.1. A normal basis of a finite Galois extension L/K is a basis of L as a
K-vector space of the form {o (&) | 0 € Gal(L/K)} for some @ € L.

The goal of this section is to prove E. Noether’s theorem that every finite Galois extension
has a normal basis. We start with the following lemma.

LEMMA 10.5.2. Let L/K be a finite Galois extension with Galois group {oy,...,0,}, where
n=|[L:K]|. Let{ay,...,04,} be a basis of L as a K-vector space. Then the set

{(o1(0)),...,0on(0))) [ 1 < j <}
is an L-basis of L".

PROOF. Let W be the L-span of the subset of L" in question. Set WY = Homy (W, L), and
let @ € (L")" be such that @(W) = 0. It suffices to show that ¢ = 0. Note that there exists
u=(ay,...,a) € L" such that ¢(v) = ul v forall v € L", so Y., a;0;(et;) =0 forall 1 < j < n.
As {ay,...,0,} is a K-basis of L, we therefore have that Y | a;0; vanishes on L. Since the o;
are L-linearly independent, we have a; = 0 for all i, and therefore ¢ = 0. J

LEMMA 10.5.3. Every finite cyclic extension of fields has a normal basis.
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PROOF. Let L/K be finite cyclic of degree n, generated by an element . Then K[Gal(L/K)]
is isomorphic to K[x]/(x" — 1) via the unique K-algebra homomorphism that takes ¢ to x. As Lis
a K[Gal(L/K)]-module, it becomes a K [x]-module annihilated by x" — 1. If f = Y| c;x’ € K[x]
annihilates L, then Zl’.’:_ol c;o'(a) = 0 for all @ € L, which by the linear independence of the &'
forces f to be zero. Thus, the annihilator of L is (x" — 1), and by the structure theorem for
finitely generated modules over the PID K|x], this means that L has a K|[x]-summand isomorphic
to K[x]/(x" — 1), generated by some ¢ € L. Since the latter module has K-dimension n, as does
L, the elements {c,0(t),...,6" ! (a)} form a K-basis of L.

Ul

THEOREM 10.5.4 (Normal basis theorem). Every finite Galois extension of fields has a nor-
mal basis.

PROOF. Let L/K be a finite Galois extension of degree n. Since any finite extension of
finite fields is cyclic, we may by Lemma 10.5.3 suppose that K is infinite. Write Gal(L/K) =
{o1,...,0,} and 6y = 1. Let {o,..., 0, } be a basis of L as a K-vector space. It suffices to find
B € L with D(o1(B),...,0,(B)) # 0 by Corollary 10.2.16.

Define an element p € L[xy,...,x,] by

2
n
p(x1y. X)) = det(Z Gj_lG,'(OCk)Xk> .
k=1

Note that the coefficients of p are fixed by the elements of Gal(L/K), since they permute the
columns of the matrix. By Lemma 10.5.2, we can find 3 i € Lfor 1 < j <nbe such that

ilﬁj(Cﬁ(OCj),Gz(Otj),...,O'n(aj)) = (1,0,...,0).
j=

Then for all 1 <i, j < n, we have
. 1
Y o 'oi(o) B = 8,
k=1

so p(Bi,...,B,) = det(I,)> = 1, so p # 0. Since K is infinite, there exist ay,...,a, € K with
plai,...,ay) #0. For y=Y'._, a;a;, we have by Proposition 10.2.9 the first equality in

D(o1(y),---,0u(y)) = det(crj‘lcri(y))2 =p(ai,...,ay) #0.

10.6. Profinite groups

DEFINITION 10.6.1. A topological group G is a group endowed with a topology with respect
to which both the multiplication map G X G — G and the inversion map G — G that takes an
element to its inverse are continuous.

EXAMPLES 10.6.2.
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a. The groups R, C, R*, and C* are continuous with respect to the topologies defined by
their absolute values.

b. Any group can be made a topological group by endowing it with the discrete topology.

REMARK 10.6.3. We may consider the category of topological groups, in which the maps
are continuous homomorphisms between topological groups.

DEFINITION 10.6.4. A homomorphism ¢ : G — G’ between topological groups G and G is
a topological isomorphism if it is both an isomorphism and a homeomorphism.

The following lemma is almost immediate, since elements of a group are invertible.

LEMMA 10.6.5. Let G be a topological group and g € G. Then the map my: G — G with
mg(a) = ga for all a € G is a topological isomorphism.

We also have the following.

LEMMA 10.6.6. A group homomorphism ¢ : G — G’ between topological groups is continu-
ous if and of only, for each open neighborhood U of 1 in G’ with 1 € U, the set ¢! (U) contains
an open neighborhood of 1.

PROOF. We consider the non-obvious direction. Let V be an open set in G/, and suppose
that g € G is such that 1 = ¢(g) € V. Then 4~'V is open in G’ as well, by Lemma 10.6.5. By
assumption, there exists an open neighborhood W of 1 in G contained in ¢ ~'(2~'V), and so gW
is an open neighborhood of g in G such that ¢ (¢gW) C V. Hence, ¢ is continuous. U

LEMMA 10.6.7. Let G be a topological group.

a. Any open subgroup of G is closed.

b. Any closed subgroup of finite index in G is open.

PROOF. If H is an open (resp., closed) subgroup of G, then its cosets are open (resp., closed)
as well. Moreover, G — H is the union of the nontrivial cosets of H. Therefore, G — H is open if

G 1s open and closed if G is closed of finite index, so that there are only finitely many cosets of
H. U

LEMMA 10.6.8. Every open subgroup of a compact group G is of finite index in G.

PROOF. Let H be a open subgroup of G. Note that G is the union of its distinct H-cosets,
which are open and disjoint. Since G is compact, there can therefore only be finitely many cosets,
which is to say that H is of finite index in G. O

We leave it to the reader to verify the following.

LEMMA 10.6.9.

a. A subgroup of a topological group is a topological group with respect to the subspace
topology.

b. The quotient of a topological group G by a normal subgroup N is a topological group with
respect to the quotient topology, and it is Hausdorff if G is Hausdorff and N is closed.
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c. A direct product of topological groups is a topological group with respect to the product
topology.

REMARK 10.6.10. The category of topological Hausdorff abelian groups is not abelian,
though it is additive and admits kernels and cokernels. For instance, consider the inclusion map
1: Q@ — R with R having its usual topology and (Q having the subspace topology. Then kert = 0
and cokert = 0 (since Q is dense in R, and thus every continuous map from R is determined by
its values on Q). By Proposition 8.8.15, we have im1 = R but coim1 = Q.

Recall the definitions of a directed set, inverse system, and the inverse limit.

DEFINITION 10.6.11. A directed set I = (I,>) is a partially ordered set such that for every
i,j€l,thereexists k € I withk >iand k > j.

DEFINITION 10.6.12. Let I be a directed set. An inverse system (G, ¢; ;) of groups over the
indexing set / is a set
{G,’ | i€ I}
of groups and a set
{(]5,'7]'2 G — Gj | i,j EI,iZ ]}
of group homomrphisms.

DEFINITION 10.6.13. An inverse limit

GZI'&HG,'
i

of an inverse system of groups (Gj, ¢, ;) over a directed indexing set / is a pair G = (G, {m; | i € I})
consisting of a group G and homomorphisms 7;: G — G; such that ¢; jom; = 7; forall i,j €1
with i > j that satisfy the following universal property: Given a group G’ and maps 7: G’ — G;
for i € I such that ¢; jo &/ = &} for all i > j, there exists a unique map y: G’ — G such that
nl =moyforalliel

By the universal property, any two inverse limits of an inverse system of groups are canoni-
cally isomorphic (via compatible maps).

REMARK 10.6.14. We may make the latter definition more generally with any category ¢
replacing the category of groups. The groups are replaced with objects in %" and the group
homomorphisms with morphisms in 4. Moreover, we may view the system of groups as a
covariant functor to the category ¢ from the category that has the elements of I as its objects and
morphisms i — j foreach i, j € I with i < j.

We may give a direct construction of an inverse llimit of an inverse system of groups as
follows. The proof is left to the reader.

PROPOSITION 10.6.15. Let (G, §; ;) be an inverse system of groups over an indexing set I.
Then the an inverse limit of the system is given explicitly by the group

G= {(gi)i € HGi | (pi,j(gi) :gj}

icl
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and the maps ;. G — G; for i € I that are the compositions of the G — [1;c; Gi — G; of inclusion
followed by projection.

We may endow an inverse limit of groups with a topology as follows.

DEFINITION 10.6.16. Let (G;, ¢; j) be an inverse system of topological groups over an in-
dexing set I, with continuous maps. Then the inverse limit topology on the inverse limit G of
Proposition 10.6.15 is the subspace topology for the product topology on [];c; Gi.

LEMMA 10.6.17. The inverse limit of an inverse system (G, ¢; ;) of topological groups (over
a directed indexing set 1) is a topological group under the inverse limit topology.

PROOF. The maps

HG,‘ X HG,’ — HGi and HGi — HG,‘

il il il il il
given by componentwise multiplication and inversion are clearly continuous, and this continuity
is preserved under the subspace topology on the inverse limit. U

REMARK 10.6.18. In fact, the inverse limit of an inverse system of topological groups and
continuous maps, when endowed with the product topology, is an inverse limit in the category of
topological groups.

When we wish to view it as a topological group, we typically endow a finite group with the
discrete topology.

DEFINITION 10.6.19. A profinite group is an inverse limit of a system of finite groups, en-
dowed with the inverse limit topology for the discrete topology on the finite groups.

Recall the following definition.

DEFINITION 10.6.20. A topological space is fotally disconnected if and only if every point
is a connected component.

We leave the following as difficult exercises.

PROPOSITION 10.6.21. A compact Hausdorff space is totally disconnected if and only if it
has a basis of open neighborhoods that are also closed.

PROPOSITION 10.6.22. A compact Hausdorff group that is totally disconnected has a basis
of neighborhoods of 1 consisting of open normal subgroups (of finite index).

We may now give a topological characterization of profinite groups.

THEOREM 10.6.23. A profinite topological group G is compact, Hausdorff, and totally dis-
connected.

PROOF. First, suppose that G is profinite, equal to an inverse limit of a system (G, ¢; ;) of
finite groups over an indexing set /. The direct product [[;c; G; of finite (discrete) groups G; is
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compact Hausdorff (compactness being Tychonoff’s theorem). As a subset of the direct product,
G is Hausdorff, and to see it is compact, we show that G is closed. Suppose that

()i []Gi
icl
with (g;); ¢ G, and choose i, j € I with i > j and ¢; j(g;) # g;. The open subset

{(hk)k e [1Gk | hi = gi,h; :gj}

kel

of the direct product contains (g;); and has trivial intersection with G. In that the complement of
G is open, G itself is closed. Finally, note that any open set [ [;c; U; with each U; open in G; (i.e.,
an arbitrary subset) and U; = G; for all but finitely many i is also closed. That is, its complement
is the intersection

ﬂ((Gj—Uj)X [1 Ui)

jel iel—{j}
of open sets, which is actually equal to the finite intersection over j € I with U; # G;. It is
therefore open, and by Proposition 10.6.21, the group G is totally disconnected. U

REMARK 10.6.24. We leave it to the reader to check that the converse to Theorem 10.6.23
also holds. They key is found in the proof of part a of the following proposition.

PROPOSITION 10.6.25. Let G be a profinite group, and let % be the set of all open normal
subgroups of G. Then the following canonical homomorphisms are homeomorphisms:
a G— mNe% G/N,

b.H—lim, H/(HNN), for H a closed subgroup of G, and
c. G/IK — lim, ., G/NK, for K a closed normal subgroup of G.

PROOF. We prove part a. The continuous map ¢ from G to the inverse limit Q of its quotients
has closed image, and ¢ is injective since %/ is a basis of 1 in G as in Proposition 10.6.22.
Suppose that (gyN)yea is not in the image of ¢, which is exactly to say that the intersection
of the closed sets gy N is empty. Since G is compact this implies that some finite subset of the
{gvN | N € % } is empty, and letting M be the intersection of the N in this subset, we see that
gmM = &, which is a contradiction. In other words, ¢ is surjective. U

The following is a consequence of Proposition 10.6.25a. We leave the proof to the reader.

COROLLARY 10.6.26. Let G be a profinite group and V" a set of open normal subgroups of
G that forms a basis of open neighborhoods of 1. Then the homomorphism

G — lim G/N
Nev

is a homeomorphism.

The following lemma will be useful later.
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LEMMA 10.6.27. The closed subgroups of a profinite group are exactly those that may be
written as intersections of open subgroups.

PROOF. In a topological group, an open subgroup is also closed, an arbitrary intersection of
closed sets is closed, and an arbitrary intersection of subgroups is a subgroup, so an intersection
of open subgroups is a closed subgroup. Let % denote the set of open subgroups of a profinite
group G. Let H be a closed subgroup of G. It follows from Proposition 10.6.25b and the second
isomorphism theorem that the set of subgroups of the norm NH with N open normal in G has
intersection H. Note that each NH is open as a union of open subgroups, so it is open. 0

We may also speak of pro-p groups.

DEFINITION 10.6.28. A pro-p group, for a prime p, is an inverse limit of a system of finite
p-groups.

We may also speak of profinite and pro-p completions of groups.

DEFINITION 10.6.29. Let G be a group.

a. The profinite completion G of G is the inverse limit of its finite quotients G/N, for N a
normal subgroup of finite index in G, together with the natural quotient maps G/N — G/N’ for
N <N

b. The pro-p completion G'P) of G, for a prime p, is the inverse limit of the finite quotients
of G of p-power order, i.e., of the G/N for N < G with [G : N| a power of p, together with the
natural quotient maps.

REMARK 10.6.30. A group G is endowed with a canonical homomorphism to its profinite
completion G by the universal property of the inverse limit.

REMARK 10.6.31. We may also speak of topological rings and fields, where multiplication,
addition, and the additive inverse map are continuous, and in the case of a topological field, the
multiplicative inverse map on the multiplicative group is continuous as well. We may speak of
profinite rings as inverse limits by quotients by two-sided ideals of finite index (or for pro-p
rings, of p-power index).

The next proposition shows that Z,, is the pro-p completion of Z.
PROPOSITION 10.6.32. Let p be a prime. We have an isomorphism of rings
oo k—1
v Zplﬂ'#mZ/ka, Zaip’»—> Zaip’ )
k>1 i=0 i=0 k

where the maps 7./ Pz -7 / PX7. in the system are the natural quotient maps. Moreover, y is
a homeomorphism.

PROOF. The canonical quotient map : Z, — Z/ p*7 is the kth coordinate of v, which is
then a ring homomorphism by the universal property of the inverse limit. The kernel y is the
intersection of the kernels of the maps y;, which is exactly

mkap =0.
k
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Moreover, any sequence of partial sums modulo increasing powers of p has a limit in Z,, which
maps to the sequence under y. The open neighborhood p"Z,, of 0 in the p-adic topology is sent
to the intersection

(ftor- 11 25} ().
k=1 k=n-+1 k>1

which is open in the product topology. On the other hand, the inverse image of a basis open
neighborhood

n oo
[Tuex IT1 zp/P*2, | 0| limZ/p*Z
k=1 k=n+1 k>1
with 0 € Uy for all 1 <k < n under y clearly contains p"Z,. It then follows from Lemma 10.6.6
that y is a homeomorphism. U

DEFINITION 10.6.33. The Priifer ring 7. is the profinite completion of Z. That is, we have
2= lim Z /nZ

n>1
with respect to the quotient maps Z/nZ — 7. /mZ for m | n.

Since Z/nZ may be written as a direct product of the Z/p*Z for primes p with p* exactly
dividing n, we have the following.

LEMMA 10.6.34. We have an isomorphism of topological rings

z= 1] z,

p prime

EXAMPLE 10.6.35. The free profinite (or pro-p) group on a generating set S is the profinite
(resp., pro-p) completion of the free group on S.

REMARK 10.6.36. As with free groups, closed subgroups of free profinite (or pro-p) groups
are free profinite (or pro-p) groups. Moreover, every profinite (resp., pro-p) group is a topological
quotient of the free group on a set of its generators, so we may present such groups via generators
and relations much as before.

DEFINITION 10.6.37. A subset S of a topological group G is said to be a topological gener-
ating set of G if G 1s the closure of the subgroup generated by S.

DEFINITION 10.6.38. We say that a topological group is (topologically) finitely generated if
it has a finite set of topological generators.

REMARK 10.6.39. If G is a free profinite (or pro-p) group on a set S, then it is topologically
generated by S.

We leave a proof of the following to the reader.

LEMMA 10.6.40. Let G be a topological group, and let H be a (normal) subgroup. Then the
closure H of H is also a (normal) subgroup of G.
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10.7. Infinite Galois theory

Recall that an algebraic extension of fields L/K is Galois if it is normal, so that every polyno-
mial in K[x] that has a root in L splits completely, and separable, so that no irreducible polynomial
in K[x] has a double root in L. The Galois group Gal(L/K) of such an extension is the group of
automorphisms of L that fix K.

In the setting of finite Galois extensions L/K, the subfields E of L containing F' are in one-
to-one correspondence with the subgroups H of Gal(L/K). In fact, the maps E — Gal(L/E) and
H — L give inverse bijections between these sets. This is not so in the setting of infinite Galois
extensions, where there are rather more subgroups than there are subfields. To fix this issue, we
place a topology on Gal(L/K) and consider only the closed subgroups under this topology. The
above-described correspondences then work exactly as before.

PROPOSITION 10.7.1. Let L/K be a Galois extension of fields. Let & denote the set of finite
Galois extensions of K contained in L, ordered by inclusion. This is a directed set. Let p be the
map

p: Gal(L/K) — lim Gal(E/K)
Ecé&
defined by the universal property of the inverse limit, with the maps Gal(E' /K) — Gal(E /K) for
E,E' € & with E C E' and the maps Gal(L/K) — Gal(E /K) for E € & being restriction maps.
Then p is an isomorphism.

PROOF. Let 6 € Gal(L/K). If o|g = 1 for all E € &, then since
L=|JE,
Ecé&

we have that 6 = 1. On the other hand, if elements o € Gal(E /K ) for each E € & are compatible
under restriction, then define ¢ € Gal(L/K) by 6(at) = og () if & € E. Then, if o« € E’ for some
E' € & as well, then

op/(a) = Opner (@) = Op(@),
noting that ENE’ € &. Therefore, o is well-defined, and so p is bijective. U

Proposition 10.7.1 gives us an obvious topology to place on the Galois group of a Galois
extension.

DEFINITION 10.7.2. Let L/K be a Galois extension of fields. The Krull topology on Gal(L/K)
is the unique topology under which the set of Gal(L/E) for E /K finite Galois with E C L forms
a basis of open neighborhoods of 1.

REMARK 10.7.3. The Krull topology agrees with the inverse limit topology induced by the
isomorphism of Proposition 10.7.1, since

1 — Gal(L/E) — Gal(L/K) — Gal(E/K) — 1

is exact. Therefore, if L/K is Galois, then Gal(L/K) is a topological group under the Krull
topology.
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LEMMA 10.7.4. Let L/K be a Galois extension of fields. The open subgroups in Gal(L/K)
are exactly those subgroups of the form Gal(L/E) with E an intermediate field in L/K of finite
degree over K.

PROOF. First, let E be an intermediate field in L/K of finite degree. Let E’ be the Galois
closure of E in L, which is of finite degree over K. Then Gal(L/E’) is an open normal sub-
group under the Krull topology, contained in Gal(L/E). Since Gal(L/E) is then a union of left
Gal(L/E')-cosets, which are open, we have that Gal(L/E) is open.

Conversely, let H be an open subgroup in Gal(L/K). Then H contains Gal(L/E) for some
finite Galois extension £ /K in L. Any o € LH where LH is the fixed field of H in L, is contained
in MOAL/E) \where M is the Galois closure of K(ct). Since the restriction map Gal(L/E) —
Gal(M/E) is surjective, we then have a € MCM/E) But M /K is finite, so MCM/E) — E by
the fundamental theorem of Galois theory. Thus L7 C E.

Let H be the image of H under the restriction map 7: Gal(L/K) — Gal(E/K). As Gal(L/E) <
H, we have that 7~ (H) = H. We remark that H = Gal(E /L"), since H = Gal(E/E") by the
fundamental theorem of Galois theory for finite extensions and L = E¥ = EX. But z7!(H) is
then Gal(L/L¥) as well. O

From this, we may derive the following.

LEMMA 10.7.5. Let L/K be a Galois extension of fields. The closed subgroups of Gal(L/K)
are exactly those of the form Gal(L/E) for some intermediate field E in the extension L/K.

PROOF. Under the Krull topology on Gal(L/K), the open subgroups are those of the form
Gal(L/E) with E /K finite. By Lemma 10.6.27, we have therefore that the closed subgroups are
those that are intersections of Gal(L/E) over a set S of finite degree over K intermediate fields
E. Any such intersection necessarily fixes the compositum E’ = [[gcsE, while if an element
of Gal(L/K) fixes E’', then it fixes every E € S, so lies in the intersection. That is, any closed
subgroup has the form

Gal(L/E') = (") Gal(L/E).
EcS
O

THEOREM 10.7.6 (Fundamental theorem of Galois theory). Let L/K be a Galois extension.
Then there are inverse one-to-one, inclusion reversing correspondences

v
{intermediate extensions in L/K} 7= {closed subgroups of Gal(L/K)}
0

given by W(E) = Gal(L/E) for any intermediate extension E in L/K and 6(H) = L for any
closed subgroup H of Gal(L/K). These correspondences restrict to bijections between the nor-
mal extensions of K in L and the closed normal subgroups of Gal(L/K), as well as to bijections
between the finite degree (normal) extensions of K in L and the open (normal) subgroups of
Gal(L/K). For any E of finite degree and the corresponding closed of finite index H, we have

[L:E]=Gal(L/E) and |H|=][L:L"].
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Moreover, if E is normal over K (resp., H < Gal(L/K) is closed), then restriction induces a
topological isomorphism

Gal(L/K)/Gal(L/E) = Gal(E/K)
(resp., Gal(L/K)/H = Gal(L# /K)).

PROOF. We will derive this from the fundamental theorem of Galois theory for finite Galois
extensions. Let E be an intermediate extension in L/K. Then E C LOA(L/E) by definition. Let
x € LOA(L/E) The Galois closure M of E(x) in L is of finite degree over E. But every element of
Gal(M /E) extends to an element of Gal(L/E), which fixes x. So x € MCIM/E) 'which equals E
by fundamental theorem of Galois theory for finite Galois extensions. Since x was arbitrary, we
have E = LS (L/E) 1n other words, 8 (y(E)) = E.

Let H be a closed subgroup of Gal(L/K). In Lemma 10.7.5, we saw that H = Gal(L/E) for
some intermediate E in L/K. Since E = LSA(/E) = [H from what we have shown, we have
that H = Gal(L/L"). Therefore, w(6(H)) = H. It follows that we have the desired inclusion-
reserving one-to-one correspondences. The other claims are then easily checked, or follow from
the case of finite degree, and are left to the reader. J

DEFINITION 10.7.7. A separable closure of a field L is any field that contains all roots of all
separable polynomials in L.

NOTATION 10.7.8. We typically denote a separable closure of L by L°P.

REMARK 10.7.9. If one fixes an algebraically closed field Q containing L, then there is a
unique separable closure of L in , being the subfield generated by the roots of all separable
polynomials in L[x].

DEFINITION 10.7.10. The absolute Galois group of a field K is the Galois group
Gk = Gal(K**? /K),
where K*°P is a separable closure of K.

REMARK 10.7.11. The absolute Galois group, despite the word “the”, is not unique, but
rather depends on the choice of separable closure. An isomorphism of separable closures gives
rise to a canonical isomorphism of absolute Galois groups, however.

EXAMPLE 10.7.12. Let g be a power of a prime number. Then there is a unique topological
isomorphism Gy, = 7 sending the Frobenius automorphism ¢;: x+— x7to 1. To see this, note
that Gal(F» /IF,) — Z/nZ given by sending ¢, to 1 is an isomorphism, and these give rise to
compatible isomorphisms in the inverse limit

Gr, = lim Gal(Fgn /F,) = lim Z/nZ = Z.
n n

EXAMPLE 10.7.13. Let Q(u,~) denote the field given by adjoining all p-power roots of unity
to Q. Then

Gal(Q(ty-)/Q) = lim Gal(Qk)/Q) = lim (Z/p"Z)* = L

the middle isomorphisms arising from the p"th cyclotomic characters.
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TERMINOLOGY 10.7.14. The isomorphism Gal(Q(u,~)/Q) — Z; of Example 10.7.13 called
the p-adic cyclotomic character.

Since the compositum of two abelian extensions of a field inside a fixed algebraic closure is
abelian, the following makes sense.

NOTATION 10.7.15. Let K be a field. The maximal abelian extension of K inside an algebraic
closure of K is denoted K.

REMARK 10.7.16. The abelianization G’}}’ of the absolute Galois group G of a field K canon-
ically isomorphic to Gal(K®®/K) via the map induced by restriction on G.






CHAPTER 11

Commutative algebra

In this chapter, all rings are commutative with unity.

11.1. Localization

We have previously discussed quotient fields, or fields of fractions, of integral domains. In
this section, we generalize the notion to arbitrary commutative rings with unity and allow sub-
rings with denominators in a smaller set.

DEFINITION 11.1.1. A subset S of R is multiplicatively closed if it is closed under multipli-
cation, 1 € S, and 0 ¢ S.

We now begin to generalize our earlier constructions. First, we prove a strengthening of
Lemma 3.7.1.

LEMMA 11.1.2. Let R be a commutative ring, and let S be a multiplicatively closed subset
of R. The relation ~ on R x S given by (a,s) ~ (b,t) if and only if there exists r € S such that
rat = rbs is an equivalence relation.

PROOF. Let a,b,c € R and s,t,u € S. That ~ is reflexive is the fact that ras = ras for any
r € §, that it is symmetric is the fact that rar = rbs implies rbs = rat. 1f g,r € § are such that
rat = rbs and gbu = qct, then multiplying the former equality by gu and then applying the latter,
we obtain
(rqt)au = q(rat)u = q(rbs)u = r(qbu)s = r(qct)s = (rqt)cs.
We have rqr € S since S is multiplicatively closed, so (a,s) ~ (c,u). Therefore, ~ is transitive.
U

REMARK 11.1.3. Let R be a commutative ring, and let S be a multiplicatively closed subset
of R. If § contains no zero divisors, then the relation ~ on R x § is more simply defined by
(a,s) ~ (b,t) if and only if at = bs. That is, this implies rar = rbs for all r € R, and likewise, the
latter implies at = bs since r is not a zero divisor.

DEFINITION 11.1.4. Let R be a commutative ring and S a multiplicatively closed subset of
R. The equivalence class ¢ of a pair (a,s) € R x S is called an fraction of R with denominator in

S (or S-fraction), and the set of such S-fractions is denoted S~ !R.

REMARK 11.1.5. Let R be a commutative ring and S a multiplicatively closed subset of R.
By definition, we have { = % for any a € R and 5,7 € S. We denote the fraction 7 more simply
by a.

317
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REMARK 11.1.6. If we were to allow 0 € S, then S™!R would have just one element 0. The
condition that 1 € § is not strictly necessary so long as S is nonempty, as we can set a = < for
any s € S anyway.

We leave the proof of the following to the reader.

THEOREM 11.1.7. The set S™'R is a ring under addition and multiplication of fractions:
a b at+bs a b ab
—+-= and —-—=—.
s t st s t st

PROOF. Suppose that (a,s) ~ (d’,s"), and let r € R be such that ras’ = ra’s. Then

r(at + bs)s't = ras'tt + rbss’t = rd'stt + rbss't = r(d't + bs')st,
so addition is well-defined, noting its symmetry. Similarly, we have
rabs't = ra'bst,

so multiplication is well-defined. By definition, addition and multiplication are commutative, and
associativity and distributivity of the two are exactly as in the proof of Theorem 3.7.6. Moreover,
for any 5,7 € S, we have

a a 0 a a a at a a
-+0=-+-=—=- and —--1l=---=—=—.
st st s Ky st st s
Also, we have
a —a as—+(—a)s
@ a_wtlas_,
S s S
so —< = =*. Thus, S~!R is a ring under addition and multiplication. O

REMARK 11.1.8. Theorem 11.1.10 tells us that if S has no zero divisors, then S™!R is the
smallest ring containing R in which every element of § is a unit. In particular, if every element
of § already is a unit in R, then S —1R = R. If S has zero divisors, then the map from S to the unit
group of S~1R is still injective.

DEFINITION 11.1.9. The ring S~'R consisting of S-fractions for a multiplicatively closed
subset S of a commutative ring R with unity is called the ring of S-fractions of R, or the localiza-
tion of R at S.

THEOREM 11.1.10. Let R be a ring and S a multiplicatively closed subset of R.

a. There is a canonical ring homomorphism R — S™R given by ¢s(a) =aforall a € R, and
it is injective if and only if S contains no zero divisors in R.

b. Every element of S maps to a unit in S™'R under ¢s.

c. If Q is a commutative ring and f: R — Q is a homomorphism such that f(S) C Q*, then
there is a unique injective homomorphism 0 : SR — Q such that f = 0 o ¢s.

PROOF. That ¢g is a homomorphism is simply that
as bt  abst
¢s(a)ps(b) =a-b=—-—=—=ab=¢s(ab)

s t St
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for any 5,7 € S. If S contains no zero divisors ¢g(a) = 0 for some a € R, then (as,s) ~ (0,1), so
ast = 0, which implies that a = 0. Similarly, if ¢s is injective, then ast 7 O for all nonzero a € R
and elements s,¢ € S, which means that as ## 0 for all nonzero a € R and elements s € S.

Note that % € S~!R is clearly a multiplicative inverse of ¢g(s) € S~'R. Define 6: 'R — Q
by 6(4) = f (s)~'f(a). It is easily checked to be a homomorphism. It also restricts to f by

definition. To see that it is well-defined, note that if % = ?, then at = bs, and so s 'la=t"1b in

S~'R and thus f(s)~' f(a) = f(t)~' f(b) in Q. O

NOTATION 11.1.11. For an ideal / of a commutative ring R and a multiplicative set S in R,
let S~'1 denote the ideal generated by the image ¢s(I) of I in S™'R.

PROPOSITION 11.1.12. Let R be a commutative ring, and let S be a multiplicative subset of
R.

a. For any ideal I of R, we have

o (ST ) ={acR|SanI+# o}.
b. For any ideal J of S™'R, we have S~ ¢ 1 (J) = J.

PROOF. First, we remark that every element of S~!7 has the form Swithaelands€S.
That is, by definition, every element of S~'7 is an S~!R-linear combination of fractions ¢ 1 with
a € I, so an R-linear combination of fractions ¢ with a € I and s € S. But we can take common
denominators and use the fact that / is an R- 1dea1 to write every such fraction in the desired form.

Let a € R be such that we have s € S with x = sa € I. Then ¢s(a) =¥ € S7'I, soa €
¢§1 (S7'I). Conversely, if ¢5(a) = ¥ for some x € I and s € S, then rsa = rx for some r € S, from
which it follows that SaN 1 # @. This proves part a.

For part b, take £ € J with x € R and s € S, and note that x € ¢g ! (J). We then have that
€S - Og ! (J) by definition. On the other hand, the image in J of any element of ¢¢ 1 is clearly
in J by definition as well. Thus, we have part b. U

DEFINITION 11.1.13. Let R be a commutative ring, and let S be a multiplicative subset of
R.

a. For any ideal I of R, the expansion of I in SIRis S 11I.
b. For any ideal J of S~!R, the contraction of J in R is ¢§1 (J).

PROPOSITION 11.1.14. Let R be a commutative ring, and let S be a multiplicatively closed
subset of R. Then contraction and expansion given mutually inverse maps between the set of
prime ideals of R disjoint from S and the set of prime ideals of S~'R. Moreover, the expansion of
any prime ideal of R that intersects S is S™'R.

PROOF. By Proposition 11.1.12, we need merely note that for a prime ideal p of R, the ideal
J=95"'(S""'p) ={aeR|Sanp + 2}

ispif pNS = & and S~'R otherwise. The ideal J clearly contains p. If a € J —p, then there exists
s € S such that sa € p. But then s € p by the primality of p, so p and § are not disjoint. Moreover,
in this case, S’lp contains 1 = f, hence S*Ip = R, and therefore J = S~!R. L]
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DEFINITION 11.1.15. The total ring of fractions Q(R) of a commutative ring R with unity is
the localization of R at the set of nonzero elements of R that are not zero divisors.

EXAMPLES 11.1.16.
a. If R is an integral domain, then its total ring of fractions is its field of fractions Q(R).
b. If R = 7Z x 7, then its total ring of fractions is given by inverting the set

§=A{(c,d) | c,d € Z—{0}}.

There is a ring isomorphism

QZxZ) = QxQ, g (45

DEFINITION 11.1.17. Let R be a commutative ring, and let x € R. Then the localization of R
with respect to x, denoted by R, and also by R[x~!], is the ring S~!R for S = {x" | n > 0}.

EXAMPLE 11.1.18. Let n € Z. Then the ring Z[,ll] may be identified with the subset of Q
consisting of reduced fractions with denominator a product of powers of primes dividing n, or
equivalently, with denominator dividing a power of n. The distinct ideals of Z[%] are generated

by nonnegative a € Z with (a,n) = 1.

EXAMPLE 11.1.19. Let R=7 x Z and x = (1,0), and consider R,. Since x- (0,1) =0, and x
is invertible in Ry, we have (0, 1) = 0 in R,. Note also that (1,0)"(a,0) = (4,0), s0 ({3 = (a,0).
It follows that the ring homomorphism Z — R, given by a — (a,0) is an isomorphism.

LEMMA 11.1.20. Let R be a commutative ring, and let p be a prime ideal of R. Then R —p is
a multiplicatively closed subset of R.

PROOF. If a,b € S, then since a,b ¢ p and p is prime, we have ab ¢ p, so ab € S. Moreover
0 ¢ S and 1 € S by definition. O

DEFINITION 11.1.21. Let R be a commutative ring, and let p be a prime ideal of R. Then
Ry, = Sp_lR, where Sp_1 = R —p, 1s referred to as the localization of R at p.

EXAMPLES 11.1.22.

a. Let p € Z be prime. Then Z,) may be identified with the subring of Q consisting of
reduced fractions with denominators not divisible by p.

b. The ring Qlx] (x) consists of rational functions with denominator not divisible by x. Con-

trast this with Q[x], = Q[x,x~!], which consists of rational functions with denominator a power
of x.

EXAMPLES 11.1.23.
a. The ring Z[x] y) is identified with Q[x],) inside Q(x).

b. The ring Z[x], y) is the subring of Q(x) of rational functions with denominator having
nonzero constant term modulo p.
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LEMMA 11.1.24. Let M be a module over a commutative ring R, and let S be a multiplica-
tively closed subset of R. Then the relation ~g on S x M defined by (s,m) ~ (t,n) if there exists
r € S such that r(sn —tm) = 0 is an equivalence relation.

PROOF. The relation ~ is clearly reflexive and symmetric, so we only need to check transi-
tivity. For this, let (s,m) ~ (s',m’) and (s',m") ~ (s ,m") in S x M. Then there exist r,# € S such
that r(sm’ — s'm) = v/ (s'm” —s"'m’) = 0. We then have

0=rr's"(sm' —s'm)+rr's(sSm" —s"m") = rr's' (sm" — s"'m),

so (s,m) ~ (s",m"). O

NOTATION 11.1.25. Let M be a module over a commutative ring R, and let S be a multiplica-
tively closed subset of R. The set of equivalence classes of S x M under ~g is denoted S~'M,
and the equivalence class of (s,m) is denoted s~ 'm or ~. We write 7 more simply as m.

We omit the easy but nonetheless tedious proof of the following.

PROPOSITION 11.1.26. Let M be a module over a commutative ring R, and let S be a multi-
plicatively closed subset of R. The set S™'M of equivalence classes of S x M under the equiva-
lence relation ~y is an S~'R-module under the operations

m n tm—+ns a m am

—4-= and —-—=—
S t St s t st

fora € R, m,n € M, and s,t € S. There is a canonical map 1: M — S~'M of R-modules given by
1(m) = 1.

EXAMPLE 11.1.27. Let S be a multiplicatively closed subset of a commutative ring R. Then
the localization S~!'R of R viewed as a left R-module is just the ring S~'R viewed as a module
over itself.

EXAMPLE 11.1.28. Let R be an integral domain and S = R — {0}. If M is an R-module, then
S~1M is a Q(R)-vector space.

LEMMA 11.1.29. Let S be a multiplicatively closed subset of a commutative ring R. Let
{M; | i € I} be a collection of R-modules. Then

s (i) = Ps'm
icl iel
via the canonical map that takes s~ (m;)ics to (s~ 'm;)ier.
EXAMPLE 11.1.30. Let p be a prime number, and let S, be the multiplicatively closed subset
of Z that is the complement of the prime ideal (p). For n > 1, the localization S;l(Z /nZ) is

isomorphic to Z/p*Z, where p* is the highest power of p dividing .
To see this, note that Z/nZ = Z./mZ x 7./ p*Z, where n = p*m, so we have

S, (Z/nZ) =S, (Z/mZ) x S, (2] p*Z).

Now, for any x € Z/mZ, we have x = m~! (mx) = m~'0 =0 in S;I(Z/mZ). It follows that
S;l (Z/mZ) = 0. On the other hand, if y € Z/p*Z and a € S, are such that a~'y = 0, then there
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exists b € S, such that by = 0, which means that y = 0 since b is prime to p. Furthermore, any
a~'y e S, (Z/p*Z) is in the image of Z/p*Z as a € (Z/p*Z)*. Thus, we have S, (Z/p*Z) =
7./ p*7.

PROPOSITION 11.1.31. Let M be a module over a commutative ring R, and let S be a multi-
plicatively closed subset of R. Then S~'M = S™'R @z M as S~'R-modules.

PROOF. Define a map 6: ST'Rx M — S~'M by (s 'a,m) = “*. To see that it is well-
defined, note that if £ = 17’, then we have r € S with r(ta— sb) = 0, and then r(tam — sbm) =0, so
o = b[—’". The map 0 is easily checked to be left S~!R-linear, right R-linear, and R-balanced. We
then obtain a map of S~!R-modules ®: ST'R®@r M — S~ M satisfying O(¢ ®@m) = “* by the
universal property of the tensor product. (That it is an S~!R-module homomorphism, rather than
just an R-module homomorphism, follows directly from the left S~ R-linearity.) For bijectivity,
it suffices to exhibit an inverse function.

Define a function y: S x M — ST'R®@r M by y(s,m) = s~ @m. If (s,m) ~g (¢,n), then let
r € S be such that r(sn —tm) = 0. We then have

stom=(rst) ' @rtm=(rst) ' @rsn=1"'®n,

so we obtain a well-defined map ¥: S~!M — S~'R® M given by Y(%) = s~ ®@m. (In fact, ¥ is
a homomorphism of S~!R-modules, but it is not necessary to check this to finish the proof, since
the inverse of a module isomorphism is one as well.) By definition, ®(¥(%)) = *, and we have

YO lawm) =) =s'@am=s"la®m.

s
O
REMARK 11.1.32. Given a commutative ring R and a multiplicatively closed set S, localiza-

tion provides a functor S~1: R-mod — S~ !'R-mod. That is, if f: M — N is an R-modules homo-
morphism, then we have an induced R-module homomorphism S~! f: S™!M — S~!N given by

f(s7'm) =s1f(m).

11.2. Local rings

DEFINITION 11.2.1. A commutative ring R is local if it has a unique maximal ideal.

DEFINITION 11.2.2. The residue field of a local ring R with maximal ideal m is the field
R/m.

The first part of the following explains something of the meaning of the terminology “local-
ization.”

PROPOSITION 11.2.3. Let p be a prime ideal of a commutative ring R.
a. The ring Ry is a local ring with maximal ideal pRy,.

b. The proper ideals of Ry, are exactly those of the form IRy, for some ideal I of R contained
inp.
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PROOF. By Proposition 11.1.12b, every ideal of Ry has the form /Ry, for some ideal I of R.
If a € R — p, then by definition a is invertible in Ry, hence aR, = Ry,. Thus, IR, = Ry, for every
ideal of R not contained in p. On the other hand IRy, C pRy, if I C p, so pRy, is the unique maximal
ideal of Ry. O

We note the following easy lemmas.
LEMMA 11.2.4. Let R be a local ring and m be its maximal ideal. Then R* = R —m.

PROOF. If (a) # R, then a is contained in a maximal ideal, which must be m. Conversely, if
a € R*, then (a) = R, so a is not contained in m. O

LEMMA 11.2.5. Let m be a maximal ideal of a commutative ring R. Then the canonical ring
homomorphism R/m — Ry /MRy, is an isomorphism.

PROOF. Since nonzero maps of fields are injective, it suffices to see that the map is onto. If
r€Rand u € R—m, then let v € R be such that (u+m)(v+m) = 1. Then - +mRy, is the image
of vr+m. U

NOTATION 11.2.6. Let p be a prime ideal of a commutative ring R, and let M be an R-module.
Then the localization of the Ry,-module S, 'M is denoted M,.

PROPOSITION 11.2.7. Let R be a commutative ring and M be an R-module. Then the follow-
ing are equivalent:

i. M =0,

ii. My, =0 for every prime ideal p of R, and

iii. My = 0 for every maximal ideal m of R.

PROOF. Clearly, (1) implies (ii) and (i1) implies (iii). Let m € M be nonzero. Let I be anni-
hilator of m in R, which is to say / = Ann(Rm). Then I is a proper ideal, hence contained in a
maximal ideal m of R. If 5 € Ry, annihilates m, then rsm = 0 for some s € R—m. Thus rs € m,

so r € m as m is prime. This implies that the annihilator of m in Ry, in a proper ideal, so m is
nonzero in My,. Thus, we have the contrapositive to (iii) implies (i). 0

DEFINITION 11.2.8. The Jacobson radical J(R) of a ring R is the intersection of all left
maximal ideals of R.

The following extends Lemma 11.2.4.
LEMMA 11.2.9. Let x € R. Then x € J(R) if and only if | —rx € R* forall r € R.

PROOF. If 1 — rx ¢ R*, then there exists a left maximal ideal m containing 1 — rx. Then
rx ¢ m, so rx ¢ J(R), and therefore x ¢ J(R). Conversely, if x ¢ J(R), then there exists a left
maximal ideal m such that x ¢ m. Then there exist » € R and y € m such that 1 = rx+y. Then
l—rx=y¢R". O

THEOREM 11.2.10 (Nakayama’s lemma). Let M be a finitely generated module over a com-
mutative ring R, and suppose that J(R)YM = M. Then M = 0.
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PROOF. Let {m,my,...,m;} be a set of generators of M with k > 1. Since m; € J(R)M, we
can find g; € J(R) for 1 <i < k such that

k
mp) = Z a;m;.
i=1

Since (1 —aj)m; is contained in the submodule M’ generated by my, ...,m. On the other hand,
1 —a; € R* by Lemma 11.2.9. But then m; itself is contained in M’, which tells us that M’ = M
and k is not minimal. That is, the minimal number of generators of M is zero. O

COROLLARY 11.2.11. Let M be a finitely generated module over a local ring R, and suppose
that mM = M, where m is the maximal ideal of M. Then M = Q.

COROLLARY 11.2.12. Let M be a finitely generated module over a local ring R with maximal
ideal m, and let X be a set of elements of M such that {m+wmM | m € X} generates M /mM as a
vector space over the residue field R/m. Then X generates M.

PROOF. Let N be the submodule of M generated by X. Then N +mM = M, so every element
in M/N is the N-coset of some element of mM, which is to say that m(M/N) = M/N. By
Nakayama’s lemma, we have M /N = 0, so X generates M. O

EXAMPLE 11.2.13. Take the set of tuples (111,107,50), (23,—17,41), and (30,—8,104).
Suppose that we want to see if they generate the Q-vector space Q>. It suffices, then, to see that
they generate the Z,)-module Z, for some prime p. Moreover, the map F, — Z,) / PLp) is
an isomorphism, so by Corollary 11.2.12, it suffices to see that these tuples generate Ff, Modulo
2, they are (1,1,0), (1,1,1), and (0,0,0), so they do not generate F3. However, modulo 3, they
are (0,—1,—1), (=1,1,—1), and (0,1, —1), which do in fact generate I3, and thus the original
tuples generate Q3.

Nakayama’s lemma can also be used to prove the following result for free modules.

LEMMA 11.2.14. Let M be a finitely generated free module over a local ring R with maximal
ideal m, and let X be a subset of M. If the image of X in M /mM is R-linearly independent, then
X is R-linearly independent and can be extended to a basis of M.

PROOF. Let X denote the image of X in M/mM. Extend X to a basis B of M /mM, and let
B C M be a lift of B to M with X C B. Then B spans M by Corollary 11.2.12. To see that it is
linearly independent, suppose that B has n elements mj,...,m, and consider the sum Y | a;m;
for some a; € R. Suppose that not all g; are zero, and let £ > 0 be minimal such that a; € m¥ for
all i. Note that the map

mk/mk+l QrM — mkM/mk“M

induced by the R-action on M is an isomorphism by the freeness of M, since tensor products
commute with direct sums and it is clearly true for M = R. But we have Y} ;a; ® m; # 0 in
the left-hand side (which is isomorphic to mF/m 1 @ /m M /mM) since B is a basis of M /mM.
Therefore ) | a;m; # 0. In other words B is a basis of M, and X is R-linearly independent. [
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11.3. Integral extensions

DEFINITION 11.3.1. We say that B/A is an extension of commutative rings if A and B are
commutative rings such that A is a subring of B.

DEFINITION 11.3.2. Let B/A be an extension of commutative rings. We say that § € B is
integral over A if B is the root of a monic polynomial in A |[x].

EXAMPLES 11.3.3.

a. Every element a € A is integral over A, in that a is a root of x — a.

b. If L/K is a field extension and « € L is algebraic over K, then « is integral over K, being
a root of its minimal polynomial, which is monic.

c. If L/K is a field extension and « € L is transcendental over K, then « is not integral over
K.

d. The element /2 of Q(+/2) is integral over Z, as it is a root of x> — 2.
e. The element ¢ = # of @(\/3) is integral over Z, as it is a root of X2 —x—1.

PROPOSITION 11.3.4. Let B/A be an extension of commutative rings. For B € B, the follow-
ing conditions are equivalent:

i. the element B is integral over A,

ii. there exists n > 0 such that {1,8,...,B"} generates A[B] as an A-module,

iii. the ring A|B] is a finitely generated A-module, and

iv. there exists a faithful A[B]-submodule M of B that is finitely generated over A.

PROOF. Suppose that (i) holds. Then B is a root of a monic polynomial g € A[x]. Given
any f € A[x], the division algorithm tells us that f = gg + r with ¢,r € A[x] and either r = 0
or degr < degg. It follows that f(B) = r(B), and therefore that f(f) is in the A-submodule
generated by {1,f,..., 898711 5o (ii) holds. Since this set is independent of f, it generates
A[B] as an A-module, so (iii) holds. Suppose that (iii) holds. Then we may take M = A[], which
being free over itself has trivial annihilator.

Finally, suppose that (iv) holds. Let

M=) Ay, CB

n
i=1

be such that BM C M, and suppose without loss of generality that § # 0. We have
n
Byi=Y aijy
j=1
for some a;; € A with 1 <i, j < n. Consider A-module homomorphism T : B" — B" represented

by (a;j). The characteristic polynomial cr(x) € Afx] is monic, and ¢7(B) acts as zero on M.
Since M is a faithful A[]-module, we must have c7(f) = 0. Thus,  is integral. O
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EXAMPLE 11.3.5. The element % € Q is not integral over Z, as Z[1,27',...,27" forn > 0

is equal to Z[2~"], which does not contain 2~ (*1),

DEFINITION 11.3.6. Let B/A be an extension of commutative rings. We say that B is an
integral extension of A if every element of B is integral over A.

EXAMPLE 11.3.7. The ring Z[\/E] is an integral extension of Z. Given o = a + b/2 with
a,b € 7, note that « is a root of x* — 2ax + a* — 2b>.

The integral extensions of a field are its algebraic field extensions.

LEMMA 11.3.8. Let B be a domain that is integral over a field F. Then B is a field that is an
algebraic extension of F.

PROOEF. Every b € B C Q(B) is the root of a polynomial with coefficients in F, so F(b) =
F[b] C B. Thatis, b € B, and thus B is a field and algebraic over F. O

LEMMA 11.3.9. Suppose that B/A is an extension of commutative rings such that B is finitely
generated as an A-module, and let M be a finitely generated B-module. Then M is a finitely
generated A-module.

PROOF. Let {my,...,m,} be a set of generators of M as a B-module, and let {f,..., B} be
a set of generators of B as an A-module. We claim that {fim; | 1 <i <k, 1< j<n}isaset of
generators of M as an A-module. To see this, let m € M and write

m = ibjmj
j=1

with b; € Bfor 1 < j <n. For 1 < j < n, we then write

k
bi=Y aiBi
i=1

with a;; € A for 1 <i < k. We then have

m=1,

n
i=1j=

aijﬁimj,
1

as desired. O

We now give a criterion for a finitely generated algebra over a ring to be finitely generated as
a module.

PROPOSITION 11.3.10. Let B/A be an extension of commutative rings and suppose that

B :A[ﬁhﬁZa"'aﬁk]
for some k > 0 and B; € B with 1 <i < k. Then the following are equivalent:

i. the ring B is integral over A,

ii. each B; with 1 <i <k is integral over A, and
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iii. the ring B is finitely generated as an A-module.

PROOE. Clearly, (i) implies (ii), so suppose that (ii) holds. By definition, each f; is then inte-

gral over any commutative ring containing A. By Proposition 11.3.4, each A[f,..., ;] with 1 <
j < kis afinitely generated A[f,...,B;—1]-module, generated by {1,5;,... ,[3}”} for some n; >
0. Assuming recursively that A[f,..., ;_1] is finitely generated as an A-module, Lemma 11.3.9

implies that A[By,...,B;] = A[B1,...,Bj-1][B;] is finitely generated as an A-module as well.
Therefore, (iii) holds. Finally, if (iii) holds and B € B, then since BB C B, the element f3 is
integral over a by Proposition 11.3.4. Thus (i) holds. U

We derive the following important consequence.

PROPOSITION 11.3.11. Suppose that C/B and B/A are integral extensions of commutative
rings. Then C/A is an integral extension as well.

PROOF. Let y € C, and let f € B[x] be a monic polynomial which has y as a root. Let B’ be
the subring of B generated over A by the coefficients of f, which is integral over A as B is. By
Proposition 11.3.10, the ring B’ is then finitely generated over A. As B'[y] is finitely generated
over B as well, we have B'[y] is finitely generated over A. Hence, B[y] is itself an integral
extension of A. By definition of an integral extension, the element 7 is integral over A. Since
Y € C was arbitrary, we conclude that C is integral over A. U

DEFINITION 11.3.12. Let B/A be an extension of commutative rings. The integral closure
of A in B is the set of elements of B that are integral over A.

PROPOSITION 11.3.13. Let B/A be an extension of commutative rings. Then the integral
closure of A in B is a subring of B.

PROOF. If ¢ and f3 are elements of B that are integral over A, then A|a, B] is integral over A
by Proposition 11.3.10. Therefore, every element of A|a, ], including —a, @ + 3, and a - B3, is
integral over A as well. That is, the integral closure of A in B is closed under addition, additive
inverses, and multiplication, and it contains 1, so it is a ring. O

EXAMPLE 11.3.14. The integral closure of Z in Z[x| is Z, since if f € Z[x] is of degree at
least 1 and g € Z[x] is nonconstant, then g(f(x)) has degree degg - deg f in x, hence cannot be 0.

DEFINITION 11.3.15.
a. The ring of algebraic integers is the integral closure Z of Z inside C.

b. An algebraic integer is an element of Z.

DEFINITION 11.3.16. Let B/A be an extension of commutative rings. We say that A is
integrally closed in B if A is its own integral closure in B.

DEFINITION 11.3.17. We say that an integral domain A is integrally closed, or , if it is
integrally closed in its quotient field.

EXAMPLE 11.3.18. Every field is integrally closed.
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PROPOSITION 11.3.19. Let A be an integrally closed domain, let K be the quotient field, and
let L be a field extension of K. If B € L is integral over A with minimal polynomial f € K|[x|, then
feAx.

PROOF. Since f8 € L is integral, it is the root of some monic polynomial g € A[x| such that
f divides g in K[x]. As g is monic, every root of g in an algebraic closure K containing K is
integral over K. As every root of f is a root of g, the same is true of the roots of f. Write
f=TI",(x— B;) for B; € K integral over A. As the integral closure of A in K is a ring, it follows
that every coefficient of f is integral over A, being sums of products of the elements f3;. Since
f € K[x] and A is integrally closed, we then have f € A[x]. O

In particular, we have the following result on the norm and trace on quotient fields on integral
extensions of domains.

COROLLARY 11.3.20. Let B/A be an integral extension of domains, and suppose that A is
integrally closed in its quotient field K. Let L denote the quotient field of B, and suppose that
L/K is finite. Then Ny (B) and Try x(B) are elements of A for every B € B.

The following holds in the case of UFDs.

PROPOSITION 11.3.21. Let A be a UFD, let K be the quotient field of A, and let L be a field
extension of K. Suppose that B € L is algebraic over K with minimal polynomial f € K|x]. If B
is integral over A, then f € A[x]|.

PROOF. Let B € L be integral over A, let g € A[x] be a monic polynomial of which it is a
root, and let f € K[x| be the minimal polynomial of 8. Since f divides g in K[x] and A is a UFD
with quotient field K, there exists d € K such that df € A[x| and df divides g in A[x]. Since f is
monic, d must be an element of A (and in fact may be taken to be a least common denominator of
the coefficients of f). The coefficient of the leading term of any multiple of df will be divisible
by d, so this forces d to be a unit, in which case f € Alx]. O

COROLLARY 11.3.22. Every unique factorization domain is integrally closed.

PROOF. The minimal polynomial of an element a of the quotient field K of a UFD A is x —a.
If a ¢ A, it follows from Proposition 11.3.21 that a is not integral over A. O

EXAMPLES 11.3.23. The ring Z is integrally closed.

S

EXAMPLE 11.3.24. The ring Z[v/17] is not integrally closed, since ot = 1+2 is a root of

the monic polynomial x> — x — 4. In particular, Z[v/17] is not a UFD.

PROPOSITION 11.3.25. Let B/A be an extension of commutative rings, and suppose that B
is an integrally closed domain. Then the integral closure of A in B is integrally closed.

PROOF. Let A denote the integral closure of A in B, and let Q denote the quotient field of A.
Let @ € Q, and suppose that o is integral over A. Then A[a] is integral over A, so A[a] is integral
over A, and therefore « is integral over A. That is, « is an element of A, as desired. O

EXAMPLE 11.3.26. The ring Z of algebraic integers is integrally closed.
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PROPOSITION 11.3.27. Let A be an integral domain with quotient field K, and let L be an
algebraic extension of K. Then the integral closure B of A in L has quotient field equal to L inside
L. In fact, every element of L may be written as g for somed € A and b € B.

PROOF. Any f3 € L is the root of a nonconstant polynomial f =Y ;axx' € K[x], witha, = 1.
Let d € A be such that df € Alx]. Then

d"f(d 'x) = Zn: a;id"'x' € Alx]
i=0
is both monic and has df as a root. In other words, df3 is contained in B, as desired. U
EXAMPLE 11.3.28. The quotient field of Z is Q.
DEFINITION 11.3.29. A number field (or algebraic number field) is a finite field extension of
Q.
We have the following names for extensions of Q of various degrees.

DEFINITION 11.3.30. A quadratic (resp., cubic, quartic, quintic, ...) field is a degree 2 (resp.,
3,4, 5, ...) extension of Q.

DEFINITION 11.3.31. The ring of integers (or integer ring) of a number field K is the integral
closure of Z in K.

In other words, the ring of integers of a number field is the subring of algebraic integers it
contains. The prototypical examples of rings of integers arise in the setting of quadratic fields.

THEOREM 11.3.32. Let d # 1 be a square-free integer. The ring O of algebraic integers in
Q(vd) is
. Z|2Y2] ifa=1mod 4,
Z[Vd] ifd =2,3 mod 4.

PROOF. Suppose that o = a + b+\/d is integral for a,b € Q. If b = 0, then we must have
a € Z. If b # 0, then the minimal polynomial of « is f = x*> — 2ax +a’?2 — b*d. Since «
is integral, then we must have f € Z[x|, so 2a € Z. If a € 7Z, then since a*>—b*d € 7 and d is
square-free, we have b € Z as well. If a ¢ Z, then 2a = a’ and 2b = b’ for some odd @', b’ € Z, and
(d')? = (b')?d mod 4. As (Z/47)? = {0,1}, this is impossible if d # 1 mod 4. If d = 1 mod 4,
then clearly we can take @’ = b’ = 1. O

DEFINITION 11.3.33. Let B/A be an integral extension of domains such that A is integrally

closed, and suppose that B is free of rank n as an A-module. Let (Bi,...,,) be an ordered
basis of B as a free A-module. The discriminant B over A relative to the basis (B,...,[,) is
D(Bi,-..,B)-

LEMMA 11.3.34. Let A be an integrally closed domain with quotient field K. Let L be a
finite separable extension of K, and let B denote the integral closure of A in L. Let (Qy,...,0,)
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be any ordered basis of L as a K-vector space that is contained in B. Let B € L be such that
Tryx(@B) € A for all o € B. Then

n
D(ay,...,0n)B € Y Ao,
i=1
PROOF. Since f € L, we may write

n
B = Zaiai
i=1

for some a; € K for 1 <i < n. For any i, we have that

n

(1131) TI‘L/K<OC,'13) = ZajTI‘L/K(OCiOCj).

j=1
The right-hand side of (11.3.1) is the ith term of the product of the matrix Q = (Tr k(@ @;))
times the column vector with ith entry a;. Since the determinant of Qisd =D(a,...,ay,), letting
Q* € M,(A) denote the adjoint matrix to Q, we have Q*Q = dI,,. Thus, we have da; € A for each
i. In other words, df3 lies in the A-module generated by the a;, so we are done. O

PROPOSITION 11.3.35. Let A be an integrally closed domain with quotient field K. Let L be
a finite separable extension of K, and let B denote the integral closure of A in L. There exists
an ordered basis (Q,...,0y) of L as a K-vector space contained in B. Moreover, for any such
basis, we have

iAai CBC iAd‘loc,-,
i=1 i=1

where d =D(ay,..., o).

PROOF. First, take any ordered basis (fBi,...,,) of L/K. By Proposition 11.3.27, there
exists a € A — {0} such that o; = af; € B for each 1 <i <n. Clearly, (y,...,,) is a basis of
L/K, so in particular, the A-module generated by the o is free and contained in B. The other
containment is simply a corollary of Lemma 11.3.34 and the fact that Tr /¢ (B) C A. O

The following notion of rank is most interesting for finitely generated modules, though we
shall have occasion to use it without this assumption.

DEFINITION 11.3.36. The rank of a module M over a domain A is
ranks (M) = dimg (K @4 M).

COROLLARY 11.3.37. Let A be an integrally closed noetherian domain with quotient field K.
Let L be a finite separable extension of K, and let B denote the integral closure of A in L. Then B
is a finitely generated, torsion-free A-module of rank [L : K]|.

PROOE. By Proposition 11.3.35, we have free A-modules M and M’ of rank n = [L : K] such
that M C A C M’. Since M’ has no A-torsion, neither does B. We have

KuMCK®@sBC K@M,
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As M and M’ are both isomorphic to A", their tensor products over A with K are n-dimensional
K-vector spaces, which forces K ®4 B to have K-dimension n as well. Moreover, B is finitely
generated being a submodule of a finitely generated module over A, as A is noetherian. U

PROPOSITION 11.3.38. Let A be an integrally closed noetherian domain with quotient field
K. Let L be a finite separable extension of K, and let B denote the integral closure of A in L. Then
any finitely generated, nonzero B-submodule of L is a torsion-free A-module of rank [L : K].

PROOF. Let M be a finitely generated, nonzero B-submodule of L. If B € L*, then the
multiplication-by-3 map B — Bf is an isomorphism of B-modules, so Bf has rank [L : K] as an
A-module. In particular, ranks (M) > rankg (B), taking B € M. Since M is B-finitely generated
and contained in the quotient field of B, there exists & € B such that oM C B. Since multiplication
by « is an isomorphism, rank4 (M) < rank4 (B). The result now follows from Corollary 11.3.37.

O

COROLLARY 11.3.39. Let A be a PID with quotient field K, let L be a finite separable ex-
tension of K, and let B denote the integral closure of K in L. Then any finitely generated B-
submodule of L is a free A-module of rank [L : K].

PROOF. By the structure theorem for modules over a PID, any torsion-free rank » module
over A is isomorphic to A”". The result is then immediate from Proposition 11.3.38. U

We have the following application to number fields.

LEMMA 11.3.40. Let K be a number field. Then the discriminant of Ok over Z is independent
of the choice of ordered basis of Ok as a free Z-module.

PROOF. By Corollary 11.3.39, the ring O is free of rank n = [K : Q| over Z. If Bi,..., B,
and ay, ..., are bases of Ok as a free Z-module, then there exists a Q-linear homomorphism
T: K — K such that T (o) = fB; for all i. Then

D(Bi,...,B) = det(T)*D(ay, ..., o),
and det(7T) is a unit in Z, so in {1}, which is to say that det(T)? = 1. O

DEFINITION 11.3.41. If K is a number field, the discriminant disc(K) of K is the discriminant
of Ok over Z relative to any basis of Ok as a free Z-module.

Noting Theorem 11.3.32, the case of quadratic fields is immediately calculated.
PROPOSITION 11.3.42. Let K = Q(\/d), where d # 1 is a square-free integer. Then
d d=1mod4
disc(K) = moe s,
4d d=2,3 mod4.
The following theorem will be useful to us later.

THEOREM 11.3.43 (Noether’s normalization lemma). Let F be a field, and let A be a finitely
generated commutative F-algebra with generators z1,...,7, € A. Then there exists s < r and
F-algebraically independent elements t, ... ,t; € A such that A is integral over F|t,... 1.
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PROOF. The result is obvious for r = 0, so suppose r > 1. If the elements z,...,z, are
algebraically independent over F, then we may take s = r and t; = r; for all i, so suppose not.
In this case, there exists a nonzero polynomial f € F[xy,...,x,]| such that f(zj,...,z,) = 0. Let

d be the maximum of the degrees of f viewed as a polynomial in each of the x;. Since f is
nonconstant, without loss of generality we may take it to be nonconstant as a polynomial in x;
with coefficients in F|xp, ..., x,|.

Consider the polynomial

r—1
gx,. ., xy) = f(xl,m +x§i+1,---,xr+xgd+l) > :

Each monomial x’l<1 x’," in f has k; < d for all i and gives rise to a sum of monomials in g,
exactly one of which has the form a constant in F times x; to the power Y/, k;(1 +d)"~!. Each
of these powers for the different monomials in f is distinct, so the highest degree term in g
viewed as a polynomial in x| has a nonzero coefficient ¢ that lies in F. That is, ¢~ 'g is monic as
a polynomial in x; with coefficients in F[xa,...,x;].

Set ,
_ (d+1)i—1
Wi =2 — Zl
for 2 <i <r, and note that g(z;,wy,...,w,) = f(z1,...,2,) = 0. It follows that z, is integral over
B=F|[w,,...,w;]. By induction, there exist s < r and elements 71, .. ., Z; € B that are algebraically
independent over F and for which B is integral over F|t1,...,t]. Then A = B[z;] is integral over
Flt1,...,t] by the transitivity of integral extensions, proving the theorem. U

COROLLARY 11.3.44. Let K be an extension of a field F that is finitely generated as an
F-algebra. Then K is a finite extension of F.

PROOF. By Noether’s normalization lemma, L is an integral extension of Flt,...,t] for
some algebraically independent elements #1,...,t; € L. However, L is a field so contains the
quotient field K(t1,...,). Since no t;l is integral over Fry,...,t], we must have s = 0. Thus
L is integral over F, which is to say it is an algebraic extension of F', but then it is clearly finite
being that it is generated by finitely many elements. U

11.4. Radicals of ideals
Let R be a commutative ring.
DEFINITION 11.4.1. The radical \/I of an ideal I of R is the set
VI={aeR|d cIforsomek>1}.
LEMMA 11.4.2. For any ideal I of R, the radical \/T of I is an ideal of R.

PROOF. If r € R and a € /1, then there exists k > 1 with ¢ € I, and then (ra)k =rkgk e,
so ra € \/1 as well. If we also have b € /1 with b' € I, then

k+1 k—+1 ) )

(a—f—b)k_HZZ( + )albk+l_l€l
i=0 \ !

since either i > kork+[—i>1lifie€Z. Thusa+b e /1. O
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The nilradical of R is the radical of the ideal (0) of R.

DEFINITION 11.4.3. An element a € R is nilpotent if there exists n > 1 such that a"” = 0.
DEFINITION 11.4.4. The nilradical of R is the ideal of nilpotent elements in R.
EXAMPLE 11.4.5. The nilradical of F[x]/(x") for n > 1 is generated by x.

In fact, the following is easily verified.

LEMMA 11.4.6. If m: R — R/I is the projection of R onto its quotient by an ideal I, then
n(\/1) is the nilradical of R/I.

We leave the following as an exercise that uses Zorn’s lemma.

PROPOSITION 11.4.7. Let I be a proper ideal of R. Then \/1 is the intersection of all prime
ideals of R containing I.

In particular, the radical of a prime ideal is itself.
DEFINITION 11.4.8. An ideal is radical, or a semiprime ideal, if it is its own radical.

EXAMPLES 11.4.9.
a. Prime ideals are radical.

b. Let F be a field, f1,..., f; € F[x| be irreducible, and &y, ..., k, be positive integers. Then

Ay = 1),

Thus, the nonzero radical ideals of F[x] are exactly the ideals generated by products of distinct
irreducible elements.

c. Radicals of ideals are radical.

PROPOSITION 11.4.10. Let R be noetherian and I be an ideal of R. Then there exists N > 1
such that (/)" C I for alln > N.

PROOF. Letay,...,a, € R be such that /I = (ay,...,ay). For 1 <i<m,letk; > 1 be such
that aff €l,andlet k =max{k; | | <i<m}. Foranyx=Y" ria; € V1, we have

XM e ({al---aln | i; >0 forall j with ij +---+iy = km}) C (dX,...,d") C I.

DEFINITION 11.4.11. An ideal I of R is nilpotent if there exists n > 1 such that I" = 0.
COROLLARY 11.4.12. The nilradical of a noetherian commutative ring is nilpotent.
It is easy to see why this can fail in a noncommutative ring.

EXAMPLE 11.4.13. Consider the polynomial ring R = F[x},x,...] in countably many vari-
ables over a field F and its ideal 7 = (xf | k > 1). Its radical is v/7 = (x; | k > 1) but no power of
V/1 is contained in 1.
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The taking of radicals behaves well with respect to localization.

LEMMA 11.4.14. Let S be a multiplicatively closed subset of R, and let I be an ideal of R.

Then S~'\/I1=+/S"1I.

11.5. Going up and going down
We use B/A to denote an extension of commutative rings.

DEFINITION 11.5.1. Let B/A be an extension of commutative rings. We say that an ideal b
of B lies over anideal a of Aif bNA = a.

We begin by noting the following simple lemma.

LEMMA 11.5.2. Let A be an integral domain, and let B be a commutative ring extension of
A that is integral over A. If b is an ideal of B that contains a nonzero element which is not a zero
divisor, then b lies over a nonzero ideal of A.

PROOF. That b N A is an ideal is clear, so it suffices to show that b A is nonzero. Let
B € b be nonzero and not a zero divisor. Then f is a root of some monic polynomial g € A[x].
Write g = x"*f for some nonzero f € Alx] with nonzero constant term. Since 8 € b, we have
f(B)—f(0) €b, and as f(B) = 0 given that 3 is not a zero divisor, we have f(0) € b. But
f(0) # 0, so b has a nonzero element. O

The following are also easily verified.

LEMMA 11.5.3. If B/A is integral and b is an ideal of B that lies over a, then B/b is integral
over A/a.

LEMMA 11.5.4. Let S be a multiplicatively closed subset of A. If B/A is integral, then so is
S~'B/S~1A.

PROPOSITION 11.5.5. Let B/A be an integral extension. If p is a prime ideal of A, then there
exists a prime ideal q of B lying over p.

PROOF. Let By =S, !B be integral over Ayp. Let 91 be a maximal ideal of By,. Then m =9I N
Ap is maximal, since Ay /m injects into the field By /9. Since Ay is local, we have m = pA,. Let
1: B — By be the localization map so that q = 1~ (901) is prime, and qNA =171 (pAp) =p. O

THEOREM 11.5.6 (Going up). Let B/A be an integral extension. Suppose that p; C py are
prime ideals of A and q, is a prime ideal of B lying over p|. Then there exists a prime ideal q> of
B containing q; and lying over p;.

PROOF. Let A=A/p; and B = B/p>, and let w: B — B be the quotient map. Let p be the
image of p; in A. By Proposition 11.5.5, there exists a prime ideal g, of B lying over p,. Then
q2 = ©~(g>) contains q; and satisfies

pNA=71""'(HNA)=71""(F2) = p2,
since p, contains pj. 0

The proof of the following two propositions are left as exercises.
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PROPOSITION 11.5.7. Let B/A be an integral extension of domains, and let B' be the integral
closure of A in B. Let a be an ideal of A. The following conditions on B € B are equivalent: An
element B € B is a root of f € Alx] with f =x" +Z?:_01 aix' witha; € aforall 0 <i<n-—1ifand

only if B € VaB'

PROPOSITION 11.5.8. Let B/A be an integral extension of domains such that A is integrally
closed, and suppose that B € B is the root of a monic polynomial in A|x] with non-leading coef-
ficients in an ideal a of A. Then the minimal polynomial of B is also such a polynomial.

LEMMA 11.5.9. Let p be a prime ideal of A. There exists a prime ideal q of B lying over p if
and only if pPBNA = p.

PROOF. If ¢NA = p, then q contains pB, and then
p=qNA2DpBNADp,

so pBNA =p.

Conversely, if pBNA = p, then pB is disjoint from Sy, so there exists a maximal ideal 90T of
By, with pB contained in 9. Let q be the inverse image of 9 in A. Then m = qNA is a prime
ideal containing p with m NS, = &, which forces m = p. U

THEOREM 11.5.10 (Going down). Let B/A be an integral extension of integral domains with
A integrally closed. Suppose that p, C p1 are prime ideals of A and qy is a prime ideal of B lying
over p1. Then there exists a prime ideal q, of B contained in q; and lying over p;.

PROOF. Note that the maps B — By, and A — Ap, are injective as B is a domain. By
Lemma 11.5.9, it is enough to show that ppBy, MA = p>. That is, in this case there exists a
prime ideal Q; of By, lying over p;, and then we can take g = Q) NA.

If B =2 € pyBy, with b € pB and s € B— qy, then by Proposition 11.5.8, the minimal
polynomial f = x"*+ ;’;01 a;x' of b has non-leading coefficients in p,. If B is also in A, then s =
B~'b has minimal polynomial 8" f(Bx) € Q(A)[x]. Since s is integral over A, this polynomial
lies in A[x], and therefore B'~"a; € A for all i. If B ¢ py, then for all i we have B ~"a; € p; since
a; € py. But then 5" € pyB, so s € qy, a contradiction. Thus, B € p,, as required. ]

11.6. Primary decomposition

DEFINITION 11.6.1. A proper ideal q of R is primary if for any a,b € R with ab € q, one has
either a € q or " € q for some n > 1.

That is, an ideal q is primary if whenever ab € q, either a € q or b € ,/q. Of course, prime
ideals are primary. The following is just a rephrasing of the definition of primary.

LEMMA 11.6.2. A proper ideal q of R is primary if and only if every zero divisor in R/q is
nilpotent.

The following is a key property of primary ideals.

PROPOSITION 11.6.3. The radical of any primary ideal is a prime ideal.
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PROOF. Let qbe a primary ideal of R. If a,b € R with ab € ,/q, then a*bk € q for some k > 1,
and therefore either af € q or there exists n > 1 such that bk e g. In the first, case a € /¢, and
in the second, b € |/q, so ,/q is prime. U

In particular, the radical of a primary ideal q is the smallest prime ideal of R containing q,
given that it is also the intersection of all prime ideals containing g.

DEFINITION 11.6.4. The radical p of a primary ideal q of R is called the associated prime to
q, and we say that q is p-primary.

EXAMPLES 11.6.5. Let F be a field.

a. The ideal (x?,y) of F[x,y] is primary since F[x,y]/(x*,y) = F[x]/(x?), and every zero
divisor in the latter ring is nilpotent. Its associated prime is (x,y).

b. Consider R = F[x,y,z]/(xy — z) and its ideal p = (x,z), which is prime since R/p = F[y].
We have xy € p2, but x ¢ p? and y ¢ /p? = p. Thus p? is not primary, even though p is prime.

LEMMA 11.6.6. If1 is an ideal of R such that /T is maximal, then I is primary. In particular,
any power of a maximal ideal w is primary with associated prime m.

PROOF. Suppose that m = 4/ is maximal. The image of m in R/I is the nilradical of R/I,
which means that the nilradical is the only prime ideal of R/I. That is, m is local, and every
element of R/I that is not nilpotent is a unit. In particular, every zero divisor of R/I is nilpotent.
Thus, I is m-primary. U

The following is easily checked.

LEMMA 11.6.7. A finite intersection of primary ideals with the same associated prime is
primary.

DEFINITION 11.6.8. Let [ be an ideal of R.

a. A primary decomposition of I is a finite collection {qy, ..., q;} of primary ideals of R such
that I = N*_, q;.

b. We say that I is decomposable if it has a primary decomposition.

c. A primary decomposition {qy,...,qx} of I is minimal if the radicals ,/q; are all distinct
and no proper subset of the primary decomposition is also a primary decomposition of /.

Every ideal with a primary decomposition has a minimal such decomposition.

LEMMA 11.6.9. Let I be a decomposable ideal of R. Then I has a minimal primary decom-
position.

PROOF. From this decomposition, we may first remove one at a time any primes that contain
the intersection of the others. By Lemma 11.6.7, we may then replace the subcollection of those
ideals in the decomposition with the same associated prime by the single primary ideal that is its
intersection. The resulting collection is minimal. U

DEFINITION 11.6.10. A proper ideal I of R is irreducible if for any ideals a and b of R with
I=anb,either/ =aorl=0>.
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PROPOSITION 11.6.11. Let R be noetherian. Then every irreducible ideal of R is primary.

PROOF. Let I be an irreducible ideal of R, and let a,b € R with ab € I but b ¢ 1. For each
n>1,letJ, ={r €R|a"r €I}, and note that J, is an ideal of R. Then J,, form an ascending chain
of ideals containing /, and since R is noetherian, this chain is eventually constant, say J,, = J,,+1
for all n > N with N > 1. Consider the ideals a = (") +1 and b = (b) + I containing I. We
claim that anb =1I. Let c € aNb. Then ¢ = a"r+ ¢q for some r € R and g € 1. Since ¢ € (b) +1,
we have ac € (ab) +1 =1. In other words, a¥*'r4-qa € I, so a"t'r eI, so r € Jy,1 = Jy.
Therefore a”¥r € I as well, so ¢ € I, and the claim holds. Since [ is irreducible and b ¢ I, we must
have I = a, which means that " € I. Therefore, I is primary. OJ

PROPOSITION 11.6.12. Let R be noetherian. The every proper ideal of R is a finite intersec-
tion of irreducible ideals.

PROOF. Let X be the set of proper ideals of R that cannot be written as a finite intersection
of irreducible ideals of R. Since R is noetherian, either X is empty or X has a maximal element
m. Since m € X, it is not irreducible, so there exist ideals a and b properly containing m with
m = anNb. Since m is maximal in X, both of a and b can be written as a finite intersection of
irreducible ideals, so m may be as well, which contradicts the existence of m. Therefore X is
empty, as desired. U

Combining Propositions 11.6.11 and 11.6.12, we have the following.

THEOREM 11.6.13 (Primary decomposition theorem). Every proper ideal of a noetherian
commutative ring R is decomposable.

We now consider uniqueness of primary decompositions, given the existence of one. We
begin with the following simple lemma.

LEMMA 11.6.14.

a. Letpy,...,p; be prime ideals of R. If an ideal I is contained in Ui'(:l pi, then I is contained
in some ;.

b. Let ay,...,a; be ideals of R. If a prime ideal p contains (resp., equals) ﬂf-;l a;, then p
contains (resp., equals) some a;.

PROOF. We prove part a by induction on k, it being clearly true for k = 1. Suppose that [ is
not contained in any p; but / is contained in the union of the p;. By induction, for each i, we can
find a; € I such that a; ¢ p; for all j # i. By assumption, we then have a; € p; for each i. The

element
=)

i=1j
J#i
of I has image in R/p; equal to the image of its ith term, which is nonzero by the primality of i.
That is, b ¢ Ule pi, which is a contradiction.
As for part b, let a = ﬂé‘:l a;. Suppose that p does not contain any a;, and choose a; € a; with
a; ¢ p foreach i. Then a = H{;l a; € a, but a ¢ p by primality of p. Therefore, p does not contain

k
a;
=1
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a. If on the other hand p = a, then p contains some a; by what we have shown, so must equal it
in that p C a by assumption. O

EXAMPLE 11.6.15. Let F be a field. The ideal (xy?) of F|[x,y] has a minimal primary de-
composition (xy?) = (x) N (y?), and the associated primes of (xy?) are (x) and (y?).

THEOREM 11.6.16. Let I be a decomposable ideal of R. The set of associated primes to the
primary ideals in a minimal primary decomposition of I is uniquely determined by I.

PROOF. Let {qi,...,q,} be a primary decomposition of /. Now fora € R, let I, = {r € R |
ra € I}, which is an ideal of R. We have I, = (/L (q;)q. Let p; = ,/q; for each i. Note that

(qi)a = Rif a € q;, and \/(q;)s = p; otherwise, so

n n
VIe={V@)a= ) pi
i=1 i=1
6;9511'
For any i, we may choose «a in the intersection of the q; with j # i such that a; ¢ q; by the
minimality of our decomposition, and for such an a we have /I, = p;. On the other hand, for

any a € R such that /I, is a prime ideal, part b of Lemma 11.6.14 tells us that \/I, = p; for some
i (with a ¢ q;). Thus, the set of associated primes {pi,...,p,} is uniquely determined by /. [

DEFINITION 11.6.17. Let I be a decomposable ideal of R. A prime ideal is called an associ-

ated prime of I if it is the associated prime of an element of a minimal primary decomposition of
I.

DEFINITION 11.6.18. Let I be a proper ideal of R. An isolated prime of I is a minimal
element in the set of prime ideals of R containing /, ordered by inclusion.

PROPOSITION 11.6.19. Let I be a decomposable ideal of R. A prime ideal p of R is an
isolated prime of 1 if and only if it is a minimal element under inclusion in the set of associated
primes of 1.

PROOF. Let I =(_, q; with each g; primary, and let p; be the associated prime of g;. If p is
a prime ideal of R containing /, then

p=\/52\/7=ﬁ\/$=(n]pi.
i=1 i=1

By part b of Lemma 11.6.14, we have that p contains some p; for some i, so it contains some
minimal prime in the set of associated primes of 1. 0

EXAMPLE 11.6.20. Let F be a field. The ideal I = (xy,y?) of F[x,y] has a minimal primary
decomposition I = (x,y)? N (y), so it has associated primes (x,y) and (y). The ideal (y) is the
unique isolated prime of 1. Note that I also has the primary decomposition I = (x,y*) N (y).

In fact, the following uniqueness result also holds.

PROPOSITION 11.6.21. Let I be a decomposable ideal of R. Let py,...,p, be distinct isolated
primes of I. Let Q be a minimal primary decomposition of I, and let q; € Q be p;-primary for
each 1 <i < n. Then the ideal (\\_, q; is independent of the choice of Q.
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PROOF. We merely sketch the proof. Consider S = R —Ji_; p;. For any associated prime
ideal p of I, the intersection SN p is nonempty if and only if p = p; for some i by Proposi-
tion 11.1.14. Given a primary decomposition Q, suppose that q € Q is p-primary for some prime
p. We have that S~!p; is a prime of S~!R and S~ 'q; is S~'p;-primary. For any other associated
prime p of R, we have that S~!'p = S~!R. We then have

n
s'r=s"'q=5"as
qeQ i=1

and the contraction of S~'7 to R is (', q;. Hence, the latter intersection is independent of the
choice of Q. O

COROLLARY 11.6.22. If p is any isolated prime of a decomposable ideal I, then the unique
p-primary ideal in any minimal primary decomposition of I is independent of the choice of de-
composition.

The reader may now easily check the following.

COROLLARY 11.6.23. The primary ideals in a noetherian ring R are exactly the irreducible
ideals.

11.7. Hilbert’s Nullstellensatz

We use K to denote a fixed algebraically closed field in this section. Much but certainly not
all of what is done here can be generalized to fields which are not algebraically closed as well, but
for this brief introduction, we feel it suffices to focus on the more specific setting. This section
assumes some basic knowledge of topological spaces.

Fix a nonnegative integer n.

DEFINITION 11.7.1. Let S be a subset of K|[xy,...,x,]. The zero set, or vanishing locus, of S
is
V(S)={(ai,...,an) € K" | f(a1,...,a,) =0forall f € S}.
An algebraic set in K" is any subset of K" that is a zero set of some set of polynomials in
Klxy,...,xn).
From now on, let us set R = K|[xy,...,x,| for brevity.

NOTATION 11.7.2. If S = {f1,..., fu} C R, we also write V(fi,..., f,) for V(S). At times,
fora = (ay,...,a,) € K", we write f(a) for f(ay,...,ay).

EXAMPLE 11.7.3. We have V(@) =X and V(R) = V(1) = @.

EXAMPLE 11.7.4. Consider f(x,y) =x—yand g(x,y) =x*>+y?—2in C[x,y]. Then V(f,g) =
V(f) ﬂV(g) = {(_17_1)7(17 1)}

REMARK 11.7.5. For any subset S of R, the zero set V(S) equals the zero set of the ideal (S)
generated by S.

PROPOSITION 11.7.6.



340 11. COMMUTATIVE ALGEBRA

a. The intersection of any collection of algebraic sets in K" is also an algebraic set.
b. The union of any finite collection of algebraic sets in K" is also an algebraic set.
PROOF. Let {S; | i € I} be a collection of subsets of R. Then (;c;V(S;) = V(S) is algebraic,
so we have part a. If S and T are subsets of R, set I = (S) and J = (T'). We clearly have
VS)uV(T) =V )UV(J)CV(INJ).
IfacV(INJ) and a ¢ V(I), then there exists f € I with f(a) #0. If g € J, then fg€INJ, so
f(a)g(a) =0, so g(a) =0. Thus a € V(J), and we have part b. O

It follows from the proposition that the following definition does in fact yield a topology.

DEFINITION 11.7.7. The Zariski topology on K" is the topology {K" —V(S) | § C R} with
closed sets the algebraic sets in K".

DEFINITION 11.7.8. For n > 0, the affine n-space over K is the set A% = K" endowed with
the Zariski topology.

REMARK 11.7.9. Forany (ajy,...,a,) € A}, wehave V(x| —ay,...,xp—a,) ={(a1,...,an)},
so points in A% are closed. However, it is not a Hausdoff topology: for instance, for n = 1, the
only closed sets other than X are finite, so any two nonempty open sets will intersect as K is
infinite.

NOTATION 11.7.10. Let Z C A%. Then
I(Z)={f €K[x1,...,x;] | f(a) =0foralla € Z}.
The set I(Z) is clearly an ideal: it is the ideal of R of elements that vanish on all of Z.

REMARK 11.7.11. Note that if f € R satisfies f* € 1(Z) for some subset Z of A% and k > 1,
then f(a)k = 0 for all a € Z, so f vanishes on Z, which is to say that f € I(Z). Hence, I(Z) is a
radical ideal.

EXAMPLE 11.7.12. Fora = (ay,...,a,) € A%, we have I({a}) = (x; —ay,...,x, —ay).

In particular / and V provide bijections between the points of A% and a subset of the maximal
ideals of R, i.e., those of the form (x; —ay,...,x, —a,) for some a € A%. The statement the
latter maximal ideals are all of the maximal ideals of R is known as the weak form of Hilbert’s
Nullstellensatz.

THEOREM 11.7.13. Every maximal ideal of K|xy,...,x,| has the form (x| —ay,...,x, —ap)
for some (ay,...,a,) € Af.

PROOF. Let m be a maximal ideal of R = K|[xy,...,x,], and consider L = R/m, which is
a field containing K that is finitely generated over K. By Corollary 11.3.44, the field L is an
algebraic extension of the algebraically closed field K, so it is equal to K. Under the quotient
map R — L = K, each x; is sent to some a; € L, so x; —a; € m. Since (x| —ay,...,x, —a,) is
maximal, it equals m. U
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In other words, V and I give inverse bijections between the maximal ideals of R and the
singleton subsets of A%. We now prove the stronger form of this statement, one which boils
down to the statement that I(V (a)) = /a for ideals a of R.

THEOREM 11.7.14 (Hilbert’s Nullstellensatz). The maps I and V provide mutually inverse,
inclusion-reversing bijections

4
{radical ideals of K[x1,...,x,]} ? {algebraic sets in A% }.

PROOF. The operation / is by definition inclusion-reversing on subsets of A%, and the opera-
tion V is inclusion-reversing on subsets of R = K|[xy,...,x,]. It is immediate from the definitions
and Remark 11.7.11 that if a is an ideal of R, then I(V (a)) contains \/a, and if Z is a subset of R,
then V(I(Z)) contains Z. If Z = V (a) for some ideal a, then

V({I(2)) =V(I(V(a))) CV(a) =2,

since V is inclusion-reversing. Thus, on algebraic sets Z, we have V (I(Z)) = Z.
It remains to show that I(V(a)) C /a for any ideal a of R. Let f € I(V(a)). Since R is

noetherian, we have a = (g,...,gx) for some gi,...,gx € R. For an indeterminate y, let J be
the ideal of R[y| generated by I and 1 — fy. We view R[y| as K[xy,...,x,,y| and consider the
vanishing set of J in A% If a = (ay,...,a,41) € V(J), then (ai,...,a,) € V(a), in which case
we have

(1—fy)(ai,...,any1) =1—f(ay,...,ap)an+1 =1#0.
Thus V(J) = @. By the weak form of the Nullstellensatz, if J were a proper ideal, then its
vanishing locus would contain the point in the vanishing locus of a maximal ideal containing it,
soJ =RJy].
Since J = R[y], we may write

k
L=h(1-fy)+) higi
i=1

with i € R[y] and h; € R[y| for 1 <i < k. Let N be the maximum of the degree of the A;’s with

1 <i <k and hy as polynomials in y. Set z=y~!. Multiplying our equation for 1 by ZV*!, we
have
k
M =HW(y—-rf)+Y hg
i=1
for some h' € R[z] and h: € R[z]. Substituting in z = f, we then have fN*! € (g1,...,g) = a.
That is, f € v/a, as was desired. O

REMARK 11.7.15. We record the following simple consequences of the Nullstellensatz.
a. For any S C R, we have V(S) =V (1/(S)), and I(V(S)) = \/(S).

b. For any Z C A”., we have I(Z) = I(Z), where Z is the closure of Z in the Zariski topology
(i.e., the smallest algebraic set containing Z), and V (I(Z)) = Z.
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DEFINITION 11.7.16. We say that an algebraic set is irreducible if it is not a union of two
proper algebraic subsets.

We have seen that maximal ideals correspond to singleton sets under V and /. Hilbert’s
Nullstellensatz tells us that prime ideals correspond to irreducible algebraic sets.

COROLLARY 11.7.17. The maps I and V restrict to mutually inverse, inclusion-reversing
bijections

4
{prime ideals of K|xy, ... x|} ? {irreducible algebraic sets in A }.

PROOF. An algebraic set Z is by definition the vanishing locus of some radical ideal  of R.
By the Nullstellensatz, such a set Z is irreducible if and only if I = I(Z) cannot be written as
an intersection of two radical ideals properly containing /. Note that if / were the intersection
of two arbitrary ideals, then it would also be the intersection of their radicals. Conversely, if /
is an irreducible ideal, then so is its radical, and then its vanishing locus is irreducible as well.
Since the irreducible ideals in R are exactly the primary ideals, and those which are radical are
the prime ideals, irreducible algebraic sets correspond exactly to the prime ideals of R. U

REMARK 11.7.18. By the primary decomposition theorem and Corollary 11.7.17, every al-
gebraic set is a finite union of irreducible algebraic sets.

REMARK 11.7.19. An irreducible algebraic set Z C A% together with its subspace topology
is also what is called an (affine) algebraic variety. It has an associated coordinate ring K[Z] =
R/I(Z). Note that the ring R/I(Z) is reduced, i.e., has no nilpotents, since /(Z) is a radical ideal.
The radical ideals of K[Z] correspond to algebraic subsets of Z, and via this bijection the maximal
ideals of K[Z] correspond to the points (or more precisely, singleton subsets) of Z.

11.8. Spectra of rings

In the previous section, we say that for the points of A% for an algebraically closed field K
correspond to the maximal ideals of K[xj,...,x,]. Making this identification, we may think of
the Zariski topology as endowing the set of maximal ideals of K[xy,...,x,] with a topology. We
now aim to mimic this for the larger set of prime ideals, in an arbitrary commutative ring R.

DEFINITION 11.8.1. The spectrum Spec R of a commutative ring R is the set of prime ideals
of R.

EXAMPLE 11.8.2. For a PID R, we have SpecR = {(0)} U{(f) | f irreducible}.
NOTATION 11.8.3. For any subset T of R, we set
V(T)={p € SpecR|T Cp}.

For any subset Y of SpecR, we set

1Y)=)p.

pey
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REMARK 11.8.4. We have V(T') =V ((T)) for the ideal (T') generated by 7. In fact, for any
ideal I of R, we have V(I) = V(+/T) since if I C p, then /T C \/p = p.
The following lemma is easily verified.
LEMMA 11.8.5.
a. We have V((0)) = SpecR and V(R) = @.
b. If a and b are ideals of R, then V(a) UV (b) =V (anb) =V(ab).
c. If {aj| j € X} is a collection of ideals of R, then
ﬂ V(aj)=V (U Clj) =V (Z Clj) .
jeX jeX jeX
In particular, the sets V(1) for I an ideal of R form a topology on SpecR.

DEFINITION 11.8.6. The Zariski topology on SpecR is the unique topology with closed sets
the V(1) with I an ideal of R.

REMARK 11.8.7. In SpecR, the singleton sets {m} with m maximal are closed, since V (m) =
{m}. However, points in general need not be closed. The closure of {p} with p prime is the
smallest closed subset containing p, which is exactly V (p), the set of prime ideals containing p.
So, {p} is closed if and only if p is maximal. E.g., in an integral domain, the closure of (0) is
SpecR!

DEFINITION 11.8.8. The closed points of Spec R are the maximal ideals of R.

DEFINITION 11.8.9. The closure of a subset Y of SpecR in the Zariski topology on R is
known as the Zariski closure of Y.

The analogue of the Nullstellensatz for Spec R is considerably less difficult.

PROPOSITION 11.8.10. The maps I and V provide mutually inverse, inclusion-reversing bi-
jections

Vv
{radical ideals of R} —— {closed subsets of SpecR}.
1

In fact, for any ideal a of R, we have 1(V(a)) = +/a, and for any subset Y of SpecR, the set
V(I(Y)) is the Zariski closure of Y.

PROOF. That V and I are inclusion-reversing is clear. Let a be an ideal of R. Then
I(V(a))=(\p=Va
aCp

by Proposition 11.4.7. Conversely, if Y is a subset of Spec R, then its closure Y is V(a) for some
ideal a of R, and

VI(Y)) SVUIX)=V({(V(a)=V(Va)=V(a) =7,
but V(I(Y)) is closed an contains Y, so V(I(Y)) =

~I
Ol
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COROLLARY 11.8.11. The Zariski closure of a subset Y of SpecR is the set of all prime
ideals containing some element of Y.

PROOF. The set V(I(Y)) consists of the prime ideals p containing the intersection of all prime
ideals containing Y. By Lemma 11.6.14b, these are exactly the ideals that contain some element
of Y. U

Let us compare V and / of Definition 11.8.3 with our prior maps with these notations for the
polynomial ring R = K[xy, ..., x,] over an algebraically closed field K.

PROPOSITION 11.8.12. Let R = K|[xy,...,x,] for some n > 0 and algebraically closed field
K. Let us use V' and I' to denote the maps which take vanishing loci of algebraic sets in A} and
the ideal of vanishing of subsets of R, respectively.

a. The injective map 1: A — SpecR given by taking a point to its corresponding maximal
ideal is a homeomorphism onto its image, which we use to identify A% with a subspace of SpecR.

b. For any ideal a of R, we have V'(a) =V (a) N A%.
c. For any Zariski closed subset Y of SpecR, we have [(Y) =1I'(Y NA}).

PROOF. If Y = V(a) for some ideal a of SpecR, then Y N A% is the set of maximal ideals
of R containing a, which equals V’(a), proving part a. This implies that the intersection of ¥
with A% is closed and that the image of a closed set Z = V'(a) in the Zariski topology on A%
is closed under the subspace topology on 2l from the Zariski topology on SpecR. Thus, 1 is a
homeomorphism onto its image, proving part b.

Finally, if ¥ =V (a) is a closed subset of Spec R with a radical, and if Z=Y NA% =V/(a),
then a = I'(Z) is the intersection of all prime ideals containing a. That is, a is the intersection of
all prime ideals in V(a) =Y, so a = I(Y) as well, and we have part c. O

DEFINITION 11.8.13. If a € R, then U, = SpecR —V ((a)) is called a principal open set of R.
PROPOSITION 11.8.14. The sets U, for a € R form a basis for the Zariski topology on SpecR.

PROOF. Let U be an open set in SpecR. Then U = SpecR — V(I) for some ideal /, and
V() = NaerV((a)), 30 U = Uges Ua- m

We have the following simple lemma.

LEMMA 11.8.15. Let ¢ : R — S be a ring homomorphism.
a. If q is a prime ideal of S, then ¢~'(q) is a prime ideal of R.

b. Suppose that @ is surjective and p is a prime ideal of R containing the kernel of ¢. Then
©(p) is a prime ideal of S.

PROOF. Set p = @~ !(q) for q a prime ideal of S. Then a,b € R satisfy ab € p if and only if
¢(ab) € q, so if and only if either ¢(a) € qor ¢(b) € q,i.e.,a€porb € p.

If p is a prime ideal of R containing ker @, then q = ¢@(p) is an ideal of S by the surjectivity of
@, For a,b € S with ab € q, write a = ¢(c) and b = ¢(d) for some ¢,d € R. Thencd € ¢~ (q) =p
since ker¢ C p,soc € pord € p, and thereforea € qor b € q. U
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By Lemma 11.8.15, the following definition makes sense.
DEFINITION 11.8.16. Let ¢ : R — S be a ring homomorphism. The pullback map
0*: SpecS — SpecR
is the function given by ¢*(q) = ¢~!(q) for q € SpecS.
The following lemma is simple.

LEMMA 11.8.17. If ¢ is a ring homomorphism, then the pullback map @* is continuous with
respect to the Zariski topologies.

REMARK 11.8.18. The map that takes a ring to its spectrum and ring homomorphism to the
corresponding pullback map is a contravariant functor from Ring to Top.

EXAMPLE 11.8.19. Let m: R — F be a surjective ring homomorphism, where F is a field.
Then 7%((0)) = kerx is the maximal ideal that is the kernel of f.

EXAMPLE 11.8.20. Let p be a prime ideal. The localization map ¢: R — R, has pullback
¢*(qRy) = q for prime ideals q of R contained in p.

EXAMPLE 11.8.21. Consider the map ¢: C[x] — C[x] given by @(f)(x) = f(x?). Then
©*((0)) = (0), and for a € C irreducible,

0" ((x—a)) = {g € K[ [ g(a®) = 0} = (x — ).
In particular, ¢* is 2-to-1, taking both (x — a) and (x+a) to (x — a?), except for a = 0, in which
case only (x) is carried to (x).

11.9. Krull dimension
We continue to use R to denote a commutative ring.

DEFINITION 11.9.1. The length of an ascending chain (p;)?_, of distinct prime ideals is n.
We often refer to such a finite strictly ascending chain more simply as a chain of prime ideals,
where minimal confusion can arise.

EXAMPLE 11.9.2. If R is an integral domain and n > 0, then the ring R|[xy, ..., x,] contains a
chain of primes of length n:

(0) C (x1) C (x1,x2) C -+ C (X150, %n).
DEFINITION 11.9.3. The Krull dimension, or dimension, dimR of a commutative ring R is

the length of the longest ascending chain of distinct prime ideals in R, if it exists, and is otherwise
said to be infinite.

REMARK 11.9.4. In set-theoretic terms, if finite, dim R is one less than the maximum of the
cardinalities of all chains in SpecR.

EXAMPLES 11.9.5. Let F be a field.

a. The Krull dimension of F is 0: its only prime ideal is (0). In fact, the Krull dimension of
Fx]/(x") for n > 0 is 1, since its unique prime ideal is (x).
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b. The Krull dimension of Z is 1: the longest chains are all of the form (0) C (p) for some
prime number p. In fact, dimR = 1 for every PID R that is not a field.

c. The Krull dimension of F[(x;);>1] is infinite, since
(0) C (x1) C (x1,x2) C -+~
is an ascending chain of prime ideals that is not eventually constant.
LEMMA 11.9.6. Let w: R — S be a surjective map of rings. Then dimR > dim .

PROOF. Let (q;)7_, be a chain of primes in S of length n, and set p; = ¢~ !(q;) for each i.
Then q; = ¢(p;) for each i, so each p; is distinct. O

LEMMA 11.9.7. Let p be a non-minimal prime of R. Then dimR > dimR/p+ 1.

PROOF. Any chain in R/p of maximal length has inverse image in R of the same length, and
such a chain can be extended by adding in a minimal prime properly contained in p. U

PROPOSITION 11.9.8. If B/A is an integral extension of domains, then A has finite Krull
dimension if and only if B does, in which case dim B = dimA.

PROOF. The the going up theorem tells us that dimB > dimA. Suppose that dimB = n, let
(9i)%_, be a maximal ascending chain of prime ideals of B, and set p; = q;NA for all i. We
have p; NA # (0) by Lemma 11.5.2, so dimB/q; = dimB — 1, and dimA/p; < dimA — 1 by
Lemma 11.9.7. By induction on dim B, we then have the remaining inequality dim B <dimA. [J

PROPOSITION 11.9.9. Let F be a field and n be a nonnegative integer. The ring Fxy, ... ,xy]
has Krull dimension n.

PROOF. Example 11.9.2 tells us that R = F|[xj,...,x,] has dimension at least n. We may
suppose that n > 1. Let (p;)"", be an ascending chain of prime ideals in R. We may suppose that
po = (0) and that p; is minimal, generated by an irreducible element g € R, as otherwise we may
extend the chain to contain such primes.

Consider the quotient R = S/p; = S/(g). Since the images of the x; in S satisfy an equation
of algebraic dependence over F, and these images generate S as an F-algebra, the quotient field
of S has transcendence degree at most n — 1 over F. Thus, no set of more than n — 1 elements of
S can be algebraically independent.

By Noether’s normalization lemma, there exist algebraically independent elements #1, ... ,t; €
R such that S is integral over F|[ty,...,t]. From what we have already shown, we must have
s <n—1. Then dimS = s < n— 1 by Proposition 11.9.8 and induction. On the other hand, the
images p; in § of the ideals p; with 1 <i < m remain prime in S by Lemma 11.8.15, and they are
distinct, som — 1 <s < n— 1. Therefore, m = n. O

In fact, the following result, for which we omit the proof, holds more generally.
THEOREM 11.9.10. Let R be a noetherian domain of finite Krull dimension. Then
dimR[x| = dimR+ 1.

DEFINITION 11.9.11. The height ht(p) of a prime ideal p of R is the length of the longest
chain of primes of R contained in p. A prime of height O is called a minimal prime of R.
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Note that a minimal prime of R is just an isolated prime of (0).

EXAMPLES 11.9.12.
a. In Flxy,...,x,| for a field F, the height of (xi,...,x;) for k <nis k.

b. In a UFD, the primes of height one are principal, generated by the irreducible elements.

c. In a product of fields R =[], F;, the minimal primes are the maximal ideals, the kernels
of projection maps R — F; for some 1 < k < n.

REMARK 11.9.13. Suppose R = K|[x1,...,x,| with K algebraically closed. The prime ideals p
of R correspond to algebraic sets in A%. The dimension of the algebraic set V that is the vanishing
locus of p is defined to be n — ht(p). In particular, A% has dimension n, as one would expect. We
often refer to ht(p) as the codimension of V in A%. In particular, the vanishing locus of a single
nonconstant polynomial in R has codimension 1.

11.10. Dedekind domains

DEFINITION 11.10.1. A Dedekind domain is a noetherian, integrally closed domain of Krull
dimension at most 1.

The condition of having Krull dimension at most 1 is the same as every nonzero prime ideal
being maximal. We have the following class of examples.

LEMMA 11.10.2. Every PID is a Dedekind domain.

PROOF. A PID is noetherian, and it is a UFD, so it is integrally closed. Its nonzero prime
ideals are maximal, generated by its irreducible elements. U

COROLLARY 11.10.3. Let A be a Dedekind domain, and let B be the integral closure of A in
a finite, separable extension of the quotient field of A. Then B is a Dedekind domain.

PROOF. Note that B is a finitely generated A-module by Corollary 11.3.37. If b is an ideal of
B, then b is an A-submodule of B, and as A is noetherian, it is therefore finitely generated. Thus,
B is noetherian. That B is integrally closed is just Proposition 11.3.25. That every nonzero prime
ideal in A is maximal follows from Lemma 11.9.8 U

We have the following immediate corollary.
COROLLARY 11.10.4. The ring of integers of any number field is a Dedekind domain.
More examples of Dedekind domains can be produced as follows.

PROPOSITION 11.10.5. Let A be a Dedekind domain, and let S be a multiplicatively closed
subset of A. Then S™'A is also a Dedekind domain.

PROOF. Given an ideal b of S~'A, set a = AN b. Then a is an ideal of A, and b = S~ !a. It
follows that any set of generators of a as an ideal of A generates S~'a as an ideal of S~'A. Hence
S~1A is noetherian. If, moreover, b is a nonzero prime, then clearly a is as well, and a is maximal
since A is a Dedekind domain. Then S™!A/b =2 A/a is a field, so b is maximal as well.
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Let K be the quotient field of A. Any o € K that is integral over S™'A satisfies a monic
polynomial f with coefficients in S™'A. Set n = deg f. If d € S is the product of the denominators
of these coefficients, then d”" f(d~'x) € A[x] is monic with dot € K as a root. Since A is integrally
closed, we have do € A, so oo € S~!A. That is, S™!A is integrally closed. O

LEMMA 11.10.6. Let A be a noetherian domain, and let a be a nonzero ideal of A.
a. There exist k > 0 and nonzero prime ideals p1,...,p; of A such that py---p; C a.

b. Suppose that dimA < 1. If py,...,p are as in part a and p is a prime ideal of A containing
a, then p = p; for some positive i < k.

PROOF. Consider the set X of nonzero ideals of A for which the statement of the first part of
the lemma fails, and order X by inclusion. Suppose by way of contradiction that X is nonempty.
Let C be a chain in X. Either C has a maximal element or there exist a; € C fori > 1 with a; C a;4
for each i. The latter is impossible as A is a noetherian. By Zorn’s lemma, X contains a maximal
element a. Now a is not prime since it lies in X, so let a,b € A — a with ab € a. Then a+ (a)
and a -+ (b) both properly contain a, so by maximality of a, there exist prime ideals py, ..., p; and

q1,.--,q; of A for some k,I > 0 such that p;---p, Ca+ (a) and q;---q; C a+ (b). We then have
pre--piqi---aq € (a+(a))(a+ (b)) Ca,

a contradiction of a € X. This proves part a.

Now, suppose that a is proper, and let p be a prime ideal containing a. Assume that dimA < 1.
If no p; equals p, then since p; is maximal, there exist b; € p; —p for each 1 <i < k. We then
have by ---by & p as p is prime, so by - - - by ¢ a, a contradiction. Hence we have part b. U

DEFINITION 11.10.7. A fractional ideal of a domain A is a nonzero A-submodule a of the
quotient field of A for which there exists a nonzero d € A such that da C A.

REMARK 11.10.8. Every nonzero ideal in a domain A is a fractional ideal, which is some-
times referred to as an integral ideal. Every fractional ideal of A that is contained in A is an
integral ideal.

EXAMPLE 11.10.9. The fractional ideals of Z are exactly the Z-submodules of () generated
by a nonzero rational number.

LEMMA 11.10.10. Let A be a noetherian domain. An A-submodule of the quotient field of A
is a fractional ideal if and only if it is finitely generated.

PROOF. If a is a finitely generated A-submodule of the quotient field of A, then let d € A
denote the product of the denominators of a set of generators. Then da C A. Conversely, suppose
that a is a fractional ideal and d € A is nonzero and satisfies da C A. Then da is an ideal of A,
hence finitely generated. Moreover, the multiplication-by-d map carries a isomorphically onto
da. O

DEFINITION 11.10.11. Let A be a domain with quotient field K, and let a and b be fractional
ideals of A.

a. The inverse of aisa™! = {b € K | ba C A}.
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b. The product of a and b is the A-submodule of K generated by the set {ab | a € a,b € b}.

LEMMA 11.10.12. Let A be a domain, and let a and b be fractional ideals of A. Then a L,
a+ b, ab, anb are fractional ideals of A as well.

PROOF. Let K denote the quotient field of A. Let ¢,d € A be nonzero such that ca C A and
db CA. Then c(anb) CA, cd(a+b) CA, and cdab C A.

Note that a~! is an A-submodule of K which is nonzero since there exists d € A with da C A in
that a is a fractional ideal. Let a € a be nonzero, and let e € A be its numerator in a representation
of a as a fraction, so e € a as well. For any ¢ € a~!, we have re € A by definition, so ea 1 CA,
and therefore a~! is a fractional ideal. ]

REMARK 11.10.13. By definition, multiplication of fractional ideals is an associative (and
commutative) operation, so the set /(A) of fractional ideals in A is a monoid.

DEFINITION 11.10.14. We say that a fractional ideal a of a domain A is invertible if there
exists a fractional ideal b of A such that ab = A.

LEMMA 11.10.15. A fractional ideal a of a domain A is invertible if and only if a~'a = A.

PROOF. For the nonobvious direction, suppose that a is invertible. Then we must have b C
a! by definition of a~!. On the other hand,
A=0baC a_lagA7
so we must have a~'a = A. d
EXAMPLE 11.10.16. Consider the maximal ideal (x,y) of Q[x,y]. If f € Q(x,y)* is such

that fx € Q[x,y] (resp., fy € Q[x,y]) then its denominator is a divisor of x (resp., y). Therefore
(x,y)~! = Q[x,y], and we have

(x,y) ’ (x,y)_] = (x,y) 7é Q[X,y]-

Thus, (x,y) is not invertible as a fractional ideal.

DEFINITION 11.10.17. A principal fractional ideal of A is an A-submodule (a) generated by
a nonzero element a of the quotient field of A.

LEMMA 11.10.18. Let a be a fractional ideal of a PID. Then a is principal.

PROOEF. There exists d € A such that da = (b) for some b € A. Then g € a and given any

¢ € a, we have dc = ba for some a € A, so ¢ = ag. That is, a = (g). O

LEMMA 11.10.19. Let A be a domain, and let a be a nonzero element of its quotient field.
Then (a) is invertible, and (a)~' = (a™ ).

PROOF. If x € (a)~!, then xa = b for some b € A, so x =ba~' € (a!). If x € (a” ), then
x=a~'b for some b € A. On other hand, any z € (a) has the form z = ya for some y € A, and we
have xz = a~'bya = by € A, s0o x € (a)~!. We then have

(@)@ =(a)(a") = (aa™") = A,

completing the proof. U
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LEMMA 11.10.20. Let A be a Dedekind domain, and let p be a nonzero prime ideal of A.
Then pp~! = A.

PROOF. Let a € p be nonzero. Noting Lemma 11.10.6a, we let kK > 1 be minimal such that
there exist nonzero prime ideals py,...,px of A with p;---p; C (a). By Lemma 11.10.6b, we
may without loss of generality suppose that p; = p. By the minimality of k, we may choose
b € py---pr_1 be such that b ¢ (a). Then a~'b ¢ A, but we have

a'bp Calpy--pp CA,

which implies that a~!'b € p~!. Moreover, if p~'p = p, then a~'bp C p. Since p is finitely
generated, Proposition 11.3.4 tells us that a~'b is integral over A. But A is integrally closed,
so we have a contradiction. That is, we must have p C p_lp C A, from which it follows that
p~'p = A by maximality of p. U

THEOREM 11.10.21. Let A be a Dedekind domain, and let a be a fractional ideal of A. Then
there exist k > 0 and distinct nonzero prime ideals py,...,p; and ry,...,ry € Z — {0} such that
a= p? ---p,r(k, and this decomposition is unique up to ordering. Moreover, a is an ideal of A if
and only if every r; is positive.

PROOF. First suppose that a is a nonzero ideal of A. We work by induction on a nonnegative
integer m such that there are nonzero prime ideals ¢y, ..., q,; of a (not necessarily distinct) with
q1---qm € a, which exists by Lemma 11.10.6a. If m =0, then A C a, so a = A. In general, for
m > 1, we know that a is proper, so there exists a nonzero prime ideal p that contains a and p = q;
for some i < m. Without loss of generality, we take i = m. Then

G Qna1 S a1 gup ' Cap ! CA.

By induction, there exist nonzero prime ideals ¢}, ..., q; of A for some ¢ < m such that ap~! =
q - -~ q}. The desired factorization is given by multiplying by p, applying Lemma 11.10.20, and
gathering together nondistinct primes.

In general, for a fractional ideal a, we let d € A be such that da C A. We write da =q1 - qp
for some m > 0 and prime ideals q; for 1 <i < m. We also write (d) = [;--- [, for some n >0
and prime ideals [; for 1 <i < n. By Lemma 11.10.20, we then have

a= (@) (da) =17

If q; = [; for some i and j, then we may use Lemma 11.10.20 to remove qi[jfl from the product.
Hence we have the desired factorization.
Now suppose that

__ 1 Tk
a_pl pk

for some k > 0, distinct primes py,...,pg and nonzero ry, ..., r;. For each prime p of A, consider
the localization Ay, which is a Dedekind domain with unique nonzero prime ideal pAy. Note that
gAp = Ay if q is a nonzero prime of A other than p. We therefore have

aAp — p?l oo ,p]’;kAp — prAp,
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where r = r; if p = p; for some i, and r = 0 otherwise. Moreover, if ]JkAp = plAp for some integers
k <1, then p’ *kAp = Ay, which since p is nonzero, can only happen if k = [. Therefore, the primes
p; and corresponding integers r; are uniquely determined by a. U

We have the following immediate corollary of Theorem 11.10.21.

COROLLARY 11.10.22. The set of fractional ideals I(A) of a Dedekind domain A is a group

under multiplication of fractional ideals with identity A, the inverse of a € I(A) being a L.

DEFINITION 11.10.23. Let A be a Dedekind domain. The group /(A) of fractional ideals of
A is called the ideal group of A.

DEFINITION 11.10.24. Let A be a Dedekind domain. Then we let P(A) denote the set of its
principal fractional ideals. We refer to this as the principal ideal group.

COROLLARY 11.10.25. Let A be a Dedekind domain. The group P(A) is a subgroup of 1(A).

DEFINITION 11.10.26. The class group (or ideal class group) of a Dedekind domain A is
Cl(A) =1(A)/P(A), the quotient of the ideal group by the principal ideal group.

LEMMA 11.10.27. A Dedekind domain A is a PID if and only if C1(A) is trivial.
PROOF. Every element of /(A) has the form ab~! where a and b are nonzero ideals of A. If
A is a PID, then both a and b are principal and, therefore, so is ab~!. On the other hand, if a is a

nonzero ideal of A with a = (a) for some a € K, then clearly a € A, so CI(A) being trivial implies
that A is a PID. O

NOTATION 11.10.28. Let K be a number field. We let Ix, Pk, and Clg denote the ideal group,
principal ideal group, and class group of O, respectively. We refer to these as the ideal group
of K, the principal ideal group of K, and the class group of K, respectively.

EXAMPLE 11.10.29. Let K = Q(+/—5). Then Ok = Z[v/—5]. The ideal a = (2,14 v/—5)
is non-principal. To see this, note that Ng p(2) = 4 and Ng (1 ++/—5) = 6, so any generator x
of a must satisfy Ng g (x) € {#1,42}. But

Nggla+bv/=5) = a* +5b
for a,b € Z, which forces x = £1. This would mean that a = Z[/—5]. To see that this can-
not happen, define ¢: Z[/—5] — Z/6Z by ¢(a+ b\/—5) = a—b for a,b € Z. This is a ring
homomorphism as
o((a+bv—-5)(c+dv—-5)) = ¢(ac—5bd + (ad + bc)v/—5) = ac — 5bd — ad — bc
=ac+bd—ad—bc=(a—b)(c—d).
Moreover, ¢(1++/—5) =0, so the kernel of ¢ contains (and is in fact equal to) (1 4+ +/—5).
Therefore, ¢ induces a surjection (in fact, isomorphism),
Z[V—=5])/a —Z/6Z/(2) — Z]2Z,
s0 a # Z[v/—5], and x does not exist. Therefore, Clg /=) is nontrivial.
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We end with the following important theorem.
THEOREM 11.10.30. A Dedekind domain is a UFD if and only if it is a PID.

PROOF. We need only show that a Dedekind domain that is a UFD is a PID. Let A be such
a Dedekind domain. By Theorem 11.10.21, it suffices to show that each nonzero prime ideal p
of A is principal. Since p is prime and A is a UFD, any nonzero element of p is divisible by an
irreducible element in p. If 7 is such an element, then () is maximal and contained in p, so

p=(m). O

11.11. Discrete valuation rings

DEFINITION 11.11.1. A discrete valuation ring, or DVR, is a principal ideal domain that has
exactly one nonzero prime ideal.

LEMMA 11.11.2. The following are equivalent conditions on a principal ideal domain A.
i. Aisa DVR,

ii. A has a unique nonzero maximal ideal,

iii. A has a unique nonzero irreducible element up to associates.

PROOF. This is a simple consequence of the fact that in a PID, every nonzero prime ideal is
maximal generated by any irreducible element it contains. U

DEFINITION 11.11.3. A uniformizer of a DVR is a generator of its maximal ideal.

Moreover, we have the following a priori weaker but in fact equivalent condition for a domain
to be a DVR.

PROPOSITION 11.11.4. A domain A is a DVR if and only if it is a local Dedekind domain
that is not a field.

PROOF. A DVR is a PID, hence a Dedekind domain, and it is local by definition. Conversely,
suppose that A is noetherian, integrally closed, and has a unique nonzero prime ideal p. We must
show that A is a PID. Since nonzero ideals factor uniquely as products of primes in A, every ideal
of A has the form p” for some n. In particular, p = (7) for any 7 € p — p2, and then p” = (n") for
all n. Therefore, A is a PID and hence a DVR. U

THEOREM 11.11.5. A noetherian domain A is a Dedekind domain if and only if its localiza-
tion at every nonzero prime ideal is a DVR.

PROOF. We have seen in Proposition 11.10.5 that A, is a Dedekind domain for all nonzero
prime ideals p. By Proposition 11.11.4, each such localization is therefore a DVR.

Conversely, if A is a noetherian integral domain such that A, is a DVR for every nonzero
prime ideal p, we consider the intersection B = (), Ay, over all nonzero prime ideals p of A, taken
inside the quotient field K of A. Clearly, B contains A, and if 5 € B for some c¢,d € A, then we set

a={ac€A|ace(d)}.
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By definition of B, we may write § = { with r € A and s € A — p, and we see that sc = rd, so
s € a. In other words, we have a Z p for all prime ideals p of A, which forces a = A. This implies
that ¢ € (d), so § € A.

Next, suppose that q is a nonzero prime ideal of A, and let m be a maximal ideal containing
it. Then gAy, is a nonzero prime ideal of Ay, which is a DVR, so gA,, = mAy,. Since g and m are
prime ideals contained in m, we therefore have

q=ANgAn =ANmMAL =m.

Thus, A has Krull dimension at most 1.

Finally, each Ay, is integrally closed in K by Corollary 11.3.22, and then the intersection A is
as well, since any element of K that is integral over A is integral over each Ay, hence contained
in each Ay. That is, A satisfies the conditions in the definition of a Dedekind domain. O

To make some sense of the name “discrete valuation ring”, we define the notion of a discrete
valuation. For this purpose, we adjoin an element o to Z which is considered larger than any
element of Z, and we set x+y = oo if x,y € Z U {oo} and either x or y equals oo.

DEFINITION 11.11.6. Let K be a field. A discrete valuation on K 1is a surjective map v: K —
Z U {oo} such that

i. v(a) = if and only a =0,

ii. v(ab) =v(a)+v(b), and

iii. v(a+b) > min(v(a),v(b))
for all a,b € K.

DEFINITION 11.11.7. If v is a discrete valuation on a field K, then the quantity v(a) fora € K
is said to be the valuation of a with respect to v.

The following are standard examples of discrete valuations.

EXAMPLE 11.11.8. Let p be a prime number. Then the p-adic valuation v, on Q is defined
by v,(0) = e and v,(a) = r for a € Q* if a = p’d’ for some r € Z and a’ € Q* such that p
divides neither the numerator nor denominator of a’ in reduced form.

EXAMPLE 11.11.9. Let F be a field, and consider the function field F (7). The valuation at oo
on F(z) is defined by ve,(§) = degh — degg for g,h € F[t] with h # 0, taking deg0 = oo.

More generally, we have the following.

DEFINITION 11.11.10. Let A be a Dedekind domain with quotient field K, and let p be a
nonzero prime ideal of A. The p-adic valuation v, on K is defined on a € K* as the unique

integer such that (a) = p'?@hc! for some nonzero ideals b and ¢ of A that are not divisible by
p.

EXAMPLE 11.11.11. For the valuation at o on F(z), where F is a field, we may take A =
K[t~']and p = (¢t~1). Then the valuation v., on F(t) is the (¢~ !)-adic valuation. To see this, note
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that for nonzero g,/ € F[t], one has
@ _ (t—l)degh—degg G<t_]>
h(t) H(=t)’

where G(t~!) =17 9°28g(¢) and H(¢~') = t~9&"}(¢) are polynomials in #~! which have nonzero
constant term.

LEMMA 11.11.12. Let A be a Dedekind domain with quotient field K, and let p be a prime
ideal of A. The p-adic valuation on K is a discrete valuation.

PROOF. Let a,b € K be nonzero (without loss of generality). Write (a) = p"a and (b) = p*b
for r = vy(a) and s = v,(b) and fractional ideals a and b of A. Note that (ab) = p"**ab, so
vp(ab) = r+s. We have

((l + b) — ]Jrll—|- psb _ pmin(r,s) (prfmin(r,s)a _i_psfmin(r,s)b)’

S0
vp(a+b) = min(r,s) + vy (p"min(8) g 4 ps=min(ES) ) > min(r, s).

LEMMA 11.11.13. Let v be a discrete valuation on a field K. Then we have v(—a) = v(a) for
alla € K.

PROOF. Note that 2v(—1) = v(1) =0, so we have v(—a) = v(—1) +v(a) = v(a). O
LEMMA 11.11.14. Let v be a discrete valuation on a field K. Then we have
v(a+b) = min(v(a),v(b))
forall a,b € K with v(a) # v(b).
PROOF. If v(a) < v(b), then
v(a) =v((a+b) —b) > min(v(a+b),v(b)) > min(v(a),v(b)) =v(a),
so we have v(a) = min(v(a+b),v(b)), which forces v(a+b) = v(a). O
DEFINITION 11.11.15. Let K be a field, and let v be a discrete valuation on K. Then
Oy,={a€K|v(a) >0}
is called the valuation ring of v.

LEMMA 11.11.16. Let K be a field, and let v be a discrete valuation on K. Then O, is a DVR
with maximal ideal
m,={a€K|v(a)>1}.

PROOEF. That 0, is a ring follows from the fact that if a,b € 0, then v(ab) =v(a)+v(b) > 0,
v(—a) =v(a) > 0, and v(a + b) > min(v(a),v(b)) > 0. For a € 0, and x,y € m,, we have
v(x+y) >min(v(x),v(y)) > 1 and v(ax) = v(a)+v(x) > 1, so m, is an ideal. It is also the unique
maximal ideal: given a € €, —m,, we have v(a~!) =v(a) +v(a~!) =v(1) =0,s0a € 0. Given
an ideal a of 0), let a € a be an element of minimal valuation n. Let & € &), with v(x) = 1, and
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write a = 7""u for some u € 0. Then v(u) =0, so u € 0°. Therefore, (1) C a. On the other
hand, since n is minimal, we have a C (7"), and therefore a is a principal. By Lemma 11.11.2,
we conclude that &, is a DVR. O

EXAMPLE 11.11.17. In Q, we have

a
Oy =L ) = {E | a,bEZsuchthath(b}.

11.12. Ramification of primes

The integral closure B of a Dedekind domain A in a finite extension L of its quotient field K
is also a Dedekind domain. If p is a nonzero prime ideal of A, then we can consider the ideal pB
of B. This ideal may no longer be prime. Instead, it has a factorization

(11.12.1) pB =P P
for some distinct nonzero prime ideals *J3; of B and positive integers e;, for 1 <i < g for some

g > 1. We make the following definitions.

DEFINITION 11.12.1. Let B/A be an extension of commutative rings. We say that a prime
ideal ‘P of B lies over (or above) a prime ideal p of A if p =P NA. We then say that p lies under
(or below) 3.

In (11.12.1), the prime ideals of B lying over p are exactly the *J3; for 1 <i < g.

DEFINITION 11.12.2. Let A be a Dedekind domain, and let B be the integral closure of A in
a finite extension L of the quotient field K of A. Let p be a nonzero prime ideal of A.

a. We say that p ramifies (or is ramified) in L/K if pB is divisible by the square of a prime
ideal of B. Otherwise, it is said to be unramified.

b. We say that p is inert in L/K if pB is a prime ideal.

c. We say that p is split in L/K if there exist two distinct prime ideals of B lying over p.

Otherwise, p is non-split.

It follows directly that p is ramified in L/K if some ¢; in (11.12.1) is at least 2. On the other
hand, p is inert in L/K if there is exactly one prime ideal of B lying over p and its ramification
index is 1, which is to say that g = 1 and ¢; = 1 in (11.12.1). Finally, p is splitin L/K if g > 1.

EXAMPLE 11.12.3. Let A = Z and L = Q(+/2). The integral closure of A in Lis B = 0} =
Z[+/2]. The prime p = (2) ramifies in Q(+/2)/Q, since
22[V3) = (V2)

Moreover, P = (v/2) is a prime ideal of Z[v/2], since Z[v/2]/(v/2) = Z/27 via the map that
takes a + b\/z to a mod 2. Therefore, p is ramified and non-split.

Next, consider the prime ideal (3) of Z. We have Z[v/2]/(3) = F3[v/2] = Fy, so (3) is inert
in Q(v/2)/Q. On the other hand, the prime factorization of 7Z[v/2] is exactly

1Z1V2) = (3+V2)(3—-V2),
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since Z[v/2]/(3 4 v/2) is isomorphic to Z/7Z via the map that takes a + bv/2 to a ¥ 3b. That s,
(7) splits in Q(v2)/Q.

DEFINITION 11.12.4. Let A be a Dedekind domain, and let p be a nonzero prime ideal of A.
The residue field of p is A/p.

REMARK 11.12.5. Let A be a Dedekind domain, and let B be the integral closure of A in a
finite extension L the quotient field K of A. Let p be a nonzero prime ideal of A, and let 3 be a
prime ideal of L lying over K. Then B/ is a field extension of A/p via the natural map induced
on quotients by the inclusion A — B.

DEFINITION 11.12.6. Let A be a Dedekind domain, and let B be the integral closure of A in
a finite extension L of the quotient field K of A. Let p be a nonzero prime ideal of A, and let °J3
be a prime ideal of B lying over p.

a. The ramification index eq, of ‘B over p is the largest e > 1 such that ‘B¢ divides pB.
b. The residue degree fy; ), of a prime ideal of B3 lying over p is [B/P : A/p].

REMARK 11.12.7. It follows quickly from the definitions that ramification indices and residue
degrees are multiplicative in extensions. That is, if A C B C C are Dedekind domains with the
quotient field of C a finite extension of that of A and *J3 is a prime ideal of C lying over P of B
and p of A, then

ep/p = eqp/pepspy and  fygsn = fo/pfpsp-

EXAMPLE 11.12.8. In Example 11.12.3, the residue degree of (\/i) over 27 1s 1, the residue
degree of 3Z[v/2] over 37 is 2, and the residue degrees of (34 +/2) over 7Z are each 1. The
ramification indices are 2, 1, and 1, repsectively.

We shall require the following lemmas.

LEMMA 11.12.9. Let p be a nonzero prime ideal in a Dedekind domain A. For each i > 0,
the A/p-vector space p'/p'! is one-dimensional.

PROOF. Let x € p' — p'*! for some i > 0. (Such an element exists by unique factorization of
ideals.) We need only show that the image of x spans p’/p*!. For this, note that (x) = p'a for
some nonzero ideal of A not divisible by p. Then

(x) +p " =p'(atp) =y,
the last step by the Chinese remainder theorem. 0

LEMMA 11.12.10. Let A be a Dedekind domain and P be a set of nonzero prime ideals of A.
Let S a multiplicatively closed subset of A such that SNp = & for all p € P. Let a be a nonzero
ideal of A that is divisible only by prime ideals in P. Then the natural map

Ala—S'A/S7 a

is an isomorphism.
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PROOF. Suppose that b € S~YanA, and write b = % for some a € a and s € S. Then a = bs,
and since a divides (a) while (s) is relatively prime to a, we must have that a divides (). In
other words, b € a, and therefore the map is injective. Given ¢ € A and 7 € S, the ideals (¢) and a
have no common prime factor, so in that A is a Dedekind domain, satisfy (¢) 4 a = A. Thus, there
exists u € A such that ur — 1 € a. Then cu + a maps to 7 + S~1a, so the map is surjective. U

The ramification indices and residue degrees of the primes over p satisty the following degree
formula.

THEOREM 11.12.11. Let A be a Dedekind domain, and let B be the integral closure of A in
a finite separable extension L the quotient field K of A. Let p be a nonzero prime ideal of A, and
write
pB = -y
for some distinct nonzero prime ideals *B; of B and positive integers e;, for 1 <i < g and some
g = 1. For eachi, let f; = fop, p. Then

8
Y eifi=[L:K].
i=1

PROOF. We prove that dimy /, B /pB equals both quantities in the desired equality. By the
Chinese remainder theorem, we have a canonical isomorphism

g
B/pB=]]B/%¥,
i=1
of A/p-vector spaces, S0
g ' g ei—l i
dimy , B/pB =Y dimy, , B/PB7 =Y Y dimy , B/ /BT
i=1 i=1 j=0

By Lemma 11.12.9, each ‘l?l] / ‘,BIJ ™1 is a 1-dimensional B /Bi-vector space, and we therefore have
g g
dimy , B/pB =Y e;dimy, B/P; =Y eifi.
i=1 i=1

Let S denote the complement of p in A. Then S™'A = Ay and S~!B are Dedekind domains,
and Ay is a DVR, hence a PID. Moreover, S71B is the integral closure of A in L, being both
integrally closed and contained in said integral closure. Thus, Corollary 11.3.39 tells us that S~'B
is free of rank [L : K] over Ap. In particular, S~!B/pS~!Bis an [L : K]-dimensional A, /pA,-vector
space. On the other hand, note that

SAP; =SNANP;=SNp=9g
for each 1 <i < g. Therefore, Lemma 11.12.10 tells us that
S~ 'B/pS~'B=~B/pB
and Ap/pAy = A/p. We thus have that dimy /, B/pB = [L : K], as required. O
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In other words, Theorem 11.12.11 tells us that the sum over all primes lying over p of the
products of their ramification indices with their residue degrees equals the degree of the field
extension L/K.



CHAPTER 12

Homological algebra

We work in this chapter largely in an abelian category. At times, proofs of statements that
hold true in arbitrary abelian categories will be given only in categories of modules over a ring.
This choice, which simplifies the exposition, will be given a more rigorous justification in the
course of the chapter.

12.1. Exact sequences

Though we’ve managed to suppress them to this point, exact sequences are ubiquitous in
algebra. Let’s give the definitions.

DEFINITION 12.1.1. Let I be the set of integers in an interval in R. A diagram A. in a category
€ of the form
a4 A
_>Ai+1 Ll)A,' —’>Al',1 —
is a sequence, where the A; are defined for i € I and the morphisms d;“: A; — A;j_ are defined
fori € I with i —1 € I. We will refer to [ as the defining interval of the sequence A..

NOTATION 12.1.2. In an abelian category, if A is a subobject of an object B, we write A C B
to denote this and B/A for the cokernel of the inclusion morphism A — B. For f: B — C, we
will let f(A) denote the image of the composite of the inclusion with f.

We are particularly interested in exact sequences.

DEFINITION 12.1.3. We say that a diagram

ALy

in an abelian category % is exact if go f = 0 and the induced monomorphism im f — kerg is an
isomorphism.

DEFINITION 12.1.4. A sequence A. = (A;,d?) with defining interval / in an abelian category
% is exact, or an exact sequence, if the subdiagram

L di
Ay & a; 55 Ay
isexact foreachie IN(I+1)N(I—1).

That is, A. is exact if d; od; 1 = 0 and the canonical morphism imd;,; — kerd; is an isomor-
phism for all i for which d;; | and d; are defined: we write this more simply as the identification
imd; | = kerd; for subobjects of A;.

359
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REMARK 12.1.5. One can make the same definitions of exact sequences in the category
of groups, or more generally in any “semi-abelian” category, and much of the discussion that
follows remains the same.

REMARK 12.1.6. If the interval I of definition of A. has a left (resp., right) endpoint N such
that Ay = 0, then one can extend A. to the left (resp., right) by taking A; = 0 for all i < N (resp.,
i > N). In fact, we could do this for any sequence for which / has an endpoint (without the
condition Ay = 0), but we do not as the operation does not preserve exactness (nor do the to-be-
defined morphisms between two sequences defined on different intervals extend to morphisms
under this operation).

DEFINITION 12.1.7. Let % be an abelian category.
a. A short exact sequence in € is an exact sequence in ¢ of the form
0—-A—=B—-C—0.

b. A left short exact sequence in € is an exact sequence in € of the form
0—+A—=B—C.

c. A right short exact sequence in € is an exact sequence in ¢ of the form
A—B—=C—0.

REMARK 12.1.8. To say that

0-ALBSCco0

is exact is to say that f is a monomorphism, im f = ker g, and g is an epimorphism.
EXAMPLE 12.1.9. Multiplication-by-n provides a short exact sequence of abelian groups
0—7Z2%7Z— Z/nZ 0.

REMARK 12.1.10. If f: A — B is any morphism in an abelian category, then we have an
exact sequence

0— kerf— AL B cokerf — 0.

Note that this provides two short exact sequences
0—kerf +A—imf—0 and 00— imf — B — coker f — O,

since coim f — im f is an isomorphism. We can “splice these back together” to get the 4-term
sequence by taking the composite A — im f — B, which is f.

DEFINITION 12.1.11. A long exact sequence in an abelian category % is an exact sequence
A = (A, dY)icz.

Frequently, a long exact sequence is expressed in the form
e = Ay = Ay —>A()—>0,

and we can extend it to all integers by setting A; = 0 for all i < —1.
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EXAMPLE 12.1.12. The sequence
..._>@2i>@2LQ2i>Q2_>...
with f: Q%> — Q? defined by f(a,b) = (0,a) for a,b € Q is a long exact sequence of Q-vector
spaces. The sequence
002 Lerl@s...
of Q-vector spaces with 1,(b) = (0, b) is also a long exact sequence.

We next study maps between sequences. Let us make a formal definition.

DEFINITION 12.1.13. Let A. = (A;,d?") and B. = (B;,d?) be sequences in a category € with
defining intervals / and J, respectively. A morphism of sequences f.: A. — B. in a category
is a collection (f;)ieins of morphisms f;: A; — B; in € such that dlB ofi= fi1 od;“ for all
ieINJNI+1)NIJ+1).

REMARK 12.1.14. We can view the condition for a sequence of maps f;: A; — B; between
the terms of sequences A. and B. defined at all i € Z to be a map of sequences as saying that the
diagram

df df
At A Aig—
lfm lfi J/fi—l
a7, df
A1 A; Aig —

commutes.

12.2. The snake and five lemmas

The following result on maps between short exact sequences is the key to much of homolog-
ical algebra.

THEOREM 12.2.1 (Snake lemma). Let ¢ be an abelian category, and let

0 Al p_*%.c 0
C
0— a1 g5 ¢ 0.

be a commutative diagram in € with exact rows. Then there is an exact sequence

0 — ker f — kerot — ker 8 — kery 5, cokeror — coker 8 — cokery — cokerg’ — 0
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such that the resulting diagram

ker o kerf —— kery
f g J
0——kerf A B C 0
o B Y
/ f / g / /
0 A B C cokerg' —— 0
coker @ —— coker § —— cokery J

with the natural inclusion and quotient maps is commutative.

PROOF. We work in the category of modules over a ring R. We define 0 as follows. For
c € kery, find b € B with g(b) =c. Then g’ o f(b) = y(c) =0, so B(b) = f'(d’) for some d’ € A’.
Let 6(c) denote the image @ of @' in coker o. To see that this is well-defined, note that if b, € B
also satisfies g(by) = ¢, then g(b—by) =0, so b —b = f(a) for some a € A. We then have

B(b2) =B(b)+Bofa)=B(b)+f oala),

so by = f'(d' + at(a)). But d’ + o (a) has image @ in cokera, so & is well-defined. That § is an
R-module homomorphism follows easily from the construction.
We now check that the other maps are well-defined. Since

Bof(kera)= f oalkera) =0,

we have f(keror) C ker 8. Similarly, g(ker3) C kery. Also, if @ € coker o, then we may lift
it to a’ € A’, map to b’ € B, and then project to b’ € coker 3. This is well-defined as any other
choice of @' differs by some a € A, which causes b’ to change by the image of B(f(a)), which is
zero. Thus f induces a well-defined homomorphism

f': cokeror — coker 3.
Similarly, we have a well-defined surjection
g coker 8 — coker.

We next check that our sequence is a complex. Note that go f = 0, so the same is true on
kera, and g’ o f/ = 0,50 g o f' = 0 as well. Let b € ker 8. Then 8(g(b)) is given by considering
B(b) = 0, lifting it to some a’ € A’, which we may take to be 0, and projecting to coker &t. Hence
5(g(ker B)) = 0. On the other hand, if ¢ € ker?, then f'(8(c)) is given by definition by projecting
B (b) to coker B, where g(b) = ¢, hence is zero. Hence, the image of one map is contained in the
kernel of the next at each term of the six term sequence.

Finally, we check exactness at each term. If a € kera, then f(a) = 0 implies a € ker f.
Inclusion then provides a map ker f — ker « that is by definition injective. If b € ker B Nkerg,
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then there exists a € A with f(a) = b. Since f"oa(a) =B o f(a) =0 and f’ is injective, we have
o(a) =0, or a € kero.. Hence

f(kera) = ker(ker B — ker?y),

and we have exactness at ker 3.

If ¢ € ker 8, then whenever g(b) = c and f'(a') = B(b), we have @ = 0, letting @ denote the
image of d’ € coker . We then have @’ = f(a) for some a € A, so b, = b — f(a) still satisfies
f(by) =c,but B(by) =0. So b, € ker B, and we have exactness at kery.

If @ € cokera is the image of @’ € A’ and f'(a’) = 0, then there exists b € B with §(b) =
f'(d"). Now

¥(8(b)) = g'(B(b)) =g'(f'(d)) =0,
so g(b) € kery, and 8(g(b)) = @. Hence, we have exactness at coker .

If b’ € coker B is the image of b’ € B’ and g’ (b") = 0, then there exists ¢ € C with g(b') = y(c).
Now ¢ = g(b) for some b € B. And b, = b’ — b has image b’ in coker 8. On the other hand,
f'(by) =0, so by = f'(d’) for some @’ € A’. If @ € cokera is the image of @, then f'(@') = b
as the image of b in coker . Thus, we have exactness at coker 8. Finally, if ¢’ € cokery is the
image of ¢’ € C’ with trivial image in cokerg’, then ¢’ = g’(b’) for some o' € B', then the image
b’ € coker B of b’ satisfies g'(b') = . O

Next, we state another useful result on maps between exact sequences, known as the five
lemma.

THEOREM 12.2.2 (Five lemma). Let

A—yp L c f.p " g
O L (A
PN A N N

be a commutative diagram with exact rows in an abelian category € .

a. If B and & are epimorphisms and € is a monomorphism, then v is an epimorphism.
b. If B and 6 are monomorphisms and o is an epimorphism, then y is a monomorphism.

c. If B and & are isomorphisms, o is an epimorphism, and € is a monomorphism, then Y is
an isomorphism.

PROOF. We work in the category of modules over a ring R. It is immediate that parts a and
b imply part c (the actual five lemma). We prove part a and note that it, if proven in an arbitrary
abelian category, implies b in the opposite category, which is also abelian. Suppose that 8 and
d are surjective and € is injective. Let ¢/ € C’, and note that g’(¢’) = 8(d) for some d € D by
surjectivity of &. Also,
e(h(d)) = 1'(8(d)) =H (g'(")) =0,

so h(d) = 0 by injectivity of €. By exactness of the top row at D, we then have ¢ € C such that

g(c) =d. Now,
g (v(c) ') = 8(g(c)) —&'(c') = 6(d) — 8(d) =0,
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so by exactness of the bottom row at C, there exists b’ € B such that f'(b’) = ¢’ — y(c). As B is
surjective, there also exists b € B such that f(b) =b'. Setx = c+ f(b) € C. Then

¥Y(x) = ¥(c) = ¥(f(2)) = f(B(b)) = f'(b)) = = ¥(c)

so ¥(c) = ¢’. Thus, ¥ is surjective and part a is proven. O

12.3. Homology and cohomology

DEFINITION 12.3.1. Let % be an abelian category.

a. A chain complex, or more simply complex, in ¢ is a sequence A. = (A;,d?);cz in € such
that df od?, | =0 forall i € Z.

b. For a chain complex A. and i € Z, the morphism a’{‘ : A;j — A;_1 is called the ith differential
in the complex A..

NOTATION 12.3.2. Unless otherwise specified, the ith object in a chain complex A. will be
denoted A; and the ith differential by d;: A; — A;_1. If we have multiple complexes, we will use
dlA to specify the differential on A..

REMARK 12.3.3. Unlike with sequences in general (or exact sequences in particular), if
the terms and morphisms of complex are specified only for some interval of integers, then we
complete it to a complex by declaring all remaining objects and morphisms to be zero.

DEFINITION 12.3.4. A morphism of complexes in an abelian category is a morphism of se-
quences between complexes.

DEFINITION 12.3.5. The category of chain complexes Ch(%) for an abelian category %
is the category with objects the complexes (Ai,d{‘) icz in € and morphisms the morphisms of
complexes in €.

REMARK 12.3.6. A sequence of complexes is exact in Ch(%) if and only if it the resulting
sequence of objects in each fixed degree is exact in %. For instance, a sequence of complexes

0—A LB 5c 0

in Ch(%) is short exact if and only if each

0—>Ai£>Biﬁ>C,‘—>O

is a short exact sequence.

Note that the category of chain complexes in % is a fully faithful subcategory of the category
of sequences with defining interval Z.

DEFINITION 12.3.7. A complex is often said to be acyclic if it is an exact sequence.
The reader can easily check the following.

PROPOSITION 12.3.8. Let € be an abelian category. Then the category Ch(%) is an abelian
category as well.
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DEFINITION 12.3.9. The ith homology of a complex A. in an abelian category is the object

REMARK 12.3.10. A complex A. is exact if and only if H;(A) =0 for all i € Z.
EXAMPLE 12.3.11. The complex
S T/8T 57825 787 — - -
of abelian groups has ith homology group 27 /47, = 7./27 for every i.

LEMMA 12.3.12. Any morphism f.: A. — B. of complexes in € induces natural morphisms
fi: Hi(A) — H;(B)
for each i € Z.. More specifically, these satisfy
Bofroat =nfofiorl
where 8 : B; — CokerdfH and T : kerd? — H;(A) are the canonical epimorphisms, and where

1}: kerd! — A; and 1P : H;(B) — cokerd?,, are the canonical monomorphisms.

PROOF. We prove this in the case that € is a category of R-modules. If a € kerd;f‘, then
d?(fi(a)) = fi—1(d?(a)) =0, so fi(a) € kerd?. If a =d |(d'), then fi(a) = dE |(fir1(d)) €
imd?, ;. Thus, the composite map

kerd? EIN kerd? — H;(B)

factors through H;(A), inducing the stated map f;". O

THEOREM 12.3.13. Let € be an abelian category, and let

0-A LB 5 ¢c 50

be a short exact sequence in Ch(€). There there are morphisms 8;: H;(C) — H;_1(A) for all
i € Z, natural in the short exact sequence, that fit into a long exact sequence

5

S H(A) S H(B) 5 Hy©) B H(A)
PROOF. First, the snake lemma applied to the diagram

0 AT p &

L«
fi

i—1 8i—1
0— A 2 ’

provides exact sequences

0 — kerd? — kerd® — kerd® and cokerd! — cokerd? — cokerdf — 0.
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Then, we wish to apply the snake lemma to the diagram

8i C
el i1 —— cokerdy — 0

| | |

0—— kerdlA_1 L> kerd}’;1 s, kerdﬁl

cokerd? i cokerd?

with exact rows (where the “bars” denote morphisms induced on quotients). By the snake lemma,
we have an exact sequence

kerd_lA — kerd? — kerd_l-c i cokerd_f‘ — cokerd? — cokerd_l-c.
Note that for X € {A,B,C}, we have
kerd® =ker(X;/imdX | — X;_1) = H;(A) and cokerd; = coker(X; — kerdX ;) = H;_1(A),

and the morphisms induced by f; and g; (resp., fi—1 and g;_1) on the first (resp., second) of these
are just the morphisms f;" and g (resp., f;* | and g7 _,). Our exact sequence then becomes

H;(A) £—>H,-(B) 5, Hi(C) 3, H; 1(A) EEN Hi1(B) *= H;_(C).

Taken for all 7, these yield the long exact sequence. U

EXAMPLE 12.3.14. Consider the complexes A., B., and C. of abelian groups with A; = Z /4Z,
B; =7/8Z, and C; = /27 for all i and d* = d? = 0 for all i and d¢ equal to multiplication by
4 for all i. Then H;(A) = Z/4Z, H;(B) = 27./4Z = 7./2Z, and H;(C) = Z /27 for all i. We have
a short exact sequence

0—A LB 5c 0

for maps f.: A. — B. induced by multiplication by 2 on each term and g.: B. — C. given by
reduction modulo 2 on each term. The resulting long exact sequence has the form

Sz 20282005 /82 222 %2022 %
We briefly describe cochain complexes and cohomology, which simply amount to a change
of indexing from decreasing to increasing.
DEFINITION 12.3.15. A cochain complex is a collection A" = (A’,d',);cz of objects A’ and

morphisms d’, : A" — A1 such that d}, od! = 0 for all i € Z. The morphism d’, : A" — A™! is
called the ith differential of the cochain complex A".

We then have the notion of cohomology.

DEFINITION 12.3.16. The ith cohomology of a cochain complex A" in an abelian category is
the object

Hi(A) _ kerdj;

i1
imd,
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REMARK 12.3.17. Much as with complexes, we can speak of morphisms of cochain com-
plexes f": A" — B, which are collections of morphisms f*: A’ — B’ such thatdjo f' = Firl ody
for all i € Z. Again, short exact sequences

04 LB S0

of cochain complexes give rise to long exact sequences in cohomology, but now of the form

S HA) D HB) S H(C) S B (A) -
DEFINITION 12.3.18. LetA. = (A;,d?') and B. = (B;,d?) be chain complexes. Let f,g.: A. —
B. be morphisms of chain complexes.
a. A chain homotopy from f. to g. is a sequence s. = (s;);cz of morphisms s;: A; — Bj; 1
satisfying
fi— g = dﬁH OS;i+8;—1 Od;fx
foralli € Z.

b. We say that f. and g. are chain homotopic, and write f. ~ g., if there exists a homotopy
from f. to g..

c. If £ is (chain) homotopic to 0, then f. is said to be null-homotopic.

REMARK 12.3.19. For cochain complexes A" and B" and morphisms f*,g": A" — B, a chain
homotopy from f* to g is a sequence s* = (s');cz of morphisms s': A’ — B'~! such that i — g’ =
dy tos + s odi.

The morphisms s. defining a null-homotopy fit into a diagram

A
di+1

Aigt

Jixr1

d;
By B; B

PROPOSITION 12.3.20. Assume that f. and g. are chain homotopic morphisms A. — B.. Then
the morphisms f;* and g; on homology are equal for all i € 7.

PROOF. It suffices to assume that g = 0, since the ith cohomology functor from Ch(%’) to
% is additive. So, we must show that f* = 0 for all i, which is to say that f;(kerd?') C imd? |.
Since f; =dP | osi+si_1 odf, we have
fi(kerd!) = diy, (si(kerd}')) C imd},,
so fi =0. O

DEFINITION 12.3.21. A morphism of complexes f.: A. — B. is a homotopy equivalence if
there exists a morphism g.: B. — A. such that g.o f. ~id4. and f.og. ~idp.
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12.4. Projective and injective objects
We continue to work in an abelian category & .

DEFINITION 12.4.1.

a. We say that an epimorphism g: B — C is split if there exists a morphism #: C — B with
got =idc. In this case, we say that 7 is a splitting of g.

b. We say that a monomorphism f: A — B is split if there exists a morphism s: B — A with
so f =1idy. In this case, we say that s is a splitting of f.

c. We say that a short exact sequence

(12.4.1) 0-ALBSCc0

splits if there exists an isomorphism w: A ® C =~ B with w(a,0) = f(a) and g(w(0,c)) = ¢ for
allacAandceC.

EXAMPLE 12.4.2. The exact sequence of abelian groups

0—2/32 > 7/6Z "% 7/27 0

is split, but
0 Z/2Z % 7/47 "2 7./27, — 0

is not.

PROPOSITION 12.4.3. The following conditions on a short exact sequence

0sALBSCco0

are equivalent:
i. The sequence splits.

ii. The monomorphism f: A — B splits.
iii. The epimorphism g: B — C splits.

PROOF. We prove this in the category of R-modules.

(iii) = (ii): Suppose we have a splitting map ¢: C — B. Then define s: B — A by s(b) = a
where f(a) = b—1t(g(b)). This is well-defined as f is injective, and such an a exists since

g(b—1(g(b))) = g(b) —g(t(g(b))) = 8(b) —g(b) = 0.
It splits f as
s(f(a)) = s(b) —s(1(g(D))) = s(b),
the latter step using the fact that s o = 0, which follows in turn from
f(s(t(c))) = 1(c) —1(g(t(c))) = 1(c) —1(c) = 0.
(ii) = (iii): Suppose that we have a splitting map s: B — A. Then definet: C — Bby t(c) =

b— f(s(b)) where g(b) = c. To see this is well defined, note that f(a) — f(s(f(a))) = 0 for any
acA.
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(i))+(iii) = (i): Define w(a,c) = f(a)+t(c). Its inverse is w'(b) = (s(b),g(b)). To see this,
we check that
w'ow(a,c) = (s(f(a) +1(c)),8(f(a) +1(c))) = (s(f(a)),&(t(c))) = (a,c)

for a € A and ¢ € C, and note that

wow'(b) =w(s(b),8(b)) = f(s(b)) +1(g(b)).
for b € B. Set ¢ = g(b), so that g(b—t(c)) =0, and let a € A be such that f(a) = b —t(c). Then
(fos+10g)(b) = f(s(f(a))) + f(s(t(c))) +1(8(f(a))) +1((t(c))) = f(a) +1(c) = b.
(i) = (iii) Sett(c) =w(0,c). Then g(t(c)) = g(w(0,¢)) =c.
U

DEFINITION 12.4.4. An object P of an abelian category is projective if for epimorphism
w: B— C and every morphism g: P — C, there exists an morphism f: P — B suchthat g =mo f.

REMARK 12.4.5. The property of P being projective is represented by the existence of g in
the commutative diagram

with exact lower row.
PROPOSITION 12.4.6. Free R-modules are projective.

PROOF. Let F be a free R-module with basis X. Let #: B — C be a surjective R-module
homomorphism, and suppose that g: ' — C is an R-module homomorphism. For each x € X,
let b be an element of B such that w(b) = g(x). Since F is free, we may defined f: F — B by
f(x) =bforeach x € X. Then m(f(x)) = g(x) forallx € X, so mo f = g as X generates F. [J

EXAMPLE 12.4.7. Not every projective module need be free. For example, consider R =
7./67Z. We claim that P = 7Z /37 is a projective R-module. To see this, suppose that B is a
7./6Z-module and g: B — 7 /37 is surjective. Take any b € B with g(b) = 1. Then the Z/67Z
submodule generated by b is isomorphic to Z/3Z, and hence 1 — b defines a splitting of g.

Note that P is not projective as a Z-module (abelian group) since the quotient map Z — 7 /37
does not split. In fact, every projective Z-module is free.

We describe some equivalent conditions for projectivity.

PROPOSITION 12.4.8. The following conditions on an R-module P are equivalent:
i. Pis projective,

ii. every surjection w: M — P of R-modules is split, and

iii. P is a direct summand of a free R-module.
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PROOF. If P is projective and w: M — P is a surjection, then the identity map idp: P — P
lifts to a homomorphism f: P — M such that idp = wo f, so (i) implies (ii). If (i1) holds, then
choose a set of generators X of P, and let F' be the free R-module on X, which comes equipped
with a surjection : F — P that restricts to idy. This surjection is split, so P is a direct summand
of F' by Proposition 12.4.3, and therefore (iii) holds.

If P is a direct summand of a free module F with complement Q, then 7: B — C is a sur-
jection, and g: P — C is a homomorphism of R-modules, then we can extend g to §: ' — C by
setting g(¢g) = 0 for all ¢ € Q. We then have f: F — B such that 7o f = g by the projectivity of
F, and the restriction f = f|p satisfies o f = g. Thus, (iii) implies (i). U

EXAMPLE 12.4.9. For n > 1, the left M,,(R)-module L of column vectors under left multipli-
cation is a direct summand of M, (R), which is isomorphic to L" as a left R-module. Hence, L is
projective, though it is not free for n > 2.

In the case that R is a principal ideal domain, we have the following.

COROLLARY 12.4.10. If R is a principal ideal domain, then every projective R-module is
free.

PROOF. By the classification of finitely generated modules over a principal ideal domain, it
suffices for finitely generated R-modules to show that any R-module of the form
A=R/(a1) ®R/(a2) ®---R/(an)

for nonzero and nonunit aj,as,...,a, € R is not projective. Consider the obvious quotient map
R" — A. That it splits means that each R — R/(a;) splits. Then R = (a;) @ (x) for some x € R,
which means that R is free of rank 2 over itself, which is impossible (e.g., by the classification
theorem).

The general case is left as an exercise. U

DEFINITION 12.4.11. An object I in an abelian category is injective if for every monomor-
phism 1: A — B and every morphism f: A — I, there exists a morphism g: B — I such that

f=gol.

REMARK 12.4.12. The property of / being injective is represented by the existence of g in
the commutative diagram

0——A—5B

/
4
I
with exact upper row.

Dually to the analogous result projective modules, we have the following.

LEMMA 12.4.13. As R-module I is injective if and only if every monomorphism 1: [ — R is
split.

We also have the following interesting criterion, which employs Zorn’s lemma.
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PROPOSITION 12.4.14 (Baer’s criterion). A left R-module I is injective if and only if every
homomorphism J — I with J a left ideal of R may be extended to a map R — 1.

PROOF. Let A be an R-submodule of an R-module B and f: A — I be an R-module homo-
morphism. It suffices to show that we can extend f to g: B — I with g|4 = f. Let X be the set
of pairs (C,h) with C an R-submodule of B containing A and i: C — I an R-module homomor-
phism. We have a partial ordering on X given by (C,h) < (C',/) if C is contained in C’ and
I'|c = h. Given a chain " in X, we have an upper bound (C, ) with C = Up x)e D such that if
d € D for (D,k) € C, then h(d) = k(d). By Zorn’s lemma, % has a maximal element (M,[).

Suppose first that M # B, and let b € B— M. Consider the left ideal

J={reR|rbeM}

of R. Define s: J — I by s(r) = I(rb) for r € J. This R-module homomorphism may be extended
to t: R — I by assumption. Then define N = M + Rb and let g: N — I be the unique R-module
homomorphism such that ¢|y; = I|ys and ¢(rb) =¢(r) for all r € R. This exists as M N Rb = Jb,
and [(rb) = s(r) =t(r) for r € J. (Also, if rb =0, then r € J, so g(rb) = I(rb) = 0 in this
instance.) The existence of g gives a contradiction of the maximality of M. Thus M = B, and we
are done. U

EXAMPLE 12.4.15.

a. Q is an injective Z-module.

b. Z/nZ is an injective Z/nZ-module for any n > 1.

c. Z/3Z is an injective Z/6Z-module, but not an injective Z/9Z-module.

We have a very nice description of injective objects in Ab.

DEFINITION 12.4.16. An abelian group D is called divisible if multiplication by 7 is surjec-
tive on D for every natural number n.

PROPOSITION 12.4.17. An abelian group is injective if and only if it is divisible.

PROOF. Let D be injective, and take d € D. Then there exists a group homomorphism
¢: Z — D with 1 — d. We also have the multiplication-by-n map on Z, which is injective.
By injectivity of D, we have a map 6: Z — D with ¢ = n6. Then d =n6(1), so D is divisible.

Conversely, let D be divisible. By Baer’s criterion, it suffices to show that every homomor-
phism ¢ : nZ — D with n > 1 extends to a homomorphism 6: Z — D. Such a ¢ is determined
by d = ¢(n). Letd’ € D be such that nd’ = d. Set (1) =d'. O

12.5. Exact functors

Despite the fact that additive functors preserve direct sums, they may not preserve exact
sequences. We make the following definitions.
DEFINITION 12.5.1. Let F': ¥ — & be an additive functor of abelian categories.

a. We say that F' is left exact if for every left short exact sequence 0 - A — B — C in ¢, the
sequence 0 — F(A) — F(B) — F(C) is exact in 2.
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b. We say that F is right exact if for every right short exact sequence A - B — C — 0in %,
the sequence F(A) — F(B) — F(C) — 0 is exact in 2.

c. We say that F is an exact functor if for every short exact sequence 0 = A —+B —C — 0
in %, the sequence 0 — F(A) — F(B) — F(C) — 0 is exact in 4.

REMARK 12.5.2. A contravariant additive functor F': € — & is left exact if the resulting
covariant functor €°P — & is left exact.

EXAMPLE 12.5.3. The functor F: Ab — Abby F(A) =A® A with F(f) = f® f is exact.

TERMINOLOGY 12.5.4. We (somewhat loosely) say a functor a certain structure if its takes
structures of one sort in a given category (induced from the source category) to those of the
same sort in another (induced from the target category). For instance, exact functors are additive
functors that preserve short exact sequences.

LEMMA 12.5.5. Let F: € — & be an additive functor of abelian categories. The following
are equivalent:

i. Fisexact,

ii. F is both left and right exact,

iii. F preserves all three-term exact sequences A — B — C, and

iv. F preserves all exact sequences.

PROOF. It is immediate that (iv) implies the other statements and also that (ii) implies (i).
Suppose that F that preserves all three-term exact sequences. To say that

0—A—->B—C—0

1s short exact is equivalent to saying that the three three-term sequences 0 -+ A — B,A — B — C,
and B — C — 0 are all exact. Since exactness of these is preserved by F, so is exactness of the
original short exact sequence. So, (iii) implies (i).

If F is an exact functor, take any exact sequence A.. Then 0 — kerd; — A; — imd; — 0 is
short exact, so

0 — F(kerd;) — F(A) 9% F(imd;) — 0
is exact as well. It F(d;) follows that image F (imd;) and kernel F (kerd;) for all i, so we have
imF (d;) = F(imd;) = F (kerd;_1) = kerF(d;_1).
Thus, F(A.) is exact. Thus, (i) implies (iv), which finishes the proof. O
REMARK 12.5.6. The reader may also check that an additive functor of abelian categories is

left (resp., right) exact if and only if it sends short exact sequences to left (resp., right) short exact
sequences.

Recall that for an additive category %, the functors 4% (and hx) may be viewed as taking
values in Ab, and clearly such functors are additive. In fact, they are also left exact.

LEMMA 12.5.7. Let € be an abelian category, and let X be an object of €.
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a. The functor hy : € — Ab is left exact.
b. The functor hX: €°° — Ab is left exact.

PROOF. Let

0sALBSCco0

be an exact sequence in €. Applying hy, we obtain homomorphisms

h h
0 — Homy (X,4) 22U Homy (X, B) %) Home (X, €)
of abelian groups, and we claim this sequence is exact. If ix (f)(a) =0, then foa =0, but fisa
monomorphism, so & = 0. Since hy is a functor, we have hx (g)ohx(f) =0, and if B € kerhx(g),
then go B = 0. Naturality of the kernel implies that § factors through a morphism X — kerg.
But we have canonical isomorphisms

A = coim f = im f = kerg,

the first as f is a monomorphism, and the composite of the composite of these with the canonical
morphism kerg — B is g. Therefore, we obtain a morphism ¢ : X — A satisfying f o oo = g. This
proves part a, and part b is just part a with % replaced by € °P. O

LEMMA 12.5.8. Let R be a ring, and let N be a right R-module. The tensor product functor
ty: R-mod — Ab given on objects by ty(M) = N @g M and on morphisms by ty(g) = idy ®g is
right exact.

PROOF. Since tensor products commute with direct sums, #y is additive. Let

ALB3coo0

be a right short exact sequence of R-modules. The group N ®g C is generated by simple tensors
n®c withn € N and c € C and

n@c=n®gb)=(idy®g)(n®>b)

for any b € B with g(b) = ¢, we have that #y(g) is surjective. We need then only define an inverse
to the surjection g: cokerty(f) — N®gC. For this, we consider the map 6: N x C — cokerty/(f)
given on (n,c) € N x C by picking b € B with g(b) = c and then setting 6 (n,c) = n®b-+imty(f).
If g(b') =c,theng(b—b') =0,s0b—b" = f(a) for some a € A, and then n® (b—b') =ty (f)(n®
a), so 0 is well-defined and then easily seen to be biadditive and R-balanced. The induced map
®: N®gC — cokerty(f) is inverse to g by definition. O

LEMMA 12.5.9. Let € be an abelian category. A sequence

0sALBSC

is exact if every sequence

0 — Homy (X,A) M Homy (X, B) M Homy (X,C)

Is exact.
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PROOF. For X = A, we get
gof=hx(g)ohx(f)(ida) =0,

so we have a monomorphism s: im f — kerg. For X = kerg and f8: kerg — B the natural
monomorphism defined by the kernel, we have #* (g)(B) = go 8 = 0, so there exists a: kerg —
A with foa = 3. We then have that 8 factors a morphism ¢: kerg — im f inverse to s. U

PROPOSITION 12.5.10. Any left (resp., right) adjoint to ia functor between abelian categories
is left (resp., right) exact.

PROOF. We treat the case of left exactness, the other case simply being the corresponding
statement in opposite categories. , Let G: ¥ — & be an additive functor of abelian categories
that admits a left adjoint F'. Suppose that

0-AL B3 C

is a left exact sequence in %’. Then for any D € Obj(Z), the sequence

h h
0— hF(D) (A) M hF(D) (B) M hF(D) (C)

is left exact. Since F is left adjoint to G, this sequence is isomorphic to

as a sequence of abelian groups. Since this holds for all D, the sequence
0— G(A) 22 6(B) £ 6(0)
is exact. U

PROPOSITION 12.5.11. Let R be a ring, and fix an R-module M.

a. The covariant homomorphism functor hy;: R-mod — Ab is exact if and only if M is R-
projective.

b. The contravariant homomorphism functor ' : R-mod — Ab is exact if and only if M is
R-injective.

PROOF. We prove part a. Suppose that the functor is exact. Then for any epimorphism
g: B — P we have an epimorphism

Homg (P,B) — Homg(P,P),

and any inverse image ¢ of idp is the desired splitting map of g.
On the other hand, suppose that P is projective. Consider an exact sequence

0-AL B3 Ccoo0.

Then we have a diagram

Homg(P,A) 22 Homg(P,B) 22 Homg(P,C) — 0.
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That this is a complex is immediate. Surjectivity of hp(g) follows immediately from the def-
inition of a projective module. Finally, let & € kerhp(g), so h: P — kerg. Then A — kerg is
an epimorphism, and we have by projectivity of P a map j: P — A with with foj=h, i.e.,
he(f)(j) = h. [

REMARK 12.5.12. If R is a commutative ring, then Homg (A, B) for R-modules A and B may
be viewed as an R-module under (r- f)(a) = r- f(a). It follows easily that Homg(A, -) is an
additive functor from the category of R-modules to itself which is exact if A is projective.

The following embedding theorem, the proof of which is beyond the scope of these notes,
allows us to do most of the homological algebra that can be done in the category of R-modules
for any R in an arbitrary abelian category.

THEOREM 12.5.13 (Freyd-Mitchell). If € is a small abelian category, then there exists a
ring R and an exact, fully faithful functor ¢ — R-mod.

In other words, ¢ is equivalent to a full, abelian subcategory of R-mod for some ring R.
We can use this as follows: suppose there is a result we can prove about exact diagrams in R-
modules for all R, like the snake lemma. We then have the result in all abelian categories, since
we can take a small full, abelian subcategory containing the objects in which we are interested
and embed it into some category of left R-modules. If the result holds in that category, then by
exactness of the embedding, the result will hold in the original category.

12.6. Projective and injective resolutions

DEFINITION 12.6.1. Let % be an abelian category, and let A be an object in .

a. A resolution of A is a complex C. of objects in % together with an augmentation morphism
€ Cy — A such that the augmented complex

d< e
= C—=C—A—=0
1S exact.

b. A projective resolution of A is a resolution of A by a complex of projective objects.

DEFINITION 12.6.2. An abelian category % is said to have sufficiently many (or enough) pro-
jectives if for every A € Obj(%’), there exists a projective object P € Obj(%’) and an epimorphism
P—A.

Since free modules are projective, R-mod has enough projectives.

REMARK 12.6.3. If ¥ has enough projectives, then every object in % has a projective reso-
lution. (We leave the proof as an exercise.)

EXAMPLES 12.6.4. We have the following examples of projective resolutions, all of which
are in fact resolutions by free modules:

a. In Ab, the abelian group Z/nZ has a projective resolution

0757 —7/n7 —0.
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b. Consider R = Z[X], and let A = Z[X]/(n,X? +1). Then we have a projective resolution

0= zjx] LD, 7 @ 71X ZIX] = ZIX]/ (X2 +1) = 0.

c. Consider the ring R = Z[X] /(X" — 1). (This is isomorphic to the group ring 7|7 /nZ).) We
have a projective resolution of Z:

(m)—(-(X*+1))

---—)R&RﬁRﬁ)RE)R%Z%O,
_yn—lyi
where N = Y7 ) X".

PROPOSITION 12.6.5. Let P. — A and Q. — B be projective resolutions in an abelian cate-
gory, and suppose that g: A — B is an R-module homomorphism. Then g extends to a morphism
f-: P.— Q. of chain complexes such that

P P > P() A 0

b
0)) 01 > Qo B 0

commutes. Furthermore, any other lift of g is chain homotopic to f..

PROOF. Let P = (P;,d;) and Q = (Q;,d!), and let € and €’ denote the respective augmentation
maps. Then goe: Py — B. Since €’ is an epimorphism, we have a map fy: Py — Q lifting go €.
Now fp induces a map

fo: kere — keré€/,

and since imd; = ker¢ and kerd| = ker€’, we have an epimorphism Q; — kerd/, and we again
use projectivity, this time of Q1, to lift fy od; to a map f; as in the diagram. We continue in this
manner to obtain f..

Now, for uniqueness up to chain homotopy, it suffices to show that if g = 0, then f. is chain
homotopic to zero. Well, dj,o fo = gody =0, so fo(PRy) C imd]. By projectivity of Ay, we have
so: Py — Q1 with

fo=d}oso+s_10dy=djosp,
where we have set s; = 0 for i < 0 (and d; = 0 for i < 0). Now h| = f| — s¢ od satisfies
diohy =djofi—djosyod, = fyod| — food =0,
soimh; C imdé. Thus, we have s1: P| — Qg lifting Ay, i.e., so that
dyos; =hy = fi —spodi,
as desired. We continue in this fashion to obtain all s;. O
PROPOSITION 12.6.6 (Horseshoe lemma). Suppose that

0-ALBSCc0
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is a short exact sequence in an abelian category and that (PA,€*) and (PC,€C) are projective
resolutions of A and C respectively. Then there exists a projective resolution (P2, €®) of B with
Pl.B = PZA &) Pl.C for each i and such that the diagram

(12.6.1) 0 PA ps L, pC 0
[EI
0 A—L B2 ¢ 0
0 0 0

commutes, where 1. and p. are the natural maps on each term.
PROOF. Choose a lift 7y of €€ to POC — B, and let
g8 = fOSA + 1ty 0 po.

Then £? is clearly surjective, and we have the desired commutativity of the “first two” squares.
Next, letting dX denote the boundary maps with X = A, C, we may define the boundary map df
for B similarly. That is, consider a lift of dlc: P]C — kereC toamap ¢ : PIC — kere®, and define

dlB = lood?—f—l‘l opji.

Then df; maps onto kerd{” and makes the next two squares commute. We then continue in this
fashion. 0

LEMMA 12.6.7. Let € be an abelian category and P. a split long exact sequence of projec-
tives with P; = 0 for i < 0. Then P. is a projective object in Ch(%).

PROOF. Let P. be a split exact sequence of projectives in . In other words, we may write
each Py = Qo and P, = Q; ® Q;_ fori > 1, where Q; is a projective object in %', and the morphism
P, — P,_y is simply the composition of the projection P; — Q;_; with the inclusion Q;_; — P,.
Suppose that 7.: A. — P. is a epimorphism of complexes. Since Q; is projective, there exists a
splitting s;: Q; — A; of the composition of 7; with projection to Q;. Then

i=si®si-1: BF=0i®Q0i—1 = A;
is a splitting of ;. Since ¢. is a morphism of complexes, it is a splitting of 7.. 0
REMARK 12.6.8. Every split exact complex is the cone of a complex with zero differentials.

REMARK 12.6.9. Though we shall not prove it, every projective object in the category of
chain complexes over an abelian category is a split exact sequence of projectives. Also, the
projective objects in the category of bounded below chain complexes (or those in nonnegative
degrees) are the bounded below exact sequences of projectives (which automatically split).

DEFINITION 12.6.10. We say that a functor F': 4 — & between categories preserves pro-
Jjectives if it takes projective objects in %’ to projective objects in Z.
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PROPOSITION 12.6.11. Let € and 9 be an abelian category. Let F: € — & be a functor
that is left adjoint to an exact functor G: 9 — €. Then F preserves projectives.

PROOF. Let P be a projective object in €. Let f: A — B be a epimorphism in . We must
show that ip(p)(f): F(A) — F(B) is an epimorphism. Note that we have a commutative diagram

Home (P,G(4)) ~" Y, Homy (P, G(B))

i i
hep) (f)

Homgy (F(P),A) ———— Homg(F(P),B),

Exactness of G tells us that G(f) is an epimorphism, and the upper horizontal map is then an
epimorphism by the projectivity of P, hence the result. U

12.7. Derived functors

Suppose that F: € — & is a right exact functor between abelian categories 4 and & and
that ¢ has enough projectives. Then we could try to define the ith left derived functor of F' (for
i > 0) on an object A of € by H;(F(P.)), where P. — A is a projective resolution of A. Of course,
we must check that this definition is independent of the projective resolution chosen, and that we
obtain induced maps on morphisms so that our map becomes a functor.

In the following, one may suppose that % is the category of R-mod, but it is often the case
that Z is some other category, like Ab or S-mod for some ring S.

PROPOSITION 12.7.1. Let F: € — & be an additive functor between abelian categories €
and 9. Fori> 0, there are functors LiF : € — & givenonA € € by LiF (A) = H;(F (P.)) for P. —
A a projective resolution of A € € and givenong: A — Bin € by LiF (g) =F(f)+«: Hi(F(P)) —
H;(F(Q.)) for P. — A and Q. — B projective resolutions and f.: P. — Q. a morphism of com-
plexes f: P.— Q. compatible with the augmentations to A and B. These functors are dependent
on the choices made up only to unique isomorphism.

PROOF. The key point is that Proposition 12.6.5 tells us that F(f), is independent of the
choice of f, since any two choices are chain homotopic. In particular, given any two choices of
P. and Q. of projective resolutions of A, and any choices of f. — P. — Q. ' — Q. — P augmenting
the identity morphism on A gives rise to morphisms on cohomology, the resulting maps F'(f).
and F(f’), must be mutually inverse, since f o f’ and f’ o f augment the identity on A, as to the
identity morphisms on Q. and P.. Thus, H;(F (P.)) is unique up to unique isomorphism, so L;F is
well-defined (up to unique isomorphism), and L;F (id4) = idy, F(a)- Similarly, it is easy to check
that the uniqueness also implies that L;F' is compatible with compositions. U

DEFINITION 12.7.2. For an additive functor F : 4 — 2, the ith left derived functor L;F : € —
2 of F is the functor defined by Proposition 12.7.1.

We have the following obvious corollaries of Lemma 12.7.1.

LEMMA 12.7.3. Let F: € — 2 be a right exact functor of abelian categories. Then we have
a canonical, natural isomorphism LoF = F of functors.



12.7. DERIVED FUNCTORS 379

PROOF. Since F is right exact, the sequence
F(P)— F(R) —F(A)—0
is exact. Hence, we have
LoF (A) = H(F(P)) = F(A).
The reader will easily check the independence of the choice of resolution and naturality, as in
Lemma 12.7.1. O
COROLLARY 12.7.4. If P is a projective object, then L;F (P) =0 fori > 1.

PROOF. Consider the projective resolution that is P in degree zero and O elsewhere, where
the augmentation map P — P is the identity. This has the desired homology. 0

Next, we prove that the L;F are functors.

PROPOSITION 12.7.5. To each morphism f: A — B in €, we can associate morphisms
L;F (f) . LiF (A) — L;F (B)

forall i > 0 in such a way that L;F : € — 2 becomes a functor and LoF (f) = F(f). Further-
more, each L;F is additive.

PROOEF. The unique morphism L;F(f) is induced on homology by the morphism of chain
complexes given in Proposition 12.6.5. Functoriality follows by canonicality of the map of ho-
mology.

To see additivity, note that L;F(0,4) is induced by the zero morphism of chain complexes
and hence is is zero map on L;F(A). Similarly L;F(f + g), for f,g: A — B, can be given by
the sum of the induced maps on chain complexes, hence is given by the sum of the maps on
homology. U

DEFINITION 12.7.6. For a right exact functor F: 4 — & of abelian categories, the functor
L;F 1is called ith left derived functor of F.

We see that LoF and F are canonically naturally isomorphic functors.

DEFINITION 12.7.7. A homological d-functor is a sequence of additive functors F;: € — &
for i € Z, together with, for every exact sequence

0—>Ai>B§>C—>0

in ¢, morphisms 6;: F;(C) — Fi_1(A) fitting in a long exact sequence

= F(a) 2 R(B) 1 B(C) B Foaa)

which are natural in the sense that if we have a morphism of short exact sequences in €,

0 A B C 0

L]

0 A B C’ 0,
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then we obtain a morphism of long exact sequences in &,

s F(A) —— F(B) — F(C) — Fi1(4) —— -+

L

o — F(A)— F(B) — F(C') — F_1(A)) —— -+,

EXAMPLE 12.7.8. Define functors Fy, Fi: Ab — Ab by Fy(A) =A/pA and
Fi(A) = Alp] = {a € A| pa =0}
for any abelian group A, and set F; = 0 otherwise. Given an exact sequence
0—+A—=B—-C—0

in Ab, we obtain a long exact sequence

0 — Alp] — Blp] = Clp] 25 A/pA — B/pB — C/pC — 0

from the snake lemma applied to the diagram

0——A——B——C——0
l» [r |-
0——A——B——C——0.

This defines a d-functor.
THEOREM 12.7.9. For every short exact sequence
0—-A—=B—=-C—=0

in €, there exist morphisms 6;: LiF (C) — Li_F (A) such that the functors L.F together with the
maps 8. form a homological §-functor.

PROOF. By the Horseshoe lemma, we have a projective resolution PX 5 XforX=A,B,C
fitting in a diagram (12.6.1). Now, applying F to the resolutions, we have split exact sequences

0— F(PY) = F(PP) = F(P£) =0

for each i. The resulting exact sequence of complexes (which need not be split) yields a long
exact sequence in homology

.LiF(B) — LiF(C) 25 F(A) — F(B) — F(C) — 0,

as desired.
It remains to check naturality. Consider a morphism of short exact sequences
0——A—T 3B 3c—0
le Lo e
0——a LS00
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By Proposition 12.6.5, can extend ¢ and ¢© to maps of complexes g : P4 — PY and q¢: P¢ —
Pe. Suppose we have constructed P? and P2 via the Horseshoe lemma. We fit this all into a

commutative diagram

(12.7.1) 0 PA——— " P pC 0
NN N
0 f{‘ A B lf C 0
0 pY "'l ’J PC ‘ 0
N RN N
0 Al B o 0

We also have splitting maps j;: PC — PZ and k;: P2 — P2 for each i (and, similarly, maps j/ and
k:). For each X, let us denote the augmentation map by eX.

We must define a map ¢%: P2 — PP’ making the entire diagram (12.7.1) commute. We first
note that

g/o(qBo&‘B—eB oj()oqgopo):qcogo&‘B—ec opéojooqgopo

C/

/
:qcoecopo—g Oqgopoz (qcoec_gc

°q() o po=0.
Hence, there exists a map fy: Pég — A’ with
floBo=q"oe® —€" o jyoqfopo.
Since €' is an epimorphism, we may choose @ : PF— P(‘)‘V with €4’ o g = Bo. Now set
q6 = 19045 oko + 150 0 © po + jo ° ¢ © po.-
The trickiest check of commutativity is that b oqg = ¢B 0 £B. We write this mess out:
gB/oqg :SB,ol(l)oq’éoko—}—SBlol(l)o(xoopo—{—gB,ojé)oqgopo
= floe" oqioko+f o oo po+e¥ o joogf o po
:f’oquz-,‘Aok()—l—f'oﬁoopo—i—eB/oj(’)oqocopo
= floqtoeoko+ (jooq oe — €% o jogf) o po+e” o jyogfop
:f’oqusAok0+j60qu£Cop0
=4Poel.

The other q? are defined similarly. For instance, one can see there exists a map f; : PIC — P()L‘/
such that

. / .
190 Bi =190 foods + ji ogf ods —d§ o jiogfop,
and we set
qi =1 oqtoki +1{o0op; + jiogf.
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O

DEFINITION 12.7.10. A (homological) universal d-functor is a 6-functor F. = (F;, 5;) with
F;: € — 2 such that if G. = (G}, §]) is any other §-functor with G;: ¢ — & for which there
exists a natural transformation 1y: Go ~ Fy, then 1 extends uniquely to a morphism of &-
functors, i.e., a sequence of natural transformations 7n;: G; ~» F; such that

8!
Gl(C) —l> Gi—l (A)

k(ﬂi)c k(nil)A

Fi(C) —— Fii(A)
commutes for any short exact sequence in ¢”:
0—-A—=B—-C—0.
(That is, we get a morphism of the associated long exact sequences.)

The §-functor of left derived functors of F' is universal, which will follow as a corollary of
Theorem 12.7.14 below.

THEOREM 12.7.11. The 8-functor (L;F, ;) is universal.

DEFINITION 12.7.12. Let F': € — & be a left exact functor between abelian categories. We
say that an object Q in ¢ is F-acyclic if L;F(Q) =0 forall i > 1.

Note that the L;F(A) for any A € Obj(%’) may be computed using resolutions by F-acyclic
objects, as opposed to just projectives.

PROPOSITION 12.7.13. Let F': € — 2 be a left exact functor between abelian categories,
and let A be an object of €. Suppose that C. — A is a resolution of A by F-acyclic objects. Then
LiF(A) = H;(F(C.)) for eachi > 0.

PROOF. Note that we have an exact sequence

C
F(e) 2 pico) B pa) o,

so F(A) = Hy(F(C.)). Set Ky = ker €. We then have an exact sequence
0— LiF(A) — F(Ky) = F(Cy) = F(A) — 0,

F(£9)

which yields
ker F(dS)
imF (dS)
We also have isomorphisms L;F (A) = L;_; F (Ky) for each i > 2.
Fori> 1, set K; = kerdic = imdl.cﬂ. The exact sequences
0—-K —C—K_1—0,

1%

L1F(A) = ker(coker(F (C2) — F(C1)) — F(Cp)) ~ H,(F(C)).
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then yield isomorphisms used in the following for i > 2:
ker F(d€)

imF(df, )

12

LiF(A) 2 Li_\F(Ko) -+ 2 L F(Ki_p) 2 ker(F(Ki_1) — F(Ci_1)) >~ H(F(C.)).

O
More generally, we have the following characterization of universal d-functors.

THEOREM 12.7.14. Let € and & be abelian categories such that € has enough projectives.
Suppose that (F;, 6;) form a -functor F;: € — 2 and F;(P) = 0 for every projective P € Obj(€)
and i > 1. Then (F;, ;) is universal.

PROOF. Suppose that (G;, /) is another §-functor and that we have a natural transformation
Go ~~ Fy. Let A € Obj(%) and let m: P — A be an epimorphism with P projective. Let K = ker 7.
Let i > 1, and suppose that we have constructed a natural transformation G;_1 ~» F;_{. Since
F;(P) = 0 is projective, we have a commutative diagram

G,'(A) — Gl',l(K) E— Gl',l(P)
0 F(A) —— Fr(K) —— For (P).

The morphism G;(A) — F;(A) is the unique map which makes the diagram commute.
Now let f: A — B be a morphism in %". We create a diagram as follows:

0 K P A 0
L]
0 K' P B 0,

by taking P’ to be projective, P to be any projective with an epimorphism to the pullback of the
diagram P’ — B <+ A, and K and K’ to be the relevant kernels. We then have a diagram

Gi(A) ——— Gi-1(K)

NN

Fi(A) l Fi-1(K)

Gi(B) Gi1(K')

~N I

Fi(B) —————— Fi1(K').

We need only see that the leftmost square commutes, but this follows easily from a diagram chase
and the fact that the two horizontal maps on the frontmost square are monomorphisms.

Hence, we have constructed a sequence of natural transformations G; ~» F;. It remains only
to see that these form a morphism of §-functors. This being an inductive argument of the above
sort, we leave it to the reader. O
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As a corollary, we have a natural isomorphism of §-functors between the left derived functors
L;F, of aright exact functor Fj and any J-functor (F;, §;) with F;(P) = 0 for P projective and i > 1.
We next wish to study right derived functors of left exact functors.

DEFINITION 12.7.15. An injective resolution of an object A of an abelian category is a
cochain complex I" of injective objects with I’ = 0 for i < 0 and a morphism A — I° such that the
resulting diagram

0A-P 1M 5P — ...

1s exact.

DEFINITION 12.7.16. We say that an abelian category 4 has enough (or sufficiently many)
injectives if for every A € Obj(%’), there exists an injective object I € Obj(%’) and a monomor-
phism A — I.

REMARK 12.7.17. An abelian category has enough injectives if and only if every object of it
has an injective resolution.

PROPOSITION 12.7.18. The category R-mod has enough injectives.

PROOF. First take the case that R = Z. Let A be an abelian group, and write it as a quotient
of a free abelian group

A= (Pz)/T
jes
for some indexing set J and submodule 7" of B ;c; Z. Then we may embed A in
1= (Do)/T,
jel

which is divisible as a quotient of a divisible group.
Next, let A be a left R-module. We have an injection of left R-modules,

¢: A— Homgz(R,A),
by ¢(a)(r) = ra. Now, embed A in a divisible group D, so that the resulting map
Homgz(R,A) — Homz(R,D)
is an injection. The proof that Homz (R, D) is an injective R-module is left to the reader. U

We also have the analogues of Propositions 12.6.5 and 12.6.6 for injective resolutions.
Suppose now that F': 6" — & is a left exact functor between abelian categories and that ¢’
has enough injectives. For each i > 0, we define additive functors R'F : € — & by

R'F(A) =H'(F(I')),
where A — I is any injective resolution of A € Obj(%’) and, for f: A — Bin &, by
R'F(f): R'F(A) — R'F(B)

to be the map on homology induced by any morphism of chain complexes I" — J  extending f,
where A — I' and B — J' are injective resolutions. We have R°F = F. The functors R'F are
called the right-derived functors of F.



12.8. TOR AND EXT 385

DEFINITION 12.7.19. A cohomological 8-functor is a sequence of additive functors F': € —
9 for i € Z, together with, for every exact sequence

0—>Ai>B§>C—>0

in ¢, morphisms &;: F'(C) — F'"1(A) fitting in a long exact sequence

—>FI(A) Fi(f) Fi(B) Fi(g) Fi(C)gFiJrl(A)_)...

which are natural in the sense that if we have a morphism of short exact sequences in &,

0 A B C 0
0 A B c’ 0,

then we obtain a morphism of long exact sequences in &,

Fi(A) —— F{(B) —— F(C) —— F1(A) —— ...

] |

- —— Fi(A") —— F{(B') — F{(C') —— FTY(A)) —— ...,

REMARK 12.7.20. A cohomological 3-functor (F',8') is universal if there exists a unique
extension of any natural transformation FO ~» G°, where (G',(8')’) is another §-functor, to a
morphism of d-functors.

THEOREM 12.7.21. The functors R'F form a cohomological universal 8-functor.
The proof is dual to that of Theorems 12.7.9 and 12.7.11. We also have the following.

THEOREM 12.7.22. Let € be an abelian category that has enough injectives. Then the
cohomology functors H': Chzo(‘ﬁ) — € for i > 0 on complexes in nonnegative degrees together
with the connecting homomorphisms 8' attached to a short exact sequence of complexes form a
universal S-functor.

12.8. Tor and Ext

EXAMPLE 12.8.1. Take the abelian group M = Z/nZ. If we apply the functor 7y;: Ab — Ab

to the exact sequence of abelian groups 0 — Z 5 Z — 7Z /nZ — 0 for some n > 2, we obtain the
right, but not left, exact sequence

7/nZ % 7InT =2 7./n7 — 0.

If we apply hyr: Ab — Ab to the same exact sequence, we obtain the left, but not right, exact
sequence
0—-0—0—7Z/nZ,

noting that Homy,(Z/nZ,7)) = 0.
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DEFINITION 12.8.2. A right R-module N is R-flat, or just flat, if the tensor product functor
ty . R-mod — Ab is exact.

REMARKS 12.8.3.

a. An S-R-bimodule N is flat as a right R-module if and only if the functor #y: R-mod —
S-mod is exact.

b. Aleft R-module M is defined to be flat if it is flat as a right R°P-module (which is equivalent
to the right tensor product functor with M being exact on R°P-mod).

PROPOSITION 12.8.4. Projective right R-modules are R-flat.

PROOF. Let P be a projective R-module, and let Q be a complement in a free R-module F on
a basis X. Let f: A — B be an injection of R-modules. We have a commutative diagram

id
PorA -2 poeB

| ey, L

FQrA— FQrB

.

xeX
@xeXA;) ®x€X Ba
the vertical isomorphisms following from the commutativity of direct sums and tensor products.
Since f is injective, so is the lowermost vertical map. Since P is a direct sum of F, the map

PRRA — (PRRA) D (Q®RA) = F QA

is injective, and similarly with A replaced by B. Thus, commutativity of the diagram yields the
injectivity idp ® f. Since left tensor product with P preserves injective homomorphisms and right
exact sequences, it preserves short exact sequences and is therefore exact. U

For modules over a principal ideal domain, we can characterize flat modules as follows.

PROPOSITION 12.8.5. Let R be a PID. An R-module M is flat if and only if M is R-torsion-
free.

PROOF. Let M be a flat R-module. Let r € R be a nonzero element, and let ¢,: R — R be the
injective map ¢,(x) = rx for x € R. The tensor product map idy g9, is injective as A is R-flat.
Under the identification M ®g R = M of Corollary 9.3.24, determined by m & r — rm, the map
1dys @g @, becomes identified with the map y,.: M — M that is left multiplication by r. Since y;
is then injective for every nonzero r, we see that M has no nonzero R-torsion.

Next, let M be R-torsion free. It is the union (which is also the direct limit) of its finitely
generated, necessarily torsion-free R-submodules. We omit here a check of the fact that direct
limits and tensor products commute. Given this, we may assume that M is finitely generated, in
which case it follows from Proposition 12.8.5 that M is free, hence projective, and hence flat. [

REMARK 12.8.6. It follows from Corollary 9.9.3 and Proposition 12.8.5 that finitely gener-
ated flat modules over a PID R are R-free.
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DEFINITION 12.8.7. Let R and S be rings, and let A be an S-R-bimodule. For i > 0, the ith
Tor-functor

TorR(A, -): R-mod — S-mod
is the ith left derived functor of #4.
REMARK 12.8.8. If R is a commutative ring, then an R-module A provides functors
TorR(A, -): R-mod — R-mod
since R-modules are automatically R-R-bimodules.

REMARK 12.8.9. As TorR(A,B) = H;(A ®g Q.) for any projective resolution Q. of B by R-
modules, the composition of the functor

TorR(A, -): R-mod — S-mod

with the forgetful functor F': R-mod — Ab agrees with the functor
TorR(F(A), -): R-mod — Ab,

hence the omission of the notation for S in the definition of TorX(A, -).

EXAMPLE 12.8.10. In Ab, consider the projective resolution

0257 —7Z/nZ —0

of B. Computing the homology of 0 — A > A — 0, we obtain
A/nA ifi=0
Tor”(A,Z/nZ) = { Aln]={a € A|na=0} ifi=1
0 ifti>2.

LEMMA 12.8.11. Let R be a ring. The following conditions on a right R-module A are
equivalent:

i. Ais flat,
ii. TorR(A, ) =0,
iii. TorR(A,-) =0 foralli> 1.
PROOF. Clearly, (iii) implies (ii). If
0—B; —>By—+B3;—0

is an exact sequence of right R-modules, then we have a long exact sequence for any R-module
that ends with
Torf(A,B3) - A®QrB| - A®rBy - AQgrB3 — 0,
from which it is clear that (i1) implies ().
Finally, if (1) holds and Q. is a projective resolution of B in R-mod, then the complex

- > AQROQ] 7 ARRQ) > ARrB—0
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is exact by the flatness of A. It follows that
Torf(A,B) = H(A®r Q.) = 0
forall i > 1. U

PROPOSITION 12.8.12. Let A be a right R-module and B a left R-module. Let P. — A be a
resolution of A by projective right R-modules. Then

Torf(A,B) = H;(P. @ B)

foralli> 0. In particular, the functors Torfe (-,B) are the left derived functors of R-tensor product
with B.

PROOF. We sketch a proof. Form projective resolutions P. — A and Q. — B. We then have a
double complex P. ®g Q., and we can consider homology of the total complex

Tot(P.®r Q.)k = P P®rQj,
i+j=k
where the boundary maps from each term P; ®g Q; are given by the sums
di ®idg, +(—1)"idp, @d?.
We claim that the homology of this chain complex is isomorphic to the homology of the com-

plexes P. ®g B and A ®g Q., from which the lemma follows.
We have maps of complexes

(12.8.1) Tot(P.®gQ.) — P.QrB
and
(12.8.2) Tot(P. @ Q.) > AR Q.

induced by augmentation morphisms (up to sign, and zero maps otherwise). The double complex
P.®r Q. — P.®g B (i.e., with P, ®g B in the (i,—1)-position) has exact columns, since each
projective module is flat. One can show that this implies that the total complex of this cpomplex
is exact. This says precisely that the map in (12.8.1) induces an isomorphism on homology.
Similarly, so does the map in (12.8.2). U

We have the following almost immediate corollary, since left and right tensor product with a
module over a commutative ring are naturally isomorphic functors.

COROLLARY 12.8.13. Let R be commutative. We have TorR(A,B) = TorR(B,A) for all R-
modules A, B and i > 0.

We now give an alternate proof of Proposition 12.8.12.
PROOF. Let Q. — B be a projective resolution of A by right R-modules. Suppose that
0—A Ay —>A3—0
is an exact sequence. Then

0—>A1®RQ. —>A2®RQ. —>A3®RQ. —0
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is exact. This yields a long exact sequence in homology of the form
.-+ — TorR(Ay,B) — Tork (A, B) — Torf(A3,B) — Torf | (A1,B) — -,

so the functors Tor®(-,B) do in fact form a §-functor. Futhermore, since any projective right
R-module P is flat, we have that TorlR (P,B) =0 for all i > 1. By Theorem 12.7.14, it follows
that the T01r,’-e (-,B) are a universal §-functor extending zg. The proposition therefore follows by
Theorem 12.7.11. U

REMARK 12.8.14. It follows from Proposition 12.8.12 and Proposition 12.7.13 that the
TorR(A, B) can be computed via a flat resolution of either A or B.

The following explains something more of the name “Tor”.
LEMMA 12.8.15. The functor Tor?(A, -) = 0 if and only if A is torsion-free.

PROOF. We prove this for finitely generated abelian groups. (The general result then follows
from the fact that left derived functors commute with colimits.) By Proposition 12.8.13, we may
compute TorlZ (A, B) by finding a projective resolution of A. Say

ASZ"OL/ML G- L/n L
with r > 0 and the n; > 2. Then we have a projective resolution of the form

0 gmtr Q) gm0

Tensoring with B and computing H;, we obtain B[n| @ - - - & B[n,|. This will always be trivial if
and only if r = 0. U

By Lemma 12.8.15, a Z-module is flat if and only if it is torsion-free. This is seen to hold in
the same manner with Z replaced by any PID. Note that this does not hold for all commutative
rings.

EXAMPLE 12.8.16. Consider R = Q[x,y|. Then the exact sequence

(3»=x) (a,b)—ax+by

0—R s R? »R—>Q—0
is a free resolution of Q. Let J be the ideal (x,y) of R, so Q = R/J. Then we have isomorphisms

Torf(J,Q) = Tor§(Q, Q) 2 ker(Q & @?) = Q.

Thus J is not flat as an R-module, even though it is torsion-free.

Here is another class of examples.

LEMMA 12.8.17. Let S be a subset of R that is multiplicatively closed. Then the localization
S~R is a flat R-module.

PROOF. Recall that we have natural isomorphisms S~'A = S~ R®gr A for R-modules A. Sup-
pose that f: A — B is an injection of R-modules. Then we obtain an induced R-module homo-
morphism f: S~'A — S~!B, which we must show is an injection. Suppose f(s~'a) = 0. Then

0=sf(s""a) = f(a) = f(a),
soa=0. U
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DEFINITION 12.8.18. Let R and S be rings, and let A be an R-S-bimodule. For i > 0, the ith
Ext-functor
Exth(A, -): R-mod — S-mod
is the ith right derived functors of /4.

EXAMPLE 12.8.19. For R = 7Z, we may consider the injective resolution
0—7Z/nZ—Q/Z% Q/Z —0
of Z/nZ. For any abelian group B, we write BY = Hom(B,Q/Z). We must compute the coho-
mology of AY % AV. This yields
AV[n]  ifi=0
Ext,(A,Z/nZ) = { AV /nAY  ifi=1
0 ifi=2.
One has that Exti(P,B) = 0 for all B and all i > 1 if P is a projective module, as follows from

the exactness of Homg(P, - ). We have the analogous result to Proposition 12.8.13 for Ext-groups,
which says that such groups may be computed using projective resolutions.

PROPOSITION 12.8.20. We have Exth(A,B) =2 H (Homg(P,B)), where P. — A is any pro-
Jjective resolution of A.

We end with a characterization of Ext}, in terms of extensions.

DEFINITION 12.8.21. An extension of an R-module A by an R-module B is an exact sequence
0—B—E —A— 0, where E is an R-module. Two extensions of A by B are called equivalent
if there is an isomorphism of exact sequences between them that is the identity on A and B.

Note that all split extensions (i.e., those with split exact sequences) are split.

EXAMPLE 12.8.22. There are p equivalence classes of extensions of Z/pZ by Z/pZ as Z-
modules:

0—2/pZ P 2/ p*2 ™ 7./ p7 — 0
with1 <i<p—1,and
0—7Z/pl —Z/pZSL/pZ — 1] pZ — 0.

THEOREM 12.8.23. There is a one-to-one correspondence between equivalence classes of
extensions of A by B and Exth(A, B).

PROOF. Suppose that & is an equivalence class of extensions of A by B, representative by an
exact sequence

(12.8.3) 0—-B—E—A—0.
We then have an exact sequence
Homg(E, B) — Homg(B, B) % Extk(A, B),
and we set (&) = dg(idp). This is clearly independent of the choice of representative.
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Conversely, suppose u € Exth(A, B). Fix an exact sequence
0K5P—>5A—0
with P projective. We then have an exact sequence
Homg (P, B) — Homg(K,B) % ExtL(A,B) — 0.
Let r € Homg (K, B) with d(t) = u. Let E be the pushout
E=PlUgB=P®B/{(1(k),t(k)) | k€ K}.

We have a commutative diagram

(12.8.4) 0 K P A 0
ol
0 B E A 0.

Here, the map E — A is defined by universality of the pushout (via the map P — A and the zero
map B — A). We define ¥ (u) to be the equivalence class &’ of the extension given by the lower
row. Though it is not immediately clear that this is independent of the choice of ¢ with d(¢) = u,
this follows if we can show that W and ® as constructed are mutually inverse.

To see that (W(u)) = u, set & = ¥(u), again choosing any ¢ with d(¢) = u. The diagram

9,
(12.8.5) Homg(B,B) —— Exth(A, B)

JhB(t) H

Homg (K, B) —2— Extk(A, B),
commutes. Hence, we have
O(W(u)) = D(E) = ds(idy) = A(1) = u,

as desired.

On the other hand, suppose given & with exact sequence (12.8.3). By projectivity of P, the
map P — A lifts to a map P — E. Hence, we have a diagram as in (12.8.4). Furthermore, the
map 7 in the diagram (12.8.4) satisfies d(¢) = d(idg) by the commutativity of (12.8.5). Now,
there exists a map P llg B — E by universality of the pushout, and it is the identity on A and B,
hence an isomorphism by the 5-lemma. It follows by construction that

WY(D(E)) = ¥(Is (id)) = &.

12.9. Group cohomology
In this section, we let G denote a group.

DEFINITION 12.9.1. The augmentation map €: Z[G| — Z is the unique ring homomorphism
with g(g) = 1 forall g € G.
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DEFINITION 12.9.2. The augmentation ideal I of Z|G] is the kernel of the augmentation
map.

LEMMA 12.9.3. The augmentation ideal I is generated by {g— 1| g € G}.

PROOF. We have
IG={Zagg€Z[GH Zag=O}.
geG geG
For o = deG agg € I, we have

a=0a—Y a;=Y a,(g—1).

geG geG

DEFINITION 12.9.4. Let A be an Z|G]-module.
a. The G-invariant group of A is the Z-module
A°={acA|ga=aforall g€ G},

the maximal Z[G]-submodule of A on which all elements of G act trivially.

b. The G-coinvariant group of A is the Z-module Ag = A/IgA, the maximal Z|G]-quotient
of A on which all elements of G act trivially.

EXAMPLES 12.9.5.
a. If we view Z as a Z[G]-trivial module, we have Z¢ = Z and Zg = Z.

b. We have Z|G] = Z via the augmentation map, and

7[6]° = Z-Ng if G is finite
0 otherwise,

where NG = }.,c; & 1s the norm element in a finite group G. The computation of the invariant
group follows from the fact that the action of G on itself by left multiplication is transitive, so for
an element of Z|G] to be G-fixed, its coefficients must all be equal.

c. Let K/F be a finite Galois extension of fields, and let G = Gal(K/F). Then K¢ = F and
x\G _ X

(K*)C = FX,
EXAMPLE 12.9.6. Forn > 2, let S, act on ./ = Z[x1,xp,...,x,] by

9 ’P(xl 3 K250 axn) = p(xo(l)axc(Z)a s 7x6(n))

for 0 € S, and p € /. This action is Z-bilinear so it gives <7 the structure of a left .27 [S),]-
module. Then 7% is the Z-module of symmetric polynomials in .7, which is the Z-module
generated by the elementary symmetric polynomials (see Definition 6.13.4). On the other hand,
a5, = 7[x], with the isomorphism induced by the Z-linear map &/ — Z[x] taking each x; to x.
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REMARK 12.9.7. We have a left exact invariant functor A — AY as a functor Z[G|-mod —
Ab, with the map on homomorphisms being the restriction to invariant subgroups. This functor
is naturally isomorphic to the functor hz, where Z is viewed as the trivial Z[G]-module. In
particular

Na: Homyg(Z,A) = A%, na(¢) = ¢(1)
for ¢ € Homy g (Z,A) is a natural isomorphism. Thus, the invariant factor is left exact.

Similarly, A — A defines a right exact coinvariant functor which is isomorphic to the functor
t7, in that we have natural isomorphisms

Z®Z[G}A = Ag, l®a—a+IGA.
In particular, the coinvariant functor is right exact.

DEFINITION 12.9.8.

a. The cohomology H*(G, -) of G is the d-functor given by the right derived functors of
the G-invariant functor. The ith cohomology group of G with coefficients in a Z|G|-module A is
H'(G,A).

b. The homology H.(G, -) of G is the §-functor given by the left derived functor of the
G-coinvariant functor. The ith homology group of G with coefficients in a 7[G|-module A is
H;(G,A).

REMARK 12.9.9. By definition, we have natural isomorphisms
H'(G,A) = Extl,(Z,A) and Hi(G,A) = Tor, “(Z,A)
for i > 0 and Z[G]-modules A.
Let us give a more explicit description of group cohomology.

DEFINITION 12.9.10. The bar resolution of Z as a Z[G]-module is the complex C. with
C; = Z|G™1] for i > 0, differentials d;: C; — C;_1 given on (go,...,g) € G'"! by

1

di((80,----81)) = Y (=1)/(80,---,8j—1,8j+1+---,8i)
=0

and augmentation €: Cp — Z the augmentation map.

REMARK 12.9.11. As follows from Remark 12.9.9, the group H'(G,A) is the ith cohomology
group of the complex

0 — Homyg(Z[G],A) 2N Homyg, (Z[G?*],A) —

— Homg g (Z[G'],A) LN Homgg(Z[G"'],A) = ---

with Homy ) (Z[G],A) = A in degree 0. Similarly, H;(G,A) is the ith homology group of the
complex

= LG @g16A — -+ = Z[G?] @761 A — LZ[G) @z A — 0,
with Z[G] ®7(5) A = A in degree 0.
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There is another complex which computes the cohomology of G, that of the inhomogeneous
G-cocycles, which has a more complicated differential but is more amenable to computation.

DEFINITION 12.9.12. Let A be a G-module, and let i > 0.

a. The group of i-cochains of G with coefficients in A is the set of functions from G' to A:
C(G,A)={f: G'— A}

b. The ith differential d' = d\,: C'(G,A) — C'"1(G,A) is the map

di(f)(g()?gl?"'agi) :g()f(gl?gl)

i
+ Z(_l)jf(g()v"'agj727gjflgjagj+17-" agi) + (_I)H_lf(g()w"agifl)-
j=1

We remark that C(G,A) is taken simply to be A, as G is a singleton set. The proof of the
following, which tells us that C'(G,A) is a cochain complex, is left to the reader.

LEMMA 12.9.13. Foranyi> 0, one has d™' od' = 0.

We consider the cohomology groups of C'(G,A).

DEFINITION 12.9.14. Leti > 0.

a. We set Z/(G,A) = kerd', the group of i-cocycles of G with coefficients in A.

b. We set BY(G,A) = 0 and B/(G,A) = imd'~! for i > 1. We refer to B'(G,A) as the group
of i-coboundaries of G with coefficients in A.

THEOREM 12.9.15. The maps

y': Homgg (Z[G''],A) — C'(G,A)

defined by

v(9)(8r1,-,8) = 9(1,81,8182, - ,8182 -~ &)
are isomorphisms for all i > 0. This provides isomorphisms of complexes in the sense that y
D' =d' oy for alli > 0. Moreover, these isomorphisms are natural in the G-module A.

i+l

PROOF. If (@) = 0, then
¢(1,81,8182,---,8182+8i) =0
forall gy,...,8i € G. Lethy,...,h; € G, and define g; = hJT_llhj for all 1 < j <i. We then have
@(ho, 1, hi) = ho@(1,hy 'y, ... by ') = hoo(1,81,.. .81+ &) =O.
Therefore, ' is injective. On the other hand, if f € C'(G,A), then defining
@(ho,hi,. .. hi) = hof (hy 'y, .. b i),

we have

(P(gho,gh1 youe 7ghi) = gh()f((gh())ilghl TREIE) (ghi—1>71ghi) = ggo(h()ah] yeee 7hi)
and ¥/ (@) = f. Therefore, ' is an isomorphism of groups.
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That ¥ forms a map of complexes is shown in the following computation:

v (D (9) (g1, 8i41) = D(@)(1,81,-.. .81 8i+1)

=@odiyi1(1,81,-..,81" 8i+1)
i+1
—Z O(1,81,--,81°°8j-2,81"""&js--- 81" &i+1)-

The latter term equals

i

g1y (9)(g2, .-, 8i+1) + Z )81, 18j-2,8j-18j:8j+1>-+>&it1)
J:

+(=D" "y (9) (g1, . 81),

which is d'(yi()).

Finally, suppose that oc: A — B is a G-module homomorphism. We then have

aoy (@)(g1,.,8) = o (l,gi,....g1--g) = ¥ (o @)(gr, -, 8),

hence the desired naturality. U

COROLLARY 12.9.16. The ith cohomology group of the complex (Homgg (Z|G™1),A),D})
is naturally isomorphic to H' (G,A).

COROLLARY 12.9.17. The ith cohomology group of G with coefficients in A is

H'(G,A) =Z'(G,A)/B(G,A).

The cohomology groups measure how far the cochain complex C'(G,A) is from being exact.
We give some examples of cohomology groups in low degree.

LEMMA 12.9.18. We have

ZYG,A) = {f: G—A| f(gh) =gf(h)+ f(g) for all g,h € G}

and B' (G, A) is the subgroup of f : G — A for which there exists a € A such that f(g) = ga—a for
all g € G. In particular; if A is a Z.|G)-module with trivial G-action, then H'(G,A) = Hom(G,A).

PROOF. Let a € A. Then d°(a)(g) = ga —a for g € G, so kerd® = A®. That proves part a,
and part b is simply a rewriting of the definitions. Part ¢ follows immediately, as the definition
of Z!(G,A) reduces to Hom(G,A), and B'(G,A) is clearly (0), in this case. O

We remark that, as A is abelian, we have Hom(G,A) = Hom(G®,A), where G is the maxi-
mal abelian quotient of G (i.e., its abelianization).
We turn briefly to an interesting use for second cohomology groups.

DEFINITION 12.9.19. A group extension of G by a G-module A is a short exact sequence of
groups
0-A585HG—1
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such that, choosing any section s: G — & of 7, one has

s(g)as(g) "' =g-a
for all g € G, a € A. Two such extensions & — &” are said to be equivalent if there is an isomor-
phism 6: & = &’ fitting into a commutative diagram

0 A & G 0
|l
0 A &' G 0,

We denote the set of equivalence classes of such extensions by &'(G,A).

DEFINITION 12.9.20. A factor set of a group G valued in a Z[G]-module A is a 2-cocycle
f: G* — A satisfying f(1,g) = f(g,1) =0forall g € G.

LEMMA 12.9.21. Every 2-cocycle of a group is cohomologous to, i.e., has the same coho-
mology class as, a factor set.

PROOF. The condition that F: G*> — A is a 2-cocycle is that
gF (h,k)+ F(g,hk) = F(gh,k) + F(g,h)
for all g,h,k € G. In particular, taking g = h = e, we have F(e,k) = F(e,e) and taking h =k =e,
we have gF (e,e) = fFg,e). Note that for a 1-cochain ¢, we have
de(g;h) = ge(h) —c(gh) +c(g).
In particular, if we set c(g) = ¢ for all g € G some fixed ¢ € A, then dc(g,h) = gc for all g € G,

so if we take ¢ = F(e,e) and replace F by f = F —dc, then f(e,k) =0 and f(g,e) = 0 for all
g,keG. O

THEOREM 12.9.22. The group H*(G,A) is in canonical bijection with & (G,A) via the map
induced by that taking a factor set f: G> — A to the extension &r = A X G with multiplication
given by

(ang) ’ (bvh) = (a+gb+f(g7h)agh)
This identification takes the identity to the semi-direct product A X G determined by the action of
G on A.

PROOF. We check that &% so defined is a group. That it has identity (0,e) is clear from the
definition. Associativity is as follows:

(a+gb+f(g,h),gh) - (c,k) = (a+gb+f(8,h) +ghc+ f(gh, k), ghk)
= (a+g(b+he)+gf(h,k) + f(g,hk), ghk) = (a,g) - (b+ hc + f(h, k), hk).
The inverse of (a,g) clearly has the form (b,g~!) for some b € A, and we then must have a +
gb+f(g,g)=0,50b=—g la—g 'f(g,g"), and the inverse exists. That & is a group

extension of G by A is now nearly immediate. Note also that & is split if f = 0, ]since in that
case (0,8)(0,h) = (0,gh), so G is a subgroup.
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Let ¢ be a 1-cochain with dc(e, g) = dc(g,e) = 0, the latter property occurring if and only if
c(e) = 0. Consider the map Wy .: & — Efyq. given by

Vrcla,g) = (a—c(g),g)
We have

Vrcla+gb+f(gh),gh) = (a+gb+f(g,h) —c(gh),gh)
= (a+gb+f(g,h) +dc(g, h) —gc(h) +c(g), 8h) = We(a, g) We(a, h),
SO Y. is a homomorphism, and it is clearly has inverse Wy, 4. .. Thus, we have a well-defined
map from H?(G,A) to &(G,A).

It remains to construct an inverse, which we sketch as the computations all follow from
what we have already done. Given a group extension, we indeed always have a 2-cochain
f(g,h): G*> — A defining the multiplication. We claim that f is a factor set. For this, asso-
ciativity again tells us that f is a 2-cocycle, and the fact that (0, e) is a two-sided identity forces
fle,g) = f(g,e) =0 for all g € G. The resulting association is clearly inverse on the level of
extensions and cochains. If 6: & — &” is an isomorphism of group extensions of G by A, then
0(0,2) = (—c(g),g) for some c: G — A that has the property that if the factor set is associated
to & is dc plus the factor set associated to &”. O

REMARK 12.9.23. Theorem 12.9.22 tells us that &(G,A) also has a group structure, which
may also be given an explicit description. Given E and E’ extensions of G by A, their product is
ExE' = (ExGE')/{(a,~a) |a € A).

This product is known as the Baer sum of the two extensions.

Let’s give a group-theoretic application of this description of H*(G,A).

PROPOSITION 12.9.24 (Schur). Let G be a group of order mn, where m and n are relatively
prime positive integers. Then every abelian normal subgroup of order n has a complement in G
of order m.

PROOF. Let N be an abelian normal subgroup of G, and set H = G/N. Let f: G> — Nbea
factor set corresponding to G as an extension of H by N by Theorem 12.9.22. For every h € H,

let
= H f(h7k)a

keH
which makes sense as H is abelian. For h,h’ € H, we have

[T/ nk) =TT f(hk)=1t(h)

keH keH
Now
f(h Yt (i) = T f(h,0)" f(hH k) = [T hf (W ,k)h™" f(h,H'k) = ht (W )h™" - £(h).
keH keH

Let a,b € Z be such that am + bn = 1. We then have
F(h,H) = f(h, B0 = qr(h, W)
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Thus, f is a coboundary, so G is a split extension by Theorem 12.9.22. In particular, it contains
a subgroup of order n, isomorphic to H. O

REMARK 12.9.25. Though we do not prove it, we have H (G,A) = 0 for all i > 1 whenever
G and A are finite of relatively prime order. In fact, for any finite group G and G-module A, the
exponent of H'(G,A) divides the order of G.

DEFINITION 12.9.26. A Hall subgroup of a finite group is a subgroup with relatively prime
order and index.

We can extend Proposition 12.9.24 from abelian to arbitrary normal subgroups.

THEOREM 12.9.27 (Schur-Zassenhaus). Every normal Hall subgroup of a finite group has a
complement.

PROOF. Let N be a normal Hall subgroup of G of order n and index m. If N is abelian, then
the result follows from Proposition 12.9.24. Suppose the result holds true in the case of normal
subgroups of order less than n > 2. Let p be a prime dividing n. Let P be a Sylow p-subgroup of
G. Then PN /N has p-power order dividing m. Since m and n are relatively prime, this forces P
to be contained in N. In other words, the Sylow p-subgroups of N and G are the same. Now

(G : NG(P)] = n,(G) = np(N) = [N : Nn(P)],
s0 [Ng(P) : Ny(P)] = m. On the other hand, Ny(P)/P has order prime to m and less than n, being
properly contained in N/P. Furthermore, Ny(P) = NN Ng(P) is normal in Ng(P). By induction
on n, we have that there exists a subgroup K of Ng(P) with K /P isomorphic to Ng(P)/Ny(P)
and |[K/P| = m.

Since P is a p-group, its center Z = Z(P) is nontrivial. It is also a characteristic subgroup of
P, so it is normal in K. By induction, P/Z has a has a complement in K/Z, equal to H/Z for

some subgroup H of K, which necessarily has order m. This group H is the desired complement
to N. U

12.10. Galois cohomology

We briefly consider the cohomology of finite Galois extensions. We have the following gen-
eralization of Hilbert’s Theorem 90, which also has the same name.

THEOREM 12.10.1 (Hilbert’s Theorem 90). Let L/K be a finite Galois extension with Galois
group G. Then H'(G,K*) = 0.

PROOF. Let f: G — L* be a 1-cocycle. We view the elements ¢ € G as abelian characters
L* — L*. As distinct characters of L™, these characters form a linearly independent set. The sum
Y scc f(0)0 is therefore a nonzero map L* — L. Let & € L* be such thatz =Y ;¢ f(0)o(a) #
0. For any 7 € G, we have

@)=Y, v (f(0) 7 lo(a)= ) v (f(r0))o(a)

cceG ceG

=) ' (f(7)-tf(0))o(a) =T (f(1)) ¥ flo)o(a) ="' (f(1))z

ceG oceG
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Thus,

so f is the 1-coboundary of z~!. O

To see how this implies Hilbert’s theorem 90 in the case of finite cyclic extensions, we prove
the following result on the cohomology of cyclic groups.

PROPOSITION 12.10.2. Let G be a finite cyclic group and A be a Z|G|-module. Then for
i>1, we have
, A®/NGA  ifii
HI(G,A) = /Ng lfl l‘S even,
A[Ngl/IcA ifiis odd,

where A[Ng| is the kernel of multiplication by Ng on A.

PROOF. Let g be a generator of G, and consider the augmented resolution of Z given by

.. » 26 Y% z16) 275 z16) X% z16) 2L Zj6) S Z — 0,
where € is the augmentation maps. Note that Homgy ) (Z[G],A) = A by evaluation at 1, and the
map Ng (resp., g —1) on Z|G] induces Ng (resp., g — 1) on A via these isomorphisms. The groups
H'(G,A) are then the cohomology groups of the complex
AL Ao a8 g
which have the desired form. U

REMARK 12.10.3. Suppose that L/K is finite cyclic with Galois group G having generator
o. Proposition 12.10.2 implies that
kCI'NL/K
{o(@)/a|aecL}’
which is trivial by Theorem 12.10.1. This is exactly the statement of Hilbert’s Theorem 90 for
finite cyclic extensions.

H'Y(G,K*) =

We next see how we can use Galois cohomology to study Kummer theory.

PROPOSITION 12.10.4. Suppose that L/K is a finite extension with Galois group G. Let n be
a positive integer not divisible by the characteristic of K. Then there is an isomorphism
KX r\l L><I’l
Kxn

where the class of an element a € K* N L*" in the quotient corresponds to the class of the cocycle

12

H' (G, un)

o(a)

Xa(O) = o

where @ € L* with o = a
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PROOF. The short exact sequence

n

1=y, (L) > L =L —1
of G-modules gives rise to a long exact sequence

n

0= ta(K) = KX 5 KL % HY(G, wy) — 0,
where Hilbert’s Theorem 90 gives the final equality. That a € K* NL*" is sent to the class of ),
follows from the definition of the connecting homomorphism by the Snake lemma. U
This leads to the following definition.
DEFINITION 12.10.5. Let n be a positive integer not divisible by the characteristic of K. For
a € K*, a Kummer cocycle attached to K is a map x,: Gx — U, given by
o(a)

Xa(0O) = o

where o € (K*P)* with o = a.

REMARK 12.10.6. The Kummer cocycle ), in Definition 12.10.5 actually depends on the
choice of nth root of a up to a 1-coboundary of an element of w,. If u, C K, however, it is unique
and is the Kummer character of a. In this case, Proposition 12.10.4 reduces to

Hom(G, u,) = A/K™",
where A = K* N L*". This in turn yields the perfect pairing of Kummer duality.

We next turn to the question of the structure of H?(G,L*) for a finite Galois extension L/K
with Galois group G. We fix such an extension L/K with Galois group G in what follows.

DEFINITION 12.10.7. A central simple algebra over a field K is a simple K-algebra with
center equal to K.

EXAMPLE 12.10.8. Any matrix algebra M,(D) over a division algebra D is a central simple
algebra over the center Z(D), which is a field. For instance, if H denotes the ring of quaternions,
then M,,(H) is a central simple R-algebra.

PROPOSITION 12.10.9. Let f € Z*(G,L*) be a factor set. Let By be an L-vector space with
basis bs for g € G. Define a multiplication on By as the unique binary operation extending the
scalar multiplication L X By — By and satisfying

bo'(x - G(a)bg and bo—bf - f(G, T)b(yf.
foro,t € Gand o € L. Then By is a central simple K-algebra with identity by.
PROOF. We have

(bobt)bp = f(0,7)(boebp) = f(0,7)f(07,p)bsrp = 0(f(7,p))f(0,TP)bs1p
=0 (f(7,p))(bobrp) = bs(f(TP)brp) = b (bcbp).

It follows that that B is an associative L-algebra with K in its center. Note that b1 = 1 in the ring
By since f(o,1) = f(1,0) =1forall 6 € G.
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Let B € L™ generate L/K. Let
= Z ao'b(y c Z(G).

oG

. Then z3 = Bz, so

Z (050 (B) —Bag)by =0,

ocG
and therefore o(f) = B for all 6 € G with as = 0. Since 3 is a generator of L/K, this forces
dg =0forall 0 # 1,50 z= a; € K. Thus, Z(By) =K.

Next, let I be a nonzero ideal of By, and let x € By be an element with a minimal number

k of nonzero coefficients in its expression as an L-linear combination of elements of G. If o
and 7 are distinct elements of G for which x has nonzero coefficients, then () # 7(B). Then
x—1(B)xB~! €1, but its be-coefficient is now zero, while its bs-coefficient is not, and it has no
nonzero coefficients that x does not have. This contradicts the minimality of &, forcing it to be 1.
Thus, x = abs for some o € L™ and ¢ € G. But such an x is a unit in By, s0 1= By. Thus, By is
a simple ring. U

DEFINITION 12.10.10. For a factor set f: G — L*, the K-algebra B of Proposition 12.10.9
is the crossed product algebra of f.






CHAPTER 13

Representation theory

13.1. Semisimple modules
The following definitions will be of special interest in the case of a group ring over a field.

DEFINITION 13.1.1. A module M over a ring R is simple, or irreducible, if it has no nonzero,
proper R-submodules. Otherwise, M is said to be reducible.

DEFINITION 13.1.2. A module M over a ring R is indecomposable if it is not the direct sum
of two proper submodules.

DEFINITION 13.1.3. A module M over a ring R is semisimple, or completely reducible, if it
is a direct sum of irreducible submodules.

REMARK 13.1.4. By definition, a module is simple if and only if it is both semisimple and
indecomposable.

EXAMPLES 13.1.5.

a. Any division ring D is simple as a left module over itself, as it has no nontrivial left ideals.

b. Any vector space V over a field F is semisimple as an F-module, in that it has a basis that
allows us to express it (up to isomorphism) as a direct sum of copies of F.

c. The ring Z is indecomposable as a Z-module, but it is not simple, as it contains proper,
nontrivial submodules nZ for n > 2.

d. Any simple Z-module is a simple abelian group, so isomorphic to Z/pZ for some prime
.

e. The Z-module Z & Z is neither semisimple nor indecomposable, as it is not a direct sum
of simple Z-modules.

f. Let R be the ring of upper-triangular matrices in M, (F) for F a field, and consider the
R-module M = F? under left multiplication of column vectors. Then M has a simple submodule
N =F -ey, so M is not simple. Moreover, M is not semisimple, as M = F -v for any v ¢ N, so N
has no complement in M.

Semisimple modules have the following equivalent characterizations.

PROPOSITION 13.1.6. Let M be an R-module. The following are equivalent:
i. M is semisimple.
ii. M is a sum of simple submodules.

403
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iii. Every submodule of M is a direct summand.

PROOF. That (i) implies (ii) is clear. As for (ii) implies (iii), let N be a submodule of

M=EPM;,
icl
where the M; are simple. Then N N M; is either O or M; for each i, and N is the direct sum of the
M; for which NN M; = M,.

That (ii1) implies (i) is proven as follows. We first claim that any nonzero R-module M
contains a nonzero simple submodule. To see this, choose m € M, and replace M with Rm
without loss of generality. Let N be a maximal R-submodule of M not containing n, which exists
by Zorn’s Lemma. Then M = N &N’ for some nonzero R-submodule N’. Now N’ must be simple,
since any Q C N" has N & Q containing a and therefore equals M.

Now consider the nonempty set X of semisimple submodules of M under inclusion. The
union of any chain C in X is semisimple (as the reader may check), so X has a maximal element
N by Zorn’s lemma. Let N’ be a complement to N in M, so M = N@®N’. If N’ is nonzero,
then N’ contains a simple submodule Q by the claim, and N @ Q is semisimple, contradicting the
maximality of M. So, M = N is semisimple. U

We define semisimple rings in a manner that does not obviously relate to simple rings.

DEFINITION 13.1.7. A nonzero ring is semisimple if it is semisimple as a left module over
itself.

The following contains equivalent conditions for a ring to be semisimple.

THEOREM 13.1.8. The following conditions on a nonzero ring R with unity are equiva-
lent:

i. Ris semisimple,

ii. every R-module is semisimple,
iii. every R-module is projective,
iv. every R-module is injective.

PROOF. Suppose that R is semisimple, and let M be an R-module. Then M is a sum of its
cyclic submodules, so by Lemma 13.1.6, it suffices to see that quotients Q of R are semisimple.
Again employing Lemma 13.1.6, the kernel I of the quotient map R — Q is a direct summand,
so Q is isomorphic to a left ideal of R, which is semisimple as R is.

That (i1) implies (iii) is an immediate consequence of Lemma 13.1.6. Every surjection of R-
modules is split if and only if every injection of R-modules is split by Proposition 12.4.3, so (iii)
and (iv) are equivalent, noting Proposition 12.4.8 and Lemma 12.4.13. Finally, (iv) tells us that
every R-submodule of an R-module is a direct summand, so is semisimple by Lemma 13.1.6. [

We claim that simple rings are indeed semisimple, so long as we assume that descending
chains of left or right ideals terminate. This can be seen directly for matrix rings over division
rings, using Morita equivalence.
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DEFINITION 13.1.9. Aring R is left artinian (resp., right artinian if it satisfies the descending
chain condition on left ideals (resp., right ideals).

LEMMA 13.1.10. If a ring R with unity is the sum of a collection of its nonzero left ideals,
then it is also a sum of a finite subcollection.

PROOF. If {I; | x € X} is a set of nonzero left ideals of R such that R = Y .y I, as left-
modules, then we can write 1 = 27:1 ajforsomen > 1, where a; € Ixj for some x; € I. But then
the left ideals Ixj with 1 < j < n generate R as a left R-module. U

COROLLARY 13.1.11. A semisimple ring R is left artinian, isomorphic as an R-module to the
direct sum of its finitely many minimal left ideals.

PROOF. By definition, R is isomorphic to the direct sum of its minimal ideals. Since the sum
is direct, no proper subcollection of the minimal ideals generates R. Lemma 13.1.10 then tells us
that the collection of minimal ideals must be finite. It follows that R is left artinian. U

PROPOSITION 13.1.12. Let R be a left (or right) artinian simple ring. Then R is semisimple.

PROOF. Let R be left artinian and simple. We first claim that R has a simple R-submodule
(i.e., left ideal). For this, construct a possibly finite sequence of left ideals J; of R recursively,
starting with J; = R, and then for i > 1, taking J; | to be a proper simple submodule if J; is not
simple. Since R is left artinian, we must have that that the process terminates, so R has a simple
submodule.

Now, consider the nonzero sum M of all distinct simple R-submodules of R. Let N be a
simple submodule of R, and let r € R. Then Nr is isomorphic to a quotient of n, so is either 0
or simple. In particular, Nr is contained in M, and therefore Mr C M. Thus, M is not only a left
ideal of R, but a right ideal as well, and therefore M = R.

By Lemma 13.1.10, the R-module R is then a finite sum of distinct simple left ideals: say R
is the sum of N; simple for 1 < i < k, where k is minimal. If the intersection N; with the sum M;
of the N; for v # i is nonzero, then it must equal N;, as N; is simple. But then N; C M;, so M; =R,
which contradicts the minimality of k. So, R is in fact the direct sum of the N;, as required. [

The following is an easy but very useful fact regarding homomorphisms of simple modules.

LEMMA 13.1.13 (Schur’s lemma). Let R be a ring, and let M and N be simple R-modules.
Then any nonzero homomorphism f: M — N is an isomorphism.

PROOF. The kernel of f is a proper R-submodule of M, hence zero, and the image of f is a
nonzero R-submodule of N, hence N. Thus f is bijective. O

Since every nonzero R-linear endomorphism of a simple module is invertible by Schur’s
lemma, we have the following corollary.

LEMMA 13.1.14. Let R be a nonzero ring. The ring Endg(M) of R-linear endomorphisms of
a simple module M is a division ring.

Recall that a ring 1s simple if it has no nonzero ideals, and by Remark 3.9.8, matrix rings over
division algebras are simple. We have the following consequence of Schur’s lemma
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LEMMA 13.1.15. Let M be a simple R-module, and let n > 1. Then Endg(M") = M, (D),
where D is the division ring Endg(M). In particular, Endg(M") is a simple ring.

PROOF. We define a homomorphism
®: M, (D) = Endg(M")
on a matrix C = (¢;;) € M, (D) by

o(C)(my,...,m (Z ¢1;(m;), Z‘P"J mj )

Every endomorphism ¢ € Endg(M") is determined uniquely by the collection of maps ¢;; =
mjo ¢ ol € Endg(M), where m; and 1; denote the ith projection and inclusion maps, so this is
one-to-one and onto. U

We can improve this lemma to treat a finite direct sum of arbitrary simple modules.

LEMMA 13.1.16. Let R be a nonzero ring. Let M be an R-module that is isomorphic to a
direct sum N{' ®Ny> @ - -- @N,’:k with the N; mutually nonisomorphic simple modules and n; > 1
for 1 <i<k. Then we have an isomorphism of rings

k
Endg(M) = HMni (D;)

where D; is the division ring Endg(N;).

PROOF. Let m;: M — N" and 1;: N;" — M be the projection and inclusion maps. Any R-
module endomorphism f of M determines and is determined by the homomorphisms f; j = 7, o

fot: N/ —>ij for 1 <i,j <n. But Homg(N;,N;) = 0 for i # j, so HornR(Ni"",N;”) =0 for
i # j as well. Therefore, the product of restriction maps to N;" yields the first of the isomorphisms
in

k
Endg(M HEndR N = [ M
i=1 i=1
where the second isomorphism is by Lemma 13.1.15 U
Evaluation at 1 gives the isomorphism in the following lemma.
LEMMA 13.1.17. We have Endg(R) — R°P as rings.

We now come to the Artin-Wedderburn theorem, which classifies semisimple rings.

THEOREM 13.1.18 (Artin-Wedderburn theorem). A nonzero ring is semisimple if and only if
it is isomorphic to a direct product of matrix algebras over division rings.

PROOF. For any nonzero ring R, we have an isomorphism

R°? = Endg(R), r— (s sr).
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Supposing that R is semisimple, we have by Corollary 13.1.11 that R= N @ N> & --- ® N *
with the N; mutually nonisomorphic simple left R-modules and n; > 1 for 1 < i < k. Noting
Lemma 13.1.17, we then have

k
R = Endg(R) = [ [ My, (D),
i=1
where D; = Endg(N;) is a division ring. By taking the opposite ring of both sides, we obtain
k k
R= HM’H (D)) = HMni(D?p)a
i=1 i=1

and D® is a division ring as well.

On the other hand, suppose that R = Hi-‘:l M,,(E;) for some division algebras E;. The matrix
rings My, (E;) are semisimple left modules over M, (E;), isomorphic to a direct sum of the simple
submodules of column vectors. They are also then semisimple as modules for the larger ring
R, since the action of R on M, (E;) by left multiplication factors through M, (E;). Thus, R is a
semisimple ring as a direct sum of these as a left R-module. U

Here are some corollaries. The first follows directly from Proposition 13.1.12 and the Artin-
Wedderburn theorem.

COROLLARY 13.1.19. A nonzero ring is left artinian and simple if and only if it is isomorphic
to a matrix ring over a division ring.

Consequently, we have the following, which explains the relationship between simple and
semisimple rings.

COROLLARY 13.1.20. A nonzero ring is semisimple if and only if it is isomorphic to a finite
direct product of left artinian simple rings.

For algebras over a field, we obtain Wedderburn’s theorem.

COROLLARY 13.1.21 (Wedderburn). An algebra over a field F is semisimple if and only if it
is a product of finite-dimensional simple F-algebras, and these simple algebras are isomorphic
to matrix rings over finite-dimensional division algebras over F.

The following greatly limits the choice of finite-dimensional division algebras over alge-
braically closed fields.

PROPOSITION 13.1.22. Let D be a finite-dimensional division algebra over an algebraically
closed field F. Then D = F.

PROOF. Let ¥ € D. Note that Y commutes with every element of F, so F (7y) is a field. Since
D is finite-dimensional over F, the elements ¥ for i > O are linearly dependent over F, and
therefore 7 is algebraic over F. Thus F(y) = F, which is to say y € F. O

COROLLARY 13.1.23. Let A be a finite-dimensional, semsimple F-algebra, where F is an
algebraically closed field. Then A is isomorphic to a direct product of matrix algebras with
F-entries.



408 13. REPRESENTATION THEORY

For commutative rings, we have this:

COROLLARY 13.1.24. A commutative semisimple ring is a finite direct product of fields.
A finite-dimensional commutative semisimple algebra over a field F is isomorphic to a direct
product of finite field extensions of F.

DEFINITION 13.1.25. Let R be a ring. An idempotent in R is a nonzero element e € R such
that e? = e.

DEFINITION 13.1.26. Let R be a ring. We say two idempotents e, f € R are orthogonal if
ef =fe=0.
REMARK 13.1.27. Any finite sum of orthogonal idempotents is also an idempotent.

DEFINITION 13.1.28. We say that an idempotent e in a ring R is primitive if eR is a subring
of R that is not a product of two subrings of R.

LEMMA 13.1.29. Let R be a nonzero ring and k > 1. Then R = Ry X Ry X --- X Ry with R;
rings for 1 <i <k if and only if there exist mutually orthogonal idempotents ey, ey, ... e in Z(R)
such that ey + ey + - - - + e, = 1. These may be chosen so that R; = (e;) in R.

PROOF. If R = H{;l R;, then let ¢; be the identity in R;. The e; are then clearly mutually
orthogonal, central idempotents. Set e = Zle ei. If 1 =(r,ra,...,1c) €R, then
e=e-1=(eir,ery,....exry) =r.
Conversely, given ey, e3,...,¢e;, set R; = Re; in R. For any r € R, we have r = Zle re;, SO
R = Zﬁ-‘zl R;. If r; € R; for each i, then set r = Zﬁ‘:] ri. This satisfies re; = r; for each 1 < j <k,
so r =0 if and only if each r; =0, and thus R = GB{?:lRi as left R-modules. Since each e¢; is

central in R, each R; is also a right ideal and a ring with unit element e;, so this decomposition is
actually as a product of subrings with unity. U

EXAMPLE 13.1.30. If R is a direct product of matrix rings, then it has a set of mutually
orthogonal idempotents consisting of the identity matrices in those rings.

LEMMA 13.1.31. LetR= H;‘:l R; be a direct product of rings R;, and let e; be identity element
of R;. Let M be a left R-module. Then M = EB;‘:] e;M as an R-module.

PROOF. Any m € M can be written as m = eym+eym—+--- +exm, so M = Zile eM. If
mp+my+---+my =mwith m; € e;M for 1 <i <k, then

m; = ej(my +my+---+my) = e;m

for each i, so the representation of m as an element of the sum is unique. Therefore, M is the
direct sum of the ¢;M. O

13.2. Representations of groups

Let G be a group.

PROPOSITION 13.2.1. Let R be a commutative ring, let G be a group, and let M be an R-
module. There is a one-to-one correspondence between
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i. homomorphisms p: G — Autg(M),
ii. R[G]-module structures given by R-bilinear maps ¢ : R[G] x M — M
such that p corresponds to a unique ¢ with p(g)(m) = ¢(g,m) forall g € G and m € M.

PROOF. If p: G — Autg(M) is a homomorphism, then we define

(13.2.1) ( Z agg> ‘m= Z agp(g)(m)
geG geG

for Ypcgagg € R[G] and m € M. For a fixed m, this provides the unique R[G]-module homo-
morphism R[G] — M that sends g to p(g)(m) by the R-freeness of R[G]. In other words, the
operation R[G] x M — M is left distributive. Since p(g)(m+m') = p(g)(m)+ p(g)(m’) for
g € G and m,m’ € M in that p(g) € Autg(M), right distributivity follows from the definition in
(13.2.1) as well.

Conversely, given an R[G]-module M, we define p: G — Autg(M) by p(g)(m) = g-m for
g € Gand m € M. Note that

p(g)(m+m') =g(m+m') =gm+gm' = p(g)(m)+p(g)(m')
and p(g)(rm) = g(rm) = r(gm) = rp(g)(m), so p(g) is indeed an element of Autg(M). More-

p(gg')(m) = (g¢')m = g(g'm) = p(g)(g'm) = p(g)(p(g')(m)) = (p(g) o p(g'))(m),

so p is a homomorphism. O

REMARK 13.2.2. To give an R[G]|-module structure on an R-module M, it suffices to give an
operation G X M — M such that the map g: M — M defined by left multiplication is R-linear.

REMARK 13.2.3. The trivial R[G]-module R on which g-r =r for all g € G and r € R
corresponds to the homomorphism p: G — Autg(R) = R* with p(g) =1 forall g € G.

EXAMPLE 13.2.4. Let R be a commutative ring and G be a group. We may view R[G] as
a left R[G]-module under left multiplication. This corresponds to the homomorphism p: G —
Autg(R[G)) that takes g to left multiplication by g on R[G].

We now focus on the special case that R is a field, which yields group representations. From
now on in this section, we let F' denote a field.

DEFINITION 13.2.5. A representation, or group representation, of a group G over a field F
is an F-vector space V, together with a homomorphism p: G — Autp (V). We also say that V is
an F-representation of G.

REMARK 13.2.6. By Proposition 13.2.1, to make an F-vector space V into an F[G]-module V
is equivalent to providing a homomorphism p : G — Autr (V) that makes it into a representation
of G.

DEFINITION 13.2.7. We say that a representation p: G — Autg (V) is finite-dimensional if
V is a finite-dimensional F-vector space, in which case dimp V is its dimension, also known as
its degree.



410 13. REPRESENTATION THEORY

Representations form one of the most important tools in the study of the structure of groups.

EXAMPLE 13.2.8. Let G be a subgroup of GL,(F). Then the inclusion p: G — GL,(F)
defines a representation of G, and this turns F" into an F[G]-module, where g € G acts on v € F"
by left multiplication of the column vector v by the matrix corresponding to g.

EXAMPLE 13.2.9. The representation p: R — GL,(RR) given by

p(6) = < cos 6 sine).

—sin@ cos6
is a two-dimensional real representation of the additive group R.
DEFINITION 13.2.10.
a. The trivial representation of G over F is F with the trivial G-action.

b. The regular representation of G over F is F|G] with the action of F[G] on itself by left
multiplication.

REMARK 13.2.11. Two F-representations V and W of G are isomorphic if V and W are
isomorphic as F|[G]-modules. Phrased in terms of the corresponding homomorphisms py and
pw, this says that py and py are conjugate by the isomorphism ¢@: V — W: that is, pw(g) =

popy(g)oe! forallg € G.
EXAMPLES 13.2.12. Let V and W be F-representations of a group G.

a. The F-vector space V @r W is a representation of G with respect to the diagonal G-action
g-(veaw)=gvgwforge G,veVandweW.

b. The F-vector space Homp(V,W) is a representation of G with respect to the G-action
(g-9)(v) =gp(g~v) for g € G, ¢ € Homp(V,W),and v € V.

As a special case, we have the following.

DEFINITION 13.2.13. Let V be an F-representation of a group G. The dual representation to
V is V* =Hompg(V,F).

The reader will easily check the following.

LEMMA 13.2.14. Let V and W be F -representations of a group G, and suppose that W is
finite-dimensional. Then Homp(V.W) = V* @p W.

TERMINOLOGY 13.2.15. We speak of F'-representations of a group G as being simple, inde-
composable, and so forth, if the F[G]-modules that define them have these properties.

DEFINITION 13.2.16. An F-representation V of a group G is called faithful if py: G —
Autg (V) is injective.

DEFINITION 13.2.17. A subrepresentation W of an F-representation V of a group G is an
F[G]-submodule of V.

REMARK 13.2.18. An irreducible (i.e., simple) representation is one that has no nonzero,
proper subrepresentations.
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EXAMPLES 13.2.19.
a. All one-dimensional representations of a group are irreducible.

b. Let D, = (r,s) be the dihedral group of prime order p, and let p: D, — GLy(F,) be
the representation with p(s) = (7' 9) and p(r) = (} 1). Then p is indecomposable but not irre-
ducible, since the [F ,-submodule W of V = Ff, spanned by e is left stable by (i.e., is closed under)
the action of D), so is a subrepresentation. On the other hand, W does not have a complement in
V (i.e., the only line in IE‘IZ, that is stabilized by D, is W).

c. The regular representation of a finite group is faithful, whereas the trivial representation is
not faithful unless the group is trivial.

Let us rephrase Schur’s lemma in the context of representations.

LEMMA 13.2.20. Let V be an irreducible F-representation of G. Then Endp g (V) is a divi-
sion algebra over F.

PROOF. This is an immediate consequence of Lemma 13.1.14, noting that the the endomor-
phisms given by multiplication by elements of F are contained in the center of Endpg (V). U

By Proposition 13.1.22, this has the following corollary.

COROLLARY 13.2.21. Let V be a finite-dimensional irreducible F-representation of a group
G, where F is algebraically closed. Then Endp(g) (V) = F.

DEFINITION 13.2.22. Let V and W be representations of G over a field F, with V semisimple
and W irreducible. The multiplicity of W in V is the largest nonnegative integer n such that W”
is isomorphic to a subrepresentation of V. We say that W occurs with multiplicity nin V.

LEMMA 13.2.23. Let V be an F-representation of a finite group G. Let E/F be a field
extension. Then E @V is an E|G|-module under the action g-(a ®v) = a ® gv with the same
character as'V.

PROOF. Note that E[G] = E ®f F[G], and the action described is just the usual action of a
tensor product of algebras on a tensor product of modules over them. U

DEFINITION 13.2.24. For an F-representation V of a group G and a field extension E /F, the
E-representation E ®r V is called the base change of V from F to E.

13.3. Maschke’s theorem

In this section, we let G be a finite group, and we let F' be a field of characteristic not dividing
the order of G.

THEOREM 13.3.1 (Maschke’s theorem). Let G be a finite group, let F' be a field of character-
istic not dividing |G|, and let V be a representation of G over F. Then every subrepresentation
of V is a direct summand of V as an F[G|-module.

PROOF. Let W be an F[G]-submodule of V. As F-modules, we know that we can find a
basis B’ of W contained in a basis B of V. We then have a projection map p: V — W given by
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(X epavy) = Y,.cp aww, where a,, € F equals zero for almost all v. This is an F-linear transfor-
mation that restricts to the identity on W, but it is not necessarily a ' [G]-module homomorphism.
So, define

w:V =V, m(v) Z g p gv)
|G| geG
forve V. Then 7 is clearly F-linear, and moreover
1 -
w(hv) = ‘G’ Y ¢ ' p(ghv) = Tl Y (k") p(kv) = hp(v),
geG keG

so 7 is an F[G]-module homomorphism. Since W is an F[G]-submodule of V, the image of 7 is
contained in W, and for w € W, we have

Y ¢ 'plg Y g lew=mw
|G’geG |G’gEG

In particular, the inclusion of W in V splits &, so W is a direct summand of V as an F[G]-
module. U

As a consequence of Maschke’s theorem and Wedderburn theory, or more specifically, The-
orem 13.1.8, we have the following corollary.

COROLLARY 13.3.2. The group ring F[G] is a semisimple F-algebra, which is to say iso-
morphic to a finite direct product of matrix rings over finite-dimensional division algebras over
F.

This in turn yields the following corollaries. For the first, see Corollary 13.1.24.

COROLLARY 13.3.3. Let G be a finite abelian group, and let F be a field of characteristic
not dividing |G|. Then F|G] is a direct product of finite field extensions of F.

EXAMPLE 13.3.4. By the Chinese remainder theorem, we have
Q[Z/pZ] = Q] /(x" = 1) = Qlx]/(x— 1) x Q[x] /P, (x) = Q x Q(E)),

where (), is a primitive pth root of unity in C. Note, however, that if we take I, in place of Q,
then we obtain

FplZ/pZ] = Fpla] /(" = 1) = Fp[a] /(x = )P = F,[y]/(¥")
for y = x — 1, which is not a direct product of matrix rings over fields.

For the following, see Corollary 13.1.23.

COROLLARY 13.3.5. IfF is algebraically closed, then F|G] is isomorphic to a direct product
of matrix algebras over F.

PROPOSITION 13.3.6. Suppose that F is algebraically closed, and write

k
FIG) = [T (F)
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for some k > 1 and n; > 1 for 1 <i <k. Then k is equal to the number of conjugacy classes of
G-

PROOF. First, we remark that Z(M,,,(F)) = F, so dimp Z(F[G]) = k. For any g € G, we form
out of its conjugacy class C, the sum Ny = Yc¢, h. If we let G act on F[G] by conjugation, then
the G-invariant module for this action is Z(F[G]). Moreover, N, lies in this invariant group. That
is, the action restricts to an action on G which preserves conjugacy classes, so

kNgk™' = Y khk™' = Y h=N,,
heCy heCy

The elements N,, where g runs over a set S of representatives for the conjugacy classes of G, are
linearly independent as they are sums over disjoint sets of group elements. Andif z =13 ,c5a.8 €

Z(F[G]) and k € G, then
Z ae8 = Z agkgk_1 = Z Q118
geG geG geG

S0 ag = ai-14 for all k, so aj = ag for all h € C,. Thus, z is in the F-span of the elements Nj.
Thus, we have k = |S|, the number of conjugacy classes. U

REMARK 13.3.7. If F is algebraically closed, then we may by Corollary 13.3.5 write

k
FlG] = Hle (F)

for some k > 1 and n; > 1 for 1 <i < k. Then G has k isomorphism classes of irreducible
representations of dimensions ny,ny,...,n;. Let V; be the ith of these, with dimgV; = n;. Then
V; occurs with multiplicity n; in the regular representation R|G], which is to say that R[G| =
VeV, e---@ Vk" k. Under this isomorphism, each copy of V; is identified with one of the simple
left ideals in M,,(F), isomorphic to the module F" of column vectors for this ring. Counting
dimensions tells us that

L 2
i=1

EXAMPLE 13.3.8. The group S3 has 3 conjugacy classes, so there are 3 isomorphism classes
of irreducible representations of G, and the sum of the squares of their dimensions are 6, so they
have dimensions 1, 1, and 2. Thus, we have

C[$3] 22 C x C x M,(C).

The two one-dimensional representations correspond to homomorphisms G — C*, factoring
through G*° 22 7./27. There are exactly two of these, the trivial homomorphism and the sign
map sign: S3 — {£1}. These correspond to the trivial F|[G]-module F and the F[G]-module F
on which ¢ € S5 acts by 6 -v =sign(o)vforve F.

The irreducible two-dimensional representation W of S3 is a subrepresentation of the 3-
dimensional permutation representation py : S3 — GL3(C). That is, consider the standard basis
{e1,e2,e3} of the corresponding F[S3]-module V = [F? on which S5 acts by permuting the indices
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of the basis elements. Then W is spanned by e; — e; and e; — e3. With respect to this basis, the
corresponding homomorphism py : S3 — GL,(C) satisfies

pui2)=(5 1) wma w23y =(§ 7).

EXAMPLE 13.3.9. Since all of the C-representations of S3 take values in GL,(Q) for some
n, we have Q[S3] = Q x Q x M»(Q). In other words, the irreducible C-representations of S3 are
obtained from the irreducible Q-representations of S3 by base change.

13.4. Characters
Recall from Lemma 9.6.22 that the traces of similar matrices are equal.

DEFINITION 13.4.1. Let V be a finite-dimensional vector space over a field F'. The trace of

@ € Autp (V) is the trace of the matrix representing ¢ with respect to any choice of ordered basis
of V.

DEFINITION 13.4.2. The character of a representation p: G — Autg(V) of a group G on a
finite-dimensional vector space V over a field F is a map ) : G — F defined by

x(g) =trp(g).

TERMINOLOGY 13.4.3. We say that y is a character of G if it is the character of a represen-
tation of G.

NOTATION 13.4.4. Given an F[G]-module V, we denote the corresponding representation
(i.e., homomorphism) by py and and its character by yy.

EXAMPLES 13.4.5.

a. The character ¥ : G — F of a one-dimensional representation p : G — F* satisfies y(g) =
p(g) forall g € G.

b. The character of the permutation representation p: S, — GL,(F) satisfies p(c) = |X?|
for every ¢ € S,,, where X, = {1,2,...,n}.

c. Let W be as in Example 13.3.8. Then the character )y : S3 — C satisfies yw((12)) =0
and yw((123))=—1.

d. The character y of the regular representation F[G] satisfies x(1) = |G| and x(g) = 0 for
allge G—{1}.

DEFINITION 13.4.6. The character of the trivial representation is called the trivial character,
or principal character of G.

DEFINITION 13.4.7. A character Xy: G — F of an F[G]-module V is irreducible if V is
irreducible.

DEFINITION 13.4.8. The degree of a character )y of an F-representation V of G is dimp (V).

DEFINITION 13.4.9. A class function of G is a function G — F, for F a field, that is constant
on conjugacy classes in G.
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LEMMA 13.4.10. Let G be a group, let F be a field, and let V and W be F -representations of
G. Then

a. Xv(e) =dimgV,
b. xvew = Xv + Xw.
c. xv =xw if V.and W are isomorphic representations, and

d. xv is a class function on G.

PROOF. Since py (e) is the identity transformation, we have part a. Part b follows by choos-
ing a basis of V @ W that is a union of bases of V and W and noting that the matrix representing
pvaw (g) for g € G with respect to that basis is block diagonal with blocks py (g) and pw (g). Part
¢ holds as py(g) and pw(g) are represented by similar matrices if V and W are isomorphic. Part

d also holds as py(g) and py (g’) are represented by similar matrices if g and g’ are conjugate in
G. U

PROPOSITION 13.4.11. Let G be a finite group, and let F be a field of characteristic zero.
LetV and W be finite-dimensional F -representations of G. Then' V and W are isomorphic if and

only if v = 2w-
PROOF. By Lemma 13.4.10c, we know that V = W implies yy = xw. Write

Fm=ﬁmw»

For 1 <i <, let ¢; denote the identity of M, (D;), let V; be the irreducible F-representation D?"
of G, and let y; denote its character. Then there exist m; for 1 <i < r such that

V="
i=1
Extend yy by F-linearity to a map yy : F[G] — F. Then
xv(ej) =Y mixi(e;) = midimp V;,
i=1

so the multiplicities m; of the V; in V are uniquely determined by yy. That is, yy determines the
isomorphism class of V. U

The following easy lemma, which we will use implicitly, is also quite useful for passing
between groups.

LEMMA 13.4.12. Let V be an F-representation of G.

a. If H is a subgroup of G, then V may be considered as an F-representation of H, and its
character is the restriction Xy |g.

b. If N is a normal subgroup of G and N acts trivially on V, then for ©: G — G/N the
quotient map, the character of V as an F-representation of G/N is 7o yy.
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For the remainder of this section, we suppose that G is finite and F is algebraically closed of
characteristic not dividing |G|.

PROPOSITION 13.4.13. Suppose that G is finite and F is algebraically closed. Let 'V be a
finite-dimensional F -representation of G. Then py(g) is diagonalizable.

PROOF. By restricting py to the cyclic subgroup generated by G, we may suppose that G
is cyclic, say of order n. In this case, F|G] is a direct sum of 1-dimensional representations
V; on which g acts by multiplication by ¢! for ¢, a choice of primitive nth root of unity in F.
As V is semisimple, this tells us that V is a direct sum of 1-dimensional representations. The
automorphism py(g) is then diagonal with respect to any basis of V consisting of one basis
element of each of these summands. U

Since g has finite order dividing |G|, the following corollary is immediate.

COROLLARY 13.4.14. Let V be a finite-dimensional F-representation of G. Then the eigen-
values of py(g) for g € G are all roots of unity of order dividing |G]|.

LEMMA 13.4.15. Let V and W be finite-dimensional F-representations of G. Set Xy (g) =
xv(g~1) forall g € G. Then we have

a. Xverw = XvXw and

b. Xtomp(v.w) = XvIW-

PROOF. By the commutativity of the tensor product and direct sums and the semisimplicity
of F|[G], part a reduces to the case that V and W are irreducible. Through a simple application of
Lemma 13.2.23, we may assume that F is algebraically closed. By Proposition 13.4.13, we may
then diagonalize the matrices py (g) and pw (g) for g € G with respect to choices of ordered bases
(vi,...,vn) of V and (wy,...,w,) of W. We then have that pyg,w is diagonal with respect to the
basis of elements v; ® w; with respect to the lexicographical ordering. The diagonal coordinate
corresponding to v; ® w; is the product of the (i,i)-entry of py(g) and the (j, j)-entry of pw(g).
That is,

trpvew(g) = (trpv(g)) - (trpw(g)),
as desired.

For part b, we recall the isomorphism

Homp (V,W) 2V'rW

of Lemma 13.2.14. We are then reduced by part a to the case that W = F, the trivial F[G]-module.
Again replacing F by its algebraic closure, we may diagonalize py (g) for g € G with respect to
a basis B of V. Let B* be its dual basis. For ¢ € B* and v € B, we have ¢(g~'v) = a,¢(v), where
g~ 'v = ay,v. Thus, the trace of py+(g) agrees with the trace of py(g~'), as desired. O

REMARK 13.4.16. Let G be a finite group and F be a field of characteristic not dividing |G]|.
Since yvew = Xv + xw and Xye.w = Xv - Xw, the set of F'-valued characters of G form a ring
with identity the trivial character.

PROPOSITION 13.4.17. The irreducible F-characters of G form a basis for the F-vector
space of F-valued class functions on G.
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PROOF. Let g1,...,g, be representatives of the r conjugacy classes of G. The space of F-
valued class functions of G has a basis consisting of the maps 6;: G — F for 1 <i < r such
that 6;(g) = 1 if g € C,, and 6;(g) = 0 otherwise. On the other hand, there are also r irreducible
F-representations V; for 1 < i < r of G by Proposition 13.3.6, so it suffices to see that their
characters ); = v, are linearly independent.

Write F[G] = []/_; Mp,(F) in such a way that V; is the isomorphic to the simple module F"
of M,,(F). Let ; denote the idempotent of F[G] corresponding to the identity of M, (F). We
may extend j; F-linearly to a map ;: F[G] — F. Then y;(x) for x € F[G] is the trace of the
endomorphism of V; defined by left multiplication by x. Since left multiplication by e; on V;
(resp., V; for j # i) is the identity map (resp., zero map), we have x;(e;) = n; (resp., Xi(e;) =0
for j # i). Given any linear combination ¢ = Y;_, a;x; with a; € F, we have ¢(e;) = ajnj, so
¢ = 0if and only if @; = 0 for all i.

We can identify the idempotents in F[G] that correspond to identity matrices in terms of
characters.

PROPOSITION 13.4.18. Let ; for 1 <i < r denote the irreducible F-characters of G, and let
n; denote the degree of x; Then the elements

“~ G| g§;

are the primitive, central, orthogonal idempotents of F|G].

PROOF. Let f; denote the primitive central idempotent in F'[G] that acts on the identity on the
irreducible representation V; with character x;. Write f; =} ,cgae8 With ag € F for g € G. For
any g € G, we have

xric)(fig ) =Y xrig)lanhg™") = a,|G|.
heG

On the other hand, we have XF(G] = Y1 niXi, where n; = dimg V;, so

XF[G) (fig~ Znﬂ(] fig~ )

If pi: G — Endp(V;) is the F-linear map restricting to py,, then
pi(fig™") = pi(f)pi(s™") = 8iypi(s™"),
so xi(fig™') = 8ijxj(g"). Thus, we have
agG| = nigi(g™").

It follows that

fi= 16 L

geG
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13.5. Character tables
In this section, we focus on the theory of C-valued characters of a finite group G.

DEFINITION 13.5.1. A character table of a finite group G is a matrix in M, (C), where r is the
number of conjugacy classes of G with (i, j)-entry y;(g;), where x; for 1 <i <r are the distinct
characters of the irreducible C-representations of G and g; for 1 <i < r are representatives of the
distinct conjugacy classes in G.

Usually, a character table is written in a table format, as in the following example.

EXAMPLE 13.5.2. Take the group S3. Let ¥ denote the trivial character, ), denote the sign
character, and Y3 the irreducible character of dimension 2. By Example 13.3.8, the character
table of S5 is then as follows:

Sy|1 (12) (123)
X1 1 1 1
w1l -1 1
B2 0 -1

Recall that & denotes the complex conjugate of a complex number .

LEMMA 13.5.3. Let x be a C-valued character of degree d of a finite group G of order n.
For g € G, we have x(g) € Z[G,, [x(8)| < d. and x(s7") = x()-

PROOF. Letp: G — Autc(V) be the representation corresponding to . By Corollary 13.4.14,
the value p(g) can be diagonalized to matrix with entries in w,. Since the inverse of a root of
unity is its complex conjugate, p(g~') = p(g)~! may be then be represented by the diagonal
matrix A~! = (a;;). Then x(g) is a sum of d roots of unity of order dividing n, which the first
two statements, and we have

x(g ) =A™ =u(A) = x(g).
0

Let us set §, = ¢*™/" ¢ C for n > 1. The following lemma is useful for producing new
characters out of old.

LEMMA 13.5.4. Let G be a group of order n, and let ¢ € Gal(Q(&,)/Q), where §, = e*™/" ¢
C. If x is a character of G, then so is x°: G — F defined by x°(g) = o(x(g)) for all g € G.
Moreover, if a € (Z/nZ)* is such that 6(&,) = £, then x°(g) = x(g%).

PROOF. By Proposition 13.4.13, if G is finite of order n, then every C-representation of G is
the base change of a Q( &, )-representation. Let V be the Q(,)-representation of G with character
X As a vector space, V =2 Q(u, )¢ for some d > 0, and so ¢ induces an automorphism : V — V
as the direct sum of the automorphisms Q(u,,) — Q(u,). Then o o py is again a representation,
and its character is x°. Note that 6 o py(g) = py(g?), since in diagonalized form, the entries of
pv(g) are all elements of 1, upon which ¢ acts by raising to the ath power. U

We pause for a moment to discuss inner products on C-vector spaces.
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DEFINITION 13.5.5. An inner product on an C-vector space Visamap ( , ): VxV —C
that satisifes

(@) = (v, wh+ s w) and (v, Bww') = B (v, w) + (i)
for all v,v/,w,w' € V and o, € C.

TERMINOLOGY 13.5.6. That ( , ) is an inner product on a C-vector space V may be ex-
pressed as saying that it is left C-linear (or just linear) and right conjugate linear.

DEFINITION 13.5.7. An inner product ( , ) on a C-vector space V is positive definite if
(v,v) >0 for all v € V, with equality only for v = 0.

DEFINITION 13.5.8. An inner product ( , ) on a C-vector space V is Hermitian if it is positive
definite and (v,w) = (w,v) for all vw € V.

DEFINITION 13.5.9. A basis B of a C-vector space V with a Hermitian inner product ( , ) is
orthonormal if (v,w) = 6,,, for all v,w € B.

DEFINITION 13.5.10. A complex inner product space is a pair consisting of a C-vector space
V and a Hermitian inner product on V.

EXAMPLE 13.5.11. The dot product on C" defined by
n
(al,az,...,an) : (bl,bz,...,bn) = Zaib,‘
i=1

is a positive definite, Hermitian inner product on C". The standard basis of C" is orthonormal
with respect to the dot product, so C" is an inner product space with respect to the dot product.

DEFINITION 13.5.12. An inner product ( , ) on a C-representation V of G is said to be
G-invariant, or an invariant inner product, if (gv,gw) = (v,w) forall y,w € V.

The following provides a useful example.

LEMMA 13.5.13. Let ( , ) be a Hermitian inner product on a C-representation V of G. Then
themap | , |: V xV — C defined on v,w €V by
1

=g

Y (gv.gw)

geG
is a G-invariant inner product on'V.
PROOF. As a positive real scalar multiple of a sum of Hermitian inner products on V, the

pairing [ , | is also Hermitian. The invariance by an element of G follows by reindexing the
sum. Ul

The next lemma contains the definition of an inner product on the space of C-valued class
functions of G.
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LEMMA 13.5.14. The function which assigns to a pair (0,y) of C-valued class function of

G the value
) 0(g
|G| geG

is a positive definite, Hermitian inner product on the space of C-valued class functions of G.

We consider the space of class functions as a Hermitian inner product space with respect to
the Hermitian inner product of Lemma 13.5.14.

REMARK 13.5.15. If we let & € G act on the space of class functions on G by (h-0)(g) =
8(h~!g), then the resulting inner product is G-invariant.

REMARK 13.5.16. The inner product of the characters of any two C-representations V and
W is real by Lemma 13.5.3, since

ZXV(g) ZXV Z){V

geG geG geG

LEMMA 13.5.17. LetV be a C|G]-module ofﬁnite dimension. Then

dimc V¢ = Z xv(g
|G| geG
PROOF. Letz= |NG € C[G). Since N2 = |G|, the element z is an idempotent. The C-linear
endomorphism T of V' defined by left multiplication by z therefore has minimal polynomial
dividing x> —x = x(x — 1). In particular, it is diagonalizable. The trace of T is then the sum of
its nontrivial eigenvalues, which is the dimension of the eigenspace E|(T) of 1. It remains then
only to show that E;(T) = V. We check this on v € V: if zv = v, then gv = gzv = zv = v for all
g € G, whileif gv=v forall g € G, thenzv:%G‘|G|v:v. O

PROPOSITION 13.5.18. Let V and W be complex G-representations. Then
(xv, xw) = dim¢ Homg () (V, W).

PROOF. Note that Homg(g(V,W) = Homg(V,W)©, where g € G acts on ¢ € Homg(V,W)
y (g-0)(v) = g¢(g~v) for every v € V. Thus,

dim¢ Home g (V, W) Y Xtome(vw)(8) = Gl Y awv(@xw(e),

|G| geG
the last step by Lemma 13.4.15b. U
We may now prove the orthogonality of the basis of characters.

THEOREM 13.5.19 (First orthogonality relation). The set of irreducible complex characters
of a finite group G forms an orthonormal basis of the space of C-valued class functions of G.
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PROOF. Let V; for 1 <i < r be the distinct irreducible C|G]-modules, and let x; denote the
character of V;. Forany 1 < i, j <r, we have

(i, xj) = dimg Homgy (Vi, V),
by Proposition 13.5.18. The result then follows by Schur’s lemma. U
This orthogonality also gives us a sort of orthogonality of rows of the character table.

REMARK 13.5.20. Let {g;,g2,...,8r} be a set of representatives of the conjugacy classes of
a finite group G. Let X1, X2, - . ., X be the complex irreducible character. By Theorem 13.5.19, the
rows r; of the character table with (i, j)-entry y;(g;) are orthogonal with respect to the weighted
dot product

ri-ryp = |G’ ZCJXI g] Xi (gj) <%i7Xi/>7

where the weight c; is the order of the conjugacy class of g;.
We also have an orthogonality relation for columns.

THEOREM 13.5.21 (Second orthogonality relation). Let G be a finite group, and let X1, X2, -, Xr
be its distinct irreducible, complex characters. For any g,h € G, we have

4 — Z,| if g and h are conjugate,
Y xi(g)xi(h) = {l) 4 :
= otherwise,
where Zg denotes the centralizer of g in G.
PROOF. Let g1,g2,...,8, represent the distinct conjugacy classes in G, and let A € M,(C) be
the matrix with (i, j)-entry y;(g;). Let C be the diagonal matrix with (i,7)-entry ¢; = |Cg,|. Then
r
(ACA") Z xi(gk)erx;(ge) = 851G,

the last step by Remark 13.5.20. In particular, ACA! is a scalar multiple of the identity matrix, so
ACA! = A'AC, which tells us that

8ij|Gl = (A'AC)ij =Y xi(gi)xk(g))c;
=1

Since |Z; ;| = |G|c]f1 by the orbit-stabilizer theorem, we are done. O
Let us study character tables in some examples.

EXAMPLE 13.5.22. Letn > 1, and let { = 627”./’.7 € C. Every character of Z/nZ is a power
of the character x: Z/nZ — C* given by x(i) = {'. Since Z/nZ is abelian, every element of
Z/nZ is the lone element in its conjugacy class. The character table of Z/nZ is as follows:
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Z/nZ |0 1 2 - n—1
1 1 1 r - 1
x |1 ¢ o
x2 1 CZ C4 Can

xnfl 1 Cnfl Can L. C

REMARK 13.5.23. In general, the number of 1-dimensional complex characters of a finite
group G is |G™|, since these are exactly the irreducible representations of C[G®"], which has
C-dimension |G™|.

EXAMPLE 13.5.24. Let G be any nonabelian group of order 8. By Theorem 7.5.2, there
are two up to isomoprhism, D4 and Qg. The center Z of G has order 2 (it is nontrivial since
G 1s a 2-group and if it had order at least 4, it is easy to see that the group would be abelian).
Furthermore, G/Z is abelian since all groups of order 4 are abelian. This also means that G/Z
is the abelianization of G. It is also easy to see that this implies G/Z = Z/2Z & 7Z./2Z. So G
has four characters xp,---, x4 of degree 1 and therefore one character )5 of degree 2 to make
8 =22+ 141+ 1+ 1. Pick representatives g and / in G of the two summands Z /27. Then g, h,
and gh must be representatives of distinct conjugacy classes, which are then forced to have order
2 since g,h,gh ¢ Z. Finally, let 7 generate the center. The character table is

G|l z g h gh
vl 1 1 1 1
nilt 1 1 -1 —1
»ll 1 -1 1 -1
wlil 1 -1 -1 1
X012 =2 0 0 0

The last row is determined by orthogonality of the columns, since its first entry must be 2. Note
that this implies that the isomorphism type of a group is not determined by its character.

EXAMPLE 13.5.25. Note that S4 has 5 conjugacy classes, and the sums of the squares of the
degrees n; of the 5 irreducible characters x; equals |24|. Also S4 — Z /27 via the sign map, so
there are (at least) two 1-dimensional characters: the trivial character )| and the sign character
X>. Since n% + ni + n% = 22, we have n3 = 2 and nqy = ns = 3 (if put in increasing order). The
quotient of S4 by the normal subgroup ((12)(3 4),(1 3)(2 4)) is isomorphic to S3, so we obtain
by composition with the irreducible two-dimensional representation p: S3 — GL,(C) a two-
dimensional representation x3: S4 — GLy(C), which is nonabelian and hence irreducible, being
semisimple. Whatever )4 is, note that if we tensor its representation V4 with the representation
V> of the sign character )5, we obtain another irreducible character xy,s.v, = X4X2 of dimension
3, which we call x5. (We will see that it is actually different from )4.) The character table is
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Sale (12) (123) (1234) (12)(34)
a1l 1 1 1 1
il -1 1 ~1 1
B2 0 -1 0 2
w31 0 —1 1
X513 —1 0 1 1.

The entries in blue are determined from the character table for S3. The entries in red are obtained
by noting that ¥5 = ¥4 > and using orthogonality of columns. (That is, the third and fifth columns
are determined using orthogonality with the first and the second and fourth, up to sign, using
orthogonality with the first and each other.)

Note that we can restrict representations and characters to subgroups: for H < G and a G-
representation V, this amounts to considering V as a module over the group ring of H and re-
stricting the function )y to H.

EXAMPLE 13.5.26. The group A4 has 4 conjugacy classes with representatives e, (1 2 3),
(132),and (123 4). We have A2® = 7,/37, generated by the image of (1 2 3), so there are
three abelian characters which are the powers of the character y such that x((1 2 3)) = w, where
® = ¢*™/3_ Since |A4| = 12, there is one more character Y, which has degree 3. Its values can
be calculated by orthogonality of columns, yielding the character table

Agle (123) (132) (12)(34)

1|1 1 1 1
211l o’ 1
|1l @ ) 1
vl 3 o0 0 1.

13.6. Induced representations

Let G be a finite group and H a subgroup. For a commutative ring R we can view a R[G]-
module A as an R[H]-module in the obvious fashion. When thinking of A as an R[H]|-module, it
is often helpful to give it a new name and symbol

DEFINITION 13.6.1. An R[G]-module A viewed as an R[H|-module is called the restriction
of A from G to H and is denoted by Res% (A).

Together with the obvious definition on morphisms, restriction defines an exact functor
Res$ : R[G]-mod — R[H]-mod.

The natural question arises as to whether or not Resg has an adjoint, and indeed, it has a left
adjoint. We first give the construction.

DEFINITION 13.6.2. Let H be a subgroup of a group G, and let R be a commutative ring.
The induced module from H to G of an R[H|-module B is the R[G]-module

1nd5(B) = Homgg (RG], B)
where for ¢ € Ind(B), we let g € G act by (g- ¢)(x) = ¢(xg) for all x € F[G].
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REMARK 13.6.3. Since R[G] is R[H]-free, Ind$, provides an exact functor from R[H]-mod to
R[G]-mod, since is the functor hg|g) in our earlier notation.

If H is of finite index in G, we have an alternate description of the induced module. That is,
there is another way in which to produce an R|G]-module from an R[H|-module B using tensor
products. That is, we can take the R[G]-module R[G]| ®(x) B, where g € G acts on x® b in the
tensor product by g(x®b) = gx®b.

PROPOSITION 13.6.4. Let H be a finite index subgroup of G, and let R be a commutative
ring. Given an R[H|-module B, there is natural isomorphism

k: Indf;(B) = R[G] @y B
given on @ € Ind%(B) by

k()= Y g '®o(),

gEH\G
where for each g € H\G, the element g € G is a choice of representative of g.

PROOF. First, we note that y is a well-defined map, as

(he) '@ o(hg) =g 'h ' @hp(g) = 2@ ¢(g)
for ¢ € RG] ®gy) B, h € H, and g € G. Next, we see that ¥ is an R[G]-module homomorphism,
as

xge)=Y g'woksd)=¢ Y () '©0leg)=2¢x(9)
gEH\G geH\G

for g € G. As the coset representatives form a basis of R[G] as a free R[H]-module, we may
define an inverse to ) that maps

Y ¢ '®b, € Indj(B)
geH\G

to the unique R[H|-linear map ¢ that takes the value b, on g for the chosen representative of
g€ H\G. O

PROPOSITION 13.6.5. Let H be a finite index subgroup of G. Then Indg is left adjoint to
Resg.

PROOF. Using the alternate characterization of Indg U of Proposition 13.6.4 and the adjoint-
ness of Hom and ®, we have

Homg ) (R[G] ®gm U, V) = Homg ) (U, Hompg g (R[G], V) = Homg; (U, V),

the latter isomorphism being induced by evaluation at 1 in the second variable. U

DEFINITION 13.6.6. Let H be a subgroup of a group G, let W be an F-representation of
H.

a. The induced representation from H to G of W is Ind% (W).

b. If H has finite index in G and W is finite-dimensional with character y, then the induced
character Ind$ (y) of v is the character of Ind$ (W).
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EXAMPLE 13.6.7. Let H be a finite index subgroup of G. For the trivial representation F' of
H, we have
Indf;(F) = F[G] ®p ) F = F[G/H],
where the latter module is the F[G]-module with F-basis the left G-set G/H. That is, Ind%(F)
is the permutation representation for the left action of G on G/H. Thus, the induced character

% = Ind% (yy) of the trivial character y; on H has the property that x(g) is the number of left
H-cosets fixed by left multiplication by g € G.

REMARK 13.6.8. Let H be a finite index subgroup of G. The induced representation of
the regular representation F[H| of H is the regular representation F |G| of G. In particular, all
irreducible F-representations of G are summands of induced representations of the irreducible
F-representations of H.

REMARK 13.6.9. In finite group theory, one often uses the alternate tensor product charac-
terization provided by Proposition 13.6.4 as the definition of the induced representation.

NOTATION 13.6.10. For a subgroup H of a group G, we denote the restriction of a character
x of G to H by Resg X, or more simply ¥ |g.

NOTATION 13.6.11. For the inner product of Lemma 13.5.14, we use ( , )¢ to indicate its
dependence on the group G.

DEFINITION 13.6.12. For a character  of a finite-dimensional C-representation of a group,
the multiplicity of an irreducible character y in it is the multiplicity of the irreducible represen-
tation with character y in the representation with character .

We have the following corollary of Proposition 13.6.4.

COROLLARY 13.6.13 (Frobenius reciprocity). Let G be a finite group and H a subgroup. Let
V be a C-valued character of H and ) be a C-valued character of G. Then

(Indfj v, x) = (¥, Res x)n.
PROOF. Let y = yy and y = yy for representations U and V of H and G, respectively. By
Propositions 13.5.18 and 13.6.5, we have

(Ind§ v, x) = dimg Homcyg (Ind$ U,V) = dimg Homg (U, V) = (v, Res x)n.

We can construct tables that contain these values of the pairings in Corollary 13.6.13.

DEFINITION 13.6.14. The induction-restriction table of a subgroup H of a finite group G is
the matrix with rows indexed by the complex irreducible characters y; of H and columns by the
complex irreducible characters j; of G with (i, j)-entry (y;,Res$ x;)u.

EXAMPLE 13.6.15. Again let ); for 1 <i<5and 1, x, x?, and ¥ be the characters of Sy
and Ay, respectively of Examples 13.5.25 and 13.5.26. From the character tables of G = S4 and
H = A4, we see that x|z = xo|lw = 1, x3|lu = x + %%, and y4|H = X5|n = w. The induction-
restriction table is
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\Xl X2 X3 X4 X5

11 1 0 0 O
X0 0 1 0 0
/0 0 0 1 0

v 0 0 0 1 1
Frobenius reciprocity tells us that IndH =1+, IndH X = IndH x> = x3, and Indg W= Y4+
Xs-

PROPOSITION 13.6.16. Let H be a finite index subfroup of a group G, and let g1,...,8x be
a system of left coset representatives of H in G. For a character ¥ of H, extend Y to a function
W: G — C by setting y(g) =0if g ¢ H. For g € G, we then have

IndH Z ggl
=1

~.

PROOF. Let W be an m-dimensional representation of H with character y, and let B =
(W1,...,wy) be an ordered F-basis of W. Recall that
Indf; (W) = F[G] ®pm W

We have a basis g; @ w; of F[G] ®p W for 1 <i<kand 1 < j<m with the lexicographical
ordering.
For a given 1 <i <k, any g € G satisfies

88i = 8o(iyhi
for some o € S; and h; € H. Then
8(8i®W)) = go(i) @ hiw;.

With respect to the given basis, the matrix of py (g) is a k-by-k matrix of blocks in M,,(F) with
one nonzero block in each row and each column, i.e., the blocks with coordinates (i, 6 (i)), which
are those representing pw (h;) with respect to the basis B.

Adding up the diagonal entries in the (i,7)-block, we get 0 if i’ # i and y(h) = y(g; leg))
if i/ = i. By definition of , this equals (g, lggi) in all cases. Summing over i, we obtain the
result. U

COROLLARY 13.6.17. Let G be a finite group and H be a subgroup of G. Let  be a character
of H. For g € G, we then have

1 _
Indg(w)(g):ﬁ Y vk 'gk).
keG
kgk’eleH

PROOF. This follows from the formula of Proposition 13.6.16. To see that, take { as in its
statement, and note that for any & € H, we have

W((gih) "g(gih)) = w(h™' (g 'ggi)h),

since conjugation by 4! preserves H and G — H, and V is a class function on H. U
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The following corollary is immediate.

COROLLARY 13.6.18. Let H be a finite index normal subgroup of G, and let X be a character
of H. Then Ind% (y)(g) =0 forall g ¢ H.

EXAMPLE 13.6.19. Consider the dihedral group G = Dy, of order 4n with n > 3. It has
abelianization the Klein 4-group generated by the images of r and s, so G has four degree 1
characters X1, X2, X3, Xa with x; trivial, x2(r) = x3(s) = —1 and yo(s) = x3(r) = 1, and 4 =
x2X3. Now, consider the cyclic subgroup H = (r), which has characters W’ for 0 <i < 2n—1
with y(r) = {,. The induced character 6; of W' is trivial on all reflections and satisfies

0.(r/) = (i + ¢, 1.
The characters 6; = Indg vi with 1 <i<n—1 are all distinct degree 2 characters which are
clearly not sums of the J;, so they are irreducible characters of G. The sum of the squares of the

dimensions of these characters is 4- 12 4 (n— 1) -2% = 4n = |G], so these are all of the irreducible
characters on G. Setting

& = Cfn + C{nk =2cos(km/n) € R,
the character table is then as follows.

Dy, e s rs r r? il "
x1 |1 1 1 1 1 1 1
|1 1 -1 -1 1 (=D (=)
x3 |1 -1 —1 1 1 1 1
2 |1 -1 1 —1 1 (=Dt (=)
6 |2 0 0 ¢ & G —2
6 |2 0 0 & & S 2
6 |12 0 0 & S - G- —2
6112 0 0 &1 &uoyy - Guop (D)2

Here, one might note that & = 2, and & = &2, = — &t = —&,« for all k. We remark that
Oilg=vyw' +y ' forall <i<n-—1, while ) = x; + x3 and 6, = ) + Y4, consistent with
Frobenius reciprocity.

We also give a formula which tells us explicitly how to determine the induced character to G
of an H-character from the character table for H and knowledge of conjugacy classes.

PROPOSITION 13.6.20. Let G be a finite group and H be a subgroup of G. Let W be a
character of G, let g € G, and let Cq be the conjugacy class of g in G. Write HNC, as a possibly
empty disjoint union of conjugacy classes Ty, ..., Ty of H. For 1 <i <, let h; be a representative
of T;. Then
|T;

i|
v (hi).
G V)

l
nd§ y(g) =[G H] )
i=1

PROOF. This is a matter of counting. That is, by Corollary 13.6.17, we must show that
the number of k € G such that k~!gk is conjugate to &; in H is |Z¢||T;|, where Z, denotes the
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centralizer of g in G. We know that there are | Z,| elements of G that conjugate g to any particular
element of C,. Thus, there are |Z4||T;| elements in G that conjugate g to one of the elements in
T;, as desired. O

We may use Proposition 13.6.20 to determine the induced characters on a group from the
characters on its subgroup.

EXAMPLE 13.6.21. Take H = S3, which we view as a subgroup of G = S4. Recall that
the conjugacy classes of S4 are determined by cycle type, with conjugacy classes Cy,---,Cs
corresponding to cycle types e, (1 2), (1 23), (123 4), and (1 2)(3 4) having orders 1, 6, 8,
6, 3, respectively. Now, C4 and C5 contain no elements of S3, while C;, 3, and C3 contain the
conjugacy classes 71, T», and T3 in S3 of 1, (1 2), and (1 2 3). Note that |C;| = |T;|, |G| =
2|T»|, |C53] = 4|T3], and [G : H] = 4. Let vy, y», and 3 be the trivial, sign, and irreducible 2-
dimensional characters of S3, respectively. By Proposition 13.6.20, we obtain the following table
from the character table of S3:

Sple (12) (123) (1234) (12)(34)

6|4 2 1 0 0
|4 2 1 0 0
#|8 0 -1 0 0.

We will use this to determine the characters of S4 once again. Assume we have already found
its abelian characters, the trivial character )| and the alternating character ;. Since

(Indf; ¢7,Indf} ¢;) = dimHomgg) (Vi, Vi),

where V; is the G-representation induced by ¢;, and these values are 2, 2, 3, respectively, we have
that the V; break up into these respective numbers of irreducible representations. But note that
(¢1,x1) =1 and (@1, x2) =0, so ¢ — x1 so is an irreducible degree 3 character of G, which we
previously called y4. Similarly, ¢>» — x> is an irreducible degree 3 character, which we called 5.
We compute that (@3, x4) = (¢3,%s) = 1, and @3 — x4 — X5 is an irreducible character of degree
2, which we called y3.

13.7. Applications to group theory

Let G be a group of order n, and let Cy,...,C, be the conjugacy classes in G, choose g; € C;
and set c; = |IC j| foreach 1 < j <r. Let x1,..., X, be the irreducible complex characters of G,
and set n; = degy; for 1 <i <r. Let V; denote the irreducible representation with character y;,
let p;: C[G] — Endc(V;) be the C-algebra homomorphism restricting to the representation py..
We also use x; to denote its C-linear extension to map y;: C[G] — C.

PROPOSITION 13.7.1. Set

Ni={g€ G| x(g) = x(1)}

for 1 <i<r. The normal subgroups of G are exactly the intersections (\jc;Nj, where J is a
subset of {1,...,r}.
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PROOE. First, N; is a normal subgroup, since x;(g) = xi(1) if and only if g acts as the identity,
recalling that the eigenvalues of g are all roots of unity, so N; = kerpy,. It follows that every
intersection of the N;’s is normal.

Now suppose N is normal in G. Let V = C[G/N]. Let xy be the character of V as a C[G]-
module. Since kerpy = N, we have yy(g) = xv (1) if and only if g € N. If g ¢ N, then ghN # hN
forany h € G, so xv(g) =0.

Now xy is a sum of irreducible characters with nonnegative integer coefficients, say Yy =
Y _jaixi. We claim that N = (;c;N;, where J is the set of i with @; > 1. Note that for any
character y and g € G, we have |y(g)| < y(1) since y(g) is a sum of y(1) roots of unity. For
g € G, we have

xv(g) = lxv(g)l =

ii aixi(g)

with equality of the first and last term holding if and only if g € N. However, the middle in-
equality is an equality if and only if all ;(g) for i € J are equal and have absolute value y;(1).
This condition holds if and only if all y;(g) = xi(1), since one of these characters is the trivial
character. U

< iaixi(l) = xv(1),
i=1

Next, we will show how to find the center of G.

PROPOSITION 13.7.2. Set

Zi={geG|x(g)=x(1)}
for 1 <i<r. Then Z; is a normal subgroup of G, and the center of G is equal to (\i_, Z;.

PROOF. We have that Z; is a normal subgroup since the condition that g € Z; is exactly that g
acts as a scalar multiple of the identity, in other words that g is in the inverse image of the center
of py,(G).

We claim that Z; /N; is the center of G/N;. Note that py, has kernel N; defined as in Proposi-
tion 13.7.1, and the elements of Z; are mapped to scalar matrices in the center of py,(G) = G/N;.
So Z;/N; is contained in the center of G/N;. Now suppose that gN; is in the center of G/N;.
Then py,(g) commutes with all py, (k) for 4 € G, which implies that left multiplication by g is a
C[G]-module isomorphism of V;. But V; is simple, so Homg (Vi, Vi) = C. In other words, g acts
as scalar multiplication by some element, hence is contained in Z;.

Given the claim, we have that Z(G)N;/N; < Z;/N;, and so Z(G) C Z; for all i. Now suppose
that z € Z; for all i. Let g € G. Then gzg~'z~! € N; by our earlier claim. But Ni_; N; is trivial by
Proposition 13.7.1. So, gzg~'z7! =1, for all g € G, so z € Z(G), as desired. O

PROPOSITION 13.7.3. For each pair (i, j) of integers with 1 <i,j < r and each g € G, we
have

C
_in(gj) S Z[.un]-
nj

PROOF. SetN;=Y,cc; g € Z(C[G]). Multiplication by N; defines a C[G]-linear map N;: V; —
V; which by Schur’s lemma is a scalar multiple of the identity, say N; = a;idy, for a; € C, which



430 13. REPRESENTATION THEORY
tells us that ;(N;) = a;xi(1) = Ocjni But we also have

Z %z =CjXi g])
geC;
SO O = ;—f%i(gj)- We show that eac
Next, set
aju=1{(8,h) |8 € Cj,h € Cr,gh = gi}| € Z>o,
and note that this number is independent of the choice of g;, since sgs~! - shs~! = sghs™! for any
s € G. Then

p
Pi(N)pi(Ne) = Y Y pilgh) = Za]kl Y pi(g) =Y ajupi(N)).
8€CjheCy q€eC; =1
Since N; acts on V; by multiplication by the scalar «;, this implies
o0 = Zajklal'
I=1
In particular the subring Z[{¢; | 1 < j < k}| of C has finite Z-rank, so it is integral over Z. In

particular, each @ is integral over Z. The result now follows as a; € Q(L,) for each j, and Z{,]
is the integer ring of Q(u,). O

COROLLARY 13.7.4. The dimension of an irreducible complex representation of a finite
group G divides |G]|.

PROOF. Let 1 <i <r, and consider the quotient of interest

n
XHXI Z _J g] Xi g])

nl j=1 n;

which is a Z[,]-linear combination of the algebraic integers n—{ Xi(gj), hence an algebraic integer.
Since the fraction also lies in (Q, we have that n; divides n. J
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