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Preface

The delver into nature's aims
Seeks freedom and perfection;
Let calculation sift his claims

With faith and circumspection.

GOETHE

As a premise to this textbook on Numerical ecology, the authors wish to state their
opinion concerning the role of data analysis in ecology. In the above quotation, Goethe
cautioned readers against the use of mathematics in the natural sciences. In his
opinion, mathematics may obscure, under an often esoteric language, the natural
phenomena that scientists are trying to elucidate. Unfortunately, there are many
examples in the ecological literature where the use of mathematics unintentionally lent
support to Goethe’s thesis. This has become more frequent with the advent of
computers, which facilitated access to the most complex numerical treatments.
Fortunately, many other examples, including those discussed in the present book, show
that ecologists who master the theoretical bases of numerical methods and know how
to use them can derive a deeper understanding of natural phenomena from their
calculations.

Numerical approaches can never dispense researchers from ecological reflection on
observations. Data analysis must be seen as an objective and non-exclusive approach
to carry out in-depth analysis of the data. Consequently, throughout this book, we put
emphasis on ecological applications, which illustrate how to go from numerical results
to ecological conclusions.

This book is written for the practising ecologists — graduate students and
professional researchers. For this reason, it is organized both as a practical handbook
and a reference textbook. Our goal is to describe and discuss the numerical methods
which are successfully being used for analysing ecological data, using a clear and
comprehensive approach. These methods are derived from the fields of mathematical
physics, parametric and nonparametric statistics, information theory, numerical
taxonomy, archaeology, psychometry, sociometry, econometry, and others. Some of
these methods are presently only used by those ecologists who are especially interested
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in numerical data analysis; field ecologists often do not master the bases of these
techniques. For this reason, analyses reported in the literature are often carried out
using techniques that are not fully adapted to the data under study, leading to
conclusions that are sub-optimal with respect to the field observations. When we were
writing the first English edition of Numerical ecology (Legendre & Legendre, 1983a),
this warning mainly concerned multivariate versus elementary statistics. Nowadays,
most ecologists are capable of using multivariate methods; the above remark now
especially applies to the analysis of autocorrelated data (see Section 1.1; Chapters 12
and 13) and the joint analysis of several data tables (Sections 10.5 and 10.6;
Chapter 11).

Computer packages provide easy access to the most sophisticated numerical
methods. Ecologists with inadequate background often find, however, that using high-
level packages leads to dead ends. In order to efficiently use the available numerical
tools, it is essential to clearly understand the principles that underlay numerical
methods, and their limits. It is also important for ecologists to have guidelines for
interpreting the heaps of computer-generated results. We therefore organized the
present text as a comprehensive outline of methods for analysing ecological data, and
also as a practical handbook indicating the most usual packages.

Our experience with graduate teaching and consulting has made us aware of the
problems that ecologists may encounter when first using advanced numerical methods.
Any earnest approach to such problems requires in-depth understanding of the general
principles and theoretical bases of the methods to be used. The approach followed in
this book uses standardized mathematical symbols, abundant illustration, and appeal to
intuition in some cases. Because the text has been used for graduate teaching, we know
that, with reasonable effort, readers can get to the core of numerical ecology. In order
to efficiently use numerical methods, their aims and limits must be clearly understood,
as well as the conditions under which they should be used. In addition, since most
methods are well described in the scientific literature and are available in computer
packages, we generally insist on the ecological interpretation of results; computation
algorithms are described only when they may help understand methods. Methods
described in the book are systematically illustrated by numerical examples and/or
applications drawn from the ecological literature, mostly in English; references written
in languages other than English or French are generally of historical nature.

The expression numerical ecology refers to the following approach. Mathematical
ecology covers the domain of mathematical applications to ecology. It may be divided
into theoretical ecology and quantitative ecology. The latter, in turn, includes a number
of disciplines, among which modelling, ecological statistics, and numerical ecology.
Numerical ecology is the field of quantitative ecology devoted to the numerical
analysis of ecological data sets. Community ecologists, who generally use multivariate
data, are the primary users of these methods. The purpose of numerical ecology is to
describe and interpret the structure of data sets by combining a variety of numerical
approaches. Numerical ecology differs from descriptive or inferential biological
statistics in that it extensively uses non-statistical procedures, and systematically
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combines relevant multidimensional statistical methods with non-statistical numerical
techniques (e.g. cluster analysis); statistical inference (i.e. tests of significance) is
seldom used. Numerical ecology also differs from ecological modelling, even though
the extrapolation of ecological structures is often used to forecast values in space
or/and time (through multiple regression or other similar approaches, which are
collectively referred to as correlative models). When the purpose of a study is to
predict the critical consequences of alternative solutions, ecologists must use
predictive ecological models. The development of models that predict the effects on
some variables, caused by changes in others (see, for instance, De Neufville &
Stafford, 1971), requires a deliberate causal structuring, which is based on ecological
theory; it must include a validation procedure. Such models are often difficult and
costly to construct. Because the ecological hypotheses that underlay causal models
(see for instance Gold, 1977, Jolivet, 1982, or Jørgensen, 1983) are often developed
within the context of studies using numerical ecology, the two fields are often in close
contact.

Loehle (1983) reviewed the different types of models used in ecology, and
discussed some relevant evaluation techniques. In his scheme, there are three types of
simulation models: logical, theoretical, and “predictive”. In a logical model, the
representation of a system is based on logical operators. According to Loehle, such
models are not frequent in ecology, and the few that exist may be questioned as to their
biological meaningfulness. Theoretical models aim at explaining natural phenomena in
a universal fashion. Evaluating a theory first requires that the model be accurately
translated into mathematical form, which is often difficult to do. Numerical models
(called by Loehle “predictive” models, sensu lato) are divided in two types:
application models (called, in the present book, predictive models, sensu stricto) are
based on well-established laws and theories, the laws being applied to resolve a
particular problem; calculation tools (called forecasting or correlative models in the
previous paragraph) do not have to be based on any law of nature and may thus be
ecologically meaningless, but they may still be useful for forecasting. In forecasting
models, most components are subject to adjustment whereas, in ideal predictive
models, only the boundary conditions may be adjusted.

Ecologists have used quantitative approaches since the publication by Jaccard
(1900) of the first association coefficient. Floristics developed from this seed, and the
method was eventually applied to all fields of ecology, often achieving high levels of
complexity. Following Spearman (1904) and Hotelling (1933), psychometricians and
social scientists developed non-parametric statistical methods and factor analysis and,
later, nonmetric multidimensional scaling (MDS). During the same period,
anthropologists (e.g. Czekanowski, 1909) were interested in numerical classification.
The advent of computers made it possible to analyse large data sets, using
combinations of methods derived from various fields and supplemented with new
mathematical developments. The first synthesis was published by Sokal & Sneath
(1963), who established numerical taxonomy as a new discipline. 
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Numerical ecology combines a large number of approaches, derived from many
disciplines, in a general methodology for analysing ecological data sets. Its chief
characteristic is the combined use of treatments drawn from different areas of
mathematics and statistics. Numerical ecology acknowledges the fact that many of the
existing numerical methods are complementary to one another, each one allowing to
explore a different aspect of the information underlying the data; it sets principles for
interpreting the results in an integrated way. 

The present book is organized in such a way as to encourage researchers who are
interested in a method to also consider other techniques. The integrated approach to
data analysis is favoured by numerous cross-references among chapters and the
presence of sections presenting syntheses of subjects. The book synthesizes a large
amount of information from the literature, within a structured and prospective
framework, so as to help ecologists take maximum advantage of the existing methods.

This second English edition of Numerical ecology is a revised and largely
expanded translation of the second edition of Écologie numérique (Legendre &
Legendre, 1984a, 1984b). Compared to the first English edition (1983a), there are
three new chapters, dealing with the analysis of semiquantitative data (Chapter 5),
canonical analysis (Chapter 11), and spatial analysis (Chapter 13). In addition, new
sections have been added to almost all other chapters. These include, for example, new
sections (numbers given in parentheses) on: autocorrelation (1.1), statistical testing by
randomization (1.2), coding (1.5), missing data (1.6), singular value decomposition
(2.11), multiway contingency tables (6.3), cophenetic matrix and ultrametric property
(8.3), reversals (8.6), partitioning by K-means (8.8), cluster validation (8.12), a review
of regression methods (10.3), path analysis (10.4), a review of matrix comparison
methods (10.5), the 4th-corner problem (10.6), several new methods for the analysis of
data series (12.3-12.5), detection of discontinuities in multivariate series (12.6), and
Box-Jenkins models (12.7). There are also sections listing available computer
programs and packages at the end of several Chapters.

The present work reflects the input of many colleagues, to whom we express here
our most sincere thanks. We first acknowledge the outstanding collaboration of
Professors Serge Frontier (Université des Sciences et Techniques de Lille) and
F. James Rohlf (State University of New York at Stony Brook) who critically reviewed
our manuscripts for the first French and English editions, respectively. Many of their
suggestions were incorporated into the texts which are at the origin of the present
edition. We are also grateful to Prof. Ramón Margalef for his support, in the form of an
influential Preface to the previous editions. Over the years, we had fruitful discussions
on various aspects of numerical methods with many colleagues, whose names have
sometimes been cited in the Forewords of previous editions. 

During the preparation of this new edition, we benefited from intensive
collaborations, as well as chance encounters and discussions, with a number of people
who have thus contributed, knowingly or not, to this book. Let us mention a few.
Numerous discussions with Robert R. Sokal and Neal L. Oden have sharpened our
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understanding of permutation methods and methods of spatial data analysis. Years of
discussion with Pierre Dutilleul and Claude Bellehumeur led to the Section on spatial
autocorrelation. Pieter Kroonenberg provided useful information on the relationship
between singular value decomposition (SVD) and correspondence analysis (CA).
Peter Minchin shed light on detrended correspondence analysis (DCA) and nonmetric
multidimensional scaling (MDS). A discussion with Richard M. Cormack about the
behaviour of some model II regression techniques helped us write Subsection 10.3.2.
This Subsection also benefited from years of investigation of model II methods with
David J. Currie. In-depth discussions with John C. Gower led us to a better
understanding of the metric and Euclidean properties of (dis)similarity coefficients and
of the importance of Euclidean geometry in grasping the role of negative eigenvalues
in principal coordinate analysis (PCoA). Further research collaboration with Marti J.
Anderson about negative eigenvalues in PCoA, and permutation tests in multiple
regression and canonical analysis, made it possible to write the corresponding sections
of this book; Dr. Anderson also provided comments on Sections 9.2.4, 10.5 and 11.3.
Cajo J. F. ter Braak revised Chapter 11 and parts of Chapter 9, and suggested a number
of improvements. Claude Bellehumeur revised Sections 13.1 and 13.2; François-
Joseph Lapointe commented on successive drafts of 8.12. Marie-Josée Fortin and
Daniel Borcard provided comments on Chapter 13. The ÉCOTHAU program on the
Thau lagoon in southern France (led by Michel Amanieu), and the NIWA workshop on
soft-bottom habitats in Manukau harbour in New Zealand (organized by Rick
Pridmore and Simon Thrush of NIWA), provided great opportunities to test many of
the ecological hypothesis and methods of spatial analysis presented in this book.

Graduate students at Université de Montréal and Université Laval have greatly
contributed to the book by raising interesting questions and pointing out weaknesses in
previous versions of the text. The assistance of Bernard Lebanc was of great value in
transferring the ink-drawn figures of previous editions to computer format. Philippe
Casgrain helped solve a number of problems with computers, file transfers, formats,
and so on.

While writing this book, we benefited from competent and unselfish advice …
which we did not always follow. We thus assume full responsibility for any gaps in the
work and for all the opinions expressed therein. We shall therefore welcome with great
interest all suggestions or criticisms from readers.

PIERRE LEGENDRE, Université de Montréal
LOUIS LEGENDRE, Université Laval April 1998
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Chapter

1 Complex ecological 
data sets

1.0 Numerical analysis of ecological data

The foundation of a general methodology for analysing ecological data may be derived
from the relationships that exist between the conditions surrounding ecological
observations and their outcomes. In the physical sciences for example, there often are
cause-to-effect relationships between the natural or experimental conditions and the
outcomes of observations or experiments. This is to say that, given a certain set of
conditions, the outcome may be exactly predicted. Such totally deterministic
relationships are only characteristic of extremely simple ecological situations.

Generally in ecology, a number of different outcomes may follow from a given set
of conditions because of the large number of influencing variables, of which many are
not readily available to the observer. The inherent genetic variability of biological
material is an important source of ecological variability. If the observations are
repeated many times under similar conditions, the relative frequencies of the possible
outcomes tend to stabilize at given values, called the probabilities of the outcomes.
Following Cramér (1946: 148) it is possible to state that “whenever we say that the
probability of an event with respect to an experiment [or an observation] is equal to P,
the concrete meaning of this assertion will thus simply be the following: in a long
series of repetitions of the experiment [or observation], it is practically certain that the
[relative] frequency of the event will be approximately equal to P.” This corresponds to
the frequency theory of probability — excluding the Bayesian or likelihood approach.

In the first paragraph, the outcomes were recurring at the individual level whereas
in the second, results were repetitive in terms of their probabilities. When each of
several possible outcomes occurs with a given characteristic probability, the set of
these probabilities is called a probability distribution. Assuming that the numerical
value of each outcome Ei is yi with corresponding probability pi, a random variable (or
variate) y is defined as that quantity which takes on the value yi with probability pi at
each trial (e.g. Morrison, 1990). Fig. 1.1 summarizes these basic ideas.

Probability

Probability
distribution

Random
variable



2 Complex ecological data sets

Of course, one can imagine other results to observations. For example, there may
be strategic relationships between surrounding conditions and resulting events. This is
the case when some action — or its expectation — triggers or modifies the reaction.
Such strategic-type relationships, which are the object of game theory, may possibly
explain ecological phenomena such as species succession or evolution (Margalef,
1968). Should this be the case, this type of relationship might become central to
ecological research. Another possible outcome is that observations be unpredictable.
Such data may be studied within the framework of chaos theory, which explains how
natural phenomena that are apparently completely stochastic sometimes result from
deterministic relationships. Chaos is increasingly used in theoretical ecology. For
example, Stone (1993) discusses possible applications of chaos theory to simple
ecological models dealing with population growth and the annual phytoplankton
bloom. Interested readers should refer to an introductory book on chaos theory, for
example Gleick (1987).

Methods of numerical analysis are determined by the four types of relationships
that may be encountered between surrounding conditions and the outcome of
observations (Table 1.1). The present text deals only with methods for analysing
random variables, which is the type ecologists most frequently encounter.

The numerical analysis of ecological data makes use of mathematical tools
developed in many different disciplines. A formal presentation must rely on a unified
approach. For ecologists, the most suitable and natural language — as will become
evident in Chapter 2 — is that of matrix algebra. This approach is best adapted to the
processing of data by computers; it is also simple, and it efficiently carries information,
with the additional advantage of being familiar to many ecologists.

Figure 1.1 Two types of recurrence of the observations.
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Other disciplines provide ecologists with powerful tools that are well adapted to
the complexity of ecological data. From mathematical physics comes dimensional
analysis (Chapter 3), which provides simple and elegant solutions to some difficult
ecological problems. Measuring the association among quantitative, semiquantitative
or qualitative variables is based on parametric and nonparametric statistical methods
and on information theory (Chapters 4, 5 and 6, respectively).

These approaches all contribute to the analysis of complex ecological data sets
(Fig. 1.2). Because such data usually come in the form of highly interrelated variables,
the capabilities of elementary statistical methods are generally exceeded. While
elementary methods are the subject of a number of excellent texts, the present manual
focuses on the more advanced methods, upon which ecologists must rely in order to
understand these interrelationships.

In ecological spreadsheets, data are typically organized in rows corresponding to
sampling sites or times, and columns representing the variables; these may describe
the biological communities (species presence, abundance, or biomass, for instance) or
the physical environment. Because many variables are needed to describe
communities and environment, ecological data sets are said to be, for the most part,
multidimensional (or multivariate). Multidimensional data, i.e. data made of several
variables, structure what is known in geometry as a hyperspace, which is a space with
many dimensions. One now classical example of ecological hyperspace is the
fundamental niche of Hutchinson (1957, 1965). According to Hutchinson, the
environmental variables that are critical for a species to exist may be thought of as
orthogonal axes, one for each factor, of a multidimensional space. On each axis, there
are limiting conditions within which the species can exist indefinitely; we will call
upon this concept again in Chapter 7, when discussing unimodal species distributions
and their consequences on the choice of resemblance coefficients. In Hutchinson’s
theory, the set of these limiting conditions defines a hypervolume called the species’

Table 1.1 Numerical analysis of ecological data.

Relationships between the natural conditions Methods for analysing
and the outcome of an observation and modelling the data

Deterministic: Only one possible result Deterministic models

Random: Many possible results, each one with Methods described in this
a recurrent frequency book (Figure 1.2)

Strategic: Results depend on the respective Game theory
strategies of the organisms and of their environment

Uncertain: Many possible, unpredictable results Chaos theory
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fundamental niche. The spatial axes, on the other hand, describe the geographical
distribution of the species. 

The quality of the analysis and subsequent interpretation of complex ecological
data sets depends, in particular, on the compatibility between data and numerical
methods. It is important to take into account the requirements of the numerical
techniques when planning the sampling programme, because it is obviously useless to
collect quantitative data that are inappropriate to the intended numerical analyses.
Experience shows that, too often, poorly planned collection of costly ecological data,
for “survey” purposes, generates large amounts of unusable data (Fig. 1.3). 

The search for ecological structures in multidimensional data sets is always based
on association matrices, of which a number of variants exist, each one leading to
slightly or widely different results (Chapter 7); even in so-called association-free

Fundamental
niche

Figure 1.2 Numerical analysis of complex ecological data sets.
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methods, like principal component or correspondence analysis, or k-means clustering,
there is always an implicit resemblance measure hidden in the method. Two main
avenues are open to ecologists: (1) ecological clustering using agglomerative, divisive
or partitioning algorithms (Chapter 8), and (2) ordination in a space with a reduced
number of dimensions, using principal component or coordinate analysis, nonmetric
multidimensional scaling, or correspondence analysis (Chapter 9). The interpretation
of ecological structures, derived from clustering and/or ordination, may be conducted
in either a direct or an indirect manner, as will be seen in Chapters 10 and 11,
depending on the nature of the problem and on the additional information available.

Besides multidimensional data, ecologists may also be interested in temporal or
spatial process data, sampled along temporal or spatial axes in order to identify time-
or space-related processes (Chapters 12 and 13, respectively) driven by physics or
biology. Time or space sampling requires intensive field work, which may often be
automated nowadays using equipment that allows the automatic recording of
ecological variables, or the quick surveying or automatic recording of the geographic
positions of observations. The analysis of satellite images or information collected by
airborne or shipborne equipment falls in this category. In physical or ecological

Figure 1.3 Interrelationships between the various phases of an ecological research.
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applications, a process is a phenomenon or a set of phenomena organized along time or
in space. Mathematically speaking, such ecological data represent one of the possible
realizations of a random process, also called a stochastic process.

Two major approaches may be used for inference about the population parameters
of such processes (Särndal, 1978; Koch & Gillings, 1983; de Gruijter & ter Braak,
1990). In the design-based approach, one is interested only in the sampled population
and assumes that a fixed value of the variable exists at each location in space, or point
in time. A “representative” subset of the space or time units is selected and observed
during sampling (for 8 different meanings of the expression “representative sampling”,
see Kruskal & Mosteller, 1988). Design-based (or randomization-based; Kempthorne,
1952) inference results from statistical analyses whose only assumption is the random
selection of observations; this requires that the target population (i.e. that for which
conclusions are sought) be the same as the sampled population. The probabilistic
interpretation of this type of inference (e.g. confidence intervals of parameters) refers
to repeated selection of observations from the same finite population, using the same
sampling design. The classical (Fisherian) methods for estimating the confidence
intervals of parameters, for variables observed over a given surface or time stretch, are
fully applicable in the design-based approach. In the model-based (or
superpopulation) approach, the assumption is that the target population is much larger
than the sampled population. So, the value associated with each location, or point in
time, is not fixed but random, since the geographic surface (or time stretch) available
for sampling (i.e. the statistical population) is seen as one representation of the
superpopulation of such surfaces or time stretches — all resulting from the same
generating process — about which conclusions are to be drawn. Under this model,
even if the whole sampled population could be observed, uncertainty would still
remain about the model parameters. So, the confidence intervals of parameters
estimated over a single surface or time stretch are obviously too small to account for
the among-surface variability, and some kind of correction must be made when
estimating these intervals. The type of variability of the superpopulation of surfaces or
time stretches may be estimated by studying the spatial or temporal autocorrelation of
the available data (i.e. over the statistical population). This subject is discussed at some
length in Section 1.1. Ecological survey data can often be analysed under either model,
depending on the emphasis of the study or the type of conclusions one wishes to derive
from them.

In some instances in time series analysis, the sampling design must meet the
requirements of the numerical method, because some methods are restricted to data
series meeting some specific conditions, such as equal spacing of observations.
Inadequate planning of the sampling may render the data series useless for numerical
treatment with these particular methods. There are several methods for analysing
ecological series. Regression, moving averages, and the variate difference method are
designed for identifying and extracting general trends from time series. Correlogram,
periodogram, and spectral analysis identify rhythms (characteristic periods) in series.
Other methods can detect discontinuities in univariate or multivariate series. Variation
in a series may be correlated with variation in other variables measured

Process

Design-
based

Model-based

Super-
population
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simultaneously. Finally, one may want to develop forecasting models using the Box &
Jenkins approach.

Similarly, methods are available to meet various objectives when analysing spatial
structures. Structure functions such as variograms and correlograms, as well as point
pattern analysis, may be used to confirm the presence of a statistically significant
spatial structure and to describe its general features. A variety of interpolation methods
are used for mapping univariate data, whereas multivariate data can be mapped using
methods derived from ordination or cluster analysis. Finally, models may be developed
that include spatial structures among their explanatory variables.

For ecologists, numerical analysis of data is not a goal in itself. However, a study
which is based on quantitative information must take data processing into account at
all phases of the work, from conception to conclusion, including the planning and
execution of sampling, the analysis of data proper, and the interpretation of results.
Sampling, including laboratory analyses, is generally the most tedious and expensive
part of ecological research, and it is therefore important that it be optimized in order to
reduce to a minimum the collection of useless information. Assuming appropriate
sampling and laboratory procedures, the conclusions to be drawn now depend on the
results of the numerical analyses. It is, therefore, important to make sure in advance
that sampling and numerical techniques are compatible. It follows that mathematical
processing is at the heart of a research; the quality of the results cannot exceed the
quality of the numerical analyses conducted on the data (Fig. 1.3).

Of course, the quality of ecological research is not a sole function of the expertise
with which quantitative work is conducted. It depends to a large extent on creativity,
which calls upon imagination and intuition to formulate hypotheses and theories. It is,
however, advantageous for the researcher’s creative abilities to be grounded into solid
empirical work (i.e. work involving field data), because little progress may result from
continuously building upon untested hypotheses.

Figure 1.3 shows that a correct interpretation of analyses requires that the sampling
phase be planned to answer a specific question or questions. Ecological sampling
programmes are designed in such a way as to capture the variation occurring along a
number of axe of interest: space, time, or other ecological indicator variables. The
purpose is to describe variation occurring along the given axis or axes, and to interpret
or model it. Contrary to experimentation, where sampling may be designed in such a
way that observations are independent of each other, ecological data are often
autocorrelated (Section 1.1).

While experimentation is often construed as the opposite of ecological sampling,
there are cases where field experiments are conducted at sampling sites, allowing one
to measure rates or other processes (“manipulative experiments” sensu Hurlbert, 1984;
Subsection 10.2.3). In aquatic ecology, for example, nutrient enrichment bioassays are
a widely used approach for testing hypotheses concerning nutrient limitation of
phytoplankton. In their review on the effects of enrichment, Hecky & Kilham (1988)
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identify four types of bioassays, according to the level of organization of the test
system: cultured algae; natural algal assemblages isolated in microcosms or sometimes
larger enclosures; natural water-column communities enclosed in mesocosms; whole
systems. The authors discuss one major question raised by such experiments, which is
whether results from lower-level systems are applicable to higher levels, and
especially to natural situations. Processes estimated in experiments may be used as
independent variables in empirical models accounting for survey results, while “static”
survey data may be used as covariates to explain the variability observed among
blocks of experimental treatments. In the future, spatial or time-series data analysis
may become an important part of the analysis of the results of ecological experiments.

1.1 Autocorrelation and spatial structure

Ecologists have been trained in the belief that Nature follows the assumptions of
classical statistics, one of them being the independence of observations. However, field
ecologists know from experience that organisms are not randomly or uniformly
distributed in the natural environment, because processes such as growth,
reproduction, and mortality, which create the observed distributions of organisms,
generate spatial autocorrelation in the data. The same applies to the physical variables
which structure the environment. Following hierarchy theory (Simon, 1962; Allen &
Starr, 1982; O’Neill et al., 1991), we may look at the environment as primarily
structured by broad-scale physical processes — orogenic and geomorphological
processes on land, currents and winds in fluid environments — which, through energy
inputs, create gradients in the physical environment, as well as patchy structures
separated by discontinuities (interfaces). These broad-scale structures lead to similar
responses in biological systems, spatially and temporally. Within these relatively
homogeneous zones, finer-scale contagious biotic processes take place that cause the
appearance of more spatial structuring through reproduction and death, predator-prey
interactions, food availability, parasitism, and so on. This is not to say that biological
processes are necessarily small-scaled and nested within physical processes; biological
processes may be broad-scaled (e.g. bird and fish migrations) and physical processes
may be fine-scaled (e.g. turbulence). The theory only purports that stable complex
systems are often hierarchical. The concept of scale, as well as the expressions broad
scale and fine scale, are discussed in Section 13.0.

In ecosystems, spatial heterogeneity is therefore functional, and not the result of
some random, noise-generating process; so, it is important to study this type of
variability for its own sake. One of the consequences is that ecosystems without spatial
structuring would be unlikely to function. Let us imagine the consequences of a non-
spatially-structured ecosystem: broad-scale homogeneity would cut down on diversity
of habitats; feeders would not be close to their food; mates would be located at random
throughout the landscape; soil conditions in the immediate surrounding of a plant
would not be more suitable for its seedlings than any other location; newborn animals
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would be spread around instead of remaining in favourable environments; and so on.
Unrealistic as this view may seem, it is a basic assumption of many of the theories and
models describing the functioning of populations and communities. The view of a
spatially structured ecosystem requires a new paradigm for ecologists: spatial [and
temporal] structuring is a fundamental component of ecosystems. It then becomes
obvious that theories and models, including statistical models, must be revised to
include realistic assumptions about the spatial and temporal structuring of
communities.

Spatial autocorrelation may be loosely defined as the property of random variables
which take values, at pairs of sites a given distance apart, that are more similar
(positive autocorrelation) or less similar (negative autocorrelation) than expected for
randomly associated pairs of observations. Autocorrelation only refers to the lack of
independence (Box 1.1) among the error components of field data, due to geographic
proximity. Autocorrelation is also called serial correlation in time series analysis. A
spatial structure may be present in data without it being caused by autocorrelation.
Two models for spatial structure are presented in Subsection 1; one corresponds to
autocorrelation, the other not.

Because it indicates lack of independence among the observations, autocorrelation
creates problems when attempting to use tests of statistical significance that require
independence of the observations. This point is developed in Subsection 1.2. Other
types of dependencies (or, lack of independence) may be encountered in biological
data. In the study of animal behaviour for instance, if the same animal or pair of
animals is observed or tested repeatedly, these observations are not independent of one
another because the same animals are likely to display the same behaviour when
placed in the same situation. In the same way, paired samples (last paragraph in
Box 1.1) cannot be analysed as if they were independent because members of a pair
are likely to have somewhat similar responses.

Autocorrelation is a very general property of ecological variables and, indeed, of
most natural variables observed along time series (temporal autocorrelation) or over
geographic space (spatial autocorrelation). Spatial [or temporal] autocorrelation may
be described by mathematical functions such as correlograms and variograms, called
structure functions, which are studied in Chapters 12 and 13. The two possible
approaches concerning statistical inference for autocorrelated data (i.e. the design- or
randomization-based approach, and the model-based or superpopulation approach)
were discussed in Section 1.0. 

The following discussion is partly derived from the papers of Legendre & Fortin
(1989) and Legendre (1993). Spatial autocorrelation is used here as the most general
case, since temporal autocorrelation behaves essentially like its spatial counterpart, but
along a single sampling dimension. The difference between the spatial and temporal
cases is that causality is unidirectional in time series, i.e. it proceeds from (t–1) to t and
not the opposite. Temporal processes, which generate temporally autocorrelated data,
are studied in Chapter 12, whereas spatial processes are the subject of Chapter 13.

Autocorre-
lation
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Independence Box 1.1

This word has several meanings. Five of them will be used in this book. Another
important meaning in statistics concerns independent random variables, which refer
to properties of the distribution and density functions of a group of variables (for a
formal definition, see Morrison, 1990, p. 7).

Independent observations — Observations drawn from the statistical population
in such a way that no observed value has any influence on any other. In the time-
honoured example of tossing a coin, observing a head does not influence the
probability of a head (or tail) coming out at the next toss. Autocorrelated data
violate this condition, their error terms being correlated across observations.

Independent descriptors — Descriptors (variables) that are not related to one
another are said to be independent. Related is taken here in some general sense
applicable to quantitative, semiquantitative as well as qualitative data (Table 1.2).

Linear independence — Two descriptors are said to be linearly independent, or
orthogonal, if their covariance is equal to zero. A Pearson correlation coefficient
may be used to test the hypothesis of linear independence. Two descriptors that are
linearly independent may be related in a nonlinear way. For example, if vector x' is
centred (x' = [xi – ]), vector [ ] is linearly independent of vector x' (their
correlation is zero) although they are in perfect quadratic relationship.

Independent variable(s) of a model — In a regression model, the variable to be
modelled is called the dependent variable. The variables used to model it, usually
found on the right-hand side of the equation, are called the independent variables of
the model. In empirical models, one may talk about response (or target) and
explanatory variables for, respectively, the dependent and independent variables,
whereas, in a causal framework, the terms criterion and predictor variables may be
used. Some forms of canonical analysis (Chapter 11) allow one to model several
dependent (target or criterion) variables in a single regression-like analysis.

Independent samples are opposed to related or paired samples. In related samples,
each observation in a sample is paired with one in the other sample(s), hence the
name paired comparisons for the tests of significance carried out on such data.
Authors also talk of independent versus matched pairs of data. Before-after
comparisons of the same elements also form related samples (matched pairs).

x x'i
2
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1 — Types of spatial structures

A spatial structure may appear in a variable y because the process that has produced
the values of y is spatial and has generated autocorrelation in the data; or it may be
caused by dependence of y upon one or several causal variables x which are spatially
structured; or both. The spatially-structured causal variables x may be explicitly
identified in the model, or not; see Table 13.3. 

• Model 1: autocorrelation — The value yj observed at site j on the geographic surface
is assumed to be the overall mean of the process (µy) plus a weighted sum of the
centred values  at surrounding sites i, plus an independent error term εj:

(1.1)

The yi’s are the values of y at other sites i located within the zone of spatial influence
of the process generating the autocorrelation (Fig. 1.4). The influence of neighbouring
sites may be given, for instance, by weights wi which are function of the distance
between sites i and j (eq. 13.19); other functions may be used. The total error term is

; it contains the autocorrelated component of variation. As written
here, the model assumes stationarity (Subsection 13.1.1). Its equivalent in time series
analysis is the autoregressive (AR) response model (eq. 12.30).

• Model 2: spatial dependence — If one can assume that there is no autocorrelation in
the variable of interest, the spatial structure may result from the influence of some
explanatory variable(s) exhibiting a spatial structure. The model is the following:

(1.2)

where yj is the value of the dependent variable at site j and εj is an error term whose
value is independent from site to site. In such a case, the spatial structure, called
“trend”, may be filtered out by trend surface analysis (Subsection 13.2.1), by the

Autocorre-
lation
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Figure 1.4 The value at site j may be modelled as
a weighted sum of the influences of
other sites i located within the zone of
influence of the process generating the
autocorrelation (large circle).
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method of spatial variate differencing (see Cliff & Ord 1981, Section 7.4), or by some
equivalent method in the case of time series (Chapter 12). The significance of the
relationship of interest (e.g. correlation, presence of significant groups) is tested on the
detrended data. The variables should not be detrended, however, when the spatial
structure is of interest in the study. Chapter 13 describes how spatial structures may be
studied and decomposed into fractions that may be attributed to different hypothesized
causes (Table 13.3).

It is difficult to determine whether a given observed variable has been generated
under model 1 (eq. 1.1) or model 2 (eq. 1.2). The question is further discussed in
Subsection 13.1.2 in the case of gradients (“false gradients” and “true gradients”).

More complex models may be written by combining autocorrelation in variable y
(model 1) and the effects of causal variables x (model 2), plus the autoregressive
structures of the various x’s. Each parameter of these models may be tested for
significance. Models may be of various degrees of complexity, e.g. simultaneous AR
model, conditional AR model (Cliff & Ord, 1981, Sections 6.2 and 6.3; Griffith, 1988,
Chapter 4).

Spatial structures may be the result of several processes acting at different spatial
scales, these processes being independent of one another. Some of these — usually the
intermediate or fine-scale processes — may be of interest in a given study, while other
processes may be well-known and trivial, like the broad-scale effects of tides or world-
wide climate gradients.

2 — Tests of statistical significance in the presence of autocorrelation

Autocorrelation in a variable brings with it a statistical problem under the model-based
approach (Section 1.0): it impairs the ability to perform standard statistical tests of
hypotheses (Section 1.2). Let us consider an example of spatially autocorrelated data.
The observed values of an ecological variable of interest — for example, species
composition — are most often influenced, at any given site, by the structure of the
species assemblages at surrounding sites, because of contagious biotic processes such
as growth, reproduction, mortality and migration. Make a first observation at site A
and a second one at site B located near A. Since the ecological process is understood to
some extent, one can assume that the data are spatially autocorrelated. Using this
assumption, one can anticipate to some degree the value of the variable at site B before
the observation is made. Because the value at any one site is influenced by, and may be
at least partly forecasted from the values observed at neighbouring sites, these values
are not stochastically independent of one another. 

The influence of spatial autocorrelation on statistical tests may be illustrated using
the correlation coefficient (Section 4.2). The problem lies in the fact that, when the two
variables under study are positively autocorrelated, the confidence interval, estimated
by the classical procedure around a Pearson correlation coefficient (whose calculation
assumes independent and identically distributed error terms for all observations), is

Detrending
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narrower than it is when calculated correctly, i.e. taking autocorrelation into account.
The consequence is that one would declare too often that correlation coefficients are
significantly different from zero (Fig. 1.5; Bivand, 1980). All the usual statistical tests,
nonparametric and parametric, have the same behaviour: in the presence of positive
autocorrelation, computed test statistics are too often declared significant under the
null hypothesis. Negative autocorrelation may produce the opposite effect, for instance
in analysis of variance (ANOVA).

The effects of autocorrelation on statistical tests may also be examined from the
point of view of the degrees of freedom. As explained in Box 1.2, in classical statistical
testing, one degree of freedom is counted for each independent observation, from
which the number of estimated parameters is subtracted. The problem with
autocorrelated data is their lack of independence or, in other words, the fact that new
observations do not each bring with them one full degree of freedom, because the
values of the variable at some sites give the observer some prior knowledge of the
values the variable should take at other sites. The consequence is that new
observations cannot be counted for one full degree of freedom. Since the size of the
fraction they bring with them is difficult to determine, it is not easy to know what the
proper reference distribution for the test should be. All that is known for certain is that
positive autocorrelation at short distance distorts statistical tests (references in the next
paragraph), and that this distortion is on the “liberal” side. This means that, when
positive spatial autocorrelation is present in the small distance classes, the usual
statistical tests too often lead to the decision that correlations, regression coefficients,
or differences among groups are significant, when in fact they may not be.

This problem has been well documented in correlation analysis (Bivand, 1980;
Cliff & Ord, 1981, §7.3.1; Clifford et al., 1989; Haining, 1990, pp. 313-330; Dutilleul,
1993a), linear regression (Cliff & Ord, 1981, §7.3.2; Chalmond, 1986; Griffith, 1988,
Chapter 4; Haining, 1990, pp. 330-347), analysis of variance (Crowder & Hand, 1990;
Legendre et al., 1990), and tests of normality (Dutilleul & Legendre, 1992). The
problem of estimating the confidence interval for the mean when the sample data are

Figure 1.5 Effect of positive spatial autocorrelation on tests of correlation coefficients; * means that the
coefficient is declared significantly different from zero in this example.
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autocorrelated has been studied by Cliff & Ord (1975, 1981, §7.2) and Legendre &
Dutilleul (1991). 

When the presence of spatial autocorrelation has been demonstrated, one may wish
to remove the spatial dependency among observations; it would then be valid to
compute the usual statistical tests. This might be done, in theory, by removing
observations until spatial independence is attained; this solution is not recommended
because it entails a net loss of information which is often expensive. Another solution
is detrending the data (Subsection 1); if autocorrelation is part of the process under
study, however, this would amount to throwing out the baby with the water of the bath.
It would be better to analyse the autocorrelated data as such (Chapter 13),
acknowledging the fact that autocorrelation in a variable may result from various
causal mechanisms (physical or biological), acting simultaneously and additively. 

The alternative for testing statistical significance is to modify the statistical method
in order to take spatial autocorrelation into account. When such a correction is
available, this approach is to be preferred if one assumes that autocorrelation is an
intrinsic part of the ecological process to be analysed or modelled.

Degrees of freedom Box 1.2

Statistical tests of significance often call upon the concept of degrees of freedom. A
formal definition is the following: “The degrees of freedom of a model for expected
values of random variables is the excess of the number of variables [observations]
over the number of parameters in the model” (Kotz & Johnson, 1982).

In practical terms, the number of degrees of freedom associated with a statistic
is equal to the number of its independent components, i.e. the total number of
components used in the calculation minus the number of parameters one had to
estimate from the data before computing the statistic. For example, the number of
degrees of freedom associated with a variance is the number of observations minus
one (noted ν = n – 1): n components  are used in the calculation, but one
degree of freedom is lost because the mean of the statistical population is estimated
from the sample data; this is a prerequisite before estimating the variance. 

There is a different t distribution for each number of degrees of freedom. The
same is true for the F and χ2 families of distributions, for example. So, the number
of degrees of freedom determines which statistical distribution, in these families (t,
F, or χ2), should be used as the reference for a given test of significance. Degrees of
freedom are discussed again in Chapter 6 with respect to the analysis of
contingency tables.

xi x–( )
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Corrected tests rely on modified estimates of the variance of the statistic, and on
corrected estimates of the effective sample size and of the number of degrees of
freedom. Simulation studies are used to demonstrate the validity of the modified tests.
In these studies, a large number of autocorrelated data sets are generated under the null
hypothesis (e.g. for testing the difference between two means, pairs of observations are
drawn at random from the same simulated, autocorrelated statistical distribution,
which corresponds to the null hypothesis of no difference between population means)
and tested using the modified procedure; this experiment is repeated a large number of
times to demonstrate that the modified testing procedure leads to the nominal
confidence level.

Cliff & Ord (1973) have proposed a method for correcting the standard error of
parameter estimates for the simple linear regression in the presence of autocorrelation.
This method was extended to linear correlation, multiple regression, and t-test by Cliff
& Ord (1981, Chapter 7: approximate solution) and to the one-way analysis of
variance by Griffith (1978, 1987). Bartlett (1978) has perfected a previously proposed
method of correction for the effect of spatial autocorrelation due to an autoregressive
process in randomized field experiments, adjusting plot values by covariance on
neighbouring plots before the analysis of variance; see also the discussion by
Wilkinson et al. (1983) and the papers of Cullis & Gleeson (1991) and Grondona &
Cressis (1991). Cook & Pocock (1983) have suggested another method for correcting
multiple regression parameter estimates by maximum likelihood, in the presence of
spatial autocorrelation. Using a different approach, Legendre et al. (1990) have
proposed a permutational method for the analysis of variance of spatially
autocorrelated data, in the case where the classification criterion is a division of a
territory into nonoverlapping regions and one wants to test for differences among these
regions.

A step forward was proposed by Clifford et al. (1989), who tested the significance
of the correlation coefficient between two spatial processes by estimating a modified
number of degrees of freedom, using an approximation of the variance of the
correlation coefficient computed on data. Empirical results showed that their method
works fine for positive autocorrelation in large samples. Dutilleul (1993a) generalized
the procedure and proposed an exact method to compute the variance of the sample
covariance; the new method is valid for any sample size.

Major contributions to this topic are found in the literature on time series analysis,
especially in the context of regression modelling. Important references are Cochrane &
Orcutt (1949), Box & Jenkins (1976), Beach & MacKinnon (1978), Harvey & Phillips
(1979), Chipman (1979), and Harvey (1981).

When methods specifically designed to handle spatial autocorrelation are not
available, it is sometimes possible to rely on permutation tests, where the significance
is determined by random reassignment of the observations (Section 1.2). Special
permutational schemes have been developed that leave autocorrelation invariant;
examples are found in Besag & Clifford (1989), Legendre et al. (1990) and ter Braak
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(1990, section 8). For complex problems, such as the preservation of spatial or
temporal autocorrelation, the difficulty of the permutational method is to design an
appropriate permutation procedure.

The methods of clustering and ordination described in Chapters 8 and 9 to study
ecological structures do not rely on tests of statistical significance. So, they are not
affected by the presence of spatial autocorrelation. The impact of spatial
autocorrelation on numerical methods will be stressed wherever appropriate.

3 — Classical sampling and spatial structure

Random or systematic sampling designs have been advocated as a way of preventing
the possibility of dependence among observations (Cochran 1977; Green 1979;
Scherrer 1982). This was then believed to be a necessary and sufficient safeguard
against violations of the independence of errors, which is a basic assumption of
classical statistical tests. It is adequate, of course, when one is trying to estimate the
parameters of a local population. In such a case, a random or systematic sample is
suitable to obtain unbiased estimates of the parameters since, a priori, each point has
the same probability of being included in the sample. Of course, the variance and,
consequently, also the standard error of the mean increase if the distribution is patchy,
but their estimates remain unbiased. 

Even with random or systematic allocation of observations through space,
observations may retain some degree of spatial dependence if the average distance
between first neighbours is shorter than the zone of spatial influence of the underlying
ecological phenomenon. In the case of broad-scale spatial gradients, no point is far
enough to lie outside this zone of spatial influence. Correlograms and variograms
(Chapter 13), combined with maps, are used to assess the magnitude and shape of
autocorrelation present in data sets.

Classical books such as Cochran (1977) adequately describe the rules that should
govern sampling designs. Such books, however, emphasize only the design-based
inference (Section 1.0), and do not discuss the influence of spatial autocorrelation on
the sampling design. At the present time, literature on this subject seems to be only
available in the field of geostatistics, where important references are: David (1977,
Ch. 13), McBratney & Webster (1981), McBratney et al. (1981), Webster & Burgess
(1984), Borgman & Quimby (1988), and François-Bongarçon (1991). 

Ecologists interested in designing field experiments should read the paper of
Dutilleul (1993b), who discusses how to accommodate an experiment to spatially
heterogeneous conditions. The concept of spatial heterogeneity is discussed at some
length in the multi-author book edited by Kolasa & Pickett (1991), in the review paper
of Dutilleul & Legendre (1993), and in Section 13.0.

Heteroge-
neity
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1.2 Statistical testing by permutation

The role of a statistical test is to decide whether some parameter of the reference
population may take a value assumed by hypothesis, given the fact that the
corresponding statistic, whose value is estimated from a sample of objects, may have a
somewhat different value. A statistic is any quantity that may be calculated from the
data and is of interest for the analysis (examples below); in tests of significance, a
statistic is called test statistic or test criterion. The assumed value of the parameter
corresponding to the statistic in the reference population is given by the statistical null
hypothesis (written H0), which translates the biological null hypothesis into numerical
terms; it often negates the existence of the phenomenon that the scientists hope to
evidence. The reasoning behind statistical testing directly derives from the scientific
method; it allows the confrontation of experimental or observational findings to
intellectual constructs that are called hypotheses. 

Testing is the central step of inferential statistics. It allows one to generalize the
conclusions of statistical estimation to some reference population from which the
observations have been drawn and that they are supposed to represent. Within that
context, the problem of multiple testing is too often ignored (Box. 1.3). Another
legitimate section of statistical analysis, called descriptive statistics, does not rely on
testing. The methods of clustering and ordination described in Chapters 8 and 9, for
instance, are descriptive multidimensional statistical methods. The interpretation
methods described in Chapters 10 and 11 may be used in either descriptive or
inferential mode.

1 — Classical tests of significance

Consider, for example, a correlation coefficient (which is the statistic of interest in
correlation analysis) computed between two variables (Chapter 4). When inference to
the statistical population is sought, the null hypothesis is often that the value of the
correlation parameter (ρ, rho) in the statistical population is zero; the null hypothesis
may also be that ρ has some value other than zero, given by the ecological hypothesis.
To judge of the validity of the null hypothesis, the only information available is an
estimate of the correlation coefficient, r, obtained from a sample of objects drawn from
the statistical population. (Whether the observations adequately represent the
statistical population is another question, for which the readers are referred to the
literature on sampling design.) We know, of course, that a sample is quite unlikely to
produce a parameter estimate which is exactly equal to the true value of the parameter
in the statistical population. A statistical test tries to answer the following question:
given a hypothesis stating, for example, that ρ = 0 in the statistical population and the
fact that the estimated correlation is, say, r = 0.2, is it justified to conclude that the
difference between 0.2 and 0.0 is due to sampling error?

The choice of the statistic to be tested depends on the problem at hand. For
instance, in order to find whether two samples may have been drawn from the same

Statistic

Null
hypothesis
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Multiple testing Box 1.3

When several tests of significance are carried out simultaneously, the probability of
a type I error becomes larger than the nominal value α. For example, when
analysing a correlation matrix involving 5 variables, 10 tests of significance are
carried out simultaneously. For randomly generated data, there is a probability
p = 0.40 of rejecting the null hypothesis at least once over 10 tests, at the nominal
α = 0.05 level; this can easily be computed from the binomial distribution. So,
when conducting multiple tests, one should perform a global test of significance in
order to determine whether there is any significant value at all in the set.

The first approach is Fisher's method for combining the probabilities pi obtained from k
independent tests of significance. The value –2Σ ln(pi) is distributed as χ2 with 2k degrees of
freedom if the null hypothesis is true in all k tests (Fisher, 1954; Sokal & Rohlf, 1995).

Another approach is the Bonferroni correction for k independent tests: replace the
significance level, say α = 0.05, by an adjusted level α' = α/k, and compare probabilities pi to
α'. This is equivalent to adjusting individual p-values pi to  = kpi and comparing  to the
unadjusted significance level α. While appropriate to test the null hypothesis for the whole
set of simultaneous hypotheses (i.e. reject H0 for the whole set of k hypotheses if the smallest
unadjusted p-value in the set is less than or equal to α/k), the Bonferroni method is overly
conservative and often leads to rejecting too few individual hypotheses in the set k.

Several alternatives have been proposed in the literature; see Wright (1992) for a review.
For non-independent tests, Holm’s procedure (1979) is nearly as simple to carry out as the
Bonferroni adjustment and it is much more powerful, leading to rejecting the null hypothesis
more often. It is computed as follows. (1) Order the p-values from left to right so that
p1 ≤ p2 ≤ … ≤ pi … ≤ pk. (2) Compute adjusted probability values  = (k – i + 1)pi; adjusted
probabilities may be larger than 1. (3) Proceeding from left to right, if an adjusted p-value in
the ordered series is smaller than the one occurring at its left, make the smallest equal to the
largest one. (4) Compare each adjusted  to the unadjusted α significance level and make
the statistical decision. The procedure could be formulated in terms of successive corrections
to the α significance level, instead of adjustments to individual probabilities.

An even more powerful solution is that of Hochberg (1988) which has the desired overall
(“experimentwise”) error rate α only for independent tests (Wright, 1992). Only step (3)
differs from Holm’s procedure: proceeding this time from right to left, if an adjusted p-value
in the ordered series is smaller than the one at its left, make the largest equal to the smallest
one. Because the adjusted probabilities form a nondecreasing series, both of these procedures
present the properties (1) that a hypothesis in the ordered series cannot be rejected unless all
previous hypotheses in the series have also been rejected and (2) that equal p-values receive
equal adjusted p-values. Hochberg’s method presents the further characteristic that no
adjusted p-value can be larger than the largest unadjusted p-value or exceed 1. More complex
and powerful procedures are explained by Wright (1992).

For some applications, special procedures have been developed to test a whole set of
statistics. An example is the test for the correlation matrix R (eq. 4.14, end of Section 4.2).

p'i p'i

p'i
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statistical population or from populations with equal means, one would choose a
statistic measuring the difference between the two sample means ( ) or,
preferably, a pivotal form like the usual t statistic used in such tests; a pivotal statistic
has a distribution under the null hypothesis which remains the same for any value of
the measured effect (here, ). In the same way, the slope of a regression line is
described by the slope parameter of the linear regression equation, which is assumed,
under the null hypothesis, to be either zero or some other value suggested by
ecological theory. The test statistic describes the difference between the observed and
hypothesized value of slope; the pivotal form of this difference is a t or F statistic.

Another aspect of a statistical test is the alternative hypothesis (H1), which is also
imposed by the ecological problem at hand. H1 is the opposite of H0, but there may be
several statements that represent some opposite of H0. In correlation analysis for
instance, if one is satisfied to determine that the correlation coefficient in the reference
population (ρ) is significantly different from zero in either the positive or the negative
direction, meaning that some linear relationship exists between two variables, then a
two-tailed alternative hypothesis is stated about the value of the parameter in the
statistical population: ρ ≠ 0. On the contrary, if the ecological phenomenon underlying
the hypothesis imposes that a relationship, if present, should have a given sign, one
formulates a one-tailed hypothesis. For instance, studies on the effects of acid rain are
motivated by the general paradigm that acid rain, which lowers the pH, has a negative
effect on terrestrial and aquatic ecosystems. In a study of the correlation between pH
and diversity, one would formulate the following hypothesis H1: pH and diversity are
positively correlated (i.e. low pH is associated with low diversity; H1: ρ > 0). Other
situations would call for a different alternative hypothesis, symbolized by H1: ρ < 0.

The expressions one-tailed and two-tailed refer to the fact that, in a two-tailed test,
one would look in both tails of the reference statistical distribution for values as
extreme as, or more extreme than the reference value of the statistic (i.e. the one
computed from the actual data). In a correlation study for instance, where the reference
distribution (t) for the test statistic is symmetric about zero, the probability of the null
hypothesis in a two-tailed test is given by the proportion of values in the t distribution
which are, in absolute value, as large as, or larger than the absolute value of the
reference statistic. In a one-tailed test, one would look only in the tail corresponding to
the sign given by the alternative hypothesis; for instance, for the proportion of values
in the t distribution which are as large as or larger than the signed value of the
reference t statistic, for a test in the right-hand tail (Η1: ρ > 0).

In standard statistical tests, the test statistic computed from the data is referred to
one of the usual statistical distributions printed in books or computed by some
appropriate computer software; the best-known are the z, t, F and χ2 distributions.
This, however, can only be done if certain assumptions are met by the data, depending
on the test. The most commonly encountered are the assumptions of normality of the
variable(s) in the reference population, homoscedasticity (Box 1.4) and independence
of the observations (Box 1.1). Refer to Siegel (1956, Chapter 2), Siegel & Castellan
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(1988, Chapter 2), or Snedecor & Cochran (1967, Chapter 1), for concise yet clear
classical exposés of the concepts related to statistical testing.

2 — Permutation tests

The method of permutation, also called randomization, is a very general approach to
testing statistical hypotheses. Following Manly (1997), permutation and
randomization are considered synonymous in the present book, although permutation
may also be considered to be the technique by which the principle of randomization is
applied to data during permutation tests. Other points of view are found in the
literature. For instance, Edgington (1995) considers that a randomization test is a
permutation test based on randomization. A different although related meaning of
randomization refers to the random assignment of replicates to treatments in
experimental designs. 

Permutation testing can be traced back to at least Fisher (1935, Chapter 3). Instead
of comparing the actual value of a test statistic to a standard statistical distribution, the
reference distribution is generated from the data themselves, as described below; other
randomization methods are mentioned at the end of the present Section. Permutation
provides an efficient approach to testing when the data do not conform to the
distributional assumptions of the statistical method one wants to use (e.g. normality).
Permutation testing is applicable to very small samples, like nonparametric tests. It
does not resolve problems of independence of the observations, however. Nor does the
method solve distributional problems that are linked to the hypothesis subjected to a
test*. Permutation remains the method of choice to test novel or other statistics whose
distributions are poorly known. Furthermore, results of permutation tests are valid
even with observations that are not a random sample of some statistical population;
this point is further discussed in Subsection 4. Edgington (1995) and Manly (1997)
have written excellent introductory books about the method. A short account is given
by Sokal & Rohlf (1995) who prefer to use the expression “randomization test”.
Permutation tests are used in several Chapters of the present book.

The speed of modern computers would allow users to perform any statistical test
using the permutation method. The chief advantage is that one does not have to worry
about distributional assumptions of classical testing procedures; the disadvantage is
the amount of computer time required to actually perform a large number of
permutations, each one being followed by recomputation of the test statistic. This
disadvantage vanishes as faster computers come on the market. As an example, let us

* For instance, when studying the differences among sample means (two groups: t-test; several
groups: F test of ANOVA), the classical Behrens-Fisher problem (Robinson, 1982) reminds us
that two null hypotheses are tested simultaneously by these methods, i.e. equality of the means
and equality of the variances. Testing the t or F statistics by permutations does not change the
dual aspect of the null hypothesis; in particular, it does not allow one to unambiguously test the
equality of the means without checking first the equality of the variances using another, more
specific test (two groups: F ratio; several groups: Bartlett’s test of equality of variances).

Randomi-
zation
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consider the situation where the significance of a correlation coefficient between two
variables, x1 and x2, is to be tested.

Hypotheses

• H0: The correlation between the variables in the reference population is zero (ρ = 0).

• For a two-tailed test, H1: ρ ≠ 0. 

• Or for a one-tailed test, either H1: ρ > 0, or H1: ρ < 0, depending on the ecological
hypothesis.

Test statistic

• Compute the Pearson correlation coefficient r. Calculate the pivotal statistic
 (eq. 4.13; n is the number of observations) and use it as the

reference value in the remainder of the test. 

In this specific case, the permutation test results would be the same using either r or
t as the test statistic, because t is a monotonic function of r for any constant value of n;
r and t are “equivalent statistics for permutation tests”, sensu Edgington (1995). This is
not always the case. When testing a partial regression coefficient in multiple
regression, for example, the test should not be based on the distribution of permuted
partial regression coefficients because they are not monotonic to the corresponding
partial t statistics. The partial t should be preferred because it is pivotal and, hence, it is
expected to produce correct type I error.

Considering a pair of equivalent test statistics, one could choose the statistic which
is the simplest to compute if calculation time would otherwise be longer in an
appreciable way. This is not the case in the present example: calculating t involves a
single extra line in the computer program compared to r. So the test is conducted using
the usual t statistic.

Distribution of the test statistic

The argument invoked to construct a null distribution for the statistic is that, if the null
hypothesis is true, all possible pairings of the two variables are equally likely to occur.
The pairing found in the observed data is just one of the possible, equally likely
pairings, so that the value of the test statistic for the unpermuted data should be typical,
i.e. located in the central part of the permutation distribution.

• It is always the null hypothesis which is subjected to testing. Under H0, the rows of
x1 are seen as “exchangeable” with one another if the rows of x2 are fixed, or
conversely. The observed pairing of x1 and x2 values is due to chance alone;
accordingly, any value of x1 could have been paired with any value of x2.

t n 2– r 1 r
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• A realization of H0 is obtained by permuting at random the values of x1 while
holding the values of x2 fixed, or the opposite (which would produce, likewise, a
random pairing of values). Recompute the value of the correlation coefficient and the
associated t statistic for the randomly paired vectors x1 and x2, obtaining a value t*.

• Repeat this operation a large number of times (say, 999 times). The different
permutations produce a set of values t* obtained under H0.

• Add to these the reference value of the t statistic, computed for the unpermuted
vectors. Since H0 is being tested, this value is considered to be one that could be
obtained under H0 and, consequently, it should be added to the reference distribution
(Hope, 1968; Edgington, 1995; Manly, 1997). Together, the unpermuted and permuted
values form an estimate of the sampling distribution of t under H0, to be used in the
next step.

Statistical decision

• As in any other statistical test, the decision is made by comparing the reference value
of the test statistic (t) to the reference distribution obtained under H0. If the reference
value of t is typical of the values obtained under the null hypothesis (which states that
there is no relationship between x1 and x2), H0 cannot be rejected; if it is unusual,
being too extreme to be considered a likely result under H0, H0 is rejected and the
alternative hypothesis is considered to be a more likely explanation of the data.

• The significance level of a statistic is the proportion of values that are as extreme as,
or more extreme than the test statistic in the reference distribution, which is either
obtained by permutations or found in a table of the appropriate statistical distribution.
The level of significance should be regarded as “the strength of evidence against the
null hypothesis” (Manly, 1997).

3 — Numerical example

Let us consider the following case of two variables observed over 10 objects:

These values were drawn at random from a positively correlated bivariate normal
distribution, as shown in Fig. 1.6a. Consequently, they would be suitable for
parametric testing. So, it is interesting to compare the results of a permutation test to
the usual parametric t-test of the correlation coefficient. The statistics and associated
probabilities for this pair of variables, for ν = (n – 2) = 8 degrees of freedom, are:

r = 0.70156, t = 2.78456, n = 10: 
prob (one-tailed) = 0.0119, prob (two-tailed) = 0.0238.

x1 –2.31 1.06 0.76 1.38 –0.26 1.29 –1.31 0.41 –0.67 –0.58

x2 –1.08 1.03 0.90 0.24 –0.24 0.76 –0.57 –0.05 –1.28 1.04

Significance
level
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There are 10! = 3.6288 × 106 possible permutations of the 10 values of variable x1
(or x2). Here, 999 of these permutations were generated using a random permutation
algorithm; they represent a random sample of the 3.6288 × 106 possible permutations.
The computed values for the test statistic (t) between permuted x1 and fixed x2 have
the distribution shown in Fig. 1.6b; the reference value, t = 2.78456, has been added to
this distribution. The permutation results are summarized in the following table, where
‘|t|’ is the (absolute) reference value of the t statistic (t = 2.78456) and ‘t*’ is a value
obtained after permutation. The absolute value of the reference t is used in the table to
make it a general example, because there are cases where t is negative.

† This count corresponds to the reference t value added to the permutation results. 

For a one-tailed test (in the right-hand tail in this case, since H1: ρ > 0), one counts
how many values in the permutational distribution of the statistic are equal to, or larger
than, the reference value (t* ≥ t; there are 1 + 17 = 18 such values in this case). This is
the only one-tailed hypothesis worth considering, because the objects are known in
this case to have been drawn from a positively correlated distribution. A one-tailed test
in the left-hand tail (H1: ρ < 0) would be based on how many values in the
permutational distribution are equal to, or smaller than, the reference value (t* ≤ t,
which are 8 + 0 + 974 +1 = 983 in the example). For a two-tailed test, one counts all
values that are as extreme as, or more extreme than the reference value in both tails of
the distribution (t* ≥ t, which are 8 + 0 + 1 + 17 = 26 in the example). 

t* < –t t* = –t –t< t* <t t* = t t* > t
Statistic t 8 0 974 1† 17

Figure 1.6 (a) Positions of the 10 points of the numerical example with respect to variables x1 and x2.
(b) Frequency histogram of the (1 + 999) permutation results (t statistic for correlation
coefficient); the reference value obtained for the points in (a), t = 2.78456, is also shown.
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Probabilities associated with these distributions are computed as follows, for a one-
tailed and a two-tailed test (results using the t statistic would be the same):

One-tailed test [H0: ρ = 0; H1: ρ > 0]: 
prob (t* ≥ 2.78456) = (1 + 17)/1000 = 0.018

Two-tailed test [H0: ρ = 0; H1: ρ ≠ 0]: 
prob(t* ≥ 2.78456) = (8 + 0 + 1 + 17)/1000 = 0.026

Note how similar the permutation results are to the results obtained from the
classical test, which referred to a table of Student t distributions. The observed
difference is partly due to the small number of pairs of points (n = 10) sampled at
random from the bivariate normal distribution, with the consequence that the data set
does not quite conform to the hypothesis of normality. It is also due, to a certain extent,
to the use of only 999 permutations, sampled at random among the 10! possible
permutations.

4 — Remarks on permutation tests

In permutation tests, the reference distribution against which the statistic is tested is
obtained by randomly permuting the data under study, without reference to any
statistical population. The test is valid as long as the reference distribution has been
generated by a procedure related to a null hypothesis that makes sense for the problem
at hand, irrespective of whether or not the data set is representative of a larger
statistical population. This is the reason why the data do not have to be a random
sample from some larger statistical population. The only information the permutation
test provides is whether the pattern observed in the data is likely, or not, to have arisen
by chance. For this reason, one may think that permutation tests are not as “good” or
“interesting” as classical tests of significance because they might not allow one to infer
conclusions that apply to a statistical population. 

A more pragmatic view is that the conclusions of permutation tests may be
generalized to a reference population if the data set is a random sample of that
population. Otherwise, they allow one to draw conclusions only about the particular
data set, measuring to what extent the value of the statistic is “usual” or “unusual” with
respect to the null hypothesis implemented in the permutation procedure. Edgington
(1995) and Manly (1997) further argue that data sets are very often not drawn at
random from statistical populations, but simply consist of observations which happen
to be available for study. The generalization of results, in classical as well as
permutation tests, depends on the degree to which the data were actually drawn at
random, or are equivalent to a sample drawn at random, from a reference population.

For small data sets, one can compute all possible permutations in a systematic way
and obtain the complete permutation distribution of the statistic; an exact or complete
permutation test is obtained. For large data sets, only a sample of all possible
permutations may be computed because there are too many. When designing a

Complete
permutation
test
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sampled permutation test, it is important to make sure that one is using a uniform
random generation algorithm, capable of producing all possible permutations with
equal probabilities (Furnas, 1984). Computer programs use procedures that produce
random permutations of the data; these in turn call the ‘Random’ function of computer
languages. Such a procedure is described in Section 5.8 of Manly’s book (1997).
Random permutation subprograms are also available in subroutine libraries.

The case of the correlation coefficient has shown how the null hypothesis guided
the choice of an appropriate permutation procedure, capable of generating realizations
of this null hypothesis. A permutation test for the difference between the means of two
groups would involve random permutations of the objects between the two groups
instead of random permutations of one variable with respect to the other. The way of
permuting the data depends on the null hypothesis to be tested. 

Some tests may be reformulated in terms of some other tests. For example, the t-
test of equality of means is equivalent to a test of the correlation between the vector of
observed values and a vector assigning the observations to group 1 or 2. The same
value of t and probability (classical or permutational) are obtained using both methods.

Simple statistical tests such as those of correlation coefficients or differences
between group means may be carried out by permuting the original data, as in the
example above. Problems involving complex relationships among variables may
require permuting the residuals of some model instead of the raw data; model-based
permutation is discussed in Subsection 11.3.2. The effect of a nominal covariable may
be controlled for by restricted permutations, limited to the objects within the groups
defined by the covariable. This method is discussed in detail by Manly (1997).
Applications are found in Brown & Maritz (1982; restrictions within replicated values
in a multiple regression) and in Sokal et al. (1987; Mantel test), for instance.

In sampled permutation tests, adding the reference value of the statistic to the
distribution has the effect that it becomes impossible for the test to produce no value
“as extreme as, or more extreme than the reference value”, as the standard expression
goes. This way of computing the probability is biased, but it has the merit of being
statistically valid (Edgington, 1995, Section 3.5). The precision of the probability
estimate is the inverse of the number of permutations performed; for instance, after
(999 + 1) permutations, the precision of the probability statement is 0.001.

The number of permutations one should perform is always a trade-off between
precision and computer time. The more permutations the better, since probability
estimates are subject to error due to sampling the population of possible permutations
(except in the rare cases of complete permutation tests), but it may be tiresome to wait
for the permutation results when studying large data sets. In the case of the Mantel test
(Section 10.5), Jackson & Somers (1989) recommend to compute 10000 to 100000
permutations in order to ensure the stability of the probability estimates. The following
recommendation can be made. In exploratory analyses, 500 to 1000 permutations may
be sufficient as a first contact with the problem. If the computed probability is close to
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the preselected significance level, run more permutations. In any case, use more
permutations (e.g. 10000) for final, published results.

Interestingly, tables of critical values in nonparametric statistical tests for small
sample sizes are based on permutations. The authors of these tables have computed
how many cases can be found, in the complete permutation distribution, that are as
extreme as, or more extreme than the computed value of the statistic. Hence,
probability statements obtained from small-sample nonparametric tests are exact
probabilities (Siegel, 1956).

Named after the famous casino of the principality of Monaco, Monte Carlo
methods use random numbers to study either real data sets or the behaviour of
statistical methods through simulations. Permutation tests are Monte Carlo methods
because they use random numbers to randomly permute data. Other such methods are
based on computer-intensive resampling. Among these are the jackknife (Tukey 1958;
Sokal & Rohlf, 1995) and the bootstrap (Efron, 1979; Efron & Tibshirani, 1993;
Manly, 1997). In these methods, the values used in each iteration to compute a statistic
form a subsample of the original data. In the jackknife, each subsample leaves out one
of the original observations. In the bootstrap, each subsample is obtained by
resampling the original sample with replacement; the justification is that resampling
the original sample approximates a resampling of the original population.

As an exercise, readers are invited to figure out how to perform a permutation test
for the difference between the means of two groups of objects on which a single
variable has been measured, using the t statistic; this would be equivalent to a t-test. A
solution is given by Edgington (1995). Other types of permutation tests are discussed
in Sections 7.3, 8.9, 10.2, 10.3, 10.5, 10.6, 11.3, 12.6, 13.1 and 13.3. 

1.3 Computers

Processing complex ecological data sets almost always requires the use of a computer,
as much for the amount of data to be processed as for the fact that the operations to be
performed are often tedious and repetitious. Work with computers is made simple by
the statistical programs and packages available on microcomputers or on mainframes.
For those who want to develop new methods, advanced programming languages such
as S-PLUS or MATLAB, or the SAS Language, may be extremely useful. One may
also complement programs written in one of the standard computer languages with
statistical subprograms drawn from libraries such as NAG or IMSL, which are
available at computing centres and contain subprograms for the numerical resolution
of most common numerical problems. The ease of using computers, however, has two
pitfalls that ecologists must bear in mind: the fact that computations are executed does
not ensure (1) that the data satisfy the conditions required by the method, or (2) that the
results produced by the computer are interpreted correctly in ecological terms.

Monte Carlo

Jackknife
Bootstrap
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In fact, ecologists must thoroughly master the numerical methods they use. If they
do not, they may end up using approaches that are incompatible with their data, or
selecting techniques that do not correspond to the goal of the research, or else
interpreting the results either incompletely or incorrectly. The only role of the
computer is to relieve the user of the calculations; it makes no appraisal of the
pertinence of the selected method, or of the interpretation of the results. The aim of the
following chapters is to provide ecologists with a guide to the use of the many
numerical methods available, as well as the bases for translating, in ecological terms,
the pages of numbers produced by computers. Indeed, a computer output is not in itself
a conclusion and it will never replace ecologists for interpreting results.

Ten years ago, the statistical packages most widely available were BMDP

(Biomedical Computer Programs), SPSS (Statistical Package for the Social
Sciences) and SAS (Statistical Analysis System). Versions of these packages,
originally developed for mainframe computers, are now available for microcomputers
as well. A wide array of other programs and packages have also been developed for
microcomputers, giving users a wide choice. The selection of a given package for a
specific task may be guided by its availability for the user’s preferred machine, the
methods it contains, and its computer-friendliness. In everyday work, ecologists rely
nowadays on several packages, each specialized for specific tasks such as clustering,
ordination, canonical analysis, time series analysis, spatial analysis, graphics,
mapping, word processing, etc. While low-end microcomputers can perform most
everyday tasks of data analysis, high-end machines or mainframes retain their
usefulness to analyse large data bases or for permutation-based, computer-intensive
statistical testing methods.

A review of the contents of the main statistical packages available on the market is
beyond the scope of the present book, and would rapidly become obsolete. Such
reviews may be found in statistical Journals, for instance The American Statistician,
Applied Statistics, or Statistics and Computing. Lists of programs for some of the more
specialized fields of analysis will be provided in some chapters of this book.

Programs for all the numerical techniques described in the following chapters can
be found in one or several packages. It is, therefore, much more efficient for ecologists
to use these proven resources than to reprogram methods. Ecological data are, most of
the time, so complex that a single analysis cannot extract all their useful information.
Therefore, ecologists who judiciously use existing programs have access to a variety
of numerical methods, which are needed to cover the wide range of ecological
situations encountered in field studies.

1.4 Ecological descriptors

Any ecological study, classical or numerical, is based on descriptors. In the present
text, the terms descriptor and variable will be used interchangeably. These refer to the

Descriptor
Variable
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attributes, or characters (also called items in the social sciences, and profiles or
features in the field of pattern recognition) used to describe or compare the objects of
the study. The objects that ecologists compare are the sites, quadrats, observations,
sampling units, individual organisms, or subjects which are defined a priori by the
sampling design, before making the observations (Section 2.1). Observation units are
often called “samples” by ecologists; the term sample is only used in this book to refer
to a set of observations resulting from a sampling action or campaign. Objects may be
called individuals or OTUs (Operational taxonomic units) in numerical taxonomy,
OGUs (Operational geographic units) in biogeography, cases, patterns or items in the
field of pattern recognition, etc. 

The descriptors, used to describe or qualify the objects, are the physical, chemical,
ecological, or biological characteristics of these objects that are of interest for the
study. In particular, biological species are descriptors of sites for ecologists; in
(numerical) taxonomy on the contrary, the species are the objects of the study, and the
sites where the species are observed or collected may be used by the taxonomist as
descriptors of the species. It all depends on the variable defined a priori, which is fixed
as object for the study. In ecology, sites are compared using the species they contain,
there being no possibility of choosing the species, whereas taxonomists compare
populations or other taxonomic entities obtained from a number of different sites.

A descriptor is a law of correspondence established by the researcher to describe and
compare, on the same basis, all the objects of the study. This definition applies to all types of
descriptors discussed below (Table 1.2). The fundamental property of a descriptor, as understood
in the present book, is that it distributes the objects among non-overlapping states. Each
descriptor must, therefore, operate like a law that associates with each object in the group under
study one and only one element of a set of distinguishable states that belong to the descriptor.

The states that constitute a descriptor must necessarily be mutually exclusive. In
other words, two different states of the same descriptor must not be applicable to the
same object. Descriptors, on the contrary, do not have to be independent of one another
(see Box 1.1: independent descriptors). In Chapter 6, it will be seen that the
information contained in one descriptor may partially or totally overlap with the
information in an other. In Chapters 8 and 9, such redundant or correlated information
will be used as the basis for the clustering or ordination of ecological objects.

1 — Mathematical types of descriptor

The states which form a descriptor — that is, the qualities observed or determined
on the objects — may be of a qualitative or quantitative nature, so that descriptors may
be classified into several types. In ecology, a descriptor may be biological (presence,
abundance, or biomass of different species), physical, chemical, geological,
geographical, temporal, climatic, etc. Table 1.2 presents a classification of descriptors
according to their mathematical types. This classification is, therefore, independent of
the particular discipline to which the descriptors belong. The mathematical type of a
descriptor determines the type of numerical processing which can be applied to it. For

Object

Descriptor

Descriptor
state
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example, parametric correlations (Pearson’s r) may be calculated between quantitative
descriptors, while nonparametric correlations (such as Kendall’s τ) may be used on
ordered but not necessarily quantitative descriptors, as long as their relationship is
monotonic. To measure the dependence among descriptors that are not in monotonic
relationship, or among qualitative descriptors, requires the use of other methods based
on contingency tables (Chapter 6). Section 1.5 and Chapter 10 will show how
descriptors of different mathematical types can be made compatible, in order to use
them together in ecological studies.

Quantitative descriptors, which are the most usual type in ecology, are found at the bottom
of Table 1.2. They include all descriptors of abundance and other quantities that can be plotted
on a continuous axis of real numbers. They are called quantitative, or metric (Falconer, 1960),
because they measure changes in a phenomenon in such a way that the difference between 1 and
2, for example, is quantitatively the same as the difference between, say, 6 and 7. Such
descriptors may be further subdivided into relative-scale quantitative variables, where value
‘zero’ means the absence of the characteristic of interest, and interval-scale variables where the
‘zero’ is chosen arbitrarily. For the latter type, the fact that the ‘zero’ reference is chosen
arbitrarily prevents comparisons of the type “this temperature (°C) is twice as high as that one”.
Species abundance data, or temperatures measured in Kelvin, are examples of the first type,
while temperature measured in degrees Celsius, dates, or geographic directions (of wind,
currents, etc.) in degrees, are examples of the second.

Continuous quantitative descriptors are usually processed as they are. If they are divided
into a small number of equidistant classes of abundance (further discussed below), the
discontinuous descriptors that are obtained may usually be processed as if they were continuous,

Table 1.2 The different mathematical types of descriptors.

Descriptor types Examples

Binary (two states, presence-absence) Species present or absent

Multi-state (many states)

Nonordered (qualitative, nominal, attributes) Geological group

Ordered

Semiquantitative (rank-ordered, ordinal) Importance or abundance scores

Quantitative (metric, measurement)

Discontinuous (meristic, discrete) Equidistant abundance classes

Continuous Temperature, length

Relative scale
Interval scale
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because the distortion due to grouping is negligible for the majority of distribution types (Sneath
& Sokal, 1973). Before the advent of computers, it was usual practice, in order to facilitate
calculations, to divide continuous descriptors into a small number of classes. This
transformation is still necessary when, due to low precision of the measurements, only a small
number of classes can be distinguished, or when comparisons are sought between quantitative
and semiquantitative descriptors.

Meristic variables (the result of enumeration, or counting) theoretically should be
considered as discontinuous quantitative. In ecology, however, these descriptors are most often
counts of the number of specimens belonging to the various species, whose range of variation is
so large that they behave, for all practical purposes, as continuous variables. When they are
transformed (Section 1.5), as is often the case, they become real numbers instead of integers.

In order to speed up field observations or counts in the laboratory, it is often interesting for
ecologists to record observations in the form of semiquantitative descriptors. Usually, it is
possible to estimate environmental characteristics very rapidly by ascribing them a score using a
small number of ordered classes: score 1 < score 2 < score 3, etc. Ecologists may often proceed
in this way without losing pertinent information, whereas precise counts would have
necessitated more considerable efforts than required by the ecological phenomenon under study.
For example, in studying the influence of the unevenness of the landscape on the fauna of a
given area, it may be enough to describe the relief using ordered classes such as flat, undulated,
rough, hilly and mountainous. In the same way, counting large numbers of organisms may be
done using abundance scores instead of precise numbers of individuals. Frontier (1973), for
example, established such a scoring scale to describe the variability of zooplankton. Another
score scale, also developed by Frontier (1969) for counting zooplankton, was used to estimate
biomass (Dévaux & Millerioux, 1976b) and diversity of phytoplankton (Dévaux & Millerioux,
1977) as well as to evaluate schools of cetaceans at sea (Frontier & Viale, 1977). Frontier &
Ibanez (1974) as well as Dévaux & Millerioux (1976a) have shown that this rapid technique is
as informative as classical enumeration for principal component analysis (Section 9.1). It must
be noted that nonparametric statistical tests of significance, which are used on such
semiquantitative descriptors, have a discriminatory power almost equal to that of their
parametric equivalent. Naturally occurring semiquantitative descriptors, which give ranks to the
objects under study, as well as quantitative descriptors divided into non-equidistant classes
(which is done either to facilitate data gathering or to evidence holes in frequency distributions),
are included among the semiquantitative descriptors. Method 6.4 in Subsection 1.5.4 shows how
to normalize semiquantitative descriptors if they have to be used in methods of data analysis that
perform better in the presence of normality. Normalized semiquantitative descriptors should
only be interpreted in terms of the ordinal value that they really represent. On the other hand,
methods of data analysis may often be adapted to ranked data. This is the case, for example, with
principal component analysis (Lebart et al., 1979; Subsection 9.1.7) and linear regression (Iman
& Conover, 1979).

Qualitative descriptors often present a problem to ecologists, who are tempted to discard
them, or reduce them to a series of binary variables (Section 1.5, method 9). Let us forget the
cases where descriptors of this kind have been camouflaged as ordered variables by scientists
who did not quite know what to do with them …Various methods based on contingency tables
(Chapter 6) may be used to compare such descriptors with one another, or to ordered descriptors
divided into classes. Special resemblance coefficients (Chapter 7) allow these descriptors to be
used as a basis for clustering (Chapter 8) or ordination (Chapter 9). The first paragraph of
Chapter 6 gives several examples of qualitative descriptors. An important class is formed by
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classifications of objects, which may in turn become descriptors of these objects for subsequent
analyses, since the definition of a classification (Section 8.1) corresponds to the definition of a
descriptor given above.

Binary or presence-absence descriptors may be noted + or –, or 1 or 0. In ecology, the most
frequently used type of binary descriptors is the presence or absence of species, when reliable
quantitative information is not available. It is only for historical reasons that they are considered
as a special class: programming the first computers was greatly facilitated by such descriptors
and, as a result, several methods have been developed for processing them. Sneath & Sokal
(1973) present various methods to recode variables into binary form; see also Section 1.5,
transformation method 7. Binary descriptors encountered in ecology may be processed either as
qualitative, semiquantitative or quantitative variables. Even though the mean and variance
parameters of binary descriptors are difficult to interpret, such descriptors may be used with
methods originally designed for quantitative variables — in a principal component analysis, for
instance, or as independent variables in regression or canonical analysis models. 

When collecting ecological data, the level of precision with which descriptors are
recorded should be selected with consideration of the problem at hand. Quantitative
descriptors may often be recorded either in their original form or in semiquantitative or
qualitative form. The degree of precision should be chosen with respect to the
following factors: (1) What is the optimal degree of precision of the descriptor for
analysing this particular ecological phenomenon? (2) What type of mathematical
treatment will be used? This choice may determine the mathematical types of the
descriptors. (3) What additional cost in effort, time or money is required to raise the
level of precision? Would it not be more informative to obtain a larger number of less
precise data?

2 — Intensive, extensive, additive, and non-additive descriptors

There are other useful ways of looking at variables. Margalef (1974) classifies
ecological variables as either intensive or extensive. These notions are derived from
thermodynamics (Glandsdorff & Prigogine, 1971). A variable is said to be intensive if
its value is defined independently of the size of the sampling unit in which it is
measured. For example, water temperature is defined independently of the size of the
bucket of water in which a thermometer would be placed: we do not say “12°C per
litre” but simply “12°C”. This does not mean that the measured value of temperature
may not vary from place to place in the bucket; it may indeed, unless water is well-
mixed and therefore homogeneous. Concentration of organisms (number per unit
surface or volume), productivity, and other rate variables (e.g. birth, death) are also
intensive because, in a homogeneous system, the same value is obtained whether the
original measurements are made over 1 m2 or over 100 m2. In contrast, an extensive
variable is one whose value, in a homogeneous system, changes proportionally (linear
relationship) to the size of the sampling unit (transect, quadrat, or volume). It is
formally defined as an integral over the sampling unit. Number of individuals and
biomass in a quadrat or volume, at a given point in time, are examples of extensive
variables.

Intensive

Extensive
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Extensive variables have the property that the values they take in two sampling
units can be added to provide a meaningful estimate of the value in the combined unit.
Other variables do not have this property; either they do not vary at all
(e.g. temperature in a homogeneous bucket of water, which is an intensive variable), or
they vary in a nonlinear way with the size of the sampling unit. For example, species
richness in a sampling unit (surface or volume) cannot be computed as the sum of the
numbers of species found in two sub-units; that sum would usually be larger than the
number of species actually found in the combined unit, because some species are
common to the two sub-units. Species diversity (Chapter 5) also has this property. The
relationship of such variables to scale is complex and depends on the distribution
patterns of the species and the size of the sampling units (grain size of the
measurements; He et al., 1994).

Another, more statistical point of view concerns additivity. This notion is well-
known in geostatistics (Olea, 1991, p. 2; Journel & Huijbregths, 1978). A variable is
said to be additive if its values can be added while retaining the same meaning as the
original variable. A good example is the number of individuals in a quadrat.
Concentrations, which are intensive variables, are additive if they are referred to the
same linear, surface or volume unit measure (e.g. individuals m–2; kg m–3) (Journel &
Huijbregths, 1978, p. 199); values may be added to compute a mean for example.

Extensive variables (e.g. number of individuals) are, by definition, additive; a sum
or a mean has the same meaning as the original data although, if the sampling units
differ in size, the values must be weighted by the sizes of the respective sampling units
for their mean to be meaningful. For intensive additive variables (e.g. temperature or
concentration), only the (weighted) mean has the same meaning as the original values.
Variables may be additive over either time or space (Walliser, 1977); numbers of
individuals in quadrats, for example, are additive over space, but not over time if the
time lag between observations is shorter than the generation time of the organisms (the
same individuals would be counted several times). 

Examples of non-additive variables are pH values, logarithms and ratios of random
variables, indices of various kinds, and directions of vectors (wind direction, aspect of
a slope, etc.). Values of non-additive variables must be transformed in some way
before (and if) they could be meaningfully combined. Logarithms of counts of
organisms, for instance, have to be back-transformed using antilogarithms before
values can be added; for ratios, the numerator and denominator must be added
separately, and the ratio recomputed from these sums. Other non-additive variables,
such as species richness and diversity, simply cannot be numerically combined; values
of these indices for combined sampling units must be recomputed from the combined
raw data.

These notions are of prime importance when analysing spatial data (Chapter 13).
To appreciate their practical usefulness, let us consider a study in which the following
variables have been measured at a site in a lake or in the ocean, at different times: solar
flux at water surface (W m–2), temperature (°C), pH, O2 concentration (g m–3),

Additive

Non-additive
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production of phytoplankton (g C m–3 s–1), and concentration of zooplankton
(individuals m–3). All variables are intensive; they all have complex physical units,
except temperature (simple unit) and pH (no unit). Assuming that some form of
random sampling had been conducted with constant-sized observation units, how
could estimates be obtained for the whole study area? This question may be viewed
from two different angles, i.e. one may be looking for a mean or for an integral value
over the study area. For additive variables (i.e. all except pH), values can be computed
that represent the mean over the study area. However, integrating over the study area
to obtain values for total solar flux, zooplankton, etc. is not that simple, because it
requires the variables to be extensive. No extensive variable can be derived from
temperature or pH. In the case of variables with complex physical units, new variables
may be derived with units that are appropriate for integration:

• Consider O2 concentration. Its physical dimensions (Section 3.1) are [ML–3], with
units g m–3. This indicates that the “mass” part (dimension [M], with unit g), which is
extensive, may be integrated over a volume, for example that of the surface mixed
layer over the whole study area. Also, values from different depths in the mixed layer
may be vertically integrated, to provide areal concentrations (dimensions [ML–2], with
units g m–2). The same applies to the concentration of zooplankton. 

• Flux variables may be turned into variables that are additive over both space and
time. Phytoplankton production (dimensions [ML–3T–1], with units g C m–3 s–1) is a
flux variable since it is expressed per unit space and time. So, the extensive “mass”
part may be integrated over a volume or/and over time, e.g. the euphotic zone over the
whole study area or/and for the duration of the study. Values from different depths in
the euphotic zone may be vertically integrated, thus providing areal concentrations
(dimensions [ML–2T–1], with units g C m–2 s–1), which could then be integrated over
time.

• Solar flux (W m–2) represents a more complex case. The “power” part (W) can be
integrated over space (m2) only. However, because W = J s–1 (Table 3.2), it is possible
to integrate the “energy” part (J) over both space and time. Since the solar flux is either
W m–2 or J m–2 s–1, the “power” part may be integrated over space or, alternatively,
the “energy” part may be integrated over both surface (m2) and time (s). For example,
it is possible to compute solar energy over a given area during 24 h. 

1.5 Coding

Coding is a technique by which original data are transformed into other values, to be
used in the numerical analysis. All types of descriptors may be coded, but nonordered
descriptors must necessarily be coded before they may be analysed numerically. The
functions or laws of correspondence used for coding qualitative descriptors are
generally discontinuous; positive integers are usually associated with the various
states.
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Consider the case where one needs to compute the dependence between a variable
with a high degree of precision and a less precisely recorded descriptor. Two
approaches are available. In the first approach, the precision of the more precise
descriptor is lowered, for example by dividing continuous descriptors into classes.
Computers can easily perform such transformations. Dependence is then computed
using a mathematical method adapted to the descriptor with the lowest level of
precision. In the second approach, the descriptor with the lower precision level will be
given a numerical scale adjusted to the more precise one. This operation is called
quantification (Cailliez & Pagès, 1976; Gifi, 1990); one method of quantification using
canonical correspondence analysis is explained in Subsection 11.2.1. Other
transformations of variables, that adjust a descriptor to another, have been developed
in the regression framework; they are discussed in Section 10.3.

1 — Linear transformation

In a study where there are quantitative descriptors of different types (metres, litres,
mg L–1, …), it may be useful to put them all on the same scale in order to simplify the
mathematical forms of relationships. It may be difficult to find an ecological
interpretation for a relationship that includes a high level of artificial mathematical
complexity, where scale effects are intermingled with functional relationships. Such
changes of scale may be linear (of the first order), or of some higher order.

A linear change of scale of variable y is described by the transformation
 where y' is the value after transformation. Two different

transformations are actually included in this equation. The first one, translation,
consists in adding or subtracting a constant ( in the equation) to all data.
Graphically, this consists in sliding the scale beneath the data distribution. Translation
is often used to bring to zero the mean, the modal class, the weak point of a bimodal
distribution, or another point of interest in the distribution. The second transformation,
expansion, is a change of scale obtained by multiplying or dividing all observed values
by a constant (  in the equation). Graphically, this operation is equivalent to
contracting or expanding the scale beneath the distribution of a descriptor. 

Two variables that are linearly related can always be put on the same scale by a
combination of a translation followed by an expansion, the values of parameters 
and  being found by linear regression (model I or model II: Chapter 10). For
example (Fig. 1.7), if a linear regression analysis shows the equation relating  to 
to be  (where  represents the values estimated by the regression
equation for variable ), then transforming  into  successfully puts
variable  on the same scale as variable , since . If one wishes to
transform  instead of , the regression equation should be computed the other way
around.
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2 — Nonlinear transformations

The methods of multidimensional analysis described in this book are often based on
covariances or linear correlations. Using them requires that the relationships among
variables be made linear by an appropriate transformation. When two variables are not
linearly related, their relationship may be described by a second- or higher-degree
equation, or by other functional forms, depending on the situation. If the nonlinear
form of the equation is derived from ecological theory, as it is often the case in
population dynamics models, interpretation of the relationship poses no problem. If,
however, a nonlinear transformation is chosen empirically, for reasons of mathematical
elegance and without grounding in ecological theory, it may be difficult to find an
ecological meaning to it. 

The relationship between two variables may be determined with the help of a
scatter diagram of the objects in the plane formed by the variables (Fig. 1.8). The
principles of analytical geometry may then be used to recognize the type of
relationship, which in turn determines the most appropriate type of transformation. A
relationship frequently found in ecology is the exponential function, in which a
variable  increases in geometric progression with respect to , according to one of
the following equations:

 or  or  or else (1.3)

depending on the number of constants b that shift or amplify the function. Such
relationships can easily be linearized by using the logarithm of variable y2 (called 
below) instead of y2 itself. The above relationships then become:

Figure 1.7 The regression parameters (b0 and b1) found by regressing  on  (left panel) may be used
(right panel) to transform  into  such that  is now on the same scale as .
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, or ,

or , or (1.4)

where the b's are the logarithms of constants b in eq. 1.3.

If two variables display a logarithmic relationship of the form

(1.5)

Figure 1.8 The relationship between variables may often be recognized by plotting them one against the
other. In the upper panel,  varies as the natural logarithm of . In the lower panel,  is an
exponential function of . These curves (and corresponding equations) may take different
forms, depending on the modifying constants b (eq. 1.3).
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where b is the base of the logarithm, their relationship can be made linear by applying
a log–1 transformation to :

(1.6)

When a nonlinear form may be assumed from knowledge of the ecological process
involved, the corresponding equation can be used as the basis for a linearizing
transformation. For instance, the nonlinear equation

(1.7)

describes the exponential growth of a population, as observed in population
explosions. In this equation, the independent variable is time (t); N0 and Nt are the
population sizes at times 0 and t, respectively; r is the Malthus parameter describing
the intrinsic rate of increase of the population. This nonlinear equation indicates that Nt
must be transformed into its natural logarithm. After this transformation, ln(Nt) is
linearly related to t: ln(Nt) = ln(N0) + rt.

3 — Combining descriptors

Another transformation which is often used consists in combining different descriptors
by addition, subtraction, multiplication or division. In limnology, for example, the
ratio (surface O2/ bottom O2) is often used as a descriptor. So is the Pearsall ionic ratio,
all ions being in the same physical units:

(1.8)

Beware, however, of the spurious correlations that may appear when comparing ratio
variables to others. Jackson & Somers (1991a) describe the problem and recommend
that permutation tests (Section 1.2) be employed with ratios.

It may also be required to take into account a factor of magnitude or size. For
example, when observation units are of different sizes, the number of specimens of
each species may be divided by the area or the volume of the unit (depending on
whether the units come from an area or a volume), or by some other measure of the
sampling effort. One must exert care when interpreting the results, however, since
large observation units are more representative of populations than small ones.

4 — Ranging and standardization

Quantitative variables, used in ecology as environmental descriptors, are often
expressed in incompatible units such as metres, mg L–1, pH units, etc. In order to
compare such descriptors, or before using them together in a classification or
ordination procedure, they must be brought to some common scale. Among the
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methods available, some only eliminate size differences while others reduce both the
size and variability to a common scale.

Translation, a method previously discussed, allows one to centre the data,
eliminating size differences due to the position of the zero on the various scales.
Centring is done by subtracting the mean of the observations from each value :

(1.9)

For relative-scale variables (Subsection 1.4.1), dividing each  by the largest
observed value is a way, based on expansion, to bring all values in the range [0, 1]
(Cain & Harrison, 1958):

(1.10)

For interval-scale variables, whose range may include negative values, the absolute
value of the largest positive or negative value is used as divisor. The transformed
values are in the interval [–1, +1].

Other methods allow the simultaneous adjustment of the magnitude and the
variability of the descriptors. The method of ranging, proposed by Sneath & Sokal
(1973), reduces the values of a variable to the interval [0, 1] by first subtracting the
minimum observed for each variable and then dividing by the range:

(1.11)

Equation 1.10 is the form of ranging (eq. 1.11) to use with relative-scale variables
(Subsection 1.4.1) for which ymin is always zero.

The most widely used method for making descriptors compatible is to standardize
the data (transformation into so-called “z-scores”). This method will be fully discussed
in Section 4.2, dealing with correlation. Principal components (Section 9.2) are
frequently computed using standardized data. Standardization is achieved by
subtracting the mean (translation) and dividing by the standard deviation ( ) of the
variable (expansion):

(1.12)

The position of each object on the transformed variable  is expressed in standard
deviation units; as a consequence, it refers to the group of objects from which  has
been estimated. The new variable  is called a standardized variable. Such a variable
has three interesting properties: its mean is zero ( ); its variance and hence its
standard deviation are 1 ( ); it is also a dimensionless variable (Chapter 3)
since the physical dimensions (metres, mg L-1, etc.) in the numerator and denominator
cancel out. Transformations 1.6, 1.8 and 1.9 also produce dimensionless variables.
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Beware of the “default options” of computer programs that may implicitly or
explicitly suggest to standardize all variables before data analysis. Milligan & Cooper
(1988) report simulation results showing that, for clustering purposes, if a
transformation is needed, the ranging transformation (eqs. 1.10 and 1.11) gives results
that are in general far superior to those obtained using standardization (eq. 1.12).

5 — Implicit transformation in association coefficients

When descriptors with different scales are used together to compare objects, the choice
of the association coefficient (Section 7.6) may partly determine the type of
transformation that must be applied to the descriptors. Some coefficients give equal
weights to all variables independently of their scales while others take into account the
magnitude of variation of each one. Since the amount of information (in the sense of
information theory; Chapter 6) in a quantitative descriptor increases as a function of its
variance, equalizing the variances before the association coefficient is computed is a
way to ensure that all descriptors have the same weight. It is for ecologists to decide
the kind of contribution they expect from each descriptor; again, beware of the
“default options” of computer programs.

Some association coefficients require that the data be expressed as integers.
Depending on the capabilities of the computer program and the degree of
discrimination required, ecologists may decide to use the closest integer value, or to
multiply first all values by 10 or 100, or else to apply some other simple transformation
to make the data compatible with the coefficient to be computed.

6 — Normalization

Another type of transformation, called normalizing transformation, is performed on
descriptors to make the frequency distributions of their data values look like the
normal curve of errors — or, at least, as unskewed as possible. Indeed, several of the
methods used in multivariate data analysis have been developed under the assumption
that the variables are normally distributed. Although most of these methods do not
actually require full normality (i.e. no skewness nor kurtosis), they may perform better
if the distributions of values are, at least, not skewed. Skewed distributions, as in
Figs. 1.8 and 1.9, are such that the variance of the distribution is controlled mostly by
the few points in the extreme right tail; so, variance-partitioning methods such as
principal component analysis (Chapter 9) or spectral analysis (Chapter 12) would
bring out components expressing the variation of these few data points first instead of
the variation of the bulk of data values. Normalizing transformations also have the
property of reducing the heteroscedasticity of descriptors (Box 1.4). 

The data analysis phase of research should always start by looking at the
distributions of values for the different variables, i.e. computing basic distribution
statistics (including skewness and kurtosis, eqs. 4.50-4.52), drawing histograms of
frequency distributions, and testing for normality (described in Section 4.9). A
normalizing transformation may have to be found for each variable separately; in other
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cases, one is looking for the best transformation that would normalize several
variables.

• 6.1 — Ecologists often encounter distributions where a species is abundant in a few
observation units (quadrats, etc.), fairly abundant in more, present in even more, and
absent in many; this is in agreement with the concept of ecological niche briefly
explained in Section 1.0, if the sampling programme covers a large enough area or
environmental gradient. Distributions of this type are clearly not normal, being
strongly skewed to the right (long tail in the higher values). Needless to say,
environmental variables may also have non-normal distributions. For instance, the
scales on which chemical variables are measured are conventions of chemistry which
have no relation whatsoever with the processes generating these values in nature. So,
any normalizing transformation is as good as the scale on which these data were
originally measured.

Skewed data are often transformed by taking logarithms (below) or square roots.
Square root is the least drastic transformation and is used to normalize data that have a
Poisson distribution, where the variance is equal to the mean, whereas the logarithmic
transformation is applicable to data that depart more widely from a normal distribution
(Fig. 1.9). Several intermediate transformations have been proposed between these

Homoscedasticity Box 1.4

Homoscedasticity, also called homogeneity or equality of the variances,
technically means that the variances of the error terms are equal for all
observations. Its antonym is heteroscedasticity or heterogeneity of the variances.
Homoscedasticity may actually refer to different properties of the data. 

• For a single variable, homoscedasticity of the distribution means that, when the
statistical population is sampled repeatedly, the expected value of the variance
remains the same, whatever the value of the mean of the data sample. Data drawn
from a normal distribution possess this property whereas data drawn from a Poisson
distribution, for instance, do not since, in this type of distribution, the variance is
equal to the mean.

• In regression analysis, homoscedasticity means that, for all values of the
independent variable, the variances of the corresponding values of the dependent
variable (called “error variances”) are the same. 

• In t-test, analysis of variance and discriminant analysis, homoscedasticity means
that variances are equal in all groups, for each variable.
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Figure 1.9 Numerical examples. Upper panel: Data that follow a Poisson distribution (left) can be
normalized by the square root transformation (right). For a given species, these frequencies may
represent the number of quadrats (ordinate) occupied by the number of specimens shown along
the abscissa. Lower panel: Data distribution (left) that can be normalized by a logarithmic
transformation (right).
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extremes (Fig. 1.10): cubic root, log2, logp, etc. The hyperbolic transformation is
useful for one particular type of data, which share the two extreme types at the same
time (when the standard deviation is proportional to the mean, with many observations
of a very small size which follow a Poisson distribution: Quenouille, 1950; Barnes,
1952). The angular or arcsine transformation is appropriate for percentages and
proportions (Sokal & Rohlf, 1981, 1995):

(1.13)

Figure 1.10 Numerical examples. Each histogram is labelled by the normalizing transformation to be used in
that case.
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In case of doubt, one may try several of these transformations and perform a test of
normality (Section 4.7), or compute the skewness of the transformed data, retaining
the transformation that produces the most desirable results. Alternatively, the Box-Cox
method (point 6.2, below) may be used to find the best normalizing transformation.

A logarithmic transformation is computed as follows:

(1.14)

The base of logarithm chosen has no influence on the normalising power, since
transformation from one base to another is a linear change of scale (expansion, see 1
above: ). When the data to be transformed are all strictly
positive (all  > 0), it is not necessary to carry out a translation (  = 0). When the
data contain fractional values between 0 and 1, one may multiply all values by some
appropriate constant in order to avoid negative transformed values: .
When the data to be transformed contain negative or null values, a translation must be
applied first, , since the logarithmic function is defined over the set
of positive real numbers only. One should choose for translation a constant  which is
of the same order of magnitude as the significant digits of the variable to be
transformed; for example,  = 0.01 for data between 0.00 and 0.09 (the same purpose
would have been achieved by selecting  = 1 and  = 100). For species abundance
data, this rule produces the classical transformation .

• 6.2 — When there is no a priori reason for selecting one or the other of the above
transformations, the Box-Cox method allows one to empirically estimate what is the
most appropriate exponent of the following general transformation function:

 (for γ ≠ 0) (1.15)

and   (for γ = 0)

As before,  is the transformed value of observation . In this transformation, the
value γ is used that maximizes the following log likelihood function:

(1.16)

since it is this value which yields the best transformation to normality (Box & Cox,
1964; Sokal & Rohlf, 1995). The value L that maximizes this likelihood function is
found by iterative search. In this equation,  is the variance of the transformed values

. When analysing several groups of observations at the same time (below),  is
estimated instead by the within-group, or residual variance computed in a one-way
ANOVA. The group size is n and ν is the number of degrees of freedom (ν = n – 1 if the
computation is made for a single group). All  values must be strictly positive
numbers since logarithms are taken in the likelihood function L (eq. 1.16); all values
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may easily be made strictly positive by translation, as discussed in Subsection 1 above.
It is interesting to note that, if γ = 1, the function is a simple linear transformation; if
γ = 1/2, the function becomes the square root transformation; when γ = 0, the
transformation is logarithmic; γ = –1 yields the reciprocal transformation. 

Readers are invited to take a value (say 150) and transform it, using eq. 1.15, with a
variety of values of γ gradually tending toward 0 (say 1, 0.1, 0.01, 0.001, etc.).
Comparing the results to the logarithmic transformation will make it obvious that this
transformation is indeed the limit of eq. 1.15 when γ tends towards 0.

Another log likelihood function L' is proposed by Sokal & Rohlf (1995) in order to
achieve homogeneity of the variances for several groups of observations of a given
variable, together with the normality of their distributions. This generalized Box-Cox
transformation may also be applied to the identification of the best normalizing
transformation for several species, for a given set of sampling sites.

• 6.3 — When the data distribution includes several groups, or when the same
transformation is to be applied to several quantitative and dimensionally homogeneous
descriptors (Chapter 3; for instance, a species abundance data table), Taylor’s (1961)
power law provides the basis for another general transformation which stabilizes the
variances and thus makes the data more likely to conform to the assumptions of
parametric analysis, including normality (Southwood, 1966; see also Downing, 1979
on this subject). This law relates the means and variances of the k groups through
equation

(1.17)

from which constants a and b can be computed by nonlinear regression. When the
latter is not available, an approximation of b may be calculated by linear regression of
the logarithmic form

log = log a + b log (1.18)

Having found the value of b, the variance stabilizing transformations

 (for b ≠ 2) (1.19)

or (for b = 2)

are applied to the data. 

• 6.4 — The following method represents an omnibus normalizing procedure that
should be able to normalize most kinds of data. The procedure is easy to carry out
using most standard statistical packages running on microcomputers. The package
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must have a pseudo-random number generator for random normal deviates, i.e. values
drawn at random from a normal distribution.

(1) Write the quantitative or semiquantitative descriptor to be normalized into a
data base. Sort the data base in increasing values for that descriptor. (2) Create a new
descriptor with the same number of values, using a pseudo-random normal deviate
generator. Write it into another data base and sort it also in order of increasing values.
(3) Copy the sorted normal deviate values into the sorted data base containing the
descriptor to be normalized. Sort the data base back into the original order if necessary.
(4) Use the normal deviates as a monotonic proxy for the original descriptor.
Figure 1.11 shows an example of this transformation. 

This procedure may be modified to handle ex aequo (tied) values (Section 5.3).
Tied values may either receive the same normal deviate value, or they may be sorted in
some random order and given neighbouring normal deviate values; one should select a
solution that makes sense considering the data at hand.

Powerful as it is, this transformation only makes sense for data that have no more
than ordinal value in the analysis to be conducted. The transformed data may be used
in methods of data analysis that perform better in the presence of normality of the
distributions. Several such methods will be studied in chapters 9 and 11. The main
disadvantage is that a back-transformation is difficult. If the study requires that values
of this descriptor be forecasted by a model, the data base itself will have to be used to
find the original descriptor values which are the closest to the forecasted normal
deviate. An interpolation may have to be made between these values.

Figure 1.11 The omnibus procedure has been used to normalize a set of 200 data values with tri-modal
distribution (left). A normal curve has been fitted to the transformed data (right).
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7 — Dummy variable (binary) coding

Multistate qualitative descriptors may be binary-coded as dummy variables. This
coding is interesting because it allows the use of qualitative descriptors in procedures
such as multiple regression, discriminant analysis or canonical analysis, that have been
developed for quantitative variables and in which binary variables may also be used. A
multistate qualitative descriptor with s states is decomposed into (s – 1) dummy
variables. An example is the following four-state descriptor:

In this example, three dummy variables are sufficient to binary-code the four states of
the original nominal descriptor. Had a fourth dummy variable been included (shaded
column above), its information would have been totally linearly dependent (Box 1.1
and Section 2.7) on the first three variables. In other words, the first three dummy
variables are enough to determine the states of the multistate qualitative descriptor.
Actually, any one of the four dummy variables may be eliminated to return to the
condition of linear independence among the remaining ones.

Using this table, the objects are coded, in this example, by three dummy variables
instead of a single 4-state descriptor. An object with state 1, for instance, would be
recoded [1 0 0], an object with state 2, [0 1 0], and so on.

Other forms of binary coding have been developed for special types of variables. In
phylogenetic analysis, the states of multistate characters are sometimes related by a
hypothesized transformation series, going from the single hypothesized ancestral state
to all the advanced states; such a series can be represented by a directed network where
the states are connected by arrows representing evolutionary progression. A
transformation series may be coded into binary variables using a method proposed by
Kluge & Farris (1969). This same method may be applied to code the spatial
relationships among localities on any geographic network. An example in freshwater
ecology is a group of lakes connected by a river network (Fig. 1.12).

In this example, a picture made of rivers and lakes is drawn to represent the
network. A number is assigned to each river segment (which are the edges of the
connected graph), while nodes represent the furcation points. In Fig. 1.12, the coding
is based on the river segments; it could just as well be based on the nodes, if one felt
that the nodes are the important carriers of geographic information (as in Magnan et
al., 1994). If the phenomenon to be modelled is, for example, fish dispersal from
downstream, the arrows can be drawn going upstream, as in Fig. 1.12. In the lake-by-

States Dummy variables

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

River
network
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arrow matrix, a value ‘1’ is assigned to each arrow found downstream from the lake,
meaning that the corresponding river segment is available for fish to reach that lake.
All other arrows are coded ‘0’ for the lake. The resulting matrix is a complete
numerical coding of the hydrographic network information: knowing the coding
procedure, one could reconstruct the picture from the matrix entries.

The coding method may be tailored to the ecological problem at hand. For a
dispersion phenomenon going downstream, arrows could point the other way around;
in this case, a lake would be coded ‘1’ in the table for arrows arriving in that lake from
upstream. The pattern of interconnections does not even need to be a tree-like
structure; it may form a more general type of directed network, but note that no cycle
is allowed. Coding the information allows the use of this type of geographical
information in different types of numerical models, like multiple regression
(Chapter 10) or canonical analysis (Chapter 11). In many of these methods, zeros and
ones are interchangeable.

1.6 Missing data

Ecological data matrices are often plagued by missing data. They do not necessarily
result from negligence on the part of the field team; most often, they are caused by the
breakdown of measuring equipment during field surveys, weather events that prevent
sampling sites from being visited on a given date, lost or incorrectly preserved
specimens, improper sampling procedures, and so on.

Figure 1.12 Lakes interconnected by a river network (left) can be binary-coded as shown on the right.
Numbers are assigned in an arbitrary order to the edges (arrows) of the network. There is no use
in representing the “root” of the network (arrow 0); all lakes would be coded ‘1’ for that arrow.
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          1   2   3   4   5   6   7   8

Lake 1    1   0   1   1   0   0   0   0

Lake 2    1   0   1   0   0   0   0   0

Lake 3    1   1   0   0   0   0   0   0

Lake 4    0   0   0   0   1   0   1   1

Lake 5    0   0   0   0   0   1   1   1

Lake 6    0   0   0   0   0   0   0   1
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Three families of solutions are available to cope with this problem for the analysis
of field survey data, if one can make the assumption that the missing values occur at
random in the data set. Most of the approaches mentioned below are discussed by
Little & Rubin (1987), who also propose methods for estimating missing values in
controlled experiments (when the missing values are only found in the outcome
variable; their Chapter 2) as well as valid model-based likelihood estimation of
missing values for situations where the distribution of missing values does not meet
the randomness assumption stated above. 

Missing values may be represented in data matrices by numbers that do not
correspond to possible data values. Codes such as –1 or –9 are often used when the real
data in the table are all positive numbers, as it is the case with species abundance data;
otherwise, –99 or –999, or other such unambiguous codes, may be used. In
spreadsheets, missing values are represented by bullets or other such symbols.

1 — Deleting rows or columns

Delete any row or column of the data matrix (Section 2.1) containing missing values.
If a few rows contain most of the missing values, proceed by rowwise (also called
listwise) deletion; conversely, if most missing values are found in a few variables only,
proceed by columnwise deletion. This is the simplest, yet the most costly method, as it
throws away the valuable information present in the remainder of these rows or
columns.

2 — Accommodating algorithms to missing data

Accommodate the numerical method in such a way that the missing values are skipped
during calculations. For instance, when computing resemblance coefficients among
rows (Q-mode; Chapter 7) or columns (R-mode) of the data matrix, a simple method is
pairwise deletion of missing values. This means, for example, that when computing a
correlation coefficient between variables y1 and y2, if the value of the tenth object is
missing for y2, object x10 is skipped in the computation of this correlation value. When
it comes to comparing y1 and y3, if x10 has no missing data for these variables, it is
then kept in the calculation for this pair of variables. However, one must be aware that
covariance and correlation matrices computed in this way may be indefinite (i.e. they
may have negative eigenvalues; Table 2.2). Wishart (1978, 1985) lists several such
methods developed in the cluster analysis framework, that are used in the CLUSTAN

clustering package.

3 — Estimating missing values

Estimate the missing values (called imputation by Little & Rubin, 1987). This is the
best strategy when missing values are located all over the data matrix — contrary to
the situation where the missing values are found in a few rows or columns only, in
which case deletion of these rows or columns may be the strategy of choice. The
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assumption one has to make when estimating missing values is that the missing data
are not grossly atypical compared to those present in the data set. Methods for
estimating missing data are interesting in cases where the numerical algorithm
required for analysing the data set cannot accommodate missing values. Ecologists
should never imagine, however, that the estimated values are ecologically meaningful;
as a consequence, they should refrain from attempting to interpret these numbers in
ecological terms. Ecologists should also keep in mind that the estimation procedure
has not created the missing degrees of freedom that would have accompanied
observations carried out in nature or in the laboratory. 

Three groups of methods are available for filling in missing values for quantitative
data.

• 3.1 — The easiest way, which is often used in computer programs, is to replace
missing values by the mean of the variable, estimated from the values present in the
data table. When doing so, one assumes that nothing is known about the data, outside
of the weak assumption mentioned above that the missing value comes from the same
population as the non-missing data. Although this solution produces covariance and
correlation matrices that are positive semidefinite (Section 2.10), the variances and
covariances are systematically underestimated. One way around this problem is to
select missing value estimates at random from some distribution with appropriate
mean and variance. This is not recommended, however, when the relative positions of
the objects are of interest (principal component analysis; Section 9.1). A variant of the
same method is to use the median instead of the mean; it is more robust in the sense
that it does not assume the distribution of values to be unskewed. It is also applicable
to semiquantitative descriptors. For qualitative descriptors, use the most frequent state
instead of the mean or median.

• 3.2 — Estimate the missing values by regression. Multiple linear regression
(Section 10.3), with rowwise deletion of missing values, may be used when there are
only a few missing values to estimate. The dependent (response) variable of the
regression is the descriptor with missing value(s) while the independent (explanatory)
variables are the other descriptors in the data table. After the regression equation has
been computed from the objects without missing data, it can be used to estimate the
missing value(s). Using this procedure, one assumes the descriptor with missing values
to be linearly related to the other descriptors in the data table (unless some form of
nonparametric or nonlinear multiple regression is being used) and the data to be
approximately multivariate normal. This method also leads to underestimating the
variances and covariances, but less so than in 3.1. An alternative approach is to use a
regression program allowing for pairwise deletion of missing values in the estimation
of the regression coefficients, although, in that case, a maximum likelihood estimation
of the covariance matrix would be preferable (Little & Rubin, 1987, p. 152 et seq.).

If such a method cannot be used for estimating the covariance matrix and if the
missing values are scattered throughout the data table, an approximate solution may be
obtained as follows. Compute a series of simple linear regressions with pairwise
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deletion of missing values, and estimate the missing value from each of these simple
regression equations in turn. The mean of these estimates is taken as the working
estimated value. The assumptions are basically the same as in the multiple regression
case (above).

To estimate missing values in qualitative (nominal) descriptors, use logistic
regression (Section 10.3) instead of linear regression.

• 3.3 — Interpolate missing values in autocorrelated data. Positive autocorrelation
(Section 1.1) means that near points in time or space are similar. This property allows
the interpolation of missing or otherwise unknown values from the values of near
points in the series. With spatial data, interpolation is the first step of any mapping
procedure, and it may be done in a variety of ways (Subsection 13.2.2), including the
kriging method developed by geostatisticians. The simplest such method is to assign to
a missing data the value of its nearest neighbour. In time series, interpolation of
missing values may be performed using the same methods; see also Shumway &
Stoffer, 1982, as well as Mendelssohn & Cury, 1987, for a maximum likelihood
method for estimating missing data in a time series using a state-space model.

Myers (1982, 1983, 1984) has proposed a method, called co-kriging, that combines
the power of principal component analysis (Section 9.1) with that of kriging. It allows
the estimation of unknown values of a data series using both the values of the same
variable at neighbouring sites and the known values of other variables, correlated with
the first one, observed at the same or neighbouring points in space; the spatial inter-
relationships of these variables are measured by a cross-variogram. This method
should become very important in the future, for estimating missing data in broad-scale
ecological surveys and to compute values at unobserved sites on a geographic surface.
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2 Matrix algebra: 
a summary

2.0 Matrix algebra

Matrix language is the algebraic form best suited to the present book. As a
consequence, the following chapters will systematically use the flexible and synthetic
formulation of matrix algebra, with which many ecologists are already acquainted.

There are many reasons why matrix algebra is especially well suited for ecology.
The format of computer spreadsheets, in which ecological data sets are now most
often recorded, is a matrix format. The use of matrix notation thus provides an elegant
and compact representation of ecological information and matrix algebra allows
operations on whole data sets to be performed. Finally, multidimensional methods,
discussed in following chapters, are almost impossible to conceptualise and explain
without resorting to matrix algebra.

Matrix algebra goes back more than one century: “After Sylvester had introduced
matrices [...], it is Cayley who created their algebra [in 1851]” (translated from
Bourbaki, 1960). Matrices are of great conceptual interest for theoretical formulations,
but it is only with the increased use of computers that matrix algebra became truly
popular with ecologists. The use of computers naturally enhances the use of matrix
notation. Most scientific programming languages are adapted to matrix logic, some
languages allowing programmers to write matrix operations directly.

Ecologists who are familiar with matrix algebra could read Sections 2.1 and 2.2
only, where the vocabulary and symbols used in the remainder of this book are defined.
Other sections may be consulted whenever necessary.

The present chapter is only a summary of matrix algebra. Readers looking for more
complete presentations of the subject should consult Bronson (1989), where numerous
exercises are found; Graybill (1983), which provides applications in general statistics;
or the handbook by Searle (1966), which is oriented towards biological statistics. One
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may also consult the book of Green & Carroll (1976), which stresses the geometric
interpretation of various matrix operations commonly used in statistics.

2.1 The ecological data matrix

As explained in Section 1.4, ecological data are obtained as object-observations or
sampling units which are described by a set of state values corresponding to as many
descriptors, or variables. Ecological data are generally recorded in a table
(spreadsheet) where each column j corresponds to a descriptor yj (species present in
the sampling unit, physical or chemical variable, etc.) and each object i (sampling site,
sampling unit, locality, observation) occupies one row. In each cell (i,j) of the table is
found the state taken by object i for descriptor j (Table 2.1). Objects will be denoted by
a boldface, lower-case letter x, with a subscript i varying form 1 to n, referring to
object xi . Similarly, descriptors will be denoted by a boldface, lower case letter y

subscripted j, with j taking values from 1 to p, referring to descriptor yj . When
considering two set of descriptors, members of the second set will generally have
subscripts k from 1 to m.

Descriptor
Object

Table 2.1 Ecological data matrix.

Descriptors

Objects yl y2 y3 … yj … yp

x1 y11 y12 y13 … y1j … y1p

x2 y21 y22 y23 … y2j … y2p

x3 y31 y32 y33 … y3j … 3p

. . . . . .

. . . . . .

. . . . . .

xi yil yi2 yi3 … yij … yip

. . . . . .

. . . . . .

. . . . . .

xn ynl yn2 yn3 … ynj … ynp
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Following the same logic, the different values in a data matrix will be denoted by a
doubly-subscripted y, the first subscript designating the object being described and the
second subscript the descriptor. For example, y83 is the value taken by object 8 for
descriptor 3.

It is not always obvious which are the objects and which are the descriptors. In
ecology, for example, the different sampling sites (objects) may be studied with
respect to the species found therein. In contrast, when studying the behaviour or
taxonomy of organisms belonging to a given taxonomic group, the objects are the
organisms themselves, whereas one of the descriptors could be the types of habitat
found at different sampling sites. To unambiguously identify objects and descriptors,
one must decide which is the variable defined a priori (i.e. the objects). When
conducting field or laboratory observations, the variable defined a priori is totally left
to the researcher, who decides how many observations will be included in the study.
Thus, in the first example above, the researcher could choose the number of sampling
sites needed to study their species composition. What is observed, then, are the
descriptors, namely the different species present and possibly their abundances.
Another approach to the same problem would be to ask which of the two sets of
variables the researcher could theoretically increase to infinity; this identifies the
variable defined a priori, or the objects. In the first example, it is the number of
samples that could be increased at will — the samples are therefore the objects —
whereas the number of species is limited and depends strictly on the ecological
characteristics of the sampling sites. In the second example, the variable defined a
priori corresponds to the organisms themselves, and one of their descriptors could be
their different habitats (states).

The distinction between objects and descriptors is not only theoretical. One may
analyse either the relationships among descriptors for the set of objects in the study (R
mode analysis), or the relationships among objects given the set of descriptors (Q
mode study). It will be shown that the mathematical techniques that are appropriate for
studying relationships among objects are not the same as those for descriptors. For
example, coefficients of correlation can only be used for studying relationships among
descriptors, which are vectors with a theoretically infinite number of elements; they
are in fact limited by the sampling effort. It would be incorrect to use a correlation
coefficient to study the relationship between two objects for the set of descriptors,
other measures of association being available for this purpose (see Section 7.3).
Similarly, when using methods of multidimensional analysis, to be discussed later in
this book, it is important to know which are the descriptors and which are the objects,
in order to avoid methodological errors. The results of incorrectly conducted analyses
— and there are unfortunately many in the literature — are not necessarily wrong
because, in ecology, phenomena which are easily identified are usually sturdy enough
to withstand considerable distortion. What is a pity, however, is that the more subtle
phenomena, i.e. the very ones for which advanced numerical techniques are used,
could very well not emerge at all from a study based on inappropriate methodology.
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The table of ecological data described above is an array of numbers known as a
matrix. The branch of mathematics dealing with matrices is linear algebra.

Matrix Y is a rectangular, ordered array of numbers yij, set out in rows and columns
as in Table 2.1:

(2.1)

There are n rows and p columns. When the order (also known as its dimensions or
format) of the matrix must be specified, a matrix of order (n × p), which contains n × p
elements, is written Ynp. As above, any given element of Y is denoted yij, where
subscripts i and j identify the row and column, respectively (always in that
conventional order).

In linear algebra, ordinary numbers are called scalars, to distinguish them from
matrices.

The following notation will be used hereinafter: a matrix will be symbolised by a
capital letter in boldface, such as Y. The same matrix could also be represented by its
general element in italics and in brackets, such as [yij], or alternatively by an
enumeration of all its elements, also in italics and in brackets, as in eq. 2.1. Italics will
only be used for algebraic symbols, not for actual numbers. Occasionally, other
notations than brackets may be found in the literature, i.e. (yij), , , , or

.

Any subset of a matrix can be explicitly recognized. In the above matrix (eq. 2.1),
for example, the following submatrices could be considered:

a square matrix

a row matrix , or a column matrix

Y yij[ ]

y11 y12 . . . y1 p

y21 y22 . . . y2 p

.     .

. .

.     .

yn1 yn2 . . . ynp

= =

Order

yi
j( ) yij{ } yi

j

iyj〈 〉

Square
matrix

y11 y12

y21 y22

y11 y12 . . . y1 p

y12

y22

.

.

.

yn2

Linear
algebra
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Matrix notation simplifies the writing of data sets. It also corresponds to the way
computers work. Indeed, most programming languages are designed to input data as
matrices (arrays) and manipulate them either directly or through a simple system of
subscripts. This greatly simplifies programming the calculations. Accordingly,
computer packages generally input data as matrices. In addition, many of the statistical
models used in multidimensional analysis are based on linear algebra, as will be seen
later. So, it is convenient to approach them with data already set in matrix format.

2.2 Association matrices

Two important matrices may be derived from the ecological data matrix: the
association matrix among objects and the association matrix among descriptors. Any
association matrix is denoted A, and its general element aij. Although Chapter 7 is
entirely devoted to association matrices, it is important to mention them here in order
to better understand the purpose of methods presented in the remainder of the present
chapter.

Using data from matrix Y (eq. 2.1), one may examine the relationship between the
first two objects x1 and x2. In order to do so, the first and second rows of matrix Y

     and

are used to calculate a measure of association (similarity or distance: Chapter 7), to
assess the degree of resemblance between the two objects. This measure, which
quantifies the strength of the association between the two rows, is denoted a12. In the
same way, the association of x1 with x3, x4, …, xp, can be calculated, as can also be
calculated the association of x2 with all other objects, and so on for all pairs of objects.
The coefficients of association for all pairs of objects are then recorded in a table,
ordered in such a way that they could be retrieved for further calculations. This table is
the association matrix A among objects:

(2.2)

A most important characteristic of any association matrix is that it has a number of
rows equal to the number of columns, this number being equal here to the number of
objects n. The number of elements in the above square matrix is therefore n2.

y11 y12 . . . y1 p y21 y22 . . . y2 p

Ann

a11 a12 . . . a1n

a21 a22 . . . a2n

. .

. .

.    .

an1 an2 . . . ann

=
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Similarly, one may wish to examine the relationships among descriptors. For the
first two descriptors, y1 and y2, the first and second columns of matrix Y

 and  

are used to calculate a measure of dependence (Chapter 7) which assesses the degree
of association between the two descriptors. In the same way as for the objects, p × p
measures of association can be calculated among all pairs of descriptors and recorded
in the following association matrix:

(2.3)

Association matrices are most often symmetric, with elements in the upper right
triangle being equal to those in the lower left triangle (aij  = aji). Elements aii on the
diagonal measure the association of a row or a column of matrix Y with itself. In the
case of objects, the measure of association aii of an object with itself usually takes a
value of either 1 (similarity coefficients) or 0 (distance coefficients). Concerning the
association between descriptors (columns), the correlation aii of a descriptor with
itself is 1, whereas the (co)variance provides an estimate aii of the variability among
the values of descriptor i.

At this point of the discussion, it should thus be noted that the data, to which the
models of multidimensional analysis are applied, are not only matrix Ynp = [objects ×
descriptors] (eq. 2.1), but also the two association matrices Ann = [objects × objects]
(eq. 2.2) and App = [descriptors × descriptors] (eq. 2.3), as shown in Fig. 2.1.

2.3 Special matrices

Matrices with an equal number of rows and columns are called square matrices
(Section 2.1). These, as will be seen in Sections 2.6 et seq., are the only matrices for

y11

y21

.

.

.

yn1

y12

y22

.

.

.

yn2

App

a11 a12 . . . a1 p

a21 a22 . . . a2 p

.  .

.     .

.     .

ap1 ap2 . . . app

=
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which it is possible to compute a determinant, an inverse, and eigenvalues and
eigenvectors. As a corollary, these operations can be carried out on association
matrices, which are square matrices.

Some definitions pertaining to square matrices now follow. In matrix Bnn, of order
(n × n) (often called “square matrix of order n” or “matrix of order n”),

(2.4)

Figure 2.1 Data analysed in numerical ecology include matrix Ynp = [objects × descriptors] (eq. 2.1) as well
as the two association matrices Ann = [objects × objects] (eq.  2.2) and App = [descriptors ×
descriptors] (eq. 2.3). The Q and R modes of analysis are defined in Section 7.1.

Ynp

Descriptors

O
bj

ec
ts

D
es

cr
ip

to
rs

Objects

Ann

for Q-mode analysis

App

for R-mode analysis

Bnn bij[ ]

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.   .

bn1 bn2 . . . bnn

= =
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the diagonal elements are those with identical subscripts for the rows and columns
(bii). They are located on the main diagonal (simply called the diagonal) which, by
convention, goes from the upper left to the lower right corners. The sum of the
diagonal elements is called the trace of the matrix.

A diagonal matrix is a square matrix where all non-diagonal elements are zero.
Thus,

is a diagonal matrix. Diagonal matrices that contain on the diagonal values coming
from a vector [xi] are noted D(x). Special examples used later in the book are the
diagonal matrix of standard deviations D(σ) and the diagonal matrix of eigenvalues
D(λ), also noted ΛΛΛΛ.

A diagonal matrix where all diagonal elements are equal to unity is called a unit
matrix or identity matrix. It is denoted D(1) or I:

(2.5)

This matrix plays the same role, in matrix algebra, as the number 1 in ordinary algebra,
i.e. it is the neutral element in multiplication (e.g. I B = BI = B).

Similarly, a scalar matrix is a diagonal matrix of the form

All the diagonal elements are identical since a scalar matrix is the unit matrix
multiplied by a scalar (here, of value 7).

Trace

Diagonal
matrix

3 0 0

0 7 0

0 0 0

Identity
matrix

D 1( ) I

1 0 . . . 0

0 1 . . . 0

.     .

.     .

.     .

0 0 . . . 1

= =

Scalar
matrix

7 0 . . . 0

0 7 . . . 0

.  .

.     .

.     .

0 0 . . . 7

7I=
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A matrix, square or rectangular, whose elements are all zero is called a null matrix
or zero matrix. It is denoted 0 or [0].*

A square matrix with all elements above (or below) the diagonal being zero is
called a lower (or upper) triangular matrix. For example,

is an upper triangular matrix. These matrices are very important in matrix algebra
because their determinant (Section 2.6) is equal to the product of all terms on the main
diagonal (i.e. 24 in this example). Diagonal matrices are also triangular matrices.

The transpose of a matrix B with format (n × p) is denoted B' and is a new matrix
of format (p × n) in which . In other words, the rows of one matrix are the
columns of the other. Thus, the transpose of matrix

is matrix

Transposition is an important operation in linear algebra, and also in ecology where a
data matrix Y (eq. 2.1) is often transposed to study the relationships among descriptors
after the relationships among objects have been analysed (or conversely).

* Although the concept of zero was known to Babylonian and Mayan astronomers, inclusion of
the zero in a decimal system of numeration finds its origin in India, in the eighth century A.D. at
least (Ifrah, 1981). The ten Western-world numerals are also derived from the symbols used by
ancient Indian mathematicians. The word zero comes from the Arabs, however. They used the
word sifr, meaning “empty”, to refer to a symbol designating nothingness. The term turned into
cipher, and came to denote not only zero, but all 10 numerals. Sifr is at the root of the latin
zephirum, which became zefiro in Italian and was then abbreviated to zero. It is also the root of
the medieval latin cifra, which became chiffre in French where it designates any of the 10
numerals.

Triangular
matrix

1 2 3

0 4 5

0 0 6

Transpose
b'ij b ji=

B

1 2 3

4 5 6

7 8 9

10 11 12

=

B'
1 4 7 10

2 5 8 11

3 6 9 12

=

Null
matrix
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A square matrix which is identical to its transpose is symmetric. This is the case
when corresponding terms bij and bji, on either side of the diagonal, are equal. For
example,

is symmetric since B' = B. All symmetric matrices are square.

It was mentioned in Section 2.2 that association matrices are generally symmetric.
Non-symmetric (or asymmetric) matrices may be encountered, however. This happens,
for example, when each coefficient in the matrix measures the ecological influence of
an organism or a species on another, these influences being asymmetrical (e.g. A is a
predator of B, B is a prey of A). Asymmetric matrices are also found in behaviour
studies, serology, DNA pairing analysis, etc. 

Matrix algebra tells us that any non-symmetric matrix may be expressed as the sum
of two other matrices, one symmetric and one skew-symmetric, without loss of
information. Consider for instance the two numbers 1 and 3, found in opposite
positions (1,2) and (2,1) of the first matrix in the following numerical example:

The symmetric part is obtained by averaging these two numbers: (1 + 3)/2 = 2.0. The
skew-symmetric part is obtained by subtracting one from the other and dividing by 2:
(1 – 3)/2 = –1.0 and (3 – 1)/2 = +1.0 so that, in the skew-symmetric matrix,
corresponding elements on either side of the diagonal have the same absolute values
but opposite signs. When the symmetric and skew-symmetric components are added,
the result is the original matrix: 2 – 1 = 1 for the upper original number, and 2 + 1 = 3
for the lower one. Using letters instead of numbers, one can derive a simple algebraic
proof of the additivity of the symmetric and skew-symmetric components. The
symmetric component can be analysed using the methods applicable to symmetric
matrices (for instance, metric or non-metric scaling, Sections 9.2 and 9.3), while
analysis of the skew-symmetric component requires methods especially developed to
assess asymmetric relationships. Basic references are Coleman (1964) in the field of
sociometry and Digby & Kempton (1987, Ch. 6) in numerical ecology. An application
to biological evolution is found in Casgrain et al. (1996). Relevant biological or
ecological information may be found in the symmetric portion only and, in other
instances, in the skew-symmetric component only.

Symmetric
matrix

1 4 6

4 2 5

6 5 3

Non-
symmetric
matrix

Skew-
symmetric
matrix

1 1  2 2

3 1 0 1–

1 2 1 0

0 4– 3 1

1  2.0  1.5 1.0

2.0 1  1.0 2.5–

1.5 1.0 1  1.5

1.0 2.5– 1.5 1  

=

0  1.0– 0.5 1.0

1.0 0  1.0– 1.5

0.5– 1.0 0  1.5–

1.0– 1.5– 1.5 0  

+

            Non-symmetric      Symmetric (average) Skew-symmetric               
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2.4 Vectors and scaling

Another matrix of special interest is the column matrix, with format (n × 1), which is
also known as a vector. Some textbooks restrict the term ‘vector’ to column matrices,
but the expression row vector (or simply vector, as in Chapter 4) may also be used for
row matrices, with format (1 × p).

A (column) vector is noted as follows:

(2.6)

A vector generally refers to a directed line segment, forming a mathematical entity
on which operations can be performed. More formally, a vector is defined as an
ordered n-tuple of real numbers, i.e. a set of n numbers with a specified order. The n
numbers are the coordinates of a point in a n-dimensional Euclidean space, which may
be seen as the end-point of a line segment starting at the origin.

For example, (column) vector [4 3]' is an ordered doublet (or 2-tuple) of two real
numbers (4, 3), which may be represented in a two-dimensional Euclidean space:

This same point (4, 3) may also be seen as the end-point of a line segment starting at
the origin:

Vector

b

b1

b2

.

.

.

bn

=

(4,3)

(4,3)
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These figures illustrate the two possible representations of a vector; they also stress the
ordered nature of vectors, since vector [3 4]' is different from vector [4 3]'.

Using the Pythagorean theorem, it is easy to calculate the length of any vector. For
example, the length of vector [4 3]' is that of the hypotenuse of a right triangle with
base 4 and height 3:

The length (or norm) of vector [4 3]' is therefore ; it is also the length
(norm) of vector [3 4]'. The norm of vector b is noted .

The comparison of different vectors, as to their directions, often requires an
operation called scaling. In the scaled vector, all elements are divided by the same
characteristic value. A special type of scaling is called normalization. In the
normalized vector, each element is divided by the length of the vector:

The importance of normalization lies in the fact that the length of a normalized vector

is equal to unity. Indeed, the length of vector [4/5  3/5]', calculated by means of the

Pythagorean formula, is .

The example of doublet (4, 3) may be generalized to any n-tuple (b1, b2, …, bn),

which specifies a vector in n-dimensional space. The length of the vector is

, so that the corresponding normalized vector is:

(3,4)

(4,3)

3

4

Length
Norm

42 32+ 5=
b

Scaling
Normali-
zation

normalization

 4 

 3 

4 5⁄
3 5⁄

→

Normalized

vector

4 5⁄( ) 2 3 5⁄( ) 2+ 1=

b1
2

b2
2 … bn

2
+ + +
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(2.7)

The length of any normalized vector, in the n-dimensional space, is 1.

2.5 Matrix addition and multiplication

Recording the data in table form, as is usually the case in ecology, opens the possibility
of performing operations on these tables. The basic operations of matrix algebra
(algebra, from the Arabic “al-jabr” which means reduction, is the theory of addition
and multiplication) are very natural and familiar to ecologists.

Numerical example. Fish (3 species) were sampled at five sites in a lake, once a month
during the summer (northern hemisphere). In order to get a general idea of the differences
among sites, total numbers of fish caught at each site are calculated over the whole summer:

This operation is known as matrix addition. Note that only matrices of the same
order can be added together. This is why, in the first matrix, site 5 was included even if
no fish had been caught there in July. Adding two matrices consists in a term-by-term
addition. Matrix addition is associative and commutative; its neutral element is the null
matrix 0.

To study seasonal changes in fish productivity at each site, one possible approach would be
to add together the terms in each row of each monthly matrix. However, this makes sense only if
the selectivity of the fishing gear (say, a net) is comparable for the three species. Let us imagine
that the efficiency of the net was 50% for species 2 and 25% for species 3 of what it was for
species 1. In such a case, values in each row must be corrected before being added. Correction
factors would be as follows: 1 for species 1, 2 for species 2, and 4 for species 3. To obtain

b1 b1
2

b2
2 … bn

2
+ + +⁄

b2 b1
2

b2
2 … bn

2
+ + +⁄

.

.

.

bn b1
2

b2
2 … bn

2
+ + +⁄

1

b1
2

b2
2 … bn

2
+ + +

---------------------------------------------

b1

b2

.

.

.

bn

=

Site 1

Site 2

Site 3

Site 4

Site 5

July

1 5  35

 14 2 0

0 31 67

96 110 78

0 0 0

sp1 sp2 sp3

August

 15  23 10

54 96 240

0 3 9

12 31 27

8 14 6

sp1 sp2 sp3

September

48  78 170

2 0 0

0 11 14

25 13 12

131 96 43

sp1 sp2 sp3

+ +

Whole summer

64 106 215

70 98 240

0 45 90

133 154 117

139 110 49

sp1 sp2 sp3

=
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estimates of total fish abundances, correction vector [1 2 4]' is first multiplied by each row of
each matrix, after which the resulting values are added. Thus, for the first site in July:

Site 1 Correction Total fish abundance  
July factors Site 1, July

This operation is known in linear algebra as a scalar product, because it is a
product of two vectors resulting in a scalar.

In physics, there is another product of two vectors, called the external or vector
product, where the multiplication of two vectors results in a third one which is
perpendicular to the plane formed by the first two. This product is not used in
multidimensional analysis. It is however important to know that, in the literature, the
expression “vector product” may be used for either this product or the scalar product of
linear algebra, and that the latter is also called “inner product” or “dot product”. The
vector product (of physics) is sometimes called “cross product”. This last expression is
also used in linear algebra, for example in “sum of squares and cross products” (SSCP)
which refers to the product of a matrix with its transpose.

In matrix algebra, and unless otherwise specified, multiplication follows a
convention which is illustrated by the scalar product above: in this product of a column
vector by a row vector, the row vector multiplies the column vector or, which is
equivalent, the column vector is multiplied by the row vector. This convention, which
should be kept in mind, will be followed in the remainder of the book.

The result of a scalar product is a number which is equal to the sum of the products
of those elements with corresponding order numbers. The scalar product is designated
by a dot, or is written <a,b>, or else there is no sign between the two terms. For
example:

bc = b • c =  = b1c1 + b2c2 + … + bpcp = a scalar. (2.8)

The rules for computing scalar products are such that only vectors with the same
numbers of elements can be multiplied. 

1 5 35

1

2

4

1 1×( ) 5 2×( ) 35 4×( )+ + 1 10 140+ + 151= =

Scalar
product

b1 b2 . . . bp

c1

c2

.

.

.

cp
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In analytic geometry, it can be shown that the scalar product of two vectors obeys
the relationship:

b • c = (length of b) × (length of c) × cos θ (2.9)

When the angle between two vectors is θ = 90°, then cos θ = 0 and the scalar product
b • c = 0. As a consequence, two vectors whose scalar product is zero are orthogonal
(i.e. at right angle). This property will be used in Section 2.9 to compute eigenvectors.
A matrix whose (column) vectors are all at right angle of each other is called
orthogonal.

Numerical example. Returning to the above example, it is possible to multiply each row of
each monthly matrix with the correction vector (scalar product), in order to compare total
monthly fish abundances. This operation, which is the product of a vector by a matrix, is a
simple extension of the scalar product (eq. 2.8). The product of the July matrix B with the
correction vector c is written as follows:

= =

The product of a vector by a matrix involves calculating, for each row of matrix B,
a scalar product with vector c. Such a product of a vector by a matrix is only possible if
the number of elements in the vector is the same as the number of columns in the
matrix. The result is no longer a scalar, but a column vector with dimension equal to
the number of rows in the matrix on the left. The general formula for this product is:

Bpq • cq = 

Orthogonal
vectors

1 5 35

14 2 0

0 31 67

96 110 78

0 0 0

1

2

4

1 1( )  + 5 2( )  + 35 4( )
14 1( )  + 2 2( )  + 0 4( )

0 1( )  + 31 2( )  + 67 4( )
96 1( )  + 110 2( )  + 78 4( )

0 1( )  + 0 2( )  + 0 4( )

151

18

330

628

0

b11 b12 . . . b1q

b21 b22 . . . b2q

.     .

.     .

.     .

bp1 bp2 . . . bpq

c1

c2

.

.

.

cq

b11c1 + b12c2 + . . . + b1qcq

b21c1 + b22c2 + . . . + b2qcq

.    .

.    .

.    .

bp1c1 + bp2c2 + . . . + bpqcq

=
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Using summation notation, this equation may be rewritten as:

Bpq • cq =  (2.10)

The product of two matrices is the logical extension of the product of a vector by a
matrix. Matrix C, to be multiplied by B, is simply considered as a set of column
vectors c1, c2, …; eq. 2.10 is repeated for each column. Following the same logic, the
resulting column vectors are juxtaposed to form the result matrix. Matrices to be
multiplied must be conformable, which means that the number of columns in the
matrix on the left must be the same as the number of rows in the matrix on the right.
For example, given

the product of B with each of the two columns of C is:

Bd =     and Be =

so that the product matrix is:

BC = 

b1kck

k 1=

q

∑
.

.

.

bpkck

k 1=

q

∑

B

1 0 2

3 1 1

1 2 1

1– 3 2

= and
C

1 2

2 1

3 1–

=

C  d    e[ ]=

1 1( ) 0 2( ) 2 3( )+ +

3 1( ) 1 2( ) 1 3( )+ +

1 1( ) 2 2( ) 1 3( )+ +

1 1( )– 3 2( ) 2 3( )+ +

7

8

8

11

=

1 2( ) 0 1( ) 2 1–( )+ +

3 2( ) 1 1( ) 1 1–( )+ +

1 2( ) 2 1( ) 1 1–( )+ +

1 2( )– 3 1( ) 2 1–( )+ +

0

6

3

1–

=

7 0

8 6

8 3

11 1–
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Thus, the product of two conformable matrices B and C is a new matrix with the same
number of rows as B and the same number of columns as C. Element dij, in row i and
column j of the resulting matrix, is the scalar product of row i of B with column j of C.

The only way to master the mechanics of matrix products is to go through some
numerical examples. As an exercise, readers could apply the above method to two
cases which have not been discussed so far, i.e. the product of a row vector by a
column vector, which gives a matrix and not a scalar, and the product of a matrix by a
row vector, which results in a row vector. This exercise would help to better understand
the rule of conformability.

As supplementary exercises, readers could calculate numerical examples of the
eight following properties of matrix products, which will be used later in the book:

(1) Bpq Cqr Drs = Eps, of order (p × s).

(2) The existence of product BC does not imply that product CB exists, because
matrices are not necessarily conformable in the reverse order; however, C'C and CC'

always exist.

(3) BC is generally not equal to CB, i.e. matrix products are not commutative.

(4) B2 = B × B exists only if B is a square matrix.

(5) [AB]' = B'A' and, more generally, [ABCD…]' = …D'C'B'A'.

(6) The products XX' and X'X always give rise to symmetric matrices.

(7) In general, the product of two symmetric but different matrices A and B is not a
symmetric matrix.

(8) If B is an orthogonal matrix (i.e. a rectangular matrix whose column vectors are
orthogonal to one another), then B'B = D, where D is a diagonal matrix. All non-
diagonal terms are zero because of the property of orthogonality, while the diagonal
terms are the squares of the lengths of the column vectors. That B'B is diagonal does
not imply that BB' is also diagonal. BB' = B'B only when B is square and symmetric.

The last type of product to be considered is that of a matrix or vector by a scalar. It
is carried out according to the usual algebraic rules of multiplication and factoring,
i.e. for matrix B = [bjk] or vector c = [cj], dB = [dbjk] and dc = [dcj]. For example:

3 1 2

3 4

3 6

9 12
= and 5

6
2 10

12
=
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The terms premultiplication and postmultiplication may be encountered in the
literature. Product BC corresponds to premultiplication of C by B, or to
postmultiplication of B by C. Unless otherwise specified, it is always premultiplication
which is implied and BC simply reads: C is multiplied by B.

2.6 Determinant

It is often necessary to transform a matrix into a new one, in such a way that the
information of the original matrix is preserved, while new properties which are
essential to subsequent calculations are acquired. Such matrices, which are linearly
derived from the original matrix, will be studied in following sections under the names
inverse matrix, canonical form, etc.

The new matrix must have a minimum number of characteristics in common with
the matrix from which it is linearly derived. The connection between the two matrices
is a matrix function ƒ(B), whose properties are the following:

(1) The function must be multilinear, which means that it should respond linearly
to any change taking place in the rows or columns of the matrix.

(2) Since the order of the rows and columns of a matrix is specified, the function
should be able to detect, through alternation of signs, any change in the positions of
rows or columns. As a corollary, if two columns (or rows) are identical, ƒ(B) = 0;
indeed, if two identical columns (or rows) are interchanged, ƒ(B) must change sign but
it must also remain identical, which is possible only if ƒ(B) = 0.

(3) Finally, there is a scalar associated with this function; it is called its norm or
value. For convenience, the norm is calibrated in such a way that the value associated
with the unit matrix I is l, i.e. ƒ(I) = 1.

It can be shown that the determinant, as defined below, is the only function which
has the above three properties, and that it only exists for square matrices. Therefore, it
is not possible to calculate a determinant for a rectangular matrix. The determinant of
matrix B is denoted det B or, more often, B:

B ≡ 

b11 b12 . . . b1n

b21 b22 . . . b2n

.  .

.     .

.     .

bn1 bn2 . . . bnn
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The value of function B is a scalar, i.e. a number.

What follows is the formal definition of the value of a determinant. The way to compute it in
practice is explained later. The value of a determinant is calculated as the sum of all possible
products containing one, and only one, element from each row and each column; these products
receive a sign according to a well-defined rule:

where indices j1, j2, …, jn, go through the n! permutations of the numbers 1, 2, …, n. The sign
depends on the number of inversions, in the permutation considered, relative to the regular
sequence 1, 2, …, n:  if the number of inversions is even, the sign is (+) and, if the number is
odd, the sign is (–).

The determinant of a matrix of order 2 is calculated as follows:

(2.11)

In accordance with the formal definition above, the scalar so obtained is composed of
2! = 2 products, each product containing one, and only one, element from each row
and each column. 

The determinant of a matrix of order higher than 2 may be calculated using
different methods, among which is the expansion by minors. When looking for a
determinant of order 3, a determinant of order 3 – 1 = 2 may be obtained by crossing
out one row (i) and one column (j). This lower-order determinant is the minor
associated with bij:

(2.12)

The minor being here a determinant of order 2, its value is calculated using eq. 2.11.
When multiplied by (–1)i + j, the minor becomes a cofactor. Thus, the cofactor of
b12 is:

(2.13)

B ± b1 j1
b2 j2

…bnjn
( )∑=

B
b11 b12

b21 b22

b11b22 b12b21–= =

Expansion
by minors

crossing out row 1 and column 2

b11 b12 b13

b21 b22 b23

b31 b32 b33

b21 b23

b31 b33

minor of b12

→

cof b12 1–( ) 1 2+ b21 b23

b31 b33

b21 b23

b31 b33

–= =
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The expansion by minors of a determinant of order n is:

(2.14)

The expansion may involve the elements of any row or any column, the result being
always the same. Thus, going back to the determinant of eq. 2.12, expansion by the
elements of the first row gives:

(2.15)

Numerical example. Equation 2.15 is applied to a simple numerical example:

The amount of calculations required to expand a determinant increases very
quickly with increasing order n. This is because the minor of each cofactor must be
expanded, the latter producing new cofactors whose minors are in turn expanded, and
so forth until cofactors of order 2 are reached. Another, faster method is normally used
to calculate determinants by computer. Before describing this method, however, some
properties of determinants must be examined; in all cases, column may be substituted
for row.

(1) The determinant of a matrix is equal to that of its transpose, since a determinant
may be computed from either the rows or columns of the matrix: A' = A.

(2) If two rows are interchanged, the sign of the determinant is reversed.

(3) If two rows are identical, the determinant is null (corollary of the second
property; see beginning of the present Section).

B bijcof bij

i 1=

n

∑= for any column j

B bijcof bij

j 1=

n

∑= for any row i

B b11cof b11 b12cof b12 b13cof b13+ +=

B b11 1–( ) 1 1+ b22 b23

b32 b33

b12 1–( ) 1 2+ b21 b23

b31 b33

b13 1–( ) 1 3+ b21 b22

b31 b32

+ +=

1  2 3

4 5 6

7 8 10

1 1–( ) 1 1+ 5 6

8 10
2 1–( ) 1 2+ 4 6

7 10
3 1–( ) 1 3+ 4 5

7 8
+ +=

1  2 3

4 5 6

7 8 10

1 5 10× 6 8×–( ) 2 4 10× 6 7×–( )– 3 4 8× 5 7×–( ) 3–=+=
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(4) If a scalar is a factor of one row, it becomes a factor of the determinant (since it
appears once in each product).

(5) If a row is a multiple of another row, the determinant is null (corollary of
properties 4 and 3, i.e. factoring out the multiplier produces two identical rows).

(6) If all elements of a row are 0, the determinant is null (corollary of property 4).

(7) If a scalar c is a factor of all rows, it becomes a factor cn of the determinant
(corollary of property 4), i.e. cB = cnB.

(8) If a multiple of a row is added to another row, the value of the determinant
remains unchanged.

(9) The determinant of a triangular matrix (and therefore also of a diagonal matrix)
is the product of its diagonal elements.

(10) The sum of the products of the elements of a row with the corresponding
cofactors of a different row is equal to zero.

Properties 8 and 9 can be used for rapid computer calculation of the value of a
determinant; the method is called pivotal condensation. The matrix is first reduced to
triangular form using property 8. This property allows the stepwise elimination of all
terms on one side of the diagonal through combinations of multiplications by a scalar,
and addition and subtraction of rows or columns. Pivotal condensation may be
performed in either the upper or the lower triangular parts of a square matrix. If the
lower triangular part is chosen, the upper left-hand diagonal element is used as the first
pivot to modify the other rows in such a way that their left-hand terms become zero.
The technique consists in calculating by how much the pivot must be multiplied to
cancel out the terms in the rows below it; when this value is found, property 8 is used
with this value as multiplier. When all terms under the diagonal element in the first
column are zero, the procedure is repeated with the other diagonal terms as pivots, to
cancel out the elements located under them in the same column. Working on the pivots
from left to right insures that when values have been changed to 0, they remain so.
When the whole lower triangular portion of the matrix is zero, property 9 is used to
compute the determinant which is then the product of the modified diagonal elements. 

Numerical example. The same numerical example as above illustrates the method:

a: (row 2 – 4 × row 1) b: (row 3 – 7 × row 1) c: (row 3 – 2 × row 2)

The determinant is the product of the diagonal elements: 1 × (–3) × 1 = (–3).

Pivotal
condensation

1  2 3

4 5 6

7 8 10

1 2 3

0 3– 6–

7 8 10

1 2 3

0 3– 6–

0 6– 11–

1 2 3

0 3– 6–

0 0 1

= = =

a             b               c   
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2.7 The rank of a matrix

A square matrix contains n vectors (rows or columns), which may be linearly
independent or not (for the various meanings of “independence”, see Box 1.1). Two
vectors are linearly dependent when the elements of one are proportional to those of
the other. For example:

 are linearly dependent, since 

Similarly, a vector is linearly dependent on two others, which are themselves
linearly independent, when its elements are a linear combination of the elements of the
other two. For example:

illustrate a case where a vector is linearly dependent on two others, which are
themselves linearly independent, since

The rank of a square matrix is defined as the number of linearly independent row
vectors (or column vectors) in the matrix. For example:

(–2 × column 1) = column 2 + (3 × column 3)

or: row 1 = row 2 – row 3

rank = 2

(–2 × column 1) = (4 × column 2) = column 3

or: row 1 = row 2 = row 3

rank = 1

According to property 5 of determinants (Section 2.6), a matrix whose rank is lower
than its order has a determinant equal to zero. Finding the rank of a matrix may
therefore be based on the determinant of the lower-order submatrices it contains. The
rank of a square matrix is the order of the largest non-zero determinant it contains; this

4–

6–

8–

 and 
2

3

4

4–

6–

8–

2–
2

3

4

=

1–

3
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,
1–

0

1

 and 
1

2–

3–

2–( )
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3

4

1–
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1

3
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2–
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+=

Rank of
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1– 1– 1

3 0 2–
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is also the maximum number of linearly independent vectors found among the rows or
the columns.

It is also possible to determine the rank of a rectangular matrix. Several square
submatrices may be extracted from a rectangular matrix, by eliminating rows or/and
columns from the matrix. The rank of a rectangular matrix is the highest rank of all the
square submatrices that can be extracted from it. A first example illustrates the case
where the rank of a rectangular matrix is equal to the number of rows:

In a second example, the rank is lower than the number of rows:

In this case, the three rows are clearly linearly dependent: (2 × row 1) + (3 × row 2) =
row 3. Since it is possible to find a square matrix of order 2 that has a non-null
determinant, the rank of the rectangular matrix is 2.

2.8 Matrix inversion

In algebra, division is expressed as either c ÷ b, or c/b, or c (1/b), or c b–1. In the last
two expressions, division as such is replaced by multiplication with a reciprocal or
inverse quantity. In matrix algebra, division of C by B does not exist. The equivalent
operation is multiplication of C with the inverse or reciprocal of matrix B. The inverse

1  2 3

4 5 6

7 8 10

3– 0, so that the rank≠ 3= =

1– 1– 1

3 0 2–

4 1 3–

0=
1– 1–

3 0
3=

rank 2=

Rank of a
rectangular
matrix

2  0  1  0 1– 2– 3

1 2 2 0 0 1 1–

0 1 2 3 1 1– 0

2  0  1

1 2 2

0 1 2

→ 5= rank 3=

2 1 3  4

1– 6 3– 0

1 20 3– 8

2 1 3

1– 6 3–

1 20 3–

→
2 1  4

1– 6 0

1 20 8

2 3  4

1– 3– 0

1 3– 8

1 3  4

6 3– 0
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0= = = =

rank 3< 2  1

1– 6
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of matrix B is denoted B–1 and the operation through which it is computed is called
inversion of matrix B.

To serve its purpose, matrix B–1 must be unique and the relation BB–1 = B–1B = I

must be satisfied (see also the concept of generalized inverse in textbooks of advanced
linear algebra; several types of generalized inverse are not unique). It can be shown
that only square matrices have unique inverses; so, it is only for square matrices that
the relation BB–1 = B–1B is satisfied. Indeed, there are rectangular matrices B for
which several matrices C can be found, satisfying for example CB = I but not BC = I.
There are also rectangular matrices for which no matrix C can be found such that
CB = I, whereas an infinite number of matrices C may exist that satisfy BC = I. For
example:

To calculate the inverse of a square matrix B, the adjugate or adjoint matrix of B is
first defined. In the matrix of cofactors of B, each element bij is replaced by its cofactor
(cof bij; see Section 2.6). The adjugate matrix of B is the transpose of the matrix of
cofactors:

(2.16)

In the case of second order matrices, cofactors are scalar values, e.g. cof b11 = b22,
cof b12 = –b21, etc.

B

1 1

1– 0

3 1–

=

C 1 3 1

2 5 1
= CB I= BC I≠

C 4 15 4

7 25 6
= CB I= BC I≠

Inverse of
a square 
matrix

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.     .

bn1 bn2 . . . bnn

matrix B

cof b11 cof b21 . . . cof bn1

cof b12 cof b22 . . . cof bn2

.     .

.     .

.     .

cof b1n cof b2n . . . cof bnn

adjugate matrix of B

→
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The inverse of matrix B is the adjugate matrix of B divided by the determinant
B. The product of the matrix with its inverse gives the unit matrix:

(2.17)

All diagonal terms resulting from the multiplication B–1B (or BB–1) are of the form

, which is the expansion by minors of a determinant (not taking into

account, at this stage, the division of each element of the matrix by B). Each
diagonal element consequently has the value of the determinant B (eq. 2.14). All

other elements of matrix B–1B are sums of the products of the elements of a row with
the corresponding cofactors of a different row. According to property 10 of
determinants (Section 2.6), each non-diagonal element is therefore null. It follows that:

(2.18)

An important point is that B–1 exists only if B ≠ 0. A square matrix with a null
determinant is known as a singular matrix and it has no inverse (but see singular value
decomposition, Section 2.11). Matrices which can be inverted are called nonsingular.

Numerical example. The numerical example of Sections 2.6 and 2.7 is used again to
illustrate the calculations:

1
B
------

cof b11 cof b21 . . . cof bn1

cof b12 cof b22 . . . cof bn2

.     .

.     .

.    .
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b11 b12 . . . b1n
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.     .

.     .

bn1 bn2 . . . bnn

= I
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bijcof bij∑

B
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B

1
B
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0 B . . . 0

.     .

.      .

.     .
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.     .

.     .
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= =  I=
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The determinant is already known (Section 2.6); its value is –3. The matrix of cofactors is
computed, and its transpose (adjugate matrix) is divided by the determinant to give the inverse
matrix:

As for the determinant (Section 2.6), various methods exist for quickly inverting
matrices using computers; they are especially useful for matrices of higher rank.
Description of these methods, which are available in computer packages, is beyond the
scope of the present book. One such method is briefly explained here, because it is
somewhat similar to the pivotal condensation presented above for determinants.

Inversion of matrix B may be conducted using the method of Gauss-Jordan. To do so, matrix
B(n × n) is first augmented to the right with a same-size identity matrix I, thus creating a n × 2n
matrix. This is illustrated for n = 3:

If the augmented matrix is multiplied by matrix C(n × n), and if C = B–1, then the resulting matrix
(n × 2n) has an identity matrix in its first n columns and matrix C = B–1 in the last n columns. 

This shows that, if matrix [B,I] is transformed into an equivalent matrix [I,C], then C = B–1.

The Gauss-Jordan transformation proceeds in two steps. 

• In the first step, the diagonal terms are used, one after the other and from left to right, as pivots
to make all the off-diagonal terms equal to zero. This is done in exactly the same way as for the
determinant: a factor is calculated to cancel out the target term, using the pivot, and property 8 of
the determinants is applied using this factor as multiplier. The difference with determinants is
that the whole row of the augmented matrix is modified, not only the part belonging to matrix B.
If an off-diagonal zero value is encountered, then of course it is left as is, no cancellation by a
multiple of the pivot being necessary or even possible. If a zero is found on the diagonal, this
pivot has to be left aside for the time being (in actual programs, rows and columns are
interchanged in a process called pivoting); this zero will be changed to a non-zero value during
the next cycle unless the matrix is singular. Pivoting makes programming of this method a bit
complex.

2 2 3–

4 11– 6

3– 6 3–

matrix of cofactors

2 4 3–

2 11– 6

3– 6 3–

adjugate matrix

1
3
---–

2 4 3–

2 11– 6

3– 6 3–

     inverse of matrix 
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Jordan

b11 b12 b13 1 0 0

b21 b22 b23 0 1 0

b31 b32 b33 0 0 1

c11 c12 c13

c21 c22 c23

c31 c32 c33

b11 b12 b13 1 0 0

b21 b22 b23 0 1 0

b31 b32 b33 0 0 1

1 0 0 c11 c12 c13

0 1 0 c21 c22 c23

0 0 1 c31 c32 c33

=
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• Second step. When all the off-diagonal terms are zero, the diagonal terms of the former matrix
B are brought to 1. This is accomplished by dividing each row of the augmented matrix by the
value now present in the diagonal terms of the former B (left) portion. If the changes introduced
during the first step have made one of the diagonal elements equal to zero, then of course no
division can bring it back to 1 and the matrix is singular (i.e. it cannot be inverted).

A Gauss-Jordan algorithm with pivoting is available in Numerical recipes (Press et al.,
1986, pp. 28-29). 

Numerical example. To illustrate the Gauss-Jordan method, the same square matrix as
above is first augmented, then transformed so that its left-hand portion becomes the identity
matrix:

The inverse of matrix B is the same as calculated above.

The inverse of a matrix has several interesting properties, including:

(1) B–1B = BB–1 = I.

(2) B–1 = 1/B.

(3) [B–1]–1 = B.

(4) [B']–1 = [B–1]'.

(5) If B and C are nonsingular square matrices, [BC]–1 = C–1B–1.

(6) In the case of a symmetric matrix, since B' = B, then [B–1]' = B–1.

a( )
1  2 3

4 5 6

7 8 10

1  2 3  1  0  0

4 5 6 0 1 0

7 8 10 0 0 1

→

b( )
1 2 3 1  0  0

0 3– 6– 4– 1 0

0 6– 11– 7– 0 1

row 2 row 2 4row 1–→
row 3 row 3 7row 1–→

c( )
3 0 3– 5– 2  0

0 3– 6– 4– 1 0

0 0 1 1 2– 1

row 1 3row 1 2row 2+→
row 3 row 3 2row 2–→

d( )
3 0  0 2– 4– 3

0 3– 0 2 11– 6

0 0 1 1 2– 1

row 1 row 1 3row 3+→
row 2 row 2 6row 3+→

e( )
1 0 0  2 3⁄– 4 3⁄– 1

0 1 0  2 3⁄– 11 3⁄ 2–

0 0 1   1 2– 1

row 1 1 3⁄( ) row 1→
row 2 1 3⁄( )– row 2→

row 3 row 3→

f( ) 1
3
---–

2 4 3–

2 11– 6

3– 6 3–

           inverse of matrix B
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(7) An orthogonal matrix (Section 2.5) whose column vectors are normalized
(scaled to length 1: Section 2.4) is called orthonormal. A square orthonormal matrix B
has the property that B' = B–1. This may be shown as follows: on the one hand,
B–1B = I by definition of the inverse of a square matrix. On the other hand, property 8
of matrix products (Section 2.5) shows that B'B = D(1) when the column vectors in B
are normalized (which is the case for an orthonormal matrix); D(1) is a diagonal
matrix of 1’s, which is the identity matrix I (eq. 2.5). Given that B'B = B–1B = I, then
B' = B–1. Furthermore, combining the properties BB–1 = I (which is true for any square
matrix) and B' = B–1 shows that BB' = I. For example, the matrix of normalized
eigenvectors of a symmetric matrix, which is square and orthonormal (Section 2.9),
has these properties.

(8) The inverse of a diagonal matrix is a diagonal matrix whose elements are the
reciprocals of the original elements: [D(xi)]

–1 = D(1/xi).

Inversion is used in many types of applications, as will be seen in the remainder of this book.
Classical examples of the role of inverse matrices are solving systems of equations and the
calculation of regression coefficients.

A system of linear equations can be represented in matrix form; for example:

which may be written Ab = c. To find the values of the unknowns b1, b2 and b3, vector b must be
isolated to the left, which necessitates an inversion of the square matrix A:

The inverse of A has been calculated above. Multiplication with vector c provides the solution
for the three unknowns:

Regression analysis is reviewed in Section 10.3. Regression coefficients are easily calculated
for several models, using matrix inversion, so that the approach is briefly discussed here. The
mathematical model for simple linear regression (model I: Subsection 10.3.1) is  = b0 + b1x.
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b2 = 0

b3 = 1

Simple
linear
regression ŷ
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The regression coefficients b0 and b1 are estimated from the observed data x and y. This is
equivalent to resolving the following system of equations:

Coefficients b are estimated by the method of least squares (Subsection 10.3.1), which
minimizes the sum of squares of the differences between observed values y and values 
calculated using the regression equation. In order to obtain a least-squares best fit, each member
(left and right) of matrix equation y = Xb is multiplied by the transpose of matrix X,
i.e. X'y = X'Xb. By doing so, the rectangular matrix X produces a square matrix X'X, which can
be inverted. The values of coefficients b0 and b1 are computed directly after inverting the square
matrix [X'X]:

b = [X'X]–1 [X'y] (2.19)

Using the same approach, it is easy to compute coefficients b0, b1, …, bp of a multiple linear
regression (Subsection 10.3.3). In this type of regression, variable y is a linear function of
several (p) variables xj, so that one can write:  = b0 + b1x1 + … + bpxp. Vectors y and b and
matrix X are defined as follows:

The least-squares solution is again eq. 2.19. However, readers should consult Section 10.3 for
computational methods to be used in multiple linear regression when the variables xj are
strongly intercorrelated, as is often the case in ecology.

In polynomial regression (Subsection 10.3.4), several regression parameters b,
corresponding to powers of a single variable x, are fitted to the observed data. The general
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regression model is  = b0 + b1x + b2x2 + … + bkx
k. The vector of parameters, b, is computed in

the same way. Vectors y and b, and matrix X, are defined as follows:

The least-squares solution is computed using eq. 2.19. Readers should consult Section 10.3
where practical considerations concerning the calculation of polynomial regression with
ecological data are discussed.

2.9 Eigenvalues and eigenvectors

There are other problems, in addition to those examined above, where the
determinant and the inverse of a matrix are used to provide simple and elegant
solutions. An important one in data analysis is the derivation of an orthogonal form
(i.e. a matrix whose vectors are at right angles; Sections 2.5 and 2.8) for a non-
orthogonal symmetric matrix. This will provide the algebraic basis for most of the
methods studied in Chapters 9 and 11. In ecology, data sets generally include a large
number of variables, which are associated to one another (e.g. linearly correlated;
Section 4.2). The basic idea underlying several methods of data analysis is to reduce
this large number of intercorrelated variables to a smaller number of composite, but
linearly independent (Box 1.1) variables, each explaining a different fraction of the
observed variation. One of the main goals of numerical data analysis is indeed to
generate a small number of variables, each explaining a large portion of the variation,
and to ascertain that these new variables explain different aspects of the phenomena
under study. The present section only deals with the mathematics of the computation of
eigenvalues and eigenvectors. Applications to the analysis of multidimensional
ecological data are discussed in Chapters 4, 9 and 11.

Mathematically, the problem may be formulated as follows. Given a square matrix
A, one wishes to find a diagonal matrix which is equivalent to A. In ecology, square
matrices are most often symmetric association matrices (Section 2.2), hence the use of
symbol A:

ŷ
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In matrix A, the terms located above and below the diagonal characterize the degree of
association of either the objects, or the ecological variables, with one another
(Fig. 2.1). In the new matrix ΛΛΛΛ (capital lambda) being sought, all elements outside the
diagonal are null:

(2.20)

This new matrix is called the matrix of eigenvalues*. The new variables (eigenvectors;
see below) whose association is described by this matrix ΛΛΛΛ are thus linearly
independent of one another. The use of the Greek letter λ (lower-case lambda) to
represent eigenvalues stems from the fact that eigenvalues are actually Lagrangian
multipliers λ, as will be shown in Section 4.4. Matrix ΛΛΛΛ is known as the canonical
form of matrix A; for the exact meaning of canonical in mathematics, see
Subsection 10.2.1.

1 — Computation

The eigenvalues and eigenvectors of matrix A are found from equation

Aui = λiui (2.21)

which allows one to compute the different eigenvalues λi and their associated
eigenvectors ui. First, the validity of eq. 2.21 must be demonstrated.

* In the literature, the following expressions are synonymous:

eigenvalue eigenvector

characteristic root characteristic vector

latent root latent vector

Eigen is the German word for characteristic.
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.     .

.     .
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ΛΛΛΛ

λ11 0 . . . 0
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.     .

.  .

.     .

0 0 . . . λnn

λ1 0 . . . 0
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.     .

.     .

.     .
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To do so, one uses any pair h and i of eigenvalues and eigenvectors, corresponding to matrix
A. Equation 2.21 becomes

Auh = λhuh      and Aui = λiui ,     respectively.

Multiplying the two equations by row vectors u'i and u'h, respectively, gives:

    and

It can be shown that, in the case of a symmetric matrix, the left-hand members of these two
equations are equal: ; this would not be true for an asymmetric matrix,
however. Using a (2 × 2) matrix A, readers can easily check that the equality holds only when
a12 = a21, i.e. when A is symmetric. So, in the case of a symmetric matrix, the right-hand
members are also equal:

Since we are talking about two distinct values for λh and λi, the only possibility for the above
equality to be true is that the product of vectors uh and ui be 0 (i.e. ), which
is the condition of orthogonality for two vectors (Section 2.5). It is therefore concluded that
eq. 2.21

Aui = λiui

can be used to compute vectors ui which are indeed orthogonal, when matrix A is symmetric. In
the case of a non-symmetric matrix, eigenvectors can also be calculated, but they are not
orthogonal and therefore not linearly independent.

If scalars λi and their associated vectors ui exist, then eq. 2.21 can be transformed
as follows:

Aui – λiui = 0 (difference between two vectors)

and vector ui can be factorized:

(A – λiI)ui = 0 (2.22)

Because of the nature of the elements in eq. 2.22, it is necessary to introduce a unit
matrix I inside the parentheses, where one now finds a difference between two square
matrices. According to eq. 2.22, multiplication of the square matrix (A – λiI) with
column vector ui must result in a null column vector (0).

Besides the trivial solution, where ui is itself a null vector, eq. 2.22 has the
following solution:

A – λiI = 0 (2.23)

u'iAuh λhu'iuh= u'hAui λiu'hui=

u'iAuh u'h Aui=

λhu'iuh λiu'hui=

u'i uh u'h ui 0= =
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That is, the determinant of the difference between matrices A and λiI must be equal to
0 for each λi. Resolving eq. 2.23 provides the eigenvalues λi associated with matrix A.
Equation 2.23 is known as the characteristic or determinantal equation.

Demonstration of eq. 2.23 is as follows:

1) One solution to (A – λiI)ui = 0 is that ui is the null vector: u = [0]. This solution is trivial,
since it corresponds to the centroid of the scatter of data points. A non-trivial solution must thus
involve (A – λiI).

2) Solution (A – λiI) = [0] is not acceptable either, since it implies that A = λiI and thus that
A be a scalar matrix, which is generally not true.

3) The solution thus requires that λi and ui be such that the product (A – λiI)ui is a null
vector. In other words, vector ui must be orthogonal to the space corresponding to A after λiI has
been subtracted from it; orthogonality of two vectors or matrices is obtained when their product
is equal to 0 (Section 2.5). Solution A – λiI = 0 (eq. 2.23) means that, for each value λi, the
rank of (A – λiI) is lower than its order, which makes the determinant equal to zero
(Section 2.7). Each λiI corresponds to one dimension of matrix A (Section 4.4). It is easy to
calculate the eigenvector ui, which is orthogonal to space (A – λiI) which is of lower dimension.
This eigenvector is the solution to eq. 2.22, which specifies orthogonality.

For a matrix A of order n, the characteristic equation is a polynomial of degree n,
whose solutions are the values λi. When these values are found, it is easy to use
eq. 2.22 to calculate the eigenvector ui corresponding to each eigenvalue λi. There are
therefore as many eigenvectors as there are eigenvalues.

There are methods which enable the quick and efficient calculation of eigenvalues
and eigenvectors by computer. Two of these are described in Subsection 9.1.8.

Ecologists, who are more concerned with shedding light on natural phenomena
than on mathematical entities, may have found unduly technical this discussion of the
computation of eigenvalues and eigenvectors. The same subject will be considered
again in Section 4.4, in the context of the multidimensional normal distribution.
Mastering the bases of this algebraic operation is essential to understand the methods
based on eigenanalysis (Chapters 9 and 11), which are of prime importance to the
analysis of ecological data.

2 — Numerical examples

Numerical example 1. The characteristic equation of symmetric matrix

Character-
istic equation

A  2  2 

 2  5 
=
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is (eq. 2.23)

therefore

and thus

The characteristic polynomial is found by expanding the determinant (Section 2.6):

(2 – λ) (5 – λ) – 4 = 0

which gives λ2 – 7λ + 6 = 0

from which it is easy to calculate the two values of λ which satisfy the equation (Fig. 2.2a). The
two eigenvalues of A are therefore:

λl = 6     and λ2 = 1

 2  2 

 2  5 
λ  1  0 

 0  1 
– 0=

 2  2 

 2  5 

λ  0

0 λ
– 0=

2 λ– 2

2 5 λ–
0=

Figure 2.2 (a) The eigenvalues of numerical example 1 are the values along the λ axis where the function
λ2 – 7λ + 6 is zero. (b) Similarly for numerical example 2, the eigenvalues are the values along
the λ axis where the function λ3 –3λ2 – 4λ is zero.
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The ordering of eigenvalues is arbitrary; it would have been equally correct to state that
λl = 1 and λ2 = 6. Equation  2.22 is used to calculate eigenvectors u1 and u2 corresponding to
eigenvalues λ1 and λ2, respectively:

for λl = 6 for λ2 = 1

which is equivalent to the following pairs of linear equations:

–4u11 + 2u21 = 0 1u12 + 2u22 = 0

2u11 – 1u21 = 0 2u12 + 4u22 = 0

These sets of linear equations are always indeterminate. The solution is given by
any point (vector) in the direction of the eigenvector being sought. To remove the
indetermination, an arbitrary value is assigned to one of the elements u, which
specifies a particular vector. For example, value u = 1 may be arbitrarily assigned to
first term u in each set:

given that u11 = 1 u12 = 1

it follows that –4u11 + 2u21 = 0 1u12 + 2u22 = 0

become –4 + 2u21 = 0 1 + 2u22 = 0

so that u21 = 2 u22 = –1/2

Eigenvectors u1 and u2 are therefore:

and

Values other than 1 could have been arbitrarily assigned to u11 and u12 (or, for that matter, to any

other term in each vector). For example, the following vectors also satisfy the two pairs of linear
equations, since these eigenvectors differ only by a multiplication by a scalar:

 2  2 

 2  5 
6  1  0 

 0  1 
–

 
 
  u11

u21

0=  2  2 

 2  5 
1  1  0 

 0  1 
–

 
 
  u12

u22

0=

4– 2

2 1–

u11

u21

0= 1  2

2 4

u12

u22

0=

1

2

1

1 2⁄–

2

4
or 3–

6–

2

1–
or 4–

2
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This is the reason why eigenvectors are generally standardized. One method is to
assign value 1 to the largest element of each vector, and adjust the other elements
accordingly. Another standardization method, used for instance in principal component
and principal coordinate analyses (Sections 9.1 and 9.2), is to make the length of each
eigenvector ui equal to the square root of its eigenvalue (eigenvector scaled to ).

Another, more common and more practical method, is to normalize eigenvectors,
i.e. to make their lengths equal to 1. Thus, a normalized eigenvector is in fact scaled to
1, i.e. u'u = 1. As explained in Section 2.4, normalization is achieved by dividing each
element of a vector by the length of this vector, i.e. the square root of the sum of
squares of all elements in the vector. 

In the numerical example, the two eigenvectors

and

are normalized to

and

Since the eigenvectors are both orthogonal and normalized, they are orthonormal (property 7 in
Section 2.8). 

Had the eigenvectors been multiplied by a negative scalar, their normalized forms would
now be the following:

and

These forms are strictly equivalent to those above.

Since matrix A is symmetric, its eigenvectors must be orthogonal. This is easily verified as
their product is equal to zero, which is the condition for two vectors to be orthogonal
(Section 2.5):

The normalized eigenvectors may be plotted in the original system of coordinates, i.e. the
Cartesian plane whose axes are the two original descriptors; the association between these

λi

1

2

2

1–

1 5⁄

2 5⁄

2 5⁄

1– 5⁄

1– 5⁄

2– 5⁄

2– 5⁄

1 5⁄

u'1u2 1 5⁄ 2 5⁄= 2 5⁄

1– 5⁄
2 5⁄ 2 5⁄– 0= =
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descriptors is given by matrix A. This plot (full arrows) shows that the angle between the
eigenvectors is indeed 90° (cos 90° = 0) and that their lengths are 1:

The dashed arrows illustrate the same eigenvectors with inverted signs. The eigenvectors with
dashed arrows are equivalent to those with full arrows.

Resolving the system of linear equations used to compute eigenvectors is greatly
facilitated by matrix inversion. Defining matrix Cnn = (A – λnI) allows eq. 2.22 to be
written in a simplified form: 

Cnnun = 0 (2.24)

Indices n designate here the dimensions of matrix C and vector u. Matrix Cnn contains
all the coefficients by which a given eigenvector un is multiplied. The system of
equations is indeterminate, which prevents the inversion of C and calculation of u. To
remove the indetermination, it is sufficient to determine any one element of vector u.
For example, one may arbitrarily decide that u1 = α (α ≠ 0). Then,

1

1

( 1/   5 ,  2/   5 )

( 2/   5 ,  –1/   5 )

( –1/   5 ,  –2/   5 )

( –2/   5 ,  1/   5 )

c11 c12 . . . c1n

c21 c22 . . . c2n

.     .

.     .

.     .

cn1 cn2 . . . cnn

α
u2

.

.

.

un

0

0

.

.

.

0

=
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can be written

so that

After setting u1 = α, the first column of matrix C is transferred to the right. The last
n – 1 rows of C are then enough to define a completely determined system. The first
row is removed from C in order to obtain a square matrix of order n – 1, which can be
inverted. The determined system thus obtained is:

which can be written (2.25)

This system can be resolved by inversion of C, as in Section 2.8:

(2.26)

This method of computing the eigenvectors may not work, however, in the case of
multiple eigenvalues (see Property 3, below). The following example provides an
illustration of the computation through inversion.

c11α + c12u2 + . . . + c1nun

c21α + c22u2 + . . . + c2nun

.     .

.     .

.     .

cn1α + cn2u2 + . . . + cnnun

0

0

.

.

.

0

=

c12u2 + . . . + c1nun

c22u2 + . . . + c2nun

.     .

.     .

.     .

cn2u2 + . . . + cnnun

α–

c11

c21

.

.

.

cn1

=

c22u2 + . . . + c2nun

.     .

.     .

.     .

cn2u2 + . . . + cnnun

α–

c21

.

.

.

cn1

=

C n 1–( ) n 1–( ) u n 1–( ) α–= c n 1–( )

u n 1–( ) α–= C
n 1–( ) n 1–( )
1–

c n 1–( )
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Numerical example 2. The characteristic polynomial (see eq. 2.23) of the asymmetric
matrix

is λ3 – 3λ2 – 4λ = 0, from which the three eigenvalues 4, 0 and –1 are calculated (Fig. 2.2b).

The eigenvectors are computed by inserting each eigenvalue, in turn, into eq. 2.22. For
λ1 = 4:

The above system is determined by setting u11 = 1. Using eq. 2.25 gives:

from which it follows (eq. 2.26) that

The inverse of matrix  is  so that

The two other eigenvectors are computed in the same fashion, from eigenvalues λ2 = 0 and
λ3 = –1. The resulting matrix of eigenvectors (columns) is:

A

 1  3 1 –

 0 1 2 

 1 4 1 

=

1 4–( ) 3 1–

0 1 4–( ) 2

1 4 1 4–( )

u11

u21

u31

0

0

0

=

1 4–( ) 2

4 1 4–( )

u21

u31

1– 0

1
=

u21

u31

1 4–( ) 2

4 1 4–( )

1–
0

1–
=

3– 2

4 3–

3– 2–

4– 3–

u21

u31

3– 2–

4– 3–

0

1–

2

3
==

U u1 u2 u3

1 1 1

2 2 7⁄– 1 2⁄–

3 1 7⁄ 1 2⁄

= = or else
1 7 2

2 2– 1–

3 1 1
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which is normalized to:

Readers can easily check that the above eigenvectors, which were extracted from a non-
symmetric matrix, are indeed not orthogonal; none of the scalar products between pairs of
columns is equal to zero. 

2.10 Some properties of eigenvalues and eigenvectors

First property. — A simple rearrangement of eq. 2.21 shows that matrix U of
eigenvectors is a transform matrix, allowing one to go from system A to system ΛΛΛΛ.
Indeed, the equation can be rewritten so as to include all eigenvalues and eigenvectors:

AU = UΛΛΛΛ (2.27)

Numerical example. Equation 2.27 can be easily verified using numerical example 2 from
Section 2.9:

The left and right-hand sides of the equation are identical:

On the left-hand side of the equation, matrix A is postmultiplied by matrix U of the
eigenvectors whereas, on the right-hand side, the matrix of eigenvalues ΛΛΛΛ is
premultiplied by U. It follows that U achieves a two-way transformation (rows,
columns), from reference system A to system ΛΛΛΛ. This transformation can go both
ways, as shown by the following equations which are both derived from eq. 2.27:

A = UΛΛΛΛU–1 and ΛΛΛΛ = U–1 AU (2.28)

A simple formula may be derived from A = UΛΛΛΛU–1, which can be used to raise
matrix A to any power x:

Ax = (UΛΛΛΛU–1)UΛΛΛΛ … U–1(UΛΛΛΛU–1)

U

0.27 0.95 0.82

0.53 0.27– 0.41–

0.80 0.14 0.41

=

1  3 1–

0 1 2

1 4 1

1 7 2

2 2– 1–

3 1 1

1 7 2

2 2– 1–

3 1 1

4  0 0

0 0 0

0 0 1–

=

4  0 2–

8 0 1

12 0 1–

4  0 2–

8 0 1

12 0 1–

=
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Ax = UΛΛΛΛ(U–1U)ΛΛΛΛ … (U–1U)ΛΛΛΛU–1

Ax = UΛΛΛΛxU–1, because U–1U = I

Raising a matrix to some high power is greatly facilitated by the fact that ΛΛΛΛx is the
matrix of eigenvalues, which is diagonal. Indeed, a diagonal matrix can be raised to
any power x by raising each of its diagonal elements to power x. It follows that the last
equation may be rewritten as:

(2.29)

This may easily be verified using the above example.

Second property. — It was shown in Section 2.7 that, when the rank (r) of matrix
Ann is smaller than its order (r < n), determinant A equals 0. It was also shown that,
when it is necessary to know the rank of a matrix, as for instance in dimensional
analysis (Section 3.3), A = 0 indicates that one must test for rank. Such a test
naturally follows from the calculation of eigenvalues. Indeed, the determinant of a
matrix is equal to the product of its eigenvalues:

(2.30)

so that A = 0 if one or several of the eigenvalues λi = 0. When the rank of a matrix
is smaller than its order (r < n), this matrix has (n – r) null eigenvalues. Thus,
eigenvalues can be used to determine the rank of a matrix: the rank is equal to the
number of nonzero eigenvalues. In the case of an association matrix among variables,
the number of nonzero eigenvalues (i.e. the rank of A) is equal to the number of
independent dimensions which are required to account for all the variance (Chapter 9).

Third property. — It was implicitly assumed, up to this point, that the eigenvalues
were all different from one another. It may happen, however, that some (say, m)
eigenvalues are equal. These are known as multiple eigenvalues. In such a case, the
question is whether or not matrix Ann has n distinct eigenvectors. In other words, are
there m linearly independent eigenvectors which correspond to the same eigenvalue?

By definition, the determinant of (A – λiI) is null (eq. 2.23):

|A – λiI| = 0

which means that the rank of (A – λiI) is smaller than n. In the case of multiple
eigenvalues, if there are m distinct eigenvectors corresponding to the m identical
eigenvalues λi, the determinant of (A – λiI) must be null for each of these eigenvalues,
but in a different way each time. When m = 1, the condition for A – λiI = 0 is for its
rank to be r = n – 1. Similarly, in a case of multiplicity, the condition for A – λiI to
be null m times, but distinctly, is for its rank to be r = n – m. Consequently, for n

A
x

U λi
x[ ] U

1–
=

A λi

i 1=

n

∏=
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distinct eigenvectors to exist, the rank of (A – λiI) must be r = n – m, and this for any
eigenvalue λi of multiplicity m.

Numerical example. The following matrix has eigenvalues λ1 = λ2 = 1 and λ3 = –1:

The rank of (A – λiI) is r = 1 because all three columns of this matrix are identical. Thus, for
λ1 = λ2 = 1 (m = 2), n – m = 3 – 2 = 1, so that r = n – m. It follows that there exist two distinct
eigenvectors u1 and u2. They can indeed be found:

Eigenvectors u1 and u2 both correspond to multiple eigenvalue λ = 1. Any linear combination of
such eigenvectors is also an eigenvector of matrix A corresponding to λ. For example:

It can easily be verified that the above two eigenvectors, or any other linear combination of u1
and u2, are indeed eigenvectors of A corresponding to λ = 1. Of course, the new eigenvectors are
not linearly independent of u1 and u2, so that there are still only two distinct eigenvectors
corresponding to multiple λ = 1.

Numerical example. The eigenvalues of the following matrix are λ1 = 3 and λ2 = λ3 = 1:

The rank of (A – λiI) is r = 2 because any two of the three rows (or columns) of this matrix are
independent of one another. Thus, for λ2 = λ3 = 1 (m = 2), n – m = 3 – 2 = 1, so that r ≠ n – m.
The conclusion is that there do not exist two independent eigenvectors associated with the
eigenvalue of multiplicity m = 2.

In the case of a symmetric matrix, it is always possible to calculate m orthogonal
eigenvectors corresponding to multiple eigenvalues, when present. This is not
necessarily true for non-symmetric matrices, where the number of eigenvectors may be
smaller than m. Therefore, whatever their multiplicity, eigenvalues of most matrices of
interest to ecologists, including association matrices (Section 2.2), have distinct

A

1– 2– 2–

1 2 1

1– 1– 0

= so that, for λ1 λ2 1,= = A 1I–( )
2– 2– 2–

1 1 1

1– 1– 1–

=

u1

1

0

1–

= and u2

1

1–

0

= whereas u3

2

1–

1

=

u1 u2–
0

1

1–

= u1 2u2+
3

2–

1–

=

A

2 1– 1

3 3 2–

4 1 0

= so that, for λ2 λ3 1,= = A 1I–( )
1 1– 1

3 2 2–
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=
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eigenvectors associated with them. In any case, it is unlikely that eigenvalues of
matrices computed from real data be exactly equal (i.e. multiple).

Fourth property. — A property of symmetric matrices may be used to predict the
nature of their eigenvalues (Table 2.2). A symmetric matrix A may be combined with
any vector t ≠ 0, in a matrix expression of the form t'At which is known as a quadratic
form. This expression results in a scalar whose value leads to the following definitions:

• if t'At is always positive, matrix A is positive definite;

• if t'At can be either positive or null, matrix A is positive semidefinite;

• if t'At can be either negative or null, matrix A is negative semidefinite;

• if t'At can be either negative, null or positive, matrix A is indefinite.

Table 2.2 Types of symmetric matrices and corresponding characteristics of their eigenvalues.

Symmetric matrix Eigenvalues

All elements of matrix A are real All eigenvalues are real (i.e. non-imaginary)
(i.e. non-imaginary)

Matrix A is positive definite All eigenvalues are positive

Matrix Ann is positive semidefinite There are r positive and (n – r) null
and of rank r eigenvalues

Matrix Ann is negative semidefinite There are r negative and (n – r) null
and of rank r eigenvalues

Matrix Ann is indefinite and of rank r There are r non-null (positive and negative)
and (n – r) null eigenvalues

Matrix A is diagonal The diagonal elements are the eigenvalues

Quadratic
form
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2.11 Singular value decomposition

In a well-known theorem, Eckart & Young (1936) showed that any rectangular matrix
Y can be decomposed as follows:

Y(n×p) = V(n×p) W(diagonal, p×p) U'(p×p) (2.31)

where both U and V are column-orthonormal matrices (i.e. matrices containing
column vectors that are normalized and orthogonal to one another; Section 2.8) and W
is a diagonal matrix D(wi). The method is known as singular value decomposition
(SVD). The following illustration shows more clearly the shapes of these matrices:

Demonstrating eq. 2.31 is beyond the scope of this book. The diagonal values wi in W
are non-negative; they are called the singular values of Y. The method is discussed in
more detail by Press et al. (1986 and later editions), who propose computer programs
for SVD*. Programs are also available in major subroutine packages.

SVD offers a way of handling matrices that are singular (Section 2.8) or
numerically very close to singular. SVD may either give users a clear diagnostic of the
problem, or solve it. Singularity may be encountered when solving sets of
simultaneous linear equations represented by matrix equation Ab = c, where matrix A
is square (Section 2.8), A and c are known, and b is unknown. A must be inverted in
order to find b. A can always be decomposed using eq. 2.31:

A = V D(wi)U'

In that case, V, W and U are all square matrices of the same size as A. Using property 5
of matrix inverses (above), the inverse of A is simple to compute:

A–1 = [V D(wi)U']–1 = [U']–1[D(wi)]
–1[V]–1

* The Numerical recipes routines are available in FORTRAN and C from the following WWWeb
site: <http://www.nr.com>.

=Y(n×p) U'(p×p)V(n×p)

w1 0 0 … 0

0 w2 0 … 0

0 0 w3 … 0

… … … … …
0 0 0 … wp
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Since U and V are orthonormal, their inverses are equal to their transposes (property
7), whereas the inverse of a diagonal matrix is a diagonal matrix whose elements are
the reciprocals of the original elements (property 8). So, one can write:

A–1 = UD(1/wi)V' (2.32)

It may happen that one or more of the wi’s are zero, so that their reciprocals are
infinite; A is then a singular matrix. It may also happen that one or more of the wi’s are
numerically so small that their values cannot be properly computed because of the
machine’s precision in floating point calculation; in that case, A is said to be ill-
conditioned. When A is singular, the columns of U corresponding to the zero elements
in W form an orthonormal basis* for the space where the system of equations has no
solution, whereas the columns of V corresponding to the zero elements in W are an
orthonormal basis for the space where the system has a solution. When A is singular or
ill-conditioned, it is still possible to find one or several vectors b that satisfy the set of
simultaneous linear equations, either exactly or approximately. How to find these
solutions is explained in the book of Press et al. (1986), for instance.

Singular value decomposition may be applied to situations where there are more
equations than unknowns (e.g. least-squares estimation of parameters, as in
Section 2.8), or fewer equations than unknowns. It may also be used for eigenvalue
decomposition, although it is not a general method for eigenanalysis; in particular, it
does not allow one to estimate negative eigenvalues. In the present book, SVD will be
used as one of the possible algorithms for principal component analysis
(Subsection 9.1.9) and correspondence analysis (Subsection 9.4.1). 

* A set of k linearly independent vectors form a basis for a k-dimensional vector space. Any
vector in that space can be uniquely written as a linear combination of the base vectors.

Singular
matrix

Ill-
conditioned
matrix
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Chapter

3 Dimensional
analysis in ecology

3.0 Dimensional analysis

Dimensional analysis is generally not part of the curriculum of ecologists, so that
relatively few are conversant with this simple but remarkably powerful tool. Yet,
applications of dimensional analysis are found in the ecological literature, where
results clearly demonstrate the advantage of using this mathematical approach.

“Dimensional analysis treats the general forms of equations that describe natural
phenomena” (Langhaar, 1951). The basic principles of this discipline were established
by physicists (Fourier, 1822; Maxwell, 1871) and later applied by engineers to the very
important area of small-scale modelling. Readers interested in the fundamentals and
engineering applications of dimensional analysis should refer, for example, to
Langhaar (1951), from which are taken several of the topics developed in the present
Chapter. Other useful references are Ipsen (1960), Huntley (1967), and Schneider
(1994).

The use of dimensional analysis in ecology rests on the fact that a growing number
of areas in ecological science use equations; for example, populations dynamics and
ecological modelling. The study of equations is the very basis of dimensional analysis.
This powerful approach can easily be used by ecologists, given the facts that it can be
reduced to a single theorem (the

 

Π theorem) and that many of its applications
(Sections 3.1 and 3.2) only require a knowledge of elementary mathematics.

Dimensional analysis can resolve complex ecological problems in a simple and
elegant manner. Readers should therefore not be surprised that ecological applications
in the present Chapter are of a rather high level, since the advantage of dimensional
analysis lies precisely in its ability to handle complex problems. It follows that
dimensional analysis is mainly useful in those cases where it would be difficult to
resolve the ecological problem by conventional approaches.
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3.1 Dimensions

All fields of science, including ecology, rest on a number of abstract entities such as
the mass, length, time, temperature, speed, acceleration, radioactivity, concentration,
energy or volume. These entities, which can be measured, are called quantities.
Designing a system of units requires to: (1) arbitrarily choose a small number of
fundamental quantities, on which a coherent and practical system can be constructed,
and (2) arbitrarily assign, to each of these quantities, base units chosen as reference for
comparing measurements.

Various systems of units have been developed in the past, e.g. the British system
and several versions of the metric system. The latter include the CGS metric system
used by scientists (based on the centimetre, the gram and the second), the MKS (force)
metric system used by engineers (based on the metre, the kilogram and the second,
where the kilogram is the unit of force), and the MKS (mass) metric system (where the
kilogram is the unit of mass). Since 1960, there is an internationally accepted version
of the metric system, called the International System of Units (SI, from the French
name Système international d’unités). The SI is based on seven quantities, to which
are associated seven base units (Table 3.1; the mole was added to the SI in 1971 only).
In addition to these seven base units, the SI recognizes two supplementary units, the
radian (rad) and the steradian (sr), which measure planar and solid angles, respectively.
All other units, called derived units, are combinations of the base and supplementary

International
System
of Units

Table 3.1 Base units of the International System of Units (Sl).

Fundamental quantity Quantity symbol* Dimension symbol Base unit Unit symbol

mass m [M] kilogram kg

length l [L] metre† m

time t [T] second s

electric current I [I] ampere A

thermodynamic temperature T ‡ [θ] kelvin‡ K

amount of substance n [N] mole mol

luminous intensity Iv [J] candela cd

* Quantity symbols are not part of the SI, and they are not unique.
† Spelled meter in the United States of America.
‡ In ecology, temperature is generally measured on the Celsius scale, where the unit is the

degree Celsius (°C); the quantity symbol for temperatures expressed in °C is usually t.
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units. Some frequently used derived units have special names, e.g. volt, lux, joule,
newton, ohm. It must be noted that: (1) unit names are written with small letters only,
the sole exception being the degree Celsius; (2) unit symbols are written with small
letters only, except the symbols of derived units that are surnames, whose first letter is
a capital (e.g. Pa for pascal), and the litre (see Table 3.2, footnote). Unit symbols are
not abbreviations, hence they are never followed by a point.*

Table 3.2 shows that derived units are not only simple products of the fundamental
units, but that they are often powers and combinations of powers of these units.
Maxwell (1871) used symbols such as [M], [L], [T], and [

 

θ] to represent the quantities
mass, length, time and temperature (Table 3.1). The dimensions of the various
quantities are products of powers of the symbols of fundamental quantities. Thus, the
dimension of an area is [L2], of a volume [L3], of a speed [LT–1], and of an
acceleration [LT–2]. Table 3.2 gives the exponents of the dimensional form of the most
frequently encountered quantities.

Since the various quantities are products of powers, going from one quantity to
another is done simply by adding (or subtracting) exponents of the dimensions. For
example, one calculates the dimensions of heat conductivity W(mK)–1 by subtracting,
from the dimension exponents of power W, the sum of the dimension exponents of
length m and of temperature K:

[M1L2T–3]

 

/ ([Ll]

 

× [

 

θ1]) = [M1L(2 – 1)T–3

 

θ–(1)] = [M1L1T–3

 

θ–1]

The first three fundamental quantities (Table 3.1), mass [M], length [L], and time
[T], are enough to describe any Newtonian mechanical system. Ecologists may
require, in addition, temperature [

 

θ], amount of substance [N], and luminous intensity
[J]. Research in electromagnetism calls for electric current [I] and, in quantum
mechanics, one uses the quantum state of the system [

 

Ψ].

Four types of entities are recognized:

(1) dimensional variables, e.g. most of the quantities listed in Table 3.2;

(2) dimensional constants, for instance: the speed of light in vacuum [LT–1],
c = 2.998

 

 × 108 m s–1; the acceleration due to Earth’s gravity at sea level [LT–2],
g = 9.807 m s–2; the number of elementary entities in a mole NA = 6.022 × 1023 mol–1,
where NA is the Avogadro number (note that the nature of the elementary entities in a
mole must always be specified, e.g. mol C, mol photons);

* A program (for MS-DOS machines), called The Unit Calculator, deals with most problems
involving physical measurement units. It recognizes over 600 units commonly used in science
and business. This program may be used to: convert data, for instance between the American and
International System of Units; carry out calculations, even with mixed units; and perform
computations on the units themselves, from checking that physical equations are homogeneous
to actual dimensional analysis. The program is distributed by: Applied Biomathematics, 100
North Country Road, Setauket, New York 11733, U.S.A.

Dimension
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Table 3.2 Dimensions, units, and names of quantities. Units follow the standards of the International
System of Units (SI).

Quantity [M] [L] [T] [I] [θ] [N] [J] Units Name*

mass 1 0 0 0 0 0 0 kg kilogram
length 0 1 0 0 0 0 0 m metre
time 0 0 1 0 0 0 0 s second
electric current 0 0 0 1 0 0 0 A ampere
temperature 0 0 0 0 1 0 0 K kelvin
amount of substance 0 0 0 0 0 1 0 mol mole
luminous intensity 0 0 0 0 0 0 1 cd candela

absorbed dose 0 2 –2 0 0 0 0 J kg–1 = Gy gray
acceleration (angular) 0 0 –2 0 0 0 0 rad s–2

acceleration (linear) 0 1 –2 0 0 0 0 m s–2

activity of radioactive source 0 0 –1 0 0 0 0 s–1 = Bq becquerel
angle (planar) 0 0 0 0 0 0 0 rad radian
angle (solid) 0 0 0 0 0 0 0 sr steradian
angular momentum 1 2 –1 0 0 0 0 kg m2 s–1

angular velocity 0 0 –1 0 0 0 0 rad s–1

area 0 2 0 0 0 0 0 m2

compressibility –1 1 2 0 0 0 0 Pa–1

concentration (molarity) 0 –3 0 0 0 1 0 mol m–3

current density 0 –2 0 1 0 0 0 A m–2

density (mass density) 1 –3 0 0 0 0 0 kg m–3

electric capacitance –1 –2 4 2 0 0 0 C V–1 = F farad
electric charge 0 0 1 1 0 0 0 A s = C coulomb
electric conductance –1 –2 3 2 0 0 0 Ω–1 = S siemens
electric field strength 1 1 –3 –1 0 0 0 V m–1

electric resistance 1 2 –3 –2 0 0 0 V A–1 = Ω ohm
electric potential 1 2 –3 –1 0 0 0 W A–1 = V volt
energy 1 2 –2 0 0 0 0 N m = J joule

force 1 1 –2 0 0 0 0 kg m s–2 = N newton
frequency 0 0 –1 0 0 0 0 s–1 = Hz hertz

heat capacity 1 2 –2 0 –1 0 0 J K–1

heat conductivity 1 1 –3 0 –1 0 0 W(m K)–1

heat flux density 1 0 –3 0 0 0 0 W m–2

illuminance 0 –2 0 0 0 0 1 lm m–2 = lx lux
inductance 1 2 –2 –2 0 0 0 Wb A–1 = H henry

light exposure 0 –2 1 0 0 0 1 lx s
luminance 0 –2 0 0 0 0 1 cd m–2

luminous flux 0 0 0 0 0 0 1 cd sr = lm lumen

* Only base units and special names of derived units are listed.
† The litre (spelled liter in the United States of America) is the capacity (vs. cubic) unit of

volume. Its symbol (letter l) may be confused with digit one (1) in printed texts so that it was
decided in 1979 that capital L could be used as well; 1 m3 = 1000 L.
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(3) dimensionless variables, such as angles, relative density (Table 3.2), or
dimensionless products which will be studied in following sections;

(4) dimensionless constants, e.g. π, e, 2, 7; it must be noted that exponents are, by
definition, dimensionless constants.

Table 3.2 Dimensions, units, and names of quantities (continued).

Quantity [M] [L] [T] [I] [θ] [N] [J] Units Name

magnetic field strength 0 –1 0 1 0 0 0 A m–1

magnetic flux 1 2 –2 –1 0 0 0 V s = Wb weber
magnetic flux density 1 0 –2 –1 0 0 0 Wb m–2 = T tesla
magnetic induction 1 0 –2 –1 0 0 0 Wb m–2 = T tesla
magnetic permeability 1 1 –2 –2 0 0 0 Ω s m–1

mass flow rate 1 0 –1 0 0 0 0 kg s–1

molality –1 0 0 0 0 1 0 mol kg–1

molarity 0 –3 0 0 0 1 0 mol m–3

molar internal energy 1 2 –2 0 0 –1 0 J mol–1

molar mass 1 0 0 0 0 –1 0 kg mol–1

molar volume 0 3 0 0 0 –1 0 m3 mol–1

moment of force 1 2 –2 0 0 0 0 N m
moment of inertia 1 2 0 0 0 0 0 kg m2

momentum 1 1 –1 0 0 0 0 kg m s–1

period 0 0 1 0 0 0 0 s
permittivity –1 –3 4 2 0 0 0 F m–1

power 1 2 –3 0 0 0 0 J s–1 = W watt
pressure 1 –1 –2 0 0 0 0 N m–2 = Pa pascal

quantity of light 0 0 1 0 0 0 1 lm s
radiant intensity 1 2 –3 0 0 0 0 W sr–1

relative density 0 0 0 0 0 0 0 (no unit)
rotational frequency 0 0 –1 0 0 0 0 s–1

second moment of area 0 4 0 0 0 0 0 m4

specific heat capacity 0 2 –2 0 –1 0 0 J(kg K)–1

specific latent heat 0 2 –2 0 0 0 0 J kg–1

specific volume –1 3 0 0 0 0 0 m3 kg–1

speed 0 1 –1 0 0 0 0 m s–1

stress 1 –1 –2 0 0 0 0 N m–2 = Pa pascal
surface tension 1 0 –2 0 0 0 0 N m–1

torque 1 2 –2 0 0 0 0 N m
viscosity (dynamic) 1 –1 –1 0 0 0 0 Pa s
viscosity (kinetic) 0 2 –1 0 0 0 0 m2 s–1

volume† 0 3 0 0 0 0 0 m3

volume flow rate 0 3 –1 0 0 0 0 m3 s–1

wavelength 0 1 0 0 0 0 0 m
wave number 0 –1 0 0 0 0 0 m–1

work 1 2 –2 0 0 0 0 N m = J joule
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The very concept of dimension leads to immediate applications in physics and
ecology. In physics, for example, one can easily demonstrate that the first derivative of
distance with respect to time is a speed:

dimensions of  :    = [LT–1], i.e. speed.

Similarly, it can be shown that the second derivative is an acceleration:

dimensions of  =  :    = [LT–2], i.e. acceleration.

Note that italics are used for quantity symbols such as length (l), mass (m), time (t),
area (A), and so on. This distinguishes them from unit symbols (roman type; Tables 3.1
and 3.2), and dimension symbols (roman capitals in brackets; Table 3.1).

Ecological application  3.1

Platt (1969) studied the efficiency of primary (phytoplankton) production in the aquatic
environment. Primary production is generally determined at different depths in the water
column, so that it is difficult to compare values observed under different conditions. The solution
to this problem consists in finding a method to standardize the values, for example by
transforming field estimates of primary production into values of energy efficiency. Such a
transformation would eliminate the effect on production of solar irradiance at different locations
and different depths. Primary production at a given depth P(z) may be expressed in J m–3 s–1

[ML–1 T–3], while irradiance at the same depth E(z) is in J m–2 s–1 [MT–3] (energy units).

The dimension of the ratio P(z)/E(z), which defines the energy efficiency of primary
production, is thus [L–1]. Another property determined in the water column, which also has
dimension [L–1], is the attenuation of diffuse light as a function of depth. The coefficient of
diffuse light attenuation (α) is defined as:

E(z2) = E(z1) e–α(z2 – z1)

where E(z2) and E(z1) are irradiances at depths z2 and z1, respectively. Given the fact that an
exponent is, by definition, dimensionless, the dimension of α must be [L–1] since that of depth z
is [L].

Based on the dimensional similarity between efficiency and attenuation, and considering the
physical aspects of light attenuation in the water column, Platt partitioned the attenuation
coefficient (α) into physical (kp) and biological (kb) components, i.e. α = kp + kb. The biological
attenuation coefficient kp may be used to estimate the attenuation of light caused by
photosynthetic processes. In the same paper and in further publications by Platt & Subba Rao
(1970) and Legendre (1971b), it was shown that there exists a correlation in the marine
environment between kb and the concentration of chlorophyll a. The above papers used the
calorie as unit of energy but, according to the SI standard, this unit should no longer be used.
Coherency requires here that primary production be expressed in J m–3 s–1 and irradiance in
J m–2 s–1 (or W m–2).
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This example illustrates how a simple reflection, based on dimensions, led to an
interesting development in the field of ecology.

It is therefore useful to think in terms of dimensions when dealing with ecological
equations that contain physical quantities. Even if this habit is worth cultivating, it
would not however, in and of itself, justify an entire chapter in the present book. So, let
us move forward in the study of dimensional analysis.

3.2 Fundamental principles and the Pi theorem

It was shown in the previous section that going from one quantity to another is
generally done by multiplying or dividing quantities characterized by different
dimensions. In contrast, additions and subtractions can only be performed on quantities
having the same dimensions — hence the fundamental principle of dimensional
homogeneity. Any equation of the general form

a + b + c + … = g + h + … 

is dimensionally homogeneous if and only if all variables a, b, c, … g, h, … have the
same dimensions. This property applies to all equations of a theoretical nature, but it
does not necessarily apply to those derived empirically. Readers must be aware that
dimensional analysis only deals with dimensionally homogeneous equations. In
animal ecology, for example, the basic equation for energy budgets is:

(3.1)

where W is the mass of an animal, R its food ration, and T its metabolic expenditure
rate (oxygen consumption). This equation, which describes growth dW/dt as a function
of ration R and metabolic rate T, is dimensionally homogeneous. The rate of oxygen
consumption T is expressed as mass per unit time, its dimensions thus being [MT–1],
as those of food ration R. The dimensions of dW/dt are also clearly [MT–1]. This same
equation will be used in Ecological applications 3.2e and 3.3b, together with other
ecological equations — all of which are dimensionally homogeneous.

In dimensional analysis, the correct identification of quantities to be included in a
given equation is much more important than the exact form of the equation.
Researchers using dimensional analysis must therefore have prior knowledge of the
phenomenon under study, in order to identify the pertinent dimensional variables and
constants. On the one hand, missing key quantities could lead to incomplete or
incorrect results, or even to a deadlock. On the other hand, including unnecessary
terms could overburden the solution needlessly. Hence, dimensional analysis cannot be
conducted without first considering the ecological bases of the problem. A simple
example, taken from hydrodynamics, will illustrate the dimensional method.

Dimensional
homogeneity

dW dt⁄ R T–=
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The question considered here relates to the work of many ecologists in aquatic
environments, i.e. estimating the drag experienced by an object immersed in a current.
Ecologists who moor current meters or other probes must consider the drag, lest the
equipment might be carried away. To simplify the problem, one assumes that the
immersed object is a smooth sphere and that the velocity of the current V is constant.
The drag force F is then a function of: the velocity (V), the diameter of the sphere (D),
the density of water (ρ), and its dynamic viscosity (η). The simplest equation relating
these five quantities is:

F = ƒ(V, D, ρ, η) (3.2)

At first sight, nothing specifies the nature of the dependency of F on V, D, ρ, and η,
except that such a dependency exists. Dimensional analysis allows one to find the form
of the equation that relates F to the variables identified as governing the drag.

A number of variables are regularly encountered in hydrodynamics problems,
i.e. F, V, L, ρ, η, to which one must also add g, the acceleration due to gravity. Some of
these variables may be combined to form dimensionless products. Specialists of
hydrodynamics have given names to some often-used dimensionless products:

Reynolds number: (3.3)

Newton number: (3.4)

Froude number: (3.5)

Each of the above products is clearly dimensionless. It should also be noted that each
product of this set is independent of the others, since each contains one exclusive
variable, i.e. η for Re, F for Ne, and g for Fr. Finally, any other dimensionless product
of these same variables would inevitably be a product of powers of dimensionless
products from the above set. The three dimensionless products thus form a complete
set of dimensionless products for variables F, V, L, ρ, η and g. It would obviously be
possible to form other complete sets of dimensionless products using these same
variables, by combining them differently.

The first important concept to remember is that of dimensionless product. This
concept leads to the sole theorem of dimensional analysis, the Π theorem, which is
also known as the Buckingham theorem.

Given the fundamental principle of dimensional homogeneity (see above), it
follows that any equation that combines dimensionless products is dimensionally

Dimension-
less product
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η
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ML 1– T 1–[ ]

---------------------------------------------------
ML 1– T 1–[ ]
ML 1– T 1–[ ]

-----------------------------= = 1[ ]= =

Ne
F

ρL2V2
----------------

MLT 2–[ ]
ML 3–[ ] L2[ ] L2T 2–[ ]

--------------------------------------------------------
MLT 2–[ ]
MLT 2–[ ]

------------------------= = 1[ ]= =

Fr
V2

Lg
------

L2T 2–[ ]
L[ ] T 2–[ ]

--------------------------
L2T 2–[ ]
L2T 2–[ ]

---------------------= = 1[ ]= =



Fundamental principles and the Pi theorem 105

homogeneous. Thus, a sufficient condition for an equation to be dimensionally
homogeneous is that it could be reduced to an equation combining dimensionless
products. Indeed, any equation that can be reduced to an equation made of
dimensionless products is dimensionally homogeneous. Buckingham (1914) did show
that this condition is not only sufficient but also necessary. This leads to the Π (Pi)
theorem (the capital Greek letter Π is the mathematical symbol for product):

If an equation is dimensionally homogeneous, it can be reduced to a relationship
among the members of a complete set of dimensionless products.

This theorem alone summarizes the whole theory of dimensional analysis.

The power of the Π theorem is illustrated by the solution of the drag problem,
introduced above. Equation 3.2 is, by definition, dimensionally homogeneous:

F = ƒ(V, D, ρ, η)

It may be rewritten as:

 ƒ(F, V, D, ρ, η) = 0 (3.6)

The complete set of dimensionless products of the five variables F, V, D, ρ, η
contains two products, i.e. the Reynolds (Re) and Newton (Ne) numbers (D being a
length, it is a quantity of type L). Hence, eq. 3.6 may be rewritten as a relation between
the members of this complete set of dimensionless products (Π theorem):

Ne = ƒ(Re)

  = ƒ(Re) (3.7)

in which function ƒ is, for the time being, unknown, except that it depends on the sole
dimensionless variable Re.

The projected area (A) of a sphere is:

A = π (D/2)2 = (1/4) π D2, so that D2 = 4A/π

which allows one to rewrite eq. 3.7 as:

  = ƒ(Re)

 ƒ(Re)

Π theorem

F
ρV2D2
-----------------

F

ρV24A
π

-------
-----------------

F
ρV2A
--------------

1
2
---

8
π
--- 

 =



106 Dimensional analysis in ecology

In hydrodynamics, the term (8/π)ƒ(Re) is called the drag coefficient and is represented
by Cx, so that the drag exerted on a sphere is:

F = (1/2) CxρV2A, where Cx = (8/π)ƒ(Re) (3.8)

Since Cx is a function of the sole dimensionless coefficient Re, the problem is
resolved by determining, in the laboratory, the experimental curve of Cx as a function
of Re. This curve will be valid for any density (ρ) or dynamic viscosity (η) of any fluid
under consideration (the same curve can thus be used for water, air, etc.) and for
objects of any size, or any flow speed. The curve may thus be determined by
researchers under the most suitable conditions, i.e. choosing fluids and flow speeds
that are most convenient for laboratory work. As a matter of fact, this curve is already
known (Fig. 3.1).

Two important properties follow from the above example.

(1) First, data for a dimensionless graph may be obtained under the most
convenient conditions. For example, determining Cx for a sphere of diameter 3.48 m
immersed in air at 14.4°C with a velocity of 15.24 m s–1 would be difficult and costly.
In contrast, it would be much easier, in most laboratories, to determine Cx by using a
sphere of diameter 0.61 m in water at 14.4°C with a speed of 5.79 m s–1. In both cases,
Re is the same so that the measured value of Cx is the same. This first property is the
basis for model testing in engineering (Section 3.4), the sphere in air being here the
prototype and that in water, the model.

(2) The dimensionless graph of Fig. 3.1 contains much more information than a set
of charts depicting the function of the 4 variables. In a chart (Fig. 3.2), a function of

Figure 3.1 Drag coefficient on smooth spheres. Adapted from Eisner (1931).
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two variables is represented by a family of curves, one curve being required for each
value of the second variable. A function of three variables would be represented by a
set of sets of charts. Hence, for four variables and assuming that there were only five
values measured per variable, a total of 625 experimental points would be required,
i.e. five sets of five charts each. With 25 times fewer experimental points, one can
easily obtain a dimensionless graph (e.g. Fig. 3.1) which is both more exact and much
more convenient.

The above physical example illustrated the great simplicity and remarkable power
of dimensional analysis. Let us now examine examples from ecology.

Ecological application  3.2a

This first example belongs to the disciplines of ecology and physiology, since it concerns the
dimensions of animals and their muscular dynamics. Hill (1950) compared different cetaceans,
as a set of similar animals which differ in size. All these cetaceans (porpoises, dolphins, and
whales), with a 5000-fold mass range, travel at high speed (ca. 7.5 m s–1) which they can
maintain for a long time. Table 3.3 compares the two extreme cases of the common dolphin
(Delphinus delphis) and the blue whale (Balaenoptera musculus).

Figure 3.2 Chart representing a function of two variables. One curve is required for each value of the
second variable (z1, z2, z3, …)
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Since these two animals can maintain a cruising speed of ca. 7.5 m s–1 for long periods, one
may assume that they are then in a physiological steady state. The question is: how is it possible
for two species with such different sizes to cruise at the same speed?

To answer this question, one must first consider the drag (F) on a streamlined body moving
in a fluid. The equation is similar to eq. 3.8, except that the drag coefficient Cx is replaced here
by the friction coefficient Cf:

F = 0.5 Cf ρV2A

where ρ is the density of the fluid, V the velocity of the body, and A its total surface area. For
laminar flow, Cf ≈ 1.33 Re–1/2 whereas, for turbulent flow, Cf ≈ 0.455 (log10 Re)–2.58, Re being
the Reynolds number. Low values of Re correspond to laminar flow, where resistance to motion
is relatively weak, whereas high values of Re are associated with turbulent flow, which creates
stronger resistance to motion. Normally, for a streamlined body, the flow is laminar over the
front portion only and is turbulent towards the back.

The power developed by the muscles of moving cetaceans is calculated in three steps.

• Calculation of Re, for the animal under study:

Re ≈ 7 × 105 (s m–2) VL, in sea water at 5°C

• Calculation of drag (F):

F = 0.5 Cf ρV2A

Cf being computed from Re, using the equation for either laminar or turbulent flow.

• Calculation of power (P) developed during motion:

P = FV

For the purpose of the calculation, consider (1) a dolphin with a length of 2 m, weighing 80 kg,
whose surface area is 1.75 m2 and (2) a whale 25 m long, with a mass of 100 t and surface area
of 250 m2.

Table 3.3 Body characteristics of two cetaceans.

Common dolphin Blue whale

Maximum length (m) 2.4 30

Maximum mass (103 kg) 0.14 150

Mass/length3 0.01 0.006

Area/length2 0.45 0.40
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(1) The value of Re for a dolphin moving at 7.5  m s–1 is of the order of 107, which seems to
indicate highly turbulent flow. In the case of laminar flow, 

Cf = 1.33 × (107)–1/2 = 4.2 × 10–4

and, for turbulent flow, 

Cf = 0.455 (log10l07)–2.58 = 3 × 10–3

The drag (F) corresponding to these two flow regimes is:

F (laminar) = 0.5 (4.2 × 10–4) (1028 kg m–3) (7.5 m s–1)2 (1.75 m2) = 22 N

F (turbulent) = 0.5 (3 × 10–3) (1028 kg m–3) (7.5 m s–1)2 (1.75 m2) = 155 N

The power (P = F × 7.5 m s–1) that a dolphin should develop, if its motion resulted in perfectly
laminar flow, would be 165 W and, for turbulent flow, 1165 W. Since the size of a dolphin is of
the same order as that of a man, it is reasonable to assume that the power it can develop under
normal conditions is not higher than that of an athlete, i.e. a maximum power of 260 W. It
follows that the flow must be laminar for the 9/10 front portion of the dolphin’s body, with the
rear 1/10 being perhaps turbulent. This conclusion is consistent with observations made in
nature on dolphins. It is assumed that the absence of turbulence along the front part of the
dolphin’s body comes from the fact that the animal only uses its rear section for propulsion.

(2) The blue whale also swims at 7.5 m s–1, its Re being ca. 12.5 × 107 which corresponds to
a turbulent flow regime. A laminar flow would lead to a value 

Cf = 1.33 × (12.5 x 107)–1/2 = 1.2 × 10–4

and a turbulent flow to 

Cf = 0.455 (log1012.5 × 107)–2.58 = 2.1 x 10–3

The corresponding drag (F) would be:

F (laminar) = 0.5 (1.2 × 10–4) (1028  kg m–3) (7.5  m s–1)2 (250 m2) = 745 N

F (turbulent) = 0.5 (2.1 × 10–3) (1028  kg m–3) (7.5  m s–1)2 (250 m2) = 13 kN.

The power a whale should develop, if its motion at 7.5  m s–1 was accompanied by laminar flow,
would be 5.6 kW and, in the case of turbulent flow, 100 kW. The maximum power developed by
a 80 kg dolphin was estimated to be 260 W so that, if the maximum power of an animal was
proportional to its mass, a 105 kg whale should be able to develop 325 kW. One should,
however, take into account the fact that the available energy depends on blood flow. Since
cardiac rate is proportional to (mass)–0.27, the heart of a whale beats at a rate
(100/0.08)–0.27 ≈ 1/7 that of a dolphin. The maximum power of a whale is thus ca. 1/7 of
325 kW, i.e. 46.5 kW. This leads to the conclusion that laminar flow takes place along the 2/3
front portion of the animal and that only the 1/3 rear part can sustain turbulent flow.

Ecological application  3.2b

A second study, taken from the same paper as the previous application (Hill, 1950), deals with
land animals. It has been observed that several terrestrial mammals run more or less at the same
speed and jump approximately the same height, even if their sizes are very different. Table 3.4
gives some approximate maximal values. The question is to explain the small differences
observed between the performances of animals with such different sizes.
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One of the explanations proposed by the author involves a relatively simple dimensional
argument. The strength of tissues in the bodies of animals cannot be exceeded, during athletic
performances, without great risk. For two differently sized animals, consider a pair of systems
with lengths l1 and l2, respectively, carrying out similar movements within times t1 and t2,
respectively. The stress at any point in these systems has dimensions [ML–1T–2], which
corresponds to the product of density [ML–3] with the square of speed [L2T–2].

Assuming that the densities of systems are the same for the two species
(i.e. , which is reasonable, since the densities of bones, muscles, etc. are similar
for all mammals), the stresses at corresponding points of the systems are in the ratio

 : . If the two systems operate at speeds such that the stresses are the same at
corresponding points, it follows that  = . In other words, the speed is the same at
corresponding points of the two systems. It is therefore the strength of their tissues which would
explain why athletic animals of very different sizes have the same upper limits for running
speeds and jumping heights.

It is interesting to note that, over the years, the topic of maximal running speed of terrestrial
mammals has been the subject of many papers, which considered at least four competing
theories. These include the theory of geometric similarity, briefly explained in this example, and
theories that predict an increase of maximum running speed with body mass. These are
summarized in the introduction of a paper by Garland (1983), where maximum running speeds
for 106 species of terrestrial mammals are analysed. The study led to several interesting
conclusions, including that, even if maximal running speed is mass-independent within some
mammalian orders, this is not the case when species from different orders are put together; there
is then a tendency for running speed to increase with mass, up to an optimal mass of ca. 120 kg.
This is quite paradoxical since, when considering mammals in general, limb bone proportions do
scale consistently with geometric similarity. The author refers to Günther’s (1975, p. 672)
conclusion that “no single similarity criterion can provide a satisfactory quantitative explanation
for every single function of an organism that can be submitted to dimensional analysis”.

Table 3.4 Performances (maximal values) of five mammals.

Running speed (m s–1) Height of jump (m)

Man 12 2

Horse 20 2

Greyhound (25 kg) 18 —

Hare 20 1.5

Deer 15 2.5

m1l1
3– m2l2

3–=

l1
2t1

2–( ) l2
2t2

2–( )˙

l1t1
1–( ) l2t2

1–( )
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Ecological application  3.2c

An example from aquatic ecology (Platt & Subba Rao, 1973) illustrates the use of dimensionless
graphs. The dependence of phytoplankton growth on a given nutrient is often described by
means of the Michaelis-Menten equation, borrowed from enzymology. In this equation, the
growth rate (µ), with dimension [T–1], is a function of the maximum specific growth rate (µm),
the concentration (S) of the nutrient, and the concentration (Ks) of nutrient at which the growth
rate µ = 1/2 µm:

where B is the concentration of phytoplankton biomass. This equation is that of a rectangular
hyperbola, where Ks determines how fast the asymptote µm is approached. When Ks is high, µ
approaches the asymptote µm slowly, which indicates a weak dependence of µ on S in the
unsaturated part of the curve (Fig. 3.3).

In order to compare the effects of two different variables on phytoplankton growth, the
authors defined a new entity S* = S/Ks. Since this entity is dimensionless, the abscissa of the

µ 1
B
---

td
dB µmS

Ks S+
---------------= =

T 1–[ ] 1[ ]
ML 3–[ ]

---------------------
ML 3–[ ]

T[ ]
--------------------- T 1–[ ] ML 3–[ ]

ML 3–[ ] ML 3–[ ]+
-------------------------------------------------= =

Figure 3.3 Illustration of the Michaelis-Menten equation, showing the role of parameter Ks. In the curve
with higher Ks, µ approaches the asymptote µm more slowly than in the other curve.

µ
µm

Ks Ks S
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graph µ(S*) as a function of S* is dimensionless; µ(S*) stands for the specific growth rate,
normalized to S*. The Michaelis-Menten equation is thus rewritten as:

Hence, the strength of the dependence of µ on S* is:

Using this expression, it is possible to determine the relative strength of the dependence of µ on
two different variables (i and j):

 =  =

Under conditions that do not limit phytoplankton growth, the maximum specific growth rate is
the same for the two variables, i.e. µi

m = µj
m. In such a case, the dependence of µ on the two

variables becomes:

This dimensionless approach makes it possible to compare the effects of different variables
on phytoplankton growth, regardless of the dimensions of these variables. Using the above
equation, one could assess, for example, the relative importance of irradiance (µmol photons
m–2s–1, also denoted µEinstein m–2s–1) [NL–2T–1] and of a nutrient [ML–3] for phytoplankton
growth.

The method described here is actually of general interest in ecology, since it shows
how to approach a problem involving several variables with no common measure. In
all cases, it is recommended to transform the dimensional variables into dimensionless
ones. The most obvious transformation, proposed by Platt & Subba Rao (1973),
consists in dividing each variable by a characteristic value, which has the same
dimensions as the variable itself. In the case of the Michaelis-Menten equation, the
characteristic value is Ks, which has the same dimensions as S. This elegant and
efficient approach is also used in parametric statistics, where variables are transformed
through division by their standard deviations. For this and other transformations, see
Section 1.5. The approach which consists in dividing an ecologically interesting
variable by another variable with the same dimensions, so as to create a dimensionless
variable, is known as “scaling” (e.g. in Schneider, 1994). Scaling analysis has been
used, for example, in coral reef studies (Hatcher and Firth, 1985; Hatcher et al., 1987).

The following example illustrates some basic characteristics of dimensional
analysis. It also stresses a major weakness of the method, of which ecologists should
be aware. 

µ S*( )
µmS*

1 S*+( )
---------------------=

dµ S*( )
dS*

-------------------
S*d
d µmS*

1 S*+
--------------

 
 
  µm

1 S*+( ) 2
------------------------= =

ξ i j( , )
dµ S*

i( ) dS*
i⁄

dµ S*
j( ) dS*

j⁄
---------------------------------

µm
i

µ j
m

---------
1 S*

j+( ) 2

1 S*
i+( ) 2

------------------------

ξ i j( , ) 1 S*
j+( ) 2 1 S*

i+( ) 2⁄=

Character-
istic value
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Ecological application  3.2d

The study discussed here (Kierstead & Slobodkin, 1953) did not use dimensional analysis, but it
provides material to which the method may usefully be applied. The authors did develop their
theory for phytoplankton, but it is general enough to be used with several other types of
organisms. Given a water mass containing a growing population, which loses individuals
(e.g. phytoplankton cells) by diffusion and regenerates itself by multiplication, the problem is to
define the minimum size of the water mass below which the growth of the population is no
longer possible.

The problem is simplified by assuming that: (1) the diffusion (D) of organisms remains
constant within the water mass, but is very large outside where the population cannot maintain
itself, and (2) the water mass is one-dimensional (long and narrow), so that the concentration (c)
of organisms is a function of the position (x) along the axis of the water mass. The equation
describing the growth of the population is thus:

 = 

where K is the growth rate. On the right-hand side of the equation, the first term accounts for
diffusion, while the second represents linear growth. A complicated algebraic solution led the
authors to define a critical length (Lc) for the water mass, under which the population would
decrease and above which it could increase:

It must be noted that this equation is analogous to that of the critical mass in a nuclear reactor.
Associated with this critical length is a characteristic time (t) of the process, after which the
critical length Lc becomes operative:

The above results are those given in the paper of Kierstead and Slobodkin. The same
problem is now approached by means of dimensional analysis, which will allow one to compare
the dimensional solution of Platt (1981) to the algebraic solution of Kierstead and Slobodkin. In
order to approach the question from a dimensional point of view, the dimensions of variables in
the problem must first be specified:

x: [L] K: [T–1]

t: [T] D: [L2T–1]

The only dimensions that are not immediately evident are those of D, but these can easily be
found using the principle of dimensional homogeneity of theoretical equations.

The equation of Kierstead & Slobodkin involves three variables (c, t, x) and two constants
(D, K). According to the general method developed in the previous ecological application, the
variables are first transformed to dimensionless forms, through division by suitable
characteristic values. Dimensionless variables C, T and X are defined using characteristic
values ,  and :

C = c/ T = t/ X = x/

hence c = C t = T x = X

t∂
∂c

D
x2

2

∂
∂ c

Kc+

Lc π D K⁄=

t Lc
2 8π2D( )⁄=

c* t* x*

c* t* x*

c* t* x*
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Substitution of these values in the equation gives:

 = 

The next step is to make all terms in the equation dimensionless, by multiplying each one by 
and dividing it by D, after eliminating from all terms the common constant :

 = 

The resulting equation thus contains three dimensionless variables (C, T and X) and two
dimensionless products (in brackets).

Since the dimensions of the two products are [1], these may be transformed to isolate the
characteristic values and :

since  = [1], it follows that [ ] = 

since   = [1], it follows that  =  and thus [ ] = 

Using these relationships, the following proportionalities are obtained:

 and 

Dimensional analysis thus easily led to the same results as those obtained by Kierstead and
Slobodkin (1953), reported above, except for the constant factors π and 8π2. This same example
will be reconsidered in the next section (Ecological application 3.3a), where the two
dimensionless products will be calculated directly.

The above example illustrates the fact that dimensional analysis cannot generate
dimensionless constants, which is a limit of the method that must be kept in mind.
Thus, in order to take advantage of the power of dimensional analysis, one must give
up some precision. It is obvious that such a simple method as dimensional analysis
cannot produce the same detailed results as complex algebraic developments. As
mentioned above (Section 3.0), dimensional analysis deals with general forms of
equations. Yet, starting from simple concepts, one can progress quite far into complex
problems, but the final solution is only partial. As noted by Langhaar (1951): “The
generality of the method is both its strength and its weakness. With little effort, a
partial solution to nearly any problem is obtained. On the other hand, a complete
solution is not obtained.”
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Ecological application  3.2e

It often happens that ecologists must synthesize published data on a given subject, either as a
starting point for new research, or to resolve a problem using existing knowledge, or else as a
basis for a new theoretical perspective. This is nowadays more necessary than ever, because of
the explosion of ecological information. However, such syntheses are confronted to a real
difficulty, which is the fact that available data are often very diversified, and must thus be unified
before being used. Paloheimo & Dickie (1965) met this problem when they synthesized the
mass of information available in the literature on the growth of fish as a function of food intake.
As in the previous application, the authors did not themselves use dimensional analysis in their
work. The dimensional solution discussed here is modified from Platt (1981).

The metabolism of fish may be described using the following relationship:

where T is the rate of oxygen consumption, α specifies the level of metabolic expenditure per
unit time, W is the mass of the fish, and γ specifies the rate of change of metabolism with body
mass. Growth is expressed as a function of food ration (R), by means of the following equation:

which shows that growth efficiency decreases by a constant fraction e–b for each unit increase in
the amount of food consumed per unit time. The value of R at maximum growth is determined,
as usual, by setting the partial derivative equal to 0:

Growth is thus maximum when bR = 1.

The basic equation for the energy budget (eq. 3.1) is:

so that

Replacing, in this last equation, dW/dt by its expression in the second equation, above, and
isolating R, one obtains:

Then, replacing T by its expression in the first equation leads to:

which is a general equation for energy budgets. This equation may be used to calculate, for any
fish of mass W, the ration R required to maintain a given metabolic level. Furthermore, with an
increase in ration, the term [1 – e–(a + bR)] tends towards 1, which indicates that the metabolism
then approaches R. In other words, growth decreases at high values of R.

T αW
γ

=

td
dW

R e a bR+( )–[ ]=

R∂
∂

td
dW

 
 

1 bR–( ) e a bR+( )– 0= =

td
dW

R T–=

T R
td

dW
–=

T R 1 e a br+( )––[ ]=

αWγ R 1 e a br+( )––[ ]=
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Values for coefficient b and food intake found in the literature are quite variable. It was
shown above that the product bR determines growth. Paloheimo & Dickie therefore suggested to
standardize the relationship between growth and ration in terms of bR.

Since growth is maximum when bR = 1, the ration can be brought to a common measure by
expressing it in units of 1/b. On this new scale, the ration (r) is defined as:

r = bR

When growth is maximum, bR = 1, so that R = 1/b. Replacing, in the general equation for the
energy budget, R by 1/b (and bR by 1) yields:

so that

from which it is concluded that the mass should be expressed in units of (1/αb)1/γ, in order to
bring data from the literature to a common measure. On this new scale, the mass (w) is defined
as:

w = (αb)1/γ W

so that

Using the scaled ration (r) and mass (w), the general equation for energy budgets may be
rewritten as: 

and finally

In this last equation, the use of r and w brings to a common measure the highly variable values
of R and W, which are available in the literature for different species or for different groups
within a given fish species.

These same results could have been obtained much more easily using dimensional analysis.
As with all problems of the kind, it is essential, first of all, to identify the dimensions of variables
involved in the problem. The first two equations are used to identify the dimensions of all
variables in the study:

T = αWγ 

[MT–1] = [M(1–γ)T–1] [Mγ]

 = 

 = 

The dimensions of α, which were not immediately obvious, are determined using the principle
of dimensional homogeneity (i.e. same dimensions on the two sides of the equation). The

αWγ 1 b⁄ 1 e a 1+( )––[ ]=

W
1 e a 1+( )––

αb
-----------------------------

1 γ⁄
=

wγ

b
------ αWγ T= =

wγ

b
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r
b
--- 1 e a r+( )––[ ]=
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dimensions of a and b are also found by applying the principle of dimensional homogeneity,
taking into account the fact that an exponent is by definition dimensionless.

The problem is then to define characteristic values (or, more appropriately, scale factors) so
as to obtain dimensionless ration (r), mass (w), and time (τ). Obviously, these scale factors must
contain the two dimensional parameters of the above equations, α and b.

Because the product bR is dimensionless, the scale factor r for ration is:

r = bR

The cases of w and τ require the calculation of unknown exponents. These are easily found by
dimensional analysis. In order to do so, unknown exponents y and z are assigned to α and b, and
these unknowns are solved using the principle of dimensional homogeneity:

Calculation of w:

[w] = [1] = [α]y [b]z [W]

[W]–1 = [α]y [b]z

[M–1T0] = [M(1–γ) T–1]y [M–1T]z = [My(1–γ)–z T–y +z]

so that y(1 – γ) – z = –1 

and –y + z = 0

hence y = 1/γ = z

Consequently, the scale factor w for the mass is:

w = (αb)l/γW

Calculation of τ:

[τ] = [1] = [α]y [b]z [t]

[t]–1 = [α]y [b]z

[M0T–1] = [My(1–γ)–z T–y +z]

so that y(1 – γ) – z = 0

and –y + z = –1

hence y = 1/γ and z = 1/γ – 1

It follows that the scale factor τ for time is:

τ = α1/γ b(1/γ – 1)t

τ = [(αb)l/γ/b]t

These scale factors can be used to compare highly diversified data. Ration is then expressed
in units of (1/b), mass in units of (αb)–1/γ, and time in units of b/(αb)–1/γ. With this approach, it is
possible to conduct generalized studies on the food intake and growth of fish as a function of
time.

Other applications of dimensionless products in ecology are found, for example, in
Tranter & Smith (1968), Rubenstein & Koehl (1977), and Okubo (1987). The first
application analyses the performance of plankton nets, the second explores the
mechanisms of filter feeding by aquatic organisms, and the third examines various
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aspects of biofluid mechanics, including a general relationship between the Reynolds
number (Re) and the sizes and swimming speeds of aquatic organisms from bacteria to
whales. Platt (1981) provides other examples of application of dimensional analysis in
the field of biological oceanography.

Ecological applications 3.2d and 3.2e showed that dimensional analysis may be a
powerful tool in ecology. They do, however, leave potential users somewhat uncertain
as to how personally apply this approach to new problems. The next section outlines a
general method for solving problems of dimensional analysis, which will lead to more
straightforward use of the method. It will be shown that it is not even necessary to
know the basic equations pertaining to a problem, provided that all the pertinent
variables are identified. The above last two examples will then be reconsidered, as
applications of the systematic calculation of dimensionless products.

3.3 The complete set of dimensionless products

As shown in the previous section, the resolution of problems using dimensional
analysis involves two distinct steps: (1) the identification of variables pertinent to the
phenomenon under study — these are derived from fundamental principles, for
example of ecological nature — and (2) the computation of a complete set of
dimensionless products. When the number of variables involved is small, complete
sets of dimensionless products can be formed quite easily, as seen above. However, as
the number of variables increases, this soon becomes unwieldy, so that one must
proceed to a systematic calculation of the complete set of dimensionless products.

The physical example of the drag on smooth spheres (Section 3.2) will first be used
to illustrate the principles of the calculation. The problem involved five variables (F, V,
L, ρ, and η; see eq. 3.2), whose dimensions are written here in a dimensional matrix:

F η ρ L V

(3.9)

It must be kept in mind that the numbers in matrix 3.9 (i.e. dimensions) are
exponents. Dimensionless products are products of powers of variables in the matrix
(columns). In each product, the exponents given to the variables must be such that the
result is dimensionless.

M

L

T

1 1 1   0 0

1 1– 3– 1 1

2– 1– 0 0 1–
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In other words, the systematic calculation of dimensionless products consists in
finding exponents x1, x2, x3, x4 and x5 for variables F, η, ρ, L, and V, such that a product
Π, of the general form

be dimensionless. Taking into account the respective dimensions of the five variables,
the general dimensions of Π are:

The exponents of dimensions [M], [L], and [T] carry exactly the same information as
the dimensional matrix (eq. 3.9). These exponents could therefore have been written
directly, using matrix notation:

(3.10)

where the dimensional matrix is on the left-hand side.

Since the products Π are dimensionless, the exponent of each dimension [M], [L],
and [T], respectively, must be zero. In follows that: 

xl + x2 + x3 = 0

x1 – x2 – 3x3 + x4 + x5 = 0

–2xl – x2 – x5 = 0

or, in matrix notation:

 = 0 (3.11)

Π Fx1ηx2ρx3Lx4V x5=

Π MLT 2–[ ] x1 ML 1– T 1–[ ] x2 ML 3–[ ] x3 L[ ] x4 LT 1–[ ] x5=

Π M x1 x2 x3+ +( ) L x1 x2– 3x3– x4 x5+ +( ) T 2– x1 x2– x5–( )[ ]=

1 1 1   0 0

1 1– 3– 1 1

2– 1– 0 0 1–

x1

x2

x3

x4

x5

1 1 1   0 0

1 1– 3– 1 1

2– 1– 0 0 1–

x1

x2

x3

x4

x5
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Calculation of dimensionless products Π is thus achieved by simultaneously
solving three equations. However, the above system of equations is indeterminate,
since there are only three equations for five unknowns. Arbitrary values must thus be
assigned to two of the unknowns, for example x1 and x2. The general solution is then
given in terms of x1 and x2. The steps are as follows:

(1) Matrix equation 3.11 is rewritten so as to isolate x1 and x2 together with the
associated first two columns of the matrix. This operation simply involves transferring
all terms in x3, x4 and x5 to the right-hand side of the equation:

= – (3.12)

It must be noted that there is now a negative sign in front of the matrix on the right-
hand side. Matrix eq. 3.12 is identical to the algebraic form:

x1 + x2 = –x3

x1 – x2 = 3x3 – x4 – x5

–2x1 – x 2 = x5

(2) One then solves for the unknowns x3, x4 and x5, using the general method of
matrix inversion (Section 2.8):

(3.13)

1 1

1 1–

2– 1–

x1

x2

1   0 0

3– 1 1

0 0 1–

x3

x4

x5

1   0 0

3– 1 1

0 1 1–

1–

–
1 1

1 1–

2– 1–

x1

x2

x3

x4

x5

=

1   0 0

3 1 1

0 1 1–

–
1 1

1 1–

2– 1–

x1

x2

x3

x4

x5

=

1– 1–

2– 1–

2– 1–

x1

x2

x3

x4

x5

=
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(3) The simplest approach consists in successively assigning the value 1 to each
unknown while setting the other equal to 0, i.e. (1) x1 = 1 and x2  = 0 and (2) x1 = 0 and
x2 = 1. It follows that the first two columns of the solution matrix are a unit matrix:

F η ρ L V

x1 x2 x3 x4 x5

(3.14)

The dimensionless products of the complete set are therefore (as in Section 3.2):

 , the Newton number (Ne; eq. 3.4)

 , the inverse of the Reynolds number (1/Re; eq. 3.3)

This example clearly shows that the systematic calculation of dimensionless
products rests solely on recognizing the variables involved in the problem under
consideration, without necessarily knowing the corresponding equations. The above
solution, which was developed using a simple example, can be applied to all problems
of dimensional analysis, since it has the following characteristics:

(1) Because the left-hand part of the solution matrix is an identity matrix (I), the
dimensionless products Π are independent of one another. Indeed, given I, each
product contains one variable which is not included in any other product, i.e. the first
variable is only in Π1, the second is only in Π2, and so on.

(2) When partitioning the dimensional matrix, one must isolate on the right-hand
side a matrix that can be inverted, i.e. a matrix whose determinant is non-zero.

(3) The rank (r) of the dimensional matrix is the order of the largest non-zero
determinant it contains (Section 2.7). Therefore, it is always possible to isolate, on the
right-hand side, a matrix of order r whose determinant is non-zero. The order r may
however be lower than the number of rows in the dimensional matrix, as seen later.

(4) The number of dimensionless products in the complete set is equal to the
number of variables isolated on the left-hand side of the dimensional matrix. It follows
from item (3) that the number of dimensionless products is equal to the total number of
variables minus the rank of the dimensional matrix. In the preceding example, the
number of dimensionless products in the complete set was equal to the number of
variables (5) minus the rank of the dimensional matrix (3), i.e. 5 – 3 = 2 dimensionless
products.

Π1

Π2

1   0 1– 2– 2–

0 1 1– 1– 1–

Π1
F

ρL2V2
----------------=

Π2
η

ρLV
-----------=
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(5) When the last r columns of a dimensional matrix of order r do not lead to a non-
zero determinant, the columns of the matrix must be rearranged so as to obtain a non-
zero determinant.

Numerical example 1. An example will help understand the consequences of the above five
characteristics on the general method for the systematic calculation of the complete set of
dimensionless products. The dimensional matrix is as follows:

V1 V2 V3 V4 V5 V6 V7

The rank (r) of this matrix is 3 (numerical example in Section 2.7), so that the number of
dimensionless products of the complete set is equal to 7 – 3 = 4. However, the determinant of
the r = 3 last columns is zero:

 = 0

Calculating the complete set of dimensionless products thus requires a reorganization of the
dimensional matrix by rearranging, for example, the columns as follows:

V1 V5 V7 V4 V2 V6 V3

The solution then follows from the general method described above:

M

L

T

2   0   1   0 1– 2– 3

1 2 2 0 0 1 1–

0 1 2 3 1 1– 0

1– 2– 3

0 1 1–

1 1– 0

M

L

T

2 1– 3   0   0 2– 1

1 0 1– 0 2 1   2

0 1 0 3 1 1– 2

x2

x6

x3

0 2–   1

2 1 2

1 1– 2

1–

–
2 1– 3   0

1 0 1– 0

0 1 0 3

x1

x5

x7

x4

=

x2

x6

x3

4 3 5–

2– 1– 2

3– 2– 4

–
2 1– 3   0

1 0 1– 0

0 1 0 3

x1

x5

x7

x4

=
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V1 V5 V7 V4 V2 V6 V3

Numerical example 2. This example illustrates the case of a singular dimensional matrix,
i.e a dimensional matrix whose rank is less than its number of rows. This matrix has already
been considered in Section 2.7:

V1 V2 V3 V4

It was shown (Section 2.7) that the rank of this matrix is r = 2, so that it is not possible to find a
combination of three columns that could be inverted. The matrix is thus singular (Section 2.8).

The solution consists in making the number of rows equal to the rank. This is done by
eliminating any one row of the dimensional matrix, since the matrix has only two independent
rows (Section 2.7). The number of dimensionless products in the complete set is thus equal to
4 – 2 = 2.

V1 V2 V3 V4

It is possible to eliminate fractional exponents by multiplying each row of the solution matrix by
its lowest common denominator:

x2

x6

x3

11– 9 9– 15

5 4– 5 6–

8 7– 7 12–

x1

x5

x7

x4

=

Π1

Π2

Π3

Π4

1    0    0    0 11– 5 8

0 1 0 0 9 4– 7–

0 0 1 0 9– 5 7

0 0 0 1 15 6– 12–

M

L

T

2 1 3   4

1– 6 3– 0

1 20 3– 8

M

L

2   1 3   4

1– 6 3– 0

Π1

Π2

 1  0 1 3⁄– 1 4⁄–

 0  1  2 7 4⁄–

Π1

Π2

12   0 4– 3–

0 4 8 7–
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Identical results would have been obtained if any other row of the dimensional matrix had been
eliminated instead of row 3, since each of the three rows is a linear combination of the other two.
This can easily be checked as exercise.

There now remains to discuss how to choose the ordering of variables in a
dimensional matrix. This order determines the complete set of dimensionless products
obtained from the calculation. The rules are as follows:

(1) The dependent variable is, of necessity, in the first column of the dimensional
matrix, since it must be present in only one Π (the first dimensionless product is thus
called the dependent dimensionless variable). As a consequence, this first variable can
be expressed as a function of all the others, which is the goal here. For example, in
eq. 3.9, the drag F is in the first column of the dimensional matrix since it is clearly the
dependent variable.

(2) The other variables are then arranged in decreasing order, based on their
potential for experimental variation. Indeed, a maximum amount of information will
result from experimentation if those variables with a wide range of experimental
variability occur in a single Π.

(3) The initial ordering of variables must obviously be changed when the last r
columns of the dimensional matrix have a zero determinant. However, one must then
still comply as well as possible with the first two rules.

Two ecological applications, already discussed in Section 3.2, will now be treated
using the systematic calculation of complete sets of dimensionless products.

Ecological application  3.3a

The first example reconsiders Ecological application 3.2d, devoted to the model of Kierstead &
Slobodkin (1953). This model provided equations for the critical size of a growing
phytoplankton patch and the characteristic time after which this critical size becomes operative.

The dimensional matrix of variables involved in the problem includes: length x, time t,
diffusion of cells D, and growth rate k. The dependent variables being x and t, they are in the first
two columns of the dimensional matrix:

x t D k

The rank of the dimensional matrix being 2, the number of dimensionless products is 4 – 2 = 2.
These two products are found using the general method for calculating the complete set:

L

T
1   0 2 0

0 1 1– 1–

2 0

1– 1–

1–
 1  0

 0  0
– 1– 2⁄  0

1 2⁄  1
=
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x t D k x t D k

Π1 =  and Π2 = 

These two dimensionless products describe, as in Ecological application 3.2d, the critical length
x and the characteristic time t as:

 and 

Ecological application  3.3b

A second example provides an easy solution to the problem which confronted Paloheimo &
Dickie (1965), concerning the synthesis of data on the growth of fish with respect to food intake.
The question was discussed at length in Ecological application 3.2e, which led to three scale
factors, for food ration, mass, and time. These scale factors were used by the authors to compare
diversified data from the ecological literature.

The solution is found directly, here, using the dimensional matrix of the six variables
involved in the problem: time t, mass W, food ration R, rate of oxygen consumption T, rate of
metabolic expenditure α, and coefficient b. The variables to be isolated being t, W, and R, they
are in the first three columns of the dimensional matrix:

t W R T α b

Since the rank of the dimensional matrix is r = 2, the number of dimensionless products is
6 – 2 = 4. The four products are calculated by the method of the complete set:

t W R T α b

Π1 = tα1/γb(1/γ–1) = [(αb)1/γ/b]t

Π2 = Wα1/γb1/γ = (αb)1/γW

Π3 = Rb = bR

Π4 = Tb = bT

Π1

Π2

 1  0 1 2⁄– 1 2⁄
0 1 0 1

2   0 1–   1

0 1 0 1
=

kx
2

D⁄ tk

x D k⁄∝ t 1 k⁄ x2 D⁄∝ ∝

M

T
 0  1 1 1 1 γ–( ) 1–

1 0 1– 1– 1    – 1

1 γ–( ) 1–

1    – 1
–

1–
0   1 1 1

1 0 1– 1–

1 γ⁄ 1 γ⁄  0  0

1 γ⁄( ) 1–[ ] 1 γ⁄  1  1
=

Π1

Π2

Π3

Π4

 1  0  0  0  1 γ⁄ 1 γ⁄( ) 1–

 0  1  0  0  1 γ⁄ 1 γ⁄
 0  0  1  0  0 1

 0  0  0  1  0 1
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The first three dimensionless products define the three scale factors already found in Ecological
application 3.2e, i.e. II1 for time, II2 for mass, and II3 for ration. II4 defines a scale factor for
oxygen consumption.

Direct calculations of complete sets of dimensionless products thus led to the same
results as obtained before, but operations here were more straightforward than in
Section 3.2.

It should not be necessary, after these examples, to dwell on the advantage of
systematically calculating the complete set of dimensionless products. In addition to
providing a rapid and elegant solution to problems of dimensional analysis, the above
matrix method sets researchers on the right track when tackling a problem to be
investigated using the dimensional tool. The success of a dimensional study depends
on: (1) adequate knowledge of the problem under study, so that all the pertinent
variables are considered; and (2) clear ideas about which variables are functions of the
others. It should be noted, as explained above, that the systematic calculation of the
complete set of dimensionless products does not require prior knowledge of the
fundamental equations. These, however, may be necessary to derive the dimensions of
some complex variables. Dimensional analysis may be a powerful tool, provided that
the ecological bases of the problem under consideration are thoroughly understood and
that the objectives of the research are clearly stated.

3.4 Scale factors and models

Given the increased awareness in society for environmental problems, major
engineering projects cannot be undertaken, in most countries, before their
environmental impacts have been assessed. As a consequence, an increasing number of
ecologists now work within multidisciplinary teams of consultants. At the planning
stage, one of the most powerful tools available to engineers, although very costly, is
the small-scale model. Tests performed with such models help choose the most
appropriate engineering solution. Actually, ecologists may encounter two types of
model, i.e. mathematical and physical. Mathematical models have already been
discussed in the Foreword. Physical models are small-scale replica of the natural
environment, to which changes can be made that reproduce those planned for the real
situation. Tests with physical models are generally more costly to perform than
mathematical simulations, so that the latter are becoming increasingly more popular
than the former. Physical models are often based on dimensional analysis, so that it is
this type of model which is considered here. It should be noted that physical models
may originate from the empirical approach of engineers, which is distinct from the
dimensional approach. 

In order to communicate with engineers conducting tests on small-scale models,
ecologists must have some basic understanding of the principles governing model
testing. In some cases, ecologists may even play a role in the study, when it is possible

Physical
model
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to integrate in the model variables of ecological significance (e.g. in a model of a
harbour or estuary, such variables as salinity, sediment transport, etc.). Since small-
scale models are based in part on dimensional analysis, their basic theory is thus
relatively easy to understand. The actual testing, however, requires the specific
knowledge and experience of model engineers. In addition to their possible
involvement in applications of modelling to environmental impact studies, ecologists
may at times use small-scale models to resolve problems of their own (e.g. studying
the interactions between benthic organisms and sediment in a hydraulic flume). These
various aspects are introduced here very briefly.

In the vocabulary of physical modelling, the full-size system is called prototype
and the small-size replica is called model. A model may be geometrically similar to the
prototype, or it may be distorted. In the case of geometric similarity, all parts of the
model have the same shapes as the corresponding parts of the prototype. In certain
cases, geometric similarity would lead to errors, so that one must use a distorted
model. In such models, one or several scales may be distorted. For example, a
geometrically similar model of an estuary could result in some excessively small water
depths. With such depths, the flow in the model could become subject to surface
tension, which would clearly be incorrect with respect to the real flow. In the model,
the depth must therefore be relatively greater than in nature, hence a distorted model.

The physical example of the drag on smooth spheres, already discussed in
Sections 3.2 and 3.3, is now used to introduce the basic principles of scaling and
small-scale modelling. Equation 3.7 describes the drag (F) acting on a smooth sphere
of diameter D, immersed in a stream with velocity V of a fluid with density ρ and
dynamic viscosity η:

F = ρV2D2ƒ(Re) (3.7)

F = ρV2D2ƒ

In order to experimentally determine the drag, under convenient laboratory
conditions (e.g. wind tunnel or hydraulic flume), it may be appropriate to use a
geometrically similar model of the sphere. Quantities pertaining to the model are
assigned prime indices. If the curve of the drag coefficient for smooth spheres was not
known (Fig. 3.1), the calculation of F would require that the value of the unknown
function f be the same for both the model and the prototype. In order to do so, the test
engineer should make sure that the Reynolds numbers for the two systems are equal:

Re = Re

(3.15)

Prototype

Geometric
similarity

VDρ
η

------------ 
 

′

VDρ
η

------------
V′D′ρ′

η′
-----------------=
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A scale factor is defined as the ratio of the size of the model to that of the
prototype. Scale factors are therefore dimensionless numbers. The scale factors (K)
corresponding to eq. 3.15 are:

KV = V /V KD = D /D Kρ = ρ /ρ Kη = η /η

These scales are used to rewrite eq. 3.15 as:

KVKDKρ = Kη (3.16)

Because Re = Re , the scale factor of the unknown function f is equal to unity:

Kƒ(Re) = 1 (3.17)

The ratio between the drag measured for the model and the real drag on the prototype
is computed by combining eq. 3.7 with the above scale factors:

Because of eq. 3.17, it follows that:

(3.18)

Equation 3.16 is used to find the value of KF:

KV KD Kρ = Kη (3.16)

is squared

from which

and, given eq. 3.18 (3.19)

Equation 3.19 leads to the following practical conclusions, for determining the
drag on smooth spheres in the laboratory:

(1) If the model is tested using the same fluid as for the prototype, the drag
measured during the test is the same as for the prototype. This follows from the fact
that, if Kη = 1 and Kρ = 1 (same fluid), KF is equal to unity (eq. 3.19), hence F  = F.

(2) If testing is conducted using the same fluid as for the prototype, conservation of
Re requires that the velocity for the model be greater than for the prototype (i.e. the
model is smaller than the prototype). This follows from the fact that, when Kη  = 1 and
Kρ = 1 (same fluid), KVKD = 1 (eq. 3.16); consequently any decrease in KD must be
compensated by a proportional increase in KV.

Scale factor

′ ′ ′ ′

′

KF KρKV
2 KD

2 Kƒ Re( )=

KF KρKV
2 KD

2=

KV
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2 Kρ
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(3) When it is more convenient to use different fluids, testing may be conducted
while conserving Re. It has already been shown (Section 3.2) that, for example, going
from a large-size prototype, in air, to a model 6 times smaller, in water, allows a
reduction of the flow speed during the test by a factor of 3. The drag measured for the
model would not, however, be necessarily the same as that of the prototype, since that
force varies as a function of the ratio between the squares of the dynamic viscosities
( ) and the densities (Kρ) of the two fluids (eq. 3.19). Knowing this ratio (KF), it is
easy to derive the drag for the model (F) from that measured during the test (F ) since:

F = F /KF

In more complex cases, it is sometimes necessary to simultaneously conserve two
or more dimensionless products, which are incompatible. In such a situation, where a
choice must be made between contradictory constraints, it rests on the test engineer to
justify discrepancies in similarity and to apply theoretical corrections to compensate
for them. Hence modelling, although derived from scientific concepts, becomes an art
based on the experience of the researcher.

A general concept of similarity follows from the previous discussion. In a
Cartesian space, the model and the prototype are described by coordinates (x  y  z )
and (x y z), respectively. Correspondence between the two systems is established by
means of scale factors (K), which define homologous times as well as homologous
points in the three dimensions of space:

t = Ktt     x  = Kxx      y  = Kyy z = Kzz

The time scale factor (Kt) would be used, for example, in the case of a flow where ∆ t
and ∆t are the time intervals during which two homologous particles go through
homologous parts of their respective trajectories. It would then be defined as

Kt = ∆ t/∆t

Geometric similarity is defined as: Kx = Ky = Kz = KL. In distorted models, a single
length scale is usually modified, so that Kx = Ky ≠ Kz. The ratio Kz/Kx is the distortion
factor. It would be possible, using this same approach, to define characteristics of
kinematic similarity, for similar motions, and of dynamic similarity, for systems
subjected to homologous forces.

There are several types of similarity in addition to the geometric, dynamic and
kinematic similarities. These include the hydrodynamic, transport, and thermal
similarities. Readers interested in applications of dimensional analysis to the theory of
biological similarity may refer to the review of Günther (1975), where the various
types of physical similarity are briefly described.

Kη
2

′

′

Similarity
′ ′ ′

′ ′ ′ ′

′
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Chapter

4 Multidimensional
quantitative data

4.0 Multidimensional statistics

Basic statistics are now part of the curriculum of most ecologists. However, statistical
techniques based on such simple distributions as the unidimensional normal
distribution are not really appropriate for analysing complex ecological data sets.
Nevertheless, researchers sometimes perform series of simple analyses on the various
descriptors in the data set, expecting to obtain results that are pertinent to the problem
under study. This type of approach is incorrect because it does not take into account
the covariance among descriptors; see also Box 1.3, where the statistical problem
created by multiple testing is explained. In addition, such an approach only extracts
minimum information from data which have often been collected at great cost and it
usually generates a mass of results from which it is difficult to draw much sense.
Finally, in studies involving species assemblages, it is usually more interesting to
describe the variability of the structure of the assemblage as a whole (i.e. mensurative
variation observed through space or time, or manipulative variation resulting from
experimental manipulation; Hurlbert, 1984) than to look at each species independently.

Fortunately, methods derived from multidimensional statistics, which are used
throughout this book, are designed for analysing complex data sets. These methods
take into account the co-varying nature of ecological data and they can evidence the
structures that underlie the data set. The present chapter discusses the basic theory and
characteristics of multidimensional data analysis. Mathematics are kept to a minimum,
so that readers can easily reach a high level of understanding. In addition, many
approaches of practical interest are discussed, including several types of linear
correlation, with their statistical tests. It must be noted that this chapter is limited to
linear statistics.

A number of excellent textbooks deal with detailed aspects of multidimensional
statistics. For example, formal presentations of the subject are found in Muirhead
(1982) and Anderson (1984). Researchers less interested in mathematical theory may
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refer to Cooley & Lohnes (1971), Tatsuoka (1971), Press (1972), Graybill (1983), or
Morrison (1990). These books describe a number of useful methods, among which the
multidimensional analysis of variance. However, none of these books specifically
deals with ecological data.

Several authors use the term multivariate as abbreviation for multidimensional
variate (the latter term meaning random variable; Section 1.0). As an adjective,
multivariate is interchangeable with multidimensional.

4.1 Multidimensional variables and dispersion matrix

As stated in Section 1.0, the present textbook deals with the analysis of random
variables. Ecological data matrices have n rows and p columns (Section 2.1). Each
row is a vector (Section 2.4) which is, statistically speaking, one realization of a
p-dimensional random variable. In other words, for example, when p species are
observed at n sampling sites, the species are the p dimensions of a random variable
“species” and each site is one realization of this p-dimensional random variable.

To illustrate this concept, four sampling units with two species (Table 4.1) are
plotted in a two-dimensional Euclidean space (Fig. 4.1). Vector “site 1” is the doublet
(5,1). It is plotted in the same two-dimensional space as the three other vectors “site i”.
Each row of the data matrix is a two-dimensional vector, which is one realization of
the (bivariate) random variable “species”. The random variable “species” is said to be
two-dimensional because the sampling units (objects) contain two species
(descriptors), the two dimensions being species 1 and 2, respectively.

Multidi-
mensional
Multivariate

Table 4.1 Numerical example of two species observed at four sampling sites. Figure 4.1 shows that each
row of the data matrix may be construed as a vector, as defined in Section 2.4.

Sampling sites Species (descriptors)

(objects) 1 2 (p = 2)

1 5 1

2 3 2

3 8 3

4 6 4

(n = 4)
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As the number of descriptors (e.g. species) increases, the number of dimensions of
the random variable “species” similarly increases, so that more axes are necessary to
construct the space in which the objects are plotted. Thus, the p descriptors make up a
p-dimensional random variable and the n vectors of observations are as many
realizations of the p-dimensional vector “descriptors”. The present chapter does not
deal with samples of observations, which result from field or laboratory work (for a
brief discussion on sampling, see Section 1.1), but it focuses instead on populations,
which are investigated by means of the samples.

Before approaching the multidimensional normal distribution, it is necessary to
define a p-dimensional random variable “descriptors”:

Y = [y1, y2, …yj, …yp] (4.1)

Each element yj of multidimensional variable Y is a unidimensional random variable.
Every descriptor yj is observed in each of the n vectors “object”, each sampling unit i
providing one realization of the p-dimensional random variable (Fig. 4.2).

In ecology, the structure of dependence among descriptors is, in many instances,
the matter being investigated. Researchers who study multidimensional data sets using
univariate statistics assume that the p unidimensional yj variables in Y are independent
of one another (this refers to the third meaning of independence in Box 1.1). This is the
reason why univariate statistical methods are inappropriate with most ecological data
and why methods that take into account the dependence among descriptors must be
used when analysing sets of multidimensional data. Only these methods will generate
proper results when there is dependence among descriptors; it is never acceptable to
replace a multidimensional analysis by a series of unidimensional treatments.

Figure 4.1 Four realizations (sampling sites from Table 4.1) of the two-dimensional random variable
“species” are plotted in a two-dimensional Euclidean space.
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Several multivariate statistical models require, however, “that successive sample
observation vectors from the multidimensional population have been drawn in such a
way that they can be construed as realizations of independent random vectors”
(Morrison, 1990, p. 80). It has been shown in Section 1.1 that this assumption of
independence among observations is most often not realistic in ecology. This major
discrepancy between statistical theory and ecological data does not really matter as
long as statistical models are used for descriptive purposes only, as it is generally the
case in the present book. However, as explained in Section 1.1, this problem prevents
utilisation of the usual tests of significance and thus statistical inference
(i.e. generalization of statistics derived from the samples to parameters of
populations), unless corrected tests are used.

To sum up: (1) the p descriptors in ecological data matrices are the p dimensions of
a random variable “descriptors”; (2) the p descriptors are not independent of one
another; methods of multidimensional analysis are designed to evidence the structure
of dependence among descriptors; (3) each of the n sampling units is a realization of
the p-dimensional vector “descriptors”; (4) most methods assume that the n sampling
units are realizations of independent random vectors. The latter condition is generally
not met in ecology, with consequences that were mentioned in the previous paragraph
and discussed in Section 1.1. For the various meanings of the term independence in
statistics, see Box 1.1.

Figure 4.2 Structure of ecological data. Given their nature, ecological descriptors are dependent of one
another. In statistics, the objects are often assumed to be independent observations, but this is
generally not the case in ecology (Section 1.1)
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The dependence among quantitative variables yj brings up the concept of
covariance. Covariance is the extension, to two descriptors, of the concept of variance.
Variance is a measure of the dispersion of a random variable yj around its mean; it is
denoted . Covariance measures the joint dispersion of two random variables yj and
yk around their means; it is denoted σjk. The dispersion matrix of Y, called matrix ΣΣΣΣ
(sigma), contains the variances and covariances of the p descriptors (Fig. 4.2):

ΣΣΣΣ = (4.2)

Matrix ΣΣΣΣ is an association matrix [descriptors × descriptors] (Section 2.2). The
elements σjk of matrix ΣΣΣΣ are the covariances between all pairs of the p random
variables. The matrix is symmetric because the covariance of yj and yk is identical to
that of yk and yj. A diagonal element of ΣΣΣΣ is the covariance of a descriptor yj with
itself, which is the variance of yj, so that 

The estimate of the variance of yj, denoted , is computed on the centred variable
. Variable yj is centred by subtracting the mean  from each of the n

observations yij. As a result, the mean of the centred variable is zero. The variance 
is computed using the well-known formula:

(4.3)

where the sum of squares of the centred data, for descriptor j, is divided by the number
of objects minus one (n –1). The summation is over the n observations of descriptor j.
In the same way, the estimate (sjk) of the covariance (σjk) of yj and yk is computed on
the centred variables and , using the formula of a “bivariate
variance”. The covariance sjk is calculated as:

(4.4)

When k = j, eq. 4.4 is identical to eq. 4.3. The positive square root of the variance is
called the standard deviation (σj). Its estimate sj is thus:

(4.5)
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Contrary to the variance, which is always positive, the covariance may take any
positive or negative value. In order to understand the meaning of the covariance, let us
imagine that the object points are plotted in a scatter diagram, where the axes are
descriptors yj and yk. The data are then centred by drawing new axes, whose origin is
at the centroid  of the cloud of points (see Section 1.5, linear transformation:
translation). A positive covariance means that most of the points are in quadrants I and
III of the centred plot, where the centred values and  have the
same signs. This corresponds to a positive relationship between the two descriptors.
The converse is true for a negative covariance, for which most of the points are in
quadrants II and IV of the centred plot. In the case of a null or small covariance, the
points are equally distributed among the four quadrants of the centred plot.

Greek and roman letters are both used here. The properties of a population (called
parameters) are denoted by greek letters. Their estimates (called statistics), which are
computed from samples, are symbolized by the corresponding roman letters. Along
with these conventions are also those pertaining to matrix notation (Section 2.1). This
is summarized in Table 4.2.

The dispersion matrix* S can be computed directly, by multiplying the matrix of centred
data with its transpose :

S = (4.6)

* Some authors, including Lefebvre (1980), call  a dispersion matrix and S a
covariance matrix. For these authors, a covariance matrix is then a dispersion matrix divided by
(n – 1).

y j yk( , )

yij y j–( ) yik yk–( )

Parameter
Statistic

Table 4.2 Symbols used to identify (population) parameters and (sample) statistics.

Parameter Statistic

Matrix or vector Elements Matrix or vector Elements

Covariance ΣΣΣΣ (sigma) σjk (sigma) S sjk

Correlation ΡΡΡΡ (rho) ρjk (rho) R rjk

Mean µµµµ (mu) µj (mu)

The symbols for matrix ΣΣΣΣ and summation ∑ should not be confused.

y y j

y y–[ ] ' y y–[ ]

y y–[ ] y y–[ ] '

1
n 1–
------------ y y–[ ] ' y y–[ ]
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This elegant and rapid procedure emphasizes once again the advantage of matrix algebra in
numerical ecology, where the data sets are generally large.

Numerical example. Four species (p = 4) were observed at five stations (n = 5). The
estimated population parameters, for the species, are the means ( ), the variances ( ), and the
covariances (sjk). The original and centred data are shown in Table 4.3. Because sjk = skj, the
dispersion matrix is symmetric. The mean of each centred variable is zero.

In this numerical example, the covariance between species 2 and the other three species is
zero. This does not necessarily mean that species 2 is independent of the other three, but simply
that the joint linear dispersion of species 2 with any one of the other three is zero. This example
will be considered again in Section 4.2.

The square root of the determinant of the dispersion matrix  is known as the
generalized variance. It is also equal to the square root of the product of the
eigenvalues of S.

Any dispersion matrix S is positive semidefinite (Table 2.2). Indeed, the quadratic
form of S (p × p) with any real and non-null vector t (of size p) is:
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This expression may be expanded using eq. 4.6:

 = 

 =  = a scalar

This scalar is the variance of the variable resulting from the product Yt. Since variance
can only be positive or null, it follows that:

≥ 0

so that S is positive semidefinite. Therefore, all the eigenvalues of S are positive or
null. This property of dispersion matrices is fundamental in numerical ecology, since it
allows one to partition the variance among real principal axes (Sections 4.4 and 9.1).

Ideally, matrix S (of order p) should be estimated from a number of observations n
larger than the number of descriptors p. When n ≤ p, the rank of matrix S is n – 1 and,
consequently, only n – 1 of its rows or columns are independent, so that p – (n – 1) null
eigenvalues are produced. The only practical consequence of n ≤ p is thus the presence
of null eigenvalues in the principal component solution (Section 9.1). The first few
eigenvalues of S, which are generally those of interest to ecologists, are not affected.

Table 4.3 Numerical example. Calculation of centred data and covariances.

Sites Original data Centred data

Means

n – 1 = 4

1

2

3

4

5

Y

1 5 2 6

2 2 1 8

3 1 3 4

4 2 5 0

5 5 4 2

= y y–[ ]

2– 2 1–  2 

1– 1– 2–  4 

0 2– 0  0 

1 1– 2 4 –

2 2 1 2 –

=

y' 3 3 3 4= y y–[ ] '   0   0   0   0 =

S
1

n 1–
------------ y y–[ ] ' y y–[ ]

  2.5 0   2 4–

  0 3.5   0   0

  2 0   2.5 5–

4– 0 5– 10

= =

t'St t'
1

n 1–
------------ y y–[ ] ' y y–[ ] t

t'St
1

n 1–
------------ y y–( ) t[ ] ' y y–( ) t[ ]

t'St
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4.2 Correlation matrix

The previous section has shown that the covariance provides information on the
orientation of the cloud of data points in the space defined by the descriptors. That
statistic, however, does not provide any information on the intensity of the relationship
between variables yj and yk. Indeed, the covariance may increase or decrease without
changing the relationship between yj and yk. For example, in Fig. 4.3, the two clouds
of points correspond to different covariances (factor two in size, and thus in
covariance), but the relationship between variables is identical (same shape). Since the
covariance depends on the dispersion of points around the mean of each variable
(i.e. their variances), determining the intensity of the relationship between variables
requires to control for the variances.

The covariance measures the joint dispersion of two random variables around their
means. The correlation is defined as a measure of the dependence between two
random variables yj and yk. As already explained in Section 1.5, it often happens that
matrices of ecological data contain descriptors with no common scale, e.g. when some
species are more abundant than others by orders of magnitude, or when the descriptors
have different physical dimensions (Chapter 3). Calculating covariances on such
variables obviously does not make sense, except if the descriptors are first reduced to a
common scale. The procedure consists in centring all descriptors on a zero mean and
reducing them to unit standard deviation (eq. 1.12). By using standardized descriptors,
it is possible to calculate meaningful covariances, because the new variables have the
same scale (i.e. unit standard deviation) and are dimensionless (see Chapter 3).

Figure 4.3 Several observations (objects), with descriptors yj and yk, were made under two different sets of
conditions (A and B). The two ellipses delineate clouds of point-objects corresponding to A and
B, respectively. The covariance of yj and yk is twice as large for B as it is for A (larger ellipse),
but the correlation between the two descriptors is the same in these two cases (i.e. the ellipses
have the same shape).

B

A

yk

yj
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The covariance of two standardized descriptors is called the linear correlation
(Pearson r). This statistic has been proposed by the statistician Karl Pearson, so that it
is named after him. Given two standardized descriptors (eq. 1.12)

calculating their covariance (eq. 4.4) gives

, the coefficient of linear correlation between yj and yk.

The developed formula is:

(4.7)

As in the case of dispersion (Section 4.1), it is possible to construct the correlation
matrix of Y, i.e. the ΡΡΡΡ (rho) matrix, whose elements are the coefficients of linear
correlation ρjk:

ΡΡΡΡ = (4.8)

Linear
correlation

zij

yij y j–

s j
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yik yk–

sk

-----------------=

s z j zk( , )
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n
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s z j zk( , )
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yij y j–

s j

----------------
 
 
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1 ρ12 . . . ρ1 p

ρ21 1 . . . ρ2 p

. . . . . .

. . . . . .
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ρp1 ρp2 . . . 1
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The correlation matrix is the dispersion matrix of the standardized variables. This
concept will play a fundamental role in principal component analysis (Section 9.1). It
should be noted that the diagonal elements of ΡΡΡΡ are all equal to 1. This is because the
comparison of any descriptor with itself is a case of complete dependence, which leads
to a correlation ρj = 1. When yj and yk are independent of each other, ρj = 0. However,
a correlation equal to zero does not necessarily imply that yj and yk are independent of
each other, as shown by the following numerical example. A correlation ρjk = –1 is
indicative of a complete, but inverse dependence of the two variables.

Numerical example. Using the values in Table 4.3, matrix R can easily be computed. Each
element rjk combines, according to eq. 4.7, the covariance sjk with variances sj and sk:

Matrix R is symmetric, as was matrix S. The correlation r = –1 between species 3 and 4 means
that these species are fully, but inversely, dependent (Fig. 4.4a). Correlations r = 0.8 and –0.8 are
interpreted as indications of strong dependence between species 1 and 3 (direct) and species 1
and 4 (inverse), respectively. The zero correlation between species 2 and the other three species
must be interpreted with caution. Figure 4.4d clearly shows that species 1 and 2 are completely
dependent of each other since they are related by equation y2  = 1 + (3 – y1)2; the zero
correlation is, in this case, a consequence of the linear model underlying statistic r. Therefore,
only those correlations which are significantly different from zero should be considered, since a
null correlation has no unique interpretation.

Since the correlation matrix is the dispersion matrix of standardized variables, it is
possible, as in the case of matrix S (eq. 4.6), to compute R directly by multiplying the
matrix of standardized data with its transpose:

(4.9)

Table 4.4 shows how to calculate correlations rjk of the example as in Table 4.3, using
this time the standardized data. The mean of each standardized variable is zero and its
standard deviation is equal to unity. The dispersion matrix of Z is identical to the
correlation matrix of Y, which was calculated above using the covariances and
variances.

R

1   0  0.8 0.8–

0   1  0 0 

0.8   0  1 1 –

0.8–   0  1 – 1 

=

R
1

n 1–
------------ y y–( ) sy⁄ ' y y–( ) sy⁄

1
n 1–
------------Z'Z= =
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Matrices ΣΣΣΣ and ΡΡΡΡ are related to each other by the diagonal matrix of standard
deviations of Y. This new matrix, which is specifically designed for relating ΣΣΣΣ and ΡΡΡΡ, is
symbolized by D(σ) and its inverse by D(σ)–1:

    and

Using these two matrices, one can write:

ΡΡΡΡ = ΣΣΣΣ = ΣΣΣΣ (4.10)

Figure 4.4 Numerical example. Relationships between species (a) 3 and 4, (b) 2 and 4, (c) 2 and 3, and
(d) 2 and 1.
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where D(σ2) is the matrix of the diagonal elements of ΣΣΣΣ . It follows from eq. 4.10 that:

ΣΣΣΣ = D(σ) ΡΡΡΡ D(σ) (4.11)

The theory underlying tests of significance is discussed in Section 1.2. In the case
of r, inference about the statistical population is in most instances through the null
hypothesis H0: ρ = 0. H0 may also state that ρ has some other value than zero, which
would be derived from ecological hypotheses. The general formula for testing
correlation coefficients is given in Section 4.5 (eq. 4.39). The Pearson correlation
coefficient rjk involves two descriptors (i.e. yj and yk, hence m = 2 when testing a
coefficient of simple linear correlation using eq. 4.39), so that ν1 = 2 – 1 = 1 and
ν2 = n – 2 = ν. The general formula then becomes:

(4.12)

where ν = n – 2. Statistic F is tested against Fα[1,ν].

Since the square root of a statistic  is a statistic  when ν1 = 1, r may
also be tested using:

(4.13)

Table 4.4 Numerical example. Calculation of standardized data and correlations.

Sites Original data Standardized data

Means

n – 1 = 4

1

2

3

4

5

Y

1 5 2 6

2 2 1 8

3 1 3 4

4 2 5 0

5 5 4 2

= Z

1.27– 1.07 0.63– 0.63

0.63– 0.53– 1.27– 1.27

   0  1.07– 0  0  

0.63 0.53– 1.27 1.27–

1.27 1.07 0.63 0.63–

=

y' 3 3 3 4= z'     0         0         0         0=

R y( ) S z( ) 1
n 1–
------------Z'Z

1   0  0.8 0.8–

0   1  0 0 

0.8   0  1 1 –

0.8–   0  1 – 1 

= = =

Significance
of r

F ν
r jk

2

1 r jk
2–

---------------=

F ν1 ν2,[ ] t ν ν2=[ ]

t
r jk ν

1 r jk
2–

-------------------=
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The t statistic is tested against the value tα[ν]. In other words, H0 is tested by
comparing the F (or t) statistic to the value found in a table of critical values of F (or t).
Results of tests with eqs. 4.12 and 4.13 are identical. The number of degrees of
freedom is ν = (n – 2) because calculating a correlation coefficient requires prior
estimation of two parameters, i.e. the means of the two populations (eq. 4.7). H0 is
rejected when the probability corresponding to F (or t) is smaller than a predetermined
level of significance (α for a two-tailed test, and α/2 for a one-tailed test; the difference
between the two types of tests is explained in Section 1.2). In principle, this test
requires that the sample of observations be drawn from a population with a bivariate
normal distribution (Section 4.3). Testing for normality and multinormality is
discussed in Section 4.7, and normalizing transformations in Section 1.5. When the
data do not satisfy the condition of normality, t can be tested by randomization, as
shown in Section 1.2.

It is also possible to test the independence of all variables in a data matrix by
considering the set of all correlation coefficients found in matrix R. The null
hypothesis here is that the p(p – 1)/2 coefficients are all equal to zero, H0: R = I (unit
matrix). According to Bartlett (1954), R can be transformed into a X2 (chi-square) test
statistic:

X2 = –[n – (2p + 11)/6] ln (4.14)

where ln  is the natural logarithm of the determinant of R. This statistic is
approximately distributed as χ2 with ν = p(p – 1)/2 degrees of freedom. When the
probability associated with X2 is significantly low, the null hypothesis of complete
independence of the p descriptors is rejected. In principle, this test requires the
observations to be drawn from a population with a multivariate normal distribution
(Section 4.3). If the null hypothesis of independence of all variables is rejected, the
p(p – 1)/2 correlation coefficients in matrix R may be tested individually; see Box 1.3
about multiple testing.

Other correlation coefficients are described in Sections 4.5 and 5.2. Wherever the
coefficient of linear correlation must be distinguished from other coefficients, it is
referred to as Pearson's r. In other instances, r is simply called the coefficient of linear
correlation or correlation coefficient. Table 4.5 summarizes the main properties of this
coefficient.

4.3 Multinormal distribution

In general, the mathematics of the normal distribution are of little concern to ecologists
using unidimensional statistical methods. In the best case, data are normalized
(Section 1.5) before being subjected to tests that are based on parametric hypotheses.
It must be remembered that all parametric tests require the data to follow a specific
distribution, most often the normal distribution. When the data do not obey this

Test of in-
dependence
of variables

R

R
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condition, the results of parametric tests may be invalid. There also exist
nonparametric tests, for which no reference is made to any theoretical distribution of
the population, hence no use of parameters. Another advantage of nonparametric tests
of significance is that they remain valid even for very small sample sizes, as are often
encountered in ecological research. These tests (Chapter 5) are of great interest to
ecologists, who may nevertheless attempt to normalize their data in order to have
access to the powerful toolbox of parametric statistics.

Multidimensional statistics require careful examination of the main characteristics
of the multinormal (or multivariate normal) distribution. Several of the methods
described in the present chapter, and also in Chapters 9, 10 and 11, are founded on
principles derived from the multinormal distribution. This is true even in cases where
no test of significance is performed, which is often the case in numerical ecology
(i.e. descriptive versus inferential statistics, Sections 1.1 and 4.4).

The logic of an approach centred on the multinormal distribution is based upon a
theorem which is undoubtedly one of the most important of statistics. According to the
central limit theorem, when a random variable results from several independent and
additive effects, of which none has a dominant variance, then this variable tends
towards a normal distribution even if the effects are not themselves normally
distributed. Since ecological variables (descriptors) are often influenced by several
independent random factors, the above theorem explains why the normal distribution
is frequently invoked to describe ecological phenomena. This justifies a careful

Table 4.5 Main properties of the coefficient of linear correlation. Some of these properties are discussed in
later sections.

Properties Sections

1. The coefficient of linear correlation measures the intensity of the linear
relationship between two random variables. 4.2

2. The coefficient of linear correlation between two variables can be calculated
 using their respective variances and their covariance. 4.2

3. The correlation matrix is the dispersion matrix of standardized variables. 4.2

4. The square of the coefficient of linear correlation is the coefficient of 
determination. It measures how much of the variance of each variable is

 explained by the other. 10.3

5. The coefficient of linear correlation is a parameter of a multinormal distribution. 4.3

6. The coefficient of linear correlation is the geometric mean of the coefficients
 of linear regression of each variable on the other. 10.3
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examination of the properties of the multinormal distribution, before studying the
methods for analysing multidimensional quantitative data.

The probability density of a normal random variable y is (Laplace-Gauss
equation):

ƒ(y) = (4.15)

where exp […] reads “e to the power […]”, e being the Napierian base
(e = 2.71828…). Calculation of ƒ(y), for a given y, only requires µ and σ. The mean
(µ) and standard deviation (σ) of the theoretical population completely determine the
shape of the probability distribution. This is why they are called the parameters of the
normal distribution. The curve is symmetric on both sides of µ and its exact shape
depends on σ (Fig. 4.5).

The value σ determines the position of the inflexion points along the normal curve.
These points are located on both sides of µ, at a distance σ, whereas µ positions the
curve on the abscissa (y axis). In Fig. 4.5, the surface under each of the two curves is
identical for the same number of σ units on either side of µ. The height of the curve is
the probability density corresponding to the y value; for a continuous function such as
that of the normal distribution, the probability of finding a value between y = a and y =
b (a < b) is given by the surface under the curve between a and b. For example, the
probability of finding a value between µ – 1.96σ and µ + 1.96σ is 0.95.

In view of examining the properties of the multinormal distribution, it is
convenient to first consider the joint probability density of p independent
unidimensional normal variables. For each of these p variables yj, the probability
density is given by eq. 4.15, with mean µj and standard deviation σj:

Normal

1

2πσ
--------------exp  –

1
2
---

y µ–
σ

------------ 
  2

µ - 2σ µ - σ µ µ + σ µ + 2σ µ - 2σ µ - σ µ µ + σ µ + 2σ

σ σ

f (y)

σ = 2

f (y)

σσ

σ = 1

Figure 4.5 Role of the standard deviation σ in the normal distribution function.
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ƒ(yj) = (4.16)

A basic law of probabilities states that the joint probability density of several
independent variables is the product of their individual densities. It follows that the
joint probability density for p independent variables is:

ƒ(y1, y2, …,yp) = ƒ(y1) × ƒ(y2) × … × ƒ(yp)

ƒ(y1, y2, …,yp) = (4.17)

Using the conventions of Table 4.2, one defines the following matrices:

y = 

ΣΣΣΣ = (4.18)

µµµµ = 

where y is the p-dimensional vector of coordinates of the point for which the
probability density (i.e. the ordinate along the p-dimensional normal curve) is sought,
µµµµ is the vector of means, and ΣΣΣΣ is the dispersion matrix among the p independent
variables. The determinant of a diagonal matrix being equal to the product of the
diagonal elements (Section 2.6), it follows that:

ΣΣΣΣ1/2 = (σ1 σ2 …σp)

From definitions (4.18) one may write:

[y – µ] ΣΣΣΣ–1 [y – µ]' = 

Using these relationships, eq. 4.17 is rewritten as:

ƒ(y) =  exp {–(1/2) [y – µ] ΣΣΣΣ–1 [y – µ]'} (4.19)

Do not confuse, here, the summation symbol with matrix ΣΣΣΣ.
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The above equations are for the joint probability density of p independent
unidimensional normal variables yj. It is easy to go from there to the multinormal
distribution, where y is a p-dimensional random variable whose p dimensions are not
independent. In order to do so, one simply replaces the above matrix ΣΣΣΣ by a dispersion
matrix with variances and covariances, i.e. (eq. 4.2):

ΣΣΣΣ = 

Using this dispersion matrix ΣΣΣΣ, eq. 4.19 now describes the probability density ƒ(y) for
a p-dimensional multinormal distribution.

Given eq. 4.11, eq. 4.19 may be rewritten as:

ƒ(y) =  exp {–(1/2) [y – µ] D(σ)–1 ΡΡΡΡ–1 D(σ)–1 [y – µ]'} (4.20)

Replacing, in eq. 4.20, the p-dimensional matrix Y by the p-dimensional standardized
matrix Z (eq. 1.12) gives:

ƒ(z) = exp {–(1/2) Z ΡΡΡΡ–1 Z'} (4.21)

given the fact that [y – µ] D(σ)–1 = Z and, in the case of Z, D(σ) = I.

Equation 4.21 stresses a fundamental point, which was already clear in eq. 4.20:
the correlations ρ are parameters of the multinormal distribution, together with the
means µ and standard deviations σ. This new property of ρ is listed in Table 4.5.

Three sets of parameters are therefore necessary to specify a multidimensional
normal distribution, i.e. the vector of means µµµµ, the diagonal matrix of standard
deviations D(σ), and the correlation matrix ΡΡΡΡ. In the unidimensional normal
distribution (eq. 4.15), µ and σ were the only parameters because there is no
correlation ρ for a single variable.

It is not possible to represent, in a plane, more than three dimensions. Thus, for the
purpose of illustration, only the simplest case of multinormal distribution will be
considered, i.e. the bivariate normal distribution, where:

Multi-
normal

σ11 σ12 . . . σ1 p

σ21 σ22 . . . σ2 p

. . . . . .

. . . . . .

. . . . . .

σp1 σp2 . . . σpp

1
2π( ) p 2⁄ D σ( ) ΡΡΡΡ 1 2⁄-----------------------------------------------------

1
2π( ) p 2⁄ ΡΡΡΡ 1 2⁄-----------------------------------

Bivariate
normal
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µµµµ = D(σ) = ΡΡΡΡ = 

Since D(σ) = σ1σ2 and ΡΡΡΡ = (1 – ρ2) in this case, eq. 4.20 becomes:

ƒ(y1,y2) =  exp{–(1/2) [y – µ] D(1/σ) (1 – ρ2)–1 D(1/σ) [y – µ]'}

=

Figure 4.6 shows bivariate normal distributions, with typical “bell” shapes. The
two examples illustrate the roles of σ1 and σ2. Further examination of the multinormal
mathematics is required to specify the role of ρ.

Neglecting the constant –1/2, the remainder of the exponent in eq. 4.19 is:
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Figure 4.6 Roles of σ1 and σ2 in the bivariate normal distribution.
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When it is made equal to a positive constant (α), this algebraic form specifies the
equation of an ellipsoid in the p-dimensional space:

[y – µ] ΣΣΣΣ–1 [y – µ]' = α (4.22)

A family of such ellipsoids may be generated by varying constant α. All these
ellipsoids have the multidimensional point µµµµ as their common centre.

It is easy to understand the meaning of eq. 4.22 by examining the two-dimensional
case. Without loss of generality, it is convenient to use the standardized variable (z1,z2)
instead of (y1,y2), so that the family of ellipses (i.e. two-dimensional ellipsoids) be
centred on the origin µµµµ = [0 0]. The exponent of the standardized bivariate normal
density is:

This exponent specifies, in two-dimensional space, the equation of a family of ellipses:

 = α

Figure 4.7 illustrates the role played by ρ in determining the general shape of the
family of ellipses. As ρ approaches zero, the shapes of the ellipses tend to become
circular. In contrast, as ρ approaches +1 or –1, the ellipses tend to elongate. The sign of
ρ determines the orientation of the ellipses relative to the axes.

Actually, when ρ = 0 (Fig. 4.8), the equation for the family of ellipses becomes:

or , which is the equation of a circle.

In contrast, when ρ = ±1, the equation becomes:

hence ,

which is the equation of a straight line with a positive or negative slope of 1
(±45° angle).
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Figure 4.7 Concentration ellipses of a standardized bivariate normal distribution. Role of the correlation ρ.
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Figure 4.8 Concentration ellipses of a standardized bivariate normal distribution. Extreme values of
correlation ρ.
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Such a family of ellipses, called concentration ellipses, is comparable to a series of
“contour lines” for the two-dimensional normal distribution (Fig. 4.6). Increasing the
value of α corresponds to moving down along the sides of the distribution. The
concentration ellipses pass through points of equal probabilities around the bivariate
normal distribution. The role of ρ then becomes clear: when ρ = 0, the “bell” of
probability densities is perfectly circular (in overhead view); as ρ increases, the “bell”
of the probability densities flattens out, until it becomes unidimensional when ρ = ±1.
Indeed, when there is a perfect correlation between two dimensions (i.e. ρ = ±1), a
single dimension, at angle of 45° with respect to the two original variables, is sufficient
to specify the distribution of probability densities.

When the number of dimensions is p = 3, the family of concentration ellipses
becomes a family of concentration ellipsoids and, when p > 3, a family of
hyperellipsoids. The meaning of these ellipsoids and hyperellipsoids is the same as in
the two-dimensional case, although it is not possible to illustrate them.

4.4 Principal axes

Various aspects of the multinormal distribution have been examined in the previous
section. One of these, namely the concentration ellipses (Fig. 4.7), opens a topic of
great importance for ecologists. In the present section, a method will be developed for
determining the principal axes of the concentration hyperellipsoids; for simplicity, the
term ellipsoid will be used in the following discussion. The first principal axis is the
line that passes through the greatest dimension of the ellipsoid. The next principal axes
go through the next greatest dimensions, smaller and smaller, of the p-dimensional
ellipsoid. Hence, p consecutive principal axes are determined. These principal axes
will be used, in Section 9.1, as the basis for principal component analysis.

In the two-dimensional case, the first principal axis corresponds to the major axis
of the concentration ellipse and the second principal axis to the minor axis. These two
axes are perpendicular to each other. Similarly in the p-dimensional case, there are p
consecutive axes, which are all perpendicular to one another in the hyperspace.

The first principal axis goes through the p-dimensional centre µµµµ = [µ1 µ2 … µp] of the
ellipsoid, and it crosses the surface of the ellipsoid at a point called here y = [y1 y2 … yp]. The
values of µµµµ and y specify a vector in the p-dimensional space (Section 2.4). The length of the
axis, from µµµµ to the surface of the ellipsoid, is calculated using Pythagoras’ formula:

[(y1 – µ1)2 + (y2 – µ2)2 + … + (yp – µp)2]1/2 = ([y – µ][y – µ]')1/2

Actually, this is only half the length of the axis, which extends equally on both sides of µµµµ. The
coordinates of the first principal axis must be such as to maximize the length of the axis. This
can be achieved by maximizing the square of the half-length:

[y – µ][y – µ]'
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Calculating coordinates corresponding to the axis with the greatest length is subjected to the
constraint that the end point y be on the surface of the ellipsoid. This constraint is made explicit
using eq. 4.22 which specifies the ellipsoid:

[y – µ] ΣΣΣΣ–1 [y – µ]' = α

[y – µ] ΣΣΣΣ–1 [y – µ]' – α = 0

Lagrangian multipliers (λ) are used to compute the maximum and minimum values of a
function of several variables when the relationships among the variables are known. In the
present case, the above two equations, for the square of the half-length of the first principal axis
and for the constraint, are combined into a single function:

ƒ(y) =[y – µ][y – µ]' – λ {[y – µ] ΣΣΣΣ–1 [y – µ]' – α}

The values that maximize this function are found by the usual method of setting the equation's
partial derivative equal to 0:

ƒ(y) = 0

[y – µ][y – µ]' – λ {[y – µ] ΣΣΣΣ–1 [y – µ]' – α} = 0

Scalar λ is called a Lagrangian multiplier. It is important to remember here that y is a
p-dimensional vector (y1, y2, …,yp), which means that the above equation is successively
derived with respect to y1, y2, … and yp. Therefore, derivation with respect to y represents in fact
a series of p partial derivatives (∂yj). Consequently the results of the derivation may be rewritten
as a (column) vector with p elements:

2 [y – µ] –2 λ ΣΣΣΣ–1 [y – µ] = 0

One may factor out [y – µ] and eliminate the constant 2:

(I – λ ΣΣΣΣ–1) [y – µ] = 0

Multiplying both sides of the equation by ΣΣΣΣ gives:

(ΣΣΣΣ – λI) [y – µ] = 0 (4.23)

The general equation defining eigenvectors (eq. 2.22) is (A – λI) u = 0. Replacing, in this
equation, A by ΣΣΣΣ and u by [y – µ] gives the above equation. This leads to the conclusion that the
vector of the coordinates which specifies the first principal axis is one of the eigenvectors [y – µ]
of matrix ΣΣΣΣ.

In order to find out which of the p eigenvectors of ΣΣΣΣ is the vector of coordinates of the first
principal axis, come back to the equation resulting from the partial derivation (above) and
transfer the second term to the right, after eliminating the constant 2:

[y – µ] = λ ΣΣΣΣ–1 [y – µ]

Principal
axis

y∂
∂

y∂
∂

y∂
∂

Lagrangian
multiplier
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The two sides are then premultiplied by [y – µ]':

[y – µ]' [y – µ] = λ [y – µ]' ΣΣΣΣ–1 [y – µ]

Since [y – µ]' ΣΣΣΣ–1 [y – µ] = α (eq. 4.22), it follows that:

[y – µ]' [y – µ] = λα

The term on the left-hand side of the equation is the square of the half-length of the first
principal axis (see above). Thus, for a given value α, the length of the first principal axis is
maximized by taking the largest possible value for λ or, in other words, the largest eigenvalue λ
of matrix ΣΣΣΣ. The vector of coordinates of the first principal axis is therefore the eigenvector
corresponding to the largest eigenvalue of ΣΣΣΣ.

Numerical example. The above equations are illustrated using the 2-dimensional data
matrix from Section 9.1 (principal component analysis). The covariance matrix is:

ΣΣΣΣ =

There are two eigenvalues, λ1 = 9 and λ2 = 5, computed using eq. 2.23. To normalize the
eigenvectors (written as column vectors), one arbitrarily decides that [y – µ]' [y – µ] = λα = 1 for
each of them; in other words, α1 = 1/9 and α2 = 1/5. The normalized eigenvectors provide the
coordinates of the point where each of the two principal axes crosses the surface of the ellipsoid
(vectors y1 and y2):

y1 = u1 =  and y2 = u2 = 

Given means µ1 = µ2 = 0, it can be verified, for both y1 and y2, that [y – µ]' [y – µ] = 1. This
example will be further developed in Chapter 9.

In the above demonstration, yj was defined as the point (vector) where principal axis j
crosses the surface of the ellipsoid. Since vectors yj are eigenvectors, they will be denoted uj
from now on, as in Sections 2.9 and 2.10, whereas yj will only be used to represent descriptors.

To find the vectors of coordinates specifying the p successive principal axes,

• rank the p eigenvalues of matrix ΣΣΣΣ in decreasing order:

λ1 > λ2 > … > λp ≥ 0

Note that the eigenvalues of a matrix ΣΣΣΣ are all positive (end of Section 4.1); 

• associate the p eigenvectors to their corresponding eigenvalues. The orientation of
the p successive principal axes are given by the eigenvectors, which are associated
with the p eigenvalues ranked in decreasing order. The eigenvectors of a covariance
matrix ΣΣΣΣ are orthogonal to one another because ΣΣΣΣ is symmetric (Section 2.9). In the

Eigenvalue

8.2 1.6

1.6 5.8

0.8944

0.4472

0.4472–

0.8944
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case of multiplicity (Section 2.10, Fourth property), the orthogonal axes may be
rotated to an infinity of “principal” directions, i.e. two equal λ’s result in a circle and
several determine a hypersphere (multidimensional sphere) where no orientation
prevails.

The next step consists in calculating a new p-dimensional variable along which the
dispersion ellipses are positioned with respect to the principal axes instead of the
original Cartesian system. This new variable (v) is related to the original variables
(yj; Section 4.1) through the following transformation:

v = [y – µ] U (4.24)

where each of the p columns in matrix U is the normalized eigenvector uk,
corresponding to the k-th principal axis. Because vectors uk are both orthogonal and
normalized, matrix U is said to be orthonormal (Section 2.8). This transformation
results in shifting the origin of the system of axes to the p-dimensional point µµµµ,
followed by a solid rotation of the translated axes into the principal axes (Fig. 4. 9),
which forms matrix V.

The dispersion matrix of V is:

ΣΣΣΣ(V) = [y – µ]' [y – µ] U = U'ΣΣΣΣU

where ΣΣΣΣ is the dispersion matrix of the original variables y. So, the variance of the k-th
dimension (i.e. the k-th principal axis) is:

s2(vk) = ΣΣΣΣuk

Since, by definition, ΣΣΣΣuk = λkuk (eq. 2.21) and uk = 1, it follows that:

s2(vk) = ΣΣΣΣuk = λkuk = λk uk = λk (1) = λk (4.25)

with λk ≥ 0 in all cases since ΣΣΣΣ is positive definite. The covariance of two vectors is
zero because the product of two orthogonal vectors uk and uh is zero (Section 2.8):

s(vk,vh) = ΣΣΣΣuh = λhuh = λh uh = λk (0) = 0 (4.26)

The last two points are of utmost importance, since they are the basis for using the
principal axes (and thus principal component analysis; Section 9.1) in ecology: (1) the
variance of a principal axis is equal to the eigenvalue associated with that axis
(eq. 4.25) and (2) the p dimensions of the transformed variable are linearly
independent, since their covariances are zero (eq. 4.26).

A last point concerns the meaning of the p elements ujk of each eigenvector uk. The
values of these elements determine the rotation of the system of axes, so that they
correspond to angles. Figure 4.10 illustrates, for the two-dimensional case, how the

1
n 1–( )

------------------ V'V( ) 1
n 1–( )

------------------U'=

u'k

u'k

u'k u'k u'k

u'k u'k u'k
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elements of the eigenvectors are related to the rotation angles. Using the trigonometric
functions for right-angled triangles, the angular relationships in Fig. 4.10 may be
rewritten as cosines:

cos α11 = length u11 / length of vector (u11, u21) = u11

cos α21 = length u21 / length of vector (u11, u21) = u21

cos α12 = length u12 / length of vector (u12, u22) = u12

cos α22 = length u22 / length of vector (u12, u22) = u22

Figure 4.9 Result of the transformation v = [y – µ] U (eq. 4.24).

y1

y2

(µ1, µ2)

y1

y2

(µ1, µ2)

Rotation of the translated axes
into principal axes

y1

y2

(µ1, µ2)

Original system: concentration ellipses Translation of the origin

[y1 – µ1]

[y2 – µ2]

v 1
 =

 [y
 – 

µ] u 1

v 2
 =

 [y
 – 

µ] u 2
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because the lengths of the normalized vectors (u11, u21) and (u12, u22) are 1
(Section 2.4). Eigenvector uk determines the direction of the k-th main axis; it follows
from the above trigonometric relationships that elements ujk of normalized
eigenvectors are direction cosines. Each direction cosine specifies the angle between
an original Cartesian axis j and a principal axis k.

The two-dimensional case, illustrated in Figs. 4.9 and 4.10, is the simplest to compute. The
standardized dispersion matrix is of the general form:

ΡΡΡΡ =

When ρ is positive, the eigenvalues of ΡΡΡΡ are λ1 = (1 + ρ) and λ2 = (1 – ρ). The normalized
eigenvectors are:

(u12,u22)

u22 u21

u12 u11

(u11,u21)

α11

α21α22

α12

Figure 4.10 Geometrical meaning of the principal axes.

Direction
cosine

1 ρ
ρ 1

u1
1 2⁄

1 2⁄
= u2

1– 2⁄

1 2⁄
=
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Therefore, the first principal axis goes through the point ( , ), so that it cuts the first
and third quadrants at a 45° angle. Its direction cosines are cos α11 =  and
cos α12 =  which indeed specifies a 45° angle with respect to the two axes in the first
quadrant. The second principal axis goes through ( , ), so that it cuts the second
and fourth quadrants at 45°. Its direction cosines are cos α21 =  and cos α22 = ,
which determines a 45°angle with respect to the two axes in the second quadrant.

When ρ is negative, the eigenvalues of ΡΡΡΡ are λ1 = (1 – ρ) and λ2 = (1 + ρ). Consequently the
first principal axis goes through ( , ) in the second quadrant, while the second
principal axis with coordinates ( , ) cuts the first quadrant. A value ρ = 0 entails a
case of multiplicity, since λ1 = λ2 = 1. This results in an infinite number of “principal” axes,
i.e. any two perpendicular diameters would fit the concentration ellipse, which is here a circle
(Fig. 4.8).

These concepts, so far quite abstract, will find direct applications to ecology in
Section 9.1, dealing with principal component analysis.

4.5 Multiple and partial correlations

Section 4.2 considered, in a multidimensional context, the correlation between two
variables, or two dimensions of a p-dimensional random variable. However, the
multidimensional nature of ecological data offers other approaches to correlation.
They are examined in the present section.

The following developments will require that the correlation matrix R be
partitioned into four submatrices. Indices assigned to the submatrices follow the
general convention on matrix indices (Section 2.1):

(4.27)

There are two possible approaches to linear correlation involving several variables
or several dimensions of a multidimensional variable. The first one, which is called
multiple (linear) correlation, measures the intensity of the relationship between a
response variable and a linear combination of several explanatory variables. The
second approach, called partial (linear) correlation, measures the intensity of the
linear relationship between two variables, while taking into account their relationships
with other variables.

1 — Multiple linear correlation

Multiple correlation applies to cases where there is one response variable and several
explanatory variables. This situation is further studied in Section 10.3, within the
context of multiple regression. The coefficient of multiple determination (R2;

1 2⁄ 1 2⁄
1 2⁄

1 2⁄
1– 2⁄ 1 2⁄

1– 2⁄ 1 2⁄

1– 2⁄ 1 2⁄
1 2⁄ 1 2⁄

R
R11 R12

R21 R22

=
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eq. 10.19) measures the fraction of the variance of yk which is explained by a linear
combination of yl, y2, …, yj, … and yp:

(4.28)

where p is here the number of explanatory variables. It is calculated in a way which is
analogous to the coefficient of determination between two variables (eq. 10.8).
Coefficients b are identical to those of multiple linear regression (Section 10.3). A
coefficient  = 0.73, for example, would mean that the linear relationships of
variables yl, y2, …, yj, … and yp with yk explain 73% of the variability of yk around its
mean. The multiple correlation coefficient (R) is the square root of the coefficient of
multiple determination:

(4.29)

In order to calculate R2 using matrix algebra, a correlation matrix R is written for
variables yk and {yl, y2, …, yj, …, yp}, with yk in the first position. Partitioning this
matrix following eq. 4.27 gives, for multiple correlation:

(4.30)

where  is a vector containing the correlation coefficients rk1, rk2, …, rkp.
Using r12, r21 and R22 as defined in eq. 4.30, R2 is calculated as:

(4.31)

Equation 4.31 is expanded using eq. 2.17:

Rk .12…j…p
2

b1s1k b2s2k … b js jk … bpspk+ + + + +

sk
2

----------------------------------------------------------------------------------------------=

Rk .12…j…p
2

Rk .12…j…p Rk .12…j…p
2=

R

   1 rk1 rk2 . . . rkp

r1k 1 r12 . . . r1 p

r2k r21 1 . . . r2 p

. . . . . . .

. . . . . . .

. . . . . . .

rpk rp1 rp2 . . . 1

1 r12

r21 R22

= =

r12 r'21=

R2 r12R22
1– r21 r'21R22

1– r21= =

R2 r'21R22
1– r21 r'21

1
R22

-----------

cof r11( ) cof r21( ) . . . cof rp1( )

cof r12( ) cof r22( ) . . . cof rp2( )

. . . . . .

. . . . . .

. . . . . .

cof r1 p( ) cof r2 p( ) . . . cof rpp( )

r21= =



160 Multidimensional quantitative data

(4.32)

As an exercise, it is easy to check that

[adjugate matrix of R22] r21

The coefficient of multiple correlation is calculated from eqs. 4.31 or 4.32:

 =      or      = (4.33)

A third way of calculating R2 is given below (eq. 4.38), at the end of Subsection 2 on
partial correlation. 

When two or more variables in matrix R22 are perfectly correlated (i.e. r = 1 or
r = –1), the rank of R22 is smaller than its order (Section 2.7) so that |R22| = 0.
Calculation of R thus requires the elimination of redundant variables from matrix R.

Numerical example. A simple example, with three variables (y1, y2 and y3), illustrates the
above equations. Matrix R is:

The coefficient of multiple determination  is first calculated using eq. 4.31:

Equation 4.32 leads to an identical result:

R2 1
R22

----------- R22 R–( ) 1
R

R22

-----------–= =

R22 R– r'21=

Multiple
correlation

Rk .12…j…p r'21R22
1– r21 Rk .12…j…p 1

R

R22

-----------–

R

1 0.4 0.8

0.4 1 0.5

0.8 0.5 1

=

R1.23
2

R1.23
2

0.4 0.8
1 0.5

0.5 1

1–
0.4

0.8
=

R1.23
2

0.4 0.8
1.33 0.67–

0.67– 1.33

0.4

0.8
=

R1.23
2 0.64=

R1.23
2 1

1 0.4 0.8

0.4 1 0.5

0.8 0.5 1

1 0.5

0.5 1

-----------------------------------–=
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The linear combination of variables y2 and y3 explains 64% of the variance of y1. The multiple
correlation coefficient is R1.23 = 0.8.

2 — Partial correlation

The second approach to correlation, in the multidimensional context, applies to
situations where the relationship between two variables is influenced by their
relationships with other variables. The partial correlation coefficient is related to
partial multiple regression (Subsection 10.3.5). It measures what the correlation
between yj and yk would be if other variables y1, y2, … and yp, hypothesized to
influence both yj and yk, were held constant at their means. The partial correlation
between variables yj and yk, when controlling for their relationships with y1, y2, … and
yp, is written rjk.12… p.

In order to calculate the partial correlation coefficients, the set of variables is
divided into two subsets. The first one contains the variables between which the partial
correlation is to be computed while controlling for the influence of the variables in the
second subset. The second thus contains the variables whose influence is being taken
into account. Matrix R is partitioned as follows (eq. 4.27):

R11 (of order 2 × 2 for partial correlations) and R22 contain the correlations among
variables in the first and the second subsets, respectively, whereas R12 and R21 both
contain the correlations between variables from the two subsets; . 

The number of variables in the second subset determines the order of the partial
correlation coefficient. This order is the number of variables whose effects are
eliminated from the correlation between yj and yk. For example r12.345 (third-order
coefficient) means that the correlation between variables y1 and y2 is calculated while
controlling for the linear effects of y3, y4, and y5.

The computation consists in subtracting from R11 (matrix of correlations among
variables in the first subset) a second matrix containing the coefficients of multiple
determination of the variables in the second subset on those in the first subset. These
coefficients measure the fraction of the variance and covariance of the variables in the
first subset which is explained by linear combinations of variables in the second
subset. They are computed by replacing vector r21 by submatrix R2l in eq. 4.31:

R1.23
2 1

0.27
0.75
----------– 0.64= =

R
R11 R12

R21 R22

=

R12 R'21=

R12R22
1– R21 R'21R22

1– R21=
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The subtraction gives the matrix of conditional correlations:

(4.34)

It can be shown that the maximum likelihood estimate (Rl.2) of the partial correlation
matrix Pl.2 is:

(4.35)

where D(r1.2) is the matrix of diagonal elements of the conditional correlation matrix
(eq. 4.34).

Computation for the three-dimensional case provides the algebraic formula for the
partial correlation coefficients of order 1:

Coefficients pertaining to variables of the first subset (y1 and y2) are in the first two
rows and columns. Using eq. 4.35 gives:

R11 R12R22
1– R21–

R1.2 D r1.2( ) 1 2⁄– R11 R12R22
1– R21–( ) D r1.2( ) 1 2⁄–=

R

1 r12 r13

r21 1 r23

r31 r32 1

=

R12R22
1– R21

r13

r23

1
1–

r31 r32

r13
2 r13r23

r13r23 r23
2

= =

R11 R12R22
1– R21–

1 r12

r21 1

r13
2 r13r23

r13r23 r23
2

–
1 r13

2–( ) r12 r13r23–( )

r12 r13r23–( ) 1 r23
2–( )

= =

R1.2

1 1 r13
2–⁄ 0

0 1 1 r23
2–⁄

1 r13
2–( ) r12 r13r23–( )

r12 r13r23–( ) 1 r23
2–( )

1 1 r13
2–⁄ 0

0 1 1 r23
2–⁄

=

R1.2

1
r12 r13r23–

1 r13
2– 1 r23

2–
----------------------------------------

r12 r13r23–

1 r13
2– 1 r23

2–
---------------------------------------- 1

1 r12.3

r12.3 1
= =
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The last matrix equation provides the formula for first-order partial correlation
coefficients:

(4.36)

The general formula, for coefficients of order p, is:

(4.37)

When there are four variables, it is possible to calculate 12 first-order and 6 second-
order partial correlation coefficients. Computing a second-order coefficient
necessitates the calculation of 3 first-order coefficients. For example:

It is thus possible, as the number of variables increases, to calculate higher-order
coefficients. Computing a coefficient of a given order requires the calculation of three
coefficients of the previous order, each of these requiring itself the calculation of
coefficients of the previous order, and so on depending on the number of variables
involved. Obviously, such a cascade of calculations is advantageously replaced by the
direct matrix approach of eq. 4.35.

Numerical example. Partial correlations are calculated on the simple example already used
for multiple correlation. Matrix R is:

Two subsets are formed, the first one containing descriptors y1 and y2 (between which the partial
correlation is computed) and the second one y3 (whose influence on r12 is controlled for).
Computations follow eqs. 4.34 and 4.35:

r12.3

r12 r13r23–

1 r13
2– 1 r23

2–
----------------------------------------=

r jk .1…p

r jk .1… p 1–( ) r jp .1… p 1–( ) rkp .1… p 1–( )–

1 r jp .1… p 1–( )
2– 1 rkp .1… p 1–( )

2–
--------------------------------------------------------------------------------------------=

r12.34

r12.3 r14.3r24.3–

1 r14.3
2– 1 r24.3

2–
----------------------------------------------- r12.43

r12.4 r13.4r23.4–

1 r13.4
2– 1 r23.4

2–
-----------------------------------------------= = =

R

1 0.4 0.8

0.4 1 0.5

0.8 0.5 1

=

S1.2
1 0.4

0.4 1

0.8

0.5
1

1–
0.8 0.5–=

S1.2
1 0.4

0.4 1

0.64 0.40

0.40 0.25
– 0.36 0

0 0.75
= =

R1.2
1.67 0

0 1.15

0.36 0
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0 1
= =
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Thus, the partial correlation r12.3 = 0, which was unexpected given that r12 = 0.4. It is concluded
that, when their (linear) relationships with y3 are taken into account, descriptors y1 and y2 are
(linearly) independent. Similar calculations for the other two pairs of descriptors give:
r13.2 = 0.76 and r23.1 = 0.33. The meaning of these correlation coefficients will be further
discussed in Subsections 4 and 5.

There is obviously a relationship between the coefficients of multiple and partial
correlation. The equation linking the two types of coefficients can easily be derived; in
the multiple correlation equation, p is the number of variables other than yk :

when p = 1, the fraction of the variance of yk which is not explained by y1 is the
complement of the coefficient of determination ( ); this
expression is sometimes called the coefficient of nondetermination;

when p = 2, the fraction of the variance of yk which is not explained by y2, without
taking into account the influence of y1, is ( ), so that the fraction
of the variance of yk which is not explained by y1 and y2 is

.

This leads to a general expression for the fraction of the variance of yk which is not
explained by y1, y2, …, yj, … and yp:

The fraction of the variance of yk which is explained by y1, y2, …, yj, … and yp,
i.e. the coefficient of multiple determination (square of the multiple correlation
coefficient), is thus:

(4.38)

Numerical example. The same example as above is used to illustrate the calculation of the
multiple correlation coefficient, using eq. 4.38:

which is identical to the result obtained above using either eq. 4.31 or eq. 4.32.

Tables 4.6 and 4.7 summarize the main conclusions relative to the coefficients of
multiple and partial correlation, respectively.

3 — Tests of statistical significance

The test of significance of the linear correlation coefficient r is discussed in Section 4.2
(eqs. 4.12-4.14). The null hypothesis H0 is usually that the correlation coefficient is

Nondeter-
mination

1 rk1
2–

1 rk2.1
2–

1 rk1
2–( ) 1 rk2.1

2–( )

1 rk1
2–( ) 1 rk2.1

2–( ) … 1 rkj .12…
2–( ) … 1 rkp .12…j… p 1–( )

2–( )

Multiple de-
termination

Rk .12…p
2 1 1 rk1

2–( ) 1 rk2.1
2–( ) … 1 rkp .12…p 1–

2–( )[ ]–=

R1.23
2 1 1 r12

2–( ) 1 r13.2
2–( )[ ]–=

R1.23
2 1 1 0.4( ) 2–[ ] 1 0.76( ) 2–[ ]– 0.64= =
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equal to zero (i.e. independence of the descriptors), but it could also be that the
coefficient has some particular value other than zero. The general formula for testing
correlation coefficients is:

(4.39)

with ν1 = m – 1 and ν2 = n – m, where m is the number of variables involved in the
correlation; this F statistic is tested against  In the specific case of the
bivariate correlation coefficient where m = 2, eq. 4.39 becomes eq. 4.12 or 4.13.

For the multiple correlation coefficient R, eq. 4.39 becomes (with m = p):

(4.40)

Section 4.6 will show that the partial correlation coefficient is a parameter of the
multinormal conditional distribution. This distribution being a special case or aspect of
the multinormal distribution, partial correlation coefficients are tested in the same way

Table 4.6 Main properties of the multiple (linear) correlation coefficient. 

Properties Sections

1. The multiple correlation coefficient measures the intensity of the relationship
between a response variable and a linear combination of several explanatory
variables. 4.5

2. The square of the multiple correlation coefficient, called coefficient of 
multiple determination, measures the fraction of the variance of the response
variable which is explained by a linear combination of the explanatory variables. 4.5

3. The coefficient of multiple determination is the extension, to the multidimensional
case, of the coefficient of determination between two variables. 4.5 and 10.3

4. The multiple correlation coefficient can be computed from the matrix of 
correlations among explanatory variables and the vector of correlations
between the explanatory and response variables. 4.5

5. The multiple correlation coefficient can be computed from the determinant of
 the matrix of correlations among explanatory variables and that of the matrix of

correlations among all variables involved. 4.5

 6. The multiple correlation coefficient can be computed from the product of a 
series of complements of coefficients of partial determination. 4.5

F
r jk

2 ν1⁄
1 r jk

2–( ) ν2⁄
--------------------------------=

Fα ν1 ν2,[ ] .

F
R1.2…p

2 ν1⁄
1 R1.2…p

2–( ) ν2⁄
------------------------------------------=
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as coefficients of simple correlation (eq. 4.12 for the F-test, or eq. 4.13 for the t-test,
where ν = n – 2). In the present case, one additional degree of freedom is lost for each
successive order of the coefficient. For example, the number of degrees of freedom for
rjk.123 (third-order partial correlation coefficient) would be ν = (n – 2) – 3 = n – 5.
Equations 4.12 and 4.13 are, respectively:

(4.12) and  (4.13)

As usual (see Sections 1.2 and 4.2), H0 is tested by comparing the computed
statistic (F or t) to a table of critical values and it is rejected when the associated
probability is smaller than a predetermined level of significance α.

4 — Interpretation of correlation coefficients

In the ecological literature, correlation coefficients are often interpreted in terms of
causal relationships among descriptors. It will now be shown that this should never be

Table 4.7 Main properties of the partial (linear) correlation coefficient. Some of these properties are
discussed in later sections.

Properties Sections

1. The partial correlation coefficient measures the intensity of the linear relationship 
between two random variables while taking into account their relationships 
with other variables. 4.5

2. The partial correlation coefficient can be computed from the submatrix of 
correlations among variables in partial relationship (first subset), the submatrix
of variables that influence the first subset, and the submatrix of correlations 
between the two subsets of variables. 4.5

3. The partial correlation coefficient can be computed from the coefficients of 
simple correlation between all pairs of variables involved. 4.5

4. The partial correlation coefficient is a parameter of the conditional distribution 
of multinormal variables. 4.6

5. The partial correlation coefficient can be defined as the geometrical mean of
the coefficients of partial regression of each of the two variables on the other. 10.3

6. The square of the partial correlation coefficient (coefficient of partial 
determination; name seldom used) measures the fraction of the total variance 
of each variable which is mutually explained by the other, the influence 
of some other variables being taken into account. 10.3

F ν
r jk .1…p

2

1 r jk .1…p
2

–
-------------------------= t ν

r jk .1…p

1 r jk .1…p
2

–
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done when the only information available is the correlation coefficients themselves.
The matter is examined using the simple case of three linearly related descriptors y1,
y2, and y3. Considering two causal relationships only, there are five elementary models
describing the possible interactions between a primary descriptor y1 and a response
descriptor y3 in the presence of a secondary descriptor y2. The five models are shown
in Table 4.8. Arrows symbolize causal relationships between descriptors (e.g. yi → yj:
yj is caused by yi). Using path analysis (Section 10.4), De Neufville & Stafford (1971)
computed, for each causal model, the relationships that should be found among the
simple linear correlation coefficients, assuming the conditions specified in the Table.

Table 4.8 also gives the first-order partial correlation coefficients computed from
the coefficients of simple linear correlation. (1) When the correlation between the
primary descriptor (y1) and the dependent descriptor (y3) is caused by the presence of

Table 4.8 Relationships between a primary descriptor y1 and a dependent descriptor y3 in the presence of a
secondary descriptor y2. Predictions about the relationships among linear correlation coefficients
(adapted from De Neufville & Stafford, 1971) and the corresponding partial correlation
coefficients.

Elementary causal models Causal Conditions Predictions among
diagrams simple r partial r

Secondary descriptor y2 in the middle

Intervening sequence: secondary descriptor r12 ≠ 0 r13 = r12r23 r13.2 = 0
y2 intervenes between y1 and y3 r23 ≠ 0 |r12.3| ≤ |r12|

|r23.1| ≤ |r23|

Spurious correlation: primary descriptor y1 r12 ≠ 0 r13 = r12r23 r13.2 = 0
and supposedly dependent descriptor y3 r23 ≠ 0 |r12.3| ≤ |r12|
are correlated but not causally connected |r23.1| ≤ |r23|

Primary descriptor y1 in the middle

Developmental sequence: y1, which is r12 ≠ 0 r23 = r12r13 r23.1 = 0
partially caused by y2, causes y3 r13 ≠ 0 |r12.3| ≤ |r12|

|r13.2| ≤ |r13|

Double effect: primary descriptor y1 r12 ≠ 0 r23 = r12r13 r23.1 = 0
causes both y2 and y3 r13 ≠ 0 |r12.3| ≤ |r12|

|r13.2| ≤ |r13|

Dependent descriptor y3 in the middle

Double cause: both y1 and y2 r13 ≠ 0 r12 = 0 r12.3 ≠ 0
independently affect y3 r23 ≠ 0 |r13.2| ≥ |r13|

|r23.1| ≥ |r23|

y2y1

y3

y1

y3y2

y2

y1

y3

y2

y3y1

y1

y2

y3
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a secondary variable (i.e. y2 in the middle: intervening sequence or spurious
correlation), controlling for the effect of y2 through partial correlation evidences the
lack of causal relationship between y1 and y3 (i.e. r13.2 = 0). The two other partial
correlations (r12.3 and r23.1) are then smaller (i.e  closer to zero) than the
corresponding simple correlations (r12 and r23). (2) When there is a direct causal
relationship from the primary (y1) to the dependent (y3) descriptor (i.e. y1 in middle:
developmental sequence or double effect), partial correlation r23.1 = 0 shows that there
is no direct relationship between the secondary (y2) and the dependent (y3) descriptors.
The two other partial correlations (r12.3 and r13.2) follow the same rule as in the
previous case. (3) When the dependent descriptor (y3) is caused by both the primary
(y1) and secondary (y2) descriptors (i.e. y3 in the middle: double cause), the three
partial correlation coefficients are larger than the corresponding coefficients of simple
correlation.

These five elementary causal models, for the simple case where three descriptors
only are involved, show how difficult it is to interpret correlation matrices, especially
when several ecological descriptors are interacting in complex ways. Partial
correlations may be used to help elucidate the relationships among descriptors.
However, the choice of a causal model always requires hypotheses, or else the input of
external ecological information. When it is possible, from a priori information or
ecological hypotheses, to specify the causal ordering among descriptors, path analysis
(Section 10.4) may be used to assess the correspondence between the data
(i.e. correlations) and causal models. It must be stressed again that a causal model may
never be derived from a correlation matrix, whereas a causal model is needed to
interpret a correlation matrix.

Numerical example. The simple example already used for multiple and partial correlations
illustrates here the problem inherent to all correlation matrices, i.e. that it is never possible to
interpret correlations per se in terms of causal relationships. In the following matrix, the upper
triangle contains the coefficients of simple correlation whereas the lower triangle contains the
partial correlation coefficients:

It may have looked as though descriptors y1 and y2 were somewhat correlated (r12 = 0.4), but the
first-order partial correlation coefficient r12.3 = 0 shows that this is not the case. This numerical
example corresponds to any of the first four models in Table 4.8, assuming that all the non-zero
simple and partial correlation coefficients are significantly different from 0; see also the next
Subsection. In the absence of external information or ecological hypotheses, there is no way of
determining which pattern of causal relationships among descriptors fits the correlation matrix.

Causal
model

1 0.4 0.8

0 1 0.5

0.76 0.33 1
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5 — Causal modelling using correlations

A simple form of causal modelling may be carried out on three variables. It simply
involves looking at simple and partial correlation coefficients. One basic condition
must be fulfilled for such a model to encompass the three variables; it is that at least
two of the simple correlation coefficients be significantly different from zero. Under
the assumption of linear relationships among variables, these two coefficients support
two “causal arrows”. In the remainder of the present Subsection, the three variables ya,
yb, and yc are denoted a, b, and c for simplicity. “Causality” refers, in statistics, to the
hypothesis that changes occurring in one variable have an effect on changes in another
variable; causality resides in the hypotheses only. Within the framework of a specific
sampling design (i.e. spatial, temporal, or experimental) where variation is controlled,
data are said to support the causality hypothesis if a significant portion of the variation
in b is indeed explained by changes taking place in a. If the relationship is assumed to
be linear, a significant linear correlation coefficient is interpreted as supporting the
hypothesis of linear “causation”.

Four different linear models only can be formulated, when at least two of the
simple correlation coefficients among three variables are significantly different from
zero. Their characteristics are specified in Fig. 4.11. Model 1 corresponds to any one of
the two sequences in Table 4.8 and model 2 is the double effect. As shown above, it is
not possible to distinguish between models 1 and 2 from the correlation coefficients
alone, i.e. the two models are distinct only in their hypotheses. Model 3 is the double
cause. Model 4 describes a triangular relationship, which may be seen as a
combination of models 1 and 2. The direct and indirect effects implied in model 4 may
be further analysed using path analysis (Section 10.4). Examining model 1 in some
detail illustrates how the “expectations of the model” are derived.

• Significance of the simple correlations. Obviously (Table 4.8), rab and rbc must be
significantly different from zero for the model to hold. The model can accommodate
rac being significant or not, although the value of rac should always be different from
zero  since rac = rabrbc .

• Significance of the partial correlations. The condition rac = rabrbc stated in Table 4.8
implies that rac – rabrbc = 0 or, in other words (eq. 4.36), rac.b = 0. In addition, for the
model to hold, partial correlations rab.c and rbc.a must be significantly different from 0.
Indeed, rab.c being equal to zero would mean that rab = racrbc, which would imply that
c is in the centre of the sequence; this is not the case in the model as specified, where b
is in the centre. The same reasoning explains the relationship rbc.a ≠ 0.

• Comparison of simple correlation values. Since correlation coefficients are smaller
than or equal to 1 in absolute value, the relationship rac = rabrbc implies that
|rab| ≥ |rac| and |rbc| ≥ |rac| .

Causality
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• Comparison of partial correlation values. Consider the partial correlation formula for
rab.c (eq. 4.36). Is it true that |rab.c| ≤ |rab| ? The relationship rac = rabrbc allows one to
replace rac by rabrbc in that equation. After a few lines of algebra, the inequality

Model 1

Model 4Model 3

Model 2

a

b

c

Expectations
of the model

Expectations
of the model

Expectations
of the model

Expectations
of the model

a

b c

a b

c

a b

c

rab not signif.
rac signif.≠ 0
rbc signif.≠ 0
rab.c signif.≠ 0
rbc.a signif.≠ 0
rac.b signif.≠ 0
|rac.b| ≥ |rac|
|rbc.a| ≥ |rbc|

rab signif.≠ 0
rac signif.≠ 0*
rbc signif.≠ 0*
rab.c signif.≠ 0
rac.b signif.≠ 0
rbc.a signif.≠ 0

rab signif.≠ 0
rbc signif.≠ 0
|rab| ≥ |rac|
|rbc| ≥ |rac|
rab.c signif.≠ 0
rbc.a signif.≠ 0
rac.b not signif.
|rab.c| ≤ |rab|
|rbc.a| ≤ |rbc|
rab × rbc ≈ rac

rab signif.≠ 0
rac signif.≠ 0
|rab| ≥ |rbc|
|rac| ≥ |rbc|
rab.c signif.≠ 0
rac.b signif.≠ 0
rbc.a not signif.
|rab.c| ≤ |rab|
|rac.b| ≤ |rac|
rab × rac ≈ rbc

Figure 4.11 Predictions of the four possible models of causal relationships involving three variables, in
terms of the expected values for the simple and partial linear correlation coefficients.
‘rab signif.≠ 0’ means that, under the model, the correlation must be significantly different from
zero. ‘rab not signif.’ means that the correlation is not necessarily significantly different from
zero at the pre-selected significance level. * Model 4 holds even if one, but only one, of these
two simple correlation coefficients is not significant. Adapted from Legendre (1993).

rab.c

rab 1 rbc

2
–[ ]

1 rab

2
rbc

2
–[ ] 1 rbc

2
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--------------------------------------------------------- rab≤=
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leads to the relationship r2
bc (1 - r2

ab) ≥ 0 which is true in all cases because rbc ≠ 0
and |rab| ≤ 1. This also shows that rab.c = rab only when rab = 1. The same method may
be used to demonstrate that |rbc.a| ≤ |rbc| .

The (3 × 3) matrix of simple and partial correlations used as numerical example in
the previous Subsection obeys all the conditions corresponding to models 1 and 2.
Which of these two models is the correct one? This would depend on the nature of the
three variables and, foremost, on the hypotheses one intends to test. The hypotheses
determine the presence and direction of the arrows among variables in causal models.

Ecological application  4.5

Bach et al. (1992) analysed a 28-month long time series (weekly sampling) of eel catches
(Anguilla anguilla) in the Thau marine lagoon, southern France. Fixed gears called
‘capêchades’, made of three funnel nets (6-mm mesh) and an enclosure, were used near the
shore in less than 1.5 m of water. In the deeper parts of the lagoon, other types of gears were
used: heavier assemblages of funnel nets with larger mesh sizes, called ‘brandines’, ‘triangles’
and ‘gangui’, as well as longlines. Various hypotheses were stated by the authors and tested
using partial correlation analysis and path analysis. These concerned the influence of
environmental variables on the behaviour of fish and fishermen and their effects on landings.
Coefficients of linear correlation reported in the paper are used here to study the relationships
among air temperature, fishing effort, and landings, for the ‘capêchade’ catches (Fig 4.12). The
analysis in the paper was more complex; it also considered the effects of wind and moon.
Linearity of the relationships was checked. The correlation coefficients support a type-4 model,
stating that both effort and temperature affect the landings (temperature increases eel
metabolism and thus their activity and catchability) and that the effort, represented by the

Figure 4.12 Left: simple and partial correlations among temperature, fishing effort, and eel catches using the
‘capêchade’ fishing gear, from Bach et al. (1992). Right: causal model supported by the data.
*: 0.05 ≥ p > 0.01; ***: p ≤ 0.001; N.S.: non-significant correlation (α = 0.05).

                                  Eel                 Fishing               Air
                               catches               effort           temperature

Eel                             ---- r = 0.730*** r = 0.096
catches                                                                     (N.S.)

Fishing                   partial r  =            ---- r = –0.180*
effort                       0.763***

Air                          partial r  =        partial r  =            ----
temperature             0.338***        –0.368***

Eel
catches

Air
temperature

Fishing
effort
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number of active ‘capêchade’ fishermen, is affected by temperature (lower effort at high
temperature, ‘capêchades’ being not much used from August to October). Interesting is the non-
significant simple linear correlation between temperature and catches. The partial correlations
indicate that this simple correlation corresponds to two effects of temperature on catches that are
both significant but of opposite signs: a positive partial correlation of temperature on catches and
a negative one of temperature on effort. In the paper of Bach et al., partial correlation analysis
was used as a first screen to eliminate variables that clearly did not influence catches. Path
analysis (Section 10.4) was then used to study the direct and indirect effects of the potentially
explanatory variables on catches.

Partial correlations do not provide the same information as path analysis
(Section 10.4). On the one hand, partial correlations, like partial regression coefficients
(Section 10.3), indicate whether a given variable has some unique (linear) relationship
with some other variable, after the linear effects of all the other variables in the model
have been taken into account. In path analysis, on the other hand, one is mostly
interested in partitioning the relationship between predictor (explanatory, independent)
and criterion (response, dependent) variables into direct and indirect components.

The above discussion was based on linear correlation coefficients. Advantages of
the linear model include ease of computation and simplicity of interpretation.
However, environmental processes are not necessarily linear. This is why linearity
must be checked, not only assumed, before embarking in this type of computation.
When the phenomena are not linear, two choices are open: either proceed with non-
linear statistics (nonparametric simple and partial correlation coefficients, in particular,
are available and may be used in this type of modelling), or linearize the relationships
that seem promising. Monotonic relationships, identified in scatter diagrams, may
usually be linearized using the transformations of Section 1.5 to one or both variables.
There is no ‘cheating’ involved in doing so; either a monotonic relationship exists, and
linearizing transformations allow one to apply linear statistics to the data; or such a
relationship does not exist, and no amount of transformation will ever create one.

Simple causal modelling, as presented in this Subsection, may be used in two
different types of circumstances. A first, common application is exploratory analysis,
which is performed when ‘weak’ ecological hypotheses only can be formulated. What
this means is the following: in many studies, a large number of causal hypotheses may
be formulated a priori, some being contradictory, because processes at work in
ecosystems are too numerous for ecologists to decide which ones are dominant under
given circumstances. So, insofar as each of the models derived from ecological theory
can be translated into hypothesized correlation coefficients, partial correlation analysis
may be used to clear away those hypotheses that are not supported by the data and to
keep only those that look promising for further analysis. Considering three variables,
for instance, one may look at the set of simple and partial correlation coefficients and
decide which of the four models of Fig. 4.11 are not supported by the data.
Alternatively, when the ecosystem is better understood, one may wish to test a single
set of hypotheses (i.e. a single model), to the exclusion of all others. With three
variables, this would mean testing only one of the models of Fig. 4.11, to the exclusion
of all others, and deciding whether that model is supported or not by the data.



Multinormal conditional distribution 173

Several correlation coefficients are tested in Fig. 4.11. Three simultaneous tests are
performed for the simple correlation coefficients and three for the partial correlation
coefficients. In order to determine whether such results could have been obtained by
chance alone, some kind of global test of significance, or correction, must be
performed (Box 1.3; eq. 4.14).

The simple form of modelling described here may be extended beyond the frame of
linear modelling, as long as formulas exist for computing partial relationships.
Examples are the partial nonparametric correlation coefficients (partial Kendall τ,
eq. 5.9) and partial Mantel statistics (Subsection 10.5.2).

4.6 Multinormal conditional distribution

In Section 4.3, which deals with the multinormal distribution, an important property
was demonstrated, namely that correlation coefficients are parameters of the
multinormal distribution. In the same way, it will be shown here that partial correlation
coefficients, described in the previous section, are parameters of a distribution, derived
from the multinormal distribution, which is called the conditional distribution of
multinormal random variables (or multinormal conditional distribution). The fact that
ρ is a parameter of the multinormal distribution is the basis for testing the significance
of simple correlation coefficients. Similarly, the fact that partial correlation
coefficients are parameters of a distribution is the basis for testing their significance,
using the approach explained in the previous section.

In the multidimensional context, a set of random variables is sometimes partitioned
into two subsets, so as to study the distribution of the variables in the first set
(y1,y2,…,yp) while maintaining those in the second set (yp+1,…,yp+q) fixed. These are
the conditions already described for partial correlations (eqs. 4.34 to 4.37). Such a
probability distribution is called a conditional distribution. It can be shown that the
conditional distribution of variables of the first set, given the second set of fixed
variables, is:

(4.41)

where ƒ(y1,y2, …, yp+q) is the joint probability density of the (p + q) variables in the
two subsets and h(yp+1, …, yp+q) is the joint probability density of the q fixed variables
(second subset). When the two subsets are independent, it has already been shown

g y1 y2 … yp yp 1+ … yp q+, ,, , ,( )
ƒ y1 y2 … yp yp 1+, … yp q+, ,, , ,( )

h yp 1+ … yp q+, ,( )
-------------------------------------------------------------------------------=
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(Section 4.3) that their joint probability density is the product of the densities of the
two subsets, so that:

(4.42)

The conditional density is then the probability density of the p random variables in the
first subset; this is because variables in this subset are not influenced by those in the
second subset.

In most cases of interest to ecologists, the variables under study are not
independent of one another (Section 4.1). The corresponding multinormal population
(i.e. with all variables intercorrelated) may be partitioned into two subsets:

Y = [y1 y2]

where y1 represents the p variables belonging to the first subset and y2 the q variables
belonging to the second subset:

y1 = [y1, y2, …, yp] and y2 = [yp+1, yp+2, …, yp+q]

The multidimensional mean µµµµ and dispersion matrix ΣΣΣΣ are partitioned in the same way:

µµµµ = [µµµµ1 µµµµ2] and ΣΣΣΣ = 

The values of the elements in ΣΣΣΣ12 (or ΣΣΣΣ21), with respect to those in ΣΣΣΣ1l and ΣΣΣΣ22,
determine the dependence between the two subsets of variables, as in eq. 11.2.

The conditional probability density of y1, for fixed values of y2, is:

(4.43)

The probability densities for the whole set of variables ƒ(y1, y2) and for the subset
of fixed variables h(y2) are calculated as in eq. 4.19:

f(y1, y2) =  exp {–(1/2) [y – µ] ΣΣΣΣ–1 [y – µ]'} (4.44)

h(y2) =  exp {–(1/2) [y2 – µ2]  [y2 – µ2]'} (4.45)

g y1 y2 … yp yp 1+ … yp q+, ,, , ,( )
ƒ y1 y2 … yp, , ,( ) h yp 1+ … yp q+, ,( )

h yp 1+ … yp q+, ,( )
---------------------------------------------------------------------------------------=

g y1 y2 … yp yp 1+ … yp q+, ,, , ,( ) ƒ y1 y2 … yp, , ,( )=

ΣΣΣΣ11 ΣΣΣΣ12

ΣΣΣΣ21 ΣΣΣΣ22

g y1 y2( )
ƒ y1 y2( , )

h y2( )
-------------------=

1
2π( ) p q+( ) 2⁄ ΣΣΣΣ 1 2⁄----------------------------------------------

1
2π( ) q 2⁄ ΣΣΣΣ22

1 2⁄--------------------------------------- ΣΣΣΣ22
1–
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Submatrices ΣΣΣΣ1l and ΣΣΣΣ22 being square, the determinant of the whole matrix ΣΣΣΣ may be
expressed as a function of the determinants of its four submatrices:

Using the above three equations, the conditional probability density of y1, for fixed
values of y2, (eq. 4.43) becomes:

(4.46)

This shows that the dispersion matrix of the conditional probability distribution is:

(4.47)

Developing the exponent (exp…) of eq. 4.46 would show that the corresponding mean
is:

(4.48)

It is not easy to understand, from the above equations, what are exactly the respective roles
of the two subsets of variables, y1 and y2, in the conditional distribution. Examination of the
simplest case, with each of the two subsets containing only one variable, shows the main
characteristics of this special distribution. In this simple case, y1 = y1 and y2 = y2, which leads to
the following conditional density (eqs. 4.44 to 4.46):

Since ρ = σ12/σ1σ2, it follows that:

Thus:

ΣΣΣΣ ΣΣΣΣ22 ΣΣΣΣ11 ΣΣΣΣ12ΣΣΣΣ22
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where ρ is the correlation between the two variables. This last equation may be rewritten in a
simplified form, after defining the conditional mean  and variance :

which is the conditional form of the one-dimensional normal distribution (eq. 4.15). The
equation for  shows that, in the conditional case, the mean  is a function of the value
taken by the fixed variable y2.

Figure 4.13 illustrates the conditional distribution of a variable y1, for four values of a fixed
variable y2. Given µ1, µ2, σl, σ2 and ρ12, the position of the conditional mean  depends
solely on the value taken by y2. This property of the conditional distribution appears clearly
when examining the line along which means µ1|2 are located (dashed line). The position of the
conditional normal distribution g(y1|y2), in the plane of axes y1 and y2, is determined by the
position of , since a normal distribution is centred on its mean.

Understanding the multidimensional case requires a little imagination. When the
first subset yl contains two variables (y1 and y2) and the second (y2) only one variable
(y3), each one-dimensional normal curve in Fig. 4.13 is replaced by a two-dimensional
probability “bell” (Fig. 4.6). These bells represent the binormal distribution of y1 and
y2, for values of the fixed variable y3. This would be the case of the partial correlation
r12.3 calculated between variables y1 and y2 while controlling for the effect of a third
one (y3); this case has been examined in Subsection 4.5.2 (eq. 4.36).

In the more complex situation where yl = [y1 y2] and y2 = [y3 y4], the “bells”,
representing the binormal distribution of y1 and y2, are located in a three-dimensional
space instead of a plane, since the position of µ1|2 is then determined by the values of
the two fixed variables y3 and y4. This would be the case of the partial correlation
r12.34, calculated between variables y1 and y2 while controlling for the effects of
variables y3 and y4. It is not easy to picture higher dimensions which, however, have
actual mathematical existence — and real ecological significance — since the
conditional distribution of multinormal variables is that of all descriptors in partial
correlation.

It was shown above (eq. 4.47) that the dispersion matrix of the conditional
probability distribution is:

Extending eq. 4.10 to the conditional case, the partial correlation matrix is:

ΡΡΡΡ1.2 = ΣΣΣΣ1.2 (4.49)
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where  is the matrix of the diagonal elements of ΣΣΣΣ1.2 . Equation 4.49 is the
same as eq. 4.35 except for the fact that it is formulated in terms of dispersion instead
of correlation, and it concerns parameters instead of statistics.

Equation 4.49 shows that partial correlation coefficients are parameters of the
multinormal conditional distribution in the same way as simple correlation coefficients
are parameters of the multinormal distribution (eqs. 4.20 and 4.21). As stated at the
beginning of the present section, this property is the basis for testing partial correlation
coefficients (Subsection. 4.5.3). It thus has practical significance for ecologists.

Figure 4.13 Conditional distribution of a normal variable y1, for four values of a fixed variable y2.
Conditional means  are located along the dashed line.µ1 2
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4.7 Tests of normality and multinormality

Testing the normality of empirical distributions is an important concern for ecologists
who want to use linear models for analysing their data. Tests of normality are carried
out in two types of circumstances. On the one hand, many tests of statistical
significance, including those described in the present chapter, require the empirical
data to be drawn from normally distributed populations. On the other hand, the linear
methods of multivariate data analysis discussed in Chapters 9, 10, and 11 do
summarize data in more informative ways if their underlying distributions are
multinormal — or at least are not markedly skewed, as discussed below. Testing the
normality of empirical variables is thus an important initial step in the analysis of a
data set. Variables that are not normally distributed may be subjected to normalizing
transformations (Section 1.5). The historical development of the tests of normality has
been reviewed by D’Agostino (1982) and Dutilleul & Legendre (1992).

The problem may first be approached by plotting frequency distributions of
empirical variables. Looking at these plots immediately identifies distributions that
have several modes, for instance, or that are obviously too skewed, or too ‘flat’ or
‘peaked’, to have been possibly drawn from normally distributed populations.

Next, for unimodal distributions, one may examine the parameters skewness and
kurtosis. Skewness  is a measure of asymmetry; it is defined as the third moment
of the distribution (the first moment being equal to zero, m1 = 0, and the second being
the variance, m2 = s2),

divided by the cube of the standard deviation:

(4.50)

Skewness is 0 for a normal distribution. Positive skewness corresponds to a frequency
distribution with a longer ‘tail’ to the right than to the left, whereas a distribution with
a longer ‘tail’ to the left than to the right shows negative skewness. Kurtosis
( ) is a measure of flatness or peakedness; it is defined as the fourth moment
of the frequency distribution,

divided by the standard deviation to the power 4:

(4.51)
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Since the kurtosis of a normal distribution is = 3, authors (and computer packages)
in the U. S. tradition use a modified formula for kurtosis,

(4.52)

which is such that the kurtosis of a normal distribution is = 3. Distributions flatter
than the normal distribution have negative values for whereas distributions that
have more observations around the mean than the normal distribution have positive
values for  indicating that they are more ‘peaked’.

Although tests of significance have been developed for skewness and kurtosis, they
are not used any longer because more powerful tests of goodness-of-fit are now
available. For the same reason, testing the goodness-of-fit of an empirical frequency
distribution to a normal distribution with same mean and variance (as in Fig 4.14a)
using a chi-square test is no longer in fashion because it is not very sensitive to
departures from normality (Stephens, 1974; D’Agostino, 1982), even though it is often
presented in basic texts of biological statistics as a procedure of choice. The main
problem is that it does not take into account the ordering of classes of the two
frequency distributions that are being compared. This explains why the main statistical
packages do not use it, but propose instead one or the other (or both) procedure
described below.

One of the widely used tests of normality is the Kolmogorov-Smirnov test of
goodness-of-fit. In Fig. 4.14b, the same data as in Fig. 4.14a are plotted as a
cumulative frequency distribution. The cumulative theoretical normal distribution is
also plotted on the same graph; it can easily be obtained from a published table, or by
requesting in a statistical package the normal probability values corresponding to the
relative cumulative frequencies. One looks for the largest deviation D between the
cumulative empirical relative frequency distribution and the cumulative theoretical
normal distribution. If D is larger than the critical value in the table, for a given
number of observations n and significance level α, the hypothesis of normality is
rejected.

The Kolmogorov-Smirnov test of goodness-of-fit is especially interesting for small
sample sizes because it does not require to lump the data into classes. When they are
divided into classes, the empirical data are discontinuous and their cumulative
distribution is a step-function, whereas the theoretical normal distribution to which
they are compared is a continuous function. D is then formally defined as the
maximum of D– and D+, where D– is the maximum difference computed just before a
data value and D+ is the maximum difference computed at the data value (i.e. at the
top of each step of the cumulative empirical step-function). A numerical example is
given by Sokal & Rohlf (1995).

Standard Kolmogorov-Smirnov tables for the comparison of two samples, where
the distribution functions are completely specified (i.e. the mean and standard
deviation are stated by hypothesis), are not appropriate for testing the normality of

α4

α'4 α4 3–=

α4
α'4

α'4,

K-S test
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Figure 4.14 Numerical example with n = 100. (a) Frequency distribution and fitted theoretical normal curve,
(b) relative cumulative frequencies and Kolmogorov-Smirnov test of goodness-of-fit, showing
that the maximum deviation D = 0.032 is too small in this case to reject the hypothesis of
normality.
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empirical data since the mean and standard deviation of the reference normal
distribution must be estimated from the observed data; critical values given in these
tables are systematically too large, and thus lead to accepting too often the null
hypothesis of normality. Corrected critical values for testing whether a set of
observations is drawn from a normal population, that are valid for stated probabilities
of type I error, have been computed by Lilliefors (1967) and, with additional
corrections based on larger Monte Carlo simulations, by Stephens (1974). Critical
values computed from the formulas and coefficients of Stephens are given in Table A.
The same paper by Stephens evaluates other statistics to perform tests of normality,
such as Cramér-von Mises W2 and Anderson-Darling A2 which, like D, are based on
the empirical cumulative distribution function (only the statistics differ), and proposes
corrections where needed for the situation where the mean and variance of the
reference normal distribution are unknown and are thus estimated from the data.

The second widely used test of normality is due to Shapiro & Wilk (1965). It is
based on an older graphical technique which will be described first. This technique,
called normal probability plotting, was developed as an informal way of assessing
deviations from normality. The objective is to plot the data in such a way that, if they
come from a normally distributed population, they will fall along a straight line.
Deviations from a straight line may be used as indication of the type of non-normality.
In these plots, the values along the abscissa are either the observed or the standardized
data (in which case the values are transformed to standard deviation units), while the
ordinate is the percent cumulative frequency value of each point plotted on a normal
probability scale. Sokal & Rohlf (1995) give computation details. Fig. 4.15 shows the
same data as in Fig 4.14a, which are divided into classes, plotted on normal probability
paper. The same type of plot could also be produced for the raw data, not grouped into
classes. For each point, the upper limit of a class is used as the abscissa, while the
ordinate is the percent cumulative frequency (or the cumulative percentage) of that
class. Perfectly normal data would fall on a straight line passing through the point ( ,
50%). A straight line is fitted trough the points, using reference points based on the
mean and variance of the empirical data (see the caption of Fig. 4.15); deviations from
that line indicate non-normality. Alternatively, a straight line may be fitted through the
points, either by eye or by regression; the mean of the distribution may be estimated as
the abscissa value that has an ordinate value of 50% on that line. D’Agostino (1982)
gives examples illustrating how deviations from linearity in such plots indicate the
degree and type of non-normality of the data.

Shapiro & Wilk (1965) proposed to quantify the information in normal probability
plots using a so-called ‘analysis of variance W statistic’, which they defined as the
F-ratio of the estimated variance obtained from the weighted least-squares of the slope
of the straight line (numerator) to the variance of the sample (denominator). The
statistic is used to assess the goodness of the linear fit:

(4.53)
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Figure 4.15 The cumulative percentages of data in Fig. 4.14a are plotted here on normal probability paper as
a function of the upper limits of classes. Cumulative percentiles are indicated on the right-hand
side of the graph. The last data value cannot be plotted on this graph because its cumulated
percentage value is 100. The diagonal line represents the theoretical cumulative normal
distribution with same mean and variance as the data. This line is positioned on the graph using
reference values of the cumulative normal distribution, for example 0.13% at  and
99.87% at , and it passes through the point ( , 50%). This graph contains exactly the
same information as Fig. 4.14b; the difference lies in the scale of the ordinate.
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where the xi are the ordered observations (x1 ≤ x2 ≤ … ≤ xn) and coefficients wi are
optimal weights for a population assumed to be normally distributed. Statistic W may
be viewed as the square of the correlation coefficient (i.e. the coefficient of
determination) between the abscissa and ordinate of the normal probability plot
described above. Large values of W indicate normality (points lying along a straight
line give r2 close to 1), whereas small values indicate lack of normality. Shapiro &
Wilk did provide critical values of W for sample sizes up to 50. D’Agostino (1971,
1972) and Royston (1982a, b, c) proposed modifications to the W formula (better
estimates of the weights wi), which extend its application to much larger sample sizes.
Extensive simulation studies have shown that W is a sensitive omnibus test statistic,
meaning that it has good power properties over a wide range of non-normal
distribution types and sample sizes.

Which of these tests is best? Reviewing the studies on the power of tests of
normality published during the past 25 years, D’Agostino (1982) concluded that the
best omnibus tests are the Shapiro-Wilk W-test and a modification by Stephens (1974)
of the Anderson-Darling A2-test mentioned above. In a recent Monte Carlo study
involving autocorrelated data (Section 1.1), however, Dutilleul & Legendre (1992)
showed (1) that, for moderate sample sizes, both the D-test and the W-test are too
liberal (in an asymmetric way) for high positive (ρ > 0.4) and very high negative
(ρ < –0.8) values of autocorrelation along time series and for high positive values of
spatial autocorrelation (ρ > 0.2) and (2) that, overall, the Kolmogorov-Smirnov D-test
is more robust against autocorrelation than the Shapiro-Wilk W-test, whatever the sign
of the first-order autocorrelation.

As stated at the beginning of the Section, ecologists must absolutely check the
normality of data only when they wish to use parametric statistical tests that are based
on the normal distribution. Most methods presented in this book, including clustering
and ordination techniques, do not require statistical testing and hence may be applied
to non-normal data. With many of these methods, however, ecological structures
emerge more clearly when the data do not present strong asymmetry; this is the case,
for example, with principal component analysis. Since normal data are not skewed
(coefficient α3 = 0), testing the normality of data is also testing for asymmetry;
normalizing transformations, applied to data with unimodal distributions, reduce or
eliminate asymmetries. So, with multidimensional data, it is recommended to check at
least the normality of variables one by one.

Some tests of significance require that the data be multinormal (Section 4.3).
Section 4.6 has shown that the multidimensional normal distribution contains
conditional distributions; it also contains marginal distributions, which are
distributions on one or several dimensions, collapsing all the other dimensions. The
normality of unidimensional marginal distributions, which correspond to the p
individual variables in the data set, can easily be tested as described above. In a
multivariate situation, however, showing that each variable does not significantly
depart from normality does not prove that the multivariate data set is multinormal
although, in many instances, this is the best researchers can practically do. 
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Dagnelie (1975) proposed an elegant and simple way of testing the multinormality
of a set of multivariate observations. The method is based on the Mahalanobis
generalized distance (D5; Section 7.4, eq. 7.40) which is described in Chapter 7.
Generalized distances are computed, in the multidimensional space, between each
object and the multidimensional mean of all objects. The distance between object xi
and the mean point  is computed as:

(4.54)

where  is the vector corresponding to object xi in the matrix of centred data
and S is the dispersion matrix (Section 4.1). Dagnelie’s approach is that, for
multinormal data, the generalized distances should be normally distributed. So, the n
generalized distances (corresponding to the n objects) are put in increasing order, after
which the relative cumulative frequency of each i-th distance is calculated as
(i – 0.5)/n. The data are then plotted on a normal probability scale (Fig. 4.15), with the
generalized distances on the abscissa and the relative cumulative frequencies on the
ordinate. From visual examination of the plot, one can decide whether the data points
are well aligned; if so, the hypothesis of multinormality of the original data may be
accepted. Alternatively, the list of generalized distances may be subjected to a Shapiro-
Wilk test of normality, whose conclusions are applied to the multinormality of the
original multivariate data. With standardized variables , eq. 4.54
becomes:

(4.55)

where R is the correlation matrix.
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Chapter

5 Multidimensional
semiquantitative
data

5.0 Nonparametric statistics

Section 1.2 has explained that statistical testing often refers to the concepts of
parameter and reference population. Section 4.3 has shown that the mean, standard
deviation and correlation are parameters of the multinormal distribution, so that this
distribution and others play a key role in testing quantitative data. When the data are
semiquantitative, however, it does not make sense to compute statistics such as the
mean or the standard deviation. In that case, hypothesis testing must be conducted with
nonparametric statistics. Nonparametric tests are distribution-free, i.e. they do not
assume that the samples were drawn from a population with a specified distribution
(e.g. multinormal). Because of this, nonparametric statistics are useful not only when
descriptors are semiquantitative, but also when quantitative descriptors do not conform
to the multinormal distribution and researchers do not wish, or succeed, to normalize
them. Many of the nonparametric tests are called ranking tests, because they are based
on ranks of observations instead of actual quantitative values. Another advantage of
nonparametric statistics is computational simplicity. Last but not least, nonparametric
tests may be used with small samples, a situation that frequently occurs with
ecological data. Nonparametric measures corresponding to the mean and variance
(Section 4.1) are the median and range, respectively.

Nonparametric statistics cover all statistical methods developed for analysing
either semiquantitative (rank statistics; Sections 5.2) or qualitative (Chapter 6) data.
Rank statistics should always be used in the following situations:
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1) One or several descriptors among those to be compared are semiquantitative.

2) The purpose of the study is to evidence monotonic relationships between
quantitative descriptors. In a monotonic relationship, one of the descriptors keeps
increasing or decreasing as the other increases (Fig. 5.1); the increase (or decrease) is
not necessarily linear or smoothly curvilinear.

3) One or several (quantitative) descriptors are not normally distributed (see
Section 4.7 for tests of normality and multinormality) and researchers do not wish to
normalize them or do not succeed in doing so. Normalizing transformations are
described in Subsection 1.5.6.

4) The number of observations is small.

The present Chapter first summarizes the methods available in the nonparametric
approach, with reference to the corresponding parametric methods (Section 5.1).
Ranking tests are then described for analysing relationships (Section 5.2) among
groups of qualitative, semiquantitative, or quantitative descriptors and (Section 5.3)
among groups of descriptors with mixed levels of precision (R analysis: Section 7.1).
Most statistical computer packages include nonparametric procedures.

5.1 Quantitative, semiquantitative, and qualitative multivariates

As discussed in Section 1.4, ecological descriptors may be of different levels of
precision (Table 1.2). Ecologists generally observe several descriptors on the same
objects, so that multidimensional ecological variates may be either quantitative,
semiquantitative, or qualitative, or mixed, i.e. consisting of descriptors with different
precision levels. For a number of years, quantitative ecology has been based almost

Monotonic

Figure 5.1 Three types of monotonic relationships between two descriptors: (a) linear (increasing and
decreasing); (b) logistic (increasing monotonic); (c) atypical (decreasing monotonic).
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exclusively on quantitative descriptors and on parametric tests, even though there exist
a large number of methods that can efficiently analyse semiquantitative or qualitative
multivariates as well as multivariates of mixed precision levels. These methods have
become increasingly popular in ecology, not only because non-quantitative descriptors
often provide unique information, but also because parametric statistics cannot be
tested for significance when quantitative data do not conform to a number of
conditions, including multinormality. This section briefly reviews numerical methods
for analysing multivariates with various levels of precision.

Table 5.1 summarizes and compares methods described elsewhere in the present
book. In the same row are corresponding methods, listed under one of four column
headings. The applicability of methods increases from left to right. Methods in the first
(left-hand) column are restricted to quantitative multivariates, which must also, in
most cases, be linearly related or/and multinormally distributed. Methods in the second
column have been developed for semiquantitative descriptors exhibiting monotonic
relationships. These methods may also be used (a) with quantitative descriptors
(especially when they do not follow the conditions underlying methods in the first
column) and (b) for the combined analysis of quantitative and semiquantitative
descriptors. Methods in the third column were developed for the numerical analysis of
qualitative descriptors. They may also be used for analysing quantitative or
semiquantitative descriptors exhibiting nonmonotonic relationships, after partitioning
these continuous descriptors into classes (see Section 6.3). Methods for qualitative
descriptors thus represent a first type of techniques for multivariates of mixed
precision, since they can be used for analysing together quantitative, semiquantitative,
and qualitative descriptors, partitioned into classes. An alternative is to recode
multiclass qualitative descriptors into dummy variables (Subsection 1.5.7) and use
parametric methods (first column of the Table) on the resulting assemblage of
quantitative and binary descriptors; this approach is often used in regression and
canonical analyses (Chapter 10).

Other methods (right-hand column) have been developed specifically for
multivariates with mixed levels of precision, so that these can be used for analysing
together quantitative, semiquantitative and qualitative descriptors. Such methods are
very general, since they may replace equivalent methods in the other three columns;
the price to be paid is often greater mathematical and/or computational complexity.

There are many types of multidimensional methods (rows of Table 5.1). One
interesting aspect of the Table is that there is always at least one, and often several
methods for descriptors with low precision levels. Thus, ecologists should never
hesitate to collect information in semiquantitative or qualitative form, since there exist
numerical methods for processing descriptors with all levels of precision. However, it
is always important to consider, at the very stage of the sampling design, how data will
eventually be analysed, so as to avoid problems at later stages. These problems often
include the local availability of specific computer programs or the lack of human
resources to efficiently use sophisticated methods. Researchers could use the period
devoted to sampling to acquire computer programs and improve their knowledge of
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Table 5.1 Methods for analysing multidimensional ecological data sets, classified here according to the
levels of precision of descriptors (columns). For methods concerning data series, see Table 11.1.
To find pages where a given method is explained, see the Subject index (end of the book).

Quantitative Semiquantitative Qualitative Descriptors of
descriptors descriptors descriptors mixed precision

Difference between two samples:
Hotelling T2 --- Log-linear models ---

Difference among several samples:
MANOVA --- Log-linear models MANOVALS

db-RDA, CCA --- db-RDA, CCA db-RDA

Scatter diagram Rank diagram Multiway contingency Quantitative-rank
table diagram

Association coefficients R:
Covariance --- Information, X2 ---
Pearson r Spearman r Contingency ---

Kendall τ
Partial r Partial τ
Multiple R Kendall W

Species diversity:
Diversity measures Diversity measures Number of species ---

Association coeff. Q Association coeff. Q Association coeff. Q Association coeff. Q

Clustering Clustering Clustering Clustering

Ordination:
Principal component a. --- Correspondence a. PRINCALS

Correspondence a. HOMALS PRINCIPALS

Principal coordinate a. Principal coordinate a.
Nonmetric multi- Nonmetric multi-

dimensional scaling dimensional scaling
ALSCAL, GEMSCAL

Factor analysis --- --- FACTALS

Regression Regression Correspondence Regression
simple linear (I and II) nonparametric logistic
multiple linear dummy
polynomial MORALS

partial linear
nonlinear, logistic
smoothing (splines, LOWESS)
multivariate; see also canonical a.

Path analysis --- Log-linear models PATHALS

Logit models
Canonical analysis:

Redundancy analysis (RDA) CORALS, OVERALS

Canonical correspondence a. (CCA) CCA db-RDA
Canonical correlation a. (CCorA)
Discriminant analysis --- Discrete discriminant a.CRIMINALS

Log-linear models Logistic regression
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methods. In any case, the type of data collected must take into account the local
computer and human resources.

Coming back to Table 5.1, it is possible to compare groups of objects, described by
quantitative multivariate data, using multidimensional analysis of variance (MANOVA).
In this analysis, a test of Wilks’ 

 

Λ (lambda) statistic replaces the usual F-test of one-
dimensional ANOVA. When there are only two groups, another approach is Hotelling’s
T2 (Section 7.4). In the case of qualitative multivariate data, the comparison may be
done by adjusting log-linear models to a multiway contingency table (the relationship
between contingency table analysis and analysis of variance is explained in
Section 6.0; see also the caveat concerning the use of multiway contingency tables as
qualitative equivalent to MANOVA, at the end of Section 6.3). Multivariate analysis of
variance of descriptors with mixed levels of precision is possible using MANOVALS (a
Gifi/ALSOS algorithm; Section 10.2). Multivariate analysis of variance of species
presence-absence or abundance tables may be obtained using either canonical
correspondence analysis (CCA, Section 11.2), or the distance-based redundancy
analysis method (db-RDA) of Legendre & Anderson (1999) briefly described in
Subsection 11.3.1.

The simplest approach to investigate the relationships among descriptors,
considered two at a time (Fig. 5.2), is to plot the data as a scatter diagram, whose
semiquantitative and qualitative equivalent are the rank-rank diagram and the
contingency table, respectively. Quantitative-rank diagrams may be used to compare a
quantitative to a semiquantitative descriptor (Legendre & Legendre, 1982). Two
families of methods follow from these diagrams, for either measuring the dependence
among descriptors, or forecasting one or several descriptors using other ones. The first
family of methods is based on R-mode association coefficients (i.e. coefficients of
dependence; Section 7.5), which are explained in Chapter 4 (quantitative descriptors),
Chapter 5 (semiquantitative descriptors), and Chapter 6 (qualitative descriptors). It is
interesting to note that measures of information and X2 (chi-square) calculated on
contingency tables (Chapter 6) are equivalent, for qualitative descriptors, to the
covariance between quantitative descriptors. Methods in the second family belong to
regression analysis (Section 10.4), which has a nonparametric form and whose
qualitative equivalent is the analysis of correspondence in contingency tables
(Section 6.4).

Various measures of species diversity are reviewed in Section 6.5. They are usually
computed on quantitative species counts, but Dévaux & Millerioux (1977) have shown
that this may be done just as well on semiquantitative counts. When there are no
counts, the number of species present may be used to assess diversity; this is indeed
the first diversity index described in the literature (Patrick, 1949; Subsection 6.5.1). 

There are Q-mode association coefficients (Sections 7.3 and 7.4) adapted to
descriptors of all levels of precision (see Tables 7.3 and 7.4). Some of the similarity
coefficients (Chapter 7: S15, S16, S19 and S20) are yet another way of combining
quantitative and qualitative descriptors in multivariate data analysis. Concerning
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clustering algorithms (Chapter 8), most of them are indifferent to the precision of
descriptors, since clustering is in general conducted on an association matrix, most
often of type Q.

Methods of ordination in reduced space are seldom restricted to descriptors of a
single level of precision, with the exception of principal component analysis which
must be computed on quantitative or presence-absence data (Section 9.1).
Correspondence analysis (Section 9.4) was first described for qualitative descriptors
(contingency tables), but it is currently used for analysing descriptors of any precision.
These must, however, be coded in such a way as to be positive and dimensionally
homogenous. Principal coordinate analysis (Section 9.2) and nonmetric
multidimensional scaling (Section 9.3) are indifferent to the precision of descriptors,
since they are computed on an association matrix (generally Q-type). Ordination of
descriptors with mixed levels of precision is also possible using the Gifi/ALSOS

algorithms HOMALS, PRINCIPALS, ALSCAL, and GEMSCAL. Factor analysis

5 30 15

10 20 55

25 10 100 5 14

3 7 1

9 0 0
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(b)
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(d)

Figure 5.2 Comparison of two descriptors. (a) Scatter diagram (quantitative descriptors on both axes).
(b) Quantitative-rank diagram (quantitative descriptor on the abscissa, ranked classes of a
semiquantitative descriptor on the ordinate). (c) Rank-rank diagram (ranked classes of
semiquantitative descriptors on both axes). (d) Two-way contingency table (nonordered classes
of qualitative descriptors on both axes). From Legendre & Legendre (1982). 
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(Section 9.5) is restricted to quantitative descriptors, except when using the
Gifi/ALSOS algorithm FACTALS for descriptors of mixed precision. (Algorithms
PRINCIPALS, GEMSCAL and FACTALS are not discussed elsewhere in this book.)

For the interpretation of ecological structures, regression, which was briefly
discussed a few paragraphs above, is the chief technique when the dependent variable
is a single quantitative variable. Various forms of canonical analysis are available to
interpret the structure of quantitative data sets: redundancy analysis, canonical
correspondence analysis, canonical correlation analysis, and discriminant analysis
(Chapter 11). Canonical correspondence analysis, in particular, allows an
interpretation of the structure of species abundance or presence-absence data. For
qualitative descriptors, Table 5.1 proposes methods equivalent to discriminant and
path analyses. For descriptors of mixed precision, there are methods available for all
types of analyses.

Table 5.1 shows that ecological data can efficiently be analysed irrespective of their
levels of precision. Researchers should use ecological criteria, such as allowable effort
in the field and biological meaningfulness of the decimal places to be recorded, to
decide about the level of precision of their data. The strictly numerical aspects play but
a secondary role. 

5.2 One-dimensional nonparametric statistics

The present book is devoted to numerical methods for analysing sets of
multidimensional ecological data. Methods for one-dimensional variables are not
discussed in depth since they are the subject of many excellent textbooks.
Nonparametric tests for one-dimensional descriptors are explained, among others, in
the books of Siegel (1956), Hájek (1969), Siegel & Castellan (1988), and Sokal &
Rohlf (1995). Because ecologists are often not fully conversant with these tests, the
correspondence between approaches for quantitative, semiquantitative, and qualitative
descriptors is not always clearly understood. This is why the one-dimensional methods
to carry out tests of differences among groups of objects are summarized in Table 5.2.

Methods in the Table are divided in two main families: those for independent
samples, which are the most generally applicable, and those for related samples.
Related samples are often called matched or paired samples (Box 1.1). With such
samples, the effect of differences among the matched objects is eliminated from the
comparison among groups. Matching may be achieved, for example, by repeating
observations at the same sampling sites, or by making observations at sites
representing corresponding conditions (e.g. same geological substrate, same
temperature, or same depth in the water column). Related samples could be analysed
using the methods for independent samples, but the information carried by the
matching is then lost. Within each of the two families, methods in Table 5.2 are
classified according to the number of groups (k) which are compared.

Independent
samples
Related
samples
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Univariate comparison of two independent samples (k = 2), when the data are
quantitative, is generally done by using Student’s t, to test the hypothesis (H0) of
equality of the group means (i.e. that the two groups of objects were drawn from the
same statistical population, or at least from populations with equal means, assuming
equal standard deviations). When the data are semiquantitative, computing means and
standard deviations would not make sense, so that the approach must be
nonparametric. The Mann-Whitney U statistic first combines and ranks all objects in a
single series, then allows one to test that the ranked observations come from the same
statistical population (H0). The median test, which is not as powerful as the previous
one (except in cases when there are ties), is used for testing that the two groups of
objects have similar medians (H0). Other nonparametric tests consider not only the
positions of the two groups along the abscissa but also the differences in dispersion
and shape (e.g. skewness) of their distributions. The best-known is the Kolmogorov-
Smirnov test; this is not the same test as the one described in Section 4.7 for
comparing an empirical to a theoretical distribution. The method discussed here allows
one to test the hypothesis (H0) that the largest difference between the cumulative

Table 5.2 Methods to carry out tests of differences among groups of objects (one-dimensional data) are
classified here according to the levels of precision of the descriptors (columns). Most of these
methods are not discussed elsewhere in the present book. Table modified from Siegel (1956) and
Legendre & Legendre (1982).

Number of Quantitative Semiquantitative Qualitative
groups (k) descriptors* descriptors descriptors

Independent samples:

k = 2 Student t (unpaired) Mann-Whitney U test X2 (2 × no. states)
Median test Fisher’s exact
Kolmogorov-Smirnov test probability test
etc. Logistic regression

k ≥2 (one-way) One-way ANOVA Kruskal-Wallis’ H X2 (k × no. states)
and F-test Extension of the median test Discriminant a.

Related samples:

k = 2 Student t (paired) Sign test McNemar test 
Wilcoxon signed-ranks test (binary descriptors)

k ≥2 (two-way) Two-way ANOVA Friedman test Cochran Q
and F-tests (binary descriptors)

k ≥2 (multiway) Multiway ANOVA --- ---
and F-tests

* When quantitative data do not meet the distributional assumptions underlying parametric tests,
they must be analysed using ranking tests (for semiquantitative descriptors). Another way would
be to test the parametric statistics by randomization (Section 1.2).
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distributions of the two groups is so small that these may come from the same or
identical populations. Finally, when the data are qualitative, the significance of
differences between two groups of objects may be tested using a X2 statistic calculated
on a two-way contingency table. Section 6.2 describes contingency table analysis for
the comparison of two descriptors. In the present case, the contingency table has two
rows (i.e. two groups of objects) and as many columns as there are states in the
quantitative descriptor. The hypothesis tested (H0) is that the frequency distributions in
the two rows are similar; this is the same as stating the more usual hypothesis of
independence between rows and columns of the contingency table (see Section 6.0).
When the descriptor is binary (e.g. presence or absence) and the number of
observations in the two groups is small, it is possible to test the hypothesis (H0) that
the two groups exhibit similar proportions for the two states, using Fisher’s powerful
exact probability test. Logistic regression (Subsection 10.3.7) may also be used in this
context; in the regression, the two groups are represented by a binary response variable
while the qualitative explanatory descriptors are recoded as a series of dummy
variables as in Subsection 1.5.7.

The standard parametric technique for testing that the means of several
independent samples (k ≥ 2) are equal, when the data are quantitative, is one-way
analysis of variance (ANOVA). It may be considered as a generalization of the Student
t–test. In one-way ANOVA, the overall variance is partitioned between two orthogonal
(i.e. linearly independent; see Box 1.1) components, the first one reflecting differences
among the k groups and the second one accounting for the variability among objects
within the groups. The hypothesis (H0) of equal means is rejected (F-test) when the
among-groups variability is significantly larger than the within-groups component. For
semiquantitative data, the Kruskal-Wallis’ H test (also called Kruskal-Wallis’ one-way
ANOVA by ranks) first ranks all objects from the k groups into a single series, and then
tests (H0) that the sums of ranks calculated for the various groups are so similar that
the objects are likely to have been drawn from the same or identical populations. When
applied to quantitative data that are meeting all the assumptions of parametric ANOVA,
Kruskal-Wallis’ H is almost as efficient as the F-test. Another possibility is to extend to
k ≥ 2 groups the median test, described in the previous paragraph for k = 2. The latter
is less efficient than Kruskal-Wallis’ H because it uses less of the information in the
data. As in the above case where k = 2, qualitative data can be analysed using a
contingency table, but this time with k ≥ 2 rows. Multiple logistic regression, available
for example in procedure CATMOD of SAS (Subsection 10.3.7), may also be used here.
Discriminant analysis could be used in the same spirit, after recoding the qualitative
descriptor of interest into a series of dummy variables forming the set of
discriminating variables, as in Subsection 1.5.7. See, however, the discussion on
discriminant analysis versus logistic regression (Subsection 10.3.7 and Section 11.6).

Comparing two related samples (k = 2) is usually done, for quantitative data, by
testing (H0) that the mean of the differences between matched pairs of observations is
null (Student t-test; the differences are assumed to be normally and independently
distributed). When the data are semiquantitative, one can use the sign test, which first
codes pairs of observations (yi, yk) as either (+) when yi > yk or (–) when yi < yk, and
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then tests the hypothesis (H0) that the numbers of pairs with each sign are equal; an
equivalent formulation is that the proportion of pairs with either sign is equal to 0.5.
This test uses information about the direction of the differences between pairs. When
the relative magnitude of the differences between pairs is also known, it becomes
possible to use the more powerful Wilcoxon matched-pairs signed-ranks test.
Differences between pairs are first ranked according to their magnitude (absolute
values), after which the sign of the difference is affixed to each rank. The null
hypothesis of the test (H0) is that the sum of the ranks having a (+) sign is equal to that
of the ranks with a (–) sign. The McNemar test provides a means of comparing paired
samples of binary data. For example, using binary observations (e.g. presence or
absence) made at the same sites, before and after some event, one could test (H0) that
no overall change has occurred. 

When there are several related samples (k ≥ 2) and the data are quantitative, the
parametric approach for testing (H0) that the means of the k groups are equal is two-
way analysis of variance, with or without replication. One classification criterion of the
two-way ANOVA accounts for the variability among the k groups (as in one-way
ANOVA above, for k ≥ 2 independent samples) and the other for that among the related
samples. Consider, for an example, 16 sites (i.e.  k groups) that have been sampled at 5
depths in the water column (or at 5 different times, or using 5 different methods, etc.).
The nonparametric equivalent, for semiquantitative data, is Friedman’s two-way
analysis of variance by ranks without replication, which is based on a two-way table
similar to Table 5.7. In the two-way table, the k groups (e.g. 16 sites) are in rows and
the corresponding samples (e.g. 5 depths) are in columns. Values within each column
are ranked separately, and the Friedman statistic (eq. 5.10) is used to test (H0) that the
rank totals of the various rows (i.e. groups) are equal. For binary data, the Cochran Q
test is an extension to k ≥ 2 groups of the McNemar test, described above for k = 2.

Finally, when there are several samples (k ≥ 2), related across several
classification criteria (e.g. 16 sites all sampled at 8 different times, using each time 5
different methods), multiway ANOVA is the standard parametric method for testing the
null hypothesis (H0) that the means of the k groups are equal (F-test). In that case,
there are no obvious equivalent approaches for semiquantitative or qualitative data.

5.3 Multidimensional ranking tests

Textbooks of nonparametric statistics propose a few methods only for the analysis of
bi- or multivariate semiquantitative data. Section 5.1 has shown that there actually
exist many numerical approaches for analysing multidimensional data, corresponding
to all levels of precision (Table 5.1). These methods, which include most of those
described in this book, belong to nonparametric statistics in a general sense, because
they do not focus on the parameters of the data distributions. Within the specific realm
of ranking tests, however, the only statistical techniques available for
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multidimensional semiquantitative data are two rank correlation coefficients
(Spearman r and Kendall τ), which both quantify the relationship between two
descriptors, and the coefficient of concordance (Kendall W), which assesses the
relationship among several descriptors. These are described in some detail in the
present section.

The Spearman r statistic, also called ρ (rho), is based on the idea that two
descriptors y1 and y2 carry the same information if the largest object on y1 also has the
highest rank on y2, and so on for all other objects. Two descriptors are said to be in
perfect correlation when the ranks of all object are the same on both descriptors, as in
the numerical example of Table 5.3. If, however, object x1 which has rank 5 on y1 had
rank 2 on y2, it would be natural to use the difference between these ranks d1 =
(y11 – y12) = (5 – 2) = 3 as a measure of the difference between the two descriptors, for
this object. For the whole set of objects, differences di are squared before summing
them, in order to prevent differences with opposite signs from cancelling each other
out.

The expression for the Spearman r may be derived from the general formula of correlation
coefficients (Kendall, 1948):

(5.1)

Spearman
corr. coeff.

Table 5.3 Numerical example. Perfect rank correlation between descriptors y1 and y2.

Objects Ranks of objects on the two descriptors

(observation units) y1 y2

x1 5 5

x2 1 1

x3 4 4

x4 2 2

x5 3 3
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For ranked data, the average ranks  and  are equal, so that  =
(yij – yik). One can write the difference between the ranks of object i on the two descriptors as
di = (yij – yik) = , which leads to:

Isolating the right-hand sum gives:

Using this result, eq. 5.1 is rewritten as:

(5.2)

The sum of ranks for each descriptor, which is the sum of the first n integers, is equal to

n(n + 1)/2 and the sum of their squares is . Since the sum of

deviations from the mean rank is

one can write:

It follows that, when using ranks, the numerator of eq. 5.2 becomes:

while its denominator reduces to:
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The final formula is obtained by replacing the above two expressions in eq. 5.2.
This development shows that, when using ranks, eq. 5.1 simplifies to the following
formula for Spearman’s r:

(5.3)

Alternatively, the Spearman rank correlation coefficient may be obtained in two steps:
(1) replace all observations by ranks (columnwise) and (2) compute the Pearson
correlation coefficient (eq. 4.7) between the ranked variables. The result is the same as
obtained from eq. 5.3.

The Spearman r coefficient varies between +1 and –1, just like the Pearson r.
Descriptors that are perfectly matched, in terms of ranks, exhibit values r = +1 (direct
relationship) or r = –1 (inverse relationship), whereas r = 0 indicates the absence of a
monotonic relationship between the two descriptors. (Relationships that are not
monotonic, e.g. Fig. 4.4d, can be quantified using polynomial or nonlinear regression,
or else contingency coefficients; see Sections 6.2 and 10.3.)

Numerical example. A small example (ranked data, Table 5.4) illustrates the equivalence
between eq. 5.1 computed on ranks and eq. 5.3. Using eq. 5.1 gives:

The same result is obtained from eq. 5.3:
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Table 5.4 Numerical example. Ranks of four objects on two descriptors, y1 and y2.

Objects Ranks of objects on the two descriptors

(observation units) y1 y2

x1 3 3

x2 4 1

x3 2 4

x4 1 2

r12
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r12 1
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60
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Two or more objects may have the same rank on a given descriptor. This is often
the case with descriptors used in ecology, which may have a small number of states or
ordered classes. Such observations are said to be tied. Each of them is assigned the
average of the ranks which would have been assigned had no ties occurred. If the
proportion of tied observations is large, correction factors must be introduced into the
sums of squared deviations of eq. 5.2, which become:

and

where trj and trk are the numbers of observations in descriptors yj and yk which are tied
at ranks r, these values being summed over the q sets of tied observations in
descriptor j and the s sets in descriptor k.

Significance of the Spearman r is usually tested against the null hypothesis
H0: r = 0. When n ≥ 10, the test statistic is the same as for Pearson’s r (eq. 4.13):

(5.4)

H0 is tested by comparing statistic t to the value found in a table of critical values of t,
with ν = n – 2 degrees of freedom. H0 is rejected when the probability corresponding
to t is smaller than a predetermined level of significance (α, for a two-tailed test). The
rules for one-tailed and two-tailed tests are the same as for the Pearson r (Section 4.2).
When n < 10, which is not often the case in ecology, one must refer to a special table
of critical values of the Spearman rank correlation coefficient, found in textbooks of
nonparametric statistics.

Kendall’s τ (tau) is another rank correlation coefficient, which can be used for the
same types of descriptors as Spearman’s r. One major advantage of τ over Spearman’s
r is that the former can be generalized to a partial correlation coefficient (below),
which is not the case for the latter. While Spearman’s r was based on the differences
between the ranks of objects on the two descriptors being compared, Kendall’s τ refers
to a somewhat different concept, which is best explained using an example.

Numerical example. Kendall’s τ is calculated on the example of Table 5.4, already used for
computing Spearman’s r. In Table 5.5, the order of the objects was rearranged so as to obtain
increasing ranks on one of the two descriptors (here y1). The Table is used to determine the
degree of dependence between the two descriptors. Since the ranks are now in increasing order
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on y1, it is sufficient to determine how many pairs of ranks are also in increasing order on y2 to
obtain a measure of the association between the two descriptors. Considering the object in first
rank (i.e. x4), at the top of the right-hand column, the first pair of ranks (2 and 4, belonging to
objects x4 and x3) is in increasing order; a score of +1 is assigned to it. The same goes for the
second pair (2 and 3, belonging to objects x4 and x1). The third pair of ranks (2 and 1, belonging
to objects x4 and x2) is in decreasing order, however, so that it earns a negative score –1. The
same operation is repeated for every object in successive ranks along y1, i.e. for the object in
second rank (x3): first pair of ranks (4 and 3, belonging to objects x3 and x1), etc. The sum S of
scores assigned to each of the n(n – 1)/2 different pairs of ranks is then computed. 

Kendall's rank correlation coefficient is defined as follows:

(5.5)

where S stands for “sum of scores”. Kendall's τa is thus the sum of scores for pairs in
increasing and decreasing order, divided by the total number of pairs (n(n – 1)/2). For
the example of Tables 5.4 and 5.5, τa is:

Clearly, in the case of perfect agreement between two descriptors, all pairs receive a
positive score, so that S = n(n – 1)/2 and thus τa = +1. When there is complete
disagreement, S = –n(n – 1)/2 and thus τa = –1. When the descriptors are totally
unrelated, the positive and negative scores cancel out, so that S as well as τa are near 0.

Equation 5.5 cannot be used for computing τ when there are tied observations. This
is often the case with ecological semiquantitative descriptors, which may have a small
number of states. The Kendall rank correlation is then computed on a contingency
table (see Chapter 6) crossing two semiquantitative descriptors.

Table 5.5 Numerical example. The order of the four objects from Table 5.4 has been rearranged in such a
way that the ranks on y1 are now in increasing order

Objects Ranks of objects on the two descriptors

(observation units) y1 y2

x4 1 2

x3 2 4

x1 3 3

x2 4 1
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Table 5.6 is a contingency table crossing two ordered descriptors. For example, descriptor a
could represent the relative abundances of arthropods in soil enumerated on a semiquantitative
scale (e.g. absent, present, abundant and very abundant), while descriptor b could be the
concentration of organic matter in the soil, divided into 4 classes. For simplicity, descriptors are
called a and b here, as in Chapter 6. The states of a vary from 1 to r (number of rows) while the
states of b go from 1 to c (number of columns).

To compute τ with tied observations, S is calculated as the difference between the
numbers of positive (P) and negative (Q) scores, S = P – Q. P is the sum of all
frequencies f in the contingency table, each one multiplied by the sum of all
frequencies located lower and on its right:

Likewise, Q is the sum of all frequencies f in the table, each one multiplied by the sum
of all frequencies lower and on its left:

Numerical example. For Table 5.6:

P = (20 × 40) + (10 × 30) + (10 × 20) + (10 × 20) + (10 × 10) = 1600
Q = (10 × 10) + (10 × 10) = 200
S = P – Q = 1600 – 200 = 1400

Table 5.6 Numerical example. Contingency table giving the distribution of 80 objects among the states of
two semiquantitative descriptors, a and b. Numbers in the table are frequencies (f).

b1 b2 b3 b4 tj

a1 20 10 10 0 40

a2 0 10 0 10 20

a3 0 0 10 0 10

a4 0 0 0 10 10

tk 20 20 20 20 80
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Using this value S, there are two approaches for calculating τ, depending on the
numbers of states in the two descriptors. When a and b have the same numbers of
states (r = c), τb is computed using a formula that includes the total number of pairs
n(n – 1)/2, as in the case of τa (eq. 5.5). The difference with eq. 5.5 is that τb includes
corrections for the number of pairs L1 tied in a and the number of pairs L2 tied in b,
where

 in which tj is the marginal total for row j

 in which tk is the marginal total for column k.

The formula for τb is:

(5.6)

When there are no tied observations, L1 = L2 = 0 and eq. 5.6 becomes identical to
eq. 5.5.

Numerical example. For Table 5.6:

Without correction for ties, the calculated value (eq. 5.5) would have been 

τa = (2 × 1400) / (80 × 79) = 0.44

The second approach for calculating τ with tied observations should be used when
a and b do not have the same number of states (r ≠ c). The formula for τc uses the
minimum number of states in either a or b, min(r, c):

(5.7)
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The significance of Kendall’s τ is tested by reference to the null hypothesis
H0: r = 0 (i.e. independence of the two descriptors). A test statistic is obtained by
transforming τ into z (or t∞) using the following formula (Kendall, 1948):

(5.8)

When n ≥  30, the second term of eq. 5.8 becomes negligible (at n = 30, the value of
this term is only 0.0178). For n ≥ 10, the sampling distribution of τ is almost the same
as the normal distribution, so that H0 is tested using a table of z. Since z tables are one-
tailed, the z statistic of eq. 5.8 may be used directly for one-tailed tests by comparing it
to the value zα read in the table. For two-tailed tests, the statistic is compared to the
value zα/2 from the z table. When n < 10, which is seldom the case in ecology, one
should refer to Table B, at the end of this book. Table B gives the critical values of τα
for 4 ≤ n ≤ 50 (one-tailed and two-tailed tests).

Spearman’s r provides a better approximation of Pearson’s r when the data are
almost quantitative and there are but a few tied observations, whereas Kendall’s τ does
better when there are many ties. Computing both Spearman’s r and Kendall’s τa on the
same numerical example, above, produced different numerical values (i.e. r = –0.40
versus τa = –0.33). This is because the two coefficients have different underlying
scales, so that their numerical values cannot be directly compared. However, given
their different sampling distributions, they both reject H0 at the same level of
significance. If applied to quantitative data that are meeting all the requirements of
Pearson’s r, both Spearman’s r and Kendall’s τ have power nearly as high (about 91%;
Hotelling & Pabst, 1936) as their parametric equivalent. In all other cases, they are
more powerful than Pearson’s r. This refers to the notion of power of statistical tests: a
test is more powerful than another if it is more likely to detect small deviations from
H0 (i.e. smaller type II error), for constant type I error.

The chief advantage of Kendall’s τ over Spearman’s r, as already mentioned, is that
it can be generalized to a partial correlation coefficient, which cannot be done with
Spearman’s (Siegel, 1956: 214). The formula for a partial τ is:

(5.9)

This formula is algebraically the same as that of first-order partial Pearson r (eq. 4.36)
although, according to Kendall (1948: 103), this would be merely coincidental because
the two formulae are derived using entirely different approaches. The three τ
coefficients on the right-hand side of eq. 5.9 may themselves be partial τ’s, thus
allowing one to control for more than one descriptor (i.e. high order partial correlation
coefficients). It is not possible, however, to test the significance of partial rank
correlation coefficients, because quantities P13, P23, Q13 and Q23 used for computing

z τ 9n n 1–( )
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τ12.3 are not independent, their sum being n(n – 1)/2 instead of n (Kendall, 1948: 122;
Seigel, 1956: 229).

Rank correlation coefficients should not be used in the Q mode, i.e. for comparing
objects instead of descriptors. This is also the case for the Pearson r (Section 7.5). The
reasons for this are the following:

• While physical dimensions disappear when computing correlation coefficients
between variables expressed in different units, the same coefficients computed
between objects have complex and non-interpretable physical dimensions.

• Physical descriptors are usually expressed in somewhat arbitrary units (e.g. mm, cm,
m, or km are all equally correct, in principle). Any arbitrary change in units could
dramatically change the values of correlations computed between objects.

• Descriptors may be standardized first to alleviate these problems but standardization
of quantitative descriptors, before rank-ordering the data within objects, changes the
values along object vectors in a nonmonotonic way. The correlation between two
objects is a function of the values of all the other objects in the data set. 

• Consider species abundance data. At most sampling sites, several species are
represented by a small number of individuals, this number being subject to stochastic
variability. It follows that their ranks, in a given observation unit, may not strictly
correspond to their quantitative importance in the ecosystem. A rank correlation
coefficient computed between observation units would thus have high variance since it
would be computed on many uncertain ranks, giving a preponderant importance to the
many poorly sampled species.

• While the central limit theorem insures that means, variances, covariances, and
correlations converge towards their population values when the number of objects
increases, computing these same parameters in the Q mode is likely to have the
opposite effect since the addition of new variables into the calculations is likely to
change the values of these parameters in a non-trivial way.

The rank correlation coefficients described above measure the correlation for pairs
of descriptors, based on n objects. In contrast, Kendall’s coefficient of concordance W
measures the relationship among several rank-ordered variables for n objects. In
Table 5.1, Kendall’s W is listed as equivalent to the coefficient of multiple linear
correlation R, but the approach is actually quite different.

The analysis is conducted on a table which contains, in each column, the ranks of
the n objects on one of the p descriptors, e.g. Table 5.7. Friedman (1937) has shown

Kendall
coeff. of
concordance
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that, when the number of rows and/or columns is large enough, the following statistic
is approximately distributed as χ2 with ν = n – 1 degrees of freedom:

(5.10)

where Ri is the sum of the ranks for row i. This is Friedman’s statistic for two-way
analysis of variance by ranks. Kendall’s coefficient of concordance (Kendall, 1948) is
a simple transform of Friedman’s X2 statistic:

(5.11)

It can be shown that the following expression is equivalent to eq. 5.11:

(5.12)

Two properties are used to demonstrate the equivalence of eqs. 5.11 and 5.12. The first
one is that

and the second is that the sum of the all Ri values in the table is pn(n + 1)/2.

Coefficient W varies between 0 (no concordance) and 1 (maximum concordance).
Its significance is tested either using eq. 5.11 directly, or after transforming W into the
associated X2 statistic:

X2 = p(n – 1)W

The null hypothesis (H0) subjected to testing is that the row sums Ri are equal or, in
other words, that the p sets of ranks (or the p semiquantitative descriptors) are
independent of one another. The X2 statistic is compared to a  value read in a table
of critical values of χ2, for ν = (n – 1). When X2 is smaller than the critical value 
(i.e. probability larger than α), the null hypothesis that the row sums Ri are equal
cannot be rejected; this leads to the conclusion that the p descriptors are independent
and differ in the way they rank the n objects. On the contrary, X2 ≥  (i.e. probability
smaller than or equal to α) indicates good agreement among the descriptors in the way
they rank the objects. Textbooks of nonparametric statistics provide modified formulae
for X2, for data sets with tied observations.
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Numerical example. Calculation of Kendall’s coefficient of concordance is illustrated using
the numerical example of Table 5.7. Data could be semiquantitative rank scores, or quantitative
descriptors coded into ranks. It is important to note that the n = 6 objects are ranked on each
descriptor (column) separately. The last column gives, for each object i, the sum Ri of its ranks
on the p = 3 descriptors. The Friedman statistic is calculated with eq. 5.10:

Using eq. 5.11, the X2 statistic is transformed into Kendall’s W:

Alternatively, W could have been computed using eq. 5.12:

A table of critical values of χ2 indicates that X2 = 2.43, for ν = 6 – 1 = 5, corresponds to a
probability of ca. 0.80; the probability associated with this X2 statistic is actually 0.787. The
hypothesis (H0) that the row sums Ri are equal cannot be rejected. One concludes that the three
descriptors differ in the way they rank the 6 objects.

Table 5.7 Numerical example. Ranks of six objects on three descriptors, y1, y2, and y3.

Objects Ranks of objects on the three descriptors Row sums

(observation units) y1 y2 y3 Ri

x1 1 1 6 8

x2 6 5 3 14

x3 3 6 2 11

x4 2 4 5 11

x5 5 2 4 11

x6 4 3 1 8

X
2 12

3 6× 6 1+( )
------------------------------- 64 196 121 121 121 64+ + + + +( ) 3 3× 6 1+( )[ ]– 2.429= =

W
2.429

3 6 1–( )
---------------------- 0.162= =

W
12 6.25 12.25 0.25 0.25 0.25 6.25+ + + + +( )×

9 216 6–( )
--------------------------------------------------------------------------------------------------------------------- 0.162= =
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Chapter

6 Multidimensional
qualitative data

6.0 General principles

Ecologists often use variables that are neither quantitative nor ordered (Table 1.2).
Variables of this type may be of physical or biological nature. Examples of qualitative
physical descriptors are the colour, locality, geological substrate, or nature of surface
deposits. Qualitative biological descriptors include the captured or observed species;
the different states of this nonordered descriptor are the different possible species.
Likewise, the presence or absence of a species cannot, in most cases, be analysed as a
quantitative variable; it must be treated as a semiquantitative or qualitative descriptor.
A third group of qualitative descriptors includes the results of classifications — for
example, the biological associations to which the zooplankton of various lakes belong,
or the chemical groups describing soil cores. Such classifications, obtained or not by
clustering (Chapter 8), define qualitative descriptors and, as such, they are amenable to
numerical interpretation (see Chapter 10). 

The present Chapter discusses the analysis of qualitative descriptors; methods
appropriate for bivariate or multivariate analysis are presented. Information theory is
an intuitively appealing way of introducing these methods of analysis. Section 6.1
shows how the amount of information in a qualitative descriptor may be measured.
This paradigm is then used in the following sections.

The comparison of qualitative descriptors is based on contingency tables. In order
to compare pairs of qualitative descriptors, the objects are first allocated to the cells of
a table with two criteria (i.e. the rows and columns). In a two-way contingency table,
the number of rows is equal to the number of states of the first descriptor and the
number of columns to that of the second descriptor. Any cell in the table, at the
intersection of a row and a column, corresponds to one state of each descriptor; the
number of objects with these two states is recorded in this cell. The analysis of two-
way contingency tables is described in Section 6.2. When there are more than two
descriptors, multiway (or multidimensional) contingency tables are constructed as
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extensions of two-way tables. Their analysis is discussed in Section 6.3. Finally,
Section 6.4 deals with the correspondence between descriptors in a contingency table.

Contingency table analysis is the qualitative equivalent of both correlation analysis
and analysis of variance; in the particular case of a two-way contingency table, the
analysis is the equivalent of a one-way ANOVA. It involves the computation of X2 (chi-
square) statistics or related measures, instead of correlation or F statistics. Two types
of null hypotheses (H0) may be tested. The first one is the independence of the two
descriptors, which is the usual null hypothesis in correlation analysis (H0: the
correlation coefficient 

 

ρ = 0 in the statistical population). The second type of
hypothesis is similar to that of the analysis of variance. In a two-way contingency
table, the classification criterion of the analysis of variance corresponds to the states of
one of the descriptors. The null hypothesis says that the distributions of frequencies
among the states of the second descriptor (dependent variable) are the same, among
the groups defined by the states of the first descriptor. In other words, the observations
form a homogeneous group. For example, if the groups (classification criterion) form
the columns whereas the dependent variable is in the rows, H0 states that the frequency
distributions in all columns are the same. These two types of hypotheses require the
calculation of the same expected values and the same test statistics. In multiway tables,
the hypotheses tested are often quite complex because they take into account
interactions among the descriptors (Section 6.3).

Considering species data, the various species observed at a sampling site are the
states of a qualitative multi-state descriptor. Section 6.5 will discuss species diversity
as a measure of dispersion of this qualitative descriptor.

The mathematics used throughout this chapter are quite simple and require no prior
knowledge other than the intuitive notion of probability. Readers interested in
applications only may skip Section 6.1 and come back to it when necessary. To
simplify the notation, the following conventions are followed throughout this chapter.
When a single descriptor is considered, this descriptor is called a and its states have
subscripts i going from 1 to q, as in Fig. 1.1. In two-way contingency tables, the
descriptors are called a and b. The states of a are denoted ai with subscripts i varying
from 1 to r (number of rows), while the states of b are denoted bj with subscripts j
varying from 1 to c (number of columns).

6.1 Information and entropy

Chapters 1 and 2 have shown that the ecological information available about the
objects under study is usually (or may be reformulated as) a set of biological and/or
physical characteristics, which correspond to as many descriptors. Searching for
groups of descriptors that behave similarly across the set of objects, or that may be
used to forecast one another (R analysis, Section 7.1), requires measuring the amount
of information that these descriptors have in common. In the simplest case of two

ANOVA

hypothesis

Correlation
hypothesis
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descriptors a and b (called y1 and y2 in previous chapters), one must assess how much
information is provided by the distribution of the objects among the states of a, that
could be used to forecast their distribution among the states of b. This approach is
central to the analysis of relationships among ecological phenomena.

In 1968, Ludwig von Bertalanffy wrote, in his General System Theory (p. 32):
“Thus, there exist models, principles, and laws that apply to generalized systems or
their subclasses, irrespective of their particular kind, the nature of their component
elements, and the relations or ‘forces’ between them”. This is the case with
information, which can be viewed and measured in the same manner for all systems.
Some authors, including Pielou (1975), think that the concepts derived from
information theory are, in ecology, a model and not a homology. Notwithstanding this
opinion, the following sections will discuss how to measure information for biological
descriptors in terms of information to be acquired, because such a presentation
provides a better understanding of the nature of information in ecological systems.

The problem thus consists in measuring the amount of information contained in
each descriptor and, further, the amount of information that two (or several)
descriptors have in common. If, for example, two descriptors share 100% of their
information, then they obviously carry the same information. Since descriptors are
constructed so as to partition the objects under study into a number of states, two
descriptors have 100% of their information in common when they partition a set of
objects in exactly the same way, i.e. into two equal and corresponding sets of states.
When descriptors are qualitative, this correspondence does not need to follow any
ordering of the states of the two descriptors. For ordered descriptors, the ordering of
the correspondence between states is important and the techniques for analysing the
information in common belong to correlation analysis (Chapters 4 and 5).

The mathematical theory of information is based on the concept of entropy. Its
mathematical formulation was developed by Shannon (Bell Laboratories) who
proposed, in 1948, the well-known equation:

(6.1)

where H is a measure of the uncertainty or choice associated with a frequency
distribution (vector) p; pi is the probability that an observation belongs to state i of the
descriptor (Fig. 1.1). In practice, pi is the proportion (or relative frequency, on a 0-1
scale) of observations in state i. Shannon recognized that his equation is similar to the
equation of entropy, published in 1898 by the physicist Boltzmann as a quantitative
formulation of the second law of thermodynamics, which concerns the degree of
disorganization in closed physical systems. He thus concluded that H corresponds to
the entropy of information systems.

Entropy

H pi  pilog
i 1=

q

∑–=
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Note that the entropy of information theory is actually the negative entropy of
physicists. In thermodynamics, an increase in entropy corresponds to an increase in
disorder, which is accompanied by a decrease of information. Strictly speaking,
information is negative entropy and it is only for convenience that it is simply called
entropy. In information theory, entropy and information are taken as synonymous.

Numerical example. In order to facilitate the understanding of the presentation up to
Section 6.4, a small numerical example will be used in which 120 objects are described by two
descriptors (a and b) with 4 states each. The question is to determine to what extent one
descriptor can be used to forecast the other. The data in the numerical example could be, for
example, the benthos sampled at 120 sites of an estuary, or the trees observed in 120 vegetation
quadrats. Descriptor a might be the dominant species at each sampling site and descriptor b,
some environmental variable with 4 states. The following discussion is valid for any type of
qualitative descriptor and also for ordered descriptors divided into classes.

Assume that the 120 observations are distributed as 60, 30, 15 and 15 among the 4 states of
descriptor a and that there are 30 observations in each of the 4 states of descriptor b. The states
of the observations (objects), for the two descriptors combined, are given in Table 6.1.

For each descriptor, the probability of a state is estimated by the relative frequency with
which the state is found in the set of observations. Thus, the probability distributions associated
with descriptors a and b are:

a1: 60 p(a1) = 1/2 b1: 30 p(b1) = 1/4
a2: 30 p(a2) = 1/4 b2: 30 p(b2) = 1/4
a3: 15 p(a3) = 1/8 b3: 30 p(b3) = 1/4
a4: 15 p(a4) = 1/8 b4: 30 p(b4) = 1/4

____ ____

120 120

Negative
entropy

Information

Table 6.1 Contingency table (numerical example). Distribution of 120 objects on descriptors a and b.

b1 b2 b3 b4

30 30 30 30

a1 = 60 30 10 15 5

a2 = 30 0 20 0 10

a3 = 15 0 0 0 15

a4 = 15 0 0 15 0



Information and entropy 211

The relative frequency of a given state is the probability of observing that state when taking an
object at random.

Within the framework of information theory, the entropy of a probability
distribution is measured, not in kilograms, metres per second, or other such units, but
in terms of decisions. The measurement of entropy must reflect how difficult it is to
find, among the objects under study, one that has a given state of the descriptor. An
approximate measure of entropy is the average minimum number of binary questions
that are required for assigning each object to its correct state. Thus, the amount of
information which is gained by asking binary questions, and answering them after
observing the objects, is equal to the degree of disorder or uncertainty initially
displayed by the frequency distribution. In this sense, the terms entropy and
information may be used synonymously. A few numerical examples will help
understand this measure.

(1) When all the objects exhibit the same state for a descriptor, everything is known a priori
about the distribution of observations among the different states of the descriptor. There is a
single state in this case; hence, the number of binary questions required to assign a state to an
object is zero (H = 0), which is the minimum value of entropy.

(2) The simplest case of a descriptor with non-null entropy is when there are two states
among which the objects are distributed equally:

In order to assign a state to any given object, a single binary question is necessary, of the type
“Does this object belong to state 1?” If so, state 1 is assigned to the object; if not, the object
belongs to state 2. The entropy associated with the descriptor is thus H = 1.

(3) Applying the above approach to a descriptor with four states among which the objects
are distributed equally, one gets an entropy H = 2 since exactly two binary questions are
required to assign a state to each object:

Set of observations

State  1
p ( a1 )  = 1/2

State  2
p ( a2 )  = 1/2

Binary question

Binary
question

State  2
p ( a2 ) = 1/4

State  1
p ( a1 ) = 1/4

State  3
p ( a3 ) = 1/4

State  4
p ( a4 ) = 1/4

Set of observations

First binary question

Second
binary
question
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This would be the case of descriptor b in the numerical example of Table 6.1.

(4) For an eight-state descriptor with the objects equally distributed among the states, the
binary questions are as follows:

The total entropy of the descriptor is thus:

[3 questions × 8 (1/8 of the objects)] = 3

and, in general, the entropy associated with a descriptor in which the objects are equally
distributed among states is equal to the base 2 logarithm (if the questions are binary) of the
number of states:

log2 1 = 0 log2 8 = 3
log2 2 = 1 log2 16 = 4
log2 4 = 2 etc.

Measuring the entropy from the number of binary questions is strictly equal to the
logarithmic measure only when the number of states is an integer power of 2, or when
the number of observations in the various states is such that binary questions divide
them into equal groups (see the numerical example, below). In all other cases, the
number of binary questions required is slightly larger than log2(number of states),
because binary questions are then a little less efficient than in the previous case
(Table 6.2). Binary questions have been used in the above discussion only to provide
readers with a better understanding of entropy; the true measure is the logarithmic one.
One may refer to Shannon (1948), or a textbook on information theory, for a more
formal discussion of the measure of entropy.

The following example illustrates the relationship between probability and
information. If an ecologist states that water in the Loch Ness is fresh, this is trivial
since the probability of the event is 1 (information content null). If, however, he/she
announces that she/he has captured a specimen of the famous monster, this statement
contains much information because of its low probability (the dynamic aspects of Loch
Ness Monster populations have been discussed by Sheldon & Kerr, 1972, Schneider &
Wallis, 1973, and Rigler, 1982; see also Lehn, 1979, and Lehn & Schroeder, 1981, for
a physical explanation of the Loch Ness and other aquatic monsters). Thus,
information theory deals with a specific technical definition of information, which may

Set of observations

First binary question

Second
binary question

State  6
p ( a6 ) = 1/8

State  5
p ( a5 ) = 1/8

State  3
p ( a3 ) = 1/8

State  2
p ( a2 ) = 1/8

State  4
p ( a4 ) = 1/8

State  8
p ( a8 ) = 1/8

State  7
p ( a7 ) = 1/8

State  1
p ( a1 ) = 1/8

Third
binary question
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not correspond to the intuitive concept. A nontechnical example is that a book should
contain the same amount of information before and after one has read it. From the
information theory point of view, however, after one has read the book once, there is
no information to be gained the next time he/she reads it (unless she/he has forgotten
part of it after the first reading).

It should be clear, at this point of the discussion, that the entropy of a descriptor depends,
among other characteristics, on the number of its states, among which the entropy is partitioned.
In the case of the above four-state descriptor, for example, 1/4 of the entropy of the descriptor is

Table 6.2 The average minimum number of binary questions required to remove the uncertainty about the
position of an object in the state-vector is equal to log2 (number of states) when the number of
states is an integer power of 2 (in boldface) and the objects are equally distributed among the
states. In all other cases, the number of binary questions is slightly larger than the entropy H. For
example, for a three state descriptor with equal frequencies, the minimum number of binary
questions is (2 questions × 2/3 of the objects) + (1 question × 1/3 of the objects) = 1.66666
binary questions.

Number of states log2(number of states) Average minimum number
of binary questions

1 0.00000 0.00000

2 1.00000 1.00000

3 1.58496 1.66666

4 2.00000 2.00000

5 2.32193 2.40000

6 2.58496 2.66666

7 2.80735 2.85714

8 3.00000 3.00000

9 3.16993 3.22222

10 3.32193 3.40000

11 3.45943 3.54545

12 3.58496 3.66666

13 3.70044 3.76154

14 3.80735 3.85714

15 3.90689 3.93333

16 4.00000 4.00000
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attributed to each state, i.e. [1/4 log2 4], which is equal to [1/4 log2(1/4)-1]. The total entropy of
the descriptor is thus:

The same holds for the example of the eight-state descriptor. The entropy of each state is
[1/8 log2 8] = [1/8 log2(1/8)-1], so that the total entropy of the descriptor is

(5) Descriptor a in the numerical example (Table 6.1) illustrates the case of a descriptor for
which the objects are not equally distributed among states. The probability distribution is [1/2,
1/4, 1/8, 1/8], which corresponds to the following scheme of binary questions:

When the objects are not distributed evenly among the states, the amount of information one has
a priori is higher than in the case of an even distribution, so that the information to be acquired
by actual observation of the objects (i.e. the entropy) decreases. It follows that the entropy of the
above descriptor should be H < 2, which is the maximum entropy for a four-state descriptor.
Using binary questions, it is more economical to isolate half of the objects with the first
question, then half of the remaining objects with the second question, and use a third question
for the last two groups of 1/8 of the objects (see above). Since half of the objects require one
question, 1/4 require 2, and the two groups of 1/8 require 3, the total entropy of this descriptor is:

H(a) = (1/2 × 1) + (1/4 × 2) + (1/8 × 3) + (1/8 × 3) = 1.75

As in the previous examples, this is equal to:

H(a) = 1/2 1og2 2 + 1/4 1og2 4 + 1/8 1og2 8 + 1/8 1og2 8

H(a) = 1/2 1og2 (1/2)–1 + 1/4 1og2 (1/4)–1 + 1/8 1og2 (1/8)–1 + 1/8 1og2 (1/8)–1

Following the law of exponents for logarithms, exponent –1 is eliminated by writing the
equation as:

H 1 4⁄( ) log2 1 4⁄( ) 1–

4 states
∑=

H 1 8⁄( ) log2 1 8⁄( ) 1–

8 states
∑=

State  1
p ( a1 ) = 1/2

Set of observations

State  2
p ( a2 ) = 1/4

State  3
p ( a3 ) = 1/8

State  4
p ( a4 ) = 1/8

First binary question

Second binary question

Third binary question

H a( ) p i( )  log2 p i( )[ ] 1–

all states
∑=

H a( ) p i( ) log2p i( )
all states

∑–=
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This is exactly Shannon's formula for entropy (eq. 6.1). When the base for the logarithms is 2,
the model is that of binary questions and the unit of entropy is the bit or hartley (Pinty &
Gaultier, 1971). The model may be reformulated using questions with 10 answers, in which case
the base of the logarithms is 10 and the unit is the decit. For natural logarithms, the unit is the
nat (Pielou, 1975). These units are dimensionless, as are angles for example (Chapter 3). 

Equation 6.1 may be applied to human communications, to calculate the
information content of strings of symbols. For example, in a system of numbers with
base n, there are nN possible numbers containing N digits (in a base-10 system, there
are 102 = 100 numbers containing 2 digits, i.e. the numbers 00 to 99). It follows that
the information content of a number with N digits is:

H = log2 nN = N log2 n

The information per symbol (digit) is thus:

H/N = log2 n (6.2)

In the case of a binary (base 2) number, the information per symbol is log2 2 = 1 bit;
for a decimal (base 10) number, it is log2 10 = 3.32 bits. A decimal digit contains 3.32
bits of information so that, consequently, a binary representation requires on average
3.32 times more digits than a decimal representation of the same number.

For an alphabet possessing 27 symbols (26 letters and the blank space), the
information per symbol is log2 27 = 4.76 bits, assuming that all symbols have the same
frequency. In languages such as English and French, each letter has a frequency of its
own, so that the information per symbol is less than 4.76 bits. The information per
letter is 4.03 bits in English and 3.95 bits in French. Hence, the translation from French
to English should entail shorter text, which is generally the case.

Each language is characterized by a number of properties, such as the frequencies
of letters, groups of letters, etc. These statistical properties, together with a defined
syntax, determine a particular structure. For a given alphabet, the specific constraints
of a language limit the number of messages which can actually be formulated. Thus,
the number of lexical elements with 4, 5 or 6 letters is much smaller than the
theoretical possible number (Table 6.3). This difference arises from the fact that every
language contains a certain amount of information that is inherently embodied in its
structure, which is termed redundancy. Without redundancy it would be impossible to
detect errors slipping into communications, since any possible group of symbols
would have some meaning.

In a language with n different symbols, each having a characteristic frequency
(N1, N2 … Nn), the total number of possible messages (P) made up of N symbols is
equal to the number of combinations:

P = N! / (N1! N2! … Nn!)

Bit
Hartley
Decit
Nat

Communi-
cation

Alphabet

English
French
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The information content of a message with N symbols is:

H = log2 P = log 2[N! / (N1! N2! … Nn!)]

Hence, the information per symbol is:

H/N = 1/N log 2[N! / (N1! N2! … Nn!)] (6.3)

which is the formula of Brillouin (1956). It will used later (Section 6.5) to calculate the
species diversity of a sample, considered as representing a “message”.

6.2 Two-way contingency tables

In order to compare two qualitative descriptors, the objects are allocated to the cells of
a table with two criteria (i.e. the rows and columns). Each cell of a two-way
contingency table (e.g. Tables 6.1 and 6.4) contains the number of observations with
the corresponding pair of states of the qualitative descriptors. Numbers in the cells of a
contingency table are absolute frequencies, i.e. not relative frequencies. The number of
cells in the table is equal to the product of the number of states in the two descriptors.
The first question relative to a contingency table concerns the relationship between the
two descriptors: given the bivariate distribution of observations in the table, are the
two descriptors related to each other, or not? This question is answered by calculating
the expected frequency E for each cell of the table, according to a null hypothesis H0,
and performing a chi-square (X2) test of the null hypothesis.

The simplest null hypothesis is that of independence of the two descriptors. Eij is
the number of observations that is expected in each cell (i, j) under H0. Under this null
hypothesis, Eij is computed as the product of the marginal totals (i.e. the product of the

Table 6.3 Redundancy in the French language. Number of lexical elements with 4 to 6 letters (from
Bourbeau et al., 1984).

Number of letters Possible number of Actual number of lexical
lexical elements elements in French

4 264 ≈ 457 000 3 558

5 265 ≈ 12 000 000 11 351

6 266 ≈ 300 000 000 24 800

Null
hypothesis
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sum of row i with the sum of column j), divided by n which is the total number of
observations in the table:

E = [(row sum) × (column sum)] / n (6.4)

This equation generates expected frequencies whose relative distribution across the
states of descriptor a, within each state of descriptor b, is the same as the distribution
of all observed data across the states of a, and conversely (Table 6.4). The null
hypothesis is tested using a X2 statistic which compares the observed (Oij) to the
expected frequencies (Eij).

In textbooks of basic statistics, the significance of relationships in two-way
contingency tables is often tested using Pearson chi-square statistic (Pearson, 1900):

(6.5)

where (O – E) measures the contingency of each cell. Instead of , it is possible to
compute Wilks’ likelihood ratio (1935), also known as the G or 2I statistic (Sokal &
Rohlf, 1995) or G2 (Bishop et al., 1975; Dixon, 1981):

(6.6)

where ln is the natural logarithm. For null frequencies,  = 0.

Table 6.4 Contingency table giving the observed (from Table 6.1) and expected (in parentheses)
frequencies in each cell; n = 120. The observed frequencies that exceed the corresponding
expectations are in boldface. Wilks’ chi-square statistic:  = 150.7 (ν = 9, p < 0.001).

b1 b2 b3 b4

30 30 30 30

a1 = 60 30 (15) 10 (15) 15 (15) 5 (15)

a2 = 30 0 (7.5) 20 (7.5) 0 (7.5) 10 (7.5)

a3 = 15 0 (3.75) 0 (3.75) 0 (3.75) 15 (3.75)

a4 = 15 0 (3.75) 0 (3.75) 15 (3.75) 0 (3.75)

XW
2

Expected
frequency

Pearson
chi-square

XP
2 O E–( ) 2

E
-----------------------

all cells
∑=

XP
2

Wilks
chi-square

XW
2

2 O ln
O
E
---- 

 

all cells
∑=

O ln O E⁄( )[ ]
O 0→
lim



218 Multidimensional qualitative data

For a contingency table with r rows and c columns, the number of degrees of
freedom used to determine the probability of accepting H0, using a χ2 table, is:

ν = (r – 1)(c – 1) (6.7)

When this probability is lower than a predetermined significance level, for example
α = 0.05, the null hypothesis (H0) of independence of the two descriptors is rejected.

When the number of observations (n) is large (i.e. larger than ten times the number
of cells, rc, in the table), the asymptotic distributions of  and  are χ2. In other
words, the two statistics are equivalent, when H0 is true. There is however a problem
when the number of observations is small, i.e. less than five times the number of cells.
Small numbers of observations often lead to several null observed values (Oij) in the
contingency table, with correspondingly very low expected frequencies (Eij).
According to Cochran (1954) and Siegel (1956), when there is one value of Eij  smaller
than 1, or when 20% or more of the expected values Eij are smaller than 5, some states
(rows or columns) must be grouped to increase the expected frequencies, provided that
there is a logical basis to do so. It now appears that this empirical rule concerning
expected frequencies is too conservative. Fienberg (1980, p. 172) cites results of
simulations that lead to believe that, for α = 0.05, the computed statistic is distributed
like χ2 (if H0 is true) as long as all Eij values are larger than 1.

Concerning the choice of  or , there is no difference when the number of
observations n is large (see the previous paragraph). When n is small, Larntz (1978) is
of the opinion that  is better than . Sokal & Rohlf (1995) recommend using 
but suggest to correct it as proposed by Williams (1976) to obtain a better
approximation of χ2. This correction consists in dividing  by a correction factor
qmin. The correction factor, which is based on eq. 6.7, is computed as:

qmin = 1 + [(r2 – 1)(c2 – 1)/6νn] (6.8)

When n is large relative to the number of cells in the contingency table, it is not
necessary to apply a correction to  since qmin ≈ 1 in that case. William’s correction
is especially interesting when one must use , as in the study of multiway
contingency tables; the general formula for qmin is given in Subsection 6.3. Several
computer programs allow users to compute both  and . 

Another correction, available in some computer programs, consists in adding a
small value (e.g. 0.5) to each observed value Oij in the contingency table, when some
of the Oij’s are small. As indicated by Dixon (1981) and Sokal & Rohlf (1995), the
effect of this correction is to lower the X2 statistic, which makes the test more
conservative. H0 may then be rejected in a proportion of cases smaller than α, when
the null hypothesis is true.

Another measure of interest to ecologists, which is related to the Wilks statistic (see
below), refers to the concept of entropy (or information) discussed above. In the
numerical example (Tables 6.1 and 6.4), if the correspondence between the states of
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descriptors a and b was perfect (i.e. descriptors completely dependent of each other),
the contingency table would only have four non-zero cells — one in each row and each
column. It would then be possible, using a, to perfectly predict the distribution of the
observations among the states of b, and vice versa. In other words, given one state of
the first descriptor, one would immediately know the state of the other descriptor.
Thus, there would be no uncertainty (or entropy) concerning the distribution of the
objects on b, after observing a, so that the entropy remaining in b after observing a
would be null, i.e. H(b|a) = 0. On the contrary, if the descriptors were completely
independent, the distribution of observations in each row of descriptor a would be in
the same proportions as their overall distribution in b (found at top of Tables 6.1 and
6.4); the same would be true for the columns. H(b|a) = H(b) would indicate that all the
entropy contained in the distribution of b remains after observing a.

The two conditional entropies H(a|b) and H(b|a), as well as the entropy shared by
the two descriptors, can be computed using the total information H(a,b) and the
information of each descriptor, H(a) and H(b), already computed in Section 6.1.
H(a,b) is computed on all the observed frequencies in the contingency table, using
Shannon’s formula (eq. 6.1):

(6.9)

where p(i,j) is the observed frequency in each cell (i,j) of the contingency table,
divided by the total number of observations n. For the example (Tables 6.1 or 6.4):

H(a,b) = – {1/4 log2 (1/4) + 1/6 log2 (1/6) + 3 [1/8 log2 (1/8)] + 2 [1/12 log2 (1/12)]

 + 1/24 log2 (1/24)} = 2.84

H(b) = A + B and H(a) = B + C, represented by circles in the Venne diagram below,
have been computed in Section 6.1. H(a,b) is the total information in the union of the
two descriptors, A + B + C. The information (B) shared by the two descriptors is
computed as:

B = (A + B) + (B + C) – (A + B + C)

B = H(b) + H(a) – H(a,b) (6.10)

B = 2.00 + 1.75 – 2.84 = 0.91 

H a b( , ) p i,j( )  log p i,j( )
statesofb

∑
statesofa  ∑–=

A
1.09

B
0.91

C
0.84

Information
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The information exclusive to each descriptor, A and C, is computed by subtraction:

A = (A + B + C) – (B + C)

A = H(b|a) = H(a,b) – H(a) (6.11)

A = 2.84 – 1.75 = 1.09 

and C = (A + B + C) – (A + B)

C = H(a|b) = H(a,b) – H(b) (6.12)

C = 2.84 – 2.00 = 0.84

There is a relationship between the reciprocal information B and Wilks’ 
statistic. It can be shown that B = (1/n)

 

∑ O ln(O/E) when B is computed with natural
logarithms (ln), or else B ln 2 = (1/n)

 

∑ O ln(O/E) when B is in bits. Using these
relationships, it is possible to calculate the probability associated with B after
transforming B into a X2 statistic:

  = 2nB     (when B is in nats) (6.13)

 = 2nB ln 2 = nB ln 4 = 1.38629 nB     (when B is in bits) (6.14)

Using the measures of information A, B and C, various coefficients of reciprocal
information may be computed. The similarity of descriptors a and b can be calculated
as the amount of information that the two descriptors have in common, divided by the
total information of the system:

S(a,b) = B / (A + B + C) (6.15)

S(a,b) = 0.91 / 2.84 = 0.32, for the numerical example.

If the following steps of the analysis (clustering and ordination, Chapters 8 and 9)
require that the measure of association between a and b be a metric, one may use the
corresponding distance, defined as the sum of the information that the two descriptors
possess independently, divided by the total information:

D(a,b) = (A + C) / (A + B + C) (6.16)

D(a,b) = (1.09 + 0.84) / 2.84 = 0.68, for the numerical example.

Obviously, S(a,b) + D(a,b) = 1.

The measure of distance in eq. 6.16 is Rajski’s metric (1961). This author has
proposed another measure of similarity among descriptors, the coherence coefficient,
which is used to assess the stochastic independence of two random variables:

(6.17)
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Another version of this coefficient,

S  = B / (A + 2B + C) (6.18)

is available in some computer programs under the name symmetric uncertainty
coefficient. Two asymmetric uncertainty coefficients have also been proposed. They are
used, for example, to compare the explanatory power of a descriptor with respect to
several other descriptors:  B / (A + B) controls for the total amount of information in b,
whereas B / (B + C) controls for the total information in a.

The construction of an association matrix, containing any of the symmetric forms
of coefficient described above, requires calculating p(p – 1)/2 contingency tables; this
matrix is symmetric and its diagonal is S = 1 or D = 0. Qualitative (nonordered)
descriptors can thus be used to compute quantitative association coefficients, thus
leading to numerical analysis of multivariate qualitative data sets. Furthermore, since
quantitative or semiquantitative descriptors can be recoded into discrete states, it is
possible, using uncertainty coefficients, to compute association matrices among
descriptors of mixed types.

It is only through B, as discussed above, that a probability can be associated to the
various uncertainty coefficients. For coefficient S above, one can state in very general
terms that two descriptors are very closely related when S(a,b) > 0.5; they are well
associated when 0.5 > S > 0.3; and some association exists when S < 0.3 without
coming too close to 0 (Hawksworth et al., 1968).

The probability associated with a X2 statistic, calculated on a contingency table,
assesses the hypothesis that the relationship between the two descriptors is random.
Biological associations, for example, could be defined on the basis of relationships
found to be non-random between pairs of species — the relationship being defined by
reference to a pre-selected probability level (e.g. α = 0.05 or 0.01) associated with the
X2 measuring the contingency between two species (Section 7.5). The value of X2 may
itself be used as a measure of the strength of the relationship between species. This is
also the case for the reciprocal information measures defined above. With the same
purpose in mind, it is possible to use one of the following contingency coefficients,
which are merely transformations of a X2 statistic on a scale from 0 to 1 (Kendall &
Buckland, 1960; Morice, 1968):

Pearson contingency coefficient, (6.19)

Tschuproff contingency coefficient, (6.20)

where n is the number of observations. These contingency coefficients are not
frequently used in ecology, however. They can only be used for comparing
contingency tables of the same size.
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Contingency tables are the main approach available to ecologists for the numerical
analysis of relationships among qualitative descriptors, or else between qualitative
descriptors and ordered variables divided into classes. Contingency tables are also
convenient for analysing nonmonotonic relationships among ordered descriptors (a
relationship is monotonic when there is a constant evolution of one descriptor with
respect to the other; see Fig. 5.1). Reciprocal information and X2 coefficients are
sensitive enough that they could be used even with ordered variables, when
relationships among a large number of descriptors are analysed by computer. One must
simply make sure that the ordered data are divided into a sufficiently large number of
classes to avoid clumping together observations that one would want to keep distinct in
the results. If a first analysis indicates that redefining the boundaries of the classes
could improve the interpretation of the phenomenon under study (the classes used to
recode quantitative variables do not need to have the same width), ecologists should
not hesitate to repeat the analysis using the recoded data. Far from being circular, this
process corresponds to a progressive discovery of the structure of the information.

It is also possible to use the association coefficients described above to interpret the
classifications or ordinations resulting from a first analysis of the data (Chapters 8 and
9). A classification may be compared to the descriptors from which it originates, in
order to determine which descriptors are mostly responsible for it; or else, it may be
compared to a new series of descriptors that could potentially explain it. Finally, one
may use contingency tables to compare several classifications of the same objects,
obtained through different methods. Chapter 10 deals with these higher-level analyses.

Ecological application  6.2

Legendre et al. (1978) analysed data from a winter aerial survey of land fauna, using
contingency tables. They compared the presence or absence of tracks of different species to a
series of 11 environmental descriptors. Five of these descriptors were qualitative, i.e. bioclimatic
region, plant association, nature of the dominant and sub-dominant surface materials, and
category of aquatic ecosystem. The others were semiquantitative, i.e. height of the trees,
drainage, topography, thickness of the surface materials, abundance of streams and wetlands.
The analysis identified the descriptors that determined or limited the presence of the 10 species
that had been observed with sufficient frequency to permit their analysis. This allowed the
authors to describe the niche of the 10 species.

6.3 Multiway contingency tables

When there are more than two descriptors, one might consider the possibility of
analysing the data set using a series of two-way contingency tables, in which each pair
of descriptors would be treated separately. Such an approach, however, would not take
into account possible interactions among several descriptors and might thus miss part
of the potential offered by the multidimensional structure of the data. This could lead
to incorrect, or at least incomplete conclusions. Information on the analysis of
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multiway contingency tables can be found in Kullback (1959), Plackett (1974), Bishop
et al. (1975), Upton (1978), Gokhale & Kullback (1978), Fienberg (1980) and Sokal &
Rohlf (1995).

The most usual approach for analysing multiway contingency tables is to adjust to
the data a log-linear model, where the natural logarithm (ln) of the expected frequency
E for each cell of the table is estimated as a sum of main effects and interactions. For
example, in the case of two-way contingency tables (Section 6.2), the expected
frequencies could have been computed using the following equation:

ln E = [θ] + [A] + [B] + [AB] (6.21)

Symbols in brackets are the effects. [A] and [B] are the main effects of descriptors a
and b, respectively, and [AB] is the effect resulting from the interaction between a and
b. [θ] is the mean of the logarithms of the expected frequencies. In a two-way table,
the hypothesis tested is that of independence between the two descriptors,
i.e. H0: [AB] = 0. The log-linear model corresponding to this hypothesis is thus:

ln E = [θ] + [A] + [B] (6.22)

since [AB] = 0. The expected frequencies E computed using eq. 6.22 are exactly the
same as those computed in Section 6.2 (eq. 6.4). The advantage of log-linear models
becomes obvious when analysing contingency tables with more than two dimensions
(or criteria).

For a contingency table with three descriptors (a, b, and c), the log-linear model
containing all possible effects is:

ln E = [θ] + [A] + [B] + [C] + [AB] + [AC] + [BC] + [ABC]

Such a model is referred to as the saturated model. In practice, the effect resulting
from the interaction among all descriptors is never included in any log-linear model,
i.e. here [ABC]. This is because the expected frequencies for the saturated model are
always equal to the observed frequencies (E = O), so that this model is useless. The
general log-linear model for a three-way table is thus:

ln E = [θ] + [A] + [B] + [C] + [AB] + [AC] + [BC] (6.23)

where H0: [ABC] = 0. In other words, the logarithm of the expected frequency for
each cell of the contingency table is computed here by adding, to the mean of the
logarithms of the expected frequencies, one effect due to each of the three descriptors
and one effect resulting from each of their two-way interactions.

Different log-linear models may be formulated by setting some of the effects equal
to zero. Normally, one only considers hierarchical models, i.e. models in which the
presence of a higher-order effect implies that all the corresponding lower effects are
also included; the order of an effect is the number of symbols in the bracket. For
example, in a hierarchical model, including [BC] implies that both [B] and [C] are also

Log-linear
model
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Hierarchical
model
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included. For a three-way contingency table, there are eight possible hierarchical
models, corresponding to as many different hypotheses (Table 6.5). Models in the
Table all include the three main effects. Each hypothesis corresponds to different types
of interaction among the three variables. Methods for calculating the expected
frequencies E are detailed in the general references cited above. In practice, one uses a
program available in a computer package (e.g. BMDP4F, or FUNCAT in SAS), with
which it is easy to estimate the expected frequencies for any hierarchical model
defined by the user.

The number of degrees of freedom (ν) depends on the interactions which are
included in the model. For the general hierarchical model of eq. 6.23,

ν = rst–[1 + (r – 1)+(s – 1)+(t – 1)+(r – 1)(s – 1)+(r – 1)(t – 1)+(s – 1)(t – 1)] (6.24)

where r, s and t are the numbers of states of descriptors a, b and c, respectively. If there
were only two descriptors, a and b, the log-linear model would not include the
interaction [AB], so that eq. 6.24 would become:

ν = rs – [1 + (r – 1) + (s – 1)] = (r – 1)(s – 1)

which is identical to eq. 6.7. In Table 6.5, model 4, for example, does not include the
interaction [BC], so that:

ν = rst – [1 + (r – 1) + (s – 1) + (t – 1) + (r – 1)(s – 1) + (r – 1)(t – 1)]

Table 6.5 Possible log-linear models for a three-way contingency table. Hypotheses and corresponding
models. All models include the three main effects.

Hypotheses (H0) Log-linear models

1.[ABC] = 0 ln E = [θ] + [A] + [B] + [C] + [AB] + [AC] + [BC]

2.[ABC] = 0, [AB] = 0 ln E = [θ] + [A] + [B] + [C] + [AC] + [BC] 

3.[ABC] = 0, [AC] = 0 ln E = [θ] + [A] + [B] + [C] + [AB] + [BC] 

4.[ABC] = 0, [BC] = 0 ln E = [θ] + [A] + [B] + [C] + [AB] + [AC] 

5.[ABC] = 0, [AB] = 0, [AC] = 0 ln E = [θ] + [A] + [B] + [C] + [BC]

6.[ABC] = 0, [AB] = 0, [BC] = 0 ln E = [θ] + [A] + [B] + [C] + [AC]

7.[ABC] = 0, [AC] = 0, [BC] = 0 ln E = [θ] + [A] + [B] + [C] + [AB]

8.[ABC] = 0, [AB] = 0, [AC] = 0, [BC] = 0 ln E = [θ] + [A] + [B] + [C]
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Programs in computer packages calculate the number of degrees of freedom
corresponding to each model.

It is possible to test the goodness of fit of a given model to the observed data by
using one of the X2 statistics already described for two-way tables,  or 
(eqs. 6.5 and 6.6). The null hypothesis (H0) tested is that the effects excluded from the
model are null. Rejecting H0, however, does not allow one to accept the alternative
hypothesis that all the effects included in the model are not null. The only conclusion
to be drawn from rejecting H0 is that at least some of the effects in the model are not
null. When the probability of a model is larger than the significance level α, the
conclusion is that the model fits the data well.

As in the case of two-way contingency tables (eq. 6.8), it is recommended to divide
 by a correction factor, qmin (Williams, 1976), when the number of observations n

is small, i.e. less than 4 or 5 times the number of cells in the table. For the general
hierarchical model (eqs. 6.23 and 6.24):

qmin = 1 + (1/6νn) [r2s2t2 – 1 – (r2 – 1) – (s2 – 1) – (t2 – 1)

– (r2 – 1)(s2 – 1) – (r2 – 1)(t2 – 1) – (s2 – 1)(t2 – 1)] (6.25)

In the case of two descriptors, eq. 6.25 becomes:

qmin = 1 + (1/6νn) [r2s2 – 1 – (r2 – 1) – (s2 – 1)]

qmin = 1 + (1/6νn) [(r2 – 1)(s2 – 1)

which is identical to eq. 6.8. For model 4 in Table 6.5, used above as example:

qmin = 1 + (1/6νn) [r2s2t2 – 1 – (r2 – 1) – (s2 – 1) – (t2 – 1)

– (r2 – 1)(s2 – 1) – (r2 – 1)(t2 – 1)]

This correction cannot be applied, as such, to contingency tables containing null
expected frequencies (see below). The other possible correction, which consists in
adding to each cell of the table a small value, e.g. 0.5, has the same effect here as in
two-way contingency tables (see Section 6.2).

Ecological application  6.3a

Legendre (1987a) analysed biological oceanographic data obtained at 157 sites in Baie des
Chaleurs (Gulf of St. Lawrence, eastern Canada). The data set (observations made at 5-m depth)
included measurements of temperature, salinity, nutrients (phosphate and nitrate), and
chlorophyll a (estimated from the in vivo fluorescence of water pumped on board the ship). As it
often happens in ecology, the numerical analysis was hampered by three practical problems.
(1) The measured concentrations of nutrients were often near or below the detection limit, with
the result that many of them exhibited large experimental errors. (2) Relationships between
variables were often nonmonotonic, i.e. they did not continuously increase or decrease but
reached a maximum (or a minimum) after which they decreased (or increased). (3) Most of the
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variables were intercorrelated, so that no straightforward interpretation of phytoplankton
(i.e. chlorophyll a) concentrations was possible in terms of the environmental variables. Since
multiway contingency table analysis can handle these three types of problems, it was decided to
partition the (ordered) variables into discrete classes and analyse the transformed data using
hierarchical log-linear models.

The initial model in Table 6.6 (line 1) only includes the interaction among the three
environmental variables, with no effect of these on chl a. This initial model does not fit the data
well. Adding the interaction between chl a and the temperature-salinity (TS) characteristics
significantly improves the fit (i.e. there is a significant difference between models; line 2). The
resulting model could be accepted (line 3), but adding the interaction between chl a and
phosphate further improves the fit (significant difference, line 4) and the resulting model fits the
data well (line 5). Final addition of the interaction between chl a and nitrate does not improves
the fit (difference not significant, line 6). The most parsimonious model (line 5) thus shows a
dependence of chl a concentrations on the TS characteristics and phosphate. The choice of the
initial model, for this example, is explained in Ecological application 6.3b.

There are 8 hierarchical models associated with a three-way contingency table, 113
with a four-way table, and so forth, so that the choice of a single model, among all
those possible, rapidly becomes a major problem. In fact, it often happens that several

Table 6.6 Multiway contingency table analysis of oceanographic data recoded into discrete classes
(Legendre, 1987a). Using a hierarchy of log-linear models, the concentrations of chlorophyll a
(C; 4 classes) are analysed as a function of the temperature-salinity (TS) characteristics of the
water masses (symbol in this Table: T; 3 classes) and the concentrations of phosphate (P; 2
classes) and nitrate (N; 2 classes). When a higher-order effect is present, all the corresponding
lower-order effects are included in the model.

Effects in the model Interpretation ν 

[NTP], [C] Chl a is independent of the environmental variables 30 121 *

Difference Adding [CT] to the model significantly improves the fit 9 89 *

[NTP], [CT] Chl a depends on the TS characteristics 21 32

Difference Adding [CP] to the model significantly improves the fit 3 13 *

[NTP], [CT], [CP] Chl a depends on the TS characteristics and on phosphate 18 19

Difference Adding [CN] does not significantly improve the fit 7 5

[NTP], [CT], [CP], [CN] The most parsimonious model does not include a 11 14

dependence of chl a on nitrate

* p ≤ 0.05; bold  values correspond to models with p > 0.05 of fitting the data
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models could fit the data well. Also, in many instances, the fit to the data could be
improved by adding supplementary terms (i.e. effects) to the model. However, this
improved fit would result in a more complex ecological interpretation because of the
added interaction(s) among descriptors. It follows that the choice of a model generally
involves a compromise between goodness of fit and simplicity of interpretation.
Finally, even if it was possible to test the fit of all possible models to the data, this
would not be an acceptable approach since these tests would not be independent. One
must therefore use some other strategy to choose the “best” model.

There are several methods to select a model which are both statistically acceptable
and ecologically parsimonious. These methods are described in the general references
mentioned at the beginning of this Section. In practice, since none of the methods is
totally satisfactory, one could simply use, with care, those included in the available
computer package.

1) A first method consists in partitioning the  statistics associated with a
hierarchy of log-linear models. The hierarchy contains a series of models, which are
made progressively simpler (or more complex) by removing (or adding) one effect at a
time. It can be shown that the difference between the statistics of two successive
models in the hierarchy is itself a  statistic, which can therefore be tested. The
corresponding number of degrees of freedom is the difference between those of the
two models. The approach is illustrated using Ecological application 6.3a (Table 6.6).
The initial model (line 1) does not fit the data well. The difference (line 2) between it
and the next model is significant, but the second model in the hierarchy (line 3) still
does not fit the data very well. The difference (line 4) between the second and third
models is significant and the resulting model (line 5) fits the data well. The difference
(line 6) between the third model and the next one being non-significant, the most
parsimonious model in the hierarchy is that on line 5. The main problem with this
method is that one may find different “most parsimonious” models depending on the
hierarchy chosen a priori. Partitioning X2 statistics is possible only with , not .

2) A second family of approaches lies in the stepwise forward selection or
backward elimination of terms in the model. As always with stepwise methods (see
Section 10.3), (a) it may happen that forward selection lead to models quite different
from those resulting from backward elimination, and (b) the tests of significance must
be interpreted with caution because the computed statistics are not independent.
Stepwise methods thus only provide guidance, which may be used for limiting the
number of models to be considered. It often happens that models other than those
identified by the stepwise approach are found to be more parsimonious and interesting,
and to fit the data just as well (Fienberg 1980: 80).

3) Other methods simultaneously consider all possible effects. An example of effect
screening (Brown 1976) is given in Dixon (1981). The approach is useful for reducing
the number of models to be subsequently treated, for example, by the method of
hierarchical partitioning of  statistics (see method 1 above).
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When analysing multiway contingency tables, ecologists must be aware of a
number of possible practical problems, which may sometimes have significant impact
on the results. These potential problems concern the cells with zero expected
frequencies, the limits imposed by the sampling design, the simultaneous analysis of
descriptors with mixed levels of precision (i.e. qualitative, semiquantitative, and
quantitative), and the use of contingency tables for the purpose of explanation or
forecasting.

1) Multiway contingency tables, in ecology, often include cells with expected
frequencies E = 0. There are two types of zero expected frequencies, i.e. those
resulting from sampling and those that are of structural nature. 

Sampling zeros are caused by random variation, combined with small sample size
relative to the number of cells in the multiway contingency table. Such zeros would
normally disappear if the size of the sample was increased. The presence of cells with
null observations (O = 0) may result, when calculating specific models, in some
expected frequencies E = 0. This is accompanied by a reduction in the number of
degrees of freedom. For example, according to eq. 6.24, the number of degrees of
freedom for the initial model in Table 6.6 (line 1) should be ν = 33, since this model
includes four main effects [C], [N], [P], and [T] and interactions [NP], [NT], [PT], and
[NPT]; however, the presence of cells with null observations (O = 0) leads to cells with
E = 0, which reduces the number of degrees of freedom to ν = 30. Rules to calculate
the reduction in the number of degrees of freedom are given in Bishop et al. (1975: 116
et seq.) and Dixon (1981: 666). In practice, computer programs generally take into
account the presence of zero expected frequencies when computing the number of
degrees of freedom for multiway tables. The problem does not occur with two-way
contingency tables because cells with E = 0 are only possible, in the two-way
configuration, if all the observations in the corresponding row or column are null, in
which case the corresponding state is automatically removed from the table.

Structural zeros correspond to combinations of states that cannot occur a priori or
by design. For example, in a study where two of the descriptors are sex (female, male)
and sexual maturity (immature, mature, gravid), the expected frequency of the cell
“gravid male” would a priori be E = 0. Another example would be combinations of
states which have not been sampled, either by design or involuntarily (e.g. lack of
time, or inadequate planning). Several computer programs allow users to specify the
cells which contain structural zeros, before computing the expected frequencies.

2) In principle, the methods described here for multiway contingency tables can
only be applied to data resulting from simple random sampling or stratified sampling
designs. Fienberg (1980: 32) gives some references in which methods are described
for analysing qualitative descriptors within the context of nested sampling or a
combination of stratified and nested sampling designs. Sampling designs are described
in Cochran (1977), Green (1979), and Thompson (1992), for example.

Cells with
E = 0
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3) Analysing together descriptors with mixed levels of precision (e.g. a mixture of
qualitative, semiquantitative, and quantitative descriptors) may be done using
multiway contingency tables. In order to do so, continuous descriptors must first be
partitioned into a small number of classes. Unfortunately, there exists no general
approach to do so. When there is no specific reason for setting the class limits, it has
been suggested, for example, to partition continuous descriptors into classes of equal
width, or containing an equal number of observations. Alternatively, Cox (1957)
describes a method which may be used for partitioning a normally distributed
descriptor into a predetermined number of classes (2 to 6). For the specific case
discussed in the next paragraph, where there is one response variable and several
explanatory variables, Legendre & Legendre (1983b) describe a method for
partitioning the ordered explanatory variables into classes in such a way as to
maximize the relationships to the response variable. It is important to be aware that,
when analysing the contingency table, different ways of partitioning continuous
descriptors may sometimes lead to different conclusions. In practice, the number of
classes of each descriptor should be as small as possible, in order to minimize the
problems discussed above concerning the calculation of  (see eqs. 6.8 ad 6.25 for
correction factor qmin) and the presence of sampling zeros. Another point is that
contingency table analysis considers the different states of any descriptor to be
nonordered. When some of the descriptors are in fact ordered (i.e. originally
semiquantitative or quantitative), the information pertaining to the ordering of states
may be used when adjusting log-linear models (see for example Fienberg 1980: 61 et
seq.).

4) There is an analogy between log-linear models and analysis of variance since
the two approaches use the concepts of effects and interactions. This analogy is
superficial, however, since analysis of variance aims at assessing the effects of
explanatory factors on a single response variable, whereas log-linear models have been
developed to describe structural relationships among several descriptors corresponding
to the dimensions of the table. 

5) It is possible to use contingency table analysis for interpreting a response
variable in terms of several interacting explanatory variables. In such a case, the
following basic rules must be followed. (1) Any log-linear model fitted to the data
must include by design the term for the highest-order interaction among all
explanatory variables. In this way, all possible interactions among the explanatory
variables are included in the model, because of its hierarchical nature. (2) When
interpreting the model, one should not discuss the interactions among the explanatory
variables. They are incorporated in the model for the reason given above, but no test of
significance is performed on them. In any case, one is only interested in the
interactions between the explanatory and response variables. An example follows.

Ecological application  6.3b

The example already discussed in application 6.3a (Legendre, 1987a) aimed at interpreting the
horizontal distribution of phytoplankton in Baie des Chaleurs (Gulf of St. Lawrence, eastern
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Canada), in terms of selected environmental variables. In such a case, where a single response
variable is interpreted as a function of several potentially explanatory variables, all models
considered must include by design the highest-order interaction among the explanatory
variables. Thus, all models in Table 6.6 include the interaction [NPT]. The simplest model in the
hierarchy (line 1 in Table 6.6) is that with effects [NPT] and [C]. In this simplest model, there is
no interaction between chlorophyll and any of the three environmental variables, i.e. the model
does not include [CN], [CP] or [CT]. When interpreting the model selected as best fitting the
data, one should not discuss the interaction among the explanatory variables, because the
presence of [NPT] prevents a proper analysis of this interaction. Table 6.6 then leads to the
interpretation that the horizontal distribution of phytoplankton depends on the TS characteristics
of water masses and on phosphate concentration.

When the qualitative response variable is binary, one may use the logistic linear
(or logit) model instead of the log-linear model. Fitting such a model to data is also
called logistic regression (Subsection 10.3.7). In logistic regression, the explanatory
descriptors do not have to be divided into classes; they may be discrete or continuous.
This type of regression is available in various computer packages and some programs
allow the response variable to be multi-state. Efficient use of logistic regression
requires that all the explanatory descriptors be potentially related to the response
variable. This method may also replace discriminant analysis in cases discussed in
Subsection 10.3.7 and Section 11.6.

There are many cases where multiway contingency tables have been successfully
used in ecology. Examples are found in Fienberg (1970) and Schoener (1970) for the
habitat of lizards, Jenkins (1975) for the selection of trees by beavers, Legendre &
Legendre (1983b) for marine benthos, and Fréchet (1990) for cod fishery.

6.4 Contingency tables: correspondence

Once it has been established that two or more qualitative descriptors in a contingency
table are not independent (Sections 6.2 and 6.3), it is often of interest to identify the
cells of the table that account for the existing relationship between descriptors. These
cells, which show how the descriptors are related, define the correspondence between
the rows and columns of the contingency table. By comparison with parametric and
nonparametric statistics (Chapters 4 and 5), the measures of contingency described in
Sections 6.2 and 6.3 are, for qualitative descriptors, analogous to the correlation
between ordered descriptors, whereas correspondence would be analogous to
regression (Section 10.3) because it makes it possible to forecast the state of one
descriptor using another descriptor. Correspondence analysis (Section 8.4) is another
method that allows, among other objectives, the identification of the relationships
between the rows and columns of a contingency table. This can be achieved directly
through the approach described in the present section.

In a contingency table where the descriptors are not independent (i.e. the null
hypothesis of independence has been rejected), the cells of interest to ecologists are

Logistic
regression
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those in which the observed frequencies (Oij) are very different from the
corresponding expected frequencies (Eij). Each of these cells corresponds to a given
state for each descriptor in the contingency table. The fact that Oij ≠ Eij is indicative of
a stronger interaction, between the states in question, than expected under the null
hypothesis used for computing E. For example, hypothesis H0 in Table 6.4 is that of
independence between descriptors a and b. This hypothesis being rejected (p < 0.001),
one may identify in the contingency table the observed frequencies Oij that are higher
than the corresponding expected frequencies Eij. Values Oij > Eij (bold-face type in
Table 6.4) give an indication of how a and b are related. These values may be located
anywhere in the table, since contingency table analysis does not take into account the
ordering of states. 

A mathematically identical result is reached using the concept of entropy of
Sections 6.1 and 6.2. The entropy of a single descriptor (Section 6.1) is called the
unconditional entropy of its probability distribution. When analysing contingency
tables, one may also calculate the conditional probability distribution of, say,
descriptor b for each state of descriptor a. A particular example of such a distribution,
the conditional multinormal distribution, has been discussed in Section 4.7.

Section 6.1 has shown that the entropy of a descriptor is equal to the amount of
information that can be gained by observing the distribution of objects among the
states of this descriptor. It follows that the entropy of descriptor b is the maximum
amount of information which may be obtained concerning b. Let us assume that,
instead of b, it is a which is observed in order to learn something about b. Information
can be obtained only insofar as a and b have information in common. If the two
descriptors have no information in common, the sum of the conditional entropies of b
is equal to its unconditional entropy, as calculated in Section 6.1. If a and b have
information in common, the entropy of b is lowered by an amount equal to the
information shared by the two descriptors (i.e. the reciprocal information B,
Section 6.2), as shown by this Venne diagram:

The first step in analysing the correspondence in a two-way contingency table,
using conditional entropy, is to construct a table in which the frequencies of the
objects, for each state of descriptor a, are distributed among the states of b. The result
is a table of the conditional probabilities of b for each state of a (Table 6.7). Each row

Conditional
probability
distribution

Information
in common

Conditional entropy
remaining in b
after observing a

Information in b Information in a
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of the table contains the probabilities of selecting an object having the various states of
descriptor b, assuming that this object has the state of descriptor a corresponding to the
row. The first row, for example, contains all the objects with dominant species a1, and
it gives their probability distribution on descriptor b. The sum of each row is 1, since
each frequency in the contingency table (Table 6.1, for the example) has been divided
by the (marginal) total of the corresponding row.

To analyse a table of conditional probabilities, one identifies the conditional
probabilities that are larger than the corresponding unconditional probabilities, in the
column headings. Under the null hypothesis of independence of the two descriptors,
each conditional probability distribution (i.e. each row of the table) should be
approximately equal to the unconditional distribution (heading row). Thus, in
Table 6.7, b1 has a probability of 0.50 among the objects with dominant species a1,
while this same state b1 has a probability of 0.25 among all objects. A similar table of
conditional probabilities could have been computed with descriptor a conditional on b;
the cells of interest, and thus the ecological conclusions, would have been exactly the
same.

It is also possible to test the significance of the difference between Oij and Eij in
each cell of the contingency table. Ecologists may be interested in any difference,
whatever its sign, or only in cases where Oij is significantly higher than Eij
(preference) or significantly lower (avoidance, exclusion).

Bishop et al. (1975: 136 et seq.) describe three statistics for measuring the
difference between O and E. They may be used for two-way or multiway contingency

Table 6.7 Conditional probability distributions of b, for each state of descriptor a. The conditional
probabilities that exceed the corresponding unconditional probabilities (heading row) are in
bold-face type. These are the same as the cells with bold-face values in Table 6.4

p(b1) p(b2) p(b3) p(b4)

0.25 0.25 0.25 0.25 Σ
a1 0.50 0.17 0.25 0.08 1.00

a2 0.00 0.67 0.00 0.33 1.00

a3 0.00 0.00 0.00 1.00 1.00

a4 0.00 0.00 1.00 0.00 1.00

Test of 
Oij = Eij
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tables. The three statistics are the components of , components of , and
Freeman-Tukey deviates:

component of : (6.26)

component of : 2 O ln(O/E) (6.27)

Freeman-Tukey deviate: (6.28)

These statistics are available in various computer packages. A critical value has been
proposed by Bishop et al. (1975) for testing the significance of statistics 6.26 and 6.28:

Eij is said to be significantly different from Oij when the absolute value of the statistic,
for cell (i, j), is larger than the critical value. According to Sokal & Rohlf (1995),
however, the above critical value often results in a type I error much greater than the
nominal α level. These authors use instead the following approximate criterion to test
Freeman-Tukey deviates:

(6.29)

In cells where the (absolute) value of the Freeman-Tukey deviate is larger than the
criterion, it is concluded that Eij ≠ Oij at significance level α. Neu et al. (1974)
recommend to test only the cells where 5 ≤ Eij ≤ (n – 5). It is also recommended to
apply a Bonferroni or Holm correction (Box 1.3) to significance level α in order to
account for multiple testing. An example is provided in Table 6.8.

Alternatively, the following statistic (adapted from Neu et al., 1974) may be
computed:

(6.30)

where n is the total number of observations in the contingency table. When statistic Z
is larger than the critical value z[1 – (α / 2 no. cells)] read from a table of standard normal
deviates, it is concluded that Oij is significantly different from Eij at probability level
α/2 (one-tailed test); the further division by the number of cells is the Bonferroni
correction (Box 1.3). Statistics higher than the critical value z, in Table 6.9, are in bold-
face type. As is often the case, the conclusions drawn from Tables 6.8 and 6.9 are not
the same.

Comparing Tables 6.4 and 6.7 to Tables 6.8 and 6.9 shows that considering only
the cells where Oij > Eij may lead to conclusions which, without necessarily being
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incorrect, are subject to some risk of error. For example, dominant species a2 may well
not be indicative of environmental condition b4 as suggested in Table 6.7. Tables 6.8
and 6.9 also show that dominant species a1 is significantly under-represented in
environmental condition b4, suggesting that this condition is strongly adverse to the
species.

Ecological application  6.4

Legendre et al. (1982) explored the relationship between the abundance of phytoplankton and
vertical stability of the water column in a coastal embayment of Hudson Bay (Canadian Arctic).
Surface waters are influenced by the plume of the nearby Great Whale River. There were
intermittent phytoplankton blooms from mid-July through mid-September. In order to
investigate the general relationship between phytoplankton concentrations (chlorophyll a) and
the physical conditions, chl a and salinity data from 0 and 5 m depths were allocated to a
contingency table (Table 6.10). The null hypothesis of independence being rejected, the
correspondence between the two descriptors rests in three cells. (1) At high salinities
(> 22 mg L–1), there is a significantly small number of high chl a (> 1.5 mg m–3) observations.
At intermediate salinities (18-22 mg L–1), (2) high chl a observations are significantly
numerous, whereas (3) low chl a observations are significantly infrequent. At low salinities
(< 18 mg L–1), the numbers observed are not significantly different from the frequencies
expected under the null hypothesis of independence.

Table 6.8 Statistics (Freeman-Tukey deviates, eq. 6.28) for testing the significance of individual cells in a
contingency table. The observed and expected values are in Table 6.4. Absolute values larger
than the criterion (eq. 6.29) [9  / 16]1/2 = [9 × 3.84 / 16]1/2 = 1.47 are in boldface type. A
Bonferroni-corrected criterion [9  / 16]1/2 = [9 × 9.5 / 16]1/2 = 2.31 would have led
to the same conclusions with the present example. Values in boldface print identify the cells of
the table in which the number of observations (Oij) significantly (p < 0.05) differs (higher or
lower) from the corresponding expected frequencies (Eij). The overall null hypothesis (H0:
complete independence of descriptors a and b) was rejected first (Table 6.4) before testing the
significance of the observed values in individual cells of the contingency table.

b1 b2 b3 b4

a1 3.23 –1.33 0.06 –3.12

a2 –4.57 3.49 –4.57 0.91

a3 –3.00 * –3.00 * –3.00 * 3.87 *

a4 –3.00 * –3.00 * 3.87 * –3.00 *

* No test because Eij < 5 (Table 6.4).

χ 1 0.05[ , ]
2

χ 1 0.05 16⁄[ , ]
2
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Table 6.10 shows that, on the one hand, high chl a concentrations were positively associated
with intermediate salinities, whereas they were much reduced in waters of high salinity. On the
other hand, low chl a concentrations were characteristically infrequent in waters of intermediate
salinities. The overall interpretation of these results, which also took into account estimates of
the vertical stability of the water column (Richardson number), was as follows: (1) strong
vertical mixing led to high salinities at the surface; this mixing favoured nutrient replenishment,
but dispersed phytoplankton biomass over the water column; (2) low salinity conditions were
not especially favourable nor adverse to phytoplankton, i.e. stratification was favourable, but
dilution by water from the nearby river was adverse; (3) intermediate salinities were associated
with intermittent conditions of stability; under such conditions, both the high nutrient
concentrations and the stability of the water column were favourable to phytoplankton growth
and accumulation. Intermittent summer blooms thus occurred upon stabilization of the water
column, as a combined result of wind relaxation and fortnightly tides.

6.5 Species diversity

Sections 4.1 and 4.3 have shown that the distribution of a quantitative variable is
characterized by its dispersion around the mean. The parametric and nonparametric
measures of dispersion are the variance (eq. 4.3) and the range, respectively. These
two measures do not apply to qualitative variables, for which the number of states (q)
may be used as a simple measure of dispersion. However, this measure does not take
advantage of the fact that, in several instances, the frequency distribution of the
observations in the various states is known (Section 6.1). When the relative

Table 6.9 Statistics (eq. 6.30) for testing the significance of individual cells in a contingency table. The
observed and expected values are in Table 6.4. Values larger than z[1 –  0.05 / (2 × 4 × 4)] = z0.9984 =
2.95 are in boldface. They identify cells in which the number of observations (Oij) significantly
(p < 0.05) differs (higher or lower) from the corresponding expected frequency (Eij).

b1 b2 b3 b4

a1 3.16 1.65 0.00 4.57

a2 --- 3.06 --- 0.83

a3 --- * --- * --- * 3.11 *

a4 --- * --- * 3.11 * ---  *

--- Statistic not computed because the denominator is 0. * No test because Eij < 5 (Table 6.4).
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frequencies of the states are available, eq. 6.1 may be used to measure the dispersion of
a qualitative variable:

where pi is the relative frequency or proportion (on a 0-1 scale) of observations in state
i. This formula can be rewritten as:

where n is the total number of organisms and ni is the number of organisms belonging
to species i. The latter equation is similar to the formula for the variance of n objects
divided into q classes:

Table 6.10 Contingency table: chlorophyll a concentrations as a function of salinity in the surface waters of
Manitounuk Sound (Hudson Bay, Canadian Arctic). In each cell: observed (Oij) and expected
(Eij, in parentheses) frequencies, and statistic (eq. 6.30) to test the hypothesis that Oij = Eij
(α = 0.05). Statistics in bold-face print are larger than z[1 – 0.05/12] = 2.64, indicating that
Oij ≠ Eij. Total no. observations n = 207.  = 33.78 (ν = 2, p < 0.001); hence the hypothesis
of independence between chl a and salinity is rejected.

Chlorophyll a Salinity (mg L–1)

(mg m–3) 6-18 18-22 22-26

2 22 7

1.5-6.1 (3.29) (8.09) (19.62)

(high values) * 3.14 4.85

20 32 124

0-1.5 (18.71) (45.91) (111.38)

(low values) 0.30 2.67 1.79

* Statistic not computed nor tested because Eij < 5.
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where fi is the frequency of the ith class. In ecology, H is widely used to measure the
diversity of a species assemblage; it is generally computed for each sampling site
separately. In species diversity studies, the qualitative descriptor is the list of the q
species present and each state corresponds to a species name. Both the number of
species q and the entropy H belong to the same family of generalized entropies
(eq. 6.31, below).

In assemblages of biological species, there are generally several species
represented by a single or a few individuals, and a few species that are very abundant.
The few abundant species often account for many more individuals than all the rare
species together. Figure 6.1 shows, in order of decreasing frequencies, the abundances
of fish species caught in the Barents Sea, the Indian Ocean, and the Red Sea. Diversity
indices must be applicable to any type of species assemblage regardless of the shape of
the abundance distribution. One parameter of the distribution is clearly the number of
species; another is the shape of the distribution. An alternative approach is to combine
these two parameters in a single index, using the entropy measure H for example.
Species diversity may thus be defined as a measure of species composition, in terms of
both the number of species and their relative abundances. It is a synthetic biotic index
which captures multidimensional information relative to the species composition of an
assemblage or a community.

Figure 6.1 Fish catches (abundances) in (a) the Barents Sea, (b) the Indian Ocean, and (c) the Red Sea.
Along the abscissa, species are arranged in order of decreasing frequencies. The ordinates of
histograms are logarithmic. Adapted from Margalef (1974).
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Diversity indices characterize species composition at a given site and a given time.
These indices are used by ecologists for various purposes, which may be of theoretical
or practical nature. In theoretical ecology, measurements of diversity may be used to
compare different communities, or else the same community at different times. For
example, temporal changes in species diversity is a major characteristic of ecological
succession (Margalef, 1968, 1974; Gutierrez & Fey, 1980). Diversity may also be
compared to other characteristics that may change within communities, such as
productivity, maturity, stability, and spatial heterogeneity. In studies that encompass
several communities, species diversity may be compared to chemical,
geomorphological, or climatological environmental variables; see for example
Strömgren et al. (1973). In a more practical context, spatial or temporal changes in
diversity are often used to assess the effects of pollution on biological communities;
see for instance Wilhm & Dorris (1968). More recently, the rapid disappearance of
species in several regions and ecosystems have caused international action to assess
and preserve biodiversity. 

In principle, diversity should not be computed on taxonomic levels other than
species. Similarly, species are the basic units in the niche, competition, and succession
theories. This is because the resources of an ecosystem are apportioned among the
local populations (demes) of the species present in the system, each species
representing a separate genetic pool. Attempts at measuring diversity at supraspecific
levels generally produce confusing or trivial results. 

It is generally not useful to measure species diversity of a whole community
(e.g. primary, secondary, and tertiary producers and decomposers), because of the
different roles played by various species in an ecosystem. It is better (Hurlbert, 1971;
Pielou, 1975) to restrict the study of species diversity (and of the underlying
theoretical phenomena, e.g. competition, succession) to a single taxocene. A taxocene
is a set of species belonging to a given supraspecific taxon that make up a natural
ecological community or, in other words, that represent a taxonomic segment of a
community or association (Chodorowski, 1959; Hurlbert, 1971). The supraspecific
taxon must be such that its member species are about the same size, have similar life
histories, and compete over both ecological and evolutionary time for a finite amount
of similar resources (Deevey, 1969). A taxocene occupies a limited segment in space
and in the environment. For these reasons, the following information about the
reference population should accompany any measure of diversity: (1) the spatial
boundaries of the region or volume within which the population is found and a
description of the sampling method; (2) the temporal limits within which the
observations have been made; (3) the taxocene under study (Hurlbert, 1971; Pielou,
1975).

Sampling sites may harbour species that differ much in size or role in the
environment. This may occur, for example, when all plants in quadrats (ligneous and
herbaceous) are counted, or when species at different developmental stages are
collected (e.g. counting saplings as equivalent to adult trees). Comparisons of diversity
indices with production or environmental variables may be easier in such cases if

Taxocene
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species diversity is computed, not on the numbers of individuals, but instead on
measures of biomass (Wilhm, 1968) or dry mass, productivity (Dickman, 1968),
fecundity, or any other appropriate measure of energy transfer.

Species diversity indices may be used to compare successive observations from the
same community (time series: O mode, Fig. 7.1) or sampling sites from different areas
(Q mode). Coefficients in Chapter 7 compare objects by combining paired information
available for each species. In contrast, diversity indices pool the multispecies
information into a single value for each observation, before comparing them.

Over the years, several formulae have been proposed in the ecological literature for
measuring species diversity. The present section describes only the few indices that are
usually found in the modern literature. Species diversity has been the subject of
detailed discussions, for example by Pielou (1969, 1975), Margalef (1974), Peet
(1974), and Legendre & Legendre (1983a).

1 — Diversity

Hill (1973a) and Pielou (1975) noted that the three diversity indices mostly used by
ecologists are specific cases of the generalized entropy formula of Rényi (1961)

(6.31)

where: a = 0, 1, …; q is the number of species; pi is the relative frequency or
proportion of species i. Hill (1973a) prefers the corresponding diversity numbers: 

(6.32)

It can be shown that the first three entropies (order 0 to 2) and corresponding diversity
numbers are:

(a) (b) (6.33)

(a) (b) (6.34)

(a) (b) (6.35)

Hill (1973a) noted that increasing the order a diminishes the relative weights of rare
species in the resulting index. In a review of the topic, Peet (1974) proposed other
ways of creating families of diversity indices. Let us examine the first three orders of
eq. 6.31 in more detail.
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1) Entropy of order a = 0 — The number of species q (eq. 6.33b) is the index of
diversity most often used in ecology. It goes back to Patrick (1949):

Diversity = q (6.36)

It is more sensitive to the presence of rare species than higher-order indices. The
number of species can also be seen as a component of other diversity indices (e.g. H,
Subsection 2).

As the size of the sampling units increases, additional rare species appear. This is a
problem with all diversity indices and it is at its worst in eq. 6.36. It is incorrect to
compare the diversities of sampling units having different sizes because diversity
measures are not additive (Subsection 1.4.2). This point has been empirically shown
by He et al. (1996). This problem can be resolved by calculating the numbers of
species that the sampling units would contain if they all had the same size, for example
1000 organisms. This may be done using Sanders’ (1968) rarefaction method, whose
formula was corrected by Hurlbert (1971). The formula computes the expected number
of species q' in a standardized sampling unit of n' organisms, from a nonstandard
sampling unit containing q species, a total of n organisms, and ni organisms belonging
to each species i:

(6.37)

where n' ≤ (n – n1), n1 being the number of individuals in the most abundant species
(y1), and the terms in parentheses are combinations. For example:

2) Entropy of order a = 1 — Margalef (1958) proposed to use Shannon’s entropy H
(eqs. 6.1 and 6.34a) as an index of species diversity.

The properties of H as a measure of diversity are the following:

• H = 0 (minimum value), when the sampling unit contains a single species; H
increases with the number of species.

• For a given number of species, H is maximum when the organisms are equally
distributed among the q species: H = logq. For a given number of species, H is lower
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when there is stronger dominance in the sampling unit by one or a few species
(e.g. Figs. 6.1a and b). The actual value of H depends on the base of logarithms (2, e,
10, or other). This base must always be reported since it sets the scale of measurement.

• Like the variance, diversity can be partitioned into different components. It follows
that the calculation of diversity can take into account not only the proportions of the
different species but also those of genera, families, etc. Partitioning diversity into a
component for genera and a component for species within genera allows one to
examine two adaptive levels among the environmental descriptors. Such partitioning
can be done using eqs. 6.10-6.12. Total diversity, H = A + B + C, which is calculated
using the proportions of species without taking into account those of genera, is equal to
the diversity due to genera, H(G) = A + B, plus that due to species within genera,
H(S | G) = C, which is calculated as the sum of the species diversities in each genus,
weighted by the proportions of genera. The formula is:

H = H(G) + H(S | G) (6.38)

This same calculation may be extended to other systematic categories. Considering,
for example, the categories family (F), genus (G), and species (S), diversity can be
partitioned into the following hierarchical components:

H = H(F) + H(G | F) + H(E | G,F) (6.39)

Using this approach, Lloyd et al. (1968) measured hierarchical components of
diversity for communities of reptiles and amphibians in Borneo.

Most diversity indices share the above first two properties, but only the indices
derived from eq. 6.31 have the third one (Daget, 1980). The probabilistic interpretation
of H refers to the uncertainty about the identity of an organism chosen at random in a
sampling unit. The uncertainty is small when the sampling unit is dominated by a few
species or when the number of species is small. These two situations correspond to
low H.

In principle, H should only be used when a sample is drawn from a theoretically
infinite population, or at least a population large enough that sampling does not modify
it in any noticeable way. In cases of samples drawn from small populations, or samples
whose representativeness is unknown, it is theoretically better, according to Pielou
(1966), to use Brillouin's formula (1956), proposed by Margalef (1958) for computing
diversity H. This formula was introduced in Section 6.1 to calculate the information
per symbol in a message (eq. 6.3):

H = (1/n) log[n! / (n1! n2! … ni! … nq!)]

where the ni is the number of individuals in species i and n is the total number of
individuals in the collection. Brillouin’s H corresponds to sampling without
replacement (and is thus more exact) whereas Shannon’s H applies to sampling with
replacement. In practice, H computed with either formula is the same to several
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decimal places, unless samples are so small that they should not be used to estimate
species diversity in any case. Species diversity cannot, however, be computed on
measures of biomass or energy transfer using Brillouin’s formula.

3) Entropy of order a = 2 — Simpson (1949) proposed an index of species
diversity based on the probability that two interacting individuals of a population
belong to the same species. This index is frequently used in ecology. When randomly
drawing, without replacement, two organisms from a sampling unit containing q
species and n individuals, the probability that the first organism belong to species i is
ni/n and that the second also belong to species i is (ni – l)/(n – 1). The combined
probability of the two events is the product of their separate probabilities. Simpson’s
concentration index is the probability that two randomly chosen organisms belong to
the same species, i.e. the sum of combined probabilities for the different species:

When n is large, ni is almost equal to (ni – 1), so that the above equation becomes:

(6.40)

which corresponds to eq. 6.35a. This index may be computed from numbers of
individuals, or from measures of biomass or energy transfer. The higher is the
probability that two organisms be conspecific, the smaller is the diversity of the
sampling unit. For this reason, Greenberg (1956) proposed to measure species
diversity as:

Diversity = 1 – concentration (6.41)

which is also the probability of interspecific encounter (Hurlbert, 1971). Pielou (1969)
has shown that this index is an unbiased estimator of the diversity of the population
from which the sample has been drawn. However, eq. 6.41 is more sensitive than H to
changes in abundance of the few very abundant species, so that Hill (1973a)
recommended to use instead:

Diversity = concentration–1 (6.42)

which is identical to eq. 6.35b. Hill (1973a) also showed that this index is linearly
related to exp H (eq. 6.34b). Examples to the same effect are also given by Daget
(1980).
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2 — Evenness, equitability

Several authors, for example Margalef (1974), prefer to directly interpret species
diversity, as a function of physical, geographical, biological, or temporal variables,
whereas others consider that species diversity is made of two components which
should be interpreted separately. These two components are the number of species and
the evenness of their frequency distribution. Although the concept of evenness had
been introduced by Margalef (1958), it was formally proposed by Lloyd & Ghelardi
(1964) for characterizing the shape of distributions such as in Fig. 6.1, where the
component “number of species” corresponds to the length of the abscissa. In the
literature “evenness” and “equitability” are synonyms terms (Lloyd & Ghelardi, 1964;
see also the review of Peet, 1974). Several indices of evenness have been proposed.

1) The simplest approach to evenness consists in comparing the measured diversity
to the corresponding maximum value. When using H (eqs. 6.1 and 6.34a), diversity
takes its maximum value when all species are equally represented. In such a case:

(6.43)

where q is the number of species. Evenness (J) is computed as (Pielou, 1966):

(6.44)

which is a ratio, whose value is independent of the base of logarithms used for the
calculation. Using the terms defined by Hill (1973a; see eqs. 6.31-6.35), Daget (1980)
rewrote eq. 6.44 as the ratio of entropies of orders 1 (eq. 6.34a) and 0 (eq. 6.33a):

J = H1 / H0 (6.45)

Equations 6.44 and 6.45 show that diversity H combines the number of species (q)
and the evenness of their distribution (J):

(6.46)

2) Hurlbert (1971) proposed an evenness index based on the minimum and
maximum values of diversity. Diversity is minimum when one species is represented
by (n – q + 1) organisms and the (q – 1) others by a single organism. According to
Hurlbert, the following indices are independent of q:

(6.47)
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Equation 6.48 was proposed by Patten (1962) as a measure of redundancy (see
Section 6.1). The two indices can be computed for any diversity index D.

3) Instead of dividing the observed diversity by its maximum value, Lloyd &
Ghelardi (1964) proposed to use a model based on the broken stick distribution
(Barton & David, 1956; MacArthur, 1957). To generate this distribution, a set of
individuals is taken as equivalent to a stick of unit length which is broken randomly
into a number of pieces (i.e. in the present case, the number of species q). The divisor
in the evenness formula is the diversity computed from the lengths of the pieces of the
randomly broken stick. The expected lengths (E) of the pieces of the broken stick
(species) yi are given, in decreasing order, by the successive terms of the following
series (Pielou, 1975), corresponding to the successive values i = 1, 2, …, q, for a given
number of species q:

(6.49)

For example, for q = 3 species, eq. 6.49 gives the following lengths for species i = 1
to 3: 0.6111, 0.2778, and 0.1111, respectively. Diversity of this series is computed
using the formula for H (eq. 6.1 or 6.34a):

(6.50)

The evenness index of Lloyd & Ghelardi (1964),which they called equitability, is
similar to eq. 6.44, with M being used instead of Hmax:

J = H / M (6.51)

In the same paper, Lloyd & Ghelardi proposed another evenness index:

J = q' / q (6.52)

where q is the observed number of species and q' is the number of species for which
the broken stick model predicts the observed diversity H, i.e. H(q) = M(q'). Table C, at
the end of this book, which is taken from Lloyd & Ghelardi (1964), makes it easy to
get M or q'. Values computed with eq. 6.51 or 6.52 are usually, but not always, smaller
than one. Indeed, it happens that biological populations are more diversified than
predicted by the broken stick model.

4) Troussellier & Legendre (1981) described an index of functional evenness, for
studying bacterial assemblages. In such assemblages, the species level is often poorly
defined. The index bypasses the step of species identification, using instead as data the
set of binary biochemical (and other) descriptors that characterize the microbial
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isolates. The authors have shown that their index has the usual properties of an
evenness measure. Functional evenness E of a bacterial sampling unit is defined as:

(6.53)

where I and Imax are measures of information, c is the number of binary descriptors
used, and pi is the proportion of positive responses to test i.

Evenness indices 6.44, 6.47, 6.51, and 6.52 all suffer from the problem that they
depend on field estimation of the number of species in the population; in other words,
q is not a fixed and known value but a random variable. Because the true value of q is
not known and cannot be estimated from the data, there is no formula for computing a
standard error (and, thus, a confidence interval) for these estimates of J. This point has
been stressed by Pielou (1975) for eq. 6.44. This is not the case with eq. 6.53, where
the denominator of E is a constant (Imax = c log 0.5 where c is the number of binary
descriptors used in the calculation). Several methods may be used for computing the
confidence interval of E (e.g. the jackknife, briefly described at the end of
Subsection 1.2.4). Legendre et al. (1984b) provided examples where the computation
of confidence intervals for E, measured during biodegradation experiments, showed
that significant changes had taken place, at some point in time, in the structure of the
bacterial assemblages involved in the biodegradation processes.

In changing environments, the ecological interpretation of the two components of
diversity could be carried out, for example, along the lines proposed by Legendre
(1973). (1) The number of species may be a function of the stability of the
environment. Indeed, a more stable environment entails a higher degree of
organization and complexity of the food web (Margalef, 1958), so that such an
environment contains more niches and, thus, more species. The number of species is
proportional to the number of niches since, by definition, the realized niche of a
species is the set of environmental conditions that this species does not share with any
other sympatric species (Hutchinson, 1957, 1965). This approach has the advantage of
linking species diversity to environmental diversity. (2) The evenness of species
distribution may be inversely related to the overall biological activity in the studied
environment; the lower the evenness, the higher the biological activity
(e.g. production, life cycles, energy flows among trophic levels). On a seasonal basis,
another factor may contribute to lower the evenness. In an environment where
interspecific competition is low (high evenness), seasonal reduction of resources or
deterioration of weather conditions could induce stronger competition and thus favour
some species over others, which would decrease the evenness. The same is often
observed in cases of pollution.
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Chapter

7 Ecological
resemblance

7.0 The basis for clustering and ordination

For almost a century, ecologists have collected quantitative observations to determine
the resemblance between either the objects under study (sites) or the variables
describing them (species or other descriptors). Measuring the association (Section 2.2)
between objects (Q mode) or descriptors (R mode) is the first, and sometimes the only
step in the numerical analysis of ecological data. The various modes of analysis are
discussed in Section 7.1. It may indeed happen that examining the association matrix
suffices to elucidate the structure and thus answer the question at the origin of the
investigation.

The present Chapter provides a review of the main measures of association
available to ecologists. Section 7.2 introduces the three types of association
coefficients and the measures pertaining to each type — similarity, distance, and
dependence — are described in Sections 7.3 to 7.5, respectively. In order to help
ecologists choose from among this plurality of coefficients, Section 7.6 summarizes
criteria for choosing a coefficient; the criteria are presented in the form of
identification keys. Ecologists who do not wish to study the theory that underlies the
measures of association may directly go to Section 7.6, after making themselves
familiar with the terminology (Sections 7.1 and 7.2). When necessary, they may then
refer to the paragraphs of Sections 7.3 to 7.5 describing the measures of interest.

In the following chapters, measures of resemblance between objects or descriptors
will be used to cluster the objects or descriptors (Chapter 8) or to produce scatter
diagrams in spaces of reduced dimensionality (Chapter 9). The clustering of objects
(or descriptors) is an operation by which the set of objects (or descriptors) is
partitioned in two or more subsets (clusters), using pre-established rules of
agglomeration or division. Ordination in reduced space is an operation by which the
objects (or descriptors) are positioned in a space that contains fewer dimensions that in
the original data set; the positions of the objects or descriptors with respect to one

Clustering

Ordination
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another may also be used to cluster them. Both operations are often carried out on
association matrices, as described in the following sections.

7.1 Q and R analyses

As noted by Cattell (1952), the ecological data matrix may be studied from two main
viewpoints. One may wish to look at relationships among either the objects or the
descriptors. The important point here is that these modes of analysis are based on
different measures of association. The different types of coefficients are described in
Section 7.2. Measuring the dependence between descriptors is done using coefficients
like Pearson's r correlation coefficient (eq. 4.7, Section 4.2), so that studying the data
matrix based on such coefficients is called R analysis. By opposition, studying the data
matrix to uncover relationships among objects is called Q analysis (Fig. 2.2).

Cattell (1966) had also observed that the data box (objects 

 

× descriptors

 

× time
instances; Fig. 7.1) may be looked at from other viewpoints than simply Q and R. He
defined six modes of analysis:

O: among time instances, based on all observed descriptors (a single object);
P: among descriptors, based on all observed times (a single object);
Q: among objects, based on all observed descriptors (a single instance);
R: among descriptors, based on all observed objects (a single instance);
S: among objects, based on all observed times (a single descriptor);
T: among time instances, based on all observed objects (a single descriptor).

In the present chapter, the discussion of association coefficients will deal with the two
basic modes only, i.e. Q measures (computed among objects) and R measures
(computed among descriptors); objects and descriptors are defined in Section 1.4.

O-mode studies are conducted using Q measures; see, for example, Section 12.6.
Similarly, P-mode studies are generally carried out with the usual R-type coefficients.
When the data set forms a time series, however, P studies are based on special R-type
coefficients which are discussed in Chapter 12: cross-covariance, cross-correlation, co-
spectrum, coherence. 

S- and T-mode studies mostly belong to autecology, i.e. studies involving a single
species. S-mode comparisons among objects use the same coefficients as in P-mode
analysis. Studying the relationship between “descriptor y observed at site x1” and “the
same descriptor y observed at site x2” is analogous to the comparison of two
descriptors along a time axis.

In T-mode studies, a variable is observed across several objects (sites, etc.) and
comparing it at different instances through time. Statistical tests of hypothesis for
related samples are often applicable to these problems; see Table 5.2. In other cases,

R mode
Q mode
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the two time instances to be compared are considered to define two descriptors, as in
the S mode, so that normal R-type measures may be used. Environmental impact
studies form an important category of T-mode problems; ecologists should look at the
literature on BACI designs when planning such studies (Before/After -
Control/Impact: Green, 1979; Bernstein & Zalinski, 1983; Stewart-Oaten et al., 1986;
Underwood, 1991, 1992, 1994).

It is not always obvious whether an analysis belongs to the Q or R mode. As a
further complication, in the literature, authors define the mode based either on the
association matrix or on the purpose of the analysis. Principal component analysis
(Section 9.1), for instance, is based on a dispersion matrix among descriptors
(R mode?), but it may be used for ordination of either the objects (Q mode?) or the
descriptors (R mode?). In order to prevent confusion, in the present book, any study
starting with the computation of an association matrix among objects is called a
Q analysis whereas studies starting with the computation of an association matrix
among descriptors are referred to as R analyses. In Chapter 9 for example, it is

Figure 7.1 The three-dimensional data box (objects × descriptors × times). Adapted from Cattell (1966).
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possible to obtain an ordination of objects in low-dimension space using either the R
method of principal component analysis or the Q method of principal coordinate
analysis. Interestingly, these two analyses lead to the same ordination of the objects
when the principal coordinates are computed using coefficient D1 (Section 7.4),
although the results of Q and R analyses are not always reducible to each other.

Following the terminology of Williams & Dale (1965), the space of descriptors
(attributes) is called “A-space”. In this space, the objects may be represented along
axes which correspond to the descriptors. For example, sites may be positioned in an
A-space whose axes are the abundances of various species. A low-dimension space
obtained using the ordination methods described in Chapter 9, in which the objects are
represented, is also an A-space. Symmetrically, the space of reference in which the
descriptors are positioned relative to axes corresponding to objects (or individuals) is
called “I-space”. For example, species could be positioned in an I-space whose axes
would be the different sites. An I-space representation is more artificial than an A-
space plot because, in I-space, values on the xi axes are yij values (Table 2.1) and are
therefore states of the observed descriptors. Figure 7.2 illustrates the A- and I-spaces.

The number of dimensions that can be represented on paper is limited to two or
eventually three. Hence, one generally imagines distances between objects or
descriptors as embedded in a 2- or 3-dimensional space. Section 7.4 will show that
such models can be extended to a large number of dimensions. Distances and
similarities computed in the present chapter will, in most instances, be based on
measurements made in high-dimensional spaces. 
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Figure 7.2 On the left, representation of five objects in an A-space with two descriptors. The thickness of
the lines that join the objects is proportional to their degree of resemblance with regard to the
two descriptors, i.e. their proximity in the A-space. On the right, a similar representation of four
descriptors in an I-space consisting of two objects.
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In addition to the methods described in the present and following chapters, there
exist approaches allowing the analysis of the whole data box instead of subsets of it, as
was the case in the six modes described above. Examples are found in Williams &
Stephenson (1973), Williams et al. (1982), Cailliez & Pagès (1976), Marcotorchino &
Michaud (1979), Kroonenberg (1983: three-way principal component analysis*), and
Carlier & Kroonenberg (1996: three-way correspondence analysis).

The A- and I-spaces are called metric or Euclidean because the reference axes are
quantitative and metric. Even though it might be interesting to plot objects in A-space,
or descriptors in I-space, in order to detect their clustering structure, the clustering
methods described in Chapter 8 are free from the restrictions inherent to metric spaces.
As a matter of fact, clustering may be achieved without reference to any particular
space, metric or not. This makes the two dimensions of figures, drawn on paper,
available for illustrating other aspects of the clustering, e.g. the tree of the successive
partitions of the set of objects.

7.2 Association coefficients

The most usual approach to assess the resemblance among objects or descriptors is to
first condense all (or the relevant part of) the information available in the ecological
data matrix (Section 2.1) into a square matrix of association among the objects or
descriptors (Section 2.2). In most instances, the association matrix is symmetric. Non-
symmetric matrices can be decomposed into symmetric and skew-symmetric
components, as described in Section 2.3; the components may then be analysed
separately. In Chapters 8 and 9, objects or descriptors will be clustered or represented
in reduced space after analysing an association matrix. It follows that the structure
resulting from the numerical analysis is that of the association matrix; the results of
the analysis do not necessarily reflect all the information originally contained in the
ecological data matrix. This stresses the importance of choosing an appropriate
measure of association. This choice determines the issue of the analysis. Hence, it
must take into account the following considerations:

• The nature of the study (i.e. the initial question and the hypothesis) determines the
kind of ecological structure to be evidenced through an association matrix, and
consequently the type of measure of resemblance to be used.

• The various measures available are subject to different mathematical constraints.
The methods of analysis to which the association matrix will be subjected (clustering,

* Program 3WAYPACK (Kroonenberg, 1996) for three-way principal component analysis is
available from Pieter M. Kroonenberg, Department of Educational Sciences, Leiden University,
Wassenaarseweg 52, NL-2333 AK Leiden, The Netherlands. Other three-mode software is
described on the WWWeb page: <http://www.fsw.leidenuniv.nl/~kroonenb/>.

Euclidean
space
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ordination) often require measures of resemblance with specific mathematical
properties.

• One must also consider the computational aspect, and thus preferably choose a
measure which is available in a computer package (Section 7.7) or can easily be
programmed.

Ecologists are, in principle, free to define and use any measure of association
suitable to the ecological phenomenon under study; mathematics impose few
constraints to this choice. This is why so many association coefficients are found in the
literature. Some of them are of wide applicability whereas others have been created for
specific needs. Several coefficients have been rediscovered by successive authors and
may be known under various names. Reviews of some coefficients may be found in
Cole (1949, 1957), Goodman & Kruskal (1954, 1959, 1963), Dagnelie (1960), Sokal
& Sneath (1963), Williams & Dale (1965), Cheetham & Hazel (1969), Sneath & Sokal
(1973), Clifford & Stephenson (1975), Orlóci (1978), Daget (1976), Blanc et al.
(1976), Gower (1985), and Gower & Legendre (1986).

In the following sections, association will be used as a general term to describe any
measure or coefficient used to quantify the resemblance or difference between objects
or descriptors, as proposed by Orlóci (1975). With dependence coefficients, used in the
R mode, zero corresponds to no association. In Q-mode studies, similarity coefficients
between objects will be distinguished from distance (or dissimilarity) coefficients.
Similarities are maximum when the two objects are identical and minimum when the
two objects are completely different; distances follow the opposite rule. Figure 7.2
(left) clearly shows the difference between the two types of measures: the length of the
line between two objects is a measure of their distance, whereas its thickness, which
decreases as the two objects get further apart, is proportional to their similarity. If
needed, a similarity can be transformed into a distance, for example by computing its
one-complement. For a similarity measure varying between 0 and 1, as is generally the
case, the corresponding distance may be computed as:

D = 1 – S, ,     or

Distances, which in some cases are not bound by a pre-determined upper value, may
be normalized, using eqs. 1.10 or 1.11:

     or

where Dnorm is the distance normalized between [0, 1] whereas Dmax and Dmin are the
maximum and minimum values taken by the distance coefficient, respectively.
Normalized distances can be used to compute similarities, by reversing the
transformations given above: 
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The following three sections describe the coefficients that are most useful with
ecological data. Criteria to be used as guidelines for choosing a coefficient are
discussed in Section 7.6. Computer programs are briefly reviewed in Section 7.7.

7.3 Q mode: similarity coefficients

The largest group of coefficients in the literature is the similarities. These coefficients
are used to measure the association between objects. In contrast to most distance
coefficients, similarity measures are never metric (definition at the beginning of
Section 7.4) since it is always possible to find two objects, A and B, that are more
similar than the sum of their similarities with another, more distant, object C. It follows
that similarities cannot be used directly to position objects in a metric space
(ordination; Chapter 9); they must be converted into distances. Clustering (Chapter 8),
on the other hand, can be conducted on either a distance or a similarity matrix.

Similarity coefficients were first developed for binary data, representing presence-
absence data, or answers to yes-no questions. They were later generalized to multi-
state descriptors, when computers made it possible. Another major dichotomy among
similarity coefficients concerns how they deal with double-zeros or negative matches.
This dichotomy is so fundamental with ecological data that it is discussed first.

The double-zero problem shows up in ecology because of the special nature of
species descriptors. Species are known to have unimodal distributions along
environmental gradients (Whittaker, 1967). Hutchinson’s (1957) niche theory states
that species have ecological preferences, meaning that they are more likely to be found
at sites where they encounter appropriate living conditions; the distribution of a
species has its mode at this optimum value. A species becomes rare and eventually
absent as one departs from optimal conditions. If a species is present at two sites, this
is an indication of the similarity of these sites; but if a species is absent from two sites,
it may be because the two sites are both above the optimal niche value for that species,
or both are below, or else one site is above and the other is below that value. One
cannot tell which of these circumstances is the correct one. 

It is thus preferable to abstain from drawing any ecological conclusion from the
absence of a species at two sites. In numerical terms, this means to skip double zeros
altogether when computing similarity or distance coefficients using species presence-
absence or abundance data. Coefficients of this type are called asymmetrical because
they treat zeros in a different way than other values. On the other hand, the presence of
a species at one of two sites and its absence at the other are considered as a difference
between these sites.

In symmetrical coefficients, the state zero for two objects is treated in exactly the
same way as any other pair of values, when computing a similarity. These coefficients
can be used in cases where the state zero is a valid basis for comparing two objects and
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represents the same kind of information as any other value. This obviously excludes
the special case where zero means “lack of information”. For example, finding that two
lakes in winter have 0 mgL–1 of dissolved oxygen in the hypolimnion provides
valuable information concerning their physical and chemical similarity and their
capacity to support species. 

Several reasons may preside to the absence of a species from a site, besides
unimodal distributions and niche optimality. Species are known to occur in suboptimal
environments, especially when they are subjected to competition. So, the niche of a
species may be present in one (or both) of two sites but be occupied by substitute
species. Absence may also be the result of the dispersion pattern of a species, historical
events, or, more simply, stochastic sampling variation.

It often occurs that a large number of species are present in a data matrix. There
may be several sites where only a small number of species are found. If sampling has
been carried out along an environmental gradient, the species that are present may not
be the same from site to site. Including double-zeros in the comparison between sites
would result in high values of similarity for the many pairs of sites holding only a few
species; this would not reflect the situation adequately. Thus, when analysing species
presence-absence or abundance data, ecologists normally use asymmetrical
coefficients, in which double absences are not counted as indications of resemblance.

The remainder of this Section distinguishes between binary and quantitative
similarity coefficients and, for each type, those that use double-zeros or exclude them.
It ends with a description of probabilistic coefficients. Tables 7.3 and 7.4 summarize
the use of the various similarity coefficients in ecology.

1 — Symmetrical binary coefficients

In the simplest cases, the similarity between two sites is based on presence-absence
data. Binary descriptors may describe the presence or absence of environmental
conditions (here) or species (next Subsection). Observations may be summarized in a
2 × 2 frequency table:

where a is the number of descriptors for which the two objects are coded 1, d is the
number of descriptors coding the two objects 0, whereas b and c are the numbers of
descriptors for which the two objects are coded differently; and p is the total number of
descriptors. An obvious way of computing the similarity between two objects is to

Object x2

O
bj

ec
tx

1

1 0

1 a b a + b

0 c d c + d

a + c b + d p = a + b + c + d
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count the number of descriptors that code the objects in the same way and divide this
by the total number of descriptors:

(7.1)

Coefficient S1
* is called the simple matching coefficient (Sokal & Michener, 1958).

When using this coefficient, one assumes that there is no difference between double-0
and double-1. This is the case, for instance, when any one of the two states of each
descriptor could be coded 0 or 1 indifferently. A variant of this measure is the
coefficient of Rogers & Tanimoto (1960) in which differences are given more weight
than resemblances:

(7.2)

Sokal & Sneath (1963) proposed four other measures that include double-zeros.
They have their counterparts in coefficients that exclude double-zeros, in the next
Subsection:

(7.3)

counts resemblances as being twice as important as differences;

(7.4)

compares the resemblances to the differences, in a measure that goes from 0 to infinity;

(7.5)

compares the resemblances to the marginal totals;

(7.6)

is the product of the geometric means of the terms relative to a and d, respectively, in
coefficient S5.

* Coefficient numbers are used in the SIMIL program of The R Package to identify resemblance
coefficients; see Section 7.7 and Table 13.4. For this reason, coefficient numbers have not been
changed since the first edition of this book (Écologie numérique, Masson, Paris, 1979).
Coefficients added since the 1979 edition have been numbered sequentially.
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Among the above coefficients, S1 to S3 are of more general interest for ecologists,
but the others may occasionally prove useful to adequately handle special descriptors.
Three additional measures are available in the NT-SYS computer package
(Section 7.7): the Hamann coefficient:

(7.7)

the Yule coefficient:

(7.8)

and Pearson's φ (phi):

(7.9)

where the numerator is the determinant of the 2 × 2 frequency table. φ is actually the
square root of the X2 (chi-square) statistic for 2 × 2 tables (eq. 7.60). In ecology,
coefficients of this type are mostly used in R-mode analyses. These last indices are
described in detail in Sokal & Sneath (1963).

2 — Asymmetrical binary coefficients

Coefficients that parallel those above are available for comparing sites using species
presence-absence data, where the comparison must exclude double-zeros. The best-
known measure is Jaccard’s (1900, 1901, 1908) coefficient of community. It is often
referred to simply as Jaccard’s coefficient:

(7.10)

in which all terms have equal weight. As a variant, Sørensen’s coefficient (1948) gives
double weight to double presences:

(7.11)

because (see above) one may consider that the presence of a species is more
informative than its absence. Absence may be due to various factors, as discussed
above; it does not necessarily reflect differences in the environment. Double-presence,
on the contrary, is a strong indication of resemblance. Note, however, that S8 is
monotonic to S7. This property means that if the similarity for a pair of objects
computed with S7 is higher than that of another pair of objects, the same will be true
when using S8. In other words, S7 and S8 only differ by their scales. Before Sørensen,

S
a d b c––+

p
------------------------------=

S
ad bc–
ad bc+
------------------=

φ ad bc–

a b+( ) c d+( ) a c+( ) b d+( )
---------------------------------------------------------------------------------=

S7 x1 x2,( ) a
a b c+ +
---------------------=

S8 x1 x2,( ) 2a
2a b c+ +
------------------------=
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Dice (1945) had used S8 under the name coincidence index in an R-mode study of
species associations; this question is further discussed in Section 7.5.

The distance version of this coefficient, , is a semimetric, as shown
in the example that follows eq. 7.56. A consequence is that principal coordinate
analysis of a S8 or D13 resemblance matrix is likely to produce negative values.
Solutions to this problem are discussed in Subsection 9.2.4. The easiest way is to base
the principal coordinate analysis on square-root-transformed distances 
instead of  (Table 7.2).

Another variant of S7 gives triple weight to double presences:

(7.12)

The counterpart to the coefficient of Rogers & Tanimoto (S2), in the above
Subsection, was proposed by Sokal & Sneath (1963). This coefficient gives double
weight to differences in the denominator:

(7.13)

Russell & Rao (1940) suggested a measure which allows the comparison of the
number of double presences, in the numerator, to the total number of species found at
all sites, including species that are absent (d) from the pair of sites considered:

(7.14)

Kulczynski (1928) proposed a coefficient opposing double-presences to
differences:

(7.15)

Among their coefficients for presence-absence data, Sokal & Sneath (1963)
mention the binary version of Kulczynski’s coefficient S18 for quantitative data:

(7.16)

where double-presences are compared to the marginal totals (a + b) and (a + c).

Ochiai (1957) used, as measure of similarity, the geometric mean of the ratios of a
to the number of species in each site, i.e. the marginal totals (a + b) and (a + c):
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(7.17)

This measure is the same as S6 except for the part that concerns double-zeros (d).

Faith (1983) suggested the following coefficient, in which disagreements (presence
in one site and absence in the other) are given a weight opposite to that of double
presences. The value of S26 decreases with an increasing number of double-zeros:

(7.18)

3 — Symmetrical quantitative coefficients

Ecological descriptors often have more than two states. Binary coefficients in
Subsection 1, above, may sometimes be extended to accommodate multi-state
descriptors. For example, the simple matching coefficient may be used as follows with
multi-state descriptors: 

(7.19)

where the numerator contains the number of descriptors for which the two objects are
in the same state. For example, if a pair of objects was described by the following 10
multi-state descriptors:

the value of S1 computed for the 10 multi-state descriptors would be: 

S1 (x1, x2) = 4 agreements/10 descriptors = 0.4

It is possible to extend in the same way the use of all binary coefficients to multi-state
descriptors. Coefficients of this type often result in a loss of valuable information,
however, especially in the case of ordered descriptors for which two objects can be
compared on the basis of the amount of difference between states.

Gower (1971a) proposed a general coefficient of similarity which can combine
different types of descriptors and process each one according to its own mathematical
type. Although the description of this coefficient may seem a bit complex, it can be
easily translated into a short computer program. The coefficient initially takes the
following form (see also the final form, eq. 7.20):

Descriptors

Object x1 9 3 7 3 4 9 5 4 0 6

Object x2 2 3 2 1 2 9 3 2 0 6

Agreements 0 + 1 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 4

S14 x1 x2,( ) a
a b+( )

-------------------
a

a c+( )
------------------ a

a b+( ) a c+( )
------------------------------------------= =

S26 x1 x2,( ) a d 2⁄+
p

-------------------=

S1 x1 x2,( ) agreements
p

------------------------------=
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The similarity between two objects is the average, over the p descriptors, of the
similarities calculated for all descriptors. For each descriptor j, the partial similarity
value s12j between objects x1 and x2 is computed as follows.

• For binary descriptors, sj = 1 (agreement) or 0 (disagreement). Gower proposed two
forms for this coefficient. The form used here is symmetrical, giving sj = 1 to double-
zeros. The other form, used in Gower’s asymmetrical coefficient S19 (Subsection 4),
gives sj = 0 to double-zeros.

• Qualitative and semiquantitative descriptors are treated following the simple
matching rule stated above: sj = 1 when there is agreement and sj = 0 when there is
disagreement. Double-zeros are treated as in the previous paragraph.

• Quantitative descriptors (real numbers) are treated in an interesting way. For each
descriptor, one first computes the difference between the states of the two objects

, as in the case of distance coefficients belonging to the Minkowski metric
group (Section 7.4). This value is then divided by the largest difference (Rj) found for
this descriptor across all sites in the study — or, if one prefers, in a reference
population*. Since this ratio is actually a normalized distance, it is subtracted from 1 to
transform it into a similarity:

Gower's coefficient may be programmed to include an additional element of
flexibility: no comparison is computed for descriptors where information is missing for
one or the other object. This is obtained by a value wj, called Kronecker's delta,
describing the presence or absence of information: wj = 0 when the information about
yj is missing for one or the other object, or both; wj = 1 when information is present for
both objects. The final form of Gower’s coefficient is the following:

(7.20)

* In most applications, the largest difference Rj is calculated for the data table under study. In
epidemiological studies, for example, one may proceed to the analysis of a subset of a much
larger data base. To insure consistency of the results in all the partial studies, it is recommended
to calculate the largest differences (the “range” statistic of data bases) observed throughout the
whole data base for each descriptor j and use these as values Rj when computing S15 or S19.
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Coefficient S15 produces similarity values between 0 and 1 (maximum similarity).

One last touch of complexity, which was not suggested in Gower’s paper but is
added here, provides weighting to the various descriptors. Instead of 0 or 1, one can
assign to wj a value between 0 and 1 corresponding to the weight one wishes each
descriptor to have in the analysis. Descriptors with weights close to 0 contribute little
to the final similarity value whereas descriptors with higher weights (closer to 1)
contribute more. Giving a weight of 0 to a descriptor is equivalent to removing it from
the analysis. A missing value automatically changes the weight wj to 0.

The following numerical example illustrates the computation of coefficient S15. In
the example, two sites are described by eight quantitative environmental descriptors.
Values Rj (the range of values among all objects, for each descriptor yj) given in the
table have been calculated for the whole data base prior to computing coefficient S15.
Weights w12j are only used in this example to eliminate descriptors with missing
values (Kronecker delta function):

thus S15 (x1, x2) = 4.63/7 = 0.66.

When computing S15, one may decide to handle semiquantitative descriptors as if
they were quantitative, in order to use differences between states in the final similarity
assessment. It is important in such cases to make sure that distances between adjacent
states are comparable in magnitude. For example, with ordered (semiquantitative)
descriptors coded from 1 to 3,  can be used only if the difference between
states 1 and 2 can be thought of as almost equal to that between states 2 and 3. If there
is too much difference, values  are not comparable and semiquantitative
descriptors should not be used in that way in coefficient S15.

Another general coefficient of similarity was proposed by Estabrook & Rogers
(1966). The similarity between two objects is, as in S15, the sum of the partial
similarities by descriptors, divided by the number of descriptors for which there is
information for the two objects. In the original publication, the authors used state 0 to
mean “no information available”, but any other convention would be acceptable. The
general form of this coefficient is therefore the same as Gower's coefficient (eq. 7.20):

Descriptors j Sum

Object x1 2 2 – 2 2 4 2 6

Object x2 1 3 3 1 2 2 2 5

w12j 1 1 0 1 1 1 1 1 = 7

Rj 1 4 2 4 1 3 2 5

|y1j – y2j| 1 1 – 1 0 2 0 1

|y1j – y2j|/Rj 1 0.25 – 0.25 0 0.67 0 0.20

w12js12j 0 0.75 0 0.75 1 0.33 1 0.80 = 4.63

y1 j y2 j–

y1 j y2 j–
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(7.21)

As in S15, the wj parameters may be used as weights (between 0 and 1) instead of only
playing the roles of Kronecker deltas. The coefficient of Estabrook & Rogers differs
from S15 in the computation of the partial similarities sj .

In the paper of Estabrook & Rogers (1966), the state values were positive integers
and the descriptors were either ordered or unordered. The partial similarity between
two objects for a given descriptor j is computed using a monotonically decreasing
function of partial similarity. On an empirical basis, and among all functions of this
type, the authors proposed to use the following function of two numbers d and k:

(7.22)

where d is the distance between the states of the two objects x1 and x2 for descriptor j,
i.e. the same value  as in Gower’s coefficient, and k is a parameter
determined a priori by the users for each descriptor, describing how far non-null
partial similarities are permitted to go. Parameter k is equal to the largest difference d
for which the partial similarity s12j (for descriptor j) is allowed to be different from 0.
Values k for the various descriptors may be quite different from one another. For
example, for a descriptor coded from 1 to 4, one might decide to use k = 1 for this
descriptor; for another descriptor with code values from 1 to 50, k = 10 could be used.
In order to fully understand the partial similarity function s12j (eq. 7.22), readers are
invited to compute by hand s12j for some descriptors in the following numerical
example. Values k, which are usually small numbers, are given for each descriptor in
the table:

Values taken by the partial similarity function for the first values of k are given in
Table 7.1. Values in the table show that, if k = 0 for all descriptors, S16 is identical to
the simple-matching coefficient for multistate descriptors (eq. 7.19).

Descriptors j S16 (x1, x2)

Object x1 2 1 3 4 2 1

Object x2 2 2 4 3 2 3

kj 1 0 1 2 1 1

↓ ↓ ↓ ↓ ↓ ↓
s12j = ƒ (d12j, kj) 1.0 + 0 + 0.4 + 0.5 + 1.0 + 0 = 2.9 / 6 = 0.483
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These same values of function ƒ(d, k) are shown in Fig. 7.3a, which illustrates how
the function decreases with increasing d. It is easy to see that function ƒ(d, k), which
was originally defined by Estabrook & Rogers for discontinuous descriptors (coded

Table 7.1 Values of the partial similarity function ƒ(d, k) in coefficients S16 and S20, for the most usual
values of k (adapted from Legendre & Rogers, 1972: 594).

k d

0 1 2 3 4 5 6 7

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 1 0.40 0.00 0.00 0.00 0.00 0.00 0.00

2 1 0.50 0.20 0.00 0.00 0.00 0.00 0.00

3 1 0.55 0.28 0.12 0.00 0.00 0.00 0.00

4 1 0.57 0.33 0 18 0.08 000 0.00 0.00

5 1 0.59 0.36 0.22 0.13 0.05 0.00 0.00

Figure 7.3 Coefficients S16 and S20: change in ƒ(d, k) as a function of d, for six values of k, (a) under the
condition ƒ(d, k) = 0 when d > k; (b) without this condition. Adapted from Legendre &
Chodorowski (1977).
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only with integers: 0, 1, 2, 3, …), can actually be used with real-number descriptors
since the function only requires that d and k be differences, i.e. natural numbers.
Figure 7.3a also raises the question: could ƒ(d, k) take negative values? To accomplish
that, Legendre & Chodorowski (1977) proposed to simply leave out the second line of
eq. 7.22 stating that ƒ(d, k) = 0 when d > k. This is shown in Fig. 7.3b, where the
function decreases over the interval [0, ∞), taking negative values when d > (k + 1).
Such a measure follows the same general idea as in the coefficients presented at the
end of Subsection 1 (eqs. 7.7 to 7.9) where differences are subtracted from
resemblances. This contributes to further separate dissimilar objects when the
similarity matrix is subjected to clustering (Chapter 8).

Estabrook & Rogers (1966) proposed another partial similarity measure s12j, to be
used with coefficient S16 in situations where function ƒ(d, k) (eq. 7.22) does not
adequately describe the relationships between objects for some descriptor j. The
approach consists in providing the computer program with a small “do-it yourself”
matrix that describes the partial similarities between all states of descriptor j. This
partial similarity matrix replaces s12j = ƒ(d12j, k) in eq. 7.21 for descriptor j; the partial
similarity of the other descriptors is computed with eq. 7.22. Partial similarity matrices
may be constructed for any or all descriptors if needed.

Ecological application  7.3a

In a study of terrestrial fauna, Legendre et al. (1978) used the following partial similarity matrix
(matrix unpublished) for the descriptor “category of aquatic ecosystem”, which was one of the
descriptors of the ecosystems where tracks of animal had been recorded in the snow blanket:

The upper triangle of the matrix is not given; it is symmetric to the lower one. The diagonal may
also be left out because the partial similarity of a state with itself must be 1. The matrix means
that a site from an area with less than 5% of its surface covered by water is given a partial
similarity sj = 0.4 with another site from an area with 5 to 15% of its surface covered by water.
State 1 has partial similarity with state 2 only; lake systems only have partial similarities with
other lake systems, the similarity decreasing as the difference in lake areas increases; and rivers
only have partial similarities when compared to other rivers. Partial similarity matrices are
especially useful with descriptors that are nonordered, or only partly ordered as is the case here. 

1 2 3 4 5 6 7 8 9

1. <5% water 1.0

2. 5-15% water 0.4 1.0

3. >15% water, lakes < 250 ha 0.0 0.4 1.0

4. >15% water, lakes 250-500 ha 0.0 0.3 0.8 1.0

5. >15% water, lakes 500-1000 ha 0.0 0.2 0.7 0.8 1.0

6. >15% water, lakes 1000-2500 ha 0.0 0.2 0.6 0.7 0.8 1.0

7. >15% water, lakes > 2500 ha 0.0 0.2 0.5 0.6 0.7 0.8 1.0

8. >5% rivers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

9. Bordering large rivers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0

Partial
similarity
matrix



264 Ecological resemblance

Partial similarity matrices represent a powerful way of using unordered or partly
ordered descriptors in multivariate data analyses. They may prove useful in the
following cases, in particular:

• When, from the user’s point of view, function ƒ(d, k) (eq. 7.22) does not adequately
describe the partial similarity relationships.

• When the descriptor states are not fully ordered. For example, in a study on ponds,
the various states of descriptor “water temperature” may be followed by state “dry
pond”, which is quite different from a lack of information.

• If some states are on a scale different from that of the other states. For example, 0-
10, 10-20, 20-30, 30-40, and then 50-100, 100-1000, and >1000.

• With nonordered or only partly ordered descriptors (including “circular variables”
such as directions of the compass card or hours of the day), if one considers that pairs
of sites coded into different states are partly similar, as in Ecological application 7.3a.

Partial similarity matrices may be used even in analyses where one wishes to use some other
similarity function than S16. Proceed as follows:

• Consider a descriptor whose inter-state relationships should be described by a “do-it-yourself”
partial similarity matrix. Compute a similarity matrix S16 among the objects of the study using
this descriptor alone; similarities among states are described by the partial similarity matrix.

• Carry out a principal coordinate analysis of the similarity matrix (Section 9.2). Use a
correction for negative eigenvalues if any are present (Subsection 9.2.4). A good approximate
solution may also usually be obtained using nonmetric multidimensional scaling (Section 9.3).

• The principal coordinates or multidimensional scaling axes form a new set of Euclidean
descriptors that fully account for the variation among objects described by the partial similarity
matrix. They can be combined with other quantitative descriptors in subsequent data analyses.

4 — Asymmetrical quantitative coefficients

Subsection 3 started with an extension of coefficient S1 to multi-state descriptors. In
the same way, binary coefficients from Subsection 2 can be extended to accommodate
multi-state descriptors. For example, Jaccard’s coefficient becomes

(7.23)

where the numerator is the number of species with the same abundance state at the two
sites. This form can be used when species abundances are coded in a small number of
classes and one wishes to strongly contrast differences in abundance. In other cases,
using such a coefficient would obviously cause the loss of part of the information
carried by species abundances.

Partial
similarity
matrix

S7 x1 x2,( ) agreements
p double-zeros–
----------------------------------------=
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Other measures are more efficient than eq. 7.23 in using species abundance
information. They are divided in two categories: the coefficients for raw data and the
measures for normalized data. 

• As discussed in Subsections 1.5.6, the distribution of abundances of a species across an
ecological gradient is often strongly skewed, so that normalization of species abundances often
calls for square root, double square root, or logarithmic transformations. Another way to obtain
approximately normal data is to use a scale of relative abundances with boundaries forming a
geometric progression, for example a scale from 0 (absent) to 7 (very abundant). 

• Abundances thus normalized reflect the role of each species in the ecosystem better than the
raw abundance data, since  a species represented by 100 individuals at a site does not have a role
10 times as important in the ecological equilibrium as another species represented by 10
individuals. The former is perhaps twice as important as the latter; this is the ratio obtained after
applying a base-10 logarithmic transformation (assuming that numbers 100 and 10 at the site are
representative of true relative abundances in the population). 

Some coefficients lessen the effect of the largest differences and may therefore be used
with raw species abundances, whereas others compare the different abundance values
in a more linear way and are thus better adapted to normalized data.

In the group of coefficients to be used with raw species abundances, the best-
known is a coefficient attributed to the Polish mathematician H. Steinhaus by Motyka
(1947). This measure has been rediscovered a number of times; its one-complement is
known as the Odum or Bray-Curtis coefficient (eq. 7.57). It is sometimes incorrectly
attributed to anthropologist Czekanowski (1909 and 1913; Czekanowski's distance
coefficient is described in the next Section, eq. 7.46). This coefficient compares two
sites (x1, x2) in terms of the minimum abundance of each species:

(7.24)

where W is the sum of the minimum abundances of the various species, this minimum
being defined as the abundance at the site where the species is the rarest. A and B are
the sums of the abundances of all species at each of the two sites or, in other words, the
total number of specimens observed or captured at each site, respectively. Consider the
following numerical example:

Species abundances A B W

Site x1 7 3 0 5 0 1 16

Site x2 2 4 7 6 0 3 22

Minimum 2 3 0 5 0 1 11

S17 x1 x2,( ) W
A B+( ) 2⁄

----------------------------
2W

A B+( )
---------------------= =

S17 x1 x2,( ) 2 11×
16 22+
------------------ 0.579= =
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This measure is closely related to Sørensen’s coefficient (S8): if presence-absence data
are used instead of species counts, S17 becomes S8 (eq. 7.11).

The distance version of this coefficient, , is a semimetric, as shown
in the example that follows eq. 7.57. A consequence is that principal coordinate
analysis of a S17 or D14 resemblance matrix is likely to produce negative values.
Solutions to this problem are discussed in Subsection 9.2.4. One of the possible
solutions is to base the principal coordinate analysis on square-root-transformed
distances  instead of  (Table 7.2).

Kulczynski’s coefficient (1928) also belongs to the group of measures that are
suited to raw abundance data. The sum of minima is first compared to the grand total at
each site; then the two values are averaged:

(7.25)

For presence-absence data, S18 becomes S13 (eq. 7.16). For the numerical example
above, coefficient S18 is computed as follows:

Coefficients S17 and S18 always produce values between 0 and 1, although
Kulczynski (1928) multiplied the final value by 100 to obtain a percentage.
Kulczynski’s approach, which consists in computing the average of two comparisons,
seems more arbitrary than Steinhaus’ method, in which the sum of minima is
compared to the mean of the two site sums. In practice, values of these two coefficients
are almost monotonic.

The following coefficients belong to the group adapted to “normalized” abundance
data; this means here unskewed frequency distributions. These coefficients parallel S15
and S16 of the previous Subsection. Concerning coefficient S19, Gower (1971a) had
initially proposed that his general coefficient S15 should exclude double-zeros from the
comparison (Subsection 3); this makes it well-suited for quantitative species
abundance data. Since the differences between states are computed as  and
are thus linearly related to the measurement scale, this coefficient should be used with
previously normalized data. The general form is:

 , where (7.26)
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• , as in S15,

• and w12j = 0 when y1j or y2j = absence of information, or 
when y1j and y2j = absence of the species (y1j + y2j = 0); 

• while w12j = 1 in all other cases.

With species abundance data, values of wj could be made to vary between 0 and 1, as
in coefficient S15, either to reflect the biomasses or the biovolumes of the different
species, or to compensate for selective effects of the sampling gear.

Legendre & Chodorowski (1977) proposed a general coefficient of similarity that
parallels S16. This measure uses a slightly modified version of the partial similarity
function ƒ(d, k) (eq. 7.22), or else a matrix of partial similarities as in Ecological
application 7.3a. Since S20 processes all differences d in the same way, irrespective of
whether they correspond to high or low values in the scale of abundances, it is better to
use this measure with unskewed abundance data. The only difference between S16 and
S20 is in the way in which double-zeros are handled. The general form of the
coefficient is the sum of partial similarity values for all the species, divided by the total
number of species in the combined two sites:

 , where (7.27)

when d ≤ k (I)

•
when d > k (II)

when yj1 or yj2 = 0 (i.e. yj1 × yj2 = 0) (III)

• or else sl2j = ƒ(ylj, y2j) as given by a partial similarity matrix, as in Ecological
application 7.3a, in which sl2j = 0 when y1j or y2j = 0,

• and w12j = 0 when y1j or y2j = absence of information, or 
when y1j and y2j = absence of the species (y1j + y2j = 0),

• while w12j = 1 in all other cases. Else, w12j may receive a value between 0 and 1, as
explained above for S19.
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In summary, the properties of coefficient S20 are the following:

• when dj is larger than kj, the partial similarity between sites is s12j = 0 for species j;

• when dj = 0, then s12j = 1(see ƒ(d, k), part I), except when y1j = 0 or y2j = 0 (see ƒ(d, k),
part III);

• ƒ(d, k) decreases with increasing d, for a given k;

• ƒ(d, k) increases with increasing k, for a given d;

• when y1j = 0 or y2j = 0, the partial similarity between sites is s12j = 0 for species j, even if d12j
is not larger than kj (see ƒ(d, k), part III);

• when kj = 0 for all species j, S20 is the same as Jaccard’s coefficient (S7) for multi-state
descriptors (eq. 7.23).

The above properties correspond to the opinion that ecologists may have on the problem of
partial similarities between unskewed abundances of species. Depending on the scale chosen (0
to 5 or 0 to 50, for example), function ƒ(d, k) can be used to contrast to various degrees the
differences between species abundances, by increasing or decreasing kj, for each species j if
necessary. An example of clustering using this measure of similarity is presented in Ecological
application 8.2. 

The last quantitative coefficient that excludes double-zeros is called the
χ2 similarity. It is the complement of the χ2 metric (D15; Section 7.4):

S21 (x1, x2) = 1 – D15 (x1, x2) (7.28)

The discussion of how species that are absent from two sites are excluded from the
calculation of this coefficient is deferred to the presentation of D15.

5 — Probabilistic coefficients

Probabilistic measures form a special category. These coefficients are based on
statistical estimation of the significance of the relationship between objects.

When the data are frequency counts, a first probabilistic measure would be
obtained by computing a Pearson chi square statistic ( , eq. 6.5) between pairs of
sites, instead of the χ2 similarity (S21) described above. The complement of the
probability associated with  which would provide a probabilistic measure of the
similarity between sites. The number of degrees of freedom (ν) should exclude the
number of double-zeros:

(7.29)
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where w12j is Kronecker's delta for each species j, as in Gower’s coefficient S19. The
probabilistic  similarity could be defined as:

(7.30)

This coefficient does not seem to have been used in ecology. Other measures are based
on the probabilities of the various states of each descriptor. Some are derived from
information theory (Chapter 4). In ecology, the best-known measure of this type is the
information statistic of Lance & Williams (1966b), which is discussed in
Subsection 8.5.11. 

Following a different approach, Goodall’s probabilistic coefficient (1964, 1966a)
takes into account the frequency distribution of the various states of each descriptor in
the whole set of objects. Indeed, it is less likely for two sites to both contain the same
rare species than a more frequent species. In this sense, agreement for a rare species
should be given more importance than for a frequent species, when estimating the
similarity between sites. Goodall’s probabilistic index, which had been originally
developed for taxonomy, is especially useful in ecological classifications, because
abundances of species in different sites are stochastic functions (Sneath & Sokal,
1973: 141). Orlóci (1978) suggests to use it for clustering sites (Q mode). The index
has also been used in the R mode, for clustering species and identifying associations
(Subsection 7.5.2).

The probabilistic coefficient of Goodall is based on the probabilities of the various
states of each descriptor. The resulting measure of similarity is itself a probability,
namely the complement of the probability that the resemblance between two sites is
due to chance. In the next chapter, this index will be used for probabilistic clustering,
in which sites in the same cluster are linked to one another at a specified level of
probability (Subsection 8.9.2).

The probabilistic index, as formulated by Goodall (1966a), is a general taxonomic
measure in which binary and quantitative descriptors can be used together. The
coefficient as presented here follows the modifications of Orlóci (1978) and is limited
to the clustering of sites based on species abundances. It also takes into account the
remarks made at the beginning of the present section concerning double-zeros. The
resulting measure is therefore a simplification of Goodall’s original coefficient,
oriented towards the clustering of sites. The computational steps are as follows:

(a) A partial similarity measure sj is first calculated for all pairs of sites and for each
species j. Because there are n sites, the number of partial similarities sj to compute, for
each species, is n(n – 1)/2. If the species abundances have been normalized, one may
choose either the partial similarity measure  from
Gower’s S19 coefficient or function s12j from coefficient S20, which were both
described above. In all cases, double-zeros must be excluded. This is done by
multiplying the partial similarities sj by Kronecker delta w12j, whose value is 0 upon
occurrence of a double-zero. For raw species abundance data, Steinhaus’ similarity
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S17, computed for a single species at a time, may be used as the partial similarity
measure. The outcome of this first step is a partial similarity matrix, containing as
many rows as there are species in the ecological data matrix (p) and n(n – 1)/2
columns, i.e. one column for each pair of sites; see the numerical example below.

(b) In a second table of the same size, for each species j and each of the n(n – 1)/2
pairs of sites, one computes the proportion of partial similarity values belonging to
species j that are larger than or equal to the partial similarity of the pair of sites being
considered; the sj value under consideration is itself included in the calculation of the
proportion. The larger the proportion, the less similar are the two sites with regard to
the given species.

(c) The above proportions or probabilities are combined into a site × site similarity
matrix, using Fisher’s method, i.e. by computing the product Π of the probabilities
relative to the various species. Since none of the probabilities is equal to 0, there is no
problem in combining these values, but one must assume that the probabilities of the
different species are independent vectors. If there are correlations among species, one
may use, instead of the original descriptors of species abundance (Orlóci, 1978: 62), a
matrix of component scores from a principal coordinate or correspondence analysis of
the original species abundance data (Sections 9.2 and 9.4).

(d) There are two ways to define Goodall’s similarity index. In the first approach,
the products Π are put in increasing order. Following this, the similarity between two
sites is calculated as the proportion of products that are larger than or equal to the
product for the pair of sites considered:

(7.31)

(e) In the second approach, the χ2 value corresponding to each product is computed
under the hypothesis that the probabilities of the different species are independent
vectors:

which has 2p degrees of freedom (p is the number of species). The similarity index is
the complement of the probability associated with this χ2, i.e. the complement of the
probability that a χ2 value taken at random exceeds the observed χ2 value:

(7.32)

It should be clear to the reader that the value of Goodall’s index for a given pair of
sites may vary depending on the sites included in the computation, since it is based on
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the rank of the partial similarity for that pair of sites among all pairs. This makes
Goodall’s measure different from the other coefficients discussed so far.

The following numerical example illustrates the computation of Goodall’s index. In this
example, five ponds are characterized by the abundances of eight zooplankton species. Data are
on a scale of relative abundances, from 0 to 5 (data from Legendre & Chodorowski, 1977).

(a) Gower’s matrix of partial similarities has 6 rows and n(n – 1)/2 = 10 columns which
correspond to the 10 pairs of ponds:

(b) In the next table, one computes, for each pair of sites and each row (species), the
proportion of partial similarity values in the row that are larger than or equal to the partial
similarity of the pair of sites being considered. The value under consideration is itself included
in the proportion. For example, for the pair of ponds (214, 233), the third species has a similarity

Species
Ponds

Range Rj
212 214 233 431 432

1 3 3 0 0 0 3

2 0 0 2 2 0 2

3 0 2 3 0 2 3

4 0 0 4 3 3 4

5 4 4 0 0 0 4

6 0 2 0 3 3 3

7 0 0 0 1 2 2

8 3 3 0 0 0 3

Species

Pairs of ponds

212 212 212 212 214 214 214 233 233 431

214 233 431 432 233 431 432 431 432 432

1 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0

3 0.33 0 0 0.33 0.67 0.33 1 0 0.67 0.33

4 0 0 0.25 0.25 0 0.25 0.25 0.75 0.75 1

5 1 0 0 0 0 0 0 0 0 0

6 0.33 0 0 0 0.33 0.67 0.67 0 0 1

7 0 0 0.50 0 0 0.50 0 0.50 0 0.50

8 1 0 0 0 0 0 0 0 0 0
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of 0.67. In the third row, there are 3 values out of 10 that are larger than or equal to 0.67. Thus
the ratio associated with the pair (214, 233) in the table is 0.3.

(c) The next table is a site × site symmetric matrix, in which are recorded the products of the
terms in each column of the previous table

(d) The first method for computing the similarity consists in entering, in a site × site matrix,
the proportions of the above products that are larger than or equal to the product corresponding
to each pair of sites. For example, the product corresponding to pair (212, 431) is 0.28. In the
table, there are 3 values out of 10 that are larger than or equal to 0.28, hence the similarity S23
(212, 431) = 0.3 (eq. 7.31).

Species

Pairs of ponds

212 212 212 212 214 214 214 233 233 431

214 233 431 432 233 431 432 431 432 432

1 0.1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 0.1 1 1

3 0.7 1 1 0.7 0.3 0.7 0.1 1 0.3 0.7

4 1 1 0.7 0.7 1 0.7 0.7 0.3 0.3 0.1

5 0.1 1 1 1 1 1 1 1 1 1

6 0.5 1 1 1 0.5 0.3 0.3 1 1 0.1

7 1 1 0.4 1 1 0.4 1 0.4 1 0.4

8 0.1 1 1 1 1 1 1 1 1 1

Ponds
Ponds

212 214 233 431 432

212 –

214 0.00035 –

233 1.00000 0.15000 –

431 0.28000 0.05880 0.01200 –

432 0.49000 0.02100 0.09000 0.00280 –

Ponds
Ponds

212 214 233 431 432

212 –

214 1.0 –

233 0.1 0.4 –

431 0.3 0.6 0.8 –

432 0.2 0.7 0.5 0.9 –
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(e) If the chosen similarity measure is the complement of the probability associated with χ2

(eq. 7.32), the following table is obtained. For example, to determine the similarity for pair
(212, 431), the first step is to compute χ2 (212, 431) = –2 ln(0.28) = 2.5459, where 0.28 was the
product associated with this pair in the table at step (d). The value of χ2 (212, 431) is 2.5459 and
the number of degrees of freedom is 2p = 16, so that the corresponding probability is 0.9994.
The similarity is the complement of this probability: S23 (212, 431) = 1 – 0.99994 = 0.00006.

Even though the values in the last two tables are very different, the differences are
only in term of scale; measures S23 computed with eqs. 7.31 and 7.32 are monotonic to
each other. Section 8.9 shows how to use similarities computed with eq. 7.32 for the
probabilistic clustering of objects or species.

Another, simpler probabilistic similarity coefficient among sites has been proposed
by palaeontologists Raup & Crick (1979) for species presence-absence data; this is the
level of measurement usually favoured in palaeoecology. Consider the number of
species in common to sites h and i; this is statistic ahi of the binary coefficients of
Section 7.3. The null hypothesis here is H0: there is no association between sites h and
i because species are independent of one another and each one is distributed at random
among the sites (hypothesis of random sprinkling of species). The association between
sites, measured by ahi , is tested as follows using permutations:

1. Compute the reference value of the number of species in common, ahi, for each
pair of sites h and i.

2. Permute at random each vector of species occurrences, independently of the other
species, as in permutation model 1 of Section 10.6. Compute the number of species
in common, , for each pair of sites under permutation. 

3. Repeat step 2 a large number of times to obtain the distribution of . Add the
reference value ahi to the distribution.

4. For each pair of sites, compare ahi to the reference distribution and calculate the
probability p(ahi) that , using the procedure of Subsection 1.2.2.

This description is based upon the papers of Raup & Crick (1979) and McCoy et al.
(1986). However, calculation of the probability in the upper tail of the reference
distribution is modified, in the above description, to agree with Subsection 1.2.2. The

Ponds
Ponds

212 214 233 431 432

212 –

214 0.54110 –

233 0.00000 0.00079 –

431 0.00006 0.00869 0.08037 –

432 0.00000 0.04340 0.00340 0.23942 –

Permutation
test

a*hi

a*hi

a*hi ahi≥
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probability p(ahi) is expected to be near 0 for sites h and i showing high association,
i.e. with more species in common than expected under the null hypothesis. A value
near 0.5 indicates that the data support the null hypothesis of “random sprinkling of
species”.

One could also test in the lower tail of the distribution, looking for pairs of sites that are
significantly dissimilar. The probability to calculate would be: . Significantly
dissimilar sites would suggest that some process may have influenced the selection of species, so
that fewer species are common to the two sites than expected under the null hypothesis. 

Using the probability calculated in the upper tail, a probabilistic similarity measure
of association between sites x1 and x2 is defined here as follows:

S27 (x1, x2) = 1 – p(a12) (7.33)

This measure of similarity is different from that used by Raup & Crick (1979). Now
that computer power is widely available, it is recommended to use 999 or 9999
permutations instead of the 50 permutations recommended by Raup & Crick in 1979.

7.4 Q mode: distance coefficients

Distance coefficients are functions which take their maximum values (often 1) for two
objects that are entirely different, and 0 for two objects that are identical over all
descriptors. Distances, like similarities, (Section 7.3), are used to measure the
association between objects. Distance coefficients may be subdivided in three groups.
The first group consists of metrics which share the following four properties:

1) minimum 0: if a = b, then D(a, b) = 0;

2) positiveness: if a ≠ b, then D(a, b) > 0;

3) symmetry: D(a, b) = D(b, a);

4) triangle inequality: D(a, b) + D(b, c) ≥ D(a, c). In the same way, the sum of two
sides of a triangle drawn in Euclidean space is necessarily equal to or larger than the
third side.

The second group of distances are the semimetrics (or pseudometrics). These
coefficients do not follow the triangle inequality axiom. These measures cannot
directly be used to order points in a metric or Euclidean space because, for three points
(a, b and c), the sum of the distances from a to b and from b to c may be smaller than
the distance between a and c. A numerical example is given is Subsection 2. Some
authors prefer to talk about dissimilarity coefficients as the general expression and use
the term distance only to refer to coefficients that satisfy the four metric properties.

p a*hi ahi≤( )

Metric
properties
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The third group of distances consists of nonmetrics. These coefficients may take
negative values, thus violating the property of positiveness of metrics.

All similarity coefficient from Section 7.3 can be transformed into distances, as
mentioned in Section 7.2. Some properties of distance coefficients resulting from the
transformations D = (1 – S) and  are discussed in Table 7.2. Stating that a
distance coefficient is not metric or Euclidean actually means that an example can be
found; it does not mean that the coefficient is never metric or Euclidean. A coefficient
is likely to be metric or Euclidean when the binary form of the coefficient (name given
in the Table) is known to be metric or Euclidean, and test runs have never turned up
cased to the contrary. A coefficient is said to be Euclidean if the distances are fully
embeddable in an Euclidean space; principal coordinate analysis (Section 9.2) of such
a distance matrix does not produce negative eigenvalues.

D 1 S–=

Table 7.2 Some properties of distance coefficients calculated from the similarity coefficients presented in
Section 7.3. These properties (from Gower & Legendre, 1986), which will be used in
Section 9.2, only apply when there are no missing data.

Similarity D = 1 – S D = 1 – S

metric, etc. Euclidean metric Euclidean

 (simple matching; eq. 7.1) metric No Yes Yes

(Rogers & Tanimoto; eq. 7.2) metric No Yes Yes

 (eq. 7.3) semimetric No Yes No

 (eq. 7.4) nonmetric No No No

 (eq. 7.5) semimetric No No No

 (eq. 7.6) semimetric No Yes Yes

 (Jaccard; eq. 7.10) metric No Yes Yes

 (Sørensen; eq. 7.11) semimetric No Yes Yes

 (eq. 7.12) semimetric No No No

 (eq. 7.13) metric No Yes Yes

 (Russell & Rao; eq. 7.14) metric No Yes Yes

 (Kulczynski; eq. 7.15) nonmetric No No No
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In the case of ordered descriptors, some additional distance measures are described
here, in addition to those in Table 7.2. How to use the various distance coefficients is
summarized in Tables 7.3 and 7.4.

1 — Metric distances

Metric distances have been developed for quantitative descriptors, but they have
occasionally been used with semiquantitative descriptors. Some of these measures (D1,
D2, D5 to D8, D12) process the double-zeros in the same way as any other value of the
descriptors; refer to the discussion of the double-zero problem at the beginning of

Table 7.2 Continued.

Similarity D = 1 – S D = 1 – S

metric, etc. Euclidean metric Euclidean

 (eq. 7.16) semimetric No No No

 (Ochiai; eq. 7.17) semimetric No Yes Yes

 (Gower; eq. 7.20) metric No Yes Likely* (S1)

 (Estabrook & Rogers; eq. 7.21) metric No Yes Likely* (S1)

 (Steinhaus; eq. 7.24) semimetric No Likely* (S8) Likely* (S8)

 (Kulczynski; eq. 7.25) semimetric No No* (S13) No* (S13)

 (Gower; eq. 7.26) metric No Yes Likely

 (Legendre & Chodorowski; 7.27) metric No Yes Likely* (S7)

  (eq. 7.28) metric Yes Yes Yes

S22 = 1 – p(χ2)  (eq. 7.30) semimetric No – –

 (Goodall; eq. 7.31) or semimetric No – –

S23 = 1 – p(χ2)  (Goodall; eq. 7.32) semimetric No – –

   (Faith, 1983; eq. 7.18) metric – Yes –

* These results follow from the properties of the corresponding binary coefficients (coefficient numbers given),
when continuous variables are replaced by binary variables.
– Property unknown for this coefficient.

D 1 S–= D 1 S–=

S13
1
2
--- a

a b+
------------

a
a c+
------------+=

S14
a

a b+( ) a c+( )
------------------------------------------=

S15 w js j∑ w j∑⁄=

S16 w js j∑ w j∑⁄=

S17
2W

A B+
--------------=

S18
1
2
--- W

A
-----

W
B
-----+=

S19 w js j∑ w j∑⁄=

S20 w js j∑ w j∑⁄=

S21 1 χ2
metric–=

S23 2 d∑( ) n n 1–( )⁄=

S26 a d 2⁄+( ) p⁄=



Q mode: distance coefficients 277

Section 7.3. These coefficients should not be used, in general, with species
abundances, as will be seen in the paradox described below. Coefficients D3, D4, D9, to
D11, and D15 to D17, on the contrary, are well adapted to species abundance data.

The most common metric measure is the Euclidean distance. It is computed using
Pythagoras’ formula, from site-points positioned in a p-dimensional space called a
metric or Euclidean space:

(7.34)

When there are only two descriptors, this expression becomes the measure of the
hypotenuse of a right-angled triangle (Fig. 7.4; Section 2.4):

The square of D1 may also be used for clustering purpose. One should notice, however,
that  is a semimetric, which makes it less appropriate than D1 for ordination:

(7.35)

The Euclidean distance does not have an upper limit, its value increasing
indefinitely with the number of descriptors. The value also depends on the scale of
each descriptor, to such an extent that changing the scale of some descriptors may
result in measures that are not monotonic to each other. The problem may be avoided
by using standardized variables (eq. 1.12) instead of the original data, or by restricting
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Figure 7.4 Computation of the Euclidean distance (D1) between objects x1 and x2 in 2-dimensional space.
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the use of D1 and other distances of the same type (D2, D6, D7 and D8) to
dimensionally homogeneous data matrices (Chapter 3).

Williams & Stephenson (1973) and Stephenson et al. (1974) proposed a model for
analysing three-dimensional ecological data matrices (sites × species × times) based on
the Euclidean distance among vectors of data centred on their means (eq. 1.9).

The Euclidean distance, used as a measure of resemblance among sites on the basis
of species abundances, may lead to the following paradox: two sites without any
species in common may be at a smaller distance than another pair of sites sharing
species. This paradox is illustrated by a numerical example from Orlóci (1978: 46):

From these data, the following distances are calculated between sites:

Thus the Euclidean distance between sites x1 and x2, which have no species in
common, is smaller than the distance between x1 and x3 which share species y2 and y3.
In general, double-zeros lead to reduction of distances. This must be avoided with
species abundance data. For environmental descriptors, on the contrary, double-zeros
may well be a valid basis for comparing sites. The Euclidean distance should therefore
not be used for comparing sites on the basis of species abundances. The main difficulty
in ecology concerning the Euclidean distance arises from the fact that a frequently
used method, i.e. principal component analysis, orders objects in the multidimensional
space of descriptors using D1. The ensuing problems are discussed in Section 9.1.

Various modifications have been proposed to deal with the drawbacks of the
Euclidean distance applied to species abundances. First, the effect of the number of
descriptors may be tempered by computing an average distance:

(7.36)

Sites
Species

y1 y2 y3

x1 0 1 1

x2 1 0 0

x3 0 4 4
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Orlóci (1967b) proposed to use the chord distance, which has a maximum value of
 for sites with no species in common and a minimum of 0 when two sites share the

same species in the same proportions, without it being necessary for these species to
be represented by the same numbers of individuals at the two sites. This measure is the
Euclidean distance computed after scaling the site vectors to length 1 (normalization
of a vector, Section 2.4). After normalization, the Euclidean distance computed
between two objects (sites) is equivalent to the length of a chord joining two points
within a segment of a sphere or hypersphere of radius 1. If there are only two species
involved, the normalization places the sites on the circumference of a 90° sector of a
circle with radius 1 (Fig. 7.5). The chord distance may also be computed directly from
non-normalized data through the following formula:

(7.37)

The inner part of this equation is actually the cosine of the angle (θ) between the two
site vectors, normalized or not (eq. 2.9). So the chord distance formula may be written:

(7.38)

The chord distance is maximum when the species at two sites are completely
different. In such a case, the normalized site vectors are at 90° from each other on the
circumference of a 90° sector of a circle (when there are only two species), or on the
surface of a segment of a hypersphere (for p species), and the distance between the two
sites is . This measure solves the problem caused by sites having different total
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Figure 7.5 Computation of the chord distance D3 and geodesic metric D4 between sites x1 and x2.
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abundances of species as well as the paradox explained above for D1. Indeed, with D3,
the distances between pairs of sites for the numerical example are:

The chord distance is a metric. Since double-zeros do not influence the chord distance,
it can be used to compare sites described by species abundances.

A transformation of the previous measure, known as the geodesic metric, measures
the length of the arc at the surface of the hypersphere of unit radius (Fig. 7.5):

(7.39)

In the numerical example, pairs of sites (x1, x2) and (x2, x3), with no species in
common, are at an angle of 90°, whereas pair of sites (x1, x2), which share two of the
three species, are at smaller angle (88°).

Mahalanobis (1936) has developed a generalized distance which takes into account
the correlations among descriptors and is independent of the scales of the various
descriptors. This measure computes the distance between two points in a space whose
axes are not necessarily orthogonal, in order to take into account the correlations
among descriptors. Orlóci (1978: 48) gives the formula for computing distances
between individual sites but, in practice, the Mahalanobis generalized distance is only
used for comparing groups of sites. For two groups of sites, w1 and w2, containing n1
and n2 sites, respectively, and described by the same p variables, the square of the
generalized distance is given by the following matrix formula:

(7.40)

In this equation,  is the vector (length = p) of the differences between the means of
the p variables in the two groups of sites. V is the pooled within-group dispersion
matrix of the two groups of sites, estimated from the matrices of sums of squares and
cross products between group-centred descriptors for each of the two groups, added up
term by term and divided by (n1 + n2 – 2), as in discriminant analysis (Table 11.8) and
multivariate analysis of variance:

(7.41)
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x1 x2 x3

x1 0  1.414 0.000

x2 1.414 0 1.414

x3 0.000 1.414 0
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where S1 and S2 are the dispersion matrices for each of the two groups*. Whereas
vector  measures the difference between the p-dimensional means of two groups
(p descriptors), V takes into account the covariances among descriptors. This formula
may be adapted to calculate the distance between a single object and a group.

If one wishes to test D5 for significance, the within-group dispersion matrices must
be homogeneous (homoscedasticity, Box 1.4). Homoscedasticity of matrices S1 and S2
may be tested using Kullback’s test (eq. 11.34). The test of significance also assumes
multinormality of the within-group distributions (Sections 4.3 and 4.7) although the
generalized distance tolerates some degree of deviation from this condition. The
Mahalanobis generalized distance is the distance preserved among group means in a
canonical space of discriminant functions (Section 11.5).

To perform the test of significance, the generalized distance is transformed into
Hotelling’s T2 (1931) statistic, using the following equation:

(7.42)

The F statistic is computed as follows: 

(7.43)

with p and [n1 + n2 – (p + 1)] degrees of freedom. Statistic T2 is a generalization of
Student’s t statistic to the multidimensional case. It allows one to test the hypothesis
that two groups originate from populations with similar centroids. The final
generalization to several groups, called Wilks Λ (lambda), is discussed in Section 11.5
(eq. 11.35).

Coefficients D2 and D5 are related to the Euclidean distance D1, which is the
second degree (r = 2) of Minkowski’s metric:

(7.44)

Forms of this metric with r > 2 are seldom used in ecology because powers higher than
2 give too much importance to the largest differences . For the exact
opposite reason, exponent r = 1 is used in many instances. The basic form,

* Procedure NEIGHBOUR of the SAS package uses the total dispersion matrix T (Table 11.8),
instead of V, to compute Mahalanobis distances.
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(7.45)

is known as the Manhattan metric, taxicab metric, or city-block metric. This refers to
the fact that, for two descriptors, the distance between two sites is the distance on the
abscissa (descriptor y1) plus the distance on the ordinate (descriptor y2), like the
distance travelled by a taxicab around blocks in a city with an orthogonal plan like
Manhattan. This metric presents the same problem for double-zeros as in the
Euclidean distance and thus leads to the same paradox. 

The mean character difference (“durchschnittliche Differenz”, in German),
proposed by anthropologist Czekanowski (1909),

(7.46)

has the advantage over D7 of not increasing with the number of descriptors (p). It may
be used with species abundances if one modifies eq. 7.46 to exclude double-zeros from
the computation of  and p is replaced by (p – no. double-zeros). 

Whittaker’s index of association (1952) is well adapted to species abundance data,
because each species is first transformed into a fraction of the total number of
individuals at the site, before the subtraction. The complement of this index is the
following distance:

(7.47)

The difference is zero for a species when its proportions are identical in the two sites.
An identical result is obtained by computing, over all species, the sum of the smallest
fractions calculated for the two sites:

(7.48)

The Australians Lance & Williams (1967a) give several variants of the Manhattan
metric, including their Canberra metric (Lance & Williams, 1966c):

(7.49)
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which must exclude double-zeros in order to avoid indetermination. This measure has
no upper limit. It can be shown that, in D10, a given difference between abundant
species contributes less to the distance than the same difference found between rarer
species (Section 7.6). As an ecological similarity measure, Stephenson et al. (1972)
and Moreau & Legendre (1979) used the one-complement of the Canberra metric,
after scaling it between 0 and 1: 

(7.50)

Another version of coefficient Dl0, scaled and based on the Euclidean distance, has
been used for taxonomic purposes by Clark (1952) under the name coefficient of
divergence:

(7.51)

D11 is to Dl0 what D2 is to D7. Because, in D11, the difference for each descriptor is
first expressed as a fraction, before squaring the values and summing them, this
coefficient may be used with species abundance data. As in coefficient D8,however,
double-zeros must be excluded from the computation and their number subtracted
from p. Unless one intends to use this coefficient as a basis for ordination (Chapter 9),
it is better, for species abundance data, to use the semimetric Dl4 described below.

Another coefficient, which is related to D11, was developed by Pearson (1926) for
anthropological studies under the name coefficient of racial likeness. Using this
coefficient, it is possible to measure a distance between groups of sites, like with the
Mahalanobis generalized distance D5, but without eliminating the effect of
correlations among descriptors:

(7.52)

for two groups of sites w1 and w2 containing respectively n1 and n2 sites;  is the
mean of descriptor j in group i and  is the corresponding variance. 

Other measures, related to χ2, are available to calculate the distance among sites
using species abundances or other frequency data; no negative value is allowed in the
data. The first of these coefficients is called the χ2 metric. The sum of squares of
differences is calculated between profiles of conditional probabilities in two rows (or
columns) of a frequency table, weighting each term of the sum of squares by the
inverse of the frequency of the column (or row) in the overall table. This measure has
been used by Roux & Reyssac (1975) to calculate distances among sites described by
species abundances.
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In order to compute the χ2 metric, the data matrix must be transformed into a
matrix of conditional probabilities; see Table 6.7. If the metric is computed between
the rows of the matrix, the conditional probabilities are computed by rows. The
elements of the matrix become new terms yij/yi+ where yi+ is the sum of frequencies in
row i. In the numerical example below, rows of the data matrix, on the left-hand side,
are sites and columns are species. The matrix of conditional probabilities (by rows) on
the right is used below to compute the association between rows (sites):

The distance between the first two rows of the right-hand matrix could be computed
using the formula of the Euclidean distance D1 (eq. 7.34). The equation of the distance
between the two sites would then be

With this equation, however, the most abundant species would contribute
predominantly to the sum of squares. Instead, the χ2 metric is computed using a
weighted expression:

(7.53)

where y+j is the sum of frequencies in column j. Although this measure has no upper
limit, it produces distances smaller than 1 in most cases. For the numerical example,
computation of D15 between the first two sites (rows) gives:

The fourth species, which is absent from the first two sites, cancels itself out. This is
how the χ2 metric excludes double-zeros from the calculation.
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The two sites were compared above using (weighted) profiles of species
conditional probabilities. D15 may also be used to measure the distance between
species from the (weighted) distribution profiles among the various sites. The
conditional probability matrix is then computed by columns [yij/y.j] before applying
the above formula, interchanging columns for rows.

A related measure is called the χ2 distance (Lebart & Fénelon, 1971). It differs
from the χ2 metric in that the terms of the sum of squares are divided by the
probability (relative frequency) of each row in the overall table instead of its absolute
frequency. In other words, it is identical to the χ2 metric multiplied by  where y++
is the sum of all frequencies in the data table:

(7.54)

The χ2 distance is the distance preserved in correspondence analysis (Section 9.4),
when computing the association between species or between sites. More generally, it is
used for computing the association between the rows or columns of a contingency
table. This measure has no upper limit.

The small numerical example already used to illustrate the paradox associated with
the Euclidean distance (D1) computed for species abundances is used again here to
contrast D16 with D1.

Computing D16 between the first two rows (sites) gives:
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The distances between all pairs of sites are:

Comparison with results obtained for D1, above, shows that the problem then caused
by the presence of double-zeros does not exist here. Distance D16 may therefore be
used directly with sites described by species abundances, contrary to D1.

A coefficient related to D15 and D16 is the Hellinger distance, described by Rao
(1995). The formula for the Hellinger distance is:

(7.55)

Its properties are briefly discussed near the end of Section 7.6. Like D16, this distance
has no upper limit. Rao (1995) recommends this measure as a basis for a new
ordination method. One can obtain a similar ordination by computing this distance
function among the objects and going to principal coordinate analysis.

2 — Semimetrics

Some distance measures do not follow the fourth property of metrics, i.e. the triangle
inequality axiom described at the beginning of this Section. As a consequence, they do
not allow a proper ordination of sites in a full Euclidean space. They may, however, be
used for ordination by principal coordinate analysis after correction for negative
eigenvalues (Subsection 9.2.4) or by nonmetric multidimensional scaling
(Section 9.3). These measures are called semimetrics or pseudometrics. Some
semimetrics derived from similarities are identified in Table 7.2. Other such measures
are presented here.

The distance corresponding to Sørensen’s coefficient S8 was described by Watson
et al. (1966) under the name nonmetric coefficient:

(7.56)
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a, b and c were defined at the beginning of Subsection 7.3.1. The following numerical
example shows that D13 does not obey the triangle inequality axiom:

Distances between the three pairs of sites are:

hence, 1.00 > 0.25 + 0.43, contrary to the triangle inequality axiom.

Among the measures for species abundance data, the coefficients of Steinhaus S17
and Kulczynski S18 are semimetrics when transformed into distances (Table 7.2). In
particular, D14 = 1 – S17 was first described by Odum (1950), who called it the
percentage difference, and then by Bray & Curtis (1957):

(7.57)

Contrary to the Canberra metric D10, differences between abundant species contribute
the same to D14 as differences between rare species. This may be seen as a desirable
property, for instance when using normalized species abundance data. Bloom (1981)
compared the Canberra metric, the percentage difference and other indices to a
theoretical standard. He showed that only D14 (or S17) accurately reflects the true
resemblance along its entire 0 to 1 scale, whereas D10, for example, underestimated the
resemblance over much of its 0 to 1 range.
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The following numerical example, from Orlóci (1978: 59), shows that D14 does not
obey the triangle inequality axiom:

Distances between the three pairs of sites are:

hence, 0.600 > 0.059 + 0.533, contrary to the triangle inequality axiom. If the numbers
of specimens are the same in all sites (sums of rows), however, then D14 is a metric. It
follows that, when numbers of specimens are quite different from site to site,
ordination by principal coordinate analysis based upon D14 (or S17 and S18) matrices
are likely to produce negative eigenvalues. How a meaningful ordination of sites may
be obtained in such conditions is described at the beginning of the present Subsection.

7.5 R mode: coefficients of dependence

The main purpose of R-mode analysis is to investigate the relationships among
descriptors; R matrices may also be used, in some cases, for the ordination of objects
e.g. in principal component or discriminant analysis (Sections 9.1 and 10.5).
Following the classification of descriptors in Table 1.2, dependence coefficients will be
described for quantitative, semiquantitative, and qualitative descriptors. This will be
followed by special measures to assess the dependence between species, to be used for
the identification of biological associations (Section 8.9).

Most dependence coefficients are amenable to statistical testing. For such
coefficients, it is thus possible to associate a matrix of probabilities with the R matrix,
if required by subsequent analyses. While it is not always legitimate to apply statistical
tests of significance, it is never incorrect to compute a dependence coefficient. For
example, there is no objection to computing a Pearson correlation coefficient for any
pair of metric variables, but these same variables must be normally distributed
(Sections 4.2 and 4.3) and the sites must be independent realizations (Sections 1.1 and

Quadrats
Species

y1 y2 y3 y4 y5

x1 2 5 2 5 3

x2 3 5 2 4 3

x3 9 1 1 1 1

D14 x1 x2,( ) 1 0 0 1 0+ + + +
17 17+

---------------------------------------- 0.059= =

D14 x1 x3,( ) 7 4 1 4 2+ + + +
17 13+

---------------------------------------- 0.600= =

D14 x2 x3,( ) 6 4 1 3 2+ + + +
17 13+

---------------------------------------- 0.533= =
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1.2) to legitimately test the significance of the coefficient using the standard test.
Furthermore, a test of significance only allows one to reject or not a specific hypothesis
concerning the value of the statistic (here, the coefficient of resemblance) whereas the
coefficient itself measures the intensity of the relationship between descriptors.
Table 7.5 summarizes the use of R-mode coefficients with ecological variables.

1 — Descriptors other than species abundances

Why the resemblance between species abundance descriptors must be measured using
special coefficients is explained at the beginning of the next Subsection. Measures of
resemblance in the present Subsection are used for comparing descriptors for which
double-zeros provide unequivocal information (for a discussion of double-zeros in
ecology, see the beginning of Section 7.3).

The resemblance between quantitative descriptors can be computed using
parametric measures of dependence, i.e. measures based on parameters of the
frequency distributions of the descriptors. These measures are the covariance and the
Pearson correlation coefficient; they have been described in Chapter 5. They are only
adapted to descriptors whose relationships are linear.

The covariance sjk between descriptors j and k is computed from centred variables
 and  (eq. 4.4). The range of values of the covariance has no a

priori upper or lower limits. The variances and covariances among a group of
descriptors form their dispersion matrix S (eq. 4.6).

Pearson’s correlation coefficient rjk is their covariance of descriptors j and k
computed from standardized variables (eqs. 1.12 and 4.7). The coefficients of
correlations among a group of descriptors form the correlation matrix R (eq. 4.8).
Correlation coefficients range in values between –1 and +1. The significance of
individual coefficients (the null hypothesis being generally H0: r = 0) is tested using
eq. 4.13, whereas eq. 4.14 is used to test the complete independence among all
descriptors.

Some authors have used Pearson’s r for Q-mode analyses, after interchanging the
positions of objects and descriptors in the data matrix. Lefebvre (1980) calls this Q
measure the resemblance coefficient. There are at least five objections to this:

• In the R mode, Pearson’s r is a dimensionless coefficient (Chapter 3). When the
descriptors are not dimensionally homogeneous, the Q-mode correlation coefficient,
which combines all descriptors, has complex dimensions that cannot be interpreted.

• In most cases, one may arbitrarily rescale quantitative descriptors (e.g. multiplying
one by 100 and dividing another by 10). In the R mode, the value of r remains
unchanged after rescaling, whereas doing so in the Q mode may change the value of
resemblance between objects in unpredictable and nonmonotonic fashion.

yij y j–( ) yik yk–( )

Q-mode
correlation
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• In order to avoid the two previous problems, it has been suggested to standardize the
descriptors (eq. 1.12) before computing correlations in the Q mode. Consider two
objects x1 and x2: their similarity should be independent of the other objects in the
study; removing objects from the data set should not change it. Any change in object
composition of the data set changes the standardized variables, however, and so it
affects the value of the correlation computed between x1 and x2. Hence,
standardization does not solve the problems.

• Even with dimensionally homogeneous data (e.g. counts of different species), the
second objection still holds. In addition, in the R mode, the central limit theorem
(Section 4.3) predicts that, as the number of objects increases, the means, variances,
and covariances (or correlations) converge towards their values in the statistical
population. In the Q mode, on the contrary, adding new descriptors (their positions
have been interchanged with that of objects in the data matrix) causes major variations
in the resemblance coefficient if these additional descriptors are not perfectly
correlated to those already present.

• If correlation coefficients could be used as a general measure of resemblance in the
Q mode, they should be applicable in particular to the simple case of the description of
the proximities among sites, computed from their geographic coordinates X and Y on a
map; the correlations obtained from this calculation should reflect in some way the
distances among the sites. This is not the case: correlation coefficients computed
among sites from their geographic coordinates are all +1 or –1. As an exercise, readers
are encouraged to compute an example of their own.

It follows that the measures designed for R-mode analysis should not be used in the
Q mode. Sections 7.3 and 7.4 describe several Q-mode coefficients, whose properties
and dimensions are already known or easy to determine. 

The resemblance between semiquantitative descriptors and, more generally
between any pair of ordered descriptors whose relationship is monotonic may be
determined using nonparametric measures of dependence (Chapter 5). Since
quantitative descriptors are ordered, nonparametric coefficients may be used to
measure their dependence, as long as they are monotonically related.

Two nonparametric correlation coefficients have been described in Section 5.3:
Spearman’s r and Kendall’s τ (tau). In Spearman’s r (eq. 5.3), quantitative values are
replaced by ranks before computing Pearson’s r formula. Kendall’s τ (eqs. 5.5 to 5.7)
measures the resemblance in a way that is quite different from Pearson’s r. Values of
Spearman’s r and Kendall’s τ range between –1 and +1. The significance of individual
coefficients (the null hypothesis being generally H0: r = 0) is tested using eq. 5.4
(Spearman’s r) or 5.8 (Kendall’s τ).

As with Pearson’s r above, rank correlation coefficients should not be used in the Q
mode. Indeed, even if quantitative descriptors are standardized, the same problem
arises as with Pearson’s r, i.e.  the Q measure for a pair of objects is a function of all
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objects in the data set. In addition, in most biological sampling units, several species
are represented by small numbers of individuals. Because these small numbers are
subject to large stochastic variation, the ranks of the corresponding species are
uncertain in the reference ecosystem. As a consequence, rank correlations between
sites would be subject to important random variation because their values would be
based on large numbers of uncertain ranks. This is equivalent to giving preponderant
weight to the many poorly sampled species.

The importance of qualitative descriptors in ecological research is discussed in
Section 6.0. The measurement of resemblance between pairs of such descriptors is
based on two-way contingency tables (Sections 6.2 and 6.3), whose analysis is
generally conducted using X2 (chi-square) statistics. Contingency table analysis is also
the major approach available for measuring the dependence between quantitative or
semiquantitative ordered descriptors that are not monotonically related. The minimum
value of X2 is zero, but it has no a priori upper limit. Its formulae (eqs. 6.5 and 6.6)
and test of significance are explained in Section 6.2. X2 may be transformed into
contingency coefficients (eqs. 6.19 and 6.20), whose values range between 0 and +1.

Two-way contingency tables may also be analysed using measurements derived
from information theory. In this case, the amounts of information (B) shared by two
descriptors j and k and exclusive to each one (A and C) are first computed. These
quantities may be combined into similarity measures, such as S(j, k) = B/(A + B + C)
(eq. 6.15; see also eqs. 6.17 and 6.18), or into distance coefficients such as
D(j, k) = (A + C)/(A + B + C) (eq. 6.16). The analysis of multiway contingency tables
(Section 6.3) is based on the Wilks X2 statistic (eq. 6.6).

A qualitative descriptor (including a classification; Chapter 8) can be compared to
a quantitative descriptor using one-way analysis of variance (one-way ANOVA;
Table 5.2 and accompanying text). The classification criterion for this ANOVA is the
qualitative descriptor. As long as the assumptions underlying analysis of variance are
met (i.e. normality of within-group distributions and homoscedasticity, Box 1.4), the
significance of the relationship between the descriptors may be tested. If the
quantitative descriptor does not obey these assumptions or the comparison is between
a quantitative and a semiquantitative descriptor, nonparametric one-way analysis of
variance (Kruskal-Wallis H test; Table 5.2) is used instead of parametric ANOVA.

2 — Species abundances: biological associations

Analysing species abundance descriptors causes the same problem in the R as in the Q
mode, i.e. what to do with double-zeros? The problem often occurs with ecological
data because biological assemblages generally consist of a small number of dominant
species and a large number of rare species (Section 6.5). Since biological association
studies are generally based on all species in a given taxocene (term defined in
Section 6.5), the data matrix most often contains a large number of zeros. As a
consequence, measurements of dependence among species, upon which rests the
identification of biological associations, is based on many pairs of zeros for which
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there is no clear biological interpretation. The dubious interpretation of double zeros
has been discussed at the beginning of Section 7.3.

The present Subsection explains how to measure the degree of association, or
dependence, between species descriptors. How these measures can be used for the
identification of biological associations is discussed in Section 8.9, where an
operational concept of biological association is defined. Some of these measures have
been discussed by Southwood (1966), in reference to the study of insect populations.

Since species abundances are generally quantitative, it is appropriate to first
examine the parametric measures of dependence in view of identifying species
associations. If the abundance data are first normalized, using for example
transformation y' = log(y + 1) (eq. 1.12), it may seem appropriate to measure the
association between species using the covariance (eq. 4.4) or Pearson’s linear
correlation coefficient (eq. 4.7). The ecological literature on species associations
contains many examples of this approach and of analyses based on dispersion or
correlation matrices (e.g. principal component analysis). This is incorrect because
covariances or Pearson’s correlations use zeros as any another quantitative value.
Normalizing the data does not minimize the basic problem, which is that the presence
of many double-zeros, without any clear biological meaning, significantly distorts the
dispersion ellipse of the sites with respect to the “species” axes. In order to minimize
this effect, several options are available to ecologists who only have access to the
coefficients available in regular computer packages: 

(1) Eliminate from the study the less frequent species, so as to reduce the number of
double-zeros. The absence of these species from the following analyses is of little
consequence to the study of ecologically meaningful species associations (see
Subsection 1.6.1). 

(2) Eliminate all zeros from the comparisons, by declaring that zeros are missing
values (see Subsection 1.6.2). 

(3) Eliminate double-zeros only from the computations of the covariance or correlation
matrix; this must generally be programmed separately. The resulting dispersion (or
correlation) matrix may then be fed to a computer package for the remaining
operations, such as the computation of principal components (Section 9.1).

Note that correspondence analysis (Section 9.4) is a form of principal component
analysis which preserves the χ2 distance (D16; eq. 7.54) instead of the Euclidean
distance (D1; eq. 7.34). Because D16 excludes double-zeros whereas D1 includes them,
correspondence analysis is better suited than principal component analysis to the study
of species associations.

Fager (1957) pointed out that associations must group species which are almost
always part of one another’s biological environment. Because the covariance or
correlation coefficients measure the (linear) relationship between fluctuations in the
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abundances of two species, it follows that, if two species do not covary in a linear way
(even though they are always present together), Pearson’s correlation coefficient will
not show any relationship (i.e. r not significantly different from zero). This problem
with covariance or correlation coefficients calls for an operational definition of
associations (see Section 8.9) and stresses again the fact that low correlation values do
not have an unequivocal meaning (see Section 4.2). A low correlation does not
indicate that two species are unrelated; this is a major drawback for the identification
of associations (Section 8.9). The same applies to nonparametric correlation
coefficients which are used with classes of relative species abundances. 

Moving away from correlation coefficients, another approach consists in applying
Goodall’s probabilistic coefficient (S23; eqs. 7.31 or 7.32) in the R mode to species
abundances, as was done by Legendre (1973). This probabilistic coefficient allows one
to set an “objective” limit to species associations; indeed, one may then use a
probabilistic definition of an association, such as: “all species that are related at a
probability level p ≥ 0.95 are members of the association”. With this coefficient, it is
also possible to use a probabilistic clustering model (Section 8.9). In the R mode,
Goodall’s coefficient has the following meaning: given p species and n sites, the
similarity of a pair of species is defined as the complement (1 – p) of the probability
that any pair of species chosen at random would be as similar as, or more similar than
the two species under consideration. Goodall’s similarity coefficient is computed as in
Subsection 7.3.5, with species interchanged with sites. At step (a), if all species vectors
have been normalized (for example using the transformation y' = log(y + 1); eq. 1.12),
the partial similarity of Gower’s coefficient S19 (eq.7.26)

may be used to describe the similarity between species y1 and y2 at site i. Ri is the
range of variation of the normalized species abundances at site i. It is useless to
standardize the data in this case since differences between sites are scaled with respect
to Ri for each species.

Biological associations may also be defined on the basis of the co-occurrence of
species instead of the relationships between fluctuations in abundances. Indeed, the
definition of association may refer to the sole concept of co-occurrence, as was the
case with Fager’s approach above. This is because quantitative data may not accurately
reflect the proportions of the various species in the environment, because of problems
with sampling, preservation, identification or counting, or simply because the concept
of individuality is not clear (e.g. plants multiplying through rhizomes; colonial algae
or animals) or the comparison of individuals does not make ecological sense (e.g. the
baobab and the surrounding herbaceous plants). Finally, spatio-temporal aggregration
of organisms may obscure the true quantitative relationships among species, as in the
case of plankton patches or reindeer herds. It follows that associations are often
defined on the sole basis of the presence or absence of species. 

Probabilistic
association

si12 1 yi1 yi2– Ri⁄[ ]–=



294 Ecological resemblance

There are many approaches in the literature for measuring the association between
species based on binary data. These coefficients are based on the following 2 × 2
frequency table:

where a and d are numbers of sites in which the two species are present and absent,
respectively, whereas b and c are the numbers of sites in which only one of the two
species is present; n is the total number of sites. The measures of association between
species always exclude the number of double absences, d.

Among the many binary coefficients, described in Section 7.3, that exclude double-
zeros, at least two have been used for assessing association between species. Jaccard’s
coefficient of community (eq. 7.10) has been used by Reyssac & Roux (1972):

The corresponding distance has been used by Thorrington-Smith (1971) for the same
purpose:

(7.58)

The coincidence index (eq. 7.11)

was originally defined for studying species associations (Dice, 1945).

A more elaborate coefficient was proposed by Fager & McGowan (1963), to
replace Fager’s probabilistic coefficient (1957) proposed earlier:

(7.59)

The first part of the coefficient is the same as S14, i.e. the geometric mean of the
proportions of co-occurrence for each of the two species; the second part is a
correction for small sample size.

Species y1
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absence c d c + d
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As a probabilistic coefficient for presence-absence data, Krylov (1968) proposed to
use the probability associated with the chi-square statistic of the above 2 × 2 frequency
table to test the null hypothesis that two species are distributed independently of each
other among the various sites. Rejecting H0 leads gives support to the alternative
hypothesis of association between the two species. In the case of a 2 × 2 contingency
table, and using Yate’s correction factor for small samples, the X2 formula is:

(7.60)

The number of degrees of freedom for the test of significance is ν = (no. rows – 1) ×
(no. columns – 1) = 1. The X2 statistic could also be tested by permutation
(Section 1.2). Given that associations should be based on positive relationships
between pairs of species (negative relationships reflecting competition), Krylov
proposed to set S(y1, y2) = 0 when the expected value of co-occurrence, E = (a + b) (a
+ c) / n , is larger than or equal to the observed frequency (E ≥ a). Following the test,
two species are considered associated if the probability (p) associated to their X2 value
is smaller than a pre-established significance threshold, for example α = 0.05. The
similarity measure between species is the complement of this probability:

S25(y1, y2) = 1 – p(X2), with ν = 1, when (a + b)(a + c) / n < a

S25(y1, y2) = 0 when (a + b)(a + c) / n ≥ a (7.61)

When the number of sites n is smaller than 20 or a, b, c or d are smaller than 5, Fisher’s
exact probability formula should be used instead of X2. This formula can be found in
most textbooks of statistics

The same formula can be derived from Pearson’s φ (phi) (eq. 7.9), given that
X2 = nφ2. Pearson’s φ is also called the point correlation coefficient because it is the
general correlation coefficient (eq. 5.1) computed from presence-absence values.

7.6 Choice of a coefficient

Criteria for choosing a coefficient are summarized in Tables 7.3 to 7.5. In these Tables,
the coefficients are identified by the names and numbers used in Sections 7.3 to 7.5.
The three Tables distinguish between coefficients appropriate for “species” descriptors
and those for other types of descriptors.

Levels 5, 7 and 8 of Table 7.3 require some explanation. Coefficients found in these
levels are classified with respect to two criteria, i.e. (a) standardization (or not) of each
object-vector prior to the comparison and (b) relative importance given by the
coefficient to the abundant or rare species. This defines various types of coefficients.

X
2 n ad bc– n 2⁄( )–[ ] 2

a b+( ) c d+( ) a c+( ) b d+( )
-----------------------------------------------------------------------------=
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Type 1 coefficients. Consider two objects, each represented by a vector of species
abundances, to be compared using a Q-mode measure. With type 1 coefficients, if
there is a given difference between sites for some abundant species and the same
difference for a rare species, the two species contribute equally to the similarity or
distance between sites. A small numerical example illustrates this property for the
percentage difference (D14), which is the complement of Steinhaus’ similarity (S17):

Using eq. 7.57 shows that each of the three species contributes 10/290 to the total
distance between the two sites. With some coefficients (D3, D4, D9), the
standardization of the site-vectors, which is automatically done prior to the
computation of the coefficient, may make the result unclear as to the importance given
to each species. With these coefficients, the property of “equal contribution” is found
only when the two site-vectors are equally important, the importance being measured
in different ways depending on the coefficient (see the note at the foot of Table 7.3).

Type 2a coefficients. With coefficients of this type, a difference between values for
an abundant species contributes less to the distance (and, thus, more to the similarity)
than the same difference for a rare species. The Canberra metric (D10) belongs to this
type. For the above numerical example, calculation of D10 (eq. 7.49) shows that
species y1, which is the most abundant, contributes 10/190 to the distance, y2
contributes 10/70, whereas the contribution of y1, which is the rarest species, is the
largest of the three (10/30). The total distance is D10  = 0.529. The coefficient of
divergence (D11; eq. 7.51) also belongs to this type.

Type 2b coefficients. Coefficients of this type behave similarly to the previous ones,
except that the importance of each species is calculated with respect to the whole data
set, instead of the two site-vectors being compared. The χ2 metric (D15) is
representative of this. In eq. 7.53 and accompanying example, the squared difference
between conditional probabilities, for a given species, is divided by y+j which is the
total number of individuals belonging to this species in all sites. If this number is large,
it reduces the contribution of the species to the total distance between two rows (sites)
more than would happen in the case of a rarer species. Gower’s coefficient (S19;
eq 7.26) has the same behaviour (unless special weights w12j are used for some
species), since the importance of each species is determined from its range of variation
through all sites. The coefficient of Legendre & Chodorowski (S20; eq 7.27) also
belongs to this type when parameter k in the partial similarity function s12j for each
species is made proportional to its range of variation through all sites.

Species: y1 y2 y3

Site x1 100 40 20

Site x2 90 30 10

10 10 10

190 70 30

y1 j y2 j–

y1 j y2 j+( )
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Legendre et al. (1985) suggested that it is more informative to compare dominant
or well-represented species than rare taxa, because the latter are generally not well
sampled. This provides an approach for choosing a coefficient. In immature
communities, most of the species are represented by small numbers of individuals, so
that only a few species are well sampled, whereas, in mature communities, several
species exhibit intermediate or high frequencies of occurrence. When calculating
similarities between species from immature communities, a reasonable approach may
thus be to give more weight to the few well-sampled species (type 2 coefficients)
whereas, for sites from mature communities, type 1 coefficients may be more
appropriate.

Another way of choosing a resemblance coefficient is to construct artificial data
representing contrasting situations that the similarity or distance measure should be
able to differentiate. Computing several candidate coefficients for the test data will
indicate which coefficient is the most appropriate for data of the same type. In this
spirit, Hajdu (1981) constructed series of test cases, that he called ordered comparison
case series (OCCAS), corresponding to linear changes in the abundances of two species
along different types of simulated environmental gradients. The results are distances
between sites, computed using different coefficients, for linearly changing species
composition.

To illustrate the method, consider one of Hajdu’s OCCAS with two species. For these species,
site 1 had frequencies y11 = 100 and y12 = 0; site 2 had frequency y21 = 50 whereas y22 varied
from 10 to 120. Figure 7.6 shows the results for three coefficients: (1 – S15) has a completely
linear behaviour across the values of y22, D14 is not quite linear, and D17 is strongly curvilinear.

OCCAS
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Figure 7.6 Results from an ordered comparison case series (OCCAS) where the abundance of species y22
varies from 10 to 120 by steps of 10. The values taken by coefficients (1 – S15), D14, and D17 are
shown.
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An ideal coefficient should change linearly when plotted against a series of test
cases corresponding to a linear change in species composition, as simulated in OCCAS

runs. Hajdu (1981) proposed a measure of non-linearity, defined as the standard
deviation of the changes in values of distance between adjacent test cases along the
series. A good distance coefficient should also change substantially along the series
and reach its maximum when the species composition becomes maximum. Resolution
was defined as the mean change occurring in distances between adjacent test cases
along the series. High linearity is desirable in ordination methods whereas high
resolution is desirable in cluster analysis. The ratio of non-linearity over resolution
defines a coefficient of variation which should be small for a “good” overall
resemblance coefficient. 

Resolutions are only comparable among coefficients that are [0, 1]-bounded; as a
consequence, this measure should not be used to compare coefficients, such as D1, D2, D10, D15,
D16, and D17, which do not have an upper bound. Non-linearity near 0 is always a good
property, but, again, higher values are only comparable for coefficients that are [0, 1]-bounded.
Coefficients of variation are comparable because the scale of variation of each specific
coefficient is taken into account in the calculation.

Gower & Legendre (1986) used Hajdu’s OCCAS to study the behaviour of several
similarity and distance coefficients and to make recommendations about their use.
They studied 15 coefficients for binary data (all of which are described in the present
Chapter) and 10 coefficients for quantitative data (5 of them are described here).
Among the binary coefficients, S12 (eq. 7.15) and the coefficient of Yule (eq. 7.8) were
strongly non-linear and should be avoided; all the other coefficients (S1, S2, S3, S5, S6,
S7, S8, S10, S13, S14, as well as eqs. 7.7 and 7.9) behaved well. The coefficients for
quantitative data included in that study were S15, , D2, D10 and D11.
Coefficients D2 and S15, which are adapted to physical descriptors (Table 7.4),
behaved well. D2 is a standardized form of the Euclidean distance D1; they both have
the same behaviour. All coefficients adapted to species abundance data (Table 7.3) that
were included in the study (D10, D11, D14) behaved well and are recommended.
Coefficients S15 and D10 had perfect linearity in all specific OCCAS runs; they are thus
the best of their kinds for linear ordination.

A later analysis of coefficient  showed that its non-
linearity was very similar to ; the resolution of  was slightly
lower than that of D14. Both forms are thus equally suitable for ordination whereas D14
may be slightly preferable for clustering purposes.The square root transformation of
D14, used in the latter part of Numerical example 2 in Section 9.2, is one of the ways to
avoid negative eigenvalues in principal coordinate ordination. Another comparative
analysis involving the chi-square metric and related forms (D15, D16, and D17) showed
that the best of this group for linear ordination is the Hellinger distance (D17) which
has the lowest coefficient of variation (best compromise between linearity and
resolution), despite the fact that it is strongly non-linear. Other properties of
resemblance coefficients have been investigated by Bloom (1981), Wolda (1981) and
Hubálek (1982).

Non-
linearity

Resolution

D14 1 S17–=

D D14 1 S17–= =
D14 1 S17–= D14
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Table 7.3 Choice of an association measure among objects (Q mode), to be used with species descriptors
(asymmetrical coefficients). For explanation of levels 5, 7 and 8, see the accompanying text.

1) Descriptors: presence-absence or ordered classes on a scale of relative 
abundances (no partial similarities computed between classes) see 2

2) Metric coefficients: coefficient of community (S7) and variants (S10, S11)

2) Semimetric coefficients: variants of the coef. community (S8, S9, S13, S14)

2) Nonmetric coefficient: Kulczynski (S12) (non-linear: not recommended)

2) Probabilistic coefficient: S27

1) Descriptors: quantitative or semiquantitative (states defined in such a way that 
partial similarities can be computed between them) see 3

3) Data: raw abundances see 4

4) Coefficients without associated probability levels see 5

5) No standardization by object; the same difference for either
abundant or rare species, contributes equally to the similarity 
between sites: coefficients of Steinhaus (S17) and Kulczynski (S18)

5) Standardization by object-vector; differences for abundant species
(in the whole data set) contribute more than differences between 
rare species to the similarity (less to the distance) between sites: 
χ2 similarity (S21), χ2 metric (D15), χ2 dist. (D16), Hellinger dist. (D17)

4) Probabilistic coefficient: probabilistic χ2 similarity (S22)

3) Data: normalized abundances (or, at least, distributions not skewed) 
or classes on a scale of relative abundances (e.g. 0 to 5, 0 to 7). [Normalization, 
Subsection 1.5.6, is useful when abundances cover several orders of magnitude.] see 6

6) Coefficients without associated probability levels see 7

7) No standardization by object see 8

8) The same difference for either abundant or rare species, 
contributes equally to the similarity between sites:
coefficients of Steinhaus (S17) and Kulczynski (S18),
mean character difference (D8), percentage difference (D14)

8) Differences for abundant species (for the two sites under consideration) 
contribute more than differences between rare species to the similarity 
(less to the distance) between sites: Canberra metric (D10), coefficient of
divergence (D11). Both have low resolution: not recommended for clustering

8) Differences for abundant species (in the whole data set) contribute
more than differences between rare species to the similarity (less 
to the distance) between sites: asymmetrical Gower 
coefficient (S19), coefficient of Legendre & Chodorowski (S20)

7) Standardization by object-vector; if objects are of equal importance*, 
same contributions for abundant or rare species to the similarity 
between sites: chord distance (D3), geodesic metric (D4),
complement of index of association (D9)

6) Probabilistic coefficient: Goodall coefficient (S23)

* D3 and D4: importance is quantified as the length of vector 

D9: importance is quantified as the total number of individuals in vector 

yij
2

i
∑

yij
i

∑
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Table 7.4 Choice of an association measure among objects (Q mode), to be used with chemical, geological
physical, etc. descriptors (symmetrical coefficients, using double-zeros).

1) Association measured between individual objects see 2

2) Descriptors: presence-absence or multistate (no partial similarities 
computed between states) see 3

3) Metric coefficients: simple matching (S1) and derived coefficients (S2, S6)

3) Semimetric coefficients: S3, S5

3) Nonmetric coefficient: S4

2) Descriptors: multistate (states defined in such a way that partial similarities 
can be computed between them) see 4

4) Descriptors: quantitative and dimensionally homogeneous see 5

5) Differences enhanced by squaring: Euclidean distance (D1) and 
average distance (D2)

5) Differences mitigated: Manhattan metric (D7), mean character 
difference (D8)

4) Descriptors: not dimensionally homogeneous; weights (equal or not, 
according to values wj used) given to each descriptor in the 
computation of association measures see 6

6) Descriptors are qualitative (no partial similarities computed between 
states) and quantitative (partial similarities based on the range of
variation of each descriptor): symmetrical Gower coefficient (S15)

6) Descriptors are qualitative (possibility of using matrices of partial 
similarities between states) and semiquantitative or quantitative 
(partial similarity function for each descriptor): coefficient of 
Estabrook & Rogers (S16)

1) Association measured between groups of objects

7) Removing the effect of correlations among descriptors: Mahalanobis
generalized distance (D5)

7) Not removing the effect of correlations among descriptors: coefficient
of racial likeness (D12)
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Table 7.5 Choice of a dependence measure among descriptors (R mode). 

1) Descriptors: species abundances see 2

2) Descriptors: presence-absence see 3

3) Coefficients without associated probability levels:

3) Probabilistic coefficient:
2) Descriptors: multistate

4) Data are raw abundances: χ2 similarity (S21), χ2 metric (D15), see 4

χ2 distance (D16), Hellinger distance (D17), Spearman r, Kendall τ

4) Data are normalized abundances see 5

5) Coefficients without associated probability levels: covariance or 
Pearson r, after elimination of as much double-zeros as possible,
Spearman r, Kendall τ

5) Probabilistic coefficients: probabilities associated to Pearson r,
Spearman r or Kendall τ, Goodall coefficient (S23)

1) Descriptors: chemical, geological, physical, etc. see 6

6) Coefficients without associated probability levels see 7

7) Descriptors are quantitative and linearly related: covariance, Pearson r

7) Descriptors are ordered and monotonically related: Spearman r, Kendall τ

7) Descriptors are qualitative or ordered but not monotonically related: χ2,
reciprocal information coefficient, symmetric uncertainty coefficient

6) Probabilistic coefficients see 8

8) Descriptors are quantitative and linearly related: probabilities
associated to Pearson r

8) Descriptors are ordered and monotonically related: probabilities
associated to Spearman r and Kendall τ

8) Descriptors are ordered and monotonically related: probabilities
associated to χ2
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7.7 Computer programs and packages

Only the largest general-purpose commercial statistical packages, such as SAS, SPSS,
SYSTAT, JMP, or STATISTICA, offer clustering among their methods for data analysis,
as well as capacities to compute some resemblance coefficients. The smaller
commercial packages offer no such facility. Among the Q-mode coefficients, one
always finds the Euclidean distance; the squared Euclidean, Manhattan, Chebychev
and Minkowski distances may also be found, as well as the simple matching
coefficient for multistate nominal data. For R-mode analyses, one finds Pearson’s r in
most programs, or related measures such as the cosine of the angle between variables,
dot product, or covariance; nonparametric correlation coefficients may also be found.

At least four programs strongly emphasize resemblance coefficients and clustering
methods. They are: NTSYS-PC*, developed by F. J. Rohlf, originally for numerical
taxonomy studies; CLUSTAN†, developed by D. Wishart; PATN‡, developed by Lee
Belbin; and The R Package** (Legendre & Vaudor, 1991; see Table 13.4) which offers
all the coefficients described in the present Chapter.

* How to obtain NTSYS-PC is described in Table 13.4.
† The CLUSTAN package was written by David Wishart. It may be ordered from CLUSTAN

Limited, 16 Kingsburgh Road, Edinburgh EH12 6DZ, Scotland. See also the WWWeb site
<http://www.clustan.com/>.
‡ PATN, developed by Lee Belbin, is available from CSIRO Division of Wildlife and Ecology,
P.O. Box 84, Lyneham ACT 2614, Australia; technical information is obtained from Fiona Vogt
at the same address. 
See also the WWWeb site <http://www.dwe.csiro.au/local/research/patn/patn0.htm>.
** How to obtain The R Package is described in Table 13.4.
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8 Cluster analysis

8.0 A search for discontinuities

Humans have always tried to classify the animate and inanimate objects that surround
them. Classifying objects into collective categories is a prerequisite to naming them. It
requires the recognition of discontinuous subsets in an environment which is
sometimes discrete, but most often continuous.

To cluster is to recognize that objects are sufficiently similar to be put in the same
group and to also identify distinctions or separations between groups. Measures of
similarity between objects (Q mode) or descriptors (R mode) have been discussed in
Chapter 7. The present Chapter considers the different criteria that may be used to
decide whether objects are similar enough to be allocated to a group; it also shows that
different clustering strategies correspond to different definitions of a what a cluster is.

Few ecological theories predict the existence of discontinuities in nature.
Evolutionary theory tells taxonomists that discontinuities exist between species, which
are the basic units of evolution, as a result of reproductive barriers; taxonomists use
classification methods to reveal these discontinuities. For the opposite reason,
taxonomists are not surprised to find continuous differentiation at the sub-species
level. In contrast, the world that ecologists try to understand is most often a continuum.
In numerical ecology, methods used to identify clusters must therefore be more
contrasting than in numerical taxonomy. Ecologists who have applied taxonomic
clustering methods directly to data, without first considering the theoretical
applicability of such methods, have often obtained disappointing results. This has led
many ecologists to abandon clustering methods altogether, hence neglecting the rich
potential of similarity measures, described in Chapter 7, and to rely instead on factor
analysis and other ordination methods. These are not always adapted to ecological data
and, in any case, they don’t aim at bringing out partitions, but gradients.

Given a sufficiently large group of objects, ecological clustering methods should be
able to recognize clusters of similar objects while ignoring the few intermediates
which often persist between clusters. Indeed, one cannot expect to find discontinuities
when clustering sampling sites unless the physical environment is itself discontinuous,
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or unless sampling occurred at opposite ends of a gradient, instead of within the
gradient (Whittaker, 1962: 88). Similarly, when looking for associations of species,
small groups of densely associated species are usually found, with the other species
gravitating around one or more of the association nuclei. 

The result of clustering ecological objects sampled from a continuum is often
called a typology (i.e. a system of types). In such a case, the purpose of clustering is to
identify various object types which may be used to describe the structure of the
continuum; it is thus immaterial to wonder whether these clusters are “natural” or
unique.

For readers with no practical experience in clustering, Section 8.2 provides a
detailed account of single linkage clustering, which is simple to understand and is used
to introduce the principles of clustering. The review of other methods includes a
survey of the main dichotomies among existing methods (Section 8.4), followed by a
discussion of the most widely available methods of interest to ecologists (8.5, 8.7 and
8.8). Theoretical aspects are discussed in Sections 8.3 and 8.6. Section 8.9 deals with
clustering algorithms useful in identifying biological associations, whereas
Section 8.10 gives an overview of seriation, a method useful to cluster non-symmetric
resemblance matrices. A review of clustering statistics, methods of cluster validation,
and graphical representations, completes the chapter (Sections 8.11 to 8.13). The
relationships between clustering and other steps of data analysis are depicted in
Fig. 10.3.

Several, but not all statistical packages offer clustering capabilities. All packages
with clustering procedures offer at least a Lance & Williams algorithm capable of
carrying out the clustering methods listed in Table 8.8. Many also have a K-means
partitioning algorithm. Few offer proportional-link linkage or additional forms of
clustering. Some methods are available in specialized packages only: clustering with
constraints of temporal (Section 12.6) or spatial contiguity (Section 13.3); fuzzy
clustering (e.g. Bezdek, 1987); or clustering by neural network algorithms
(e.g. Fausett, 1994). The main difference among packages lies in the list of
resemblance coefficients available (Section 7.7). Ecologists should consider this point
when selecting a clustering package.

While most packages nowadays illustrate clustering results in the form of
dendrograms, some programs use “skyline plots”, which are also called “trees” or
“icicle plots”. These plots contain the same information as dendrograms but are rather
odd to read and interpret. The way to transform a skyline plot into a dendrogram is
explained in Section 8.13.

Despite the versatility of clustering methods, one should remember that not all
problems are clustering problems. Before engaging in clustering, one should be able to
justify why one believes that discontinuities exist in the data; or else, explain that one
has a practical need to divide a continuous swarm of objects into groups.

Typology
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8.1 Definitions

Clustering is an operation of multidimensional analysis which consists in partitioning
the collection of objects (or descriptors) in the study. A partition (Table 8.1) is a
division of a set (collection) into subsets, such that each object or descriptor belongs to
one and only one subset for that partition (Legendre & Rogers, 1972). The
classification of objects (or descriptors) that results from clustering may include a
single partition, or several hierarchically nested partitions of the objects (or
descriptors), depending on the clustering model that has been selected. 

From this definition, it follows that the subsets of any level of partition form a
series of mutually exclusive cells, among which the objects (or descriptors) are
distributed. This definition a priori excludes all classification models in which classes
have elements in common (overlapping clusters) or in which objects have fractional
degrees of membership in different clusters (fuzzy partitions: Bezdek, 1987); these
models have not been used in ecology yet. This limitation is such that a “hard” or
“crisp” (versus fuzzy) partition has the same definition as a descriptor (Section 1.4).
Each object is characterized by a state (its cluster) of the classification and it belongs to
only one of the clusters. This property will be useful for the interpretation of
classifications (Chapter 10), since any partition may be considered as a qualitative
descriptor and compared as such to any other descriptor. A clustering of objects
defined in this way imposes a discontinuous structure onto the data set, even if the
objects have originally been sampled from a continuum. This structure results from the
grouping into subsets of objects that are sufficiently similar, given the variables
considered, and from the observation that different subsets possess unique
recognizable characteristics.

Clustering
Partition

Table 8.1 Example of hierarchically nested partitions of a group of objects (e.g. sampling sites). The first
partition separates the objects by the environment to which they belong. The second partition,
hierarchically nested into the first, recognizes clusters of sites in each of the two environments.

Partition 1 Partition 2 Sampling sites

Cluster 1 7, 12

Observations in environment A Cluster 2 3, 5, 11

Cluster 3 1, 2, 6

Cluster 4 4, 9
Observations in environment B

Cluster 5 8, 10, 13, 14
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Clustering has been part of ecological tradition for a long time. It goes back to the
Polish ecologist Kulczynski (1928), who needed to cluster ecological observations; he
developed a method quite remote from the clustering algorithms discussed in the
paragraphs to come. His technique, called seriation, consists in permuting the rows and
columns of an association matrix in such a way as to maximize the values on the
diagonal. The method is still used in phytosociology, anthropology, social sciences,
and other fields; it is described in Section 8.10 where an analytical solution to the
problem is presented.

Most clustering (this Chapter) and ordination (Chapter 9) methods proceed from
association matrices (Chapter 7). Distinguishing between clustering and ordination is
somewhat recent. While ordination in reduced space goes back to Spearman (factor
analysis: 1904), most modern clustering methods have only been developed since the
era of second-generation computers. The first programmed method, developed for
biological purposes, goes back to 1958 (Sokal & Michener)*. Before that, one simply
plotted the objects in a scatter diagram with respect to a few variables or principal
axes; clusters were then delineated manually (Fig. 8.1) following a method which
today would be called centroid (Section 8.4), based upon the Euclidean distances
among points. This empirical clustering method still remains the best approach when
the number of variables is small and the structure to be delineated is not obscured by
intermediate objects between clusters.

Clustering is a family of techniques which is undergoing rapid development. In
their report on the literature they reviewed, Blashfield & Aldenderfer (1978)
mentioned that they found 25 papers in 1964 that contained references to the basic
texts on clustering; they found 136 papers in 1970, 294 in 1973, and 501 in 1976. The
number has been growing ever since. Nowadays, hundreds of mathematicians and
researchers from various application fields are collaborating within 10 national or
multinational Classification Societies throughout the world, under the umbrella of the
International Federation of Classification Societies founded in 1985.

The commonly-used clustering methods are based on easy-to-understand
mathematical constructs: arithmetic, geometric, graph-theoretic, or simple statistical
models (minimizing within-group variance), leading to rather simple calculations on
the similarity or dissimilarity values. It must be understood that most clustering
methods are heuristic; they create groups by reference to some concept of what a group
embedded in some space should be like, but without reference, in most case, to the
processes occurring in the application field — ecology in the present book. They have
been developed first by the schools of numerical taxonomists and numerical
ecologists, later joined by other researchers in the physical sciences and humanities.

* Historical note provided by Prof. F. James Rohlf: “Actually, Sokal & Michener (1958) did not
use a computer for their very large study. They used an electromechanical accounting machine
to compute the raw sums and sums of products. The coefficients of correlation and the cluster
analysis itself were computed by hand with the use of mechanical desk calculators. Sneath did
use a computer in his first study.”
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Clusters are delineated on the basis of statements such as: “x1 is closer to x2 than it is
to x3”, whereas other methods rest on probabilistic models of the type: “Chances are
higher that x1 and x2 pertain to the same group than x1 and x3”. In all cases, clustering
models make it possible to link the points without requiring prior positioning in a
graph (i.e. a metric space), which would be impractical in more than three dimensions.
These models thus allow a graphical representation of other interesting relationships
among the objects in the data set, for example the dendrogram of their
interrelationships. Chapter 10 will show how it is possible to combine clustering and
ordination, computed with different methods, to obtain a more complete picture of the
data structure.

The choice of a clustering method is as critical as the choice of an association
measure. It is important to fully understand the properties of clustering methods in
order to correctly interpret the ecological structure they bring out. Most of all, the
methods to be used depend upon the type of clustering sought. Williams et al. (1971)
recognized two major categories of methods. In a descriptive clustering,
misclassifying objects is to be avoided, even at the expense of creating single object
clusters. In a synoptic clustering, all objects are forced into one of the main clusters;
the objective is to construct a general conceptual model which encompasses a reality
wider than the data under study. Both approaches are useful.

Figure 8.1 Empirically delineating clusters of objects in a scatter diagram is easy when there are no
intermediate objects between the groups.

Descriptor 2

Descriptor 1

Descriptive,
synoptic
clustering



308 Cluster analysis

When two or more clustering models seem appropriate to a problem, ecologists
should apply them all to the data and compare the results. Clusters that repeatedly
come out of all runs (based on appropriate methods) are the robust solutions to the
clustering problem. Differences among results must be interpreted in the light of the
known properties of clustering models, which are explained in the following sections.

8.2 The basic model: single linkage clustering

For natural scientists, a simple-to-understand clustering method (or model) is single
linkage (or nearest neighbour) clustering (Sneath, 1957). Its logic seems natural, so
that it is used to introduce readers to the principles of clustering. Its name, single
linkage, distinguishes it from other clustering models, called complete or intermediate
linkage, detailed in Section 8.4. The algorithm for single linkage clustering is
sequential, agglomerative, and hierarchical, following the nomenclature of
Section 8.3. Its starting point is any association matrix (similarity or distance) among
the objects or descriptors to be clustered. One assumes that the association measure
has been carefully chosen, following the recommendations of Section 7.6. To simplify
the discussion, the following will deal only with objects, although the method is
equally applicable to an association matrix among descriptors.

The method proceeds in two steps:

• First, the association matrix is rewritten in order of decreasing similarities (or
increasing distances), heading the list with the two most similar objects of the
association matrix, followed by the second most similar pair, and proceeding until all
the measures comprised in the association matrix have been listed. 

• Second, the clusters are formed hierarchically, starting with the two most similar
objects, and then letting the objects clump into groups, and the groups aggregate to one
another, as the similarity criterion is relaxed. The following example illustrates this
method.

Ecological application  8.2

Five ponds characterized by 38 zooplankton species have been studied by Legendre &
Chodorowski (1977). The data were counts, recorded on a relative abundance scale from
0 = absent to 5 = very abundant. These ponds have already been used as example for the
computation of Goodall’s coefficient (S23, Chapter 7; only eight zooplankton species were used
in that example). These five ponds, with others, have been subjected to single linkage clustering
after computing similarity coefficient S20 with parameter k = 2. The symmetric similarity matrix
is represented by its lower triangle. The diagonal is trivial because it contains 1’s by construct.
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The first clustering step consists in rewriting these similarities in decreasing order: 

As the similarity levels drop, pairs of objects are formed. These pairs are called “links”; they
serve to link the objects or groups into a chain, as discussed below.

Connected subgraphs are one of the many possible graphical representations of cluster
formation (Fig. 8.2a). As the similarity decreases, clusters are formed, following the list of links
in the table of ordered similarities above. Only the similarity levels at which clusters are
modified by addition of objects are represented here. The first link is formed between ponds 212
and 214 at S = 0.6, then between 431 and 432 at S = 0.5. Pond 233 joins this second cluster
nucleus at S = 0.3. Finally these two clusters merge at S = 0.214 by a link which is formed
between ponds 214 and 432. The clustering may stop at this point since all ponds now belong to
the same cluster. If the similarity criterion was relaxed down to S = 0, links would form between
members of the cluster up to a point where all ponds would be linked to one another. This part of
the clustering is of no interest in single linkage clustering, but these links will be of interest in
the other forms of linkage clustering below. 

A dendrogram (Fig. 8.2b) is another, more commonly-used representation of hierarchical
clustering results. Dendrograms only display the clustering topology and object labels, not the
links between objects. Dendrograms are made of branches (“edges”) that meet at “nodes” which
are drawn at the similarity value where fusion of branches takes place. For graphical
convenience, vertical lines are used in Fig. 8.2b to connect branches at the similarity levels of
the nodes; the lengths of these lines are of no consequence. Branches could be directly
connected to nodes. The branches furcating from a node may be switched (“swivelled”) without
affecting the information contained in a dendrogram.

Ponds
Ponds

212 214 233 431 432

212 —

214 0.600 —

233 0.000 0.071 —

431 0.000 0.063 0.300 —

432 0.000 0.214 0.200 0.500 —

S20 Pairs formed

0.600 212-214

0.500 431-432

0.300 233-431

0.214 214-432

0.200 233-432

0.071 214-233

0.063 214-431

0.000 212-233

0.000 212-431

0.000 212-432

Link

Dendrogram

Edge
Node
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The clustering results have been interpreted by Legendre & Chodorowski (1977) with
respect to the conditions prevailing in the ponds. In their larger study, all non-permanent ponds
(including 212 and 214) formed a cluster, while the permanent ponds (including 233, 431 and
432) formed a distinct group, on the basis of zooplankton assemblages.

From this example, it should be clear that the rule for assigning an object to a
cluster, in single linkage clustering, requires an object to display a similarity at least
equal to the considered level of partition with at least one object already member of
the cluster. In complete linkage hierarchical clustering, the assignment rule differs and
requires the object to display the given level of similarity with all the objects already
members of the cluster. The chaining rule used in single linkage clustering may be

Figure 8.2 Illustrations of single linkage agglomerative clustering for the ponds of the example.
(a) Connected subgraphs: groups of objects are formed as the similarity level is relaxed from
left to right. Only the similarity levels where clusters are modified by addition of objects are
represented. New links between ponds are represented by heavy lines; thin lines are used for
links formed at previous (higher) similarity levels. Circled ponds are non-permanent; the others
are permanent. (b) Dendrogram for the same cluster analysis.

Similarity 0.6 0.5 0.4 0.3 0.1 0.0

212

214
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0.214
0.2
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431
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Similarity 0.6 0.5 0.4 0.3 0.1 0.0
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431

432

0.214
0.2
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Single
linkage rule



The basic model: single linkage clustering 311

stated as follows: at each level of partition, two objects must be allocated to the same
subset if their degree of similarity is equal to or higher than that of the partitioning
level considered. The same rule can be formulated in terms of dissimilarities
(distances) instead: two objects must be allocated to the same subset if their
dissimilarity is less than or equal to that of the partitioning level considered.

Estabrook (1966) discussed single linkage clustering using the language of graph theory.
The exercise has didactic value. A cluster is defined through the following steps:

a) For any pair of objects x1 and x2, a link is defined between them by a relation Gc:

x1 Gc x2 if and only if S(x1, x2)

 

≥ c

or equally, if D(x1, x2)

 

≤ (1 – c)

Index c in clustering relation Gc is the similarity level considered. At a similarity level of 0.55,
for instance, ponds 212 and 214 of the example are in relation G0.55 since S(212, 214) ≥ 0.55.
This definition of a link has the properties of symmetry (x1 Gc x2 if and only if x2 Gc x1) and
reflexivity (xi Gc xi is always true since S(xi, xi) = 1.0). A group of links for a set of objects,
such as defined by relation Gc, is called an undirected graph.

b) The chaining which characterizes single linkage clustering may be described by a Gc-chain. A
Gc-chain is said to extend from x1 to x2 if there exist other points x3, x4, …, xi in the collection
of objects under study, such that x1 Gc x3 and x3 Gc x4 and … and xi Gc x2. For instance, at
similarity level c = 0.214 of the example, there exists a G0.214-chain from pond 212 to pond 233,
since there are intermediate ponds such that 212 G0.214 214 and 214 G0.214 432 and
432 G0.214 431 and 431 G0.214 233. The number of links in a Gc-chain defines the
connectedness of a cluster (Subsection 8.11.1).

c) There only remains to delineate the clusters resulting from single linkage chaining. For that
purpose, an equivalence relation Rc (“member of the same cluster”) is defined as follows:

x1 Rc x2 if and only if there exists a Gc-chain from x1 to x2 at similarity level c.

In other words, x1 and x2 are assigned to the same cluster at similarity level c if there exists a
chain of links joining x1 to x2. Thus, at level S = 0.214 in the example, ponds 212 and 233 are
assigned to the same cluster (212 R0.214 233) because there exists a G0.214-chain from 212 to
233. The relationship “member of the same cluster” has the following properties: (1) it is
reflexive (xi Rc xi) because Gc is reflexive; (2) the Gc-chains may be reversed because Gc is
symmetric; as a consequence, x1 Rc x2 implies that x2 Rc x1; and (3) it is transitive because, by
Gc-chaining, x1 Rc x2 and x2 Rc x3 implies that x1 Rc x3. Each cluster thus defined is a connected
subgraph, which means that the objects of a cluster are all connected in their subgraph; in the
graph of all the objects, distinct clusters (subgraphs) have no links attaching them to one another.

Single linkage clustering provides an accurate picture of the relationships between
pairs of objects but, because of its propensity to chaining, it may be undesirable for
ecological analysis. This means that the presence of an object midway between two
compact clusters, or a few intermediates connecting the two clusters, is enough to turn
them into a single cluster. Of course, clusters do not chain unless intermediates are
present; so, the occurrence of chaining provides information about the data. To

Link

Undirected
graph

Chain
Chaining

Connected
subgraph
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describe this phenomenon, Lance & Williams (1967c) wrote that this method contracts
the reference space. Picture the objects as laying in A-space (Fig. 7.2). The presence of
a cluster increases the probability of inclusion, by chaining, of neighbouring objects
into the cluster. This is as if the distances between objects were smaller in that region
of the space; see also Fig. 8.23a.

Section 10.1 will show how to take advantage of the interesting properties of single
linkage clustering by combining it with ordination results, while avoiding the undue
influence of chaining on the clustering structure.

Ecologists who have access to several computer programs for single linkage
clustering should rely on those that permit recognition of the first connection making
an object a member of a cluster, or allowing two clusters to fuse. These similarities
form a chain of primary (Legendre, 1976) or external connections (Legendre &
Rogers, 1972), also called dendrites by Lukaszewicz (1951). They are very useful
when analysing clusters drawn in an ordination space (Section 10.1). Dendrites are
also called a network (Prim, 1957), a Prim network (Cavalli-Sforza & Edwards, 1967),
a minimum spanning tree (Gower & Ross, 1969), a shortest spanning tree, or a
minimum-length tree (Sneath & Sokal, 1973). If these dendrites are drawn on a scatter
diagram of the objects, one can obtain a non-hierarchical clustering of the objects by
removing the last (weakest) similarity links. Such graphs are illustrated in Figs. 10.1
and 10.2, drawn on top of an ordination in a space of principal coordinates; they may
also be drawn without any reference space. 

8.3 Cophenetic matrix and ultrametric property

Any classification or partition can be fully described by a cophenetic matrix. This
matrix is used for comparing different classifications of the same objects.

1 — Cophenetic matrix

The cophenetic similarity (or distance) of two objects x1 and x2 is defined as the
similarity (or distance) level at which objects x1 and x2 become members of the same
cluster during the course of clustering (Jain & Dubes, 1988), as depicted by connected
subgraphs or a dendrogram (Fig. 2a, b). Any dendrogram can be uniquely represented
by a matrix in which the similarity (or distance) for a pair of objects is their cophenetic
similarity (or distance). Consider the single linkage clustering dendrogram of Fig. 8.2.
The clustering levels, read directly on the dendrogram, lead to the following matrices
of similarity (S) and distance (D, where D = 1 – S):

Chain of
primary
connections

Minimum
spanning
tree

Cophenetic
similarity
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Such a matrix is often called a cophenetic matrix (Sokal & Rohlf, 1962; Jain & Dubes,
1988). The ordering of objects in the cophenetic matrix is irrelevant; any order that
suits the researcher is acceptable. The same applies to dendrograms; the order of the
objects may be changed at will, provided that the dendrogram is redrawn to
accommodate the new ordering.

For a partition of the data set (as in the K-means method, below), the resulting
groups of objects are not related through a dendrogram. A cophenetic matrix may
nevertheless be obtained. Consider the groups (212, 214) and (233, 431, 432) obtained
by cutting the dendrogram of Fig. 8.2 at similarity level S = 0.25, ignoring the
hierarchical structure of the two clusters. The cophenetic matrices would be:

2 — Ultrametric property

If there are no reversals in the clustering (Fig. 8.16), a classification has the following
ultrametric property and the cophenetic matrix is called ultrametric:

D(x1, x2) ≤ max[D(x1, x3), D(x2, x3)] (8.1)

for every triplet of objects (x1, x2, x3) in the study. Cophenetic distances also possess
the four metric properties of Section 7.4. The ultrametric property may be expressed in
terms of similarities:

S(x1, x2) ≥ min[S(x1, x3), S(x2, x3)] (8.2)

As an exercise, readers can verify that the five properties apply to all triplets of
similarities and distances in the above matrices.

S 212 214 233 431 432 D 212 214 233 431 432

212 — (upper triangle 
symmetric to lower)

212 — (upper triangle 
symmetric to lower)214 0.600 — 214 0.400 —

233 0.214 0.214 — 233 0.786 0.786 —

431 0.214 0.214 0.300 — 431 0.786 0.786 0.700 —

432 0.214 0.214 0.300 0.500 — 432 0.786 0.786 0.700 0.500 —

S 212 214 233 431 432 D 212 214 233 431 432

212 — (upper triangle 
symmetric to lower)

212 — (upper triangle 
symmetric to lower)214 1 — 214 0 —

233 0 0 — 233 1 1 —

431 0 0 1 — 431 1 1 0 —

432 0 0 1 1 — 432 1 1 0 0 —

Cophenetic
matrix
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8.4 The panoply of methods

Clustering algorithms have been developed using a wide range of conceptual models
and for studying a variety of problems. Sneath & Sokal (1973) propose a classification
of clustering procedures. Its main dichotomies are now briefly described.

1 — Sequential versus simultaneous algorithms

Most clustering algorithms are sequential in the sense that they proceed by applying a
recurrent sequence of operations to the objects. The agglomerative single linkage
clustering of Section 8.2 is an example of a sequential method: the search for the
equivalence relation Rc is repeated at all levels of similarity in the association matrix,
up to the point where all objects are in the same cluster. In simultaneous algorithms,
which are less frequent, the solution is obtained in a single step. Ordination techniques
(Chapter 9), which may be used for delineating clusters, are of the latter type. This is
also the case of the direct complete linkage clustering method presented in Section 8.9.
The K-means (Section 8.8) and other non-hierarchical partitioning methods may be
computed using sequential algorithms, although these methods are neither
agglomerative nor divisive (next paragraph).

2 — Agglomeration versus division

Among the sequential algorithms, agglomerative procedures begin with the
discontinuous partition of all objects, i.e. the objects are considered as being separate
from one another. They are successively grouped into larger and larger clusters until a
single, all-encompassing cluster is obtained. If the continuous partition of all objects is
used instead as the starting point of the procedure (i.e. a single group containing all
objects), divisive algorithms subdivide the group into sub-clusters, and so on until the
discontinuous partition is reached. In either case, it is left to users to decide which of
the intermediate partitions is to be retained, given the problem under study.
Agglomerative algorithms are the most developed for two reasons. First, they are
easier to program. Second, in clustering by division, the erroneous allocation of an
object to a cluster at the beginning of the procedure cannot be corrected afterwards
(Gower, 1967) unless a special procedure is embedded in the algorithm to do so.

3 — Monothetic versus polythetic methods

Divisive clustering methods may be monothetic or polythetic. Monothetic models use
a single descriptor as basis for partitioning, whereas polythetic models use several
descriptors which, in most cases, are combined into an association matrix (Chapter 7)
prior to clustering. Divisive monothetic methods proceed by choosing, for each
partitioning level, the descriptor considered to be the best for that level; objects are
then partitioned following the state to which they belong with respect to that
descriptor. For example, the most appropriate descriptor at each partitioning level
could be the one that best represents the information contained in all other descriptors,
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after measuring the reciprocal information between descriptors (Subsection 8.6.1).
When a single partition of the objects is sought, monothetic methods produce the
clustering in a single step.

4 — Hierarchical versus non-hierarchical methods

In hierarchical methods, the members of inferior-ranking clusters become members of
larger, higher-ranking clusters. Most of the time, hierarchical methods produce non-
overlapping clusters, but this is not a necessity according to the definition of
“hierarchy” in the dictionary or the usage recognized by Sneath & Sokal (1973).
Single linkage clustering of Section 8.2 and the methods of Sections 8.5 and 8.6 are
hierarchical. Non-hierarchical methods are very useful in ecology. They produce a
single partition which optimizes within-group homogeneity, instead of a hierarchical
series of partitions optimizing the hierarchical attribution of objects to clusters. Lance
& Williams (1967d) restrict the term “clustering” to the non-hierarchical methods and
call the hierarchical methods “classification”. Non-hierarchical methods include K-
means partitioning, the ordination techniques (Chapter 9) used as clustering methods,
the primary connection diagrams (dendrites) between objects with or without a
reference space, the methods of similarity matrix seriation of Section 8.10, and one of
the algorithms of Section 8.9 for the clustering of species into biological associations.
These methods should be used in cases where the aim is to obtain a direct
representation of the relationships among objects instead of a summary of their
hierarchy. Hierarchical methods are easier to compute and more often available in
statistical data analysis packages than non-hierarchical procedures.

Most hierarchical methods use a resemblance matrix as their starting point. This
prevents their use with very large data sets because the resemblance matrix, with its
n(n – 1)/2 values, becomes extremely large and may exceed the handling capacity of
computers. Jambu & Lebeaux (1983) have described a fast algorithm for the
hierarchical agglomeration of very large numbers of objects (e.g. n = 5000). This
algorithm computes a fraction only of the n(n – 1)/2 distance values. Rohlf (1978,
1982a) has also developed a rather complex algorithm allowing one to obtain single
linkage clustering after computing only a small fraction of the distances.

5 — Probabilistic versus non-probabilistic methods

Probabilistic methods include the clustering model of Clifford & Goodall (1967) and
the parametric and nonparametric methods for estimating density functions in
multivariate space.

In the method of Clifford & Goodall (1967), clusters are formed in such a way that
the within-group association matrices have a given probability of being homogeneous.
This clustering method is discussed at length in Subsection 8.9.2, where it is
recommended, in conjunction with Goodall's similarity coefficient (S23, Chapter 7),
for the clustering of species into biological associations.



316 Cluster analysis

Sneath & Sokal (1973) describe other dichotomies for clustering methods, which
are of lesser interest to ecologists. These are: global or local criteria, direct or iterative
solutions, equal or unequal weights, and adaptive or non-adaptive clustering.

8.5 Hierarchical agglomerative clustering

Most methods of hierarchical agglomeration can be computed as special cases of a
general model which is discussed in Subsection 8.5.9.

1 — Single linkage agglomerative clustering

In single linkage agglomeration (Section 8.2), two clusters fuse when the two objects
closest to each other (one in each cluster) reach the similarity of the considered
partition. (See also the method of simultaneous single linkage clustering described in
Subsection 8.9.1). As a consequence of chaining, results of single linkage clustering
are sensitive to noise in the data (Milligan, 1996), because noise changes the similarity
values and may thus easily modify the order in which objects cluster. The origin of
single linkage clustering is found in a collective work by Florek, Lukaszewicz, Perkal,
Steinhaus, and Zubrzycki, published by Lukaszewicz in 1951.

2 — Complete linkage agglomerative clustering

Opposite to the single linkage approach is complete linkage agglomeration, also called
furthest neighbour sorting. In this method, first proposed by Sørensen (1948), the
fusion of two clusters depends on the most distant pair of objects instead of the closest.
Thus, an object joins a cluster only when it is linked (relationship Gc, Section 8.2) to
all the objects already members of that cluster. Two clusters can fuse only when all
objects of the first are linked to all objects of the second, and vice versa.

Coming back to the ponds of Ecological application 8.2, complete linkage
clustering (Fig. 8.3) is performed on the table of ordered similarities of Section 8.2.
The pair (212, 214) is formed at S = 0.6 and the pair (431, 432) at S = 0.5. The next
clustering step must wait until S = 0.2, since it is only at S = 0.2 that pond 233 is finally
linked (relationship Gc) to both ponds 431 and 432. The two clusters hence formed
cannot fuse, because it is only at similarity zero that ponds 212 and 214 become linked
to all the ponds of cluster (233, 431, 432). S = 0 indicating, by definition, distinct
entities, the two groups are not represented as joining at that level.

In the compete linkage strategy, as a cluster grows, it becomes more and more
difficult for new objects to join to it because the new objects should bear links with all
the objects already in the cluster before being incorporated. For this reason, the growth
of a cluster seems to move it away from the other objects or clusters in the analysis.
According to Lance & Williams (1967c), this is equivalent to dilating the reference

Complete
linkage rule
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space in the neighbourhood of that cluster; see also Fig. 8.23c and related text. This
effect is opposite to what was found in single linkage clustering, which contracted the
reference space. In reference space A (Fig. 7.2), complete linkage produces maximally
linked and rather spherical clusters, whereas single linkage may produce elongated
clusters with loose chaining. Complete linkage clustering is often desirable in ecology,
when one wishes to delineate clusters with clear discontinuities.

The intermediate (next Subsection) and complete linkage clustering models have
one drawback when compared to single linkage. In all cases where two incompatible
candidates present themselves at the same time to be included in a cluster, algorithms
use a preestablished and often arbitrary rule, called a “right-hand rule”, to choose one
and exclude the other. This problem does not exist in single linkage. An example is
when two objects or two clusters could be included in a third cluster, while these two
objects or clusters have not completed the linkage with each other. For this problem,
Sørensen (1948) recommends the following: (1) choose the fusion leading to the
largest cluster; (2) if equality persists, choose the fusion that most reduces the number
of clusters; (3) as a last criterion, choose the fusion that maximizes the average
similarity within the cluster.

Figure 8.3 Complete linkage clustering of the ponds of Ecological application 8.2. Symbols as in Fig. 8.2.
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3 — Intermediate linkage clustering

Between the chaining of single linkage and the extreme space dilation of complete
linkage, the most interesting solution in ecology may be a type of linkage clustering
that approximately conserves the metric properties of reference space A; see also
Fig. 8.23b. If the interest only lies in the clusters shown in the dendrogram, and not in
the actual similarity links between clusters shown by the subgraphs, the average
clustering methods of Subsections 4 to 7 below could be useful since they also
conserve the metric properties of the reference space.

In intermediate linkage clustering, the fusion criterion of an object or a cluster with
another cluster is considered satisfied when a given proportion of the total possible
number of similarity links is reached. For example, if the criterion of connectedness
(Co) is 0.5, two clusters are only required to share 50% of the possible links to fuse; in
other words, the fusion is authorized when £/n1n2 ≥ Co where £ is the actual number of
between-group links at sorting level L, while n1 and n2 are the numbers of objects in
the two clusters, respectively. This criterion has been called proportional link linkage
by Sneath (1966). Fig. 8.4 gives the results of proportional link linkage clustering with
Co = 50% for the pond example.

Sneath (1966) has described three other ways of defining intermediate linkage
clustering criteria: (1) by integer link linkage, which specifies the number of links
required for the fusion of two groups (fusion when £ is larger than or equal to a fixed
integer, or else when £ = n1n2; (2) by their absolute resemblance, based on the sum of
similarities between the members of two clusters (the sum of between-group
similarities, ∑Sl2, must reach a given threshold before the fusion occurs); or (3) by
their relative resemblance, where the sum of similarities between the two clusters,
∑Sl2, is divided by the number of between-group similarities, n1n2 (fusion occurs at
level L when the ratio ∑Sl2/n1n2 is greater than cL, where c is an arbitrary constant.)

Connected-
ness

Proportional
link linkage

Figure 8.4 Intermediate linkage clustering, using the proportional link linkage criterion (Co = 50%), for the
ponds of Ecological application 8.2 (dendrogram only).

Similarity 0.6 0.5 0.4 0.3 0.2 0.1 0.0

212

214

233

431

432

0.063
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When c equals 1, the method is called average linkage clustering. These strategies are
not combinatorial in the sense of Subsection 8.5.9.

4 — Unweighted arithmetic average clustering (UPGMA)

There are four methods of average clustering that conserve the metric properties of
reference space A. These four methods were called “average linkage clustering” by
Sneath & Sokal (1973), although they do not tally the links between clusters. As a
consequence they are not object-linkage methods in the sense of the previous three
subsections. They rely instead on average similarities among objects or on centroids of
clusters. The four methods have nothing to do with Sneath’s (1966) “average linkage
clustering” described in the previous paragraph, so that we prefer calling them
“average clustering”. These methods (Table 8.2) result from the combinations of two
dichotomies: (1) arithmetic average versus centroid clustering and (2) weighting
versus non-weighting.

The first method in Table 8.2 is the unweighted arithmetic average clustering
(Rohlf, 1963), also called “UPGMA” (“Unweighted Pair-Group Method using
Arithmetic averages”) by Sneath & Sokal (1973) or “group-average sorting” by Lance
& Williams (1966a and 1967c). It is also called “average linkage” by SAS, SYSTAT

and some other statistical packages, thus adding to the confusion pointed out in the
previous paragraph. The highest similarity (or smallest distance) identifies the next
cluster to be formed. Following this event, the method computes the arithmetic
average of the similarities or distances between a candidate object and each of the
cluster members or, in the case of a previously formed cluster, between all members of
the two clusters. All objects receive equal weights in the computation. The similarity
or distance matrix is updated and reduced in size at each clustering step. Clustering
proceeds by agglomeration as the similarity criterion is relaxed, just as it does in single
linkage clustering.

For the ponds of Section 8.2, UPGMA clustering proceeds as shown in Table 8.3
and Fig. 8.5. At step 1, the highest similarity value in the matrix is

Average
clustering

Table 8.2 Average clustering methods discussed in Subsections 8.5.4 to 8.5.7.

Arithmetic average Centroid clustering

Equal weights 4. Unweighted arithmetic 6. Unweighted centroid
average clustering (UPGMA) clustering (UPGMC)

Unequal weights 5. Weighted arithmetic 7. Weighted centroid 
average clustering (WPGMA) clustering (WPGMC)



320 Cluster analysis

Table 8.3 Unweighted arithmetic average clustering (UPGMA) of the pond data. At each step, the highest
similarity value is identified (italicized boldface value) and the two corresponding objects or
groups are fused by averaging their similarities as described in the text (boxes).

Objects 212 214 233 431 432

Figure 8.5 Unweighted arithmetic average clustering (UPGMA) of the ponds from Ecological
application 8.2. This type of clustering only produces a dendrogram. It cannot be represented by
connected subgraphs since it is not a linkage clustering as in Figs. 8.2 and 8.3.

212 — Step 1

214 0.600 —

233 0.000 0.071 —

431 0.000 0.063 0.300 —

432 0.000 0.214 0.200 0.500 —

212-214 — Step 2

233 0.0355 —

431 0.0315 0.300 —

432 0.1070 0.200 0.500 —

212-214 — Step 3

233 0.0355 —

431-432 0.06925 0.250 —

212-214 — Step 4

233-431-432 0.058 —

Similarity 0.6 0.5 0.4 0.3 0.2 0.1 0.0

212

214

233

431

432

0.058
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S(212, 214) = 0.600; hence the two objects fuse at level 0.600. As a consequence of
this fusion, the similarity values of these two objects with each of the remaining
objects in the study must be averaged (values in the inner boxes in the Table, step 1);
this results in a reduction of the size of the similarity matrix. Considering the reduced
matrix (step 2), the highest similarity value is S = 0.500; it indicates that objects 431
and 432 fuse at level 0.500. Again, this similarity value is obtained by averaging the
boxed values; this produces a new reduced similarity matrix for the next step. In step
3, the largest similarity is 0.250; it leads to the fusion of the already-formed group
(431, 432) with object 233 at level 0.250. In the example, this last fusion is the difficult
point to understand. Before averaging the values, each one is multiplied by the number
of objects in the corresponding group. There is one object in group (233) and two in
group (431, 432), so that the fused similarity value is calculated as [(0.0355 × 1) +
(0.06925 × 2)]/3 = 0.058. This is equivalent to averaging the six boxed similarities in
the top matrix (larger box) with equal weights; the result would also be 0.058. So, this
method is “unweighted” in the sense that it gives equal weights to the original
similarities. To achieve this at step 3, one has to use weights that are equal to the
number of objects in the groups. At step 4, there is a single remaining similarity value;
it is used to perform the last fusion at level 0.058. In the dendrogram, fusions are
drawn at the identified levels.

Because it gives equal weights to the original similarities, the UPGMA method
assumes that the objects in each group form a representative sample of the
corresponding larger groups of objects in the reference population under study. For
that reason, UPGMA clustering should only be used in connection with simple random
or systematic sampling designs if the results are to be extrapolated to some larger
reference population.

Unlike linkage clustering methods, information about the relationships between
pairs of objects is lost in methods based on progressive reduction of the similarity
matrix, since only the relationships among groups are considered. This information
may be extracted from the original similarity matrix, by making a list of the strongest
similarity link found, at each fusion level, between the objects of the two groups. For
the pond example, the chain of primary connections corresponding to the dendrogram
would be made of the following links: (212, 214) for the first fusion level, (431, 432)
for the second level, (233, 431) for the third level, and (214, 432) for the last level
(Table 8.3, step 1). The topology obtained from UPGMA clustering may differ from
that of single linkage; if this had been the case here, the chain of primary connections
would have been different from that of single linkage clustering.

5 — Weighted arithmetic average clustering (WPGMA)

It often occurs in ecology that groups of objects, representing different regions of a
territory, are of unequal sizes. Eliminating objects to equalize the clusters would mean
discarding valuable information. However, the presence of a large group of objects,
which are more similar a priori because of their common origin, may distort the
UPGMA results when a fusion occurs with a smaller group of objects. Sokal &
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Michener (1958) proposed a solution to this problem, called weighted arithmetic
average clustering (“WPGMA” in Sneath & Sokal, 1973: “Weighted Pair-Group
Method using Arithmetic averages”). This solution consists in giving equal weights,
when computing fusion similarities, to the two branches of the dendrogram that are
about to fuse. This is equivalent, when computing a fusion similarity, to giving
different weights to the original similarities, i.e. down-weighting the largest group.
Hence the name of the method.

Table 8.4 and Fig. 8.6 describe the WPGMA clustering sequence for the pond data.
In this example, the only difference with UPGMA is the last fusion value. It is
computed here by averaging the two similarities from the previous step:
(0.0355 + 0.06925)/2 = 0.052375. Weighted arithmetic average clustering increases
the separation of the two main clusters, compared to UPGMA. This gives sharper
contrast to the classification.

6 — Unweighted centroid clustering (UPGMC)

The centroid of a cluster of objects may be imagined as the type-object of the cluster,
whether that object actually exists or is only a mathematical construct. In A-space
(Fig. 7.2), the coordinates of the centroid of a cluster are computed by averaging the
coordinates of the objects in the group. 

Unweighted centroid clustering (Lance & Williams, 1967c; “UPGMC” in Sneath
& Sokal, 1973: “Unweighted Pair-Group Centroid Method”) is based on a simple
geometric approach. Along a decreasing scale of similarities, UPGMC proceeds to the
fusion of objects or clusters presenting the highest similarity, as in the previous
methods. At each step, the members of a cluster are replaced by their common centroid
(i.e. “mean point”). The centroid is considered to represent a new object for the
remainder of the clustering procedure; in the next step, one looks again for the pair of
objects with the highest similarity, on which the procedure of fusion is repeated.

Gower (1967) proposed the following formula for centroid clustering, where the
similarity of the centroid (hi) of the objects or clusters h and i with a third object or
cluster g is computed from the similarities S(h, g), S(i, g), and S(h, i):

(8.3)

were the w’s are weights given to the clusters. To simplify the symbols, letters g, h, and
i are used here to represent three objects considered in the course of clustering; g, h,
and i may also represent centroids of clusters obtained during previous clustering
steps. Gower’s formula insures that the centroid hi of objects (or clusters) h and i is
geometrically located on the line between h and i. In classical centroid clustering, the
numbers of objects nh and ni in clusters h and i are taken as values for the weights wh
and wi; these weights are 1 at the start of the clustering because there is then a single

Centroid

S hi, g( )
wh

wh wi+
------------------S h g,( )

wi

wh wi+
------------------S i, g( )

whwi

wh wi+( ) 2
--------------------------- 1 S h, i( )–[ ]+ +=
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Table 8.4 Weighted arithmetic average clustering (WPGMA) of the pond data. At each step, the highest
similarity value is identified (italicized boldface value) and the two corresponding objects or
groups are fused by averaging their similarities (boxes).

Objects 212 214 233 431 432

Figure 8.6 Weighted arithmetic average clustering (WPGMA) of the ponds from Ecological
application 8.2. This type of clustering only produces a dendrogram. It cannot be represented by
connected subgraphs since it is not a linkage clustering as in Figs. 8.2 and 8.3.

212 — Step 1

214 0.600 —

233 0.000 0.071 —

431 0.000 0.063 0.300 —

432 0.000 0.214 0.200 0.500 —

212-214 — Step 2

233 0.0355 —

431 0.0315 0.300 —

432 0.1070 0.200 0.500 —

212-214 — Step 3

233 0.0355 —

431-432 0.06925 0.250 —

212-214 — Step 4

233-431-432 0.05238 —

Similarity 0.6 0.5 0.4 0.3 0.2 0.1 0.0

212

214

233

431

432

0.05238
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object per cluster. If initial weights are attached to individual objects, they may be used
instead of 1’s in eq. 8.3.

Centroid clustering may lead to reversals (Section 8.6). Some authors feel
uncomfortable about reversals since they violate the ultrametric property; such
violations make dendrograms more difficult to draw. A reversal is found with the pond
example (Table 8.5, Fig. 8.7): the fusion similarity found at step 4 is higher than that of
step 3. The last fusion similarity (step 4), for instance, is calculated as follows:

As indicated above, the geometric interpretation of UPGMC clustering is the
fusion of objects into cluster centroids. Figure 8.8 presents the four clustering steps
depicted by the dendrogram, drawn in an A-space (Fig. 7.2) reduced to two dimensions
through principal coordinate analysis (Section 9.2) to facilitate representation. At the
end of each step, a new cluster is formed and its centroid is represented at the centre of
mass of the cluster members (examine especially steps 3 and 4).

Unweighted centroid clustering may be used with any measure of similarity, but
Gower's formula above only retains its geometric properties for similarities
corresponding to metric distances (Table 7.2). Note also that in this clustering
procedure, the links between clusters do not depend upon identifiable pairs of objects;
this was also the case with clustering methods 4 and 5 above. Thus, if the chain of
primary connections is needed, it must be identified by some other method.

The assumptions of this model with respect to representativeness of the
observations are the same as in UPGMA, since equal weights are given to all objects
during clustering. So, UPGMC should only be used in connection with simple random
or systematic sampling designs if the results are to be extrapolated to some larger
reference population. When the branching pattern of the dendrogram displays
asymmetry (many more objects in one branch than in the other), this can be attributed
to the structure of the reference population if the sampling design was random.

In order to obtain clusters that were well separated even though the objects came
from an ecological continuum, Flos (1976) provided his computer program with a strip
(non-clustering zone) between centroids. The width of the zone was set by the user at
the beginning of the calculations. Points found within that zone were not included in
any cluster. At the end of the formation of clusters, the unclassified objects were
allocated to the closest cluster centroid.

7 — Weighted centroid clustering (WPGMC)

Weighted centroid clustering was proposed by Gower (1967). It plays the same role
with respect to UPGMC as WPGMA (method 5) plays with respect to UPGMA
(method 4). When many observations of a given type have been included in the set to

S 233, 431-432( ) 212-214( ),[ ] 1
3
--- 0.1355× 2

3
--- 0.29425× 2

3
2

----- 1 0.375–( )+ + 0.38022= =
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Table 8.5 Unweighted centroid clustering (UPGMC) of the pond data. At each step, the highest similarity
value is identified (italicized boldface value) and the two corresponding objects or groups are
fused using eq. 8.3.

Objects 212 214 233 431 432

Figure 8.7 Unweighted centroid clustering (UPGMC) of the ponds from Ecological application 8.2. This
type of clustering only produces a dendrogram. The reversal in the structure of the dendrogram
is explained in Section 8.6.

212 — Step 1

214 0.600 —

233 0.000 0.071 —

431 0.000 0.063 0.300 —

432 0.000 0.214 0.200 0.500 —

212-214 — Step 2

233 0.1355 —

431 0.1315 0.300 —

432 0.2070 0.200 0.500 —

212-214 — Step 3

233 0.1355 —

431-432 0.29425 0.375 —

212-214 — Step 4

233-431-432 0.3802 —

Similarity 0.6 0.5 0.4 0.3 0.2 0.1 0.0

212

214

233

431

432

0.3802

0.375
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be clustered, next to other types which were not as well-sampled (sampling design
other than simple random or systematic), the positions of the centroids may be biased
towards the over-represented types, which in turn could distort the clustering. In
weighted centroid clustering, which Sneath & Sokal (1973) call “WPGMC”
(“Weighted Pair-Group Centroid Method”), this problem is corrected by giving equal
weights to two clusters on the verge of fusing, independently of the number of objects
in each cluster. To achieve this, eq. 8.3 is replaced by the following formula (Gower,
1967):

(8.4)

The five ponds of Ecological application 7.2 are clustered as described in Table 8.6
and Fig. 8.9. The last fusion similarity (step 4), for example, is calculated as follows:

Figure 8.8 The four UPGMC clustering steps of Fig. 8.7 are drawn in A-space. Objects are represented by
open symbols and centroids by dark symbols; object identifiers are shown in the first panel only.
Distinct clusters are represented by different symbols. The first two principal coordinates,
represented here, account for 87.4% of the variation of the full A-space. 
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End of step 3
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Table 8.6 Weighted centroid clustering (WPGMC) of the pond data. At each step, the highest similarity
value is identified (italicized boldface value) and the two corresponding objects or groups are
fused using eq. 8.4.

Objects 212 214 233 431 432

Figure 8.9 Weighted centroid clustering (WPGMC) of the ponds from Ecological application 8.2. This type
of clustering only produces a dendrogram.

212 — Step 1

214 0.600 —

233 0.000 0.071 —

431 0.000 0.063 0.300 —

432 0.000 0.214 0.200 0.500 —

212-214 — Step 2

233 0.1355 —

431 0.1315 0.300 —

432 0.2070 0.200 0.500 —

212-214 — Step 3

233 0.1355 —

431-432 0.29425 0.375 —

212-214 — Step 4

233-431-432 0.37113 —

Similarity 0.6 0.5 0.4 0.3 0.2 0.1 0.0

212

214

233

431

432

0.37113

0.375
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This value is the level at which the next fusion takes place. Note that no reversal
appears in this result, although WPGMC may occasionally produce reversals, like
UPGMC clustering.

As indicated above, the geometric interpretation of WPGMC clustering is the
fusion of objects into cluster centroids. Fig. 8.10 presents the four clustering steps
depicted by the dendrogram, in A-space (Fig. 7.2) reduced to two dimensions through
principal coordinate analysis (Section 9.2) to facilitate representation. At the end of
each step, a new cluster is formed and its centroid is represented at the geometric
centre of the last line drawn (examine especially steps 3 and 4 and compare to
Fig. 8.8).

In the R mode, weighted centroid clustering does not make sense if the measure of
association is Pearson's r. Correlations are cosine transformations of the angles
between descriptors; these cannot be combined using eq. 8.4.

Figure 8.10 The four WPGMC clustering steps of Fig. 8.9 are drawn in A-space. Objects are represented by
open symbols and centroids by dark symbols; object identifiers are shown in the first panel only.
Distinct clusters are represented by different symbols. The first two principal coordinates,
represented here, account for 87.4% of the variation of the full A-space. 
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End of step 4End of step 3

End of step 2End of step 1
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8 — Ward’s minimum variance method

Ward’s (1963) minimum variance method is related to the centroid methods
(Subsections 6 and 7 above) in that it also leads to a geometric representation in which
cluster centroids play an important role. To form clusters, the method minimizes an
objective function which is, in this case, the same “squared error” criterion as that used
in multivariate analysis of variance.

At the beginning of the procedure, each objects is in a cluster of its own, so that the
distance of an object to its cluster’s centroid is 0; hence, the sum of all these distances
is also 0. As clusters form, the centroids move away from actual object coordinates and
the sums of the squared distances from the objects to the centroids increase. At each
clustering step, Ward’s method finds the pair of objects or clusters whose fusion
increases as little as possible the sum, over all objects, of the squared distances
between objects and cluster centroids. The distance of object xi to the centroid m of its
cluster is computed using the Euclidean distance formula (eq. 7.33) over the various
descriptors yj (j = 1 … p):

The centroid m of a cluster was defined at the beginning of Subsection 8.5.6. The sum
of squared distances of all objects in cluster k to their common centroid is called
“error” in ANOVA, hence the symbol :

(8.5)

where  is the value of descriptor yj for an object i member of group (k) and 
is the mean value of descriptor j over all members of group k. Alternatively, the within-
cluster sums of squared errors  can be computed as the mean of the squared
distances among cluster members:

(8.6)

where the  are the squared distances among objects in cluster k (Table 8.7) and nk
is the number of objects in that cluster. Equations 8.5 and 8.6 both allow the
calculation of the squared error criterion. The equivalence of these two equations is
stated in a theorem whose demonstration, for the univariate case, is found in Kendall &
Stuart (1963, parag. 2.22). Numerical examples illustrating the calculation of eqs. 8.5
and 8.6 are given at the end of Section 8.8 (K-means partitioning).
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Table 8.7 Ward’s minimum variance clustering of the pond data. Step 1 of the table contains squared
distances computed as D2 = (1 – S)2 from the similarity values in Tables 8.3 to 8.6. At each step,
the lowest squared distance is identified (italicized boldface value) and the two corresponding
objects or groups are fused using eq. 8.10.

Objects 212 214 233 431 432

Figure 8.11 Ward’s minimum variance clustering of the ponds from Ecological application 8.2. The scale of
this dendrogram is the squared distances computed in Table 8.7.

212 — Step 1

214 0.16000 —

233 1.00000 0.86304 —

431 1.00000 0.87797 0.49000 —

432 1.00000 0.61780 0.64000 0.25000 —

212-214 — Step 2

233 1.18869 —

431 1.19865 0.49000 —

432 1.02520 0.64000 0.25000 —

212-214 — Step 3

233 0.18869 —

431-432 0.54288 0.67000 —

212-214 — Step 4

233-431-432 1.67952 —

Distance2

212

214

233

431

432

1.81.2 1.50.90.60.30
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The sum of squared errors , for all K clusters corresponding to given partition,
is the criterion to be minimized at each clustering step:

(8.7)

At each clustering step, two objects or clusters h and i are merged into a new
cluster hi, as in previous sections. Since changes occurred only in the groups h, i, and
hi, the change in the overall sum of squared errors, , may be computed from the
changes that occurred in these groups only:

(8.8)

It can be shown that this change depends only on the distance between the centroids of
clusters h and i and on their numbers of objects nh and ni (Jain & Dubes, 1988):

(8.9)

So, one way of identifying the next fusion is to compute the  statistic for all
possible pairs and select the pair which generates the smallest value of this statistic for
the next merge. Another way is to use the following updating formula to compute the
fusion distances between the new cluster hi and all other objects or clusters g, in the
agglomeration table (Table 8.7):

(8.10)

Squared distances are used instead of similarities in eq. 8.10 and in Table 8.7.

Dendrograms for Ward’s clustering may be represented along a variety of scales.
They all lead to the same clustering topology.

• Fig. 8.11 uses the same scale of squared distances as Table 8.7. This is the solution
advocated by Jain & Dubes (1988) and other authors.

• One can easily compute the square roots of the fusion distances of Table 8.7 and
draw the dendrogram accordingly. This solution, illustrated in Fig. 8.12a, removes the
distortions created by squaring the distances. It is especially suitable when one wants
to compare the fusion distances of Ward’s clustering to the original distances, either
graphically (Shepard-like diagrams, Fig. 8.23) or numerically (cophenetic
correlations, Subsection 8.11.2).
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• The sum of squared errors  (eq. 8.7) is used in some computer programs as the
clustering scale. This statistic is also called the total error sum of squares (TESS) by
Everitt (1980) and other authors. This solution is illustrated in Fig. 8.12b.

• The SAS package (1985) recommends two scales for Ward’s clustering. The first one
is the proportion of variance (R2) accounted for by the clusters at any given partition
level. It is computed as the total sum of squares (i.e. the sum of squared distances from
the centroid of all objects) minus the within-cluster squared errors  of eq. 8.7 for
the given partition, divided by the total sum of squares. R2 decreases as clusters grow.
When all the objects are lumped in a single cluster, the resulting one-cluster partition
does not explain any of the objects’ variation so that R2 = 0. The second scale
recommended by SAS is called the semipartial R2. It is computed as the between-
cluster sum of squares divided by the (corrected) total sum of squares. This statistic
increases as the clusters grow.

Like the K-means partitioning method (Section 8.8), Ward’s agglomerative
clustering can be computed from either a raw data table using eq. 8.8, or a matrix of
squared distances through eq. 8.10. The latter is the most usual approach in computer
programs. It is important to note that distances are computed as (squared) Euclidean

EK
2

TESS

Figure 8.12 Ward’s minimum variance clustering of the ponds from Ecological application 8.2. The scale of
dendrogram (a) is the square root of the squared distances computed in Table 8.7; in dendrogram
(b), it is the  (or TESS) statistic.EK

2
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distances in Ward’s method. So, unless the descriptors are such that Euclidean
distances (D1 in Chapter 7) are an appropriate model for the relationships among
objects, one should not use a Ward’s algorithm based or raw data. It is preferable in
such cases to compute a distance matrix using an appropriate coefficient (Tables 7.3 to
7.5), followed by clustering of the resemblance matrix in A-space by a distance-based
Ward algorithm. Section 9.2 will show that resemblance matrices can also be used for
plotting the positions of objects in A-space, “as if” the distances were Euclidean.

Because of the squared error criterion used as the objective function to minimize,
clusters produced by the Ward minimum variance method tend to be hyperspherical,
i.e. spherical in multidimensional A-space, and to contain roughly the same number of
objects if the observations are evenly distributed through A-space. The same applies to
the centroid methods of the previous subsections. This may be seen as either an
advantage or a problem, depending on the researcher’s conceptual model of a cluster.

9 — General agglomerative clustering model

Lance & Williams (1966a, 1967c) have proposed a general model that encompasses all
the agglomerative clustering methods presented up to now, except intermediate
linkage (Subsection 3). The general model offers the advantage of being translatable
into a single, simple computer program, so that it is used in most statistical packages
that offer agglomerative clustering. The general model allows one to select an
agglomerative clustering model by choosing the values of four parameters, called αh,
αi, β, and γ, which determine the clustering strategy. This model only outputs the
branching pattern of the clustering tree (the dendrogram), as it was the case for the
methods described in Subsections 8.5.4 to 8.5.8. For the linkage clustering strategies
(Subsections 8.5.1 to 8.5.3), the list of links responsible for cluster formation may be
obtained afterwards by comparing the dendrogram to the similarity matrix.

The model of Lance & Williams is limited to combinatorial clustering methods,
i.e. those for which the similarity S(hi, g) between an external cluster g and a cluster
hi, resulting from the prior fusion of clusters h and i, is a function of the three
similarities S(h, g), S(i, g), and S(h, i) and also, eventually, the numbers nh, ni, and ng

of objects in clusters h, i, and g, respectively (Fig. 8.13). Individual objects are
considered to be single-member clusters. Since the similarity of cluster hi with an
external cluster g can be computed from the above six values, h and i can be
condensed into a single row and a single column in the updated similarity matrix;
following that, the clustering proceeds as in the Tables of the previous Subsections.
Since the new similarities at each step can be computed by combining those from the
previous step, it is not necessary for a computer program to retain the original
similarity matrix or data set. Non-combinatorial methods do not have this property. For
similarities, the general model for combinatorial methods is the following:

(8.11)

Combina-
torial
method

S hi, g( ) 1 αh αi–– β–( ) αh+ S h, g( ) αiS i, g( )+ βS h, i( ) γ S h, g( ) S i, g( )––+=
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When using distances, the combinatorial equation becomes:

(8.12)

Clustering proceeds in the same way for all combinatorial agglomerative methods.
As the similarity decreases, a new cluster is obtained by the fusion of the two most
similar objects or groups, after which the algorithm proceeds to the fusion of the two
corresponding rows and columns in the similarity (or distance) matrix using eq. 8.11 or
8.12. The matrix is thus reduced by one row and one column at each step. Table 8.8
gives the values of the four parameters for the most commonly used combinatorial
agglomerative clustering strategies. Values of the parameters for some other clustering
strategies are given by Gordon (1996a).

In the case of equality between two mutually exclusive pairs, the decision may be
made on an arbitrary basis (the so-called “right-hand rule” used in most computer
programs) or based upon ecological criteria (as, for example, Sørensen's criteria
reported at the end of Subsection 8.5.2, or those explained in Subsection 8.9.1).

In several strategies, αh + αi + β = 1, so that the term (1 – αh – αi – β) becomes
zero and disappears from eq. 8.11. One can show how the values chosen for the four
parameters make the general equation correspond to each specific clustering method.
For single linkage clustering, for instance, the general equation becomes:

Figure 8.13 In combinatorial clustering methods, the similarity between a cluster hi, resulting from the
fusion of two previously formed clusters h and i, and an external cluster g is a function of the
three similarities between (h and i), (h and g), and (i and g), and of the number of objects in h, i,
and g.

Cluster g

Cluster h
nh objects

S (h, i)

Cluster i
ni objects

S (h, g)

S (i, g)

S (hi, g)

Cluster hi

(h ∪ i)

nh + ni objects

D hi, g( ) αhD h, g( ) αiD i, g( )+ βD h, i( ) γ D h, g( ) D i, g( )–+ +=

S hi, g( ) 1
2
--- S h, g( ) S i, g( )+ S h, g( ) S i, g( )–+[ ]=
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The last term (absolute value) completes the smallest of the two similarities S(h, g)
and S(i, g), making it equal to the largest one. Hence, S(hi, g) = max[S(h, g), S(i, g)].
In other words, the similarity between a newly-formed cluster hi and some other
cluster g becomes equal to the largest of the similarity values previously computed
between the two original clusters (h and i) and g.

Intermediate linkage clustering is not a combinatorial strategy. All along the
clustering procedure, it is necessary to refer to the original association matrix in order
to calculate the connectedness of pairs of clusters. This is why it cannot be obtained
using the Lance & Williams general agglomerative clustering model.

10 — Flexible clustering

Lance & Williams (l966a. 1967c) proposed to vary the parameter β (eq. 8.11 or
8.12) between –1 and +1 to obtain a series of intermediates solutions between single
linkage chaining and the space dilation of complete linkage. The method is also called

Table 8.8 Values of parameters αh, αi, β, and γ in Lance and Williams’ general model for combinatorial
agglomerative clustering. Modified from Sneath & Sokal (1973) and Jain & Dubes (1988).

Clustering method αh αi β γ Effect on space A

Single linkage 1/2 1/2 0 –1/2 Contracting*

Complete linkage 1/2 1/2 0 1/2 Dilating*

UPGMA 0 0 Conserving*

WPGMA 1/2 1/2 0 0 Conserving

UPGMC 0 Conserving

WPGMC 1/2 1/2 –1/4 0 Conserving

Ward’s 0 Conserving

Contracting if β ≈ 1
Flexible –1 ≤ β < 1 0 Conserving if β ≈ –.25

 Dilating if β ≈ –1

* Terms used by Sneath & Sokal (1973).
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beta-flexible clustering by some authors. Lance & Williams (ibid.) have shown that, if
the other parameters are constrained a follows:

αh = αi = (1 – β)/2 and γ = 0

the resulting clustering is ultrametric (no reversals; Section 8.6).

When β is close to 1, strong chaining is obtained. As β decreases and becomes
negative, space dilation increases. The space properties are conserved for small
negative values of β, near –0.25. Figure 8.14 shows the effect of varying β in the
clustering of 20 objects. Like weighted centroid clustering, flexible clustering is
compatible with all association measures except Pearson's r.

Ecological application  8.5a

Pinel-Alloul et al. (1990) studied phytoplankton in 54 lakes of Québec to determine the effects
of acidification, physical and chemical characteristics, and lake morphology on species
assemblages. Phytoplankton was enumerated into five main taxonomic categories
(microflagellates, chlorophytes, cyanophytes, chrysophytes, and pyrrophytes). The data were
normalized using the generalized form of the Box-Cox method that finds the best normalizing
transformation for all species (Subsection 1.5.6). A Gower (S19) similarity matrix, computed
among lakes, was subjected to flexible clustering with parameter β = –0.25. Six clusters were
found, which were roughly distributed along a NE-SW geographic axis and corresponded to
increasing concentrations of total phytoplankton, chlorophytes, cyanophytes, and
microflagellates. Explanation of the phytoplankton-based lake typology was sought by
comparing it to the environmental variables (Section 10.2.1).

11 — Information analysis

The Q-mode clustering method called information analysis was developed for
ecological purposes by Williams et al. (1966) and Lance & Williams (1966b). It does
not go through the usual steps of similarity calculation followed by clustering. It is a
direct method of clustering, based on information measures.

Shannon’s formula (eq. 6.1) can be used to measure the diversity or information in
a frequency or probability distribution:

Information analysis is a type of unweighted centroid clustering, adapted to species
data. At each step, the two objects or clusters causing the smallest gain in within-group
diversity (or information) are fused. As a consequence, the clusters are as
homogeneous as possible in terms of species composition. 

Entropy

H p j  p jlog
j 1=

p

∑–=



Hierarchical agglomerative clustering 337

Figure 8.14 Flexible clustering of 20 objects for six values of β. The measure of association is the squared
Euclidean distance . Adapted from Lance & Williams (1967c: 376).D1

2

β = –0.50 β = –1.00

β = + 0.98 β = + 0.50

β = –0.25β = 0
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The method could be applied to species abundance data, divided into a small
number of classes but, in practice, it is mostly used with presence-absence data. The
information measure described below is not applicable to raw abundance data because
the number of different states would then vary from one species to another, which
would give them different weights in the overall measure. 

To illustrate the method, the pond zooplankton counts used in Chapter 7
(coefficient S23) are transformed here into presence-absence data (see also Ecological
application 8.2):

Total information in this group of ponds is computed using an information measure
derived from the following reasoning (Lance & Williams, 1966b). The entropy of each
species presence-absence descriptor j is calculated on the basis of the probabilities of
presence pj and absence (1 – pj) of species j, which are written in the right-hand part of
the table. The probability of presence is estimated as the number of ponds where
species j is present, divided by the total number of ponds in the cluster under
consideration (here, the group of five ponds). The probability of absence is estimated
likewise, using the number of ponds where species j is absent. The entropy of species j
is therefore:

H(j) = –[pj log pj + (1 – pj) log(1 – pj)]      for 0 < pj < 1 (8.13)

The base of the logarithms is indifferent, as long as the same base is used throughout
the calculations. Natural logarithms are used throughout the present example. For the
first species, H(1) would be:

H(1) = –[0.4 ln(0.4) + 0.6 ln(0.6)] = 0.673

The information of the conditional probability table can be calculated by summing
the entropies per species, considering that all species have the same weight. Since the
measure of total information in the group must also take into account the number of
objects in the cluster, it is defined as follows:

Species j
Ponds

pj (1 – pj)
212 214 233 431 432

1 1 1 0 0 0 0.4 0.6

2 0 0 1 1 0 0.4 0.6

3 0 1 1 0 1 0.6 0.4

4 0 0 1 1 1 0.6 0.4

5 1 1 0 0 0 0.4 0.6

6 0 1 0 1 1 0.6 0.4

7 0 0 0 1 1 0.4 0.6

8 1 1 0 0 0 0.4 0.6
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    for 0 < pj < 1 (8.14)

where p is the number of species represented in the group of n objects (ponds). For the
group of 5 ponds above,

I = –5 [8 (–0.673)] = 26.920

If I is to be expressed as a function of the number aj of ponds with species j present,
instead of a function of probabilities pj = aj/n, it can be shown that the following
formula is equivalent to eq. 8.14:

(8.15)

I is zero when all ponds in a group contain the same species. Like entropy H, I has no
upper limit; its maximum value depends on the number of species present in the study.

At each clustering step, three series of values are considered: (a) the total
information I in each group, which is 0 at the beginning of the process since each
object (pond) then forms a distinct cluster; (b) the value of I for all possible
combinations of groups taken two at a time; (c) the increase of information ∆I resulting
from each possible fusion. As recommended by Sneath & Sokal (1973), all these
values can be placed in a matrix, initially of dimension n × n which decreases as
clustering proceeds. For the example data, values (a) of information in each group are
placed on the diagonal, values (b) in the lower triangle, and values (c) of ∆I in the
upper triangle, in italics.

The ∆I for two groups is found by subtracting the corresponding values I, on the
diagonal, from the value I of their combination in the lower triangle. Values on the
diagonal are 0 in this first calculation matrix, so that values in the upper triangle are the
same as in the lower triangle, but this will not be the case in subsequent matrices. 

Ponds
Ponds

212 214 233 431 432

212 0 2.773 8.318 9.704 9.704

214 2.773 0 8.318 9.704 6.931

233 8.318 8.318 0 4.159 4.159

431 9.704 9.704 4.159 0 2.773

432 9.704 6.931 4.159 2.773 0

I n pi p jlog 1 p j–( ) 1 p j–( )log+[ ]
j 1=

p

∑–=

I np n ai a jlog n a j–( ) n a j–( )log+[ ]
j 1=

p

∑–log=
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The first fusion is identified by the lowest ∆I value found in the upper triangle. This
value is 2.773 for pairs (212, 214) and (431, 432), which therefore fuse. A new matrix
of I values is computed:

This time, the ∆I values in the upper triangle differ from the I's in the lower triangle
since there are I values on the diagonal. The ∆I corresponding to group (212, 214, 431,
432), for example, is computed as: 21.134 – 2.773 – 2.773 = 15.588. The lowest value
of ∆I is for the group (233, 431, 432), which therefore fuses at this step. 

For the last clustering step, the only I value to calculate in the lower triangle is for
the cluster containing the five ponds. This value is 26.920, as computed above from
eq. 8.14. ∆I is then 26.920 – 2.773 – 7.638 = 16.509.

The last fusion occurs at I = 26.920; computing ∆I would not have been necessary in
this case. The values of I can be used as the scale for a dendrogram summarizing the
clustering steps (Fig. 8.15).

Groups

Groups

212
214

233 431
432

212-214 2.773 10.594 15.588

233 13.367 0 4.865

431-432 21.134 7.638 2.773

Groups

Groups

212
214

233
431-432

212-214 2.773 16.509

233-431-432 26.920 7.638

Figure 8.15 Clustering of the ponds from Ecological application 8.2, using information analysis.
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According to Williams et al. (1966), information analysis minimizes chaining and
quickly delineates the main clusters, at least with ecological data. Field (1969) pointed
out, however, that information analysis bases the similarity between objects on double
absences as well as double presences. This method may therefore not be appropriate
when a gradient has been sampled and the data matrix contains many zeros; see
Section 7.3 and Subsection 9.4.5 for a discussion of this problem.

The inverse of ∆I is known as the efficiency coefficient (Lance & Williams, 1966b).
An analogue to the efficiency coefficient may be computed for dendrograms obtained
using other agglomerative clustering procedures. In that case, the efficiency coefficient
is still computed as 1/∆, where ∆ represents the amount by which the information in
the classification is reduced due to the fusion of groups. The reduction is computed as
the entropy in the classification before a fusion level minus the entropy after that
fusion. In Fig. 8.2 for instance, the partition at S = 0.40 contains three groups of 2, 2,
and 1 objects respectively; using natural logarithms, Shannon’s formula (eq. 6.1) gives
H = 1.05492. The next partition, at S = 0.25, contains two groups of 2 and 3 objects
respectively; Shannon’s formula gives H = 0.67301. The difference is ∆ = 0.38191,
hence the efficiency coefficient 1/∆ = 2.61843 for the dendrogram fusion level S = 0.3.

When 1/∆I is high, the procedure clusters objects that are mostly alike. The
efficiency coefficient does not monotonically decrease as the clustering proceeds. With
real data, it may decrease, reach a minimum, and increase again. If 1/∆I is plotted as a
function of the successive fusion levels, the minima in the graph indicate the most
important partitions. If one wants to select a single cutting level through a dendrogram,
this graph may help in deciding which partition should be selected. In Fig. 8.2 for
example, one would choose the value 1/∆I = 1.48586, which corresponds to the last
fusion level (S = 0.214), as the most informative partition. The efficiency coefficient is
not a rigorous decision criterion, however, since no test of statistical significance is
performed.

8.6 Reversals

Reversals may occasionally occur in the clustering structure when using UPGMC or
WPGMC (Subsections 8.5.6 and 8.5.7), or with some unusual combinations of
parameters in the general agglomerative model of Lance & Williams
(Subsection 8.5.9). As an example, a reversal was produced in Fig. 8.7. Two types of
situations lead to reversals:

• When x1 and x2 cluster first, because they represent the closest pair, although the
distance from x3 to the centroid c12 is smaller than the distance from x1 to x2
(Fig. 8.16a).

Efficiency
coefficient
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• When D(x1, x2) = D(x1, x3) = D(x2, x3). In such a situation, most computer
programs use an arbitrary rule (“right-hand rule”) and first cluster two of the three
objects. A reversal appears when the third object is added to the cluster.

When this happens, the cophenetic matrix (Subsection 8.3.1) violates the
ultrametric property (Subsection 8.3.2) and the dendrogram is more difficult to draw
than in the no-reversal cases (Fig. 8.16b). However, departures from ultrametricity are
never large in practice. For this reason, a reversal may be interpreted as nearly
equivalent to a trichotomy in the hierarchical structure (Fig. 8.16c). They may also
indicate true trichotomies, as discussed above; this can be checked by examination of
the similarity or distance matrix.

A clustering method is said to be monotonic (i.e. without reversals) if:

S(x1 ∪ x2, x3) ≤ S(x1, x2)

or D(x1 ∪ x2, x3) ≥ D(x1, x2)

Assuming that αh > 0 and αi > 0 (Table 8.8), necessary and sufficient conditions for a
clustering method to be monotonic in all situations are the following:

αh + αi + β ≥ 1

and γ ≥ –min (αh, αi)

Figure 8.16 A reversal may occur in situations such as (a), where x1 and x2 cluster first because they
represent the closest pair, although the distance from x3 to the centroid c12 is smaller than the
distance from x1 to x2. (b) The result is usually depicted by a non-ultrametric dendrogram.
(c) The reversal may also be interpreted as a trichotomy.

x1 x2

x3

c12

D > 1

x 1

x 2

x 3

(a)

(b)

D > 1

D = 1

D = 1

D = 1

D < 1

x 1

x 2

x 3
(c)



Hierarchical divisive clustering 343

(Milligan, 1979; Jain & Dubes, 1988). Some authors use the term classification only
for hierarchies without reversals or for single non-overlapping partitions of the objects
(Section 8.8).

8.7 Hierarchical divisive clustering

Contrary to the agglomerative methods of Section 8.5, hierarchical divisive techniques
use the whole set of objects as the starting point. They divide it into two or several
subgroups, after which they consider each subgroup and divide it again, until the
criterion chosen to end the divisive procedure is met (Lance & Williams, 1967b).

In practice, hierarchical divisive clustering can only be achieved in the monothetic
case, or when working in an ordination space. In monothetic divisive methods, the
objects are divided, at each step of the procedure, according to the states of a single
descriptor. This descriptor is chosen because it best represents the whole set of
descriptors (next subsection). Polythetic algorithms have been developed, but it will be
seen that they are not satisfactory. 

An alternative is to use a partitioning method (Section 8.8) for all possible numbers
of groups from K = 2 to K = (n – 1) and assemble the results into a graph. There is no
guarantee, however, that the groups will be nested and form a hierarchy, unless the
biological or ecological processes that have generated the data are themselves
hierarchical.

1 — Monothetic methods

The clustering methods that use only one descriptor at a time are less than ideal, even
when the descriptor is chosen after considering all the others. The best-known
monothetic method in ecology is Williams & Lambert's (1959) association analysis,
originally described for species presence-absence data. Association analysis may
actually be applied to any binary data table, not only species. The problem is to
identify, at each step of the procedure, which descriptor is the most strongly associated
with all the others. First, X2 (chi-square) values are computed for 2 × 2 contingency
tables comparing all pairs of descriptors in turn. X2 is computed using the usual
formula:

X2 = n (ad - bc)2/[(a + b) (c + d) (a + c) (b + d)]

The formula may include Yates’ correction for small sample sizes, as in similarity
coefficient S25. The X2 values relative to each descriptor k are summed up:

   for j ≠ k (8.16)

Association
analysis

X jk
2

j 1=

p

∑
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The largest sum identifies the descriptor that is the most closely related to all the
others. The first partition is made along the states of this descriptor; a first cluster is
made of the objects coded 0 for the descriptor and a second cluster for the objects
coded 1. The descriptor is eliminated from the study and the procedure is repeated,
separately for each cluster. Division stops when the desired number of clusters is
reached or when the sum of X2 values no longer reaches a previously set threshold.

This method has been adapted by Lance & Williams (1968) to the information

statistic I of Subsection 8.5.11. Lance & Williams (1965) have also suggested using

the point correlation coefficient  (Subsection 7.3.1) instead of X2. This

may prevent aberrant or unique objects in the study from determining the first

partitions. This is analogous to the problem encountered with the higher powers of

Minkowski’s metric (D6), which could give too much weight to the largest differences;

this problem was less severe when using power 1, which is the Manhattan metric (D7).

One then looks for the descriptor that maximizes the sum  (j ≠ k; see eq. 8.16).

Gower (1967) suggested maximizing the multiple correlation of species k with all the

other species, instead of the sum of simple correlations. This is equivalent to looking

for the best multiple regression function of a descriptor with respect to all the others.

Gower also provided the mathematical bases for an algorithm designed to generate all

the results from a single matrix inversion.

The principles of association analysis may be applied to descriptors with multiple
states (semiquantitative or qualitative), by computing X2 values between descriptors
with the usual X2 formula. Raw species abundance data should not be analysed in this
way, however, because the large number of different abundance values then makes the
contingency table meaningless. Using correlation coefficients instead of X2 statistics
would not help, because of the problem of the double zeros discussed at length in
section 7.5. 

Legendre & Rogers (1972) proposed a monothetic divisive method similar to
association analysis, in which the choice of the descriptor best representing all the
others is made with the help of an information statistic computed on contingency
tables. For each descriptor k, two quantities developed by Christanson (in Brill et al.,
1972) are computed: SUMRAT (k) and SAMRAT (k) (“sum of ratios”). SUMRAT (k) is the
sum of the fractions representing the amount of information that k has in common with
each descriptor j (j ≠ k), divided by the amount of information in j. In SAMRAT (k), the
divisor is the amount of information in k instead of j. Using the symbolism of
Section 6.2:

SUMRAT (k) =    for j ≠ k (8.17)

ϕ X
2

n⁄=

Σϕ jk
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SAMRAT (k) =    for j ≠ k (8.18)

which can be recognized as sums of asymmetric uncertainty coefficients, Σ B/(B + C)
and Σ B/(A + C), respectively (Section 6.2). SUMRAT (k) and SAMRAT (k) both have
the property of being high when k has much information in common with the other
descriptors in the study. The descriptor that best represents the divisive power of all
descriptors should have the highest SUMRAT and SAMRAT values. However,
SUMRAT (k) and SAMRAT (k) are also influenced by the number of states in k, which
may unduly inflate H(k), thus causing SUMRAT (k) to increase and SAMRAT (k) to
decrease. This factor must be taken into account if there is conflict between the
indications provided by SUMRAT and SAMRAT as to the descriptor that best represents
the whole set. This peculiarity of the method requires the user’s intervention at each
division step, in the present state of development of the equations. 

Since the information measures on which SUMRAT and SAMRAT are based are at
the same exponent level as X2 (Section 6.2), one could compute instead:

SUMRAT (k) =    for j ≠ k (8.19)

SAMRAT (k) =    for j ≠ k (8.20)

thus minimizing the effect of single objects on the first partitions, as indicated above.

Williams & Lambert (1961) have suggested using association analysis in the R
mode for identifying species associations. This approach does not seem, however, to
be based on an acceptable operational concept of association (see Section 8.9).

2 — Polythetic methods

There is no satisfactory algorithm for the hierarchical division of objects based on the
entire set of descriptors. 

The method of Edwards & Cavalli-Sforza (1965) tries all possible divisions of the
set of objects into two clusters, looking for the division that maximizes the distance
between the centroids. Like the K-means method of Section 8.8, it can only be applied
to quantitative descriptors. Using sums of squared distances to centroids, one first
computes SS, which is the sum of squares of the Euclidean distances of all objects to
the centroid of the whole set of objects; this is the total sum of squares of single
classification analysis of variance. Then, for each possible partition of the objects into
two groups h and i, the sums of squares of the distances to the centroids are computed
within each cluster, using eq. 8.5, to obtain SS(h) and SS(i), respectively. The distance
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between the two clusters is therefore SS – SS(h) – SS(i). This is the quantity to be
maximized for the first partition. Then each cluster is considered in turn and the
operation is repeated to obtain subsequent divisions. 

This method may seem attractive but, apart from the theoretical objections that he
raised about it, Gower (1967) calculated that, before obtaining the first partition of a
cluster of 41 objects, 54 000 years of computing time would be required using a
computer with an access time of 5 microseconds, to try all (240 – 1) possible partitions
of 41 objects into two groups. The problem remains with modern computers, even
though they have an access time of 10 to 100 nanoseconds. 

The dissimilarity analysis of Macnaughton-Smith et al. (1964) first looks for the
object which is the most different from all the others and removes it from the initial
cluster. One by one, the most different objects are removed. Two groups are defined:
the objects removed and the remaining ones, between which a distance is calculated.
Objects are removed up to the point where the distance between clusters can no longer
be increased. Each of the two clusters thus formed is subdivided again, using the same
procedure. The first partition of a cluster of n objects requires at most 3n2/4 operations
instead of the (2n–1 – 1) operations required by the previous method. Other authors
have developed special measures of distance to be used in dissimilarity analysis, such
as Hall's (1965) singularity index and Goodall's (1966b) deviant index. Although
attractive, dissimilarity analysis may produce strange results when many small clusters
are present in the data, in addition to major clusters of objects. Actually, there is always
the danger that a division into major clusters may also separate the members of some
minor cluster, which cannot be fused again unless special procedures are included in
the algorithm for this purpose (Williams & Dale, 1965).

3 — Division in ordination space

Efficient polythetic hierarchical divisive clustering can be obtained by partitioning the
objects according to the axes of an ordination space. Using principal component
analysis (PCA, Section 9.1), the set of objects may be partitioned in two groups: those
that have positive values along the first PCA axis and those that have negative values.
The PCA analysis is repeated for each of the groups so obtained and a new partition of
each group is performed. The process is repeated until the desired level of resolution is
obtained (Williams, 1976b).

Following a similar suggestion by Piazza & Cavalli-Sforza (1975), Lefkovitch
(1976) developed a hierarchical classification method for very large numbers of
objects, based on principal coordinate analysis (PCoA, Section 9.2). The dendrogram
is constructed from the successive principal coordinate axes, the signs of the objects on
the coordinate axes indicating their membership in one of the two groups formed at
each branching step. The objects are partitioned in two groups according to their signs
along the first PCoA axis; each group is then divided according to the positions of the
objects along the second axis; and so on. This differs from the method used with PCA
above, where the analysis is repeated for each group before a new division takes place.

Dissimilarity
analysis
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To calculate the principal coordinates of a large number of objects, Lefkovitch
proposed to first measure the similarity among objects by an equation which, like the
covariance or correlation, is equivalent to the product of a matrix with its transpose. He
described such a measure, applicable if necessary to combinations of binary,
semiquantitative, and quantitative descriptors. The association matrix among objects is
obtained by the matrix product YY' (order n × n). In many problems where there are
many more objects than descriptors, computation of the eigenvalues and eigenvectors
of the association matrix among descriptors, Y'Y, represents an important saving of
computer time because Y'Y (order p × p) is much smaller than YY' (order n × n). After
Rao (1964) and Gower (1966), Lefkovitch showed that the principal coordinates V of
the association matrix among objects can then be found, using the relation V = YU

where U is the matrix of the principal coordinates among descriptors. The principal
coordinates thus calculated allow one to position the objects, numerous as they may
be, in the reduced space. Principal coordinates can be used for the binary hierarchical
divisive classification procedure that was Lefkovitch's goal.

Another way of obtaining Lefkovitch’s classification is to compute the principal
coordinates from the (n × n) similarity matrix among objects, using the TWWS
algorithm described in Subsection 9.2.6. This algorithm allows one to quickly obtain a
small number of principal coordinates for a fairly large number of objects. The first
few principal coordinates, calculated in this way, could be used as the basis for
Lefkovitch’s clustering method.

A divisive algorithm of the same type is used in TWINSPAN (below). It is based upon
an ordination obtained by correspondence analysis instead of PCA or PCoA.

4 — TWINSPAN

TWINSPAN stands for Two Way INdicator SPecies ANalysis, although its purpose is not
primarily to identify indicator species. The method is widely used in vegetation
science. The TWINSPAN procedure*, proposed by Hill (1979), classifies the objects by
hierarchical division and constructs an ordered two-way table from the original
species-by-sites data table; Hill calls it a dichotomized ordination analysis. TWINSPAN

produces a tabular matrix arrangement that approximates the results of a Braun-
Blanquet phytosociological analysis table. 

To model the concept of differential species (i.e. species with clear ecological
preferences), which is qualitative, TWINSPAN creates pseudospecies. Each species is
recoded into a set of dummy variables (pseudospecies) corresponding to relative
abundance levels; these classes are cumulative. If the pseudospecies cutting levels are
1%, 11%, 26%, 51%, and 76%, for instance, a relative abundance of 18% at a site will
fill the first and second dummy pseudospecies vectors with “1” (= presence). Cutting
levels are arbitrarily decided by users. A (sites × pseudospecies) data table is created.

* Available as part of the package PC-ORD (distribution: see footnote in Section 9.3). TWINSPAN

also available from Micro-computer Power: <http://www.microcomputerpower.com>.

Pseudo-
species
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The TWINSPAN procedure is rather complex. A detailed description is given by Kent
& Coker (1992). It may be summarized as follows.

1. Objects are divided in two groups according to their signs along the
first correspondence analysis axis (CA, Section 9.4) obtained from analysing the
original (sites × species) data table. This is called the primary ordination. 

2. Pseudospecies make it possible to turn species relative abundances into measures of
their indicator values for that binary partition, on a scale from –1 (indicative of the
group of objects found on the arbitrarily selected left-hand side of the CA axis) to +1
(indicative of the group on the right-hand side). The indicator value actually describes
the preference of a pseudospecies for one or the other side of the partition. 

3. A refined ordination is calculated, based on the species indicator values.

4. The pseudospecies indicator values are integrated to construct an indicator index for
each species: the indicator value of a species is the code number (1 to 5 in the example
above) of the pseudospecies with the highest indicator value, after removing signs. 

5. Prior to classifying the species, a new table of fidelity values is calculated. The
fidelity of a species to a particular group of sites is the degree to which the species in
confined to that group. Classification of the species is achieved in a similar way as for
sites, based on the table of fidelity values.

6. After taking care of misclassifications, borderline cases, and other problems, a final
division of the sites is obtained.

7. Preferential pseudospecies are now tabulated. A pseudospecies is considered as
preferential to one side or the other of the partition if it is more than twice as likely to
occur on one side than on the other.

After a first binary division of the sites has been obtained, each subset is divided in
smaller subsets by repeating steps 1 to 7. This goes on until groups become very small.
Typically, groups of 4 objects or less are not partitioned any further.

The main output of TWINSPAN is a two-way table of species × sites reorganized to
provide information about the dichotomies as well as the indicator values of the
various species. When preparing that table, groups in the hierarchy are swivelled,
where necessary, to make adjacent groups as similar as possible. In this way, the final
table presents both a classification and an ordination of the objects; its interpretation is
straightforward. A dendrogram can easily be drawn, if required, from the TWINSPAN

output table. Additional tables provide information about each partition of the sites.

TWINSPAN has been criticized by Belbin and McDonald (1993) on two grounds:
(1) The method assumes the existence of a strong gradient dominating the data
structure, so that it may fail to identify secondary gradients or other types of structure
in data sets. (2) The cutting points along the dominant axis are rather arbitrary; instead

Indicator
value

Fidelity
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of selecting large gaps in the data, sites that may be very close in species composition
may become separated.

There are other problems with TWINSPAN when it comes to identifying clusters of
species or computing indicator values. 

• Firstly, when identifying clusters of species or computing indicator values, one
cannot introduce some other classification of the sites in the program; only the
classifications produced by TWINSPAN, which are based on correspondence analysis
(CA) or detrended correspondence analysis (DCA, Subsection 9.4.5), may be used to
delineate species groups. 

• Secondly, the pseudospecies concept is based on species relative abundances. The
relative abundance of a species depends on the absolute abundances of the other
species present at the site. Such relative frequencies may be highly biased when
sampling or harvesting mobile organisms; all species are not sampled with the same
efficiency because of differences in behaviour. There is always a distortion between
the estimated (i.e. observed) and real relative frequencies of species at any given site.
A species abundance value observed at a site should only be compared to abundance
values for the same species at other sites. 

• Finally, whereas simple CA is well suited for studying species abundances observed
at several sites (ter Braak 1985), DCA has recently been severely criticized
(Subsection 9.4.5). Jackson and Somers (1991b) have shown that results obtained with
DCA vary depending on the number of segments used to remove the arch effect.
Therefore, several runs with different numbers of segments must be done to find stable
factorial axes and interpretable results.

8.8 Partitioning by K-means

Partitioning consists in finding a single partition of a set of objects (Table 8.1). Jain &
Dubes (1988) state the problem in the following terms: given n objects in a
p–dimensional space, determine a partition of the objects into K groups, or clusters,
such that the objects within each cluster are more similar to one another than to objects
in the other clusters. The number of groups, K, is determined by the user. This problem
has first been stated in statistical terms by Fisher (1958), who proposed solutions (with
or without constraint of contiguity; see Sections 12.6 and 13.2) for a single variable. 

The difficulty is to define what “more similar” means. Several criteria have been
suggested; they can be divided into global and local criteria. A global criterion would
be, for instance, to represent each cluster by a type-object (on a priori grounds, or
using the centroids of Subsections 8.5.6 and 8.5.7) and assign each object to the
nearest type-object. A local criterion uses the local structure of the data to delineate
clusters; groups are formed by identifying high-density regions in the data. The
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K–means method, described in the next paragraphs, is the most commonly used of the
latter type.

In K-means, the objective function that the partition to discover should minimize is
the same as in Ward’s agglomerative clustering method (Subsection 8.5.8): the total
error sum of squares ( , or TESS). The major problem encountered by the
algorithms is that the solution on which the computation eventually converges depends
to some extent on the initial positions of the centroids. This problem does not exist in
Ward’s method, which proceeds iteratively by hierarchical agglomeration. However,
even though Ward’s algorithm guarantees that the increase in sum of squared errors
( , eq. 8.8) is minimized at each step of the agglomeration (so that any order of
entry of the objects should lead to the same solution, except in cases of equal distances
where a “right-hand” programming rule may prevail), there is no guarantee that any
given Ward’s partition is optimal in terms of the  criterion — surprising at this may
seem. This same problem occurs with all stepwise statistical methods.

The problem of the final solution depending on the initial positions of the centroids
is known as the “local minimum” problem in algorithms. The concept is illustrated in
Fig. 8.17, by reference to a solution space. It may be explained as follows. Solutions to
the K-means problem are the different ways to partition n objects into, say, K = 4
groups. If a single object is moved from one group to another, the corresponding two
solutions will have slightly different values for the criterion to be minimized ( ).
Imagine that all possible solutions form a “space of solutions”. The different solutions
can be plotted as a graph with the  criterion as the ordinate. It is not necessary to
accurately describe the abscissa to understand the concept; it would actually be a
multidimensional space. A K-means algorithm starts at some position in this space, the
initial position being assigned by the user (see below). It then tries to navigate the
space to find the solution that minimizes the objective criterion ( ). The space of
solutions is not smooth, however. It may contain local minima from which the
algorithm may be unable to escape. When this happens, the algorithm has not found
the overall minimum and the partition is not optimal in terms of the objective criterion.

Several solutions may be used to help a K-means algorithm converge towards the
overall minimum of the objective criterion . They involve either selecting specific
objects as “group seeds” at the beginning of the run, or attributing the objects to the K
groups in some special way. Here are some commonly-used approaches:

• Provide an initial configuration corresponding to an (ecological) hypothesis. The
idea is to start the algorithm in a position in the solution space which is, hopefully,
close to the final solution sought. This ideal situation is seldom encountered in real
studies, however.

• Provide an initial configuration corresponding to the result of a hierarchical
clustering, obtained from a space-conserving method (Table 8.8). One simply chooses
the partition into K groups found on the dendrogram and lists the objects pertaining to
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each group. The K-means algorithm will then be asked to rearrange the group
membership and look for a better overall solution (lower  statistic).

• If the program allows it, select as “group seed”, for each of the K groups to be
delineated, some object located near the centroid of that group. For very large
problems, Lance & Williams (1967d) suggested to use as starting point the result of a
hierarchical clustering of a random subset of the objects, using as “group seeds” either
the centroids of K clusters, or objects located near these centroids.

• Attribute the objects at random to the various groups. All K-means computer
programs offer this option. Find a solution and note the  value. It is possible, of
course, that the solution found corresponds to a local minimum of . So, repeat the
whole procedure a number of times (for example, 100 times), starting every time from
a different random configuration. Retain the solution that minimizes the  statistic.
One is more confident that this solution corresponds to the overall minimum when the
corresponding value of  is found several times across the runs.

Several algorithms have been proposed to solve the K–means problem, which is
but one of a family of problems known in computer sciences as the NP–complete or

Figure 8.17 K-means algorithms search the space of solutions, trying to find the overall minimum (arrow) of
the objective criterion to be minimized, while avoiding local minima (troughs).

Solution space

C
ri

te
ri

on
 to

 b
e

m
in

im
iz

ed

Overall
minimum

Partitioning
algorithm

Distance matrixRaw data table or

EK
2

EK
2

EK
2

EK
2

EK
2



352 Cluster analysis

NP–hard problems*. In all these problems, the only way to be sure that the optimal
solution has been found is to try all possible solutions in turn. This is impossible, of
course, for any real-size problems, even with modern-day computers, as explained in
Subsection 8.7.2. Classical references to K-means algorithms are Anderberg (1973),
Hartigan (1975), Späth (1975, 1980), Everitt (1980), and Jain & Dubes (1988).
Milligan & Cooper (1987) have reviewed the most commonly used algorithms and
compared them for structure recovery, using artificial data sets. One of the best
algorithms available is the following; it frequently converges to the solution
representing the overall minimum for the  statistic. It is a very simple alternating
least-squares algorithm, which iterates between two steps:

• Compute cluster centroids and use them as new cluster seeds.

• Assign each object to the nearest seed.

At the start of the program, K observations are selected as “group seeds”. Each
iteration reduces the sum of squared errors , if possible. Since only a finite number
of partitions are possible, the algorithm eventually reaches a partition from which no
improvement is possible; iterations stop when  can no longer be improved. The
FASTCLUS procedure of the SAS package, mentioned here because it can handle very
large numbers of objects, uses this algorithm. Options of the program can help deal
with outliers if this is a concern. The SAS (1985) manual provides more information
on the algorithm and available options.

This algorithm was originally proposed in a pioneering paper by MacQueen (1967)
who gave the method its name: K-means. Lance & Williams made it popular by
recommending it in their review paper (1967d). In the MacQueen paper, group
centroids are recomputed after each addition of an object; this is also an option in SAS.
MacQueen’s algorithm contains procedures for the fusion of clusters, if centroids
become very close, and for creating new clusters if an object is very distant from
existing centroids.

K-means partitioning may be computed from either a table of raw data or a distance
matrix, because the total error sum of squares  is equal to the sum of squares of the
distances from the points to their respective centroids (eq. 8.5; Fig. 8.18a) and to the
sum (over groups) of the mean squared within-group distances (eq. 8.6; Fig. 8.18b). It
is especially advantageous to compute it on raw data when the number of objects is
large because, in such a situation, the distance matrix may become very cumbersome
or even impossible to store and search. In contrast, when using a table of original data,
one only needs to compute the distance of each object to each group centroid, rather
than to all other objects. 

* NP stands for Non-deterministic Polynomial. In theory, these problems can be solved in
polynomial time (i.e. some polynomial function of the number of objects) on a (theoretical) non-
deterministic computer. NP-hard problems are probably not solvable by efficient algorithms.
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The disadvantage of using a table of raw data is that the only distance function
among points, available during K-means partitioning, is the Euclidean distance (D1,
Chapter 7) in A-space. This is not suitable with species counts and other ecological
problems (Chapter 7). When the Euclidean distance is unsuitable, one may first
compute a suitable similarity or distance measure among objects (Table 7.3 and 7.4);
run the resemblance matrix through a metric or nonmetric scaling procedure (principal
coordinate analysis, Section 9.2; nonmetric multidimensional scaling, Section 9.3);
obtain a new table of coordinates for the objects in A-space; and run K-means
partitioning using this table.

Following are two numerical examples that illustrate the behaviour of the 
criterion (eq. 8.5 and 8.6).

Numerical example 1. For simplicity, consider a single variable. The best partition of the
following five objects (dark squares) in two clusters (boldface horizontal lines) is obviously to
put objects with values 1, 2 and 3 in one group, and objects with values 6 and 8 in the other:

This example is meant to illustrate that the  criterion can be computed from either raw data
(eq. 8.5) or distances among objects (eq. 8.6). Using raw data (left-hand column, below), the
group centroids are at positions 2 and 7 respectively; deviations from the centroids are

Figure 8.18 The total error sum of squares ( , TESS) is equal (a) to the sum of squares of the distances
from the points to their respective centroids. (b) It is also equal to the sum (over groups) of the
mean squared within-group distances.
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calculated for each object, squared, and added within each cluster. Distances among objects
(right-hand column, below) are easy to calculate from the object positions along the axis; the
numbers of objects (nk), used in the denominators, are 3 for cluster 1 and 2 for cluster 2.

 = (12 + 02 + (–1)2) = 2  = (22 + 12 + 12)/3 = 2

 = (12 + (–1)2) = 2  = 22/2 = 2
_____ _____

= 4 = 4

Numerical example 2. Considering a single variable again, this example examines the
effect on the  statistic of changing the cluster membership. There are six objects and they are
to be partitioned into K = 2 clusters. The optimal solution is that represented by the boldface
horizontal lines:

Calculations are as above. Using raw data (left-hand column, below), the group centroids are at
positions 0.5 and 8 respectively; deviations from the centroids are calculated for each object,
squared, and added within each cluster. Distances among objects (right-hand column, below) are
easy to calculate from the object positions along the axis; the numbers of objects (nk), used in the
denominators, are 2 for cluster 1 and 4 for cluster 2.

 = (0.52 + (–0.5)2) = 0.5  = 12/2 = 0.5

 = (22 + 12 + (–1)2 + (–2)2) = 10.0  = (12 + 32 + 42 +22 + 32 + 12)/4 = 10.0
_____ _____

= 10.5 = 10.5

Consider now a sub-optimal solution where the clusters would contain the objects located at
positions (1, 2, 6, 7) and (9, 10), respectively. The centroids are now at positions 4 and 9.5
respectively. Results are the following:

 = (32 + 22 + (–2)2 + (–3)2) = 26.0  = (12 + 52 + 62 + 42 + 52 + 11)/4 = 26.0

 = (0.52 + (–0.5)2) = 0.5  = 12/2 = 0.5
_____ _____

= 26.5 = 26.5

This example shows that the  criterion quickly increases when the cluster membership
departs from the optimum.

In some studies, the number of clusters K to be delineated is determined by the
ecological problem, but this it is not often the case. The problem of determining the
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most appropriate number of clusters has been extensively discussed in the literature.
Over 30 different methods, called “stopping rules”, have been proposed to do so. The
efficiency coefficient, described in the last paragraph of Section 8.5, is one of them.
Milligan & Cooper (1985; see also Milligan, 1996) compared them through an
extensive series of simulations using artificial data sets with known numbers of
clusters. Some of these rules recover the correct number of clusters in most instances,
but others are appallingly inefficient. SAS, for instance, has implemented two among
the best of these rules: a pseudo-F statistic and the cubic clustering criterion.

8.9 Species clustering: biological associations

Most of the methods discussed in the previous sections may be applied to clustering
descriptors as well as objects. When searching for species associations, however, it is
important to use clustering methods that model as precisely as possible a clearly
formulated concept of association. The present section attempts (1) to define an
operational concept of association and (2) to show how species associations can be
identified in that framework.

Several concepts of species association have been developed since the nineteenth
century; Whittaker (1962) wrote a remarkable review about them. These concepts are
not always operational, however. In other words, they cannot always be translated into
a series of well-defined analytical steps which would lead to the same result if they
were applied by two independent researchers, using the same data. In general, the
concept of association refers to a group of species that are “significantly” found
together, without this implying necessarily any positive interaction among these
species. In other words, an association is simply a group of species (or of taxa
pertaining to some systematic category) recognized as a cluster following the
application of a clearly stated set of rules.

Several procedures have been proposed for the identification of species
associations. Quantitative algorithms have progressively replaced the empirical
methods, as they have in other areas of science. All these methods, whether simple or
elaborate, have two goals: first, identify the species that occur together and, second,
minimize the likelihood that the co-occurrences so identified be fortuitous. The search
for valid associations obviously implies that the sampling be random and planned in
accordance with the pattern of variability under study (e.g. geographical, temporal,
vertical, experimental). This pattern defines the framework within which the groups of
species, found repeatedly along the sampling axes, are called associations; one then
speaks of association of species over geographic space, or in time, etc. The criterion is
the recurrence of a group of species along the sampling axes under study.

Ecologists are interested in associations of species as a conceptual framework to
synthesize environmental characteristics. When associations have been found, one can
concentrate on finding the ecological requirements common to most or all species of
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an association instead of having to describe the biology and habitat of each species
individually. In an inverse approach, species associations may be used to predict
environmental characteristics. Associations may be better predictors of environmental
conditions because they are less subject to sampling error than individual species. In
other studies, trophic groups or size classes may be used for the same purpose.

The ecological interpretation of species associations is a subject open to discussion.
Research examining the quantitative relationships between species associations and
their environment, in a multidimensional framework such as Hutchinson’s (1957)
fundamental niche, should enrich this discussion with appropriate data and provide
some idea of the kind of variability to expect in species responses. These relationships
could be discovered using the techniques for the interpretation of ecological structures
summarized in Chapter 10. Among the association concepts that are best adapted to
multidimensional analysis, the following one may be taken as starting point for an
ecological discussion: associations are composed of species that have similar reactions
to properties of the environment (Fager & McGowan, 1963). In this way, associations
are characterized by their internal stability along the sampling axes. Associated species
are thus responding in a related fashion to environmental changes (Legendre, 1973),
which implies that variations in the abundance of associated species are under similar
environmental control. Consequently, an association would also be a simplification of
the responses of individual species to environmental controls. This viewpoint is quite
remote from the organismic concepts of association, but it lends itself more easily to
quantitative analysis. According to this model, the recurrence of associations is an
indication that the abstraction, called association, corresponds to some fundamental
properties of the interaction between species and their environment. This analysis of
the species-environment relationships would be incomplete if it did not include the
recognition that the environment of a species is not solely composed of physical
variables, but also of the other species with which it interacts in a positive or negative
fashion. This is in agreement with the notion that species frequently found together
may have evolved mechanisms of biological accommodation to one another, in
addition to adaptations to their common environment. This phenomenon has been
determinant when selecting measures of similarity for studying species associations
(Subsection 7.5.2).

According to Fager (1963), recurrent organized systems of biological organisms
are characterized by structural similarity in terms of species presence and abundance.
This language belongs to the quantitative approach. Following the above discussion, a
simple and operational definition is proposed: a species association is a recurrent
group of co-occurring species (Legendre & Legendre, 1978). Associations of taxa
belonging to categories other than species may also be defined, if the fundamental
units that interact in the environment belong to some other taxonomic level.

Using this definition, one can choose some clustering methods that are appropriate
to delineate species associations. Appropriate measures of resemblance have already
been described in the previous chapter (Table 7.5).

Species
association
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A great variety of clustering methods have been used for the identification of
associations, although the choice of a given method often appears to have been based
on the availability of a program on the local computer instead of a good understanding
of the properties and limitations of the various techniques. An alternative to standard
clustering techniques was proposed by Lambshead & Paterson (1986) who used
numerical cladistic methods to delineate species associations. Among the ordination
methods, principal component and correspondence analyses do not generally produce
good clusters of species, even though these analyses may be very useful to investigate
other multivariate ecological problems (Chapter 9). One of the problems of principal
component analysis is that of the double zeros; difficulties with this method in the
search for species associations have been discussed in detail in Subsection 7.5.2.

After selecting the most appropriate coefficient of dependence for the data at hand
(Table 7.5), one must next make a choice among the usual hierarchical clustering
methods discussed in the previous sections of this chapter, including TWINSPAN

(Subsection 8.7.4). Partitioning by K-means (Section 8.8) should also be considered.
In addition, there are two specialized partitioning methods for probabilistic
coefficients, described below. When the analysis aims at identifying hierarchically-
related associations using non-probabilistic similarities, the hierarchical clustering
methods are appropriate. When one simply looks for species associations without
implying that they should form a hierarchy, partitioning methods are in order.
Hierarchical clustering may also be used in this case but one must decide, using a
dendrogram or another graphical representation, which level of partition in the
hierarchy best corresponds to the ecological situation to be described (see definition
above). One must take into account the level of detail required and the limits of
significance or interpretability of the species clusters thus found. In any case, space-
conserving or space-dilating methods should be preferred to single linkage, especially
when one is trying to delimit functional groups of species from data sampled along an
ecological continuum. After the main association structure has been identified with the
help of more robust clustering methods, however, single linkage can play a role in
bringing out the fine relationships, such as between the members of associations and
their satellite species. 

An alternative to clustering is to test the significance of the pattern of species co-
occurrence across sites, using some appropriate testing procedure. Jackson et al.
(1992) discussed several null models that may be used for this purpose. 

Ecological application  8.9a

Thorrington-Smith (1971) identified 237 species of phytoplankton in water samples from the
West Indian Ocean. 136 of the species were clustered into associations by single linkage
hierarchical clustering of a Jaccard (S7) association matrix among species. The largest of the 11
associations contained 50 species; its distribution mostly corresponded to the equatorial
subsurface water. This association was dominant at all sites and may be considered typical of the
endemic flora of the West Indian Ocean. Other phytoplankton associations represented seasonal
or regional differences, or characterized currents or nutrient-rich regions. Since phytoplankton



358 Cluster analysis

associations did not lose their identities even when they were mixed, the study of associations in
zones of water mixing seemed a good way of tracing back the origins of water masses.

1 — Non-hierarchical complete linkage clustering

The first specialized partitioning method for discovering species associations is Fager's
(1957) non-hierarchical complete linkage clustering. It is well-adapted to probabilistic
measures of dependence among species and to other measures of dependence for
which a critical or significance level can be set. This method differs from hierarchical
complete linkage clustering in that one looks for clusters formed at a stated level of
similarity without taking into account the hierarchical cluster structure that may have
been be found at higher similarity levels. The working level is usually S ≥ 0.95 or
S ≥ 0.99 for probabilistic coefficients. With the non-probabilistic measure S24
(Chapter 7), Fager & McGowan (1963) used S ≥ 0.5 as the clustering threshold. 

The authors developed a computer program which makes the method operational,
but it is possible to implement it without a special program. Select a threshold
similarity level and draw a graph (as in Fig. 8.2a) of the objects with link edges
corresponding to all values of S ≥ (threshold). Then, delineate the species associations
on the graph as the groups meeting the complete-linkage criterion, i.e. the groups in
which all objects are linked to all others at the stated similarity level
(Subsection 8.5.2). In case of conflicts, use the following decision rules.

1. Complete-linkage clusters of species, obtained by this method, must be independent
of one another, i.e. they must have no species in common. Between two possible
species partitions, form first the clusters containing as many species as possible. For
instance, if a cluster of 8 species has two species in common with another cluster of 5
species, create clusters of 8 and 3 species instead of clusters of 6 and 5 species. Krylov
(1968) adds that no association should be recognized that contains less than three
species.

If non-independent clusters remain (i.e. clusters with objects in common), consider
rules 2 and 3, in that order.

2. Between several non-independent clusters containing the same number of species,
choose the partition that maximizes the size of the resulting independent clusters. For
example, if there are three clusters of 5 species each where clusters 1 and 2 have one
species in common and clusters 2 and 3 also have one species in common, select
clusters 1 and 3 with five species each, leaving 3 species into cluster 2. One thus
creates three clusters with membership 5, 3, and 5, instead of three clusters with
membership 4, 5, and 4.

3a. If the above two criteria do not solve the problem, between two or more non-
independent clusters having about the same number of species, select the one found at
the largest number of sites (Fager, 1957). One has to go back to the original data
matrix in order to use this criterion.

Fager and
Krylov rules
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3b. Krylov (1968) suggested replacing this last criterion with the following one:
among alternative species, the species to include in a cluster is the one that has the
least affinity with all the other species that are not members of that cluster, i.e. the
species that belongs to the cluster more exclusively. This criterion may be decided
from the graph of link edges among species (above).

This form of non-hierarchical complete linkage clustering led Fager (1957), Fager
& McGowan (1963), and Krylov (1968) to identify meaningful and reproducible
plankton associations. Venrick (1971) explains an interesting additional step of Fager’s
computer program; this step answers an important problem of species association
studies. After having recognized independent clusters of completely linked species, the
program associates the remaining species, by single linkage clustering, to one or
several of the main clusters. These satellite species do not have to be associated with
all members of a given association. They may also be satellites of several associations.
This reflects adequately the organizational complexity of biological communities.

This last point shows that overlapping clustering methods could be applied to the
problem of delineating species associations. The mathematical bases of these methods
have been established by Jardine & Sibson (1968, 1971) and Day (1977). 

Ecological application  8.9b

Fager's non-hierarchical complete linkage clustering was used by Legendre & Beauvais (1978)
to identify fish associations in 378 catches from 299 lakes of northwestern Québec. Their
computer program provided the list of all possible complete linkage clusters formed at a user-
selected similarity level. Species associations were determined using the criteria listed above.
The similarity between species was established by means of the probabilistic measure S25
(Subsection 7.5.2), based on presence-absence data.

At similarity level S25 ≥ 0.989, the program identified 25 non-independent species clusters,
involving 26 of the 29 species in the study. Each subgroup of at least three species could
eventually become an association since the clustering method was complete linkage. Many of
these clusters overlapped. The application of Fager's decision rules (with rule 3b of Krylov) led
to the identification of five fish associations, each one completely formed at the similarity level
indicated to the right. Stars indicate the internal strength of the associations (*** all links
≥ 0.999, ** all links ≥ 0.99, * all links ≥ 0.95).

1) Lake whitefish Coregonus clupeaformis S25 ≥ 0.999 ***
Longnose sucker Catostomus catostomus
Lake trout Salvelinus namaycush
Round whitefish Prosopium cylindraceum
Lake chub Couesius plumbeus

2) Northern pike Esox lucius S25 ≥ 0.995 **
White sucker Catostomus commersoni
Walleye Stizostedion vitreum
Shallowwater cisco Coregonus artedii
Yellow perch Perca fluviatilis
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3) Brook trout Salvelinus fontinalis S25 ≥ 0.991 **
Ninespine stickleback Pungitius pungitius
Mottled sculpin Cottus bairdi
Threespine stickleback Gasterosteus aculeatus
Slimy sculpin Cottus cognatus

Figure 8.19 Fish associations are drawn on a two-dimensional principal coordinate ordination of the species.
Axes I (abscissa) and II (ordinate) explain together 55% of the variability among species. Full
lines link species that are members of associations, which were identified by non-hierarchical
complete linkage clustering at S ≥ 0.989. Dashed lines attach satellite species to the most closely
related species member of an association. Redrawn from Legendre & Beauvais (1978). 
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4) Nipigon cisco Coregonus nipigon S25 ≥ 0.991 **
Lake sturgeon Acipenser fulvescens
Goldeye Hiodon alosoides
Mooneye Hiodon tergisus
Sauger Stizostedion canadense

5) Trout-perch Percopsis omiscomaycus S25 ≥ 0.989 *
Spottail shiner Notropis hudsonius
Emerald shiner Notropis atherinoides

The six remaining species were attached as satellites, by single linkage chaining, to the
association containing the closest species. Figure 8.19 shows the species associations drawn on a
two-dimensional principal coordinate ordination of the species. Three of these associations can
be interpreted ecologically. Association 1 was characteristic of the cold, clear, low-conductivity
lakes of the Laurentide Shield. Association 2 characterized lakes with warmer and more turbid
waters, found in the lowlands. Association 4 contained species that were all at the northern limit
of their distributions; they were found in the southern part of the study area. 

2 — Probabilistic clustering

Clifford & Goodall (1967) developed a probabilistic clustering procedure to be used in
conjunction with Goodall’s probabilistic index (S23). Lance & Williams (1967d) state
that this is one of the few completely internally-consistent clustering procedures.
Clifford & Goodall proposed this method for Q mode studies, but it is especially
interesting for clustering species into associations. Because of its computational
requirements (the similarity matrix has to be recomputed at each iteration), there
seems to be little advantage in using this model when another algorithm is applicable. 

The probabilistic clustering approach allows one to find, for a given data set, all the
clusters whose association matrices have a given probability of being homogeneous.
Among all clusters thus formed, the largest one is chosen. If a tie occurs (two or more
clusters are equally the largest), the most homogeneous one is kept. Notice the
resemblance between this association concept and that of Fager described above. The
first cluster is removed from the main data matrix, a similarity matrix is recomputed
for the remainder of the data matrix, and the clustering operation is carried out again.
In the same way, a new similarity matrix is computed for the species belonging to the
selected cluster in order to determine whether it contains sub-clusters.

The detailed mechanism of this clustering procedure is summarized in Fig. 8.20
and explained below with the help of an example taken from Legendre (1971a), which
consists of 10 species of marine phytoplankton identified in 13 water samples collected
at a single site. The clustering of all 69 species identified in the 13 water samples is
discussed in Ecological application 8.9c below.

Goodall’s (S23) similarity matrix for the 10 species forms Table 8.9. Note again that the
matrix was computed using all 69 species present; 10 of them are extracted here from that matrix
to illustrate the method. First, one must check whether the matrix is homogeneous; if this is the
case, it cannot be divided into associations in the sense of the present method. To carry out the
test, one examines the probability of finding by chance, in the matrix, the largest similarity value
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Figure 8.20 Flow chart of the procedure for probabilistic clustering of species into associations. From
Legendre (1973).
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Smax which is actually found in it. If the probability is lower than a pre-established significance
level α, for example 0.05, the hypothesis of homogeneity is rejected for this matrix and the
associative procedure can begin. Assuming that the similarities are independent of one another
and are thus distributed uniformly (distribution where the frequencies of all similarity values are
equal), the probability sought, p, is that of finding a value at least as high as S23max in at least one
of the p(p – 1)/2 distinct cells of the similarity matrix:

The rationale of this equation* involves the complement of the probability of observing
similarity values smaller than Smax in each of the p(p – 1)/2 cells of the similarity matrix. This is
also the probability that the hypothesis of matrix homogeneity is supported by the data.

Is p smaller than or equal to the predetermined significance level α? Reversing the equation,
the hypothesis of matrix homogeneity is to be rejected when

* In Clifford & Goodall (1967: 505) and in Legendre (1971a), this equation is incorrect.

Table 8.9 Similarity matrix among 10 phytoplankton species (from Legendre, 1971a) calculated using
Goodall’s index S23. Similarities higher than the minimum significant value are in italics.

Species

Species 1 2 3 4 5 6 7 8 9

2 0.999996

3 0.999873 0.999873

4 0.999222 0.999222 0.992320

5 0.013925 0.013925 0.003509 0.261027

6 0.059115 0.059115 0.025796 0.959650 0.999994

7 0.000020 0.000020 0.000000 0.229895 0.999914 0.976088

8 0.489400 0.489400 0.550799 0.420580 0.968154 0.921217 0.991849

9 0.958317 0.958317 0.750147 0.948276 0.000293 0.032500 0.804223 0.562181

10 0.679196 0.679196 0.726537 0.699797 0.565639 0.986997 0.719274 0.998504 0.029591

The minimum significant value (α = 0.05) is 0.99998, considering the 69 species in the whole data set.

p 1 Smax

p p 1–( )
2

-----------------------

–=

Smax 1 α–( )
2

p p 1–( )
-----------------------

≥
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where α is the significance level and p is the number of species in the matrix. For α = 0.05, the
p = 69 species from which the values in Table 8.9 are calculated result in a maximum value of
0.99998. By this criterion, the pairs of species (1, 2) and (5, 6) are significantly linked at the 5%
probability level. The similarity matrix is not homogeneous and these two pairs of species
(which could overlap) are used as nuclei for the formation of clusters by agglomeration.

The next step in the clustering procedure (Table 8.10) consists in determining which species
from outside the cluster is the most strongly related to the species that are already in the cluster.
This species is the next potential candidate for clustering. If the weakest link with all species in a
cluster is larger than the minimum significant value, the candidate species is included in the
cluster. By testing the weakest link, one makes sure that the new members of a cluster are
significantly related to all the other species in that cluster. Therefore Clifford and Goodall’s
probabilistic method follows the complete linkage clustering philosophy, as was the case with
Fager's method above. The probability of the weakest similarity value Smin actually observed
between a candidate species and the members of a cluster is (Clifford & Goodall, 1967):

p = 

Table 8.10 Species associations are formed by agglomeration around two nuclei, (1, 2) and (5, 6), following
Clifford & Goodall (1967). At each clustering step (rows), the weakest similarity between a non-
clustered species and all members of the cluster is found in Table 8.9. The largest of these
similarities (in italics) is then compared to the minimum significant value (Smin in boldface). If
this similarity is larger than Smin, the corresponding species is included in the association.

Species

Steps 1 2 3 4 5 6 7 8 9 10 Smin

1 cluster cluster 0.999873 0.999222 0.013925 0.059115 0.000020 0.489400 0.958317 0.679196 0.9723

2 cluster cluster cluster 0.992320 0.003509 0.025796 0.000000 0.489400 0.750147 0.679196 0.9081

3 cluster cluster cluster cluster 0.003509 0.025796 0.000000 0.420580 0.750147 0.679196 0.8324

Internal probability of the cluster = 2.999 × 10–22

1 0.013925 0.013925 0.003509 0.261027 cluster cluster 0.976088 0.921217 0.000293 0.565639 0.9723

2 0.000020 0.000020 0.000000 0.229895 cluster cluster cluster 0.921217 0.000293 0.565639 0.9081

3 0.000020 0.000020 0.000000 0.229895 cluster cluster cluster cluster 0.000293 0.565639 0.8324

Internal probability of the cluster = 2.523 × 10–16

1 1 1 Smin–( ) g
–[ ]

p g–
–
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where g is the number of species already in the cluster. Therefore, at significance level α, the
lowest similarity Smin between a species and all the members of a cluster must be

for that species to be included in the cluster. This formula is such that Smin decreases as the size
of the cluster increases, thus allowing the largest clusters to be more heterogeneous.

The clustering steps are shown in Table 8.10 for the cluster nuclei (1, 2) and (5, 6) found
during the first clustering step. In each case, the clustering procedure stops when no further
significant similarities are found. The two clusters could have had species in common, although
it is not the case here. At the end of this first clustering cycle, only one of the clusters is retained,
i.e. the one containing more species; in cases of equality (as is the case here), the cluster that has
the highest internal probability is selected. The internal probability of a cluster is the product of
the complements of the similarities (1 – S) between all members of the cluster. It is shown in
Table 8.10 for the two clusters formed. The four species (5, 6, 7, 8) forming the cluster with the

Smin 1 1 1 α–( )
1

p g–
------------

–

1 g⁄

–≥

Table 8.11 Similarity matrix for the 6 non-clustered species of the example (upper panel; part of a 65 × 65
matrix), and clustering (lower panel).

Species

Species 1 2 3 4 9

2 0.999998

3 0.999921 0.999921

4 0.999432 0.999432 0.991196

9 0.964934 0.964934 0.723616 0.957422

10 0.696301 0.696301 0.752215 0.713782 0.003661

The minimum significant value (α = 0.05) is 0.99998, considering the 65 unclustered species.

Species

Steps 1 2 3 4 9 10 Smin

1 cluster cluster 0.999921 0.999432 0.964934 0.696301 0.9715

2 cluster cluster cluster 0.991196 0.723616 0.696301 0.9061

3 cluster cluster cluster cluster 0.723616 0.696301 0.8297
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highest internal probability are now removed from the main cluster of 69 species and new
similarity matrices are computed for the cluster of 4 species (Table 8.12) and the remaining 65
species (Table 8.11 for the remaining 6 species of the present example).

The similarity matrix for the remaining species is analysed in the same way as the original
matrix. This results in another complete-linkage cluster of 4 species (Table 8.11). In this
example, the new cluster is identical to the cluster rejected at the end of the first clustering cycle,
but this need not always be the case.

The two clusters of 4 species are homogeneous (Table 8.12); consequently they contain no
sub-clusters. Since one may not wish to recognize clusters containing less than 3 species, as in
Fager's method, the clustering is now complete. It has been pursued with the 61 non-clustered
species in the ecological application below.

The species associations delineated by this clustering method are thus clusters of
species agglomerated by complete linkage, using a criterion of statistical significance.
These associations may or may not be grouped into larger significant associations. At
the end of the procedure, a variable number of species remain unclustered. They can be
attached by single linkage to the closest cluster, as was done in Fager’s method
(Subsection 8.9.1).

Ecological application  8.9c

Legendre (1973) collected 104 water samples for enumeration of phytoplankton at two sites in
Baie des Chaleurs (Gulf of Saint Lawrence, Québec) during two consecutive summers (1968
and 1969). Sampling site 110 was located near the centre a cyclonic gyre; site 112N was located
outside the gyre. For each site and each sampling season, phytoplankton associations were
determined, for depths 0 and 10 m, using Clifford & Goodall's method. These associations were
not based on spatial recurrence as in the previous application; they represented, instead,

Table 8.12 Similarity matrix for the two clusters of 4 species. In both cases, the highest similarity value
Smax (in italics) does not reach the minimum significant value, so that the similarity matrices are
considered homogeneous and the clustering procedure stops.

Species Species

Species 1 2 3 Species 5 6 7

2 0.914072 6 0.987365

3 0.698359 0.698359 7 0.430935 0.330135

4 0.280874 0.280874 0.073669 8 0.142089 0.357724 0.659724

The minimum significant value (α = 0.05) is 0.99149 for The minimum significant value (α = 0.05) is 0.99149 for 

these 4 species. these 4 species.
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temporal recurrence in the co-occurrence of species. Three major associations were found. One
exclusively contained diatoms; the other two were mostly composed of flagellates. To facilitate
ecological interpretation, each association was identified within each water sample and plotted
as the average number of phytoplankters per species of the association and per litre, for each
water sample in which it was found. Results are shown in Fig. 8.21.

The first flagellate association (Fig. 8.21b), which included the cluster of species 5 to 8 of
the above example (Table 8.12), was observed mainly in 1969 where it seemed to increase
slowly from the beginning to the end of the summer. This association was also present during

Figure 8.21 Temporal variation in abundance of the three main phytoplankton associations at sites 110 and
112N of Baie des Chaleurs, detected over the whole summer using significance level α = 0.05.
(a) 1968. Sites: —, 110 (0 m); ---, 110 (10 m); –•–, 112N (0 m). (b) 1969. Sites: —, 112N (0 m);
---, 112N (10 m); –•–, 110 (0 m). (c) —, 1969, site 112N (10 m); ---, 1969, site 110 (0 m); –•–,
1968, site 112N (0 m). From Legendre (1973).
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short periods during the summer of 1968. In all instances where this association was present, the
abundance of nitrate was higher than when only the second association was detected. Surface
waters in 1968 contained little nitrate compared to 1969, where large quantities were observed at
the beginning of the summer. The second flagellate association (Fig. 8.21a) was using nitrate
perhaps more efficiently, which might have resulted in it becoming dominant in 1968. It was not
detected in 1969.

The diatom association (Fig. 8.21c), which included species 1 to 4 clustered in Table 8.12,
was related to silicate, which showed a minimum around mid-June. This condition was well
correlated with the observed diatom peak. The boundary condition seemed to be temperature-
dependent since the diatom association disappeared at ca. 12°C. This boundary condition
accounted for the difference between the two sampling sites (the association being present at site
110 during the first third of the summer only), since the critical temperature of 12°C was reached
at site 110 at least 3 weeks sooner than at 112N. The diatom association showed a similar
behaviour during both summers.

The link between the two groups of associations could be the strong positive seasonal
correlation between nitrate and silicate (Legendre, 1971b). This relationship was overridden in
the case of diatoms by a temperature limit.

The search for associations, which were identifiable during part of the summer only, showed
that associations that were distinct on a seasonal basis could be combined during shorter periods.
This suggests that phytoplankton associations identified along time are an abstraction, resulting
from the action of environmental processes. Indeed, two autocorrelated environmental variables
are more likely to fluctuate in the same way when a shorter time period is considered. The fact
that statistically significant clusters of species could be detected indicated, however, that the
environment itself presented clusters of niches, at least during some periods.

The above application shows that the results of numerical methods (i.e. the
identification of species associations by clustering, in this case) may contribute to a
better understanding of ecological processes when the numerical analysis is followed
by a careful ecological interpretation. Numerical methods do not represent a “new
ecology” by themselves; they may only favour its emergence.

3 — Indicator species

The identification of characteristic or indicator species is traditional in ecology and
biogeography. Field studies describing sites or habitats usually mention one or several
species that characterize each habitat. The most widespread method for identifying
indicator species is TWINSPAN (Hill, 1979; Subsection 8.7.4). There is clearly a need
for the identification of characteristic or indicator species in the fields of monitoring,
conservation, and management, as discussed below. Because indicator species add
ecological meaning to groups of sites discovered by clustering, they provide criteria to
compare typologies derived from data analysis, to identify where to stop dividing
clusters into subsets, and to point out the main levels in a hierarchical classification of
sites. Indicator species differ from species associations in that they are indicative of
particular groups of sites. Good indicator species should be found mostly in a single
group of a typology and be present at most of the sites belonging to that group. This
duality is of ecological interest; yet it is seldom exploited in indicator species studies.
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Dufrêne & Legendre (1997) present an alternative to TWINSPAN in the search for
indicator species and species assemblages characterizing groups of sites. Like
TWINSPAN, the new method is asymmetric, meaning that species are analysed on the
basis of a prior partition of the sites. The first novelty of the method is that it derives
indicator species from any hierarchical or non-hierarchical classification of the objects
(sampling sites), contrary to TWINSPAN where indicator species can only be derived for
classifications obtained by splitting sites along correspondence analysis (CA) or
detrended correspondence analysis (DCA) axes (Subsection 8.7.4). The second
novelty lies in the way the indicator value of a species is measured for a group of sites.
The indicator value index (INDVAL) is based only on within-species abundance and
occurrence comparisons; its value is not affected by the abundances of other species.
The significance of the indicator value of each species is assessed by a randomization
procedure (Section 1.2).*

The indicator value (INDVAL) index is defined as follows. For each species j in each
cluster of sites k, one computes the product of two values, Akj and Bkj. Akj is a measure
of specificity whereas Bkj is a measure of fidelity:

Akj = Nindividualskj / Nindividuals+k

Bkj = Nsiteskj / Nsitesk+

INDVALkj = 100 Akj Bkj (8.21)

In the formula for Akj, Nindividualskj is the mean abundance of species j across the
sites pertaining to cluster k and Nindividuals+k is the sum of the mean abundances of
species j within the various clusters. The mean number of individuals in each cluster is
used, instead of summing the individuals across all sites of a cluster, because this
removes any effect of variations in the number of sites belonging to the various
clusters. Differences in abundance among sites of a cluster are not taken into account.
Akj is maximum when species j is present in cluster k only. In the formula for Bkj,
Nsiteskj is the number of sites in cluster k where species j is present and Nsitesk+ is the
total number of sites in that cluster. Bkj is maximum when species j is present at all
sites of cluster k. Quantities A and B must be combined by multiplication because they
represent independent information (i.e. specificity and fidelity) about the distribution
of species j. Final multiplication by 100 produces a percentage.

The indicator value of species j for a partition of sites is the largest value of
INDVALkj observed over all clusters k of that partition:

INDVALj = max[INDVALkj] (8.22)

* A FORTRAN program (INDVAL) is available from the following WWWeb site to compute the
indicator value index and perform the randomization testing procedure:
<http://www.biol.ucl.ac.be/ecol/html/Outils/Tools.IndVal.html>. INDVAL is also available in the
package PC-ORD. Distribution: see footnote in Section 9.3.

Specificity
Fidelity

Indicator
value
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The index is maximum (100%) when the individuals of species j are observed at all
sites belonging to a single cluster. A random reallocation procedure of sites among the
site groups is used to test the significance of INDVALj (Section 1.2). The index can be
computed for any given partition of sites, or for all levels of a hierarchical
classification of sites. Dufrêne & Legendre (1997) provide a numerical example of the
calculation procedure.

Ecological application  8.9d

In order to illustrate the indicator value method, Dufrêne & Legendre (1997) used a large data
set of Carabid beetle distributions in open habitats of Belgium (189 species collected in pitfall
traps, for a total of 39 984 specimens). The data represented 123 year-catch cycles at 69
locations; a year-catch cycle cumulates catches at a site during a full year; 54 sites were studied
during two years and 15 sites were sampled during a single year. The Q-mode typology of sites
was computed by K-means partitioning of a data matrix representing the ordination axes of a
principal coordinate analysis (Section 9.2), computed from a Steinhaus similarity matrix among
sites (eq. 7.24) calculated from log-transformed species abundance data. Similarities among
sites, which had been computed using an asymmetrical similarity coefficient, were thus turned
into Euclidean coordinates prior to K-means partitioning. The clusters produced by K-means
were not forced to be hierarchically nested. Despite of that, the results of K-means partitioning
showed a strong hierarchical structure for K = 2 to 10 groups. This allowed the authors to
represent the relationships among partitions as a dendrogram. The K = 10 level corresponded to
the main types of habitat, recognized a priori, where sampling had been conducted.

Indicator values were computed for each species and partitioning level. Some species were
found to be stenotopic (narrow niches) while others were eurytopic (species with wide niches,
present in a variety of habitats). Others characterized intermediate levels of the hierarchy. The
best indicator species (INDVAL > 25%) were assembled into a two-way indicator table; this
tabular representation displayed the hierarchical relationships among species.

Results of the indicator value method were compared to TWINSPAN. Note that the partitions
of sites used in the two methods were not the same; the TWINSPAN typology was obtained by
partitioning correspondence analysis ordination axes (Subsection 8.7.4). TWINSPAN identified,
as indicators, pseudospecies pertaining to very low cut-off levels. These species were not
particularly useful for prediction because they were simply known to be present at all sites of a
group. Several species identified by TWINSPAN as indicators also received a high indicator value
from the INDVAL procedure, for the same or a closely related habitat class. The INDVAL method
identified several other indicator species, with rather high indicator values, that also contributed
to the specificity of the groups of sites but had been missed by TWINSPAN. So, the INDVAL

method appeared to be more sensitive than TWINSPAN to the fidelity and specificity of species.

McGeoch & Chown (1998) found the indicator value method important to
conservation biology because it is conceptually straightforward and allows researchers
to identify bioindicators for any combination of habitat types or areas of interest, e.g.
existing conservation areas, or groups of sites based on the outcome of a classification
procedure. In addition, it may be used to identify bioindicators for groups of sites
classified using the target taxa, as in Ecological application 8.9d, or using non-target
taxa (e.g. insect bioindicators of plant community classifications). 



Seriation 371

Because each IndVal index is calculated independently of other species in the
assemblage, comparisons of indicator values can be made between taxonomically
unrelated taxa, taxa in different functional groups, or those in different communities.
Comparisons across taxa are robust to differences in abundance that may or may not be
due to differences in catchability or sampling methods. The method is also robust to
differences in the numbers of sites between site groups, to differences in abundance
among sites within a particular group, and to differences in the absolute abundances of
very different taxa which may show similar trends.

When a group of sites corresponds to a delimited geographic area, distribution
maps for the indicator species of that group should help identify the core conservation
areas for these species, even when little other biological information is available.
McGeoch & Chown (1998) also consider the indicator measure of a species absence
to be of value. The species absence IndVal provides a method for improving the
objectivity with which species transient to an assemblage can be identified. Species
with high values for this absence index may also be of ecological interest as indicators
of peculiar ecological conditions where the species is seldom or never present. 

Taxa proposed as bioindicators are often merely the favourite taxa of their
proponents; ornithologists prefer birds, lepidopterists butterflies, and coleopterists
beetles. According to McGeoch & Chown (1998), IndVal provides an objective
method for addressing this problem by enabling assessment of the relative merits of
different taxa for a given study area. The species that do emerge from this procedure as
the most useful indicators of a group of sites should prove useful in practical
conservation for monitoring site changes.

Borcard (1996) and Borcard & Vaucher-von Ballmoos (1997) present applications
of the indicator value method to the identification of the Oribatid mite species that
characterize well-defined zones in a peat bog of the Swiss Jura. The indicator values of
beetle species characterizing different types of forests have also been studied by
Barbalat & Borcard (1997).

8.10 Seriation

Before clustering methods were developed, the structure of a similarity matrix was
often studied by matrix rearrangement (Orlóci, 1978). In this approach, the order of
the objects is modified in such a way as to concentrate the highest similarities near the
main diagonal of the similarity matrix. This is very similar to a method called seriation
in archaeology, where the rows and columns of a rectangular matrix of (artefacts ×
descriptors) are rearranged in such a way as to bring the highest values near the main
diagonal, in order to discover the temporal seriation of the artefacts; see Kendall
(1988) for a review. This technique was developed by anthropologists Petrie (1899)
and Czekanowski (1909) and was applied to ecology by Kulczynski (1928).
Traditionally, the rearranged matrices are represented as trellis diagrams (Fig. 8.22 is

Trellis
diagram
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an example), in which half of the matrix is represented by shades of gray
corresponding to similarity values. Seriation is available in the clustering package
CLUSTAN, referenced in Section 7.7.

At the end of the seriation procedure (Fig. 8.22), the high similarities, which are
now found close to the diagonal, indicate clusters of objects. Permutation of the rows
and columns was traditionally carried out by hand, although this rapidly becomes
tedious with matrices exceeding about ten objects. The various methods of ordination
(Chapter 9) would be other ways to find the order of the objects, to be used in a trellis
diagram, from an (objects × descriptors) data matrix.

An analytical solution to seriation was proposed in 1950 by Beum & Brundage.
This solution can be applied to a similarity matrix among objects presented in any
order; the ordering is, of course, the same for the rows and columns. In each column,
compute the product of each similarity by the rank of the row, add up these values, and
divide them by the sum of values in the column. These values are used as weights to
reorder the objects (rows and columns). The procedure is repeated until convergence is
reached, i.e. until the weights do not change the ordering any more. The algorithm
may, at times, end up alternating between two equally optimum final solutions.

For the analysis of a usual similarity matrix, the clustering methods discussed in
the previous sections are more specific and efficient than seriation, since they directly
produce clusters of objects. A dendrogram provides a partial order for the objects,
which may be used to seriate the diagonal of the similarity matrix, if needed. Seriation
is an interesting approach because it allows the analysis of non-symmetric as well as
symmetric matrices. Non-symmetric matrices, in which S(x1, x2) ≠ S(x2, x1), are
rather rare in ecology. They may, however, be encountered in cases where the
similarity is a direct measure of the influence of an organism on another, or in
behavioural studies where the attraction of an organism for another can be used as a
similarity measure. They are becoming more common in numerical taxonomy
(serological data, DNA pairing data, etc.). These matrices could be decomposed into
symmetric and skew-symmetric components, as described in Subsection 2.3, before
analysis by clustering and/or ordination methods. Rohlf’s (1970) adaptive hierarchical
clustering may also be used to analyse non-symmetric resemblance matrices.

Ecological application  8.10a

Kulczynski (1928) studied the phytosociology of a region in the Carpathian Mountains,
southeastern Poland. He recognized 37 plant associations, listed the species found in each, and
computed a similarity matrix among them. Part of that similarity matrix is reproduced in
Fig. 8.22, after seriation. When the largest similarity values are brought near the diagonal, the
associations clearly form a series, from association 22 (Varietum pinetosum czorsztynense) to
association 13 (Seslerietum variae normale). The blocs of higher (darker) values near the
diagonal allow one to recognize two main groups of associations: (22, 21) and (15, 14, 17, 18);
association 11 also has a high similarity with association 15.

Non-
symmetric
matrix
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Ecological application  8.10b

Wieser (1960) studied the meiofauna (small benthic metazoans) at three sites (6 or 7 cores per
site) in Buzzards Bay, Massachusetts, USA. After representing the resemblance among cores as
a similarity matrix (using Whittaker’s index of association, 1 – D9) and a trellis diagram, he
found that although the three sites differed in species composition, the two sandy sites were
more similar to each other than they resembled the third site where the sediment contained high
concentrations of fine deposits. 

The classical study reported in Ecological application 8.10b has triggered other
applications of trellis diagrams in benthic ecology. Among these is Sanders’ (1960)
representation of an ecological time series, also from Buzzards Bay, using a trellis
diagram. Inspired by these applications to benthic ecology, Guille (1970) and Soyer
(1970) used the method of trellis diagrams to delineate benthic communities
(macrofauna and harpacticoid copepods, respectively) along the French Catalonian
coast of the Mediterranean Sea, near Banyuls-sur-Mer.

Figure 8.22 Similarity matrix (lower half) and trellis diagram (upper half) for part of Kulczynski’s (1928)
plant associations of the Carpathian Mountains. Numbers in italics, in the margins, identify the
associations; the latin names can be found in Kulczynski’s paper. In the trellis diagram, the
similarities are represented by shadings, as indicated underneath the matrix.
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Wieser’s (1960) study offers an opportunity to come back to the warning of
Section 8.0, that not all problems of data analysis belong to the clustering approach.
Nowadays, one would not have to seriate or cluster the sites before comparing the
species to the sediment data. One could compare two similarity matrices, one for
species and one for sediment data, using the Mantel test or the ANOSIM procedure
(Section 10.5), or else directly compare the species abundance table to the sediment
data table using canonical analysis (Chapter 11).

8.11 Clustering statistics

This section is devoted to clustering statistics, the correlation between a cophenetic
matrix and the original similarity or distance matrix, and the problem of cluster
validation.

1 — Connectedness and isolation

Clustering statistics describe the connectedness within clusters or their degree of
isolation. Some of these measures are described here.

The basic statistic of a cluster k is its number of objects, nk. In linkage clustering,
when the number of objects is compared to the number of links among them, a
measure of density of the cluster in A-space is obtained. Density increases with the
degree of connectedness of a cluster. Connectedness can be measured as follows
(Estabrook, 1966):

(8.23)

where the maximum possible number of links is nk(nk – 1)/2, with nk being the number
of objects in cluster k. This measure of connectedness varies between 0 and 1. Day
(1977) proposed other related measures. One of them is the cohesion index which
considers only the links that exceed the minimum number of links necessary for the
cluster to be connected. If this minimum number is called m, the cohesion index can be
written as follows:

(8.24)

For single linkage clustering, the minimum number of links necessary for nk objects to
be connected is nk – 1, so that the cohesion index becomes:

(8.25)
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which is Estabrook’s (1966) normalized connectedness index. Another measure of
cluster density could be the minimum similarity within a cluster, or else the average
similarity (Estabrook, 1966).

The degree of isolation of clusters can be measured, in metric space A, as the
distance between the two closest objects in different clusters. It may also be measured
as the average distance between all the objects of one cluster and all the objects of
another, or else as the ratio of the distance between the two closest objects to the
distance between the centroids of the two clusters. All these measures are ways of
quantifying distances between clusters; a clustering or ordination of clusters can be
computed using these distances. In the context of linkage clustering without reference
to a metric space A, Wirth et al. (1966) used, as a measure of isolation, the difference
between the similarity at which a cluster is formed and the similarity at which it fuses
with another cluster.

2 — Cophenetic correlation and related measures

Pearson’s correlation coefficient, computed between the values in a cophenetic matrix
(Subsection 8.3.1) and those in the original resemblance matrix (excluding the values
on the diagonal), is called cophenetic correlation (Sokal & Rohlf, 1962), matrix
correlation (Sneath & Sokal, 1973) or standardized Mantel (1967) statistic
(Subsection 10.5.1). It measures the extent to which the clustering result corresponds
to the original resemblance matrix. When the clustering perfectly corresponds to the
coefficients in the original matrix, the cophenetic correlation is 1.

Besides the cophenetic correlation, which compares the original similarities to
those in a cophenetic matrix, matrix correlations are useful in four other situations:

• To compare any pair of resemblance matrices, such as the original similarity matrix
of Section 8.2 and a matrix of distances among the objects in a space of reduced
dimension (Chapter 9).

• To compare two similarity or distance matrices obtained by computing different
resemblance measures on the same data.

• To compare the results of two clustering methods applied to a resemblance matrix.

• To compare various clustering levels in a dendrogram. The ultrametric matrix of a
given clustering level contains only zeros and ones in that case, as shown in
Subsection 8.3.1.

Correlations take values between –1 and +1. The cophenetic correlation is expected
to be positive if the original similarities are compared to cophenetic similarities (or
distances to distances) and negative if similarities are compared to distances. The
higher the absolute value of the cophenetic correlation, the better the correspondence
between the two matrices being compared. Ecologists might prefer to use a non-

Isolation
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parametric correlation coefficient (Kendall’s τ or Spearman’s r) instead of Pearson's r,
if the interest lies more in the geometric structure of the dendrogram than the actual
lengths of its branches. 

A cophenetic correlation cannot be tested for significance because the cophenetic
matrix is not independent of the original similarity matrix; one comes from the other
through the clustering algorithm. In order to test the significance of a cophenetic
correlation, one would have to pretend that, under H0, the two matrices may be
independent of each other, i.e. that the clustering algorithm is likely to have a null
efficiency. On the contrary, the similarity between two hierarchical classifications of
different data sets about the same objects, measured by matrix correlation or some
other measure of consensus (Rohlf, 1974, 1982b), can be tested for significance
(Section 10.2, Fig. 10.4).

Other coefficients have been proposed to measure the goodness-of-fit between
matrices. For instance, Gower’s (1983) distance is the sum of the squared differences
between values in the cophenetic similarity matrix and the original similarity matrix:

(8.26)

This measure, also called stress 1 (Kendall, 1938), takes values in the interval [0, ∞); it
is used as a measure of goodness-of-fit in nonmetric multidimensional scaling
(eq. 9.28). Small values indicate high fit. Like the cophenetic correlation, this measure
only has relative value when comparing clustering results obtained from the same
original similarity matrix. Several other such functions are listed in Rohlf (1974). 

Other measures have been proposed for comparing different partitions of the same
objects. Consider in turn all pairs of objects and determine, for each one, whether the
two objects are placed in the same group, or not, by the partition. One can construct a
2 × 2 contingency table, similar to the one shown at the beginning of Subsection 7.3.1,
comparing the pair assignments made by two partitions. The simple matching
coefficient (eq. 7.1), computed on this contingency table, is often called the Rand
index (1971). Hubert & Arabie (1985) have suggested a modified form that corrects
the Rand index as follows: if the relationship between two partitions is comparable to
that of partitions picked at random, the corrected Rand index returns a value near 0.
The modified Rand index is widely used for comparing partitions.

A Shepard diagram is a scatter plot comparing distances in a space of reduced
dimension, obtained by ordination methods, to distances in the original association
matrix (Fig. 9.1). This type of diagram has been proposed by Shepard (1962) in the
paper where he first described nonmetric multidimensional scaling (Section 9.3).
Shepard-like diagrams can be constructed to compare the similarities (or distances) of
the cophenetic matrix (Section 8.3) to the similarities (or distances) of the original
resemblance matrix (Fig. 8.23). Such a plot may help choose between parametric and
nonparametric cophenetic correlation coefficients. If the relationship between original

Gower
distance

DGower original sij cophenetic sij–( ) 2

i j,
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and cophenetic similarities is curvilinear in the Shepard-like diagram, as it is the case
in Figs. 23a and c, a nonparametric correlation coefficient should be used. 

Fig. 8.23 also helps understand the space-contraction effect of single linkage
clustering, where the cophenetic similarities are always larger than or equal to the
original similarities; the space-conservation effect of intermediate linkage clustering
with connectedness values around Co = 0.5; and the space-dilation effect of complete
linkage clustering, in which cophenetic similarities can never exceed the original
similarities. There are (n – 1) clustering levels in a dendrogram. This limits to (n – 1)
the number of different values that can be found in a cophenetic matrix and, hence,
along the ordinate of a Shepard-like diagram. This is why points form horizontal bands
in Fig. 8.23. 

Following are three measures of goodness-of-fit between the single linkage
clustering results and the original similarity matrix, for the pond example:

Pearson r cophenetic correlation = 0.941
Kendall τb cophenetic correlation = 0.774
Gower distance = 0.191 

Figure 8.23 Shepard-like diagrams comparing cophenetic similarities to original similarities for 21 lakes
clustered using (a) single linkage (Co = 0, cophenetic r = 0.64, τ = 0.45), (b) proportional link
linkage (Co = 0.5, cophenetic r = 0.75, τ = 0.58), and (c) complete linkage clustering (Co = 1,
cophenetic r = 0.68, τ = 0.51). Co is the connectedness of the linkage clustering method
(Subsection 8.5.3). There are 210 points (i.e. 210 similarity pairs) in each graph. The diagonal
lines are visual references.
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8.12 Cluster validation

Users of clustering methods may wonder whether the result of a clustering program
run is valid or not, i.e. whether the clusters are “real”, or simply artefacts of the
clustering algorithm. Indeed, clustering algorithms may produce misleading results.
On the one hand, most hierarchical clustering (or partitioning) algorithms will give rise
to a hierarchy (or a partition), whether the objects are, or not, hierarchically
interrelated (or pertaining to distinct clusters). On the other hand, different clustering
algorithms may produce markedly different results because clustering methods impose
different models onto the data, as shown in the present Chapter. Finally, different
clustering methods are variously sensitive to noise (error) in the data. A simulation
study comparing several clustering and partitioning methods under different levels of
noise can be found in Milligan (1980); see also the review paper of Milligan (1996).

It is important to validate the results of cluster analyses. One has to show that a
clustering structure is unusual in some sense, i.e. that it departs from what may be
expected from unstructured data. Unfortunately, most of the validation methods
summarized below are not presently available in standard clustering packages.
Readers are referred to Chapter 4 of Jain & Dubes (1988) for details, and to the review
papers of Perruchet (1983a, b), Bock (1989, 1996), Gordon (1994, 1996a, 1996b) and
Milligan (1996). Lapointe (1998) provides a review of the validation methods used in
phylogenetic studies. 

Validation may be carried out in nonstatistical or statistical ways. Statistical ways
involve tests of hypotheses, whereas nonstatistical assessment accepts weaker
evidence for the presence of clusters. Commonly-used nonstatistical methods are:

• Plot the clusters onto an ordination diagram and look for separation of the clusters
(Section 10.1). This method is often used to assess the degree of refinement of
hierarchical clustering results that one should consider for interpretation.

• Compare the results of several clustering algorithms, either informally (using visual
examination, identify the partition levels that are found in most or all trees being
compared) or formally (calculate consensus indices or construct a compromise
“consensus” tree: below).

Different issues can be considered in cluster validation:

• The most general hypothesis is that of complete absence of classification structure in
the data. In principle, such tests should be carried out before cluster analysis is
attempted. Several methods have been proposed to assess the positions of the objects
distributed in multidimensional space (random position hypothesis) and test for either
uniform or unimodal distributions (i.e. greater density of objects near the centre of the
distribution). There are also tests that are carried out on graphs linking the objects, and
others that involve only the object labels.
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• Other methods are available to test (1) for the presence of a hierarchical structure in
the data, (2) for partitions (are there distinct clusters in the data? how many clusters?),
or (3) for the validity of individual clusters.

For any one of these hypotheses, validation may be carried out at different
conceptual levels. 

1. Internal validation using Y — Internal validation methods allow the assessment of
the consistency of a clustering topology. Internal validation consists in using the
original data (i.e. matrix Y containing the data originally used for clustering) to assess
the clustering results. One approach is to resample the original data set. One repeatedly
draws subsets of objects at random, using the jackknife or bootstrap methods
(Subsection 1.2.4), to verify that the original clusters of objects are found by the
clustering method for the different subsets. Nemec & Brinkhurst (1988) present an
ecological application of this method to species abundance data. Another approach is
to randomize the original data set, or generate simulated data with similar distribution
parameters, and compute the classification a large number of times to obtain a null
distribution for some clustering statistic of interest; one may use one of the statistics
discussed in Subsection 8.11.2, or the U statistic of Gordon (1994) described at the end
of Subsection 10.5.3. The test of cluster fusion in chronological clustering
(Subsection 12.6.4) is an example of an internal validation criterion. Using
simulations, Milligan (1981) compared 30 internal validation criteria that may be used
in this type of study. One must not, however, use a standard hypothesis testing
procedure such as ANOVA or MANOVA on the variables used to determine the clusters.
This approach would be incorrect because the alternative hypothesis of the test would
be constructed to fit the group structure computed from the very data that would now
be used for testing the null hypothesis. As a consequence, such a test would almost
necessarily (subject to type II error) result in significant differences among the groups.

2. External validation comparing Y to X — External validation methods involve the
comparison of two different data tables. The clustering results derived from data
matrix Y are compared to a matrix of explanatory variables, which is called X in the
context of regression (Chapter 10) and canonical analysis (Chapter 11). Comparisons
can be made at different levels. One may compare a partition of the objects to matrix X
using discriminant analysis (Table 10.1; Section 11.5). Else, the whole hierarchical
tree structure may be coded using binary variables (Baum, 1992; Ragan, 1992), in the
same way as nested factors in ANOVA; this matrix is then compared to the explanatory
matrix X using redundancy analysis (Subsections 11.1). A third way is to compare the
cophenetic matrix (Subsection 2 above) that represents the hierarchical tree structure
to a similarity or distance matrix computed from matrix X, using a Mantel test
(Subsection 10.5.1; Hubert & Baker, 1977). Contrary to the cophenetic correlations
considered in Subsection 8.11.2, testing is legitimate here because matrix X is
independent of the data matrix Y used to construct the classification. 

3. External validation comparing two or several matrices Y, same variables —
Confirmation of the presence of a clustering structure in the data can be obtained by
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repeating the cluster analysis using different sets of objects (data matrices Y1, Y2, etc.)
and comparing the results. The first case is that where replicate data are available. For
instance, if lakes can be selected at random from different geographic regions, one
could conduct independent cluster analyses of the regions using one lake per region
(different lakes being used in the separate runs), followed by a comparison of the
resulting partitions or dendrograms. Methods are available for comparing
independently-obtained dendrograms representing the same objects (Fig. 10.4 and
references in Section 10.2). Alternatively, the classification of regions obtained from
the first set of lakes (matrix Y1) could be taken as a model to be validated, using
discriminant analysis, by comparing it to a second, independent set of lakes (matrix
Y2) representing the same regions. 

In replication analysis, external validation is carried out for data that are not
replicate observations of the same objects. One finds a classification using matrix Y1,
determines group centroids, and assigns the data points in Y2 to the nearest centroid
(McIntyre & Blashfield, 1980). Then, the data in Y2 are clustered without considering
the result from Y1. The independently obtained classification of Y2 is compared to the
first one using some appropriate measure of consensus (point 4, below). 

In studies where data are costly to obtain, this approach is, in most cases, not
appealing to researchers who are more interested in using all the available information
in a single cluster analysis, instead of dividing the data set into two or several analyses.
This approach is only feasible when the objects are numerous.

4. External validation comparing two or several matrices Y, same objects — Several
groups of variables may be available about the same objects; one may wish to conduct
separate cluster analyses on them. An example would be sites where data are available
about several groups of arthropods (e.g. matrices Y1 = mites, Y2 = insects, and
Y3 = spiders), besides physical or other variables of the environment which would
form a matrix X of explanatory variables. Classifications may be obtained
independently for each matrix Y. Measures of resemblance between trees, called
consensus indices (Rohlf, 1982b), may be calculated. The cophenetic correlation
coefficient of the previous Subsection can be used as a consensus index; other indices
are available, that only take the classification topologies into account. Alternatively,
one may compute a compromise tree, called a consensus tree, which represents the
areas of agreement among trees. Several criteria have been proposed for constructing
consensus trees: majority rule, strict consensus, average consensus, etc. (Leclerc &
Cucumel, 1987). Tests of significance are available for comparing independently-
obtained dendrograms that describe relationships among the same objects (Fig. 10.4
and references in Section 10.2).
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8.13 Cluster representation and choice of a method

This section summarizes the most usual graphical representations of clustering results.
More complete reviews of the subject are found in Sneath & Sokal (1973) and
Chambers & Kleiner (1982).

Hierarchical clustering results are represented, in most cases, by dendrograms or
by plots of connected subgraphs. The construction of these graphs has been explained
in Sections 8.2 and 8.5. The branches of dendrograms may point upwards or
downwards, but they are more often represented horizontally because this is an easier
way of fitting a dendrogram of a large number of objects into a page. The abscissa is
graduated in similarities or distances; the branching pattern indicates the similarity or
distance of bifurcating branches. Usually, the names of the objects (or descriptors), or
their code numbers, are written at the tips of the branches. The ordinate (on horizontal
dendrograms) has no specified ordering, except in TWINSPAN. Bifurcating branches are
not fixed; they may be swivelled as required by the presentation of results, without
altering the nature of the ultrametric information in the dendrogram.

Dendrograms clearly illustrate the clusters formed at each partition level, but they
do not allow the identification of the exact similarity links among objects. With some
clustering methods, this information is not directly available and must be found a
posteriori when needed. In any case, for a synoptic clustering which only aims at
recognizing major clusters of objects, connecting links are not required.

Series of connected subgraphs, as in Fig. 8.3 and 8.4, may be used to represent all
the information of the similarity or distance matrix. Complex information may be
represented by different types of lines; colours may also be used. When they become
numerous, objects can be placed at the rim of a circle; similarity links are drawn as
lines between them. In each subgraph, the relative positions of the objects are of little
importance. They are merely arranged in such a way as to simplify the paths of the
links connecting them. The objects may have been positioned beforehand in a two-
dimensional ordination space, which may be obtained by principal coordinate analysis
or nonmetric scaling of the association matrix (Sections 9.2 and 9.3). Figures of
connected subgraphs, informative as they may be, are quite time consuming to draw
and difficult to publish.

Some programs still use “skyline plots” (Ward, 1963, Wirth et al., 1966), which
may also be called “trees” or “icicle plots”. These plots may be imagined as negatives
of dendrograms. They contain the same information as dendrograms, but they are
rather odd to read and interpret. In Fig. 8.24a for instance (UPGMA clustering of the
pond data, Fig. 8.5), the object names are sitting on the lines between columns of X’s;
the ordinate of the plot is a scale of similarities or distances. Since the value S = 1
(D = 0) is at the bottom of the graph, this is where the hierarchical agglomeration
begins. The first clustering step is materialized by the first horizontal row of X’s, at
distance S = 0.6 (D = 0.4), which joins objects 212 and 214. It is drawn like the lintel

Dendrogram

Connected
subgraphs

Skyline plot
Tree
Icicle plot
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of a door. The surface above the lintel of X’s is filled with X’s; these are without
meaning. The next clustering step is at distance S = D = 0.5; it consists in a row of X’s
joining ponds 431 and 432. The third clustering step is more interesting. Note how a
new lintel of X’s, at S = 0.25 (D = 0.75), goes from pond 233, and right across the
column of X’s already joining ponds 431 and 432. The final clustering step is at
S = 0.058 (D = 0.942). This new lintel crosses the last remaining gap, uniting the two
columns of X’s corresponding to the two already-formed clusters.

A skyline plot can directly be transformed into a dendrogram (Fig. 8.24b, c).
Working from the bottom to the top, proceed as follows:

• Identify lintels and draw lines across the column of X’s. The lines should not extend
beyond the row of X’s.

• When all the horizontal lines have been drawn, draw vertical lines from the middle
of a lower lintel up to the one above. Erase the overhanging part of the upper lintel.
Repeat the operation for the next lintel up.

• The result is a standard dendrogram (Fig. 8.23c).

Figure 8.24 A skyline plot (a) can be transformed into a dendrogram (c) by going through the drawing steps
described in (b).
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A hierarchical clustering (or a partition) can also be represented as a seriated
similarity matrix, as in Fig. 8.22. The order in which the objects appear in the
dendrogram can be used as a first approximation of the seriation order. Of course,
branches of the dendrogram may be swivelled to obtain a better ordering of the
similarity values.

Chapter 10 shows how to superimpose clustering results onto an ordination of the
same objects. This is often the only way to clarify the structure when ecological
objects form an almost perfect continuum. When it comes to representing the results of
a partition, the objects are represented in an ordination space and envelopes are drawn
around points corresponding to the various clusters.

Table 8.13 summarizes, in a comparative way, the various clustering methods
discussed in the present Chapter. Some advantages and disadvantages of each method
are pointed out.

Seriated
matrix
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Table 8.13 Synoptic summary of the clustering methods presented in Chapter 8.

Method Pros & cons Use in ecology

Hierarchical agglomeration:
linkage clustering

Single linkage

Complete linkage
(see also: species associations)

Intermediate linkage

Hierarchical agglomeration:
average clustering

Unweighted arithmetic average
(UPGMA)

Weighted arithmetic average
(WPGMA)

Unweighted centroid
(UPGMC)

Weighted centroid
(WPGMC)

Ward’s method

Hierarchical agglomeration:
flexible clustering

Hierarchical agglomeration:
information analysis

Pairwise relationships among the 
objects are known.

Computation simple; 
contraction of space (chaining); 
combinatorial method.

Dense nuclei of objects; space 
expansion; many objects cluster at 
low similarity; arbitrary rules to 
resolve conflicts; combinatorial 
method.

Preservation of reference space A;
non-combinatorial: not included in 
Lance & Williams’ general model.

Preservation of reference space A;
pairwise relationships between 
objects are lost; combinatorial 
method.

Fusion of clusters when the 
similarity reaches the mean inter-
cluster similarity value.

Same, with adjustment for group 
sizes.

Fusion of clusters with closest 
centroids; may produce reversals.

Same, with adjustment for group 
sizes; may produce reversals.

Minimizes the within-group sum 
of squares.

The algorithm allows contraction, 
conservation, or dilation of space 
A; pairwise relationships between 
objects are lost; combinatorial 
method.

Minimal chaining; only for 
Q-mode clustering based upon 
presence-absence of species.

Good complement to ordination.

To increase the contrast among 
clusters.

Preferable to the above in most 
cases where only one clustering 
method is to be used.

For a collection of objects 
obtained by simple random or 
systematic sampling.

Preferable to the previous method 
in all other sampling situations.

For simple random or systematic 
samples of objects.

Preferable to the previous method 
in all other sampling situations.

When looking for hyperspherical 
clusters in space A.

This method, as well as all the 
other combinatorial methods, are 
implemented using a simple 
algorithm.

Use is unclear: similarities reflect 
double absences as well as double 
presences.
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Table 8.13 Continued.

Method Pros & cons Use in ecology

Hierarchical division

Monothetic

Polythetic

Division in ordination space

TWINSPAN

K-means partitioning

Species associations

Non-hierarchical
complete linkage

Probabilistic clustering

Seriation

Indicator species

TWINSPAN

Indicator value index

Danger of incorrect separation of 
members of minor clusters near 
the beginning of clustering.

Division of the objects following 
the states of the “best” descriptor.

For small number of objects only.

Binary division along each axis of 
ordination space; no search is 
done for high concentrations of 
objects in space A.

Dichotomized ordination analysis;
ecological justification of several 
steps unclear.

Minimizes within-group sum of 
squares; different rules may 
suggest different optimal numbers 
of clusters.

Non-hierarchical methods; 
clustering at a pre-selected level of 
similarity or probability.

For all measures of dependence 
among species; species associated 
by complete linkage (no overlap); 
satellite species joined by single 
linkage (possible overlap).

Theoretically very consistent 
algorithm; test of significance on 
species associations; limited to 
similarities computed using 
Goodall’s probabilistic coefficient.

One-dimensional ordination 
along the main diagonal of the 
similarity matrix.

Only for classifications of sites 
obtained by splitting CA axes;
ecological justification of several 
steps unclear.

For any hierarchical or non-
hierarchical classification of sites;
IndVal for a species is not affected 
by the other species in the study.

Useful only to split objects into 
large clusters, inside which 
clustering may depend on 
different phenomena.

Impossible to compute for sizable 
data sets.

Efficient algorithms for large data 
sets, when a coarse division of the 
objects is sought.

Produces an ordered two-way 
table classifying sites and species.

Produces a partition of the objects 
into K groups, K being determined 
by the user.

Concept of association based on 
co-occurrence of species (for other 
concepts, use the hierarchical 
methods).

Straightforward concept; easy 
application to any problem of 
species association.

Not often used because of heavy 
computation.

Especially useful for non-
symmetric association matrices.

Gives indicator values for the 
pseudospecies.

Gives indicator values for the 
species under study; the IndVal
index is tested by permutation.
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Chapter

9 Ordination in 
reduced space

9.0 Projecting data sets in a few dimensions

Ordination (from the Latin ordinatio and German Ordnung) is the arrangement of units
in some order (Goodall, 1954). This operation is well-known to ecologists. It consists
in plotting object-points along an axis representing an ordered relationship, or forming
a scatter diagram with two or more axes. The ordered relationships are usually
quantitative, but it would suffice for them to be of the type “larger than”, “equal to”, or
“smaller than” (semiquantitative descriptors) to permit meaningful ordinations. Gower
(1984) points out that the term ordination, used in multivariate statistics, actually
comes from ecology where it refers to the representation of objects (sites, stations,
relevés, etc.) as points along one or several axes of reference.

In ecology, several descriptors are usually observed for each object under study. In
most instances, ecologists are interested in characterizing the main trends of variation
of the objects with respect to all descriptors, not only a few of them. Looking at scatter
plots of the objects with respect to all possible pairs of descriptors is a tedious
approach, which generally does not shed much light on the problem at hand. In
contrast, the multivariate approach consists in representing the scatter of objects in a
multidimensional diagram, with as many axes as there are descriptors in the study. It is
not possible to draw such a diagram on paper with more than two or eventually three
dimensions, however, even though it is a perfectly valid mathematical construct. For
the purpose of analysis, ecologists therefore project the multidimensional scatter
diagram onto bivariate graphs whose axes are known to be of particular interest. The
axes of these graphs are chosen to represent a large fraction of the variability of the
multidimensional data matrix, in a space with reduced (i.e. lower) dimensionality
relative to the original data set. Methods for ordination in reduced space also allow
one to derive quantitative information on the quality of the projections and study the
relationships among descriptors as well as objects.

Ordination
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Ordination in reduced space is often referred to as factor (or inertia) analysis since
it is based on the extraction of the eigenvectors or factors of the association matrix. In
the present book, the expression factor analysis will be restricted to the methods
discussed in Section 9.5. Factor analysis sensu stricto is mainly used in the social
sciences; it aims at representing the covariance structure of the descriptors in terms of
a hypothetical causal model.

The domains of application of the techniques discussed in the present chapter are
summarized in Table 9.1. Section 9.1 is devoted to principal component analysis, a
powerful technique for ordination in reduced space which is, however, limited to sets
of quantitative descriptors. Results are also sensitive to the presence of double-zeros.
Sections 9.2 and 9.3 are concerned with principal coordinate analysis (metric scaling)
and nonmetric multidimensional scaling, respectively. Both methods project, in
reduced space, the distances among objects computed using some appropriate
association measure (S or D; Chapter 7); the descriptors may be of any mathematical
kind. Section 9.4 discusses correspondence analysis, a most useful ordination
technique for species presence/absence or abundance data. Finally, and as mentioned
above, Section 9.5 summarizes the principles of factor analysis sensu stricto. The
presentation of the various forms of canonical analysis, which are also eigenvector-
based techniques (like PCA, PCoA, and CA), is deferred to Chapter 11.

Factor
analysis

Table 9.1 Domains of application of the ordination methods presented in this chapter.

Method Distance preserved Variables

Principal component analysis Euclidean distance Quantitative data, linear relation-
(PCA) ships (beware of double-zeros)

Principal coordinate analysis Any distance measure Quantitative, semiquantitative,
(PCoA), metric (multidimensional) qualitative, or mixed
scaling, classical scaling

Nonmetric multidimensional Any distance measure Quantitative, semiquantitative,
scaling (NMDS, MDS) qualitative, or mixed

Correspondence analysis (CA) χ2 distance Non-negative, dimensionally
homogeneous quantitative or 
binary data; species abundance
or presence/absence data

Factor analysis sensu stricto Euclidean distance Quantitative data, linear relation-
ships (beware of double-zeros)
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It often happens that the structure of the objects under study is not continuous. In
such a case, an ordination in reduced space, or a scatter diagram produced using two
important variables, may be sufficient to make the grouping structure of the objects
obvious. Ordination methods may thus be used, sometimes, to delineate clusters of
objects (Section 8.1); see however the remarks of Section 8.9 about the use of
ordination methods in the study of species associations. More generally, ordinations
may always be used as complements to cluster analyses. The reason is that clustering
investigates pairwise distances among objects, looking for fine relationships, whereas
ordination in reduced space considers the variability of the whole association matrix
and thus brings out general gradients. Different methods for superimposing the results
of clustering onto ordinations of the same objects are described in Section 10.1.

Ecologists generally use ordination methods to study the relative positions of
objects in reduced space. An important aspect to consider is the representativeness of
the representation in reduced space, which usually has d = 2 or 3 dimensions. To what
extent does the reduced space preserve the distance relationships among objects? To
answer this, one can compute the distances between all pairs of objects, both in the
multidimensional space of the original p descriptors and in the reduced d-dimensional
space. The resulting values are plotted in a scatter diagram such as Fig. 9.1. When the
projection in reduced space accounts for a high fraction of the variance, the distances
between projections of the objects in reduced space are quite similar to the original
distances in multidimensional space (case a). When the projection is less efficient, the
distances between objects in reduced space are much smaller than in the original
space. Two situations may then occur. When the objects are at proportionally similar
distances in the two spaces (case b), the projection is still useful even if it accounts for
a small fraction of the variance. When, however, the relative positions of objects are
not the same in the two spaces (case c), the projection is useless. Ecologists often
disregard the interpretation of ordinations when the reduced space does not account for
a high fraction of the variance. This is not entirely justified, since a projection in
reduced space may be informative even if that space only accounts for a small fraction
of the variance (case b).

The scatter diagram of Fig. 9.1, which is often referred to as a Shepard diagram
(Shepard, 1962; diagrams in Shepard’s paper had their axes transposed relative to
Fig. 9.1), may be used to estimate the representativeness of ordinations obtained using
any reduced-space ordination method. In principal component analysis (Section 9.1),
the distances among objects, in both the multidimensional space of original descriptors
and the reduced space, are calculated using Euclidean distances (D1, eq. 7.34). The F
matrix of principal components (eq. 9.4 below) gives the coordinates of the objects in
the reduced space. In principal coordinate analysis (Section 9.2) and nonmetric
multidimensional scaling (Section 9.3), Euclidean distances among the objects in
reduced space are compared to distances Dhi found in matrix D used as the basis for
computing the ordination. In correspondence analysis (Section 9.4), it is the 

 

χ2

distance (D16, eq. 54) among objects which is used on the abscissa (Table 9.1).
Shepard-like diagrams can also be constructed for cluster analysis (Fig. 8.23).

Reduced
space

Shepard
diagram
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The following sections discuss the ordination methods most useful to ecologists.
They are written to be easily understood by ecologists, so that they may not entirely
fulfil the expectations of statisticians. Many programs are available to carry out
ordination analysis; several of them are described by Michael Palmer*. For detailed
discussions on the theory or computing methods, one may refer to ter Braak (1987c)
and Morrison (1990), among other works. Important references about correspondence
analysis are Benzécri and coll. (1973), Hill (1974), Greenacre (1983), and ter Braak
(1987c). Gower (1984 and 1987) reviewed the ordination methods described in this
chapter, plus a number of other techniques developed by psychometricians. Several of
these are progressively finding their way into numerical ecology. They include
methods of metric scaling other than principal coordinate analysis, multidimensional
unfolding, orthogonal Procrustes analysis (the Procrustes statistic m2 is described in
Subsection 10.5.4) and its generalized form, scaling methods for several distance
matrices, and a method for ordination of non-symmetric matrices.

* WWWeb site: <http://www.okstate.edu/artsci/botany/ordinate/software.htm>.

Figure 9.1 Shepard diagram. Three situations encountered when comparing distances among objects, in the
p-dimensional space of the p original descriptors (abscissa) versus the d-dimensional reduced
space (ordinate). The figure only shows the contours of the scatters of points. (a) The projection
in reduced space accounts for a high fraction of the variance; the relative positions of objects in
the d-dimensional reduced space are similar to those in the p-dimensional space. (b) The
projection accounts for a small fraction of the variance, but the relative positions of the objects
are similar in the two spaces. (c) Same as (b), but the relative positions of the objects differ in
the two spaces. Adapted from Rohlf (1972). Compare to Fig. 8.23.
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9.1 Principal component analysis (PCA)

Section 4.4 has shown that, in a multinormal distribution, the first principal axis is the
line that goes through the greatest dimension of the concentration ellipsoid describing
the distribution. In the same way, the following principal axes (orthogonal to one
another, i.e. at right angles to one another, and successively shorter) go through the
following greatest dimensions of the p-dimensional ellipsoid. A maximum of p
principal axes may be derived from a data table containing p variables (Fig. 4.9). The
principal axes of a dispersion matrix S are found by solving (eq. 4.23):

(S – 

 

λkI) uk = 0 (9.1)

whose characteristic equation

 

S – 

 

λkI

 

 = 0 (9.2)

is used to compute the eigenvalues

 

λk. The eigenvectors uk associated with the 

 

λk are
found by putting the different 

 

λk values in turn into eq. 9.1. These eigenvectors are the
principal axes of dispersion matrix S (Section 4.4). The eigenvectors are normalized
(i.e. scaled to unit length, Section 2.4) before computing the principal components,
which give the coordinates of the objects on the successive principal axes. Principal
component analysis (PCA) is due to Hotelling (1933). The method and several of its

Ordination vocabulary* Box 9.1

Major axis. Axis in the direction of maximum variance of a scatter of points.

First principal axis (of the concentration ellipsoid in a multinormal distribution;
Section 4.4, Fig. 4.9). Line passing through the greatest dimension of the ellipsoid;
major axis of the ellipsoid.

Principal components. New variates (variates =  random variables) specified by
the axes of a rigid rotation of the original system of coordinates, and corresponding
to the successive directions of maximum variance of the scatter of points. The
principal components give the positions of the objects in the new system of
coordinates.

Principal-component axes (also called principal axes or component axes). System
of axes resulting from the rotation described above.

*Adapted from Morrison (1990, pp. 87 and 323-325).

Eigenvalue
Eigenvector

Principal
components
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implications for data analysis are clearly presented in the seminal paper of Rao (1964).
PCA possesses the following properties, which make it a powerful instrument for the
analysis of ecological data:

1) Since any dispersion matrix S is symmetric, its principal axes uk are orthogonal
to one another. In other words, they correspond to linearly independent directions in
the concentration ellipsoid of the distribution of objects (Section 2.9).

2) The eigenvalues λk of a dispersion matrix S give the amount of variance
corresponding to the successive principal axes (Section 4.4).

3) Because of the first two properties, principal component analysis can often
summarize, in a few dimensions, most of the variability of a dispersion matrix of a
large number of descriptors. It also provides a measure of the amount of variance
explained by these few independent principal axes.

The present Section shows how to compute the relationships among objects and
among descriptors, as well as the relationships between the principal axes and the
original descriptors. A simple numerical example is developed, involving five objects
and two quantitative descriptors:

Y =      After centring on the column means, 

In practice, principal component analysis is never used for two descriptors only; in
such a case, the objects can simply be represented in a two-dimensional scatter
diagram (Fig. 9.2a). A two-dimensional example is used here for simplicity, in order to
show that the main result of principal component analysis is to rotate the axes, using
the centroid of the objects as pivot.

1 — Computing the eigenvectors

The dispersion matrix of the above descriptors (eq. 4.6) is:

The corresponding characteristic equation (eq. 2.23) is:
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It has two eigenvalues, λ1 = 9 and λ2 = 5. The total variance remains the same, but it is
partitioned in a different way: the sum of the variances on the main diagonal of matrix
S is (8.2 + 5.8 = 14), while the sum of the eigenvalues is (9 + 5 = 14). λ1 = 9 accounts
for 64.3% of the variance and λ2 makes up for the difference (35.7%). There are as
many eigenvalues as there are descriptors. The successive eigenvalues account for
progressively smaller fractions of the variance. Introducing, in turn, the λk’s in matrix
equation 9.1:

(S – λkI) uk = 0

Figure 9.2 Numerical example of principal component analysis. (a) Five objects are plotted with respect to
descriptors y1 and y2. (b) After centring the data, the objects are now plotted with respect to

 and , represented by dashed axes. (c) The objects are plotted with
reference to principal axes I and II, which are centred with respect to the scatter of points.
(d) The two systems of axes (b and c) can be superimposed after a rotation of 26°34'.
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provides the eigenvectors associated with the eigenvalues. Once these vectors have
been normalized (i.e. set to unit length, u' u = 1) they become the columns of matrix U:

U = 

If a different sign had been arbitrarily assigned to one of the terms of matrix U, when
calculating the eigenvectors, this would have resulted in mirror images for Figs. 9.2c
and d. These images would be as good at representing the data as Fig. 9.2c and d. 

It is easy to check the orthogonality of the two eigenvectors: their cross-product
 = (0.8944 × (–0.4472)) + (0.4472 × 0.8944) = 0. Moreover, Section 4.4 has

shown that the elements of U are direction cosines of the angles between the original
descriptors and the principal axes. Using this property, one finds that the system of
principal axes specifies a rotation of (arc cos 0.8944) = 26°34' of the system of
reference defined by the original descriptors.

2 — Computing and representing the principal components

The elements of the eigenvectors are also weights, or loadings of the original
descriptors, in the linear combination of descriptors from which the principal
components are computed. The principal components give the positions of the objects
with respect to the new system of principal axes. Thus the position of object xi on the
first principal axis is given by the following function, or linear combination:

(9.3)

The values  are the coordinates of object i on the various centred descriptors
j while the values uj1 are the loadings of the descriptors on the first eigenvector. The
positions of all objects with respect to the system of principal axes is given by matrix F
of the transformed variables. It is also called the matrix of component scores:

(9.4)

where U is the matrix of eigenvectors and  is the matrix of centred
observations. The system of principal axes is centred with respect to the scatter of
point-objects. This would not be the case if U had been multiplied by Y instead of the
centred matrix, as in some special forms of principal component analysis (non-centred
PCA). For the numerical example, the principal components are computed as follows:
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Since the two columns of the matrix of component scores are the coordinates of the
five objects with respect to the principal axes, they can be used to plot the objects with
respect to principal axes I and II (Fig. 9. 2c). It is easy to verify (Fig. 9.2d) that, in this
two-descriptor example, the objects are positioned by the principal components in the
same way as in the original system of descriptor-axes. Principal component analysis
has simply rotated the axes by 26° 34' in such a way that the new axes correspond to
the two main components of variability. When there are more than two descriptors, as
it is usually the case in ecology, principal component analysis still only performs a
rotation of the system of descriptor-axes, but now in multidimensional space. In that
case, principal components I and II define the plane allowing the representation of the
largest amount of variance. The objects are projected on this plane in such a way as to
preserve, as much as possible, the relative Euclidean distances they have in the
multidimensional space of the original descriptors.

The relative positions of the objects in the rotated p-dimensional space of principal
components are the same as in the p-dimensional space of the original descriptors
(Fig. 9.2d). This means that the Euclidean distances among objects (D1, eq. 7.34) have
been preserved through the rotation of axes. This important property of principal
component analysis is noted in Table 9.1.

The quality of the representation in a reduced Euclidean space with m dimensions
only (m ≤ p) may be assessed by the ratio:

(9.5)

This ratio is the equivalent of a coefficient of determination (R2, eq. 10.8) in regression
analysis. The denominator of eq. 9.5 is actually equal to the trace of matrix S (sum of
the diagonal elements). Thus, with the current numerical example, a representation of
the objects, along the first principal component only, would account for a proportion
9/(9+5) = 0.643 of the total variance in the data matrix.

When the observations have been made along a temporal or spatial axis, or on a
geographic plane (i.e. a map giving the coordinates of the sampling sites), one may
plot the principal components along the sampling axis, or on the geographic map.
Figure 9.20 is an example of such a map, for the first ordination axis of a detrended
correspondence analysis. The same approach may be used with the results of a
principal component analysis, or any other ordination method.

3 — Contributions of descriptors

Principal component analysis provides the information needed to understand the role
of the original descriptors in the formation of the principal components. It may also be
used to show the relationships among original descriptors in the reduced space. The
role of descriptors in principal component analysis is examined in this Subsection
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under various aspects: matrix of eigenvectors, projection in reduced space (matrix
UΛΛΛΛ1/2), and projection in reduced space (matrix U).

1. The matrix of eigenvectors — In Subsection 1 (above), the relationships among
the normalized eigenvectors (which are the columns of the square matrix U) were
studied using an expression of the form U'U. For the numerical example:

U'U = 

The diagonal terms of U'U result from the multiplication of the eigenvectors with
themselves. These values are equal to their (length)2, here equal to unity because the
vectors are scaled to 1. The nondiagonal terms, resulting from the multiplication of
two different eigenvectors, are equal to zero because the eigenvectors are orthogonal.
This result would be the same for any matrix U of normalized eigenvectors computed
from a symmetric matrix. Matrix U is a square orthonormal matrix (Section 4.4);
several properties of such matrices are described in Section 2.8. 

In the same way, the relationships among descriptors, which correspond to the
rows of matrix U, can be studied through the product UU'. The diagonal and non-
diagonal terms of UU' have the same meaning as in U'U, except that they now concern
the relationships among descriptors. The relationships among the rows of a square
orthonormal matrix are the same as among the columns (Section 2.8, property 7), so
that:

UU' = I (9.6)

The descriptors are therefore of unit lengths in the multidimensional space and they lie
at 90° of one another (orthogonality).

Principal component analysis is simply a rotation, in the multidimensional space,
of the original system of axes (Figs. 9.2 and 9.3a, for a two-dimensional space). It
therefore follows that, after the analysis (rotation), the original descriptor-axes are still
at 90° of one another. Furthermore, normalizing the eigenvectors simultaneously
normalizes the descriptor-axes (the lengths of row and column vectors are given
outside the matrix):

(9.7)
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There is a second approach to the study of the relationships among descriptors. It
consists in scaling the eigenvectors in such a way that the cosines of the angles
between descriptor-axes be proportional to their covariances. In this approach, the
angles between descriptor-axes are between 0° (maximum positive covariance) and
180° (maximum negative covariance); an angle of 90° indicates a null covariance
(orthogonality). This result is achieved by scaling each eigenvector k to a length equal
to its standard deviation *. Using this scaling for the eigenvectors, the Euclidean
distances among objects are not preserved.

Using the diagonal matrix ΛΛΛΛ of eigenvalues (eq. 2.20), the new matrix of
eigenvectors can be directly computed by means of expression UΛΛΛΛ1/2. For the
numerical example:

UΛΛΛΛ1/2 = 

In this scaling, the relationships among descriptors are the same as in the dispersion
matrix S (on which the analysis is based), since

(UΛΛΛΛ1/2) (UΛΛΛΛ1/2)' = UΛΛΛΛU' = UΛΛΛΛU–1 = S (9.8)

Equation UΛΛΛΛU–1 = S is derived directly from the general equation of eigenvectors
SU = UΛΛΛΛ (eq. 2.27). In other words, the new matrix UΛΛΛΛ1/2 is of the following form
(the lengths of the row and column vectors are given outside the matrix):

UΛΛΛΛ1/2 = (9.9)

This equation shows that, when the eigenvectors are scaled to the lengths of their
respective standard deviations , the lengths of the descriptor-axes are 
(i.e. their standard deviations) in multidimensional space. The product of two
descriptor-axes, which corresponds to their angle in the multidimensional space, is
therefore equal to their covariance sjl.

* In some computer packages, the principal component procedure only scales the eigenvectors
to length  and only provides a plot of the descriptor-axes (no plot of the objects is available).
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2. Projection of descriptors in reduced space (matrix UΛΛΛΛ1/2) — Ecologists using
principal component analysis are not interested in the whole multidimensional space
but only in a simplified projection of the objects in a reduced space (generally a two-
dimensional plane). Elements  of the eigenvectors, scaled to , are the
coordinates of the projections of the descriptors j on the different principal axes k.
They are scaled in such a way that the projections of descriptor-axes can be drawn in
the reduced space formed by the principal axes (Fig. 9.3b). The descriptors are
represented by arrows since they are axes. In a reduced-dimension plane, projections
of descriptor-axes are shorter than or equal to their lengths in the multidimensional
space. In the particular case of Fig. 9.3b, the lengths are the same in the projection
plane as in the original space because the latter only has two dimensions.

In the reduced-space plane, the angles between descriptors are projections of their
true covariance angles. It is thus important to consider only the descriptors that are
well represented in the projection plane. To do so, one must recognize, in the
multidimensional space, the descriptors that form small angles with the reduced plane;
they are the descriptors whose projections approach their real lengths s in the
multidimensional space. Since the length of the projection of a descriptor-axis j is
equal to or shorter than sj, one must choose a criterion to assess the value of
representations in the projection plane. 

u jk λk λk

Figure 9.3 Numerical example from Fig. 9.2. Distance and correlation biplots are discussed in Subsection
9.1.4. (a) Distance biplot. The eigenvectors are scaled to lengths 1. Inset: descriptors (matrix U).
Main graph: descriptors (matrix U; arrows) and objects (matrix F; dots). The interpretation of
the object-descriptor relationships is not based on their proximity, but on orthogonal projections
(dashed lines) of the objects on the descriptor-axes or their extensions. (b) Correlation biplot.
Descriptors (matrix UΛ1/2; arrows) with a covariance angle of 76°35'. Objects (matrix G; dots).
Projecting the objects orthogonally on a descriptor (dashed lines) reconstructs the values of the
objects along that descriptors, to within a multiplicative constant. 
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If a descriptor j was equally associated with each of the p principal axes, all

elements of row j (which is of length sj) of matrix UΛΛΛΛ1/2 would be equal, their values

being . The length of the descriptor-axis would be = sj in

multidimensional space. The length of the projection of this descriptor-axis in a

reduced space with d dimensions would therefore be . The latter expression

defines, in the d-dimensional space, a measure of the equilibrium contribution of a

descriptor to the various axes of the whole multidimensional space. 

This measure may be compared to the actual length of a descriptor in reduced
space, to help judge whether the contribution of this descriptor to the reduced space is
larger or smaller than it would be under the hypothesis of an equal contribution to all
principal axes. For the above numerical example, the lengths of the rows of matrix
UΛΛΛΛ1/2, in two-dimensional space, are:

length of the first descriptor =  = 2.8636

length of the second descriptor =  = 2.4083

Because this simple numerical example has two dimensions only, these lengths are
equal to their equilibrium contributions in the two-dimensional space. This is easily
verified, using the variances of the descriptors, which are already known (Sub-
section 9.1.1):

equilibrium projection of first descriptor = 

equilibrium projection of second descriptor = 

In general, because ecological data sets are multidimensional, the lengths of
descriptors in the reduced space are not equal to their equilibrium contributions.

The angular interpretation of the product of two descriptor-axes follows directly
when the descriptors are scaled to unit lengths; this is done by dividing the elements of
each row j by its length sj. In practice, this is achieved by using the diagonal matrix
D(s) of the standard deviations (Section 4.2), from which matrix D(s)–1UΛΛΛΛ1/2 is
calculated. The relationship among descriptors is:

[D(s)–1UΛΛΛΛ1/2] [D(s)–1UΛΛΛΛ1/2]' = D(s)–1 UΛΛΛΛU' D(s)–1 = D(s)–1 S D(s)–1 = R (9.10)

S

The correlation matrix R is connected to the dispersion matrix S by the diagonal
matrix of standard deviations D(s) (eq. 4.10).

The cosine of the angle αjl between two descriptors yj and yl, in multidimensional
space, is therefore related to their correlation (rjl); it can actually be shown that
cos (αjl) = rjl. This angle is the same as that of the covariance, because standardization
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of the rows to unit lengths has only changed the lengths of the descriptor-axes and not
their positions in multidimensional space. For the numerical example, the correlation
between the two descriptors is equal to . The angle
corresponding to this correlation is (arc cos 0.232) =  76°35', which is indeed the same
as the angle of the covariance in Fig. 9.3b.

In the same way, the angle between a descriptor j and a principal axis k, in
multidimensional space, is the arc cosine of the correlation between descriptor j and
principal component k. This correlation is the element jk of the new matrix of
eigenvectors:

(9.11)

In other words, the correlation is calculated by weighting the element of the
eigenvector by the ratio of the standard deviation of the principal component to that of
the descriptor. For the numerical example, these correlations and corresponding angles
are computed using matrix UΛΛΛΛ1/2 (calculated above) and the standard deviations of the
two descriptors (s1 = 2.8636, s2 = 2.4083):

The values of angles in Fig. 9.3b are thus: β = 20°26', γ = 56°09', δ = 33°51'. These
correlations may be used to study the contributions of the descriptors to the various
components, the scale factors of the descriptors being removed. The highest
correlations (absolute values), in the correlation matrix between descriptors and
components, identify the descriptors that contribute most to each eigenvector. The
significance of the correlations between descriptors and components cannot be tested
using a standard statistical test for Pearson correlation coefficients, however, because
the principal components are linear combinations of the descriptors themselves.

When the descriptor-axes of UΛΛΛΛ1/2 are standardized to unit lengths, as in eq. 9.10,
drawing their projections in the principal space is not recommended. This is because
the rescaled eigenvectors are not necessarily orthogonal and may be of any lengths:

[D (s)–1 UΛΛΛΛ1 2]' [D (s)–1 UΛΛΛΛ1 2] ≠ I (9.12)

The representations of these principal axes are therefore not necessarily at right angles.

The projections of the descriptor-axes of matrix UΛΛΛΛ1/2 may be examined, in
particular, with respect to the following points:

• The projection coordinates of a descriptor-axis specify the position of the apex of
this descriptor-axis in the reduced space. It is recommended to use arrows to represent
projections of descriptor-axes. Some authors call them point-descriptors or point-

1.6 8.2 5.8×⁄ 0.232=

u jk λk s j⁄

u jk λk s j⁄[ ] 0.9370 0.3492–

0.5571   0.8305
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variables and represent them by points in the reduced space. This representation is
ambiguous and misleading. It is acceptable only if the nature of the point-descriptors is
respected; they actually are apices of descriptor-axes, so that the relationships among
them are defined in terms of angles, not proximities (correlations; Figs. 9.3 and 9.6).

• The projection  of a descriptor-axis j on a principal axis k shows its
covariance with the principal axis and, consequently, its positive or negative
contribution to the position of the objects along the axis. It follows that a principal axis
may often be qualified by the names of the descriptors that are mostly contributing,
and in a preferential way, to its formation. Thus, in Fig. 9.6, principal axis I is formed
mainly by descriptors 6 to 10 and axis II by descriptors 1 to 4.

• Note the descriptors whose projected lengths reach or exceed the values of their
respective equilibrium contributions. Descriptor-axes that are clearly shorter than this
value contribute little to the formation of the reduced space under study and, therefore,
contribute little to the structure that may be found in the projection of objects in that
reduced space.

• The correlation among descriptors is given by the angle between descriptor-axes,
not by the proximity between the apices of axes. In the reduced space, groups of
descriptor-axes that form small angles with one another, or angles close to 180°
(cos 180° = –1, i.e. perfect negative correlation), can be identified. One must
remember, however, that projections of correlation angles in a reduced space do not
render the complete correlations among variables. Thus, it may be better to cluster
descriptors, in the reduced-space plot, with respect to the multidimensional space,
by carrying out a cluster analysis on the original dispersion matrix using the clustering
methods of Chapter 8. 

• Objects can be projected at right angles onto the descriptor-axes to approximate their
values along the descriptors, as shown in Subsection 4 (correlation biplot) and
Fig. 9.3b. The distances among objects in such plots are not approximations of their
Euclidean distances, however.

3. Projection of descriptors in reduced space (matrix U) — The projections of the
descriptor-axes of matrix U differ from those of matrix UΛΛΛΛ1/2. Indeed, when the
eigenvectors have not been scaled to lengths equal to their standard deviations , the
descriptor-axes are of unit lengths and at right angles in multidimensional space
(Fig. 9.3a). The angles between descriptor-axes and principal axes are projections of
the rotation angles. For the numerical example, the angles between descriptors and
principal axes are computed as above, using matrix U:

The values of angles in the inset of Fig. 9.3a are thus: β = 26°34', γ = 63°26',
δ = 26°34'. Contrary to the previous case, it is not possible to represent here the

u jk λk
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correlations among descriptors, since descriptors are always orthogonal (i.e. at right
angles) in this representation, where the eigenvectors are scaled to 1.

Projection ujk of a descriptor-axis j on a principal axis k is proportional to the
covariance of that descriptor with the principal axis. The proportionality factor is
different for each principal axis, so that it is not possible to compare the projection of a
descriptor on one axis to its projection on another axis. It is correct, however, to
compare the projections of different descriptor-axes on the same principal axis. It can
be shown that an isogonal projection (with respectively equal angles) of p orthogonal
axes of unit lengths gives a length  to each axis in d-dimensional space. In
Fig. 9.4, the equilibrium projection of each of the three orthogonal unit axes, in two-
dimensional space, has a length of . This formula is almost identical to the
equilibrium contribution of descriptors for eigenvectors scaled to length 
(i.e. , see above), with the difference that sj is replaced here by 1 because the
length of each descriptor-axis is 1. This is explained by the fact that an isogonal
projection results in an equal association of all descriptor-axes with the principal axes. 

An equilibrium circle of descriptors, with radius , may be drawn as
reference to assess the contribution of each descriptor to the formation of the reduced
space. Such a circle is drawn in the inset of Fig. 9.3a; its radius is  = 1 because,
in the numerical example, both the reduced space and the total space are two-
dimensional. If one was only interested in the equilibrium contribution of descriptors
to the first principal axis, the one-dimensional “circle” would then have a “radius” of

 = 0.7071. For the example, the projection of the first descriptor on the first
principal axis is equal to 0.8944 (examine matrix U and Fig. 9.3a), so that this
descriptor significantly contributes to the formation of axis I. This is not the case for
the second descriptor, whose projection on the first axis is only 0.4472. 
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Figure 9.4 Equilibrium projection, in a plane, of three orthogonal vectors with unit lengths.
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The main properties of a principal component analysis of centred descriptors are
summarized in Table 9.2.

4 — Biplots

The previous two Subsections have shown that, in principal component analysis, both
the descriptor-axes and object-vectors can be plotted in the reduced space. This led
Jolicoeur & Mosimann (1960), and subsequently Gabriel (1971, 1982), to plot these
projections together in the same diagram, called biplot.

Two types of biplots may be used to represent PCA results (Gabriel, 1982; ter
Braak, 1994): distance biplots are made of the juxtaposition of matrices U

(eigenvectors scaled to lengths 1) and F (eq. 9.4, where each principal component k is
scaled to variance = ), whereas correlation biplots use matrix UΛΛΛΛ1/2 for descriptors
(each eigenvector k is scaled to length ) and a matrix G = FΛΛΛΛ–1/2 for objects
whose columns have unit variances. Matrices F and U, or G and UΛΛΛΛ1/2, can be used
together in biplots because the products of the eigenvectors with the object score
matrices reconstruct the original (centred) matrix Y perfectly: FU' = Y and
G(UΛΛΛΛ1/2)' = Y. Actually, the eigenvectors and object score vectors may be multiplied
by any constant without changing the interpretation of a biplot.

• Distance biplot (Fig. 9.3a) — The main features of a distance biplot are the
following: (1) Distances among objects in the biplot are approximations of their

Table 9.2 Principal component analysis. Main properties for centred descriptors. 

Centred descriptor j Scaling of eigenvectors

1

Total length sj 1

Angles in reduced projections of covariances 90°, i.e. rigid rotation of
space (correlations) the system of axes

Length of equilibrium circle with radius 
contribution

Projection on principal ujk
axis k i.e. covariance with i.e. proportional to the

 component h  covariance with h

Correlation with principal 
component k

λk

s j d p⁄ d p⁄

u jk λk

u jk λk s j⁄ u jk λk s j⁄

Scalings
in PCA

λk
λk

Distance
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Euclidean distances in multidimensional space. (2) Projecting an object at right angle
on a descriptor approximates the position of the object along that descriptor. (3) Since
descriptors have lengths 1 in the full-dimensional space (eq. 9.7), the length of the
projection of a descriptor in reduced space indicates how much it contributes to the
formation of that space. (4) The angles among descriptor vectors are meaningless.

• Correlation biplot (Fig. 9.3b) — The main features of a correlation biplot are the
following: (1) Distances among objects in the biplot are not approximations of their
Euclidean distances in multidimensional space. (2) Projecting an object at right angle
on a descriptor approximates the position of the object along that descriptor. (3) Since
descriptors have lengths sj in full-dimensional space (eq. 9.9), the length of the
projection of a descriptor in reduced space is an approximation of its standard
deviation. (4) The angles between descriptors in the biplot reflect their correlations.
When the relationships among objects are important for interpretation, this type of
biplot is inadequate; use a distance biplot in this case.

For the numerical example, the positions of the objects in the correlation biplot are
computed as follows:

G = FΛΛΛΛ–1/2 = 

In this particular example, the relationships between objects and descriptors are fully
represented in two-dimensional space. Figure 9.3b shows that projecting the objects at
right angles on a descriptor reconstructs the values of the objects along that
descriptors, to within a multiplicative constant. Let us stress again that the distances
among objects in a correlation biplot are not approximations of their Euclidean
distances.

The object or descriptor coordinates must often be multiplied by a constant to
produce a clear visual display. In Fig. 9.5 for instance, the scatter of objects would be
too large if it was plotted in the same system of coordinates as the descriptors, or the
lengths of the descriptor arrows would be too short for visual appraisal. Ecologists
may be tempted to interpret the relationships between objects and descriptors in terms
of their proximity in the reduced space, whereas the correct interpretation implies the
projection of objects on the descriptor-axes (centred with respect to the scatter of
points) or on their extensions (Fig. 9.3a); in Fig. 9.2a for example, it would not come
to mind to interpret the relationship between the objects and descriptor y1 in terms of
the distance between the object-points and the apex (head of the arrow) of axis y1.
Projections of objects onto an axis specify the coordinates of the objects with respect
to the descriptor-axis.

Correlation
biplot
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Ecological application  9.1a

Legendre et al. (1984a) studied gastropod assemblages at two neighbouring sites, one in
mesotrophic Richelieu River and the other in its hypereutrophic tributary (Rivière du Sud), near
Montréal (Québec). The purpose of the study was to test the hypothesis that physical and
chemical conditions influenced the benthic gastropod assemblages. Principal component
analysis was used to describe the succession of species within each community, from May
through October 1979. This example is not a typical principal component analysis since the
observations form a time series; the analysis of multivariate time series is discussed in more
detail in Section 12.6. Another, more straightforward approach to the analysis of such data
would be canonical correspondence analysis (Section 11.2), which only became available in
1986. The present application illustrates the use of biplots for interpreting ecological data.

Figure 9.5 Principal component analysis of a time series of 10 observations, from Rivière du Sud (nos. 1
through 10: 30 May to 10 October 1979). The distance biplot shows the relationships between
the biological and environmental descriptors, on the one hand, and the time series of responses
of the site, on the other. The environmental descriptors are: conductivity (Cond.), transparency
(Transp.), alkalinity (Alcal.), dissolved oxygen (O2), total phosphorus (Total P), inorganic
nitrogen (Inorg. N) and chlorophyll a (Chl. a). Species of benthic gastropods are: Amnicola
limosa, Gyraulus parvus, Physa gyrina, Valvata tricarinata, and Valvata sincera. The species
and environmental descriptor scores were multiplied by 5 before plotting. Modified from
Legendre et al. (1984a).
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Principal component analysis of a data set containing both environmental descriptors and
species abundances is a delicate enterprise (Dagnelie, 1965). The problem in this study was not
the presence of double-zeros in the data (the comparison of species abundances involved only
4% of double zeros), but the fact that the analysis should obey the following conditions:
(1) environmental descriptors must be scaled by standardization since they are not
dimensionally homogenous; (2) species abundances should not be scaled because scaling them
would give to rare species the same weights as those of dominant species; (3) overall, the
analysis must be balanced, i.e. the two types of descriptors must have equal weights. These
conditions were met as follows: (1) after normalization, the values of the seven environmental
descriptors were standardized (eq. 1.12); the sum of their standard deviations is thus 7. (2) After
normalization [ ], each species abundance value was divided by the sum of
the standard deviations of all species and multiplied by 7, in order to make the sum of the
standard deviations of species equal to 7. As a result, the total weights of the two groups of
descriptors in the analysis were equal. 

Results for the hypereutrophic environment (Rivière du Sud) are shown in Fig. 9.5. The data
set included five descriptors of species abundances and seven environmental variables. The first
two principal components accounted for more than 60% of the variance. The chronological
sequence of observations is represented by a line. The biplot allowed the authors to characterize
each sampling time, by reference to the succession of species and to the changes in
environmental descriptors. Conclusions were drawn about the effects of nutrients on the
succession of gastropods. The study also compared the two sampled environments using
canonical correlation analysis (Section 11.4).

5 — Principal components of a correlation matrix

Even though principal component analysis is defined for a dispersion matrix S

(Section 4.5), it can also be carried out on a correlation matrix R since correlations are
covariances of standardized descriptors (Section 4.2). In an R matrix, all diagonal
elements are equal to one. It follows that the sum of eigenvalues, which corresponds to
the total variance of the dispersion matrix, is equal to the order of R, which is given by
the number of descriptors p. Before computing the principal components, it is a sound
practice to check that R ≠ I (eq. 4.14).

Principal components extracted from correlation matrices are not the same as those
computed from dispersion matrices. [Beware: some computer packages only allow the
computation of principal components from correlation matrices; this may be
inappropriate in many studies.] Consider the basic equation for the eigenvalues and
eigenvectors, (S – λk I) uk = 0. The sum of the eigenvalues of S is equal to the sum of
variances s2, whereas the sum of eigenvalues of R is equal to p, so that the eigenvalues
of the two matrices, and therefore also their eigenvectors, are necessarily different.
This is due to the fact that distances between objects are not the same in the two cases. 

In the case of correlations, the descriptors are standardized. It follows that the
distances among objects are independent of measurement units, whereas those in the
space of the original descriptors vary according to measurement scales. When the
descriptors are all of the same kind and order of magnitude, and have the same units, it
is clear that the S matrix must be used. In that case, the eigenvectors, on the one hand,

y'i yi 1+( )log=
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and the correlation coefficients between descriptors and components, on the other
hand, provide complementary information. The former give the loadings of descriptors
and the latter quantify their relative importance. When the descriptors are of different
natures, it may be necessary to use matrix R instead of S. In Section 11.5, differences
of the same type will be found between discriminant functions and identification
functions.

Ecologists who wish to study the relationships among objects in a reduced space of
principal components may base their decision of conducting the analysis on S or R on
the answer to the following question: 

• If one wanted to cluster the objects in the reduced space, should the clustering be
done with respect to the original descriptors (or any transformation of these
descriptors; Section 1.3), thus preserving their differences in magnitude? Or, should all
descriptors contribute equally to the clustering of objects, independently of the
variance exhibited by each one? In the second instance, one should proceed from the
correlation matrix. An alternative in this case is to transform the descriptors by
“ranging”, using eq. 1.10 for relative-scale descriptors and eq. 1.11 for interval-scale
descriptors, and carry out the analysis on matrix S.

Another way to look at the same problem was suggested by Gower (1966): 

• Consider that the Euclidean distance (eq. 7.34) is the distance preserved among
objects through principal component analysis. Is it with the raw data (covariances) or
with the standardized data (correlations) that the spatial configuration of the objects, in
terms of Euclidean distances, is the most interesting for interpretation? In the first case,
choose matrix S as the basis for PCA; in the second case, use matrix R.

The principal components of a correlation matrix are computed from matrix U of
the eigenvectors of R and the matrix of standardized observations:

(9.13)

Principal component analysis is still only a rotation of the system of axes
(Subsection 9.1.2). However, since the descriptors are now standardized, the objects
are not positioned in the same way as if the descriptors had simply been centred
(i.e. principal components computed from matrix S, above).

As far as the representation of descriptors in the reduced space computed from
matrix R is concerned, the conclusions of Subsection 9.1.3, which concern matrix S,
can be used here, after replacing covariance by correlation, sjl by rjl, and dispersion
matrix S by correlation matrix R.

The variances, and therefore also the standard deviations, of the standardized
descriptors are equal to one, which leads to some special properties for the UΛΛΛΛ1/2

matrix. First, D(s) = I, so that UΛΛΛΛ1/2 = D(s)–1UΛΛΛΛ1/2, i.e. the coefficients  are
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the correlation coefficients between descriptors j and components k. In addition, the
equilibrium contribution corresponding to each descriptor, in the reduced space of
UΛΛΛΛ1/2, is (since si = 1). It is therefore possible to judge whether the
contribution of each descriptor to the reduced space is greater or smaller than expected
under the hypothesis of an equal contribution to all principal axes, by comparing the
lengths of their projections to an equilibrium circle with radius  (Fig. 9.6).

The main properties for standardized descriptors are summarized in Table 9.3,
which parallels Table 9.2 for centred descriptors. 

s j d p⁄ d p⁄=

d p⁄

Figure 9.6 Fifteen descriptors plotted in the plane determined by the first two principal axes. The
coordinates of each descriptor are the first two elements of the corresponding row of matrix
UΛΛΛΛ1/2 (i.e. the eigenvectors of R scaled to ). The circle of equilibrium descriptor
contribution is drawn at  = 0.365. The inset figure shows the same descriptor-axes using
only the apices of the vectors. This representation is often encountered in the ecological
literature; it must be avoided because of possible confusion with point-objects.
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6 — The meaningful components

The successive principal components correspond to progressively smaller fractions of
the total variance. One problem is therefore to determine how many components are
meaningful in ecological terms or, in other words, what should be the number of
dimension of the reduced space. The best approach may be to study the
representativeness of the projections in reduced space for two, three, or more
dimensions, using Shepard diagrams (Fig. 9.1). However, principal component
analysis being a form of variance partitioning, researchers may wish to test the
significance of the variance associated with the successive principal axes. 

There are a number of classical statistical approaches to this question, such as
Bartlett’s (1950) test of sphericity. These approaches have been reviewed by Burt
(1952) and Jackson (1993). The problem is that these formal tests require normality of
all descriptors, a condition which is rarely met by ecological data. 

There is an empirical rule suggesting that one should only interpret a principal
components if the corresponding eigenvalue λ is larger than the mean of the λ’s. In the
particular case of standardized data, where S is a correlation matrix, the mean of the
λ’s is 1 so that, according to the rule, only the components whose λ’s are larger than 1
should be interpreted. This is the so-called Kaiser-Guttman criterion. Ibanez (1973)
has provided a theoretical framework for this empirical rule. He showed that, if a
variable made of randomly selected numbers is introduced among the descriptors, it is

Table 9.3 Principal component analysis. Main properties for standardized descriptors.

Standardized descriptor j Scaling of eigenvectors

1

Total length 1 1

Angles in reduced projections of correlations 90°, i.e. rigid rotation of
space the system of axes

Radius of equilibrium
contribution circle

Projection on principal ujk
axis k i.e. correlation with i.e. proportional to the

 component h  correlation with h

Correlation with principal 
component k

λk

d p⁄ d p⁄

u jk λk

u jk λk u jk λk

Kaiser-
Guttman
criterion
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impossible to interpret the eigenvectors that follow the one on which this random-
number variable has the highest loading. One can show that this random-number
variable, which has covariances near zero with all the other descriptors, introduces in
the analysis an eigenvalue equal to 1 if the descriptors have been standardized. For
non-standardized descriptors, this eigenvalue is equal to the mean of the λ’s if the
variance of the random-number variable is made equal to the mean variance of the
other descriptors. 

Frontier (1976) proposed to compare the list of decreasing eigenvalues to the
decreasing values of the broken stick model (Subsection 6.5.2). This comparison is
based on the following idea. Consider the variance shared among the principal axes to
be a resource embedded in a stick of unit length. If principal component analysis had
divided the variance at random among the principal axes, the fractions of total
variation explained by the various axes would be about the same as the relative lengths
of the pieces obtained by breaking the unit stick at random into as many pieces as there
are axes. If a unit stick is broken at random into p = 2, 3, … pieces, the expected values
(E) of the relative lengths of the successively smaller pieces (j) are given by eq. 6.49:

The expected values are equal to the mean lengths that would be obtained by breaking
the stick at random a large number of times and calculating the mean length of the
longest pieces, the second longest pieces, etc. A stick of unit length may be broken at
random into p pieces by placing on the stick (p – 1) random break points selected
using a uniform [0, 1] random number generator. Frontier (1976) has computed the
percentage of variance associated with successive eigenvalues, under the broken stick
null model, for 2 to 20 eigenvalues (Table D, end of this book).

Coming back to the eigenvalues, it would be meaningless to interpret the principal
axes that explain a fraction of the variance as small as or smaller than that predicted by
the broken stick null model. The test may be carried out in two ways. One may
compare individual eigenvalues to individual predictions of the broken stick model
(Table D) and select for interpretation only the eigenvalues that are larger than the
values predicted by the model. Or, to decide whether eigenvalue λk should be
interpreted, one may compare the sum of eigenvalues, from 1 to k, to the sum of the
values from 1 to k predicted by the model. This test usually recognizes the first two or
three principal components as meaningful; this corresponds to the experience of
ecologists.

After an empirical study using a variety of matrix types, using simulated and real
ecological data, Jackson (1993) concluded that two methods consistently pointed to
the correct number of ecologically meaningful components in data sets: the broken-
stick model and a bootstrapped eigenvalue-eigenvector method proposed in his paper.

Broken
stick

E piece j( ) 1
p
--- 1

x
---

x j=

p

∑=
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Chapter 10 will discuss how to use explanatory variables to ecologically interpret
the first few principal components that are considered to be meaningful according to
one of the criteria mentioned in the present Subsection.

7 — Misuses of principal components

Given the power of principal component analysis, ecologists have sometimes used it in
ways that exceed the limits of the model. Some of these limits may be transgressed
without much consequences, while others are more critical. The most common errors
are: the use of descriptors for which a measure of covariance makes no sense and the
interpretation of relationships between descriptors, in reduced space, based on the
relative positions of the apices of axes instead of the angles between them.

Principal component analysis was originally defined for data with multinormal
distributions (Section 4.4), so that its optimal use (Cassie & Michael, 1968) calls for
normalization of the data (Subsection 1.5.6). Deviations from normality do not
necessarily bias the analysis, however (Ibanez, 1971). It is only important to make sure
that the descriptors’ distributions are reasonably unskewed. Typically, in analyses
conducted with strongly skewed distributions, the first few principal components only
separate a few objects with extreme values from the remaining objects, instead of
displaying the main axes of variation of all objects in the study.

Principal components are computed from the eigenvectors of a dispersion matrix.
This means that the method is to be used on a matrix of covariances (or possibly
correlations) with the following properties: (a) matrix S (or R) has been computed
among descriptors (b) that are quantitative and (c) for which valid estimates of the
covariances (or correlations) may be obtained. These conditions are violated in the
following cases:

1) Technically, a dispersion matrix cannot be estimated using a number of
observations n smaller than or equal to the number of descriptors p. When n ≤ p, since
only (n – 1) independent comparisons can be made (because there are n – 1 degrees of
freedom), the resulting matrix of order p has (n – 1) independent rows or columns
only. In such a case, the matrix has [p – (n – 1)] null eigenvalues; indeed, in order to
position n objects while respecting their distances, one only requires n – 1 dimensions.
To get a statistically valid estimate of the dispersion matrix, the number of objects n
must be larger than p. However, the first few eigenvectors, which are the only ones
used in most cases, are little affected when the matrix is not of full rank, so that this
problem should not lead to incorrect interpretations of ordinations in reduced space.

2) Some authors have transposed the original data matrix and computed
correlations among the objects (i.e. Q mode) instead of among the descriptors
(R mode). Their aim was to position the descriptors in the reduced space of the objects.
There are several reasons why this operation is incorrect, the least being its uselessness
since principal component analysis provides information about the relationships
among both objects and descriptors. In addition, the covariances or correlations thus
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estimated do not make sense, for the reasons given in Subsection 7.5.1. Among these
arguments, the following one is of utmost importance in PCA: calculation of
correlations implies a standardization of the vectors; the two steps of standardization
(eq. 1.12) only makes sense for dimensionally homogeneous data. Standardizing a
vector of objects across non-homogeneous descriptors violates this condition; a simple
and legitimate change of scale in one of the descriptors (for example moving the
position of the decimal point) could completely change the results of the analysis. 

A different problem arises from the fact that, in the literature, the expression
“components in Q mode” may sometimes designate a rightful analysis conducted on
an R matrix. This expression comes from the fact that one can use principal component
analysis primarily as a method for positioning objects in reduced space. The meanings
of “Q mode” and “R mode” are variable in the literature; their meanings in numerical
ecology are defined in Section 7.1.

Rao (1964), Gower (1966), and Orlóci (1967a) have shown that, as a
computational technique, principal components can be found by computing the
eigenvalues and eigenvectors of a Q matrix. The steps are the following: 

• Compute matrix Cnp =  of centred variables scaled to ; this
matrix is such that C'C = Spp, which is the usual variance-covariance matrix. 

• Compute the scalar cross-product matrix Qnn = CC' instead of Spp = C'C.

• Determine the non-zero eigenvalues of Q and their associated eigenvectors.

• Scale each eigenvector k to the corresponding value . 

• The eigenvalues of matrix Q are the same as those of matrix S and the scaled
eigenvectors are the principal components of S (i.e. matrix F). This computational
technique is very different from the approach criticised in the previous paragraph.

3) Covariances and correlations are defined for quantitative descriptors only
(Section 7.5). This implies, in particular, that one must not use multistate qualitative
descriptors in analyses based upon covariance matrices; means and variances
computed from non-ordered states are meaningless.

Principal component analysis is very robust, however, to variations in the precision
of data. Variables may be recoded into a few classes without noticeable change to the
results (Frontier & Ibanez, 1974; Dévaux & Millerioux, 1976a). The correlation
coefficients calculated using semiquantitative data are equivalent to Spearman’s rank
correlation coefficients (eq. 5.3). In a discussion of principal component analysis
computed using semiquantitative data, Lebart et al. (1979) give, for various numbers
of objects and descriptors, values above which the λ’s of the first two principal
components may be taken as significant. Gower (1966) has also shown that, with
binary descriptors, principal component analysis positions the objects, in the

y y–[ ] n 1–⁄ n 1–

λk

Precision
of data

Spearman
correlation
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multidimensional space, at distances that are the square roots of complements of
simple matching coefficients S1 (eq. 7.1). 

4) When calculated over data sets with many double-zeros, coefficients such as the
covariance or correlation lead to ordinations that produce inadequate estimates of the
distances among sampling sites. The problem arises from the fact that the principal-
component rotation preserves the Euclidean distance among objects (Fig. 9.2d;
Table 9.1). The double-zero problem has been discussed in the context of the measures
of association that are appropriate for species abundances (Sections 7.3 to 7.5). With
this type of data, principal component analysis should only be used when the sampling
sites cover very short gradients. In such a case, the species present at the various sites
should be mostly the same, the sites differing by the abundances of the various
species. Correspondence analysis (Section 9.4), or else metric or nonmetric scaling
(Sections 9.2 and 9.3), should be used when studying longer gradients.

This last remark explains to a large extent why, in the ecological literature,
principal component analysis has often not provided interesting results, for example in
studies of species associations (e.g. Margalef & Gonzalez Bernaldez, 1969; Ibanez,
1972; Reyssac & Roux, 1972). This problem had also been noted by Whittaker &
Gauch (1973).

Attempts to interpret the proximities between the apices of species-axes in the
reduced space, instead of considering the angles separating these descriptor-axes
(e.g. Fig. 9.6), may also have clouded the relationships among species in principal
component analysis results. 

• On the one hand, examination of the angles allows one to identify cases of negative
association among species; see for instance the opposition between Physa gyrina and
Valvata sincera in Fig. 9.5. The apices of negatively associated species vectors are not
close to one another in principal space. 

• On the other hand, in studies involving many species, the first two principal axes
usually do not account for a large fraction of the variability. The species that require a
higher-dimensional space are poorly represented in two dimensions. These species
usually form an unstructured swarm of points around the origin of the system of axes,
from which little can be concluded. This problem is common to all studies of species
associations using ordination methods. 

Fortunately, principal component analysis is useful for studying other questions of
ecological interest, as will be seen in the following applications. 

Table 9.4 summarizes, with reference to the text, the various questions that may be
addressed in the course of a principal component analysis.
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Table 9.4 Questions that can be addressed in the course of a principal component analysis and the answers
found in Section 9.1.

Before starting a principal component analysis Pages

1) Are the descriptors appropriate?

⇒ Quantitative descriptors; multinormality; not too many zeros.
In principle, there should be more objects than descriptors 411-413

2) Are the descriptors dimensionally homogeneous?

⇒ If YES: conduct the analysis on the dispersion matrix 403, 407

⇒ If NO: conduct the analysis on the correlation matrix 406-409

3) Purpose of the ordination in reduced space:

⇒ To preserve and display the relative positions of the objects: 
scale the eigenvectors to unit lengths 394, 396

⇒ Distance biplots: scale eigenvectors to unit lengths; compute F = YU 403

⇒ To display the correlations among descriptors:
scale the eigenvectors to 397-400

⇒ Correlation biplots: scale eigenvectors to ; compute G = FΛΛΛΛ1/2

(beware: Euclidean distances among objects are not preserved) 403-404

While examining the results of a principal component analysis

1) How informative is a representation of the objects 
in an m-dimensional reduced space? 

⇒ Compute eq. 9.5 395

2) Are the distances among objects well preserved in the
reduced space?

⇒ Compare Euclidean distances using a Shepard diagram 389-390

3) Which are the significant eigenvalues?

⇒ Test: is  λk larger than the mean of the λ’s? 409-410

⇒ Test: is the percentage of the variance corresponding to λk
larger than the corresponding value in the broken stick model? 410

4) What are the descriptors that contribute the most to the 
formation of the reduced space?

⇒ Represent descriptors by arrows 398, 400-401, 404

⇒ Compute the equilibrium contribution of descriptors and,
when appropriate, draw the circle 399, 401-402, 408

⇒ Compute correlations between descriptors and principal axes 400, 403, 407-409

5) How to represent the objects in the reduced space?

⇒ 394, 403

λ
λ

F y y–[ ] U=
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8 — Ecological applications

Ecological application  9.1b

From 1953 to 1960, 100 pitfall traps, located in a sand dune area north of the Hague (The
Netherlands), were sampled weekly during 365 weeks. In these 36 500 relevés, approximately
425 animal species were identified, about 90% of them being arthropods. Aart (1973) studied the
wolf spiders (Lycosidea and Pisauridae: 45 030 specimens) to assess how lycosids shared the
multidimensional space of resources (see Chapter 1 for the concept of niche). In the analysis
reported here, values from the different weeks were added up, which resulted in a data matrix of
100 pitfall traps × 12 species. Principal component analysis was applied to the data matrix,
which contained about 30% zero values; two of the 14 species were eliminated because they had
been found only twice and once, respectively.

Figure 9.7 shows the contributions of the different descriptors (species) to the formation of
principal axes I and II as well as the projections, in the plane of these two axes, of the correlation

Figure 9.7 Positions of species-axes in the plane of the first two principal axes. Large circle: unit radius
(maximum length for a descriptor, in the case of a principal component analysis conducted on an
R matrix). Small circle: equilibrium circle of descriptors, with radius  = 0.41. Modified
from Aart (1973).
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angles between descriptors. The equilibrium circle was added to the original figure of Aart. Its
radius is  = 0.41, since the analysis was conducted on the correlation matrix (each
descriptor thus has unit variance); the eigenvectors were scaled to  (matrix UΛΛΛΛ1/2). A
circular gradient, from bare sand to woods, ordered the species as a function of their habitats
(see also Ecological application 9.5). Only the first two principal components were considered to
be meaningful.

The 100 traps were also positioned in the space of the first two principal components. The
result (Fig. 9.8) clearly displays a circular gradient of habitats that follows vegetation conditions
(numbered 1 to 15 along the circle margin). This gradient goes from bare sand with lichens and
Corynephorus canescens, via the same vegetation plus Ammophilia arenaria, to open areas with
scattered Salix repens, Rubus and short grass vegetation (Carex arenaria, Galium and Onosis).
Next are dune meadows dominated by Calamagrostis epigejos, leading to a park-like landscape
with bushes of Betula and Crataegus, and ending with woods of Betula and Populus tremula.

The 15 divisions of the circular gradient in Fig. 9.8 may be taken to represent as many
biotopes. Examining the average numbers of catches for the different species in each of the
biotopes confirmed the preference of each lycosid species for a specific type of vegetation.
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Figure 9.8 Positions of the 100 trap-objects plotted  in the reduced space of the first two principal
components. Modified from Aart (1973).
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Ecological application  9.1c

A study of soil microfungi living in association with the aspen Populus tremuloides Michx.
provides another type of utilization of principal component analysis. This study by Morrall
(1974) covered 26 stations with 6 sites each, scattered throughout Saskatchewan (Canada). It
evidenced relationships between the distributions of some species and soil types.

Among the 205 species or taxonomic entities that were identified, 51 were included in the
ordination study. The others were not, considering criteria aimed at eliminating rare taxa which
could have been either ephemeral constituents of the soil microflora or even contaminants of the
laboratory cultures. Observations were transformed into presence-absence data.

Following principal component analysis, the 26 sampling sites were plotted in the reduced
space of the first two principal components, onto which information about the nature of the soils
was superimposed (Fig. 9.9a). Soils of Saskatchewan may be classified into 5 types, i.e. (G) the
grey wooded soils of the northern boreal forest, followed southward by the dark grey (DG)
transition soils and the black soils (BL). Further south are dark brown soils (DB), which give
way to the brown soils (B) of the grassland. Since the principal components were calculated on
presence-absence data, the distribution of sites in the reduced space is expected to correspond to
that of the species. The author tested this for the most abundant species in the study, by plotting,
in the reduced space, distributions of the sites where they were present; two examples are given
in Figs. 9.9b and c. In this way, the author could compare these distributions to that of soil types.

Figure 9.9 Principal component analysis computed from presence-absence of 51 soil microfungi.
(a) Pedological information drawn on the ordination of the 26 sampling sites, plotted in the
reduced space of the first two principal components. From north to south, soil types are: G =
grey, DG = dark grey, BL = black, DB = dark brown, B = brown. (b) and (c) Distributions of the
sites where two species of the microflora were present. Modified from Morrall (1974).
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9 — Algorithms

A number of standard subprograms are available for computing the eigenvalues and
eigenvectors of a real, symmetric matrix, such as covariance matrix S. The most
widely used method is called Householder reduction; it is very efficient for problems
in which all eigenvalues and eigenvectors must be computed. Subprograms
implementing it can be found in standard subroutine packages available at computing
centres, or in books such as Press et al. (1986 and later editions; these programs are
also available on a diskette). 

Clint & Jennings (1970) published a pioneering piece of work describing how to
compute a subset only of the eigenvalues and corresponding eigenvectors of a real
symmetric matrix, using an iterative method. Hill (1973b) used this idea to develop a
“reciprocal averaging” algorithm for correspondence analysis; Hill’s work will be
further discussed in Section 9.4. Building on these bases, ter Braak (1987c) proposed a
“two-way weighted summation algorithm” for principal component analysis. This
algorithm is described in detail here for three reasons: (1) it is closely linked to the
basic equations of the PCA method, so that it may help readers understand them; (2) it
is very easy to program; (3) using it, one can compute the first few components only,
when these are the ones of interest. The algorithm is summarized in Table 9.5. The
next sections will also refer to it.

The example worked out in Table 9.6 should help understand how the algorithm
manages to compute the principal components, the eigenvectors, and the eigenvalues,
using the numerical example of Section 9.1. The procedure starts with the matrix of
centred data , found in the upper left-hand corner of Table 9.6 (boxed values).

To estimate principal component I, arbitrary scores are first assigned to the rows of
the centred data matrix (Table 9.6, column R0); values [fi1] = [1 2 3 4 5]' are used here.
Any other initial choice would lead to the same estimate for the first principal
component [fi1], although the number of iterations necessary to reach it may differ. The
only choice to avoid is to make all initial fi1 values equal. From these, column scores
are found by multiplying the transpose of the data matrix by the row scores (Table 9.6,
row C1):

[column scores1j] = [fi1] (9.14)

At the end of the iteration process, the column scores will provide estimates of the first
column of matrix U. The rationale for this operation comes from the basic equation of
eigenanalysis (eq. 2.27) as applied to matrix S:

S U = U ΛΛΛΛ

Replacing S by its value in the definition of the covariance matrix (eq. 4.6),
S = (n – 1)–1 , one obtains:

U = (n – 1) U ΛΛΛΛ

Householder

TWWS
algorithm

y y–[ ]

y y–[ ] '

y y–[ ] ' y y–[ ]

y y–[ ] ' y y–[ ]
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Table 9.5 Two-way weighted summation (TWWS) algorithm for PCA. Modified from ter Braak (1987c).

a) Iterative estimation procedure

Step 1: Consider a table of n objects (rows) × p variables (columns).
Centre each variable (column) on its mean.

Decide how many eigenvectors are needed and, for each one. DO the following:

Step 2: Take the row order as the arbitrary initial object scores (1, 2, …).
Set the initial eigenvalue estimate to 0.

Iterative procedure begins
Step 3: Compute new variable loadings: colscore(j) = Σ y(i,j) × rowscore(i)

Step 4: Compute new object scores: rowscore(i) = Σ y(i,j) × colscore(j)

Step 5: For the second and higher-order axes, make the object scores uncorrelated with all previous axes
(Gram-Schmidt orthogonalization procedure: see b below).

Step 6: Scale the vector of object scores to length 1 (normalization procedure c, below). 

Step 7: Upon convergence, the eigenvalue is S/(n – 1) where n is the number of objects. So, at the end of
each iteration, S/(n – 1) provides an estimate of the eigenvalue. If this estimate does not differ
from that of the previous iteration by more than a small quantity (“tolerance”, set by the user),
go to step 8. If the difference is larger than the tolerance value, go to step 3.

End of iterative procedure

Step 8: Normalize the eigenvector (variable loadings), i.e. scale it to length 1 (procedure c, below).
Rescale the principal component (object scores) to variance = eigenvalue.

Step 9: If more eigenvectors are to be computed, go to step 2. If not, continue with step 10.

Step 10: Print out the eigenvalue, % variance, cumulative % variance, eigenvector (variable loadings),
and principal component (object scores).

b) Gram-Schmidt orthogonalization procedure

DO the following, in turn, for all previously computed principal components k:

Step 5.1: Compute the scalar product SP = Σ [rowscore(i) × v(i,k)] of the current object score vector
estimate with previous component k, where vector v(i,k) contains the object scores of component
k, scaled to length 1. This product varies between 0 (if the vectors are orthogonal) to 1.

Step 5.2: Compute new values of rowscore(i) such that vector rowscore becomes orthogonal to vector
v(i,k): rowscore(i) = rowscore(i) - (SP × v(i,k)).

c) Normalization procedure

Step 6.1: Compute the sum of squares of the object scores: S2 = Σ rowscore(i)2; S = .

Step 6.2: Compute the normalized object scores: rowscore(i) = rowscore(i)/S.

S
2
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Since F = U (eq. 9.4), it follows that:

F = (n – 1) U ΛΛΛΛ

Hence, the column scores obtained from eq. 9.14 are the values of the first eigenvector
(first column of matrix U) multiplied by eigenvalue λ1 (which is a diagonal element of
matrix ΛΛΛΛ) and by (n – 1).

From the first estimate of column scores, a new estimate of row scores is computed
using eq. 9.4, F = U:

[row scoresi1] = [ui1] (9.15)

The algorithm alternates between estimating row scores and column scores until
convergence. At each step, the row scores (columns called R in Table 9.6) are scaled to
length 1 in order to prevent the scores from becoming too large for the computer to
handle, which they may easily do. Before this normalization, the length of the row
score vector, divided by (n – 1), provides the current estimate of the eigenvalue. This
length actually measures the amount of “stretching” the row score vector has incurred
during an iteration.

This description suggests one of several possible stopping criteria (Table 9.5,
step 7): if the estimate of the eigenvalue has not changed, during the previous iteration,
by more than a preselected tolerance value, the iteration process is stopped. Tolerance
values between 10–10 and 10–12 produce satisfactory estimates when computing all the
eigenvectors of large matrices, whereas values between 10–6 and 10–8 are sufficient to
compute only the first two or three eigenvectors.

At the end of the iterative estimation process (Table 9.5, step 8), 

• the eigenvector (Table 9.6, line C13) is normalized (i.e. scaled to unit length), and

• the principal component is scaled to length . This makes its variance
equal to its eigenvalue.

Note that the eigenvalues, eigenvectors, and principal components obtained using this
iterative procedure are the same as in Sections 9.1 and 9.2, except for the signs of the
second eigenvector and principal component, which are all changed. One may
arbitrarily change all the signs of an eigenvector and the corresponding principal
component, since signs result from an arbitrary decision made when computing the
eigenvectors (Section 2.9). This is equivalent to turning the ordination diagram by
180° if signs are changed on both the first and second principal components, or looking
at it from the back of the page, or in a mirror, if signs are changed for one axis only.

To estimate the second principal component, eigenvalue, and eigenvector, row
scores are again assigned arbitrarily at the beginning of the iterative process. In
Table 9.6 (bottom part), the same values were actually chosen as for axis I, as stated in

y y–[ ]

y y–[ ] '

y y–[ ]

y y–[ ]
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P
rin

cip
a

l co
m

p
o

n
en

t a
n

a
ly

sis (P
C

A
)

4
2

1

Table 9.6 Estimation of axes I (top) and II (bottom) for the centred data of the numerical example (values in boxes), using the “two-way weighted

summation” algorithm (TWWS, Table 9.5). Iterations 1 to 13: estimates of the row scores (R1 to R13) and column scores (C1 to C13).

Objects Var. 1 Var. 2 R0 R1 R1 R2 R2 R3 R3 … R9 R9 … R13 R13 R13 scaled
⇓ (arbitrary) length=1 length=1 length=1 length=1 length=1 (var=λ)

x1 –3.2 –1.6 1 –64.000 –0.586 –21.103 –0.593 –21.352 –0.595 –21.466 –0.596 –21.466 –0.596 –3.578
x2 –2.2 1.4 2 –34.000 –0.311 –9.745 –0.274 –9.037 –0.252 –8.080 –0.224 –8.053 –0.224 –1.342
x3 –0.2 –2.6 3 –14.000 –0.128 –6.082 –0.171 –6.977 –0.195 –8.019 –0.223 –8.047 –0.224 –1.341
x4 1.8 3.4 4 46.000 0.421 16.633 0.467 17.653 0.492 18.752 0.521 18.780 0.522 3.130
x5 3.8 –0.6 5 66.000 0.605 20.297 0.570 19.713 0.550 18.813 0.523 18.786 0.522 3.131

Estimates of λ1 ⇒ 27.295 8.895 8.967 9.000 9.000

C1 18.000 4.000
C2 5.642 1.905
C3 5.544 2.257
C4 5.473 2.449
C5 5.428 2.554
C6 5.401 2.612
C7 5.386 2.644
C8 5.377 2.661
C9 5.373 2.671
C10 5.370 2.677
C11 5.368 2.680
C12 5.368 2.681
C13 5.367 2.682
C13 length=1 0.895 0.447

Objects Var. 1 Var. 2 R0 R1 R1 R1 R2 R2 R2 R2 scaled
⇓ (arbitrary) ortho* length=1 ortho* length=1 (var=λ)

x1 –3.2 –1.6 1 –64.000 0.001 0.000 0.002 0.001 0.000 0.000
x2

 

–2.2 1.4

 

2 –34.000 –9.995 –0.500 –9.999 –10.000 –0.500 –2.236

 

x

 

3

 

–0.2 –2.6

 

3 –14.000 9.996 0.500 10.001 10.000 0.500 2.236

 

x

 

4

 

1.8 3.4

 

4 46.000 –9.996 –0.500 –10.002 –10.001 –0.500 –2.236

 

x

 

5

 

3.8 –0.6

 

5 66.000 9.994 0.500 9.998 9.999 0.500 2.236

Estimates of 

 

λ

 

2

 

 ⇒

 

4.998 5.000

C1 18.000 4.000
C2 2.000 –4.000
C2 length=1 0.447 –0.894 * ortho: scores are made orthogonal to R13 found in the upper portion of the Table.
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step 2 of the algorithm (Table 9.5). Iterations proceed in the same way as above, with
the exception that, during each iteration, the row scores are made orthogonal to the
final estimate obtained for the first principal component (column R13 in the upper
portion of Table 9.6). This follows from the basic rule that principal components must
be linearly independent (i.e. orthogonal) of one another. For the third principal axis
and above, the vector estimating row scores is made orthogonal, in turn, to all
previously computed principal components. As a result, the vector is orthogonal to all
previously computed principal components.

The algorithm converges fairly rapidly, even with small tolerance values. For the
example of Table 9.6, it took 13 iterations to reach convergence for axis I, and 2
iterations only for axis II, using a tolerance value of 10–6; double-precision real
numbers (REAL*8) were used where needed. With a tolerance value of 10–10, it took 21
and 2 iterations, respectively. The initial, arbitrary values assigned to the row scores
also have an (unpredictable) effect on the number of iterations; e.g. with a different set
of initial values [2 5 4 3 1], it took 14 iterations instead of 13 to reach convergence for
the first axis (tolerance = 10–6).

Supplementary objects or variables may easily be incorporated in the calculations
using this algorithm. These are objects or variables that have not been used to compute
the eigenvalues and eigenvectors of the ordination space, but whose positions are
sought with respect to the original set of objects and variables that were used to
compute the eigenvalues and eigenvectors. In Ecological application 9.1a, for
example, the principal component analysis could have been computed using the
species abundance data, and the environmental descriptors could have been added to
the analysis as supplementary variables; in addition, the observations from Richelieu
River could have been added as supplementary objects. Preliminary transformations
are required: (1) supplementary variables must be centred on their respective means;
(2) on the other hand, for each variable, supplementary objects must be centred using
the mean value of that variable calculated for the original set of objects. When the
algorithm has reached convergence for an axis, using the original set of objects, it is a
simple matter to compute the column scores of the supplementary variables using
eq. 9.14 and the row scores of the supplementary objects using eq. 9.15. The final step
consists in applying to the supplementary variable scores the scaling that was applied
to the terms of the eigenvector corresponding to the original set of variables and, to the
supplementary object scores, the scaling that was applied to the original set of objects.

There is another way of computing principal components. It involves singular
value decomposition (SVD, Section 2.11). One of the properties of SVD leads to
principal component analysis, although this is not the most commonly used method for
PCA. SVD is also an excellent approach to correspondence analysis (Section 9.4).

Supplemen-
tary object
and variable

SVD
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The relationship with principal component analysis is the following. Let us assume
that the column vectors of Y are centred on their respective means and compute the
product Y'Y using the singular value decomposition of Y (eq. 2.31):

Y'Y = UW' (V'V) W U' (9.16)

Since V is orthonormal (Section 2.11), V'V = VV' = I and one gets:

Y'Y = U W'W U' (9.17)

The eigenvalues (forming the diagonal matrix ΛΛΛΛ) and eigenvectors (written out in
matrix U) of a square matrix A obey the relationship (eq. 2.28): 

A = UΛΛΛΛU–1

If the vectors in U are normalized, U is an orthonormal matrix with the property
U–1 = U' (property 7 of inverses, Section 2.8). Equation 2.28 may be rewritten as:

A = UΛΛΛΛU' (9.18)

Matrix U of eqs. 9.16 and 9.17 is the same as matrix U of eq. 9.18, i.e. it is the matrix
of eigenvectors of A = [Y'Y]. The diagonal matrix [W'W], containing squared singular
values, is the diagonal matrix ΛΛΛΛ of eigenvalues of A = [Y'Y].

In this book*, principal component analysis has been defined as the eigenanalysis
of the covariance matrix S = (n – 1)–1 Y'Y (for matrix Y centred), so that the
eigenvalues of [Y'Y], found in the previous paragraph, are larger than the eigenvalues
of standard principal component analysis by a factor (n – 1). The singular values of Y
(eq. 2.31) are the square roots of the eigenvalues of [Y'Y] because ΛΛΛΛ = [W'W].

Matrix F of the principal components of Y (centred) can be calculated from eq. 9.4
(F = YU). Combining it to eq. 2.31 (Y = VWU') shows that F may also be computed
from the left-hand column-orthonormal matrix V of the singular value decomposition
of Y, as follows:

F = VW   or   F = VΛΛΛΛ–1/2 (9.19)

Equation 9.19 amounts to multiplying the elements in the columns of V by the
corresponding singular values, found on the diagonal of W. The next paragraph shows
that V is also the matrix of eigenvectors of [YY'].

The principal component analysis of Y may be computed from matrix [YY'] instead of
[Y'Y], as shown in Subsection 9.1.7. This can be done using SVD. Compute the SVD of the
square matrix [YY']:

YY' = VW (U'U) W' V' = V WW' V'

* Some authors define PCA as the eigenanalysis of the dispersion matrix Y'Y (for Y centred).
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The eigenvalues of [YY'] are the diagonal values of matrix WW'; they are the same as the
diagonal elements of W'W which are the eigenvalues of Y'Y. Matrix V now contains the
eigenvectors of [YY']. Section 9.2 (principal coordinate analysis) will show that the
eigenvectors of matrix [YY'] (which is called ∆∆∆∆1 in that Section), scaled to a length equal to the
square root of their respective eigenvalues, give the coordinates of the objects in the ordination
space. This scaling is obtained by multiplying the elements in the column vectors of V by the
corresponding singular values. The coordinates of the objects in matrix [VW] are thus the same
as in matrix F of principal component analysis (eq. 9.4).

When there are as many, or more variables than there are objects (i.e. p ≥ n),
eigenvalues and eigenvectors can still be computed using any of the methods described
above: Householder reduction, the TWWS algorithm, or singular value decomposition.
The covariance matrix is positive semidefinite in such cases, so that null eigenvalues
are expected (Table 2.2). When p is much larger than n and all eigenvalues and
eigenvectors must be computed, important savings in computer time may be made by
applying Householder reduction or singular value decomposition to matrix [YY'],
which is of size (n × n), instead of [Y'Y] which is (p × p) and is thus much larger. The
eigenvalues of [YY'] are the same as the non-zero eigenvalues of [Y'Y]. Matrix U of
the eigenvectors of [Y'Y] can be found from matrix V of the eigenvectors of [YY']
using the transformation U = Y'VW–1 or U = Y'VΛΛΛΛ–1/2, where Y is centred by
columns. Matrix F of the principal components is found using eq. 9.19. The rationale
justifying to carry out the calculations on [YY'] is presented in the previous paragraph.

Negative eigenvalues may occur in principal component analysis due to missing
values. Pairwise deletion of missing data (Subsection 1.6.2), in particular, creates
covariances computed with different numbers of degrees of freedom; this situation
may make the covariance matrix indefinite (Table 2.2). SVD is not appropriate in this
case because the square roots of the negative eigenvalues would be complex numbers;
singular values cannot be negative nor complex. A Householder algorithm should be
used in such a case.

9.2 Principal coordinate analysis (PCoA)

Chapter 7 discussed various measures of resemblance that are especially useful in
ecological analysis with non-quantitative descriptors or with data sets containing many
double-zeros (e.g. species presence/absence or abundance data). In such cases, the
Euclidean distance (among objects) and the corresponding measures of covariance or
correlation (among descriptors) do not provide acceptable models, so that the method
of principal component analysis is not adequate for ordination.

Gower (1966) has described a method to obtain a Euclidean representation (i.e. a
representation in a Cartesian coordinate system) of a set of objects whose relationships
are measured by any similarity or distance coefficient chosen by users. This method,
known as principal coordinate analysis (abbreviated PCoA), metric multidimensional

Euclidean
represen-
tation
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scaling (in contrast to the nonmetric method described in Section 9.3), or classical
scaling by reference to the pioneering work of Torgerson (1958), allows one to
position objects in a space of reduced dimensionality while preserving their distance
relationships as well as possible; see also Rao (1964).

The interest of the PCoA method lies in the fact that it may be used with all types
of variables — even data sets with variables of mixed levels of precision, provided that
a coefficient appropriate to the data has been used to compute the resemblance matrix
(e.g. S15 or S16, Chapter 7). It will be shown that, if the distance matrix is metric (no
violation of the triangle inequality), the relationships among objects can, in most cases,
be fully represented in Euclidean space. In the case of violations of the triangle
inequality, or when problems of “non-Euclideanarity” occur with metric distances
(Gower, 1982; Fig. 9.10), negative eigenvalues are produced. In most cases, this does
not impair the quality of the Euclidean representation obtained for the first few
principal coordinates. It is also possible to transform the resemblance matrix, or use an
alternative resemblance measure, to eliminate the problem. These matters are
discussed in Subsection 3.

One may look at principal coordinates as the equivalent of principal components.
Principal components, on the one hand, are linear combinations of the original (or
standardized) descriptors; linear is the key concept. Principal coordinates, on the other
hand, are also functions of the original variables, but mediated through the similarity
or distance function that has been used. In any case, PCoA can only embed (i.e. fully
represent), in Euclidean space, the Euclidean part of a distance matrix. This is not a
property of the data, but a result of the Euclidean model which is forced upon the data
because the objective is to draw scatter diagrams on flat sheets of paper. By doing so,
one must accept that whatever is non-Euclidean cannot be drawn on paper. This may
be viewed as the problem of fitting Euclidean to possibly non-Euclidean distances;
there is a remaining fraction in some cases (see Numerical example 3 in Subsection 5).

The method of nonmetric multidimensional scaling (MDS, Section 9.3) also
obtains ordinations of objects from any resemblance matrix. It is better than principal
coordinate analysis at compressing the distance relationships among objects into, say,
two or three dimensions. By construction, MDS always obtains a Euclidean
representation, even from non-Euclidean-embeddable distances. MDS is, however, a
computer-intensive technique requiring far more computing time than PCoA. For large
distance matrices, principal coordinate analysis is faster in most cases.

1 — Computation

Gower (1966) explained how to compute the principal coordinates of a resemblance
matrix:

• The initial matrix must be a distance matrix D = [Dhi]. It is also possible to carry out
the calculations on a similarity matrix S = [Shi]; the results are detailed in
Subsection 3. It is better, however, to first transform the S matrix into a D matrix.

Mixed
precision

Euclidean
model
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• Matrix D is transformed into a new matrix A by defining:

(9.20)

The purpose of this transformation is explained in Subsection 3.

• Matrix A is centred to give matrix ∆∆∆∆1 = [δhi], using the following equation:

(9.21)

where  and  are the means of the row and column corresponding to element ahi of
matrix A, respectively, whereas  is the mean of all ahi’s in the matrix. This centring
has the effect of positioning the origin of the new system of axes at the centroid of the
scatter of objects, without altering the distances among objects. Since the sums of the
rows and columns of ∆∆∆∆1 is null, ∆∆∆∆1 has at least one null eigenvalue.

In the particular case of distances computed using the Euclidean distance
coefficient (D1, eq. 7.34), it is possible to obtain the Gower-centred matrix ∆∆∆∆1 directly,
i.e. without calculating a matrix D of Euclidean distances and going through eqs. 9.20
and 9.1, because ∆∆∆∆1 = YY' (for Y centred). This may be verified using numerical
examples. In this particular case, ∆∆∆∆1 is a positive semidefinite matrix (Table 2.2).

• The eigenvalues and eigenvectors are computed and the latter are scaled to lengths
equal to the square roots of the respective eigenvalues:

Due to the centring, matrix ∆∆∆∆1 always has at least one zero eigenvalue. The reason
is that at most (n – 1) real axes are necessary for representing n points in Euclidean
space. There may be more than one zero eigenvalue in cases where the distance matrix
is degenerate, i.e. if the objects can be represented in fewer than (n – 1) dimensions. In
practice, there are c positive eigenvalues and c real axes forming the Euclidean
representation of the data, the general rule being that c ≤ n – 1.

With the Euclidean distance (D1), when there are more objects than descriptors
(n > p), the maximum value of c is p; when n ≤ p, then c ≤ n – 1. Take as example a set
of three objects or more, and two descriptors (n > p). The objects, as many as they are,
may be represented in a two-dimensional space — for example, the scatter diagram of
the two descriptors. Consider now the situation where there are two objects and two
descriptors (n ≤ p); the two objects only require one dimension for representation.

• After scaling, if the eigenvectors are written as columns (e.g. Table 9.7), the rows of
the resulting table are the coordinates of the objects in the space of principal
coordinates, without any further transformation. Plotting the points on, say, the first
two principal coordinates (or more) produces a reduced-space ordination diagram of
the objects in two (or more) dimensions.

ahi
1
2
---– Dhi

2
=

δhi ahi ah ai a+––=

ah ai
a

Euclidean
distance

u'kuk λk=

Degenerate
D matrix
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2 — Numerical example

Readers may get a better feeling of what principal coordinate analysis does by
comparing it to principal component analysis. Consider a data matrix Y on which a
principal component analysis (PCA) has been computed, with resulting eigenvalues,
eigenvectors, and principal components. If one also computed a Euclidean distance
matrix D = [Dhi] among the same n objects, the eigenvectors obtained by principal
coordinate analysis would be exactly the same as the principal components. The
eigenvalues of the PCoA are equal to the eigenvalues one would obtain from a PCA
conducted on the cross-product matrix ; these are larger than the
eigenvalues of a PCA conducted on the covariance matrix S by factor (n – 1), because
S = (1/(n – 1)) . Since PCA has been defined, in this book, as the

Table 9.7 Principal coordinates of the objects (rows) are obtained by scaling the eigenvectors to .

Eigenvalues

λ1 λ2 . . . λc

Objects Eigenvectors

x1 u11 u12 . . . u1c

x2 u21 u22 . . . u2c

. . .

. . .

. . .

xh uh1 uh2 . . . uhc

. . .

. . .

. . .

xi ui1 ui2 . . . uic

. . .

. . .

. . .

xn un1 un2 . . . unc

Length:  = . . .

Centroid:  = 0 0 . . . 0

λ

uik
2

i
∑ λ1 λ2 λc

uk

y y–[ ] ' y y–[ ]

y y–[ ] ' y y–[ ]
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eigenanalysis of the covariance matrix S, the same PCA eigenvalues can be obtained
by carrying out a principal coordinate analysis on the Euclidean distance matrix among
objects and dividing the resulting PCoA eigenvalues by (n – 1). If one is only
interested in the relative magnitude of the eigenvalues, this scaling may be ignored. 

The previous paragraph does not mean that principal coordinate analysis is limited
to Euclidean distance matrices. It can actually be computed for any distance matrix. If
the distances cannot readily be embedded in Euclidean space, negative eigenvalues
may be obtained, with consequences described below (Subsection 4).

Numerical example 1. The numerical example for principal component analysis
(Section 9.1) is used here to illustrate the main steps in the computation of principal coordinates.
The example also shows that computing principal coordinates from a matrix of Euclidean
distances D = [Dhi] gives the exact same results as principal component analysis of the raw data,
with the exception of the variable loadings. Indeed, information about the original variables is
not passed on to the PCoA algorithm. Since PCoA is computed from a distance matrix, it cannot
give back the loadings of the variables. A method for computing them a posteriori is described
in Subsection 5.

1) The matrix of Euclidean distances among the 5 objects of data matrix Y used to illustrate
Section 9.1 is:

2) Matrix ∆∆∆∆1 obtained by Gower’s centring (eqs. 9.20 and 9.21) is:

∆∆∆∆1 =

The trace (sum of the diagonal elements) of this matrix is 56. This is (n – 1) = 4 times the trace
of the covariance matrix computed in PCA, which was 14. Note that matrix ∆∆∆∆1 could have been
obtained directly from data matrix Y centred by columns, as mentioned in Subsection 9.2.1:
∆∆∆∆1 = YY'. Readers can verify this property numerically for the example.

3) The eigenvalues and eigenvectors of matrix ∆∆∆∆1, scaled to , are given in Table 9.8.
There are only two eigenvalues different from zero; this was to be expected since the distances
have been computed on two variables only, using the Euclidean distance formula (c = p = 2).
The values of the principal coordinates, which are the standardized eigenvectors of the PCoA,
are exactly the same as the principal components (Table 9.6). Measures of resemblance other
than the Euclidean distance may produce a different number of eigenvalues and principal
coordinates and they would, of course, position the objects differently.

D

  0.00000  3.16228 3.16228 7.07107 7.07107

  3.16228    0.00000  4.47214 4.47214 6.32456

  3.16228  4.47214   0.00000  6.32456 4.47214

  7.07107  4.47214 6.32456   0.00000  4.47214

  7.07107  6.32456 4.47214 4.47214   0.00000  

=

    12.8      4.8      4.8  11.2– 11.2–

      4.8      6.8  3.2–       0.8    –9.2

      4.8    –3.2    6.8   –9.2       0.8  

11.2–   0.8 9.2–   14.8     4.8

11.2– 9.2–   0.8     4.8   14.8

λ
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While the numerical example illustrates the fact that a PCoA computed on a
Euclidean distance matrix gives the same results as a PCA conducted on the original
data, the converse is also true: taking the coordinates of the objects in the full space (all
eigenvectors) obtained from a PCoA and using them as input for a principal
component analysis, the eigenvalues of the PCA will be the same (to a factor n – 1) as
those of the original PCoA and the principal components will be identical to the
principal coordinates. All the signs of any one component could have been inverted,
though, as explained in Subsection 9.1.8; signs depend on an arbitrary decision made
during execution of a computer program. Because of this, users of ordination methods
are free to change all the signs of any principal component before presenting the
results, if this suits them better.

3 — Rationale of the method

Gower (1966) has shown that the distance relationships among objects are preserved in
the full-dimensional principal coordinate space. His proof is summarized as follows.

Table 9.8 Principal coordinates computed for the numerical example developed in Section 9.1. Compare
with PCA results in Table 9.6.

Eigenvalues

λ1 λ2 

Objects Eigenvectors

x1 –3.578 0.000
x2 –1.342 –2.236
x3 –1.342 2.236
x4 3.130 –2.236
x5 3.130 2.236

Eigenvalues of PCoA 36.000 20.000

PCoA eigenvalues/(n – 1) 
= eigenvalues of corresponding PCA 9.000 5.000

Length:  =  6.000 = 4.472 = uik
2

i
∑ 36 20

PCA and
PCoA
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• In the total space of the principal coordinates (i.e. all eigenvectors), the distance
between objects h and i can be found by computing the Euclidean distance between
rows h and i of Table 9.7:

(9.22)

• Since the eigenvectors are scaled in such a way that their lengths are  (in other
words, U is scaled here to ΛΛΛΛ1/2), the eigenvectors have the property that ∆∆∆∆1 = UU'
(eq. 9.8 for matrix S). One can thus write:

∆∆∆∆1 = [δhi] = 

from which it can be shown, following eq. 9.22, that:

Readers can verify this property on the above numerical example.

• Since δhi =  (eq. 9.21), replacing the values of δ in the right-hand
member of the previous equation gives:

hence

The transformation of A into ∆∆∆∆1 is not essential. It is simply meant to eliminate one of
the eigenvalues, which could be the largest and would only account for the distance
between the centroid and the origin.

• The transformation of the matrix of original distances Dhi into A is such that
distances are preserved in the course of the calculations. Actually, ahi may be replaced
by its value –0.5 , from which one can show that

and, since Dhh = Dii = 0 (property of distances),

Principal coordinate analysis thus preserves the original distances, regardless of the

formula used to compute them. If the distances have been calculated from similarities,

Dhi = 1 – Shi will be preserved in the full-dimensional principal coordinate space. If
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k 1=

c

∑
1 2⁄

uhk
2

k 1=

c

∑ uik
2

k 1=

c

∑ 2 uhkuik

k 1=

c

∑–+
1 2⁄

= =

λk

u1u'1 u2u'2 … ucu'c+ + +

D'hi δhh δii 2δhi–+[ ] 1 2⁄
=

ahi ah ai a+––

δhh δii 2δhi–+ ahh aii 2ahi–+=

D'hi ahh aii 2ahi–+[ ] 1 2⁄
=

Dhi
2

D'hi
1
2
---– Dhh

2 1
2
---Dii

2
Dhi

2
+–

1 2⁄
=

D'hi Dhi
2[ ]

1 2⁄
=



Principal coordinate analysis (PCoA) 431

the transformation of similarities into distances was done by Dhi =  or

Dhi = , then it is these distances that are preserved by the PCoA. As a

corollary, these various representations in principal coordinate space should be as

different from one another as are the distances themselves.

Gower (1966) has also shown that principal coordinates can be directly computed from a
similarity matrix S instead of a distance matrix D. If principal coordinates are calculated from
matrix S after centring (eq. 9.21, without applying eq. 9.20 first; make sure that the diagonal of
matrix S contains 1’s and not 0’s before centring), distances  among the reconstructed
point-objects in the full-dimensional principal coordinate space are not the same as distances
Dhi = (1 – Shi); they are distortions of the distances Dhi such that . As a
consequence, if S was derived from a D matrix through the transformation ,
then the distances  among the reconstructed point-objects in the full-dimensional principal
coordinate space are too large by a factor , compared to the original distances Dhi, but
without distortion: . The above holds only if S is positive semidefinite, that is, if
there are no negative eigenvalues.

To summarize, principal coordinate analysis produces a representation of objects in
Euclidean space which preserves the distance relationships computed using any
measure selected by users. This is a major difference with PCA, where the distance
among objects is always, by definition, the Euclidean distance (Table 9.1). In PCoA,
the representation of objects in the reduced space of the first few principal coordinates
forms the best possible Euclidean approximation of the original distances, in the sense
that the sum of squares of the projection distances of the objects onto the selected
subspace is minimum (Gower, 1982). The quality of a Euclidean representation in a
space of principal coordinates can be assessed using a Shepard diagram (Fig. 9.1).

Contrary to principal component analysis, the relationships between the principal
coordinates and the original descriptors are not provided by a principal coordinate
analysis. Indeed the descriptors, from which distances were computed among objects,
do not play any role during the calculation of a PCoA. However, computing
covariances or linear correlations between the principal coordinates (matrix UΛΛΛΛ1/2,
Table 9.7) and the original descriptors is a straightforward operation:

ΛΛΛΛ1/2 (9.23)

(9.24)

In these equations, matrix U is that of normalized eigenvectors (lengths 1). The
equations assume, of course, that the descriptors in matrix Y = [y] are quantitative; as
in multiple regression analysis (Subsection 10.3.3), multistate qualitative descriptors
may be recoded into dummy variables (Subsection 1.5.7) before estimating the
covariances or correlations. The rows of matrices Spc and Rpc correspond to the p
descriptors and their columns correspond to the c principal coordinates.
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4 — Negative eigenvalues

There are resemblance matrices that do not allow a full representation of the distance
relationships among objects in Euclidean space (i.e. a set of real Cartesian
coordinates).

• Problems of Euclidean representation may result from the use of a distance measure
that violates the triangle inequality. Such distances are called semimetric and
nonmetric in Section 7.4 and in Table 7.2.

• These problems may also result from an imbalance in the distance matrix, due to the
handling of missing values. See for instance how missing values are handled in
coefficients S15, S16, S19, and S20 of Chapter 7, using Kronecker delta functions.

• Some metric distance matrices present problems of “non-Euclideanarity”, as
described by Gower (1982, 1985). Figure 9.10 illustrates such a case; the closing of all
individual triangles (triangle inequality condition, Section 7.4) is a necessary, but not a
sufficient condition to guarantee a full Euclidean representation of a set of objects.
This “non–Euclideanarity”, when present, translates itself into negative eigenvalues.
For instance, most of the metric distances resulting from the transformation of a
similarity coefficient, using the formula D = 1 – S, are non-Euclidean (Table 7.2). This

Non-Euclide-
anarity

Figure 9.10 Here is a case where the triangle inequality is not violated, yet no Euclidean representation of
the 4 points (x1 to x4) is possible because distances D, that are all equal, are too small for the
inner points (x4) to join. Assuming that the outer edges are all of length 1, the triangle inequality
would be violated if D was smaller than 0.5. D =  would allow the three representations
of x4 to meet at the centroid. If D > , the Euclidean representation of the four points, x1 to
x4, forms a three-dimensional pyramid (Gower, 1982).
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does not mean that all distance matrices computed using these coefficients are non-
Euclidean, but that cases can be found where PCoA produces negative eigenvalues.
Among the metric coefficients described in Subsection 7.4.1, D1, D2, and D11 have
been proved Euclidean whereas D7 and D10 are known to be non-Euclidean (Gower &
Legendre, 1986). The χ2 distance D16 is also Euclidean; this is the distance preserved
by correspondence analysis (Section 9.4) which is known not to produce negative
eigenvalues. The forms derived from D16, i.e. D15 and S21, are also Euclidean. The
“Euclideanarity” of the other metric distances described in Chapter 7 is not known.

Table 7.2 shows that, for many coefficients, the distances  are
Euclidean even though the distances Dhi = 1 – Shi are not necessarily Euclidean. The
transformation  should thus be preferred in view of computing PCoA.
This transformation may resolve the negative eigenvalue problem even for coefficients
that are known to be semimetric. This is the case, for instance, with coefficients S8,
S17, and its one-complement D14 = 1 – S17, which are all widely used by ecologists to
analyse tables of species abundance data. A square root transformation of
D14 = 1 – S17 eliminates negative eigenvalues in principal coordinate analysis; see
numerical example 2 in Subsection 5. While it is difficult to demonstrate
mathematically that a coefficient is always Euclidean, simulations have not turned up
non-Euclidean cases for  (Anderson, 1996). In support of this statement,
Gower & Legendre (1986) have shown that coefficient S8, which is the binary form of
S17, is Euclidean when transformed into .

When one does not wish to apply a square root transformation to the distances, or
when negative eigenvalue problems persist in spite of a square root transformation,
Gower & Legendre (1986) have shown that the problem of “non–Euclideanarity”, and
of the negative eigenvalues that come with it, can be solved by adding a (large enough)
constant to all values of a distance matrix that would not lend itself to full Euclidean
representation. No correction is made along the diagonal, though, because the distance
between an object and itself is always zero. Actually, adding some large constant
would make the negative eigenvalues disappear and produce a fully Euclidean
representation, but it would also create extra dimensions (and eigenvalues) to express
the additional variance so created. In Fig. 9.11, for instance, adding a large value, like
0.4, to all six distances among the four points in the graph would create a pyramid,
requiring three dimensions for a full Euclidean representation, instead of two. 

The problem is to add just the right amount to all distances in the matrix to
eliminate all negative eigenvalues and produce a Euclidean representation of the
distance relationships among objects, without creating unnecessary extra dimensions.
Following Gower & Legendre (1986, Theorem 7*), this result can be obtained by
adding a constant c to either the squared distances  or the original distances Dhi .
This gives rise to two methods for adjusting the original distances and correcting for
their non-Euclidean behaviour.

* The present Subsection corrects two misprints in theorem 7 of Gower & Legendre (1986).

Dhi 1 Shi–=

Dhi 1 Shi–=

1 S17–

D 1 S8–=

Dhi
2
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• Correction method 1 (derived from the work of Lingoes, 1971) — Add a constant to
all squared distances , except those on the diagonal, creating a new matrix of
distances  through the following transformation:

      for h ≠ i (9.25)

then proceed to the transformation of  into matrix  using eq. 9.20. The two
operations may be combined into a single transformation producing the new matrix

 directly from the original distances Dhi:

     for h ≠ i

Then, proceed with eq. 9.21 and recompute the PCoA. The constant to be added, c1, is
the absolute value of the largest negative eigenvalue obtained by analysing the original
matrix ∆∆∆∆1. Constant c1 is also used, below, in the corrected formula for assessing the
quality of a representation in reduced space (eq. 9.27). After correction, all non-zero
eigenvalues are augmented by a value equal to c1, so that the largest negative
eigenvalue is now shifted to value 0. As a consequence, the corrected solution has two
null eigenvalues, or more if the matrix is degenerate. The constant c1 is the smallest
value that will produce the desired effect. Any value larger than c1 will also eliminate
all negative eigenvalues and make the system fully Euclidean, but it may also create a
solution requiring more dimensions.

• Correction method 2 (proposed by Cailliez, 1983) — Add a constant c2 to all
elements Dhi of matrix D, except those on the diagonal, creating a new matrix of
distances  through the transformation:

      for h ≠ i (9.26)

then proceed to the transformation of  into matrix  using eq. 9.20. The two
operations may be combined into a single transformation producing the new matrix

 directly from the original distances Dhi:

     for h ≠ i

Then, proceed with eq. 9.21 and recompute the PCoA. The constant to be added, c2, is
equal to the largest positive eigenvalue obtained by analysing the following special
matrix, which is of order 2n:

Dhi
2

D̂

D̂hi

D̂hi Dhi
2

2c1+=

D̂ Â

Â âhi[ ]=

âhi
1
2
---D̂hi

2
–

1
2
---– Dhi

2
2c1+( ) 1

2
---Dhi

2
– c1–= = =

D̂

D̂hi

D̂hi Dhi c2+=

D̂ Â

Â âhi[ ]=

âhi
1
2
--- Dhi c2+( ) 2

–=

0        2∆1

I–    4∆2–
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where 0 is a null matrix, I is an identity matrix, ∆∆∆∆1 is the centred matrix defined by
eqs. 9.20 and 9.21, and ∆∆∆∆2 is a matrix containing values (–0.5Dhi) centred using
eq. 9.21. The order of each of these matrices is n. Beware: the special matrix is
asymmetric. Press et al. (1986, Sections 11.5-11.6) give an algorithm to compute the
eigenvalues of such a matrix. The corrected solution has two null eigenvalues, or more
if the matrix is degenerate. The constant c2 is the smallest value that will produce the
desired effect; any value larger than c2 will also eliminate all negative eigenvalues and
make the system fully Euclidean, but the solution may require more dimensions.
Fig. 9.11a-b shows the effect of adding constant c2 to a non-Euclidean group of four
points, whereas Fig. 9.11c shows the effect of adding some value larger than c2.

The two correction methods do not produce the exact same Euclidean
representation. This may be understood by examining the consequences of adding c2
to the distances in D. When is transformed into  (eq. 9.20), (Dhi + c2) becomes:

     for h ≠ i

The effect on  does not only depend on the value of c2; it varies with each value
Dhi. This is clearly not the same as subtracting a constant from all ahi values
(i.e. correction method 1). The eigenvectors resulting from one or the other correction
also differ from those resulting from a PCoA without correction for negative
eigenvalues. The two correction methods, and PCoA without correction, thus
correspond to different partitions of the variation because the total variance, given by
the trace of centred matrix ∆∆∆∆1, differs among methods.

Figure 9.11 (a) Distances among four points constructed in such a way that the system cannot be represented
in Euclidean space because the three lines going towards point x4 do not meet. (b) By adding a
constant to all distances (c2 = 0.2 in the present case), correction method 2 makes the system
Euclidean; in this example, the distances can be associated with a representation of the points in
2-dimensional space. (c) When increasing the distances further (adding again 0.2 to each
distance in the present case), the system remains Euclidean but requires more dimensions for
representation (3 dimensions in this example).
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How large are constants c1 and c2 for coefficient D14 = 1 – S17 which is important
for the analysis of species abundance data? To answer this question, Legendre &
Anderson (1999) simulated species abundance data tables. After computing distance
D14, the correction constants (c1 for method 1, c2 for method 2) increased nearly
linearly with the ratio (number of sites/number of species). In extremely species-poor
ecosystems, corrections were the largest; for instance, with a ratio 20:1 (e.g. 200 sites,
10 species), c1 was near 0.4 and c2 was near 0.8. When the ratio was near 1
(i.e. number of sites ≈ number of species), c1 was about 0.06 and c2 was about 0.2. In
species-rich ecosystems, corrections were small, becoming smaller as the species
richness increased for a constant number of sites; with a ratio 1:2 for example (e.g. 100
sites, 200 species), c1 was near 0.02 and c2 was about 0.1. Results also depended to
some extent on the data generation parameters.

To summarize, the methods for eliminating negative eigenvalues, when they are
present, all involve making the small distances larger, compared to the large distances,
in order to allow all triangles to close (Figs. 9.10, 9.11a and b), even those that did not
meet the triangle inequality axiom (Section 7.4). The first approach consists in taking
the square root of all distances; this reduces the largest distances more than the small
ones. The other two approaches (described as correction methods 1 and 2 above)
involve adding a constant to all non-diagonal distances; small distances are
proportionally more augmented than large distances. In correction method 1, a
constant (2c1) is added to the squared distances  whereas in method 2 a constant
(c2) is added to the distances  themselves.*

Numerical example 2. Consider the numerical example used in Chapter 7 to demonstrate
the semimetric nature of the Odum/Bray & Curtis coefficient. The data matrix contains 3 objects
and 5 species. Matrix D (computed using D14), matrix A = , and matrix ∆∆∆∆1 are:

D = A = ∆∆∆∆1 = 

The trace of ∆∆∆∆1 is 0.21597. The eigenvalues are: λ1 = 0.21645, λ2 = 0.00000, and
λ3 = –0.00049. The sum of the eigenvalues is equal to the trace. 

For correction method 1, value c1 = 0.00049 is subtracted from all non-diagonal values of A
to give , which is centred (eq. 9.21) to give the corrected matrix ∆∆∆∆1:

= ∆∆∆∆1 = 

* A program (DISTPCOA: FORTRAN source code and compiled versions for Macintosh and
Windows95 or WindowsNT) is available from the following WWWeb site to carry out principal
coordinate analysis, including the corrections for negative eigenvalues described here:
<http://www.fas.umontreal.ca/BIOL/legendre/>.

Dhi
2

Dhi

0.5Dhi
2

–[ ]

0.00000 0.05882 0.60000

0.05882 0.00000 0.53333

0.60000 0.53333 0.00000

  0.00000 0.00173– 0.18000–

0.00173–   0.00000 0.14222–

0.18000– 0.14222–   0.00000

  0.04916   0.03484 0.08401–

  0.03484   0.02398 0.05882–

0.08401– 0.05882–   0.14283

Â

Â

  0.00000 0.00222– 0.18049–

0.00222–   0.00000 0.14271–

0.18049– 0.14271–   0.00000

  0.04949   0.03468 0.08417–

  0.03468   0.02430 0.05898–

0.08417– 0.05898–   0.14315
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The trace of the corrected matrix ∆∆∆∆1 is 0.21694. The corrected eigenvalues are: λ1 = 0.21694,
λ2 = 0.00000, and λ3 = 0.00000. This Euclidean solution is one-dimensional.

For correction method 2, value c2 = 0.00784, which is the largest eigenvalue of the special
matrix, is added to all non-diagonal elements of matrix D to obtain , which is then
transformed into  (eq. 9.20) and centred (eq. 9.21) to give the corrected matrix ∆∆∆∆1:

 =   = ∆∆∆∆1=

The trace of the corrected matrix ∆∆∆∆1 is 0.22226. The corrected eigenvalues are: λ1 = 0.22226,
λ2 = 0.00000, and λ3 = 0.00000. This Euclidean solution is also one-dimensional.

Using the square root of coefficient D14, matrices D, A and ∆∆∆∆1 are:

D = A = ∆∆∆∆1 =

The trace of ∆∆∆∆1 is 0.39739. The eigenvalues are: λ1 = 0.36906, λ2 = 0.02832, and λ3 = 0.00000.
No negative eigenvalue is produced using this coefficient. This Euclidean solution is two-
dimensional.

If negative eigenvalues are present in a full-dimensional PCoA solution and no
correction is made to the distances to eliminate negative eigenvalues, problems of
interpretation arise. Since the eigenvectors uk are scaled to length , it follows that
the axes corresponding to negative eigenvalues are not real, but complex. Indeed, in
order for the sum of squares of the uik’s in an eigenvector uk to be negative, the
coordinates uik must be imaginary numbers. When some of the axes of the reference
space are complex, the distances cannot be fully represented in Euclidean space, as in
the example of Figs. 9.10 and 9.11a. 

It is, however, legitimate to investigate whether the Euclidean approximation
corresponding to the positive eigenvalues (i.e. the non-imaginary principal
coordinates) provides a good representation, when no correction for negative
eigenvalues is applied. Cailliez & Pagès (1976) show that such a representation is
meaningful as long as the largest negative eigenvalue is smaller, in absolute value, than
any of the m positive eigenvalues of interest for representation in reduced space
(usually, the first two or three). When there are no negative eigenvalues, the quality of
the representation in a reduced Euclidean space with m dimensions can be assessed, as
in principal component analysis (eq. 9.5), by the R2-like ratio:

D̂

Â

D̂

0.00000 0.06667 0.60784

0.06667 0.00000 0.54118

0.60784 0.54118 0.00000

Â

  0.00000 0.00222– 0.18474–

0.00222–   0.00000 0.14644–

0.18474– 0.14644–   0.00000

  0.05055   0.03556 0.08611–

  0.03556   0.02502 0.06058–

0.08611– 0.06058–   0.14669

0.00000 0.24254 0.77460

0.24254 0.00000 0.73030

0.77460 0.73030 0.00000

  0.00000 0.02941– 0.30000–

0.02941–   0.00000 0.26667–

0.30000– 0.26667–   0.00000

  0.08715   0.04662 0.13377–

  0.04662   0.06492 0.11155–

0.13377– 0.11155–   0.24532

λk

R2-like
ratio

λk
k 1=

m

∑ 
 
 

λk
k 1=

c

∑ 
 
 

⁄



438 Ordination in reduced space

where c is the number of positive eigenvalues. This comes from the fact that the
eigenvalues of a PCoA are the same (to a factor n – 1) as those of a PCA performed on
the coordinates of the same points in the full-dimensional space of the principal
coordinates (Subsection 9.2.2). Cailliez & Pagès (1976) further suggest that, when
negative eigenvalues are present, a correct estimate of the quality of a reduced-space
representation can be obtained by the corrected R2-like ratio:

(9.27)

where m is the dimensionality of the reduced space, n is the order of the distance
matrix (total number of objects), and |λn| is the absolute value of the largest negative
eigenvalue. Equation 9.27 gives the same value as if correction method 1, advocated
above, was applied to the distance matrix, the PCoA was recomputed, and the quality
of the representation was calculated using eq. 9.5. All non-zero eigenvalues would be
augmented by a value equal to c1 = |λn|, producing the same changes to the numerator
and denominator as in eq. 9.27.

5 — Ecological applications

Principal coordinate analysis is an ordination method of great interest to ecologists
because the nature of ecological descriptors often makes it necessary to use other
measures of resemblance than the Euclidean distance preserved by principal
component analysis (Table 9.1). Ordination methods such as principal coordinate
analysis and nonmetric multidimensional scaling (Section 9.3) provide Euclidean
representations of point-objects for any distance measure selected by the users. 

Corrected
R2-like ratio

λk

k 1=

m

∑ 
 
 

m λn+

λk

k 1=

n

∑ 
 
 

n 1–( ) λn+

--------------------------------------------------------

Figure 9.12 Distributions of three species at 19 sampling sites along a hypothetical environmental gradient
These artificial data are given in the upper panel of Table 9.9.
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Numerical example 3. A data set was created (Fig. 9.12; Table 9.9) to represent the
abundances of three hypothetical species at 19 sites across an environmental gradient along
which the species were assumed to have unimodal distributions (Whittaker, 1967). Four Q-mode
distance measures were computed among sites to illustrate some properties of principal
coordinate analysis. The same data will be used again in Subsection 9.4.5 to create examples of
horseshoes and arches. 

• The Euclidean distance D1 is a symmetrical coefficient. It is not ideal for species abundance
data; it is only used here for comparison. A principal coordinate analysis of this matrix led to 19
eigenvalues: three positive (50, 41, and 9% of the variation) and 16 null. This was expected
since the original data matrix contained three variables.

• Distance D14 is widely used for species abundance data. Like its one-complement S17, it
excludes double-zeros. Principal coordinate analysis of this distance matrix led to 19
eigenvalues: 11 positive, one null, and 7 negative. The distance matrix was corrected using
method 1 of Subsection 4, which makes use of the largest negative eigenvalue. Re-analysis led
to 17 positive and two null eigenvalues, the largest one accounting for 31% of the variation. The
distance matrix was also corrected using method 2 of Subsection 4, which makes use of the
largest eigenvalue of the special matrix. Re-analysis also led to 17 positive and two null
eigenvalues, the largest one accounting for 34% of the variation.

• Principal coordinate analysis was also conducted using the square root of coefficient D14. The
analysis led to 18 positive, one null, and no negative eigenvalues, the largest one accounting for
35% of the variation.

Table 9.9 Upper panel: artificial data illustrated in Fig. 9.12. Lower panel: first row of each of four
distance matrices, comparing site 1 to itself and the 18 other sites. The distance matrices are not
fully printed to save space; readers can compute them from the data in the upper panel. Values in
the lower panel are rounded to a single decimal place.

Sampling sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Species 1 1 2 4 7 8 7 4 2 1 0 0 0 0 0 0 0 0 0 0

Species 2 0 0 0 0 0 1 2 4 7 8 7 4 2 1 0 0 0 0 0

Species 3 0 0 0 0 0 0 0 0 0 0 1 2 4 7 8 7 4 2 1

D1 (Euclidean) 0.0 1.0 3.0 6.0 7.0 6.1 3.6 4.1 7.0 8.1 7.1 4.6 4.6 7.1 8.1 7.1 4.1 2.2 1.4

D14 = (1 – S17) 0.0 0.3 0.6 0.8 0.8 0.8 0.7 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 0.0 0.6 0.8 0.9 0.9 0.9 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

D16 (χ2 distance) 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.6 2.1 2.4 2.3 2.2 2.2 2.3 2.4 2.4 2.4 2.4 2.4

D14

Gradient
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• A fourth distance matrix was computed using the χ2 distance D16 , which is also a coefficient
excluding double-zeros. Principal coordinate analysis produced 19 eigenvalues: two positive (64
and 36% of the variation) and 17 null. The χ2 distance (D16) is the coefficient preserved in
correspondence analysis (Section 9.4). This analysis also produces one dimension less than the
original number of species, or even fewer in the case of degenerate matrices.

This example shows that different distance (or similarity) measures may lead to very
different numbers of dimensions of the Euclidean representations. In the analyses reported here,
the numbers of dimensions obtained were 3 for distance D1, 11 for D14 (not counting the
complex axes corresponding to negative eigenvalues), 17 (after correction of D14 by the largest
negative eigenvalue), 18 for the square root of D14, and 2 for D16.

Only the Euclidean distance and derived coefficients lead to a number of principal
axes equal to the original number of variables. Other coefficients may produce fewer,
or more axes. The dimensionality of a principal coordinate space is a function of the
number of original variables, mediated through the similarity or distance measure that
was selected for the analysis.

There are many applications of principal coordinate analysis in the ecological
literature. This method may be used in conjunction with clustering techniques; an
example is presented in Ecological application 10.1. Direct applications of the method
are summarized in Ecological applications 9.2a and 9.2b. The application of principal
coordinate analysis to the clustering of large numbers of objects is discussed in
Subsection 8.7.3.

Ecological application  9.2a

Field & Robb (1970) studied the molluscs and barnacles from a rocky shore (21 quadrats) in
False Bay, South Africa, in order to determine the influence of factors emergence and wave on
these communities. Quadrats 1 to 10, on a transect parallel to the shoreline, differed in their
exposure to wave action; quadrats 11 to 21, located on a transect at right angle to the shoreline,
covered the spectrum between the mean high and mean low waters of spring tides. 79 species
were counted, one reaching 10 864 individuals in a single quadrat. When going up the shore,
quadrats had progressively larger numbers of individuals and smaller numbers of species. This
illustrates the principle according to which an increasing environmental stress (here, the
emergence factor) results in decreasing diversity. It also shows that the few species that can
withstand a high degree of stress do not encounter much interspecific competition and may
therefore become very abundant.

The same principal coordinate ordination could have been obtained by estimating species
abundances with a lesser degree of precision, e.g. using classes of abundance. Table 7.3 gives
the association measures that would have been appropriate for such data.

Species abundances were first normalized by logarithmic transformation
, then centred ( ), to form matrix Y = [yij] containing the data

to be analysed. Scalar products among quadrat vectors were used as the measure of similarity:

y'ij( )
y''ij ln y'ij 1+( )= yij y''ij yi–=

Sn n× Yn p× Y'p n×=
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Principal coordinates were computed using a variant procedure proposed by Orlóci (1966).
Fig. 9.13 displays the ordination of quadrats 1 to 19 in the space of the first two principal
coordinates. The ordination was also calculated including quadrats 20 and 21 but, since these
came from the highest part of the shore, they introduced so much variation in the analysis that
the factor emergence dominated the first two principal coordinates. For the present Ecological
application, only the ordination of quadrats 1 to 19 is shown. The authors looked for a
relationship between this ordination and the two environmental factors, by calculating
Spearman's rank correlation coefficients (eq. 5.3) between the ranks of the quadrats on each
principal axis and their ranks on the two environmental factors. This showed that the first
principal axis had a significant correlation with elevation with respect to the shoreline
(emergence), whereas the second axis was significantly related to wave action. The authors
concluded that PCoA is well adapted to the study of ecological gradients, provided that the data
set is fairly homogeneous. (Correspondence analysis, described in Section 9.4, would have been
another appropriate way of obtaining an ordination of these quadrats.)

Ecological application  9.2b

Ardisson et al. (1990) investigated the spatio-temporal organization of epibenthic communities
in the Estuary and Gulf of St. Lawrence, an area ca. 1150 × 300 km. Quantitative data were

Figure 9.13 Ordination of quadrats 1 to 19 in the space of the first two principal coordinates (PCoA axes I
and II). Modified from Field & Robb (1970).
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obtained over 8 years, between 1975 and 1984, from 161 collectors (navigation buoys) moored
yearly from May through November. 

Each year was represented by a data table of 161 sites (buoys) × 5 dominant species (dry
biomass). A similarity matrix among sites was computed for each year separately, using the
asymmetrical form of the Gower similarity coefficient (S19). The eight yearly matrices were
compared to one another using the Mantel statistic (Subsection 10.5.1). A principal coordinate
analysis (Fig. 9.14) was conducted on the resulting matrix of Mantel statistics, to determine
whether year-to-year differences were random or organized. The among-year pattern of
dispersion suggested the existence of a cycle of variation whose length was about equal to the
duration of the study. This is supported by the fact that all Mantel tests conducted between
consecutive years were highly significant (p ≤ 0.001). This cycle might represent the response of
the Estuary-Gulf system, as an integrated unit, to external inputs of auxiliary energy, although
the specific causal process, physical or biotic, remains unknown.

This last Ecological application showed that the usefulness of principal coordinate
analysis is not limited to projecting, in reduced space, classical resemblance matrices
among objects. In the example, the relationships among data tables, as expressed by
Mantel statistics, were represented in a Euclidean space using PCoA. The method may

Mantel
statistic

Figure 9.14 Among-year variability illustrated in the space of the first two principal coordinates, obtained
from analysing a matrix of Mantel statistics comparing yearly similarity matrices. Recomputed
from the Mantel statistic values provided in Fig. 8 of Ardisson et al. (1990).
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actually be applied to any type of symmetric resemblance matrix. This includes cases
where the measures of resemblance are obtained directly from observation
(e.g. interaction matrices in behavioural studies) or from laboratory work (DNA
hybridisation results, serological data, etc.). If the resulting matrix is non-symmetric, it
may be decomposed into a symmetric and a skew-symmetric component (Section 2.3)
which can be analysed separately by PCoA. Either the upper or the lower triangular
portion of the skew-symmetric matrix is analysed in such a case; the two analyses
produce identical results.

6 — Algorithms

Principal coordinates are easy to compute for any distance matrix, using the standard
eigenanalysis subprograms mentioned in Subsection 9.1.8 (e.g. Householder
reduction). Follow the steps summarized in Table 9.10.

One may prefer to use, here again, an algorithm that allows the computation of the
first few eigenvectors only. Indeed, it may be painfully long to wait for a program to
compute all eigenvectors of a very large matrix, when only the first few are needed to
plot a reduced-space ordination diagram. The “two-way weighted summation”

Table 9.10 Computing principal coordinates.

a) Centre the distance matrix

Centre the distance matrix following Gower’s method (eqs. 9.21 and 9.22).

b) Compute the eigenvalues and eigenvectors

Use any eigenanalysis subroutine.

If the “two-way weighted summation” algorithm (TWWS) is chosen, use steps 2 to 6 of
Table 9.5, including orthogonalization and normalization, as well as the stopping rule of step 7.
Modify the algorithm (Table 9.5) as follows:

• Step 3: the column scores are made equal to the row scores.

• Step 7: the eigenvalue is estimated by S obtained from the last normalization (Step 6.1), at the
end of the iteration loop. No division by (n – 1) is necessary.

c) Final scaling

Scale each eigenvector k to length  to obtain the principal coordinates.

Eigenvalues obtained from PCoA are larger than those from PCA by a factor (n – 1).

λk
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algorithm (TWWS) of ter Braak, detailed in Table 9.5, is a good way of obtaining
them. Two changes must be made, however (Table 9.10): 

• Since the analysis involves a square symmetric distance matrix, the row and column
scores provide the same ordination. So, in Step 3 of the algorithm (Table 9.5), the
column scores are simply made equal to the row scores.

• The eigenvalue associated with each principal coordinate is estimated by the S value
obtained during the last normalization (Step 6.1), at the end of the iteration loop (Steps
3 to 7); no division by (n – 1) is necessary. The reason is that the eigenvector itself is
sought, this time, and not the principal component.

If the TWWS algorithm is used to compute a large number of principal
coordinates, or all (n – 1) of them, a decision rule must be included to stop the program
when an eigenvalue estimate becomes “dangerously” close to zero; if a null eigenvalue
occurred, there would be division by 0 during normalization (Step 6.2, Table 9.5) and
the computation would be interrupted. Cases where the number of positive eigenvalues
c is smaller than (n – 1) have been described in Subsection 9.2.1. Negative
eigenvalues, if present, are produced by the algorithm mixed among the positive
values, in decreasing order of their absolute values; they are identifiable by the fact
that the corresponding eigenvector elements change signs at each iteration.

9.3 Nonmetric multidimensional scaling (MDS)

All reduced-space ordination methods start from an ordination (scaling) of the objects
in full-dimensional space and attempt to represent them in a few dimensions while
preserving, as well as possible, the distance relationships among the objects. There are
cases where the exact preservation of distances is not of primary importance, the
priority being instead to represent the objects in a small and specified number of
dimensions — usually two or three. In such cases, the objective is to plot dissimilar
objects far apart in the ordination space and similar objects close to one another. This
is called the preservation of ordering relationships among objects. The method to do
so is called nonmetric multidimensional scaling (NMDS, or simply MDS). It was
devised by psychometricians Shepard (1962, 1966) and Kruskal (1964a, b). Programs
for MDS were originally distributed by Bell Laboratories in New Jersey, where the
method originated; see Carroll (1987) for a review. The method is now available in
several major (SPSS, SAS, SYSTAT, etc.) and specialized computer packages*. A useful
reference is the book of Kruskal & Wish (1978). Relationships between MDS and
other forms of ordination have been explained by Gower (1987). Extensions of MDS
to several matrices, weighted models, the analysis of preference data, etc. are
discussed by Young (1985) and Carroll (1987). A form of hybrid scaling, combining
metric and nonmetric scaling criteria, was proposed by Faith et al. (1987); it is further
explained in Belbin (1991) and is available in packages DECODA and PATN.
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Like principal coordinate analysis (PCoA), MDS is not limited to Euclidean
distance matrices; it can produce ordinations of objects from any distance matrix. The
method can also proceed with missing distance estimates — actually, the more missing
distances there are, the easier the computations — as long as there are enough
measures left to position each object with respect to a few of the others. This feature
makes it a method of choice for the analysis of matrices obtained by direct observation
(e.g. behaviour studies) or laboratory assays, where missing pairwise distances often
occur. Some programs can handle non-symmetric distance matrices, for which they
provide a compromise solution between distances in the upper and lower triangular
parts of the matrix. Contrary to PCA, PCoA, or CA, which are eigenvector methods,
MDS calculations do not maximize the variability associated with individual axes of
the ordination; MDS axes are arbitrary, so that plots may arbitrarily be rotated, centred,
or inverted. Reasons for this will become clear from the presentation of the method.

Consider a distance matrix Dn×n = [Dhi] computed using a measure appropriate to
the data at hand (Chapter 7). Matrix D may also result from direct observations,
e.g. affinities among individuals or species found in serological, DNA pairing, or
behavioural studies; these matrices may be non-symmetric. Nonmetric
multidimensional scaling of matrix D may be summarized in the following steps.

1) Specify the number m of dimensions chosen a priori for scaling the objects. The
output will provide coordinates of the n objects on m axes. If several configurations for
different numbers of dimensions are sought — say, 2, 3, 4, and 5 dimensions, they
must be computed separately. Several programs actually allow solutions to cascade
from high to low numbers of dimensions — for instance from 4 to 3 to 2 to 1.

2) Construct an initial configuration of the objects in m dimensions, to be used as a
starting point for the iterative adjustment process of steps 3 to 7. The way this initial
configuration is chosen is critical because the solution on which the algorithm
eventually converges depends to some extent on the initial positions of the objects. The

* MDS programs for microcomputers are found in the following commercially available
packages (list not exhaustive): 

• DECODA is a package for vegetation studies written by Peter R. Minchin, School of Botany,
The University of Melbourne. It is distributed by Anutech Pty Ltd., Canberra, A.C.T. 0200,
Australia.

• How to obtain NTSYS is described in Table 13.4. 

• How to obtain PATN, is described in the footnote of p. 302.

• PRIMER was developed by M. R. Carr and K. R. Clarke at Plymouth Marine Laboratory,
Prospect Place, West Hoe, Plymouth PL1 3DH, Great Britain. 

• PC-ORD is available from MjM Software, P.O. Box 129, Gleneden Beach, Oregon 97388,
USA. Besides MDS, PC-ORD contains programs for PCA, CA, and DCA (this Chapter),
diversity indices (Section 6.5), agglomerative cluster analysis (Section 8.5), TWINSPAN

(Subsection 8.7.4), indicator value analysis (Subsection 8.9.3), Mantel test (Section 10.5), CCA
(Section 11.3), species-area curves, and other procedures of interest to ecologists. WWWeb site:
<http://ourworld.compuserve.com/homepages/MJMSoftware/pcordwin.htm>.
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same problem was encountered with K-means partitioning (Section 8.8); the “space of
solutions” may contain several local minima besides the overall minimum (Fig. 8.17).
The most commonly used solutions to this problem are the following:

• Run the program several times, starting from different random initial placements of
the objects. The solution minimizing the objective function (step 5) is retained. 

• Initiate the run from an ordination obtained using another method, e.g. PCoA. 

• If the data are thought to be spatially structured and the geographic positions of the
objects are known, these geographic positions may be used as the starting
configuration for MDS of a matrix D computed from the data.

• Work step by step from higher to lower dimensionality. Compute, for instance, a first
MDS solution in 5 dimensions from a random initial placement of the objects. Note the
stress value (eqs. 9.28 to 9.30), which should be low because the high number of
dimensions imposes little constraint to the distances. Use 4 of the 5 dimensions so
obtained as the initial configuration for a run in 4 dimensions, and so forth until the
desired number (m) of ordination dimensions is reached.

3) Calculate a matrix of fitted distances dhi in the ordination space, using one of
Minkowski’s metrics (D6, eq. 7.44). Most often, one chooses the second degree of
Minkowski’s metric, which is the Euclidean distance. (a) In the first iteration, distances
dhi are computed from the initial (often random) configuration. (b) In subsequent
iterations, the configuration is that obtained in step 6.

4) Consider the Shepard diagram (Figs. 9.1 and 9.15) comparing the fitted
distances dhi to the empirical (i.e. original) distances Dhi. Regress dhi on Dhi. Values
forecasted by the regression line are called . The choice of the type of regression is
left to the users, given the choices implemented in the computer program. Usual
choices are the linear, polynomial, or monotone regressions (also called
“nonparametric”, although there are other types of nonparametric regression methods). 

Monotone regression is a step-function which is constrained to always increase
from left to right (Fig. 9.15b); this is a common choice in MDS. A monotone
regression is equivalent to a linear regression performed after monotonic
transformation of the original distances Dhi, so as to maximize the linear relationship
between Dhi and dhi. The regression is fitted by least squares.

If there are tied values among the empirical distances, Kruskal (1964a, b) has
defined two approaches that may be followed in monotone regression. Ties are likely
to occur when the empirical distances Dhi are computed from a table of raw data using
one of the coefficients of Chapter 7; they are less likely to occur when distances result
from direct observations. In Fig. 9.15b, for instance, there are ties for several of the
values on the abscissa; the largest number of ties is found at D = Dmax = 1. 

Local
minimum

Shepard
diagram

d̂hi

Tied values
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• In Kruskal’s primary approach, one accepts the fact that, if an empirical distance Dhi
corresponds to different fitted values dhi, it also corresponds to different forecasted
values . Hence the monotone regression line is allowed to go straight up in a
column of tied values, subject to the constraint that the regression line is not allowed to
decrease compared to the previous values D. The monotone regression line is not a
mathematical function in that case, however. In order to insure monotonicity, the only
constraint on the  values is:

when Dgi < Dhi, then 

• In the secondary approach, the forecasted value  is the same for all fitted
distances dhi that are tied to a given empirical distance value Dhi. To insure
monotonicity, the constraints on the  values are:

when Dgi < Dhi, then 

when Dgi = Dhi, then 

In this approach, the least-squares solution for  is the mean of the tied dhi’s when
considering a single value Dhi. The vertical difference in the diagram between dhi and

 is used as the contribution of that point to the stress formula, below. In Fig. 9.15b,
the secondary approach is applied to all tied values found for Dhi < (Dmax = 1), and the
primary approach when Dhi = Dmax = 1.

Computer programs may differ in the way they handle ties. This may cause major
discrepancies between reported stress values corresponding to the final solutions,
although the final configurations of points are usually very similar from program to
program, except when different programs identify distinct final solutions having very
similar stress values.

A reduced-space scaling would be perfect if all points in the Shepard diagram fell
exactly on the regression line (straight line, smooth curve, or step-function); the rank
order of the fitted distances dhi would be exactly the same as that of the original
distances Dhi and the value of the objective function (step 5) would be zero.

5) Measure the goodness-of-fit of the regression using an objective function. All
objective functions used in MDS are based on the sum of the squared differences
between fitted values  and the corresponding values  forecasted by the
regression function; this is the usual sum of squared residuals of regression analysis
(least-squares criterion, Subsection 10.3.1). Several variants have been proposed and
are used in MDS programs:

Stress (formula 1) = (9.28)

d̂hi
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Stress (formula 2) = (9.29)

Sstress = (9.30)

The denominators in the two Stress formulas (eq. 9.28 and 9.29) are scaling terms that
make the objective functions dimensionless and produce Stress values between 0
and 1. These objective functions may use the square root, or not, without changing the
issue; a configuration that minimizes these objective functions would also minimize
the non-square-rooted forms. Other objective criteria, such as Strain, have been
proposed. All objective functions measure how far the reduced-space configuration is
from being monotonic to the original distances Dhi. Their values are only relative,
measuring the decrease in lack-of-fit between iterations of the calculation procedure.

6) Improve the configuration by moving it slightly in a direction of decreasing
stress. This is done by a numerical optimization algorithm called method of steepest
descent; the method is explained, for instance, in Numerical Recipes (Press et al.,
1986) and in Kruskal (1964b). The direction of steepest descent is the direction in the
space of solutions along which stress is decreasing most rapidly. This direction is
found by analysing the partial derivatives of the stress function (Carroll, 1987). The
idea is to move points in the ordination plot to new positions that are likely to decrease
the stress most rapidly.

7) Repeat steps 3 to 6 until the objective function reaches a small, predetermined
value (tolerated lack-of-fit), or until convergence is achieved, i.e. until it reaches a
minimum and no further progress can be made. The coordinates calculated at the last
passage through step 6 become the coordinates of the n objects in the m dimensions of
the multidimensional scaling ordination.

8) Most MDS programs rotate the final solution using principal component
analysis, for easier interpretation.

In most situations, users of MDS decide that they want a representation of the
objects in two or three dimensions, for illustration or other purpose. In some cases,
however, one wonders what the “best” number of dimensions would be for a data set,
i.e. what would be the best compromise between a summary of the data and an
accurate representation of the distances. As pointed out by Kruskal & Wish (1978),
determining the dimensionality of an MDS ordination is as much a substantive as a
statistical question. The substantive aspects concern the interpretability of the axes,
ease of use, and stability of the solution. The statistical aspect is easier to approach
since stress may be used as a guide to dimensionality. Plot the stress values as a
function of dimensionality of the solutions, using one of the stress formulas above
(eqs. 9.28 - 9.30). Since stress decreases as dimensionality increases, choose for the
final solution the dimensionality where the change in stress becomes small.
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∑ dhi d–( )
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For species count data, Faith et al. (1987) have shown, through simulations, that
the following strategy yields informative ordination results: (1) standardize the data by
dividing each value by the maximum abundance for that species in the data set; (2) use
the Steinhaus (S17) or the Kulczynski (S18) similarity measure; (3) compute the
ordination by MDS.

Besides the advantages mentioned above for the treatment of nonmetric distances
or non-symmetric matrices (see also Sections 2.3 and 8.10 on this topic), Gower
(1966) pointed out that MDS can summarize distances in fewer dimensions than
principal coordinate analysis (i.e. lower stress in, say, two dimensions). Results of the
two methods may be compared by examining Shepard diagrams of the results obtained
by PCoA and MDS, respectively. If the scatter of points in the PCoA Shepard diagram
is narrow, as in Fig. 9.1a or b, the reduced-space ordination is useful in that it correctly
reflects the relative positions of the objects. If it is wide or nearly circular (Fig. 9.1c),
the ordination diagram is of little use and one may try MDS to find a more satisfactory
solution in a few dimensions. A PCoA solution remains easier to compute in most
cases, however, because it does not require multiple runs, and it is obtained using a
direct eigenanalysis algorithm instead of an iterative procedure.

Numerical example 2 continued. The Bray & Curtis distance matrix (D14) computed in
Table 9.9 was subjected to MDS analysis using the package DECODA (see above). This MDS
program uses Stress formula 1 (eq. 9.28). Repeated runs, using m = 2 dimensions but different
random starting configurations, produced very similar results; the best one had a stress value of
0.0181 (Fig. 9.15a). 

Kruskal’s secondary approach, explained with computation step 4 above, was used in
Fig. 9.15b for all tied values found when Dhi < Dmax , while the primary approach was used
when Dhi = Dmax = 1. The rationale for this follows from the fact that the empirical distances Dhi
are blocked by an artificial ceiling Dmax of the distance function, over which they cannot
increase. So, pairs of sites tied at distance Dmax = 1, for which dhi is larger than the previous
value , are not expected to be the same distance apart in the ordination. Hence these values
should not contribute to the stress despite their ties.

Using  as the distance measure, instead of D14 , produced an identical ordination,
since MDS is invariant to monotonic transformations of the distances. The stress value did not
change either, because the square root transformation of D14 affects only the abscissa of
Fig. 9.15b, whereas the stress is computed along the ordinate. The arch effect found in Fig. 9.17
(Subsection 9.4.5) does not appear in Fig. 9.15a. The horizontal axis of the MDS ordination
reproduces the original gradient almost perfectly in this example.

Points in an MDS plot may be rotated, translated, inverted, or scaled a posteriori in any way
considered appropriate to achieve maximum interpretability or to illustrate the results. This may
be done either by hand or, for example, through canonical analysis of the MDS axes with respect
to a set of explanatory variables (Chapter 11).

With the present data, a one-dimensional ordination (stress = 0.1089) perfectly reconstructed
the gradient of sites 1 to 19; the same ordination was always obtained when repeating the run
from different random starting configurations and cascading from 3 to 2 to 1 dimensions. This
configuration, and the low stress value, were hardly ever obtained when performing the MDS
ordination directly in one dimension, without the cascading procedure.

d̂

D14
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Ecological application  9.3

Sprules (1980) used nonmetric multidimensional scaling to analyse seasonal changes in
zooplankton assemblages at a site located in Lake Blelham, in the Lake District of northern
England, and in two experimental enclosures built in that lake. The three sites were surveyed on
a weekly basis from June to December 1976. MDS was preferred to PCA because the responses
of species to environmental gradients could not be assumed to be linear. 

For each site, points in the MDS ordination diagram were connected in chronological order
to reflect the seasonal changes in faunal composition. The plot (not reproduced here) is therefore
of the same type as Fig. 12.23. In one of the enclosures, the assemblage oscillated about a mean
value without any clear cycle; small-size species dominated the assemblage. In the other
enclosure and the lake, changes were more directional; at these sites, predators were more
abundant. Based on available evidence, Sprules concluded that the differences observed
between the two patterns of seasonal change were related to differences in predation intensity,
quality of food available to herbivores, and nutrient dynamics.

Several ecological applications of nonmetric multidimensional scaling are found in
the ecological literature. Two papers are especially interesting: Whittington & Hughes
(1972; Ordovician biogeography from the analysis of trilobite fauna), and Fasham
(1977; comparison of nonmetric multidimensional scaling, principal coordinate
analysis and correspondence analysis for the ordination of simulated coenoclines and
coenoplanes). Ecological application 12.6a features a MDS plot. 

Figure 9.15 (a) MDS ordination (2-dimensional) of the D14 distance matrix in Table 9.9. Sampling sites are
numbered as in Fig. 9.12 and Table 9.9. (b) Shepard diagram of the final solution showing the
monotone regression line fitted by nonparametric regression. The scatter about the line is
measured by a stress function (eq. 9.28 to 9.30).
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9.4 Correspondence analysis (CA)

Correspondence analysis (CA) was developed independently by several authors. It
was first proposed for the analysis of contingency tables by Hirschfeld (1935), Fisher
(1940), Benzécri (1969), and others. In a historical review of the subject, Nishisato
(1980) traces its origin back to 1933. It was applied in ecology to the analysis of sites ×
species tables by Roux & Roux (1967), Hatheway (1971), Ibanez & Séguin (1972),
Hill (1973b, 1974), Orlóci (1975), and others. Its use was generalized to other types of
data tables by Benzécri and his collaborators (Escofier-Cordier, 1969; Benzécri and
coll., 1973). Other important books on correspondence analysis are those of Nishisato
(1980), Greenacre (1983), ter Braak (1988), and van Rijckevorsel & de Leeuw (1988).
In the course of its history, the method was successively designated under the English
names contingency table analysis (Fisher, 1940), RQ-technique (Hatheway, 1971),
reciprocal averaging (Hill, 1973b), correspondence analysis (Hill, 1974), reciprocal
ordering (Orlóci, 1975), dual scaling (Nishisato, 1980), and homogeneity analysis
(Meulman, 1982), while it is known in French as analyse factorielle des
correspondances (Cordier, 1965; Escofier-Cordier, 1969).

Correspondence analysis was first proposed for analysing two-way contingency
tables (Section 6.4). In such tables, the states of a first descriptor (rows) are compared
to the states of a second descriptor (columns). Data in each cell of the table are
frequencies, i.e. numbers of objects coded with a combination of states of the two
descriptors. These frequencies are positive integers or zeros. The most common
application of CA in ecology is the analysis of species data (presence-absence or
abundance values) at different sampling sites (Subsection 4). The rows and columns of
the data table then correspond to sites and species, respectively. Such a table is
analogous to a contingency table because the data are frequencies. 

In general, correspondence analysis may be applied to any data table that is
dimensionally homogeneous (i.e. the physical dimensions of all variables are the
same; Chapter 3) and only contains positive integers or zeros. The χ2 distance (D16),
which is a coefficient excluding double-zeros (Chapter 7), is used to quantify the
relationships among rows and columns (Table 9.1).

Correspondence analysis can also be conducted on contingency tables that
compare two groups of descriptors. For example, the rows of the table could be
different species, each divided into a few classes of abundance, and the columns,
different descriptors of the physical environment with, for each, a number of columns
equal to the number of its states. Each site (object) then contributes to several
frequencies of the table, but this does not invalidate the results because of the
transformations described in the next subsection. A better way of comparing species to
environmental data is canonical correspondence analysis (CCA, Section 11.2). CCA
does not require that the species and environmental data be recoded into a few classes.

Contingency
table

Frequencies
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Correspondence analysis is primarily a method of ordination. As such, it is similar
to principal component analysis; it preserves, in the space of the principal axes
(i.e. after rotation), the Euclidean distance between profiles of weighted conditional
probabilities. This is equivalent to preserving the χ2 distance (D16, eq. 7.52) between
the rows or columns of the contingency table. Relationships between correspondence
analysis and principal component analysis will be further described in the next
subsections.

1 — Computation

This description of correspondence analysis will proceed in three steps. (1) First, the
contingency table will be transformed into a table of contributions to the Pearson chi-
square statistic after fitting a null model to the contingency table. (2) Singular value
decomposition will be applied to that table and the eigenvalues and eigenvectors will
be computed, as in PCA. (3) Further matrix operations will lead to the various tables
needed for plotting useful diagrams. Besides its role as an ordination method, CA may
be used for studying the proximities between the rows (or the columns) of the
contingency table, as well as the correspondence between rows and columns. 

Consider a contingency table with r rows and c columns, as in Section 6.2. Assume
that the table is written in such a way that r ≥ c; the table may be transposed to meet
this condition, since the rows and columns of a contingency table play identical roles.
Symbolism is as follows: 

• Absolute frequencies are represented by fij and relative frequencies (“probabilities”
or “proportions”) by pij.

• pij is the frequency fij in cell ij divided by the sum f++ of the fij’s over the whole
table. The table containing the relative frequencies pij is called Q; its size is (r×c).

• Row weight pi+ is equal to fi+/f++ , where fi+ is the sum of values in row i. Vector
[pi+] is of size (r).

• Likewise, column weight p+j is equal to f+j/f++ , where f+j is the sum of values in
column j. Vector [p+j] is of size (c).

The steps are as follows:

1) The Pearson chi-square statistic,  (eq. 6.5), is a sum of squared  values,
computed for every cell ij of the contingency table. Each  value is the standardized
residual of a frequency fij after fitting a null model to the contingency table. The null
model states that there is no relationship between the rows and columns of the table
(eq. 6.4). Simple algebra shows that the  value for each cell is:

(9.31)

χP
2 χij

χij

χij

Contribution
to chi-square
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Correspondence analysis is based upon a matrix called (r×c) in this book:

(9.32)

Values , which are at the basis of correspondence analysis, only differ from the 
values by a constant, so that  = / . This difference causes all the eigenvalues
to be smaller than or equal to 1, as will be shown below. Values  could also be
calculated directly from the fij’s:

(9.33)

The sum of squares of all values in matrix , ∑ , measures the total inertia in
. It is also equal to the sum of all eigenvalues to be extracted by eigenanalysis of .

2) Singular value decomposition (SVD, eq. 2.31) is applied to matrix , with the
following result (symbolism is slightly modified compared to Section 2.11):

(r×c) = (r×c) W(diagonal, c×c) U'(c×c) (9.34)

where both U and  are column-orthonormal matrices (i.e. matrices containing
column vectors that are normalized and orthogonal to one another; Section 4.4) and W
is a diagonal matrix D(wi). The diagonal values wi in W, which are non-negative, are
the singular values of .

Because  = WU' (eq. 9.34), the multiplication  gives the following result:

(c×c) = UW' ( ) W U' (9.35)

Since  is orthonormal, , so that:

 = U W'W U' (9.36)

Equation 2.28 shows that the eigenvalues (forming diagonal matrix ΛΛΛΛ) and
eigenvectors (matrix U) of a square matrix A obey the relationship: 

A = UΛΛΛΛU–1

If the vectors in U are normalized, U is an orthonormal matrix with the property
U–1 = U'. As a consequence, eq. 2.28 may be rewritten as

A = UΛΛΛΛU' (9.37)

It follows that the diagonal matrix [W'W], which contains squared singular values on
its diagonal, is the diagonal matrix ΛΛΛΛ(c×c) of the eigenvalues of . Similarly, the

Q
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orthonormal matrix U of eqs. 9.35 and 9.36 is the same as matrix U of eq. 9.37; it is the
matrix of eigenvectors of (c×c), containing the loadings of the columns of the
contingency table. A similar reasoning applied to matrix (r×r) shows that the
orthonormal matrix  produced by singular value decomposition is the matrix of
eigenvectors of , containing the loadings of the rows of the contingency table.

The relationship between eq. 9.34 and eigenvalue decomposition (eq. 2.22) is the same as in
principal component analysis (Subsection 9.1.9). Prior to eigenvalue decomposition, a square
matrix of sums of squares and cross products  must be computed; this matrix may be called
a “covariance matrix” in some general sense. This is similar to using matrix Y'Y for eigenvalue
decomposition in PCA; Y'Y is a covariance matrix S except for the division by (n – 1). In PCA,
however, matrix Y was centred on the column means prior to computing Y'Y whereas, in CA,
matrix  is centred by the operation (Oij – Eij) (eqs. 9.31 and 9.32). This operation does not
make the sums of the rows and columns equal to zero. 

Results identical to those of SVD would be obtained by applying eigenvalue
analysis (eq. 2.22 and 9.1), either to the covariance matrix , which would produce
the matrices of eigenvalues ΛΛΛΛ and eigenvectors U, or to matrix , which would
provide the matrices of eigenvalues ΛΛΛΛ and eigenvectors . Actually, it is not necessary
to repeat the eigenanalysis to obtain U and , because:

(r×c) = ΛΛΛΛ–1/2 (9.38)

and U(c×c) = ΛΛΛΛ–1/2 (9.39)

In the sequel, all matrices derived from U will be without a hat and all matrices derived
from  will bear a hat.

Singular value decomposition, or eigenvalue analysis of matrix , always
yields one null eigenvalue. This is due to the centring in eq. 9.32, where (pi+ p+j) is
subtracted from each value pij. Thus, there are (c – 1) positive eigenvalues when r ≥ c,
so that the part of matrix U which is considered for interpretation is of size c×(c–1).
Likewise, the part of  which is considered is of size r×(c–1).

The analysis, by either SVD or eigenvalue decomposition, is usually performed on
matrix  with r ≥ c, for convenience. The reason is that not all SVD programs can
handle matrices with r < c. In addition, when using eigenanalysis programs,
computations are shorter when performed on the smallest of the two possible
covariance matrices, both solutions leading to identical results. If one proceeds from a
matrix such that r < c, the first r–1 eigenvalues are the same as in the analysis of the
transposed matrix, the remaining eigenvalues being zero.

Consider now the uncentred matrix (r×c), where (pi+ p+j) is not subtracted from
each term pij in the numerator:

(9.40)
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Û

Q'Q

Û
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What would happen if the analysis was based on matrix  instead of  (eq. 9.32)?
The only difference is that using  would produce one extra eigenvalue; all the other
results would be identical. This extra eigenvalue is easy to recognize because its value
is 1 in correspondence analysis. This eigenvalue is meaningless because it only reflects
the distance between the centre of mass of the data points in the ordination space and
the origin of the system of axes. In other words, it corresponds to the lack of centring
of the scatter of points on the origin (Hill, 1974); it explains none of the dispersion
(Lebart & Fénelon, 1971). There are computer programs that do not make the centring;
the first eigenvalue (λ1 = 1) and eigenvector thus obtained must be discarded. All other
programs, that carry out the calculations on matrix , produce one eigenvalue less
than min[r, c]; if the data table Q is such that r ≥ c, correspondence analysis yields
(c–1) non-null and positive eigenvalues.

Alternatively, what would happen if the analysis was based on the matrix of χij
values (eq. 9.31) instead of matrix ? Since values χij =  it follows that the
total variance in matrix [χij] is larger than that of matrix  by a factor

, so that all eigenvalues of matrix [χij] would be larger than those of
 by a factor . The normalized eigenvectors in matrices U and  would remain

unaffected. When the analysis is carried out on matrix , all eigenvalues are smaller
than or equal to 1, which is more convenient.

3) Matrices U and  may be used to plot the positions of the row and column
vectors in two separate scatter diagrams. For joint plots, various scalings of the row
and column scores have been proposed. First, matrices U and  can be weighted by
the inverse of the square roots of the column and row scores, written out in diagonal
matrices D(p+j)

–1/2(size c×c) and D(pi+)–1/2(size r×r), respectively:

V(c×c) = D(p+j)
–1/2 U (9.41)

(r×c) = D(pi+)–1/2 (9.42)

Discarding the null eigenvalue, the part of matrix V to consider for interpretation is of
size c×(c–1) and the part of matrix  to consider is of size r×(c–1).

Matrix F, which gives the positions of the rows of the contingency table in the
correspondence analysis space, is obtained from the transformed matrix of
eigenvectors V, which gives the positions of the columns in that space. This is done by
applying the usual equation for component scores (eq. 9.4) to data matrix Q, with
division by the row weights:

F(r×c) = ΛΛΛΛ1/2 (9.43a)

or F(r×c) = D(pi+)–1QV (9.43b)

In the same way, matrix , which gives the positions of the columns of the
contingency table in the correspondence analysis space, is obtained from the
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transformed matrix of eigenvectors , which gives the positions of the rows in that
space. The equation is the same as above, except that division here is by the column
weights:

(c×c) = VΛΛΛΛ1/2 (9.44a)

or (c×c) = D(p+j)
–1 (9.44b)

Discarding the null eigenvalue, the part of matrix F to consider for interpretation is of
size r×(c–1) and the part of matrix  to consider is of size c×(c–1). With this scaling,
matrices F and V form a pair such that the rows (given by matrix F) are at the centroid
(centre of mass or “barycentre”, from the Greek βαρυς , pronounced “barus”, heavy)
of the columns in matrix V. In the same way, matrices  and  form a pair such that
the columns (given by matrix ) are at the centroids of the rows in matrix . This
property is illustrated in the numerical example below. 

Scatter diagrams may be drawn using different combinations of the matrix scalings
described above. Scaling types 1 and 2 are the most commonly used by ecologists
when analysing species presence-absence or abundance data (ter Braak, 1990).

• Scaling type 1 — Draw a joint plot with the rows (matrix F) at the centroids of the
columns (matrix V). For sites × species data tables where sites are rows and species are
columns, this scaling is the most appropriate if one is primarily interested in the
ordination of sites. In matrix F, distances among sites preserve their χ2 distances (D16)
(ter Braak, 1987c; Numerical example, Subsection 2).

• Scaling type 2 — Draw a joint plot with the columns (matrix ) at the centroids of
the rows (matrix ). This scaling puts the species at the centroids of sites in the graph.
For sites × species data tables where sites are rows and species are columns, this is the
most appropriate scaling if one is primarily interested in the relationships among
species. This is because, in matrix , distances among species preserve their χ2

distances (see Numerical example, Subsection 2).

• Scaling type 3 — Assuming that the rows of the data matrix are objects (sites) and
the columns are descriptors (species), use separate diagrams to plot matrix U for the
column scores and matrix F for the row scores. The eigenvectors in matrix U are
normalized, as in PCA. The scaling of F is such that the Euclidean distances among the
rows of F are equal to the χ2 distances (D16) among objects of the original data table;
this property is illustrated in the example below. This is often the only choice available
in correspondence analysis programs that are not ecologically oriented. This scaling is
not appropriate for joint plots. [When the data matrix subjected to the analysis has the
variables (species) as rows and the objects (sites) as columns, one should plot, in
separate diagrams, matrix  for the row scores and matrix  for the column scores in
order to obtain the same representation as above. With this type of input, matrices U
and F are meaningless because U contains normalized site scores which do not have
any interesting distance-preservation properties.]
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Other possible, but less often used scaling methods are discussed by ter Braak
(1987c, 1990), including CANOCO’s* scaling method 3 which is offered as an
intermediate between the first two scaling options described above.

2 — Numerical example

The following example illustrates the calculations involved in correspondence analysis. In this
numerical example, a species (abundance score, 3 classes) has been observed at 100 sites. The
temperature (or any other environmental factor) at each site is coded from 1 (cold) to 3 (warm).
The contingency table (Table 9.11) contains the number of sites at which each combination of
the two descriptors was encountered. Subsection 4 will show that the same calculations may be
conducted on a site  × species data table, so that Table 9.11 can alternatively be seen as a
numerical example for the latter, as indicated in italics in the Table. The data table is of small
size (3 × 3), so as to allow readers to repeat the calculations. 

Matrix Q contains the proportions pij and the marginal distributions pi+ and p+j of the rows
and columns, respectively. Identifiers of the rows and columns are given in parentheses,
following Table 9.11:

* CANOCO is widely used for PCA, CA, and canonical analysis. See note at end of Section 11.0.

[pi+]

Q = [pij] =

[p+j] =

Table 9.11 Numerical example. Contingency table between two descriptors (roman type). Alternatively, the
Table could be a site-by-species data table (italics).

Descr. 2 – The species is: Rare or absent Abundant Very abundant Row
(0) (+) (++) sums

Species 1 Species 2 Species 3
Descr. 1
Temperature Sites

Cold (1) 1 10 10 20 40

Medium (2) 2 10 15 10 35

Warm (3) 3 15 5 5 25

Column sums 35 30 35 100

0( ) (+) (++)

1( )
2( )
3( )

0.10 0.10 0.20

0.10 0.15 0.10

0.15 0.05 0.05

0.40

0.35

0.25

0.35 0.30 0.35
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Matrix  is computed following eq. 9.32:

and matrix  following eq. 9.40:

The eigenvalues of  are λl = 0.09613 (70.1%), λ2 = 0.04094 (29.9%), and λ3 = 0
(because of the centring). The first two eigenvalues are also eigenvalues of , its third
eigenvalue being 1 (because  is not centred; eq. 9.40). The normalized eigenvectors of ,
corresponding to λl and λ2, are (in columns):

The normalized eigenvectors of  are (in columns):

The third eigenvector is of no use and is therefore not given. Most programs do not compute it.

In scaling type 1 (Fig. 9.16a), the states in the rows of the data matrix (1, 2, 3, called “rows”
hereinafter), whose coordinates will be stored in matrix F, are to be plotted at the centroids of the
column states (0, +, ++, called “columns” hereinafter). The scaling for the columns is obtained
using eq. 9.41: 

To put the rows (matrix F) at the centroids of the columns (matrix V), the position of each row
along an ordination axis is computed as the mean of the column positions, weighted by the

   (λl) (λ2)

U =

   (λl) (λ2)

   (λl) (λ2)

V = D(p+j)
–1/2 U =

Q
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Q qij[ ]
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  1.31871 0.34374–

0.37215–   1.48150

0.99972– 0.92612–
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relative frequencies of the observations in the various columns of that row. Consider the first
row of the data table (Table 9.11), for example. The relative frequencies (or conditional
probabilities, Section 6.4) of the three columns in that row are 0.25, 0.25, and 0.50. Multiplying
matrix V by that vector provides the coordinates of the first row in the ordination diagram:

[0.25  0.25  0.50]  = [–0.26322  –0.17862]

These coordinates put the first row at the centroid of the columns in Fig. 9.16a; they are stored in
the first row of matrix F. The row-conditional probabilities for the whole data table are found
using the matrix operation D(pi+)–1Q, so that matrix F is computed using eq. 9.43b:

   (λl) (λ2)

F = D(pi+)–1QV =

Figure 9.16 Correspondence analysis joint plots. (a) Scaling type 1: the rows of the contingency table
(circles, matrix F) are at the centroids (barycentres) of the columns (squares, matrix V).
(b) Scaling type 2: the columns (squares, matrix ) are at the centroids (barycentres) of the rows
(circles, matrix ).
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Using the formulae for the Euclidean (D1, eq. 7.34) and χ2 (D16, eq. 7.54) distances, one can
verify that the Euclidean distances among the rows of matrix F are equal to the χ2 distances
among the rows of the original data table (Table 9.11):

Matrix F thus provides a proper ordination of the rows of the original data matrix (temperatures
in the numerical example).

In scaling type 2 (Fig. 9.16b), the columns, whose coordinates will be stored in matrix ,
are to be plotted at the centroids of the rows (matrix ). The scaling for matrix  is obtained
using eq. 9.42:

To put the columns (matrix ) at the centroids of the rows (matrix ), the position of each
column along an ordination axis is computed as the mean of the row positions, weighted by the
relative frequencies of the observations in the various rows of that column. Consider the first
column of the data table (Table 9.11), for example. The relative frequencies of the three rows in
that column are (10/35 = 0.28571), (10/35 = 0.28571) and (15/35 = 0.42857). Multiplying
matrix  by that vector provides the coordinates of the first column in the ordination diagram:

[0.28571  0.28571  0.42857]  = [0.40887  –0.06955]

These coordinates put the first column at the centroid of the rows in Fig. 9.16a; they are stored in
the first row of matrix . The column-conditional probabilities for the whole data table are
found using the matrix operation D(p+j)

–1 , so that matrix  is computed using eq. 9.44a
or 9.44b:

D =

   (λl) (λ2)

 = D(pi+)–1/2  =

   (λl) (λ2)

 = VΛΛΛΛ1/2 = D(p+j)
–1 =

 (1)        (2)        (3)
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0              
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Using the formulae for the Euclidean (D1, eq. 7.34) and χ2 (D16, eq. 7.54) distances, one can
verify that the Euclidean distances among the rows of matrix  are equal to the χ2 distances
among the columns of the original data table (Table 9.11):

Matrix thus provides a proper ordination of the columns of the original data matrix (species
abundance classes in the numerical example).

3 — Interpretation

The relationship between matrices V and , which provide the ordinations of the
columns and rows of the contingency (or species data) table, respectively, is found by
combining eqs. 9.38, 9.41, and 9.42 in the following expression:

ΛΛΛΛ1/2 = D(pi+)–1/2 D(p+j)
1/2V (9.45)

This equation means that the ordination of the rows (matrix ) is related to the
ordination of the columns (matrix V), along principal axis h, by the value  which
is a measure of the “correlation” between these two ordinations. Value (1 – λh)
actually measures the difficulty of ordering, along principal axis h, the rows of the
contingency table from an ordination of the columns, or the converse (Orlóci, 1978).
The highest eigenvalue (0.096 in the above numerical example), or its square root
( ), is consequently a measure of the dependence between two unordered
descriptors, to be added to the measures described in Chapter 6. Williams (1952)
discusses different methods for testing the significance of R2 = λ.

Examination of joint plots (e.g. Fig. 9.16) allows one to draw conclusions about the
ecological relationships displayed by the data. With scaling type 1, (a) the distances
among rows (or sites in the case of a species × sites data table) in reduced space
approximate their χ2 distances and (b) the rows (sites) are at the centroids of the
columns (species). Positions of the centroids are calculated using weights equal to the
relative frequencies of the columns (species); columns (species) that are absent from a
row (site) have null weights and do not contribute to the position of that row (site).
Thus, the ordination of rows (sites) is meaningful. In addition, any row (site) found
near the point representing a column (species) is likely to have a high contribution of
that column (species); for binary (or species presence-absence) data, the row (site) is
more likely to possess the state of that column (or contain that species). 

With scaling type 2, it is the distances among columns (species) in reduced space
that approximate their χ2 distances, whereas columns (species) are at the centroids of
the rows (sites). Consequently (a), the ordination of columns (species) is meaningful,

D =
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and (b) any column (species) that lies close to the point representing a row (site) is
more likely to be found in the state of that row (site), or with higher frequency
(abundance) than in rows (sites) that are further away in the joint plot.

For species presence-absence or abundance data, insofar as a species has a
unimodal (i.e. bell-shaped) response curve along the axes of ecological variation
corresponding to the ordination axes, the optimum for that species should be close to
the point representing it in the ordination diagram and its frequency of occurrence or
abundance should decrease with distance from that point. Species that are absent at
most sites often appear at the edge of the scatter plot, near the point representing a site
where they happen to be present — by chance, or because they are favoured by some
rare condition occurring at that site. Such species have little influence on the analysis
because their numerical contributions are small (column sums in Table 9.11). Finally,
species that lie near the centre of the ordination diagram may have their optimum in
this area of the plot, or have two or several optima (bi- or multi-modal species), or else
be unrelated to the pair of ordination axes under consideration. Species of this last
group may express themselves along some other axis or axes. Close examination of the
raw data table may be required in this case. It is the species found away from the centre
of the diagram, but not near the edges, that are the most likely to display clear
relationships with the ordination axes (ter Braak, 1987c).

In Fig. 9.16 (a and b), the first CA axis (70.1% of the variance) orders the abundances in a
direction opposite to that of temperatures. Both graphs associate abundance (0) to the highest
temperature (3), abundance (+) to the intermediate temperature (2), and abundance (++) to the
lowest temperature (1). An analysis of the correspondence between rows and columns of the
contingency table following the methods described in Section 6.4 would have shown the same
relationships.

4 — Site × species data tables

Correspondence analysis has been applied to data tables other than contingency tables.
Justification is provided by Benzécri and coll. (1973). Notice, however, that the
elements of a table to be analysed by correspondence analysis must be dimensionally
homogeneous (i.e. same physical units, so that they can be added) and non-negative
(≥ 0, so that they can be transformed into probabilities or proportions). Several data
sets already have these characteristics, such as (bio)mass values, concentrations,
financial data (in $, £, etc.), or species abundances. 

Other types of data may be recoded to make the descriptors dimensionally
homogeneous and positive; the most widely used data transformations are discussed in
Section 1.5. For descriptors with different physical units, the data may, for example, be
standardized (which makes them dimensionless; eq. 1.12) and made positive by
translation, i.e. by subtracting the highest negative value; or divided by the maximum
or by the range of values (eqs. 1.10 and 1.11). Data may also be recoded into ordered
classes. Regardless of the method, recoding is then a critical step of correspondence
analysis. Consult Benzécri and coll. (1973) on this matter.
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Several authors, mentioned at the beginning of this Section, have applied
correspondence analysis to the analysis of site × species matrices containing species
presence/absence or abundance data. This generalization of the method is based on the
following sampling model. If sampling had been designed in such a way as to collect
individual organisms (which is usually not the case, the sampled elements being, most
often, sampling sites), each organism could be described by two descriptors: the site
where it was collected and the taxon to which it belongs. These two descriptors may be
written out to an inflated data table which has as many rows as there are individual
organisms. The more familiar site × species data table would then be the contingency
table resulting from crossing the two descriptors, sites and taxa. It could be analysed
using any of the methods applicable to contingency tables. Most methods involving
tests of statistical significance cannot be used, however, because the hypothesis of
independence of the individual organisms, following the model described above, is not
met by species presence-absence or abundance data collected at sampling sites.

Niche theory tells us that species have ecological preferences, meaning that they
are found at sites where they encounter favourable conditions. This statement is rooted
in the idea that species have unimodal distributions along environmental variables
(Fig. 9.12), more individuals being found near some environmental value which is
“optimal” for the given species. This has been formalised by Hutchinson (1957) in his
fundamental niche model. Furthermore, Gause’s (1935) competitive exclusion
principle suggests that, in their micro-evolution, species should have developed non-
overlapping niches. These two principles indicate together that species should be
roughly equally spaced in the n-dimensional space of resources. This model has been
used by ter Braak (1985) to justify the use of correspondence analysis on presence-
absence or abundance data tables; he showed that the χ2 distance preserved through
correspondence analysis (Table 9.1) is an appropriate model for species with unimodal
distributions along environmental gradients.

Let us follow the path travelled by Hill (1973b), who rediscovered correspondence
analysis while exploring the analysis of vegetation variation along environmental
gradients; he called his method “reciprocal averaging” before realizing that this was
correspondence analysis (Hill, 1974). Hill started from the simpler method of gradient
analysis, proposed by Whittaker (1960, 1967) to analyse site × species data tables.
Gradient analysis uses a matrix Y (site × species) and an initial vector v of values vj
which are ascribed to the various species j as indicators of the physical gradient to be
evidenced. For example, a score (scale from 1 to 10) could be given to the each species
for its preference with respect to soil moisture. These coefficients are used to calculate
the positions of the sites along the gradient. The score  of a site i is calculated as the
average score of the species (j = 1 … p) present at that site, using the formula:

(9.46)
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where yij is the abundance of species j at site i and yi+ is the sum of the organisms at
this site (i.e. the sum of values in row i of matrix Y).

Gradient analysis produces a vector  of the positions of the sites along the
gradient under study. Hill (1973b, 1974) suggested to continue the analysis, using now
vector  of the ordination of sites to compute a new ordination (v) of the species:

(9.47)

in which y+j is the sum of values in column j of matrix Y. Alternating between v and 
(scaling the vectors at each step as shown in step 6 of Table 9.12) defines an iterative
procedure that Hill (1973b) called “reciprocal averaging”. This procedure converges
towards a unique unidimensional ordination of the species and sites, which is
independent of the values initially given to the vj’s; different initial guesses as to the
values vj may however change the number of steps required to reach convergence.
Being aware of the work of Clint & Jennings (1970), Hill realized that he had
discovered an eigenvalue method for gradient analysis, hence the title of his 1973b
paper. It so happens that Hill’s method produces the barycentred vectors v and  for
species and sites, that correspond to the first eigenvalue of a correspondence analysis.
Hill (1973b) showed how to calculate the eigenvalue (λ) corresponding to these
ordinations and how to find the other eigenvalues and eigenvectors. He thus created a
simple algorithm for correspondence analysis (described in Subsection 7). 

When interpreting the results of correspondence analysis, one should keep in mind
that the simultaneous ordination of species and sites aims at determining how useful
the ordination of species is, as a whole, for predicting the ordination of the sites. In
other words, it seeks the predictive value of one ordination with respect to the other.
Subsection 3 has shown that, for any given dimension h, (1 – λh) measures the
difficulty of ordering, along principal axis h, the row states of the contingency table
from an ordination of the column states, or the converse. The interpretation of the
relationship between the two ordinations must be done with reference to this statistic.

When it is used as an ordination method, correspondence analysis provides an
ordination of the sites which is somewhat similar to that resulting from a principal
component analysis of the correlation matrix among species (standardized data). This
is to be expected since the first step in the calculation actually consists in weighting
each datum by the sums (or the relative frequencies) of the corresponding row and
column (eq. 9.32 and 9.33), which eliminates the effects due to the large variances that
certain rows or columns may have. In the case of steep gradients (i.e. many zeros in the
data matrix), correspondence analysis should produce a better ordination than PCA
(Hill, 1973b). This was also shown by Gauch et al. (1977) using simulated and
experimental floristic data. This result logically follows from the fact that the χ2

distance (D16) is a coefficient that excludes double-zeros from the estimation of
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resemblance. This is not the case with the Euclidean distance (eq. 7.33), which is the
distance preserved in principal component analysis. For this reason, correspondence
analysis is recommended for reduced-space ordination of species abundances when the
data contain a large number of null values; this situation is encountered when sampling
environmental gradients that are long enough for species to replace one another. 

For clustering species into associations, correspondence analysis does not seem to
escape the problems encountered with principal component analysis (Reyssac & Roux,
1972; Ibanez & Séguin, 1972; Binet et al., 1972). Causes for this were discussed in
Section 9.1. Undoubtedly, the most serious problem arises from the fact that the
species are multidimensional descriptor-axes, which are projected in a low-
dimensional space by both PCA and CA. This explains the tendency for the species to
form a more or less uniformly dense scatter centred on the origin. It may nevertheless
be interesting to superimpose a clustering of species, determined using the methods of
Section 8.9, on a reduced-space ordination obtained by correspondence analysis.

When sites (objects) and species (descriptors) are plotted together, the joint plot
must be interpreted with due consideration of the remarks in Subsection 9.1.4; species
are the variables in the joint plot and a correspondence analysis of a site × species data
table is but a variant of a principal component analysis. The practice which consists in
only explaining the sites by the neighbouring species on the plot often gives good
results, although it overlooks possible indications of avoidance of sites by certain
species. An interesting complement to correspondence analysis is the direct analysis of
the site × species table using the method of Section 6.4. This method is better at
evidencing all the correspondences between sites and species (attraction and
avoidance). Applying contingency table analysis to sites × species tables is justified by
the same logic that allows correspondence analysis to be applied to such data matrices.

5 — Arch effect

Environmental gradients often support a succession of species. Since the species that
are controlled by environmental factors (versus population dynamics, historical events,
etc.) generally have unimodal distributions along gradients, the effect of gradients on
the distance relationships among sites, calculated on species presence-absence or
abundance data, is necessarily nonlinear. The three species in Fig. 9.12 have unimodal
distributions; each one shows a well-defined mode along the gradient represented by
sites 1 to 19. Ordination methods aim at rendering this non-linear phenomenon in an
Euclidean space, in particular as two-dimensional plots. In such plots, non-linearities
end up being represented by curves, called arches or horseshoes. The shapes of these
curves depend on the distance function used by different ordination methods to model
the relationships among sites. While most ecologists are content with interpreting the
ordination plots for the information they display about distances among sites, some
feel that they should try to reconstruct the original gradient underlying the observed
data. Hence their concern with detrending, which is an operation carried out on the
ordination axes of correspondence analysis whereby the arch is unbent to let the
gradient appear as a linear arrangement of the sites.

Detrending
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Imagine an alternative Fig. 9.12, representing environmental factors varying along
the environmental gradient of sites 1 to 19, with some variables increasing linearly
from left to right (e.g. altitude) and others decreasing (e.g. temperature, humidity). A
principal component analysis of such data would clearly render the original gradient
along PCA axis I, because the Euclidean distances (D1) from site 1 to sites 2, 3, etc.,
which are implicit in PCA, would increase from one end of the transect to the other.
The second axis would only display the residual variation in the data (the “error”
component). Readers are invited to make up such a data set, adding random error to
the data, and see for themselves what the result would be. Contrary to that, Euclidean
distances calculated on the species data of Fig. 9.12, between site 1 and sites 2, 3, etc.,
do not increase monotonically from one end of the gradient to the other. These
distances, which form the first row of the Euclidean distance matrix among sites, are
reported in the bottom panel of Table 9.9. Distances from site 1 increase up to site 5,
after which they decrease; they increase again up to site 10, then decrease; they
increase up to site 15 and decrease again. The other rows of the Euclidean distance
matrix display equally complex patterns; they are not shown in Table 9.9 to save space.
The PCA algorithm is facing the task of representing these complex patterns in at most
three dimensions because PCA ordinations cannot have more axes than the number of
original variables (i.e. three species in Fig. 9.12). The result is illustrated in Fig. 9.17a
and b. The most dramatic effect is found at the ends of the transect, which are folded
inwards along axis I. This is because the Euclidean distance formula considers the
extreme sites to be very near each other (small distance). This shape is called a
horseshoe. Fig. 9.17b shows that the end sites also go “down” along the third axis. In
most instances in correspondence analysis, extremities of the gradient are not folded
inwards in the plot (but see Wartenberg et al., 1987, Fig. 3, for a case where this
occurs); a bent ordination plot with extremities not folded inwards is called an arch.

The presence in ordination plots of a bow (Swan, 1970), horseshoe (Kendall,
1971), or arch (Gauch, 1982) had already been noted by plant ecologist Goodall
(1954). Benzécri and coll. (1973) discuss the arch under the name Guttman effect.
Several authors have explained the nature of this mathematical construct, which occurs
when the taxonomic composition of the sites progressively changes along an
environmental gradient. For correspondence analysis, ter Braak (1987c) discusses how
this effect results from the fact that all ordination axes try to maximally separate the
species while remaining uncorrelated with one another. When a single axis (the first
one) is enough to order the sites and species correctly, a second axis, which is
independent of the first, can be obtained by folding the first axis in the middle and
bringing the ends together; hence the arch effect. Subsequent independent ordination
axes can be obtained by folding the first axis in three parts, four, etc., until min[(r – 1),
(c – 1)] axes have been produced. Detrended correspondence analysis (DCA; Hill &
Gauch, 1980; Gauch, 1982) aims at eliminating the arch effect.

Fig. 9.17c helps in understanding the meaning of CA joint plots. This joint plot has
been produced using scaling type 1 to preserve the χ2 distances among sites and make
this plot comparable to the other ordinations shown in Fig. 9.17. The ordination is two-
dimensional since the data set contains three species. The species (black squares)

Horseshoe

Arch
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occupy the edges of a triangle; since they are the descriptors of the analysis, heavy
lines are drawn joining them to the centre of the plot. Sites 1-5, 10, and 15-19, which
have only one species present, occupy the same position as the point representing that
species, because sites are at the barycentres (centroids) of the species; CA does not
spread apart sites that possess a single and same species, even in different amounts.
Sites 6-9 and 11-14, which possess two species in various combinations, lie on a line
between the two species; their positions along that line depend on the relative
abundances of the two species at each site. No site has three species in this example, so
that no point lies inside the triangular shape of the scatter of sites. Considering site 1
(lower left in Fig. 9.17c), examine its distances to all the other sites at the bottom of
Table 9.9: they increase from site 6 to 10, after which they remain constant. This
corresponds to the relative positions of the sites in the Figure. Had the example
contained more species along the gradient, the site points would have exhibited a
rounded shape.

The PCA ordination (Fig. 9.17a, b) is identical to the ordination that would have
been obtained from PCoA of a matrix of Euclidean distances among sites. In the same
way, the ordination of sites in the CA plot (Fig. 9.17c), that used scaling type 1, is
similar to a PCoA ordination obtained from a matrix of χ2 distances (D16) among sites.
The ordinations obtained from distance coefficients D14 (Bray & Curtis or Odum
distance) and  are also of interest because of the favour these coefficients have
among ecologists. They are displayed in Fig. 9.17e-h. The ordinations produced by
these coefficients are quite similar to each other and present a horseshoe, but not as
pronounced as in PCA because these coefficients exclude double-zeros from the
calculations. In Fig. 9.17e (coefficient D14), sites 6 to 14 form an arch depicting the
three-species gradient, with arms extending in a perpendicular direction (Fig. 9.17f) to
account for the dispersion of sites 1 to 5 and 15 to 19, each group containing one
species only. The ordination produced by coefficient  is very similar to the above
(Fig. 9.17g-h). There are two advantages to  over D14, though:  never
produces negative eigenvalues and, in the present case at least, the ordination explains
more variation than D14 in two or three dimensions.

Two main approaches have been proposed to remove arches in correspondence
analysis: detrending by segments and by polynomials. These methods lead to
detrended correspondence analysis (DCA).

• When detrending by segments (Hill & Gauch, 1980), axis I is divided into a number
of “segments” and, within each one, the mean of the scores along axis II is made equal
to zero; in other words, data points in each segment are moved along axis II to make
their mean coincide with the abscissa. Fig. 9.18b shows the result of detrending the
ordination of Fig. 9.17c, using the three segments defined in Fig. 9.18a. The bottom
line is that scores along detrended axis II are meaningless. Proximities among points
should in no case be interpreted ecologically, because segmenting generates large
differences in scores for points that are near each other in the original ordination but
happen to be on either side of segment divisions (Fig. 9.18). The number of segments
is arbitrary; different segmentations lead to different ordinations along axis II.

D14

D14
D14 D14

DCA
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The method is only used with a fairly large number of segments. Programs
DECORANA (Hill, 1979) and CANOCO use a minimum of 10 and a maximum of 46
segments, 26 being the ‘recommended’ number (i.e. the default value). This obviously
requires a number of data points larger than in the numerical example of Fig. 9.17.
With Hill’s iterative algorithm for CA (Table 9.12), detrending by segments is done at
the end of each iteration, but the final site scores are derived from the species scores

Figure 9.17 Ordinations of the data from Fig. 9.12 and Table 9.9. Circles are sites and squares are species.
Principal component analysis: (a) PCA axes I and II (λ1 = 50.1%, λ2 = 40.6%), (b) axes I and III
(λ1 = 50.1%, λ3 = 9.3%). (c) Correspondence analysis (scaling type 1), CA axes I and II
(λ1 = 58.1%, λ2 = 41.9%). A quadratic polynomial function of axis I is also shown (convex
curve): (axis II) = 1.056 – 1.204 (axis I)2. (d) Detrended correspondence analysis (scaling type
1, detrending by quadratic polynomial), DCA axes I and II (λ1 = 58.1%, λ2 = 1.6%). (c) and
(d) Heavy lines, representing the species axes, are drawn from the centres of the plots.
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without detrending in order to insure that the site scores are simply weighted averages
of the species scores. For the third DCA axis, detrending is carried out with respect to
the first and second axes, and so on for subsequent axes.

In order to deal with the contraction of the ends of the gradient when the sites are
projected onto the first axis, nonlinear rescaling of the axes is often performed
following detrending. An extreme case is represented by Fig. 9.17c where sites 1 to 5
and 15 to 19 each occupy a single point along axis I. To equalize the breadths of the
species response curves, the axis is divided into small segments and segments with

Figure 9.17 (continued)  Principal coordinate ordinations of the data from Fig. 9.12 and Table 9.9. Distance
D14 , analysis corrected for negative eigenvalues: (e) PCoA axes I and II (λ1 = 30.8%,
λ2 = 18.6%), (f) axes I and III (λ1 = 30.8%, λ3 = 8.3%). Distance : (g) PCoA axes I and II
(λ1 = 34.5%, λ2 = 22.9%), (h) axes I and III (λ1 = 34.5%, λ3 = 10.5%).
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small within-group variances are expanded, whereas segments with large within-group
variances are contracted (Hill, 1979). Fig. 5.5 of ter Braak (1987c) provides a good
illustration of the process; ter Braak (1987c) advises against the routine use of
nonlinear rescaling.

After detrending by segments and nonlinear rescaling of the axes, the DCA
ordination has the interesting property that the axes are scaled in units of the average
standard deviation (SD) of species turnover (Gauch, 1982). Along a regular gradient, a
species appears, rises to its modal value, and disappears over a distance of about 4 SD;
similarly, a complete turnover in species composition occurs, over the sites, in about 4
SD units. A half-change in species composition occurs within about 1 to 1.4 SD units.
Thus the length of the first DCA axis is an approximate measure of the length of the
ecological gradient, in species turnover units. In this respect, DCA with nonlinear
rescaling of the axes is a useful method to estimate the lengths of ecological gradients.
The length of a gradient revealed by a pilot study may help determine the extent
(Section 13.0) to be given to a subsequent full-scale study.

• Detrending by polynomials (Hill & Gauch, 1980; ter Braak, 1987c) directly follows
from the fact that an arch is produced when a gradient of sufficient length is present in
data. When a sufficient number of species are present and replace each other along the
gradient, the second CA axis approaches a quadratic function of the first one (i.e. a
second-degree polynomial), and so on for the subsequent axes. This is clearly not the
case with the data of Table 9.9, which consist of three species only. Fig. 9.17c shows
that the ‘arch’ is reduced to a triangular shape in that case.

The arch effect is removed by imposing, in the CA algorithm (orthogonalization
procedure in Table 9.12), the constraint that axis II be uncorrelated not only to axis I,

Figure 9.18 Detrending by segments. (a) Three arbitrarily defined segments are delimited by vertical lines in
the CA ordination (from Fig. 9.17c). (b) After detrending, the mean of the points in each
segment is zero.
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but also to its square, its cube, and so on; the degree of the polynomial function is
chosen by the user. In the same way, axis III is made uncorrelated to the 1st, 2nd, 3rd
… k-th degree polynomial of axes I and II. And so forth. When detrending is sought,
detrending by polynomial is an attractive method. The result is a continuous function
of the previous axes, without the discontinuities generated by detrending-by-segments.
However, detrending by polynomials imposes a specific model onto the data, so that
the success of the operation depends on how closely the polynomial model
corresponds to the data. Detrending by polynomial does not solve the problem of
compression of the sites at the ends of the ordination axes.

Detrending by quadratic polynomial was applied to the test data. Fig. 9.17c shows
the quadratic polynomial (convex curve; among the terms of the quadratic polynomial,
only the (axis I)2 term was significant) that was fitted to the CA ordination, which has
a triangular shape in the present example. Detrending involves computing and plotting
the vertical (residual) distances between the data points and the fitted polynomial. The
detrended ordination is shown in Fig. 9.17d. The regression residuals display an
elegant but meaningless shape along axis II.

When the data are controlled by a single environmental gradient, detrending is
useless. Only the first ordination axis is meaningful, subsequent axes being
meaningless linear combinations of the first.

The controversy about detrending has been raging in the literature over the past 10
years. Key papers are those of Wartenberg et al. (1987), Peet et al. (1988), and Jackson
& Somers (1991b). Wartenberg et al. (1987) argued that the arch is an important and
inherent attribute of the distances among sites, not a mathematical artifact. The only
effect of DCA is to flatten the distribution of points onto axis I without affecting the
ordination of sites along that axis. They also pointed out that detrending-by-segments
is an arbitrary method for which no theoretical justification has been offered. Similarly,
the nonlinear rescaling procedure assumes that, on average, each species appears and
disappears at the same rate along the transect and that the parametric variance is an
adequate measure of that rate; these assumptions have not been substantiated. Despite
these criticisms, Peet et al. (1988) still supported DCA on the ground that detrending
and rescaling may facilitate ecological interpretation. They called for improved
algorithms for detrending and rescaling. Jackson & Somers (1991b) showed that the
DCA ordination of sites greatly varies with the number of segments one arbitrarily
decides to use, so that the ecological interpretation of the results may vary widely, as
do the correlations one can calculate with environmental variables. One should always
try different numbers of segments when using DCA.

Simulation studies involving DCA have been conducted on artificial data
representing unimodal species responses to environmental gradients in one
(coenoclines) or two (coenoplanes) dimensions, following the method pioneered by
Swan (1970). Kenkel & Orlóci (1986) report that DCA did not perform particularly
well in recovering complex gradients. Using Procrustes statistics (Subsection 10.5.4)
as measures of structure recovery, Minchin (1987) showed that DCA did not perform
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well with complex response models and non-regular sampling schemes. Furthermore,
DCA may remove real structures that appear as curved in ordination diagrams and
should legitimately contribute to the second axis. This last criticism would apply to
detrending by polynomials as well as detrending by segments. Both studies concurred
that MDS is the best technique for recovering complex gradients, not DCA.

Present evidence indicates that detrending should be avoided, except for the
specific purpose of estimating the lengths of gradients; such estimates remain subject
to the assumptions of the model being true. In particular, DCA should be avoided
when analysing data that represent complex ecological gradients. Most ordination
techniques are able to recover simple, one-dimensional environmental gradients.
When there is a single gradient in the data, detrending is useless since the gradient is
best represented by CA axis I.

Satisfactory mathematical solutions to the problem of detrending remain to be
found. In the meantime, ordination results should be interpreted with caution and in the
light of the type of distance preserved by each method.

6 — Ecological applications

Ecological application  9.4a

Cadoret et al. (1995) investigated the species composition (presence/absence and abundance) of
chaetodontid fish assemblages off Moorea Island, French Polynesia, in order to describe the
spatial distribution of the butterflyfishes and to determine their relationships with groups of
benthic organisms. Sampling was conducted in four areas around the island: (a) Opunohu Bay,
(b) Cook Bay, (c) the Tiahura transect across the reef in the northwestern part of the island, and
(d) the Afareaitu transect across the reef in the eastern part of the island.

Correspondence analysis (Fig. 9.19) showed that the fish assemblages responded to the main
environmental gradients that characterized the sampling sites. For areas c and d (transects across
the reef), axis I corresponded to a gradient from the coastline to the ocean; from left to right, in
the plot, are the sites of the fringing reef, the shallow (found only in sector c), the barrier reef,
and the outer slope. Sites from the bays (areas a and b) are also found in the left-hand part of the
graph. Axis II separates the sites located in the upper reaches of Opunohu Bay (a11, a12 and a13,
in the upper-left of the plot) from all the others. This application will be further developed in
Section 11.2, to identify species assemblages and evidence the relationships between species
and environmental variables, using canonical correspondence analysis. 

Ecological application  9.4b

In a study on the vegetation dynamics of southern Wisconsin, Sharpe et al. (1987) undertook a
systematic field survey of all forest tracts in two townships. Detrended correspondence analysis
was used to display the relationships among stands with respect to species composition. The
scores of the first ordination axes were used to construct three-dimensional maps. Mapping of
the first axis (Fig. 9.20) shows that the scores were generally low in the southern and central
portions of the area and increased towards the west and north. Since the first axis showed a trend
from forest tracts dominated by Acer saccharum to oak-dominated forests (not shown), Fig. 9.20
indicates that stands dominated by A. saccharum were located in the south-central portion of the
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area, whereas oak-dominated stands were to the west, north and, to a lesser extent, east. Such a
mapping, using a 3- or 2-dimensional representation, is often a useful way of displaying
synthetic information provided by the scores of objects along the first ordination axes. 

Maps, like that of Fig. 9.20, may be produced for the ordination scores computed
by any of the methods described in the present Chapter; see Section 13.2. 

7 — Algorithms

There are several computer programs available for correspondence analysis. They do
not all provide the same ordination plots, though, because the site and species score
vectors may be scaled differently. A simple, empirical way for discovering which of
the matrices described in Subsection 1 are actually computed by a program is to run
the small numerical example of Subsection 2. The main variants are:

1) General-purpose data analysis programs, which compute the eigenvalues and
eigenvectors using traditional eigenanalysis algorithms. They usually output matrices
U of the eigenvectors (ordination of the columns, i.e. the species, when the analysis is
conducted on a site × species table) and F (ordination of rows, i.e. sites). Some
programs also output matrix  (ordination of the species at the centroids of sites).

Figure 9.19 Correspondence analysis (CA): ordination of sampling sites with respect to axes I and II from
presence/absence observations of butterflyfishes (21 species) around Moorea Island. Axes I and
II explain together 29% of the variation among sites. Species vectors are not drawn; they would
have overloaded the plot. Modified from Cadoret et al. (1995).
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2) Ecologically-oriented programs, which often use the two-way weighted
averaging iterative algorithm (Hill’ reciprocal averaging method), although this is by
no means a requirement. They allow for several types of scalings, including types 1
and 2 discussed in Subsection 9.4.1 (e.g. CANOCO; ter Braak, 1988b, 1988c, 1990; ter
Braak & Smilauer, 1998). 

Table 9.12 presents Hill’s two-way weighted averaging (TWWA) algorithm, as
summarized by ter Braak (1987c). There are three main differences with the TWWS
algorithm for PCA presented in Table 9.5: (1) variables are centred in PCA, not in CA.
(2) In CA, the centroid of the site scores is not zero and must thus be estimated (step
6.1) (3) In CA, summations are standardized by the row sum, column sum, or grand
total, as appropriate. This produces shrinking of the ordination scores at the end of
each iteration in CA (step 6.4), instead of stretching in PCA.

Figure 9.20 Three-dimensional map of the scores of the first ordination axis (detrended correspondence
analysis), based on trees observed in 92 forest tracts of southern Wisconsin, U.S.A. (survey area:
11 × 17 km). Modified from Sharpe et al. (1987).

← N
E

→

TWWA
algorithm



Correspondence analysis (CA) 475

Table 9.12 Two-way weighted averaging (TWWA) algorithm for correspondence analysis. From Hill
(1973b) and ter Braak (1987c).

a) Iterative estimation procedure

Step 1: Consider a table Y with n rows (sites) × p columns (species).
Do NOT centre the columns (species) on their means.

Determine how many eigenvectors are needed. For each one, DO the following:

Step 2: Take the row order as the arbitrary initial site scores. (1, 2, …)
Set the initial eigenvalue estimate to 0. In what follows, yi+ = row sum for site i, y+j = column
sum for species j, and y++ = grand total for the data table Y.

Iterative procedure begins

Step 3: Compute new species loadings: colscore(j) = Σ y(i,j) × rowscore(i)/y+j

Step 4: Compute new site scores: rowscore(i) = Σ y(i,j) × colscore(j)/yi+

Step 5: For the second and higher-order axes, make the site scores uncorrelated with all previous axes
(Gram-Schmidt orthogonalization procedure: see b below).

Step 6: Normalize the vector of site scores (procedure c, below) and obtain an estimate of the
eigenvalue. If this estimate does not differ from the previous one by more than the tolerance set
by the user, go to step 7. If the difference is larger than the tolerance, go to step 3.

End of iterative procedure

Step 7: If more eigenvectors are to be computed, go to step 2. If not, continue with step 8.

Step 8: The row (site) scores correspond to matrix . The column scores (species loadings) correspond
to matrix . Matrices  and  provide scaling type 2 (Subsection 9.4.1). Scalings 1 or 3 may
be calculated if required. Print out the eigenvalues, % variance, species loadings, and site scores.

b) Gram-Schmidt orthogonalization procedure

DO the following, in turn, for all previously computed components k:

Step 5.1: Compute the scalar product SP = Σ (yi+ × rowscore(i) × v(i,k)/y++) of the current site score
vector estimate with the previous component k. Vector v(i,k) contains the site scores of
component k scaled to length 1. This product is between 0 (if the vectors are orthogonal) and 1.

Step 5.2: Compute new values of rowscore(i) such that vector rowscore becomes orthogonal to vector
v(i,k): rowscore(i) = rowscore(i) – (SP × v(i,k)).

c) Normalization procedure†

Step 6.1: Compute the centroid of the site scores: z = Σ (yi+ × rowscore(i)/y++).

Step 6.2: Compute the sum of squares of the site scores: S2 = Σ (yi+ × (rowscore(i) – z)2/y++); S = .

Step 6.3: Compute the normalized site scores: rowscore(i) = (rowscore(i) – z)/S.

Step 6.4: At the end of each iteration, S, which measures the amount of shrinking during the iteration,
provides an estimate of the eigenvalue. Upon convergence, the eigenvalue is S.

† Normalization in CA is such that the weighted sum of squares of the elements of the vector is equal to 1.

V̂
F̂ F̂ V̂

S
2
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Alternative algorithms for CA are Householder reduction and singular value
decomposition. SVD was used to describe the CA method in Subsection 9.4.1; it
directly provides the eigenvalues (they are actually the squares of the singular values)
as well as matrices U and . The various scalings for the row and column scores may
be obtained by simple programming. Efficient algorithms for singular value
decomposition are available in Press et al. (1986 and later editions).

9.5 Factor analysis

In the social sciences, analysis of the relationships among the descriptors of a
multidimensional data matrix is often carried out by factor analysis. The name factor
analysis was first used by Spearman (1904), who proposed that the correlations among
a set of intelligence-test scores could be explained by a common factor combined with
several other factors reflecting the qualities of individual tests. There are fundamental
differences between principal component analysis, described above (Section 9.1), and
factor analysis. The primary aim of principal component analysis is to account for a
maximum amount of the variance in the data, whereas the goal of factor analysis is to
account for the covariance among descriptors. To do this, factor analysis assumes that
the observed descriptors are linear combinations of hypothetical underlying (or latent)
variables (i.e. the factors). As a result, factor analysis explains the covariance structure
of the descriptors in terms of a hypothetical causal model (i.e. the observed descriptors
are caused by the underlying factors), whereas principal component analysis
summarizes the data set by means of linear combinations of the descriptors. Readers
may refer to Kim & Mueller (1978a 1978b) for a simple introduction to factor analysis
and to Mulaik (1972) for a more detailed discussion.

There are two types of factor analysis. Exploratory factor analysis, on the one
hand, computes the minimum number of hypothetical factors needed to account for the
observed covariation among descriptors. Confirmatory factor analysis, on the other
hand, may be used to test hypotheses concerning the causal structure between the
underlying factors and the observed descriptors. Exploratory factor analysis is
sometimes used by ecologists, simply because it is widely available in computer
packages. With the exception of the varimax rotation, described below, factor analysis
is not currently used in ecology. The purpose of the present section is not to
recommend the use of exploratory or confirmatory factor analysis in ecology, but
mainly to provide basic information to ecologists who might encounter computer
programs or results obtained using these methods. Confirmatory factor analysis, which
is briefly described at the end of the present section, is not currently used in ecology. It
could be used as an easy way for testing simple, causal ecological models.

In factor analysis, one assumes that there are two types of underlying factors,
i.e. the common factors, which are involved in the causation of more than one
observed descriptor, and the unique (or specific) factors, which are each causally

Householder
SVD

Û
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related to only one observed descriptor (Fig. 9.21). Principal component analysis uses
the overall variance of the data set, whereas factor analysis considers only the variance
pertaining to the common factors. This is because, in factor analysis, unique factors do
not contribute to the covariation among the observed descriptors; only the common
factors do so. A fundamental assumption of factor analysis is that the observed
covariation among descriptors results from their sharing common factors, not from
being direct causes of one another. To be of practical use, the number of common
factors must be much smaller than the number of descriptors.

The first step of exploratory factor analysis is the extraction of initial factors from
an appropriate covariance matrix. These initial factors are somewhat analogous to the
eigenvectors computed in principal component analysis, but they concern here only
that part of the variance of each descriptor (called communality) which is accounted

Figure 9.21 Path models (Section 10.4) for a hypothetical situation with five descriptors and two common
factors, showing the difference between orthogonal rotation (i.e. common factors uncorrelated)
and oblique rotation (i.e. common factors correlated). Adapted from Kim & Mueller (1978a).
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for by the common factors. The fraction of the variance pertaining to unique factors
(called uniqueness) is therefore excluded. Several methods may be used for extracting
the initial factors. They are: principal axis factoring (or principal factoring), least
squares (i.e. principal axis factoring with iterative estimation of communalities;
minimum residual method or Minres), maximum likelihood (or canonical factoring),
alpha factoring, and image analysis. These methods are based on different
assumptions, but they all result in a small number of (orthogonal) common factors
which account for the covariation among a much larger number of observed
descriptors.

When looking at the extracted initial factors, one usually finds that several factors
have significant loadings on any given descriptor; this is also the case in principal
component analysis. The number of such factors is the factorial complexity. As a
result, the causal structure between factors and descriptors at this stage of the analysis
is quite complex, since each descriptor is more or less explained by all factors. The
next step of the analysis is to seek a simple structure, i.e. a solution where causal
relationships between the underlying common factors and the observed descriptors is
simpler. This is achieved through rotation.

The purpose of rotation is not to improve the fit of factors to the observed data; the
rotated factors explain the exact same amount of covariance among the descriptors as
the initial factors. The sole purpose of rotation is to achieve a simple structure, that is a
solution where certain factor loadings are maximized while others are minimized.
There exist two general types of rotations, i.e. orthogonal and oblique. In orthogonal
rotations, the causal underlying factors cannot be covariates whereas, in oblique
rotations, the factors can be correlated (Fig. 9.21). In a sense, orthogonal rotations are
special cases of oblique rotations (i.e. cases where the correlations among the common
factors are null). However, the existence of correlations among the common factors
makes the interpretation of oblique solutions much more complicated than that of
orthogonal ones.

Several criteria have been proposed to carry out orthogonal rotations. The
quartimax method (Burt, 1952) minimizes the sum of squares of the products of the
loadings of the descriptors onto factors. This is done in such a way that each descriptor
has a high loading for only one factor and low loadings for all the others. While
quartimax simplifies the rows of the loading matrix, the varimax rotation (Kaiser,
1958) simplifies the columns by maximizing the variance of the squared loadings in
each column. The equimax rotation simplifies both the rows and the columns. A
variant of equimax is called biquartimax. Another method of orthogonal rotation,
which minimizes the entropy, has been proposed by McCammon (1970). In ecology,
the most often used rotation is varimax. Examples are found in Ibanez & Séguin
(1972), Parker (1975), and Ecological application 9.5.

Various oblique rotations have been proposed; several are available in computer
packages. They include: oblimax (Saunders, 1961), quartimin, oblimin, covarimin and
biquartimin (Carroll, 1957), binormamin (Kaiser & Dickman, 1959), radial rotation,

Orthogonal
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prolonged vectors (Thurstone, 1947), orthoblique (Harris & Kaiser, 1964), maxplane
(Cattell & Muerle, 1960; Eber, 1966), and promax (Hendrickson & White, 1964). A
comparative review summarizing most of the oblique rotations is found in Ibanez
(1976).

It should now be clear that factor analysis aims primarily at analysing the
covariation among descriptors. It follows that, in most models, the relative positions of
the objects cannot be calculated directly, whereas this is often of primary interest to
ecologists. In factor analysis, coordinates of the objects in factor space are called
factor scales. Kim & Mueller (1978b, p. 60 et. seq.) review several methods for
estimating the factor scales, i.e. regression estimates, estimates based on the least
squares criterion, Bartlett's method of minimizing the error variance, estimates with
orthogonality constraints, and factor-based scales.

Ecological application  9.5

In order to facilitate ecological interpretation, the axes of Fig. 9.7 (resulting from a principal
component analysis, so that the present application is not a typical factor analysis) were
subjected to a varimax orthogonal rotation. In Fig. 9.22, factor I may be interpreted as a gradient
from bare sand to high grass, via sparse vegetation, and factor II as a gradient from woods to
open areas with no trees or shrubs, via sparsely distributed shrubs (Aart, 1973).

Figure 9.22 Varimax rotation of the axes of Fig. 9.7. Modified from Aart (1973).

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

highgrass

baresand

op
en

w
oo

d

Factor I Factor II



480 Ordination in reduced space

In contrast to the above, confirmatory factor analysis may be used to test specific
expectations concerning the number of factors and their loadings on the various
descriptors. Hypotheses tested may specify the number of common factors involved,
the nature of their relationships (i.e. orthogonal or oblique), the general structure of the
factor loadings, equality constraints on factor loadings, fixed values for individual
factor loadings for each descriptor, as well as the correlation structure among
residuals. These hypotheses are normally based on empirical or conceptual preliminary
information about the causal mechanisms involved and on expectations about the
magnitude of the different parameters to be estimated. Higher-order confirmatory
factor analysis models allow a set of exogenous hypothetical variables, called the
higher-order factors, to directly influence lower-order common factors.

An elementary introduction to confirmatory factor analysis is found in Schumacker
& Lomax (1996). A more advanced treatment is provided by Bollen (1989). The most
widely used program for confirmatory factor analysis is LISREL*. Another interesting
program is EQS†.

* LISREL, written by K. G. Jöreskog and D. Sörbom, is distributed by Scientific Software
International (SIS), 7383 N. Lincoln Ave., Suite 100, Chicago, Illinois 60646-1704, USA.
WWWeb site: <http://ssicentral.com/>.
† Program EQS, written by P. M. Bentler and E. J. C. Wu, is distributed by Multivariate
Software, Inc., 4924 Balboa Blvd., Suite 368, Encino, California 91316, USA. WWWeb site:
<http://www.mvsoft.com/>.
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Chapter

10 Interpretation of 
ecological structures

10.0 Ecological structures

The previous chapters explained how to use the techniques of clustering and ordination
to investigate relationships among objects or descriptors. What do these analyses
contribute to the understanding of ecological phenomena? Ecological applications in
Chapters 8 and 9 have shown how clustering and ordination can synthesize the
variability of the data and present it in a format which is easily amenable to
interpretation. It often happens, however, that researchers who are using these
relatively sophisticated methods do not go beyond the description of the structure of
multidimensional data matrices, in terms of clusters or gradients. The descriptive
phase must be followed by interpretation, which is conducted using either the
descriptors that were analysed in order to bring out the structure, or other ecological
descriptors which have not yet been involved in the analysis.

From the previous chapters, it should be clear that the structure of a data matrix is
the organization of the objects, or descriptors, along gradients in a continuum, or in the
form of subsets (clusters). This organization characterizes the data matrix, and it is
derived from it. The first phase of multidimensional analysis (i.e. clustering or/and
ordination) thus consists in characterizing the data matrix in terms of a simplified
structure. In a second phase, ecologists may use this structure to interpret the
phenomenon which underlies the data matrix. To do so, analyses are conducted to
quantify the relationships between the structure of the data matrix and potentially
explanatory descriptors. The methods which are most often used for interpreting
ecological structures are described in the present Chapter and in Chapter 11.

During interpretation, one must assume that the analysis of the structure has been
conducted with care, using measures of association which are appropriate to the
objects and/or descriptors of the data matrix (Chapter 7) as well as analytical methods
that correspond to the objectives of the study. Ordination (Chapter 9) is used when
gradients are sought, and clustering (Chapter 8) when one is looking for a partition of

Structure
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the objects or descriptors into subsets. When the gradient is a function of a single or a
pair of ordered descriptors, the ordination may be plotted in the original space of the
descriptors. When the gradient results from the combined action of several descriptors,
however, the ordination must be carried out in a reduced space, using the methods
discussed in Chapter 9. It may also happen that an ordination is used as a basis for
visual clustering. Section 10.1 discusses the combined use of clustering and ordination
to optimize the partition of objects or descriptors.

The interpretation of structures, in ecology, has three main objectives:
(1) explanation (often called discrimination) of the structure of one or several
descriptors, using those descriptors at the origin of the structure or, alternatively, a set
of other descriptors that may potentially explain the structure; (2) forecasting of one or
several descriptors (which are the response, or dependent variables: Box 1.1), using a
number of other descriptors (called the explanatory, or independent variables);
(3) prediction of one or several descriptors, using descriptors that can be
experimentally manipulated, or that naturally exhibit environmental variation. It must
be noted that the terms forecasting and prediction, which are by no means equivalent
(Subsection 10.2.2), are often confused in the ecological and statistical literatures.
Each of the above objectives covers a large number of numerical methods, which
correspond to various levels of precision of the descriptors involved in the analysis. 

Section 10.2 reviews the methods available for interpretation. The next sections are
devoted to some of the methods introduced in Section 10.2. Regression and other
scatterplot smoothing methods are discussed in Section 10.3. Section 10.4 deals with
path analysis, used to assess causal relationships among quantitative descriptors.
Section 10.5 discusses methods developed for the comparison of resemblance
matrices. Various forms of canonical analysis are presented in Chapter 11.

10.1 Clustering and ordination

Section 8.2 showed that single linkage clustering accurately accounts for the
relationships between closely similar objects. However, due to its tendency to
chaining, single linkage agglomeration is not very suitable for investigating ecological
questions. Because ecological data generally form a continuum in A-space (Fig. 7.2),
single linkage clustering is best used in conjunction with an ordination of the objects.
In the full multidimensional ordination space, distances among the main clusters of
objects are the same as in the original A-space (Section 9.1), or they are some
appropriate Euclidean representation of them (Sections 9.2 to 9.4). However, when
only the first two or three dimensions are considered, ordinations in reduced space may
misrepresent the structure by projecting together clusters of objects which are distinct
in higher dimensions. Clustering methods allow one to separate clusters whose
projections in reduced space may sometimes obscure the relationships.

Explanation

Forecasting

Prediction
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Several authors (e.g. Gower & Ross, 1969; Rohlf, 1970; Schnell, 1970; Jackson &
Crovello, 1971; Legendre, 1976) have independently proposed to take advantage of
the characteristics of clustering and ordination by combining the results of the two
types of analyses on the same diagram. The same similarity or distance matrix
(Tables 7.3 to 7.5) is often used for the ordination and cluster analyses. Any clustering
method may be used, as long as it is appropriate to the data. If linkage clustering is
chosen, it is easy to draw the links between objects onto the ordination diagram, up to
a given level of similarity. One may also identify the various similarity levels by using
different colours or streaks (for example: solid line for 1.0 

 

≥ S > 0.8, dashed for
0.8

 

≥ S > 0.6, dotted for 0.6 

 

≥ S > 0.4, etc., or any other convenient combination of
codes or levels). If a divisive method or centroid clustering was used, a polygon or
envelope may be drawn, on the ordination diagram, around the members of a given
cluster. This is consistent with the opinion of Sneath & Sokal (1973), who suggest to
always simultaneously carry out clustering and ordination on a set of objects. Field et
al. (1982) express the same opinion about marine ecological data sets. It is therefore
recommended, as routine procedure in ecology, to represent clustering results onto
ordination diagrams.

The same approach may be applied to cluster analyses of descriptors. Clustering
may be conducted on a dependence matrix among descriptors — especially species —
in the same way as on an association matrix among objects. An ordination of species
may be obtained using correspondence analysis (Section 9.4), which preserves the

 

χ2 distance among species, or through principal coordinates (Section 9.2) or nonmetric
multidimensional scaling (Section 9.3) if some other measure of dependence among
species is preferred (Table 9.1). With physical or chemical descriptors of the
environment, the method of choice is principal component analysis of the correlation
matrix (Section 9.1); descriptors are represented by arrows in the ordination diagram.
Before clustering, negative correlations among descriptors should be made positive
because they are indicative of resemblance on an inverted scale.

When superimposed onto an ordination, single linkage clustering becomes a most
interesting procedure in ecology. Single linkage clustering is the best complement to
an ordination due to its contraction of the clustering space (Section 8.2). Drawing
single linkage results onto an ordination diagram provides both the correct positions
for the main clusters of objects (from the ordination) and the fine relationships between
closely similar objects (from the clustering). It is advisable to only draw the chain of
primary connections (Section 8.2) on the ordination diagram because it reflects the
changes in the composition of clusters. Otherwise, the groups of highly similar objects
may become lost in the multitude of links drawn on the ordination diagram. Ecological
application 10.1 provides an example of this procedure.

Jackson & Crovello (1971) suggested to indicate the directions of the links on the
ordination diagram (Fig. 10.1). This information may be useful when delineating
clusters, although the strengths of the links may be considered more important than
their directions. In such diagrams, each link of the primary chain is drawn with an
arrow. On a link from xl to x2, an arrow pointing towards x2 indicates that object xl has
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x2 as its closest neighbour in multidimensional A-space (i.e. in the association matrix
among objects). When x2 also has xl as its closest neighbour, the arrow goes both
ways. When x2 has x3 as its closest neighbour, the arrow from x2 points towards x3.
New links formed between objects that are already members of the same cluster do not
have arrows. These links may be removed to separate the clusters.

Ecological application  10.1

Single linkage clustering was illustrated by Ecological application 8.2 taken from a study of a
group of ponds, based upon zooplankton. The same example (Legendre & Chodorowski, 1977)
is used again here. Twenty ponds were sampled on islands of the St. Lawrence River, east and
south of Montréal (Québec). Similarity coefficient S20 (eq. 7.27) was computed with k = 2. The
matrix of similarities among ponds was used to compute single linkage clustering and an
ordination in reduced space by principal coordinate analysis. In Fig. 10.2, the chain of primary
connections is superimposed onto the ordination, in order to evidence the clustering structure.
The ponds are first divided into a cluster of periodic ponds, which are dry during part of the year
(encircled), and a cluster of permanent ponds. Ponds with identification numbers beginning with
the same digit (which indicates the region) tend to be close to one another and to cluster first
with one another. The second digit refers to the island on which a pond was located.

Figure 10.1 Three-dimensional ordination of objects (dots), structured by the primary connections of a
single linkage clustering. The arrows (excluding those of the principal axes I to III) specify the
directions of the relationships between nearest neighbours; see text. Modified from Jackson &
Crovello (1971).
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When no clear clustering structure is present in the data but groups are still needed,
for management purpose for instance, arbitrary groups may be delineated by drawing a
regular grid on the reduced-space ordination diagram. This grid may be orthogonal
(i.e. square or rectangular), or polar as in Fig. 9.8. Another method is to divide the
objects according to the quadrants of the ordination in reduced space (in 2d groups for
a d-dimensional space); the result is the hierarchic classification scheme of Lefkovitch
(1976) described in Subsection 9.2.5.

Figure 10.2 Comparison of 20 ponds on the basis of their zooplankton fauna. Ordination in a space of
principal coordinates (principal axes I and II), and superimposition of the chain of primary
connections obtained by single linkage clustering. The encircled ponds are periodic; the others
are permanent. Adapted from Legendre & Chodorowski (l977).
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Figure 10.3 summarizes the steps involved in producing a cluster analysis and an
ordination from a resemblance matrix. Description of the data structure is clearer when
the clustering results are drawn onto the ordination. In order to assess to what extent
the clustering and the ordination correspond to the resemblance matrix from which
they originate, these representations may be compared to the original resemblance
matrix using matrix correlation or related methods (Subsection 8.11.2). 

10.2 The mathematics of ecological interpretation

The present Section summarizes the numerical methods available for the interpretation
of ecological structures. They include some of the methods discussed in Chapters 4 to
9 and also other, more specialized techniques. The most widely used of these
techniques (regression, path analysis, matrix comparison, the 4th-corner method, and
canonical analysis) are discussed in Sections 10.3 to 10.6 and in Chapter 11. A few
other methods are briefly described in the present Section.

The numerical methods presented in this Section are grouped into three
subsections, which correspond to the three main objectives of ecological
interpretation, set in Section 10.0: explanation, forecasting, and prediction. For each of
these objectives, there is a summary table (Tables 10.1 to 10.3) which allows
researchers to choose the method(s) best suited to their ecological objectives and the
nature of their data. There are computer programs available for all methods mentioned
in this chapter; several of these are found in the most currently used packages.

Ecological interpretation, and especially the explanation and forecasting of the
structure of several descriptors (i.e. multivariate data), may be conducted following
two approaches, which are the indirect and direct comparison schemes (Fig. 10.4).
Indirect comparison proceeds in two steps. The structure (ordination axes, or clusters)
is first identified from a set of descriptors of prime interest in the study. In a second
step, the structure is interpreted using either (a) the descriptors that were analysed in
the first step to identify the structure, or (b) another set of descriptors assumed to help
explain the structure. In his chapter on ordination analysis, ter Braak (1987c) referred
to this form of analysis as indirect gradient analysis because is was mostly concerned
with the study of environmental gradients.

In direct comparison, one simultaneously analyses the response and explanatory
data tables in order to identify what they have in common. For two tables of
quantitative or binary data, canonical analysis, which combines and is an extension of
regression and ordination methods, offers an interesting approach. It allows one to
bring out the ordination structure common to two data sets; ter Braak (1987c) refers to
this approach as direct gradient analysis.

Other forms of direct comparison analysis are available. One may compare
similarity or distance matrices, derived from the original data matrices, using the

Indirect
comparison

Direct
comparison
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Figure 10.3 Identification of the structure of five objects, using clustering and ordination. Bottom right: the
chain of primary connections is superimposed on a 2-dimensional ordination, as in Figs. 10.1
and 10.2. Top: the reduced-space ordination and the clustering results are compared to the
resemblance matrix from which they originate. Upper right (top): a matrix of metric distances
(or its complement Sm = [1 – Dm]) is computed from the reduced-space ordination, and
compared to the original similarities using matrix correlation (r = 0.999 is a rather high score).
Upper right (below): a cophenetic matrix (Section 8.3) is computed from the dendrogram, and
compared to the original similarities using matrix correlation (r = 0.866).
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Figure 10.4 Indirect and direct comparison approaches for analysing and interpreting the structure of
ecological data. Single thin arrow: inference of structure. Double arrow: interpretation strategy.
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techniques of matrix comparison (Section 10.5). One may also directly compare
dendrograms derived from resemblance matrices, using consensus indices. Two main
approaches have been developed to test the significance of consensus statistics: (1) a
probability distribution derived for a given consensus statistic may be used, or (2) a
specific test may be carried out to assess the significance of the consensus statistic, in
which the reference distribution is found by permuting the two dendrograms under
study in some appropriate way (Lapointe & Legendre, 1995). Readers are referred to
the papers of Day (1983, 1986), Shao & Rohlf (1983), Shao & Sokal (1986), Lapointe
& Legendre (1990, 1991, 1992a, 1992b, 1995), and Steel & Penny (1993), where these
methods are described. Lapointe & Legendre (1994) used the three forms of direct
comparison analysis (i.e. comparison of raw data, distance matrices, and dendrograms;
Fig. 10.4) on five data sets describing the same objects. They showed that all methods
essentially led to similar conclusions, with minor differences.

The interpretation of a structure, using the descriptors from which it originates,
makes it possible to identify which descriptors mainly account for the structuring of
the objects. In some methods of ordination (e.g. principal component analysis,
correspondence analysis), the eigenvectors readily identify the important descriptors.
Other types of ordination, or the clustering techniques, do not directly provide this
information, which must therefore be found a posteriori using methods of indirect
comparison. This type of interpretation does not allow one to perform formal tests of
significance. The reason is that the structure under study is derived from the very same
descriptors that are now used to interpret it; it is thus not independent of them. 

Interpretation of a structure using external information (data table X in Fig. 10.4) is
central to numerical ecology. This approach is used, for example, to diagnose abiotic
conditions (response data table Y) from the available biological descriptors
(explanatory data table X) or, alternatively, to forecast the responses of species
assemblages (table Y) using available environmental descriptors (table X). In the same
way, it is possible to compare two groups of biological descriptors, or two tables of
environmental data. Until the mid-1980’s, the indirect comparison scheme was
favoured because of methodological problems with the classical technique of
canonical correlations, which was then the only one available in computer packages to
analyse two sets of descriptors. With the availability of new computer programs and
methods, the direct comparison scheme is becoming increasingly popular in the
ecological literature.

In the indirect comparison approach, the first set of descriptors is reduced to a
single or a few one-dimensional variables (i.e. a partition resulting from clustering, or
one or several ordination axes, the latter being generally interpreted one at the time). It
follows that the methods of interpretation for univariate descriptors may also be used
for indirect comparisons. This is the approach used in Tables 10.1 and 10.2.

Consensus
index

Permutation
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1 — Explaining ecological structures

Table 10.1 summarizes the methods available for explaining the structure of one or
several ecological descriptors. The purpose here is data exploration, not hypothesis
testing. The first dichotomy of the Table separates methods for univariate descriptors
(used also in the indirect comparison approach) from those for multivariate data.

Methods used for explaining the structure of univariate descriptors belong to three
major groups: (1) measures of dependence, (2) discriminant functions, (3) and
methods for qualitative descriptors. Methods used for explaining the structure of
multivariate descriptors belong to two major types: (4) canonical analysis methods
and (5) matrix comparison methods. The following paragraphs briefly review these
five groups of methods, paying special attention to those that are not discussed
elsewhere in this book.

1. Various coefficients have been described in Chapters 4 and 5 to measure the
dependence between two descriptors exhibiting monotonic relationships (i.e. the
parametric and nonparametric correlation coefficients). When there are more than two
descriptors, one may use the coefficients of partial correlation or the coefficient of
concordance (Section 5.3). The coefficient of multiple correlation (R2), which is
derived from multiple regression (multiple linear regression and dummy variable
regression), may be used when the response descriptor is quantitative. Dummy
variable regression is the same as multiple regression, but conducted on explanatory
variables that are qualitative or of mixed levels of precision; the qualitative variables
are coded as dummy variables, as explained in Subsection 1.5.7. Finally, in logistic
regression, it is possible to compute partial correlation coefficients between the
response and each explanatory variables. These different types of regression are briefly
discussed in Subsection 2, in relation with Table 10.2, and in more detail in
Section 10.3.

2. Explaining the structure of a qualitative descriptor is often called discrimination,
when the aim of the analysis is to identify explanatory descriptors that would allow
one to discriminate among the various states of the qualitative descriptor. Discriminant
analysis may be used when (1) the explanatory (or discriminant) descriptors are
quantitative, (2) their distributions are not too far from normal, and (3) the within-
group dispersion matrices are reasonably homogeneous. Discriminant analysis is
described in Section 11.5. Its use with species data is discussed in Section 11.6, where
alternative strategies are proposed.

3. When both the descriptor to be explained and the explanatory descriptors are
qualitative, one may use multidimensional contingency table analysis. It is then
imperative to follow the rules, given in Section 6.3, concerning the models to use when
a distinction is made between the explained and explanatory descriptors. When the
response variable is binary, logistic regression may be a better choice than
multidimensional contingency table analysis. An additional advantage is that logistic
regression allows one to use explanatory variables presenting a mixture of precision
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Table 10.1 Numerical methods for explaining the structure of descriptors, using either the descriptors from
which the structure originates, or other, potentially explanatory descriptors. In parentheses,
identification of the Section where a method is discussed. Tests of significance cannot be
performed when the structure of a descriptor is explained by the descriptors at the origin of that
structure.

1) Explanation of the structure of a single descriptor, or indirect comparison  . . . . . . . . . see 2

2) Structure of a quantitative or a semiquantitative descriptor . . . . . . . . . . . . . . . . . . . see 3

3) Explanatory descriptors are quantitative or semiquantitative. . . . . . . . . . . . . . . see 4

4) To measure the dependence between descriptors. . . . . . . . . . . . . . . . . . . . . see 5

5) Pairs of descriptors: Pearson r, for quantitative descriptors exhibiting linear 
relationships (4.2); Kendall τ or Spearman r, for quantitative or 
semiquantitative descriptors exhibiting monotonic relationships (5.2)

5) A single quantitative descriptor as a function of several others: coefficient of 
multiple determination R2 (4.5)

5) Several descriptors exhibiting monotonic relationships: coefficient of 
concordance W (5.2)

4) To interpret the structure of a single descriptor: partial Pearson r, for 
quantitative descriptors exhibiting linear relationships (4.5); partial Kendall τ,
for descriptors exhibiting monotonic relationships (5.2)

3) Explanatory descriptors of mixed precision: R2 of dummy variable regression (10.3)

3) Estimation of the dependence between descriptors of the sites and descriptors of the 
species (any precision level): the 4th-corner method (10.6)

2) Structure of a qualitative descriptor (or of a classification) . . . . . . . . . . . . . . . . . . . see 6

6) Explanatory descriptors are quantitative: discriminant analysis (11.5)

6) Explanatory descriptors are qualitative: multidimensional contingency table 
analysis (6.3); discrete discriminant analysis (10.2)

6) Explanatory descriptors are of mixed precision: logistic regression (in most 
computer programs, the explained descriptor is binary; 10.3)

1) Explanation of the structure of a multivariate data table  . . . . . . . . . . . . . . . . . . . . . . . . see 7

7) Direct comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 8

8) Structure of quantitative descriptors explained by quantitative descriptors: 
redundancy analysis (variables in linear relationships; 11.1); canonical
correspondence analysis (species data, unimodal distributions; 11.2)

8) The response and the explanatory data tables are transformed into resemblance 
matrices, using S or D functions appropriate to their mathematical types: matrix
comparison (Mantel test, Procrustes analysis: 10.5)

8) Classifications are computed for the two data tables . . . . . . . . . . . . . . . . . . . . . see 9

9) Partitions are compared: contingency table analysis (6.2), or modified Rand 
index (8.11)

9) Dendrograms are compared (10.2, Fig. 10.4)

7) Indirect comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 10

10) Ordination in reduced space: each axis is treated in the same way as a single 
quantitative descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 2

10) Clustering: each partition is treated as a qualitative descriptor  . . . . . . . . . . . . . see 2
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levels. For qualitative variables, the equivalent of discriminant analysis is called
discrete discriminant analysis. Goldstein & Dillon (1978) describe models used for
this analysis and provide FORTRAN programs.

4. The standard approach for comparing two sets of descriptors is canonical
analysis (Chapter 11). The classical method in parametric statistics is canonical
correlation analysis (Section 11.4), which may be thought of as two principal
component analyses — one on each of the two sets — followed by rotation of the
principal axes so as to make them correspond, i.e. maximizing their correlations.
Canonical correlations are restricted to quantitative descriptors where the relationships
between the two data sets are linear; they may also include binary descriptors, just as
in multiple regression. There are two problems with this method in the context of the
explanation of ecological structures. (1) The solution of canonical correlations, even
when mathematically valid, may not necessarily lead to interesting results because the
highest correlations may well be found between axes which are of minor importance
for the two data sets. It may be simpler to conduct a principal component analysis that
includes both sets of descriptors, whose results would be easier to interpret than those
of a canonical correlation analysis. Ecological application 9.1a is an example of this
approach. (2) In most instances in ecology, one is not interested so much in correlating
two data sets as to explain one using the other. In other words, the questions to be
answered focus on one of the two sets, which is thought of as the response, or
dependent data set, while the other is the explanatory, or independent data table. The
solution to these two problems is found in an indirect comparison approach, where one
asks how much of the structure of the response data set is explained by the explanatory
data table. Two variants of canonical analysis are now available to do so: redundancy
analysis and canonical correspondence analysis (Sections 11.1 and 11.2). The main
difference between the two methods is the same as between principal component and
correspondence analyses (Table 9.1).

5. Raw data tables may be turned into similarity or distance matrices (Fig. 10.4)
when one wishes to express the relationships among objects through a specific
measure of resemblance, or because the descriptors are of mixed types; similarity
coefficients are available to handle mixed-type data (S15, S16, S19, S20, Chapter 7). Two
resemblance matrices concerning the same objects may be compared using matrix
correlation (Subsection 8.11.2), that is, by computing a parametric or nonparametric
correlation coefficient between corresponding values in these two matrices (excluding
the main diagonals). Furthermore, when the two resemblance matrices are independent
of each other, i.e. they originate from different data sets, the matrix correlation may be
tested for significance using the Mantel test (Section 10.5). In the same way,
classifications of objects may be computed from resemblance matrices (Fig. 10.4); two
classifications may be compared using appropriate techniques. (1) If one is concerned
with specific partitions resulting from hierarchical classifications, or if a non-
hierarchical method of classification has been used, one may compare two partitions
using contingency table analysis, since partitions are equivalent to qualitative
descriptors, or the modified Rand index (Subsection 8.11.2). (2) If one is interested in
the relationships depicted by whole dendrograms, cophenetic matrices corresponding
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to the two dendrograms may be compared and tested for significance using the
methods mentioned in the paragraphs where Fig. 10.4 is described. An interesting
application of these methods is the comparison of a dendrogram computed from data
to a dendrogram taken from the literature.

6. Consider a (site × species) table containing presence-absence data, for which
supplementary variables are known for the sites (e.g. habitat characteristics) and for
the species (e.g. biological or behavioural traits). The 4th-corner method, described in
Section 10.6, offers a way to estimate the dependence between the supplementary
variables of the rows and those of the columns, and to test the resulting correlation-like
statistics for significance.

2 — Forecasting ecological structures

It is useful to recall here the distinction between forecasting and prediction in ecology.
Forecasting models extend, into the future or to different situations, structural
relationships among descriptors that have been quantified for a given data set. A set of
relationships among variables, which simply describe the changes in one or several
descriptors in response to changes in others as computed from a “training set”, make
up a forecasting model. In contrast, when the relationships are assumed to be causal
and to describe a process, the model is predictive. A condition to successful forecasting
is that the values of all important variables that have not been observed (or controlled,
in the case of an experiment) be about the same in the new situation as they were
during the survey or experiment. In addition, forecasting does not allow extrapolation
beyond the observed range of the explanatory variables. Forecasting models (also
called correlative models) are frequently used in ecology, where they are sometimes
misleadingly called “predictive models”. Forecasting models are useful, provided that
the above conditions are fulfilled. In contrast, predictive models describe known or
assumed causal relationships. They allow one to estimate the effects, on some
variables, of changes in other variables; they will be briefly discussed at the beginning
of the next Subsection.

Methods in Table 10.2 are used to forecast descriptors. As in Table 10.1, the first
dichotomy in the Table distinguishes the methods that allow one to forecast a single
descriptor (response or dependent variable) from those that may be used to
simultaneously forecast several descriptors. Forecasting methods belong to five major
groups: (1) regression models, (2) identification functions, (3) canonical analysis
methods, and (4) matrix comparison methods.

1. Methods belonging to regression models are numerous. Several regression
methods include measures of dependence that have already been mentioned in the
discussion of Table 10.1: multiple linear regression (the explanatory variables must be
quantitative), dummy variable regression (i.e. multiple regression conducted on
explanatory variables that are qualitative or of mixed levels of precision; the
qualitative variables are then coded as dummy variables, as explained in
Subsection 1.5.7), and logistic regression (the explanatory variables may be of mixed

Forecasting
model
Predictive
model
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levels of precision; the response variable is qualitative; most computer programs are
limited to the binary case*). Section 10.3 provides a detailed description of several
regression methods.

2. Identification functions are part of multiple discriminant analysis (Section 11.5),
whose discriminant functions were briefly introduced in the previous Subsection.

* In the SAS computer package, the standard procedure for logistic regression is LOGIST. One
may also use CATMOD, which makes it possible to forecast a multi-state qualitative descriptor.

Table 10.2 Numerical methods to forecast one or several descriptors (response or dependent variables)
using other descriptors (explanatory or independent variables). In parentheses, identification of
the Section where a method is discussed.

1) Forecasting the structure of a single descriptor, or indirect comparison  . . . . . . . . . . . . see 2

2) The response variable is quantitative  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 3

3) The explanatory variables are quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 4

4) Null or low correlations among explanatory variables: multiple linear regression
(10.3); nonlinear regression (10.3)

4) High correlations among explanatory variables (collinearity): ridge regression
(10.3); regression on principal components (10.3)

3) The explanatory variables are of mixed precision: dummy variable regression (10.3)

2) The response variable is qualitative (or a classification)  . . . . . . . . . . . . . . . . . . . . . see 5

5) Response: two or more groups; explanatory variables are quantitative (but 
qualitative variables may be recoded into dummy variables): identification functions 
in discriminant analysis (11.5)

5) Response: binary (presence-absence); explanatory variables are quantitative (but 
qualitative variables may be recoded into dummy var.): logistic regression (10.3)

2) The response and explanatory variables are quantitative, but they display a nonlinear 
relationship: nonlinear regression (10.3)

1) Forecasting the structure of a multivariate data table . . . . . . . . . . . . . . . . . . . . . . . . . . . see 6

6) Direct comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 7

7) The response as well as the explanatory variables are quantitative: redundancy 
analysis (variables linearly related; 11.1); canonical correspondence analysis
(species presence-absence or abundance data; unimodal distributions; 11.2)

7) Forecasting a resemblance matrix, or a cophenetic matrix representing a 
dendrogram, using several other explanatory resemblance matrices: multiple
regression on resemblance matrices (10.5)

6) Indirect comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 8

8) Ordination in reduced space: each axis is treated in the same way as a single 
quantitative descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 2

8) Clustering: each partition is treated as a qualitative descriptor  . . . . . . . . . . . . . see 2
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These functions allow the assignment of any object to one of the states of a qualitative
descriptor, using the values taken by several quantitative variables (i.e. the explanatory
or discriminant descriptors). As already mentioned in the previous Subsection, the
distributions of the discriminant descriptors must not be too far from normality, and
their within-group dispersion matrices must be reasonably homogeneous (i.e. about
the same among groups). 

3. Canonical analysis, and especially redundancy analysis and canonical
correspondence analysis, which were briefly discussed in the previous Subsection (and
in more detail in Sections 11.1 and 11.2), allow one to model a data table from the
descriptors of a second data table; these two data tables form the “training set”. Using
the resulting model, it is possible to forecast the position of any new observation
among those of the “training set”, e.g. along environmental gradients. The new
observation may represent some condition which may occur in the future, or at a
different but comparable location.

4. Finally, resemblance (S or D) and cophenetic matrices representing dendrograms
may be interpreted in the regression framework, against an array of other resemblance
matrices, using multiple regression on resemblance matrices (Subsection 10.5.2). The
permutational tests of significance for the regression parameters (R2 and partial
regression coefficients) are performed in the manner of either the Mantel test or the
double-permutation test, depending on the nature of the dependant matrix (an ordinary
similarity or distance matrix, or a cophenetic matrix).

3 — Ecological prediction

As explained in the Foreword, numerical modelling does not belong to numerical
ecology sensu stricto. However, some methods of numerical ecology may be used to
analyse causal relationships among a small number of descriptors, thus linking
numerical ecology to predictive modelling. Contrary to the forecasting or correlative
models (previous Subsection), predictive models allow one to foresee how some
variables of interest would be affected by changes in other variables. Prediction is
possible when the model is based on causal relationships among descriptors (i.e. not
only correlative evidence). Causal relationships are stated as hypotheses (theory) for
modelling; they may also be validated through experiments in the laboratory or in the
field. In manipulative experiments, one observes the responses of some descriptors to
user-determined changes in others, by reference to a control. Besides manipulative
experiments, which involve two or more treatments, Hurlbert (1984) recognizes
mensurative experiments which involve measurements made at one or more points in
space or time and allow one to test hypotheses about patterns in space (Chapter 13)
and/or time (Chapter 12). The numerical methods in Table 10.3 allow one to explore a
network of causal hypotheses, using the observed relationships among descriptors. The
design of experiments and analysis of experimental results are discussed by Mead
(1988) who offers a statistically-oriented presentation, and by Underwood (1997) in a
book emphasizing ecological experiments.

Predictive
model

Experiment
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One may hypothesize that there exist causal relationships among the observed
descriptors or, alternatively, that the observed descriptors are caused by underlying
hidden variables. Depending on the hypothesis, the methods for analysing causal
relationships are not the same (Table 10.3). Methods appropriate to the first case
belong to the family of path analysis; the second case leads to confirmatory factor
analysis. The present Chapter only discusses the former since the latter was explained
in Section 9.5. In addition to these methods, techniques of forecasting (Table 10.2)
may be used for predictive purposes when there are reasons to believe that the
relationships between explanatory and response variables are of causal nature.

Fundamentals of path analysis are presented in Section 10.4. Path analysis is an
extension of multiple linear regression and is thus limited to quantitative or binary
descriptors (including qualitative descriptors recoded as dummy variables:
Subsection 1.5.7). In summary, path analysis is used to decompose and interpret the
relationships among a small number of descriptors, assuming (a) a (weak) causal order
among descriptors, and (b) that the relationships among descriptors are causally
closed. Causal order means, for example, that y2 possibly (but not necessarily) affects
y3 but that, under no circumstance, y3 would affect y2 through the same process.
Double causal “arrows” are allowed in a model only if different mechanisms may be
hypothesized for the reciprocal relationships. Using this assumption, it is possible to
set a causal order between y2 and y3. The assumption of causal closure implies
independence of the residual causalities, which are the unknown factors responsible
for the residual variance (i.e. the variance not accounted for by the observed
descriptors). Path analysis is restricted to a small number of descriptors. This is not due
to computational problems, but to the fact that the interpretation becomes complex
when the number of descriptors in a model becomes large.

Table 10.3 Numerical methods for analysing causal relationships among ecological descriptors, with the
purpose of predicting one or several descriptors using other descriptors. In parentheses,
identification of the Section where a method is discussed. In addition, forecasting methods
(Table 10.2) may be used for prediction when there are reasons to believe that the relationships
between explanatory and response variables are of causal nature.

1) The causal relationships among descriptors are given by hypothesis . . . . . . . . . . . . . . . see 2

2) Quantitative descriptors; linear causal relationships: causal modelling using 
correlations (4.5); path analysis (10.4)

2) Qualitative descriptors: logit and log-linear models (6.3)

2) Modelling from resemblance matrices: causal modelling on resemblance matrices
(10.5)

1) Hidden variables (latent variables,  factors) are assumed to cause the observed structure of 
the descriptors: confirmatory factor analysis (9.5)
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When the analysis involves three descriptors only, the simple method of causal
modelling using correlations may be used (Subsection 4.5.5). For three resemblance
matrices, causal modelling may be carried out using the results of Mantel and partial
Mantel tests, as described in Subsection 10.5.2 and Section 13.6.

For qualitative descriptors, Fienberg (1980; his Chapter 7) explains how to use
logit or log-linear models (Section 6.3) to determine the signs of causal relationships
among such descriptors, by reference to diagrams similar to the path diagrams of
Section 10.4.

10.3 Regression

The purpose of regression analysis is to describe the relationship between a dependent
(or response) random* variable (y) and a set of independent (or explanatory)
variables, in order to forecast or predict the values of y for given values of the
independent variables x1, x2, …, xp. Box 1.1 gives the terminology used to refer to the
dependent and independent variables of a regression model in an empirical or causal
framework. The explanatory variables may be either random* or controlled (and,
consequently, known a priori). On the contrary, the response variable must of
necessity be a random variable. That the explanatory variables be random or controlled
will be important when choosing the appropriate computation method (model I or II). 

A mathematical model is simply a mathematical formulation (algebraic, in the case
of regression models) of a relationship, or set of relationships among variables, whose
parameters have to be estimated, or that are to be tested; in other words, it is a
simplified mathematical description of a real-life system. Regression, with its many
variants, is the first type of modelling method presented in this Chapter for analysing
ecological structures. It is also used as a platform to help introduce the principles of
structure analysis. The same principles will apply to more advanced forms,
collectively referred to as canonical analysis, that are discussed in Chapter 11.

Regression modelling may be used for description, inference, or
forecasting/prediction:

1. Description aims at finding the best functional relationship among variables in the
model, and estimating its parameters, based on available data. In mathematics, a
function y = ƒ(x) is a rule of correspondence, often written as an equation, that
associates with each value of x one and only one value of y. A well-known functional

* A random variable is a variable whose values are assumed to result from some random process
(p. 1); these values are not known before observations are made. A random variable is not a
variable consisting of numbers drawn at random; such variables, usually generated with the help
of a pseudo-random number generator, are used by statisticians to assess the properties of
statistical methods under some hypothesis.

Model
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relationship in physics is Einstein’s equation E = mc2, which describes the amount of
energy E associated with given amounts of mass m; the scalar value c2 is the parameter
of the model, where c is the speed of light in vacuum.

2. Inference means generalizing the results of a set of observations to the whole target
population, as represented by a sample drawn from that population. Inference may
consist in estimating the confidence intervals within which the true values of the
statistical population parameters are likely to be found, or testing a priori hypotheses
about the values of model parameters in the statistical population. (1) The ecological
hypotheses may simply concern the existence of a relationship (i.e. the slope is
different from 0), and/or it may state that the intercept is different from zero. The test
consists in finding the two-tailed probability of observing the slope (b1) and/or
intercept (b0) values which have been estimated from the sample data, given the null
hypothesis (H0) stating that the slope (β1) and/or intercept (β0) parameters are zero in
the statistical population. These tests are described in manuals of elementary statistics.
(2) In other instances, the ecological hypothesis concerns the sign that the relationship
should have. One then tests the one-tailed null statistical hypotheses (H0) that the
intercept and/or slope parameters in the statistical population are zero, against
alternative hypotheses (H1) that they have the signs (positive or negative) stated in the
ecological hypotheses. For example, one might want to test Bergmann’s law (1847),
that the body mass of homeotherms, within species or groups of closely related
species, increases with latitude. (3) There are also cases where the ecological
hypothesis states specific values for the parameters. Consider for instance the
isometric relationship specifying that mass should increase as the cube of the length in
animals, or in log form: log(mass) = b0 + 3 log(length). Length-to-mass relationships
found in nature are most often allometric, especially when considering a multi-species
group of organisms. Reviewing the literature, Peters (1983) reported allometric slope
values from 1.9 (algae) to 3.64 (salamanders).

3. Forecasting (or prediction) consists in calculating values of the response variable
using a regression equation. Forecasting (or prediction) is sometimes described as the
purpose of ecology. In any case, ecologists agree that empirical or hypothesis-based
regression equations are helpful tools for management. This objective is achieved by
using the equation that minimizes the residual mean square error, or maximizes the
coefficient of determination (r2 in simple regression; R2 in multiple regression). 

A study may focus on one or two of the above objectives, but not necessarily all
three. Satisfying two or all three objectives may call upon different methods for
computing the regressions. In any case, these objectives differ from that of correlation
analysis, which is to support the existence of a relationship between two random
variables, without reference to any functional or causal link between them (Box 10.1).

This Section does not attempt to present regression analysis in a comprehensive
way. Interested readers are referred to general texts of (bio)statistics such as Sokal &
Rohlf (1995), specialized texts on regression analysis (e.g. Draper & Smith, 1981), or
textbooks such as those of Ratkowski (1983) or Ross (1990) for nonlinear estimation.
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The purpose here is to survey the main principles of regression analysis and, in the
light of these principles, explain the differences among the regression models most
commonly used by ecologists: simple linear (model I and model II), multiple linear,
polynomial, partial, nonlinear, and logistic. Some smoothing methods will also be
described. Several other types of regression will be mentioned, such as dummy
variable regression, ridge regression, multivariate linear regression, and monotone or
nonparametric regression.

Incidentally, the term regression has a curious origin. It was coined by the
anthropologist Francis Galton (1889, pp. 95-99), a cousin of Charles Darwin, who was
studying the relationship between the heights of parents and offspring. Galton
observed “that the Stature of the adult offspring … [is] … more mediocre than the
stature of their Parents”, or in other words, closer to the population mean; so, Galton

Correlation or regression analysis? Box 10.1

Regression analysis is a type of modelling. Its purpose is either to find the best
functional model relating a response variable to one or several explanatory
variables, in order to test hypotheses about the model parameters, or to forecast or
predict values of the response variable.

The purpose of correlation analysis is quite different. It aims at establishing
whether there is interdependence, in the sense of the coefficients of dependence of
Chapter 7, between two random variables, without assuming any functional or
explanatory-response or causal link between them. 

In model I simple linear regression, where the explanatory variable of the model
is controlled, the distinction is easy to make; in that case, a correlation hypothesis
(i.e. interdependence) is meaningless. Confusion comes from the fact that the
coefficient of determination, r2, which is essential to estimate the forecasting value
of a regression equation and is automatically reported by most regression programs,
happens to be the square of the coefficient of linear correlation.

When the two variables are random (i.e. not controlled), the distinction is more
tenuous and depends on the intent of the investigator. If the purpose is modelling (as
broadly defined in the first paragraph of this Box), model II regression is the
appropriate type of analysis; otherwise, correlation should be used to measure the
interdependence between such variables. In Sections 4.5 and 10.4, the same
confusion is rampant, since correlation coefficients are used as an algebraic tool for
choosing among causal models or for estimating path coefficients.

Regression
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said, they regressed (meaning going back) towards the population mean. He called the
slope of this relationship “the ratio of ‘Filial Regression’ ”. For this historical reason,
the slope parameter is now known as the regression coefficient.

1 — Simple linear regression: model I

Linear regression is used to compute the parameters of a first-degree equation relating
variables y and x. The expression simple linear regression applies to cases where there
is a single explanatory variable x. The equation (or model) for simple linear regression
has the form:

(10.1)

This corresponds to the equation of a straight line (hence the name linear) that crosses
the scatter of points in some optimal way and allows the computation of an estimated
value  (ordinate of the scatter diagram) for any value of x (abscissa; Fig. 10.5a).
Parameter b0 is the estimate of the intercept of the regression line with the ordinate; it
is also called the y-intercept. Parameter b1 is the slope of the regression line; it is also
called the regression coefficient. In the Subsection on polynomial regression, a
distinction will be made between linearity in parameters and linearity in response to
the explanatory variables.

When using this type of regression, one must be aware of the fact that a linear
model is imposed. In other words, one assumes that the relationship between variables
may be adequately described by a straight line and that the vertical dispersion of
observed values above and below the line is the result of a random process. The
difference between the observed and estimated values along y, noted 
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Figure 10.5 (a) Linear regression line, of equation , fitted to the scatter of points shown in b.
(b) Graphical representation of regression residuals εi (vertical lines); ε1 is the residual for point
1 with coordinates (x1, y1).
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for every observation i, may be either positive or negative since the observed data
points may lie above or below the regression line.  is called the residual value of
observation  after fitting the regression line (Fig. 10.5b). Including  in the equation
allows one to describe exactly the ordinate value yi of each point (xi, yi) of the data set;
yi is equal to the value  predicted by the regression equation plus the residual :

(10.2)

This equation is the linear model of the relationship.  is the predicted, or fitted value
corresponding to each observation i. The model assumes that the only deviations from
the linear functional relationship  are vertical differences (“errors”)  on
values  of the response variable, and that there is no “error” associated with the
estimation of x. “Error” is the traditional term used by statisticians for deviations of all
kind due to random processes, and not only measurement error. In practice, when it is
known by hypothesis — or found by studying a scatter diagram — that the relationship
between two variables is not linear, one may either try to linearise it (Section 1.5), or
else use polynomial or nonlinear regression methods to model the relationship
(Subsections 4 and 6, below).

Besides the supposition that the variables under study are linearly related, model I
regression makes the following additional assumptions about the data:

1. The explanatory variable x is controlled, or it is measured without error. (The
concepts of random and controlled variables have been briefly explained above.)

2. For any given value of x, the y’s are independently and normally distributed. This
does not mean that the response variable y must be normally distributed, but instead
that the “errors”  are normally distributed about a mean of zero. One also assumes
that the εi’s have the same variance for all values of x in the range of the observed data
(homoscedasticity: Box 1.3).

So, model I regression is appropriate to analyse results of controlled experiments,
and also the many cases of field data where a response random variable y is to be
related to sampling variables under the control of the researcher (e.g. location in time
and space, volume of water filtered). The next Subsection will show how to use
model II regression to analyse situations where these assumptions are not met.

In simple linear regression, one is looking for the straight line with equation
 that minimizes the sum of squares of the vertical residuals, , between

the observed values and the regression line. This is the principle of least squares, first
proposed by the mathematician Adrien Marie Le Gendre from France, in 1805, and
later by Karl Friedrich Gauss from Germany, in 1809; these two mathematicians were
interested in problems of astronomy. This sum of squared residuals, ,
offers the advantage of providing a unique solution, which would not be the case if one
chose to minimize another function — for example . It can also be shown
that the straight line that meets the ordinary least-squares (OLS) criterion passes
through the centroid, or centre of mass  of the scatter of points, whose
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coordinates are the means  and . The formulae for parameters b0 and b1 of the line
meeting the least-squares criterion are found using partial derivatives. The solution is:

    and (10.3)

where sxy and  are estimates of covariance and variance, respectively (Section 4.1).
These formulae, written in full, are found in textbooks of introductory statistics. Least-
squares estimates of b0 and b1 may also be computed directly from the x and y data
vectors, using matrix eq. 2.19. Least-squares estimation provides the line of best fit for
parameter estimation and forecasting when the explanatory variable is controlled.

Regressing y on x does not lead to the same least-squares equation as regressing x
on y. Figure 10.6a illustrates this for two random variables; they would thus represent a
case for model II regression, discussed in the next Subsection. Even when x is a
random variable, the variables will continue to be called x and y (instead of y1 and y2)
to keep the notation simple. Although the covariance sxy is the same for the regression
coefficient of y on x ( ) and that of x on y ( ), the denominator of the
slope equation (eq. 10.3) is  when regressing y on x, whereas it is  when
regressing x on y. Furthermore, the means  and  play inverted roles when estimating
the two intercepts,  and . This emphasizes the importance of clearly
defining the explanatory and response variables when performing regression.
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Figure 10.6 (a) Two least-squares regression equations are possible in the case of two random variables
(called x and y here, for simplicity). When regressing y on x, the sum of vertical squared
deviations is minimized (full lines); when regressing x on y, the sum of horizontal squared
deviations is minimized (dashed lines). Angle θ between the two regression lines is computed
using eq. 10.5. (b) In major axis regression, the sum of the squared Euclidean distances to the
regression line is minimized.
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The two least-squares regression lines come together only when all observation
points fall on the same line (correlation = 1). According to eq. 4.7, .
So, when r = 1,  and, since  (eq. 10.3), then

. Similarly, the slope , which describes the same
line in the transposed graph, is . In the more general case where r
is not equal to 1, . When the two regression lines are drawn on
the same graph, assuming that the variables have been standardized prior to the
computations, there is a direct relationship between the Pearson correlation coefficient
rxy and angle θ between the two regression lines:

θ = 90° – 2 tan–1 r,    or    r = tan (10.4)

If r = 0, the scatter of points is circular and angle θ = 90°, so that the two regression
lines are at a right angle; if r = 1, the angle is 0°. Computing angle θ for non-
standardized variables, as in Fig. 10.6a, is a bit more complicated:

(10.5)

The coefficient of determination r2 measures how much of the variance of each
variable is explained by the other. This coefficient has the same value for the two
regression lines. The amount of explained variance for y is the variance of the fitted
values . It is calculated as:

(10.6)

whereas the total amount of variation in variable y is

It can be shown that the coefficient of determination, which is the ratio of these two
values (the two denominators (n – 1) cancel out), is equal to the square of the Pearson
correlation coefficient r. With two random variables, the regression of y on x makes as
much sense as the regression of x on y. In this case, the coefficient of determination
may be computed as the product of the two regression coefficients:

(10.7)

In other words, the coefficient of correlation is the geometric mean of the coefficients
of linear regression of each variable on the other: . It may
also be computed as the square of r in eq. 4.7:

(10.8)
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A value r2 = 0.81, for instance, means that 81% of the variation in y is explained by x,
and vice versa. In Section 10.4, the quantity (1 – r2) will be called the coefficient of
nondetermination; it measures the proportion of the variance of a response variable
that is not explained by the explanatory variable(s) of the model. 

When x is a controlled variable, one must be careful not to interpret the coefficient
of determination in terms of interdependence, as one would for a coefficient of
correlation, in spite of their algebraic closeness and the fact that the one may, indeed,
be directly calculated from the other (Box 10.1).

2 — Simple linear regression: model II

When both the response and explanatory variables of the model are random (i.e. not
controlled by the researcher), there is error associated with the measurements of x and
y. Such situations are often referred to as model II regression; they are not the
regression equivalent of model II ANOVA, though. Examples are: 

• In microbial ecology, the concentrations of two substances produced by bacterial
metabolism have been measured. One is of economical interest, but difficult to
measure with accuracy, whereas the other is easy to measure. Determining their
relationship by regression allows ecologists to use the second substance as a proxy for
the first.

• In aquatic ecology, in vivo fluorescence is routinely used to estimate phytoplankton
chlorophyll a. The two variables must be determined to establish their relationship;
they are both random and measured with error. 

• In comparative growth studies, one may use length as an indicator for the mass of
individuals pertaining to a given taxonomic group.

In all these cases, one may be interested in estimating the parameters of the functional
relationship, or to use one variable to forecast the other. In model II regression,
different computational procedures may be required for description and inference, as
opposed to forecasting. Other applications follow. 

• In freshwater sediment, one may be interested to compare the rate of microbial
anaerobic methane production to total particulate carbon, in two environments
(e.g. two lakes) in which several sites have been studied, but that differ in some other
way. Since total particulate carbon and methane production have been measured with
error in the field, rates are given by the slopes of model II regression equations; the
confidence intervals of these slopes may serve to compare the two environments.

• Deterministic models are often used to describe ecological processes. In order to test
how good a model is at describing reality, one uses field data about the control
variables incorporated in the model, and compares the predictions of the model to the
observed field values of the response variable. Since both sets of variables (control,

Coefficient
of non-de-
termination

Model II
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response) are random, the predictions of the model are just as random as the field
response variable values, so that they should be compared using model II regression.
The hypothesis is one-tailed in this case; indeed, a model may be said to accurately
reflect the field process only if its predictions are positively correlated with the field
observations. Theory and examples are provided by Mesplé et al. (1996).

In the examples above, one may be interested to estimate the parameters of the
equation that describes the functional relationship between pairs of random variables,
in order to quantify the underlying physiological or ecological processes. Model II
regression should be used for parameter estimation, in such cases, since the slope
found by ordinary least squares (OLS) is biased by the presence of measurement error
in the explanatory variable. OLS should be used only when x is fixed by experiment or
is a random variable measured without error, or with little error compared to y (see
recommendation 1 at the end of the Subsection), or else when the objective of the
study is forecasting (recommendation 6, also discussed below).

To give substance to the above assertion, let us consider again the relationship
between length and mass of adult animals of a given species. Let us further assume
that the relationship is isometric (mass = c·length3) for the species under study; this
equation would correspond to the case where all individuals, short or long, have the
same shape (fatness). The same functional equation, in log form, is
log(mass) = b0 + 3 log(length), where b0 is the log of parameter c. Since individual
measurements are each subject to a large number of small genetic and environmental
influences, presumably additive in their effects and uncorrelated among individuals, it
is expected that both length and mass include random deviations from the functional
equation; measurement errors must be added to this inherent variability. In such a
system, the slope of the OLS regression line of log(mass) on log(length) would be
smaller than 3 (Fig. 10.7; Ecological application 10.2), which would lead one to
conclude that the species displays allometric growth, with longer individuals thinner
than short ones. On the contrary, the slope of the regression line of log(length) on
log(mass), computed in the transposed space, would produce a slope smaller than 1/3;
its inverse, drawn in Fig. 10.7, is larger than 3; this slope would lead to the opposite
conclusion, i.e. that shorter individuals are thinner than long ones. This apparent
paradox is simply due to the fact that OLS regression is inappropriate to describe the
functional relationship between these variables.

When the purpose of regression analysis is merely to compute fitted values for
forecasting or prediction purposes, the OLS method should be used. The reason is
simple: by definition (see Subsection 1), ordinary least squares is the method that
produces fitted values with the smallest error, defined as . So, OLS is also
one of the methods to be used in model II situations, when the purpose is as stated
above.

Several methods have been proposed to estimate model II regression parameters,
and the controversy about which is the best still goes on in the literature. The four
following methods are the most popular — although, surprisingly, the major statistical

Σ yi ŷi–( ) 2
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packages are still ignoring them (except, of course, method 5, i.e. OLS). For methods 1
to 4 described below, slope estimates can easily be calculated with a pocket calculator,
from values of the means, variances, and covariance, computed with standard
statistical software.

Methods 1, 2, and 5 are special cases of the structural relationship, in which it is
assumed that there is error εi on y and δi on x, εi and δi being independent of each
other. As stated above, “error” means deviation of any kind due to a random process,
not only measurement error. The maximum likelihood (ML) estimate of the slope for
such data is (Madansky, 1959; Kendall & Stuart, 1966):

(10.9)

where  and  are the estimated variances of y and x, respectively,  is their
covariance, and λ is the ratio  of the variances of the two error terms. 

When λ is large, another form may prove easier to compute than eq. 10.9; it is
derived from the property that the slope of the regression line of y on x is the inverse of
the slope of the regression of x on y in the case of symmetric regression lines. After the
proper substitutions, equation 10.9 becomes:

(10.10)

Figure 10.7 Isometric growth is depicted by the functional relationship log(mass) = b0 + 3 log(length). The
ordinary least-squares (OLS) regression line of log(mass) on log(length) would suggest
allometric growth of one type, while the OLS regression line of log(length) on log(mass) would
suggest allometric growth of the opposite type.

Isometric growth equation
OLS equation: log (length) = ƒ(log (mass))

OLS equation: log (mass) = ƒ'(log (length))
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• 1 — In major axis regression (MA), the estimated regression line is the first
principal component of the scatter of points (see principal component analysis,
Section 9.1). The quantity which is minimized is the sum, over all points, of the
squared Euclidean distances between the points and the regression line (Fig. 10.6b),
instead of vertical distances as in OLS (Fig. 10.6a). In this method, one assumes that
the two error variances (  on y and  on x) are equal, so that their ratio λ = 1. This
assumption is strictly met, for example, when both variables have been measured using
the same instrument and all of the error is measurement error (McArdle, 1988). The
slope of the major axis is estimated by the following formula (Pearson, 1901;
Jolicoeur, 1973; Sokal & Rohlf, 1995) which is a special case of eq. 10.9, with λ = 1:

(10.11)

The positive square root is used in the numerator. A second equation is obtained by
using the negative square root; it estimates the slope of the minor axis, which is the
second principal component, of the bivariate scatter of points. When the covariance is
near 0, bMA is estimated using eq. 10.10 (with λ = 1) instead of eq. 10.11, in order to
avoid numerical indetermination.

The slope of the major axis may also be calculated using estimates of the slope of
the OLS regression line, , and of the correlation coefficient, rxy:

   where

The positive root of the radical is used when the correlation coefficient is positive, and
conversely (Currie et al.*).

Just as with principal component analysis, this method is mostly useful in
situations where both variables are expressed in the same physical units, or are
dimensionless (naturally, or after standardization or some other transformation). Many
natural ecological variables are not in the same physical units. Major axis regression
has been criticized because, in that case, the slope estimated by major axis regression
is not invariant under an arbitrary change of scale such as expansion (Section 1.5) and,
after a change of scale, bMA cannot be directly calculated using the change-of-scale
factor. In these conditions, the actual value of the slope may be meaningless (Teissier,
1948; Kermack and Haldane, 1950; Ricker, 1973; McArdle, 1988) or difficult to
interpret. By comparison, the slopes of the OLS, SMA, and RMA regression lines are

* Currie, D. J., P. Legendre & A. Vaudor. Regression in the correlation situation. Paper
under review.
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not invariant either to change-of-scale transformations, but the slopes of the
transformed data can easily be calculated using the change-of-scale factor. For
example, after regressing a variable in g onto a variable in cm, if the OLS slope is 
(in g/cm), then after rescaling the explanatory variable from cm to m, the OLS slope
becomes .

Major axis regression may be used with variables in different physical units
(1) when the purpose of the analysis is to compare slopes (e.g. at different sampling
sites) computed from variables measured in an identical way. It may also be useful
(2) when the purpose of the study is to compare the slope of empirical data to a value
given by hypothesis.

Significance of bMA estimates can be tested by permutation (Section 1.2); the
values of one or the other variable are permuted a large number of times and slope
estimates are computed using eq. 10.11. The test should be carried out on the lesser of
the two slopes: b1 of y on x, or  of x on y. If the objective is simply to
assess the relationship between the two variables under study, the correlation
coefficient should be tested for significance instead of the slope of a model II
regression line. 

When the variances  and  are equal, the slope estimated by eq. 10.11 is ±1, the
sign being that of the covariance, whatever the value of . As in the case of SMA
(below), permutations produce slopes estimates of +1 or –1 in equal numbers, with a
resulting probability near 0.5 whatever the value of the correlation. This result is
meaningless. The practical consequence is that, if the slope estimate bMA is to be
tested by permutations, variables should not be standardized (eq. 1.12).

Alternatively, one may compute the confidence interval of the slope at a
predetermined confidence level and check whether the value 0 (or, for that matter, any
other value of interest) lies inside or outside the confidence interval. Computation of
the confidence interval involves several steps; the formulae are given in Jolicoeur &
Mosimann (1968), Jolicoeur (1990), and Sokal & Rohlf (1995, pp. 589-591), among
others. When both n and the ratio of the eigenvalues of the bivariate distribution (see
principal component analysis, Section 9.1) are small, limits of the confidence interval
cannot be computed because it covers all 360° of the plane. Such a confidence interval
always includes slope 0, as well as any other value. For example, when n = 10, the
ratio of the eigenvalues must be larger than 2.21 for the 95% confidence interval to be
real; for n = 20, the ratio must be larger than 1.63; and so on.

It frequently happens in ecology that a scatter plot displays a bivariate lognormal
distribution; the univariate frequency distributions of such variables are positively
skewed, with longer tails in the direction of the higher values. Such distributions may
be normalized by applying a log transformation (Subsection 1.5.6; Fig. 1.9). This
transformation also solves the problem of dimensionally heterogeneous variables and
makes the estimate of the major axis slope invariant over expansion (multiplication or
division by a constant: Section 1.5) — but not over translation. One should verify, of
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course, that the log-transformed data conform to a bivariate normal distribution before
proceeding with major axis regression.

This property can easily be demonstrated as follows. Consider a model II functional
equation describing the linear relationship of two log-transformed variables x and y:

log(y) = b0 + b1 log(x)

If x and y are divided by constants c1 and c2 respectively (expansion), one obtains new variables
 and , so that  and . The functional equation becomes:

which may be rewritten as

where  is the new intercept, while the slope of  is
still b1. So, under log transformation, the slope b1 is invariant for any values of expansion
coefficients c1 and c2; it differs, of course, from the major axis regression coefficient (slope) of
the untransformed variables.

Dividing x and y by their respective standard deviations,  and , is an expansion which
makes the two variables dimensionless. It thus follows that the major axis slope of the original
log-transformed data is the same as that of the log of the standardized (dimensionless) data. This
also applies to other standardization methods such as division by the maximum value or the
range (eqs. 1.10 and 1.11).

Readers who prefer numerical examples can easily check the above derivation by computing
a principal component analysis on a small data set containing two log-transformed variables
only, with or without expansion (multiplication or division by a constant prior to the log
transformation). The angles between the original variables and the first principal component are
easily computed as the cos–1 of the values in the first normalized eigenvector (Subsection 9.1.3);
the slopes of the major axis regression coefficients of y = ƒ(x) and x = ƒ(y), which are the
tangents (tan) of these angles, remain the same over such a transformation.

• 2 — Regression using variables that are not dimensionally homogeneous
produces results that vary with the scales of the variables. If the physical dimensions
are arbitrary (e.g. measurements that may indifferently be recorded in mm, cm, m, or
km), the slope estimate is also arbitrary. In ordinary least squares regression (OLS), the
slope and confidence interval values change proportionally to the measurement units.
For example, multiplying all y values by 10 produces a slope estimate ten times larger,
whereas multiplying all x values by 10 produces a slope estimate 10 times smaller.
This is not the case with MA; the major axis slope does not scale proportionally to the
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units of measurement. For this reason, it may be desirable to make the variables
dimensionally homogeneous prior to model II regression.

Standard major axis regression (SMA) is a way to make the variables
dimensionally homogeneous prior to the regression. It is computed as follows:

• Standardize variables x and y using eq. 1.12.

• Compute MA regression on the standardized variables. The slope estimate is always
+1 or –1; the sign is that of the covariance  or correlation coefficient .

• Back-transform the slope estimate to the original units by multiplying it by (sy/sx).

To summarize, the slope of the standard major axis (SMA), or reduced major axis,
is computed as the ratio (Teissier, 1948):

(10.12)

This formula is obtained from eq. 10.9 by assuming that the error variances  and 
of y and x, respectively, are identically proportional to their respective variances 
and ; in other words, . This assumption is unlikely to be strictly
true with real data, except in cases where both variables are counts (e.g. animal
numbers) or log-transformed data (McArdle, 1988). Replacing variances  and 
by their unbiased estimates  and  gives the following value to λ in eq. 10.9: 

Equation 10.9 then simplifies to eq. 10.12. Since the square root  is either
positive or negative, the slope estimate is given the sign of the Pearson correlation
coefficient, which is the same as that of the covariance  in the denominator of
eq. 10.9 or that of the OLS slope estimate. The bSMA estimate is also the geometric
mean of the OLS regression coefficient of y on x and the reciprocal of the regression
coefficient of x on y; this is why the method is also called geometric mean regression,
besides a variety of other names. 

From equations 4.7 (Pearson coefficient of linear correlation r), 10.3 ( ) and
10.12 ( ), one can show that

   when rxy ≠ 0 (10.13)

So, one can easily compute  from eq. 10.13, using values of  and rxy
provided by an OLS regression program. This equation also shows that, when the
variables are highly correlated (r → 1), . When they are not,  is
always larger than  for positive values of r, and smaller for negative values of r;
in other words,  is always closer to 0 than . 
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When rxy = 0, the  estimate obtained from eq. 10.12, which is the ratio of the
standard deviations, is meaningless. It does not fall to zero when the correlation is
zero, except in the trivial case where sy is zero (Jolicoeur, 1975, 1990). Since the

 estimate is independent of the presence of a significant covariance between x
and y (eq. 10.12), ecologists should always compute a Pearson correlation coefficient
and test it for significance prior to computing the slope of a standard major axis
regression line. If r is not significantly different from zero,  should not be
computed nor used for forecasting.

The slope of the standard major axis cannot be tested for significance. There are
two reasons for this. 

• Consider permutation testing. The  slope estimate is  but, for all
permuted data,  is a constant. Giving the signs of the permuted covariances to the
permuted slope estimates inevitably produces a probability near 0.5 of obtaining, by
permutation, a value as extreme as or more extreme than the estimate .

• The confidence interval of the slope , described below, is inappropriate to test
the null hypothesis β = 0 because the ratio  cannot be zero unless sy is equal to
zero. This is a trivial case, unsuitable for regression analysis (Sokal & Rohlf, 1995).

McArdle (1988) suggests that the solution to this problem is to test the correlation
coefficient rxy for significance instead of testing .

When needed, an approximate confidence interval [b1, b2] can be computed for
 as follows (Jolicoeur & Mosimann, 1968):

where

and t is a two-tailed Student’s  value for significance level α and (n – 2) degrees of
freedom.

• 3 — An alternative transformation to make the variables dimensionally
homogeneous is ranging (eq. 1.11). This transformation does not make the variances
equal and thus does not lead to the problems encountered with SMA regression. It
leads to ranged major axis regression (RMA, described here and in Currie et al.; see
footnote p. 507) which proceeds as follows:

• Transform the y and x variables into y' and x', respectively, using eq. 1.11. For
relative-scale variables (Subsection 1.4.1), which have zero as their natural minimum,
the ranging transformation is carried out using eq. 1.10.
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• Compute MA regression between the ranged variables y' and x'.

• Back-transform the estimated slope and confidence interval limits to the original
units by multiplying them by the ratio of the ranges, (ymax – ymin)/(xmax – xmin).

The RMA slope estimator has several desirable properties when variables x and y
are not expressed in the same units.   The slope estimator scales proportionally to the
units of x and y. The estimator is not insensitive to the covariance, as is the case for
SMA. Finally, it is possible to test the hypothesis that an RMA slope estimate is equal
to a stated value, in particular 0 or 1. As in MA, this may be done either by
permutations, or by comparing the confidence interval of the slope to the hypothetical
value of interest. Thus, whenever MA regression cannot be used because of
incommensurable units, RMA regression can be used. There is no reason, however, to
use RMA with variables that are expressed in the same units.

Prior to RMA, one should check for the presence of outliers, using a scatter
diagram of the objects. Outliers cause important changes to the estimates of the ranges
of the variables. Outliers that are not aligned with the bulk of the objects may thus
have an undesirable influence on the slope estimate. RMA should not be used in the
presence of such outliers.

• 4 — Bartlett’s three-group method consists in arbitrarily dividing the data into
three groups along the abscissa; the first and third groups must be of the same size.
Discarding the middle group, the centroids of the first and third groups,  and

, are computed. The slope of the straight line that goes through the centroids
of the two extreme groups is calculated from these values: .
The formula for computing the confidence interval of this regression coefficient is
given by Sokal & Rohlf (1995), among others. The main handicap of this method is
that the regression lines are not the same depending on whether the grouping is carried
out based on x or y; deviation from the true major axis may be large.

• 5 — The ordinary least squares (OLS) method is derived from eq. 10.10 by
assuming that there is no error on x, so that the error variance on x, , is zero and thus

. After simplification, the OLS slope is equal to (eq. 10.3)

With all methods of model II regression, an estimate of the intercept, b0, can be
computed from b1 and the centroid of the scatter of points , using eq. 10.3. The
same equation may be used to calculate approximate estimates of the confidence limits
of the intercept. Call b1–INF and b1–SUP , respectively, the lower and upper limits of the
confidence interval of the slope computed either for the major axis, the standard major
axis, or Bartlett’s method. Put b1–INF into eq. 10.3 to obtain one of the confidence
limits of the intercept, b0–Lim1 , at the same confidence level, e.g. 95%:

. b0–Lim1 is the upper limit of the confidence interval of the
intercept if the centroid is on the right of the abscissa, and the lower limit if it is on its
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left. The other confidence limit of the intercept, b0–Lim2 , is calculated in the same way:
.

The first three methods (MA, SMA, RMA) have the property that the slope of the
regression y = ƒ(x) is the reciprocal of the slope of x = ƒ(y). This property of symmetry
is desirable here since there is no functional distinction between x and y in a model II
situation. OLS regression does not have this property (Fig. 10.6a). In Bartlett’s three-
group method, symmetry does not hold unless the data points are ranked exactly in the
same way on x and on y, which is a rare occurrence with real data. If the three groups
formed are different, the two slopes are not the reciprocal of each other.

Since users of model II regression techniques are never certain that the
assumptions of the various methods are met in data sets (i.e. MA:  so that

; SMA: ; OLS:  so that ),
McArdle (1988) produced an extensive series of simulations to investigate the
influence of the error variances,  for y and  for x, on the efficiency (i.e. precision
of the estimation) of the MA, SMA and OLS methods, measuring how variable the
estimated slopes are under various conditions. He found the following:

• When  in the reference population from which the data sets are drawn, the
true slope that must be estimated by MA or SMA regression is 1. In this case, the
standard major axis was more efficient than the major axis, producing less variable
slope estimates with simulated data.

• With true slopes departing from 1, the results were mixed. When the true slope was
larger than 1, MA was more efficient than SMA at estimating the true slope when the
error rate on x (i.e. ) was the largest, whereas SMA did better when the error
rate on y (i.e. ) was the largest. When the true slope was smaller than 1, the
situation was reversed.

• When the error rate on y was more than three times that on x, OLS was the most
efficient estimator of the slope (smallest variance among the estimates).

• The error curves for MA and SMA had minima. The minimum occurred at λ = 1 for
MA and  for SMA, as predicted by theory.

In another series of simulations, Jolicoeur (1990) investigated the effects of small
sample sizes and low correlations on slope estimations by MA and SMA.

• He found that the 95% confidence interval of MA remained largely accurate under
all simulation conditions. In other words, with simulated data, the true slope was
included in the 95% confidence interval nearly precisely 95% of the time.

• He also showed that when n was very small or the correlation was weak, the 95%
confidence interval of SMA was narrower than its nominal value, this occurring even
under conditions where the true slope was 1 (ideal, in principle, for SMA). In other
words the true slope was not included in the nominal 95% confidence interval in more
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than 5% of the cases. This phenomenon became important when, for instance, n = 10
and |r | < 0.6, or n = 20 and |r | < 0.4.

This may be explained as follows. In the SMA method, slope estimates are always
attracted towards the value +1 when they are positive and towards –1 when they are
negative; this bias of the SMA method is further described in the next paragraph.
When simulating data with low r and small n, data sets are more likely to be produced
that have, by chance occurrence, a slope of opposite sign to that of the distribution
from which they are drawn. In that case, the slope estimated by SMA departs further
than it should from the mean of the population of simulated slopes and is found near
the middle of the opposite quadrant. As a consequence, the distribution of slopes of the
simulated data becomes very wide and the 95% confidence interval includes the true
slope in fewer than 95% of the simulated cases.

Currie et al. (see footnote p. 507) investigated the relationship between slope
estimate formulas, comparing MA to OLS and MA to SMA in the correlation situation
defined as that where researchers are interested in describing the slope of the bivariate
relationship displayed by two correlated random variables, i.e. variables that are not
controlled or error-free. In their view, the regression line in the correlation situation is
generally interpreted as a mathematical descriptor of the central tendency of a bivariate
distribution. To be consistent with this interpretation of the slope, they set forth four
criteria that the regression line should possess: 

1. Symmetry: the estimator of the slope of the regression y = ƒ(x) should be the
reciprocal of that of x = ƒ(y). By this criterion, OLS and Bartlett’s methods are
inappropriate in the correlation situation. MA, SMA and RMA meet this criterion.

2. A slope estimator should vary proportionally to changes in the units of
measurement. Geometrically, this means that the regression line should always be
located in the same way with respect to the scatter of points, irrespective of the vertical
or horizontal stretching of the data. This criterion is always met by SMA, RMA, and
OLS. Cases where this criterion is not critical for MA have been discussed above.

3. The regression line must describe the central tendency of the joint distribution of
two variables. This is essentially an operational definition of the major axis. For
dimensionless data, bOLS and bSMA may fall quite far from the major axis. 

Using an equation relating bOLS to bMA and r, Currie et al. plotted the relationship between bOLS
and bMA at different degrees of correlation. They found that OLS was unbiased when the true
slope was 0 (r = 0). Bias increased as the slope departed from zero in either the positive or
negative directions, the degree of under-estimation depending upon the strength of the
correlation; when r = 1, bOLS = bMA.

Using an equation relating bSMA to bMA and r, they plotted the relationship between bSMA and
bMA at different degrees of correlation. They found that SMA was unbiased when the true slope
was ±1, that is, when the scatter of points formed a 45° angle with the abscissa in either the
positive or negative directions. Bias increased as the slope increased towards ±∞ or decreased

Criteria
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towards 0. This was true for all values of 0 < r < 1 (bSMA is meaningless when r = 0; when r = 1,
bSMA = bMA = bOLS).

Whenever bOLS or bSMA depart from bMA, they are inappropriate by this criterion.
RMA may be used if it is the user’s opinion that the relationship between
dimensionally heterogeneous variables is adequately represented by the scatter
diagram in the dimension-free space of ranged variables. The RMA regression line has
the properties of an MA regression line in that space.

4. It must be possible to test the hypothesis that the slope is equal to a stated value, in
particular 0 or 1. This criterion is met by OLS, MA, and RMA. SMA is unsuitable by
this criterion.

Considering the results of these various studies, the following recommendations
are offered to ecologists who have to estimate the slope of linear relationships when
both variables are random and measured with error.

1. If the magnitude of the error on y is known to be much larger than that on x
(i.e.  more than three times ), use OLS (McArdle, 1988). Otherwise,
proceed as follows.

2. Check whether the data are approximately bivariate normal, either by looking at a
scatter diagram or by performing a formal test of significance (Section 4.7). If not,
attempt transformations to make them bivariate normal. For data that are reasonably
bivariate normal, consider recommendations 3 to 5. If the data cannot be made to be
reasonably bivariate normal, see recommendation 6.

3. Use major axis (MA) regression if both variables are expressed in the same physical
units (untransformed variables that were originally measured in the same units) or are
dimensionless (e.g. log-transformed variables forming a bivariate normal distribution),
if it can reasonably be assumed that ; see example before eq. 10.11. 

When no information is available on the  ratio and there is no reason to believe that λ
would differ from 1, MA may be used provided that the results are interpreted with caution. MA
produces unbiased slope estimates and accurate confidence intervals (Jolicoeur, 1990). 

MA may also be used with dimensionally heterogeneous variables when the purpose of the
analysis is (1) to compare two slopes computed for a pair of variables measured in an identical
way (e.g. at two sampling sites), or (2) to test the hypothesis that the major axis does not
significantly differ from a value given by hypothesis.

4. For variables that are not in the same units, if MA cannot be used (previous
paragraph), use ranged major axis regression (RMA), i.e. transform the variables by
ranging, compute major axis regression, and back-transform the slope estimator by
multiplication by the ratio of the ranges. Prior to RMA, one should check for the
presence of outliers, using a scatter diagram of the objects. 

Recommen-
dations

σε
2 σy

2⁄ σδ
2 σx

2⁄

λ σε
2 σδ

2⁄ 1≈=

σε
2 σδ

2⁄



516 Interpretation of ecological structures

5. Standard major axis (SMA) regression may be used if it can reasonably be assumed
that ; examples are given after eq. 10.12. One should first test
the significance of the correlation coefficient (r) to determine if the hypothesis of a
relationship is supported. No regression equation should be computed when this
condition is not met. This remains a less-than-ideal solution since SMA slope
estimates cannot be tested for significance. Confidence intervals should also be used
with caution: as the slope departs from ±1, the SMA slope estimate is increasingly
biased and the confidence interval includes the true value less and less often. Even
when the slope is near ±1, the confidence interval is too narrow if n is very small or if
the correlation is weak.

6. If the distribution is not bivariate normal and the data cannot be transformed to
satisfy that condition (e.g. bi- or multi-modal distributions), one should wonder
whether the slope of a regression line is really an adequate model to describe the
functional relationship between the two variables. If it is, the next step is to determine
how to compute it. Since the distribution is not bivariate normal, there seems little
reason to apply models such as MA or SMA, which primarily describe the first
principal component of a bivariate normal distribution. So, OLS is recommended to
estimate the parameters of the regression line. The significance of these parameters
should be tested by permutation, however, because the distributional assumptions of
parametric testing are not satisfied (Edgington, 1987). If a straight line is not the
necessary model, polynomial or nonlinear regression should be considered
(Subsections 4 and 6 below).

7. When the purpose of the study is not to estimate functional parameters, but simply
to forecast or predict values of y for given x’s, use OLS in all cases.

8. Observations may be compared to the predictions of a statistical or deterministic
model (e.g. simulation model) in order to assess the quality of the model. If the model
contains random variables measured with error, use MA for the comparison. If the
model fits the data well, the slope is expected to be 1 and the intercept 0. A slope that
significantly differs from 1 indicates a difference between observed and simulated
values which is proportional to the observed values. An intercept which significantly
differs from 0 indicates a systematic and constant difference between observations and
simulations (Mesplé et al., 1996).

9. With all methods, the confidence intervals are large when n is small; they become
smaller as n goes up to about 60, after which they change much more slowly. Model II
regression should ideally be applied to data sets containing 60 observations or more.

Ecological application  10.2

Laws & Archie (1981) re-analysed data published in two previous papers which had quantified
the relationships between the log of respiration rates and the log of biomass for zooplankton,
under various temperature conditions. The authors of the original papers had computed the OLS
slopes and confidence intervals (model I regression) of the biomass-respiration relationships for
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each temperature condition. They had come to the conclusions (1) that the surface law, which
states that the slope of the log-log relationship should fall between 0.66 and 1.00, was not
verified by the data, and (2) that the slope significantly varied as a function of temperature.
Based on the same data, Laws & Archie recomputed the slopes using the standard major axis
method. They found that all slopes were larger than estimated by OLS (same phenomenon as in
Fig. 10.7) and that none of them was significantly outside the 0.66 to 1.00 interval predicted by
the surface law. Furthermore, comparing the slopes of the different temperature data sets at
α = 2%, they found that they did not differ significantly from one another.

3 — Multiple linear regression

When there are several explanatory variables x1, x2, …, xp, it is possible to compute a
regression equation where the response variable y is a linear function of all explanatory
variables xj. The multiple linear regression model is a direct extension of simple linear
regression:

(10.14)

for object i . Equation 10.14 leads to the well-known formula for the fitted values:

(10.15)

Using ordinary least squares (OLS), the vector of regression parameters b = [bj] is
easily computed from matrix eq. 2.19: b = [X'X]–1 [X'y]. If an intercept (b0) must be
estimated, a column of 1’s is added to matrix X of the explanatory variables. 

Equation 10.15 provides a model I estimation, which is valid when the xj variables
have been measured without error. This is the only method presently available in
commercial statistical packages and, for this reason, it is the multiple regression model
most widely used by ecologists. McArdle (1988) proposed a multiple regression
method, the standard minor axis, to be used when the explanatory variables of the
model are random (i.e. with measurement error or natural variability). McArdle’s
standard minor axis is the multivariate equivalent of the standard major axis (SMA)
method described in the previous Subsection. 

Another approach is orthogonal distance regression (ODR), computed through
generalized least squares. The method minimizes the sum of the squares of the
orthogonal distances between each data point and the curve described by the model
equation; this is the multivariate equivalent of the major axis regression (MA) method
described in the previous Subsection. ODR is used extensively in econometrics. Boggs
& Rogers (1990) give entry points to the numerous papers that have been published on
the subject in the computer science and econometric literature and they propose an
extension of the method to nonlinear regression modelling. They also give references
to ODRPACK*, a public-domain collection of FORTRAN subprograms for “weighted

* ODRPACK is available from the following WWWeb site: <http://www.netlib.org/odrpack/>.

yi b0 b1xi1 b2xi2 … bpxip εi+ + + + +=

ŷi b0 b1xi1 b2xi2 … bpxip+ + + +=
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orthogonal distance regression” which allows estimation of the parameters that
minimize the sum of squared weighted orthogonal distances from a set of observations
to the curve or surface determined by the parameters.

When the same multiple regression model is to be computed for several response
variables in turn, regression coefficients can be estimated by ordinary least squares for
all the response variables simultaneously, using a single matrix expression:

(10.16)

(Finn, 1974). In this expression, which is the multivariate equivalent of eq. 2.19, X is
the matrix of explanatory variables, Y is the matrix of response variables, and  is the
matrix of regression coefficients. The coefficients found using this equation are the
same as those obtained from multiple regressions computed in separate runs for each
response variable. The procedure is called multivariate linear regression.

Two types of regression coefficients may be obtained in regression analysis.
Ordinary regression coefficients are computed on the original variables, whereas
standard regression coefficients are computed on standardized variables X and y. The
first ones, represented by symbols b, are useful when the regression equation is to be
used to compute estimated values of y for objects that have not been used to estimate
the parameters of the regression equation, and for which observed x values are
available. This is the case, for instance, when a regression model is validated using a
new set of observations: estimates  are computed from the regression equation to be
validated, using the observed values of the explanatory variables xj , and they are
compared to the observed y’s, to assess how efficient the regression model is at
calculating y for new data. In contrast, the standard regression coefficients, often
represented by symbols , are useful as a means of assessing the relative importance
of the explanatory variables xj included in the regression equation. The variables with
the highest standard regression coefficients are also those that contribute the most to
the estimated  values. The relationship between coefficients b and  obtained by
ordinary least squares estimation is: , where  is the partial
regression coefficient for the explanatory variable xj. Both the ordinary and standard
regression coefficients in multiple regression are partial regression coefficients. The
term ‘partial’ means that each regression coefficient is a measure, standardized or not,
of the rate of change variable y would have per unit of variable xj , if all the other
explanatory variables in the study were held constant. The concept of partial
regression is further developed in Subsection 7 below. Partial regression coefficient
may be tested by randomization using methods similar to those described in
Subsection 11.3.2 for canonical analysis.

When the explanatory variables xj of the model are uncorrelated, multiple
regression is a straightforward extension of simple linear regression. In experimental
work, controlled variables may satisfy this condition if the experiment has been
planned with care. With observational data, however, the explanatory variables used in
multiple regression models are most often collinear (i.e. correlated to one another), and
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it will be seen that strong collinearity may affect the ability to correctly estimate model
parameters. How to deal with this problem will depend again on the purpose of the
analysis. If one is primarily interested in forecasting, the objective is to maximize the
coefficient of multiple determination (called R2 in multiple regression); collinearity of
the explanatory variables is not a concern. For description or inference, however, the
primary interest is to correctly estimate the parameters of the model; the effect of
multicollinearity on the estimates of the model parameters must then be minimized. 

The effect of collinearity on the estimates of regression parameters may be
described as follows. Let us assume that one is regressing y on two explanatory
variables x1 and x2. If x1 is orthogonal to x2, the variables form a well-defined
Cartesian plane. If y is represented as an axis orthogonal to that plane, a multiple linear
regression equation corresponds to a plane in the three-dimensional space; this plane
represents the variation of y as a linear function of x1 and x2. If x1 is strongly correlated
(i.e. collinear) to x2, the axes of the base plane form an acute angle instead of being at
a right angle. In the limit situation where r (x1, x2) = 1, they become a single axis. With
such correlated explanatory variables, the angles determined by the slope coefficients
(b1 and b2), which set the position of the regression plane in the x1–x2–y space, are
more likely to be unstable; their values may change depending on the random
component εi in yi. In other words, two samples drawn from the same statistical
population may be modelled by regression equations with very different parameters —
even to the point that the signs of the regression coefficients may change.

Simulation is the easiest way to illustrate the effect of collinearity on the estimation of
regression parameters. One hundred pairs of data points were generated in the [0, 5] range using
a uniform random number generator. Since the values were generated at random, vectors x1 and
x2 produced in this way, each with 100 values, should be orthogonal. Actually, the correlation
between them was –0.019. The control data set was completed by computing variable y1 as the
sum of x1 and x2 , to which a random component was added in the form of an error term drawn at
random from a normal distribution with mean 0 and standard deviation 2:

yi = xi1 + xi2 + εi

For the test data set, two correlated explanatory variables w1 and w2 were created by
multiplying matrix X, containing vectors x1 and x2 , by the square root of a correlation matrix
stating that the correlation between x1 and x2 should be 0.8:

W = [w1, w2] = XR1/2   where X = [x1, x2] and R1/2 = 

R1/2 is computed using the first property of Section 2.10; Cholesky factorization of R may be
used instead of square root decomposition. The new variables are such that, if x1 and x2 are
orthogonal, the correlation matrix of the variables in matrix W is R. The correlation between w1

and w2 turned out to be 0.794, which is very close to 0.8. The test data set was completed by
computing a variable y2 from w1, w2 , with the same error term as above:

y2 = wi1 + wi2 + εi
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Each data matrix was divided into five independent groups of 20 ‘objects’ each, and multiple
regression equations were computed; the groups were independent of one another since the
generated data were not autocorrelated. Results are given in Table 10.4. Note the high variability
of the slope estimates obtained for the test data sets (lower panel, with collinearity in the
explanatory variables). In one case (group 3), the sign of the estimate of b1 was changed.

When trying to find the ‘best’ possible model describing an ecological process,
another important aspect is the principle of parsimony, also called ‘Ockham’s razor’.
This principle, formulated by the English logician and philosopher William Ockham
(1290-1349), professor at Oxford University, states that

Pluralites non est ponenda sine necessitate

which literally translates: “Multiplicity ought not to be posited without necessity”. In
other words, unnecessary assumptions should be avoided when formulating
hypotheses. Following this principle, parameters should be used with parsimony in
modelling, so that any parameter that does not significantly contribute to the model
(e.g. by increasing the R2 coefficient in an important way) should be eliminated.

Table 10.4 Parameters of the multiple regression equations for two data sets, each divided into five groups
of 20 ‘objects’. Top: control data set where variables x1 and x2 are uncorrelated. Bottom: test
data set with r(x1, x2) ≈ 0.8. Two statistics are provided to describe the variation in the estimates
of the slope parameters. The intercept estimates (b0) are the same in the two panels.

⇒ b0 b1 b2

Group 1 –1.317 1.061 1.174
Group 2 –0.763 1.377 1.063
Group 3 –1.960 0.632 1.810
Group 4 0.645 0.730 1.133
Group 5 1.159 0.839 0.782

Range of slope estimates = Max – Min 0.745 1.028
Standard deviation of slope estimates 0.298 0.378

⇒ b0 b1 b2

Group 1 –1.317 0.962 1.213
Group 2 –0.763 1.515 0.813
Group 3 –1.960 –0.152 2.482
Group 4 0.645 0.498 1.400
Group 5 1.159 0.922 0.795

Range of slope estimates = Max – Min 1.667 1.687
Standard deviation of slope estimates 0.620 0.689

ŷ1 b0 b1x1 b2x2+ +=
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Indeed, any model containing as many parameters as the number of data points can be
adjusted to perfectly fit the data. The corresponding ‘cost’ is that there is no degree of
freedom left to test its significance, hence the ‘model’ cannot be extended to any other
situation.

When the explanatory variables of the model are orthogonal to one another (no
collinearity, for example among the controlled factors of well-planned factorial
experiments), applying Ockham’s razor is easy. One then removes from the model any
variable whose contribution (slope parameter) is not statistically significant. Tests of
significance for the partial regression coefficients (i.e. the individual b’s) are described
in standard textbooks of statistics. The task is not that simple, however, with
observational data, which often display various degrees of collinearity. The problem is
that significance may get ‘diluted’ among collinear variables contributing in the same
way to the explanation of a response variable y. Consider for instance a data set where
an explanatory variable x1 makes a significant contribution to a regression model;
introducing a copy of x1 in the calculation is usually enough to make the contribution
of each copy non-significant, simply as the result of the collinearity that exists between
copies. Hocking (1976) compared a number of methods proposed for selecting
variables in linear regression exhibiting collinearity.

Some statistical programs offer procedures that allow one to test all possible
models with k explanatory variables, and select the one where R2 is the highest and
where all partial regression coefficients are significant. When such a procedure is not
available and one does not want to manually test all possible models, heuristic
methods that have been developed for selecting the ‘best’ subset of explanatory
variables may be used, although with caution. The explanatory variables with the
strongest contributions may be chosen by backward elimination, forward selection, or
stepwise procedure. The three strategies do not necessarily lead to the same selection
of explanatory variables. 

• The backward elimination procedure is easy to understand. All variables are initially
included and, at each step, the variable that contributes the least to explaining the
response variable (usually that with the smallest partial correlation) is removed, until
all explanatory variables remaining in the model have a significant partial regression
coefficient. Some programs express the selection criterion in terms of a F-to-remove
(F statistic for testing the significance of the partial regression coefficient), or a p-to-
remove criterion (same, but expressed in terms of probability), instead of the value of
the partial correlation. 

• The forward selection procedure starts with no explanatory variable in the model.
The variable entered is the one that produces the largest increase in R2, provided this
increase is significantly different from zero, using a pre-determined α level. The
procedure is iteratively repeated until no more explanatory variable can be found that
produces a significant increase in R2. Calculations may be simplified by computing
partial correlations for all variables not yet in the model, and only testing the
significance of the largest partial correlation. Again, some programs base the final
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decision for including an explanatory variable on a F-to-enter value, which is
equivalent to using the actual probability values. The major problem with forward
selection is that all variables included at previous steps are kept in the model, even
though some of them may finally contribute little to the R2 after incorporation of some
other variables.

• The latter problem may be alleviated by the stepwise procedure, which alternates
between forward selection and backward elimination. After each step of forward
inclusion, the significance of all the variables in the model is tested, and those that are
not significant are excluded before the next forward selection step. 

In any case, a problem common to all stepwise inclusion procedures remains: when
a model with, say, k explanatory variables has been selected, the procedure offers no
guarantee that there does not exist another subset of k explanatory variables, with
significant partial correlations, that would explain together more of the variation of y
(larger R2) than the subset selected by stepwise procedure. Furthermore, Sokal &
Rohlf (1995) warn users that, after repeated testing, the probability of type I error is far
greater than the nominal value α. The stepwise approach to regression can only be
recommended in empirical studies, where one must reduce the number of explanatory
variables in order to simplify data collection during the next phase of field study.

There are other ways to counter the effects of multicollinearity in multiple
regression. Table 10.4 shows that collinearity has the effect of inflating the variance of
regression coefficients, with the exception of the intercept b0. Regression on principal
components and ridge regression are helpful when the objective is forecasting or
prediction. Both have the same effects: on the one hand, they reduce the variance of
the regression coefficients, which leads to better predictions of the response variable;
on the other hand, the regression coefficients they produce are biased, but they are still
better estimates of the ‘true’ regression coefficients than those obtained by OLS. In
other words, the price to pay for reducing the inflation of variance is some bias in the
estimates of the regression coefficients. This may provide better forecasting or
prediction than the OLS solution since, as a consequence of the larger variance in the
regression coefficients, multicollinearity tends to increase the variance of the
forecasted or predicted values (Freund & Minton, 1979).

• Regression on principal components consists of the following steps: (1) perform a
principal component analysis on the matrix of the explanatory variables X, (2)
compute the multiple regression of y on the principal components instead of the
original explanatory variables, and (3) find back the contributions of the explanatory
variables by multiplying matrix U of the eigenvectors with the vector of regression
coefficients b (using either the unstandardized or the standardized coefficients) of y on
the principal components. One obtains a new vector  of contributions of the original
variables to the regression equation:

(10.17)
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where p is the number of explanatory variables in the analysis and k is the number of
principal components retained for step (3). This procedure* does not necessarily solve
the problem of multicollinearity, although it is true that the regression is performed on
principal components which are not collinear by definition. Consider the following
case: if all p eigenvectors are kept in matrix U for step (3), one obtains exactly the
same regression coefficients as in ordinary multiple regression. There is gain in
stability of the regression coefficients only by eliminating some of the principal
components from eq. 10.17. One may either eliminate the eigenvectors with the
smallest eigenvalues or, better, use only in eq. 10.17 the principal components that
significantly contribute to explain y. By doing so, the regression coefficient estimates
become biased, of course. In problems involving a small number of explanatory
variables, regression on principal components may be difficult to use because the
number of principal components is small, so that eliminating one of them from the
analysis may result in a large drop in R2. Ecological application 12.7 provides an
example of regression on principal components.

• Ridge regression, developed by Hoerl (1962) and Hoerl & Kennard (1970a, b),
approaches the problem in a different way; another important paper on the subject is

* Regression on principal components is available in some computer packages, e.g. BMDP.
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Figure 10.8 ‘Ridge trace’ diagram showing the estimates of the standardized regression coefficients for
explanatory variables x1 to x3 as a function of k. Table: decrease of R2 as a function of k.

k R2

0.0 0.346

0.1 0.275

0.2 0.257

0.3 0.249

0.4 0.245

0.5 0.243

Ridge
regression
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Marquardt & Snee (1975). Instead of the usual matrix eq. 2.19 ,
the regression coefficients are estimated using a modified equation,

,   where k > 0. (10.18)

Hence, the method consists in increasing the diagonal terms (variances) of the
covariance matrix  by a constant positive quantity k. This reduces the variance
of the regression coefficients while creating a bias in the resulting estimates. So, users
are left with the practical problem of choosing a value for k which is optimal in some
sense. This is accomplished by computing regression coefficient estimates for a series
of values of k, and plotting them (ordinate) as a function of k (abscissa); this plot is
called the ‘ridge trace’, for historical reasons (Hoerl, 1962). After studying the plot,
one chooses a value of k which is as small as possible, but large enough that the
regression coefficient estimates change little after it. Since ridge regression is usually
computed on standardized variables, no intercept is estimated. A number of criteria
have been proposed by Obenchain (1977) to help choose the value of k. These criteria
must be used with caution, however, since they often do not select the same value of k
as the optimal one. An example of a ‘ridge trace’ diagram is presented in Fig. 10.8.
The data set consists of a response variable y and three collinear explanatory variables
x1 to x3; their correlation matrix is as follows:

The leftmost regression coefficient estimates in Fig. 10.8 (k = 0) are the standardized
OLS multiple regression coefficients. Going from left to right in the Figure, the
regression coefficients stabilize after a sharp decrease or increase. One may decide that
setting the cut-off point at k = 0.20 would be an appropriate compromise between
small k and stable regression coefficients. Boudoux & Ung (1979) and Bare & Hann
(1981) provide applications of ridge regression to forestry; in both papers, some
regression coefficients change signs with increasing k. An application of ridge
regression to modelling heterotrophic bacteria in a sewage lagoon ecosystem is
presented by Troussellier et al. (1986, followed-up by Troussellier & Legendre, 1989).

The coefficient of multiple determination R2, also called the unadjusted coefficient
of multiple determination, is the square of the multiple correlation coefficient R
(Section 4.5); it varies between 0 and 1. It is the most commonly used statistic to
measure the forecasting potential of a multiple regression equation. As in simple linear
regression, it is the ratio of the sum of squares of distances of the estimated values  to
the mean , to the sum of squares of distances of the original response variable values
y to the mean :

y x1 x2 x3

y 1

x1 –0.40 1

x2 –0.44 0.57 1

x3 –0.41 0.99 0.56 1

b X'X[ ] 1–
X'Y[ ]=

b X'X kI+[ ] 1–
X'Y[ ]=

X'X[ ]

ŷ
y

y



Regression 525

(10.19)

It measures the proportion of the variation of y about its mean which is explained by
the regression equation. Another measure, the adjusted coefficient of multiple
determination , takes into account the respective numbers of degrees of freedom of
the numerator and denominator of R2:

(10.20)

where n is the number of observations and p is the number of parameters b in the
model, including intercept b0 if any. This statistic is now available in a number of
statistical packages. The purpose of the correction is to produce a statistic suitable for
comparing regression equations fitted to different data sets, with different numbers of
objects and explanatory variables. According to Draper & Smith (1981), however, 
is not very good at doing that.

Multiple regression may make use of a variety of explanatory variables:

• Binary descriptors may be used as explanatory variables in multiple regression, as
well as quantitative variables. This means that multistate qualitative variables can also
be used, insofar as they are recoded into a set of binary dummy variables, as described
in Subsection 1.5.7. This method is often referred to as dummy variable regression.

• Geographic information may be used in multiple regression models in different
ways. On the one hand, X (longitude) and Y (latitude) information form perfectly valid
quantitative descriptors if they are recorded as axes of a Cartesian plane. Geographic
data in the form of degrees-minutes-seconds should be recoded, however, because they
are not decimal. The X and Y coordinates may be used either alone, or in the form of a
polynomial (X, Y, X2, XY, Y2, etc.). Regression using such explanatory variables is
referred to as trend surface analysis in Chapter 13. On the other hand, if replicate
observations are available for each site, the grouping of observations, which is also a
kind of geographic information, may be introduced in a multiple regression equation
as a qualitative multistate descriptor, recoded into a set of dummy variables.

• Finally, one should be aware of the fact that any analysis of variance may be
reformulated as a regression analysis. Consider one-way ANOVA for instance: the
classification criterion can be written down as a multistate qualitative variable and, as
such, recoded as a set of dummy variables (Subsection 1.5.7) on which multiple
regression may be performed. The analysis of variance table obtained by multiple
regression is identical to that produced by ANOVA. This equivalence is discussed in
more detail by ter Braak & Looman (1987), in an ecological framework. Draper &
Smith (1981, Chapter 9) and Searle (1987) discuss in some detail how to apply
multiple regression to various analysis of variance configurations.

R
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4 — Polynomial regression

Several solutions have been proposed to the problem of fitting, to a response variable y,
a nonlinear function of a single explanatory variable x. An elegant and easy solution is
to use a polynomial of x, whose terms are treated as so many explanatory variables in a
multiple-regression-like procedure. In this method, y is expressed as a polynomial
function of x:

(10.21)

Such an equation is linear in its parameters (if one considers the terms x2, …, xk as so
many explanatory variables), although the response of y to the explanatory variable x
is nonlinear. The degree of the equation, which is its highest exponent, determines the
shape of the curve, each degree above 1 (straight line) allowing an additional inflexion
point. This subject is discussed in detail in manuals of analytic geometry. Increasing
the degree of the equation always increases its adjustment to the data (R2). If one uses
as many parameters b as there are data points, one can fit the data perfectly (R2 = 1);
the cost is that there are no degrees of freedom left to test the relationship, hence the
“model” cannot be extended to any other situation. In any case, a high-degree
polynomial is of little interest in view of the principle of parsimony (Ockham’s razor)
discussed at the beginning of this section, i.e. the best model is the simplest one that
adequately describes the relationship.

So, the problem left to ecologists is to find the most parsimonious polynomial
equation which has the highest possible coefficient of determination and where all
regression coefficients are significant. The methods for selecting variables, described
above for multiple regression, may be used profitably here in a two-stage process. 

• First, one must determine the degree of the polynomial. To do that, start with an
equation of a degree high enough (5 or 6, for instance) that the last terms are not
significant. Then, remove terms one by one, from the highest degree down, until a
significant term is found. Do not remove several terms at a time; the term in x4, for
example, may make the term in x3 non-significant, because of collinearity, in an
equation containing both, but x3 may become significant after x4 has been removed.

• When the highest monomials (monomial: each term of a polynomial expression)
have been eliminated, use one of the standard selection procedures described above to
find the most effective subset of monomials (highest R2) in which all terms are
statistically significant. The best procedure, of course, is one that tests all possible
models with fewer terms. Short of that, backward, forward, or stepwise procedures
may be used, with caution. The final equation does not necessarily possess all
successive monomials from degree 1 up.

Polynomial regression procedures are directly available in some statistical
packages (beware: in most packages, polynomial regression procedures do not allow
one to remove the monomials of degree lower than k if xk is retained in the equation).

Polynomial
model

ŷ b0 b1x b2x
2 … bkx

k
+ + + +=

Monomial
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When no such packaged procedure is available, one can easily construct a series of
variables corresponding to the successive monomials. Starting with a variable x, it is
easy to square it to construct x2, and so on, creating as many new variables as deemed
necessary. These are then introduced in a multiple regression procedure. See also the
last paragraph of Section 2.8.

One must be aware of the fact that the successive terms of an ordinary polynomial
expression are not linearly independent of one another. Starting for instance with a
variable x made of the successive integers 1 to 10, variables x2, x3, and x4 computed
from it display the following correlations:

The problem of multicollinearity is severe with such data. Centring variable x on its
mean before computing the polynomial is good practice. It reduces the linear
dependency of x2 on x (it actually eliminates it when the x values are at perfectly
regular intervals, as in the present example), and somewhat alleviates the problem for
the higher terms of the polynomial. This may be enough when the objective is
descriptive. If, however, it is important to estimate the exact contribution (standard
regression coefficient) of each term of the polynomial in the final equation, the various
monomials (x, x2, etc.) should be made orthogonal to one another before computing
the regression equation. Orthogonal monomials may be obtained, for example, through
the Gram-Schmidt procedure described in Table 9.5 and in textbooks of linear algebra
(for instance Lipschutz, 1968). 

Numerical example. Data from the ECOTHAU program (Ecology of the Thau lagoon,
southern France; Amanieu et al., 1989) are used to illustrate polynomial regression. Salinity
(response variable y) was measured at 20 sites in the brackish Thau lagoon (Mediterranean Sea)
on 25 October 1988. The lagoon is elongated in a SW-NE direction. The explanatory variable x
is the projection of the positions of the sampling sites on the long axis of the lagoon, as
determined by principal component analysis of the site coordinates. Being a principal
component, variable x is automatically centred. The other terms of a 6th-degree polynomial
were computed from it. Using the selection procedure described above, a polynomial equation
was computed to describe the spatial distribution of salinity in the lagoon (Fig. 10.9). The
higher-degree terms (x6, then x5) were eliminated one by one until it was found that term x4 was
significant. Then, all possible models involving x, x2, x3, and x4 were computed. Among the
models in which all terms were significant, the one with x and x4 had the highest coefficient of
determination.

x x2 x3 x4

x 1

x2 0.975 1

x3 0.928 0.987 1

x4 0.882 0.961 0.993 1

Orthogonal
monomials



528 Interpretation of ecological structures

5 — Partial linear regression

There are situations where two or more complementary sets of hypotheses may be
invoked to explain the variation of an ecological variable. For example, the abundance
of a species could vary as a function of biotic and abiotic factors. Regression
modelling may be used to study one set of factors, or the other, or the two together.
Partial regression is a way of estimating how much of the variation of the response
variable can be attributed exclusively to one set of factors, once the effect of the other
set has been taken into account. The purpose may be to measure the amount of
variation (R2) that can be attributed exclusively to one or the other set of explanatory
variables, or else to estimate the vector of fitted values corresponding to the exclusive
effect of one set of variables. When the purpose of the study is simply to assess the
unique contribution of each explanatory variable, there is no need for partial regression
analysis since the multiple linear regression coefficients, which are partial regression
coefficients, already provide that information.

Consider three data sets. Vector y is the response variable and matrices X and W

contain the explanatory variables. Assume that one wishes to model the relationship
between y and X, while controlling for the effects of the variables in matrix W, called
the matrix of covariables. There are two ways of doing this, i.e. a long and a short
way. The long way provides the justification for the short. One proceeds as follows:

• First, compute multiple regressions of y and of each variable in X against matrix W.
Calculate the residuals of all these regressions. For vector y for instance, the residuals,

Regression equation:

R2 = 0.81 (p < 0.0001)

Regr.

coeff.

Standard

coeff.

b0 36.929 0

b1(x) –0.0509 –0.9699

b2(x4) –0.0001 –0.7261

Figure 10.9 Polynomial regression equation describing the structure of salinity (practical salinity units) in
the Thau lagoon (Mediterranean Sea), along its main geographic axis, on 25 October 1988.
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called εi above, are computed as  and make up vector yr . The residuals of the
regressions of the variables in X are computed in the same way; they form matrix Xr.

• Then, compute a multiple regression, with yr as the response variable and Xr as the
matrix of explanatory variables, to obtain the partial regression equation.

Numerical example 1. The example data set (Table 10.5) is from the ECOTHAU research
program mentioned in the numerical example of Subsection 4 (Amanieu et al., 1989). It contains
two bacterial variables (Bna, the concentration of colony-forming units of aerobic heterotrophs
growing on bioMérieux nutrient agar, with low NaCl concentration; and Ma, the concentration
of aerobic heterotrophs growing on marine agar at 34 gL–1 salinity); three environmental
variables (NH4 in the water column, in µmolL–1; phaeopigments from degraded chlorophyll a,
in µgL–1; and bacterial production, determined by incorporation of tritiated thymidine in
bacterial DNA, in nmolL–1d–1); and three spatial variables of the sampling sites on the nodes of

yi ŷi–( )

Table 10.5 Data collected at 20 sites in the Thau lagoon on 25 October 1988. There are two response
variables (Bna and Ma), three environmental variables (NH4, phaeopigments, and bacterial
production), and three spatial variables (the X and Y geographic coordinates measured with
respect to arbitrary axes and centred on their respective means, plus the geographic variable X2).
The variables are further described in the text. The code names of these variables in the present
Section are y, x1 to x3, and w1 to w3, respectively.

Site Bna Ma NH4 Phaeo. a Prod. X Y X2

No. y x1 x2 x3 w1 w2 w3

1 4.615 10.003 0.307 0.184 0.274 –8.75 3.7 76.5625
2 5.226 9.999 0.207 0.212 0.213 –6.75 2.7 45.5625
3 5.081 9.636 0.140 0.229 0.134 –5.75 1.7 33.0625
4 5.278 8.331 1.371 0.287 0.177 –5.75 3.7 33.0625
5 5.756 8.929 1.447 0.242 0.091 –3.75 2.7 14.0625
6 5.328 8.839 0.668 0.531 0.272 –2.75 3.7 7.5625
7 4.263 7.784 0.300 0.948 0.460 –1.75 0.7 3.0625
8 5.442 8.023 0.329 1.389 0.253 –0.75 –0.3 0.5625
9 5.328 8.294 0.207 0.765 0.235 0.25 –1.3 0.0625

10 4.663 7.883 0.223 0.737 0.362 0.25 0.7 0.0625
11 6.775 9.741 0.788 0.454 0.824 0.25 2.7 0.0625
12 5.442 8.657 1.112 0.395 0.419 1.25 1.7 1.5625
13 5.421 8.117 1.273 0.247 0.398 3.25 –4.3 10.5625
14 5.602 8.117 0.956 0.449 0.172 3.25 –2.3 10.5625
15 5.442 8.487 0.708 0.457 0.141 3.25 –1.3 10.5625
16 5.303 7.955 0.637 0.386 0.360 4.25 –5.3 18.0625
17 5.602 10.545 0.519 0.481 0.261 4.25 –4.3 18.0625
18 5.505 9.687 0.247 0.468 0.450 4.25 –2.3 18.0625
19 6.019 8.700 1.664 0.321 0.287 5.25 –0.3 27.5625
20 5.464 10.240 0.182 0.380 0.510 6.25 –2.3 39.0625
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an arbitrarily located grid (the X and Y geographic coordinates, in km, each centred on its mean,
and X2, which was found to be important for explaining the response variables). All bacterial
and environmental variables were log-transformed using ln(x + 1). One of the bacterial
variables, Ma, is used here as the response variable y; the three environmental variables form the
matrix of explanatory variables X; the three spatial variables make up matrix W of the
covariables. Table 10.5 will be used again in Chapter 13. A multiple regression of y against X
and W together was computed first as a reference; the regression equation is the following:

 = 9.64 – 0.90x1 – 1.34x2 + 0.54x3 + 0.10w1 + 0.14w2 + 0.02w3     (R2 = 0.5835)

The vector of fitted values was also computed; this vector will be plotted as fraction [a + b + c]
in Fig. 10.12. Since the total sum of squares in y is 14.9276 [SS = ], the coefficient
of multiple determination R2 allows the computation of the sum of squares corresponding to the
vector of fitted values : 14.9276 × 0.5835 = 8.7108. This value may also be derived by directly
computing the sum of squares of the values in the fitted vector.

Residuals of the regressions (not shown here) of variables y, x1, x2, and x3 on matrix W were
computed as described above and assembled in vector yr and matrix Xr. The multiple regression
model of yr on Xr has the following equation:

 = 0.00 – 0.90xr1 – 1.34xr2 + 0.54xr3     (R2 = 0.3197)

The vector of fitted values was also computed; this vector will be plotted as fraction [a] in
Fig. 10.12. Note that the three slope coefficients in this partial regression equation are exactly
the same as in the previous multiple regression equation. This gives substance to the statement
of Subsection 3, that regression coefficients obtained from multiple linear regression are partial
regression coefficients in the sense of the present Subsection. Since the sum of squares of
deviations from the mean (SS) of vector yr is 9.1380, the R2 coefficient allows the computation
of the sum of squares corresponding to the vector of fitted values: 9.1380 × 0.3197 = 2.9213.
This R2 value is the square of the partial correlation coefficient (Section 4.5) between y and
matrix X when controlling for the effect of W.

The exact same regression coefficients would be obtained by regressing y (instead of yr) on
matrix Xr. The only difference is that this new equation would have an intercept whereas the
above equation has none. The multiple regression equation for variable Ma of the example
would be: 

 = 8.90 – 0.90x1 – 1.34x2 + 0.54x3     (R2 = 0.1957)

As a consequence, the fitted values would differ by the value of the intercept, i.e. 8.90. The R2

coefficients differ because variable y does not have the same variance as yr . The advantage of
using yr instead of y is that R = 0.5654, which is the square root of the coefficient of
determination R2 = 0.3197, is the true partial correlation coefficient (in the sense of
Subsection 4.5.2) between y and X, when controlling for the effect of W. The value R2 = 0.1957,
obtained from the regression of y, directly provides the fraction of the variation of y accounted
for by the partial linear model of the three explanatory variables x. This is the value that will be
needed in the decomposition of the variation, below. Otherwise the two analyses are equivalent.
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If the study requires it, the partial regression equation of y on W, while controlling for the
effects of X, may be computed in the same way. The result is the following:

 = 0.00 + 0.10wr1 + 0.14wr2 + 0.02wr3     (R2 = 0.2002)

The vector of fitted values was also computed; this vector will be plotted as fraction [c] in
Fig. 10.12. Since the sum of squares of vector yr is 7.7729, the R2 coefficient allows the
computation of the sum of squares corresponding to the vector of fitted values:
7.7729 × 0.2002 = 1.5562.

The short way of achieving the same result as above is simply to compute the multiple
regression of y against X and W together. Using that equation (copied from above)

 = 9.64 – 0.90x1 – 1.34x2 + 0.54x3 + 0.10w1 + 0.14w2 + 0.02w3     (R2 = 0.5835)

one directly obtains the two partial regression equations by deleting the terms corresponding to
the variables controlled for. With the present example, the partial regression model of y on X,
when controlling for the effects of W, is obtained by deleting all terms w and the intercept:

 = –0.90x1 – 1.34x2 + 0.54x3     (R2 = 0.3197)

The R2 coefficient is obtained by computing the correlation between vectors  and y and
squaring it. In the same way, the partial regression model of y on W, when controlling for the
effects of X, is obtained by deleting all terms x, and the intercept:

 = 0.10w1 + 0.14w2 + 0.02w3     (R2 = 0.2002)

The R2 coefficient is obtained again by computing the correlation between vectors  and y and
squaring it. Sums of squares are obtained by multiplying the values of R2 of the partial models
by the total sum of squares in y.

Coefficients of determination computed using the above three equations provide all the
information required to partition the variation of variable y among the explanatory data sets X
and W. Partial regression assumes that the effects are additive. Figure 10.10 sets a nomenclature
for the four fractions of variation, called [a] to [d]. Following this convention, the above results
are assembled in the following table (rounded values):

 If one is simply interested in partitioning the variation of vector y among the
explanatory data sets X and W, without estimating the vectors of fitted values that

Fractions

of variation

Sums of

squares

Proportions of

variation of y (R2)

[a] 2.9213 0.1957

[b] 4.2333 0.2836

[c] 1.5562 0.1042

[d] 6.2167 0.4165

14.9276 1.0000

ŷr

ŷ

ŷr

ŷr

ŷr

ŷr

Variation
partitioning
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correspond exclusively to one or the other data set (fractions [a] and [c]), there is a
simpler way to obtain the information, considering the ease with which multiple
regressions is computed using a statistical package:

• Compute the multiple regression of y against X and W together. The corresponding
R2 measures the fraction of information [a + b + c], which is the sum of the fractions of
variation [a], [b], and [c] defined in Fig. 10.10. For the example data set, R2 = 0.5835,
as already shown.

• Compute the multiple regression of y against X. The corresponding R2 measures
[a + b], which is the sum of the fractions of variation [a] and [b]. For the example, this
R2 = 0.4793. The vector of fitted values corresponding to fraction [a + b], which is
required to plot Fig. 10.12 (below), is also computed.

• Compute the multiple regression of y against W. The corresponding R2 measures
[b + c], which is the sum of the fractions of variation [b] and [c]. For the example, this
R2 = 0.3878. The vector of fitted values corresponding to fraction [b + c], which is
required to plot Fig. 10.12 (below), is also computed.

• If needed, fraction [d] may be computed by subtraction. It is equal to 1 – [a + b + c],
or 1 – 0.5835 = 0.4165 for the example data set.

• Fraction [b] of the variation may be obtained by subtraction, in the same way as the
quantity B used for comparing two qualitative descriptors in Section 6.2: 

[b] = [a + b] + [b + c] – [a + b + c]

For the example data set, 

[b] = 0.4793 + 0.3878 – 0.5835 = 0.2836

Note that no fitted vector can be estimated for fraction [b], which is obtained by
subtraction and not by estimation of an explicit parameter in the regression model. For
this reason, fraction [b] may be negative and, as such, it is not a rightful measure of
variance; this is why it is referred to by the looser term variation.

Figure 10.10 Partition of the variation of a response variable y among two sets of explanatory variables X and
W. The length of the horizontal line corresponds to 100% of the variation in y. Fraction [b] is
the intersection of the linear effects of X and W on y. Adapted from Legendre (1993).

Variation explained by X

Variation explained by W

Unexplained

variation

[a] [b] [c] [d]



Regression 533

A negative fraction [b] simply indicates that two variables (or groups of variables X and W),
together, explain the response variable better than the sum of the individual effects of these
variables. This is due to the fact that, through the model, one or the other of the (groups of)
explanatory variables X and W — or both — have effects of opposite signs on the response
variable y, which lowers the total covariance of X, W, or both, with y. Further conditions for a
negative fraction [b] to appear are the presence of strong direct effects of X and W on y and
strong correlations between X and W (non-orthogonality).

Numerical example 2. From three variables measured over 50 objects, the following
correlations are obtained: r(x, w) = 0.8, r(x, y) = 0.2 and r(w, y) = –0.2; w, x, and y have the
same meaning as in the previous numerical example; r(x, y) and r(w, y) are not statistically
significant at the α = 0.05 level. In anticipation of Section 10.4, one may use path analysis to
compute the direct and indirect causal covariation relating the explanatory variables w and x to
the response variable y. One can also compute the coefficient of determination of the model
y = f(x, w); its value is R2 = 0.40. From these values, the partition of the variation of y can be
achieved: [a + b + c] = R2 of the model = 0.4; [a + b] = r2(w, y) = 0.04; [b + c] = r2(x, y) = 0.04.
Hence, [b] = [a + b] + [b + c] – [a + b + c] = –0.32, [a] = [a + b] – [b] = 0.36, and
[c] = [b + c] – [b] = 0.36. How is this possible?

Carrying on the path analysis (Fig. 10.11), and assuming a symmetric model of relationships
(i.e. w affects x and x affects w), the direct effect of x on y, pxy = 1.0, is positive and highly
significant, but it is counterbalanced by a strong negative indirect covariation of –0.8 going
through w. In the same way, pwy = –1.0 (which is highly significant), but this direct effect is
counterbalanced by a strong positive indirect covariation of +0.8 going through x. As a result,
and although they both have the maximum possible value of 1.0 for direct effects on the
response variable y, both w and x turn out to have non-significant total correlations with y. In the
present variation partitioning model, this translates into small amounts of explained variation
[a + b] = 0.04 and [b + c] = 0.04, and a negative value for fraction [b]. If an asymmetric model
of relationship had been assumed (e.g. w affects x but x does not affect w), essentially the same
conclusion would have been reached from path analysis. 

Negative [b]

Figure 10.11 Correlations, path coefficients, and coefficients of determination for Numerical example 2.
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[b] = 0.04 + 0.04 – 0.40 = –0.32



534 Interpretation of ecological structures

The above decomposition of the variation of a response vector y between two sets
of explanatory variables X and W was described by Whittaker (1984), for the simple
case where there is a single regressor in each set X and W. Whittaker showed that the
various fractions of variation may be represented as vectors in space, and that the value
of fraction [b] [noted G(12:) by Whittaker, 1984] is related to angle θ between the two
regressors through the following formula:

1 – 2cos2(θ/2) ≤  [b] ≤  2cos2(θ/2) – 1 (10.22)

θ is related to the coefficient of linear correlation (eq. 10.4). This formula has three
interesting properties. (1) If the two regressors are orthogonal (r = 0), then
2cos2(θ/2) = 1, so that 0 ≤ [b] ≤ 0 and consequently [b] = 0. Turning the argument
around, the presence of a non-zero fraction [b] indicates that the two explanatory
variables are not orthogonal; there are also, of course, instances where [b] is zero with
two non-orthogonal regressors. (2) If the two regressors are identical, or at least
pointing in the same direction (θ = 0°), then –1 ≤ [b] ≤ 1. It follows that the proportion
of variation of y that is accounted for by either regressor (fraction [b]) may be, in some
cases, as large as 1, i.e. 100%. (3) The formula allows for negative values of [b], as
shown in Numerical example 2.

In conclusion, fraction [b] represents the fraction of variation of y that may
indifferently be attributed to X or W. The interpretation of a negative [b] is that the two
processes, represented in the analysis by the data sets X and W, are competitive; in
other words, they have opposite effects, one process hindering the contribution of the
other. One could use eq. 6.15, S = [b]/[a + b + c], to quantify how similar X and W are
in explaining y. Whittaker (1984) also suggested that if X and W represent two factors
of an experimental design, [b] may be construed as a measure of the effective balance
(i.e. orthogonality) of the design; [b] is 0 in a balanced design.

Whittaker’s representation may be used even when regressors X and W are
multivariate data sets. Figure 10.12 illustrates the angular relationships among the
fitted vectors corresponding to the fractions of variation of the above example. One
plane is needed for vectors {[a], [b + c], and [a + b + c]} in which [a] is orthogonal and
additive to [b + c]; another plane is needed for vectors {[c], [a + b], and [a + b + c]}
where [c] is orthogonal and additive to [a + b]. However, the sets {[a], [b + c]} and
{[c], [a + b]} belong to different planes, which intersect along vector [a + b + c]; so,
the whole set of fitted vectors is embedded in a three-dimensional space when there are
two explanatory data sets; this is independent of the number of variables in each set.
The vector of residuals corresponding to fraction [d] is orthogonal to all the fitted
vectors and lies in a fourth dimension. Whittaker (1984) gives examples involving
more than two explanatory data sets. The graphical representation of the partitioned
fitted vectors in such cases requires spaces with correspondingly more dimensions.
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Ecological application  10.3

Birks (1996) used partial regressions to analyse the mountain plant species richness in 75 grid
squares covering Norway (109 species in total), in order to test whether the nunatak hypothesis
was necessary to explain the present distribution of these plants. The nunatak, or refugial
hypothesis, holds that apparent anomalies in present-day species distributions are explained by
survival through glaciations on ice-free mountain peaks or rocky outcrops (called ‘nunataks’)
projecting above continental glaciers. Implicit in this hypothesis is that the presumed refugial
species have poor dispersal power. According to the nunatak hypothesis, one would expect a
concentration of rare plants in either the glacial refuges or their vicinity. Hence, a variable
describing unglaciated areas (3 abundance classes for occurrence of presumed unglaciated
areas) was introduced in the analysis to represent “history”. The alternative hypothesis, called
the “tabula rasa”, holds that present-day distributions are well-explained by the environmental
control model (Whittaker, 1956; Bray & Curtis, 1957). To materialise this hypothesis in the

Figure 10.12 Numerical example of partial regression analysis: representation of the fitted vectors in the
regression space, as suggested by Whittaker (1984). Vectors are represented with lengths
proportional to their standard deviations. Upper left: scatter diagram of objects along orthogonal
vectors [a] and [b + c]. Vector [a + b + c], also shown, is obtained by adding vectors [a] and
[b + c]. Lower left: same for orthogonal vectors [c] and [a + b]. Right: all five fitted vectors are
represented in a compromise plane obtained by principal component analysis (PCA axes I and
II, which explain 96.7% of the variation). [a] is still orthogonal to [b + c], and [c] to [a + b], but
these orthogonal relationships are slightly deformed by the projection in two dimensions.
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analysis, Birks used 10 explanatory variables that described bedrock geology, geography,
topography, and climate. “Geography” was introduced in the analysis in the form of a third-
degree polynomial of the geographic coordinates, which allowed a representation of the
geographic variation of species richness by a cubic trend-surface of latitude and longitude, as
explained in Subsection 13.2.1; the terms of the polynomial representing latitude and longitude2

were retained by a forward selection procedure. 

(1) Birks (1996) first used a form of stepwise multiple regression, adding variables in a
specified order, to determine the importance of unglaciated areas in explaining mountain plant
species richness. In the “ecology first” analysis, history (i.e. variable “unglaciated areas”) was
introduced last in the analysis; it added about 0.1% to the explained variation, whereas the
environmental variables explained together 84.9% of the variation. In the “history first”
analysis, history was entered first; it only explained 7.6% of the variation, which was not a
significant contribution. (2) The contribution of “history” did not improve in partial regression
analyses, when controlling for either land area per grid square alone, or land area, latitude and
longitude. Modern ecological variables such as bedrock geology, climate, topography, and
geography were considerably more effective explanatory variables of species richness than
“history”. (3) In order to find out whether “history” made a unique statistically significant
contribution to the variance of the species richness, when the effects of the other variables were
controlled for, Birks carried out the variance decomposition described above using partial
regression analyses. Fraction [a], corresponding to the influence of all environmental variables
independent of “history”, explained 77.4% of the variation of species richness; fraction [b], in
which “environment” covaried with “history”, explained 7.5%; fraction [c], “history”
independent of “environment”, explained 0.1%; the unexplained variation, fraction [d], was
15.0%. Fraction [b] is likely to result from the spatial coincidence of unglaciated areas with high
elevation, western coastal areas, and certain types of bedrock, all these being included among
the environmental variables.

(4) In another paper, Birks (1993) used partial canonical correspondence analysis, instead of
partial regression analysis, to carry out the same type of analysis (including variance
decomposition) on a table of grid cells × species presence/absence. Again, the results suggested
that there was no statistically significant contribution from unglaciated areas in explaining
present-day distribution patterns when the effects of modern topography, climate, and geology
were considered first.

These two papers (Birks 1993, 1996) show that the hypothesis of survival in glacial
nunataks is unnecessary to explain the present-day patterns of species distribution and richness
of Norwegian mountain plants. Following Ockham's razor principle (Subsection 10.3.3), this
unnecessary assumption should be avoided when formulating hypotheses intended to explain
present-day species distributions.

6 — Nonlinear regression

In some applications, ecologists know from existing theory the algebraic form of the
nonlinear relationship between a response variable and one or several explanatory
variables. An example is the logistic equation, which describes population growth in
population dynamics:

(10.23)

Logistic
equation
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This equation gives the population size (Nt) of a species at time t as a function of time
(t) and three parameters a, r, and K, which are adjusted to the data; r is the Malthus
parameter describing the natural rate of increase of the population, and K is the support
capacity of the ecosystem. Nonlinear regression allows one to estimate the parameters
(a, r, and K in this example) of the curve that best fits the data, for a user-selected
function. This type of modelling does not assume linear relationships among variables;
the equation to be fitted is provided by users. 

Nonlinear regression is available in several statistical packages and subroutine
libraries. The most usual objective functions to minimize are (1) the usual least-
squares criterion , or (2) the sum of squared Euclidean distances of the
points to the regression function. These criteria are illustrated in Fig. 10.6b. The
parameters of the best-fitting equation are found by iterative adjustment; users usually
have the choice among a variety of rules for stopping the iterative search process.
Common choices are: when the improvement in R2 becomes smaller than some
preselected value, or when some preselected maximum number of iterations is
reached, or when the change in all parameters becomes smaller than a given value.
Good references on this topic are Hollander & Wolfe (1973), Ratkowsky (1983), Ross
(1990), and Huet et al. (1992).

Consider the Taylor equation relating the means  and variances  of several
groups of data:

(1.17)

One must decide whether the equation should be fitted to the data by nonlinear
regression, or to the corresponding logarithmic form (eq. 1.18) by linear regression.
Look at the data in the original mean-variance space and in the transformed
log(mean)-log(variance) space, and choose the form for which the data are
homoscedastic.

Other often-encountered functions are the exponential, hyperbolic, Gaussian, and
trigonometric (for periodic phenomena; see Section 12.4), and other growth models
for individuals or populations.

As an alternative to linear or nonlinear regression, Conover (1980, his Section 5.6)
proposes monotone regression which may be used when (1) the relationship is
monotonic (increasing or decreasing), (2) the purpose is forecasting or prediction
rather than parameter estimation, and (3) one does not wish to carefully model the
functional relationship; see also Iman & Conover (1983, their Section 12.6). Monotone
regression consists in assigning ranks to the x and y observations and computing a
linear regression on these ranks. Simple, natural rules are proposed to reassign real-
number values to the forecasted/predicted values obtained from the rank-based
equation for given values of x. Monotone regression is sometimes called
nonparametric regression. A specialized form of monotone regression is used in MDS
algorithms (Section 9.3).
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7 — Logistic regression

Binary variables form an important category of response variables that ecologists may
wish to model. In process studies, one may wonder whether a given effect will be
present under a variety of circumstances. Population ecologists are also often
interested in determining the factors responsible for the presence or absence of a
species. When the explanatory variables of the model are qualitative, modelling may
call upon log-linear models computed on multivariate contingency tables
(Section 6.3). When the explanatory variables are quantitative, or represent a mixture
of quantitative and qualitative data, logistic regression is the approach of choice. 

In logistic regression, the response variable is binary (presence-absence, or 1-0; see
example below). A linear model of quantitative explanatory variables would
necessarily produce some forecasted/predicted values larger than 1 and some values
smaller than 0. Consider Fig. 10.13, which illustrates the example developed below. A
linear regression line fitting the data points would have a positive slope and would
span outside the vertical [0, 1] interval, so that the equation would forecast ordinate
values smaller than 0 (for small x) and larger than 1 (for large x); these would not make
sense since the response variable can only be 0 or 1. 

If one tries to predict the probability of occurrence of an event (for example the
presence of a species), instead of the event itself (0 or 1 response), the model should be
able to produce real-number values in the range [0, 1]. The logistic equation
(eq. 10.23) described in Subsection 6 provides a sigmoid model for such a response
between limit values (Fig. 10.13). It is known to adequately model several ecological,
physiological and chemical phenomena. Since the extreme values of the probabilistic
response to be modelled are 0 and 1, then K = 1, so that eq. 10.23 becomes:

(10.24)

where p is the probability of occurrence of the event. z is a linear function of the
explanatory variable(s):

for a singe predictor x (10.25a)

or for several predictors (10.25b)

Note that there are other, equivalent algebraic forms for the logistic equation. A form
equivalent to eq. 10.24 is: p = ez /(1 +  ez).

For the error part of the model, the εi values cannot be assumed to be normally
distributed and homoscedastic, as it is the case in linear regression, since the response
variable can only take two values (presence or absence). The binomial distribution is
the proper model in such a case, or the multinomial distribution for multistate
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qualitative response variables, as allowed in some computer software (e.g. CATMOD in
SAS). The parameters of the model cannot be estimated by ordinary least-squares
since the error term is not normally distributed. This is done instead by maximum
likelihood. Logistic regression is a special case of the generalized linear model (GLM:
McCullagh & Nelder, 1983); least-squares regression is another special case of GLM.
According to the maximum likelihood principle, the best values for the parameters of a
model are those for which the likelihood is maximum. The likelihood L of a set of
parameter estimates is defined as the probability of observing the values that have
actually been observed, given the model and the parameter estimates. This probability
is expressed as a function of the parameters:

L = p(observed data model, parameters)

So, one iteratively searches for parameter estimates that maximize the likelihood
function.

Numerical example. Data describing the structure of a tree community, sampled over a
50–ha plot in the Pasoh forest, Malaysia, were studied by He et al. (1994, 1996, 1997). The plot
was established to monitor long-term changes in a primary tropical forest. The precise locations
of the 334077 individual trees and shrubs at least 1 cm in diameter at breast height (dbh) were
determined (825 species in total) and a few environmental variables were recorded at the centres
of 20 × 20 m quadrats. The present example uses the presence or absence of one species,
Anisophyllea corneri, in each quadrat. One hundred quadrats were selected at random in the plot
among those where A. corneri was present, and also 100 among the quadrats where it was
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Figure 10.13 Logistic regression equation fitted to presence/absence of Anisophyllea corneri, as a function of
elevation, in 200 forest quadrats.
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absent, for a total of 200 quadrats. Results of the logistic regression study presented below were
reported by He et al. (1997).

Stepwise logistic regression is used here to model the presence or absence of the species
with respect to slope and elevation (i.e. altitude, in metres, measured by reference to the lowest
part of the forest plot floor), using the SPSS software package. Following the calculations,
elevation was included in the model for its significant contribution, whereas slope was left out.
The linear part of the fitted model (from eqs. 10.24 and 10.25) is:

z = –1.8532 + 0.2646 × elevation

Significance of the regression coefficients was tested using the Wald statistic, which is the
square of the ratio of a regression coefficient to its standard error; this statistic is distributed like
χ2. Both the intercept and slope coefficients of the model were significant (p < 0.001).

As explained above, the probability of the observed values of the response
variable, for given values of the parameters, is called the likelihood. Since a probability is in the
range [0, 1], its natural logarithm is a negative number. It is customary to multiply it by –2 to
obtain –2 ln(L), noted –2LL, which is a measure of how badly a model fits the data; –2LL = 0 in
the case of a perfect fit. This value presents the advantage of being distributed like χ2, so that it
may be tested for significance. The significance of the model is tested using the following table:

Parameters are added to the model, one by one, as long as they improve the fit. The
procedure is the same as in log-linear models (e.g. Table 6.6).

• For a model with an intercept only, –2LL = 277.259. The hypothesis to be tested is that
–2LL = 277.259 is not significantly different from 0, which would be the value of –2LL for a
model fitting the data perfectly. Degrees of freedom are computed as the number of observations
(200) minus the number of fitted parameters (a single one, up this point). The significant χ2

statistic (p < 0.05) indicates that the model does not fit the data well.

• Inclusion of elevation adds a second parameter to the model; this parameter was fitted
iteratively and the resulting value of –2LL was 217.549 at convergence, i.e. when –2LL did not
change by more than a small preselected value. Since the probability associated with the χ2

statistic is large, one cannot reject the null hypothesis that the model fits the data. The difference
in χ2 between the two models (277.259 – 217.549 = 59.709) is tested with 1 degree of freedom.
The significant probability (p < 0.05) shows that elevation brings a significant contribution to
the likelihood of the model.

χ2 ν p (χ2)

Intercept only 277.259 199 0.0002

Difference 59.709 1 < 0.0001

Intercept + elevation 217.549 198 0.1623

Difference 1.616 1 0.2057

Intercept + elevation + slope 215.933 197 0.1690

Goodness of fit 183.790 198 0.7575
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• Inclusion of slope adds a third parameter to the model. The resulting model also fits the data
well (p > 0.05), but the difference in χ2 between the two models (217.549 – 215.933 = 1.616) is
not significant (p = 0.2057), indicating that slope does not significantly contribute to increase the
likelihood of the model. Hence, slope is left out of the final model.

The last row of the table tests a goodness-of-fit statistic which compares the observed values
(0 or 1 in logistic regression) to the probabilities forecasted by the model, which includes the
intercept and elevation in the present example (Norusis, 1990, p. 52). This statistic (183.790) is
distributed like χ2 and has the same number of degrees of freedom as the χ2 statistic for the
complete model. In the present example, this statistic is not significant (p > 0.05), which leads to
conclude that there is no significant discrepancy between the forecasted values and the data.

Putting back the observed values of the explanatory variable(s) into the model (eq. 10.25)
provides estimates of z. For instance, one of the quadrats in the example data had elevation = 9.5
m, so that

z = –1.8532 + 0.2646 × 9.5 = 0.6605

Incorporating this value into eq. 10.24 provides the following probability that A. corneri be
present in the quadrat:

Since p > 0.5, the forecast is that the species should be found in this quadrat. In general, if
p < 0.5, the event is unlikely to occur whereas it is likely to occur if p > 0.5. (Flip a coin if a
forecasted value is required in a case where p = 0.5 exactly.) With the present equation, the
breaking point between forecasted values of 0 and 1 (i.e. the point where p = 0.5) corresponds to
an elevation of 7 m. The logistic curve fitted to the A. corneri data is shown in Fig. 10.13.

Forecasted values may be used to produce a classification (or “confusion”) table, as in
discriminant analysis (Section 11.5), in which the forecasted values are compared to
observations. For the example data, the classification table is:

Since most values are in the diagonal cells of the table, one concludes that the logistic regression
equation based solely on elevation is successful at forecasting the presence of A. corneri in the
quadrats.

A Gaussian logistic equation may be used to model the unimodal response of a
species to an environmental gradient. Fit the logistic equation with a quadratic
response function , instead of eq. 10.25a, to obtain a Gaussian
logistic model; the response function for several predictors (eq. 10.25b) may be
modified in the same way. See ter Braak & Looman (1987) for details.

Observed Forecasted Percent
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Discriminant analysis (Section 10.5) has often been used by ecologists to study
niches of plants or animals, before logistic regression became widely available in
computer packages. Williams (1983) gives examples of such works. The problem with
discriminant analysis is that it constructs a linear model of explanatory variables, such
that forecasted values are not limited to the [0, 1] range. Negative values and values
higher than 1 may be produced, which are ecologically unrealistic for presence-
absence data. This problem does not exist with logistic regression, which is available
in several major statistical packages such as BMDP, SPSS, SAS, GLIM, GENSTAT,
STATISTICA, SYSTAT, and others. This question is further discussed in Section 11.6.

In procedure CATMOD of SAS, the concept of logistic regression is extended to
multi-state qualitative response variables. Trexler & Travis (1993) provide an
application of logistic regression to an actual ecological problem, including selection
of the most parsimonious model; they also discuss the relative merits of various
alternatives to the logistic model.

8 — Splines and LOWESS smoothing

There are instances where one is only interested in estimating an empirical relationship
between two variables, without formally modelling the relationship and estimating
parameters. In such instances, smoothing methods may be the most appropriate, since
they provide an empirical representation of the relationship, efficiently and at little cost
in terms of time spent specifying a model. Since they fit the data locally (i.e. within
small windows), smoothing methods are useful when the relationship greatly varies in
shape along the abscissa. This is the opposite of the parametric regression methods,
where a single set of parameters is used to adjust the same function to all data points
(global fit). Smoothing methods are far less sensitive to exceptional values and outliers
than regression, including polynomial regression. Several numerical methods are
available for smoothing.

A simple way to visualize an empirical relationship is the method of moving
averages, described in more detail in Section 12.2. Define a ‘window’ of a given
width, position it at one of the margins of the scatter diagram, and compute the mean
ordinate value (y) of all the observations in the window. Move the window by small
steps along the abscissa, recomputing the mean every time, until the window reaches
the opposite margin of the scatter diagram. Plot the window means as a function of the
positions of the window centres along the abscissa. Link the mean estimates by line
segments. This empirical line may be used to estimate y as a function of x.

Piecewise polynomial fitting by “splines” is a more advanced form of local
smoothing. In its basic form, spline estimation consists in dividing the range of the
explanatory variable x (which is also the width of the scatter diagram) into a number of
intervals, which are generally of equal widths and separated by knots, and adjusting a
polynomial of order k to the data points within each segments, using polynomial
regression (Subsection 4). To make sure that the transitions between spline segments
are smooth at the junction points (knots), one imposes two constraints: (1) that the

Moving
average
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values of the function be equal on the left and right of the knots, and (2) that the (k–1)
first derivatives of the curves be also equal on the left and right of the knots. Users of
the method have to make arbitrary decisions about (1) the level k of the polynomials to
be used for regression (a usual choice is cubic splines) and (2) the number of segments
along the abscissa. If a large enough number of intervals is used, the spline function
can be made to fit every data point. A smoother curve is obtained by using fewer knots.
It is recommended to choose the interval width in such a way as to have at least 5 or 6
data points per segment (Wold, 1974). Knots should be positioned at or near inflexion
points, where the behaviour of the curve changes (see example below). A large body of
literature exists about splines. Good introductory texts are Chambers (1977), de Boor
(1978), Eubanks (1988), and Wegman & Wright (1983). The simplest text is
Montgomery & Peck (1882, Section 5.2.2); it inspired the explanation of the method
that follows.

When the positions of the knots are known (i.e. decided by users), a cubic spline
model with no continuity restriction is written as:

(10.26)

In this equation, the parameters b0j in the first sum correspond to a cubic polynomial
equation in x. The parameters bkj in the second sum allow the curve segments to be
disconnected at the positions of the knots. There are h knots, and their positions along
the abscissa are represented by tk; the knots are ordered in such a way that t1 < t2 < …
< th. This equation, written out in full, is the following for a single knot (i.e. h = 1)
located at position t:

The expression  takes the value  when  (i.e. if the given
value x is to the right of the knot), and 0 when  (for values of x on the knot or
to the left of the knot). The constraint of continuity is implemented by giving the value
zero to all terms bkj , except the last one. In eq. 10.26, it is these parameters that allow
the relationship to be described by discontinuous curves; by removing them, eq. 10.26
becomes a cubic splines equation with continuity constraint:

(10.27)
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ŷ b00 b01x b02x
2

b03x
3

b10 x t–( ) +
0

b11 x t–( ) +
1

b12 x t–( ) +
2

b13 x t–( ) +
3

+ + + + + + +=

x tk–( )
+

x tk–( ) x tk– 0>
x tk– 0≤

Cubic
splines
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which has a single parameter bk for each knot. Written in full, eq. 10.27 is the
following for two knots (i.e. h = 2) located at positions t1 = –5 and t2 = +4, as in the
numerical example below:

This approach is not the one used in advanced spline smoothing packages because
it has some numerical drawbacks, especially when the number of knots is large. It is,
however, the most didactic, because it shows spline smoothing to be an extension of
OLS polynomial regression. Montgomery & Peck (1982) give detailed computational
examples and show how to test the significance of the difference in R2 between models
with decreasing numbers of knots, or between a spline model and a simple polynomial
regression model. They finally show that piecewise linear regression — that is, fitting
a continuous series of straight lines through a scatter of points — is a natural extension
of the spline eq. 10.27 in which the exponent is limited to 1.

LOWESS refers to Locally Weighted Scatterplot Smoothing (Cleveland, 1979). This
method is an extension of moving averages in the sense that, for each value xi along
the abscissa, a value  is estimated from the data present in a window around xi. The
number of data points included in the moving window is a proportion f, determined by
users, of the total number of observations; a commonly-used first approximation for f
is 0.5. The higher this proportion, the smoother the line of fitted values will be. For the
end values, all observed points in the window come from the same side of xi; this
prevents the line s from becoming flat near the ends. Estimation proceeds in two steps:

• First, a weighted simple linear regression is computed for the points within the
window and an estimate  is obtained. Weights, given to the observation points by a
‘tricube’ formula, decrease from the focal point xi outwards. Points outside the
window receive a zero weight. This regression procedure is repeated for all values xi
for which estimates are sought.

• The second step is to make these first estimates more robust, by reducing the
influence of exceptional values and outliers. Residuals are computed from the fitted
values and, from these, new weights are calculated that give more importance to the
points with low residuals. Weighted linear regression is repeated, using as weights the
products of the new weights with the original neighbourhood weights. This second
step may be repeated until the recomputed weights display no more changes.

Trexler & Travis (1993) give a detailed account of the LOWESS method, together
with a full example, and details on two techniques for choosing the most appropriate
value for f. The simplest approach is to start with a (low) initial value, and increase it
until a non-random pattern along x appears in the residuals; at that point, f is too large.
Other important references are Chambers et al. (1983) and Cleveland (1985).

Numerical example. Consider again the dependence of salinity on the position along a
transect, as modelled in Fig. 10.9. This same relationship may be studied using cubic splines and
LOWESS (Fig. 10.14). For splines smoothing, the arbitrary rule stated above (5 or 6 points at
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least per interval) leads to 3 or 4 intervals. Fig. 10.9 indicates, on the other hand, that there are at
least three regions in the scatter of points, which can be delimited by knots located at
approximately –5 and +4 along the abscissa. The computed spline regression equation which
follows has R2 = 0.841:

The difference in explained variation between this spline model and a cubic polynomial model
(R2 = 0.81, Fig. 10.9) is not significant. 

The LOWESS curve also clearly suggests the presence of three distinct physical processes
which determine the values of salinity along the long axis of the lagoon, i.e. from abscissa –10 to
about –5, the central portion, and the right-hand portion from abscissa 4 and on.

Other smoothing methods are available in computer software, such as negative
exponentially weighted smoothing (the influence of neighbouring points decreases
exponentially with distance); inverse squared distance smoothing, described in
Subsection 13.2.2 (eq. 13.20 with k = 2); distance-weighted least-squares smoothing
(the surface is allowed to bend locally to fit the data); and step smoothing (a step
function is fitted to the data).

Figure 10.14 Cubic splines and LOWESS scatter diagrams describing the relationship of salinity to the position
of the sites along the main geographic axis of the Thau lagoon, on 25 October 1988. Cubic
splines were computed with knots at abscissa –5 and +4. For LOWESS (computed using
SYSTAT), the proportion of the points included in each smoothing window was f = 0.5.
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10.4 Path analysis

Section 4.5 showed that causal relationships among descriptors cannot be
unambiguously derived from the sole examination of correlation coefficients, whether
simple, multiple, or partial. Several causal models may account for the same
correlation matrix. In the case of prediction (versus forecasting, see
Subsection 10.2.3), however, causal (and not only correlative) relationships among
descriptors must be established with reasonable certainty. Path analysis is an extension
of multiple linear regression (Subsection 10.3.3) which allows the decomposition and
interpretation of linear relationships among a (small) number of descriptors. It is thus
possible to formally state a priori hypotheses concerning the causal relationships
among descriptors and, using path analysis, to examine their consequences given the
coefficients of regression and correlation computed among these descriptors.

Path analysis was developed by Wright (1921, 1960). The number of ecological
applications is growing. There are also many interesting examples in population
genetics and the social sciences. Introductory presentations are found in Nie et al.
(1975, p. 383 et seq.)* and Sokal & Rohlf (1995, p. 634 et seq.). The present Section
provides a summary of path analysis, and concludes on some ecological applications.

As mentioned in Section 10.2, path analysis is based on two fundamental
assumptions. (1) Researchers must determine a causal order among the variables. This
causal order may be derived from ecological theory, or established experimentally (for
a brief discussion of experiments, see Subsection 10.2.3). The assumption is that of
weak causal ordering, i.e.  y1 may (or may not) affect y2 but y2 cannot affect y1. In path
diagrams (see Figs. 10.15 to 10.18 and Table 4.8), the causal ordering is represented
by arrows, e.g. y1 → y2. (2) No single model can account for all the observed variance.
Path models thus include residual variables ui which represent the unknown factors
responsible for the residual variance (i.e. the variance not accounted for by the
observed descriptors). The assumption of causal closure implies the independence of
the residual causal variables; in other words, one assumes the existence of residual
variables such that u1 → y1 and u2 → y2 , whereas u1 → y2 or u2 → y1 is not allowed.

Numeral example. A simple example, with three variables exhibiting causal relationships,
is used to illustrate the main features of path analysis. It is adapted from Nie et al. (1975, p. 386
et seq.). The example considers hypothesized relationships among water temperature,
picophytoplankton (algae < 2 µm), and microzooplankton (e.g. ciliates) grazing on the
picophytoplankton. In the model, it is assumed that water temperature (y3) directly affects the
growth of microzooplankton (y1) and picophytoplankton (y2), whose abundance, in turn, affects
that of microzooplankton. Following the terminology of Sokal & Rohlf (1995, Section 16.3), y2
and y3 are predictor (or explanatory) variables while y1 is the criterion (or response) variable.
Figure 10.15 illustrates this hypothetical network of causal relationships in schematic form.
Since the three variables probably do not explain all the observed variance, the model also

* Recent SPSS manuals unfortunately do not provide an introduction to path analysis.

Causal
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Path
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includes residual variables u1 to u3. The causal ordering of Fig. 10.15 is summarized in the
following system of linear equations:

y3 = u3

y2 = p23y3 + u2

y1 = p13y3 + p12y2 + u1

where parameters pij are the path coefficients. All variables are centred on their respective
means. The hypothesis of causal closure implies that:

s(u1,u2) = s(u1,u3) = s(u2,u3) = 0

because the residual causes are independent; s represents covariances.

The path coefficients are estimated using multiple linear regression (Subsection 10.3.3):

There are no intercepts (coefficients p0) in the regression equations because the data are centred.
For a model with n descriptors, one can estimate all path coefficients using at most (n – 1)
regression equations. Each descriptor is predicted from the descriptors with immediately higher
causal order. Two regression equations are needed to calculate the three path coefficients in
Fig. 10.15. Let us use the following values for the path coefficients (Fig. 10.16) and coefficients
of determination (R2) of the numerical example:

R2 = 0.25

R2 = 0.28

Figure 10.15 Path diagram for three linearly related descriptors. Adapted from Nie et al. (1975).
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and the following correlation coefficients among the descriptors:

r12 = 0.4 r13 = 0.5 r23 = 0.5

The correlation r13 depends on both the direct relationship between y1 and y3 and the
indirect relationship via y2 (Figs. 10.15 and 10.16). Path analysis makes it possible to interpret
the correlation r13 within the framework of the above model of causal relationships. Because the
regressions which provide the estimates of the path coefficients are computed using
standardized variables (eq. 1.12), it follows (Sokal & Rohlf, 1995, eq. 16.6) that

r13 = p13 + r23p12

= 0.4 + 0.5 × 0.2

= 0.4 + 0.1 = 0.5

The correlation between y3 (predictor variable) and y1 (criterion variable) includes the direct
contribution of y3 to y1 (path coefficient p13), and also the common causes behind the
correlations between y3 and y1. More generally, the correlation between a predictor variable yi
and a criterion variable y1 includes the direct contribution of yi to y1, plus the common causes
behind the correlations between yi and any other variable that has a direct effect on y1. These
various contributions may either increase (as in the present example) or decrease the correlation
between the predictor and criterion variables. The correlation coefficient r13 thus includes both a
direct (0.4) and an indirect component (0.1).

Coefficients of nondetermination* are used to estimate the fraction of the variance that is not
explained by the model (Fig. 10.16):

r2(u2, y2) = 1 –  = 1 – 0.25 = 0.75

r2(u1, y1) = 1 –  = 1 – 0.28 = 0.72

* The coefficient of nondetermination is (1 – R2);  is called the coefficient of alienation.

Figure 10.16 Results of path analysis for the example of Fig. 10.15. See text.
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One concludes that 75% of the variance of the picophytoplankton (y2) and 72% of the variance
of the microzooplankton (y1) are not explained by the causal relationships stated in the model.
The same results are obtained using the following general formula (Sokal & Rohlf, 1995):

r2(u1, y1) = 1 – 

= 1 – [(  + ) + 2(p12p13r23)

= 1 – [(0.04 + 0.16) + 2(0.2 × 0.4 × 0.5)]

= 1 – [0.20 + 2(0.04)]

= 1 – 0.28 = 0.72

The above results may be summarized in a single table. In the numerical example
(Table 10.6), 0.1/0.5 = 20% of the covariation between microzooplankton (y1) and temperature
(y3) is through picophytoplankton (y2). In addition, 0.2/0.4 = 50% of the observed relationship
between microzooplankton (y1) and picophytoplankton (y2) is not causal, and thus spurious
according to the path model of Figs. 10.15 and 10.16. Such spurious correlations (Table 4.8)
occur when two descriptors are caused by a third one whose values have not been observed in
the study. 

Path analysis may be applied to more than three variables. As the number of
variables increases, interpretation of the results becomes more complex and the
number of possible models increases rapidly. In practice, path analysis is restricted to
exploring the causal structure of relatively simple systems. This analysis is very useful
in many ecological situations, if only because it forces researchers to explicitly state
their hypotheses about the causal relationships among descriptors. The method helps
assess the consequences of hypotheses, given the observed covariation among
descriptors. Other methods, mentioned in Table 10.3, must be used when the
descriptors do not exhibit linear relationships, or when they are not quantitative.

p1i
2

i
∑ 2 p1i p1 jrij

ij
∑+

p12
2 p13

2

Table 10.6 Decomposition of bivariate covariation among the (standardized) variables of Fig. 10.16.
Adapted from Nie et al. (1975).

Bivariate Total Causal covariation Noncausal
relationships covariation Direct Indirect Total covariation

(A) (B) (C) (D = B+C) (A–D)

y2y3 r23 = 0.5 0.5 0.0 0.5 0.0

y1y3 r13 = 0.5 0.4 0.1 0.5 0.0

y1y2 r12 = 0.4 0.2 0.0 0.2 0.2
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The following Ecological application (10.4a) concerns freshwater ecology. Other
applications of path analysis may be found, for example, in the fields of bacterial
ecology (Troussellier et al., 1986), biological oceanography (Gosselin et al., 1986;
Legendre et al., 1991), and plant ecology (Hermy, 1987; Kuusipalo, 1987).

Ecological application  10.4a

Harris & Charleston (1977) used path analysis to compare the microhabitats of two pulmonate
snails, Lymnaea tomentosa and L. columella. The two species live in freshwater marshes; there
are no obvious differences in the physical or chemical features of their respective habitats. Path
analysis was used to examine, for each of the two species, the hypothetical model of causal
relationships represented in schematic form in Fig. 10.17. In this model, water was assumed to
affect snail numbers directly, and also via mud and flocculence, since both factors are partly
determined by the amount of water present. The amount of mud was also expected to influence
snails directly; however, larger mud areas are less likely to contain vegetation and are thus more
likely to be flocculent, hence the indirect path from mud to snails via flocculence.

Results of path analysis (Fig. 10.17) suggest major differences between the microhabitats of
the two species. Overall, increasing water cover has a direct (positive) effect on L. columella; in
addition, flocculent mud appears to favour L. tomentosa whereas L. columella seem to prefer
firm mud. The effects of water and mud on L. columella are thus direct, whereas they are indirect
on L. tomentosa (i.e. via flocculence). The tentative hypothesis generated by the path diagrams
must be further tested by observations and experiments. However, designing experiments to test
the role played by the consistency of mud, while controlling for other (confounding) variables,
would require considerable ingenuity.

Ecological application  10.4b

Nantel & Neumann (1992) studied ectomycorrhizal-basidiomycete fungi at 11 forest sites in
southern Québec, with the purpose of examining the relationships between fungi, woody
vegetation (referred to as “trees”), and environmental conditions. Matrices representing the three
data sets (11 sites) were compared using Mantel tests (Subsection 10.5.1). Similarity matrices
were computed for each data set, using appropriate similarity coefficients (S17 for fungi and
trees, S16 for abiotic conditions). Since the standardized Mantel statistic (rM) is computationally

Figure 10.17 Path diagrams of the hypothesized effects of water, mud and flocculence on population densities
of two pulmonate snails in marsh microhabitats. After Harris & Charleston (1977).
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equivalent to a Pearson r correlation coefficient, the Mantel statistic values were used to carry
out a path analysis in order to test a model of interdependence among the three matrices
(Fig. 10.18). Partial t statistics (eq. 4.13 of Subsection 4.5.3) could not be used for testing in this
case because the Mantel statistics had been computed from similarities, which were not
independent of one another. Partial Mantel tests were used instead to determine the significance
of the path coefficients. The study showed that, while both the trees and abiotic conditions were
significantly related to the ectomycorrhizal basidiomycete community structure, the influence of
the host trees was far greater. The influence of abiotic conditions on the fungus and tree
communities was further studied using canonical correspondence analysis (Section 11.2).

Another application of Mantel statistics to path analysis, also coupled with partial
Mantel tests (Subsection 10.5.1), is presented by Leduc et al. (1992), who tried to
untangle the spatial component from the relationships between environmental
conditions and the distributions of trees and saplings in a hardwood forest.

10.5 Matrix comparisons

Regression and path analysis are restricted to the interpretation of univariate response
variables. Other methods are required to perform direct comparison analyses when the
response descriptors form a multivariate data table. As indicated in Fig. 10.4, the
analysis may focus on either the original raw data tables, using canonical analysis
(Chapter 11), or similarity or distance matrices derived from the raw data tables, using
the techniques of matrix comparison described in the present Section. Three main

Figure 10.18 Relationships among fungi, trees, and environmental conditions. Left: Mantel statistics rM
(above the diagonal) and partial Mantel statistics (below). Tests of significance: *, significant
result; N.S., result not significant at the Bonferroni-corrected 0.05 level. Right: path diagram
computed from the Mantel rM coefficients. The figures on the arrows are the path coefficients.
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approaches are discussed here: the Mantel test and derived forms (partial Mantel test,
multiple regression on distance matrices); the analysis of similarities (ANOSIM); and
Procrustes analysis.

1 — Mantel test

One method for comparing two similarity or distance matrices, computed about the
same objects, is the Mantel test (1967). The data tables used to compute the two
resemblance matrices must have been obtained independently of each other (i.e.
different variables). One of the matrices may actually reflect a hypothesis instead of
real data, as will be shown below.

Let us consider a set of n sampling sites. To fix ideas, matrix Y may contain
similarities about species composition among sites; matrix X may be computed from
characteristics of the environment (e.g. physics or chemistry of the water or soil, or
geomorphology) for the same sites, listed in the same order. The choice of an
appropriate similarity or distance measure is discussed in Chapter 7 (see Tables 7.3
and 7.4). In the applications discussed in Chapter 13, one of the matrices contains
geographic distances among sites.

The basic form of the Mantel statistic, called zM , is the sum of cross-products of
the (unstandardized) values in the two similarity or distance matrices, excluding the
main diagonal which only contains trivial values (1’s for similarities, 0’s for distances)
for which no estimation has been computed (Fig. 10.19). A second approach is to
standardize the values in each of the two vectors of similarities or distances before
computing the Mantel statistic. The cross-product statistic, divided by the number of
distances in each half-matrix minus 1 [i.e. (n(n – 1)/2) – 1], is bounded between –1
and +1; it behaves like a correlation coefficient and is called rM. A third approach is to
transform the actual distances into ranks (Dietz, 1983) before computing the
standardized Mantel statistic; this is equivalent to computing a Spearman correlation
coefficient (Section 5.3) between the corresponding values of matrices Y and X.

Mantel statistics are tested by permutation (Section 1.2). The permutations actually
concern the n objects forming the similarity or distance matrices and not the
[n(n – 1)/2] values in each half-matrix. The reason is that there exist liaisons among
the values in a similarity or distance matrix. The best-known is the triangle inequality
for metric coefficients (property 4 of metrics, Section 7.4). As a consequence of that
property, when two distances among three points are known, the third distance cannot
take any possible value but is bounded to be larger than or equal to the difference
between the first two distances, and smaller than or equal to their sum. Semimetrics
may violate this property, but not by much. The testing procedure for Mantel statistics
is summarized in Box 10.2. 

The permutation test leads to exactly the same probability with statistics zM or rM
because all cross-product results, permuted or not, are affected in the same way by
linear transformations (such as standardization, eq. 1.12) of one or the other series of

zM statistic

rM statistic

Permutation
test
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similarities or distances. This is a most important property of the Mantel test. Thanks
to it, the arbitrary values used in model matrices (below) are not an issue because any
pair of chosen contrasting values leads to the same probability.

Mantel tests are usually one-tailed since, in most cases, ecologists have a strong
hypothesis that the two matrices being compared are correlated with a given sign. The
hypothesis is often that the two similarity or distance matrices are positively related,
which leads to a test of significance in the upper tail of the reference distribution. This
is certainly the case when comparing similarities based on species composition among
sites to similarities based on characteristics of the environment. When comparing a
similarity to a distance matrix, one generally expects a negative relationship to be
found, if any, so that the test is then in the lower tail of the reference distribution.

Examples of Mantel tests are found in Ecological application 10.4b, Upton &
Fingleton (1985), Legendre & Fortin (1989), Sokal & Rohlf (1995), and in the papers
cited near the end of the present Subsection.

Figure 10.19 The Mantel statistic is the sum of cross products of the corresponding values in two similarity or
distance matrices. Values in the vectors representing the unfolded matrices (i.e. written out as
vectors) may be standardized before computing the statistic (rM), or not (zM), or transformed
into ranks.
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Theory of the Mantel test Box 10.2

Hypotheses

H0: The distances among objects in matrix Y are not (linearly) correlated with the
corresponding distances in X. When X contains geographic distances (Chapter 13), H0 reads
as follows: the variable (or multivariate data) in Y is not structured as a gradient.

H1: The distances among points in matrix Y are (linearly) correlated to the distances in X.

Test statistics

• Mantel (1967) statistic: zM =  where i and j are row and column indices.

• Standardized Mantel statistic: rM = 

d = [n(n – 1)/2] is the number of distances in the upper triangular part of each matrix.

Distribution of the test statistic

• According to H0, the vector of values observed for any one object could have been observed
for any other object; in other words, the objects are the permutable units. A realization of H0
is obtained by permuting the objects (rows) in one of the original data matrices, bringing with
them their vectors of values for the observed variables, and recomputing the S or D matrix.

• An equivalent result is obtained by permuting at random the rows of matrix Y and the
corresponding columns. Either Y or X can be permuted at random, with the same net effect.

• Repeating the above operation, the different permutations produce a set of values of the
Mantel statistic, zM or rM, obtained under H0. These values estimate the sampling
distribution of the Mantel statistic under H0.

Statistical decision

As in any other statistical test, the decision to reject H0 or not is made by comparing the
actual value of the auxiliary variable (zM or rM) to the reference distribution obtained under
H0. If the actual value of the Mantel statistic is one likely to have been obtained under the
null hypothesis (no relationship between Y and X), then H0 is accepted; if it is too extreme to
be considered a likely result under H0, then H0 is rejected. See Section 1.2 for details.

Remarks

• The zM or the rM statistics may be transformed into another statistic, called t by Mantel
(1967), which is asymptotically normal. It is tested by referring to a table of the standard
normal distribution. It provides a good approximation of the probability when n is large.

• Like Pearson's correlation coefficient, the Mantel statistic formula is a linear model that
brings out the linear component of the relationship between the values in two distance
matrices. Strong nonlinearity may prevent relationships from being identified in the Mantel
test. This led Dietz (1983) to suggest the use of the Spearman or Kendall nonparametric
correlation coefficients as statistics in the Mantel test.
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Clarke & Ainsworth (1993) used Mantel tests based on Spearman correlations (see
Box 10.2, Remarks) to measure the agreement between distance matrices computed
from species abundances and environmental (abiotic) variables, respectively. They
proposed to repeat the analysis for all possible subsets of variables in the abiotic data
set in order to circumscribe the subset of environmental variables that best matches the
biotic data. This subset is the one leading to the highest nonparametric Mantel statistic.
The method is available as procedure BIO-ENV in package PRIMER (Clarke &
Warwick, 1994).

The Mantel test is only valid if matrix X is independent of the resemblance
measures in Y, i.e. X should not come from an analysis of Y. The Mantel test has two
chief domains of application in community ecology: 

1. It may be used to compare two resemblance matrices computed from empirical data
tables (e.g. field observations), as described above. For the test to be valid, X must be
computed from a different data set than that used to compute Y.

2. The Mantel test may also be used to assess the goodness-of-fit of data to an a priori
model. The test compares the empirical resemblance matrix (S or D) to a model matrix
(also called pattern or design matrix, e.g. Fig. 10.20). This matrix is constructed to
represent the model to be tested; in other words, it depicts the alternative hypothesis of
the test. If the model is a classification of the objects into groups, the Mantel test is
equivalent to a nonparametric multivariate analysis of variance. The way to code the
model matrix in this case is explained in Ecological application 10.5a and in Sokal &
Rohlf (1995, Section 18.3). Model matrices may take complicated forms for
hypotheses stated in quantitative rather than qualitative terms. The model matrix may,
for instance, represent the hypothesis that a gradient is present in the data. 

Here are examples of the two domains of application described above:

• Species abundance data are recorded at various sites and used to cluster the sites in
two groups. The two groups are transcribed into a model matrix X and tested against a
similarity matrix Y computed from the environmental descriptors collected at the same
sites as for matrix X, to test the hypothesis of environmental control of community
differentiation. Clustering the sites is equivalent to asking the species where they draw
the line between communities. The procedure is valid as long as the test involves
independently obtained matrices Y and X.

• In order to find out whether there are differences in habitat preferences between
males and females of a species, individuals are collected and sexed, and descriptors of
their habitats are recorded. Y is a similarity matrix among individuals, computed from
the observed habitat descriptors. X is a model matrix composed of contrasting dummy
variables which describe the hypothesis of ecological differentiation between sexes,
obtained independently of the habitat data. See Fig. 10.20 for an example.

Model
matrix
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The Mantel test cannot be used to check the conformity to a matrix Y of a model
derived from the same data, e.g. testing the conformity of Y to a group structure
obtained by clustering matrix Y. In such a case, the model matrix X, which depicts the
alternative hypothesis of the test, would describe a structure made to fit the very data
that would now be used for testing the null hypothesis. The hypothesis (X) would not
then be independent of the data (Y) used to test it. Such a test would be incorrect; it
would almost always reject the null hypothesis and support the conformity of Y to X.

Goodness-of-fit Mantel tests have been used in vegetation studies to investigate
hypotheses related to questions like the concept of climax (McCune & Allen, 1985)
and the environmental control model (Burgman, 1987, 1988). Hypotheses of niche
segregation have been tested for trees by Legendre & Fortin (1989), and for animals by
Hudon & Lamarche (1989; see Ecological application 10.5a). Somers & Green (1993)
used Mantel tests based on Spearman correlation coefficients (see Box 10.2, Remarks)
to assess the relationship between crayfish catches in six Ontario lakes and five model
matrices corresponding to different ecological hypotheses.

Ecological application  10.5a

Hudon & Lamarche (1989) studied the stomach contents of American lobsters (Homarus
americanus) and rock crabs (Cancer irroratus) captured at the same sites at Îles-de-la-
Madeleine in the Gulf of St. Lawrence (Québec). The two species feed upon the same prey and
their stomach contents generally reflect the relative abundances of prey species in the habitat.
Gause’s competitive exclusion principle suggests that, if two species are found together, there
should be some difference in their feeding habits, for the two species to coexist on a permanent
basis. To test the hypothesis of niche segregation, the authors compared the stomach contents of
42 lobsters and 103 crabs captured at Cap Irving, and of 136 lobsters and 59 crabs caught at
Gros Cap, using a goodness-of-fit Mantel tests. For each location, a Gower (S19) similarity
matrix was computed among the stomach content vectors, based upon the abundances of 61 prey
taxa grouped into 18 taxa. This matrix was compared to a model corresponding to the alternative
hypothesis of the study, i.e. the existence of differences between the two species (Fig. 10.20). In
the model matrix, stomach contents are similar within species (S = 1 in the two “within-group”
parts of the matrix) and different between species (S = 0 in the “between-group” portion). (Any
other pair of values, one large and one small, for instance –1 and +1, would have served the
same purpose. This is because all possible pairs of contrasting model values give the same result
after standardization of the matrices.) The Mantel statistics (values not reported in the paper)
were tested using the normal approximation (Box 10.2) and found to be significant (p < 0.001),
showing the good fit of the niche segregation model to the data. The authors concluded that
lobsters and crabs were able to cohabit probably because they used the substrate and food
resources in different ways.

This test is equivalent to a multivariate analysis of variance (MANOVA) or a discriminant
analysis. The parametric forms of these analyses could not be used in this case because the
authors did not wish the absence of a prey from two stomach contents to be interpreted as an
indication of resemblance. The similarity coefficient used by the authors, which treats the zeros
in an asymmetrical way (Chapter 7), was considered a better model of resemblance among
stomach contents than the Euclidean distance which is implicit in standard parametric analyses.
The diversity of resemblance measures in Chapter 7 allows ecologists to choose resemblance
coefficients appropriate to the data and the problem at hand.
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The problem in this Ecological application  could also be studied using canonical
analysis (Chapter 11). Indeed, the classification criterion could be coded into the
explanatory matrix X of canonical analysis as easily as in matrix X of the Mantel test.
If the Euclidean distance is adequate to represent distances among objects in the
response data matrix, redundancy analysis (RDA, Section 11.1) may be used for such a
test. If the χ2 distance is adequate, canonical correspondence analysis may be used
(CCA, Section 11.2). If the distances among objects in Y are better modelled by some
other resemblance measure, the Mantel test and the distance-based RDA method of
Legendre & Anderson (1999; Subsection 11.3.1) offer alternatives to RDA and CCA.

The ANOSIM method discussed in Subsection 10.5.3 is another way of testing the
same type of hypothesis. Other techniques derived from the Mantel test are presented
in the next Subsection and in Chapter 13 (multivariate Mantel correlogram).

2 — More than two matrices

Researchers often collect data about different types of variables that may all be useful
to model the variations of the community structure. These variables may include, for
example, lake morphometry; pedology; soil, sediment or water chemistry; geology;
predator species assemblage; prey species assemblage; and “geography”
(i.e. geographic coordinates of the sampling sites). How is it possible to use several
matrices of explanatory variables in the same analysis? The simultaneous analysis of
three or more similarity or distance matrices is examined here and in
Subsection 13.6.1. The canonical analysis of three (sites × descriptors) data tables is
described in Sections 11.3 and 13.5. The two techniques discussed in the present
Subsection are related to partial correlations and multiple regression, respectively.

Figure 10.20 Goodness-of-fit Mantel test comparing the actual similarity matrix among stomach contents (Y)
to a model matrix (X), to test the hypothesis of niche segregation between lobsters and crabs.
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Smouse et al. (1986) proposed to compute partial correlations involving similarity
or distance matrices. Consider distance matrices A, B, and C computed from three
multivariate data tables, using a distance measure appropriate to each case. The partial
Mantel statistic, rM(AB.C), estimating the correlation between matrices A and B while
controlling for the effect of C, is computed in the same way as a partial correlation
coefficient (eq. 4.36), except that the calculation is based here on standardized Mantel
statistics rM (Box 10.2) instead of Pearson correlations r. For symmetric distance
matrices, only the upper (or lower) triangular portions are used in the calculations. 

The difficult aspect is testing the significance of the partial Mantel statistic. The
first method proposed by Smouse et al. (1986) is to permute matrix A (or matrix B).
This procedure holds B and C constant (i.e. unpermuted) with respect to each other,
thus preserving their relationship. The testing procedure is as follows:

1. Compute the standardized Mantel statistics rM(AB), rM(AC) and rM(BC).
Combine these values using the equation for first-order partial correlation
coefficients (eq. 4.36) to obtain the reference value of the test statistic, rM(AB.C).

2. Permute A at random using matrix permutation (Box 10.2), obtaining .

3. Compute rM( ) and rM( ). Using the value rM(BC) calculated in step 1,
compute rM( .C) (eq. 4.36) to obtain a value  of the partial correlation
statistic under permutation.

4. Repeat steps 2 and 3 a large number of times to obtain the distribution of 
under permutation. Add the reference value rM(AB.C) to the distribution. 

5. Calculate the probability as in Section 1.2.

Note that only two of the three correlation coefficients must be computed after each
permutation of A, i.e. rM( ) and rM( ). There is no need to recompute rM(BC)
since neither B nor C are permuted. Mantel’s normal approximation (Box 10.2,
Remarks) cannot be used to test the significance of partial Mantel statistics computed
in this way. Tests must be carried out using permutations.

An alternative procedure was proposed by Smouse et al. (1986) to calculate and test partial
Mantel statistics. One computes matrix  containing the residuals of the linear regression
of the values of A over the values of C, and also matrix  of the residuals of the linear
regression of the values of B on those of C. The reference value of the test statistic, rM(AB.C), is
obtained by computing the standardized Mantel statistic between  and ; this
method of calculation produces the exact same value rM(AB.C) as above. Using matrix
permutation,  is permuted at random (Box 10.2) to obtain a permuted residual matrix

. The standardized Mantel statistic is computed between  and ,
producing a value (AB.C) of the test statistic under permutation. The permutation of

 and computation of (AB.C) are repeated a large number of times to obtain the
distribution of (AB.C) under permutation. The reference value rM(AB.C) is added to the
distribution and the probability is calculated as in Section 1.2. The advantage of this method is
that it is shorter to compute than the full partial correlation formula.
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The alternative procedure of Smouse et al. (1986) is similar to a procedure proposed by
Kennedy (1995) to test partial regression coefficients in multiple regression. Simulations carried
out by Anderson & Legendre (1999), described in Subsection 11.3.2, showed that the method of
Kennedy suffers from inflated type I error in tests of partial regression coefficients, especially
with small sample sizes. A similar simulation study carried out by P. Legendre (to be reported
elsewhere) showed that the alternative procedure of Smouse et al. (1986) for partial Mantel tests
also suffers from inflated type I error, especially with small sample sizes. Hence this procedure
cannot be recommended.

Partial Mantel tests are not always easy to interpret. Legendre & Troussellier
(1988) have shown the consequences of all possible three-matrix causal models on the
significance of Mantel and partial Mantel statistics. The models (and their predictions)
are the same as those illustrated in Fig. 4.11 for three simple variables. This approach
leads to a form of causal modelling on resemblance matrices (Legendre, 1993).

This type of analysis has been used mostly to study the distribution of organisms
(matrix A) with respect to environmental variables (matrix B) while considering the
spatial positions of the sampling sites (matrix C). In such applications, spatial
autocorrelation in the data causes the tests of significance to be too liberal
(Subsection 1.1.2). Oden & Sokal (1992) have shown, however, that the partial Mantel
analysis method developed by Smouse et al. (1986) is quite resilient in the presence of
spatial autocorrelation, being unlikely to reject the null hypothesis falsely when a
conservative critical value is used. Applications of this method to the analysis of
spatial ecological data are reviewed in Subsection 13.6.1.

One may also want to model a response multivariate data table (e.g. community
structure) as dependent upon a variety of explanatory data sets, such as those
mentioned at the beginning of the present Subsection. Multiple regression on
resemblance matrices has been suggested by a number of authors (Hubert & Golledge,
1981; Smouse et al., 1986; Manly, 1986; Krackhardt, 1988). Legendre et al. (1994)
described an appropriate testing procedure. The parameters of the multiple regression
model are obtained using a procedure similar to that of the Mantel test (Fig. 10.21).
The response matrix Y is unfolded into a vector y; likewise, each explanatory matrix X
is unfolded into a vector x. A multiple regression is computed in which y is a function
of the vectors xj. The parameters of this regression (the coefficient of multiple
determination R2 and the partial regression coefficients) are tested by permutations, as
follows. When the response matrix Y is an ordinary distance or similarity matrix, the
permutations of the corresponding vector y are carried out in the way of the Mantel
permutational test (Subsection 10.5.1). When it is an ultrametric matrix representing a
dendrogram (Subsection 8.3.1), the double-permutation method of Lapointe and
Legendre (1990, 1991) is used. When it is a path-length matrix representing an
additive tree (i.e. a cladogram in phylogenetic studies), the triple-permutation method
(Lapointe and Legendre, 1992a) is used. Vectors xj representing the explanatory
matrices are kept fixed with respect to one another during the permutations. Selection
of explanatory matrices may be done by forward selection, backward elimination, or a
stepwise procedure, described in Legendre et al. (1994).

Causal
modelling

Multiple
regression
on S or D
matrices

Permutation
test
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3 — ANOSIM test

Focusing on problems of analysis of variance that involve community composition,
Clarke (1988, 1993) developed a parallel approach to the goodness-of-fit Mantel tests.
Clarke’s method, called ANOSIM (ANalysis Of SIMilarities), is implemented in the
PRIMER package, referred to at the beginning of Section 9.3. Program ANOSIM includes
one-way and two-way analyses (crossed or nested) for replicated data, whereas
program ANOSIM2 covers two-way analyses without replication (Clarke & Warwick,
1994). After a brief presentation of Clarke’s statistic, below, the similarities and
differences between the ANOSIM and Mantel approaches will be stressed.

Figure 10.21 Multiple regression is computed on the vectors resulting from unfolding matrices Y (response)
and X1, X2, etc. (explanatory).
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Consider the situation illustrated in Fig. 10.22a. The distances, taken from
Fig. 12.21, have been transformed into ranks, the least dissimilar pair (i.e. the most
similar) receiving rank 1. Tied values in Fig. 12.21a are given mean rank values, as
usual in nonparametric statistics. Object are arbitrarily numbered 5, 6, 7, 8, 9. The
objects are assumed to form two groups, defined here on a priori bases; the two groups
are not supposed to result from clustering as in Fig. 12.21. The two a priori groups are
(5, 6) and (7, 8, 9). The null hypothesis is of the ANOVA type: 

H0: There are no differences between the two (or more) groups.

In Fig. 10.22a, does one find the kind of variation among distance values that one may
expect if the data correspond to the null hypothesis? Clarke (1988, 1993) proposed the
following statistic to assess the differences among groups:

(10.28)

where  is the mean of the ranks in the between-group submatrix (i.e. the rectangle,
in Fig. 10.22a, crossing groups 1 and 2),  is the mean of the ranks in all within-
group submatrices (i.e. the two triangles in the Figure), and n is the total number of
objects. In the present example,  = 7.083 and  = 3.125, so that R = 0.79167
(eq. 10.28).

Using ranks instead of the original distances is not a fundamental requirement of
the method. It comes from a (reasonable) recommendation, by Clarke and co-authors,
that the test statistic should reflect the patterns formed among sites represented by
multidimensional scaling plots (MDS, Section 9.3), which preserve rank-
transformations of distances. The R statistic is tested by permutations of the objects, as

(a) X = ranked distances (b) Y = model matrix

Figure 10.22 (a) Distances from the numerical example in Fig. 12.21a are transformed into ranks, the most
similar pair receiving rank 1. (b) Weighting required to compute Clarke’s statistic as a Mantel
statistic.
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explained in Box 10.2. The denominator of eq. 10.28 is chosen in such a way that
R = 1 if all the lowest ranks are in the “within-group” submatrices, and R = 0 if the
high and low ranks are perfectly mixed across the “within” and “between”
submatrices. R is unlikely to be substantially smaller than 0; this would indicate that
the similarities within groups are systematically lower than among groups.

Clarke (1988, 1993) actually applied the method to the analysis of several groups.
This is also the case in the nonparametric ANOVA-like example of the Mantel test
proposed by Sokal & Rohlf (1995). The statistic (eq. 10.28) can readily handle the
more-than-two-group case:  is then the mean of the ranks in all between-group
submatrices, whereas  is the mean of the ranks in all within-group submatrices. 

Both ANOSIM and the goodness-of-fit Mantel test (Fig. 10.20) assume that, if H0 is
false, distances within all distinct groups are comparable in that they are smaller than
the among-group distances. This should be checked before proceeding with ANOSIM.
Strong heteroscedasticity among groups (i.e. the presence of dense and more dispersed
groups) may actually violate this condition and increase the type I error of the test. In
other words, the Mantel or ANOSIM tests may find significant differences among
groups of objects exhibiting different dispersions, even if they come from statistical
populations having identical centroids; see the footnote in Subsection 1.2.2 about the
Behrens-Fisher problem.

Equation 10.28 may be reformulated as a Mantel cross-product statistic zM
(Box 10.2). To achieve this, define a model matrix containing positive constants in the
“between-group” portion and negative constants in the “within-group” parts: 

• the “between” values (shaded area in Fig. 10.22b) are chosen to be the inverse of the
number of between-group distances (1/6 in this example), divided by the denominator
of eq. 10.28, i.e. [n(n – 1)/4] (which is 5 in the present example); 

• similarly, the “within” values in Fig. 10.22b are chosen to be the inverse, with
negative signs, of the number of distances in all within-group submatrices (–1/4 in the
example), also divided by [n(n – 1)/4] (= 5 in the present example).

The coding is such that the sum of values in the half-matrix is zero. The
unstandardized Mantel statistic (Box 10.2), computed between matrices X and Y of
Fig. 10.22, is zM = 0.79167. This result is identical to Clarke’s ANOSIM statistic.

Since the permutation method is the same in the Mantel and ANOSIM procedures,
the tests should produce similar probabilities. They may differ slightly in practice
because different programs, and even different runs of the same program, may produce
different sequences of permutations of the objects. Actually, Subsection 10.5.1 has
shown that any binary coding of the “within” and “between” submatrices of the model
matrix should lead to the same probabilities. Of course, interchanging the small and
large values produces a change of sign of the statistic and turns an upper-tail test into a
lower-tail test. The only substantial difference between the Mantel goodness-of-fit and

rB
rW
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ANOSIM tests is one of tradition: Clarke (1988, 1993) and the PRIMER package (Clarke
& Warwick, 1994) transform the distances into ranks before computing eq. 10.28.
Since Clarke’s R is equivalent to a Mantel statistic computed on ranked distances, it is
thus analogous to a Spearman correlation coefficient (eqs. 5.1 and 5.3).

Mann-Whitney’s U statistic could also be used for analysis-of-variance-like tests of
significance performed on distance matrices. This has been suggested by Gordon
(1994) in a different context, i.e. as a way of measuring the differentiation of clusters
produced by clustering procedures (internal validation criterion), as reported in
Section 8.12. In Gordon’s method, distances are divided in two subsets, i.e. the within-
group (W) and between-group (B) distances — just like in Clarke’s method. A U
statistic is computed between the two subsets. U is closely related to the Spearman
rank correlation coefficient (eqs. 5.1 and 5.3); a U test of a variable against a dummy
variable representing a classification in two groups is equivalent to a Spearman
correlation test (same probability). Since Clarke’s statistic is also equivalent to a
Spearman correlation coefficient, the Mann-Whitney U statistic should lead to the
exact same probability as the Clarke or Mantel statistics, if U was used as the statistic
in a Mantel-like permutation test. [Using the U statistic as an internal validation
criterion, as proposed by Gordon (1994), is different. On the one hand, the grouping of
data into clusters is obtained from the distance matrix which is also used for testing;
this is not authorized in an analysis-of-variance approach. On the other hand, Gordon’s
Monte Carlo testing procedure differs from the Mantel permutation test.]

4 — Procrustes analysis 

Procrustes was an infamous inn-keeper in the Greek mythology. His pastime was to
seize travellers, tie them to an iron bed, and either cut off their legs if they were taller
than the bed, or stretch the victims if they were too short, till they fitted in.

Procrustes analysis, proposed by Gower (1971b, 1975, 1987), is primarily an
ordination technique. The purpose is to find a compromise ordination for two data
matrices concerning the same objects (raw data or distances), using a rotational-fit
algorithm that minimizes the sum of squared distances between corresponding points
of the two matrices. In the resulting ordination, each object has two representations,
one from each matrix, so that the scatter diagram allows one to visualize the
differences between the two original matrices. In orthogonal Procrustes, two matrices
are considered and fitted using rigid-body motions (translation, rotation, and mirror
reflection). The extension of the method to more than two matrices is called
generalized Procrustes analysis. Details are given in the references given above. Other
ordination methods involving several data matrices are described by Gower (1987) and
Carroll (1987).
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The present Subsection focuses on the residual sum-of-squares statistic of
orthogonal Procrustes analysis, which is a goodness-of-fit statistic called m2 by Gower.
It is computed as follows:

(10.29)

where Y1 and Y2 are the two rectangular matrices of raw data to be analysed, with
column vectors centred on their respective means, and W is a diagonal matrix which is
the solution to the singular value decomposition  (eq. 2.31). When
Y1 and Y2 do not contain the same number of descriptors (columns), the narrower
matrix is completed with columns of zeros.

Equation 10.29 is not symmetric. The  value resulting from fitting Y2 to Y1
differs from . If the matrices Y1 and Y2 (with column vectors centred on their
respective means) are transformed, before the analysis, to have unit sums-of-squares,
the traces of the two cross-product matrices become 1. To accomplish this, compute
the trace of  and divide each value of Y1 by the square root of the trace. The
trace of , which is the same as the trace of , is easily computed as the
sum of squares of all values in Y1 . Do the same for Y2 . For matrices Y1 and Y2
transformed in this way, the two Procrustes statistics are now identical:

(10.30)

Jackson (1995) suggested to use the symmetric orthogonal Procrustes statistic 
(eq. 10.30) as a measure of concordance, or similarity, between two data matrices
representing, in particular, species abundances and environmental variables. The
statistic is tested by permutation, as described in Box 10.2 for the Mantel test. Jackson
(1995) called this procedure Procrustean randomization test (PROTEST). He provided
examples of applications to ecological data: benthic invertebrates, lake morphometry,
lake water chemistry, and geographic coordinates, for 19 lakes in Ontario, Canada.
What Jackson actually compared were, for each data set, the first two ordination axes
from correspondence analysis (CA, for benthic invertebrates) or principal component
analysis (PCA, for lake morphometry and chemistry); geographic coordinates were
left untransformed.

Although Procrustes analysis was originally proposed by Gower as a method for
comparing raw data matrices, it may also be used to compare similarity or distance
matrices, provided that these matrices are converted back to rectangular data tables by
principal coordinate analysis (PCoA, Section 9.2) or nonmetric multidimensional
scaling (MDS, Section 9.3). Procrustes comparison can then take full advantage of the
diversity of similarity and distance functions available to researchers (Chapter 7).
PROTEST is an alternative to the Mantel test, using a different statistic.

Simulation studies comparing type I error and power of the various methods of
matrix comparison presented in this Section are needed.
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10.6 The 4th-corner problem

How do the biological and behavioural characteristics of species determine their
relative locations in an ecosystem?

This question, which stems from niche theory, has been neglected so far by
ecologists because they lacked an appropriate method of analysis. Observation of
species in nature leads ecologists to formulate hypotheses in that respect. Testing such
hypotheses requires (1) a way of detecting relationships between species traits and
habitat characteristics, and (2) of testing the significance of these relationships.
Legendre et al. (1997) proposed a method to do this.

Consider a table A (p × n) containing data on the presence or absence of p species
at n sites (Fig. 10.23); the standard ecological data matrix (Table 2.1) is transposed for
convenience here. A second table B (p × q) describes q biological or behavioural traits
of the same p species. A third table C (m × n) contains information about m habitat
characteristics (environmental variables) at the n sites. How does one go about
associating the q biological and behavioural traits to the m habitat characteristics? To
help find a solution, let us translate the problem into matrix form:

(10.31)

Figure 10.23 Given the information in ma-
trices A, B, and C, the 4th-
corner problem is to estimate
the parameters in the fourth-
corner matrix D that crosses
the biological or behaviour-
al traits of species with the
habitat characteristics.
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Using this representation, the problem may now be stated as follows: 

• How does one go about estimating the parameters in matrix D (m × q) where the q
biological and behavioural traits are related to the m habitat characteristics? 

• Are these parameters significant in some sense, i.e. are they different from 0 (no
relationship) or from the value they could take in a randomly organized environment? 

Because of the above matrix representation, the underlying statistical problem is
that of estimating the parameters in the fourth-corner matrix D; it is thus referred to as
the fourth-corner problem. While the data in matrix A are necessarily of the
presence/absence type, data in matrices B and C may be either quantitative or
qualitative (nominal). The paper of Legendre et al. (1997) describes solutions to
accommodate the different types of variables.

1 — Comparing two qualitative variables

The first situation considered here concerns two qualitative variables, one from matrix
B (behaviour), the other from matrix C (habitat). Any qualitative variable can be
expanded into a series of binary variables, one for each state (Subsection 1.5.7). 

Numerical example. In test cases 1 and 2 (Table 10.7), A is a matrix of presence-absence of
species at two sites. B and C hold supplementary variables (qualitative, two states) for the rows
and columns of A, respectively. To fix ideas, assume that the variable in B describes two feeding
habits (herbivorous, carnivorous) and C is the nature of the substrate at two sampling sites on a
coral reef (live coral, turf). This example is used to describe the approach for qualitative
variables (Subsection 1) and introduce the method for significance testing (Subsection 2).

Matrices A, B, and C are all needed to estimate the parameters in D. The three
matrices can be combined by multiplication around the set of four matrices while
preserving matrix compatibility:

clockwise: D = C A' B (10.32)

or counter-clockwise: D' = B' A C' (10.33)

For the two test cases of the numerical example, matrix D is shown in Table 10.7.
Equations 10.32 and 10.33 have an equivalent in traditional statistics. If the data in A,
B, and C are frequencies, they can be combined to form an “inflated data table”.
Matrix D, which results from crossing the two columns of the inflated table, is a
contingency table as shown in Table 10.8; values d in matrix D are frequencies or
pseudo-frequencies (see Ecological application 10.6). So, a solution that naturally
comes to mind for significance testing is to compute a χ2 statistic, using either
Pearson’s (eq. 6.5) or Wilks’ formula (eq. 6.6, also called the G statistic). The G
statistic is used here; it is the first type of 4th-corner statistic.

For large contingency tables D, relationships among descriptor states could be
visualized using correspondence analysis (Section 9.4).

Inflated
data table
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2 — Test of statistical significance

In 4th-corner problems, one cannot test the G statistics in the usual manner because, in
the general case (although not in test case 1 of Table 10.7), several species are
observed at any one sampling so that the rows of the inflated table are not independent
of one another; several rows of that matrix result from observations at a single site. To
solve the problem, G is tested by permutations (Section 1.2). The procedure is as
follows.

Table 10.7 Test cases for qualitative variables. Matrix A is (10 species × 2 sites), B is (10 species × 2
feeding habits), and C is (2 habitat types × 2 sites). So, D is (2 habitat types × 2 feeding habits).
Probabilities (p) are one-tailed, assuming that the sign of the relationship is stated in the
hypothesis. The hypothesis is indicated by a sign in each cell of matrix D, + meaning that the
actual value is expected to be in the upper tail and – that it is expected to be in the lower tail.
Probabilities were calculated after 9999 random permutations. E = exact probabilities; see text.

Test case 1 Test case 2
___________________________________ ___________________________________

A: Site 1 Site 2 B: Herbiv. Carniv. A: Site 1 Site 2 B: Herbiv. Carniv.
__________ ________________ __________ ________________

Sp. 1 1 0 0 1 Sp. 1 1 1 0 1
Sp. 2 0 1 0 1 Sp. 2 1 1 0 1
Sp. 3 1 0 0 1 Sp. 3 1 1 0 1
Sp. 4 1 0 0 1 Sp. 4 1 1 0 1
Sp. 5 1 0 0 1 Sp. 5 1 1 0 1
Sp. 6 0 1 1 0 Sp. 6 1 1 1 0
Sp. 7 0 1 1 0 Sp. 7 1 1 1 0
Sp. 8 0 1 1 0 Sp. 8 1 1 1 0
Sp. 9 0 1 1 0 Sp. 9 1 1 1 0
Sp. 10 0 1 1 0 Sp. 10 1 1 1 0
___________________________________ ___________________________________

C: Site 1 Site 2 D: Herbiv. Carniv. C: Site 1 Site 2 D: Herbiv. Carniv.
__________ ________________ __________ ________________

Live 1 0 0 – 4 + Live 1 0 5 5
coral p = 0.029 p = 0.189 coral p = 1.000 p = 1.000

E = 0.031 E = 0.188 E = 1.000 E = 1.000

Turf 0 1 5 + 1 – Turf 0 1 5 5
p = 0.029 p = 0.189 p = 1.000 p = 1.000
E = 0.031 E = 0.188 E = 1.000 E = 1.000

___________________________________ ___________________________________

Contingency statistic: Contingency statistic:

G = 8.4562, p (9999 permutations) = 0.021 G = 0.0000, p (9999 permutations) = 1.000

Permutation
test
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Hypotheses

• H0: the species (reef fish in the numerical examples) are distributed at random
among the sampling sites. Various null models are detailed in the next Subsection.

• H1: the species are not distributed at random among the sampling sites. 

Test statistic

Compute a χ2 statistic (G here) on the contingency table (matrix D) and use it as
reference value for the remainder of the test.

Distribution of the test statistic

Under H0, the species found at any one site could have been observed at any other one.
Where the species have actually been observed is due to chance alone. So, a realization
of H0 is obtained by permuting at random the values in matrix A, using one of the
methods described in the next Subsection. After each permutation of matrix A,
recompute the χ2 statistic on D.

• Repeat the permutation a large number of times (say, 999 or 9999 times). The
different permutations produce a set of values of the χ2 statistic, obtained under H0.

Table 10.8 Inflated data table (left); there is one row in this table for each species “presence” (“1”) in matrix
A of test case 1 (Table 10.7). The contingency table (matrix D, right) is constructed from the
inflated table.

Inflated data table Contingency table
______________________________________ ___________________________

Occurrences Feeding habits Habitat types D: Herbivorous Carnivorous
in test case 1 from B from C
______________________________________ ___________________________

Sp. 1 @ Site 1 Carnivorous Live coral Live coral 0 4
Sp. 2 @ Site 2 Carnivorous Turf
Sp. 3 @ Site 1 Carnivorous Live coral Turf 5 1
Sp. 4 @ Site 1 Carnivorous Live coral ___________________________
Sp. 5 @ Site 1 Carnivorous Live coral
Sp. 6 @ Site 2 Herbivorous Turf
Sp. 7 @ Site 2 Herbivorous Turf
Sp. 8 @ Site 2 Herbivorous Turf
Sp. 9 @ Site 2 Herbivorous Turf
Sp. 10 @ Site 2 Herbivorous Turf
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• Add to this set the reference value of the statistic, computed for the unpermuted data
matrix. Together, the unpermuted and permuted values (for a total of 1000 values,
10000 values, etc.) form an estimate of the sampling distribution of χ2 under H0.

Statistical decision

As in any other statistical test, the decision is made by comparing the reference value
of the χ2 statistic to the distribution obtained under H0. If the reference value of χ2 is
one likely to have been obtained under the null hypothesis, H0 is not rejected. If it is
too extreme (i.e. located out in a tail) to be considered a likely result under H0, the H0
is rejected.

Individual values d in matrix D can also be tested for significance, as shown below
in the Numerical example and the Ecological application.

3 — Permutational models

Permutations may be conducted in different ways, depending on the ecological
hypotheses to be tested against observations. Technically, the fourth-corner statistical
method can accommodate any of the permutation models described below, as well as
constrained permutations for spatial or temporal autocorrelation (e.g. Legendre et al.,
1990; ter Braak, 1990). The random component is clearly the field information about
the species found at the sampling sites, i.e. matrix A. It is thus matrix A that should be
permuted (randomized) for the purpose of hypothesis testing. This may be done in
various ways (Fig. 10.24).

Model 1: Environmental control over individual species — The environmental control
model (Whittaker 1956, Bray and Curtis 1957, Hutchinson 1957) states that species
are found at sites where they encounter favourable living conditions. Species do that
independently of one another, contrary to the randomly-located species assemblage
model (next). Realizations of this null hypothesis are generated by permuting at
random the values (0’s and 1’s) within each row vector of matrix A; this is done
independently from row to row. In this model, species associations are not functional;
they simply result from the co-occurrence of species at particular sites, driven by
environmental control (Section 8.9). The number of sites occupied by any given
species in a row of matrix A is fixed because it is considered to reflect such
characteristics of the species as abundance, intraspecific competition, and territoriality,
as well as ecological plasticity. If all parts of the environment were equally suitable for
all species, as stated by H0, they could eventually all be present at any given site. The
present permutation model allows for this, whereas the species assemblage model
(next) does not. The alternative hypothesis is that individual species find optimal living
conditions at the sites where they are actually found. This permutational model is also
used in probabilistic similarity coefficient S27 (Subsection 7.3.5).

Model 2: Environmental control over species assemblages — Permutation of whole
columns is appropriate to test the null ecological hypothesis that the species
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composition found at any one site could have been observed at any other site. The
alternative hypothesis is that species assemblages are dependent upon the habitat
characteristics of the sites where they are actually found. In the context of the fourth-
corner problem, this alternative hypothesis is an extension of the environmental
control model (previous paragraph) to species assemblages, implying strong biotic ties
among the species that are found together. Permutation of whole vectors of species
composition (which are the columns of table A here) is equivalent to the method of
designed-based permutation of raw data used in tests of significance in canonical
analysis (Subsection 11.1.4); the other permutation frameworks used in canonical
analysis, i.e. model-based permutation of residuals under a null or a full model
(Section 11.3), are modifications of model 2.

Model 3: Lottery — A third method consists in permuting values within the columns
of matrix A, this being done independently from column to column. The null
hypothesis states that there is a fixed number of niches at any one site and that species
invade them through some form of lottery, the identity (species) of an individual
settling at a site being a chance event. The lottery model has been advocated by Sale
(1978) for coral reef fishes; he argued that the main determinant of species
composition at various sites on coral reefs is chance, coupled with an over-abundance

Figure 10.24 Permutations of matrix A may be
performed in different ways
which correspond to different null
ecological models.

(1)  The occurrence of a species
on the reef is constant, but posi-
tions are random; permute at ran-
dom within rows. 

(2)  Positions of species assem-
blages are random; permute
whole columns (assemblages). 

(3)  Lottery hypothesis: the spe-
cies that arrives first occupies a
site; permute at random within
columns.

(4)  Species have random at-
tributes; permute whole rows.

Model 1 Model 2

Model 3 Model 4
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of juveniles available for settlement. Instead of assuming the number of occurrences of
any one species to be fixed, it is the number of niches available for settlement which is
assumed to be fixed. The alternative hypothesis is here that some species have
competitive advantage over chance settlers in given habitats.

Model 4: Random species attributes — A fourth method would be to permute whole
rows at random with respect to one another. The corresponding null hypothesis is that
species have random biological and behavioural attributes. This model is not
appropriate to study the relationship between behaviour and habitat because the
linkage between species and their behavioural and biological characteristics is fixed. It
may be appropriate to other types of problems involving three data matrices.

Numerical example. Let us examine how the method behaves when applied to the data sets
introduced in the numerical example of Subsection 1. The first test case (Table 10.7, left) was
constructed to suggest that herbivores are found on turf while carnivores are more ubiquitously
distributed. Globally, the G statistic indicates a significant relationship (α = 0.05) between
behavioural states and types of habitat (p = 0.0207 after 9999 random permutations under
model 1 above). The expected values in the various cells of matrix D determine the tail in which
each frequency d of the contingency table is to be tested for significance; this value is taken to be
the mean frequency expected from all possible permutations of matrix A, given the permutation
model that has been selected. Looking at individual values d, herbivores are clearly positively
associated with turf and negatively with coral (p = 0.0287, computed from the random
permutation results), while carnivores are not significantly associated with either live coral or
turf (p = 0.1890). These probabilities are very close to the exact probabilities calculated for the
same data, which are the values obtained from a complete permutation procedure (E in the
Table). Values of exact probabilities E are computed as follows: consider all possible
permutations that result from independently permuting the rows of matrix A (permutation model
1); count how many of these would produce values equal to, or more extreme than the observed
value in each given cell of matrix D. This value may differ slightly from the random
permutational probability. Globally, the testing procedure for the relationship between behaviour
and habitat behaved as expected in this example, and the random permutation procedure
produced values quite close to the exact probabilities.

The second test case (Table 10.7, right) illustrates a situation where the null hypothesis is
true in all cases, matrix A indicating all 10 species to be present everywhere. Indeed, the testing
procedure finds all permutation statistics to be equal to the unpermuted ones, so that the
probability of the data under the null hypothesis is 1 everywhere. The procedure once more
behaved correctly.

4 — Other types of comparison among variables

Variables in matrices B and C are not always qualitative. Through lines of reasoning
similar to that of Subsection 10.6.1, involving inflated data matrices (as in Table 10.8),
4th-corner statistics can be formulated to accommodate other types of comparisons
among variables:

• To compare a quantitative variable in B to a quantitative variable in C, a Pearson
correlation coefficient may be computed between the columns of the inflated matrix.
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A correlation coefficient is directly obtained from the 4th-corner equation D = CA'B if
the columns of the inflated data table are first standardized and the scalar product is
divided by the number of rows of the inflated table minus 1.

• When comparing a quantitative variable in B to a qualitative variable coded into
dummy variables (Subsection 1.4.7) in C, or the converse, the 4th-corner matrix
product (eq. 10.32) is equivalent to computing an overall F statistic for the pair of
variables, as explained in Legendre et al. (1997); the cells of matrix D contain
measures of within-group homogeneity. Correlations may also be computed between
the quantitative variable on the one hand, and each of the dummy variables coding for
the qualitative variable.

Each of these statistics may be tested for significance using the permutational
procedure described above.

The 4th-corner method* offers a way of analysing the relationships between
supplementary variables associated with the rows and columns of a binary (presence-
absence) data table. Other types of problems could be studied using this method. Here
are two examples.

• In biogeography, consider a matrix A of presence/absence of species; a matrix B

describing the extensiveness of the species’ distributions, their migratory behaviour,
etc.; and a matrix C of habitat characteristics (environmental variables), as above. The
question is again to relate habitat to species characteristics.

• In the study of feeding behaviour, consider a matrix A with rows that are individuals
while columns correspond to sites. The prey ingested by each individual are found in
matrix B (in columns). Matrix C may contain either microhabitat environmental
variables, or prey availability variables. The question is to determine feeding
preferences: choice of prey versus availability, or choice of prey versus microhabitat
conditions. Problems of the same type are found in such fields as sociology, marketing,
political science, and the like. 

Ecological application  10.6

Development of the 4th-corner method was motivated by the study of a fish assemblage
(280 species) surveyed along a one-km transect across the coral reef of Moorea Island, French
Polynesia (Legendre et al., 1997). Biological and behavioural characteristics of the species were
used as descriptors (supplementary variables) for the rows, and characteristics of the
environment for the columns of the fish presence-absence data table A. Parameters of the
relationship between habitat characteristics (distance from the beach, water depth, and substrate
variables) and biological and behavioural traits of the species (feeding habits, ecological niche
categories, size classes, egg types, activity rhythms) were estimated and tested for significance

* 4THCORNER is a FORTRAN program available from the following WWWeb site to carry out the
calculations and perform tests of significance: <http://www.fas.umontreal.ca/BIOL/legendre/>.
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using permutations. Results were compared to predictions made independently by reef fish
ecologists, in order to assess the method as well as the pertinence of the variables subjected to
the analysis.

Table 10.9 summarizes the comparison of reef bottom materials to feeding habits. This is an
interesting case: the eight “reef bottom materials” variables are relative frequencies; each one
represents the proportion of the habitat covered by a category of substrate material, so that non-
integer pseudo-frequencies are obtained in the contingency table where the variables are crossed
(Table 10.9). The permutation testing procedure allows data in matrices B and C to be relative or
absolute frequencies. Probabilities remain the same under any linear transformation of the
frequency values, even though the value of the G statistic is changed. This would not be allowed
by a standard test whose outcome would be read from a χ2 table.

Table 10.9 Contingency table comparing feeding habits (7 states) to materials covering reef bottom
(8 proportions). First row in each cell: pseudo-frequency resulting from the matrix operation
D = CA'B; lower row, probability adjusted using Holm’s procedure; *: p ≤ 0.05. Probabilities
before correction resulted from 9999 random permutations. Sign indicates whether a statistic is
above (+) or below (–) the expected value, estimated as the mean of the permutation results.

Herbiv- Omniv- Sessile Carniv. 1 Carniv. 2 Fish Copepod
orous orous invertebrates diurnal nocturnal only eater

Stone slab 6.20– 5.84+ 3.72– 8.42– 5.18+ 0.96+ 2.40–
p 0.429 0.232 1.535 2.650 2.650 2.650 2.650

Sand 81.22– 54.26– 43.34– 94.38– 35.90– 8.94– 26.26–
p 0.039* 0.799 0.006* 0.006* 0.006* 0.799 0.039*

Coral debris 34.96+ 20.22– 24.32+ 46.74+ 25.60+ 4.48+ 12.08–
p 1.976 1.976 0.006* 0.009* 0.645 2.650 2.650

Turf, dead cor. 45.46+ 27.88+ 28.28+ 57.58+ 33.58+ 6.20+ 15.76+
p 0.207 2.650 0.081 0.013* 0.029* 1.976 2.650

Live coral 49.86+ 28.50+ 29.20+ 58.28+ 40.82+ 6.22+ 21.06+
p 0.006* 1.976 0.006* 0.006* 0.006* 1.976 0.006*

Large algae 44.66– 37.50+ 28.12– 59.68– 32.26– 6.34– 19.20–
p 0.006* 2.650 0.105 0.048* 0.140 2.650 2.650

Calcar. algae 29.12+ 16.32+ 16.08+ 31.00+ 26.02+ 4.50+ 11.32+
p 0.006* 1.030 0.079 0.122 0.006* 0.207 0.036*

Other substrate 2.52+ 1.48+ 1.94+  2.92+ 1.64+ 0.36+ 0.92+
p 0.105 2.650 0.006* 0.795 1.734 1.976 1.976
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The relationship is globally significant (G = 15.426, p(G) = 0.0001 after 9999 random
permutations following model 1 of Subsection 3 above); 20 of the 56 4th-corner statistics d
were significant (*) after applying Holm’s correction for multiple testing (Box 1.3). Compared
to the null hypothesis, fish are under-represented on sand and large algae, and are unrelated to
stone slab. In addition, herbivores are over-represented on live coral and calcareous algae.
Grazers of sessile invertebrates and as carnivores of types 1 and 2 are over-represented on coral
debris, turf and dead coral, live coral, calcareous algae, and “other substrate” (large
echinoderms, sponges, anemones, alcyonarians); this includes all areas where herbivores are
found. Copepod eaters are over-represented on live coral and calcareous algae. Omnivores and
specialist piscivores (fish-only diet) do not exhibit significant relationships to substrate.

Distance from the beach and size of fish species (adult individuals) are quantitative
variables. The 4th-corner statistic that crosses these two variables is thus correlation-like; its
value is r = 0.0504, with a probability of 0.001 after 999 random permutations. There is thus a
weak but significant correlation, indicating that larger fish are found farther away from the beach
than smaller ones. Other comparisons between biological-behavioural and habitat variables are
presented in the published paper.



Chapter

11 Canonical analysis

11.0 Principles of canonical analysis

Canonical analysis is the simultaneous analysis of two, or eventually several data
tables. It allows ecologists to perform a direct comparison of two data matrices
(“direct gradient analysis”; Fig. 10.4, Table 10.1). Typically, one may be interested in
the relationship between a first table describing species composition and a second table
of environmental descriptors, observed at the same locations; or, say, a table about the
chemistry of lakes and another about drainage basin geomorphology.

In indirect comparison (indirect gradient analysis; Section 10.2, Fig. 10.4), the
matrix of explanatory variables X does not intervene in the calculation producing the
ordination of Y. Correlation or regression of the ordination vectors on X are computed
a posteriori. In direct comparison analysis, on the contrary, matrix X intervenes in the
calculation, forcing the ordination vectors to be maximally related to combinations of
the variables in X. This description applies to all forms of canonical analysis and in
particular to the asymmetric forms described in Sections 11.1 to 11.3. There is a
parallel in cluster analysis, when clustering results are constrained to be consistent
with temporal (Subsection 12.6.4) or spatial relationships (Subsection 13.3.2) among
observations, which are inherent to the sampling design. When using a constraint
(clustering, ordination), the results should differ from those of unconstrained analysis
and be, hopefully, more readily interpretable. Thus, direct comparison analysis allows
one to directly test a priori ecological hypotheses by (1) bringing out all the variance
of Y that is related to X and (2) allowing formal tests of these hypotheses to be
performed, as detailed below. Further examination of the unexplained variability may
help generate new hypotheses, to be tested using new field observations (Section 13.5).

In mathematics, a canonical form (from the Greek 

 

κανων, pronounced “kanôn”,
rule) is the simplest and most comprehensive form to which certain functions,
relations, or expressions can be reduced without loss of generality. For example, the
canonical form of a covariance matrix is its matrix of eigenvalues. In general, methods
of canonical analysis use eigenanalysis (i.e. calculation of eigenvalues and
eigenvectors), although some extensions of canonical analysis have been described
that use multidimensional scaling (MDS) algorithms (Section 9.3).

Canonical
form
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Canonical analysis combines the concepts of ordination and regression. It involves
a response matrix Y and an explanatory matrix X (names used throughout this
chapter). Like the other ordination methods (Chapter 9; Fig. 11.1a), canonical analysis
produces (usually) orthogonal axes from which scatter diagrams may be plotted.

Figure 11.1 Relationships between (a) ordination, (b) regression, and (c) the asymmetric forms of canonical
analysis (RDA and CCA). In (c), each canonical axis of Y is constrained to be a linear
combination of the explanatory variables X.
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Canonical analysis — in particular redundancy analysis (RDA, Section 11.1) and
canonical correspondence analysis (CCA, Section 11.2) — is related to multiple
regression analysis. In Subsection 10.3.3, multiple regression was described as a
method for modelling a response variable y using a set of explanatory variables
assembled into a data table X. Another aspect of regression analysis must be stressed:
while the original response variable y provides, by itself, an ordination of the objects in
one dimension, the vector of fitted values (eq. 10.15)

creates a new one-dimensional ordination of the same objects (Fig. 11.1b). The
ordinations corresponding to y and  differ; the square of their correlation is the
coefficient of determination of the multiple regression model (eq. 10.19):

(11.1)

So, multiple regression creates a correspondence between ordinations y and ,
because ordination  is constrained to be optimally and linearly related to the
variables in X. This property is shared with canonical analysis. The constraint is
optimal in the least-square sense, meaning that the linear multiple regression
maximizes R2.

Canonical analysis combines properties of these two families of methods
(i.e. ordination and regression; Fig. 11.1c). It produces ordinations of Y that are
constrained to be related in some way to a second set of variables X. The way in which
the relationship between X and Y is established differs among methods of canonical
analysis.

Problems of canonical analysis may be represented by the following partitioned
covariance matrix, resulting from the fusion of the Y and X data sets; the joint
dispersion matrix SY+X contains blocks that are identified as follows for convenience:

(11.2)
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Submatrices SYY (order p × p) and SXX (m × m) concern each of the two sets of
descriptors, respectively, whereas SYX (p × m) and its transpose  = SXY (m × p)
account for the covariances among the descriptors of the two groups, as in eq. 4.27.

• In redundancy analysis (RDA, Section 11.1), each canonical ordination axis
corresponds to a direction, in the multivariate scatter of objects (matrix Y), which is
maximally related to a linear combination of the explanatory variables X. A canonical
axis is thus similar to a principal component (Box 9.1). Two ordinations of the objects
are obtained along the canonical axes: (1) linear combinations of the Y variables
(matrix F, eq. 11.12), as in PCA, and (2) linear combinations of the fitted  variables
(matrix Z, eq. 11.13), which are thus also linear combinations of the X variables. RDA
preserves the Euclidean distance among objects in matrix  containing values of Y
fitted by regression to the explanatory variables X (Fig. 11.2); variables in  are
therefore linear combinations of the X variables.

• Canonical correspondence analysis (CCA, Section 11.2) is similar to RDA. The
difference is that it preserves the χ2 distance (as in correspondence analysis), instead
of the Euclidean distance among objects. Calculations are a bit more complex since
matrix  contains fitted values obtained by weighted linear regression of matrix  of
correspondence analysis (eq. 9.32) on the explanatory variables X. As in RDA, two
ordinations of the objects are obtained.

• In canonical correlation analysis (CCorA, Section 11.4), the canonical axes
maximize the correlation between linear combinations of the two sets of variables Y
and X. This is obtained by maximizing the among-variable-group covariance (or
correlation) in eq. 11.2 with respect to the within-variable-group covariance (or
correlation; eq. 11.22). Two ordinations of the objects are obtained again.

• In canonical discriminant analysis (Section 11.5), the objects are divided into k
groups, described by a qualitative descriptor. The method maximizes the dispersion of
the centroids of the k groups. This is obtained by maximizing the ratio of the among-
object-group dispersion over the pooled within-object-group dispersion (eq. 11.31).

The application of the various methods of canonical analysis to ecological data sets
has already been discussed in Section 10.2. In summary, canonical correlation analysis
(CCorA) is used to find axes of maximum linear correlation between two data tables.
When one of the data sets (Y) is to be explained by another (X), the asymmetric forms
of canonical analysis should be used; the methods of choice are redundancy analysis
(RDA) and canonical correspondence analysis (CCA). RDA is used when the X

variables display linear relationships with the Y variables whereas CCA should be
used in all cases where correspondence analysis (CA, Section 9.4) would be
appropriate for an ordination analysis of matrix Y alone. Discriminant analysis may be
used when the target data set contains a single qualitative variable y representing a
classification of the objects; in ecology, it should be used mostly to discriminate
among groups of sites that are characterized by descriptors of the physical
environment (Section 11.6).

S'YX

Ŷ

Ŷ

Ŷ

Ŷ Q
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Canonical analysis has become an instrument of choice for ecological analysis. A
1994 bibliography of ecological papers on the subject already contained 379 titles
(Birks et al., 1994). CCorA and discriminant analysis are readily available in most
major statistical packages. For RDA and CCA, one must rely on specialized ordination
packages. The most widely used program is CANOCO* (ter Braak, 1988b). A closely
related procedure, called ACPVI (principal component analysis with instrumental
variables), is available in the ADE-4 package† (Thioulouse et al., 1996).

11.1 Redundancy analysis (RDA)

Redundancy analysis (RDA) is the direct extension of multiple regression to the
modelling of multivariate response data. Redundancy is synonymous with explained
variance (Gittins, 1985). The analysis is asymmetric: Y is the table of response
variables and X is the table of explanatory variables. Looking at the matter from a
descriptive perspective, one would say that the ordination of Y is constrained in such a
way that the resulting ordination vectors are linear combinations of the variables in X.
The difference between RDA and canonical correlation analysis (CCorA,
Section 11.4) is the same as that between simple linear regression and linear
correlation analysis. RDA may also be seen as an extension of principal component
analysis (Section 9.1), because the canonical ordination vectors are linear
combinations of the response variables Y. This means that each ordination vector is a
one-dimensional projection of the distribution of the objects in a space that preserves
the Euclidean distances (D1, Chapter 7) among them. These ordination vectors differ,
of course, from the principal components that could be computed on the Y data table,
because they are also constrained to be linear combinations of the variables in X.

Redundancy analysis was first proposed by Rao (1964); in his 1973 book (p. 594-
595), he proposed the problem as an exercise at the end of his Chapter 8 on
multivariate analysis. The method was later rediscovered by Wollenberg (1977).

The eigenanalysis equation for redundancy analysis 

(SYX S–1
XX S'YX – λkI) uk = 0 (11.3)

* CANOCO, which contains procedures for both RDA and CCA, was written by C. J. F. ter Braak
who also developed CCA. Distribution: see Table 13.4, p. 784.

The package PC-ORD contains a procedure for CCA. Distribution: see footnote in Section 9.3.

RDACCA is a FORTRAN program for RDA and CCA written by P. Legendre. It is distributed free
of charge from the WWWeb site: <http://www.fas.umontreal.ca/BIOL/legendre/>. It uses the
direct eigenanalysis methods described in Subsections 11.1.1(for RDA) and 11.2.1 (for CCA).
† The ADE-4 package (for Macintosh and Windows) was written by D. Chessel and
J. Thioulouse at Université de Lyon, France. It is distributed free of charge from the following
WWWeb site: <http://biomserv.univ–lyon1.fr/ADE–4.html>.

Redundancy
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may be derived through multiple linear regression, followed by principal component
decomposition (Fig. 11.2). This way of looking at the calculations makes it intuitively
easy to understand what RDA actually does to the data. It also shows that the
computations can be carried out using any standard general statistical package for
micro-computer or mainframe, provided that multiple regression and principal
component analysis are available; the procedure is also easy to program using
advanced languages such as MATLAB or S-PLUS. RDA is appropriate when the
response data table Y could be analysed, alone, by principal component analysis
(PCA); in other words, when the y variables are linearly related to one another and the
Euclidean distance is deemed appropriate to describe the relationships among objects
in factorial space. The data matrices must be prepared as follows, prior to RDA.

1. The table of response variables Y is of size (n × p), where n is the number of objects
and p is the number of variables. Centre the response variables on their means, or
standardize them by column if the variables are not dimensionally homogeneous
(e.g. a mixture of temperatures, concentrations, pH values, etc.), as one would do prior
to PCA. Centring at this early step simplifies several of the equations from 11.4 to
11.12 in which, otherwise, the centring of the columns of matrix Y should be specified.

2. Table X of the explanatory variables is of size (n × m) with m ≤ n. The variables are
centred on their respective means for convenience; centring the variables in X and Y
has the effect of eliminating the regression intercepts, thus simplifying the
interpretation without loss of pertinent information. The X variables may also be
standardized (eq. 1.12). This is not a necessary condition for a valid redundancy
analysis, but removing the scale effects of the physical dimensions of the explanatory
variables (Subsection 1.5.4) turns the regression coefficients into standard regression
coefficients which are comparable to one another. The amount of explained variation,
as well as the fitted values of the regression, remain unchanged by centring or
standardization of the variables in X. In the program CANOCO, for instance,
standardization is automatically performed for the explanatory variables (matrix X)
when computing RDA or CCA.

The distributions of the variables should be examined at this stage, as well as
bivariate plots within and between the sets Y and X. Transformations (Section 1.5)
should be applied as needed to linearize the relationships and make the distributions
more symmetric, reducing the effect of outliers.

If X and Y are made to contain the same data (i.e. X = Y), eq. 11.3 becomes
(SYY – λkI) uk = 0, which is the equation for principal component analysis (eq. 9.1).
The result of RDA is then a principal component analysis of that data table.

1 — The algebra of redundancy analysis

The following algebraic development describes how to arrive at eq. 11.3 through
multiple regression and principal component analysis. The steps are (Fig. 11.2):
(1) regress each variable in Y on all variables in X and compute the fitted values;
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Figure 11.2 Redundancy analysis may be understood as a two-step process: (1) regress each variable in Y on
all variables in X and compute the fitted values; (2) carry out a principal component analysis of
the matrix of fitted values to obtain the eigenvalues and eigenvectors. Two ordinations are
obtained, one (YU) in the space of the response variables Y, the other in the space of the
explanatory variables X. Another PCA ordination can be obtained using the matrix of residuals.
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(2) carry out a principal component analysis on the matrix of fitted values to obtain the
eigenvalues and eigenvectors.

1) For each response variable in table Y, compute a multiple linear regression on
all variables in table X. This may be done using any general-purpose statistical
package. The matrix equation corresponding to each regression is (eq. 2.19):

b = [X'X]–1 X'y

so that the matrix equation corresponding to the whole set of regressions (i.e. for all
response variables) is 

B = [X'X]–1 X'Y (11.4)

where B is the matrix of regression coefficients of all response variables Y on the
regressors X. Computing all linear regressions simultaneously has been called
multivariate linear regression by Finn (1974) and is available, for instance, in the SAS
procedure GLM.

In multiple regression, the fitted values  are computed as:

 = X B (11.5)

This is the multivariate extension of eq. 10.1. The whole table of fitted values, , may
be computed in a single matrix operation in this way. Using B estimated by eq. 11.4,
eq. 11.5 becomes:

 = X [X' X]–1 X' Y (11.6)

Because variables X and Y are centred on their respective means, there is no intercept
parameter in the B vectors. The  vectors are centred, as is always the case in
ordinary linear regression. If m = n, X is square; in that case, the multiple regressions
always explain the variables in matrix Y entirely, so that  = Y. Using property 5 of
matrix inverses (Section 2.8), one can indeed verify that eq. 11.6 gives  = Y when X
is square.

2) The covariance matrix corresponding to the table of fitted values  is computed
from eq. 4.6:

= [1/(n–1)] (11.7)

Replacing  by the expression from eq. 11.6, eq. 11.7 becomes:

 = [1/(n–1)] Y' X [X' X]–1 X' X [X' X]–1 X' Y (11.8)

ŷ
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This equation reduces to:

 = SYX S–1
XX S'YX (11.9)

where SYY is the (p × p) covariance matrix among the response variables, SXX the
(m × m) covariance matrix among the regressors (it is actually a matrix RXX if all the
X variables have been standardized, as suggested above), and SYX is the (p × m)
covariance matrix among the variables of the two sets; its transpose S'YX = SXY is of
size (m × p). If the Y variables had also been standardized, this equation would read
RYX R–1

XX R'YX, which is the equation for the coefficient of multiple determination
(eq. 4.31).

3) The table of fitted values  is subjected to principal component analysis to
reduce the dimensionality of the solution. This corresponds to solving the eigenvalue
problem:

(  – λkI) uk = 0 (11.10)

which, using eq. 11.9, translates into:

(SYX S–1
XX S'YX – λkI) uk = 0 (11.11)

This is the equation for redundancy analysis (eq. 11.3); it may also be obtained from
the equation for canonical correlation analysis (eq. 11.22), by defining S11 = SYY = I
(Rao, 1973; ter Braak, 1987c). Different programs may express the eigenvalues in
different ways: raw eigenvalues, fraction of total variance in matrix Y, or percentage;
see Tables 11.2 and 11.4 for examples.

The matrix containing the normalized canonical eigenvectors uk is called U. The
eigenvectors give the contributions of the descriptors of  to the various canonical
axes. Matrix U, of size (p × p), contains only min[p, m, n – 1] eigenvectors with non-
zero eigenvalues, since the number of canonical eigenvectors cannot exceed the
minimum of p, m and (n – 1):

• It cannot exceed p which is the size of the reference space of matrix Y. This is
obvious in multiple regression, where matrix Y contains a single variable; the
ordination given by the fitted values  is, consequently, one-dimensional.

• It cannot exceed m which is the number of variables in X. Consider an extreme
example: if X contains a single explanatory variable (m = 1), regressing all p variables
in Y on this single regressor produces p fitted vectors  which all point in the same
direction of the space; a principal component analysis of matrix  of these fitted
vectors can only produce one common (canonical) variable.

• It cannot exceed (n – 1) which is the maximum number of dimensions required to
represent n points in Euclidean space.
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Ŷ

S
Y'ˆ Ŷ
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The canonical coefficients in the normalized matrix U give the contributions of the
variables of  to the canonical axes. They should be interpreted as in PCA. For
biplots (discussed below), matrix U can be rescaled in such a way that the length of
each eigenvector is , using eq. 9.9.

4) The ordination of objects in the space of the response variables Y can be
obtained directly from the centred matrix Y, using the standard equation for principal
components (eq. 9.4) and matrix U of the eigenvectors uk found in eq. 11.11:

F = YU (11.12)

The ordination vectors (columns of F) defined in eq. 11.12 are called the vectors of
“site scores”. They have variances that are close, but not equal to the corresponding
eigenvalues. How to represent matrix F in biplot diagrams is discussed in point 8
(below).

5) Likewise, the ordination of objects in space X is obtained as follows:

Z = U = XBU (11.13)

As stated above, the vectors in matrix  are centred on their respective means. The
right-hand part of eq. 11.13, obtained by replacing  by it value in eq. 11.5, shows
that this ordination is a linear combinations of the X variables. For that reason, these
ordination vectors (columns of matrix Z) are also called “fitted site scores”, or “sample
scores which are linear combinations of environmental variables” in program
CANOCO. The ordination vectors, as defined in eq. 11.13, have variances equal to the
corresponding eigenvalues. The representation of matrix Z in biplot diagrams is
discussed in point 8 (below).

The “site scores” of eq. 11.12 are obtained by projecting the original data
(matrix Y) onto axis k; they approximate the observed data, which contain residuals
( , Fig. 11.2). On the other hand, the “fitted site scores” of eq. 11.13 are
obtained by projecting the fitted values of the multiple regressions (matrix ) onto
axis k; they approximate the fitted data. Either set may be used in biplots. The practical
difference between “site scores” and “fitted site scores” is further discussed in the
second example below and in the numerical example of Section 13.4.

6) The correlation rk between the ordination vectors in spaces Y (from eq. 11.12)
and X (from eq. 11.13) for dimension k is called the “species-environment correlation”
in program CANOCO. It measures how strong the relationship is between the two data
sets, as expressed by each canonical axis k. It should be interpreted with caution
because a canonical axis with high species-environment correlation may explain but a
small fraction of the variation in Y, which is given by the amount (or proportion) of
variance of matrix Y explained by each canonical axis; see example in Table 11.2.

Ŷ
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7) The last important information needed for interpretation is the contribution of
the explanatory variables X to the canonical ordination axes. Either the regression or
the correlation coefficients may be considered:

• Matrix C of the canonical coefficients,

C = B U (11.14)

gives directly the weights of the explanatory variables X in the formation of the matrix
of fitted site scores. The ordination of objects in the space of the explanatory variables
can be found directly by computing XC; these vectors of site scores are the same as in
eq. 11.13. The coefficients in the columns of matrix C are identical to the regression
coefficients of the ordination scores from eq. 11.13 on the matrix of standardized
explanatory variables X; they may thus be interpreted in the same way.

• Correlations may also be computed between the variables in X, on the one hand, and
the ordination vectors, in either space Y (from eq. 11.12) or space X (from eq. 11.13),
on the other. The correlations between X and the ordination vectors in space X are
used to represent the explanatory variables in biplots.

8) In RDA, biplot diagrams may be drawn that contain two sets of points, as in
PCA (Subsection 9.1.4), or three sets: site scores (matrices F or Z, from eqs. 11.12 and
11.13), response variables from Y, and explanatory variables from X. Each pair of sets
of points forms a biplot. Biplots help interpret the ordination of objects in terms of Y
and X. When there are too many objects, or too many variables in Y or X, separate
ordination diagrams may be drawn and presented side by side. The construction of
RDA biplot diagrams is explained in detail in ter Braak (1994); his conclusions are
summarized here. As in PCA, two main types of scalings may be used (Table 9.2):

• RDA scaling type 1 — The eigenvectors in matrix U, representing the scores of the
response variables along the canonical axes, are scaled to lengths 1*. The site scores in
space X are obtained from equation Z =  (eq. 11.13); these vectors have variances
equal to . The site scores in space Y are obtained from equation F = YU; the
variances of these vectors are usually slightly larger than  because Y contains both
the fitted and residual components and has thus more total variance than . Matrices
Z and U, or F and U, can be used together in biplots because the products of the
eigenvectors with the site score matrices reconstruct the original matrices perfectly:

* In CANOCO 3.1, RDA scaling –1 produces a matrix U with vectors (“species scores”) scaled to
lengths  (or  in CANOCO 4.0), instead of 1, if all species and site weights are equal. In
both versions of CANOCO, the site scores in space X (matrix Z) are scaled to lengths  (or,
in other words, to sums of squares of ); the site scores in space Y (matrix F) have lengths
slightly larger than . For RDA, CANOCO expresses the eigenvalues as fractions of the total
variance in Y. As a result, site scores in matrices F and Z, as described in the present Section
(zhere), are related to site scores given by CANOCO (zCANOCO) through the formula: 
zCANOCO = zhere . Changing the scaling of species and site
score vectors by any multiplicative constant does not change the interpretation of a biplot.
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ŶU

λk
λk

Ŷ
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ZU' =  and FU' = Y, as in PCA (Subsection 9.1.4). A quantitative explanatory
variable x may be represented in the biplot using the correlations of x with the fitted
site scores. Each correlation is multiplied by  where  is the
eigenvalue of the corresponding axis k; this correction accounts for the fact that, in this
scaling, the variances of the site scores differ among axes. The correlations were
obtained in calculation step 7 above.

The consequences of this scaling, for PCA, are summarized in the right-hand
column of Table 9.2. This scaling, called distance biplot, allows the interpretation to
focus on the ordination of objects because the distances among objects approximate
their Euclidean distances in the space of response variables (matrix Y).

The main features of a distance biplot are the following: (1) Distances among
objects in a biplot are approximations of their Euclidean distances. (2) Projecting an
object at right angle on a response variable y approximates the value of the object
along that variable, as in Fig. 9.3a. (3) The angles among variables y are meaningless.
(4) The angles between variables x and y in the biplot reflect their correlations.
(5) Binary explanatory x variables may be represented as the centroids of the objects
possessing state “1” for that variable. Examples are given in Subsection 2. Since a
centroid represents a “mean object”, its relationship to a variable y is found by
projecting it at right angle on the variable, as for an object. Distances among centroids,
and between centroids and individual objects, approximate Euclidean distances.

• RDA scaling type 2 — Alternatively, one obtains response variable scores by
rescaling the eigenvectors in matrix U to lengths , using the transformation
UUUUΛΛΛΛ1/2*. The site scores in space X obtained for scaling 1 (eq. 11.13) are rescaled to
unit variances using the transformation ZZZZΛΛΛΛ–1/2. The site scores in space Y obtained for
scaling 1 are rescaled using the transformation FΛΛΛΛ–1/2; the variances of these vectors
are usually slightly larger than 1 for the reason explained in the case of scaling 1.
Matrices Z and U, or F and U, as rescaled here, can be used together in biplots because
the products of the eigenvectors with the site score matrices reconstruct the original
matrices perfectly: ZU' =  and FU' = Y, as in PCA (Subsection 9.1.4). A quantitative
explanatory variable x may be represented in the biplot using the correlations of x with
the fitted site scores, obtained in calculation step 7 above. 

* In CANOCO 3.1, RDA scaling –2 produces a matrix U with vectors (“species scores”) scaled to
lengths  (or  in CANOCO 4.0), instead of , if all species and site weights are
equal. For RDA, CANOCO expresses the eigenvalues as fractions of the total variance in Y. As a
result, the values in matrix U as described here (uhere) are related to the “species scores” of
CANOCO 3.1 (uCANOCO 3.1) through the formula: uCANOCO 3.1 = uhere , or
uCANOCO 4.0 = uhere  in CANOCO 4.0. In both versions of CANOCO, the
site scores in space X (matrix Z) are scaled to lengths  instead of ; the site scores in
space Y (matrix F) have lengths slightly larger than . Site scores in matrices F and Z, as
described in the present Section (zhere), are related to site scores given by CANOCO (zCANOCO)
through the formula: zCANOCO = zhere . Changing the scaling of species and site
score vectors by any multiplicative constant does not change the interpretation of a biplot.
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The consequences of this scaling, for PCA, are summarized in the central column
of Table 9.2. This scaling, called correlation biplot, is appropriate to focus on the
relationships among response variables (matrix Y).

The main features of a correlation biplot are the following: (1) Distances among
objects in the biplot are not approximations of their Euclidean distances. (2) Projecting
an object at right angle on a response variable y approximates the value of the object
along that variable. (3) The angles between variables (from sets X and Y) in the biplot
reflect their correlations. (4) Projecting an object at right angle on a variable x

approximates the value of the object along that variable. (5) Binary explanatory
variables may be represented as described above. Their interpretation is done in the
same way as in scaling type 1, except for the fact that the distances in the biplot among
centroids, and between centroids and individual objects, does not approximate
Euclidean distances.

The type of scaling depends on the emphasis one wants to give to the biplot, i.e.
display of distances among objects or of correlations among variables. When most
explanatory variables are binary, scaling type 1 is probably the most interesting; when
most of the variables in set X are quantitative, one may prefer scaling type 2. When the
first two eigenvalues are nearly equal, both scalings lead to nearly the same biplot.

9) Redundancy analysis usually does not completely explain the variation in the
response variables (matrix Y). During the regression step (Fig. 11.2), regression
residuals may be computed for each variable y; the residuals are obtained as the
difference between observed values yij and the corresponding fitted values  in
matrix . The matrix of residuals (Yres in Fig. 11.2) is also a matrix of size (n × p).
Residuals may be analysed by principal component analysis, leading to min[p, n – 1]
non-canonical eigenvalues and eigenvectors (Fig. 11.2, bottom). So, the full analysis
of matrix Y (i.e. the analysis of fitted values and residuals) may lead to more
eigenvectors than a principal component analysis of matrix Y: there is a maximum of
min[p, m, n – 1] non-zero canonical eigenvalues and corresponding eigenvectors, plus
a maximum of min[p, n – 1] non-canonical eigenvalues and eigenvectors, the latter
being computed from the matrix of residuals (Table 11.1). When the variables in X are
good predictors of the variables in Y, the canonical eigenvalues may be larger than the
first non-canonical eigenvalues, but this need not always be the case. If the variables in
X are not good predictors of Y, the first non-canonical eigenvalues, computed on the
residuals, may be larger than their canonical counterparts.

In the trivial case where Y contains a single response variable, redundancy analysis
is nothing but multiple linear regression analysis.

2 — Numerical examples

As a first example, consider again the data set presented in Table 10.5. The first five
variables are assembled into matrix Y and the three spatial variables make up matrix
X. Calculations performed as described above, or using the iterative algorithm

Correlation
biplot
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described in the next subsection, lead to the same results (Table 11.2). There are
min[5, 3, 19] = 3 canonical eigenvectors in this example and 5 non-canonical PCA
axes computed from the residuals. This is a case where the first non-canonical
eigenvalue is larger than any of the canonical eigenvalues. The ordination of objects
along the canonical axes (calculation steps 4 and 5 in the previous Subsection) as well
as the contribution of the explanatory variables to the canonical ordination axes
(calculation step 6) are not reported, but the correlations between these two sets of
ordinations are given in the Table; they are rather weak. The sum of the three canonical
eigenvalues accounts for only 32% of the variation in response matrix Y.

A second example has been constructed to illustrate the calculation and
interpretation of redundancy analysis. Imagine that fish have been observed at 10 sites
along a transect running from the beach of a tropical island, with water depths going
from 1 to 10 m (Table 11.3). The first three sites are on sand and the others alternate
between coral and “other substrate”. The first six species avoid the sandy area,
possibly because little food is available there, whereas the last three are ubiquitous.
The sums of abundances for the 9 species are in the last row of the Table. Species 1 to
6 come in three successive pairs, with distributions forming opposite gradients of
abundance between sites 4 and 10. Species 1 and 2 are not associated to a single type
of substrate. Species 3 and 4 are found in the coral areas only while species 5 and 6 are
found on other substrates only (coral debris, turf, calcareous algae, etc.). The
distributions of abundance of the ubiquitous species (7 to 9) have been produced using
a random number generator, fitting the frequencies to a predetermined sum; these
species will only be used to illustrate CCA in Section 11.2.

RDA was computed using the first six species as matrix Y, despite the fact that
CCA (Subsection 11.2) is probably more appropriate for these data. Comparison of
Tables 11.4 and 11.5, and of Figs. 11.3 and 11.5, allows, to a certain extent, a
comparison of the two methods. The analysis was conducted on centred y variables
because species abundances do not require standardization. When they are not

Table 11.1 Maximum number of non-zero eigenvalues and corresponding eigenvectors that may be
obtained from canonical analysis of a matrix of response variables Y(n × p) and a matrix of
explanatory variables X(n × m) using redundancy analysis (RDA) or canonical correspondence
analysis (CCA).

Canonical eigenvalues Non-canonical eigenvalues

and eigenvectors and eigenvectors

RDA min[p, m, n – 1] min[p, n – 1]

CCA min[(p – 1), m, n – 1] min[(p – 1), n – 1]
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dimensionally homogeneous, the y variables should be standardized before RDA; this
may be done by requesting that the calculations be carried out on the correlation
matrix, or standardization may be done prior to canonical analysis. Three of the
environmental variables form matrix X: depth (quantitative variable) and two of the
three binary variables coding for the three-state qualitative variable “substrate type”.
Including all three binary “substrate” variables would make one of them linearly
dependent on the other two (Subsection 1.5.7); the covariance matrix [X'X] would
then be singular (Section 2.8), which would prevent calculation of the regression
coefficients. It is not necessary to eliminate one of the dummy variables when using
programs for canonical analysis such as CANOCO (version 3 and above); the last
dummy variable is automatically eliminated from the calculations leading to
eigenanalysis, but its position in the ordination diagram is estimated in the final
calculations. Scaling type 1 was selected for the biplot in order to focus the
interpretation on the ordination of the objects; this is especially interesting in this case
because most of the explanatory variables (matrix X) are binary.

Table 11.2 Results of redundancy analysis (selected output). Matrix Y contained the first five variables of
Table 10.5 and matrix X, the last three.

Canonical axes Non-canonical axes

I II III IV V VI VII VIII

Eigenvalues (with respect to total variance in Y = 1.40378)

 0.3374 0.1126 0.0027 0.5577 0.2897 0.0605 0.0261 0.0171

Fraction of total variance in Y

 0.2404 0.0802 0.0019 0.3973 0.2064 0.0431 0.0186 0.0122

Correlations between the ordination vectors in spaces Y and X

 0.6597 0.5588 0.1404

Normalized eigenvectors (the rows correspond to the five variables in matrix Y)

1 0.0578 0.8320 0.4855 0.2760 0.6362 0.6882 0.1495 –0.1519

2  –0.9494 0.0719 –0.0062 0.9215 0.0109 –0.3170 –0.2106 0.0770

3 0.0148 0.4997 –0.8615 –0.2642 0.7212 –0.4100 –0.3932 0.2957

4 0.3074 0.0244 –0.0786 –0.0300 –0.2692 0.4897 –0.7855 0.2643

5 0.0231 0.2289 0.1265 0.0632 –0.0513 0.1339 0.4021 0.9021
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Results of the analysis are presented in Table 11.4; programs such as CANOCO

provide more output tables than presented here. The data could have produced 3
canonical axes and up to 6 non-canonical eigenvectors. In this example, only 4 of the 6
non-canonical axes had variance larger than 0. An overall test of significance
(Subsection 11.3.2) showed that the canonical relationship between matrices X and Y
is very highly significant (p = 0.001 after 999 permutations; permutation of residuals
using CANOCO). The canonical axes explain 66%, 22% and 8% of the response table’s
variance, respectively; they are all significant (p < 0.05) and display strong species-
environment correlations (r = 0.999, 0.997, and 0.980, respectively).

In Table 11.4, the eigenvalues are first given with respect to the total variance in
matrix Y, as is customary in principal component analysis. They are also presented as
proportions of the total variance in Y as is the practice in program CANOCO in the case
of PCA and RDA. The species and sites are scaled for a distance biplot (RDA scaling
type 1, Subsection 11.1.1). The eigenvectors (called “species scores” in CANOCO) are
normalized to length 1. The site scores (matrix F) are obtained from eq. 11.12. They
provide the ordination of the objects in the space of the original matrix Y. These
ordination axes are not orthogonal to one another because matrix Y contains the
“residual” components of the multiple regressions (Fig. 11.2). The “site scores that are
linear combinations of the environmental variables”, or “fitted site sores” (matrix Z,
not printed in Table 11.4), are obtained from eq. 11.13. They provide the ordination of
the objects in the space of matrix  which contains the fitted values of the multiple
regressions (Fig. 11.2). These ordination axes are orthogonal to one another because

Table 11.3 Artificial data set representing observations (e.g. fish abundances) at 10 sites along a tropical
reef transect. The variables are further described in the text. 

Site Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Sp. 6 Sp. 7 Sp. 8 Sp. 9 Depth Substrate type
No. (m) Coral Sand Other

1 1 0 0 0 0 0 2 4 4 1 0 1 0
2 0 0 0 0 0 0 5 6 1 2 0 1 0
3 0 1 0 0 0 0 0 2 3 3 0 1 0
4 11 4 0 0 8 1 6 2 0 4 0 0 1
5 11 5 17 7 0 0 6 6 2 5 1 0 0
6 9 6 0 0 6 2 10 1 4 6 0 0 1
7 9 7 13 10 0 0 4 5 4 7 1 0 0
8 7 8 0 0 4 3 6 6 4 8 0 0 1
9 7 9 10 13 0 0 6 2 0 9 1 0 0

10 5 10 0 0 2 4 0 1 3 10 0 0 1

Sum 60 50 40 30 20 10 45 35 25

Ŷ
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Table 11.4 Results of redundancy analysis of data in Table 11.3 (selected output). Matrix Y: species 1 to 6.
Matrix X: depth and substrate classes.

Canonical axes Non-canonical axes

I II III IV V VI VII

Eigenvalues (with respect to total variance in Y = 112.88889)
74.52267 24.94196 8.87611 4.18878 0.31386 0.03704 0.00846

Fraction of total variance in Y (these are the eigenvalues of program CANOCO for RDA)
0.66014 0.22094 0.07863 0.03711 0.00278 0.00033 0.00007

Cumulative fraction of total variance in Y accounted for by axes 1 to k
0.66014 0.88108 0.95971 0.99682 0.99960 0.99993 1.00000

Normalized eigenvectors (“species scores”): mat. U for the canonical and Ures for the non-canonical portions
Species 1 0.30127 –0.64624  –0.39939  –0.00656 –0.40482 0.70711 –0.16691
Species 2 0.20038 –0.47265 0.74458 0.00656 0.40482 0.70711 0.16690
Species 3 0.74098 0.16813 –0.25690 –0.68903 –0.26668 0.00000 0.67389
Species 4 0.55013 0.16841 0.26114 0.58798 0.21510 0.00000 0.68631
Species 5 –0.11588 –0.50594 –0.29319 0.37888 –0.66624 0.00000 0.12373
Species 6 –0.06292 –0.21535 0.25679 –0.18944 0.33312 0.00000 –0.06187

Site scores (“sample scores”): matrices F for the canonical and non-canonical portions, eqs. 11.12 and 9.4
Site 1 –6.82791 5.64392 –1.15219 0.24712 1.14353 0.23570 0.01271
Site 2 –7.12919 6.29016 –0.75280 0.00000 0.00000 –0.47140 0.00000
Site 3 –6.92880 5.81751 –0.00823 –0.24712 –1.14353 0.23570 –0.01271
Site 4 –4.00359 –6.97190 –4.25652 2.14250 –0.28230 0.00000 0.00141
Site 5 13.63430 0.85534 –3.96242 –3.80923 –0.14571 0.00000 0.10360
Site 6 –4.03654 –5.82821 –1.12541 0.71417 –0.09410 0.00000 0.00047
Site 7 12.11899 1.03525 0.13651 0.22968 0.08889 0.00000 –0.22463
Site 8 –4.06949 –4.68452 2.00570 –0.71417 0.09410 0.00000 –0.00047
Site 9 11.34467 1.38328 3.97855 3.57956 0.05682 0.00000 0.12103
Site 10 –4.10243 –3.54082 5.13681 –2.14250 0.28230 0.00000 –0.00141

Correlations of environmental variables with site scores from eq. 11.12
Depth 0.42204 –0.55721 0.69874
Coral 0.98708 0.15027 0.01155
Sand –0.55572 0.81477 –0.14471
Other subs. –0.40350 –0.90271 0.12456

Biplot scores of environmental variables
Depth 0.34340 –0.26282  0.20000
Coral 0.80314 0.07088 0.00330
Sand –0.45216 0.38431 –0.04142
Other subs. –0.32831 –0.42579 0.03565

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram
Coral 12.36599 1.09129 0.05088
Sand –6.96197 5.91719 –0.63774
Other subs. –4.05301 –5.25636 0.44014
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the eigenanalysis (PCA in Fig. 11.2) has been conducted on matrix . Both the “site
scores” (matrix F) and “fitted site scores” (matrix Z) may be used in RDA biplots.*

Correlations of the environmental variables with the ordination vectors can be
obtained in two forms: either with respect to the “site scores” (eq. 11.12) or with
respect to the “fitted site scores” (eq. 11.13). The latter set of correlations is used to
draw biplots containing the sites as well as the variables from Y and X (Fig. 11.3).
There were three binary variables in Table 11.3. Each such variable may be
represented by the centroid of the sites possessing state “1” for that variable (or else,
the centroid of the sites possessing state “0”). These three variables are represented by
both arrows (correlations) and symbols (centroids) in Fig. 11.3 to show the difference
between these representations; in real-case studies, one chooses one of the
representations.

The following question may arise when the effect of some environmental variables
on the dependent variables Y is already well known (e.g. the effect of altitude on
vegetation along a mountain slope, or the effect of depth on plankton assemblages):
what would the residual ordination of sites (or the residual correlations among
variables) be like if one could control for the linear effect of such well-known
environmental variables? An approximate answer may be obtained by looking at the
structure of the residuals obtained by regressing the original variables on the variables
representing the well-known factors. With the present data set, for instance, one could
examine the residual structure, after controlling for depth and substrate, by plotting
ordination biplots of the non-canonical axes in Table 11.4. These axes correspond to a
PCA of the table of residual values of the multiple regressions (Fig. 11.2).

3 — Algorithms

There are different ways of computing RDA. One may go through the multiple
regression and principal component analysis steps described in Fig. 11.2, or calculate
the matrix corresponding to SYX S–1

XX S'YX in eq. 11.3 and decompose it using a
standard eigenvalue-eigenvector algorithm.

Alternatively, ter Braak (1987c) suggested to modify his iterative algorithm for
principal component analysis (Table 9.5), by incorporating a regression analysis at the
end of each iteration, as illustrated in Fig. 11.4. Because it would be cumbersome to
repeat a full multiple regression calculation at the end of each iteration and for each

* To obtain a distance biplot based upon the covariance matrix using program CANOCO (version
3 or later), one should centre the response variables (no standardization) and emphasize the
ordination of sites by choosing scaling –1 in the “long dialogue” option. In the Windows version
of CANOCO 4.0, focus on inter-site distances and do not post-transform the species scores.
CANOCO prints the eigenvalues as proportions of the total variation in matrix Y. The scalings of
eigenvalues and eigenvectors produced by CANOCO are described in the footnotes of
Subsection 11.1.1. Changing the scaling of species and site score vectors by any multiplicative
constant does not change the interpretation of a biplot.

Ŷ
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canonical eigenvector, a short cut can be used. Vector b of regression coefficients is
obtained from eq. 2.19:

b = [X'X]–1 [X'y]

Only the [X'y] portion must be recomputed during each iteration of the estimation of
the canonical eigenvectors; the [X'X]–1 part, which is the most cumbersome to
calculate, is constant during the whole redundancy analysis run so that it needs to be
computed only once. 

The iterative procedure presents two advantages: (1) with large problems, one is
satisfied, in most instances, with computing a few axes only, instead of having to
estimate all eigenvalues and eigenvectors. The iterative procedure was developed to do

Figure 11.3 RDA ordination biplot of the artificial data presented in Table 11.3; the numerical results of the
analysis are in Table 11.4. Dots are the sampling sites; numbers represent both the site number
identifiers and depths (in m). Dashed arrows are the species. Full-line arrows represent the
“biplot scores of environmental variables”. The lengths of all arrows have been multiplied by 10
for clarity of the diagram. The “centroids of sites with code 1 for [the three] binary
environmental variables” are represented by triangles. Binary environmental variables are
usually represented by either arrows or symbols, not both as in this diagram.
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that. (2) With smaller problems, the canonical and non-canonical axes can all be
computed at once; one does not have to carry out a separate calculation on the matrix
of residuals to obtain the non-canonical axes. The main disadvantage of the procedure
is the possibility of numerical instability when a large number of successive axes are
computed. For large problems in which all the canonical axes are needed, this
procedure also requires more calculation time than regular eigenanalysis.

11.2 Canonical correspondence analysis (CCA)

Canonical correspondence analysis is a canonical ordination method developed by ter
Braak (1986, 1987a, 1987c) and implemented in the program CANOCO (ter Braak,
1988b, 1988c, 1990; ter Braak & Smilauer, 1998). It is the canonical form of
correspondence analysis. Any data table that could be subjected to correspondence
analysis forms a suitable response matrix Y for CCA; this is the case, in particular, for
species presence-absence or abundance tables (Section 9.4).

1 — The algebra of canonical correspondence analysis

The mathematics of CCA is essentially the same as that of redundancy analysis.
Differences involve the diagonal matrices of row totals D(fi+) and row relative
frequencies D(pi+), as defined in Section 9.4 for correspondence analysis; fi+ is the
sum of values in row i of matrix Y whereas pi+ is fi+ divided by the grand total f++ of
all values in Y.

Figure 11.4 Two-way weighted summation algorithm (from Table 9.5), modified to compute redundancy
analysis. Two types of ordinations are produced, one in the space of the Y variables and the other
in the space of the X variables. Translated from Borcard & Buttler (1997).

Arbitrary initial object scores

Variable scores

Object scores Rescaled object scores:
ordination in space of variables Y

Fitted object scores (normalized):
fitted values of multiple regression of

object scores on explanatory variables X

Rescaled object scores:
ordination in space of variables X
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The calculations are modified in such a way as to simulate an analysis carried out
on inflated data matrices Yinfl and Xinfl constructed in a way similar to the inflated data
table of Subsection 9.4.4. Assume that Y contains species presence-absence or
abundance data and X contains environmental data. A single species presence, from
the original table of species abundances, is placed in each row of Yinfl . An inflated
matrix Yinfl usually has many more rows than matrix Y. In the corresponding inflated
matrix Xinfl , the row vectors of environmental data are repeated as required to make
every species presence (in Yinfl) face a copy of the appropriate vector of environmental
data (in Xinfl). Modifications to the RDA algorithm are the following:

• The dependent data table is not matrix Y centred by variables (columns) as in RDA.
CCA uses matrix  of the contributions to chi-square, also used in correspondence
analysis.  is derived from matrix Y using eq. 9.32. Matrix Q of the relative
frequencies is also computed (Q = (1/f++)Y); it is used in the scaling operations.

• Matrix X is standardized using weights D(fi+). To achieve this, compute the mean
and standard deviation for each column of the inflated matrix Xinfl , which contains f++
rows, and use them to standardize the environmental data. Use the maximum
likelihood estimator for the variance instead of the usual estimator (eq. 4.3); in other
words, divide the sum of squared deviations from the mean by the number of rows of
matrix Xinfl (which is equal to f++), instead of the number of rows minus 1.

• Weighted multiple regression is used instead of a conventional multiple regression.
The weights, given by diagonal matrix D(pi+)1/2, are applied to matrix X everywhere it
occurs in the multiple regression equations, which become:

B = [X' D(pi+) X]–1 X' D(pi+)1/2

and  = D(pi+)1/2 X B

The equation for computing  is then:

 = D(pi+)1/2 X [X' D(pi+) X]–1 X' D(pi+)1/2 (11.15)

The matrix of residuals is computed as Yres = . This is the equivalent, for CCA,
of the equation Yres =  used in Fig. 11.2 for RDA.

• Eigenvalue decomposition (eqs. 11.10 and 11.11) is carried out on matrix 
which, in this case, is simply the matrix of sums of squares and cross products, without
division by the number of degrees of freedom — as in correspondence analysis: 

(11.16)

Inflated
data matrix

Q

Q

Q

Ŷ

Ŷ

Ŷ Q

Q Ŷ–
Y Ŷ–

S
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S
Y'ˆ Ŷ
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One can show that , computed as described, is equal to  (eq. 11.3
and 11.11) if the covariance matrices and are computed with weights on X,
given by matrix D(pi+)1/2, and without division by the number of degrees of freedom.

With these modifications, CCA is computed using eq. 11.3, obtaining matrices ΛΛΛΛ of
eigenvalues and U of eigenvectors. Canonical correspondence analysis is thus a
weighted form of redundancy analysis, applied to dependent matrix . It
approximates chi-square distances among the rows (objects) of the dependent data
matrix, subject to the constraint that the canonical ordination vectors be maximally
related to weighted linear combinations of the explanatory variables. The equations are
also described in Section 5.9.5 of ter Braak (1987c). The method is perfectly suited to
analyse the relationships between species presence/absence or abundance data
matrices and tables of environmental variables. The number of canonical and non-
canonical axes expected from the analysis are given in Table 11.1. Tests of significance
are available, in CCA and RDA, for the total canonical variation and for individual
eigenvalues (Subsection 11.3.2).

• The normalized matrix  is obtained using eq. 9.38:

 = UUUUΛΛΛΛ–1/2

In CCA, matrix  as defined here does not contain the loadings of the rows of  on
the canonical axes. It contains instead the loadings of the rows of  on the ordination
axes, as in CA. It will be used to find the site scores (matrices F and ) in the space of
the original variables Y. The site scores in the space of the fitted values  will be
found using U instead of .

• Matrix V of species scores (for scaling type 1) and matrix  of site scores (for
scaling type 2) are obtained from U and  using the transformations described for
correspondence analysis (Subsection 9.4.1):

eq. 9.41 (species scores, scaling 1): V = D(p+j)
–1/2U

and eq. 9.42 (site scores, scaling 2):  = D(pi+)–1/2

or combining eqs. 9.38 and 9.42:  = D(pi+)–1/2 UUUUΛΛΛΛ–1/2

Scalings 1 and 2 are the same as in correspondence analysis (Subsection 9.4.1).
Matrices F (site scores for scaling type 1) and  (species scores for scaling type 2) are
found using eqs. 9.43a and 9.44a:

ΛΛΛΛ1/2   and ΛΛΛΛ1/2

Equations 9.43b and 9.44b cannot be used here to find F and  because the
eigenanalysis has been conducted on a covariance matrix (eq. 11.16) computed from
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Û Q

Û Ŷ
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Û

Scalings
in CCA

V̂

Û
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the matrix of fitted values  (eq. 11.15) and not from Q. The site scores which are
linear combinations of the environmental variables, corresponding to eq. 11.13 of
RDA, are found from  using the following equations:

For scaling type 1: Zscaling 1 = D(pi+)–1/2 U (11.17)

For scaling type 2: Zscaling 2 = D(pi+)–1/2 UΛΛΛΛ–1/2 (11.18)

With scaling type 1, biplots can be drawn using either F and V, or Zscaling 1 and V.
With scaling type 2, one can use either  and , or Zscaling 2 and . The construction
and interpretation of CCA biplots is discussed by ter Braak & Verdonschot (1995).

• Residuals can be analysed by applying eigenvalue decomposition (eq. 11.10) to
matrix Yres , producing matrices of eigenvalues ΛΛΛΛ and normalized eigenvectors U.
Matrix  is obtained using eq. 9.38:  = UUUUΛΛΛΛ–1/2. Species and site scores are
obtained for scaling types 1 and 2 (eqs. 9.41, 9.42, 9.43a and 9.44a) using the matrices
of row and column sums D(pi+)–1/2 and D(p+j)

–1/2 of the original matrix Y.

A little-known application of CCA is worth mentioning here. Consider a
qualitative environmental variable and a table of species presence-absence or
abundance data. How can one “quantify” the qualitative states, i.e. give them values
along a quantitative scale which would be related in some optimal way to the species
data? CCA provides an easy answer to this problem. The species data form matrix Y;
the qualitative variable, recoded as a set of dummy variables, is placed in matrix X.
Compute CCA and take the fitted site scores (“site scores which are linear
combinations of environmental variables”): they provide a quantitative rescaling of the
qualitative variable, maximizing the weighted linear correlation between the dummy
variables and matrix . In the same way, RDA may be used to rescale a qualitative
variable with respect to a table of quantitative variables of the objects if linear
relationships can be assumed.

McCune (1997) warns users of CCA against inclusion of noisy or irrelevant
explanatory variables in the analysis. They may lead to misleading interpretations.

2 — Numerical example

Table 11.3 will now be used to illustrate the computation and interpretation of CCA.
The 9 species are used as matrix Y. Matrix X is the same as in Subsection 11.1.2.
Results are presented in Table 11.5 and Fig. 11.5; programs such as CANOCO provide
more output tables than presented here. There was a possibility of 3 canonical and 8
non-canonical axes. Actually, the last 2 non-canonical axes have zero variance. An
overall test of significance (Subsection 11.3.2) showed that the canonical relationship
between matrices X and Y is very highly significant (p = 0.001 after 999 permutations,
by permutation of residuals under a full model; Subsection 11.3.2). The canonical axes
explain 47%, 24% and 10% of the response table’s variance, respectively. They are all
significant (p < 0.05) and display strong row-weighted species-environment
correlations (r = 0.998, 0.940, and 0.883, respectively).

Ŷ
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Ŷ

V̂ F̂ F̂

Û Û Q

Q



598 Canonical analysis

Table 11.5 Results of canonical correspondence analysis of the data in Table 11.3 (selected output). Matrix
Y: species 1 to 9; X: depth and 3 substrate classes. Non-canonical axes VIII and IX not shown.

Canonical axes Non-canonical axes

I II III IV V VI VII

Eigenvalues (their sum is equal to the total inertia in matrix  of species data = 0.78417)
0.36614 0.18689 0.07885 0.08229 0.03513 0.02333 0.00990

Fraction of the total variance in 
0.46691 0.23833 0.10055 0.10494 0.04481 0.02975 0.01263

Cumulative fraction of total inertia in  accounted for by axes 1 to k
0.46691 0.70524 0.80579 0.91072 0.95553 0.98527 0.99791

Eigenvectors (“species scores”): matrices  for the canonical and the non-canonical portions (eq. 9.44a)
Species 1 –0.11035 –0.28240 –0.20303 0.00192 0.08223 0.08573 –0.01220
Species 2 –0.14136 –0.30350 0.39544 0.14127 0.02689 0.14325 0.04303
Species 3 1.01552 –0.09583 –0.19826 0.10480 –0.13003 0.02441 0.04647
Species 4 1.03621 –0.10962 0.22098 –0.22364 0.24375 –0.02591 –0.05341
Species 5 –1.05372 –0.53718 –0.43808 –0.22348 0.32395 0.12464 –0.11928
Species 6 –0.99856 –0.57396 0.67992 0.38996 –0.29908 0.32845 0.21216
Species 7 –0.25525 0.17817 –0.20413 –0.43340 –0.07071 –0.18817 0.12691
Species 8 –0.14656 0.85736 –0.01525 –0.05276 –0.35448 –0.04168 –0.19901
Species 9 –0.41371 0.70795 0.21570 0.69031 0.14843 –0.33425 –0.00629

Site scores (“sample scores”): matrices  for the canonical and the non-canonical portions (eq. 9.42)
Site 1 –0.71059 3.08167 0.21965 1.24529 1.07293 –0.50625 0.24413
Site 2 –0.58477 3.00669 –0.94745 –2.69965 –2.13682 0.81353 0.47153
Site 3 –0.76274 3.15258 2.13925 3.11628 2.30660 –0.69894 –1.39063
Site 4 –1.11231 –1.07151 –1.87528 –0.66637 1.10154 1.43517 –1.10620
Site 5 0.97912 0.06032 –0.69628 0.61265 –0.98301 0.31567 0.57411
Site 6 –1.04323 –0.45943 –0.63980 –0.28716 0.57393 –1.44981 1.70167
Site 7 0.95449 0.08470 0.13251 0.42143 0.11155 –0.39424 –0.67396
Site 8 –0.94727 0.10837 0.52611 0.00565 –1.26273 –1.06565 –1.46326
Site 9 1.14808 –0.49045 0.47835 –1.17016 1.00599 0.07350 0.08605
Site 10 –1.03291 –1.03505 2.74692 1.28084 –0.36299 1.98648 1.05356

Correlations of environmental variables with site scores
Depth 0.18608 –0.60189 0.65814
Coral 0.99233 –0.09189 –0.04614
Sand –0.21281 0.91759 0.03765
Other subs. –0.87958 –0.44413 0.02466

Correlations of environmental variables with fitted site scores (for biplots)
Depth 0.18636 –0.64026 0.74521
Coral 0.99384 –0.09775 –0.05225
Sand –0.21313 0.97609 0.04263
Other subs. –0.88092 –0.47245 0.02792

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram
Coral 1.02265 –0.10059 –0.05376
Sand –0.66932 3.06532 0.13387
Other subs. –1.03049 –0.55267 0.03266

Q

Q

Q

F̂

V̂
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Scaling type 2 (from Subsection 9.4.1) was used, in this example, to emphasize the
relationships among species. As a result, the species (matrix ) are at the centroids of
the sites (matrix ) in Fig. 11.5a and distances among species approximate their chi-
square distances. Species 3 and 4 characterize the sites with coral substrate, whereas
species 5 and 6 indicate the sites with “other substrate”. Species 1 and 2, which occupy
an intermediate position between the sites with coral and other substrate, are not well
represented in the biplot of canonical axes I and II; axis III is needed to adequately
represent the variance of these species. Among the ubiquitous species 7 to 9, two are
well represented in the subspace of canonical axes I and II; their arrows fall near the
middle of the area encompassing the three types of substrate. The sites are not
perfectly ordered along the depth vector; the ordering of sites along this variable
mainly reflects the difference in species composition between the shallow sandy sites
(1, 2 and 3) and the other sites.

Figure 11.5 CCA ordination biplot of the artificial data in Table 11.3; the numerical results of the analysis
are in Table 11.5. (a) Biplot representing the species (dashed arrows), sites (dots, with site
identifiers which also correspond to depths in m) and environmental variables (full arrow for
depth, triangles for the three binary substrate variables). (b) Ranking of the species along a
quantitative environmental variable (depth in the present case) is inferred by projecting the
species onto the arrow representing that variable.
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Figure 11.5b shows how to infer the ranking of species along a quantitative
environmental variable. Depth is used in this example. The graphical method simply
consists in projecting (at right angle) the species onto the arrow representing that
variable. This gives an approximation of the weighted averages of the species with
respect to environmental variables. Ecologists like to interpret this ranking as
representing the niche optima for the species under study. It is important to realize that
three rather strong assumptions have to be made when attempting such an
interpretation:

• that the various species have unimodal distributions along the environmental
variable of interest (subsection 9.4.4); 

• that the species distributions are under environmental control (Whittaker, 1956; Bray
& Curtis, 1957), so that the mode of each species is at its optimum along the various
environmental variables; and

• that the gradient under study is long enough to allow each species to go from some
less-than-optimum low frequency to its high-frequency optimum, and back to some
past-optimum low frequency. 

In the data of the present example (Table 11.2), only species 1, 3 and 5 were
constructed to approximately correspond to these criteria. Species 7, which may also
look like it has a unimodal distribution, has actually been constructed using a pseudo-
random number generator.

To investigate the similarities among sites or the relationships among species after
controlling for the linear effects of depth and type of substrate, one could draw
ordination biplots of the non-canonical axes in Table 11.5. These axes correspond to a
correspondence analysis of the table of regression residuals, as in Fig. 11.2.

3 — Algorithms

CCA may be computed following the same three routes as RDA (Subsection 11.1.3).
One may go through the weighted multiple regression steps followed by eigenanalysis
of matrix . Alternatively, one may choose to estimate the matrix corresponding to

 (taking into account the modifications described in Subsection 1) and
proceed to eigenanalysis. Finally, one may use the modified iterative algorithm
proposed by ter Braak (1986, 1987a) (Table 11.6) and implemented in program
CANOCO. The advantages and disadvantages of this procedure have been discussed in
Subsection 11.1.3. (By removing the weights yi+ and y+j from Table 11.6, one obtains
the iterative algorithm for RDA. In this case, however, take the normalization from the
iterative algorithm for PCA, Table 9.5, instead of Table 9.12 where the iterative
algorithm for CA is outlined.)
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Table 11.6 Two-way weighted averaging (TWWA) algorithm for canonical correspondence analysis
(CCA). From ter Braak (1986, 1987c). The regression steps, by which CCA differs from CA, are
identified by arrows.

Step 1: Consider a table Y of n sites (rows) × p species (columns) and a standardized matrix X of
explanatory variables, as in Subsection 11.2.1. Do NOT centre the species on their means.

Determine how many eigenvectors are needed. For each one, DO the following:

Step 2: Take the row order as the arbitrary initial fitted site scores (vector fitted-rowscore).
Set the initial eigenvalue estimate to 0. In what follows, yi+ = row sum for site i, y+j = column
sum for species j, and y++ = grand total for the data table Y.

Iterative procedure begins

Step 3: Compute new species loadings: colscore(j) = Σ y(i,j) × fitted-rowscore(i)/y+j

Step 4: Compute new site scores: rowscore(i) = Σ y(i,j) × colscore(j)/yi+

⇒ Step 5: For the non-canonical axes, skip this and go directly to step 7. For the canonical axes, regress the
site scores (vector rowscore) on X using weighted regression; the weights are given by the
diagonal matrix of row sums D(yi+)1/2. The equation used here for the regression coefficients is: 

c = [X' D(yi+) X]–1 [X' D(yi+) x*] where x* is the rowscore vector1.

The [X' D(yi+) X]–1 part of the regression procedure may have been calculated beforehand, once
and for all. What remains to calculate here is [X' D(yi+) x*].

⇒ Step 6: Calculate the fitted values ( ) and use them as new site scores (vector fitted-rowscore)1.

Step 7: For the second and higher axes, make the fitted site scores uncorrelated with all previous axes
(Gram-Schmidt orthogonalization procedure: Table 9.12).

Step 8: Normalize the fitted site scores to obtain an estimate of the eigenvalue (normalization procedure:
Table 9.12). If this estimate does not differ from the previous one by more than a small quantity
(“tolerance”), go to step 9. 

End of iterative procedure

Step 9: If more eigenvectors are to be computed, go to step 2. If not, continue with step 10.

Step 10: Scaling type 2 (Subsection 9.4.1) — The row (site) scores (vector rowscore) give the ordination
of the sites in the space of the original species data (matrix ). The column scores (species
loadings) are in vector colscore; they correspond to matrix . The fitted site scores (vector
fitted-rowscore) give the ordination of the sites in the space of the explanatory variables X
(eq. 11.18).

Scaling type 1 (Subsection 9.4.1) — Matrices F and V are obtained from eqs. 9.43a and 9.44a.
The fitted site scores are vectors fitted-rowscore, computed above, multiplied by the square root
of the corresponding eigenvalue, as shown by combining eqs. 11.17 and 11.18.

Step 11: Print out the eigenvalues, % variance, species loadings, site scores, and fitted site scores.

1 These equations differ slightly from the corresponding portions of eq. 11.15 because the analysis is based here
upon matrix Y instead of .

ŷ Xc=

V̂
F̂

Q



602 Canonical analysis

Ecological application  11.2a

Ecological application 9.4a described the spatial distribution of chaetodontid fish assemblages
(butterflyfishes) around a tropical island, using correspondence analysis. This application is
continued here. Cadoret et al. (1995) next described the relationships between the fish species
(quantitative relevés) and some environmental variables, using canonical correspondence
analysis. The environmental variables are: the type of environment (qualitative descriptor: bay,
lagoon, or outer slope of the reef on the ocean side), geomorphology (qualitative: reef flat, crest,
and reef wall of the fringing reefs of bays; fringing reef, shallow, barrier reef, and outer slope for
transect sites), depth (quantitative: from 0.5 to 35 m), and exposure to swell (qualitative: low,
high, or sites located in bays).

The ordination of sampling sites by CCA was virtually identical to that in Fig. 9.18; this
indicates that the first CA axes are closely related to the environmental variables. The canonical
axes accounted together for 35% of the variation in the species data (p = 0.001 after 999
permutations). The description of the ordination of sites presented in Ecological application 9.4a
may be compared to Fig. 11.6a. This Figure shows which types of environment are similar in
their chaetodontid species composition and which species are associated with the various types
of environment. It indicates that the reef flats of the fringing reefs of the bays are similar in
species composition to the fringing reefs of the lagoon; likewise, the crests of the fringing reefs

Figure 11.6 (a) CCA ordination diagram: presence/absence of 21 Chaetodontid fish species at 42 sampling
sites around Moorea Island, French Polynesia, against environmental variables. The species
(names abbreviated to 3 letters) are represented by circles instead of arrows for readability of the
diagram. Axis I: 14.6% of the variation (p = 0.001 after 999 permutations); axis II: 7.4%
(p = 0.010). Redrawn from the original data of Cadoret et al. (1995). (b) CCA ordination
diagram for relevés from the lagoon and the outer slope, at three time periods over 15 years.
Arrows show the sampling sequence in each environment. Thirteen species found in all relevés
are located in the centre of the ordination diagram. Modified from Cadoret et al. (1995).
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of the bays are similar to the barrier reefs in the lagoon. Species composition along the reef walls
of bays and that on the outer slopes differ, however, from all the other types of environment. The
ecology of the most important species is discussed in the paper.

CCA has also been used in that paper to analyse the temporal changes of the fish
assemblages along one of the transects, called Tiahura, which had been repeatedly studied over
the previous 15 years. One of the objectives of the study was to determine whether the
chaetodontid assemblages were stable or changing with time. In this analysis, matrix Y

contained presence/absence data for 23 butterflyfish species in each of 6 relevés made either in
the lagoon (in 1979, 1982 and 1994) or on the outer slope (in 1979, 1983 and 1994) along the
transect. Matrix X contained 3 binary variables dividing the relevés by location (lagoon, outer
slope: 1 dummy variable) and time (3 time periods: 2 dummy variables). Matrix X explains 67%
of the variation in the species presence-absence data table Y. The hypothesis of “no change with
time” cannot be properly tested for significance since there is no replicate sampling available.
Figure 11.6b shows, however, that the species composition has been mostly stable in the lagoon
and on the outer slope of Moorea during the past 15 years, although a few coral-eating species
were encountered less frequently in 1982-83 and 1994 (BEN, LON, TIS and QUA, in the shaded
polygon), following changes in the coral community, while two species have been observed
almost exclusively in the last sampling year (ACU and TCH, in the shaded rectangle). It is
interesting to note that, while the species composition was the same in the lagoon and the outer
slope in 1979, compositions diverged slightly in one way in the lagoon and in a different way on
the seaward side, by gain and loss of species.

Ecological application  11.2b

Canonical correspondence analysis is widely used in palaeoecology, together with regression
and calibration, to infer past ecological conditions (climatic, limnological, etc.) from palaeo-
assemblages of species. This vast and growing literature has been summarized by Birks (1995);
references to these methods can also be found in the bibliography assembled by Birks et al.
(1994), under the headings limnology, palaeoecology, palaeolimnology, etc. 

One of the classical papers on the subject is that of Birks et al. (1990a). Palaeolimnological
reconstruction involves two main steps: modelling from a training data set, followed by the
construction of forecasting models that are then applied to the palaeo-data. In this paper, diatoms
were used to reconstruct past water chemistry. The training data set consisted of diatom
assemblages comprising 287 species, from present-day surface samples from 138 lakes in
England, Norway, Scotland, Sweden, and Wales. Data were also available on pH, conductivity,
Ca, Mg, K, SO4, Cl, alkalinity, total Al, and DOC. Data from more lakes were available for
subsets of these variables. CCA was used to relate species composition to water chemistry. The
first two canonical eigenvalues were significant and displayed strong species-environment
correlations (r = 0.95 and 0.84, respectively). The first axis expressed a significant diatom
gradient which was strongly positively correlated with alkalinity and its close correlates, Ca and
pH, and negatively but less strongly-correlated with total Al; the second axis corresponded to a
significant gradient strongly correlated with DOC. This result indicated that pH (or alkalinity),
Al, and DOC are potentially reconstructible from fossil diatom assemblages.

The fossil data set contained 101 slices of a sediment core from a small lake, the Round
Loch of Glenhead, in Galloway, southwestern Scotland. The data series covered the past 10000
years. The fossil data (292 diatom taxa) were included in the CCA as passive objects (called
supplementary objects in Subsection 9.1.8) and positioned in the ordination provided by
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canonical axes I and II. All fossil objects were well-fitted in that space (they had low squared
residual distances), indicating that the pattern of variation in diatom composition can be linked
to the modern chemical variables.

Reconstruction of past surface-water chemistry involved two steps. First, the training set
was used to model, by regression, the responses of modern diatoms to the chemical variables of
interest (one variable at a time). Secondly, the modelled responses were used to infer past
chemistry from the composition of fossil diatom assemblages; this phase is called calibration
(ter Braak, 1987b; ter Braak & Prentice, 1988). Extensive simulations led Birks et al. (1990b) to
prefer weighted averaging (WA) over maximum likelihood (ML) regression and calibration.
Consider pH in lakes, for example. WA regression simply consists in applying eq. 9.47 to
estimate the pH optimum of each taxon of the training set as the weighted average of all the pH
values for lakes in which this taxon occurs, weighted by the taxon’s relative abundance.
WA calibration consists in applying eq. 9.46 to estimate the pH of each lake as the weighted
average of the pH optima of all the taxa present. Taxa with a narrow pH tolerance or amplitude
may, if required, be given greater weight in WA regression and calibration than taxa with a wide
pH tolerance (Birks et al., 1990b). 

Application of eqs. 9.47 and 9.46 to data resulted in shrinkage of the range of pH scores.
Shrinkage occurred for the same reason as in the TWWA algorithm for correspondence analysis;
in step 6.4 of that algorithm (Table 9.12), the eigenvalue was actually estimated from the amount
of shrinkage incurred by the site scores after each iteration through eqs. 9.47 and 9.46 (steps 3
and 4). Deshrinking may be done in at least two ways; the relative merits of the two methods are
discussed by Birks et al. (1990b).

• Deshrinking by classical regression proceeds in two steps. (1) The pH values inferred by WA
regression and calibration ( ) are regressed on the observed values xi for the training set, using
the linear regression model  = b0 + bixi + εi. (2) The parameters of that model are then used to
deshrink the  values, using the equation: final  = (  – bo)/b1. This method was used to
deshrink the inferred pH values.

• Another way of deshrinking, advocated by ter Braak & van Dam (1989) for palaeolimnological
data, is to use “inverse regression” of xi on  (ter Braak, 1987b). Inverse regression was used to
deshrink the inferred Al and DOC values.

Training sets containing different numbers of lakes were used to infer pH, total Al, and
DOC. Past values of these variables were then reconstructed from the palaeo-assemblages of
diatoms, using the pH optima estimated above (eq. 9.47) for the various diatom species,
followed by deshrinking. Reconstructed values were plotted against depth and time, together
with error estimates obtained by bootstrapping. The past history of the Round Loch of Glenhead
over the past 10000 years was discussed in the paper.

This approach involving CCA, WA regression and WA calibration is now widely used in
palaeolimnology to reconstruct, for example, surface-water temperatures from fossil chironomid
assemblages, lake salinity from diatom assemblages, lake-water phosphorous concentrations
from diatom assemblages, and surface-water chlorophyll a concentrations from fossil diatom
assemblages. The WA regression and WA calibration method was further improved by ter Braak
& Juggins (1993). Birks (1995) provides a review of quantitative palaeoenvironmental
reconstructions, both theory and applications, whereas ter Braak (1995) gives a theoretical
comparison of recent reconstruction methods. Programs are available to carry out the
calculations (ter Braak & Juggins, 1993; Line et al., 1994).

x̂i
x̂i

x̂i x̂i x̂i

x̂i
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11.3 Partial RDA and CCA

Partial canonical analysis is the extension of partial linear regression to the case where
the response data table Y is multivariate. The logic is the same as explained in
Subsection 10.3.5 and will not be detailed further. Partial canonical analysis includes
partial RDA (Davies & Tso, 1982) and partial CCA (ter Braak, 1988a). As in partial
linear regression, the explanatory variables are seen as belonging to two groups: X for
the explanatory variables to be included in the model and W for the covariables (also
called covariates) whose effect on Y is to be controlled.*

1 — Applications

Partial canonical analysis may be used to investigate a variety of problems. Here are
some examples.

• Consider the case where matrix W contains variables whose effects on Y are well
known. One wants to control for these well-known effects when analysing the effect
on Y of a set of variables of interest, X. For instance, one may want to control for a
well-known effect of a gradient of salinity while analysing the effect of nutrients on
phytoplankton assemblages.

• After conducting a standard canonical analysis as in Subsections 11.1.2 and 11.2.2,
one may want to isolate the effect of a single explanatory variable. Using all the other
explanatory variables as covariates leads to a single canonical axis expressing the
partial effect of the variable of interest on Y. The corresponding canonical eigenvalue
divided by the total inertia in Y measures the fraction of the variation of Y accounted
for by that factor. In partial CCA, the coordinates of the species along this axis provide
a ranking along the given environmental variable, conditional on the ranking explained
by the covariables; this ranking must be interpreted with caution, as discussed in
Subsection 11.2.2. Measures of species “tolerance” (i.e. standard deviation for each
species along an axis) provided by program CANOCO may help in the interpretation.

• Partial canonical analysis may be used, instead of MANOVA, to analyse multivariate
response data (matrix Y) in balanced experimental designs, including tests of
significance for main effects and interaction terms. For a single experimental factor,
the analysis can be conducted using simple RDA or CCA. For two or more factors and
their interactions, partial RDA or CCA must be used. When the response data consist
of a matrix of species presence-absence or abundance data, one can use either partial
CCA to preserve the chi-square distance among sites, or the distance-based RDA
method (db-RDA) of Legendre & Anderson (1999) to preserve some other distance. 

* In program CANOCO, which is widely used to carry out partial canonical analysis, X is called
the “matrix of environmental data” and W is called the “matrix of covariables”.
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In distance-based redundancy analysis (db-RDA), a resemblance matrix, S or D, is computed
among the sites using a similarity measure appropriate to species data. Principal coordinate
analysis (PCoA, Section 9.2) is applied to this matrix to obtain new Euclidean axes (matrix Y)
fully representing the relationships among the sites; a correction for negative values, using
method 1 of Subsection 9.2.4, may be required. The experimental factors and their interactions
are coded as orthogonal dummy variables. RDA is applied to the new matrix Y to test the
significance of the factor (or interaction) coded into matrix X, with all the other factors (and
interactions) coded into a matrix of covariables W.

• For sampling conducted at different occasions, the effect of time can be estimated by
canonical analysis, as in Ecological application 11.2. One may also wish to remove the
effect of the times of sampling. This can be done by using the variable(s) describing
the sampling occasions as covariables in the analysis. Time may be represented by
dummy variables, or by a quantitative variable whose effect on Y is assumed to be
linear, or by a sine transformation of Julian days, etc. The effect of time will effectively
be removed if the sampling times (days, weeks, years, …) only affect the means of the
response variables and nothing else. If there is an interaction between sampling time
and the other environmental or spatial variables of interest in the analysis, the effect of
time cannot be removed through this simple approach. In the presence of an
interaction, the interaction terms must remain in the analysis for the model to be valid. 

• In the same way, the effect of the sampling locations can be controlled for. Sampling
locations may be represented by dummy variables, or by a trend-surface polynomial of
the geographic coordinates of the sites (Chapter 13). The caveat of the previous
paragraph concerning interactions applies here as well.

• In Chapter 13, partial canonical analysis is used to partition the variation in a table Y
between environmental (X) and spatial components (W). A numerical example and an
ecological application of partial canonical analysis are presented in that context.

2 — Tests of significance

Contrary to ordinary ordination methods (Chapter 9), eigenvalues can be tested for
significance in canonical analysis, using the method of permutations (Section 1.2)
because a null hypothesis can be formulated about the relationship between matrices Y
and X. Tests may be used whenever one has explicit hypotheses about the relationship
that may exist between the response (Y) and explanatory (X) data tables. Hypotheses
may imply specific quantitative environmental variables, or mixtures of quantitative
and binary variables, cast into matrix X, as in the numerical example of Table 11.3.
Hypotheses may also be of the analysis-of-variance type, involving either a single
classification criterion (factor) or several factors and their interactions, each recoded as
dummy variables. Examples of the use of RDA to test multivariate hypotheses are
found in Sabatier et al. (1989), ter Braak & Wiertz (1994), Verdonschot & ter Braak
(1994), and Legendre & Anderson (1999).
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Tests of significance are usually performed at two levels in RDA and CCA: 

• The most general test concerns the null hypothesis of independence between Y and
X. The statistic is the sum of all canonical eigenvalues; it is tested using an F ratio
(eq. 11.19). The alternative hypothesis states that the sum of all canonical eigenvalues
is larger (one-tailed test) than could be obtained from matrices with permuted rows,
using either permutation of the raw data or permutation of residuals (below). This is an
overall test of the relationship between Y and X. The sum of all canonical eigenvalues,
divided by the total variation in matrix Y, gives the proportion of variation of Y

explained by X, like a coefficient of determination (R2) in multiple regression.

• Individual canonical eigenvalues can be tested for significance. This test differs from
the overall test in that it tries to identify axes that individually explain more canonical
variation than could be obtained from permuted matrices. Following this test, one may
decide to use only the significant axes in ordination diagrams. The null hypothesis is
the same as above, i.e.  independence between Y and X. The alternative hypothesis is
that λ1 explains more of the variation of Y than matrices with permuted rows would.*

In program CANOCO, only the first canonical eigenvalue can be tested for
significance (eq. 11.20). To test the second canonical eigenvalue, one must control for
the effect of the first one. This is done by turning the first canonical axis into a
covariable, whose effect is removed from the analysis before repeating the calculations
and permutation testing. The operation may be repeated to test further canonical
eigenvalues, one at a time. The program allows users to perform this operation easily.

Without covariables

In RDA and CCA, F statistics, described below, may be tested under two different
frameworks (ter Braak, 1990). These frameworks, which also apply to regression
analysis, generally lead to the same probabilities, although these may differ in some
cases. They are compared in the study of Anderson & Legendre (1999) reported below.
They are described, first, for canonical analysis without covariables:

• Permutation of raw data — The null hypothesis is that of exchangeability of the rows
of Y with respect to the observations in X. This is implemented by permuting the rows
of matrix Y (or, alternatively, the rows of matrix X) at random and recomputing the
redundancy analysis. Repeat the permutation and computation a large number of times
and test the statistic for significance as in Section 1.2. When permuting the raw data,
the error associated with each observation “travels with it” (Edgington, 1995). 

* Release 2.1 of program CANOCO was directly testing the first eigenvalue against its
permutational distribution (ter Braak, 1988c). In the 3.10 release of CANOCO (ter Braak, 1990),
this was modified to an F-type statistic (eqs. 11.19 and 11.20) whereby the eigenvalue is divided
by the residual error, calculated after fitting the explanatory variables (and also the covariables
in partial redundancy analysis). The actual value of the F statistic is tested against the
distribution of values obtained from the permutations.

Permutation
of raw data
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• Permutation of residuals — Here, the residuals of a linear (or other) model are the
permutable units (Kempthorne, 1952). In multiple regression and canonical analysis,
the null hypothesis is that of exchangeability of the residuals of the response variables
after fitting some explanatory variables using a linear model. Tests of significance
using permutation of residuals have only asymptotically exact significance levels
(i.e. as n becomes large). 

When there are no covariables in the study, permutation of residuals may be
implemented as follows. Compute the canonical analysis of Y on X to obtain the
reference value of F (eq. 11.19) for the original data. Consider matrix of the
residuals of the regressions of variables Y on X (Fig. 11.2, bottom). Permute the rows
of  at random, obtaining , and recompute the redundancy analysis of

 on X. Repeat the permutation and analysis. Test the F statistic for significance
as in Section 1.2. The null hypothesis in this reduced form of the test is that an RDA of
Y on X explains no more of the variation of Y than an RDA of the permuted residuals
on X. This is the permutation of residuals under a full model without covariables,
found in the central column of Table 11.7.

In the presence of covariables, there are two ways of permuting residuals: under a
reduced model or under a full model. The two methods are described below.

With covariables

Tests of significance in partial canonical analysis, involving a matrix of covariables W,
pose special problems. A partial F is used as the reference statistic when testing the
significance of either the sum of all canonical eigenvalues or the first canonical
eigenvalue alone (ter Braak, 1990). In the F statistic, the numerator (eigenvalue or sum
of eigenvalues) is divided by the residual error. It thus becomes an asymptotically
pivotal statistic, i.e. a statistic whose distribution under the null hypothesis remains the
same for any value of the numerator, as n tends towards infinity. The importance of
using a pivotal test statistic, such as F, as opposed to derivatives such as sums of
squares or eigenvalues, is discussed in Section 1.2 and in Manly (1997).

• For the sum of all canonical eigenvalues,

(11.19)

where the “sum of all canonical eigenvalues” in the numerator measures the
relationship between Y and X after controlling for W. RSS is the residual sum of
squares, computed as [total inertia in Y after fitting the covariables, minus sum of all
canonical eigenvalues after fitting the covariables]. n is the number of objects, m the
number of environmental variables in X, and q is the number of covariables in W. The
“total inertia in Y after fitting the covariables” is the sum of all eigenvalues of a non-
canonical ordination (PCA or CA) of Y after controlling for W. The same statistic F is
used when there are no covariables in the study; in that case q = 0.

Permutation
of residuals

ResY X

ResY X Res*Y X

Res*Y X

Pivotal
statistic

F
sum of all canonical eigenvalues m⁄

RSS n m– q– 1–( )⁄
--------------------------------------------------------------------------------------=
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To understand the construction of the F statistic, consider the simpler problem of
partial regression illustrated in Fig. 10.10. The “sum of all canonical eigenvalues” in
the numerator is equivalent to fraction [a] in the Figure. RSS is equivalent to [d]; it is
computed as “total inertia in Y after fitting the covariables”, which is [a + d], minus the
“sum of all canonical eigenvalues after fitting the covariables”, which is [a]. So, the
test statistic is essentially F = [a]/[d], leaving aside the degrees of freedom of the
numerator and denominator.

• For the first eigenvalue,

(11.20)

where RSS1 is the residual sum of squares, computed as [total inertia in Y after fitting
the covariables, minus λ1].

Simulation results, reported below, indicate that, in most situations, permutation of
either the raw data or residuals are adequate to carry out tests of significance in
multiple regression and canonical analysis. Restricted permutation, which is briefly
described in Subsection 1.2.4, is also appropriate if W contains a qualitative variable;
the permutations are then limited to the objects within the groups defined by that
variable (Edgington, 1995; Manly, 1997; Subsection 1.2.4).

In permutation of raw data, the variance associated with the permuted data
corresponds to all the variance in matrix Y; this is fraction [a + b + c + d] of Fig. 10.10
and Table 11.7. Compare this to the variance associated with the permuted portions in
the methods of permutation of residuals (below).

Two methods of permutation of residuals may be used to test the significance of the
sum of all canonical eigenvalues (eq. 11.19). These procedures can readily be adapted
to test the first eigenvalue only, using eq. 11.20. They may also be used to test the
significance of partial regression coefficients in multiple regression, as shown by the
simulations reported below, after the description of the methods.

1) Permutation of residuals under a reduced model — This method is ter Braak’s
adaptation to canonical analysis of the permutation method proposed by Freedman &
Lane (1983) for partial regression coefficients. The method is called permutation
“under the null model” by ter Braak (1990), or “under the reduced model” by Cade and
Richards (1996). The “reduced regression model” contains only the covariables of W.

1. Compute the canonical analysis of Y on X and W together to obtain the reference
value of the F statistic (eq. 11.19) for the unpermuted data. 

2. Compute matrix  of the fitted values and matrix of the residuals
of the regressions of variables Y on W.

3. Permute the rows of to obtain . Compute matrix Ynew =
 + . The values of  remain fixed (i.e. unpermuted).

F
λ1

RSS1 n m– q– 1–( )⁄
-------------------------------------------------------=

FitY W ResY W

ResY W Res*Y W

FitY W Res*Y W FitY W
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4. Compute the canonical analysis of Ynew against X and W together to obtain a
value for the F statistic under permutation (called F*) using eq. 11.19. 

5. Repeat steps 3 and 4 a large number of times to obtain the distribution of F*. Add
the reference value of F to the distribution.

6. Calculate the probability as in Section 1.2.

In this method, the variance associated with the permuted portion of the data, ,
is fraction [a + d] of Fig. 10.10 and Table 11.7. 

2) Permutation of residuals under a full model — This method was developed by ter
Braak (1990, 1992) to conduct tests of significance in the CANOCO program of
canonical analysis, version 3 and later. He was inspired by results obtained by Hall &
Titterington (1989) in the context of bootstrapping; bootstrapping is briefly described
at the end of Section 1.2. The “full regression model” contains all the explanatory
variables and covariables of X and W. Proceed as follows:

1. Compute the canonical analysis of Y on X and W together to obtain the reference
value of the F statistic (eq. 11.19) for the unpermuted data, as well as matrix

 of the fitted values and matrix  of the residuals.

2. Permute the rows of to obtain . Compute matrix Ynew =
 + . The values of  remain fixed (i.e. unpermuted).

3. Compute the canonical analysis of Ynew against X and W together (unpermuted)
to obtain the residual sum of squares RSSXW computed as [total inertia in Ynew –
sum of all canonical eigenvalues]. 

4. Compute the canonical analysis of Ynew against W alone (unpermuted) to obtain
the residual sum of squares RSSW computed as [total inertia in Ynew – sum of all
canonical eigenvalues].

5. Calculate a value for the F statistic under permutation (called F*) as follows (ter
Braak, 1992):

To understand the construction of the F* statistic, consider Fig. 10.10 again. RSSW

corresponds to [a + d] whereas RSSXW is fraction [d]. So (RSSW – RSSXW) in the
numerator is [a] and RSSXW in the denominator is [d].

6. Repeat steps 2 to 5 a large number of times to obtain the distribution of F*. Add
the reference value of F to the distribution.

7. Calculate the probability as in Section 1.2. 

In this method, the variance associated with the permuted portion of the data,
, is RSSXW which corresponds to fraction [d] of Fig. 10.10 and Table 11.7.

ResY W

FitY XW ResY XW

ResY XW Res*Y XW

FitY XW Res*Y XW FitY XW

F*
RSSW RSSXW–( ) m⁄

RSSXW n m– q– 1–( )⁄
-------------------------------------------------------------=

ResY XW
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Which methods are adequate for permutation tests? Using Monte Carlo simulations,
Anderson & Legendre (1999) compared empirical type I error and power of different
permutation techniques for a test of significance of a single partial regression coefficient. Their
results are relevant to canonical analysis because partial RDA with a single variable in matrices
Y, X and W is identical to a multiple regression; permutation tests of significance carried out on
such data using multiple regression or partial RDA are strictly equivalent. As a consequence,
methods that are inappropriate to test single partial regression coefficients in multiple regression
would also be inadequate for partial canonical analysis.

Anderson & Legendre limited their study to methods that maintain the covariance structure
between X and W constant throughout the permutations; this property is called ancillarity,
which means relatedness. They compared permutation of the raw data to three methods of
permutation of residuals. Two of these are the methods of permutation of residuals under a
reduced and a full model, described above. The normal-theory t-test was also included in the
comparison. Their study showed that 

• when the error in the data strongly departed from normality, permutation tests had more power
than parametric t-tests;

• type I error and power were asymptotically equivalent for permutation of raw data or
permutation of residuals under the reduced or the full model;

• when the covariable contained an extreme outlier, permutation of raw data resulted in unstable
(often inflated) type I error. The presence of outliers in the covariable did not adversely affect
the tests based on permutation of residuals. Thus, permutation of raw data cannot be
recommended when the covariable contains outliers; permutation of residuals should be used.

The method of permutation of residuals under a reduced model (Freedman & Lane, 1983)
described above is closely related to another method proposed by Kennedy (1995) to test partial
regression coefficients. Although the two methods, under permutation, give the same value for
the estimate of a partial regression coefficient, they do not give the same value for the t statistic.
Tests of regression coefficients by permutation require, however, the use of a pivotal statistic
when covariables are involved (Kennedy 1995, Manly 1997). In their simulation study,
Anderson & Legendre (1999) found that the Kennedy method had inflated type I error,
especially with small sample sizes. The reason for the discrepancy between the two methods is
described in more detail in Anderson & Legendre (1999). The method of Kennedy is similar to
the alternative procedure proposed by Smouse et al. (1986) for partial Mantel tests, described in
Subsection 10.5.2; the latter is not recommended there, just as the Kennedy method is not
recommended here.

Methods of permutation of raw data or residuals are compared in Table 11.7 in
terms of the permuted portions of variation, in the presence or absence of a matrix of
covariables W. Without covariables, permutation of raw data involves fraction [a + d]
whereas permutation of residuals involves [d]. No residual can be computed under a
reduced model in the absence of covariables; the method becomes a permutation of
raw data. With covariables, permutation of residuals may involve the residuals of a
reduced model of the covariables only (fraction [a + d]), or the residuals of a full
model of the explanatory variables and covariables, in which case the permutation
involves fraction [d].
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11.4 Canonical correlation analysis (CCorA)

Canonical correlation analysis (CCorA; Hotelling, 1936), differs from redundancy
analysis (RDA) in the same way as linear correlation differs from simple linear
regression. In CCorA, the two matrices under consideration are treated in a symmetric
way whereas, in RDA, the Y matrix is considered to be dependent on an explanatory
matrix X. The algebraic consequence is that, in CCorA, the matrix whose eigenvalues
and eigenvectors are sought (eq. 11.22) is constructed from all four parts of eq. 11.2
whereas, in the asymmetric RDA, eq. 11.3 does not contain the SYY portion.

The brief discussion below is only meant to show the general principles of the
CCorA method. Ecologists interested in delving deeper into the method will find
detailed accounts of the theory in Kendall & Stuart (1966), and computation
procedures in Anderson (1958). Gittins (1985) presents a comprehensive review of the
theory and applications of CCorA in ecology. Now that RDA (Section 11.1) and CCA
(Section 11.2) are available, CCorA has limited applications; RDA and CCA
correspond better than CCorA to the way most two-matrix problems are formulated.

Table 11.7 Tests of statistical significance in canonical analysis. Comparison of the methods of permutation
of raw data or residuals in terms of the permuted fractions of variation, in the presence or
absence of a matrix of covariables W. Fractions of variation are noted as in Fig. 10.10: [a] is the
variation of matrix Y explained by X alone, [c] the variation explained by W alone, [b] the
variation explained jointly by X and W, and [d] the residual variation.

Without covariables With matrix W of covariables

Permute raw data Permute [a + d] Permute [a + b + c + d]1

Permute residuals: 

• reduced model Equivalent to Permute [a + d]
permuting raw data

• full model Permute [d] Permute [d]

1 Permutation of raw data may result in unstable (often inflated) type I error when the covariable
contains outliers. This does not occur, however, when using restricted permutations of raw data
within groups of a qualitative covariable, which gives an exact test. See text.

Explained by X
Explained by W

Unexplained
variation

[a] [b] [c] [d]
Explained by X Unexplained

variation

[a] [d]
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In CCorA, the objects (sites) under study are described by two sets of quantitative
descriptors; for example, a first set Y1 of p chemical and a second set Y2 of m
geomorphological descriptors of the sampling sites; or, a first set Y1 of p species and a
second set Y2 of m descriptors of the physical environment. The dispersion matrix S of
these p + m descriptors is therefore made of four blocks, as in eq. 11.2:

S = (11.21)

The algebra that follows applies equally well to S matrices defined as variance-
covariance matrices (e.g. SYY = (1/(n – 1)) Y'Y) or matrices of sums of squares and
cross products (e.g. SYY = Y'Y). Submatrices S11 (order p × p) and S22 (order m × m),
refer, respectively, to one of the two sets of descriptors, whereas S12 (order p × m) and
its transpose S'12 = S21 (order m × p) account for the interactions between the two sets
of descriptors. Numbers (1, 2) are used here to designate matrices, instead of letters
(X, Y) as in eq. 11.2, to emphasize the fact that the two data matrices (Y1, Y2) play
equivalent roles in CCorA.

The problem consists in maximizing the between-set dispersion with respect to the
within-set dispersion. The expression to be optimized is since

 does not exist in matrix algebra. Finding solutions to this optimization
problem calls for eigenvalues and eigenvectors. Canonical correlations are obtained by
solving the characteristic equation:

(11.22)

which corresponds to one of the following equations, resulting from the multiplication
of both members of eq. 11.22 by either S11 or S22:

(11.23)

or (11.24)

Canonical correlations rk are the square roots of the eigenvalues λk (λk = ). The
same λk values are found using either equation. The next step is to calculate the
eigenvectors of the two equation systems, corresponding to each eigenvalue. The two
eigenvectors give the linear combinations of the two sets of original descriptors (Y1,
Y2) corresponding to each eigenvalue. For eigenvalue λk, the eigenvectors uk and vk
are computed using the following matrix equations:

(11.25)

and (11.26)

S11 S12

S'12 S22

S12S22
1–
S'12 S11

1–

S12S'12 S11⁄ S22

S12S22
1–
S'12 S11

1– λkI– 0=

S12S22
1–
S'12 λkS11– 0=

S'12 S11
1–
S12 λkS22– 0=

rk
2

S12S22
1–
S'12 λkS11–( ) uk 0=

S'12 S11
1–
S12 λkS22–( ) vk 0=
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For convenience, the eigenvectors are normalized, as in discriminant analysis
(Section 11.5), by dividing each uk by the scalar resulting from  and
each vk by , which makes the variances of the canonical variates equal
to l. The two matrices of canonical ordination scores, 

 for matrix Y1 with p descriptors (11.27)

and

 for matrix Y2 with m descriptors, (11.28)

contain the coordinates (ordination scores) of the objects in the two systems of
principal axes. Column vectors (ordination scores) in Tu are uncorrelated with one
another; the same is true for the column vectors in Tv.

CCorA produces a total of max[p, m] eigenvalues and canonical correlations.
When p + m < n – 1, if p is greater than m, there are p eigenvalues but (p – m) of them
are null. If the m positive eigenvalues are distinct, there is only one possible pair of
eigenvectors uk and vk for each of them. When p + m ≥ n – 1, p + m – (n – 1) of the
eigenvalues (and canonical correlations) are equal to 1; some computer programs may
refuse to carry out the calculations in such a case. CCorA cannot handle matrices with
more variables (columns) in any one of the sets than there are sites (rows) minus 1
because covariance matrices S11 and S22 must be inverted (eq. 11.22). This is a
commonly encountered problem with species abundance tables; rare species must
often be dropped from the analysis to satisfy the requirements of the method.

When one of the matrices only contains one descriptor (p = 1 and m > 1, for
example), there is only one positive eigenvalue. The canonical correlation problem
reduces to the problem of finding the linear combination of variables in Y2 that is
maximally correlated with the single variable y1; this is simply a problem of multiple
regression (Subsection 10.3.3). The general equation for eigenvalues (eq. 11.22) then
simplifies to:

(11.29)

where s12 is a vector of covariances. This equation corresponds to that of multiple
correlation (eq. 4.31), previously given in terms of r instead of s. Finally, when the two
sets contain only one descriptor each (p = m = 1), eq. 11.29 becomes:

(11.30)

which is the formula for the square of Pearson’s simple linear correlation (eq. 4.7).
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If canonical correlations are computed from a correlation matrix instead of a
dispersion matrix, the interpretation must take into account the fact that the canonical
ordination scores now concern standardized descriptors instead of the original ones.

The interpretation of canonical correlation analyses is more difficult than that of
other multidimensional analyses. The main use of this technique is to explore the
structure of multidimensional data and reveal the correlations that can be found
between linear functions of two groups of descriptors (Kendall & Stuart, 1966). The
detailed study of pairs of eigenvectors is usually restricted to the first few canonical
correlations, although Blackith & Reyment (1971) give an example taken from
Blackith & Albrecht (1959) where the lowest canonical correlations were of interest;
the corresponding canonical eigenvectors made it possible to isolate a “phase” vector
in locusts which was independent of the “size” vector. When using CCorA, one should
remember that high canonical correlations do not necessarily mean that the
corresponding vectors of ordination scores Tu and Tv explain a large fraction of the
variation in Y1 or Y2. Redundancy coefficients are used in CCorA to measure the
proportion of the variance of Y1 (or Y2) which is explained by a linear combination of
the variables in Y2 (or Y1); they should always be computed together with canonical
correlations to help interpret them.

Ecological application  11.4

Some authors produced interesting results using canonical correlations. For example, Aart &
Smeenk-Enserink (1975) obtained high canonical correlations between the eigenvectors of
species and those that summarized the environmental descriptors, in a study of the spatial
distribution of lycosid spiders in the Netherlands. The survey analysed in this study was
conducted 10 years after that of Ecological application 9.1b. This classical study is an early
application of canonical analysis to ecological problems. Nowadays, the analysis would likely
be carried out using RDA (Section 11.1) or CCA (Section 11.2), to account for the fact that the
species are the response variables in this problem; this question is discussed in Section 11.6. The
Aart & Smeenk-Enserink spider data set has been reanalysed by ter Braak (1986) using CCA.

At the 28 sites included in the analysis, the descriptors were the abundances of 12 spider
species, normalized by logarithmic transformation log(y + 1), and 15 environmental variables
characterizing the light, vegetation, and soil. Among all the environmental descriptors that had
been observed, only those that were linearly correlated with the species descriptors were chosen,
so as to ensure the linearity of the relationship between the two sets of descriptors. Calculations
were conducted on the correlation matrix instead of the covariance matrix; this was equivalent to
standardizing the descriptors before the analysis.

Results show strong correlations between the canonical ordination vectors produced by the
two sets of descriptors: the first four canonical correlations are larger than 0.98. The authors
found a high resemblance between the contributions of the 12 species to the first two canonical
axes (Fig. 11.7a) and the first two principal components (not illustrated here: practically the
same graph). The results led them to conclude that the principal axes of species variation could
be interpreted from the contributions of the environmental descriptors (Fig. 11.7b) to the
canonical axes. 
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Other interesting applications of CCorA to ecology are presented by Gittins (1985),
van der Meer (1991), and Varis (1991). 

Dolédec & Chessel (1994) proposed a method called co-inertia analysis. This is a
form of CCorA which maximizes the covariance between the two sets of projected
object scores, instead of the correlation. They applied the method to study the
relationships between macroinvertebrate communities in ponds, on the one hand, and
environmental variables on the other.

11.5 Discriminant analysis

A usual step in ecological analysis is to start with an already known grouping of the
objects (considered to be a qualitative response variable y in this form of analysis) and
try to determine to what extent a set of quantitative descriptors (seen as the explanatory
variables X) can actually explain this grouping. In this type of analysis, the grouping is
known at the start of the analysis. It may be the result of a cluster analysis computed
from a different data set, or reflect an ecological hypothesis to be tested. The problem

Figure 11.7 Contribution of the descriptors to the first two canonical axes. (a) The 12 species of spiders.
(b) The 15 environmental descriptors. The figure was redrawn using data published by the
authors. Adapted from Aart & Smeenk-Enserink (1975).
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thus no longer consists in delineating groups, as in cluster analysis, but in interpreting
them.

Discriminant analysis is a method of linear modelling, like analysis of variance,
multiple linear regression, and canonical correlation analysis. It proceeds in two steps.
(1) First, one tests for differences in the explanatory variables (X), among the
predefined groups. This part of the analysis is identical to the overall test performed in
MANOVA. (2) If the test supports the alternative hypothesis of significant differences
among groups in the X variables, the analysis proceeds to find the linear combinations
(called discriminant functions or identification functions) of the X variables that best
discriminate among the groups.

Like one-way analysis of variance, discriminant analysis considers a single
classification criterion (i.e. division of the objects into groups) and allows one to test
whether the explanatory variables can discriminate among the groups. Testing for
differences among group means in discriminant analysis is identical to ANOVA for a
single explanatory variable and to MANOVA for multiple variables (X).

When it comes to modelling, i.e. finding the linear combinations of the variables
(X) that best discriminate among the groups, discriminant analysis is a form of
“inverse analysis” (ter Braak, 1987b), where the classification criterion is considered
to be the response variable (y) whereas the quantitative variables are explanatory
(matrix X). In ANOVA, on the contrary, the objective is to account for the variation in a
response quantitative descriptor y using one or several classification criteria
(explanatory variables, X).

Like multiple regression, discriminant analysis estimates the parameters of a linear
model of the explanatory variables which may be used to forecast the response
variable (states of the classification criterion). While inverse multiple regression would
be limited to two groups (expressed by a single binary variable y), discriminant
analysis can handle several groups. Discriminant analysis is a canonical method of
analysis; its link to canonical correlation analysis (CCorA) will be explained in
Subsection 1, after some necessary concepts have been introduced.

After the overall test of significance, the search for discriminant functions may be
conducted with two different purposes in mind. One may be interested in obtaining a
linear equation to allocate new objects to one of the states of the classification criterion
(identification), or simply in determining the relative contributions of various
explanatory descriptors to the distinction among these states (discrimination). 

Discriminant analysis is also called canonical variate analysis (CVA). The method
was originally proposed by Fisher (1936) for the two-group case (g = 2). Fisher’s
results were extended to g ≥ 2 by Rao (1948, 1952). Fisher (1936) illustrated the
method using a famous data set describing the morphology (lengths and widths of
sepals and petals) of 150 specimens of irises (Iridaceae) belonging to three species.
The data had originally been collected in the Gaspé Peninsula, eastern Québec
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(Canada), by the botanist Edgar Anderson of the Missouri Botanical Garden who
allowed Fisher to publish and use the raw data. Fisher showed how to use these
morphological measurements to discriminate among the species. The data set is
sometimes — erroneously — referred to as “Fisher’s irises”.

The analysis is based upon an explanatory data matrix X of size (n × m), where n
objects are described by m descriptors. X is meant to discriminate among the groups
defined by a separate classification criterion vector (y). As in regression analysis, the
explanatory descriptors must in principle be quantitative, although qualitative
descriptors coded as dummy variables may also be used (Subsection 1.5.7). Other
methods are available for discrimination using non-quantitative descriptors
(Table 10.1). The objects, whose membership in the various groups of y is known
before the analysis is undertaken, may be sites, specimens, quadrats, etc. 

One possible approach would be to examine the descriptors one by one, either by
hand or using analyses of variance, and to note those which have states that
characterize one or several groups. This information could be transformed into an
identification key, for example. It often occurs, however, that no single descriptor
succeeds in separating the groups completely. The next best approach is then to search
for a linear combination of descriptors that provides the most efficient discrimination
among groups. Figure 11.8 shows an idealized example of two groups (A and B)
described by two descriptors only. The groups cannot be separated on either of the two
axes taken alone. The solution is a new discriminant descriptor z, drawn on the figure,
which is a linear combination of the two original descriptors. Along z, the two groups
of objects are perfectly separated. Note that discriminant axis z is parallel to the
direction of greatest variability between groups. This suggests that the weights uj used
in the discriminant function could be the elements of the eigenvectors of a between-
group dispersion matrix. The method can be generalized to several groups and many
descriptors.

• Discriminant functions (also called standardized discriminant functions) are
computed from standardized descriptors. The coefficients of these functions are used
to assess the relative contributions of the descriptors to the final discrimination. 

• Identification functions (also called unstandardized discriminant functions) are
computed from the original descriptors (not standardized). They may be used to
compute the group to which a new object is most likely to belong. Discriminant
analysis is seldom used for this purpose in ecology; it is widely used in that way in
taxonomy.

When there are only two groups of objects, the method is called Fisher’s, or simple
discriminant analysis (a single function is needed to discriminate between two
clusters), whereas the case with several groups is called multiple discriminant analysis
or canonical variate analysis. The simple discriminant analysis model (two groups) is
a particular case of multiple discriminant analysis, so that it will not be developed here.
The solution can be entirely derived from the output of a multiple regression using a

Discriminant
function

Identification
function
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dummy variable defining the two groups (used as the dependent variable y) against the
table of explanatory variables X.

Analysis of variance is often used for screening variables prior to discriminant
analysis: each variable in matrix X is tested for its capacity to discriminate among the
groups of the classification criterion y. Figure 11.8 shows however that there is a
danger in this approach; any single variable may not discriminate groups well although
it may have high discriminating power in combination with other variables. One
should be careful when using univariate analysis to eliminate variables. If the analysis
requires that poorly discriminating variables be eliminated, one should use stepwise
discriminant analysis instead, which allows users to identify a subset of good
discriminators. Bear in mind, though, that stepwise selection of explanatory variables
does not guarantee that the “best” set of explanatory variables is necessarily going to
be found. This is equally true in discriminant analysis and regression analysis
(Subsection 10.3.3).

Figure 11.8 Two groups, A and B, with 6 objects each, cannot be separated on either descriptor-axis x1 or x2
(histograms on the axes). They are perfectly separated, however, by a discriminant axis z. The
position of each object i is calculated along z using the equation zi = (cos 45˚) xil – (cos 45˚) xi2.
Adapted from Jolicoeur (1959).

zi  =
u
1 x

i1   +
u
2 x

i2

B
B

B
B

B

A
A

AA
A

AA

B
B

z

B B

BBB

B B

A A

AAA

A A

x1

x2

BB

BBB

AA

BB

AAA

AA

B
B

B
B
B

A
A

B
B

A
A
A

A
A



620 Canonical analysis

1 — The algebra of discriminant analysis

The problem consists in finding linear combinations of the discriminant descriptors in
matrix X that maximize the differences among groups while minimizing the variation
within the groups. As in regression analysis, the descriptors must be quantitative or
binary since they are combined into a linear function. If necessary, they must have
already been transformed to meet the condition of multinormality. The discriminant
analysis model is robust to departures from this condition, but the statistical tests
assume within-group normality of each descriptor.

Computations are carried out on either dispersion matrices or matrices of sums of
squares and cross-products of centred descriptors (Table 11.8). These matrices are
constructed much in the same way as in the analysis of variance. T is the matrix of
scalar products of the centred descriptors, , for the all objects irrespective of
the groups: T =  (total sums of squares and cross-products). When
divided by the total number of degrees of freedom n – 1, it becomes the total
dispersion matrix S used in principal component analysis.

Matrix W, which pools the sums of squares within all groups, is computed by
adding up matrices W1 to Wg of the sums of squares and cross-products for each of the
g groups. Each matrix Wj is computed from descriptors that have been centred for the
objects of that group only, just as in ANOVA. In other words, matrix Wj is the product

 for the objects that belong to group j only. Dividing the pooled
within-group matrix W by the within-group number of degree of freedom, n – g,
produces the pooled within-group dispersion matrix V.

Matrix B of the sums of squares among groups is computed by subtracting the
pooled within-group matrix W from the total matrix of sums of squares T. Since

Table 11.8 Discriminant analysis is computed on either dispersion matrices (right-hand column) or
matrices of sums of squares and cross-products (centre). Matrices in the right-hand column are
simply those in the central column divided by their respective numbers of degrees of freedom.
The size of all matrices is (m × m).

Matrices of sums of Dispersion
squares and cross-products matrices

Total dispersion T S = T/n – 1

Pooled within-group dispersion W = W1 + … + Wg V = W/n – g

Among-group dispersion B = T – W A = B/g – 1

x x–[ ]
x x–[ ] ' x x–[ ]

x x–[ ] ' x x–[ ]
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B = T – W, the number of degrees of freedom by which B must be divided to obtain
the among-group dispersion matrix A is: (n – 1) – (n – g) = g – 1.

The solution to the problem of maximizing the variation among groups while
minimizing that within groups calls for the eigenvalues and eigenvectors of a matrix
corresponding to the ratio of the among-group dispersion A to the pooled within-group
dispersion V. Since A/V does not exist in matrix algebra, V–1A is computed instead.
The maximization problem is stated by the following matrix equation:

(11.31)

which has the same form as the basic equation for principal component analysis
(eq. 9.1). Equation 11.24 indicates that the eigenvectors  will not be orthogonal in
the reference system of the original descriptors. Indeed, matrix  from which the
eigenvectors are calculated is not symmetric; this condition leads to non-orthogonal
eigenvectors (Section 2.9). If both members of eq. 11.31 are premultiplied by V, it
becomes:

(11.32)

The number of discriminant axes needed for the ordination of g groups is (g – 1).

When the non-orthogonal eigenvectors are plotted at right angles, they straighten
the reference space and, with it, the ellipsoids of the within-group scatters of objects.
As a result, if the eigenvectors are normalized in an appropriate manner, the within-
group scatters of objects can be made circular (Fig. 11.9), insofar as the within-group
cross-product matrices Wj are homogeneous (same dispersion in all groups). This
result is obtained by dividing each eigenvector  by the square root of  which
is a scalar. In matrix form, this operation is:

(11.33)

Matrix C contains the normalized eigenvectors defining the canonical space of the
discriminant analysis. After this transformation, the variance among group centroids is
maximized even if the group dispersion matrices are not homogeneous. This leads to
the conclusion that the principal axes describe the dispersion among groups. The first
principal axis indicates the direction of largest variation among group centroids, and so
on for the successive canonical axes, after the reference space has been straightened up
to make each group spherical. The SAS and STATISTICA packages, among others, offer
the normalization of eq. 11.33.

Other methods for normalizing the eigenvectors are found in the literature: to
length 1 or . Some statistical packages unfortunately compute the positions of the
objects along the canonical axes (matrix F, eq. 11.39) directly from matrix U of the
eigenvectors normalized to length 1. In that case, the group dispersions remain
nonspherical; it is then difficult to compare the eigenvectors because they describe a
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combination of within-group and among-group dispersion. It is not always easy to
understand, from the documentation, what a specific statistical program does. A simple
way to decide what kind of normalization is used, is to run the small example
presented in Subsection 11.5.3. 

Spherical within-group dispersions are obtained only if the condition of
homogeneity of the within-group dispersion matrices is fulfilled. Even if discriminant
analysis is moderately robust to departures from this condition, it remains advisable to
examine whether this condition is met. Several statistics have been developed to test

Figure 11.9 Basic principles of multiple discriminant analysis. Dashed: two original descriptors. Full lines:
canonical axes. The within-group dispersion matrices are homogeneous in this example. (a) The
canonical axes are not orthogonal in the reference space of the original descriptors. (b) When
they are used as the orthogonal reference space, the ellipsoids of the within-group scatters of
objects are straightened up. (c) Normalizing the eigenvectors by dividing each uk by

 makes the within-group dispersions circular if they are homogeneous.u'kVuk( ) 1 2⁄

(a) (b)

(c)
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the hypothesis of homogeneity of the within-group dispersion matrices. One of them is
Kullback’s statistic (1959) which is approximately distributed as χ2:

(11.34)

with (g –1) m (m + 1)/2 degrees of freedom, where nj is the number of objects in group
j,  is the determinant of the pooled within-group dispersion matrix V, and  is
the determinant of the within-group dispersion matrix of group j. When the test value
is larger than the critical χ2 value, the hypothesis of homogeneity is rejected. 

Another useful test statistic is Wilks’ Λ (lambda) (1932), which measures to what
extent the groups differ in the positions of their centroids. Λ is computed as the ratio of
the determinants of the matrices of sums of squares and cross-products W and T:

(11.35)

This ratio may assume values in the range from 0 (maximum dispersion of the
centroids) to 1 (no dispersion among groups). It can be transformed to a  statistic
with m(g – 1) degrees of freedom (Bartlett, 1938): 

(11.36)

Wilks' Λ can also be transformed into an F statistic following Rao (1951). It is a
generalization of Student's t-test to several groups and several explanatory variables.
Another multidimensional generalization of t, for two groups, is Hotelling's , which
has been discussed with reference to the Mahalanobis generalized distance (eqs. 7.40
and 7.41).

As explained above, discrimination among g groups requires a maximum of (g – 1)
discriminant functions. To test the significance of the (g – k – 1) eigenvalues that
remain after examining the first k, Wilks’ ratio is computed as the product:

(11.37)

Transformation of this statistic to , as above (eq. 11.36), allows one to estimate the
significance of the discriminant power of the axes remaining after accepting the first k
eigenvalues as significant (Bartlett, 1948):

(11.38)
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with  degrees of freedom. (The log of L in eq. 11.37 is equal to
minus the log of the product of the (1 + λj) terms in the denominator.) When the last
(g – k – 1) canonical eigenvalues, taken together, do not reach the chosen critical 
value, the null hypothesis that the centroids of the groups do not differ on the
remaining (g – k – 1) discriminant functions cannot be rejected. This indicates that the
discriminant power is limited to the first k functions.

The last step of the computation is to find the positions of the objects in the space
of the canonical axes. The matrix of discriminant scores F is obtained by multiplying
the matrix of centred data with the matrix of normalized eigenvectors C:

(11.39)

Since the matrix of centred data  is used in eq. 11.39, the origin of the
discriminant axes is located at the centroid of all objects, as in Fig. 11.9. It is common
practice to also compute the positions of the centroids of the g groups of objects in
canonical space, by multiplying the matrix of the original group centroids (computed
from data centred over all objects in the analysis) with matrix C. The centroid of a
group is a point whose coordinates are made of the mean values of the objects of that
group for all descriptors. The matrix of group centroids therefore has g rows and m
columns.

As in principal component analysis, equation  contains a set of
functions that provide the position (or score) of each object, i, on each canonical
axis k:

(11.40)

The columns of matrix F are called canonical variates in discriminant analysis.

The columns of matrix C are called discriminant functions, or “standardized
discriminant function coefficients”, when the descriptors are standardized at the
beginning of the study. Discriminant functions are used to assess the relative
importance of the original descriptors in the discrimination among groups after
eliminating, by standardization, the differences in variance among descriptors. If the
analysis is carried out on the non-standardized descriptors, the columns of matrix C
are called identification functions or “unstandardized discriminant function
coefficients”. 

Identification functions serve to place new objects in the canonical space. To do so,
values of the various descriptors of a new object are centred using the same descriptor
means as in eq. 11.40 and the centred values are multiplied by the weights . This
provides the position of this object on the canonical axes. By plotting the point
representing this object in the canonical ordination space together with the original set
of objects, it is possible to identify the group to which the new object is most likely to
belong.
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There are other ways of assigning objects to groups. Classification functions* are
linear equations that can be used for that purpose. A separate classification function is
computed as follows for each group j:

Classification function for group j = (11.41)

where V is the pooled within-group dispersion matrix (Table 11.8) and  is the vector
describing the centroid of group j for all m variables of matrix X. Each classification
function looks like a multiple regression equation; eq. 11.41 provides the weights
( ) to apply to the various descriptors of matrix X combined in the linear
equation, as well as a constant ( ). The classification score of each object
is calculated for each of the g classification functions; an object is assigned to the
group for which it receives the highest classification score. Another way is to compute
Mahalanobis distances (eq. 7.38) of the objects from each of the group centroids. An
object is assigned to the group to which it is the closest. 

A classification table (also called classification matrix or confusion table) can be
constructed; this is a contingency table comparing the original assignment of objects to
groups (usually in rows) to the assignment made by the classification functions (in
columns). From this table, users can determine the number and percentage of cases
correctly classified by the discriminant functions.†

To obtain matrices V and A, matrices W and B were divided by their respective
numbers of degrees of freedom (Table 11.8). These divisions may be avoided by
carrying out the canonical calculations directly on matrices W and B. Solving the
matrix equation

(11.42)

provides eigenvectors uk which are the same as in eqs. 11.31 and 11.32. The
eigenvalues  are smaller than the  by a constant ratio:

(11.43)

which leaves unchanged the percentage of the variance of B explained by each
eigenvector. The eigenvectors obtained from matrix W are rescaled using the
following formula:

* This terminology is unfortunate. In biology, classification consists in establishing groups,
using clustering methods for instance (Chapter 8), whereas identification is to assign objects to
preestablished groups.
† In the SAS package, procedure DISCRIM only computes the reclassification of the objects
using either Mahalanobis distances or classification functions (called “linear discriminant
functions” in SAS). Procedure CANDISC allows users to obtain raw and standardized canonical
coefficients (eq. 11.44).
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(11.44)

The relationship between discriminant analysis and canonical correlation analysis (CCorA)
can now be described (Gittins, 1985). Consider that the classification criterion of discriminant
analysis is expressed in matrix Y2 containing dummy variables coded as in Subsection 1.5.7
while the quantitative variables are in matrix Y1 = X. Apply CCorA to Y1 and Y2 using the form
where the various matrices S are matrices of sums of squares and cross products (i.e. dispersion
matrices without the final division by the degrees of freedom, e.g. ). One can
show that  of eqs. 11.23 and 11.25, calculated in this way, is the among-group
dispersion matrix B of Table 11.8, while S11 is the total dispersion matrix T. So eq. 11.25 may be
rewritten as:

(11.45)

The eigenvalues of this equation are noted  and the eigenvectors are noted wk to differentiate
them from the eigenvalues  and eigenvectors uk of eq. 11.42. One can show that the
eigenvalues of eqs. 11.42 and 11.45 are related by the formulae:

    and

and that the eigenvectors are related as follows:

    and

2 — Numerical example

Discriminant analysis is illustrated by means of a numerical example in which seven
objects, allocated to three groups, are described by two descriptors. The calculation of
identification functions is shown first (raw data), followed by discriminant functions
(standardized data). Normally, these data should not be submitted to discriminant
analysis since the variances of the group matrices are not homogeneous; they are used
here to illustrate the steps involved in the computation. The data set is the following: 
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The centred data for the objects and the group centroids are the following: 

The matrix of sums of squares and cross-products is:

The pooled within-groups matrix W is computed by adding up the three group
matrices of sums of squares and cross-products W1, W2 and W3:

The determinants of matrices W and T are 1.25000 and 1179.57, respectively. The
ratio of these two values is Wilks’ Λ (eq. 11.35: Λ = 0.00106). The matrix of sums of
squares between groups is computed as:

B = T – W = 

The characteristic equation  is used to calculate the two eigenvalues:

⇒

⇒

In this example, canonical axes 1 and 2 explain 93.13 and 6.87% of the among-group
variation, respectively. The two eigenvalues are used to compute the eigenvectors, by
means of matrix equation (B – lkW) uk = 0. These eigenvectors, normalized to length
1, are the columns of matrix U:

Groups = 1 2 3

X centred[ ] ' x x–[ ] ' 4.429– 3.429– 3.429–   2.571   2.571   2.571   3.571

1.429– 1.429– 2.429–   3.571   2.571 0.429– 0.429–
= =

Centroids[ ] ' 3.762–   2.571   3.071

1.762–   3.071 0.429–
=

T x x–[ ] ' x x–[ ] 75.71429   32.71429

32.71429   29.71429
= =

W
  0.66667 0.33333–

0.33333–   0.66667

0 0

0 0.5

0.5 0

0 0
+ +   1.16667 0.33333–

0.33333–   1.16667
= =

74.54762   33.04762

33.04762   28.54762

B lW– 0=

l1 106.03086= λ1
7 3–( )
3 1–( )

------------------ 106.03086× 212.06171 93.13%( )= =

l2 7.81668= λ2 2 7.81668× 15.63336 6.87%( )= =

U
0.81202 0.47849–

0.58363   0.87809
=
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The vectors are not orthogonal since  = 0.12394. In order to bring the
eigenvectors to their final lengths, the following scaling matrix is computed:

The component terms of each eigenvector uj are divided by the corresponding diagonal
term from this matrix, to obtain the final vectors:

Multiplication of the centred matrices of the raw data and centroids by C gives the
positions of the objects and centroids in canonical space (Fig. 11.10):

One can verify that, in canonical space, the among-group dispersion matrix A is equal
to the matrix of eigenvalues and that the pooled within-groups dispersion matrix V is

u'1 u2

U'
W

n g–
------------U 

  1 2⁄ 0.46117 0

0 0.60141
=

C
1.76077 0.79562–

1.26553   1.46006
=

Figure 11.10 Ordination diagram of the seven objects (circles) and group centroids (squares) of the example
in the canonical discriminant space.
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the identity matrix I. Beware: some computer programs calculate the discriminant
scores as XU instead of [X centred] U or [X centred] C.

The classification functions, computed from eq. 11.41, are the following for
descriptors x1 and x2 of the example:

Group 1: Scorei = –13.33333 + 8.00000 xi1 + 8.00000 xi2

Group 2: Scorei = –253.80000 + 36.80000 xi1 + 32.80000 xi2

Group 3: Scorei = –178.86667 + 34.93333 xi1 + 20.26667 xi2

The scores of the 7 objects i, computed from these functions, are the following:

Each object is assigned (right-hand column) to the group corresponding to the function
giving it the highest score. The classification table can now be constructed; this is a
contingency table comparing the original group assignment of the objects (from the
second column in table above) to the assignment made from the classification
functions (last column in table above):

Object
number

Observed
group

Function
1

Function
2

Function
3

Assigned
to group

1 1 10.66667 –151.40000 –103.40000 1

2 1 18.66667 –114.60000 –68.46667 1

3 1 10.66667 –147.40000 –88.73334 1

4 2 106.66667 270.20000 242.46666 2

5 2 98.66667 237.40000 222.19999 2

6 3 74.66667 139.00000 161.39998 3

7 3 82.66667 175.80000 196.33331 3

Observed

group

Assigned to group Total and

% correct1 2 3

1 3 0 0 3 (100%)

2 0 2 0 2 (100%)

3 0 0 2 2 (100%)

Total 3 2 2 7 (100%)
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In order to compute discriminant functions, the descriptors are standardized at the
start of the analysis:

The remaining calculations are the same as for the identification functions (above):

B = T – W = 

⇒

⇒

The amounts of among-group variation explained by the canonical axes (93.13 and
6.87%) are the same as those obtained above with the unstandardized data.

⇒

Groups = 1 2 3

X standardized[ ] '
x x–

sx

----------- 1.247– 0.965– 0.965–   0.724   0.724   0.724   1.005

0.642– 0.642– 1.091–   1.605   1.155 0.193– 0.193–
= =

'

Centroids[ ] ' 1.059–   0.724   0.865

0.792–   1.380 0.193–
=

T
x x–

sx

-----------
x x–

sx

----------- 6.00000 4.13825

4.13825 6.00000
= ='

W
  0.05283 0.04217–

0.04217–   0.13462

 0   0 

 0   0.10096

0.03962   0 

0   0 
+ +   0.09246 0.04217–

0.04217–   0.23558
= =

5.90755 4.18042

4.18042 5.76441

l1 106.03086= λ1
7 3–( )
3 1–( )

------------------ 106.03086× 212.06171 93.13%( )= =

l2 7.81668= λ2 2 7.81668× 15.63336 6.87%( )= =

U
0.91183 0.65630–

0.41057   0.75450
=

U'
W

n g–
------------U 

  1 2⁄ 0.14578 0

0 0.23221
= C

6.25473 2.82627–

2.81631   3.24918
=
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The raw and standardized data produce exactly the same ordination of the objects and
group centroids. 

The classification functions computed for standardized descriptors differ from
those reported above for raw data, but the classification table is the same in both cases.

Computer packages usually have an option for variable selection using forward
entry, backward elimination, or stepwise selection, as in multiple regression
(Subsection 10.3.3). These procedures are useful for selecting only the descriptors that
significantly contribute to discrimination, leaving the others out of the analysis. This
option must be used with caution. As it is the case with any stepwise computation
method, the step-by-step selection of s successively most discriminant descriptors does
not guarantee that they form the most discriminant set of s descriptors.

The following Ecological application is an example of multiple discriminant
analysis among groups of observations, using physical and chemical descriptors as
discriminant variables. Steiner et al. (1969) have applied discriminant analysis to the
agronomic interpretation of aerial photographs, based upon a densimetric analysis of
different colours. Other interesting ecological applications are found in Gittins (1985).

Ecological application  11.5

Sea ice is an environment with a rich and diversified biota. This is because ice contains a
network of brine cells and channels in which unicellular algae, heterotrophic bacteria, protozoa,
and small metazoa can develop and often reach very high concentrations. Legendre et al. (1991)
investigated the environmental factors controlling the growth of microscopic algae in the sea ice
of southeastern Hudson Bay, Canadian Arctic.

Ice cores were taken at eight sites along a transect that extended from the mouth of the Great
Whale River to saline waters 25 km offshore. Ice thickness ranged from 98 to 125 cm. The cores
were used to determine the crystallographic structure of the ice, at 2 cm intervals from the top to
the bottom of each core, together with several chemical and biological variables (nutrients, algal
pigments, and taxonomic composition of algal assemblages) along the cores. The chemical and
biological variables were determined on melted 10-cm thick sections of the cores; using
crystallographic information, the chemical and biological data were transformed into values per
unit of brine volume. The rate of ice growth for each 10-cm interval of each core was calculated

Groups = 1 2 3

X standardized[ ] C
9.606– 7.845– 9.111–   9.047   7.783   3.985   5.747

  1.438   0.642 0.818–   3.169   1.708 2.672– 3.466–
=

'

Centroids[ ] C
8.854–   8.415   4.866

  0.420   2.438 3.069–
=

'
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by combining the mean daily air temperatures since the start of ice formation with the ice
thickness at the date of sampling. Data on taxonomic composition of the algal assemblages in
the brine cells were analysed as follows: (1) Similarities (χ2 similarity; S21 eq. 7.28) were
computed among all pairs of core sections, on the basis of their taxonomic composition. (2) The
similarity matrix was subjected to flexible clustering (Subsection 8.5.10) to identify groups of
core sections that were taxonomically similar. (3) Discriminant analysis was used to determine
which environmental variables best accounted for differences among the groups of core
sections. Chlorophyll a is not a descriptor of the environment but of the ice algae, so that it was
not used as discriminant variable; it is, however, the response variable in the path analysis
mentioned below. Another approach to this question would have been to look directly at the
relationships between the physical and chemical data and the species, using CCA.

Cluster analysis evidenced five groups among the 10-cm ice sections. The groups were
distributed at various depths in the cores, sometimes forming clusters of up to 5 adjacent ice
sections from within the same core. Discriminant analysis was conducted on standardized
descriptors. The first canonical variate accounted for 62% of the variation among groups, and
the second one 29%. 

The standardized canonical coefficients for the first two canonical variates (Table 11.8)
indicate that the environmental descriptors that best accounted for the among-group variation
were the rate of ice growth (first variate) and nitrate (second variate). Figure 11.11 shows the
position of the centroids of the 5 groups of core sections, plotted in the space of the first two
canonical axes, with an indication of the role played by the environmental variables in
discriminating among the groups of core sections. According to the Figure, the groups of core
sections are distributed along two gradients, one dominated by ice growth rate (with groups 1, 3
and 5 in faster-growing ice) and the other by nitrate (with group 1 in low-nitrate and group 5 in
high-nitrate environments). These results are consistent with those of a path analysis
(Section 10.4) conducted on the same data, showing that algal biomass (chl a) was inversely
related to the rate of ice growth. The paper concluded that slower ice growth favoured the
colonization of brine cells by microalgae (path analysis) and that the rate of ice growth had a
selective effect on taxa, with nutrient limitation playing a secondary role in some brine cells
(discriminant analysis).

Table 11.9 Standardized canonical coefficients for the first two canonical variates.

Discriminant variable Canonical variate 1 Canonical variate 2

Nitrate –0.63 0.69

Phosphate 0.55 –0.08

Silicate 0.29 0.44

Rate of ice growth 0.89 0.54
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11.6 Canonical analysis of species data

In early numerical ecology papers, canonical correlation analysis and discriminant
analysis were used to analyse tables of species presence/absence or abundance. In
many applications, the assumptions of linearity and the algebraic constraints imposed
by the models make these methods unsuitable for such data. RDA and CCA provide
alternatives that are often more appropriate. Let us consider different types of
problems that may involve species data.

(1) The first case involves a matrix Y of species presence-absence or abundance
data and a matrix X of habitat characteristics. One may wish to find support for the
ecological hypothesis of environmental control of the species distributions (Whittaker,
1956; Bray & Curtis, 1957) and/or describe in what way the species are related to the
environmental variables. The analysis is not symmetric; the species clearly form the
response variables, to be explained by the environmental variables. Hence a symmetric
form of analysis such as CCorA is not appropriate; one should rely instead on
asymmetric forms of analysis such as RDA or CCA. When the ecological gradient
represented in the data is short, RDA is appropriate; when it is long, generating many
zeros in the species data table, CCA is the method of choice.

Figure 11.11 Centroids of the five groups of taxonomically similar core sections plotted along the first two
canonical axes. Insert: contributions (from Table 11.9) of the four environmental variables
(arrows) to the formation of the canonical axes. The groups of core sections are distributed along
two gradients, one dominated by ice growth (groups 4, 2 and 3), the other by nitrate (groups 1, 3
and 5). Modified from Legendre et al. (1991).
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It often happens that matrix Y contains many species, more than there are sites
(i.e. objects). CCorA is unable to analyse such data because it cannot handle more
variables in any one of the data sets than there are sites minus 1. Rare species would
have to be dropped from the analysis to satisfy the requirements of the method. In
RDA and CCA, on the contrary, there is no upper limit to the number of species that
can be analysed.

When X contains dummy variables describing types of habitat (classification
criterion) coded as in Subsection 1.5.7, RDA or CCA may be used to test the
hypothesis that groups of sites, identified a priori, do not differ from one another in
species composition. The question is of the same type as in multivariate analysis of
variance. When X codes for factors of an experiment, CCA or the db-RDA method,
briefly described in Subsection 11.2.1, may be used.

(2) Ecologists may wish to use the environmental variables in X to forecast a
classification criterion (y) representing the presence or absence of a single species, a
group of species, or one of several dominant species at various locations. Although this
is a discrimination problem, discriminant analysis is often inappropriate for such data. 

For two groups (e.g. presence or absence of a species), discriminant analysis, like
linear regression, creates a linear function generating forecasted values that may be
smaller than 0 or larger than 1. Forecasted responses smaller than 0 make no sense in
the case of a species classification criterion. For the presence or absence of a single
species, logistic regression (Subsection 10.3.7) is an appropriate model, because
forecasted responses are in the range [0, 1]. One should worry, however, of unimodal
distributions of species along environmental gradients (Subsection 9.4.4): a species
may be absent under both low and high values of an environmental variable. One
should plot scatter diagrams of the presence/absence of the target species against each
of the environmental variables in matrix X. When a unimodal response is detected, a
quadratic polynomial function of that response variable should be used in the logistic
model (see Gaussian logistic response, Subsection 10.3.7).

(3) Species may represent the explanatory variables (matrix X). What are the
species assemblages that characterize different types of habitat? In such cases, the
types of habitat form the classification criterion y.

This is typically a discriminant analysis problem. However, because of algebraic
constraints, not all species data sets are suitable for discriminant analysis. The size of
the pooled within-group dispersion matrix V is (m × m), where m is the number of
variables in X. Because V must be inverted (eq. 11.31), it must be constructed from a
matrix X containing more objects (n) than descriptors (m). Actually, Williams & Titus
(1988) recommend that the total number of observations per group be at least three
times the number of variables in matrix X; ter Braak (1987c) recommends that n be
much larger than the number of species (m) plus the number of groups (g). This
problem, which was also encountered with CCorA, often prevents the use of
discriminant analysis with species presence/absence or abundance data. Else, rare
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species must be dropped from the analysis in order to satisfy the algebraic
requirements of the method. 

RDA may be used as a form of inverse analysis related to discriminant analysis.
The classification criterion (e.g. types of habitat) is made of a set of dummy variables,
written into response matrix Y; the species data are the explanatory variables X. The
condition of more objects (n) than species (m) must also be satisfied in this analysis. 

Matrix X, in which each species is represented by a vector, may be transformed
prior to RDA or discriminant analysis, by replacing the m species vectors by (m – 1)
ordination axes obtained by correspondence analysis (CA) of the raw species data. An
alternative is to compute a similarity or distance matrix among sites using the species
data and obtain new axes by principal coordinate analysis (PCoA). CA or PCoA axes
might relate to the environmental descriptors better than the original species data. 

(4) Ecologists may wish to use the species data in X to predict or reconstruct one or
more environmental variables in Y. This case, which is related to Ecological
application 11.2b, is like CCA but with X and Y interchanged. A neat solution, which
circumvents the too-many-species-problem, is Weighted Averaging Partial Least
Squares (WA-PLS), which extends PLS regression in the correspondence analysis
framework (ter Braak, 1995).
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Chapter

12 Ecological
data series

12.0 Ecological series

The use and analysis of data series is increasingly popular in ecology, especially as
equipment becomes available to automatically measure and record environmental
variables. Ecological data series may concern either continuous or discrete
(discontinuous) variables, which may be sampled over time or along transects in space.

A data series is a sequence of observations that are ordered along a temporal or
spatial axis. As mentioned in Section 1.0, a series is one of the possible realizations of
a stochastic process. A process is a phenomenon (response variable), or a set of
phenomena, which is organized along some independent axis. In most cases, the
independent axis is time, but it may also be space, or a trajectory through both time
and space (e.g. sampling during a cruise). Stochastic processes generally exhibit three
types of component, i.e. deterministic, systematic, and random. Methods for the
numerical analysis of data series are designed to characterize the deterministic and
systematic components present in series, given the probabilistic environment resulting
from the presence of random components.

The most natural axis along which processes may be studied is time because
temporal phenomena develop in an irreversible way, and independently of any
decision made by the observer. The temporal evolution of populations or communities,
for example, provides information which can unambiguously be interpreted by
ecologists. Ecological variability is not a characteristic limited to the time domain,
however; it may also be studied across space. In that case, the decisions to be made
concerning the observation axis and its direction depends on the working hypothesis.
In ecology, the distinction between space and time is not always straightforward. At a
fixed sampling location, for example, time series analysis may be used to study the
spatial organization of a moving system (e.g. migrating populations, plankton in a
current), whereas a spatial series is required to assess temporal changes in that same

Stochastic
process
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system. The first approach (i.e. at a fixed point in space) is called Eulerian, whereas
the second (i.e. at a fixed point within a moving system) is known as Lagrangian.

Ecologists are often interested in periodic changes. This follows in part from the
fact that many ecological phenomena are largely determined by geophysical rhythms;
there are also rhythms that are endogenous to organisms or ecosystems. The
geophysical cycles of glaciations, for example, or, at shorter time scales, the solar
(i.e. seasons, days) or lunar (tides) periods, play major roles in ecology. Concerning
endogenous rhythms, considerations of non-linear statistical mechanics (Yates et al.,
1972) arising from thermodynamic considerations about nonlinear irreversible
phenomena (Glansdorff & Prigogine, 1971) suggest that regular fluctuations (called
free oscillations, for they are independent of any geophysical forcing) are a
fundamental characteristic of biological systems. This question is briefly discussed by
Platt & Denman (1975) in a review paper on spectral analysis in ecology. Endogenous
rhythms in fish are discussed in some detail in Ali (1992).

The analysis of data series often provides unique information concerning
ecological phenomena. The quality of the results depends to a large extent, however,
on the sampling design. As a consequence, data series must be sampled following
well-defined rules, in order (1) to preserve the spatio-temporal variability, which is
often minimized on purpose in other types of ecological sampling design, and (2) to
take into account the various conditions prescribed by the methods of numerical
analysis. These conditions will be detailed later in the present Chapter. An even more
demanding framework prevails for multidimensional series, which result from
sampling several variables simultaneously. Most numerical methods require that the
series be made up of large numbers of observations (n > 100, or even n > 1000) for the
analysis to have enough statistical power to provide conclusive results, especially
when large random fluctuations are present. Long series require extensive sampling.
This is often carried out, nowadays, using equipment that automatically measures and
records the variables of ecological interest. There also exist a few methods especially
designed for the analysis of short time series; they are discussed below.

The most fundamental constraint in periodic analysis is the observational window.
The width of this window is determined by the number of observations in the data
series (n) and the interval (time or distance) between successive observations. This
interval is called the lag,

 

∆; for the time being, it is assumed to be uniform over the
whole data series. These two characteristics set the time or space domain that can be
“observed” when analysing data series (Table 12.1). For temporal data, one refers to
either the period (T) or the frequency (f = 1/T) whereas, for spatial data, the
corresponding concepts are the wavelength (

 

λ) and the wavenumber (1/

 

λ). The length
of the series (

 

∆n) sets, for temporal data, the fundamental period (T0 = 

 

∆n) or
fundamental frequency (f0 = 1/T0 = 1/

 

∆n) and, for spatial data, the fundamental
wavelength (

 

λ0 = 

 

∆n) or fundamental wavenumber (1/

 

λ0 = 1/

 

∆n). Harmonic periods
and wavelengths are integral fractions of the fundamental period and wavelength,
respectively (Ti = T0/i and 

 

λi = 

 

λ0/i, where i = 1, 2, … n), whereas harmonic
frequencies and wavenumbers are integral multiples of the fundamental frequency and

Eulerian
Lagrangian

Periodic
phenomena

Observation-
al window

Lag
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wave number, respectively (fi = if0 and 1/

 

λi = i /

 

λ0). Concerning the actual limits of the
observational window, the longest period or wavelength that can be statistically
investigated is, at best, equal to half the length of the series (

 

∆n/2). For example, in a
study on circadian (24-h) rhythms, the series must have a minimum length of two days
(better 4 days or more). Similarly, in an area where spatial structures are of the order of
2 km, a transect must cover at least 4 km (better 8 km or more). Similarly, the shortest
period or wavelength that can be resolved is equal to twice the interval between
observations (2

 

∆). In terms of frequencies, the highest possible frequency that can be
resolved, 1/2

 

∆, is called the Nyquist frequency. For example, if one is interested in
hourly variations, observations must be made at least every 30 min. In space, in order
to resolve changes at the metre scale, observations must be collected along a transect
at least every 50 cm, or closer.

To summarize the above notions concerning the observational window, let us
consider a variable observed every month during one full year. The data series would
allow one to study periods ranging between (2 

 

× 1 month = 2 months) and
(12 months/2 = 6 months). Periods shorter than 2 months and longer than 6 months
are outside the observational window. In other words, statistical analysis cannot
resolve frequencies higher than 1/(2 months) = 0.5 cycle month–1 = 6 cycles year–1

(Nyquist frequency), or lower than 1/(6 months) = 0.167 cycle month–1 =
2 cycles year–1. The longest period (or lowest frequency) of the observational window
is easy to understand, by reference to the usual notion of degrees of freedom (Box 1.2).

Table 12.1 Characteristics of the observational window in periodic analysis. Strictly speaking, the length of
a data series is (n – 1)∆ but, for simplicity, one assumes that the series is long, hence (n – 1) ≈ n.

Harmonic Period (Ti) Frequency (fi)

i Wavelength (λι) Wavenumber (i)

1 n∆ 1/n∆ Fundamental value, i.e. the whole series

2 n∆/2 2/n∆ Limit of observational window

. . .

. . .

i n∆/i i/n∆ ith harmonic

. . .

. . .

n/2 2∆ 1/2∆ Limit of window: Nyquist frequency

Nyquist
frequency
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Indeed, in order to have minimum certainty that the observed phenomenon is real, this
phenomenon must be observed at least twice, which provides only one degree of
freedom. For example, if an annual cycle was observed over a period of one year only,
there would be no indication that it would occur again during a second year (i.e. no
degree of freedom). A similar reasoning applies to the shortest period (or highest,
Nyquist frequency) detectable in the observational window. For example, if the
observed phenomenon exhibits monthly variation (e.g. oscillations between maximum
and minimum values over one month), two observations a month would be the
absolute minimum required for identifying the presence of this cycle.

Figure 12.1 Aliasing. (a) The artificial signal detected in the data series (dashed line) is caused by
observations (dots) made at a frequency lower than twice that present in the series under study
(solid line). On the abscissa, 1 time unit = 1/60 s. (b) With a sampling frequency of 20 Hz, the
observed frequency (ordinate) varies between 0 and 10 Hz, as the actual frequency of the signal
increases (abscissa). The observed frequency would be identical to the frequency of the signal
(no aliasing) only if the latter was ≤ 10 Hz, which is half the 20 Hz sampling frequency. In the
example, the frequency of the signal is 30 Hz and the observed (aliased) frequency is 10 Hz
(dashed line).

Observed signal (10 Hz)
Actual signal (30 Hz)

sampling events (20 Hz)

Time

observed values

0 10 20 30 40

Actual frequency of the signal (Hz)

10

Sampling frequency: 20 Hz

5

0O
bs

er
ve

d 
fr

eq
ue

nc
y 

(H
z)

2 4 8 10 14 16

(a)

(b)



Characteristics of data series and research objectives 641

Most methods described in the present Chapter are limited to the observational
window. However, some methods are mathematically capable of going beyond the
upper limit (in terms of periods) of the window, because they can fit incomplete cycles
of sine and cosine functions to the data series. This is the case of Schuster’s
periodogram (Section 12.4) and derived forms, including spectral analysis
(Section 12.5). A significant period found in this region (e.g. a 3-month period in a
data series 4 months long) should be interpreted with care. It only indicates that a
longer time series should be observed and analysed (e.g. > 1 year of data) before
drawing ecological conclusions.

There exists another constraint, which is also related to the observational window.
This constraint follows from a phenomenon known as aliasing. It may happen that the
observed variable exhibits fluctuations whose frequency is higher than the Nyquist
frequency. This occurs when a period T or wavelength λ of the observed variable is
smaller than 2∆. Undersampling of high-frequency fluctuations may generate an
artificial signal in the series, whose frequency is lower than the Nyquist frequency
(Fig. 12.1). Researchers unaware of the phenomenon could attempt to interpret this
artificial low frequency in the series; this would obviously be improper. In order to
avoid aliasing, the sampling design must provide at least four data points per cycle of
the shortest important period or wavelength of the variable under study. The latter
period or wavelength may be determined either from theory or from a pilot study.

The sections that follow explore various aspects of series analysis. The methods
discussed are those best adapted to ecological data. Additional details may be found in
the biologically-oriented textbook of Diggle (1990) and the review paper of Fry et al.
(1981), or in other textbooks on time series analysis, e.g. Jenkins & Watts (1968),
Bloomfield (1976), Box & Jenkins (1976), Brillinger (1981), Priestley (1981a, b),
Kendall et al. (1983), Chatfield (1989), and Kendall & Ord (1990). Methods for
analysing time series of ecological and physiological chronobiological data have been
reviewed by Legendre & Dutilleul (1992).

12.1 Characteristics of data series and research objectives

Observed data series may be decomposed into various components, which can be
studied separately since they have different statistical and ecological meanings.
Figure 12.2 shows an artificial data series constructed by adding three components: a
periodic signal, a trend, and a noise component. Series may be analysed in terms of
deterministic change (trend), systematic (periodic) variability, and random fluctuations
(noise). Data series may be recorded with different objectives in mind (Table 12.2),
which correspond to different methods of time series analysis. The following
presentation of objectives is largely drawn from Legendre & Dutilleul (1992).

Objective 1 — Ecological data series often exhibit a deterministic component,
known as the trend. The trend may be linear, polynomial, cyclic, etc. This

Aliasing

Signal
Trend
Noise

Trend
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deterministic component underlies the evolution of the series (Fig. 12.2a). It must be
extracted as the first step of the analysis.

In some cases, determining the trend is the chief objective of the study. For
example, progressive changes in the characteristics of an ecosystem, over several
years, may be used to assess whether this system is responding or not to anthropogenic
effects. In such a case, the problem would be to characterize the long-term trend, so
that the annual cycle as well as the high-frequency noise component would be of no
interest. Long-term trends in data series may be modelled by regression (Section 10.3).
Linear regression is used when the trend is (or seems to be) linear; this method allows

Figure 12.2 Artificial data series (a) constructed by adding the three components shown in (b), i.e. a periodic
signal and a noise component, whose combination gives a stationary series (not illustrated), and
a linear trend. The periodic signal is the same as in Fig. 12.13. There are n = 34 data points
sampled at regular intervals. The overall mean of the noise signal is zero, by definition.
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one to formulate the most parsimonious hypothesis and estimate smallest number of
parameters (see Ocham’s razor in Subsection 10.3.3). In other cases, the ecological
hypothesis or a preliminary examination of the series may indicate that the trend is of
some other mathematical form (e.g. logistic), in which case the methods of polynomial
or nonlinear regression should be used (e.g. Ross, 1990).

In contrast, ecologists primarily interested in the periodic component of data series
(Objective 2) consider the long-term trend as a nuisance. Even though the trend may
not be of ecological interest, it must be extracted from the series because most methods
of analysis require that the series be stationary, i.e. that the mean, variance, and other
statistical properties of the distribution be constant over the series. In the numerical
example of Fig. 12.2, the observed data series (a) is obviously not stationary. It
becomes so if the linear trend shown in (b) is removed by subtraction; this operation is
called detrending. The trend may be estimated, in this case, by linear regression over a
reasonably long segment of data; detrending consists in calculating the regression
residuals. In practice, the analysis of series only requires weak, or second-order, or
covariance stationarity, i.e. the mean and variance are constant and finite along the
series and the autocovariance (or autocorrelation) function depends only on the
distance between observations along the series; two observations separated by a given
interval have the same autocovariance no matter where they occur in the series.
Extracting trends may be done in various ways, which are detailed in Section 12.2.

Some low-frequency periodic components may also be considered as trends,
especially when these are both trivial and known a priori (e.g.  annual cycle). A long-
term trend as well as these periodic components may be extracted, in order to focus the
analysis on finer components of the data series. Again, regression or other statistical
methods (Section 12.2) may be used to model the low-frequency components and to
compute residuals on which the analysis could be carried out.

Objective 2 — Identifying characteristic periods is a major objective of series
analysis in ecology. It is generally done for one variable at a time, but it is also possible
to study multidimensional series (i.e. several variables, often analysed two at a time).
Ecological series always exhibit irregular and unpredictable fluctuations, called noise
(Fig. 12.2b), which are due to non-permanent perturbation factors. The larger the
noise, the more difficult it is to identify characteristic periods when analysing
(stationary) series. Table 12.3 summarizes the methods available to do so; several of
these are described in Sections 12.3 to 12.5. 

Objective 3 — One method for identifying characteristic periods is spectral
analysis. In this analysis, the variance of the data series is partitioned among
frequencies (or wavenumbers) in order to estimate a variance spectrum. Section 12.5
shows that the spectrum is a global characteristic of the series, and presents examples
where the spectra are interpreted as reflecting ecological processes.

Objective 4 — There are data series that do not behave in a periodic manner. This
may be because only one or even part of a cycle has been sampled or, alternatively,

Stationarity

Detrending
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because the variables under study are not under the control of periodic processes. Such
series may exhibit structures other than periodic, along time or a spatial direction. In
particular, one may wish to identify discontinuities along multidimensional data series.
Such discontinuities may, for example, characterize ecological succession. A
commonly-used method for finding discontinuities is cluster analysis. To make sure
that the multidimensional series gets divided into blocks, each one containing a set of
temporally contiguous observations, authors have advocated to constrain clustering
algorithms so that they are forced to group only the observations that are contiguous.
Various methods to do so are discussed in Section 12.6. 

Objective 5 — Another objective is to correlate variations in the data series of
interest (i.e. the target or response variable) with variations in series of some
potentially explanatory variable(s), with a more or less clearly specified model in
mind. There are several variants. (1) When the sampling interval between observations
is large, the effect of the explanatory variables on the target variable may be
considered as instantaneous. In such a case, various forms of regression analysis may
be used. When no explicit model is known by hypothesis, spline regression may be
used to describe temporal changes in the target variable as a function of another
variable (e.g. Press et al., 1986). These methods are explained in Section 10.3.
(2) When the interval between consecutive data is short compared to periods in the

Table 12.2 Analysis of data series: research objectives and related numerical methods. Adapted from
Legendre & Legendre (1984b) and Legendre & Dutilleul (1992).

Research objective Numerical methods

1) Characterize the trend • Regression (linear or polynomial)*
• Moving averages
• Variate difference method

2) Identify characteristic periods → Details in Table 12.3

3) Characterize series by spectrum • Spectral analysis

4) Detect discontinuities in • Clustering the data series (with or without constraint)
multivariate series • Hawkins & Merriam or Webster segmentation methods

5) Correlate variations in a series 
with changes in other series

5.1) Univariate target series • Regression*: simple / multiple linear, nonlinear, splines
• Cross-correlation

5.2) Multivariate target series • Canonical analysis**
• Mantel test*

6) Formulate a forecasting model • Box-Jenkins modelling

Methods described in * Chapter 10 or ** Chapter 11.
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target variable, it is sometimes assumed that the target variable responded to events
that occurred at some previous time, although the exact delay (lag) may not be known.
In such a case, the method of cross-correlation may be used to identify the time lag that
maximises the correlation between the explanatory and target variables (Section 12.3).
When the optimal lag has been found for each of the explanatory variables in a model,
multiple regression can then be used, each explanatory variable being lagged by the
appropriate number of sampling intervals. (3) The previous cases apply to situations
where there is a single target variable in the series under study. When there are several
target variables, the target series is multivariate; the appropriate methods of data
analysis are globally called canonical analysis (Chapter 11). Two forms are of special
interest here: redundancy analysis and canonical correspondence analysis. (4) Finally,
the relationship between two distance matrices based on two multivariate data sets can
be analysed using the Mantel test or its derived forms (Sections 10.5 and 13.1).

Objective 6 — A last objective is to formulate a model to forecast the future
behaviour of the target series. Following the tradition in economics, one way of doing
this is to model the data series according to its own past behaviour (Section 12.7). 

The first problem encountered when analysing series is to decide whether a trend is
present or not. Visual examination of the series, which may be combined with previous
knowledge about the process at work, is often sufficient to detect one or several trends.
These may be monotonic (e.g.  gradient in latitude, altitude, or water depth) or not
(e.g. daily, lunar, or annual cycles). Three methods have been proposed to test for the

Table 12.3 Analysis of data series: methods for identifying characteristic periods. The approaches best
suited to short data series are: the contingency periodogram, Dutilleul’s modified periodogram,
and maximum entropy spectral analysis. Adapted from Legendre & Legendre (1984b) and
Legendre & Dutilleul (1992).

Type of series Methods

Quantitative variables only All precision levels

1) A single variable • Autocorrelogram • Spatial correlogram* (quantitative,
qualitative), Mantel correlogram*

• Periodograms (Whittaker & • Contingency periodogram for
Robinson, Schuster, Dutilleul) qualitative data

• Spectral analysis • Kedem’s spectral analysis for
binary data

2) Two variables • Parametric cross-correlation • Nonparametric cross-correlation
• Coherence and phase spectra • Lagged contingency analysis

3) Multivariate series • Multivariate spectral analysis • Mantel correlogram* (data
expressed as a distance matrix)

* Method described in Chapter 13
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presence of trends. (1) The numbers of positive and negative differences between
successive values in the series are counted. These are then subjected to a sign test
(Section 5.2), where the null hypothesis (H0) is that the plus and minus signs are
sampled from a population in which the two signs are present in equal proportions.
Rejecting H0 is indication of a trend. (2) All values in the series are ranked in
increasing (or decreasing) order. Kendall's rank correlation coefficient (τ)
(Section 5.2) is used to assess the degree of resemblance between the rank-ordered
series and the original one; this is equivalent to computing the Kendall correlation
between the original data series and the observation rank labels: 1, 2, 3, …, n. When τ
is significantly different from zero, it is concluded that the series exhibits a monotonic
trend. These two methods are described in Kendall & Ord (1990, pp. 21-22). The
approach based on Kendall's τ is preferable to the sign test because it considers the
whole series and not only differences between neighbouring values. (3) Another
nonparametric test, called the up and down runs test, is well suited to detect the
presence of various types of trends. Consider again n values and, for each one, the sign
of the difference from the previous value. The (n – 1) signs would all be the same if the
observations were monotonically increasing or decreasing. Cyclical data, on the other
hand, would display more runs of “+” or “–” signs than expected for random data. A
run is a set of like signs, preceded and followed (except at the end of the series) by
opposite signs. Count the number of runs in the data series, including those of length 1
(e.g. a single “+” sign, preceded and followed by a “–”). The up and down runs test,
described for instance in Sokal & Rohlf (1995), allows one to compare this number to
the number of runs expected from a same-length sequence of random numbers.

When there is a trend in the series, it must be extracted using one of the methods
discussed in Section 12.2. If, after detrending, the mean of the series is still not
stationary, a second trend must be searched for and removed. When the series does not
exhibit any trend, or after detrending, one must decide, before looking for periodic
variability (Sections 12.3 to 12.5), whether the stationary series presents some kind of
systematic variability or if, on the contrary, it simply displays the kind of variation
expected from a random process. In other words, one must test whether the series is
simply random, or if it exhibits periodic variability that could be analysed.

In some instances, as in Fig. 12.3, it is useless to conduct sophisticated tests,
because the random or systematic character of the series is obvious. Randomness of a
series may be tested as follows: identify the turning points (i.e. the peaks and troughs)
in the series and record the distribution of the number of intervals (phase length)
between successive turning points. It is then possible to test whether these values
correspond or not to those of a random series (Kendall & Ord, 1990, p. 20). This
procedure actually tests the same null hypothesis as the up and down runs test
described above. In practice, any ecological series with an average phase longer than
two intervals may be considered non-random.

The overall procedure for analysing data series is summarized in Fig. 12.4. The
following sections describe the most usual methods for extracting trends, as well as
various approaches for analysing stationary series. It must be realized that, in some

Up and down
runs test

Test of
series
randomness
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instances, variations in stationary series may be so small that they cannot be analysed,
because they are of the same order of magnitude as the background noise. 

If parametric statistical tests are to be conducted during the course of the analysis,
normality must be checked (Section 4.7) and, if the data are not normally distributed,
they must be transformed as explained in Subsection 1.5.6. In addition, several of the
methods discussed in the following sections require that observations in the series be
equally spaced. If they are not, data may be eliminated to make them equispaced, or
else, missing data may be calculated by regression or other interpolation methods
(e.g. Section 1.6); most methods of series analysis cannot handle missing values.
Obviously, it is preferable to consider the requirement of equispaced data when
designing the sampling program than to have to modify the data at the stage of
analysis.

In addition to the numerical methods discussed in the following sections, ecologists
may find it useful to have a preliminary look at the data series, using the techniques of
exploratory data analysis described by Tukey (1977, Chapters 7 and 8). These are
based on simple arithmetic and easy-to-draw graphs, which may help decide which
numerical treatments would be best suited for analysing the series.

12.2 Trend extraction and numerical filters

When there is a trend in a series (which is not always the case), it must be extracted
from the data prior to further numerical analyses. As explained in the previous section,
this is because most methods of analysis require that the series be stationary.

Figure 12.3 Two artificial series; (a) would be random if the linear trend was extracted, whereas (b) displays
a cyclic trend.

(b)

(a)
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When the trend itself is of interest, it can be analysed in ecological terms
(Objective 1, above). For example, Fortier et al. (1978) interpreted a cyclical trend in
temporal changes of estuarine phytoplankton in terms of physical oceanography. When
the study goes beyond the identification of a trend (Objectives 2 et seq.), the analysis is
normally conducted on the residual (or detrended) data series. The residual
(i.e. stationary) series is obtained by subtracting the value estimated by the trend
function from that of each data point, observed at positions (i.e. objects) xi along the
series:

residual data ( ) = observed data (yi) – value of the trend at xi (12.1)

There are cases where several trends of different natures must be extracted
successively before reaching stationarity. However, because each trend extraction
distorts the residuals, one must proceed with caution with detrending. The success of
trend extraction may be assessed by looking at the resulting trend (Objective 1), or at
the detrended series (e.g. Objective 2).

Figure 12.4 Flow diagram summarizing the various steps of the analysis of data series.
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The simplest, but perhaps not so accurate way of estimating a trend in a data series
is the freehand method. It consists in the freehand fitting of a curve corresponding to
the general evolution of the series. Although the simplest, it is also the method most
prone to error. The average freehand method is also graphical, but the trend is then
represented by a broken line located halfway between two lines joining, respectively,
the peaks and the troughs of the series. A continuous curve can be fitted, by freehand,
to the broken line.

The method of moving averages is often used to estimate trends. One calculates
successive arithmetic averages over 2m + 1 contiguous data as one moves along the
data series. The interval (2m + 1) over which a moving average is computed is called
window. For example, with m  = 2, the first moving average  is computed over the
first 5 values y1 to y5, the second moving average  is calculated over values y2 to y6,
the third one ( ) is the average of values y3 to y7, and so forth. Each average value is
positioned at the centre of the window. For a series of n observations, there are
(n – 2m) moving averages:

x1 x2 x3 x4 … xn–2 xn–1 xn

y1 y2 y3 y4 … yn–2 yn–1 yn

The general formula for moving averages is thus:

(12.2)

The h values corresponding to the above example, where m = 2, would be: –2, –1, 0,
+1, and +2, respectively.

Moving averages may also be weighted. In such a case, each of the 2m + 1 values
within the window is multiplied by a weight wh. Generally, values closer to the centre
of the window receive larger weights. The general formula for the weighted moving
average corresponding to any position (or object) xi is:

(12.3)

Choosing values for the weights depends on the underlying hypothesis. Kendall & Ord
(1990, p. 3) give coefficients to be used under hypotheses of polynomial trend of the
second, third, fourth, and fifth degrees. Another, simple method for assigning weights
is that of repeated moving averages. After calculating a first series of non-weighted
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moving averages (eq. 12.2), a second series of moving averages is calculated using
values from the first series. Thus calculation of three successive series of moving
averages produces the following results ( ), using weights wh (Table 12.4):

first series (m = 1)

second series (m = 2)

third series (m = 3)

It is easy to check the above values by simple calculations, as shown in Table 12.4.

When using moving averages for estimating the trend of a series, one must choose
the width of the window (i.e. choose m) as well as the shape of the moving average
(i.e. the degree of the polynomial or the number of iterations). These choices are not
simple. They depend in part on the goal of the study, namely the ecological
interpretation of the trend itself or the subsequent analysis of residuals (i.e. detrended
series). To estimate a cyclic trend, for instance, it is recommended to set the window
width (2m + 1) equal to the period of the cyclic fluctuation.

yi

Table 12.4 Calculation of repeated moving averages. Development of the numerator for the first and second
series of averages.
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Trend extraction by moving averages may add to the detrended series an artificial
periodic component, which must be identified before analysing the series. This
phenomenon is called the Slutzky-Yule effect, because these two statisticians
independently drew attention to it in 1927. According to Kendall (1976, pp. 40-45) and
Kendall et al. (1983, pp. 465-466), the average period of this artificial component (T)
is calculated using the (2m + 1) weights wi of the moving average formula (eq. 12.3)*:

T = 2π/θ   for angle θ in radians, or T = 360°/θ   for angle θ in degrees,

where (12.4)

The values of the weights located outside the window are zero:  and
. For example, using the weights of the second series of repeated moving

averages above (m = 2):

[wh] = [1  2  3  2  1]

gives

from which it follows that

and thus:

After detrending by this method of repeated moving averages, if the analysis of the
series resulted in a period T ≈ 6, this period would probably be a by-product of the
moving average procedure. It would not correspond to a component of the original
data series, so that one should not attempt to interpret it in ecological terms. If a period
T ≈ 6 was hypothesized to be of ecological interest, one should use different weights
for trend extraction by moving average analysis.

The most usual approach for estimating trends is the analytical method. It consists
in fitting a model (regression) to the whole series, using the least squares approach or
any other algorithm. The matter was fully reviewed in Section 10.3. Smoothing
methods such as splines and LOWESS may also be used (Subsection 10.3.8). The model
for the trend may be linear, polynomial, exponential, logistic, etc. The main
advantages of trend extraction based on regression are: the explicit choice of a model

* In Kendall (1976) and Kendall et al. (1983) and previous editions of The Advanced Theory of
Statistics, Vol. 3, there is a printing error in the formula for the Slutzky-Yule effect. In the first
parenthesis of the last term of their numerator, the printed sign for the second weight 
is positive; this sign should be negative, as in eq. 12.4, giving (0 – 1) in our numerical example.
However, their numerical example is correct, i.e. it is computed with , not .
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by the investigator and the ease of calculation using a statistical package. The main
problem is that a new regression must be calculated upon addition of one or several
observations to the data series, which may generate different values for the regression
coefficients. However, as the series gets longer, estimates of the regression coefficients
become progressively more independent of the length of the series.

Contrary to the above methods, where the trend was first estimated and then
subtracted from the observed data (eq. 12.1), the variate difference method directly
detrends the series. It consists in replacing each value yi by the difference (yi+1 – yi).
As in the case of repeated moving averages, differences may be calculated not only on
the original data, but also on data resulting from previous detrending. If this is repeated
on progressively more and more detrended series, the variance of the series usually
stabilizes rapidly. The variate difference method, when applied once or a few times to
a series, can successfully remove any polynomial trend. Only exponential or cyclic
trends may sometimes resist the treatment. The method may be used to remove any
cyclic trend whose period T is known, by using differences (yi+T – yi); however, this is
fully successful only in cases where T is an integer multiple of the sampling interval ∆.

In some instances, ecologists may also wish to eliminate the random noise
component from the data series, in order to better evidence the ecological phenomenon
under study. This operation, whose aim is to remove high-frequency variability from
the series, is called filtration. In a sense, filtration is the complement of trend
extraction, since trends are low-frequency components of the series. Several specialists
of series analysis apply the term filter to any preliminary treatment of the series,
whether extraction of low frequencies (trend) or removal of high frequencies (noise).
Within the context of spectral analysis (Section 12.5), filtration of the series is often
called “prewhitening”. This refers to the fact that filtration flattens the spectrum of a
series and makes it similar to the spectrum of white light. The reciprocal operation
(called “recolouring”) fits the spectrum (calculated on the filtered series) in such a way
as to make it representative of the nonfiltered series. The sequence of operations —
prewhitening of the series, followed by computation of the spectrum on the filtered
series, and finally recolouring of the resulting spectrum — finds its justification in the
fact that spectra that are more flat are also more precisely estimated.

In addition to filters, which aim at extracting low frequencies (trends), computer
programs for series analysis offer a variety of numerical filters that allow the removal,
or at least the reduction, of any component located outside a given frequency band
(passband). It is thus possible, depending on the objective of the study, to select the
high or the low frequencies, or else a band of intermediate frequencies. It is also
possible to eliminate a band of intermediate frequencies, which is the converse of the
latter filter. Generally, these numerical filters are found in programs for spectral
analysis (Section 12.5), but they may also be used to filter series prior to analyses
using the methods described in Sections 12.3 and 12.4. In most cases, filtering data
series (including trend extraction) requires solid knowledge of the techniques, because
filtration always distorts the original series and thus influences further calculations. It
is therefore better to do it under the supervision of an experienced colleague.
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12.3 Periodic variability: correlogram

The systematic component of stationary series is called periodic variability. There are
several methods available for analysing this type of variability. Those discussed in the
present section, namely the autocovariance and autocorrelation (serial correlation) and
the cross-covariance and cross-correlation, are all extensions, to the analysis of data
series, of statistical techniques described in earlier chapters. These methods have been
extensively used in ecology.

At this stage of series analysis, it is assumed that the data series is stationary, either
because it originally exhibited no trend or as the result of trend extraction
(Section 12.2). It is also assumed that variability is large enough to emerge from
random noise.

A general approach for analysing periodic variability is derived from the concepts
of covariance and correlation, which were defined in Chapter 4. The methods are
called autocovariance and autocorrelation. The approach is to quantify the
relationships between successive terms of the data series. These relationships reflect
the pattern of periodic variability.

1 — Autocovariance and autocorrelation

Autocovariance measures the covariance of the series with itself, computed as the
series is progressively shifted with respect to itself (Fig. 12.5). When there is no shift
(i.e. lag of zero unit; k = 0), the covariance of the series with itself is equal to its
variance (Section 4.1):

When the series is shifted relative to itself by one unit (lag k = 1), the left-hand copy of
the series in Fig. 12.5 loses observation y1 and the right-hand copy loses observation
yn. The two truncated series, each of length (n – 1), are compared. For a lag of k units,
the means  and  of the (n – k) terms remaining in the two truncated series are:

These means are used to compute the autocovariance syy(k) of the series, for lag k,
using an equation similar to that of the covariance (eq. 4.4):

(12.5)
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When k = 0 (no shift), eq. 12.5 gives, as it should, the variance (eq. 4.3) of the series:

In correlograms (below), the autocovariance is estimated for several successive lags k.
In specific applications, researchers may decide on biological grounds how long the
lag should be when computing the autocovariance of a variable of interest.

One way to calculate the linear correlation between two variables, yj and yk, is to
divide their covariance by the product of their two standard deviations (eq. 4.7):

Figure 12.5 Calculation of autocovariance (syy) and autocorrelation (ryy). Stepwise shift of a data series
relative to itself, with successive lags of k units. The number of terms involved in the calculation
(n – k) decreases as k increases.
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In a similar way, the autocorrelation of a series ryy(k) may be defined as the ratio of its
autocovariance syy(k) to its variance  = syy(0):

(12.6)

Equation 12.6 is valid only when (n – k) is reasonably large. The autocorrelation is also
called serial correlation. It measures the average dependence of the values in the series
on values found at a distance of k lags. Jenkins and Watts (1968) discuss the relative
advantages of alternative formulas for estimating autocorrelation coefficients.

The autocorrelation ryy(k) may also be directly computed by calculating the linear
correlation between terms yi and yi+k of the series, for the n – k pairs of corresponding
values in the observed and shifted series (Fig. 12.5). The corresponding formula is:

(12.7)

Equation 12.7 is not recommended, however, because the means used for computing
 and , respectively, change with lag k, so that ryy(k) is not a satisfactory estimate

when considering a set of autocorrelation coefficients (Jenkins & Watts, 1968).

Since the number of terms (n – k) involved in the calculation of the autocovariance
or autocorrelation decreases as k increases, it follows that, as k increases, the precision
of the estimate and the number of degrees of freedom available decrease, so that the
maximum lag is generally taken to be kmax ≤ n/4. Table 12.5 gives the values of
autocovariance and autocorrelation for the artificial stationary series of Fig. 12.2b. 

The coefficients of autocorrelation (or autocovariance) are plotted as a function of
lag k (abscissa), in a graph called autocorrelogram (or correlogram, for simplicity).
Autocorrelation coefficients range between +1 and –1. The scale factor between the
autocorrelation and autocovariance coefficients is the variance of the series (eq. 12.6).
In Fig. 12.6, this factor is syy(0) = 3.16; it is given in Table 12.5 at lag k = 0.

The interpretation of correlograms is based on the following reasoning. At lag
k = 0, the two copies of the series (y' and y") have the exact same values facing each
other (Fig. 12.5), so that ryy(0) = +1. With increasing lag k, corresponding values in the
series y' and y" move farther apart and ryy(k) decreases. This is what is happening, in
the numerical example, for lags up to k = 4 (Table 12.5 and Fig. 12.6). In series where
periodic variability is present (with period Tp), increasing k eventually brings similar
values to face each other again (at lag k = Tp), with peaks facing peaks and troughs
facing troughs, hence a high positive ryy(k). ryy(k =Tp) is always < +1, however,
because there is noise in the data and also because natural periodic phenomena seldom
repeat themselves perfectly. Often, negative autocorrelation reaches its maximum at
k = Tp/2, because the signals in y' and y" are then maximally out of phase. 
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Table 12.5 Autocovariance and autocorrelation coefficients for the artificial series of Fig. 12.2b, after
detrending (i.e. periodic signal + noise components only). For each successive lag, the series is
shifted by one sampling interval. Values corresponding to odd lags are not shown. The
autocovariance and autocorrelation coefficients are plotted against lag in Fig. 12.6.

Lag Autocovariance syy(k) Autocorrelation ryy(k)

0 3.16 1.00

2 1.17 0.37

4 –1.17 –0.37

6 –0.26 –0.08

8 –0.31 –0.10

l0 –1.13 –0.36

12 –0.48 –0.15

14 –0.47 –0.15

16 –1.20 –0.38

18 0.74 0.23

20 3.12 0.99

22 1.86 0.59

Figure 12.6 Correlogram (autocovariance and autocorrelation; values from Table 12.5) for the artificial
series of Fig. 12.2b, after detrending (i.e. periodic signal + noise components only). 
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A practical problem occurs when there are several periodic signals in a series; this
may increase the complexity of the correlogram. Nevertheless, high positive values in
a correlogram may generally be interpreted as indicative of the presence of periodic
variability in the series. For the numerical example, Fig. 12.6 indicates that there is a
major periodicity at k = 20, corresponding to period T = 20; this interpretation is
supported by the low value of ryy(10). Period T = 20 is indeed the distance between
corresponding peaks or troughs in the series of Fig. 12.2b. Other features of the
correlogram would be indicative of additional periods (which is indeed the case here;
see Fig. 12.13) or may simply be the result of random noise.

Under the hypothesis of normality, a confidence interval can be computed and
drawn on a correlogram in order to identify the values that are significantly different
from zero. The confidence interval is usually represented on the correlogram as a two-
standard-error band. The test formula for the Pearson correlation coefficient (eq. 4.13)
cannot be used here because the data are not independent of one another, being
autocorrelated (Section 1.1). According to Bartlett (1946), the variance of each term in
the correlogram is a function of all the autocorrelation values in the series:

In practice, (a) the series has a finite length, so that the maximum lag is kmax ≤ n/4;
(b) what is known are not the parameters ρ but their estimates r; and (c) the last three
terms in the above equation are small. For these reasons, the variance of the
correlogram is generally estimated using the following simplified formula, where
s(ryy) is the standard error of each autocorrelation coefficient ryy:

(12.8)

For α = 0.05, when the number of observations in the series, n, is larger than 50, the
confidence interval of ryy is ±1.96 s(ryy). Some computer programs calculate s(ryy)
using a different formula. 

To illustrate how to use eq. 12.8, let us modify the numerical example and assume
that the ryy(k) values in Table 12.5 correspond to lags k = 1, 2, …, 11, and that
n = 4 × kmax = 4 × 11 = 44 observations. Equation 12.8 would then give:

so that 1.96s(ryy) = 1.96 × = 1.96 × 0.34 = 0.66. Thus, in the correlogram of
Fig. 12.6, only the values of ryy larger than +0.66 or smaller than –0.66 would be
significantly different from zero, i.e. in this case ryy(1), ryy(19), ryy(20) and ryy(21).
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When the series is long, its correlogram may exhibit significant values for
harmonics (integer multiples) of the period present in the signal (Tseries). This is a
normal phenomenon, which is generally not indicative of additional periodicity in the
data series. However, when a value of the correlogram statistic is noticeably larger for
a harmonic period than for the basic period, one can conclude that the harmonic is also
a true period of the series. Except for very strong periodic components, short series
should not be analysed using autocorrelograms. This is because the test of significance
is not very powerful in this case, i.e. the probability of rejecting the null hypothesis of
no autocorrelation is small when a real periodic component is present in short series. In
the same way, when there is more than one periodic component, correlograms should
generally not be used even with long series, because components of different periods
may interfere with one another and prevent the correlogram from showing significance
(see also the next paragraph). Finally, when the data are not equispaced and one does
not wish to interpolate, methods developed for spatial autocorrelation analysis, which
do not require equal spacing of the data, may be used (Section 13.1). Special forms of
spatial autocorrelation coefficients also allow the analysis of series of qualitative data.

It may happen that periods present in the series do not appear in a correlogram,
because they are concealed by other periods accounting for larger fractions of the
variance of the series. When one or several periods have been identified using a first
correlogram, one may remove these periods from the series using one of the methods
recommended in Section 12.2 for cyclic trends and compute a new correlogram for the
detrended series. It could bring out previously concealed periods. This is not without
risk, however, because successively extracting trends rapidly distorts the residuals.
Approaches better adapted to series containing several periods are discussed in
Sections 12.4 and 12.5.

The following numerical example and ecological applications illustrate the
computation and use of correlograms.

Numerical example. Consider the following series of 16 data points (quantitative variable):

2, 2, 4, 7, 10, 5, 2, 5, 8, 4, 1, 2, 5, 9, 6, 3

Table 12.6 illustrates the computation of the autocorrelation coefficients. These could be plotted
as a function of lag (k) to form a correlogram, as in Figs. 12.6 and 12.7b. The coefficients clearly
point to a dominant period at k = 5, for which autocorrelation is positive and maximum. This
approximately corresponds to the average distance separating successive maximum values, as
well as successive minima, along the data series.

Ecological application  12.3a

In order to study the spatial variability of coastal marine phytoplankton, Platt et al. (1970)
measured chlorophyll a along a transect 8 nautical miles long, at 10 m depth and intervals of
0.1  naut. mi. (1 naut. mi. = 1852 m). The resulting 80 values are shown in Fig. 12.7a.

The series exhibited a clear linear trend, which was extracted at the beginning of the
analysis. Autocorrelation coefficients were computed from the residual series, up to lag k = 10,

Harmonic
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because the series was quite short (Fig. 12.7b). The position of the first zero in the correlogram
was taken as indicative of the average apparent radius of phytoplankton patches along the
transect. The model underlying this interpretation is that of circular patches, separated by
average distances equal to their average diameter. In such a case, it is expected that the second
zero would occur at a lag three times that of the first zero, as is indeed observed on the
correlogram. In the present case, the average diameter of phytoplankton patches and the distance
separating them appear to be ca. 0.5 naut. mi.

Ecological application  12.3b

Steven & Glombitza (1972) sampled tropical phytoplankton and chlorophyll at a site off
Barbados, during nearly three years. Sampling was approximately fortnightly. The physical
environment there is considered to be very stable. The most abundant phytoplankton species, in
surface waters, is the filamentous cyanobacterium Trichodesmium thiebaudii. Data were
concentrations of chlorophyll a and of Trichodesmium filaments.

The raw data were subjected to two transformations: (1) computation of equispaced data at
intervals of 15 days, by interpolation, and (2) filtration intended to reduce the importance of
non-dominant variations. The filtered data are shown in Fig. 12.8a, where synchronism between

Table 12.6 Computation of the autocorrelation coefficients for the data of the numerical example. Boxes
delimit the values included in each calculation. Note how the highest values are facing each
other at lag 5, where the autocorrelation coefficient is maximum.

Lag Data series Autocorrelation ryy(k)

k=0 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 1.000
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=1 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.326
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=2 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.603
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=3 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.562
2 2 4 7 10 5 2 5 8 4 1 2 5 9 …

k=4 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.147
2 2 4 7 10 5 2 5 8 4 1 2 5 …

k=5 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.502
2 2 4 7 10 5 2 5 8 4 1 2 …

k=6 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.178
2 2 4 7 10 5 2 5 8 4 1 …

etc. etc. etc.
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the two sampled variables is obvious. Correlograms for the nonfiltered (Fig. 12.8b) and filtered
(Fig. 12.8c) series clearly show the same periodic signal, of ca. 8 lags × (15  days lag-1) =
120 days. Nonfiltered data provide the same information as the filtered series, but not quite as
clearly. According to the authors, these periodic variations could be an example of free
oscillations, since they seem independent of any control by the environment which is stable all
the year round. The same ecological application will be used again to illustrate the calculation of
cross-correlation (next Subsection) and Schuster’s periodogram (Section 12.4).

Figure 12.7 Chlorophyll a concentrations in a coastal marine environment, along a transect 8 naut. miles
long in St. Margaret’s Bay (Nova Scotia, Canada). (a) Data series exhibiting a linear trend, and
(b) correlogram of the detrended series where lags (abscissa) are given as distances along the
transect. After Platt et al. (1970).
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2 — Cross-covariance and cross-correlation

In order to determine the extent to which two data series exhibit concordant periodic
variations, one can use a method closely related to autocovariance and autocorrelation.
This method has two variants called cross-covariance and cross-correlation (or lag
correlation).

Consider two series, yj and yl, of identical lengths. One is progressively shifted
with respect to the other, with lags k = 1, 2, … As the lag increases, the zone of overlap
of the two series shortens. Cross-covariance of order k is computed in a way which is

Figure 12.8 (a) Filtered time series of chlorophyll a and Trichodesmium in tropical surface waters off
Barbados. Marks along the abscissa are spaced by 75 days. On the ordinate, units are
103 filaments Trichodesmium L-1 and µg chlorophyll a L-1. Correlograms of (b) the nonfiltered
series and (c) the filtered series. After Steven & Glombitza (1972).
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analogous to autocovariance, using the means of the two truncated series. For a lag of
k units, the means  and  of the (n – k) terms of the two truncated series are:

As in eq. 12.5 for autocovariance, these mean values are used to compute the cross-
covariance sjl(k) between the two series, for lag k:

(12.9)

When k = 0 (no shift), eq. 12.5 gives the covariance (eq. 4.4) of the two variables:

Equation 12.9 stresses an important difference between cross-covariance and
autocovariance, namely that the relative direction in which a series is shifted with
respect to the other must be taken into account. Indeed, shifting series yj “to the right”
with respect to series yl is not equivalent to shifting it “to the left”:

The value of cross-covariance for lag k would be different if yj and yl were
interchanged in eq. 12.9; in other words, generally sjl(k) ≠ slj(k). In order to distinguish
between the two sets of cross-covariances, one set of shifts is labelled as positive and
the other as negative. The choice of the positive and negative directions is arbitrary
and without consequence. One must specify which variable leads the other, however.
In eq. 12.9, if the cross-covariance of yj relative to yl is identified as sjl(k), the converse
would be labelled sjl(–k). No distinction was made between the two relative shift
directions in autocovariance (eq. 12.4) because syy(+k) = syy(–k).

Cross-covariance is generally plotted as a function of the positive and negative lags
k, to the right and left of k = 0. The alternative is to plot the two sets on the positive
side of the abscissa using different symbols. Maximum cross-covariance does not
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necessarily occur at k = 0. Sometimes, the interaction between the two series is
maximum at a lag k ≠ 0. In predator-prey interactions for example, cross-covariance is
maximum for a lag corresponding to the response time of the predator population
(target variable) to changes in the number of prey (predictor variable). One then says
that the target variable lags the causal variable.

Cross-covariance may be transformed into cross-correlation. To do so, the cross-
covariance sjl(k) is divided by the product of the corresponding standard deviations:

(12.10)

As for cross-covariance, cross-correlation is defined for +k and –k. Values are plotted
as a function of k in a cross-correlogram. In the same vein, Fortier & Legendre (1979)
used Kendall's τ (Section 5.3) instead of Pearson's r for computing cross-correlations
between series of quantitative variables which were not linearly related. They called
this measure Kendall’s cross-correlation. It may also be applied to series of
semiquantitative data; Spearman’s r (Section 5.3) could be used instead of Kendall’s τ.
Extending this approach to qualitative data was proposed by Legendre & Legendre
(1982) under the name cross-contingency. In this case, contingency statistics (X2 or
uncertainty coefficients; Section 6.2) are computed for the two series, as these are
progressively shifted with respect to each other.

When several ecological variables are observed simultaneously, the resulting
multidimensional series may be analysed using cross-covariance or cross-correlation.
Such methods are obviously of interest in ecology, where variations in one variable are
often interpreted in terms of variations in others. However, eqs. 12.9 and 12.10
consider only two series at a time; for multidimensional data series, it is sometimes
useful to extend the concept of partial correlation (Sections 4.5 and 5.3) to the
approach of cross-correlation. In Ecological application 12.3d, Fréchette & Legendre
(1982) used Kendall’s partial (partial τ; Section 5.3) cross-correlation to analyse an
ecological situation involving three variables.

Ecological application  12.3c

In their study of the temporal variability of tropical phytoplankton (Ecological application
12.3b), Steven & Glombitza (1972) compared the variations in concentrations of chlorophyll a
and Trichodesmium, using cross-correlations (Fig. 12.9). The cross-correlogram shows that
changes in the two variables were in phase, with a period of 8 lags × 15 days lag–1 = 120 days.
Filtration of the data series brought but a small improvement to the cross-correlation. These
results confirm the conclusions drawn from the correlograms (Fig. 12.8) and show that
variations of chlorophyll a concentration, in surface waters, were due to changes in the
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concentration of Trichodesmium filaments. This same application will be further discussed in
Section 12.4 (Ecological application 12.4d).

Ecological application  12.3d

At an anchor station in the St. Lawrence Estuary (Québec), Fréchette & Legendre (1982)
determined the photosynthetic capacity of phytoplankton ( ) hourly, during six consecutive
days. The area is subjected to internal tides, which drove changes in two important physical
variables: (1) vertical oscillations of the water mass (characterized in this study by the depth of
isopycnal σt = 22, i.e. the depth where the density of water is 1022 kg m–3), and (2) variations in
the vertical stability of the upper water column, estimated as the density gradient between 1 and
25 m. Two hypotheses could explain the observed effects of the internal tides on :
(1) upwelling, to the depths where sampling took place, of deeper water containing
phytoplankton with lower , under the effect of incoming internal tides, or (2) adaptation of

 to changes in the vertical stability of the upper water column. Since the two physical
variables were controlled by the same mechanism (i.e. internal tides), it was not easy to identify
their specific contributions to phytoplankton photosynthesis. This was achieved by computing
two Kendall’s partial cross-correlations (partial τ): (1) between  and the depth of σt = 22,
controlling for the effect of vertical stability, and (2) between  and stratification,
controlling for vertical displacement. When calculating the partial cross-correlations, the
response variable ( ) was shifted relative to the two potentially causal (physical) variables
until a maximum value was reached. The authors concluded that the photosynthetic activity of

Figure 12.9 Cross-correlations between temporal changes in concentrations of chlorophyll a and
Trichodesmium, in tropical surface waters, computed on nonfiltered (solid line) and filtered
(dotted line) data series. After Steven & Glombitza (1972). 
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phytoplankton responded to changes in the vertical stability of the water column, driven by
internal tides. This was interpreted as an adaptation of the cells to periodic variations in their
light environment.

Mantel correlograms may be used to detect periodic phenomena in quantitative,
semiquantitative or qualitative data series, or else in multivariate data series involving
either quantitative variables alone, or a mixture of variables of different precision
levels. This type of correlogram, in Subsection 13.1.5, is computed from a similarity or
distance matrix among the observations in the series. 

12.4 Periodic variability: periodogram

In addition to the relatively simple methods discussed in the previous section, there is
another general approach to the study of periodic variability, called harmonic analysis.
This approach is mathematically more complex than correlogram analysis, but it is
often better adapted to the study of ecological data series. Results of harmonic analysis
are generally plotted in a graph called periodogram.

1 — Periodogram of Whittaker and Robinson

The simplest way to approach harmonic analysis is to examine a Buys-Ballot table.
Assume that a series of n quantitative observations is characterized by a period Tseries.
If T = Tseries is known, the series can be split into n/T sequences, each containing T
observations. A Buys-Ballot table (Table 12.7) is a double-entry table whose rows
contain the r = n/T sequences of T observations. The number of columns corresponds
to the known or assumed period of the data series. If T = Tseries , the r successive rows
in the table are repetitions of the same oscillation, although the actual values in any
column (j) are generally not identical because of noise. Calculating the mean value for
each column ( ) and comparing these means is a way of characterizing the
variation within period Tseries .

When there exists a hypothesis concerning the value of Tseries (e.g. a diurnal cycle),
Buys-Ballot tables may be constructed for this value and also for neighbouring lower
and higher values Tk. As the period of the table (Tk) approaches that of the series
(Tseries), values within each column become more similar, so that all maximum values
tend to be located in one column and all minimum values in another. As a result, the
difference between the highest and lowest mean values is maximum when period Tk of
the table is the same as period Tseries of the series. The amplitude of a Buys-Ballot
table is some measure of the variation found among the columns of the table. It may be
measured by the range of the column means (Whittaker & Robinson, 1924):

[  – ] (12.11)

yT j,

Amplitude

Range ymax ymin
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or by the standard deviation of the column means (Enright, 1965):

(12.12)

When the period T of interest is not an integer multiple of the interval between two
observations, a problem occurs in the construction of the Buys-Ballot table. The solution
proposed by Enright (1965) is to construct the table with a number of columns equal to the
largest integer which is less than or equal to the period of interest, T. Observations are attributed
to the columns in sequence, as usual, leaving out an observation here and there in such a way
that the average rate of advance in the series, from row to row of the Buys-Ballot table, is T. This
is done, formally, by using the following formula for the mean of each column j:

(12.13)

where r is the number with data, in column j of the table. The subscript of y is systematically
rounded to the next integer. Thus, for example, if T = 24.5,  would be estimated from
values y1, y26, y50, y75, y99, y124, etc.; in other words, intervals of 24 and 25 units would be
successively used, to give an average period T = 24.5. This modified formula is required to
understand Ecological application 12.4a, where fractional periods are being used.

Table 12.7 Buys-Ballot table. Allocation of data from a series containing n observations to the rows of the
table.
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When studying an empirical data series, the period Tseries is not known a priori.
Even when some hypothesis is available concerning the value of Tseries, one may want
to check whether the hypothesized value is the one that best emerges from the data. In
both situations, estimating Tseries becomes the purpose of the analysis. The values of
amplitude, computed for different periods T, may be plotted together as a periodogram
in order to determine which period best characterizes the data series.

The periodogram of Whittaker & Robinson is a graph in which the measures of
amplitude (eq. 12.11 or 12.12) are plotted as a function of periods Tk. According to
Enright (1965), periodograms based on the statistic of eq. 12.12 are more internally
consistent than those based on eq. 12.11. Various ways have been proposed for testing
the significance of statistic 12.12 (reviewed by Sokolove and Bushell, 1978); these
tests are only asymptotically valid, so that they are not adequate for short time series.

Numerical example. Consider again the series (2, 2, 4, 7, 10, 5, 2, 5, 8, 4, 1, 2, 5, 9, 6, 3)
used in Subsection 12.3.1 to compute Table 12.6. In order to examine period Tk = 4, for instance,
the series is cut into segments of length 4 as follows:

2, 2, 4, 7;    10, 5, 2, 5;    8, 4, 1, 2;    5, 9, 6, 3

and distributed in the successive rows of the table. The Buys-Ballot tables for periods Tk = 4 and
5 are constructed as follows:

The range is calculated using eq. 12.11 and the standard deviation with eq. 12.12. Repeating the
calculations for k = 2 to 8 produces the periodogram in Fig. 12.10.

Interpretation of the periodogram may be quite simple. If one and only one
oscillation is present in the series, the period with maximum amplitude is taken as the
best estimate for the true period of this oscillation. Calculation of the periodogram is
made under the assumption that there is a single stable period in the series. If several
periods are present, the periodogram may be so distorted that its interpretation could
lead to erroneous conclusions. Enright (1965) provides examples of such distortions,
using artificial series. Other methods, discussed below, are better adapted to series with
several periods.

T = 4 1 2 3 4 T = 5 1 2 3 4 5

Row 1 2 2 4 7 Row 1 2 2 4 7 10

Row 2 10 5 2 5 Row 2 5 2 5 8 4

Row 3 8 4 1 2 Row 3 1 2 5 9 6

Row 4 5 9 6 3 Row 4 3

Means 6.25 5 3.25 4.25 Means 2.75 2 4.67 8 6.67

Range = 3, standard deviation = 1.0951 Range = 6, standard deviation = 2.2708

Periodogram
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Ecological application  12.4a

Enright (1965) re-examined 17 time series taken from the literature, which described the activity
of animals as diverse as the chaffinch, laboratory rat, crayfish, oyster, quahog (mollusc), and
fiddler crab. The purpose of Enrigh’s study was to determine, using periodograms, whether the
cycles of activity described by the authors of the original papers (solar, i.e. 24 h, or lunar,
i.e. 24.8 h) could withstand rigorous numerical analysis.

The approach is exemplified here by a series of 28 days of observations on the perch-
hopping activity of a chaffinch, a European songbird, kept under constant light conditions. The
periodogram shown in Fig. l2.11a is clearly dominated by a period of 21.8 h. Figures 12.11b-d
display the mean values  of the columns of the Buys-Ballot tables constructed for some of
the time periods investigated: Tk = 21.8, 24.0 and 24.8 h. (The values  of Fig. 12.11b-d
were used to calculate the amplitudes of the periodogram, Fig. 12.11a.) Similar figures could be
drawn for each point of the periodogram, since a Buys-Ballot table was constructed for each
period considered. Without the array of values in the periodogram, examination of, say, the sole
Buys-Ballot table for Tk = 24 h (Fig. 12.11c) could have led to the conclusion of a diurnal
rhythm. Similarly, examination of the table for Tk = 24.8 h (Fig. 12.11d) could have suggested a
lunar rhythm. In the present case, the periodogram allowed Enright to (1) reject periods that are
intuitively interesting (e.g. Tk = 24 h) but whose amplitude is not significantly high, and
(2) identify a somewhat unexpected 21-h rhythm, which seems to be of endogenous nature.

The 17 data series re-examined by Enright (1965) had been published with the objective of
demonstrating the occurrence of diurnal or tidal cycles. Enright’s periodogram analyses
confirmed the existence of diurnal cycles for only two of the series: one for the rat locomotor
activity and one for the quahog shell-opening activity. None of the published series actually
exhibited a tidal (lunar) cycle. This stresses the usefulness of periodogram analysis in ecology
and the importance of using appropriate numerical methods when dealing with data series.

Figure 12.10 Periodogram of Whittaker and Robinson for the artificial data series. The periodogram may be
based on either the range or standard deviation amplitude statistics.
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Figure 12.11 (a) Periodogram for the chaffinch perch-hopping activity series (n = 672 data points). The
amplitude was calculated using Enright's formula (eq. 12.13). The three lower panels illustrate
examples of values from which the amplitudes in (a) were calculated. These graphs show the
means  of the columns in the Buys-Ballot tables, as functions of time, for periods Tk of
(b) 21.8 h, (c) 24.0 h, and (d) 24.8 h. After Enright (1965).
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2 — Contingency periodogram of Legendre et al.

Another type of periodogram has been proposed by Legendre et al. (1981) to identify
rhythms in series of qualitative ecological data. In this contingency periodogram, the
Buys-Ballot table is replaced by a contingency table (Section 6.2). The columns of the
table (Colwell, 1974) are the same as in a Buys-Ballot table, but the rows are the r
states of the qualitative descriptor under study. Values in the table are frequencies fij of
the states of the descriptor (rows i), observed at the various times (columns j) of period
Tk. As in the periodogram of Whittaker & Robinson (above), a different table is
constructed for each period Tk considered in the periodogram.

Information (H) as to the states of the qualitative variable of interest (S), which is
accounted for by a given period Tk , is the information in common between S and the
sampling axis X (most often, time). This amount of information is computed as the
intersection between S and X, for period Tk:

(12.14)

Equation 12.14 is the same as eq. 6.10, used for calculating the information shared by
two descriptors (statistic B), so that  = B. 

The contingency periodogram is a graph of the values  = B on the
ordinate, as a function of periods Tk. Periodograms, as well as spatial correlograms
(Section 13.1), are often read from left (shortest periods or lags) to right (larger periods
or lags). This is the case when the process that may have generated the periodic or
autocorrelated structure of the data, if any, is assumed to be stronger at small lags and
to generate short periods before these are combined into long periods.

Section 6.2 has shown that statistic B is related to Wilks’  statistic:

  = 2nB     (when B in nats; eq. 6.13)

or  = 2nB loge 2 = nB loge 4     (when B in bits; eq. 6.14).

Because  can be tested for significance, critical values may be drawn on the
periodogram. The critical value of B is found by replacing  in eq. 6.13 by the
critical value :

Bcritical = /2n     (for B in nats)

 is read from a χ2 table, for significance level α and ν = (r – 1)(Tk – 1). For the
periodogram, an alternative to B is to plot the  statistic as a function of periods Tk;
the critical value to be use is then  directly. As one proceeds from left (smaller
periods) to right (larger periods) in the periodogram, Tk and ν increase; as a
consequence, the critical value,  or Bcritical, monotonically increases from left to
right in this type of periodogram, as will be shown in the numerical example below.
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Since multiple tests are performed in a contingency periodogram, a correction must
be made on the critical values of B (Box 1.3). The simplest type is the Bonferroni
correction, where significance level α is replaced by α' = α/(number of simultaneous
tests). In a periodogram, the number of simultaneous tests is the number of periods Tk
for which the statistic (B or ) has been computed. Since the maximum number of
periods that can be investigated is limited by the observational window (Section 12.0),
the maximum number of simultaneous tests is [(n/2) – 1] and the strongest Bonferroni
correction that can be made is α' = α/[(n/2) – 1]. This is the correction recommended
by Oden (1984) to assess the global significance of spatial correlograms
(Section 13.1). In practice, when analysing long data series, one usually does not test
the significance past some arbitrarily chosen point; if there are h statistics that have
been tested for significance, the Bonferroni method would call for a corrected
significance level α' = α/h.

There are two problems with the Bonferroni approach applied to periodograms and
spatial correlograms. The first one is that the correction varies in intensity, depending
on the number of periods (in periodograms) or lags (in spatial correlograms) for which
statistics have been computed and tested. The second problem is that the interest in the
results of tests of significance decreases as the periods (or lags) get longer, especially
in long data series; when a basic period has been identified, its harmonics are of lesser
interest. These problems can be resolved by resorting to a progressive Bonferroni
correction, proposed by P. Legendre in the Hewitt et al. (1997) paper. In this method,
the first periodogram or spatial correlogram statistic is tested against the α significance
level; the second statistic is tested against the Bonferroni-corrected level α' = α/2
because, at this point, two tests have been performed; and so forth until the k-th
statistic, which is tested against the Bonferroni-corrected level α' = α/k. This approach
also solves the problem of “where to stop computing a periodogram or spatial
correlogram”; one goes on as long as significant values are likely to emerge,
considering the fact that the significance level becomes progressively more stringent.

Numerical example. Consider the following series of qualitative data (n = 16), for a
qualitative variable with 3 states (from Legendre et al., 1981):

1, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 1, 2, 3, 3, 1

To analyse period Tk = 4, for instance, the series is cut into segments of length 4 as follows:

1, 1, 2, 3;    3, 2, 1, 2;    3, 2, 1, 1;    2, 3, 3, 1

and distributed in the successive rows of the table. The first four data go into columns 1 to 4 of
the contingency table, each one in the row corresponding to its code; similarly, observations 5 to
8 are placed into the columns of the table, each in the row corresponding to its code; and so
forth. When the operation is completed, the number of occurrences of observations are counted
in each cell of the table, so that the resulting table is a contingency table containing frequencies

XW
2

Progressive
Bonferroni
correction
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fij. As an exercise, readers should try to reproduce the contingency tables shown below for Ti = 4
and Ti = 5. The values of  and B (in nats) are given for these two periods:

Repeating the calculations for k = 2 to 8 produces the periodogram shown in Fig. 12.12.
Only  = 26.72 (T = 5) is larger than the corresponding critical value, which may be
computed in various ways (as explained above), depending on the need:

• Uncorrected critical value: α = 0.05, ν = (3 – 1)(5 – 1) = 8, critical  = 15.5. Bcritical
= 15.5/(2 × 16) = 0.484.

• Bonferroni correction for 7 simultaneous tests: α' = α/(n/2 – 1) = 0.05/7, ν = 8, critical
 = 21.0. Bcritical = 21.0/32 = 0.656.

• Progressive Bonferroni correction. Example for the 4th test: α' = α/4 = 0.05/4, ν = 8, critical
 = 19.5. Bcritical = 19.5/32 = 0.609.

Thus, the only significant period in the data series is Tk = 5.

T = 4 1 2 3 4 T = 5 1 2 3 4 5

State 1 1 1 2 2 State 1 3 3 0 0 0

State 2 1 2 1 1 State 2 1 0 3 0 1

State 3 2 1 1 1 State 3 0 0 0 3 2

B (in nats) = 0.055,  = 1.76 B (in nats) = 0.835,  = 26.72

XW
2

XW
2

XW
2

Figure 12.12 Contingency periodogram for the artificial data series (circles). The contingency statistic used
here is B = H(S ∩ X). (1) Uncorrected critical values. (2) Bonferroni-corrected critical values,
correcting for 7 simultaneous tests in the observational window. (3) Progressive Bonferroni
correction; the first value (Tk = 2) is without correction, while the last (Tk = 8) receives the full
Bonferroni correction.
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The contingency periodogram can be directly applied to qualitative descriptors.
Quantitative or semiquantitative descriptors must be divided into states before analysis
with the contingency periodogram. A method to do so is described in Legendre et al.
(1981).

In their paper, Legendre et al. (1981) established the robustness of the contingency
periodogram in the presence of strong random variations, which often occur in
ecological data series, and its ability to identify hidden periods in series of non-
quantitative ecological data. Another advantage of the contingency periodogram is its
ability to analyse very short data series.

One of the applications of the contingency periodogram is the analysis of
multivariate series (e.g. multi-species; Ecological application 12.4b). Such series may
be transformed into a single qualitative variable describing a partition of the
observations, found through a clustering method. With the contingency periodogram,
it is possible to analyse the data series, now transformed into a single nonordered
variable corresponding to the partition of the observations. The only alternative
approach would be to carry out the analysis on the multivariate distance matrix among
observations, using the Mantel correlogram described in Subsection 13.1.5.

Ecological application  12.4b

Phytoplankton was enumerated in a series of 175 water samples collected hourly at an anchor
station in the St. Lawrence Estuary (Québec). Using the contingency periodogram, Legendre et
al. (1981) analysed the first 80 h of that series, which corresponded to neap tides. The original
data consisted of six functional taxonomic groups. The six-dimensional quantitative descriptor
was transformed into a one-dimensional qualitative descriptor by clustering the 80 observations
(using flexible clustering; Subsection 8.5.10). Five clusters of “hours” were obtained; each hour
of the series was attributed to one of them. Each cluster thus defined a state of the new
qualitative variable resulting from the classification of the hourly data. 

When applied to the qualitative series, the contingency periodogram identified a significant
period T = 3 h, which suggested rapid changes in surface waters at the sampling site. The integer
multiples (harmonics) of the basic period (3 h) in the series also appeared in the contingency
periodogram. Periods T = 6 h, 9 h, and so on, had about the same significance as the basic
period, so that they did not indicate the presence of additional periods in the series.

3 — Periodograms of Schuster and Dutilleul

For quantitative serial variables, there exists another method for calculating a
periodogram, which is mathematically more complex than the periodogram of
Whittaker and Robinson (Subsection 12.4.1) but is also more powerful. It is sometimes
called harmonic analysis or periodic regression. This method is based on the fact that
the periodic variability present in series of quantitative data can often be represented
by a sum of periodic terms, involving combinations of sines and cosines (Fig. 12.13):

Harmonic
analysis
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Figure 12.13 Fourier series. The periodic variation (bottom series) results from the sum of three sines and
three cosines, which make up a harmonic sequence (Tk = T, T/2 and T/3). The mean of the series
is 0 (a0 = 0) and the amplitude of each sine and cosine is equal to 1 (ak = bk = 1).

x

x

x

x

x

x
cos 2π

T/3
x( )

sin 2π
T

x( )

cos 2π
T

x( )

cos 2π
T/2

x( )

sin 2π
T/3

x( )

sin 2π
T/2

x( )

+

+

+

+

+

=

∑ sin 2π
T

x( )cos 2π
T

x( )i i+

i = 1

3

x

T



Periodic variability: periodogram 675

(12.15)

Equation 12.15 is called a Fourier series. Constant a0 is the mean of the series,
whereas parameters ak and bk determine the importance of a given period Tk in the
resulting signal. Using eq. 12.15, any periodic signal can be partitioned into a
sequence of superimposed oscillations (Fig. 12.13). The term [(2π/Tk)/x] transforms
the explanatory variable x into a cyclic variable. Periods Tk are generally chosen in
such a way that the sines and cosines, which model the data series, are harmonics
(Section 12.0) of a fundamental period T0:Tk = T0/k (where k = 1, 2, …, n/2). Periods
Tk become shorter as k increases. Equation 12.15 may be rewritten as:

Generally, T0 is taken equal to the length of the series (T0 = n∆, where ∆ is the interval
between data points), so that:

(12.16)

The purpose of Fourier analysis is not to determine the values of coefficients ak and
bk, but to find out which periods, among all periods Tk, best explain the variance
observed in the response variable y(x). After estimating the values of ak and bk, the
amplitude of the periodogram for each period Tk is computed as the fraction of the
variance of the series that is explained by the given period. This quantity, which is a
coefficient of determination, combines the estimates of coefficients ak and bk as
follows:

(12.17)

Values in the periodogram are thus calculated by fitting to the data series (by least
squares) a finite number of sine and cosine functions with different periods. There are
n/2 such functions in the harmonic case. The shortest period considered is 2∆
(Tk max =T0/(n/2) = n∆/(n/2) = 2∆). It corresponds to the limit of the observational
window (Section 12.0). The amplitude is computed for each period Tk independently.

Plotting the amplitudes from eq. 12.17 as a function of periods Tk produces the
periodogram of Schuster (1898), which is used to identify significant periods in data
series. Frequencies Tk are in general harmonics of T0, but it is also possible to choose
them to correspond to values of particular interest in the study. Contrary to the
periodogram of Whittaker & Robinson, which does not refer to an underlying
mathematical model, Schuster’s periodogram is based on Fourier series (eqs. 12.15
and 12.16). Indeed, Kendall & Ord (1990, p. 158) have shown that any time series may
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be decomposed into a set of cycles based on the harmonic frequencies, even if the
series does not display periodicity. 

One advantage of Schuster’s periodogram is that it can handle series with several
periods, contrary to the periodogram of Whittaker and Robinson which is limited to
series with only one stable period (see above). Values in Schuster’s periodogram may
be tested for significance by reference to a critical value, which is calculated using a
formula derived from Anderson (1971, p. 110 et seq.):

(12.18)

where n is the number of observations in the series, m is the largest computed
harmonic period (usually, m = n/2), and α is the probability level. 

Ecological application  12.4c

Demers & Legendre (1981) used Schuster’s periodogram to analyse a 76-h series of
oceanographic data. For a significance level α = 0.05, the critical value for the periodogram was:

Thus, any period explaining more than 17.4% of the variance of the series was significantly
different from zero at level α = 0.05.

Ecological application  12.4d

The time series of chlorophyll a and Trichodesmium filaments in tropical waters (Steven &
Glombitza, 1972), already discussed in Ecological applications 12.3b and 12.3c, were subjected
to harmonic analysis. Results are reported in Table 12.8. Each column of results could also be
plotted as a periodogram. The period T = 120 days, already evidenced by autocorrelation
(Fig. 12.8) and cross-correlation (Fig. 12.9), was also clearly identified by harmonic analysis.

Periods that do not correspond to an integer number of cycles in the series are
usually not computed in Schuster’s periodogram, although there is nothing that
prevents it mathematically except the fact that the test of statistical significance of
individual values (eq. 12.18) is only asymptotically valid with fractional frequencies.
As a consequence, Schuster’s periodogram is poorly adapted to the analysis of short
time series, in which the periods of interest are likely to be fractional. A rule of thumb
is to only analyse series that are at least 10 times as long as the longest hypothesized
period.

Dutilleul (1990) proposed to modify Schuster’s periodogram, in order to compute
the portion of total variance associated with periods that do not correspond to integer
fractions of the fundamental period T0 (i.e. fractional periods). The method allows a
more precise detection of the periods of interest and is especially useful with short
data series.

2 n⁄( )– loge 1 1 α–m–( )

2 76⁄( )– loge 1 1 0.05α–38–( ) 0.174 17.4%= =
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The statistic in Dutilleul’s modified periodogram is the exact fraction of the total
variance of the time series explained by regressing the series on the sines and cosines
corresponding to one or several periodic components. In contrast, Schuster’s
periodogram is estimated for a single period at a time, i.e. each period Tk in eq. 12.15.
It follows that, when applied to short series, Schuster's periodogram generally only
provides an approximation of the explained fraction of the variance. In general, the
number of periodic components actually present in a series is unknown a priori, but it
may be estimated using a stepwise procedure proposed by Dutilleul (1990; see also
Dutilleul, 1998). The modified periodogram thus offers two major extensions over
Schuster’s: (1) it may be computed for several periods at a time (i.e. it is
multifrequential) and (2) its maximization over the continuous domain of possible
periods provides the maximization of the sum of squares of the corresponding
trigonometric model fitted by least squares to the series. Both periodograms lead to the
same estimates when computed for a single period over a long data series, or when the
period corresponds to an integer fraction of T0. In all other cases, the modified
periodogram has better statistical properties (Dutilleul, 1990; see also Legendre &
Dutilleul, 1992; Dutilleul & Till, 1992; Dutilleul, 1998): 

• The explained fraction of the variance tends to be maximum for the true periods
present in the time series, even when these are fractional, because the periodogram
statistic exactly represents the sum of squares of the trigonometric model fitted by least
squares to the series at the frequencies considered, whether these are integers or not
(when expressed in number of cycles over the series).

• Assuming normality for the data series, the periodogram statistic is distributed like
χ2 for all periods in small or large samples, which leads to exact tests of significance.

Table 12.8 Harmonic analysis of time series of chlorophyll a and Trichodesmium filaments, in tropical
marine waters. The Table reports the amplitudes corresponding to harmonic periods. The
dominant period (Tk = 120) is in italics. After Steven & Glombitza (1972).

Harmonic Period Nonfiltered series Filtered series

k Tk = 840 days/k Chl a Trichodesmium Chl a Trichodesmium

4 210 0.007 67 0.010 75

5 168 0.007 178 0.006 168

6 140 0.022 113 0.019 129

7 120 0.039 318 0.038 311

8 105 0.017 147 0.016 162

9 93 0.018 295 0.019 291

10 84 0.020 123 0.020 144

Dutilleul
periodogram



678 Ecological data series

With Schuster’s periodogram, this is only the case for periods corresponding to integer
fractions of T0 or, outside these periods, only for large samples.

• When the number of frequencies involved in the computation corresponds to the true
number of periodic components in the series, the frequencies maximizing the
periodogram statistic are unbiased estimates of the true frequencies. The stepwise
procedure mentioned above allows the estimation of the number of periodic
components present in the series.

In order to compare Dutilleul’s periodogram to Schuster’s, Legendre & Dutilleul
(1992) created a test data series of 30 simulated observations containing two periodic
components, which jointly accounted for 70.7% of the total variance in the series, with
added noise. The true periods were T = 12 and 15 units. Schuster’s periodogram
brought out only one peak, because the two components were close to each other and
Schuster’s periodogram statistic was estimated for only one period at a time. When
estimated for a single period, Dutilleul’s modified periodogram shared this drawback.
However, when estimated for the correct number of periods (i.e. two, as found by the
stepwise procedure mentioned above), the modified periodogram showed maxima near
the two constructed periods, i.e. at T = 11.3 and 14.4 units. The authors also compared
the results of Dutilleul’s method to those obtained with the stepwise procedure of
Damsleth & Spjøtvoll (1982), which is based on Schuster’s periodogram. Results from
the latter (estimated periods T = 10.3 and 13.5) were not as good as with Dutilleul’s
modified periodogram. Dutilleul (1998) also showed the better performance of the
modified periodogram over autocorrelograms in the context of scale analysis. 

Dutilleul & Till (1992) published an application of the modified periodogram to the
analysis of long dendrochronological series. Dutilleul’s periodogram clearly detected
the annual solar signal in cedar tree-ring series in the Atlas, a sub-tropical region
where, typically, the annual dendrochronological signal is weak. An application to a
series of moderate length (river discharge) was published by Tardif et al. (1998).

4 — Harmonic regression

Legand (1958) proposed to use the first term of the Fourier series (eq. 12.15) to
analyse ecological periodic phenomena with known sinusoidal periodic variability
(e.g. circadian). This method is called harmonic regression. As in the case of Fourier
series (see above), the explanatory variable x (e.g. time of day) is transformed into a
cyclic variable:

(12.19)

In the above expression, which is the first term of a Fourier series, T is the period
suggested by hypothesis (e.g. 24 hours); x is the explanatory variable (e.g. local time);
and 2π is replaced by 360° when angles are in degrees. Constant c fits the position of
the cosine along the abscissa, so that it corresponds to the time of minimum and

x'
2π
T

------ x c+( )cos= (angles in radians)
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maximum values in the data set. The regression coefficients are estimated, as usual, by
the least-squares method:

Ecological application  12.4e

Angot (1961) studied the diurnal cycle of marine phytoplankton production near New
Caledonia, in the South Pacific. Values of primary production exhibited regular diurnal cyclic
variations, which might reflect physiological rhythms. After logarithmic transformation of the
primary production values, the author found significant harmonic regressions, with T = 24 h and
c = 3 h, the explanatory variable x being the local time. Coefficients of regression b0 and b1 were
used to compare different sampling sites.

Ecological application  12.4f

Taguchi (1976) used harmonic regression to study the short-term variability of marine
phytoplankton production for different irradiance conditions and seasons. Data, which
represented a variety of coastal conditions, were first transformed into ratios of production to
chlorophyll a. The explanatory variable x was local time, c = 4 h, and T was generally 24 h. The
intercept b0 represented the mean production and b1 was the slope of the regression line. The
two coefficients decreased with irradiance and varied with seasons. The author interpreted the
observed changes of regression coefficients in terms of photosynthetic dynamics.

Periodogram analysis is of interest in ecology because calculations are relatively
simple and interpretation is direct. The correlogram and periodogram approaches,
however, often give way to spectral analysis (next Section). Spectral analysis is more
powerful than correlogram or periodogram analyses, but it is also a more complex
method for studying series. For simple problems where spectral analysis would be an
unnecessary luxury, ecologists should rely on correlograms or, better, periodograms.

12.5 Periodic variability: spectral analysis

Spectral analysis is the most advanced approach to analyse data series. The general
concepts upon which spectral analysis is founded are described below and illustrated
by ecological applications. However, the analysis cannot be conducted without taking
into account a number of theoretical and practical considerations, whose discussion
exceeds the scope of the present book. Interested readers should refer, for instance, to
the review papers by Platt & Denman (1975) and Fry et al. (1981). They may also
consult the book of Bendat & Piersol (1971) and the references provided at the end of
Section 12.0. Ecologists wishing to use spectral analysis are advised to consult a
colleague with practical experience of the method. Up to now, spectral analysis has
been used mostly by engineers, physicists, and Earth scientists, but applications to
ecological data series are rapidly increasing in number.

ŷ b0 b1x'+=
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1 — Series of a single variable

In the previous section, calculation of the periodogram involved least-squares fitting of
a Fourier series to the data (eq. 12.15):

When calculating Schuster’s periodogram, the Fourier series was constructed using
periods Tk. In spectral analysis, frequencies fk = 1/Tk are used instead of periods Tk.
Thus, eq. 12.15 is rewritten as:

(12.20)

Using a formula similar to eq. 12.17, the intensity of the periodogram, at frequency
fk, is computed using the least-squares estimates of coefficients ak and bk:

(12.21)

The intensity of the periodogram is defined only for harmonic frequencies k/n∆. It is
possible, however, to turn the intensity of the periodogram into a continuous function
over all frequencies from zero to the Nyquist frequency (see Section 12.0). This
defines the spectrum of the series:

(12.22)

The spectrum is thus a continuous function of frequencies, whereas the periodogram is
discontinuous. Calculation and interpretation of spectra is the object of spectral
analysis. Because of its origin in the field of electricity and telecommunications, the
spectrum is sometimes called “power spectrum” or “energy spectrum”. As shown
below, it is also a “variance spectrum”, which is the terminology used in ecology.

In algebra, there exist mathematically equivalent pairs of equations, which are used
to go from one independent variable to another. Two mathematically equivalent
equations, one being a function of x and the other a function of frequency f = 1/x, are
called a pair of Fourier transforms. It can be shown that the autocovariance or
autocorrelation function (eqs. 12.5-12.7) and the spectral density function (eq. 12.22)
are a pair of Fourier transforms. Therefore, both the correlogram (Section 12.3) and
periodogram analyses (Section 12.4), when they are generalized, lead to spectral
analysis (Fig. 12.14). Classically, the spectrum is computed by Fourier transformation
of the autocorrelation, followed by smoothing. There is another method, called Fast
Fourier Transform (FFT), which is faster than the previous approach (shorter
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computing time) and efficiently computes the pair of Fourier transforms written in
discrete form. This last method has the advantage of computational efficiency, but it
involves a number of constraints which can only be fully mastered after acquiring
some practical experience of spectral analysis. 

The spectrum computed from a correlogram or autocovariance function is an
unbiased estimate of the true spectrum. However, the standard error of this spectral
estimate is 100%, whatever the length of the series. It follows that the computed
spectrum must be smoothed in order to reduce its variance. Smoothing is done using a
window, which is a function by which one multiplies the spectrum itself (spectral
window), or the autocovariance estimates (lag window) prior to Fourier
transformation. The two types of windows lead to the same result. The main problem
of smoothing is that reduction of the standard error of the spectral estimates, on the
ordinate, always leads to spreading of the variance on the abscissa. As a result, the
spectral estimate, at any given frequency, may become contaminated by variance that
is “leaking” from neighbouring frequencies. This leakage may result in biased
smoothed spectral estimates. The various windows found in the literature (e.g. Bartlett,
Daniell, de la Valle-Poussin or Parzen, Hamming, von Han, Tukey) provide different
compromises between reduction of the standard error of spectral estimates and loss of
resolution between adjacent frequencies. In the literature for ecologists, Platt &
Denman (1975) mainly discuss Bartlett’s window, whereas Laurec (1982, pp. 242-
245) compares the windows of Bartlett, Daniell, Parzen (or de la Valle-Poussin), and
Tukey. As already stressed above, the practical aspects of spectral analysis, including
the choice of windows, filters (Section 12.2), and so on, most often necessitate the help
of an experienced colleague.

The ecological interpretation of spectra is not necessarily the same as that of
correlograms or periodograms. First, the spectrum is a true partition of the variance of
the series among frequencies. Therefore, spectral analysis is a third type of variance

Figure 12.14 Relationships between a data series, its correlogram and periodogram, and its variance
spectrum.
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decomposition, in addition to the usual partitioning among experimental factors or
sampling axes (ANOVA) and the partition among principal axes (Sections 4.4 and 9.1).
The units of spectral density are [variance × frequency–1], i.e. [(units of the response
variable y)2 × (units of the explanatory variable x)]. Therefore, the variance that
corresponds to a frequency band is the area under the curve between the upper and
lower frequencies, i.e. the integration of [variance × frequency–1] over the frequency
band. Spectra may be computed to identify harmonics in the data series or they may be
regarded as characteristics of whole series, whether they are true sums of harmonics or
not (Kendall & Ord, 1990, p. 158). Following this idea, Platt & Denman (1975)
suggested the concept of spectroscopy of ecosystems, i.e. the characterization of
ecosystems according to their spatio-temporal scales, which could provide a global
approach to the study of ecological systems. These concepts should become clearer
with the following Ecological applications.

Ecological application  12.5a

At an anchor station in the Gulf of St. Lawrence, Platt (1972) continuously recorded in vivo
fluorescence in surface waters as an estimate of phytoplankton chlorophyll a. Spectral analysis
of the detrended data series (Fourier transform of autocorrelation) resulted in a spectrum
characterized by a slope of –5/3, over frequencies ranging between ca. 0.01 and 1 cycle min–1.
The average current velocity being ca. 20 cm s–1 (10 m min–1), the time series covered spatial
scales ranging between ca. 1000 and 10 m (wavelength = speed × frequency–1). This is
illustrated in Fig. 12.15.

Interpretation of the spectrum was based on the fact that spectral analysis is a type of
variance decomposition in which the total variance of the series is partitioned among the
frequencies considered in the analysis (here: 0.03 cycle min–1 < f < 1.5 cycle min–1). The slope
–5/3 corresponds to that of turbulent processes. This led the author to hypothesize that the local
concentration of phytoplankton could be mainly controlled by turbulence. In a subsequent
review paper, Platt & Denman (1975) cite various studies, based on spectral analysis, whose
results confirm the hypothesis that the mesoscale spatial organization of phytoplankton is
controlled by physical processes, in both marine and freshwater environments. This is in fact a
modern version of the model proposed in 1953 by Kierstead & Slobodkin, which is discussed in
Ecological applications 3.2d and 3.3a. Other references on spectral analysis of in vivo
fluorescence series include Demers et al. (1979), Denman (1976, 1977), Denman & Platt (1975,
1976), Denman et al. (1977), Fashman & Pugh (1976), Legendre & Demers (1984), Lekan &
Wilson (1978), Platt (1978), Platt & Denman (1975), and Powell et al. (1975), among others.

Ecological application  12.5b

Campbell & Shipp (1974) tried to explain the migrations of an Australian cricket from
observations on rhythms of locomotor activity of the males and females. One summer migration
was followed during 100 days, starting in mid-February. In addition, locomotor activity rhythms
of the males and females were observed in the laboratory during ca. 100 days. Fig. 12.16 shows
smoothed spectra for numbers of migrating crickets and locomotor activity, for both sexes.

Peaks corresponding to periods of ca. 2.5, 5, 10, and 20 days were observed in one or several
spectra, which suggested a long-term biological rhythm with several harmonics. It followed
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from spectral analysis that the migratory waves might be explained by synchronization of the
locomotor activity cycles of individuals in the population. Migrations of the males appeared to
follow a 20-day cycle, whereas those of females seemed to follow a cycle of ca. 10 days. The
authors suggested that, during these periods, males attract females to their burrows and form
relatively stable couples.

2 — Multidimensional series

Spectral analysis may be used not only with univariate but also with multidimensional
series, when several ecological variables have been recorded simultaneously. This
analysis is an extension of cross-covariance or cross-correlation, in the same way as
the variance spectrum is a generalization of autocovariance or autocorrelation
(Fig. 12.14).

From two data series, yj and yl, one can compute a pair of smoothed spectra Sjj and
Sll and a cross-correlation function rjl(k). These are used to define the co-spectrum
(Kjl) and the quadrature spectrum (Qjl):

Kjl(f) = Fourier transform of [rjl(k) + rjl(–k)]/2 (12.23)

Qjl(f) = Fourier transform of [rjl(k) – rjl(–k)]/2 (12.24)

Figure 12.15 Horizontal distribution of chlorophyll a (in vivo fluorescence; arbitrary units) in surface waters
of the Gulf of St. Lawrence. The two parallel lines on the variance spectrum show the envelope
of calculated spectral densities. The Nyquist frequency is 1.5 cycle min-1. After Platt (1972).
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The co-spectrum (eq. 12.23) measures the distribution, as a function of frequencies, of
the covariance between those components of the two series that are in phase, whereas
the quadrature spectrum (eq. 12.24) provides corresponding information for a phase
shift of 90° between the same components. For example, a sine and cosine function are
in perfect quadrature. These spectra are used, below, to compute the coherence, phase,
and gain.

The cross-amplitude spectrum is defined as:

(12.25)

Figure 12.16 Estimates of smoothed spectra for numbers of migrating (a) male and (b) female crickets and for
the locomotor activity of (c) male and (d) female crickets in the laboratory. The Nyquist
frequency is 0.5 cycle day–1. Periods corresponding to the main peaks are indicated above the
curve, in order to facilitate interpretation; periods are the inverse of frequencies (abscissa). After
Campbell & Shipp (1974).
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The spectra for yj and yl are used to compute the (squared) coherence spectrum (Cjl)
and the phase spectrum (Φjl):

(12.26)

(12.27)

The squared coherence (eq. 12.26) is a dimensionless measure of the correlation of the
two series in the frequency domain; = 1 indicates perfect correlation between
two series whereas =  0 implies the opposite, for frequency f. The phase
spectrum (eq. 12.27) shows the phase shift between the two series. When the phase is a
regular function of the frequency, the squared coherence is usually significantly
different from zero; when the phase is very irregular, the squared coherence is
generally low and not significant.

In order to assess the causal relationships between two variables, one can use the
gain spectrum ( ), which is analogous to a coefficient of simple linear regression.
One can determine the response of yj to yl:

(12.28)

or, alternatively, the response of yl to yj:

(12.29)

Ecological application  12.5c

In a study of the spatial variability of coastal marine phytoplankton, Platt et al. (1970) repeated,
in 1969, the sampling programme of 1968 described in Ecological application 10.3a. This time,
data were collected not only on chlorophyll a but also on temperature and salinity at 80 sites
along a transect. Figure 12.17 shows the coherence spectra for the three pairs of series, recorded
on 24 June. Strong coherence between temperature and salinity indicates that these variables
well-characterized the water masses encountered along the transect. Significant coherence
between the series of chlorophyll a and those of temperature and salinity, at ca. 3 cycles (naut.
mi.)–1, were consistent with the hypothesis that the spatial distribution of phytoplankton was
controlled to some extent by the physical structure of the environment.
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Ecological application  12.5d

In order to identify the factors controlling the spatial heterogeneity of marine phytoplankton
(patchiness), Denman & Platt (1975) analysed values of chlorophyll a and temperature, recorded
continuously along a transect in the St. Lawrence Estuary. Two pumping systems were towed, at
depths of 5  and 9 m, over a distance of 16.6 km (10 nautical miles). The sampling interval was
1 s, which corresponds to 3.2 m given the speed of the ship. After detrending, computations
were carried out using the Fast Fourier Transform. Four coherence and phase spectra were
calculated, as shown in Fig. 12.18.

For a given depth (Fig. 12.18a: 5 m; b: 9 m), the coherence between temperature and
chlorophyll a was high at low frequencies and the phase was relatively constant. At higher
frequencies, the coherence decreased rapidly and the phase varied randomly. The lower panels
of Fig. 12.18 indicate the absence of covariation between series from different depths. The
authors concluded that physical processes played a major role in the creation and control of
phytoplankton heterogeneity at intermediate scales (i.e. from 50 m to several kilometres). Weak
coherence between series from the two depths, which were separated by a vertical distance of
only 4 m, suggested the presence of a strong vertical gradient in the physical structure. Such

Figure 12.17 Coherence spectra between pairs of variables sampled along a transect 8 nautical miles long in
St. Margaret’s Bay (Nova Scotia, Canada). Dashed lines: approximate 95% confidence limits.
After Platt et al. (1970).
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gradients are known to favour the propagation of internal waves (analogous to the propagation
of waves at the air-water discontinuity). The authors proposed that the strong coherence between
temperature and chlorophyll a, at each of the sampled depths, could reflect the presence of
internal waves.

In the last paragraphs, the approach to multidimensional situations was to consider
two series at a time. Brillinger (1981) provides the mathematical bases for processing
multidimensional series using methods that are fully multivariate. When a stochastic
series is a time-invariant function of several other series, the method recommended is
frequency regression. It is analogous to multiple linear regression (Subsection 10.3.3),
computed in the frequency domain. More generally, the method to study relationships
among several series is that of principal components in the frequency domain (see
Ecological application 12.5e). In this case, a spectrum is computed for each of the

Figure 12.18 Values of coherence (solid lines) and phase (open circles), for pairs of spatial series continuously
recorded in the St. Lawrence Estuary. Abscissa: wavenumber (= 2π/wavelength =
2π frequency/speed). Adapted from Denman & Platt (1975).
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principal components, which are linear combinations of the serial variables
(Section 9.1). The method has been adapted by Laurec (1979), who explained how to
use it in ecology.

Another approach to the analysis of multivariate data series is Mantel’s
correlogram (Subsection 13.1.5). This type of correlogram is based upon a similarity
or distance matrix among observations (Chapter 7), so that it is suitable for
multivariate data. It may also be used to analyse series of semiquantitative, qualitative,
or even binary data, like the species presence-absence data often collected by
ecologists. The geostatistical literature proposes other approaches to the analysis of
multivariate data series. Some of these are mentioned in Subsections 1.6.3 and 13.1.4.

Ecological application  12.5e

Arfi et al. (1982, pp. 359-363) report results from a study on the impact of the main sewage
effluent of the city of Marseilles on coastal waters in the Western Mediterranean. During the
study, 31 physical, chemical, and biological variables were observed simultaneously, at an
anchor station 1 km offshore, every 25 min during 24 h (n = 58). Spectra for individual series
(detrended) all show a strong peak at T = ca.  6 h. Comparing the 31 data series two at a time did
not make sense because this would have required (31 × 30)/2 = 465 comparisons. Thus, the 31-
dimensional data series was subjected to principal component analysis in the frequency domain.
Figure 12.19 shows the 31 variables, plotted in the plane of the first two principal components
(as in  Fig. 9.6), for T = 6 h. The long arrows pointing towards the upper left-hand part of the
graph correspond to variables that were indicative of the effluent (e.g. dissolved nutrients,
bacterial concentrations) whereas the long arrows pointing towards the lower right-hand part of
the ordination plane correspond to variables that indicated unperturbed marine waters
(e.g. salinity, dissolved O2, phytoplankton concentrations). The positions of the two groups of
variables in the plane show that their variations were out of phase by ca. 180°, for period
T = 6 h. This was interpreted as a periodic increase in the effluent every 6 h. This periodicity
corresponds to the general activity rhythm of the adjacent human population (wake-up, lunch,
end of work day, and bedtime).

3 — Maximum entropy spectral analysis

As explained in Subsection 1 above, estimating spectra requires the use of spectral or
lag windows. Each type of window provides a compromise between reduction of the
standard error of the spectral estimates and loss of resolution between adjacent
frequencies. As an alternative to windows, Burg (1967) proposed to improve the
spectral resolution by extrapolating the autocorrelation function beyond the maximum
lag (kmax), whose value is limited by the length of the series (Subsection 12.3.1). For
each extrapolated lag (kmax + k), he suggested to calculate an autocorrelation value
ryy(kmax + k) that maximizes the entropy (Chapter 6) of the probability distribution of
the autocorrelation function. Burg’s (1967) method will not be further discussed here,
because a different algorithm (Bos, 1971; see below) is now used for computing this
maximum entropy spectral analysis (MESA). Estimation of the spectrum, in MESA,
does not require spectral or lag windows. An additional advantage, especially for
ecologists, is that it allows one to compute spectra for very short series
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Data series may be mathematically described as stochastic linear processes. A
corresponding mathematical model is the autoregressive model (also called AR model
or all-pole model), where each observation in the series  (centred on the mean  of
the series: ) is represented as a function of the q preceding observations:

(12.30)

q specifies how many steps back one takes into account to forecast value . This is
called the order of the process. The autoregression coefficients φ are estimated using
the observations of the data series itself. Residual values at must be independent of one
another; the series of residual values is called white noise. Their overall variance is
noted . This type of model will be further discussed in Section 12.7.

Concerning maximum entropy spectral analysis, Bos (1971) has shown that the
maximum entropy method (MEM) proposed by Burg (1967) is equivalent to a least-
squares fitting of an AR model to the data series. Using the autoregression coefficients
φ, it is possible to compute the same spectral densities as those resulting from the
entropy calculation of Burg (1967). Thus, the spectrum is estimated directly from the

Figure 12.19 Principal component analysis in the frequency domain of 31 simultaneous series of physical,
chemical, and biological variables, obtained at an anchor station in the Western Mediterranean.
Plot of the 31 variables (arrows), in the plane of the first two principal components, for period
T = 6 h. Adapted from Arfi et al. (1982).
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autoregression coefficients φ of the AR model, which are themselves estimated from
the values  of the data series. The spectral density for each frequency f is:

(12.31)

where i = . Generally, the sampling interval ∆ = 1 time or space unit.

Maximum entropy spectral analysis is not entirely free of problems. Some of these
are still the subject of specialized papers. A first practical problem is choosing the
order q of the AR model for an empirical data series. Various criteria for determining q
have been reviewed by Berryman (1978) and Arfi & Dumas (1990). Another problem
concerns the estimation of the coefficients of the AR model (see, for instance, Ulrych
& Clayton, 1976). A third problem, also discussed by Ulrych & Clayton (1976), is that
other processes may fit the data series better than the AR model; for example, an
autoregressive-moving average model (ARMA; Section 12.7). Fitting such models,
however, may raise other practical problems. The criteria for deciding to use models
other than AR are partly intuitive (Section 12.7).

Ulrych & Bishop (1975) briefly reviewed the theoretical bases underlying the
algorithms of Burg (1967) and Bos (1971). They provide FORTRAN subroutines for
estimating the autoregression coefficients φ (also called autoregressive coefficients or
prediction error filter coefficients; G in the subroutines) and the variance of residuals

 (PM in the subroutines), using algorithms developed either by Yule-Walker or
Burg. These subroutines also offer the method of Akaike for determining the order q of
the best-fitting AR model. It is then easy to compute the values of the spectrum
(eq. 12.31). Barrodale & Erikson (1980a) propose another algorithm for estimating the
coefficients φ of the AR model, based on least squares, which provides a more precise
estimation of the spectrum frequencies. The same authors criticize, on an empirical
basis, the method of Akaike, and they propose a different approach. Barrodale &
Erikson (1980b) provide a FORTRAN program to compute the maximum entropy
spectrum using their algorithm.

Maximum entropy spectral analysis (summarized by Ables, 1974) has been
successfully used in astronomy, geophysics, meteorology, and so on. Its popularity for
the analysis of ecological data series is increasing. MESA can handle short series as
well as series with data exhibiting measurement errors (Ables, 1974). It may also be
used to analyse series with missing data (Ulrych & Clayton, 1976). Arfi & Dumas
(1990) compared MESA to the classical Fourier approach, using simulated and real
oceanographic data series. For long series (n = 450), the two approaches have the same
efficiency when noise is low, but MESA is more efficient when noise is high. For short
(n = 49 to 56) and very short (n = 30) series, MESA is systematically more efficient.
For long data series with low noise, it may often be simpler to compute the spectrum in
the traditional way (Berryman, 1978). However, for many ecological data series,
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MESA would be the method of choice. The maximum entropy approach can be
generalized to handle multivariate series, since coherence and phase spectra can be
computed (Ulrych & Jensen, 1974).

Spectral analysis and, thus, Objective 3 of the analysis of data series (Table 12.2),
are presently restricted to quantitative data. The only exception is the computation of
spectra for long (i.e. n > 500 to 1000) series of binary variables, using the method of
Kedem (1980). Since MESA is not very demanding as to the precision of the data, it
could probably be used as well for analysing series of semiquantitative data coded
using several states.

Ecological application  12.5f

Colebrook & Taylor (1984) analysed the temporal variations of phytoplankton and zooplankton
series recorded monthly in the North Atlantic Ocean and in the North Sea during 33 consecutive
years (1948 to 1980). Similar series were also available for some environmental variables
(e.g. surface water temperature). The series were analysed using MESA. In addition, coherence
spectra were computed between series of some physical variables and the series representing the
first principal component calculated for the plankton data. For the plankton series, one spectrum
was computed for each species in each of 12 regions, after which the spectra were averaged over
the species in each region. The resulting 12 species-averaged spectra exhibited a number of
characteristic periods, of which some could be related to periods in the physical environment
using coherence spectra. For example, a 3 to 4-year periodicity in plankton abundances was
associated to heat exchange phenomena at the sea surface. Other periods in the spectra of the
physical and biological variables could not easily be explained. Actually, 33-year series are
relatively short compared with the long-term meteorological or oceanographic variations, so that
some of the identified periods may turn out not to be true cycles.

12.6 Detection of discontinuities in multivariate series

Detection of discontinuities in multivariate data series is a problem familiar to
ecologists (Objective 4 in Section 12.2 and Table 12.2). For example, studies on
changes in species assemblages over time often refer to the concept of succession.
According to Margalef (1968), the theory of species succession within ecosystems
plays the same role in ecology as does evolutionary theory in general biology.

The simplest way to approach the identification of discontinuities in multivariate
series is by visual inspection of the curves depicting changes with time (or along a
spatial direction) in the abundance of the various taxa or/and in the values of the
environmental variables. For example, in Ecological application 8.9c, inspection of
Fig. 8.21 was sufficient to determine that a succession, from diatoms to dinoflagellates,
took place after the spring bloom. In most instances, however, simple visual
examination of a set of curves does not allow one to unambiguously identify
discontinuities in multivariate series. Numerical techniques must be used.

Succession
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Methods of series analysis described in Sections 12.3 to 12.5 are not appropriate
for detecting discontinuities in multivariate series, because the presence of
discontinuities is not the same as periodicity in the data. Four types of methods are
summarized here.

Instead of dividing multivariate series into subsets, Orlóci (1981) proposed a
multivariate method for identifying successional trends and separating them into
monotonic and cyclic components. This method may be viewed as complementary to
those described below.

1 — Ordinations in reduced space

Several authors have used ordinations in reduced space (Chapter 9) for representing
multispecies time series in low-dimensional space. To help identify the discontinuities,
successive observations of the time series are connected with lines, as in Figs. 9.5 and
12.23. When several observations corresponding to a bloc of time are found in a small
part of the reduced space, they may be thought of as a “step” in the succession. Large
jumps in the two-dimensional ordination space are interpreted as discontinuities. This
approach has been used, for example, by Williams et al. (1969; vegetation, principal
coordinates), Levings (1975; benthos, principal coordinates), Legendre et al. (1984a;
benthos, principal components), Dessier & Laurec (1978; zooplankton, principal
components and correspondence analysis), and Sprules (1980; nonmetric
multidimensional scaling; zooplankton; Ecological application 9.3). In studies of
annual succession in temperate or polar regions, using ordination in reduced space, one
expects the observations to form some kind of a circle in the plane of the first two axes,
since successive observations are likely to be close to each other in the
multidimensional space, due to autocorrelation (Section 1.1), and the community
structure is expected to come back to its original structure after one year; the rationale
for this null model of succession is developed in Legendre et al. (1985, Appendix D).
Departures from a regular circular pattern are thus interpreted as evidence for the
existence of subsets in the data series. In simple situations, such subsets are indeed
observed in the plane of the first two ordination axes (e.g. Fig. 9.5). When used alone,
however, this approach has two major drawbacks. 

• Plotting a multivariate data series in two or three dimensions only is not the best way
of using the multivariate information. In most studies, the first two principal axes used
to represent the data series account together for only 10 to 50% of the multivariate
information. In such cases, distances from the main clusters of observations to isolated
objects (which are in some particular way different from the major groups) are likely
to be expressed by some minor principal axes which are orthogonal (i.e. perpendicular
in the multidimensional space) to the main projection plane. As a consequence, these
objects may well be projected, in the reduced-spaced ordination, within a group from
which they are actually quite different. Moreover, it has been observed that the “circle”
of observations (see previous paragraph) may be deformed in a spoon shape so that
groups that are distinct in a third or higher dimension may well be packed together in
some part of the two-dimensional ordination plane. These problems are common to all



Detection of discontinuities in multivariate series 693

ordinations when used alone for the purpose of group recognition. They are not as
severe for ordinations obtained by nonmetric multidimensional scaling, however,
because that method is, by definition, more efficient than others at flattening
multidimensional phenomena into a user-determined small number of dimensions
(Section 9.3). The best way to eliminate this first drawback is to associate ordination to
clustering results, as explained in Section 10.1. This was the approach of Allen et al.
(1977) in a study of the phytoplankton succession in Lake Wingra. See also Fig. 12.23. 

• The second drawback is the lack of a criterion for assigning observations to groups
in an ordination diagram. As a consequence, groups delineated on published ordination
diagrams often look rather arbitrary.

2 — Segmenting data series

Hawkins & Merriam (1973, 1974) proposed a method for segmenting a multivariate
data series into homogeneous units, by minimizing the variability within segments in
the same way as in K-means partitioning (Section 8.8). Their work followed from the
introduction of a contiguity constraint in the grouping of data by Fisher (1958), who
called it restriction in space or time. The method of Hawkins & Merriam has been
advocated by Ibanez (1984) for studying successional steps. 

The method has three interesting properties. (a) The multidimensional series is
partitioned into homogeneous groups using an objective clustering criterion. (b) The
partitioning is done with a constraint of contiguity along the data series. Within the
context of series analysis, contiguity means that only observations that are neighbours
along the series may be grouped together. The notion of contiguity has been used by
several authors to resolve specific clustering problems: temporal contiguity
(Subsection 4, below) or spatial contiguity (Subsection 13.3.2). (c) The observations
do not have to be equispaced.

A first problem with Hawkins & Merriam’s method is that users must determine
the number of segments that the method is requested to identify. To do so, the increase
in explained variation relative to the increase in the number of segments is used as a
guide. Any one of the stopping rules used with K-means partitioning could also be
used here (end of Section 8.8). A second and more serious problem, with ecological
data, is that strings of zeros in multispecies series are likely to result in segments that
are determined by the simultaneous absence of species.

3 — Webster’s method

Webster (1973) proposed a rather simple method to detect discontinuities in data
series. He was actually working with spatial transects, but his method is equally
applicable to time series. Draw the sampling axis as a line and imagine a window that
travels along this line, stopping at the mid-points between adjacent observations (if
these are equispaced). Divide the window in two equal parts (Fig. 12.20a). There are
observations in the left-hand and right-hand halves of the window. Calculate the

Contiguity
constraint

Window
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difference (see below) between the points located in the left-hand and right-hand
halves and plot these differences in a graph, as the window is moved from one end of
the series to the other (Fig. 12.20c, d). The principle of the method is that the

Figure 12.20 Webster’s method for detecting discontinuities in data series. (a) Principle of the method.
(b) Numerical example (see text). Results using a window (c) 4 observations wide, or
(d) 8 observations wide.
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difference should be large at points where the left-hand and right-hand halves of the
window contain values that are appreciably different, i.e. where discontinuities occur
in the series. Various statistics may be used in the computations:

• With univariate data, calculate the absolute value of the difference between the
means of the values in the left-hand and right-hand halves of the window:

.

• With univariate data again, one may choose to compute the absolute value of a t
statistic comparing the two halves of the window: . If one uses
the standard deviation of the whole series as the best estimate of the standard
deviations in the two halves (assuming homoscedasticity), this statistic is linearly
related to the previous one. Alternatively, one could use the regular t-statistic formula
for t-tests, estimating the variance in each window from the few values that it contains;
this may lead to very unstable estimates when windows are narrow, which is often the
case with this method.

• For multivariate series, compare the two halves of the window using either the
Mahalanobis generalized distance (  or , eq. 7.40), which is the multivariate
equivalent of a t statistic, or the coefficient of racial likeness (D12 , eq. 7.52).

The width of the window is an empirical decision made by the investigator. It is
recommended to try different window widths and compare the results. The window
width is limited, of course, by the spacing of observations, considering the
approximate interval between the expected discontinuities. Webster’s method works
best with equispaced observations, but some departure from equal spacing, or missing
data points, are allowed, because of the empirical nature of the method.

Numerical example. A series of 40 observations was generated using a normal pseudo-
random number generator N(5,1). The values of observations 11 to 30 were increased by adding
3 to the generated values in order to artificially create discontinuities between observations 10
and 11, on the one hand, and observations 30 and 31, on the other. It so happened that the first of
these discontinuities was sharp whereas the second was rather smooth (Fig. 12.20b).

Webster’s method for univariate data series was used with two window widths. The first
window had a width of 4 observations, i.e. 2 observations in each half; the second window had a
width of 8 observations, i.e. 4 in each half. Both the absolute value of the difference between
means and the absolute value of the t statistic were computed. The overall standard deviation of
the series was used as the denominator of t, so that this statistic was a linear transformation of
the difference-between-means statistic. Results (Fig. 12.20c, d) are reported at the positions
occupied by the centre of the window.

The sharp discontinuity between observations 10 and 11 was clearly identified by the two
statistics and window widths. This was not the case for the second discontinuity, between
observations 30 and 31. The narrow window (Fig. 12.20c) estimated its position correctly, but
did not allow one to distinguish it from other fluctuations in the series, found between
observations 20 and 21 for instance (remember, observations are randomly-generated numbers;
so there is no structure in this part of the series). The wider window (Fig. 12.20d) brought out

Statistic x1 x2–=

Statistic x1 x2– sx⁄=

D5 D5
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the second discontinuity more clearly (higher values of the statistics), but its exact position was
not estimated precisely.

Ibanez (1981) proposed a related method to detect discontinuities in multivariate
records (e.g. simultaneous records of temperature, salinity, in vivo fluorescence, etc. in
aquatic environments). He called the method  to the centroid. For every sampling
site, the method computes a generalized distance  (eq. 7.40) between the new
multivariate observation and the centroid (i.e. multidimensional mean) of the m
previously recorded observations, m defining the width of a window. Using simulated
and real multivariate data series, Ibanez showed that changes in  to the centroid,
drawn on a graph like Figs. 12.20c or d, allowed one to detect discontinuities. For
multi-species data, however, the method of Ibanez suffers from the same drawback as
the segmentation method of Hawkins & Merriam: since the simultaneous absence of
species is taken as an indication of similarity, it could prevent changes occurring in the
frequencies of other species from producing high, detectable distances.

McCoy et al. (1986) proposed a segmentation method somewhat similar to that of
Webster, for species occurrence data along a transect. A matrix of Raup & Crick
similarities is first computed among sites (S27, eq. 7.33) from the species presence-
absence data. A “+” sign is attached to a similarity found to be significant in the upper
tail (i.e. when ahi is significantly larger than expected under the random sprinkling
hypothesis) and a “–” sign to a similarity which is significant in the lower tail
(i.e. when ahi is significantly smaller than expected under that null hypothesis). The
number of significant pluses and minuses is analysed graphically, using a rather
complex empirical method, to identify the most informative boundaries in the series.

4 — Chronological clustering

Combining some of the best aspects of the methods described above, Gordon & Birks
(1972, 1974) and Gordon (1973) introduced a constraint of temporal contiguity in a
variety of clustering algorithms to study pollen stratigraphy. Analysing bird surveys
repeated at different times during the breeding season, North (1977) also used a
constraint of temporal contiguity to cluster bird presence locations on a geographic
map and delineate territories. Recent applications of time-constrained clustering to
palaeoecological data (where a spatial arrangement of the observations corresponds to
a time sequence) are Bell & Legendre, 1987, Hann et al. (1994) and Song et al. (1996).
Algorithmic aspects of constrained clustering are discussed in Subsection 13.3.2.

Using the same concept, Legendre et al. (1985) developed the method of
chronological clustering, based on hierarchical clustering (Chapter 8). The algorithm
was designed to identify discontinuities in multi-species time series. It has also been
successfully used to analyse spatial transects (e.g. Galzin & Legendre, 1987; Ardisson
et al., 1990; Tuomisto & Ruokolainen, 1994: Ecological application 12.6b). When
applied to ecological succession, chronological clustering corresponds to a well-
defined model, in which succession proceeds by steps and the transitions between steps
are rapid (see also Allen et al., 1977, on this topic). Broad-scale successional steps
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contain finer-scale steps, which may be identified using a finer analysis if finer-scale
data are available. Chronological clustering takes into account the sampling sequence,
imposing a constraint of temporal contiguity to the clustering activity.

The method also permits the elimination of singletons (in the game of bridge, a
card which is the only one of a suit in the hand of a player). Such singular observations
often occur in ecological series. In nature, singletons are the result of random
fluctuations, migrations, or local changes in external forcing. In an aquatic system
studied at a fixed location (Eulerian approach, Section 12.0), such changes may be due
to temporary movements of water masses. Singletons may also result from improper
sampling or inadequate preservation of specimens.

Agglomerative clustering (Section 8.5) proceeds from an association matrix (n × n)
among the observations of the data series (length n), computed using an appropriately
chosen similarity or distance coefficient (Chapter 7). Any method of agglomerative
clustering may be used, although Legendre et al. (1985) used intermediate linkage
clustering (Subsection 8.5.3). The clustering is modified to include the contiguity
constraint; Fig. 13.23 shows how a constraint of spatial or temporal contiguity can be
introduced into any agglomerative clustering algorithm. Each clustering step is
subjected to a permutation test (Section 1.2) before the fusion of two objects or groups
is authorized.

Consider two adjacent groups of objects pertaining to some data series
(Fig. 12.21). The first group (n1 = 2) includes objects 5 and 6 and the second (n2 = 3)
contains objects 7, 8 and 9. Assume that an agglomerative clustering algorithm now
proposes that these two groups are the next pair to join. Distances among the five
objects are given in Fig. 12.21a. Before applying the permutation test of cluster fusion,
the distances are divided in two groups: the 50% of the distances (5 in this example)
that have the highest values are called “high distances” and are coded 1 (Fig. 12.21b)

Figure 12.21 Numerical example. (a) Distance matrix for two contiguous groups from a multidimensional
time series (used also in Fig. 10.22). The lower half of the symmetric matrix is shown. (b) 50%
of the distances, i.e. those with the highest values, are coded 1; the others are coded 0.

Group 1 Group 2 Group 1 Group 2

D 5 6 7 8 9 D 5 6 7 8 9

5 0 5

6 0.2 0 (a) 6 0 (b)

7 0.4 0.7 0 7 0 1

8 0.6 0.5 0.1 0 8 1 0 0

9 0.7 0.8 0.3 0.6 0 9 1 1 0 1

Permutation
test
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whereas the other 50% are called “low distances” and are coded 0. The test statistic is
the number of high distances (h) in the between-group matrix (shaded area); h = 4 in
this example. Under the null hypothesis, the objects in the two groups are drawn from
the same statistical population and, consequently, it is only an artefact of the
agglomerative clustering algorithm that they temporarily form two groups. If the null
hypothesis is true, the number of high distances (h = 4) presently found in the
between-group matrix should be comparable to that found among all possible
permutations of the five objects in two groups with n1 = 2 and n2 = 3 objects. If the
null hypothesis is false and the two groups come from different statistical populations
(i.e. different steps of the succession), the number of high distances presently found in
the between-group matrix should be higher than most of the values found after
permutation of the objects into two groups with n1 = 2 and n2 = 3 objects. This calls
for a one-tailed test. After setting a significance level α, the permutations are
performed and results that are higher than or equal to h are counted. The number of
distinguishable combinations of the objects in two groups of sizes n1 and n2 is
(n1 + n2)!/(n1! n2!). If this number is not too large, all possible permutations can be
examined; otherwise, permutations may be selected at random to form the reference
distribution for significance testing. The number of permutations producing a result as
large as or larger than h, divided by the number of permutations performed, gives an
estimate of the probability p of observing the data under the null hypothesis. 

• If p > α, the null hypothesis is accepted and fusion of the two groups is carried out. 

• If p ≤ α, the null hypothesis is rejected and fusion of the groups is prevented.

This test may actually be reformulated as a Mantel test (Section 10.5.1) between the
matrix of recoded distances (Fig. 12.21b) and another matrix of the same size
containing 1’s in the among-group rectangle and 0’s elsewhere. 

This “test of significance” is actually an internal validation clustering criterion
(Section 8.12), because the alternative hypothesis (H1: the two groups actually found
by the clustering method differ) is not independent of the data that are used to perform
the test; it comes from the data through the agglomerative clustering algorithm.
Legendre et al. (1985) have shown, however, that this test criterion has a correct
probability of type I error; when testing on randomly generated data (Monte Carlo
simulations) at significance level α, the null hypothesis is rejected in a proportion of
the cases which is approximately equal to α.

Significance level α used in the test of cluster fusion determines how easy it is to
reject the null hypothesis. When α is small (close to 0), the null hypothesis is almost
always accepted and only the sharpest discontinuities in the time or space series are
identified. Increasing the value of α actually makes it easier to reject the null
hypothesis, so that more groups are formed; the resulting groups are thus smaller and
bring out more discontinuities in the data series. So, changing the value of α actually
changes the resolution of the clustering results.

Internal
validation
criterion

Resolution
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A singleton is defined as a single observation whose fusion has been rejected with
the groups located to its right and left in the series. When the test leads to the discovery
of a singleton, it is temporarily removed from the series and the clustering procedure is
started again from the beginning. This is done because the presence of a singleton can
disturb the whole clustering geometry, as a result of the contiguity constraint. 

The end result of chronological clustering is a nonhierarchical partition of the
series into nonoverlapping homogeneous groups. Within the context of ecological
succession, these groups correspond to the steps of a succession. A posteriori tests are
used to assess the relationships between distant groups along the series as well as the
origin of singletons. Plotting the clusters of observations onto an ordination diagram in
reduced space may help in the overall interpretation of the results.

Legendre (1987b) showed that time-constrained clustering possesses some
interesting properties. On the one hand, applying a constraint of spatial or temporal
contiguity to an agglomerative clustering procedure forces different clustering
methods to produce approximately the same results; without the constraint, the
methods may lead to very different clustering results (Chapter 8), except when the
spatial or temporal structure of the data (patchiness, gradient: Chapter 13) is very
strong. Using autocorrelated simulated data series, he also showed that, if patches do
exist in the data, constrained clustering always recovers a larger fraction of the
structure than the unconstrained equivalent.

Ecological application  12.6a

In May 1977, the Société d’Énergie de la Baie James impounded a small reservoir (ca. 7 km2),
called Desaulniers, in Northern Québec (77°32' W, 53°36' N). Ecological changes occurring
during the operation were carefully monitored in order to use them to forecast the changes that
would take place upon impoundment of much larger hydroelectric reservoirs in the same region.
Several sampling sites were visited before and after the flooding. Effects of flooding on the
zooplankton community of the deepest site (max. depth: 13 m), located ca. 800 m from the dam,
were studied by Legendre et al. (1985) using chronological clustering. Before flooding, the site
was located in a riverbed and only zooplankton drifting from lakes located upstream were found
there (i.e. there was no zooplankton community indigenous to the river). Changes observed are
thus an example of primary succession.

After logarithmic normalization of the data (eq. 1.14), the Canberra metric (D10, Chapter 7)
was used to compute distances among all pairs of the 47 observations. Homogeneous groups of
observations were identified along the data series, using a time-constrained algorithm for
intermediate linkage clustering (Subsection 8.5.3) and the permutation test of cluster fusion
described above. Results of chronological clustering are shown in Fig. 12.22 for different levels
of resolution α. Plotting the groups of observations from Fig. 12.22, for α = 0.25, on an
ordination diagram obtained by nonmetric multidimensional scaling (Fig. 12.23), led to the
following conclusions concerning changes in the zooplankton community. In 1976, as
mentioned above, zooplankton were drifting randomly from small lakes located upstream. This
was evidenced by low species numbers and highly fluctuating evenness (eq. 6.44), which
indicated that no stable community was present. After impoundment of the reservoir, the
community departed rapidly from the river status (Fig. 12.23) and formed a fairly well-

Singleton
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developed assemblage, with 13 to 20 species in the summer of 1977, despite large chemical and
water-level fluctuations. After the autumn overturn and during the 1977-1978 winter period, the
community moved away from the previous summer’s status. When spring came (observation
35), the community had reached a zone of the multidimensional scaling plane quite distinct from
that occupied in summer 1977. Zooplankton was then completely dominated by rotifers, which
increased from 70 to 87% in numbers and from 18 to 23% in biomass between 1977 and 1978,
with a corresponding decrease in crustaceans, while the physical and chemical conditions had
stabilized (Pinel-Alloul et al., 1982). When the succession was interrupted by the 1978 autumn
overturn, the last group in the series (observations 45-47) was found (Fig. 12.23) near the
position of the previous winter’s observations (29-34), indicating that the following year’s
observations might resemble the 1978 succession.

Figure 12.22 Chronological clustering: zooplankton time series. Results for different levels of resolution (α).
For α = 0.25, the double arrows identify a posteriori tests with probabilities of fusion larger than
α. Asterisks (*) identify singletons. Modified from Legendre et al. (1985).
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Ecological application  12.6b

Tuomisto & Ruokolainen (1994) studied species assemblages of Pteridophyta (ferns; 40 species
in the study) and Melastomataceae (a family of shrubs, vines, and small trees restricted to the
American tropics; 22 species in the study) along two spatial transects (replicates) in a non-
flooded area of the Amazonian rain forest in Peru, covering an edaphic and topographic gradient
from clay soil on level ground, to quarzitic sand on a hill top. The two 700-m-long and 5-m-
wide, parallel transects were 50 m apart. Chronological clustering was applied to the edaphic
and floristic variables separately, using different similarity coefficients and three levels of
resolution (parameter α). In all cases, the transects could be divided into distinct sections; the
results of constrained clustering were more readily interpretable than the unconstrained
equivalent. The groups of plants selected proved adequate for the rapid assessment of changes in
the floristic composition of the rain forest.

Figure 12.23 Chronological clustering: zooplankton time series. Nonmetric multidimensional scaling plot
showing groups of observations from Fig. 12.22, for α = 0.25. The groups are the sets of
observations that are connected by lines materializing the sampling sequence. Objects in boxes
are singletons. From Legendre et al. (1985).
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12.7 Box-Jenkins models

Objective 6 of time series analysis in ecology (Section 12.1 and Table 12.2) is to
forecast future values. The Foreword explained that ecological modelling is not, as
such, within the scope of numerical ecology. In ecological studies, however, Box-
Jenkins modelling is often conducted together with other forms of series analysis; this
is why it is briefly presented here. This type of technique has already been mentioned
within the context of maximum entropy spectral analysis (MESA or MEM,
Section 12.5). The present section summarizes the principles that underlie the
approach. Interested readers may refer to Box & Jenkins (1976), Cryer (1986), and
Bowerman & O’Connell (1987) for the theory and to user’s manuals of computer
packages for actual implementation.

Stochastic linear models (processes) described here are based on the idea that, in a
series where data within a small window are strongly interrelated, the observed values
are generated by a number of “shocks” at . These shocks are independent of each other
and their distribution is purely random (mean zero and variance ). Such a series
(at, at–1, at–2, …) is called white noise. In the moving average (MA) model, each
observations in the series ( , i.e. data centred on the mean  of the series)
can be represented as a weighted sum of the values of process a:

(12.32)

where θ are the weights and q is the order of the model. The name moving average for
this process comes from the fact that eq. 12.32 is somewhat similar to that of the
moving average (see the last column of Table 12.4). The weights θ are estimated by
numerical iteration, using techniques that are described in the above references and
available in some computer packages.

When the above model does not fit the series adequately (see below), another
possibility is to represent an observation by a weighted sum of the q previous
observations plus a random shock:

This is the autoregressive model (AR, or all-pole model) already defined in eq. 12.30.
In this model (of order q), q successive terms of the series are used to forecast term
(q + 1), with error at. When estimating the autocorrelation coefficients φ (by least
squares), it is easy to compute residual errors at = yt – . Residual errors, as specified
above for all Box-Jenkins models, must be independent of one another; this means that
a correlogram of the series of residuals at should display no significant value. The
residuals must also be normally distributed.

Forecasting
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MA model
ỹt yt y–= y

ỹt at θ1at 1– θ2at 2– … θqat q–+ + +( )–=
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Combining the above two models gives the autoregressive-moving average model
(ARMA model), whose general form is:

(12.33)

An important advantage of ARMA models is that they can be fitted to data series using
a small number of parameters (i.e. the coefficients φ and θ). However, such models
may only be estimated for strictly stationary series (Section 12.1 and 12.2).

One approach described in Section 12.2 for extracting the trend from a series is the
variate difference method. In the computation, each value yt is replaced by

 where T is the period of the trend:

(12.34)

Since  results from a difference, yt is called the integrated form of . When an
ARMA model is applied to a series of values computed with eq. 12.34, it is called an
autoregressive-integrated-moving average model (ARIMA model).

Box-Jenkins analysis normally proceeds in four steps. (1) Identification of the type
of model to be fitted to the data series (i.e. MA, AR, ARMA, or ARIMA). Even though
Box & Jenkins (1976) described some statistical properties of the series (e.g. shape of
the autocorrelation) that can guide this choice, identification of the proper model
remains a somewhat intuitive step (e.g. Ibanez, 1982). (2) Estimation of the
parameters of the model. For each case, various methods are generally available, so
that one is confronted with a choice. (3) The residuals must be independent and
normally distributed. If not, either the model is not adequate for the data series, or the
parameters were not properly estimated. In such a case, step (2) can be repeated with a
different method or, if this does not improve the residuals, a different model must be
chosen at step (1). Steps (1) through (3) may be repeated as many times as necessary to
obtain a good fit. The procedure of identification of the appropriate model is therefore
iterative. (4) Using the model, values can be forecasted beyond the last observation.

It may happen that the data series is under external influences, so that the models
described above cannot be used as such. For example, in the usual ARIMA model, the
state of the series at time t is a function of the previous q observations ( ) and of the
random errors (a). In order to account for the additional effect of external variables,
some computer programs allow the inclusion of a transfer function into the model (if
the external forcing variable is also a random variable) and/or an intervention
component (if the external variable is binary and not random).

It is possible to extend the forecasting to multidimensional data series. References
to conduct the analysis are Whittle (1963) and Jones (1964).

ARMA 
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It is important to remember that the models discussed here are forecasting and not
predictive models. Indeed, the purpose of Box-Jenkins modelling is to forecast values
of the series beyond the last observation, using the preceding data. Such forecasting is
only valid as long as the environmental conditions that characterize the population
under study (demographic rates, migrations, etc.) as well as the anthropogenic effects
(exploitation methods, pollution, etc.) remain essentially the same. In order to predict
with some certainty the fate of the series, causal relationships should be determined
and modelled; for example, between the observed numbers of organisms, on the one
hand, and the main environmental conditions, population characteristics, or/and
anthropogenic factors, on the other. This requires extensive knowledge of the system
under study. Forecasting models often prove quite useful in ecology, but one must be
careful not to use them beyond their limits.

Ecological application  12.7

Boudreault et al. (1977) tried to forecast lobster landings in Îles-de-la-Madeleine (Gulf of St.
Lawrence, Québec), using various methods of series analysis. In a first step, they found that an
autoregressive model (of order 1) accounted for ca. 40% of the variance in the series of landings.
This relatively low percentage could be explained by the fact that observations in the series were
not very homogeneous. In a second step, external physical variables were added to the model
and the data were analysed using regression on principal components (Section 10.3). The two
external variables were: water temperature in December, 8.5 years before the fishing season, and
average winter temperature 3.5 years before. This increased to 90% the variance explained by
the model. Lobster landings in a given year would thus depend on: the available stock
(autocorrelated to landings during the previous year), the influence of water temperature on
larval survival (lobster Homarus americanus around Îles-de-la-Madeleine reach commercial
size when ca. 8 years old), and the influence of water temperature at the time the animals
reached sexual maturity (at the age of ca. 5 years).

12.8 Computer programs

Procedures available in statistical packages presently on the market are not
systematically reviewed here, because the task would be beyond the scope of the
present book and the information would rapidly become obsolete. Sources of
information about computer programs are given in Section 1.3. However, because
ecologists are often not very familiar with series analysis, some information about the
main commercial computer packages that offer programs for time series analysis is
assembled in Table 12.9. In addition, three university-based packages are mentioned
because they are the only ones, for the time being, that offer programs for some of the
methods discussed in the previous sections. Information in Table 12.9 is not
exhaustive. It was up-to-date at the time this book was completed (1998), but new
software rapidly appears on the market.
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Table 12.9 Computer programs available for methods of time series analysis discussed in Chapter 12.

Mainframe computers

BMDP Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

SPSSX Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

SAS/ETS Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

R Package* Contingency periodogram, Mantel correlogram, chronological clustering

MS-DOS/Windows machines

BMDP Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

SAS-PC/ETS Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

STATISTICA** Filters, correlogram, Schuster periodogram, spectral analysis, ARIMA

PASSTEC*** Trend analysis, filters, correlogram, harmonic analysis, spectral analysis
(univariate, bivariate), contingency periodogram, chronological clustering, etc.

ITSM **** Filters, correlogram, Schuster periodogram, spectral analysis (univariate,
bivariate), autoregressive models (univariate, multivariate)

Macintosh and MS-DOS/Windows machines

SYSTAT Correlogram

SPSS Correlogram, Schuster periodogram, spectral analysis, Box-Jenkins models

STATISTICA** Filters, correlogram, Schuster periodogram, spectral analysis, ARIMA

R Package* Contingency and Dutilleul modified periodograms, Mantel correlogram,
chronological clustering

* See Table 13.4.

** In STATISTICA, numerical filters (Section 12.2) are called “smoothing methods”.

*** The PASSTEC package is distributed by F. Ibanez and M. Étienne, Observatoire
Océanologique, Station Zoologique, B.P. 28, F-06230 Villefranche-sur-Mer, France. PASSTEC
means: Programme d’Analyse des Séries Spatio-Temporelles en Écologie Côtière.

**** The Interactive Time Series Modelling package is provided on diskettes with the book of
Brockwell & Davis (1991b). This book briefly describes the theory and gives examples of how
to use the programs. It was designed as companion to the book of Brockwell & Davis (1991a).
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Chapter

13 Spatial analysis

13.0 Spatial patterns

The analysis of spatial patterns is of prime interest to ecologists because most
ecological phenomena investigated by sampling geographic space are structured by
forces that have spatial components. Spatial patterns are studied through surveys
(called mensurative experiments by Hurlbert, 1984), whereas underlying processes can
be studied by manipulative experiments (Subsection 10.2.3). Ecological processes may
give rise to spatially recognizable structures which may display spatial patterns and be
the subject of spatial analysis. Most ecological patterns may be described as either
patches (such as tree groves, phytoplankton patches, and animal herds) or gradients.
The latter may be linear or not.

Ecologists examine the spatial patterns of species or assemblages in order to
understand the mechanisms that control species distributions. Patchiness is found at all
spatial scales — from micrometres to continent and ocean-wide scales. Displaying the
spatial variation of an ecological variable in the form of a map shows whether the
structure is smoothly continuous or marked by sharp discontinuities. Most field studies
cover only a part of any variable’s spatial structure. So, gradients or patches displayed
by maps may only be interpreted with respect to the scale of the sampling programme,
which should be compared to the scale of the phenomenon under study.

It is now understood that species distributions result from the combined action of
several forces, some of which are external whereas others are intrinsic to the
community. According to the environmental control model (Whittaker, 1956; Bray &
Curtis, 1957; Hutchinson, 1957), environmental characteristics are the external forces
which control species distributions. The internal forces relate to population dynamics
or to top-down or bottom-up biotic interactions within the community (Lindeman,
1942; Southwood, 1987). Both types of forces generate spatial patterns within species
or communities. Historical events (Sousa, 1979; Pickett & White, 1985; Reynolds,
1987) are other possible sources of spatial patterns; examples are given in
Subsection 13.5.2. The mechanisms that create spatial structures and, hence,
autocorrelation in the data, have been briefly discussed in Section 1.1. 

Experiment

Gradient
Patch

Historical
events
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The analysis of spatial structures is a fairly recent subject. It is still plagued with
conceptual and methodological problems. The present Chapter is not a tutorial
discussing all possible questions of interest. Its scope is more modest; it will describe
some methods that allow the investigation of some of the questions of interest in
spatial pattern analysis. Other avenues will be mentioned where developments are
expected from adjacent fields such as geostatistics. A fundamental question will be left
unanswered in this Chapter: that of designing efficient sampling programmes for
studying and analysing spatial patterns. The theory of spatial ecological sampling has
to be re-written to provide meaningful answers to this question.

Scale is a key concept in both sampling design and the analysis of spatial (or
temporal) patterns. It includes several characteristic spatial (or temporal) properties of
random variables. Definition of these properties, which follows, depends on context.

In sampling theory (Fig. 13.1), spatial scale encompasses three elements of the
sampling design (Wiens, 1989; Allen & Hoekstra, 1991; He et al., 1994):

• Grain size is the size of the elementary sampling units. It may be expressed as the
diameter, surface or volume of matter supporting the measurements. In time series
analysis, it is the duration over which measurements are integrated. The resolution of a
study (Schneider, 1994) is equal to the grain size of its sampling design.

• Sampling interval is the average distance between neighbouring sampling units. It is
called lag in time series analysis. For fixed extent, the sampling interval is a function
of n, the number of sampling units. In turn, n is determined by the total effort that can
be allocated to sampling.

• Extent is the total length, area or volume included in the study, or the total duration
of the time series. It is called range by Schneider (1994) who also defines the scope as
the ratio of the extent to the grain size. Since extent and grain size are expressed in the
same units, scope is a dimensionless variable (Section 3.1).

It may happen that the data consist of contiguous sampling areas that completely
cover the extent, instead of small sampling units distant from one another. This may

Scale

Figure 13.1 Components of a sampling design are
the grain size, sampling interval, and
extent. In the Figure, the sampling
units are represented by squares.

Grain size

Extent

Interval
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occur in a variety of circumstances where a map is divided into contiguous “picture
cells” or pixels, which include satellite data, video analysis of a transect, and
modelling. The linear measurement of grain size is equal to the sampling interval in
such a case. The same thing may happen with time series.

The spatial scale of patterns or processes is described as follows:

• How big is a unit object, or how much space is disturbed by a unit process? This
amount of space, which is equivalent to grain size, is called the ecological
neighbourhood (Addicott et al., 1987) or the area of resolution of individuals (Wiens,
1989). Unit objects may be individual plants or animals, bacterial colonies, etc.
Examples of measurable structures resulting from unit processes are: the
neighbourhood occupied by a territorial animal, the width of the wetland zone along a
stream or of a tidal sand flat, the size of the patch of soil modified by the root system of
a plant, and the size of phytoplankton patches which result from the combined action
of primary production and diffusion (see Ecological applications 3.2d and 3.3a).

• What is the average distance between unit objects or processes? This distance is
equivalent to the sampling interval.

• Over how much space does this type of object, or this process, occur? This amount
of space is equivalent to the extent. For some processes, the extent may be an ocean or
the whole planet.

The same notions may be applied to temporally occurring patterns or processes.
While they are readily applicable to patterns that concern the distribution of objects,
they may sometimes be applied as well to processes.

The scale of the sampling design should follow from what is known (e.g. from a
pilot study) about the scale of the pattern or process, and from the ecological question
being addressed. A well-focused question generally reduces the difficulty of choosing
the type (simple random, systematic, stratified, etc.) as well as the scale components
(grain, interval, extent) of the sampling design.

• The sampling grain should be larger than a unit object (e.g. an individual organism)
and the same as, or preferably smaller than, the structures resulting from a unit process
(e.g. a patch) which is to be detected by the sampling design.

• The sampling interval should be smaller than the average distance between the
structures resulting from a unit process to be detected by the sampling design.

• The sampling extent may, in some cases, be the same as the total area covered by the
type of objects or by the process under study. In other cases, it is limited to a smaller
area, determined by the total allowable effort (n) and the maximum interval that one
wishes to maintain between adjacent sampling units. For constant n, the sampling
extent can be maximized by turning the sampling area into a transect (see Ecological
application 13.1b).

Pixel

Sampling
design
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The extent and grain define the observation window in spatial pattern analysis. No
structure can be detected which is smaller than the grain or larger than the extent of a
study. Wiens (1989) compares them to the overall size and mesh size of a sieve,
respectively.

In quantitative ecology, the term “scale” is generally used in a sense opposite to
that of cartography. For cartographers, the scale is the ratio between the linear size of
an object on a map and its size in nature, so that a small-scale map (e.g. 1:100000) is
less detailed than a large-scale map (e.g. 1:25000). For ecologists, scale generally
refers to the unit of measurement, e.g. the kilometre sampling scale is bigger than the
centimetre scale and weekly observations are broader-scaled than hourly observations.
Confusion is avoided by using “broad scale” for phenomena with large extents and
“fine scale” for those with small extents (Wiens, 1989)*. In any case, these terms only
have comparative values.

In many instances, not one but several scales may be pertinent for the study of a
pattern or process. Different processes are often at work, depending on the scale, to
determine spatial patterns. As a consequence, conclusions derived for a spatial scale
often cannot be extrapolated to other scales. The scale chosen for any particular study
may be considered as a variable-sized window through which one can study nature.
For example, He et al. (1994) have shown how species diversity changes as a function
of different components of scale (grain size, sampling interval, and extent). The
techniques described in Section 13.1, in particular, allow researchers to describe how
spatial correlation changes as a function of the sampling interval. 

Scale is an important reference to help understand the difference between
environmental management problems and the answers that may be found in ecological
studies. Most studies are conducted at scales (extents) finer than those of natural or
anthropogenic disturbances (Fig. 13.2). As a consequence, environmental problems
usually involve scales broader than the information available from field studies —
surveys or field experiments. Scaling up from studies to environmental problems is a
challenge that ecologists are often facing. New concepts and statistical tools must be
developed to do so (Thrush et al., 1997). Spatial analysis of the results of surveys
conducted across several spatial scales is one means towards this end.

An important concept is that of heterogeneity (Kolasa & Rollo, 1991; Dutilleul &
Legendre, 1993). With reference to spatial patterns, heterogeneity is the opposite of
homogeneity which means the absence of variation. In everyday’s language,
heterogeneous means “composed of unlike elements or parts”. Pitard (1992)
distinguishes constitution heterogeneity, which is a property of the objects under study,
from distribution heterogeneity which can be altered by mixing. In spatial pattern
analysis, heterogeneous refers to variation in the measurements, in some general sense
that applies to quantitative, semiquantitative, or qualitative variables

* Unfortunately these two terms are not antonymic. Broad scale refers to the extent; its antonym
is narrow. Fine scale refers to the grain; its antonym is coarse.

Broad scale
Fine scale

Heteroge-
neity
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(Subsection 1.4.1). The concept of heterogeneity may also be applied to the time
dimension, considering repeated observations made at a single point in space.
Heterogeneity can be measured in a univariate (e.g. the variance of a singe variable) or
a multivariate way (e.g. the trace of a dispersion matrix). It can be decomposed into
orthogonal components (as in PCA, Section 9.1) or with respect to spatial or temporal
distance classes (e.g. correlograms for spatial survey data, Section 13.1, or for time
series, Section 12.3). Kolasa & Rollo (1991) recognize that “measured heterogeneity”,
which reflects the observer’s perspective, may be inadequate in that it may differ from
the “functional heterogeneity” which is the heterogeneity that influences the
organisms. Functional heterogeneity may not be the same for different groups of
organisms because the processes that are important for different groups may act at
different temporal or spatial scales. In the sea, for instance, the doubling time of
organisms is of the order of 1 day for phytoplankton, 10 to 40 days for zooplankton,
100 to 900 days for fish, and 120 to 500 days for mussels. Spatially, the horizontal
scales that characterize patches are of the order of 0.1 to 1 km for phytoplankton and
zooplankton, and 1 to 100 km for fish (Legendre et al., 1986). Measured heterogeneity
converges towards functional heterogeneity as our knowledge of a system increases
and, with it, our ability to use our measures to characterize important properties of the
system (Kolasa & Rollo, 1991; Dutilleul & Legendre, 1993). 

The analysis of spatial ecological patterns comprises two families of methods.
Point pattern analysis is concerned with the distribution through space of individual
objects — for instance individual plants or animals. Its chief purpose is to determine
whether the geographic distribution of data points is random or not and to describe the
type of pattern, in order to infer what kind of process may have generated it. In this
family of methods, the quadrat-density and nearest-neighbour approaches have been
widely used in vegetation science (Galiano 1982; Carpenter & Chaney 1983). Point
pattern analysis will not be discussed further in this Chapter. It has been authoritatively
reviewed by a number of authors, including Pielou (1977), Cicéri et al. (1977), Getis
& Boots (1978), Ripley (1981, 1987), and Upton & Fingleton (1985). 

Figure 13.2 Scale differences between environmental management problems and the answers that may be
found in ecological studies. From S. F. Thrush (pers. comm.).
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Values of a variable observed over a delimited geographic area form a regionalized
variable (Matheron, 1965) or simply a surface (Oden et al., 1993; Legendre &
McArdle, 1997) if the sites where the variable has been observed may be viewed as a
sample from an underlying continuous surface. The second family of methods, called
surface pattern analysis, deals with the study of spatially continuous phenomena. The
spatial distributions of the variables are known, as usual, through sampling at discrete
sampling sites. One or several variables are observed or measured at the observation
sites, each site representing its surrounding portion of the geographic space. The
analysis of continuous surfaces, where pixels cover the whole map (including data
obtained by echolocation or remote sensing), is not specifically discussed here.

Surface pattern analysis includes a large number of methods developed to answer a
variety of questions (Table 13.1). Several of these methods are discussed in the present
Chapter. General references are: Cliff & Ord (1981), Ripley (1981), Upton &
Fingleton (1985, 1989), Griffith (1987), Legendre & Fortin (1989), and Rossi et al.
(1992). The geostatistical literature is briefly reviewed in Subsection 13.2.2. The
comparison of surfaces, i.e. univariate measures over the same area repeated at two or
more sampling times, has been discussed by Legendre & McArdle (1997).
Section 13.7 provides a list of computer programs available from researchers; most
methods for surface pattern analysis are not available in the major statistical packages.

Geographers have also developed line pattern analysis which is a topological
approach to the study of networks of connections among points. Examples are: roads,
telephone lines, and river networks.

For a point pattern, heterogeneity refers to the distribution of individuals across
space; one often compares the observed density variation of organisms to that expected
for randomly distributed objects. For a surface pattern, heterogeneity refers to the
variability of quantitative or qualitative descriptors across space. Dutilleul & Legendre
(1993) provide a summary of the main statistical tools available to ecologists to
quantify spatial heterogeneity in both the point pattern and the surface pattern cases.
Dutilleul (1993) describes in more detail how experimental designs can be
accommodated to the spatial heterogeneity found in nature; spatial heterogeneity may
be a nuisance for the experimenter, or a characteristic of interest. The analysis of
spatial patterns is the study of organized arrangements of [ecological] heterogeneity
across space.

13.1 Structure functions

Ecologists are interested in describing spatial structures in quantitative ways and
testing for the presence of spatial autocorrelation in data. The primary objective is to:

Regionalized
variable
Surface

Surface
pattern

Line
pattern
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• either support the null hypothesis that no significant spatial autocorrelation is present
in a data set, or that none remains after detrending (Subsection 13.2.1), thus insuring
valid use of the standard univariate or multivariate statistical tests of hypotheses.

• or reject the null hypothesis and show that significant spatial autocorrelation is
present in the data, in order to use it in conceptual or statistical models. 

Tests of spatial autocorrelation coefficients may only support or reject the null
hypothesis of the absence of significant spatial structure. When significant spatial
structure is found, it may correspond, or not, to spatial autocorrelation (Section 1.1,
model b) — depending on the hypothesis of the investigator.

Table 13.1 Surface pattern analysis: research objectives and related numerical methods. Modified from
Legendre & Fortin (1989).

Research objective Numerical methods

1) Description of spatial structures
and testing for the presence of
spatial autocorrelation
(Descriptions using structure
functions should always be
complemented by maps.)

2) Mapping; estimation of values at
given locations

3) Modelling species-environment
relationships while taking spatial
structures into account

4) Performing valid statistical tests
on autocorrelated data

Univariate structure functions: correlogram,
variogram, etc. (Section 13.1)

Multivariate structure functions: Mantel
correlogram (Section 13.1)

Testing for a gradient in multivariate data:
(1) constrained (canonical) ordination between the
multivariate data and the geographic coordinates
of the sites (Section 13.4). (2) Mantel test between
ecological distances (computed from the
multivariate data) and geographic distances
(Subsection 10.5.1)

Univariate data: local interpolation map; trend-
surface map (global statistical model) (Sect. 13.2)

Multivariate data: clustering with spatial
contiguity constraint, search for boundaries
(Section 13.3); interpolated map of the 1st (2nd,
etc.) ordination axis (Section 13.4); multivariate
trend-surface map obtained by constrained
ordination (canonical analysis) (Section 13.4)

Raw data tables: partial canonical analysis
(Section 13.5)

Distance matrices: partial Mantel analysis
(Section 13.6)

Subsection 1.1.1
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Spatial structures may be described through structure functions, which allow one to
quantify the spatial dependency and partition it amongst distance classes.
Interpretation of this description is usually supported by maps of the univariate or
multivariate data (Sections 13.2 to 13.4). The most commonly used structure functions
are correlograms, variograms, and periodograms. 

A correlogram is a graph in which autocorrelation values are plotted, on the
ordinate, against distance classes among sites on the abscissa. Correlograms (Cliff &
Ord 1981) can be computed for single variables (Moran’s I or Geary’s c
autocorrelation coefficients, Subsection 1) or for multivariate data (Mantel
correlogram, Subsection 5); both types are described below. In all cases, a test of
significance is available for each individual autocorrelation coefficient plotted in a
correlogram.

Similarly, a variogram is a graph in which semi-variance is plotted, on the ordinate,
against distance classes among sites on the abscissa (Subsection 3). In the
geostatistical tradition, semi-variance statistics are not tested for significance, although
they could be through the test developed for Geary’s c, when the condition of second-
order stationarity is satisfied (Subsection 13.1.1). Statistical models may be fitted to
variograms (linear, exponential, spherical, Gaussian, etc.); they allow the investigator
to relate the observed structure to hypothesized generating processes or to produce
interpolated maps by kriging (Subsection 13.2.2). 

Because they measure the relationship between pairs of observation points located
a certain distance apart, correlograms and variograms may be computed either for
preferred geographic directions or, when the phenomenon is assumed to be isotropic in
space, in an all-directional way. 

A two-dimensional Schuster (1898) periodogram may be computed when the
structure under study is assumed to consist of a combination of sine waves propagated
through space. The basic idea is to fit sines and cosines of various periods, one period
at a time, and to determine the proportion of the series’ variance (r2) explained by each
period. In periodograms, the abscissa is either a period or its inverse, a frequency; the
ordinate is the proportion of variance explained. Two-dimensional periodograms may
be plotted for all combinations of directions and spatial frequencies. The technique is
described Priestley (1964), Ripley (1981), Renshaw and Ford (1984) and Legendre &
Fortin (1989). It is not discussed further in the present book.

1 — Spatial correlograms

In the case of quantitative variables, spatial autocorrelation may be measured by either
Moran’s I (1950) or Geary’s c (1954) spatial autocorrelation statistics (Cliff & Ord,
1981):

Map
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correlogram

Variogram

2-D
periodogram
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Moran’s I:    for h ≠ i (13.1)

Geary’s c:    for h ≠ i (13.2)

The yh’s and yi’s are the values of the observed variable at sites h and i. Before
computing spatial autocorrelation coefficients, a matrix of geographic distances
D = [Dhi] among observation sites must be calculated. In the construction of a
correlogram, spatial autocorrelation coefficients are computed, in turn, for the various
distance classes d. The weights whi are Kronecker deltas (as in eq. 7.20); the weights
take the value whi = 1 when sites h and i are at distance d and whi = 0 otherwise. In this
way, only the pairs of sites (h, i) within the stated distance class (d) are taken into
account in the calculation of any given coefficient. This approach is illustrated in
Fig. 13.3. W is the sum of the weights whi for the given distance class, i.e. the number
of pairs used to calculate the coefficient. For a given distance class, the weights wij are
written in a (n × n) matrix W. Jumars et al. (1977) present ecological examples where
the distance–1 or distance–2 among adjacent sites is used for weight instead of 1’s.

The numerators of eqs. 13.1 and 13.2 are written with summations involving each
pair of objects twice; in eq. 13.2 for example, the terms (yh – yi)

2 and (yi – yh)2 are
both used in the summation. This allows for cases where the distance matrix D or the
weight matrix W is asymmetric. In studies of the dispersion of pollutants in soil, for
instance, drainage may make it more difficult to go from A to B than from B to A; this
may be recorded as a larger distance from A to B than from B to A. In spatio-temporal
analyses, an observed value may influence a later value at the same or a different site,
but not the reverse. An impossible connection may be coded by a very large value of
distance. In most applications, however, the geographic distance matrix among sites is
symmetric and the coefficients may be computed from the half-matrix of distances; the
formulae remain the same, in that case, because W, as well as the sum in the numerator,
are half the values computed over the whole distance matrix D (except h = i).

One may use distances along a network of connections (Subsection 13.3.1) instead
of straight-line geographic distances; this includes the “chess moves” for regularly-
spaced points as obtained from systematic sampling designs: rook’s, bishop’s, or
king’s connections (see Fig. 13.19). For very broad-scale studies, involving a whole
ocean for instance, “great-circle distances”, i.e. distances along earth’s curved surface,
should be used instead of straight-line distances through the earth crust.
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Moran’s I formula is related to Pearson’s correlation coefficient; its numerator is a
covariance, comparing the values found at all pairs of points in turn, while its
denominator is the maximum-likelihood estimator of the variance (i.e. division by n
instead of n – 1); in Pearson’s r, the denominator is the product of the standard
deviations of the two variables (eq. 4.7), whereas in Moran’s I there is only one
variable involved. Moran’s I mainly differs from Pearson’s r in that the sums in the
numerator and denominator of eq. 13.1 do not involve the same number of terms; only
the terms corresponding to distances within the given class are considered in the
numerator whereas all pairs are taken into account in the denominator. Moran’s I
usually takes values in the interval [–1, +1] although values lower than –1 or higher
than +1 may occasionally be obtained. Positive autocorrelation in the data translates
into positive values of I; negative autocorrelation produces negative values.

Figure 13.3 Construction of correlograms. Left: data series observed along a single geographic axis
(10 equispaced observations). Moran’s I and Geary’s c statistics are computed from pairs of
observations found at preselected distances (d = 1, d = 2, d = 3, etc.). Right: correlograms are
graphs of the autocorrelation statistics plotted against distance. Dark squares: significant
autocorrelation statistics (p ≤ 0.05). Lower right: histogram showing the number of pairs in each
distance class. Coefficients for the larger distance values (grey zones in correlograms) should
not be considered in correlograms, nor interpreted, because they are based on a small number of
pairs (test with low power) and only include the pairs of points bordering the series or surface.
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Readers who are familiar with correlograms in time series analysis will be
reassured to know that, when a problem involves equispaced observations along a
single physical dimension, as in Fig. 13.3, calculating Moran’s I for the different
distance classes is nearly the same as computing the autocorrelation coefficient of time
series analysis (Fig. 12.5, eq. 12.6); a small numeric difference results from the
divisions by (n – k – 1) and (n – 1), respectively, in the numerator and denominator of
eq. 12.6, whereas division is by (n – k ) and (n ), respectively, in the numerator and
denominator of Moran’s I formula (eq. 13.1).

Geary’s c coefficient is a distance-type function; it varies from 0 to some
unspecified value larger than 1. Its numerator sums the squared differences between
values found at the various pairs of sites being compared. A Geary’s c correlogram
varies as the reverse of a Moran’s I correlogram; strong autocorrelation produces high
values of I and low values of c (Fig. 13.3). Positive autocorrelation translates in values
of c between 0 and 1 whereas negative autocorrelation produces values larger than 1.
Hence, the reference ‘no correlation’ value is c = 1 in Geary’s correlograms.

For sites lying on a surface or in a volume, geographic distances do not naturally
fall into a small number of values; this is true for regular grids as well as random or
other forms of irregular sampling designs. Distance values must be grouped into
distance classes; in this way, each spatial autocorrelation coefficient can be computed
using several comparisons of sampling sites. 

Numerical example. In Fig. 13.4 (artificial data), 10 sites have been located at random into
a 1-km2 sampling area. Euclidean (geographic) distances were computed among sites. The
number of classes is arbitrary and left to the user’s decision. A compromise has to be made
between resolution of the correlogram (more resolution when there are more, narrower classes)
and power of the test (more power when there are more pairs in a distance class). Sturge’s rule is
often used to decide about the number of classes in histograms; it was used here and gave:

Number of classes = 1 + 3.3log10(m) = 1 + 3.3log10(45) = 6.46 (13.3)

where m is, in the present case, the number of distances in the upper (or lower) triangular matrix;
the number was rounded to the nearest integer (i.e. 6). The distance matrix was thus recoded into
6 classes, ascribing the class number (1 to 6) to all distances within a class of the histogram. 

An alternative to distance classes with equal widths would be to create distance
classes containing the same number of pairs (notwithstanding tied values); distance
classes formed in this way are of unequal widths. The advantage is that the tests of
significance have the same power across all distance classes because they are based
upon the same number of pairs of observations. The disadvantages are that limits of
the distance classes are more difficult to find and correlograms are harder to draw.

Spatial autocorrelation coefficients can be tested for significance and confidence
intervals can be computed. With proper correction for multiple testing, one can
determine whether a significant spatial structure is present in the data and what are the
distance classes showing significant positive or negative autocorrelation. Tests of
significance require, however, that certain conditions specified below be fulfilled. 
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The tests require that the condition of second-order stationarity be satisfied. This
rather strong condition states that the expected value (mean) and spatial covariance
(numerator of eq. 13.1) of the variable is the same all over the study area, and the
variance (denominator of eq. 13.1) is finite. The value of the autocorrelation function
depends only on the length and orientation of the vector between any two points, not
on its position in the study area (David, 1977).

A relaxed form of stationarity hypothesis, the intrinsic assumption, states that the
differences (yh – yi) for any distance d (in the numerator of eq. 13.2) must have zero
mean and constant and finite variance over the study area, independently of the
location where the differences are calculated. Here, one considers the increments of the
values of the regionalized variable instead of the values themselves (David, 1977). As
shown below, the variance of the increments is the variogram function. In layman’s
terms, this means that a single autocorrelation function is adequate to describe the
entire surface under study. An example where the intrinsic assumption does not hold is

Figure 13.4 Calculation of distance classes, artificial data. (a) Map of 10 sites in a 1-km2 sampling area.
(b) Geographic distance matrix (D, in km). (c) Frequency histogram of distances (classes 1 to 6)
for the upper (or lower) triangular portion of D. (d) Distances recoded into 6 classes.

(a)  0.00 0.52 0.74 0.20 0.31 0.29 0.72 0.72 0.59 0.23

 0.52 0.00 0.27 0.41 0.27 0.75 0.52 0.25 0.45 0.53

 0.74 0.27 0.00 0.58 0.44 1.00 0.74 0.37 0.70 0.67

 0.20 0.41 0.58 0.00 0.15 0.49 0.76 0.65 0.63 0.12

 0.31 0.27 0.44 0.15 0.00 0.59 0.68 0.51 0.57 0.26

 0.29 0.75 1.00 0.49 0.59 0.00 0.76 0.90 0.64 0.50

 0.72 0.52 0.74 0.76 0.68 0.76 0.00 0.40 0.13 0.87

 0.72 0.25 0.37 0.65 0.51 0.90 0.40 0.00 0.39 0.77

 0.59 0.45 0.70 0.63 0.57 0.64 0.13 0.39 0.00 0.74
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a region which is half plain and half mountains; such a region should be divided in two
subregions in which the variable “altitude” could be modelled by separate
autocorrelation functions. This condition must always be met when variograms or
correlograms (including multivariate Mantel correlograms) are computed, even for
descriptive purpose.

Cliff & Ord (1981) describe how to compute confidence intervals and test the
significance of spatial autocorrelation coefficients. For any normally distributed
statistic Stat, a confidence interval at significance level α is obtained as follows:

(13.4)

For significance testing with large samples, a one-tailed critical value Statα at
significance level α is obtained as follows:

(13.5)

It is possible to use this approach because both I and c are asymptotically normally
distributed for data sets of moderate to large sizes (Cliff & Ord, 1981). Values zα/2 or
zα are found in a table of standard normal deviates. Under the hypothesis (H0) of
random spatial distribution of the observed values yi , the expected values (E) of
Moran’s I and Geary’s c are: 

E(I) = –(n – 1)–1    and   E(c) = 1 (13.6)

Under the null hypothesis, the expected value of Moran’s I approaches 0 as n
increases. The variances are computed as follows under a randomization assumption,
which simply states that, under H0, the observations yi are independent of their
positions in space and, thus, are exchangeable:

(13.7)
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In these equations,

•  (there is a term of this sum for each cell of matrix W);

•

•  measures the kurtosis of the distribution;

• W is as defined in eqs. 13.1 and 13.2.

In most cases in ecology, tests of spatial autocorrelation are one-tailed because the
sign of autocorrelation is stated in the ecological hypothesis; for instance, contagious
biological processes such as growth, reproduction, and dispersal, all suggest that
ecological variables are positively autocorrelated at short distances. To carry out an
approximate test of significance, select a value of α (e.g. α = 0.05) and find zα in a
table of the standard normal distribution (e.g. z0.05 = +1.6452). Critical values are
found as in eq. 13.5, with a correction factor that becomes important when n is small:

•  in all cases, using the value in the upper tail of the z
distribution when testing for positive autocorrelation (e.g. z0.05 = +1.6452) and the
value in the lower tail in the opposite case (e.g. z0.05 = –1.6452).

•  when c < 1 (positive autocorrelation), using the value in the
lower tail of the z distribution (e.g. z0.05 = –1.6452).

•  when c > 1 (negative autocorrelation), using
the value in the upper tail of the z distribution (e.g. z0.05 = +1.6452).

The value taken by the correction factor kα depends on the values of n and W. If
, then ; otherwise, kα = 1. If the test

is two-tailed, use α* = α/2 to find zα* and kα* before computing critical values. These
corrections are based upon simulations reported by Cliff & Ord (1981, section 2.5).

Other formulas are found in Cliff & Ord (1981) for conducting a test under the
assumption of normality, where one assumes that the yi’s result from n independent
draws from a normal population. When n is very small, tests of I and c should be
conducted by randomization (Section 1.2). 

Moran’s I and Geary’s c are sensitive to extreme values and, in general, to
asymmetry in the data distributions, as are the related Pearson’s r and Euclidean
distance coefficients. Asymmetry increases the variance of the data. It also increases
the kurtosis and hence the variance of the I and c coefficients (eqs. 13.7 and 13.8); this
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makes it more difficult to reach significance in statistical tests. So, practitioners usually
attempt to normalize the data before computing correlograms and variograms.

Statistical testing in correlograms implies multiple testing since a test of
significance is carried out for each autocorrelation coefficient. Oden (1984) has
developed a Q statistic to test the global significance of spatial correlograms; his test is
an extension of the Portmanteau Q-test used in time series analysis (Box & Jenkins,
1976). An alternative global test is to check whether the correlogram contains at least
one autocorrelation statistic which is significant at the Bonferroni-corrected
significance level (Box 1.3). Simulations in Oden (1984) show that the power of the Q-
test is not appreciably greater than the power of the Bonferroni procedure, which is
computationally a lot simpler. A practical question remains, though: how many
distance classes should be created? This determines the number of simultaneous tests
that are carried out. More classes mean more resolution but fewer pairs per class and,
thus, less power for each test; more classes also mean a smaller Bonferroni-corrected
α' level, which makes it more difficult for a correlogram to reach global significance.

When the overall test has shown global significance, one may wish to identify the
individual autocorrelation statistics that are significant, in order to reach an
interpretation (Subsection 2). One could rely on Bonferroni-corrected tests for all
individual autocorrelation statistics, but this approach would be too conservative; a
better solution is to use Holm’s correction procedure (Box 1.3). Another approach is
the progressive Bonferroni correction described in Subsection 12.4.2; it is only
applicable when the ecological hypothesis indicates that significant autocorrelation is
to be expected in the smallest distance classes and the purpose of the analysis is to
determine the extent of the autocorrelation (i.e. which distance class it reaches). With
the progressive Bonferroni approach, the likelihood of emergence of significant values
decreases as one proceeds from left to right, i.e. from the small to the large distance
classes of the correlogram. One does not have to limit the correlogram to a small
number of classes to reduce the effect of the correction, as it is the case with Oden’s
overall test and with the Bonferroni and Holm correction methods. This approach will
be used in the examples that follow.

Autocorrelation coefficients and tests of significance also exist for qualitative
(nominal) variables (Cliff & Ord 1981); they have been used to analyse for instance
spatial patterns of sexes in plants (Sakai & Oden 1983; Sokal & Thomson 1987).
Special types of spatial autocorrelation coefficients have been developed to answer
specific problems (e.g. Galiano 1983; Estabrook & Gates 1984). The paired-quadrat
variance method, developed by Goodall (1974) to analyse spatial patterns of
ecological data by random pairing of quadrats, is related to correlograms.

2 — Interpretation of all-directional correlograms

When the autocorrelation function is the same for all geographic directions
considered, the phenomenon is said to be isotropic. Its opposite is anisotropy. When a
variable is isotropic, a single correlogram may be computed over all directions of the

Isotropy
Anisotropy
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study area. The correlogram is said to be all-directional or omnidirectional.
Directional correlograms, which are computed for a single direction of space, are
discussed together with anisotropy and directional variograms in Subsection 3. 

Correlograms are analysed mostly by looking at their shapes. Examples will help
clarify the relationship between spatial structures and all-directional correlograms. The
important message is that, although correlograms may give clues as to the underlying
spatial structure, the information they provide is not specific; a blind interpretation
may often be misleading and should always be supported by maps (Section 13.2).

Numerical example. Artificial data were generated that correspond to a number of spatial
patterns. The data and resulting correlograms are presented in Fig. 13.5.   

• Nine bumps — The surface in Fig. 13.5a is made of nine bi-normal curves. 225 points were
sampled across the surface using a regular 15 × 15 grid (Fig. 13.5f). The “height” was noted at
each sampling point. The 25200 distances among points found in the upper-triangular portion of
the distance matrix were divided into 16 distance classes, using Sturge’s rule (eq. 13.3), and

Figure 13.5 Spatial autocorrelation analysis of artificial spatial structures shown on the left: (a) nine bumps;
(b) waves; (c) a single bump. Centre and right: all-directional correlograms. Dark squares:
autocorrelation statistics that remain significant after progressive Bonferroni correction
(α = 0.05); white squares: non-significant values.
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correlograms were computed. According to Oden’s test, the correlograms are globally
significant at the α = 5% level since several individual values are significant at the Bonferroni-
corrected level α' = 0.05/16 = 0.00312. In each correlogram, the progressive Bonferroni
correction method was applied to identify significant spatial autocorrelation coefficients: the
coefficient for distance class 1 was tested at the α = 0.05 level; the coefficient for distance class
2 was tested at the α' = 0.05/2 level; and, more generally, the coefficient for distance class k was
tested at the α' = 0.05/k level. Spatial autocorrelation coefficients are not reported for distance
classes 15 and 16 (60 and 10 pairs, respectively) because they only include the pairs of points
bordering the surface, to the exclusion of all other pairs.

There is a correspondence between individual significant spatial autocorrelation coefficients
and the main elements of the spatial structure. The correspondence can clearly be seen in this
example, where the data generating process is known. This is not the case when analysing field
data, in which case the existence and nature of the spatial structures must be confirmed by
mapping the data. The presence of several equispaced patches produces an alternation of

Figure 13.5 (continued) Spatial autocorrelation analysis of artificial spatial structures shown on the left:
(d) gradient; (e) step. (h) All-directional correlogram of random values. (f) Sampling grid used
on each of the artificial spatial structures to obtain 225 “observed values” for spatial
autocorrelation analysis. (g) Histogram showing the number of pairs in each distance class.
Distances, from 1 to 19.8 in units of the sampling grid, were grouped into 16 distance classes.
Spatial autocorrelation statistics (I or c) are not shown for distance classes 15 and 16; see text.
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significant positive and negative values along the correlograms. The first spatial autocorrelation
coefficient, which is above 0 in Moran’s correlogram and below 1 in Geary’s, indicates positive
spatial autocorrelation in the first distance class; the first class contains the 420 pairs of points
that are at distance 1 of each other on the grid (i.e. the first neighbours in the N-S or E-W
directions of the map). Positive and significant spatial autocorrelation in the first distance class
confirms that the distance between first neighbours is smaller than the patch size; if the distance
between first neighbours in this example was larger than the patch size, first neighbours would
be dissimilar in values and autocorrelation would be negative for the first distance class. The
next peaking positive autocorrelation value (which is smaller than 1 in Geary’s correlogram)
occurs at distance class 5, which includes distances from 4.95 to 6.19 in grid units; this
corresponds to positive autocorrelation between points located at similar positions on
neighbouring bumps, or neighbouring troughs; distances between successive peaks are 5 grid
units in the E-W or N-S directions. The next peaking positive autocorrelation value occurs at
distance class 9 (distances from 9.90 to 11.14 in grid units); it includes value 10, which is the
distance between second-neighbour bumps in the N-S and E-W directions. Peaking negative
autocorrelation values (which are larger than 1 in Geary’s correlogram) are interpreted in a
similar way. The first such value occurs at distance class 3 (distances from 2.48 to 3.71 in grid
units); it includes value 2.5, which is the distance between peaks and troughs in the N-S and E-
W directions on the map. If the bumps were unevenly spaced, the correlograms would be similar
for the small distance classes, but there would be no other significant values afterwards.

The main problem with all-directional correlograms is that the diagonal comparisons are
included in the same calculations as the N-S and E-W comparisons. As distances become larger,
diagonal comparisons between, say, points located near the top of the nine bumps tend to fall in
different distance classes than comparable N-S or E-W comparisons. This blurs the signal and
makes the spatial autocorrelation coefficients for larger distance classes less significant and
interpretable.

• Wave (Fig. 13.5b) — Each crest was generated as a normal curve. Crests were separated by
five grid units; the surface was constructed in this way to make it comparable to Fig. 13.5a. The
correlograms are nearly indistinguishable from those of the nine bumps. All-directional
correlograms alone cannot tell apart regular bumps from regular waves; directional
correlograms or maps are required.

• Single bump (Fig. 13.5c) — One of the normal curves of Fig. 13.5a was plotted alone at the
centre of the study area. Significant negative autocorrelation, which reaches distance classes 6 or
7, delimits the extent of the “range of influence” of this single bump, which covers half the study
area. It is not limited here by the rise of adjacent bumps, as this was the case in (a).

• Linear gradient (Fig. 13.5d) — The correlogram is monotonic decreasing. Nearly all
autocorrelation values in the correlograms are significant. 

There are actually two kinds of gradients (Legendre, 1993). “True gradients”, on the one
hand, are deterministic structures. They correspond to generating model 2 of Subsection 1.1.1
(eq. 1.2) and can be modelled using trend-surface analysis (Subsection 13.2.1). The observed
values have independent error terms, i.e. error terms which are not autocorrelated. “False
gradients”, on the other hand, are structures that may look like gradients, but actually correspond
to autocorrelation generated by some spatial process (model 1 of Subsection 1.1.1; eq. 1.1).
When the sampling area is small relative to the range of influence of the generating process, the
data generated by such a process may look like a gradient. 

True, false
gradient
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In the case of “true gradients”, spatial autocorrelation coefficients should not be tested for
significance because the condition of second-order stationarity is not satisfied (definition in
previous Subsection); the expected value of the mean is not the same over the whole study area.
In the case of “false gradients”, however, tests of significance are warranted. For descriptive
purposes, correlograms may still be computed for “true gradients” (without tests of significance)
because the intrinsic assumption is satisfied. One may also choose to extract a “true gradient”
using trend-surface analysis, compute residuals, and look for spatial autocorrelation among the
residuals. This is equivalent to trend extraction prior to time series analysis (Section 12.2). 

How does one know whether a gradient is “true” or “false”? This is a moot point. When the
process generating the observed structure is known, one may decide whether it is likely to have
generated spatial autocorrelation in the observed data, or not. Otherwise, one may empirically
look at the target population of the study. In the case of a spatial study, this is the population of
potential sites in the larger area into which the study area is embedded, the study area
representing the statistical population about which inference can be made. Even from sparse or
indirect data, a researcher may form an opinion as to whether the observed gradient is
deterministic (“true gradient”) or is part of a landscape displaying autocorrelation at broader
spatial scale (“false gradient”).

• Step (Fig. 13.5e) — A step between two flat surfaces is enough to produce a correlogram
which is indistinguishable, for all practical purposes, from that of a gradient. Correlograms
alone cannot tell apart regular gradients from steps; maps are required. As in the case of
gradients, there are “true steps” (deterministic) and “false steps” (resulting from an
autocorrelated process), although the latter is rare. The presence of a sharp discontinuity in a
surface generally indicates that the two parts should be subjected to separate analyses. The
methods of boundary detection and constrained clustering (Section 13.3) may help detect such
discontinuities and delimit homogeneous areas prior to spatial autocorrelation analysis.

• Random values (Fig. 13.5h) — Random numbers, drawn from a standard normal distribution,
were generated for each point of the grid and used as the variable to be analysed. Random data
are said to represent a “pure nugget effect” in geostatistics. The autocorrelation coefficients were
small and non-significant at the 5% level. Only the Geary correlogram is presented.

Sokal (1979) and Cliff & Ord (1981) describe, in general terms, where to expect
significant values in correlograms, for some spatial structures such as gradients and
large or small patches. Their summary tables are in agreement with the test examples
above. The absence of significant coefficients in a correlogram must be interpreted
with caution, however:

• It may indicate that the surface under study is free of spatial autocorrelation at the
study scale. Beware: this conclusion is subject to type II (or β) error. Type II error
depends on the power of the test which is a function of (1) the α significance level,
(2) the size of effect (i.e. the minimum amount of autocorrelation) one wants to detect,
(3) the number of observations (n), and (4) the variance of the sample (Cohen, 1988):

Power = (1 – β) = f(α, size of effect, n, )

Is the test powerful enough to warrant such a conclusion? Are there enough
observations to reach significance? The easiest way to increase the power of a test, for
a given variable and fixed α, is to increase n.

sx
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• It may indicate that the sampling design is inadequate to detect the spatial
autocorrelation that may exist in the system. Are the grain size, extent and sampling
interval (Section 13.0) adequate to detect the type of autocorrelation one can
hypothesize from knowledge about the biological or ecological process under study?

Ecologists can often formulate hypotheses about the mechanism or process that
may have generated a spatial phenomenon and deduct the shape that the resulting
surface should have. When the model specifies a value for each geographic position
(e.g. a spatial gradient), data and model can be compared by correlation analysis. In
other instances, the biological or ecological model only specifies process generating
the spatial autocorrelation, not the exact geographic position of each resulting value.
Correlograms may be used to support or reject the biological or ecological hypothesis.
As in the examples of Fig. 13.5, one can construct an artificial model-surface
corresponding to the hypothesis, compute a correlogram of that surface, and compare
the correlograms of the real and model data. For instance, Sokal et al. (1997a)
generated data corresponding to several gene dispersion mechanisms in populations
and showed the kind of spatial correlogram that may be expected from each model.
Another application concerning phylogenetic patterns of human evolution in Eurasia
and Africa (space-time model) is found in Sokal et al. (1997b).

Bjørnstad & Falck (1997) and Bjørnstad et al. (1998) proposed a spline
correlogram which provides a continuous and model-free function for the spatial
covariance. The spline correlogram may be seen as a modification of the
nonparametric covariance function of Hall and co-workers (Hall & Patil, 1994; Hall et
al., 1994). A bootstrap algorithm estimates the confidence envelope of the entire
correlogram or derived statistics. This method allows the statistical testing of the
similarity between correlograms of real and simulated (i.e. model) data.

Ecological application  13.1a

During a study of the factors potentially responsible for the choice of settling sites of Balanus
crenatus larvae (Cirripedia) in the St. Lawrence Estuary (Hudon et al., 1983), plates of artificial
substrate (plastic laminate) were subjected to colonization in the infralittoral zone. Plates were
positioned vertically, parallel to one another. A picture was taken of one of the plates after a 3-
month immersion at a depth of 5 m below low tide, during the summer 1978. The picture was
divided into a (10 × 15) grid, for a total of 150 pixels of 1.7 × 1.7 cm. Barnacles were counted by
C. Hudon and P. Legendre for the present Ecological application (Fig. 13.6a; unpublished in op.
cit.). The hypothesis to be tested is that barnacles have a patchy distribution. Barnacles are
gregarious animals; their larvae are chemically attracted to settling sites by arthropodine
secreted by settled adults (Gabbott & Larman, 1971).

A gradient in larval concentration was expected in the top-to-bottom direction of the plate
because of the known negative phototropism of barnacle larvae at the time of settlement
(Visscher, 1928). Some kind of border effect was also expected because access to the centre of
the plates located in the middle of the pack was more limited than to the fringe. These large-
scale effects create violations to the condition of second-order stationarity. A trend-surface
equation (Subsection 13.2.1) was computed to account for it, using only the Y coordinate (top-
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to-bottom axis). Indeed, a significant trend surface was found, involving Y and Y2, that
accounted for 10% of the variation. It forecasted high barnacle concentration in the bottom part
of the plate and near the upper and lower margins. Residuals from this equation were calculated
and used in spatial autocorrelation analysis.

Euclidean distances were computed among pixels; following Sturge’s rule (eq. 13.3), the
distances were divided into 14 classes (Fig. 13.6b). Significant positive autocorrelation was
found in the first distance classes of the correlograms (Fig. 13.6c, d), supporting the hypothesis
of patchiness. The size of the patches, or “range of influence” (i.e. the distance between zones of
high and low concentrations), is indicated by the distance at which the first maximum negative
autocorrelation value is found. This occurs in classes 4 and 5, which corresponds to a distance of
about 5 in grid units, or 8 to 10 cm. The patches of high concentration are shaded on the map of
the plate of artificial substrate (Fig. 13.6a).

In anisotropic situations, directional correlograms should be computed in two or
several directions. Description of how the pairs of points are chosen is deferred to
Subsection 3 on variograms. One may choose to represent either a single, or several of

Figure 13.6 (a) Counts of adult barnacles in 150 (1.7 × 1.7 cm) pixels on a plate of artificial substrate
(17 × 25.5 cm). The mean concentration is 6.17 animals per pixel; pixels with counts ≥ 7 are
shaded to display the aggregates. (b) Histogram of the number of pairs in each distance class.
(c) Moran’s correlogram. (d) Geary’s correlogram. Dark squares: autocorrelation statistics that
remain significant after progressive Bonferroni correction (α = 0.05); white squares: non-
significant values. Coefficients for distance classes 13 and 14 are not given because they only
include the pairs of points bordering the surface. Distances are also given in grid units and cm.
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these correlograms, one for each of the aiming geographic directions, as seems fit for
the problem at hand. A procedure for representing in a single figure the directional
correlograms computed for several directions of a plane has been proposed by Oden &
Sokal (1986); Legendre & Fortin (1989) give an example for vegetation data. Another
method is illustrated in Rossi et al. (1992).

Another way to approach anisotropic problems is to compute two-dimensional
spectral analysis. This method, described by Priestley (1964), Rayner (1971), Ford
(1976), Ripley (1981) and Renshaw & Ford (1984), differs from spatial
autocorrelation analysis in the structure function it uses. As in time-series spectral
analysis (Section 12.5), the method assumes the data to be stationary (second-order
stationarity; i.e. no “true gradient” in the data) and made of a combination of sine
patterns. An autocorrelation function rdX,dY for all combinations of lags (dX, dY) in the
two geographic axes of a plane, as well as a periodogram with intensity I for all
combinations of frequencies in the two directions of the plane, are computed. Details
of the calculations are also given in Legendre & Fortin (1989), with an example.

3 — Variogram

Like correlograms, semi-variograms (called variograms for simplicity) decompose the
spatial (or temporal) variability of observed variables among distance classes. The
structure function plotted as the ordinate, called semi-variance, is the numerator of
eq. 13.2:

   for h ≠ i (13.9)

or, for symmetric distance and weight matrices,

(13.10)

γ(d) is thus a non-standardized form of Geary’s c coefficient. γ may be seen as a
measure of the error mean square of the estimate of yi using a value yh distant from it
by d. The two forms lead to the same numerical value in the case of symmetric
distance and weight matrices. The calculation is repeated for different values of d. This
provides the sample variogram, which is a plot of the empirical values of variance γ(d)
as a function of distance d.

The equations usually found in the geostatistical literature look a bit different, but
they correspond to the same calculations:
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Both of these expressions mean that pairs of values are selected to be at distance d of
each other; there are W(d) such pairs for any given distance class d. The condition
dhi ≈ d means that distances may be grouped into distance classes, placing in class d
the individual distances dhi that are approximately equal to d. In directional variograms
(below), d is a directional measure of distance, i.e. taken in a specified direction only.
The semi-variance function is often called the variogram in the geostatistical literature.
When computing a variogram, one assumes that the autocorrelation function applies to
the entire surface under study (intrinsic hypothesis, Subsection 13.1.1).

Generally, variograms tend to level off at a sill which is equal to the variance of the
variable (Fig. 13.7); the presence of a sill implies that the data are second-order
stationary. The distance at which the variance levels off is referred to as the range
(parameter a); beyond that distance, the sampling units are not spatially correlated.
The discontinuity at the origin (non–zero intercept) is called the nugget effect; the
geostatistical origin of the method transpires in that name. It corresponds to the local
variation occurring at scales finer than the sampling interval, such as sampling error,
fine-scale spatial variability, and measurement error. The nugget effect is represented
by the error term εij in spatial structure model 1b of Subsection 1.1.1. It describes a
portion of variation which is not autocorrelated, or is autocorrelated at a scale finer
than can be detected by the sampling design. The parameter for the nugget effect is C0
and the spatially structured component is represented by C1; the sill, C, is equal to
C0 + C1. The relative nugget effect is C0/(C0 + C1).

Figure 13.7 Spherical variogram model showing characteristic features: nugget effect (C0 = 2 in this
example), spatially structured component (C1 = 4), sill (C = C0 + C1 = 6), and range (a = 8).
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Although a sample variogram is a good descriptive summary of the spatial
contiguity of a variable, it does not provide all the semi-variance values needed for
kriging (Subsection 13.2.2). A model must be fitted to the sample variogram; the
model will provide values of semi-variance for all the intermediate distances. The
most commonly used models are the following (Fig. 13.8):

• Spherical model:  if d ≤ a;  if d > a.

• Exponential model: .

• Gaussian model: .

• Hole effect model: . An equivalent form is

 where a' = 1/a.  represents the value

of γ towards which the dampening sine function tends to stabilize. This equation would
adequately model a variogram of the periodic structures in Fig. 13.5a-b (variograms
only differ from Geary’s correlograms by the scale of the ordinate).

Figure 13.8 Commonly used variogram models.
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• Linear model:  where b is the slope of the variogram model. A
linear model with sill is obtained by adding the specification:  if d ≥ a.

• Pure nugget effect model:  if d > 0;  if d = 0. The second part
applies to a point estimate. In practice, observations have the size of the sampling grain
(Section 13.0); the error at that scale is always larger than 0.

Other less-frequently encountered models are described in geostatistics textbooks. A
model is usually chosen on the basis of the known or assumed process having
generated the spatial structure. Several models may be added up to fit any particular
sample variogram. Parameters are fitted by weighted least squares; the weights are
function of the distance and the number of pairs in each distance class (Cressie, 1991).

As mentioned at the beginning of Subsection 2, anisotropy is present in data when
the autocorrelation function is not the same for all geographic directions considered
(David, 1977; Isaaks & Srivastava, 1989). In geometric anisotropy, the variation to be
expected between two sites distant by d in one direction is equivalent to the variation
expected between two sites distant by b × d in another direction. The range of the
variogram changes with direction while the sill remains constant. In a river for
instance, the kind of variation expected in phytoplankton concentration between two
sites 5 m apart across the current may be the same as the variation expected between
two sites 50 m apart along the current even though the variation can be modelled by
spherical variograms with the same sill in the two directions. Constant b is called the
anisotropy ratio (b = 50/5 = 10 in the river example). This is equivalent to a change in
distance units along one of the axes. The anisotropy ratio may be represented by an
ellipse or a more complex figure on a map, its axes being proportional to the variation
expected in each direction. In zonal anisotropy, the sill of the variogram changes with
direction while the range remains constant. An extreme case is offered by a strip of
land. If the long axis of the strip is oriented in the direction of a major environmental
gradient, the variogram may correspond to a linear model (always increasing) or to a
spherical model with a sill larger than the nugget effect, whereas the variogram in the
direction perpendicular to it may show only random variation without spatial structure
with a sill equal to the nugget effect.

Directional variograms and correlograms may be used to determine whether
anisotropy (defined in Subsection 2) is present in the data; they may also be used to
describe anisotropic surfaces or to account for anisotropy in kriging
(Subsection 13.2.2). A direction of space is chosen (i.e. an angle θ, usually by
reference to the geographic north) and a search is launched for the pairs of points that
are within a given distance class d in that direction. There may be few such pairs
perfectly aligned in the aiming direction, or none at all, especially when the observed
sites are not regularly spaced on the map. More pairs can usually be found by looking
within a small neighbourhood around the aiming line (Fig. 13.9). The neighbourhood
is determined by an angular tolerance parameter ϕ and a parameter κ that sets the
tolerance for distance classes along the aiming line. For each observed point Øh in
turn, one looks for other points Øi that are at distance d ± κ from it. All points found

γ d( ) C0 bd+=
γ d( ) C=

γ d( ) C0= γ d( ) 0=
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Directional
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within the search window are paired with the reference point Øh and included in the
calculation of semi-variance or spatial autocorrelation coefficients for distance class d.
In most applications, the search is bi-directional, meaning that one also looks for
points within a search window located in the direction opposite (180°) the aiming
direction. Isaaks & Srivastava (1989, Chapter 7) propose a way to assemble directional
measures of semi-variance into a single table and to produce a contour map that
describes the anisotropy in the data, if any; Rossi et al. (1992) have used the same
approach for directional spatial correlograms.

Numerical example. An artificial data set was produced containing random autocorrelated
data. The data were generated using the turning bands method (David, 1977; Journel &
Huijbregts, 1978); random normal deviates were autocorrelated following a spherical model
with a range of 5. Pure spatial autocorrelation, as described in the spatial structure model 1b of
Subsection 1.1.1, generates continuity in the data (Fig. 13.10a). The variogram (without test of
significance) and spatial correlograms (with tests) are presented in Figs. 13.10b-d. In this
example, the data were standardized during data generation, prior to spatial autocorrelation
analysis, so that the denominator of eq. 13.2 is 1; therefore, the variogram and Geary’s
correlogram are identical. The variogram suggests a spherical model with a range of 6 units and
a small nugget effect (Fig. 13.10b).

Besides the description of spatial structures, variograms are used for several other
purposes in spatial analysis. In Subsection 13.2.2, they will be the basis for
interpolation by kriging. In addition, structure functions (variograms, spatial

Figure 13.9 Search parameters for pairs of points in directional variograms and correlograms. From an
observed study site Ø1, an aiming line is drawn in the direction determined by angle θ (usually
by reference to the geographic north, indicated by N). The angular tolerance parameter ϕ
determines the search zone (grey) laterally whereas parameter κ sets the tolerance along the
aiming line for each distance class d. Points within the search window (in gray) are included in
the calculation of I(d), c(d) or γ(d).
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correlograms) may prove extremely useful to help determine the grain size of the
sampling units and the sampling interval to be used in a survey, based upon the
analysis of a pilot study. They may also be used to perform change-of-scale operations
and predict the type of autocorrelation and variance that would be observed if the grain
size of the sampling design was different from that actually used in a field study
(Bellehumeur et al., 1997).

4 — Spatial covariance, semi-variance, correlation, cross-correlation

This Subsection examines the relationships between spatial covariance, semi-variance
and correlation (including cross-correlation), under the assumption of second-order
stationarity, leading to the concept of cross-correlation. This assumption
(Subsection 13.2.1) may be restated as follows:

• The first moment (mean of points i) of the variable exists:

(13.11)

Its value does not depend on position in the study area.

Figure 13.10 (a) Series of 100 equispaced random, spatially autocorrelated data. (b) Variogram, with spherical
model superimposed (heavy line). Abscissa: distances between points along the geographic axis
in (a). (c) and (d) Spatial correlograms. Dark squares: autocorrelation statistics that remain
significant after progressive Bonferroni correction (α = 0.05); white squares: non-significant
values.
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• The second moment (covariance, numerator of eq. 13.1) of the variable exists:

(13.12)

    for h, i dhi ≈ d (13.13)

The value of C(d) depends only on d and on the orientation of the distance vector, but
not on position in the study area. To understand eq. 13.12 as a measure of covariance,
imagine the elements of the various pairs yh and yi written in two columns as if they
were two variables. The equation for the covariance (eq. 4.4) may be written as
follows, using a final division by n instead of (n – 1) (maximum-likelihood estimate of
the covariance, which is standard in geostatistics):

The overall variance (Var, with division by n instead of n – 1) also exists since it is
the covariance calculated for d = 0:

(13.14)

When computing the semi-variance, one only considers pairs of observations
distant by d. Eqs. 13.9 and 13.10 are re-written as follows:

    for h, i dhi ≈ d (13.15)

A few lines of algebra obtain the following formula:

    for h, i dhi ≈ d (13.16)

Two properties are used in the derivation: (1) ∑yh = ∑yi , and (2) the variance (Var,
eq. 13.14) can be estimated using any subset of the observed values if the hypothesis
of second-order stationarity is verified.

The correlation is the covariance divided by the product of the standard deviations
(eq. 4.7). For a spatial process, the (auto)correlation is written as follows (leading to a
formula which differs from eq. 13.1):

(13.17)
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Consider the formula for Geary’s c (eq. 13.2), which is the semi-variance divided by
the overall variance. The following derivation:

leads to the conclusion that Geary’s c is one minus the coefficient of spatial
(auto)correlation. In a graph, the semi-variance and Geary’s c coefficient have exactly
the same shape (e.g. Figs. 13.10b and d); only the ordinate scales may differ. An
autocorrelogram plotted using r(d) has the exact reverse shape as a Geary correlogram.
An important conclusion is that the plots of semi-variance, covariance, Geary’s c
coefficient, and r(d), are equivalent to characterize spatial structures under the
hypothesis of second-order stationarity (Bellehumeur & Legendre, 1998).

Cross-covariances may also be computed from eq. 13.12, using values of two
different variables observed at locations distant by d (Isaaks & Srivastava, 1989).
Eq. 13.17 leads to a formula for cross-correlation which may be used to plot cross-
correlograms; the construction of the correlation statistic is the same as for time series
(eq. 12.10). With transect data, the result is similar to that of eq. 12.10. However, the
programs designed to compute spatial cross-correlograms do not require the data to be
equispaced, contrary to programs for time-series analysis. The theory is presented by
Rossi et al. (1992), as well as applications to ecology.

Ecological application  13.1b

A survey was conducted on a homogeneous sandflat in the Manukau Harbour, New Zealand, to
identify the scales at which spatial heterogeneity could be detected in the distribution of adult
and juvenile bivalves (Macomona liliana and Austrovenus stutchburyi), as well as indications of
adult-juvenile interactions within and between species. The results were reported by Hewitt et
al. (1997); see also Ecological application 13.2. Sampling was conducted along transects
established at three sites located within a 1-km2 area; there were two transects at each site,
forming a cross. Sediment cores (10 cm diam., 13 cm deep) were collected using a nested
sampling design; the basic design was a series of cores 5 m apart, but additional cores were
taken 1 m from each of the 5-m-distant cores. This design provided several comparison in the
short distance classes (1, 4, 5, and 6 m). Using transects instead of rectangular areas allowed
relatively large distances (150 m) to be studied, given the allowable sampling effort. Nested
sampling designs have also been advocated by Fortin et al. (1989) and by Bellehumeur &
Legendre (1998).

Spatial correlograms were used to identify scales of variation in bivalve concentrations. The
Moran correlogram for juvenile Austrovenus, computed for the three transects perpendicular to
the direction of tidal flow, displayed significant spatial autocorrelation at distances of 1 and 5 m
(Fig. 13.11a). The same pattern was found in the transects parallel to tidal flow. Figure 13.11a
also indicates that the range of influence of autocorrelation was about 15 m. This was confirmed
by plotting bivalve concentrations along the transects: LOWESS smoothing of the graphs
(Subsection 10.3.8) showed patches of about 25-30 m in diameter (Hewitt et al., 1997, Figs. 3
and 4).
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Cross-correlograms were computed to detect signs of adult-juvenile interactions. In the
comparison of adult (> 10 mm) to juvenile Macomona (< 5 mm), a significant negative cross-
correlation was identified at 0 m in the direction parallel to tidal flow (Fig. 13.11b); correlation
was not significant for the other distance classes. As in time series analysis, the cross-correlation
function is not symmetrical; the correlation obtained by comparing values of y1 to values of y2
located at distance d on their right is not the same as when values of y2 are compared to values
of y1 located at distance d on their right, except for d = 0. In Fig. 13.11b, the cross-correlogram
is folded about the ordinate (compare to Fig. 12.9). Contrary to time series analysis, it is not
useful in spatial analysis to discuss the direction of lag of a variable with respect to the other
unless one has a specific hypothesis to test.

5 — Multivariate Mantel correlogram

Sokal (1986) and Oden & Sokal (1986) found an ingenious way to compute a
correlogram for multivariate data, using the normalized Mantel statistic rM and test of
significance (Subsection 10.5.1). This method is useful, in particular, to describe the
spatial structure of species assemblages.

The principle is to quantify the ecological relationships among sampling sites by
means of a matrix Y of multivariate similarities or distances (using, for instance,
coefficients S17 or D14 in the case of species abundance data), and compare Y to a
model matrix X (Subsection 10.5.1) which is different for each geographic distance
class (Fig. 13.12). 

• For distance class 1 for instance, pairs of neighbouring stations (that belong to the
first class of geographic distances) are coded 1, whereas the remainder of matrix X1
contains zeros. A first Mantel statistic (rM1) is calculated between Y and X1.

• The process is repeated for the other distance classes d, building each time a model-
matrix Xd and recomputing the normalized Mantel statistic. Matrix Xd may contain 1’s

Figure 13.11 (a) Spatial autocorrelogram for juvenile Austrovenus densities. (b) Cross-correlogram for adult-
juvenile Macomona interactions, folded about the ordinate: circles = positive lags, squares =
negative lags. Dark symbols: correlation statistics that are significant after progressive
Bonferroni correction (α = 0.05). Redrawn from Hewitt et al. (1997).
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for pairs that are in the given distance class, or the code value for that distance class
(d), or any other value different from zero; all coding methods lead to the same value
of the normalized Mantel statistic rM.

The Mantel statistics, plotted against distance classes, produce a multivariate
correlogram. Each value is tested for significance in the usual way, using either

Figure 13.12 Construction of a Mantel correlogram for a similarity matrix S (n = 10 sites). The matrix of
geographic distance classes D, from Fig. 13.4, gives rise to model matrices X1, X2, etc. for the
various distance classes d. These are compared, in turn, to matrix Y = S using standardized
Mantel statistics (rMd). Dark symbols in the correlogram: Mantel statistics that are significant
after progressive Bonferroni correction (α = 0.05).
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0.40 0.79 0.65 0.34 0.56 0.25 0.65 1.00 0.41 0.35

0.29 0.38 0.34 0.46 0.39 0.27 0.60 0.41 1.00 0.29

0.75 0.54 0.44 0.73 0.78 0.56 0.27 0.35 0.29 1.00
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permutations or Mantel’s normal approximation (Box 10.2). Computation of
standardized Mantel statistics assumes second-order stationarity. As in the case of
univariate correlograms (above), one is advised to use some form of correction for
multiple testing before interpreting Mantel correlograms.

Numerical example. Consider again the 10 sampling sites of Fig. 13.4. Assume that species
assemblage data were available and produced similarity matrix S of Fig. 13.12. Matrix S played
here the role of Y in the computation of Mantel statistics. Were the species data autocorrelated?
Distance matrix D, already divided into 6 classes in Fig. 13.4, was recoded into a series of model
matrices Xd (d = 1, 2, etc.). In each of these, the pairs of sites that were in the given distance
class received the value d, whereas all other pairs received the value 0. Mantel statistics were
computed between S and each of the Xd matrices in turn; positive and significant Mantel
statistics indicate positive autocorrelation in the present case. The statistics were tested for
significance using 999 permutations and plotted against distance classes d to form the Mantel
correlogram. The progressive Bonferroni method was used to account for multiple testing
because interest was primarily in detecting autocorrelation in the first distance classes.

Before computing the Mantel correlogram, one must assume that the condition of second-
order stationarity is satisfied. This condition is more difficult to explain in the case of
multivariate data; it means essentially that the surface is uniform in (multivariate) mean and
variance at broad scale. The correlogram illustrated in Fig. 13.12 suggests the presence of a
gradient. If the condition of second-order-stationarity is satisfied, this means that the gradient
detected by this analysis is a part of a larger, autocorrelated spatial structure. This was called a
“false gradient” in the numerical example of Subsection 2, above.

When Y is a similarity matrix and distance classes are coded as described above,
positive Mantel statistics correspond to positive autocorrelation; this is the case in the
numerical example. When the values in Y are distances instead of similarities, or if the
1's and 0's are interchanged in matrix X, the signs of all Mantel statistics are changed.
One should always specify whether positive autocorrelation is expressed by positive or
negative values of the Mantel statistics when presenting Mantel correlograms. The
method was applied to vegetation data by Legendre & Fortin (1989).

13.2 Maps

The most basic step in spatial pattern analysis is the production of maps displaying the
spatial distributions of values of the variable(s) of interest. Furthermore, maps are
essential to help interpret spatial structure functions (Section 13.1). 

Several methods are available in mapping programs. The final product of modern
computer programs may be a contour map, a mesh map (such as Figs. 13.13b and
13.16b), a raised contour map, a shaded relief map, and so on. The present Section is
not concerned with the graphic representation of maps but instead with the way the
mapped values are obtained. Spatial interpolation methods have been reviewed by
Lam (1983).
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Geographic information systems (GIS) are widely used nowadays, especially by
geographers, to manage complex data corresponding to points, lines and surfaces in
space. The present Section is not an introduction to these complex systems. It only
aims at presenting the most widespread methods for mapping univariate data (i.e. a
single variable y). The spatial analysis of multivariate data (multivariate matrix Y) is
deferred to Sections 13.3 to 13.5.

Beware of non-additive variables such as pH, logarithms of counts of organisms,
diversity measures, and the like (Subsection 1.4.2). Maps of such variables, produced
by trend-surface analysis or interpolation methods, should be interpreted with caution;
the interpolated values only make sense by reference to sampling units of the same size
as those used in the original sampling design. Block kriging (Subsection 2) for blocks
representing surfaces or volumes that differ from the grain of the observed data simply
does not make sense for non-additive variables.

1 — Trend-surface analysis

Trend-surface analysis is the oldest method for producing smoothed maps. In this
method, estimates of the variable at given locations are not obtained by interpolation,
as in the methods presented in Subsection 2, but through a regression model calibrated
over the entire study area.

In 1914, Student proposed to express observed values as a polynomial function of
time and mentioned that it could be done for spatial data as well. This is also one of the
most powerful tools of spatial pattern analysis, and certainly the easiest to use. The
objective is to express a response variable y as a nonlinear function of the geographic
coordinates X and Y of the sampling sites where the variable was observed:

y = f(X, Y)

In most cases, a polynomial of X and Y with cross-product terms is used; trend-surface
analysis is then an application of polynomial regression (Subsection 10.3.4) to
spatially-distributed data. For example a relatively complex, but smooth surface might
be fitted to a variable using a third-order polynomial with 10 parameters (b0 to b9):

 = f(X, Y) = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + b6X3 + b7X2Y + b8XY2 + b9Y3 (13.18)

Note the distinction between the response variable y, which may represent a physical
or biological variable, and the Cartesian geographic coordinate Y. Using polynomial
regression, trend-surface analysis produces an equation which is linear in its
parameters, although the response of y to the explanatory variables in matrix X = [X,
Y] may be nonlinear. If variables y, X and Y have been centred on their respective
means prior to model fitting, the model has an intercept of 0 by construct; therefore
parameter b0 does not have to be fitted and it can be removed from the model.

Numerical example. The data from Table 10.5 are used here to illustrate the method of
trend-surface analysis. The dependent variable of the analysis, y, is Ma, which was the log-

ŷ
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transformed (ln(x + 1)) concentrations of aerobic heterotrophic bacteria growing on marine agar
at salinity of 34 psu. The explanatory variables are the X and Y geographic coordinates of the
sampling sites (Fig. 13.13a). The steps of the calculations are the following:

• Centre the geographic coordinates on their respective means. The reason for centring X and Y
is given in Subsection 10.3.4; the amount of variation explained by a trend-surface equation is
not changed by a translation (centring) of the spatial coordinates across the map. 

• Determine the order of the polynomial equation to be used. A first-degree regression equation
of Ma as a function of the geographic coordinates X and Y alone would only represent the linear
variation of Ma with respect to X and Y; in other words, a flat surface, possibly sloping with
respect to X, Y, or both. With the present data, the first-degree regression equation was not
significant (R2 = 0.02), meaning that there was no significant linear geographic trend to be
described in the data. A regression equation incorporating the second-degree monomials (X2,
XY and Y2) together with X and Y would be appropriate to model a surface presenting a single
large bump or trough. Again, this did not seem to be the case with the present data since the
second-degree equation was not significant (R2 = 0.39). An equation incorporating the third-
degree, fourth-degree, etc. terms would be able to model structures of increasing complexity and
refinement. The cost, however, is a loss of degrees of freedom for every new monomial in the
equation; trend-surface analysis using high-order equations thus requires a large number of
observed sampling sites. In the present example, the polynomial was limited to the third degree,
for a total of 9 terms; this is a large number of terms, considering that the data only contained 20
sampling sites.

• Calculate the various terms of the third-degree polynomial, by combining the variables X and
Y as follows: X2, X×Y, Y2, X3, X2×Y, X×Y2, Y3.

Figure 13.13 Variable Ma (log-transformed concentrations of aerobic heterotrophic bacteria growing on
marine agar at salinity of 34 psu) at 20 sites in the Thau lagoon on 25 October 1988. (a) Map of
the sampling sites with respect to arbitrary geographic coordinates X and Y. The observed values
of Ma, from Table 10.5, are also shown. The N  arrow points to the north. (b) Trend-surface map;
the vertical axis gives the values of Ma estimated by the polynomial regression equation. Dots
represent the sampling sites.
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• Compute the multiple regression equation. The model obtained using all 9 regressors had
R2 = 0.87, but several of the partial regression coefficients were not significant. 

• Remove nonsignificant terms. The linear terms may be important to express a linear gradient;
the quadratic and cubic terms may be important to model more complex surfaces.
Nonsignificant terms should not be left in the model, however, except when they are required for
comparison purpose. Nonsignificant terms were removed one by one (backward elimination,
Subsection 10.3.3) until all terms (monomials) in the polynomial equation were significant. The
resulting trend-surface equation was highly significant (R2 = 0.81, p < 0.0001):

 = 8.13 – 0.16 XY – 0.09 Y2 + 0.04 X2Y + 0.14 XY2 + 0.10 Y3

Remember, however, that tests of significance are too liberal with autocorrelated data, due to the
non-independence of residuals (Subsection 1.1.1).

• Lay out a regular grid of points (X', Y') and, using the regression equation, compute forecasted
values ( ) for these points. Plot a map (Fig. 13.13b) using the file with (X', Y', and ). Values
estimated by a trend-surface equation at the observed study sites do not coincide with the values
observed at these sites; regression is not an exact interpolator, contrary to kriging (Subsection 2).

Different features could be displayed by rotating the Figure. The orientation chosen in
Fig. 13.13b does not clearly show that the values along the long axis of the Thau lagoon are
smaller near the centre than at the ends. It displays, however, the wavy structure of the data from
the lower left-hand to the upper right-hand corner, which is roughly the south-to-north direction.
The Figure also clearly indicates that one should refrain from interpreting extrapolated data
values, i.e. values located outside the area that has actually been sampled. In the present
example, the values forecasted by the model in the lower left-hand and the upper right-hand
corners (–99 and +53, respectively) are meaningless for log bacterial concentrations. Within the
area where real data are available, however, the trend-surface model provides a good visual
representation of the broad-scale spatial variation of the response variable. 

Examination of the residuals is essential to make sure that the model is not missing some
salient feature of the data. If the trend-surface model has extracted all the spatially-structured
variation of the data, given the scale of the study, residuals should look random when plotted on
a map and a correlogram of residuals should be non-significant. With the present data, residuals
were small and did not display any recognizable spatial pattern.

A cubic trend-surface model is often appropriate with ecological data. Consider an
ecological phenomenon which starts at the mean value of the response variable y at the
left-hand border of the sampled area, increases to a maximum, then goes down to a
minimum, and comes back to the mean value at the right-hand border. The amount of
space required for the phenomenon to complete a full cycle — whatever the shape it
may take — is its extent (Section 13.0). Using trend-surface analysis, such a
phenomenon would be correctly modelled by a third-degree trend surface equation. A
polynomial equation is a more flexible mathematical model than sines or cosines, in
that it does not require symmetry or strict periodicity.

The degree of the polynomial which is appropriate to model a phenomenon is
predictable to a certain extent. If the extent is of the same order as the size of the study

ŷ
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area (say, in the X direction), the phenomenon will be correctly modelled by a
polynomial of degree 3 which has two extreme values, a minimum and a maximum. If
the extent is larger than the study area, a polynomial of degree less than 3 is sufficient;
degree 2 if there is only one maximum, or one minimum, in the sampling window; and
degree 1 if the study area is limited to the increasing, or decreasing, portion of the
phenomenon. Conversely, if the scale of the phenomenon controlling the variable is
smaller than the study area, more than two extreme values (minima and maxima) will
be found, and a polynomial of order larger than 3 is required to model it correctly. The
same reasoning applies to the X and Y directions when using a polynomial combining
the X and Y geographic coordinates. So, using a polynomial of degree 3 acts as a filter:
it is a way of looking for phenomena that are of the same extent, or larger, than the
study area.

An assumption must be made when using the method of trend-surface analysis:
that all observations form a single statistical population, subjected to one and the same
generating process, and can consequently be modelled using a single polynomial
equation of the geographic coordinates. Evidence to that effect may be available prior
to the analysis. When this is not the case, the hypothesis of homogeneity may be
supported by examining the regression residuals (Subsection 10.3.1). When there are
indications that values in different regions of the geographic space obey different
processes (e.g. different geology, action of currents or wind, or influence of other
physical variables), the study area should be divided into regions, to be modelled by
separate trend-surface equations.

Polynomial regression, used in the numerical example above, is a good first
approach to fitting a model to a surface when the shape to be modelled is unknown, or
known to be simple. In some instances, however, it may not provide a good fit to the
data; trend-surface analysis must then be conducted using nonlinear regression
(Subsection 10.3.6), which requires that an appropriate numerical model be provided
to the estimation program. Consider the example of the effect of some human-
generated environmental disturbance at a site, the indicator variable being the number
of species. The response, in this case, is expected to be stronger near the impacted site,
tapering off as one gets farther away from it. Assume that data were collected along a
transect (a single geographic coordinate X) and that the impacted site is near the centre
of the transect. A polynomial equation would not be appropriate to model an inverse-
squared-distance diffusion process (Fig. 13.14a), whereas an equation of the form:

would provide a much better fit (Fig. 13.14b). The minimum of this equation is b0; it is
obtained when X = 0. The maximum, b1/b2, is reached asymptotically as X becomes
large in either the positive or negative direction. For data collected in different
directions around the impacted site, a nonlinear trend-surface equation with similar
properties would be of the form:

ŷ b0

b1X
2

b2X
2
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where X and Y are the coordinates of the sites in geographic space.

Trend-surface analysis is appropriate for describing broad-scale spatial trends in
data. It does not produce accurate fine-grained maps of the spatial variation of a
variable, however. Other methods described in this Chapter may prove useful to model
variation at finer scales. In some studies, the broad-scale trend itself is of interest; this
is the case in the numerical example above and in Ecological application 13.2. In other
instances, and especially in studies that cover large geographic expanses, the broad-
scale trend may be already known and understood; students of geographic variation
patterns may want to conduct analyses on detrended data, i.e. data from which the
broad-scale trend has been removed. Detrending a variable may be achieved by
computing the residuals from a trend-surface equation of sufficient order, as in time-
series analysis (Section 12.2).

If there is replication at each point, it is possible to perform a test of goodness-of-fit
of a trend-surface model (Draper and Smith, 1981; Legendre & McArdle, 1997). By
comparing the observed error mean square after fitting the trend surface to the error
mean square estimated by the among-replicate within-location variation, one can test if
the model fits the data properly. The among-replicate within-location variation is
computed from the deviations from the means at the various locations; it is actually the

Figure 13.14 (a) Artificial data representing the number of species around the site of an environmental
disturbance (located at X = 0) are not well-fitted by a 4th-order polynomial equation of the X
coordinates (R2 = 0.7801). (b) They are well-fitted by the following inverse-squared-distance
diffusion equation: (R2 = 0.9975).ŷ 1 0.0213X

2
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residual mean square of an ANOVA among locations. These error mean squares are not
much different if the trend surface goes through the expected values at the various
locations, so that the F ratio of the two mean squares is not significant. If, on the
contrary, the fitted surface does not follow the major features of the variation among
locations, the deviations of the data from the fitted trend-surface values are likely to be
larger than expected from our knowledge of the sampling error; the F statistic is then
significantly larger than 1, indicating that the trend surface is misrepresenting the
variation among locations.

Numerical example. Consider the artificial data in Fig. 13.15. Variable X represents a
geographic axis along which sampling has taken place at 6 sites. Variable y was constructed
using equation y = 2.5X – 0.3X2 + ε, where ε is a random standard normal deviate [N(0, 1)]. A
quadratic trend-surface model of X was fitted to the data. The residual mean square, or “error
mean square after fitting the trend surface”, was MS1 = 0.84909 (ν = 27). An analysis of
variance was conducted on y using the grouping into 6 sites as the classification criterion. The
residual mean square obtained from the ANOVA was MS2 = 0.87199 (ν = 24). The ratio of these
two mean squares gave an F statistic:

which was tested against Fα=0.05(27, 24) = 1.959. The F statistic was not significantly different
from 1 (p = 0.5308), which indicated that the model fitted the data properly.

The trend-surface analysis was recomputed using a linear model of X. The model obtained
was  = 3.052 + 0.316X (R2 = 0.1941). MS1 in this case was 1.29358 (ν = 28). The F ratio

Figure 13.15 Artificial data representing sampling along a geographic axis X with 5 replicates at each site;
n = 30. The F test of goodness-of-fit indicates that the trend-surface equation  = 0.562 +
2.184X – 0.267X2 (R2 = 0.4899) fits the data properly.
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MS1/MS2 = 1.29358/0.87199 = 1.48348. The reference value was F0.05(28, 24) = 1.952. The
probability associated with the F ratio, p = 0.1651, indicated that this model still fitted the data,
which were constructed to contain a linear term (2.5X in the construction equation) as well as a
quadratic trend (term –0.3X2), but the fit was poorer than with the quadratic polynomial model
which was capable of accounting for both the linear and quadratic trends.

This numerical example shows that trend-surface analysis may be applied to data
collected along a transect; the “trend surface” is one-dimensional in that case. The
numerical example at the end of Subsection 10.3.4 is another example of a trend-
surface analysis of a dependent variable, salinity, with respect to a single geographic
axis (Fig. 10.9). Trend-surface analysis may also be used to model data in three-
dimensional geographic space (geographic coordinates X, Y and Z, where Z is either
altitude or depth) or with one of the dimensions representing time. Section 13.5 will
show how the analysis may be extended to a multivariate dependent data matrix Y.

Haining (1987) described alternative methods for estimating the parameters of a
trend-surface model when the residuals are spatially autocorrelated; in that case, least-
squares estimation of the parameters is inefficient and standard errors as well as tests
of significance are biased. Haining’s methods allow one to recognize three components
of spatial variation corresponding to the site, local, and regional scales.

Ecological application  13.2

A survey was conducted at 200 locations within a fairly homogeneous 12.5 ha rectangular
sandflat area in Manukau Harbour, New Zealand, to identify factors that control the spatial
distributions of the two dominant bivalves, Macomona liliana Iredale and Austrovenus
stutchburyi (Gray), and to look for evidence of adult-juvenile interactions within and between
species. Results are reported in Legendre et al. (1997). Most of the broad-scale spatial structure
detected in the bivalve counts (two species, several size classes) was explained by the physical
and biological variables. Results of principal component analysis and spatial regression
modelling suggested that different factors controlled the spatial distributions of adults and
juveniles. Larger size classes of both species displayed significant spatial structures, with
physical variables explaining some but not all of this variation; the spatial patterns of the two
species differed, though. Smaller organisms were less strongly spatially structured; virtually all
of their spatial structure was explained by physical variables.

Highly significant trend-surface equations were found for all bivalve species and size classes
(log-transformed data), indicating that the spatial distributions of the organisms were not
random, but highly organised at the scale of the study site. The trend-surface models for smaller
animals had much smaller coefficients of determination (10-20%) than for larger animals (30-
55%). The best models, i.e. the models with the highest coefficients of determination (R2), were
for the Macomona > 15 mm and Austrovenus > 10 mm. The coefficients of determination were
consistently higher for Austrovenus than for Macomona, despite the fact that Macomona were
usually far more numerous than Austrovenus. A map illustrating the trend-surface equation is
presented for the largest Macomona size class (Fig. 13.16); the field counts are also given for
comparison.
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2 — Interpolated maps

In this family of methods, the value of the variable at a point location on a map is
estimated by local interpolation, using only the observations available in the vicinity of
the point of interest. In this respect, interpolation mapping differs from trend surface
analysis (Subsection 1), where estimates of the variable at given locations were not
obtained by interpolation, as in the present Subsection, but through a statistical model
calibrated over the entire study area. Fig. 13.17 illustrates the principle of interpolation
mapping. A regular grid of nodes (Fig. 13.17c) is defined over the area that contains
the study sites Øi (Fig. 13.17a, b). Interpolation assigns a value to each point of that
grid. This is the single most important step in mapping. Following that, results may be
represented in the form of contours (Fig. 13.17d) with or without colours or shades, or
three-dimensional constructs such as Fig. 13.16b.

Assigning a value to each grid node may be done in different ways. Different
interpolation methods may produce maps that look different; this is also the case when
using different parameters with a same method (e.g. different exponents in inverse-
distance weighting).

The most simple rule would be to give, to each node of the grid, the value of the
observation which is the closest to it. The end result is a division of the map into
Voronoï polygons (Subsection 13.3.1) displaying a “zone of influence” drawn around
each observation. Another simple solution consists in dividing the map into Delaunay
triangles (Subsection 13.3.1). There is an observed value yi at each site Øi . A triangular
portion of plane, adjusted to the points Øi that form the apices (corners) of a Delaunay
triangle, provides interpolated values for all points lying within the triangle. Maps
obtained using these solutions are shown in Chapter 11 of Isaaks & Srivastava (1989).
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Figure 13.16 Macomona > 15 mm at 200 sites in Manukau Harbour, New Zealand, on 22 January 1994.
(a) Actual counts at sampling sites in 200 regular grid cells; in the field, sites were not perfectly
equispaced. (b) Map of the trend-surface equation explaining 32% of the spatial variation in the
data. The values estimated from the trend-surface equation (log-transformed data) were back-
transformed to raw counts before plotting. Modified from Legendre et al. (1997).
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Alternatively, one may draw a “search circle” (or an ellipsoid for anisotropic data)
around each grid node (Fig. 13.18). The radius of the circle may be determined in
either of two ways. (1) One may fix a minimum number of observed points that must
be included in the interpolation for each grid node; or (2) one may use the “distance of
influence of the process” found by correlogram or variogram analysis (Section 13.1).
The estimation procedure is repeated for each node of the grid. Several methods of
interpolation may be used.

• Mean — Consider all the observed study sites found within the circle; assign the
mean of these values to the grid node. This method does not produce smooth maps;
discontinuities in neighbouring grid node values occur as observed points move in or
out of the search circle.

• Inverse-distance weighting — Consider the observation sites found within the circle
and calculate a weighted mean value, using the formula:

(13.19)

Figure 13.17 Summary of the interpolation procedure.

(b) Map of sampling sites

(d) Contour map(c) Regular grid of nodes

(a) Observed data
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where yi is the value observed at point Øi and weight wi is the inverse of the distance
(D) from point Øi to the grid node to be estimated. The inverse distances, to some
power k, are scaled by the sum of the weights for all points Øi in the estimation, so as
to produce values that are consistent with the values observed at points Øi
(unbiasedness condition):

(13.20)

A commonly-used exponent is k = 2. This corresponds, for instance, to the decrease in
energy of waves dispersing across a two-dimensional surface. The greater the value of
k, the less influence distant data points have on the value assigned to the grid node.
This method produces smooth values over the grid of nodes. The range of estimated
values is smaller than the range of observed data so that, contrary to trend-surface
analysis (Fig. 13.13b), inverse-distance weighting does not produce meaningless
values in the parts of the map beyond the area that was actually sampled. When the
observation sites Øi do not form a regular or nearly regular grid, however, this
interpolation method may generate features in maps that have little to do with reality.
As a consequence, inverse-distance weighting is not recommended in that situation.

• Weighted polynomial fitting — In this method, a trend-surface equation
(Subsection 13.2.1) is adjusted to the observed data points within the search circle,
weighting each observation Øi by the inverse of its distance (using some appropriate
power k) to the grid node to be estimated. A first or second-order polynomial equation
is usually used. zNode is taken to be the value estimated by the polynomial equation for
the coordinates of the grid node. This method suffers from the same problem as inverse
distance weighting with respect to observation sites Øi that do not form a regular or
nearly regular grid of points.

Figure 13.18 To estimate the value at a grid node
(square), draw a search circle around it
and consider the observed points (Øi)
found within the circle. Observed
points are separated from the node by
distances D(Øi, Node).
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• Kriging — This is the mapping tool in the toolbox of geostatisticians. The method
was named by Matheron after the South African geostatistician D. G. Krige, who was
the first to develop formal solutions to the problem of estimating ore reserves from
sampling (core) data (Krige, 1952, 1966). Geostatistics was developed by Matheron
(1962, 1965, 1970, 1971, 1973) and co-workers at the Centre de morphologie
mathématique of the École des Mines de Paris. Geostatistics comprises the estimation
of variograms (Subsection 13.1.6), kriging, validation methods for kriging estimates,
and simulations methods for geographically distributed (“regionalized”) data. Major
textbooks have been written by former students of Matheron: David (1977) and
Journel & Huijbregts (1978). Other useful references are Clark (1979), Rendu (1981),
Verly et al. (1984), Armstrong (1989), Isaaks & Srivastava (1989), and Cressie (1991).
Applications to environmental sciences and ecology have been discussed by Gilbert &
Simpson (1985), Robertson (1987), Armstrong et al. (1989), Legendre & Fortin
(1989), Soares et al. (1992), and Rossi et al. (1992). Geostatistical methods can be
implemented using the software library of Deutsch & Journel (1992).

As in inverse-distance weighting (eq. 13.19), the estimated value for any grid node
is computed as:

The chief difference with inverse-distance weighting is that, in kriging, the weights wi
applied to the points Øi used in the estimation are not standardized inverses of the
distances to some power k. Instead, the weights are based upon the covariances (semi-
variances, eq. 13.9 and 13.10) read on a variogram model (Subsection 13.1.6). They
are found by linear estimation, using the equation:

C            ·  w     = d

(13.21)

where C is the covariance matrix among the n points Øi used in the estimation, i.e. the
semi-variances corresponding to the distances separating the various pair of points, as
read on the variogram model; w is the vector of weights to be estimated (with the
constraint that the sum of weights must be 1); and d is a vector containing the
covariances between the various points Øi and the grid node to be estimated. This is
where a variogram model becomes essential; it provides the weighting function for the
entire map and is used to construct matrix C and vector d for each grid node to be
estimated.

 

λ is a Lagrange parameter (as in Section 4.4) introduced to minimize the
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variance of the estimates under the constraint  (unbiasedness condition). The
solution to this linear system is obtained by matrix inversion (Section 2.8):

w = C–1 d (13.22)

Vector d plays a role similar to the weights in inverse-distance weighting since the
covariances in vector d decrease with distance. Using covariances, the weights are
statistical in nature instead of geometrical.

Kriging takes into account the grouping of observed points Øi on the map. When
two points Øi are close to each other, the value of the corresponding coefficient cij in
matrix C is high; this contributes to lowering their respective weights wi. In this way,
the redundancy of information introduced by dense groups of sampling sites is taken
into account. 

When anisotropy is present, kriging can use two, four, or more variogram models
computed for different geographic directions and combine their estimates when
calculating the covariances in matrix C and vector d. In the same way, when
estimation is performed for sampling sites in a volume, a separate variogram can be
used to describe the vertical spatial variation. Kriging is the best interpolation method
for data that are not on a regular grid or display anisotropy. The price to pay is
increased mathematical complexity during interpolation.

Among the interpolation methods, kriging is the only one that provides a measure
of the error variance for each value estimated at a grid node. For each grid node, the
error variance, called ordinary kriging variance ( ), is calculated as follows (Isaaks
& Srivastava, 1989), using vectors w and d from eq. 13.21:

(13.23)

where Var[yi] is the maximum-likelihood estimate of the variance of the observed
values yi (eq. 13.14). Equation 13.23 shows that  only depends on the variogram
model and the local density of points, and not on the values observed at points Øi . The
ordinary kriging variance may be used to construct confidence intervals around the
grid node estimates at some significance level 

 

α, using eq. 13.4. It may also be mapped
directly. Regions of the map with large values  indicate that more observations
should be made because sampling intensity was too low.

Kriging, as described above, provides point estimates at grid nodes. Each estimate
actually applies to a “point” whose size is the same as the grain of the observed data.
The geostatistical literature also describes how block kriging may be used to obtain
estimates for blocks (i.e. surfaces or volumes) of various sizes. Blocks may be small,
or cover the whole map if one wishes to estimate a resource over a whole area. As
mentioned in the introductory remarks of the present Section, additive variables only
may be used in block kriging. Block kriging programs always assume that the variable
is intensive, e.g. the concentration of organisms (Subsection 1.4.2). For extensive
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variables, such as the number of individual trees, one must multiply the block estimate
by the ratio (block size / grain size of the original data).

3 — Measures of fit

Different measures of fit may be used to determine how well an interpolated map
represents the observed data. With most methods, some measure may be constructed of
the closeness of the estimated (i.e. interpolated) values  to the values yi observed at
sites Øi. Four easy-to-use measures are:

• The mean absolute error: 

• The mean squared error: 

• The Euclidean distance: 

• The correlation coefficient (r) between values yi and  (eq. 4.7). In the case of a
trend-surface model, the square of this correlation coefficient is the coefficient of
determination of the model.

In the case of kriging, the above measures of fit cannot be used because the
estimated and observed values are equal, at all observed sites Øi. The technique of
cross-validation may be used instead (Isaaks & Srivastava, 1989, Chapter 15). One
observation, say Ø1, is removed from the data set and its value is estimated using the
remaining points Ø2 to Øn. The procedure is repeated for Ø2, Ø3, …, Øn. One of the
measures of fit described above may be used to measure the closeness of the estimated
to the observed values. If replicated observations are available at each sampling site (a
situation which does not often occur), the test of goodness-of-fit described in
Subsection 1 can be used with all interpolation methods.

13.3 Patches and boundaries

Multivariate data may be condensed into spatially-constrained clusters. These may be
displayed on maps, using different colours or shades. The present Section explains
how clustering algorithms can be constrained to produce groups of spatially
contiguous sites; study of the boundaries between homogeneous zones is also
discussed. Prior to clustering, one must state unambiguously which sites are
neighbours in space; the most common solutions to this are presented in Subsection 1.
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1 — Connection networks

When sampling has been conducted on a regular rectangular grid, neighbouring points
may be linked using simple connecting schemes whose names are derived from the
game of chess (Cliff & Ord, 1981): rook’s (rectangular: Fig. 13.19a), bishop’s
(diagonal: Fig. 13.19b), or king’s connections (also called queen’s: both rectangular
and diagonal, Fig. 13.19c). Sampling in staggered rows leads to connecting each point
(except borders) to six (Fig. 13.19d) or eight neighbours (Fig. 13.19e). Algorithms
may allow the construction of regular grids with missing points (Fig. 13.19f). When
the objects represent irregularly-shaped land units covering a geographic area
(e.g. electoral units), parcels sharing a common boundary are regarded as contiguous.

When the localities are positioned in an irregular manner, geometric connecting
schemes may be used, such as Delaunay triangulation, Gabriel graph, relative
neighbourhood graph or minimum spanning tree. There exists an inclusion
relationship among the four connecting schemes: all edges that are members of a
minimum spanning tree also obey the relative neighbourhood graph criterion; these are
all members of a Gabriel graph, which in turn are all included in a Delaunay
triangulation (Toussaint, 1980; Matula & Sokal, 1980; Gordon, 1996c):

Minimum spanning tree ⊆ Relative neighbourhood gr. ⊆ Gabriel gr. ⊆ Delaunay triangulation

• Delaunay triangulation — The Delaunay triangulation criterion (Dirichlet, 1850;
Upton & Fingleton, 1985) is illustrated in Fig. 13.20. For any triplet of points A, B and
C, the three edges (i.e. lines) connecting these points are included in the triangulation

Figure 13.19 Connecting schemes for regular grids of points. See text.

(b) Rectangular grid,
bishop connection

(c) Rectangular grid,
king (or queen) connection

(f) Hollow grid,
rook connection

(d) Staggered rows,
six neighbours

(a) Rectangular grid,
rook connection

(e) Staggered rows,
eight neighbours

Delaunay
triangulation
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if and only if the circumscribed circle (i.e. the circle passing through the three points;
on the left in the Figure) includes no other point. For example, the file of coordinates
shown in the central part of the Figure gives rise to the triangulation on the right. The
triangulation is fully described by a list of pairs of points corresponding to its edges;
this is how the information can be passed on to a computer program for constrained
clustering (Subsection 2).

Long edges may be created at the outskirts of a set of points, simply because there
is no other point located farther away in the sampling design; this is called a border
effect. For example, edges 2–9 and 7–9 might have been removed from the
triangulation in Fig. 13.20 by the presence of other points in the circumscribed circles
of triangles (2, 5, 9) and (7, 8, 9) had the sampling extent been broader. Long
peripheral edges may be removed by hand or by the computer algorithm.

• Gabriel graph — The Gabriel graph criterion (Gabriel & Sokal, 1969) differs from
that of the Delaunay triangulation (Fig. 13.21a). Draw a line between two points A and
B. This line is part of the Gabriel graph if and only if no other point C lies inside the
circle whose diameter is that line. In other words, the edge between A and B is part of
the Gabriel graph if D2(A, B) < D2(A, C) + D2(B, C) for all other points C in the study,
where D2(A, B) is the square of the geographic distance between points A and B.
Another way of expressing this criterion is the following: if CENTRE represents the
middle point between A and B, the edge connecting A to B is part of the Gabriel graph
if D(A, B)/2 < D(CENTRE, C) for any other point C in the study.

Figure 13.20 Construction of a Delaunay triangulation.

Point
identifiers

Coordinates
X       Y

1 0 3
2 1 5
3 2 2
4 2 1
5 4 4
6 5 2
7 8 0
8 7.5 3
9 8 5
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19 edges form the Delaunay triangulation:

1–2     1–3     1–4     2–3     2–5     2–9     3–4
3–5     3–6     4–6     4–7     5–6     5–8     5–9
6–7     6–8     7–8     7–9     8–9

Gabriel
graph
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The Gabriel graph in Fig. 13.21a is constructed for the same points as the Delaunay
triangulation in Fig. 13.20. The 12 edges forming the Gabriel graph are a subset of the
19 edges of the Delaunay triangulation. Indeed, as shown by the sketch in the centre of
the Figure, the exclusion zone formed by the three circles corresponding to the Gabriel

Figure 13.21 (a) Left: geometric criterion for constructing a Gabriel graph. Centre: the zone of exclusion of
the Gabriel criterion, here for three points (grey zones + white inner circle), is larger than that of
the Delaunay criterion (white inner circle). Right: Gabriel graph for the nine points of
Fig. 13.20. (b) Left: geometric criterion for constructing a relative neighbourhood graph. The
zone of exclusion of the relative neighbourhood criterion, here for two points (grey zones +
white inner circle), is larger than that of the Gabriel criterion (white inner circle). Right: relative
neighbourhood graph for the nine points of Fig. 13.20.
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12 edges form the Gabriel graph:
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(b) Relative neighbourhood graph

8 edges form the relative neighbourhood graph:
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criterion (which have for diameters the edges A–B, B–C and A–C) may contain, in the
shadowed areas outside the Delaunay circle (white inner circle), some points that the
Delaunay criterion circle does not exclude. This is why some edges that are authorized
by the Delaunay criterion are excluded from the Gabriel graph.

• Relative neighbourhood graph — The relative neighbourhood criterion is as follows
(Toussaint, 1980; Fig. 13.21b). Draw a line between two points A and B. Draw a first
circle centred over A and a second one centred over B, each one having the line from A
to B as its radius. This line is part of the graph if no other point C in the study lies
inside the intersection of the two circles. In other words, the edge from A to B is part of
the relative neighbourhood graph if and only if D(A, B) ≤ max [D(A, C), D(B, C)] for
all other points C in the study. For points forming an equilateral triangle, for instance,
the three edges are included in the relative neighbourhood graph.

The relative neighbourhood graph in Fig. 13.21b is constructed for the same set of
points as in Figs. 13.20 and 13.21a. The number of edges in a relative neighbourhood
graph is (n – 1). The 8 edges forming the relative neighbourhood graph are a subset of
the 12 edges of the Gabriel graph. Indeed, as shown by the sketch on the left of the
Figure, the exclusion zone at the intersection of the two circles corresponding to the
relative neighbourhood criterion (which have for radius the edge A–B) may contain, in
the shadowed zone outside the Gabriel circle (white inner circle), some points that the
Gabriel criterion circle does not exclude. This is why some edges authorized by the
Gabriel criterion are excluded from the relative neighbourhood graph.

• Minimum spanning tree — In this tree, which connects all points of a study, the sum
of the edge lengths is minimum. Its construction is described at the end of Section 8.2;
one way of obtaining it is to list the edges forming the primary connections of a single-
linkage dendrogram. For points forming an equilateral triangle, for example, only two
of the edges are included in the minimum spanning tree, whereas the three edges are
included in a relative neighbourhood graph; the choice of the edge to leave out is
arbitrary. The edges of a minimum spanning tree are either the same as, or a subset of,
the edges of a relative neighbourhood graph of the same points. For the example data
set, the edges that form the minimum spanning tree are the same as those of the
relative neighbourhood graph of Fig. 13.21b.

Another approach is to select a distance threshold and connect all points that are
within that distance of each other. One possible criterion to choose the distance
threshold is to make it equal to the range of a variogram model (Fig. 13.7).

The list of connecting edges (Figs. 13.20 and 13.21) may be written out to a file.
The file may be modified to take into account other information that researchers may
have about the study area. For example, one may wish to eliminate edges that do not
make sense in terms of gene flow because they cross unsuitable areas (e.g. a sea or a
mountain range, in the case of terrestrial mammals). Or, one may wish to add
connections that are potentially of interest although they do not imply first neighbours;
for example, plants or animals may cross water bodies (lake, sea) and settle in non-

Relative
neighbour-
hood graph

Minimum
spanning
tree
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contiguous sites, which should nevertheless be considered contiguous because there is
a direct path between them. Users of constrained clustering methods should not
hesitate to modify lists of connections obtained from geometric criteria such as
described above, to make the list of edges a better description of potential flow among
sites, given the problem under study. 

It may be interesting to determine the geometric zone of influence of each point on
a map. The zone of influence of a point A includes all the other points of the surface
that are closer to A than to any other point in the study. The zones of influence so
defined have the shape of polygons, also called tiles, tessellae, or tesserae (singular:
tessella or tessera). The resulting picture is called a mosaic or tessellation (adjective:
tessellated); it may be referred to as a Dirichlet tessellation (1850), Voronoï polygons
(1909), or Thiessen polygons (1911), from the names of the authors who first described
these mathematical structures.

Polygons are easily constructed from a Delaunay triangulation (Fig. 13.22). Draw
the perpendicular bisector of each segment in the triangulation; the crossing points of
the bisectors delimit the polygons (tiles). Computer algorithms may be used to
calculate the surface area of each polygon, at least those that are closed; peripheral
tiles may be open. Upton & Fingleton (1985) and Isaaks & Srivastava (1989) propose
various applications of tessellations to spatial analysis.

2 — Constrained clustering

The delineation of clusters of contiguous objects has been discussed in Section 12.6
for time series and spatial transects. The method of chronological clustering, in
particular, was described in Subsection 12.6.4; it proceeds by imposing to a clustering
algorithm a constraint of contiguity along the time series. Constraints of contiguity
have been applied to spatial clustering by several authors, including Lefkovitch (1978,

Influence
polygon

Figure 13.22 Delaunay triangulation (grey lines) and influence polygons (black lines) for the nine points of
Fig. 13.20.
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1980), Monestiez (1978), Lebart (1978), Roche (1978), Perruchet (1981) and
Legendre & Legendre (1984c). In the present Subsection, it is generalized to two- or
three-dimensional spatial data and to spatio-temporal data.

Constrained clustering differs from its unconstrained counterpart in the following
way.

• Unconstrained clustering methods (Chapter 8) only use the information in the
similarity or distance matrix computed among the objects. In hierarchical methods, a
local criterion is optimized at each step; in all methods included in the Lance and
Williams general model, for instance, the objects or groups clustered at each step are
those with the largest fusion similarity or the smallest fusion distance. In partitioning
methods, a global criterion is optimized; in K-means, for instance, the algorithm looks
for K groups that feature the smallest sum of within-group sums-of-squares .

• Constrained clustering methods take into account more information than the
unconstrained approaches. In the case of spatial or temporal contiguity, the only
admissible clusters are those that obey the contiguity relationship. Spatial contiguity
may be described by one of the connecting schemes of Subsection 1. The criterion to
be optimized during clustering is relaxed to give priority to the constraint of spatial
contiguity. It is no surprise, then, that a constrained solution may be less optimal than
its unconstrained counterpart in terms of the clustering criterion, e.g. . This is
balanced by the fact that the solution is likely to more readily interpretable.

It is fairly easy to modify clustering algorithms to incorporate a constraint of
spatial contiguity (Fig. 13.23). As an example, consider the clustering methods
included in the Lance and Williams general clustering model (Subsection 8.5.9). At the
beginning of the clustering process, the vector of group membership has each object as
a different group. Proceed as follows:

1. Compute a similarity matrix among objects, using the non-geographic information.

2. Choose a connecting scheme (Subsection 1) and produce a list of connection edges
as in Figs. 13.20 and 13.21. Read in the file of edges and transform it into a contiguity
matrix containing 1’s for connected sites and 0’s elsewhere.

3. Compute the Hadamard product of these two matrices. The Hadamard product of
two matrices is the product element by element. The resulting matrix contains
similarity values in the cells where the contiguity matrix contained 1’s, and 0’s
elsewhere.

4. The largest similarity value in the matrix resulting from step 3 determines the next
pair of objects or groups (h and i) to be clustered. Modify the vector of group
membership (right of the Figure), giving the same group label to all members of
former groups h and i.

5. Update the similarity matrix using eq. 8.11.

EK

EK
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6. Update also the contiguity matrix. All objects that were neighbours to h are now also
neighbours to i and vice versa.

7. Go back to step 3. Iterate until all objects are members of a single group.

Ferligoj & Batagelj (1982) have shown, however, that the introduction of relational
constraints (e.g. spatial contiguity) may occasionally produce reversals with any of the
hierarchical clustering methods included in the Lance & Williams algorithm
(Subsection 8.5.9], except complete linkage. Additional constraints may be added to
the algorithm, for example to limit the size or composition of any group (Gordon,
1996c). K-means partitioning algorithms (Section 8.8) may also be constrained by the
contiguity matrix shown in Fig. 13.23.

Spatially constrained clustering is useful in a variety of situations. Here are some
examples.

• In many studies, there are compelling reasons to force the clusters to be composed of
contiguous sites; for instance, when delineating ecological regions, political voting
units, or resource distribution networks.

Figure 13.23 Summary of the spatially-constrained clustering procedure for methods included in the Lance
and Williams general clustering model. The vector of group membership is represented at the
start of the clustering iterations; see text. Locations of the points are the same as in Fig. 13.20.
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• One may wish to relate the results of clustering to geographically-located potential
causal factors that are known to be spatially autocorrelated, e.g. geological data.

• One may wish to cluster sites based upon physical variables, using a constraint of
spatial contiguity, in order to design a stratified biological sampling program to study
community composition. 

• To test the hypothesis that neighbouring sites are ecologically similar, one may
compare unconstrained and constrained clustering solutions using the modified Rand
index (Subsection 8.11.2). De Soete et al. (1987) give other examples where such
comparisons may help test hypotheses in the fields of molecular evolution,
psycholinguistics, cognitive psychology, and evolution of languages.

• Constrained solutions are less variable than unconstrained clustering results, which
may differ in major ways among clustering methods. Indeed, the constraint of spatial
contiguity reduces the number of possible solutions and forces different clustering
algorithms to converge onto largely similar clusters (Legendre et al., 1985).

Constrained clustering may also be used for three-dimensional or spatio-temporal
sampling designs (e.g. Planes et al., 1993). As long as the three-dimensional or spatio-
temporal contiguity of the observations can be accurately described as a file of edges
as in Figs. 13.20 and 13.21, constrained clustering programs have no difficulty in
computing the solution; the only difficulty is the representation of the results as three-
dimensional or spatio-temporal maps. Higher-dimensional extensions of the geometric
connecting schemes presented in Subsection 1 are available if required.

Legendre (1987b) suggested a way of introducing spatial proximity into clustering
algorithms which is less stringent than the methods described above. The method
consists in weighting the values in the ecological similarity or distance matrix by some
function of the geographic distances among points, before clustering. The idea was
taken up by Bourgault et al. (1992) who proposed to use a multivariate variogram or
covariogram as spatial weighting function prior to clustering. Large ecological
distances between sites that are close in space are downweighted to some extent by this
procedure. It is then easier for clustering algorithms to incorporate somewhat
diverging sites into neighbourhood clusters. Oliver & Webster (1989) suggested to use
a univariate variogram for the same purpose.

Constrained classification methods have recently been reviewed by Gordon
(1996c). Formal aspects have been discussed by Ferligoj & Batagelj (1982, 1983).
Algorithms have been surveyed by Murtagh (1985). Generalized forms of constrained
clustering have been described by De Soete et al. (1987).

Numerical example. An artificial set of 16 sites was constructed to represent staggered-row
sampling of a distribution with two peaks. From the geographic positions of the sites, a
Delaunay triangulation (35 edges) was computed (Fig. 13.24a). A single variable was attributed
to the sites. For three groups, the unconstrained K-means solution has a sum of within-group
sums-of-squares  = 53 (Fig. 13.24b). The constrained K-means solution, for three groups,EK
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has a value  = 188 (Fig. 13.24c) which is higher than that of the unconstrained solution, for
reasons explained above. The two partitions are interesting in different ways. The unconstrained
solution identifies sites with similar values, whereas the constrained solution brings out the two
peaks plus a region of lower values forming a valley between the peaks.

Spatially constrained clustering has been applied to a variety of ecological
situations. Some applications to two-dimensional map data are: Legendre & Legendre
(1984c), Legendre & Fortin (1989), Legendre et al. (1989), and Lapointe & Legendre
(1994). Applications to transect data and paleoecology (stratigraphic data) have been
listed in Subsection 12.6.4.

3 — Ecological boundaries

Detection of boundaries is a complementary problem to the detection of homogeneous
regions of space. Boundaries appear on maps as a by-product of constrained clustering,
for instance. Most methods of clustering delineate groups even in gradient situations; a
boundary between groups does not have to correspond to a sharp discontinuity in the
data. In any case, boundaries detected by clustering may be partly interpolated. Other

Figure 13.24 Numerical example showing the difference between the unconstrained (b) and constrained (c)
clustering solutions. (a) Delaunay triangulation with 35 edges; they were used as constraint in
(c). The values of the artificial variable are given in panels (b) and (c); the three groups obtained
by unconstrained and constrained K-means are identified by shadings.
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methods have been developed that focus on boundary elements; they do not pretend to
completely isolate regions of space, however. 

For univariate or multivariate transect data, boundaries may be detected using one
of the methods described in Section 12.6 (especially Subsection 12.6.3). Detection of
boundaries of various sorts on maps is more complex. This is a well-studied topic in
the field of image analysis; it has been reviewed by Davis (1975), Peli & Malah (1982)
and Huang & Tseng (1988); see also Hobbs & Mooney (1990). The present Section
briefly summarizes the efforts made to detect boundaries in ecological data sets, using
a technique called wombling, and to statistically assess their significance. 

Wombling is a technique for detecting zones of rapid spatial change in a set of
regionalized variables. It was developed by Womble (1951) and Barbujani et al.
(1989) for gene frequencies and morphological measurements, and refined by Fortin
and co-authors (Oden et al., 1993; Fortin, 1994, 1997; Fortin & Drapeau, 1995; Fortin
et al., 1996) with emphasis on ecological data. The original form of wombling (lattice
wombling) could only be applied to quantitative variables observed at sites forming a
regular, rectangular grid of points. Recent developments include categorical wombling
for qualitative variables (Oden et al., 1993) and triangulation wombling for sites
linked by a Delaunay triangulation which do not necessarily correspond to a regular
sampling grid (Fortin, 1994). The latter is a common situation in ecology.

A boundary is defined as a set of spatially adjacent locations where the variable
under study shows high rates of change (Fortin, 1994). Triangulation wombling
proceeds as follows:

• Link the observed sites by a Delaunay triangulation (Subsection 13.3.1).

• Consider a quantitative variable measured at three sites Øi  forming a Delaunay
triangle. Each site has geographic coordinates (Xi , Yi) and an observed value yi. The
plane to be fitted to these points is a linear function y = f(X, Y) = b0 + b1X + b2Y
whose parameters are calculated by matrix inversion (Section 2.8):

• Find the direction of maximum slope of the triangle. The slope varies with the
direction considered (arrows in Fig. 13.25a). Using the b coefficients calculated above,
the maximum slope of the triangle is:

(13.24)
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Allocate this value of slope (m) to the centroid of the triangle, which is the point with
coordinates:

[X, Y]centroid = (13.25)

• If several variables are considered (i.e. several species), calculate the mean slope
( ) of the variables at the centroid of each Delaunay triangle.

• Create an ordered list of the slope values. Starting at the top of the list (highest
slopes), mark the corresponding triangle centroids on the map; they become boundary
elements. Going down the list, mark a pre-determined proportion of the slopes
(e.g. 10%), or go down to a preselected value of slope. Other strategies are possible,
e.g. going down the list to the value of the mean plus one or two standard deviations.

• A boundary is defined as any set of one or more contiguous boundary elements.

An alternative would be to compute the slopes of the edges between adjacent sites
(Fig. 13.25b). For univariate data, the rate of change would simply be the absolute
value of the difference between values at sites Øh and Øi: . For multivariate
data, any of the distance functions of Chapter 7 could be used. The disadvantage of
this method is that slopes calculated along the edges of the Delaunay triangle do not
have the same value as the maximum slope of the triangle, which is computed by
eq. 13.24. To alleviate this problem, Dufrêne & Legendre (1991) calculated

Figure 13.25 Boundary detection methods. Consider three sites Øi , with coordinates (Xi, Yi),  forming a
Delaunay triangle. (a, b) Variable y measured at sites Øi is quantitative (values shown as
heights). (a) Find the direction of maximum slope of the triangle; allocate this slope value to the
triangle centroid (dot). (b) Compute slopes along the edges connecting adjacent sites; allocate
the values to the edge centres (dots). (c) For a qualitative variable y (with 2 states in this
example), comparison between adjacent sites is made in terms of matches (0-0 or 1-1) or
mismatches (0-1); allocate the matches and mismatches to the edge centres (dots).

Ø2

Ø3

Ø1

(a)

Ø2

Ø3

Ø1

(b)

Ø2

y2 = 1

Ø3

y3 = 0

Ø1

y1 = 1
Match

Mismatch
Mismatch

(c)

X1 X2 X3+ +

3
--------------------------------

Y1 Y2 Y3+ +

3
--------------------------------,

m

Boundary

yh yi–



Patches and boundaries 763

multivariate distances in four directions between pixels of a map; for each pixel, they
used the largest of the distances to delineate boundaries.

Computation of statistics along the edges between adjacent sites is the option used
in categorical wombling which is appropriate for species presence-absence data. The
basic statistic is to record a match or a mismatch between adjacent observed sites
(Fig. 13.25c). For multivariate qualitative data, one may count both the positive and
negative matches and embed this number into one of the symmetrical binary
coefficients of Subsection 7.3.1 (e.g. the simple matching coefficient); for species
presence-absence data, one may count the positive matches only and embed this
number into one of the asymmetrical binary coefficients of Subsection 7.3.2 (e.g. the
Jaccard coefficient).

Tests of significance, based on permutations (Section 1.2), have been proposed by
Fortin and co-authors (Oden et al., 1993; Fortin, 1994, 1997; Fortin & Drapeau, 1995;
Fortin et al., 1996) to answer the following questions: 

• Are the boundaries found by this analysis similar to random boundaries in terms of
the number of separate boundaries, their maximum or mean lengths, or other boundary
or graph-theoretic statistics?

• Are the boundaries found by wombling the same as borders stated by hypothesis, or
found by clustering methods, or obtained using different data for the same locations?

These papers also present applications of the method to real and simulated data. A
computer program for wombling is commercially available (GBAS, Table 13.4).

4 — Dispersal

Individuals, populations, and communities may cross ecological boundaries; these
crossings occur on different time scales. The routes taken by species when they invade
a territory after a perturbation event (long-term: e.g. glaciation; short term:
e.g. pollution) is a question of interest in biogeographic analysis. Dispersal routes may
be easier to identify if, as a first step in the analysis, one delineates regions that are
largely homogeneous in species composition. Regions may be delimited using prior
hypotheses, by unconstrained or constrained cluster analysis, or using boundary
detection methods. 

Legendre & Legendre (1984c) have developed coefficients to measure the
likelihood of species dispersal between geographically contiguous regions, for species
presence-absence as well as abundance data. The assumptions of these coefficients are
that the species arrived by migration and that past dispersal has left traces in present-
day distributions. For presence-absence data, adjacent regions x1 and x2 can be
compared using the same quantities a, b, and c as in the similarity coefficients of
Subsection 7.3.1 and 7.3.2: a is the number of species that two regions have in
common; b is the number of species found in x1 but not in x2; c is the number of
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species found in x2 but not in x1. The combination of the following indications is
evidence for species dispersal from region x1 to x2:

• The number of species common to the two zones is high, i.e. a is large.

• b is substantially larger than c; c larger than b would support the hypothesis of
dispersal from x2 to x1.

The basic form of the coefficient of species dispersal direction (DD) is thus
a(b – c). To make the values of the coefficient comparable for faunas of different
richness, each term is standardized by dividing it by the richness of the fauna or flora
of the two regions combined:

(13.26)

This coefficient is signed. It measures the likelihood that species have dispersed from
x1 to x2. A negative sign indicates that, if dispersal occurred, species have migrated
from x2 to x1 instead. 

The asymmetric portion of this coefficient may be tested for significance using a
McNemar test. Under the null hypothesis of no asymmetry (H0: b = c), the test statistic

is distributed as χ2 with one degree of freedom. The test may be one-tailed if one has
specific hypotheses about the direction of dispersal; otherwise, use a two-tailed test.
The log-linear form of this statistic is:

If any of the values b or c is 0, the corresponding term (x lnx) is 0 since
.

The first portion of DD1 is easily recognized as the Jaccard coefficient of similarity
(eq. 7.10). One may prefer to give double weight to the common species, as in the
coefficient of Sørensen (eq. 7.11):
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Two other forms of the coefficient use species abundance data instead of presence-
absence:

(13.28)

and (13.29)

where W, A, and B are as in the Steinhaus similarity coefficient (eq. 7.24). Coefficient
DD4 gives double weight to the abundances of the species in common and is thus the
counterpart of DD2, whereas DD3 gives these species single weight, as in DD1. These
two coefficients take the following indications as evidence for dispersal from x1 to x2:

• The number of species common to the two zones and their abundances are high,
i.e. W is large.

• A is substantially larger than B; B larger than A would produce a negative coefficient,
supporting the hypothesis of dispersal from x2 to x1.

Legendre & Legendre (1984c) used the above coefficients and tests of significance
to reconstruct plausible routes taken by freshwater fishes to reinvade the Québec
peninsula after the last glaciation. Borcard et al. (1995) used the same method in a
finer-scale study, showing possible patterns of migration of Oribatid mites between
zones of an exploited peat bog in the Swiss Jura.

13.4 Unconstrained and constrained ordination maps

Section 13.3 has shown how clustering methods may help produce maps for
multivariate data; these maps consist of discontinuous areas. For continuous variables,
however, maps can only be produced for single variables, using the techniques of
Section 13.2. The present Section shows how continuously-varying maps can be
produced for multivariate data sets, through various types of ordination methods. The
relationship between univariate or multivariate structure functions (Section 13.1) and
maps has been stressed in the introductory paragraph of Section 13.2.

The simplest method consists in analysing a data table, using one of the ordination
methods of Chapter 9, and map the first few ordination axes. For example:

• Decompose the variation of a (sites × species) presence-absence or abundance table
into successive ordination axes, using principal coordinate or correspondence analysis. 

• Consider the ordination of sites along the first axis. This axis is a new, synthetic
quantitative variable for the variation among sites. Associate it to a table of the (X, Y)
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geographic coordinates of the sites. Produce a map using one of the methods in
Section 13.2. An example of such a map is given in Fig. 9.19 for correspondence
analysis axis I of a vegetation data table.

• Repeat the operation, producing maps for ordination axes II, III, etc. as long as
interesting or significant spatial variation can be detected. The R2 of trend surface
analysis (Subsection 13.2.1) may be used as criterion for deciding which of the
ordination axes should be mapped.

Simple ordination analysis leaves it to chance to find spatially-structured
components of variation. One may decide instead to look directly for such
components, by forcing the analysis to bring out axes of variation that are related to the
X and Y coordinates, or combinations of X and Y into a spatial polynomial equation.
The spatial polynomial is constructed as in Subsection 13.2.1. Ordination analysis of a
species data table, constrained to be related to a spatial polynomial, can be done by
canonical analysis (Chapter 11), as suggested by Legendre (1990). Canonical analysis
then becomes an extension to multivariate data tables of the method of trend surface
analysis. The method will be described with the help of a numerical example. Another
example (vegetation data) is found in Legendre (1990).

Numerical example. Data from the Thau lagoon are used again here (Tables 10.5 and 13.2).
To facilitate mapping, the X and Y geographic coordinates of the sampling sites were rotated by
principal component analysis (PCA using the covariance matrix; the eigenvectors were
normalized to lengths 1); Table 13.2 shows the rotated coordinates. A third-degree spatial
polynomial of these new X and Y coordinates was created (Subsection 13.2.1) and subjected to
the “forward selection of environmental variables” procedure of program CANOCO; in this
procedure, variables from the matrix containing the spatial monomials were selected one by one,
in a stepwise manner, for their capacity to significantly contribute to the explanation of the
“species data” (here, the Bna and Ma bacterial variables). The following five terms of the spatial
polynomial were retained by the selection procedure: X2, X3, X2Y, XY2, and Y3.

Redundancy analysis (Section 11.1) produced two canonical axes (λ1 = 0.622, λ2 = 0.111),
as expected from Table 11.1 for two dependent variables (Bna, Ma). The canonical relationship
accounted for 73.4% of the variation in the bacterial data; it was globally significant (p = 0.001
after 999 permutations of residuals under the full model, using CANOCO); so was the first
canonical eigenvalue (62% of the variance in the bacterial variables; p = 0.001). 81% of the
variance of Ma was expressed along axis I, but only 7% of the variance of Bna. The second
canonical eigenvalue (11% of the variance of the two bacterial variables) did not reach
significance at α = 0.05 (p = 0.076) although 42% of the variance of Bna was expressed on this
axis. There are two non-canonical axes representing the non-spatially-structured variation of the
response variables; they represent 16% and 10% of the variation of matrix Y, respectively.
Canonical axis I differs from the first principal component of matrix Y, which would express the
variation in the response variables (Bna, Ma) without the constraint of being a linear
combination of the spatial variables.

For axis I, the “site scores” and the “fitted site scores” (“site scores that are linear
combinations of the environmental variables” in program CANOCO) were mapped (Fig. 13.26).
Maps were obtained by kriging (Subsection 13.2.2) using program OKB2D of the GSLIB
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library (Deutsch & Journel, 1992); all-directional spherical variogram models were fitted to the
empirical variograms prior to kriging (Subsection 13.1.3). Figure 13.26a shows the “site scores”
expressing the point-by-point variation of the original data (matrix Y of bacterial variables)
projected onto axis I (eq. 11.12). Figure 13.26b maps the “fitted site scores” which are the fitted
values of the multiple regressions (matrix ) projected onto canonical axis I (eq. 11.13). The
data projected onto axis I in Fig. 13.26a are with residuals ( ; Fig. 11.2) whereas
the residuals are excluded in Fig. 13.26b. The trend surface equation that produced the “fitted
site scores” for the 20 sampling stations (Fig. 13.26b) is written out by program CANOCO under
the heading “Regression/canonical coefficients for standardized variables”:

The spatial variables were standardized before computing this equation.

Table 13.2 Data from Table 10.5. There are two dependent variables (Bna and Ma, forming matrix Y) and
three environmental variables (NH4, phaeopigments, and bacterial production, forming matrix
X). Five spatial variables (X2, X3, X2Y, XY2, and Y3, included in matrix W) were derived from
the X and Y coordinates, reported in the Table, that were obtained by PCA rotation of the
geographic coordinates of Table 10.5. The variables are further described in Numerical
example 1 of Subsection 10.3.5.

Station Bna Ma NH4 Phaeo. a Prod. X Y
No. y1 y2 x1 x2 x3 after PCA rotation

1 4.615 10.003 0.307 0.184 0.274 –9.4173 –1.2516
2 5.226 9.999 0.207 0.212 0.213 –7.1865 –1.0985
3 5.081 9.636 0.140 0.229 0.134 –5.8174 –1.4528
4 5.278 8.331 1.371 0.287 0.177 –6.8322 0.2706
5 5.756 8.929 1.447 0.242 0.091 –4.6014 0.4238
6 5.328 8.839 0.668 0.531 0.272 –4.2471 1.7929
7 4.263 7.784 0.300 0.948 0.460 –1.8632 –0.2848
8 5.442 8.023 0.329 1.389 0.253 –0.4940 –0.6391
9 5.328 8.294 0.207 0.765 0.235 0.8751 –0.9934

10 4.663 7.883 0.223 0.737 0.362 –0.1398 0.7300
11 6.775 9.741 0.788 0.454 0.824 –1.1546 2.4534
12 5.442 8.657 1.112 0.395 0.419 0.2145 2.0992
13 5.421 8.117 1.273 0.247 0.398 4.9824 –2.0562
14 5.602 8.117 0.956 0.449 0.172 3.9676 –0.3328
15 5.442 8.487 0.708 0.457 0.141 3.4602 0.5289
16 5.303 7.955 0.637 0.386 0.360 6.3515 –2.4105
17 5.602 10.545 0.519 0.481 0.261 5.8441 –1.5488
18 5.505 9.687 0.247 0.468 0.450 4.8293 0.1746
19 6.019 8.700 1.664 0.321 0.287 4.6762 2.4054
20 5.464 10.240 0.182 0.380 0.510 6.5527 1.1894
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Interpretation of the maps is rather simple in this example: examination of Table 13.2 shows
that the sites with the highest scores along canonical axis I (i.e. sites 1-3, 11, 17-20; grey areas in
Fig. 13.26) possessed the highest concentrations of aerobic heterotrophic bacteria growing on
marine agar (variable Ma); in the canonical analysis output, Ma was also identified as the
variable dominating canonical axis I.

Thioulouse et al. (1995) proposed a different approach to mapping, which
combines connection networks, decomposition of the variation into local and global
components, eigenvalue decomposition, and mapping. The neighbouring relationships
among sites are represented by some appropriate connection network (e.g. Delaunay
triangulation for a homogeneous two-dimensional sampling area, or neighbouring
relationships for sites along a river network) which is translated into a contiguity
matrix M (Fig. 13.23). M is standardized to P by division by the total number of pairs
of neighbours. A diagonal matrix D describes the degree of connectedness of the sites.
Using matrices P and D, the authors define principal component and correspondence

Figure 13.26 Map of the first canonical axis of the Thau lagoon bacterial variables constrained by the spatial
polynomial. (a) Site scores. (b) Fitted site scores. Dots represent the 20 sampling sites. The
north-south direction is nearly parallel to the vertical axis of the maps; compare the point
positions with Fig. 13.13.
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analysis for the total, local, or global components of variation; each fraction is
decomposed into orthogonal axes, which may be mapped to facilitate interpretation.
The paper presents applications to simulated and real ecological data (bird survey).

13.5 Causal modelling: partial canonical analysis

The significance of spatial heterogeneity for the functioning of ecosystems was
discussed in Section 1.1. Models of ecosystem processes may fall short of being
optimal unless they include the spatial organization of the players — populations and
communities — among the predictor variables. Although this type of modelling is still
in its infancy, two main approaches have been proposed. The first one, described in the
present Section, consists in modelling the spatial variation of the variables of interest
as a linear combination of the environmental variables and the geographic coordinates
of the sites. This approach makes use of methods discussed in previous Chapters and
Sections: partial regression analysis (univariate: Subsection 10.3.5) and partial
canonical analysis (multivariate: Section 11.3) on the one hand; trend surface analysis
(univariate: Subsection 13.2.1) and constrained ordination mapping (multivariate:
Section 13.4) on the other. In the second approach (Section 13.6), the spatial structure
is conveniently represented by a matrix of geographic distances among sites.

In both Sections, the analysis considers three data sets, as in partial regression
modelling: Y contains the response variables; X is the set of explanatory
environmental variables; W is the set of explanatory spatial variables (based on the
spatial coordinates of the sampling sites, transformed in various ways as described
below). There are two motivations for analysing data in this way:

• Spatial structures are a major source of false correlations, which are not indicative of
causal relationships. Spatial autocorrelation may cause correlations to appear between
autocorrelated variables, due to spatial structures that are generated by the
autocorrelation in the data; examples of such structures are the “false gradients”
described in Subsection 13.1.2. The question is the following: is there a significant
amount of correlation between the response and explanatory variables, besides some
common spatial structure which may be non-causal? The interest here is in fraction [a]
of Figs. 10.10 and 13.27, which corresponds to the “explanation” (in the sense of
Subsection 10.2.1) of the response data (Y) by the explanatory environmental
variables (X) after the common spatial structure (fraction [b]) has been controlled for.
If the analysis of the spatial structure of Y is also of interest, it should be carried out
independently of that of X. If fraction [b] is large, the hypothesis that it indicates false
correlations between autocorrelated variables in matrices Y and X is supported if new
data, obtained by sampling at a different spatial scale, fail to produce a large
fraction [b]. Nested sampling designs, as used for instance in Ecological
application 13.1b, are a way of obtaining data sets for modelling at more than one
spatial scale.
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• If both the spatial and non-spatial structures of the explanatory variables are
assumed to be causal to the spatial variation of Y, fraction [a + b] (instead of
fraction [a] alone, as above) empirically measures the support to the hypothesis of
causal relationship between the response and explanatory variables. One may or may
not be interested in breaking it down into a purely environmental fraction ([a] in
Fig. 10.10 and 13.27) and a spatially-structured environmental effect (fraction [b]).
One may be interested, however, in determining whether the response data (Y) have
some spatial structure of their own (fraction [c]) which is not explained by the
explanatory variables in the model. If such a structure is found, reasons for its
existence are worth investigating. It may be caused by environmental variables that
have not been included in the analysis, by historical events, or by population or
community dynamic processes that may be masked by some dominant environmental
effect (Borcard & Legendre, 1994). In this approach, any spatial structure identified in
the response data set is considered an indication of the presence of some process
generating it. Mapping fraction [c] of the variation may help generate hypotheses
about the processes responsible for the observed residual spatial pattern.

It is important to note that the approaches described above are essentially
correlative, like regression analysis. They differ from the analysis of variance, which
estimates the variation associated with well-defined effects in structured sampling or
manipulative experiments. In the initial stages of ecological research, correlative
methods are routinely used to sort out hypotheses centring on broad correlative
patterns among groups of variables, before specific hypotheses can be experimentally
tested. In particular, the analyses presented in this Section allow researchers to
consider different groups of explanatory variables (environmental, spatial, or
temporal) and examine their capacity to explain patterns in the multivariate response
variables (species or others) that are of interest in a study; they further allow one to
measure the degree of overlap that exists among these groups of explanatory variables
with regard to that capacity (Anderson & Gribble, 1998). The correlations brought out
by the analyses are only interpretable insofar as hypotheses can be formulated about
the processes that may have generated the observed patterns. This approach is related
to regression (Section 10.3) and path analysis (Section 10.4), in which a large number
of plausible relationships may be hypothesized and sorted out by statistical analysis.

Figure 13.27 Partition of the variation of a response matrix Y between environmental (matrix X) and spatial
(matrix W) explanatory variables. The length of the horizontal line corresponds to 100% of the
variation in Y. Compare to Fig. 10.10. (Adapted from Borcard et al., 1992, and Legendre, 1993).
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1 — Partitioning method

A method for implementing the approach described above was proposed by Borcard et
al. (1992). It consists in partitioning the variation of a response matrix Y between the
environmental (X) and spatial (W) matrices of explanatory variables, in the way
described in Subsection 10.3.5. Partial RDA or CCA are used if Y contains several
response variables, or partial linear regression if there is a single variable in Y and a
linear relationship is assumed between Y and the variables in X and W. Calculation of
the fractions of variation ([a] to [c] in Fig. 10.10 and 13.27) is described in
Subsection 10.3.5. Estimation of the vectors corresponding to the fractions of variation
is also described in that Subsection; these vectors may be used to produce maps. 

If matrix Y is multivariate, the variation in Y is decomposed using partial canonical
analysis (Section 11.3). Borcard et al. (1992) applied this decomposition to three
ecological data sets: soil mites, forest vegetation, and aquatic heterotrophic bacteria.
The decomposition may be carried out in many different ways, which are equivalent,
using three of the five following analyses:

(1) A simple RDA (redundancy analysis: Section 11.1) or CCA (canonical
correspondence analysis: Section 11.2) of the matrix of response variables Y,
constrained by matrix X, extracts fraction [a + b]. 

(2) A simple RDA or CCA of matrix Y, constrained by matrix W, extracts fraction
[b + c].

(3) A simple RDA or CCA of matrix Y, constrained by a matrix combining the
variables of matrices X and W, extracts fraction [a + b + c]. The residual variation
corresponds to fraction [d].

(4) A partial RDA or CCA (Section 11.3) of matrix Y, constrained by matrix X and
using W as the matrix of covariates, extracts fraction [a]. 

(5) A partial RDA or CCA of matrix Y, constrained by matrix W and using X as the
matrix of covariates, extracts fraction [c].

For each of these analyses, the sum of all canonical eigenvalues, divided by the
sum of all (unconstrained) eigenvalues, gives the corresponding fraction of the
variation explained by the analysis. The sum of the (unconstrained) eigenvalues in Y is
the sum of all the eigenvalues of a regular PCA (principal component analysis,
Section 9.1) of matrix Y if RDA is used for the decomposition, or the sum of all the
eigenvalues of a regular CA (correspondence analysis, Section 9.4) of matrix Y if the
decomposition is obtained by CCA. The sum of all canonical eigenvalues of an
analysis can be tested for significance (Subsection 11.3.2). Each analysis decomposes
the canonical variation into canonical axes, and each axis may be tested for
significance. For each significant axis, either the “site scores” or the “fitted site scores”
may be used to produce maps as in Fig. 13.26. 
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Analyses (4) and (5) must be carried out only if one is interested in estimating the
vectors of fitted values corresponding to fractions [a] and [c], so as to map them for
instance. Otherwise, fraction [a] can be obtained from the results of analyses (2) and
(3) which are simpler to carry out. Indeed, because the fractions of variation are
additive (Subsection 10.3.5), it follows that:

[a] = [a + b + c] – [b + c]

where [a] represents the fraction of variation of Y, explained by the environmental
variables, which is not spatially structured. In the same way, fraction [c] may be
obtained from analyses (1) and (3):

[c] = [a + b + c] – [a + b]

where [c] is the spatially-structured fraction of variation of Y which is not explained
by the environmental variables. 

[b] is the fraction of variation of Y, explained by the environmental variables,
which is spatially structured. It may be equally attributed to the environmental
variables X or the spatial variables W. It can only be obtained by subtraction:

[b] = [a + b] + [b + c] – [a + b + c]

or [b] = [a + b] – [a]

or [b] = [b + c] – [c]

or [b] = [a + b + c] – [a] – [c]

No combination of simple or partial canonical analyses can produce fraction [b]; it is
not a fitted variance component, but the difference between the variances explained by
two models which have no structural relationship to each other. As a result, the
measured quantity cannot be described as variance explained by a specific linear
model of some predictors. Interpretation of fraction [b] remains interesting, however,
as explained in Subsection 10.3.5. The estimation of vectors of site scores
corresponding approximately to fraction [b] is a difficult problem; some solutions have
been proposed by Méot et al. (1998).

Fraction [d] is the residual variation of analysis (3). It can be calculated as:

[d] = 1 – [a + b + c]

The amount of variation associated with fraction [d] is the residual sum of squares
(RSS) in the denominator of the F statistics (eq. 11.19) used to test the overall
significance of the simple and partial canonical analyses described above, or the
significance of particular canonical axes (eq. 11.20).

The broad-scale spatial variation in matrix Y may be modelled by a polynomial of
the geographic coordinates of the sampling sites, as in trend surface analysis
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(Subsection 13.2.1) and constrained ordination mapping (Section 13.4); in that case,
component [a] of the variation corresponds to the more regional or local variation, as
well as the non-spatially-structured environmental variation. Alternatively, more local
spatial variation can be captured using a nearest-neighbour autocorrelation model
(Legendre and Borcard, 1994); an example is given by He et al. (1994), who applied
this method to explain the spatial variation of tree density, species richness and
Shannon diversity in a tropical rain forest.

Numerical example. The data from Table 13.2 (Thau lagoon) are reanalysed here. In the
numerical example of Section 13.4, the variable selection procedure retained the following
terms of the spatial polynomial: X2, X3, X2Y, XY2, and Y3; the same terms are used in the
present example. The five analyses described above were carried out to obtain the fractions of
variation:

Significant fractions are identified by asterisks (α = 0.05). Eigenvalues of the first canonical axis
(canonical λ1) are reported as fractions of the total variance in Y. The second canonical axis was
never significant; since each analysis only produced two canonical eigenvalues in this example,
the portions of variation corresponding to λ1 are the differences between columns 2 and 4 from
the left. Fraction [b] is not an independently-calculated component of the variation; hence, it
cannot be tested for significance nor decomposed into canonical axes (see Méot et al., 1998, for
alternative solutions).

The analysis decomposed the total explained variation [a + b + c] into a significant
environmental component [a + b] and a significant component [c] which estimates the spatially-
structured variation of Y not explained by the environmental variables. The table shows that
[a + b], which is the variation of Y explained by the environmental variables, is mostly spatially
structured since [b] represents 89% of [a + b] and [a] is not significant. 

Figure 13.28 shows maps of the “fitted site scores” of the first canonical axis of fraction
[a + b + c] and of its two components, [a + b] and [c]. These maps were obtained by kriging
(Subsection 13.2.2) using program OKB2D of the GSLIB library (Deutsch & Journel, 1992);
all-directional spherical variogram models were fitted to the empirical variograms prior to
kriging (Subsection 13.1.3). While the proportions of variation of [a + b] and [c] add up to that
of [a + b + c] (0.450 + 0.334 = 0.784), this is not the case for the proportions of variation
represented by the first canonical axes: λ1[a + b] + λ1[c] ≠ λ1[a + b + c]. This is because the partition

Fractions

of variation

Proportion of

variation of Y

Probability

(999 perm.)

Canonical

λ1

Probability

(999 perm.)

[a + b] 0.450 0.005* 0.359 0.025*

[b + c] 0.734 0.001* 0.622 0.001*

[a + b + c] 0.784 0.001* 0.632 0.001*

[a] 0.051 0.549 0.042 0.561

[b] 0.399 ----- ----- -----

[c] 0.334 0.011* 0.304 0.004*

[d] 0.216 ----- ----- -----

[a + b + c + d] 1.0000
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of fraction [a + b + c] into canonical axes is done independently of the partitions of [a + b] or
[c]. As a consequence, maps of a given axis of variation (e.g. axis I of the various fractions,
mapped in Fig. 13.28) do not exactly add up with this method; they only add up approximately.

Figure 13.28 Bacterial variables: map of the “fitted site scores” of the first canonical axes of three fractions of
the variation: top [a + b + c], middle [a + b], bottom [c]. Dots represent the 20 sampling sites.
North is nearly parallel to the vertical axis of the maps. Compare with Fig. 13.26b which
represents fraction [b + c]. Arrows at the base of map [c], labelled “sea water”, indicate the
positions of connections of the Thau lagoon with the Mediterranean Sea.
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Fraction [b + c] (73.4% of the variation in the bacterial data) is the one extracted by the
canonical analysis, for the same data, in the numerical example of Section 13.4; Fig. 13.26
presents two maps of this fraction of the variation. In this example, the maps of axis I of
fraction [b + c] (Fig. 13.26) are very similar to the map of axis I of [a + b + c] (Fig. 13.28)
because [a] is very small. 

Before mapping, all signs of axis I of fractions [a + b] and [c] were reversed to make them
agree with the signs of the site scores of axis I of [a + b + c]; signs obtained in unconstrained or
constrained ordination analyses are arbitrary. With signs reversed, axis I of [a + b], which is the
fraction extracted by the environmental variables, is negatively correlated to variables NH4 and
phaeopigments.

The map of axis I of fraction [a + b + c] (63% of the variation in the response bacterial
variables) and [a + b] (36%) are quite similar, whereas the map of axis I of fraction [c] (33% of
the variation) is quite different. The trend surface equation that produced the “fitted site scores”
for the 20 sampling stations is written out by program CANOCO under the heading
“Regression/canonical coefficients for standardized variables”:

In this equation, the spatial variables are residuals of the standardized terms of the spatial
polynomial after controlling for the effect of the three environmental variables. Examination of
the map of fraction [c] suggests a hypothesis for the origin of this fraction of variation: that of a
marine influence, which had not been included among the explanatory variables in the analysis.
Indeed, the negative values on the map form a plume originating at the connections of the Thau
lagoon with the sea and extending westwards. To “explain away” fraction [c], i.e. to make it
become non-significant, another analysis could be conducted that would include variables
quantifying the marine influence on the stations of the lagoon among the environmental
variables. Such variables could be derived from a hydrodynamic model of the lagoon.

Applications of this method cover a wide range of ecological problems. Here is a
selected list of fields and papers: palaeoecology (Zeeb et al., 1994; see also Ecological
application 10.3), vegetation (Heikkinen & Birks, 1996), periphyton (Cattaneo et al.,
1993), protozoa (Buttler et al., 1996), zooplankton (Pinel-Alloul, 1995), aquatic
macroinvertebrates (Pinel-Alloul et al., 1996), fish (Rodríguez & Magnan, 1995), and
birds (Bersier & Meyer, 1994).

Variation partitioning has been applied to more than two explanatory data sets.
(1) Pinel-Alloul et al. (1995) tested the hypothesis that biotic and abiotic factors, as
well as spatial structuring, explain together the broad-scale spatial heterogeneity of
zooplankton assemblages among lakes. The explanatory variables comprised abiotic
(physics and chemistry, morphometry) and biotic factors (phytoplankton and fish
assemblages); these factors were analysed separately and together, using four
approaches described in the paper. (2) Quinghong & Bråkenhielm (1995) explained
the spatial patterns of epiphytic green algae and lichens using climatic, pollution, and
geographic variables. They showed how to isolate the seven components of variation
resulting from crossing three sets of explanatory variables. (3) Anderson & Gribble
(1998) extended the variation partitioning method to three matrices of explanatory
variables representing the environmental, spatial and temporal components,

Axis I of [c] 1.8017X
2

2.2817X
3

1.0809X
2
Y– 1.3064XY

2
–+= 1.5563Y

3
+
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respectively. They also showed how to isolate the seven components of variation.
Using this approach, they were able to resolve the confounding of space and time
which is often encountered when sampling is conducted over an extensive period,
because of the large size of the area to be surveyed.

2 — Interpretation of the fractions

In simple regression or canonical analysis modelling, one is interested in the variation
of the response data (vector y or matrix Y) which is accounted for by the explanatory
variables (matrix X) according to a model of causal relationships, vague or precise,
stated prior to the analysis. The fraction of variation explained by the model is
measured by the coefficient of determination (R2, eq. 10.19) in multiple regression and
by the ratio [sum of all canonical eigenvalues/trace of matrix Y] in canonical analysis
(Subsection 11.3.2). The residual variance is assumed to be a random error component.

In the introduction to Section 13.5, two motivations were discussed for the
decomposition of the variation of a multivariate response matrix Y into the additive
components estimated in Subsection 1.

• If the spatial structure is considered to be a source of false correlations which are not
indicative of causal relationships, fraction [b] measures the interference of the spatial
variables with the analysis of the relationship between Y and X. Fractions [b] and [c]
should not be interpreted separately, although one may still be interested in modelling
the spatial structure of Y (fraction [b + c]) separately from X.

• If both the spatial and non-spatial structures of the explanatory variables are
considered causal to the spatial variation of Y, fraction [a + b] estimates the amount of
variation of Y explained by X. In such a case, the residuals of the analysis of Y by X
are assumed to contain two identifiable fractions: [c] which is spatially structured and
[d] which is the random error component. A test of significance allows one to
determine, at some confidence level α, whether fraction [c] may be attributed to
random variation. If this is not the case, one should try to interpret fraction [c]. The
next step is to “explain away” fraction [c], if possible. In other words, one should try to
make fraction [c] disappear by adding variables to matrix X and recomputing the
model. The numerical example of the previous Subsection has shown how maps of the
site scores for the significant canonical axes of fraction [c] may help identify the
processes responsible for this fraction of variation. Borcard & Legendre (1994)
developed an application showing how fraction [c] may be explained away by adding
environmental variables in a stepwise manner to the set of explanatory variables.

In statistical analysis, causality, if invoked, resides in the hypotheses of the
researcher. This point has been stated repeatedly throughout the book. The objective of
causal statistical modelling is to verify how much of the observed variation can be
explained by a consistent body of hypotheses (i.e. a set of compatible hypotheses).
Problems of interpretation may occur, however, when important causal factors are left
out of the model. The amount of variation of Y explained by the model may be reduced
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and, if these factors are causally anterior to both the variables in Y and some of the
variables in set X, false correlations may appear in the model; this is also the case in
path analysis (Section 10.4).

In community analysis, researchers are faced with a multiplicity of potential causal
agents acting at a variety of spatial and temporal scales, thus creating a network of
interactions that may be difficult to untangle. Section 13.0 mentioned three general
models often invoked to explain community variation: the environmental control
model (ECM), the biotic control model (BCM), and historical dynamics (HD). The
latter refers to past natural events, such as isolation by geographic barriers and
disturbances of various kinds (storms, forest fires, volcanic eruptions, landfalls, etc.),
and to anthropogenic causes such as agriculture, logging, constructions of various
sizes, etc. They are usually not explicitly represented by variables in matrix X. Some
of these events may be traced by researchers (e.g. tornadoes, forest fires, logging, past
agricultural plots) and explicitly included in a second round of modelling, while others
cannot and may only be invoked in general terms to account for community variation.
Table 13.3 summarizes the interpretation of the various fractions of variation of
Fig. 13.27. Examples follow of factors that may intervene to explain community
variation in a temperate forest; they illustrate the statements in Table 13.3.

[a] The environmental and biotic factors that are explicitly represented by variables in
matrix X usually have fine-scale variation. They may explain part of the local variation
of the forest community which is not taken into account by the broader-scale spatial
polynomial model. Besides these factors, local variation in unobserved soil chemistry
variables or other factors may be responsible for part of the variation in the community
structure (matrix Y) and in the explanatory variables included in X, a case which
would lead to covariation between X and Y (false correlation). For example, localized
infestation by pest insects may have occurred in the past, leaving variation at some
sites in the forest that persisted throughout the years; such a historical event may also
have left traces in the variables of matrix X, leading to causal or non-causal
correlations.

[b] The environmental and biotic factors that are explicitly represented by variables in
matrix X often have broad-scale variation, detectable by the spatial polynomial model,
which may explain part of the variation of the forest community. Besides these factors,
broad-scale variation in unobserved environmental factors may be responsible for part
of the variation in the community structure (matrix Y) and in the explanatory variables
included in X, a case which would lead to covariation between X and Y (false
correlation). For example, past occupation of the territory under study by agriculture
may have left spatially-structured variation in the forest community; it may also have
left traces in the measured soil variables of matrix X, leading to causal or non-causal
correlations. Autocorrelation in both the response and explanatory variables may cause
covariation between matrices Y and X, hence inflating fraction [b].

[c] Part of the spatial structure of the community may be caused by environmental or
biotic factors that were not included in the analysis; for instance, a humidity gradient
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or the effect of grazers may not have been measured. In other types of communities,
competition for resources may play an important role but may have been left
unmeasured. A windfall may have occurred in the past, creating a clearing in the forest
which was then recolonized and has left a detectable broad-scale spatial structure in
the forest community. Community processes such as growth and reproduction are a

Table 13.3 Causal factors invoked to explain the various fractions of variation, and in particular the
correlations between environmental variables (matrix X) and community composition (matrix
Y). The following hypotheses are invoked: the environmental control model (ECM), the biotic
control model (BCM), historical dynamics (HD), and spatial autocorrelation. Bullets: factors
explicitly stated in the model; asterisks: factors not explicitly spelled out. Arrows: causal
relationships. Modified from Borcard & Legendre (1994).

Fraction Causal factors Process Causal model1

[a] • Non-spatially-structured component ECM
of environmental or biotic factors BCM

* Non-spatially-structured environmental ECM
or biotic factors not included in the analysis BCM

* Historical events without spatial HD
structure at the scale of the study

[b] • Spatially-structured component of biotic or ECM
environmental factors included in the analysis BCM

* Spatially-structured environmental or biotic ECM
factors not included in the analysis BCM

* Spatially-structured historical events HD

* Spatial autocorrelation in X and Y Autocorrelation

[c] * Spatially-structured environmental or biotic ECM
factors not included in the analysis BCM

* Spatially-structured historical events HD

* Spatial autocorrelation in matrix Y Autocorrelation

[d] * Environmental or biotic factors not included ECM
 in analysis and not spatially structured BCM

at scale of study

* Historical events not included in analysis HD
and not spatially structured at scale of study

• Random variation, sampling error, etc. Noise

1 C: community structure (matrix Y)
E: factor explicitly represented by explanatory variable(s) in the analysis (in matrix X)
F: factor not represented by explanatory variable(s) in the analysis

E C

{ F
E

C

E C

{ F
E

C

CE

{ F C

C
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major source of spatial autocorrelation, which is responsible for part of the observed
spatially-structured variation observed in communities although it cannot be explained
by external factors.

[d] This fraction represents the unexplained variation of matrix Y which does not have
broad-scale spatial structure. Perhaps some of it could be explained by the fine-scale
component of additional factors that have not been included in the analysis; for
instance, local patches of grazers. The rest is random variation and sampling error.

These examples illustrate the fact that, in some cases, it is of no use to try to
increase the fraction of explained variation by incorporating more environmental
variables into the model. Fraction [c], which may represent an important proportion of
the unexplained variation, may often only be explained by population or community-
based spatial processes (autocorrelation, biotic interactions) or by past events that may
sometimes be documented, but often cannot.

Partitioning the spatial variation of communities into components, and mapping
them, allows researchers to find interesting correlations supporting models of causal
relationships. It also allows one to quantify and map fraction [c] which measures by
how much preconceived models may fall short of accounting for the observed data.
The same type of analysis may be conducted on time series. Ecologists may use
insights obtained by analysing fraction [c] to formulate better ecological models,
before going back to the field.

13.6 Causal modelling: partial Mantel analysis

In parallel with causal modelling by partial canonical analysis (Section 13.5), another
approach has been proposed to include spatial relationships as predictors in statistical
models on an equal footing with the set of explanatory environmental variables. The
spatial structure may be represented by a matrix of geographic distances among
sampling sites — or some modification of such a matrix, for instance some kind of
contiguity matrix (e.g. Fig. 13.23). In the typical case, geographic (Euclidean)
distances are computed for all pairs of sampling stations, from their geographic
coordinates, and assembled into a “spatial distance” matrix. Similarly, resemblance
matrices may be computed for the response (matrix Y) and the explanatory variables
(matrix X) using appropriate similarity or distance measures (Chapter 7).

1 — Partial Mantel correlations

Legendre & Troussellier (1988) proposed to apply to resemblance matrix modelling
the predictions made about the values of simple and partial correlations for causal
models involving three variables (Subsection 4.5.5; Fig. 4.11). This led to causal
modelling on resemblance matrices, mentioned in Subsection 10.5.2. Calculations
involve a resemblance matrix describing community structure or some other set of
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response variables (Y), a matrix of ecological distances computed for the
environmental variables (X), and a matrix of geographic distances (W). Using the
approach of Subsection 4.5.5 is straightforward because the computations of simple
and partial Mantel statistics (Subsection 10.5.1 and 10.5.2) are identical to those of
simple and partial Pearson correlation coefficients. The algebra is the same; the only
difference is that the values involved in the calculations come from resemblance
matrices instead of vectors. Remember, however, that a correlation between two
distance matrices is not equivalent to the correlation between two data tables; a Mantel
correlation rM(AB) between matrices A and B measures the extent to which the
variations in the similarities or distances of A correspond to the variations in B.

Ecological applications of causal modelling on resemblance matrices to models
that include geographic distances are found in Burgman (1987), Legendre &
Troussellier (1988), Villeneuve et al. (1991), Legendre & Fortin (1989), Nantel &
Neumann (1992), Fromentin et al. (1993), Leduc et al. (1992), Mandrak (1995), and
Bjørnstad et al. (1995). Other interesting applications of the partial Mantel test to
anthropology and population genetics are found in Sokal (1986) and Sokal et al.
(1987). Let us examine two ecological applications.

Ecological application  13.6a

In the paper of Legendre & Troussellier (1988), the question was whether the well-established
relationship (model 1 of Fig. 4.11) between aquatic heterotrophic bacteria and phytoplankton
biomass (estimated by chlorophyll a, variable Chl a) held for two identifiable components of the
bacterial heterotrophic community of a marine lagoon: the aerobic heterotrophs growing on low-
salinity medium (variable Bna), which were presumably of continental origin, and the aerobic
heterotrophs growing on high-salinity medium (variable Ma), expected to be mostly of marine
origin; see the numerical example of Subsection 10.3.5 for a more detailed description of the
bacterial variables. The two bacterial variables were well correlated to Chl a, but this pattern
could be the result of a common spatial structure created by currents (model 2 of Fig. 4.11). The
question thus belonged to the first type mentioned in the introduction of Section 13.5: was there
a significant correlation between the response variables (Bna, Ma) and the explanatory variable
(Chl a), besides some common spatial structure? 

The spatial structure was represented by a matrix of geographic (i.e. Euclidean) distances
among the 63 sampling sites, called SPACE. Each biological variable was turned into a distance
matrix by computing Euclidean distances among the sites, thus producing matrices BNA, MA

and CHL A; abbreviations are as in the original publication. The Mantel and partial Mantel
statistics, computed to decide between the two models, are reported in Fig. 13.29. The
nonsignificant partial Mantel relationship between BNA and CHL A, when the effect of SPACE

is controlled for, points to model 2 in Fig. 4.11, which contradicts the hypothesis of control of
the variation of continental heterotrophs by phytoplankton variation. In contrast, the
nonsignificant partial Mantel relationship between MA and SPACE, when CHL A is held
constant, points to model 1, which supports the hypothesis of control of the variation of marine
heterotrophs by phytoplankton.
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Ecological application  13.6b

Leduc et al. (1992) analysed the relationship between environmental conditions and the spatial
distributions of adult trees and saplings, for 12 tree species in 198 vegetation quadrats from a
0.5 km2 forested area. Distance matrices were computed for the adults and saplings of each
species separately. A matrix of geographic distances (“Space”) was also computed among sites.
“Environment” is a matrix computed among sites for the 6 drainage, soil and geomorphology
variables, using the Estabrook-Rogers coefficient (S16, Chapter 7). Partial Mantel tests were
used in conjunction with path analysis computed from the Mantel statistics, as in Ecological
application 10.4b. The question here belonged to the second type mentioned in the introduction
of Section 13.5: does the spatial structure of the environmental variables fully explain the spatial
structure of the vegetation, or is there a part of the spatial structure of the vegetation which is not
explained by the environmental variables in the model?

After analysing each species separately, the authors found that the spatial patterns of species
associated with hydric conditions were largely explained by the spatial distributions of the
environmental variables (Fig.13.30c, d), whereas mesic-site species still displayed significant
spatial patterns after controlling for the environmental variables (Fig. 13.30a, b). Past events
(disturbances) and forest cover dynamics were suggested as explanations for the latter.

Residual distance matrices, as computed in partial Mantel analysis, provide the
basis for interesting illustrations of the relationships among sites, using ordination by
principal coordinate analysis (PCoA, Section 9.2) or nonmetric multidimensional
scaling (MDS, Sections 9.3). 

(a) Analysis of the BNA-CHL A-SPACE relationships

BNA CHL A SPACE

BNA ---- 0.258* 0.521*
CHL A –0.006 ----- 0.505*
SPACE 0.468* 0.449* -----

(b) Analysis of the MA-CHL A-SPACE relationships

MA CHL A SPACE

MA ---- 0.325* 0.223*
CHL A 0.252* ----- 0.505*
SPACE 0.073 0.469* -----

Figure 13.29 Mantel analysis of the relationships between matrices representing bacterial variables (a: BNA,
b: MA, in matrix form), CHL A, and SPACE. Left tables, above the diagonals: simple Mantel
statistics; below: partial Mantel statistics controlling for the effect of the third matrix. Asterisks
(*) indicate significance (α = 0.05); tests of significance are one-tailed. Right: causal models
supported by the results. Adapted from Legendre & Troussellier (1988).

SPACE CHL A
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• On the one hand, the matrix of residuals RYW obtained by partialling out the effect
of the geographic distances (W) from the matrix of community similarities or
distances (Y) may be used as the basis for an ordination. It could be interesting to
compare it to an ordination of the original matrix Y. Alternatively, the site scores along
the various ordination axes could be mapped as in Fig. 13.28. Matrix RYW is
analogous to fraction [a + d] of the partial canonical analysis approach.

• On the other hand, the matrix of residuals RYX obtained by partialling out the effect
of the environmental variables (resemblance matrix X) from the matrix of ecological
similarities or distances (Y) may be used for ordination. This approach has been used
by Fromentin et al. (1993, Fig. 13). Alternatively, the site scores for the various
ordination axes could be mapped as in Fig. 13.28. Matrix RYX is analogous to
fraction [c + d] of the partial canonical analysis approach.

There is still progress to be made in this elementary form of modelling. Spatial
relationships can be construed in other ways than a Euclidean distance matrix.
Transformations such as the inverse of the Euclidean distance, or the inverse of its
square, have been used; they give more importance to the small distances (Jumars et
al., 1977). In order to limit the effect of large distances on Mantel correlations, Leduc
et al. (1992) truncated their geographic distance matrix; all distances larger than the
range of the variogram were made equal to that distance. Other authors prefer to use

Figure 13.30 Models of relationships derived from partial Mantel tests for each tree species. (a, b) Species
associated with mesic sites (i.e. moderate moisture conditions); (c, d) species associated with
hydric conditions. Dashed lines indicate that, for some species in the group, the relationship,
although high, did not reach the Bonferroni-corrected significance level. Species pertaining to
group (a) are: basswood (Tilia americana), sugar maple (Acer saccharum), red maple (Acer
rubrum), white pine (Pinus strobus), hemlock (Tsuga canadensis), American beech (Fagus
grandifolia); group (b): oldfield birch (Betula populifolia); group (c): American elm (Ulmus
americana), white cedar (Thuja occidentalis), yellow birch (Betula alleghaniensis), black ash
(Fraxinus nigra); group (d): aspen (Populus tremuloides). Modified from Leduc et al. (1992).
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distances along connection schemes such as rook’s or king’s connections for regular
grids of points, instead of regular or transformed Euclidean distances, and Gabriel
graphs or Delaunay triangulations for irregularly spaced points (Subsection 13.3.1).

2 — Multiple regression approach

In several instances, ecological distances are not linearly, nor even monotonically
related to the geographic distances. Multiple regression on resemblance matrices
(Subsection 10.5.2; Fig. 10.21) would allow one to take such nonlinear relationships
into account in modelling. This method is as an extension of partial Mantel analysis to
cases involving several explanatory matrices. The method is briefly outlined as
follows:

• From the matrix of geographic distances among sites, create a set of model matrices
corresponding to distance classes, X1, X2, …, as in Fig. 13.12. 

• Regress the matrix of ecological distances Y on the set of model matrices, using
multiple regression on resemblance matrices. The regression model is:

(13.30)

• Other matrices of environmental variables W1, W2, … may also be incorporated into
the analytical model:

(13.31)

This approach looks promising for studying complex models involving spatial or
temporal structures in connection with different groups of environmental variables,
especially when the response variables naturally come in the form of similarity or
distance matrices. No ecological application of this method has been published yet.

3 — Comparison of methods

Both the partial canonical analysis (Section 13.5) and matrix approaches (partial
Mantel analysis and multiple regression; present Section) have been successful in
enriching our understanding of spatial processes in ecosystems. Which one should be
preferred? At least three aspects may be considered.

• Resemblance matrix — The only resemblance measures available in the partial
canonical analysis approach are the Euclidean distance (in partial RDA) and the chi-
square distance (in partial CCA). The matrix approach is certainly to be preferred
when some other resemblance measure (Chapter 7) is justified, or when the dependent
data naturally present themselves in the form of a resemblance or proximity matrix
(e.g. genetic distances obtained by DNA or RNA pairing; preference or dominance
data in behaviour studies, serology). Resemblance coefficients often provide greater

Ŷ b0 b1X1 b2X2 …+ + +=

Ŷ b0 b1X1 b2X2 … bk 1+ W1 bk 2+ W2 …+ + + + + +=
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Table 13.4 Computer programs available for the methods of surface pattern analysis discussed in
Chapter 13. The list is not exhaustive.

CANOCO (Partial) canonical ordination methods
See ter Braak (1988b) who wrote the program.
Available for several platforms from Scientia
Publishing, P.O. Box 658. H-1365 Budapest,
Hungary, and Micro-computer Power, 113
Clover Lane, Ithaca, NY 14850, USA;
http://www.microcomputerpower.com

C2D  Directional spatial correlograms
BioMedware Inc., 516 North State Street, Ann
Arbor, Michigan 48104-1236, USA;
http://ic.net/~biomware/

GBAS Geographic boundary analysis
BioMedware (see C2D).

GEODAT Mapping and digitizing, including
base maps of the world

BioMedware (see C2D).

GEO-EAS Variogram, kriging; contour mapping
Developed by US Environmental Protection
Agency. Available from ACOGS, P.O. Box
44247, Tucson, Arizona 85733-4247, USA;
ftp://math.arizona.edu/incoming/unix.geoeas/

GEOSTAT Variogram, kriging; contour mapping
Geostat Systems Internat., 4385 Saint-Hubert,
Suite 1, Montréal (Québec) H2J 2X1, Canada.

GS+ Spatial autocorrelogram (Moran’s I),
variogram, kriging; contour mapping

BioMedware (see C2D).

GSLIB Geostatistical software library
See Deutsch & Journel (1992). WWWeb site:
http://ekofisk.stanford.edu/scrf/software.html

ISATIS Variogram, kriging; contour mapping. 
Geovariances, 38 avenue Franklin-Roosevelt,
F-77210 Avon, France. WWWeb site:
http://cg.ensmp.fr/HomePageEnglish.html

Kellogg’s Variogram, kriging; contour mapping
Computer Laboratory, W.K. Kellogg
Biological Station, Michigan State University,
Hickory Corners, Michigan 49060, USA.

MACGRIDZO Inverse distance and weighted least
squares interpolation; contour maps

RockWare Inc., 4251 Kipling St., Suite 595,
Wheat Ridge, Colorado 80033, USA.

NTSYS-PC Simple Mantel test
Developed by F. J. Rohlf. Available from
Exter Software Inc., 100 North Country Road,
Bldg. B, Setauket, New York 11733, USA;
http://www.exeterSoftware.com

R Package Spatial autocorrelograms (Moran’s I
and Geary’s c), simple and partial
Mantel tests, Mantel correlogram,
clustering with space and time
contiguity constraint. ANOVA for
spatially autocorrelated regional data;
connection networks

Developed by P. Legendre. Available for
several platforms from the WWWeb site:
http://www.fas.umontreal.ca/BIOL/legendre/

SAAP Spatial autocorrelograms (Moran’s I
and Geary’s c)

D. Wartenberg, Department of Environmental
and Community Medicine, Robert Wood
Johnson Medical School, 675 Hoes Lane,
Piscataway, New Jersey 08854, USA.

SASP Two-dimensional spectral analysis
E. Renshaw, Department of Statistics, Univ. of
Edinburgh, King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, Scotland.

STAT! Point and surface pattern statistics
BioMedware (see C2D).

SURFER Kriging; other interpolation methods;
contour mapping

Golden Software Inc., P.O. Box 281, Golden,
Colorado 80402, USA.

UNIMAP Variogram, kriging; other interpo-
lation methods; contour mapping

European Software Contractors A/S,
Nørregade, DK-2800 Lyngby, Denmark.

VARIOWIN Variogram
Information available on the WWWeb site:
http://www-sst.unil.ch/geostatistics.html
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flexibility for handling mixed-type data. This was the case in Ecological
application 13.6b, where the environmental data matrix was computed from a mixture
of ordered and nonordered variables. Ecological application 13.6a could just as well
have used the partial canonical analysis approach.

The partial canonical analysis approach may actually be used even in situations
where a resemblance function other than Euclidean or chi-square is preferred for either
the response or the explanatory data. In order to do so, (1) the resemblance matrix is
transformed back into a table of quantitative axes using principal coordinate analysis
(PCoA, Section 9.2) or nonmetric multidimensional scaling (MDS, Sections 9.3), and
(2) partial canonical analysis is computed using the matrix of ordination scores.

• Statistical testing — The partial canonical analysis approach (Section 13.5) allows
for statistical testing and provides estimates of the contributions of the explanatory and
response variables to the canonical axes. The matrix approach, at its present stage of
development, focuses on statistical testing and largely disregards parameter
estimation. Multiple regression on resemblance matrices (Subsection 2), however,
offers a way of estimating the importance of the contributions of various subsets of the
explanatory data to the explanation of the response matrix Y.

• Scale — Partial Mantel analysis focuses on the broad-scale spatial structure
(i.e. trend). Following a decomposition of the geographic distances into distance
classes, multiple regression on distance matrices allows one to model both the fine-
scale (i.e. autocorrelation) and broad-scale (i.e. trend) spatial structures. The partial
canonical analysis approach, as developed so far, is mostly used to model trends. Fine-
scale spatial autocorrelation can also be modelled with this method (He et al., 1994;
Legendre & Borcard, 1994), but the analysis becomes quite cumbersome when there
are many response variables.

13.7 Computer programs

Most of the methods described in this Chapter cannot be implemented using the major
statistical packages available in 1998. Table 13.4 lists computer programs available
either commercially or from researchers. The list is not exhaustive.
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Table A Critical values of D in the Kolmogorov-Smirnov goodness-of-fit test of normality of
distributions, recomputed following Stephens (1974), for mean and variance estimated from the
sample data. When the maximum deviation D between cumulative relative frequencies and
cumulative normal distribution exceeds the critical value in the Table, one rejects H0: the sample
data were drawn from a normal population. Significance levels given at the top of the columns.

n α = 0.15      0.10      0.05      0.025     0.01

4 0.321 0.339 0.371 0.412 0.429
5 0.297 0.314 0.343 0.382 0.397
6 0.278 0.294 0.321 0.357 0.371
7 0.262 0.277 0.303 0.336 0.350
8 0.248 0.263 0.287 0.319 0.332
9 0.237 0.250 0.273 0.304 0.316

10 0.227 0.239 0.262 0.291 0.303
11 0.218 0.230 0.251 0.279 0.290
12 0.209 0.221 0.242 0.269 0.280
13 0.202 0.214 0.234 0.260 0.270
14 0.196 0.207 0.226 0.251 0.261
15 0.190 0.201 0.219 0.244 0.254
16 0.184 0.195 0.213 0.237 0.246
17 0.179 0.190 0.207 0.230 0.240
18 0.175 0.185 0.202 0.224 0.233
19 0.171 0.180 0.197 0.219 0.228
20 0.167 0.176 0.192 0.214 0.222
21 0.163 0.172 0.188 0.209 0.218
22 0.159 0.168 0.184 0.205 0.213
23 0.156 0.165 0.180 0.200 0.209
24 0.153 0.162 0.177 0.197 0.204
25 0.150 0.159 0.173 0.193 0.201
26 0.147 0.156 0.170 0.189 0.197
27 0.145 0.153 0.167 0.186 0.193
28 0.142 0.150 0.164 0.183 0.190
29 0.140 0.148 0.162 0.180 0.187
30 0.138 0.146 0.159 0.177 0.184
31 0.136 0.143 0.157 0.174 0.181
32 0.134 0.141 0.154 0.172 0.179
33 0.132 0.139 0.152 0.169 0.176
34 0.130 0.137 0.150 0.167 0.173
35 0.128 0.135 0.148 0.164 0.171
36 0.126 0.134 0.146 0.162 0.169
37 0.125 0.132 0.144 0.160 0.167
38 0.123 0.130 0.142 0.158 0.164
39 0.122 0.129 0.140 0.156 0.162
40 0.120 0.127 0.139 0.154 0.160
41 0.119 0.126 0.137 0.152 0.159
42 0.117 0.124 0.136 0.151 0.157
43 0.116 0.123 0.134 0.149 0.155
44 0.115 0.121 0.133 0.147 0.153
45 0.114 0.120 0.131 0.146 0.152
46 0.112 0.119 0.130 0.144 0.150
47 0.111 0.118 0.128 0.143 0.149
48 0.110 0.116 0.127 0.141 0.147
49 0.109 0.115 0.126 0.140 0.146
50 0.108 0.114 0.125 0.139 0.144

>50 0.775/S 0.819/S 0.895/S 0.955/S 1.035/S

where S n 0.01– 0.85 n⁄( )+=
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Table B Critical values of Kendall’s rank-order correlation coefficient τa for given numbers of objects n.
A value of  larger than or equal to the tabulated value is significant at level α shown in the
header of the Table (first row: one-tailed test; second row: two-tailed test). Derived from Table 1
of Best (1974), with permission of the author.

α (one-tailed) = 0.10 0.05 0.025 0.01 0.005

α (two-tailed) = 0.20 0.10      0.05      0.02 0.01

n

4 1.00000 1.00000 ––– ––– –––
5 0.80000 0.80000 1.00000 1.00000 –––
6 0.60000 0.73333 0.86667 0.86667 1.00000
7 0.52381 0.61905 0.71429 0.80952 0.90476
8 0.42857 0.57143 0.64286 0.71429 0.78571
9 0.38889 0.50000 0.55556 0.66667 0.72222

10 0.37778 0.46667 0.51111 0.60000 0.64444
11 0.34545 0.41818 0.49091 0.56364 0.60000
12 0.30303 0.39394 0.45455 0.54545 0.57576
13 0.30769 0.35897 0.43590 0.51282 0.56410
14 0.27473 0.36264 0.40659 0.47253 0.51648
15 0.27619 0.33333 0.39048 0.46667 0.50476
16 0.25000 0.31667 0.38333 0.43333 0.48333
17 0.25000 0.30882 0.36765 0.42647 0.47059
18 0.24183 0.29412 0.34641 0.41176 0.45098
19 0.22807 0.28655 0.33333 0.39181 0.43860
20 0.22105 0.27368 0.32632 0.37895 0.42105
21 0.20952 0.26667 0.31429 0.37143 0.40952
22 0.20346 0.26407 0.30736 0.35931 0.39394
23 0.20158 0.25692 0.29644 0.35178 0.39130
24 0.19565 0.24638 0.28986 0.34058 0.37681
25 0.19333 0.24000 0.28667 0.33333 0.36667
26 0.18769 0.23692 0.28000 0.32923 0.36000
27 0.17949 0.23077 0.27066 0.32194 0.35613
28 0.17989 0.22751 0.26455 0.31217 0.34392
29 0.17241 0.22167 0.26108 0.31034 0.33990
30 0.17241 0.21839 0.25517 0.30115 0.33333
31 0.16559 0.21290 0.25161 0.29462 0.32473
32 0.16532 0.20968 0.24597 0.29032 0.32258
33 0.16288 0.20455 0.24242 0.28788 0.31439
34 0.15865 0.20143 0.23708 0.27986 0.31194
35 0.15630 0.19664 0.23361 0.27731 0.30420
36 0.15238 0.19365 0.23175 0.27302 0.30159
37 0.15015 0.19219 0.22823 0.26727 0.29730
38 0.14936 0.18919 0.22333 0.26316 0.29161
39 0.14710 0.18758 0.21997 0.26046 0.28745
40 0.14359 0.18462 0.21795 0.25641 0.28462
41 0.14146 0.18049 0.21463 0.25366 0.28049
42 0.14053 0.17770 0.21254 0.24971 0.27526
43 0.13843 0.17608 0.20930 0.24695 0.27353
44 0.13742 0.17336 0.20719 0.24313 0.26850
45 0.13535 0.17172 0.20404 0.24040 0.26667
46 0.13237 0.16908 0.20193 0.23865 0.26377
47 0.13228 0.16744 0.19889 0.23589 0.25994
48 0.12943 0.16667 0.19681 0.23227 0.25709
49 0.12925 0.16327 0.19558 0.22959 0.25340
50 0.12653 0.16245 0.19184 0.22776 0.25061

τa
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Table C Species diversity M(n') as a function of the number of species n', according to the broken stick
model. This Table may be used (1) to estimate the broken stick diversity, M, corresponding to
the observed number of species n = n', or (2) to find the number of species n' predicted by the
model, for a computed diversity H(n) = M(n'). From Lloyd & Ghelardi (1964) by permission of
Blackwell Scientific Publications, Oxford. See Subsection 6.5.2 for explanations.

n' M(n') n' M(n') n' M(n') n' M(n')

1 0.0000 51 5.0941 102 6.0792 205 7.0783
2 0.8113 52 5.1215 104 6.1069 210 7.1128
3 1.2997 53 5.1485 106 6.1341 215 7.1466
4 1.6556 54 5.1749 108 6.1608 220 7.1796
5 1.9374 55 5.2009 110 6.1870 225 7.2118
6 2.1712 56 5.2264 112 6.2128 230 7.2434
7 2.3714 57 5.2515 114 6.2380 235 7.2743
8 2.5465 58 5.2761 116 6.2629 240 7.3045
9 2.7022 59 5.3004 118 6.2873 245 7.3341

10 2.8425 60 5.3242 120 6.3113 250 7.3631
11 2.9701 61 5.3476 122 6.3350 255 7.3915
12 3.0872 62 5.3707 124 6.3582 260 7.4194
13 3.1954 63 5.3934 126 6.3811 265 7.4468
14 3.2960 64 5.4157 128 6.4036 270 7.4736
15 3.3899 65 5.4378 130 6.4258 275 7.5000
16 3.4780 66 5.4594 132 6.4476 280 7.5259
17 3.5611 67 5.4808 134 6.4691 285 7.5513
18 3.6395 68 5.5018 136 6.4903 290 7.5763
19 3.7139 69 5.5226 138 6.5112 295 7.6008
20 3.7846 70 5.5430 140 6.5318 300 7.6250
21 3.8520 71 5.5632 142 6.5521 310 7.6721
22 3.9163 72 5.5830 144 6.5721 320 7.7177
23 3.9779 73 5.6027 146 6.5919 330 7.7620
24 4.0369 74 5.6220 148 6.6114 340 7.8049
25 4.0937 75 5.6411 150 6.6306 350 7.8465
26 4.1482 76 5.6599 152 6.6495 360 7.8870
27 4.2008 77 5.6785 154 6.6683 370 7.9264
28 4.2515 78 5.6969 156 6.6867 380 7.9648
29 4.3004 79 5.7150 158 6.7050 390 8.0022
30 4.3478 80 5.7329 160 6.7230 400 8.0386
31 4.3936 81 5.7506 162 6.7408 410 8.0741
32 4.4381 82 5.7681 164 6.7584 420 8.1087
33 4.4812 83 5.7853 166 6.7757 430 8.1426
34 4.5230 84 5.8024 168 6.7929 440 8.1757
35 4.5637 85 5.8192 170 6.8099 450 8.2080
36 4.6032 86 5.8359 172 6.8266 460 8.2396
37 4.6417 87 5.8524 174 6.8432 470 8.2706
38 4.6792 88 5.8687 176 6.8596 480 8.3009
39 4.7157 89 5.8848 178 6.8758 490 8.3305
40 4.7513 90 5.9007 180 6.8918 500 8.3596
41 4.7861 91 5.9164 182 6.9076 550 8.4968
42 4.8200 92 5.9320 184 6.9233 600 8.6220
43 4.8532 93 5.9474 186 6.9388 650 8.7373
44 4.8856 94 5.9627 188 6.9541 700 8.8440
45 4.9173 95 5.9778 190 6.9693 750 8.9434
46 4.9483 96 5.9927 192 6.9843 800 9.0363
47 4.9787 97 6.0075 194 6.9992 850 9.1236
48 5.0084 98 6.0221 196 7.0139 900 9.2060
49 5.0375 99 6.0366 198 7.0284 950 9.2839
50 5.0661 100 6.0510 200 7.0429 1 000 9.3578
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Table D Percentage of the total variance of a principal component analysis associated with the successive
eigenvalues λi , according to the broken stick model, for p = 2 to 20 principal axes. See
Subsection 9.1.6 and Table 9.4. Further values may be computed using eq. 6.49. From Frontier
(1976), with permission of the author and Elsevier Biomedical Press, Amsterdam.

p = 2 3 4 5 6 7 8 9 10

λ1 75.00 61.11 52.08 45.67 40.83 37.04 33.97 31.43 29.29

λ2 25.00 27.78 27.08 25.67 24.17 22.76 21.47 20.32 19.29

λ3 11.11 14.58 15.67 15.83 15.61 15.22 14.77 14.29

λ4 6.25 9.00 10.68 10.85 11.06 11.06 10.96

λ5 4.00 6.11 7.28 7.93 8.28 8.46

λ6 2.78 4.42 5.43 6.06 6.46

λ7 2.04 3.35 4.21 4.79

λ8 1.56 2.62 3.36

λ9 1.23 2.11

λ10 1.00

p = 11 12 13 14 15 16 17 18 19 20

λ1 27.45 25.86 24.46 23.23 22.12 21.13 20.23 19.42 18.67 17.99

λ2 18.36 17.53 16.77 16.08 15.45 14.88 14.35 13.86 13.41 12.99

λ3 13.82 13.36 12.92 12.51 12.12 11.75 11.41 11.08 10.78 10.49

λ4 10.79 10.58 10.36 10.13 9.90 9.67 9.45 9.23 9.02 8.82

λ5 8.51 8.50 8.44 8.34 8.23 8.11 7.98 7.84 7.71 7.57

λ6 6.70 6.83 6.90 6.92 6.90 6.86 6.80 6.73 6.65 6.57

λ7 5.18 5.44 5.62 5.73 5.79 5.82 5.82 5.81 5.78 5.74

λ8 3.88 4.25 4.52 4.71 4.84 4.92 4.98 5.01 5.03 5.02

λ9 2.75 3.21 3.56 3.81 4.00 4.14 4.25 4.32 4.37 4.40

λ10 1.74 2.29 2.70 3.02 3.26 3.45 3.59 3.70 3.78 3.84

λ11 0.83 1.45 1.93 2.30 2.60 2.82 3.00 3.15 3.26 3.34

λ12 0.69 1.23 1.65 1.99 2.26 2.47 2.64 2.78 2.89

λ13 0.59 1.06 1.43 1.73 1.98 2.18 2.34 2.47

λ14 0.51 0.92 1.25 1.53 1.75 1.93 2.09

λ15 0.44 0.81 1.11 1.35 1.56 1.73

λ16 0.39 0.71 0.98 1.21 1.40

λ17 0.35 0.64 0.88 1.09

λ18 0.31 0.57 0.79

λ19 0.28 0.51

λ20 0.25
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495, 557, 576, 578, 579-594, 766, 771
– regression a.: see regression
– replication a., 380
– S-mode a., 248
– scaling a., 112
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arch effect, 465-472
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– measure of a., 247, 252
– biological a.: see species (biological 

associations)
autocorrelation
– in time series, 653-661
– spatial a., 8-16, 778
– tests of significance in the presence of a.: see

test (statistical)
autocorrelogram: see correlogram
autocovariance, 653-661
axis
– major a., principal a., 391
– major, minor a. of a concentration ellipse, 152
– time, 637; see also data (time) series

bacteria, 504, 524, 529, 550, 631, 767, 768, 771, 
774, 780-781

barnacles, 440, 726
beetles, 370
Behrens-Fisher problem, 20
benthos, 230, 373, 441, 692; see also molluscs
Bergmann’s law, 498
binary question, 211, 213
bioassay, 7
biogeography, 572
biplot (see also joint plot)
– correlation b., 398, 403, 404, 587
– distance b., 398, 403, 586
– in PCA, 403-406
– in RDA, 585-587
birds, 222, 668, 769, 775
bit, 215
Bonferroni correction: see multiple testing
bootstrap, 26, 410, 726
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boundary
– definition, 762
– detection of b, 713, 760-763
Box-Cox method, 43
broken stick model, 244, 410, 836, 837

calibration, 604
canonical form, 575
canonical variate, 624
causal model, 167, 168
– developmental sequence, 167
– double cause, 167
– double effect, 167
– intervening sequence, 167
– spurious correlation, 167
causal modelling
– on resemblance matrices, 496, 559, 779-785
– using correlations, 169, 496, 497; see also

analysis (path a.)
– using partial canonical analysis, 769-779
causality, 169
central limit theorem, 145
centring, 38, 322, 328
cetaceans, 107
chain, 311
– of primary (external) connections, 312, 315, 

321, 483
chaos theory, 2
characteristic equation, 83
characteristic polynomial, 84
characteristic root, 81; see eigenvalue
characteristic value, 112
characteristic vector, 81; see eigenvector
chart, 106, 107
chess moves, 715
chi-square (X2): see statistic
chronobiology, 641
classification, 305, 315; see also clustering
Classification Societies, 306
cluster, 311
– isolation, 375
– representation, 381-383
– validation, 378-380, 698
clustering, 5, 16, 17, 188, 190, 207, 247, 251, 

305, 481, 482, 489, 491, 644; see also
partitioning

– absolute resemblance linkage, 318
– association analysis, 343-344
– average clustering methods, 319, 384
– beta-flexible c., 336
– chronological c., 696-701
– Clifford & Goodall: see clustering 

(probabilistic methods)
– combinatorial c. methods, 333, 334

C

clustering (continued)
– combined with an ordination, 482-486
– complete linkage c., 316-317, 335, 384
– descriptive, 307
– dissimilarity analysis, 346
– division in ordination space, 346-347, 385
– Edwards & Cavalli-Sforza, 345
– flexible c., 335-337, 384
– furthest neighbour sorting, 316
– general agglomerative c. model, 333-335
– hierarchical agglomerative c. methods, 316-

341, 384
– hierarchical c., 487
– hierarchical divisive c., 343-349, 385
– hierarchical methods, 315
– information analysis, 336-341, 384
– integer link linkage c., 318
– intermediate linkage c., 318, 384
– monothetic c. methods, 314, 343-345, 385
– nearest neighbour c., 308
– non-hierarchical complete linkage c., 358-

361, 385
– non-hierarchical c. methods, 315
– non-probabilistic c. methods, 315
– overlapping c. methods, 359
– polythetic c. methods, 314, 345-346, 385
– probabilistic c. methods, 315, 361-368, 385
– proportional link linkage c., 318
– relative resemblance linkage c., 318
– single linkage c., 308-312, 316, 335, 384, 482, 

484
– spatial c., 756
– statistics, 374-378
– synoptic c., 307
– unweighted arithmetic average c. (UPGMA), 

319-321, 335, 384
– unweighted centroid c. (UPGMC), 319, 322-

324, 335, 384
– very large data sets, 315
– Ward’s minimum variance c., 329, 335, 384
– weighted arithmetic average c. (WPGMA), 

319, 321-322, 335, 384
– weighted centroid c. (WPGMC), 319, 324-328, 

335, 384
– with spatial contiguity constraint, 713, 751, 

756-760
co-spectrum, 248
coding, 33-47; see also normalization, 

transformation of variables
coefficient; see also statistic
– association c., 188, 189., 251-253
– asymmetric uncertainty c., 221
– asymmetrical binary c., 256-258
– asymmetrical c., 253, 299
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coefficient (continued)
– asymmetrical quantitative c., 264-268
– average distance (D2), 278, 300
– binary c., 254-256
– Bray-Curtis (D14), 265, 287, 436, 439, 449, 

467
– Canberra metric (D10), 282, 287, 296, 299
– chi-square c. (X2): see statistic (chi-square s.)
– chi-square distance (D16), 285, 292, 299, 301, 

388, 439, 440, 451, 460, 461, 463, 466, 578
– chi-square metric (D15), 268, 276, 283-284, 

296, 298, 299, 301
– chi-square similarity (S21), 268, 299, 301
– choice of a c., 295-301
– chord distance (D3), 279, 299
– city-block metric (D7), 282
– coherence c., 220
– cohesion index, 374
– coincidence index (S8), 257, 294
– connectedness: see connectedness
– contingency c., 188, 221
– correlation c.: see correlation
– Czekanowski, 265, 282
– deviant index, 346
– dissimilarity, 274
– distance c., 252, 274-288
– drag c., 106
– efficiency c., 341
– Estabrook & Rogers (S16), 260-264, 276, 300
– Euclidean distance (D1), 250, 277, 281, 285, 

298, 300, 306, 388, 395, 426, 428, 439, 446, 
578

– Fager & McGowan (S24), 294
– Faith (S26), 258, 276
– Geary’s spatial autocorrelation c., 715
– geodesic metric (D4), 279, 280, 299
– Goodall probabilistic c. (S23), 269-273, 276, 

293, 299, 301
– Gower (S15), 258-260, 266, 276, 300
– Gower (S19), 266-267, 269, 276, 296, 299, 442
– Gower distance (for matrix comparison), 376, 

377
– great-circle distance, 715
– Hamann c., 256
– Hellinger distance (D17), 286, 298, 299, 301
– index of association (D9), 282, 299
– information c., 188, 189
– Jaccard c. of community (S7), 256, 264, 275, 

294, 299
– Krylov (S25), 295
– Kulczynski (S12), 257, 275, 299
– Kulczynski (S18), 257, 266, 276, 287, 299, 449
– Lance & Williams information statistic, 269

coefficient (continued)
– Legendre & Chodorowski (S20), 267, 276, 296, 

299
– Mahalanobis generalized distance (D5), 280, 

281, 300
– Manhattan metric (D7), 282, 300, 344
– mean character difference (D8), 282, 299, 300
– Minkowski metric (D6), 281, 344, 446
– Moran’s spatial autocorrelation c., 715
– nonmetric c. (D13), 286
– Ochiai (S14), 257, 276
– Odum c. (D14), 265, 287, 436, 439, 467
– of (multiple) determination c. (R2), 491, 499, 

503, 533
– of alienation, 548
– of community: see coefficient (Jaccard c.)
– of concordance (Kendall W), 188, 195, 203-

205, 490, 491
– of dependence, 56, 189, 252, 288-295
– of divergence (D11), 283, 296, 299
– of light attenuation, 102
– of multiple determination (R2), 158, 164, 165
– of nondetermination, 164, 504, 548
– of partial determination, 165, 166
– of racial likeness (D12), 283, 300
– of species dispersal direction, 764
– path c., 533, 547
– Pearson contingency c., 221
– Pearson phi, 256, 295
– percentage difference, 287, 299
– probabilistic c., 268-274
– probabilistic chi-square similarity (S22), 269, 

299
– probabilistic similarity measure of association 

(S27), 274
– properties of distance c., 275
– Q-mode association c., 189
– quantitative c., 258-264
– R-mode association c., 189
– Rajski’s metric, 220
– Rand index, 376, 491, 492
– Raup & Crick, 273
– reciprocal information c., 301
– redundancy c., 615
– regression c.: see regression
– Rogers & Tanimoto (S2), 255, 257, 275
– Russell & Rao (S11), 257, 275
– similarity c., 252, 253-274, 303
– simple matching c. (S1), 255, 258, 275, 300, 

413
– singularity index, 346
– Sørensen coefficient (S8), 256, 266, 275, 286
– spatial autocorrelation c., 715, 719
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coefficient (continued)
– Steinhaus (S17), 265, 276, 287, 296, 299, 439, 

449
– symmetric uncertainty, c. 221., 301
– symmetrical binary c., 254-256
– symmetrical c., 253, 300
– symmetrical quantitative c., 258-264
– taxicab metric (D7), 282
– transforming S into D, or D into S, 252, 430
– Tschuproff contingency c., 221
– types of c., 296
– uncertainty c., 209
– Whittaker’s index of association (D9), 282
– Yule, 256, 298
coenoclines, coenoplanes, 450, 471
coherence, 248
collinearity, 518
comparison
– indirect, 486, 488, 491, 494, 575
– direct, 486, 488, 491, 494, 575
competitive exclusion principle, 463
computer programs and packages, 26, 302, 704, 

785
– 3WAYPACK, 251
– 4THCORNER, 572
– ADE-4, 579
– ALSCAL, 188, 190
– BMDP, 27
– C2D, 784
– CANOCO, 784
– CLUSTAN, 302
– CORALS, 188
– CRIMINALS, 188
– DECODA, 445
– DECORANA, 468
– DISTPCOA, 436
– EQS, 480
– FACTALS, 188,191
– for clustering, 302, 304
– GBAS, 784
– GEMSCAL, 188, 190
– GEODAT, 784
– GEO-EAS, 784
– GEOSTAT, 784
– GS+, 784
– GSLIB, 784
– HOMALS, 188, 190
– IMSL, 26
– INDVAL, 369
– Interactive Time Series Modelling, 705
– ISATIS, 784
– JMP, 302
– Kellogg’s, 784
– LISREL, 480

computer programs and packages (continued)
– MACGRIDZO, 784
– MANOVALS, 188, 189
– MORALS, 188
– NAG, 26
– NTSYS-PC, 784
– Numerical recipes routines, 94
– ODRPACK, 517
– ordination analysis programs, 390
– OVERALS, 188
– PASSTEC, 705
– PATHALS, 188
– PATN, 302
– PC-ORD, 445
– PRIMER, 445
– PRINCALS, 188
– PRINCIPALS, 188, 190
– RDACCA, 579
– SAAP, 784
– SAS, 27
– SASP, 784
– SPSS, 27
– STAT!, 784
– STATISTICA, 302
– SURFER, 784
– SYSTAT, 302
– The R Package, 784
– The Unit Calculator, 99
– TWINSPAN, 347
– UNIMAP, 784
– VARIOWIN, 784
concentration (Simpson), 242
concentration ellipse, 151, 152
concordance, coefficient of: see coefficient
conditional distribution, 173, 183
conditional entropy: see entropy
conditional probability distribution: see

distribution
connectedness, 311, 318, 374
connection network, 752-756
consensus (index, tree), 380, 489
conservation biology, 370
contiguity constraint, 693
– spatial c. c., 713, 751-760
– temporal c. c., 696
contingency table analysis, 207, 451, 491, 492
– ANOVA hypothesis in c. t. a., 208
– correlation hypothesis in c. t. a., 208
– correspondence in c. t. a., 188, 189, 190, 230-

235
– cross-contingency, 663
– expected frequencies in c. t. a., 217, 224
– hierarchical models in multiway c. t. a., 223-

224, 226
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contingency table analysis (continued)
– multiway c. t. a., 188, 189, 222-230, 490, 491
– null hypothesis in c. t. a., 216
– test of hypothesis Oij = Eij, 232
– two-way c. t. a., 190, 193, 216-222
cophenetic
– correlation, 331, 375-377
– distance, 312
– matrix, 312-313, 487
– similarity, 312
coral reefs, 112, 566, 588-590
correction for multiple testing: see multiple 

testing
correlation, 13, 15, 17, 230, 293, 490, 499, 579
– among objects (Q-mode), 411
– causal modelling using c.: see causal modelling
– cophenetic c., 331, 375-377
– cross-correlation, 248, 644, 645, 661-665, 683, 

733
– false c., 769
– general c. coefficient, 295
– interpretation of c. coefficients, 166-168
– Kendall c. coefficient (τ), 188, 195, 198-203, 

290, 301, 376, 377, 490, 491, 554, 646
– Kendall cross-correlation, 663
– lag c., 661; see also correlation (cross-

correlation)
– matrix, 18, 139-144
– multiple c. coefficient (R2), 158-161, 164, 188, 

344, 490
– nonparametric c. coefficient, 290, 293
– partial c. coefficient (nonparametric), 173, 188, 

202, 490, 491
– partial c. coefficient (parametric), 161-164, 

177, 188, 490, 491, 663
– Pearson c. coefficient (r), 10, 12, 21, 22-24, 

140, 144, 148, 188, 289, 292, 293, 301, 376, 
377, 399, 490, 491, 503, 533, 554

– point c. coefficient, 295, 344
– principal components of a c. matrix, 406-409
– properties of partial c. coefficient, 166
– properties of Pearson r, 145
– Q-mode c., 289, 290
– rank c. coefficient, 194-203
– serial c., 9
– spatial c., 733
– Spearman c. coefficient (r or ρ), 188, 195-198, 

202, 290, 301, 376, 412, 490, 491, 554
– species-environment c. in RDA, 584
– spurious c., 37, 167
correlogram, 9
– all-directional c., 722
– cross-correlogram, 663, 736
– directional c., 722, 731

correlogram (continued)
– in time series, 645, 653-665
– Mantel (multivariate) c., 645, 665, 688, 713, 

736-738
– spatial c., 645, 713, 714-728
– spline c., 726
covariance, 15, 131, 135, 188, 289, 292, 293, 

301, 397, 399
– cross-covariance, 661-665, 683
– multivariate covariogram, 759
– spatial, 733
crabs, 556-557, 668
crayfish, 668
cross-variance, 248

Darwin (Charles), 499
data (time) series, 6, 637-705
– binary d. s., 645, 688, 691
– components of d. s., 641
– detrended d. s., 648
– discontinuities in d. s.: see discontinuities 

(detection of)
– equispaced data, 647
– Eulerian approach, 638
– Lagrangian approach, 638
– multidimensional d. s., 687, 691, 704
– noise in d. s., 641, 642
– periodic variability in d. s., 641-643, 653
– qualitative d. s., 645, 658, 663, 665, 670-673, 

688
– residual d. s., 648
– semiquantitative d. s., 663, 665, 688, 691
– short d. s., 673, 676, 690
– trend in d. s.: see trend
– with measurement error, 690
data box, 248, 249
decit, 215
degrees of freedom, 13, 14
– in contingency table analysis, 218, 224, 225
Delaunay triangulation, 746, 752-753, 756, 761, 

768, 783
dendrites, 312, 315
dendrogram, 304, 309, 310, 312, 331, 381, 382
– comparison of, 488
dependence (see also independence)
– linear, 46
descriptor, 27-33, 52-53, 56, 303; see also

variable
– binary d., 31, 388, 412
– centred d. in PCA, 403
– meristic d., 30
– mixed precision levels, 388, 425
– number of d., 138
– of mixed precision, 187, 188

D
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descriptor (continued)
– presence-absence d., 31, 417
– qualitative d., 30, 185, 186-191
– quantitative d., 29, 186-191, 388
– scale of d.: see scale
– semiquantitative d., 30, 186-191, 388
– standardized d. in PCA, 409
– state, 28
– with mixed levels of precision, 229
deshrinking, 604
determinant, 68-71
– properties of the d., 70
determinantal equation, 83
deterministic relationship, 1
detrending, 12, 465, 643, 646, 727
– controversy about d., 471
diagram
– path d., 546
– quantitative-rank d., 188, 189, 190
– rank d., 188
– rank-rank d., 189, 190
– scatter d., 188, 189, 190
– Shepard d., 389, 390, 409, 446, 449, 450
– Shepard-like d., 331, 376-377, 389
– trellis d., 371
dimensions (physical), 98-103
– of animals, 107
dimensional
– analysis, 3, 97-129
– constant, 99, 103
– homogeneity principle, 103
– variable, 99, 103, 112
dimensionless
– complete set of d. products, 118-126
– constant, 101, 114
– graph, 106
– product, 104
– variable, 101, 112
direction cosine, 157
Dirichlet tessellation, 756
discontinuities (detection of), 644
– chronological clustering, 696-701
– Hawkins & Merriam segmentation method, 

693
– Ibanez segmentation method, 696
– in multivariate series, 691-701
– McCoy et al. segmentation method, 696
– Webster segmentation method, 644, 693-696
discrimination, 482, 490
dispersal routes, 763-765
distance (dissimilarity), 55; see also coefficient
– properties of d. coefficients, 275
– square-root transformation of d., 257
– ultrametric, 487

distribution
– bivariate normal d., 148
– conditional d., 173
– conditional probability d., 231
– multinormal conditional d., 173-178
– multinormal d., 144-152
– normal d., 196
– random d., 8
– standard normal (z), 236
– uniform d., 8
– univariate normal d., 146
diversity (species), 188, 189, 235-245, 440, 836
– hierarchical components of d., 241
– indices, 238-242
– numbers (Hill), 239
double-zero problem, 253, 289, 291, 413, 451
drag
– force, 104, 118
– coefficient, 106

ecological interpretation, 486; see also structure
ecological resemblance, 247-302; see also

coefficient
edge (of a graph), 309
eigenanalysis, 83, 454, 575
eigenvalue, 80-90, 154, 391, 837
– multiple e., 91
– negative e., 425, 432-438
– properties of e., 90-93
eigenvector, 80-90, 153, 392-394
– normalized e., 78, 86
– properties of e., 90-93
entropy, 209
– Brillouin H, 241
– conditional e., 219
– generalized e. formula, 239
– negative e., 210
– Shannon H, 240
– Simpson concentration, 242
– unconditional e., 231
equality of variances: see homogeneity of 

variances
equation
– characteristic e., 83
– determinantal e., 83
– Einstein’s e., 498
– Gaussian logistic e., 541
– logistic e., 536
– Taylor e., 537
equilibrium
– circle of descriptors, 402
– contribution of a descriptor, 399, 408
– projection, 402
equitability: see evenness

E
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Euclidean property, 275; see also space 
(Euclidean s.)

Euclidean representation, 424, 432, 435, 437; see
also space (Euclidean s.)

evenness, 243-245
– Hurlbert e., 243
– index of functional e., 244
– Pielou e., 243
evolution (biological), 60
ex aequo: see tied values
expansion by minors, 69
experiment
– field e., 7
– manipulative e., 7, 131, 495, 707
– mensurative e., 131, 495, 707
extent (element of sampling design), 708

filtration, filter (in time series), 647-652
fish association, 359
fish growth, 115, 125
fish, 171, 230, 237, 472, 572, 588-590, 602, 775
Fisher’s irises, 618
fisheries, 230
Fourier
– fast F. transform (FFT), 680
– series, 674-675
– transform, 680
Freeman-Tukey deviate, 233, 234
frequency (in time series), 638
– fundamental f., 638
– harmonic f., 638
– Nyquist f., 639
Friedman chi-square statistic, 204
function
– classification f., 629
– discriminant f., 281, 618, 624, 626, 630-631
– identification f., 494, 618, 624, 626-629
– objective f., 329, 350, 447
– structure f., 712-738
fundamental niche, 3, 356, 463, 600
fungi, 550

game theory, 2
Gauss-Jordan method, 76
geostatistics, 16, 32, 50, 708, 712, 714, 725, 728, 

729, 731, 734, 749, 750
gradient (ecological), 416, 438, 439, 470, 479; see

also structure (spatial)
grain size (element of sampling design), 708
Gram-Schmidt orthogonalization, 527
graph
– connected subgraph, 309-311, 381
– Gabriel g., 752, 753-755, 783
– relative neighbourhood g., 752, 754-755

F

G

graph (continued)
– theory, 311
– undirected g., 311
growth
– allometric, 505
– isometric, 505, 506
Guttman effect, 466; see also arch effect

harmonic, 658; see also frequency, period, 
wavelength, wavenumber

hartley, 215
heterogeneity of variances, heteroscedasticity, 39, 

40
heterogeneity (ecological), 16, 710
– measured h., 711
– functional h., 711
Holm correction, 233; see also multiple testing
homogeneity of variances, homoscedasticity, 19, 

40, 281
horseshoe, 466; see also arch effect
human communication, 215
hypothesis (statistical)
– alternative h., 19
– null h., 17

icicle plot, 304, 381
independence, 10
– linear i., 10, 155
– of observations (hypothesis of), 19, 20, 134
independent
– observations, 9, 10, 20
– descriptors, 10, 28
– samples, 10
– variable of a model, 10
index: see coefficient
indicator value: see species (indicator value)
inference, 6
– design-based, randomization-based, 6, 9
– model-based, superpopulation, 6, 9, 12
inflated data table, 463
information, 210
– shared by two descriptors (B), 219, 670
– theory, 3
insects, 682
intercept, 500
– confidence limits of, 512
invertebrates, 775
isotropy, 721

jackknife, 26, 245
joint plot, 455, 459, 461, 465, 466; see also biplot

K-means, 313, 314, 315, 332, 349-355, 385
Kaiser-Guttman criterion, 409

H

I

J

K
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kriging, 749-751, 766, 773
Kronecker delta, 259, 260, 715
kurtosis, 39, 178

lag (element of sampling design), 638, 708
Lagrangian multiplier, 81, 153
language
– English, 215
– French, 215, 216
– redundancy in l., 215
latent root, 81; see eigenvalue
latent vector, 81; see eigenvector
least squares
– method, 79
– ordinary l. s. criterion (OLS), 501
– principle of l. s., 501
limnology, 603
linear algebra, 54; see also matrix algebra
linear equations (system of), 78
link (in clustering), 309, 311
lizards, 230
lobsters, 556-557, 704
local minimum, 350, 351, 446; see also overall 

minimum
Loch Ness Monster, 212

Mahalanobis generalized distance: see coefficient
mammals, 109, 222, 230, 668; see also cetaceans
map, 714, 738-751; see also kriging
– constrained ordination m., 765-769
– interpolated m., 713, 746-751
– inverse-distance weighting m., 747-748
– multivariate trend-surface m., 713
– trend-surface m., 713, 739-746
– unconstrained ordination m., 765-769
– weighted polynomial fitting m., 748
marine benthos, 230
matrix, 54
– addition, 63-68
– adjugate (adjoint) m., 74
– algebra, 2, 51-95
– association m., 4, 55-56, 135, 435
– asymmetric m.: see matrix (non-symmetric)
– canonical form of a m., 81
– classification m., 625
– cofactor, 69
– column m., 54
– comparison, 376, 489, 491, 551-564
– conformable m., 66
– cophenetic m.: see cophenetic (matrix)
– correlation m.: see correlation
– covariance m., 136
– data m., 52-55
– degenerate m., 426

L

M

matrix (continued)
– design m., 555
– determinant of a m.: see determinant
– diagonal m., 58
– dimensions of a m., 54
– dispersion m. (S), 135-138, 391, 407
– format of a m., 54
– Hadamard product of two m., 757
– identity m.: see matrix (unit)
– ill-conditioned m., 95
– indefinite m., 93
– inflated data m., 595
– inverse m. (properties of), 77
– inversion, 73-80
– m. correlation, 375, 487, 488, 492
– minor of a m., 69
– model m., 555
– model m., 736
– multiplication, 63-68
– negative semidefinite m., 93
– non-symmetric m., 60, 92, 251, 372, 390
– nonsingular m., 75
– null (zero) m., 59
– of diagonal elements of ΣΣΣΣ, 143
– of eigenvalues, 81
– order (dimensions, format) of a m., 54
– orthogonal m., 65
– orthonormal m., 78, 155, 396
– partial similarity m., 263-264
– pattern m., 555
– positive definite m., 93
– positive semidefinite m., 93, 137
– postmultiplication, 66
– power of a m., 91
– premultiplication, 66
– quadratic form of a m., 93, 137
– rank of a m., 72-73, 91, 138
– rearrangement, 371
– row m., 54
– scalar m., 58
– seriated similarity m., 383
– singular m., 75, 95, 123
– skew-symmetric m., 60, 251
– square m., 54, 56-60
– symmetric m., 56, 60, 93, 251
– three-dimensional ecological data m., 278
– trace of a m., 58
– transform m., 90
– transpose of a m., 59
– triangular m., 59
– unit m., 58
– zero m.: see matrix (null m.)
mean, 185
median, 185
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meiofauna, 373
metric
– distance, 275, 276-286, 425, 432
– properties of m. distance, 274
– space, 251, 274, 277
Michaelis-Menten equation, 111
missing data, 47-50, 259, 432
– in time series, 647
mites, 371, 771
model, 106
– all-pole m., 689, 702
– application m., xiii
– autoregressive m. (AR), 689, 702
– autoregressive-integrated-moving average m. 

(ARIMA)
– autoregressive-moving average m. (ARMA), 

703
– backward elimination of terms in a m., 227
– biotic control m., 707, 778
– broken stick m.: see broken stick model
– correlative m., xiii, 493, 495
– environmental control m., 707, 778
– forecasting m., xiii, 493, 495, 498, 546, 644-

645, 702, 704
– forward selection of terms in a m., 227
– Gaussian logistic m., 541
– hierarchical m., 223
– historical dynamics, 707, 778
– inverse-squared-distance diffusion m., 742-743
– linear m., 500, 501
– log-linear m., 188, 189, 223, 496, 497, 538
– logit m., 188, 496, 497
– mathematical m., 126, 497
– moving average m. (MA), 702
– numerical m., xiii
– path m., 477
– permutational m., 569-571
– physical, 126
– polynomial m., 526
– predictive m., xiii, 493, 495, 498, 546, 704
– saturated m., 223
– simulation m. (types of), xiii
– small-scale, 126
– testing, 106
– theoretical m., xiii
– variogram m., 730-731
molluscs, 405, 440, 668, 735, 745
monomial, 526, 527
monotonic relationship, 186
Monte Carlo method, 26
moving averages, 542, 644, 649
– weighted m. a., 649
– repeated m. a., 649-651

multidimensional
– data, 3
– qualitative data, 207-245
– quantitative data, 131-184
– semiquantitative data, 185-205
– variate, 132
multiple testing, 18, 131
– Bonferroni correction, 18, 233, 671-672, 721, 

782
– Hochberg correction, 18
– Holm correction, 18, 574, 721
– progressive Bonferroni correction, 671-672, 

721, 722-723, 727, 733, 736, 737, 738
multiplicity, 91
multivariate, 132; see also multidimensional

nat, 215
negative matches, 253
niche theory, 253
node (of a graph), 309
non-Euclideanarity, 425, 432, 433
nonmetric distance, 432
– properties of n. d., 275
nonparametric statistics, 185-205; see also

parametric
normal distribution: see distribution
normal probability plot, 181, 182
normality assumption, 19
normalization, 39-45
– angular transformation, 42
– arcsine transformation, 42
– Box-Cox method, 43
– hyperbolic transformation, 42
– logarithmic transformation, 40, 43
– of a distance coefficient, 252
– omnibus procedure, 44
– square root transformation, 40
– Taylor’s power law, 44
NP-hard, NP-complete problem, 351, 352
nugget effect, 725, 729-732
number
– Froude n., 104
– Newton n., 104, 121
– Reynolds n., 104, 121, 127
numerical ecology, xii
numerical taxonomy, xiii, 306
nunatak hypothesis, 535 

object, 28, 52-53, 55, 303
– number of o., 138, 411
– supplementary o. in PCA, 422
observation: see object
Ockham’s razor, 520, 526, 536
ordered comparison case series (OCCAS), 297

N

O
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ordination, 5, 16, 17, 188, 190, 247, 306, 307, 
383, 387-480, 481, 482, 487, 491, 577, 692, 
713, 766

– constrained o.: see analysis (canonical a.); see
also map (constrained ordination m.)

overall minimum, 446; see also local minimum

Π (Pi) theorem, 105
palaeoecology, 273, 603-604, 775
parameter, 136, 146
parametric, nonparametric, 3
partial similarity, 259, 261-264, 267, 269
partition, 305, 313; see also K-means
– fuzzy p., 305
patches (detection of), 751-760; see also structure 

(spatial)
period, 638, 644
– fundamental, 638
– harmonic, 638
– characteristic, 643
periodic phenomena, 638
periodic variability, 653
periodogram, 645, 665-679
– contingency p., 645, 670-673
– Dutilleul modified p., 676-678
– Schuster p., 673-676
– two-dimensional Schuster p., 714
– Whittaker and Robinson, 665-669
periphyton, 775
permutation
– exact or complete p. test, 24
– models, 569-571, 607-612
– number of permutations, 25
– of raw data, 607, 609, 611, 612
– of residuals, 608-612
– restricted p., 25, 609, 612
– sampled p. test, 25
– test, 20-26, 273, 489, 508, 511, 552, 554, 558, 

559, 561, 564, 567, 697, 763
phytoplankton, 33, 102, 111, 113, 124, 225, 226, 

229, 234, 336, 357, 361, 366, 504, 546, 637, 
658, 659, 663, 664, 673, 676, 679, 682, 685, 
686, 691, 780

phytosociology, 372
pivotal condensation method, 71
pixel, 709
plant ecology, 550
pollution, 245
polygon; see also Dirichlet tessellation
– Voronoï, 746, 756
– influence, 756
– Thiessen, 756
ponds, 308, 317, 320, 323, 325-327, 330, 332, 

338, 340

P

population genetics, 780
Prim network, 312
principal axis, 152-158
principal component, 391, 394-395, 425; see also

analysis (principal component a.)
– meaningful components, 409-411
– misuses of p. c., 411-413
– principal-component axis, 391
principle
– of least squares, 501
– of maximum likelihood (ML), 539
– of parsimony, 520, 526
probability
– frequency theory of, 1
– distribution, 1
– of interspecific encounter, 242
process, 5, 637
– physical p., 8
– stochastic p., 637
product
– cross p., 64
– dot p., 64
– inner p., 64
– postmultiplication, 68
– premultiplication, 68
– properties of matrix p., 66
– scalar p., 64
– vector p., 64
prototype, 106, 127
protozoa, 631, 775

Q analysis: see analysis
quantification, 34, 597

R analysis: see analysis
R2-like ratio in PCA and PCoA, 395, 437-438
randomization: see permutation
range of a variable, 38, 185, 235, 729; see also

transformation (ranging)
rank statistic, 185-186
rarefaction method (Sanders), 240
redundancy (Patten), 244
redundancy in RDA and CCorA, 579; see also

analysis (redundancy a.)
regression, 19, 34, 40, 188, 189, 191, 230, 497-

545, 644
– Bartlett three-group r., 512
– coefficient, 500; see also slope
– criteria for choosing a model II r. method, 514
– dummy variable r., 188, 490, 491, 493, 494, 

525
– frequency r., 687
– geometric mean r., 510
– harmonic r., 678-679

Q

R
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regression (continued)
– linear r.
– logistic r., 188, 192, 193, 230, 490, 491, 493, 

494, 538-542
– major axis r. (MA), 502, 507-509, 513-516
– model I r., 500, 501
– model II r., 504-517
– monotone r., 537
– multivariate linear r., 188
– multiple linear r., 15, 21, 79, 490, 493, 494, 

517-525, 546, 576, 577, 580, 581-582, 611
– multiple r. on resemblance matrices, 494, 495, 

559, 783
– multivariate linear r., 518, 582
– nonlinear r., 188, 494, 536-537
– nonparametric r., 188, 537
– objectives of r. analysis (description, inference, 

forecasting), 497-498
– on principal components, 494, 522
– ordinary least-squares r. (OLS), 502, 512, 513-

516
– orthogonal distance r., 517, 518
– partial linear r., 188, 528-536
– partial r. coefficient, 21,166, 518, 528, 530, 611
– periodic r., 673
– polynomial r., 79, 188, 526-528, 739
– ranged major axis r. (RMA), 511-512, 513-516
– recommendations about model II r. methods, 

515
– reduced major axis r., 510
– residual, 501
– ridge r., 494, 522
– simple linear r., 13, 15, 78, 188, 500, 579
– standard major axis r. (SMA), 510-511, 513-

517
– standard minor axis r., 517
– variable selection in multiple r. (backward, 

forward, stepwise), 521-522
resolution of a study, 708
reversal, 313, 341-342
rhythm
– geophysical r., 638
– endogenous r., 638, 668
river network, 46, 768
rotation
– angle, 155-156
– oblique, 478
– orthogonal, 478

salamanders, 498
sample
– independent s., 191
– matched s., 191
– paired s., 10, 191

S

sample (continued)
– related s., 191
– small s., 185
sampling
– design, 7, 16, 228, 638, 708; see also extent, 

grain size, lag
– interval (element of sampling design), 708
– nested s., 735
– with (or without) replacement, 241
scalar, 54
scale
– broad s., 710
– fine s., 710
– interval s. (of a descriptor), 29
– relative s. (of a descriptor), 29
– spatial s. of pattern, 709
– spatial s. of process, 709
– spatial s. of sampling design, 709
– spatial s., 8, 708-711
scale factor (in dimensional analysis), 117, 128
scaling
– in correspondence analysis (CA), 456
– in principal component analysis (PCA), 403
– in redundancy analysis (RDA), 585-587
– in canonical correspondence analysis (CCA), 

596-597
segmentation, 644
semi-variance, 728, 733
semimetric distance, 432
– properties of s. d., 274, 286
seriation, 306, 315, 371-374, 383, 385
sewage, 688
sill of a variogram, 729
similarity, 55
– geometric, 127, 129
– kinematic, 129
– physical, 129
similarity of qualitative descriptors, 220
singleton, 699
singular value decomposition, 94-95, 422, 453
skewness, 39, 178
skyline plot, 304, 381, 382
slope, 500
– confidence interval of s., 508, 511
– estimation of s. of linear relationship: 

recommendations, 515
– maximum likelihood (ML) estimate of s., 506
Slutzky-Yule effect, 651
small number of observations, 186
smoothing
– cubic splines, 543
– freehand s. method, 649
– LOWESS, 188, 544-545, 651, 735
– splines, 188, 542-545, 651
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snails, 550
soil microfungi, 417
space
– A-space, 250, 251, 326, 328
– contraction, 483
– Euclidean s., 251, 274, 275, 277, 286, 425
– I-space, 250, 251
– metric s.: see metric
– reduced s., 389
– solution s., 350, 351
spatial
– heterogeneity, 16
– analysis: see analysis (spatial a.)
species
– abundance paradox, 278
– association, 304, 315, 355-371, 385, 413, 465
– bioindicator, 370
– biological associations, 291-295
– differential s., 347
– diversity: see diversity (species)
– fidelity of s., 348, 369
– indicator s., 368-371, 385
– indicator value of a s., 348, 369, 385
– null models for s. associations, 357
– number of s., 188, 189, 240, 245, 836
– presence-absence, 207
– probabilistic association, 293
– pseudospecies, 347
– satellite s., 359
– specificity of s., 369
– succession of s., 644, 691, 696
spectrum, 644, 680
– co-spectrum, 683
– coherence s., 645, 685
– cross-amplitude s., 684
– gain s., 685
– phase s., 645, 685
– power s., 680
– quadrature s., 683
– variance s., 643
spiders, 415, 479, 615
standard deviation, 135
standardization, 139, 140, 141
stationarity, 643, 647
– intrinsic assumption, 718
– second-order s., 718, 726
statistic, 17, 136
– 2I s., 217
– chi-square (X2) s., 188, 189, 256, 295
– components of Pearson and Wilks X2 s, 233
– G or G2 s., 217
– Hotelling T2, 281
– information s., 670
– Kullback (X2) s., 623

statistic (continued)
– Mann-Whitney U, 563
– Mantel s., 173, 442, 554
– partitioning a X2 s., 227
– Pearson chi-square s., 217, 268, 452
– pivotal test s., 19, 608
– Procrustes s. (m2), 390, 471, 564
– Shannon (diversity, entropy) s., 240, 336
– Shapiro & Wilk s., 181
– squared error s. (e2), 329, 354 
– standardized Mantel s., 375, 554
– strain, 448
– stress, 376, 447-448, 449, 450
– Student t, 281
– sum of squared errors s. (E2), 331, 352-354
– test s., 17, 19
– total error sum of squares (TESS), 332
– Wilks Λ (lambda), 281, 623
– Wilks likelihood ratio, 217
– z (Neu et al.) s., 233, 235, 236
statistics (descriptive, inferential), 17
stopping rules in clustering, 355
structure (ecological), 251, 481
– explanation, 482, 490-493
– forecasting, 482, 493-495, 498, 546, 702
– interpretation of s., 5, 481-574
– prediction, 482, 493, 495-497, 498, 546
structure (spatial), 7, 8, 11-12
– autocorrelation model, 11
– gradient (true, false), 707, 724-725; see also

gradient (ecological)
– patch, patchiness, 686, 707, 751; see also

patches (detection of)
– spatial dependence model, 11
surface (statistical definition), 712

table
– Buys-Ballot t., 665-666
– classification t., 541, 625, 629
– confusion t., 541, 625
– contingency t., 291, 566
– inflated data t., 566
Table A, 181, 834
Table B, 202, 835
Table C, 244, 836
Table D, 410, 837
taxocene, 238, 291
taxonomy, 303
Taylor’s power law, 44
terrestrial fauna, 263
test (specific)
– Anderson-Darling t. of normality, 181, 183
– Bartlett t. of equality of variances, 20
– Bartlett t. of independence of variables, 144

T
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test (specific, continued)
– chi-square (X2) t., 192, 193; see also statistic 

(chi-square s.)
– Cochran Q t., 192, 194
– Cramér-von Mises t. of normality, 181
– Fisher exact probability t., 192, 193
– Friedman t., 192
– goodness-of-fit Mantel t., 555, 556-557, 562
– Hotelling T2 t., 188,189
– Kolmogorov-Smirnov t. of normality, 179, 

183, 834
– Kolmogorov-Smirnov two-sample t., 192
– Kruskal-Wallis H t., 192, 193, 291
– Mann-Whitney U t., 192
– Mantel t., 488, 491, 492, 550, 552-557, 644, 

713
– McNemar t., 192, 194, 764
– median t., 192, 193
– of Kendall τ, 202, 835
– of multinormality (Dagnelie), 184
– of multiple correlation coefficient, 165
– of partial correlation coefficient, 165
– of Pearson r, 143
– of Spearman r, 198
– partial Mantel t., 558-559, 779-782
– Portmanteau Q-test, 721
– Procrustean randomization t., 564
– Shapiro & Wilk t. of normality, 181, 183
– sign t., 192, 193
– t-test (Student), 15, 40, 192, 193, 611, 623
– up and down runs t., 646
– Wilcoxon signed-ranks t., 192, 194
– Wilks lambda (Λ) t., 189
test (statistical), 134
– classical t. of significance, 17-20
– distribution-free, 185
– for the presence of trends in data series, 646
– multidimensional ranking t., 194-205
– multiple testing, 18
– nonparametric t., 145
– of dependence coefficients, 288
– of differences among groups, 192
– of normality and multinormality, 13, 39, 178-

184
– of series randomness, 646
– of significance in RDA and CCA, 606
– of significance in the presence of 

autocorrelation, 12-16, 134, 183
– of trend-surface model, 743
– one-tailed t., 19
– parametric t., 144
– permutation t.: see permutation
– power of a t., 202, 559, 564, 611, 638, 717, 

721, 725

test (statistical, continued)
– ranking, 185
– statistic: see statistic
– two-tailed t., 19
tied values, ex aequo, 45, 198, 200
time series: see data (time) series
transformation of variables, 40; see also

normalization
– linear t., 34-35
– logarithmic t., 35
– nonlinear t., 35-37
– ranging, 37-39, 511
– square root t., 433
– standardization, 37-39
tree (classification), 304, 381
– minimum-length t., 312
– minimum spanning t., 312, 752, 755
– shortest spanning t., 312
trees (vegetation): see vegetation
trend, 11, 641-642, 644-646, 648
– analytical method for estimating t., 651
– cyclic t., 647, 650, 652
– extraction, 647-652
– linear t., 647, 658
– removal, 648
– trend-surface analysis: see analysis (trend-

surface a.)
triangle’s inequality, 274, 286, 288, 425, 432
trilobites, 450
turning point, 646
typology, 304

ultrametric property, 313
units
– base, 98
– derived, 98
– international system (SI), 98, 100-101

validation: see cluster (validation)
variable, 27, 133; see also descriptor
– additive v., 32
– criterion v., 10, 546
– dependent v., 10, 482, 497
– dimensional v., 99, 103, 112
– dimensionless v., 38
– dummy v., 46-47
– explanatory v., 10, 158, 229, 482, 497, 546
– extensive v., 31, 750
– independent v., 10, 133, 482, 497
– intensive v., 31, 750
– non-additive v., 32, 739
– predictor v., 10, 546, 663
– qualitative v., 566, 670
– random v., 1, 133, 497

U

V
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variable (continued)
– regionalized v., 712
– response v., 10, 158, 229, 482, 497, 546
– scale of a v.: see scale
– selection of v. in multiple regression: see

regression
– standardized v., 38
– supplementary v. in PCA, 422
– target v., 10, 644
variance, 135, 185, 235
– partition of v. in spectral analysis, 681
– semi-variance, 728
variate difference method, 644, 652
variate: see random variable
variation
– partitioning, 409, 531-532, 770-775, 779
variogram, 9, 713, 714, 728-736, 759
– directional v., 731
– multivariate v., 759
vector, 61, 132
– characteristic, 81; see eigenvector
– length, 62
– linearly independent vectors, 72
– norm, 62
– normalization, 62
– orthogonal v., 65, 394
– row v., 64
– scaling, 62
vegetation, 230, 417, 472, 539, 550, 692, 701, 

771, 775, 781-782

wavelenght, 638
– fundamental w., 638
– harmonic w., 638
wavenumber, 638
– fundamental w., 638
– harmonic w., 638
Williams’ correction, 218, 225
window
– in moving averages, 649-650
– observational w., 638, 639
– smoothing w. in spectral analysis, 681
wombling, 761
– categorical, 761
– triangulation, 761

zero
– historical origin of the zero, 59
– sampling, 228
– structural, 228
zooplankton, 33, 271, 308, 338, 450, 484, 516, 

546, 637, 691, 692, 699, 775

W
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