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Preface

The delver into nature's aims
Seeks freedom and perfection;
Let calculation sift his claims
With faith and circumspection.

GOETHE

As a premise to this textbook on Numerical ecology, the authors wish to state their
opinion concerning the role of data analysis in ecology. In the above quotation, Goethe
cautioned readers against the use of mathematics in the natural sciences. In his
opinion, mathematics may obscure, under an often esoteric language, the natural
phenomena that scientists are trying to elucidate. Unfortunately, there are many
examples in the ecological literature where the use of mathematics unintentionally lent
support to Goethe’s thesis. This has become more frequent with the advent of
computers, which facilitated access to the most complex numerical treatments.
Fortunately, many other examples, including those discussed in the present book, show
that ecologists who master the theoretical bases of numerical methods and know how
to use them can derive a deeper understanding of natural phenomena from their
calculations.

Numerical approaches can never dispense researchers from ecological reflection on
observations. Data analysis must be seen as an objective and non-exclusive approach
to carry out in-depth analysis of the data. Consequently, throughout this book, we put
emphasis on ecological applications, which illustrate how to go from numerical results
to ecological conclusions.

This book is written for the practising ecologists — graduate students and
professional researchers. For this reason, it is organized both as a practical handbook
and a reference textbook. Our goal is to describe and discuss the numerical methods
which are successfully being used for analysing ecological data, using a clear and
comprehensive approach. These methods are derived from the fields of mathematical
physics, parametric and nonparametric statistics, information theory, numerical
taxonomy, archaeology, psychometry, sociometry, econometry, and others. Some of
these methods are presently only used by those ecologists who are especially interested
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in numerical data analysis; field ecologists often do not master the bases of these
techniques. For this reason, analyses reported in the literature are often carried out
using techniques that are not fully adapted to the data under study, leading to
conclusions that are sub-optimal with respect to the field observations. When we were
writing the first English edition of Numerical ecology (Legendre & Legendre, 1983a),
this warning mainly concerned multivariate versus elementary statistics. Nowadays,
most ecologists are capable of using multivariate methods; the above remark now
especially applies to the analysis of autocorrelated data (see Section 1.1; Chapters 12
and 13) and the joint analysis of several data tables (Sections 10.5 and 10.6;
Chapter 11).

Computer packages provide easy access to the most sophisticated numerical
methods. Ecologists with inadequate background often find, however, that using high-
level packages leads to dead ends. In order to efficiently use the available numerical
tools, it is essential to clearly understand the principles that underlay numerical
methods, and their limits. It is also important for ecologists to have guidelines for
interpreting the heaps of computer-generated results. We therefore organized the
present text as a comprehensive outline of methods for analysing ecological data, and
also as a practical handbook indicating the most usual packages.

Our experience with graduate teaching and consulting has made us aware of the
problems that ecologists may encounter when first using advanced numerical methods.
Any earnest approach to such problems requires in-depth understanding of the general
principles and theoretical bases of the methods to be used. The approach followed in
this book uses standardized mathematical symbols, abundant illustration, and appeal to
intuition in some cases. Because the text has been used for graduate teaching, we know
that, with reasonable effort, readers can get to the core of numerical ecology. In order
to efficiently use numerical methods, their aims and limits must be clearly understood,
as well as the conditions under which they should be used. In addition, since most
methods are well described in the scientific literature and are available in computer
packages, we generally insist on the ecological interpretation of results; computation
algorithms are described only when they may help understand methods. Methods
described in the book are systematically illustrated by numerical examples and/or
applications drawn from the ecological literature, mostly in English; references written
in languages other than English or French are generally of historical nature.

The expression numerical ecology refers to the following approach. Mathematical
ecology covers the domain of mathematical applications to ecology. It may be divided
into theoretical ecology and quantitative ecology. The latter, in turn, includes a number
of disciplines, among which modelling, ecological statistics, and numerical ecology.
Numerical ecology is the field of quantitative ecology devoted to the numerical
analysis of ecological data sets. Community ecologists, who generally use multivariate
data, are the primary users of these methods. The purpose of numerical ecology is to
describe and interpret the structure of data sets by combining a variety of numerical
approaches. Numerical ecology differs from descriptive or inferential biological
statistics in that it extensively uses non-statistical procedures, and systematically
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combines relevant multidimensional statistical methods with non-statistical numerical
techniques (e.g. cluster analysis); statistical inference (i.e. tests of significance) is
seldom used. Numerical ecology also differs from ecological modelling, even though
the extrapolation of ecological structures is often used to forecast values in space
or/and time (through multiple regression or other similar approaches, which are
collectively referred to as correlative models). When the purpose of a study is to
predict the critical consequences of alternative solutions, ecologists must use
predictive ecological models. The development of models that predict the effects on
some variables, caused by changes in others (see, for instance, De Neufville &
Stafford, 1971), requires a deliberate causal structuring, which is based on ecological
theory; it must include a validation procedure. Such models are often difficult and
costly to construct. Because the ecological hypotheses that underlay causal models
(see for instance Gold, 1977, Jolivet, 1982, or Jgrgensen, 1983) are often developed
within the context of studies using numerical ecology, the two fields are often in close
contact.

Loehle (1983) reviewed the different types of models used in ecology, and
discussed some relevant evaluation techniques. In his scheme, there are three types of
simulation models: logical, theoretical, and “predictive”. In a logical model, the
representation of a system is based on logical operators. According to Loehle, such
models are not frequent in ecology, and the few that exist may be questioned as to their
biological meaningfulness. Theoretical models aim at explaining natural phenomena in
a universal fashion. Evaluating a theory first requires that the model be accurately
translated into mathematical form, which is often difficult to do. Numerical models
(called by Loehle “predictive” models, sensu lato) are divided in two types:
application models (called, in the present book, predictive models, sensu stricto) are
based on well-established laws and theories, the laws being applied to resolve a
particular problem; calculation tools (called forecasting or correlative models in the
previous paragraph) do not have to be based on any law of nature and may thus be
ecologically meaningless, but they may still be useful for forecasting. In forecasting
models, most components are subject to adjustment whereas, in ideal predictive
models, only the boundary conditions may be adjusted.

Ecologists have used quantitative approaches since the publication by Jaccard
(1900) of the first association coefficient. Floristics developed from this seed, and the
method was eventually applied to all fields of ecology, often achieving high levels of
complexity. Following Spearman (1904) and Hotelling (1933), psychometricians and
social scientists developed non-parametric statistical methods and factor analysis and,
later, nonmetric multidimensional scaling (MDS). During the same period,
anthropologists (e.g. Czekanowski, 1909) were interested in numerical classification.
The advent of computers made it possible to analyse large data sets, using
combinations of methods derived from various fields and supplemented with new
mathematical developments. The first synthesis was published by Sokal & Sneath
(1963), who established numerical taxonomy as a new discipline.
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Numerical ecology combines a large number of approaches, derived from many
disciplines, in a general methodology for analysing ecological data sets. Its chief
characteristic is the combined use of treatments drawn from different areas of
mathematics and statistics. Numerical ecology acknowledges the fact that many of the
existing numerical methods are complementary to one another, each one allowing to
explore a different aspect of the information underlying the data; it sets principles for
interpreting the results in an integrated way.

The present book is organized in such a way as to encourage researchers who are
interested in a method to also consider other techniques. The integrated approach to
data analysis is favoured by numerous cross-references among chapters and the
presence of sections presenting syntheses of subjects. The book synthesizes a large
amount of information from the literature, within a structured and prospective
framework, so as to help ecologists take maximum advantage of the existing methods.

This second English edition of Numerical ecology is a revised and largely
expanded translation of the second edition of Ecologie numérique (Legendre &
Legendre, 1984a, 1984b). Compared to the first English edition (1983a), there are
three new chapters, dealing with the analysis of semiquantitative data (Chapter 5),
canonical analysis (Chapter 11), and spatial analysis (Chapter 13). In addition, new
sections have been added to almost all other chapters. These include, for example, new
sections (numbers given in parentheses) on: autocorrelation (1.1), statistical testing by
randomization (1.2), coding (1.5), missing data (1.6), singular value decomposition
(2.11), multiway contingency tables (6.3), cophenetic matrix and ultrametric property
(8.3), reversals (8.6), partitioning by K-means (8.8), cluster validation (8.12), a review
of regression methods (10.3), path analysis (10.4), a review of matrix comparison
methods (10.5), the 4th-corner problem (10.6), several new methods for the analysis of
data series (12.3-12.5), detection of discontinuities in multivariate series (12.6), and
Box-Jenkins models (12.7). There are also sections listing available computer
programs and packages at the end of several Chapters.

The present work reflects the input of many colleagues, to whom we express here
our most sincere thanks. We first acknowledge the outstanding collaboration of
Professors Serge Frontier (Université des Sciences et Techniques de Lille) and
F. James Rohlf (State University of New York at Stony Brook) who critically reviewed
our manuscripts for the first French and English editions, respectively. Many of their
suggestions were incorporated into the texts which are at the origin of the present
edition. We are also grateful to Prof. Ramén Margalef for his support, in the form of an
influential Preface to the previous editions. Over the years, we had fruitful discussions
on various aspects of numerical methods with many colleagues, whose names have
sometimes been cited in the Forewords of previous editions.

During the preparation of this new edition, we benefited from intensive
collaborations, as well as chance encounters and discussions, with a number of people
who have thus contributed, knowingly or not, to this book. Let us mention a few.
Numerous discussions with Robert R. Sokal and Neal L. Oden have sharpened our
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understanding of permutation methods and methods of spatial data analysis. Years of
discussion with Pierre Dutilleul and Claude Bellehumeur led to the Section on spatial
autocorrelation. Pieter Kroonenberg provided useful information on the relationship
between singular value decomposition (SVD) and correspondence analysis (CA).
Peter Minchin shed light on detrended correspondence analysis (DCA) and nonmetric
multidimensional scaling (MDS). A discussion with Richard M. Cormack about the
behaviour of some model II regression techniques helped us write Subsection 10.3.2.
This Subsection also benefited from years of investigation of model II methods with
David J. Currie. In-depth discussions with John C. Gower led us to a better
understanding of the metric and Euclidean properties of (dis)similarity coefficients and
of the importance of Euclidean geometry in grasping the role of negative eigenvalues
in principal coordinate analysis (PCoA). Further research collaboration with Marti J.
Anderson about negative eigenvalues in PCoA, and permutation tests in multiple
regression and canonical analysis, made it possible to write the corresponding sections
of this book; Dr. Anderson also provided comments on Sections 9.2.4, 10.5 and 11.3.
Cajo J. F. ter Braak revised Chapter 11 and parts of Chapter 9, and suggested a number
of improvements. Claude Bellehumeur revised Sections 13.1 and 13.2; Frangois-
Joseph Lapointe commented on successive drafts of 8.12. Marie-Josée Fortin and
Daniel Borcard provided comments on Chapter 13. The ECOTHAU program on the
Thau lagoon in southern France (led by Michel Amanieu), and the NIWA workshop on
soft-bottom habitats in Manukau harbour in New Zealand (organized by Rick
Pridmore and Simon Thrush of NIWA), provided great opportunities to test many of
the ecological hypothesis and methods of spatial analysis presented in this book.

Graduate students at Université de Montréal and Université Laval have greatly
contributed to the book by raising interesting questions and pointing out weaknesses in
previous versions of the text. The assistance of Bernard Lebanc was of great value in
transferring the ink-drawn figures of previous editions to computer format. Philippe
Casgrain helped solve a number of problems with computers, file transfers, formats,
and so on.

While writing this book, we benefited from competent and unselfish advice ...
which we did not always follow. We thus assume full responsibility for any gaps in the
work and for all the opinions expressed therein. We shall therefore welcome with great
interest all suggestions or criticisms from readers.

PIERRE LEGENDRE, Université de Montréal
Louis LEGENDRE, Université Laval April 1998
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Chapter

I Complex ecological
data sets

1.0 Numerical analysis of ecological data

Probability

Probability
distribution

Random
variable

The foundation of a general methodology for analysing ecological data may be derived
from the relationships that exist between the conditions surrounding ecological
observations and their outcomes. In the physical sciences for example, there often are
cause-to-effect relationships between the natural or experimental conditions and the
outcomes of observations or experiments. This is to say that, given a certain set of
conditions, the outcome may be exactly predicted. Such totally deterministic
relationships are only characteristic of extremely simple ecological situations.

Generally in ecology, a number of different outcomes may follow from a given set
of conditions because of the large number of influencing variables, of which many are
not readily available to the observer. The inherent genetic variability of biological
material is an important source of ecological variability. If the observations are
repeated many times under similar conditions, the relative frequencies of the possible
outcomes tend to stabilize at given values, called the probabilities of the outcomes.
Following Cramér (1946: 148) it is possible to state that “whenever we say that the
probability of an event with respect to an experiment [or an observation] is equal to P,
the concrete meaning of this assertion will thus simply be the following: in a long
series of repetitions of the experiment [or observation], it is practically certain that the
[relative] frequency of the event will be approximately equal to P.” This corresponds to
the frequency theory of probability — excluding the Bayesian or likelihood approach.

In the first paragraph, the outcomes were recurring at the individual level whereas
in the second, results were repetitive in terms of their probabilities. When each of
several possible outcomes occurs with a given characteristic probability, the set of
these probabilities is called a probability distribution. Assuming that the numerical
value of each outcome E; is y; with corresponding probability p;, a random variable (or
variate) y is defined as that quantity which takes on the value y; with probability p; at
each trial (e.g. Morrison, 1990). Fig. 1.1 summarizes these basic ideas.
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Figure 1.1 Two types of recurrence of the observations.

Of course, one can imagine other results to observations. For example, there may
be strategic relationships between surrounding conditions and resulting events. This is
the case when some action — or its expectation — triggers or modifies the reaction.
Such strategic-type relationships, which are the object of game theory, may possibly
explain ecological phenomena such as species succession or evolution (Margalef,
1968). Should this be the case, this type of relationship might become central to
ecological research. Another possible outcome is that observations be unpredictable.
Such data may be studied within the framework of chaos theory, which explains how
natural phenomena that are apparently completely stochastic sometimes result from
deterministic relationships. Chaos is increasingly used in theoretical ecology. For
example, Stone (1993) discusses possible applications of chaos theory to simple
ecological models dealing with population growth and the annual phytoplankton
bloom. Interested readers should refer to an introductory book on chaos theory, for
example Gleick (1987).

Methods of numerical analysis are determined by the four types of relationships
that may be encountered between surrounding conditions and the outcome of
observations (Table 1.1). The present text deals only with methods for analysing
random variables, which is the type ecologists most frequently encounter.

The numerical analysis of ecological data makes use of mathematical tools
developed in many different disciplines. A formal presentation must rely on a unified
approach. For ecologists, the most suitable and natural language — as will become
evident in Chapter 2 — is that of matrix algebra. This approach is best adapted to the
processing of data by computers; it is also simple, and it efficiently carries information,
with the additional advantage of being familiar to many ecologists.
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Other disciplines provide ecologists with powerful tools that are well adapted to
the complexity of ecological data. From mathematical physics comes dimensional
analysis (Chapter 3), which provides simple and elegant solutions to some difficult
ecological problems. Measuring the association among quantitative, semiquantitative
or qualitative variables is based on parametric and nonparametric statistical methods
and on information theory (Chapters 4, 5 and 6, respectively).

These approaches all contribute to the analysis of complex ecological data sets
(Fig. 1.2). Because such data usually come in the form of highly interrelated variables,
the capabilities of elementary statistical methods are generally exceeded. While
elementary methods are the subject of a number of excellent texts, the present manual
focuses on the more advanced methods, upon which ecologists must rely in order to
understand these interrelationships.

In ecological spreadsheets, data are typically organized in rows corresponding to
sampling sites or times, and columns representing the variables; these may describe
the biological communities (species presence, abundance, or biomass, for instance) or
the physical environment. Because many variables are needed to describe
communities and environment, ecological data sets are said to be, for the most part,
multidimensional (or multivariate). Multidimensional data, i.e. data made of several
variables, structure what is known in geometry as a hyperspace, which is a space with
many dimensions. One now classical example of ecological hyperspace is the
Sfundamental niche of Hutchinson (1957, 1965). According to Hutchinson, the
environmental variables that are critical for a species to exist may be thought of as
orthogonal axes, one for each factor, of a multidimensional space. On each axis, there
are limiting conditions within which the species can exist indefinitely; we will call
upon this concept again in Chapter 7, when discussing unimodal species distributions
and their consequences on the choice of resemblance coefficients. In Hutchinson’s
theory, the set of these limiting conditions defines a hypervolume called the species’

Table 1.1

Numerical analysis of ecological data.

Relationships between the natural conditions Methods for analysing
and the outcome of an observation and modelling the data
Deterministic: Only one possible result Deterministic models
Random: Many possible results, each one with Methods described in this
a recurrent frequency book (Figure 1.2)
Strategic: Results depend on the respective Game theory

strategies of the organisms and of their environment

Uncertain: Many possible, unpredictable results Chaos theory
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From From From parametric and nonparametric
mathematical algebra mathematical physics statistics, and information theory
Matrix Dimensional Association among variables
algebra (Chap. 2) analysis (Chap. 3) (Chaps. 4, 5 and 6)

! ! !

Complex ecological data sets

Ecological structures Spatio-temporal structures

Association coefficients Time series Spatial data
(Chap. 7) (Chap. 12) (Chap. 13)

Clustering Ordination
(Chap. 8) (Chap. 9)

Agglomeration, Principal component and
division, correspondence analysis,
partition metric/nonmetric scaling

Interpretation of
ecological structures (Chaps. 10 and 11)

Regression, path analysis,
canonical analysis

Figure 1.2 Numerical analysis of complex ecological data sets.

Fundamental fundamental niche. The spatial axes, on the other hand, describe the geographical
niche distribution of the species.

The quality of the analysis and subsequent interpretation of complex ecological
data sets depends, in particular, on the compatibility between data and numerical
methods. It is important to take into account the requirements of the numerical
techniques when planning the sampling programme, because it is obviously useless to
collect quantitative data that are inappropriate to the intended numerical analyses.
Experience shows that, too often, poorly planned collection of costly ecological data,
for “survey” purposes, generates large amounts of unusable data (Fig. 1.3).

The search for ecological structures in multidimensional data sets is always based
on association matrices, of which a number of variants exist, each one leading to
slightly or widely different results (Chapter 7); even in so-called association-free
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Figure 1.3 Interrelationships between the various phases of an ecological research.

methods, like principal component or correspondence analysis, or k-means clustering,
there is always an implicit resemblance measure hidden in the method. Two main
avenues are open to ecologists: (1) ecological clustering using agglomerative, divisive
or partitioning algorithms (Chapter 8), and (2) ordination in a space with a reduced
number of dimensions, using principal component or coordinate analysis, nonmetric
multidimensional scaling, or correspondence analysis (Chapter 9). The interpretation
of ecological structures, derived from clustering and/or ordination, may be conducted
in either a direct or an indirect manner, as will be seen in Chapters 10 and 11,
depending on the nature of the problem and on the additional information available.

Besides multidimensional data, ecologists may also be interested in temporal or
spatial process data, sampled along temporal or spatial axes in order to identify time-
or space-related processes (Chapters 12 and 13, respectively) driven by physics or
biology. Time or space sampling requires intensive field work, which may often be
automated nowadays using equipment that allows the automatic recording of
ecological variables, or the quick surveying or automatic recording of the geographic
positions of observations. The analysis of satellite images or information collected by
airborne or shipborne equipment falls in this category. In physical or ecological
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Process

Design-
based

applications, a process is a phenomenon or a set of phenomena organized along time or
in space. Mathematically speaking, such ecological data represent one of the possible
realizations of a random process, also called a stochastic process.

Two major approaches may be used for inference about the population parameters
of such processes (Sdrndal, 1978; Koch & Gillings, 1983; de Gruijter & ter Braak,
1990). In the design-based approach, one is interested only in the sampled population
and assumes that a fixed value of the variable exists at each location in space, or point
in time. A “representative” subset of the space or time units is selected and observed
during sampling (for 8 different meanings of the expression “representative sampling”,
see Kruskal & Mosteller, 1988). Design-based (or randomization-based; Kempthorne,
1952) inference results from statistical analyses whose only assumption is the random
selection of observations; this requires that the target population (i.e. that for which
conclusions are sought) be the same as the sampled population. The probabilistic
interpretation of this type of inference (e.g. confidence intervals of parameters) refers
to repeated selection of observations from the same finite population, using the same
sampling design. The classical (Fisherian) methods for estimating the confidence
intervals of parameters, for variables observed over a given surface or time stretch, are

Model-based fully applicable in the design-based approach. In the model-based (or

Super-
population

superpopulation) approach, the assumption is that the target population is much larger
than the sampled population. So, the value associated with each location, or point in
time, is not fixed but random, since the geographic surface (or time stretch) available
for sampling (i.e. the statistical population) is seen as one representation of the
superpopulation of such surfaces or time stretches — all resulting from the same
generating process — about which conclusions are to be drawn. Under this model,
even if the whole sampled population could be observed, uncertainty would still
remain about the model parameters. So, the confidence intervals of parameters
estimated over a single surface or time stretch are obviously too small to account for
the among-surface variability, and some kind of correction must be made when
estimating these intervals. The type of variability of the superpopulation of surfaces or
time stretches may be estimated by studying the spatial or temporal autocorrelation of
the available data (i.e. over the statistical population). This subject is discussed at some
length in Section 1.1. Ecological survey data can often be analysed under either model,
depending on the emphasis of the study or the type of conclusions one wishes to derive
from them.

In some instances in time series analysis, the sampling design must meet the
requirements of the numerical method, because some methods are restricted to data
series meeting some specific conditions, such as equal spacing of observations.
Inadequate planning of the sampling may render the data series useless for numerical
treatment with these particular methods. There are several methods for analysing
ecological series. Regression, moving averages, and the variate difference method are
designed for identifying and extracting general trends from time series. Correlogram,
periodogram, and spectral analysis identify rhythms (characteristic periods) in series.
Other methods can detect discontinuities in univariate or multivariate series. Variation
in a series may be correlated with variation in other variables measured
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simultaneously. Finally, one may want to develop forecasting models using the Box &
Jenkins approach.

Similarly, methods are available to meet various objectives when analysing spatial
structures. Structure functions such as variograms and correlograms, as well as point
pattern analysis, may be used to confirm the presence of a statistically significant
spatial structure and to describe its general features. A variety of interpolation methods
are used for mapping univariate data, whereas multivariate data can be mapped using
methods derived from ordination or cluster analysis. Finally, models may be developed
that include spatial structures among their explanatory variables.

For ecologists, numerical analysis of data is not a goal in itself. However, a study
which is based on quantitative information must take data processing into account at
all phases of the work, from conception to conclusion, including the planning and
execution of sampling, the analysis of data proper, and the interpretation of results.
Sampling, including laboratory analyses, is generally the most tedious and expensive
part of ecological research, and it is therefore important that it be optimized in order to
reduce to a minimum the collection of useless information. Assuming appropriate
sampling and laboratory procedures, the conclusions to be drawn now depend on the
results of the numerical analyses. It is, therefore, important to make sure in advance
that sampling and numerical techniques are compatible. It follows that mathematical
processing is at the heart of a research; the quality of the results cannot exceed the
quality of the numerical analyses conducted on the data (Fig. 1.3).

Of course, the quality of ecological research is not a sole function of the expertise
with which quantitative work is conducted. It depends to a large extent on creativity,
which calls upon imagination and intuition to formulate hypotheses and theories. It is,
however, advantageous for the researcher’s creative abilities to be grounded into solid
empirical work (i.e. work involving field data), because little progress may result from
continuously building upon untested hypotheses.

Figure 1.3 shows that a correct interpretation of analyses requires that the sampling
phase be planned to answer a specific question or questions. Ecological sampling
programmes are designed in such a way as to capture the variation occurring along a
number of axe of interest: space, time, or other ecological indicator variables. The
purpose is to describe variation occurring along the given axis or axes, and to interpret
or model it. Contrary to experimentation, where sampling may be designed in such a
way that observations are independent of each other, ecological data are often
autocorrelated (Section 1.1).

While experimentation is often construed as the opposite of ecological sampling,
there are cases where field experiments are conducted at sampling sites, allowing one
to measure rates or other processes (“manipulative experiments” sensu Hurlbert, 1984;
Subsection 10.2.3). In aquatic ecology, for example, nutrient enrichment bioassays are
a widely used approach for testing hypotheses concerning nutrient limitation of
phytoplankton. In their review on the effects of enrichment, Hecky & Kilham (1988)
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identify four types of bioassays, according to the level of organization of the test
system: cultured algae; natural algal assemblages isolated in microcosms or sometimes
larger enclosures; natural water-column communities enclosed in mesocosms; whole
systems. The authors discuss one major question raised by such experiments, which is
whether results from lower-level systems are applicable to higher levels, and
especially to natural situations. Processes estimated in experiments may be used as
independent variables in empirical models accounting for survey results, while “static”
survey data may be used as covariates to explain the variability observed among
blocks of experimental treatments. In the future, spatial or time-series data analysis
may become an important part of the analysis of the results of ecological experiments.

1.1 Autocorrelation and spatial structure

Ecologists have been trained in the belief that Nature follows the assumptions of
classical statistics, one of them being the independence of observations. However, field
ecologists know from experience that organisms are not randomly or uniformly
distributed in the natural environment, because processes such as growth,
reproduction, and mortality, which create the observed distributions of organisms,
generate spatial autocorrelation in the data. The same applies to the physical variables
which structure the environment. Following hierarchy theory (Simon, 1962; Allen &
Starr, 1982; O’Neill et al., 1991), we may look at the environment as primarily
structured by broad-scale physical processes — orogenic and geomorphological
processes on land, currents and winds in fluid environments — which, through energy
inputs, create gradients in the physical environment, as well as patchy structures
separated by discontinuities (interfaces). These broad-scale structures lead to similar
responses in biological systems, spatially and temporally. Within these relatively
homogeneous zones, finer-scale contagious biotic processes take place that cause the
appearance of more spatial structuring through reproduction and death, predator-prey
interactions, food availability, parasitism, and so on. This is not to say that biological
processes are necessarily small-scaled and nested within physical processes; biological
processes may be broad-scaled (e.g. bird and fish migrations) and physical processes
may be fine-scaled (e.g. turbulence). The theory only purports that stable complex
systems are often hierarchical. The concept of scale, as well as the expressions broad
scale and fine scale, are discussed in Section 13.0.

In ecosystems, spatial heterogeneity is therefore functional, and not the result of
some random, noise-generating process; so, it is important to study this type of
variability for its own sake. One of the consequences is that ecosystems without spatial
structuring would be unlikely to function. Let us imagine the consequences of a non-
spatially-structured ecosystem: broad-scale homogeneity would cut down on diversity
of habitats; feeders would not be close to their food; mates would be located at random
throughout the landscape; soil conditions in the immediate surrounding of a plant
would not be more suitable for its seedlings than any other location; newborn animals
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Autocorre-
lation

would be spread around instead of remaining in favourable environments; and so on.
Unrealistic as this view may seem, it is a basic assumption of many of the theories and
models describing the functioning of populations and communities. The view of a
spatially structured ecosystem requires a new paradigm for ecologists: spatial [and
temporal] structuring is a fundamental component of ecosystems. It then becomes
obvious that theories and models, including statistical models, must be revised to
include realistic assumptions about the spatial and temporal structuring of
communities.

Spatial autocorrelation may be loosely defined as the property of random variables
which take values, at pairs of sites a given distance apart, that are more similar
(positive autocorrelation) or less similar (negative autocorrelation) than expected for
randomly associated pairs of observations. Autocorrelation only refers to the lack of
independence (Box 1.1) among the error components of field data, due to geographic
proximity. Autocorrelation is also called serial correlation in time series analysis. A
spatial structure may be present in data without it being caused by autocorrelation.
Two models for spatial structure are presented in Subsection 1; one corresponds to
autocorrelation, the other not.

Because it indicates lack of independence among the observations, autocorrelation
creates problems when attempting to use tests of statistical significance that require
independence of the observations. This point is developed in Subsection 1.2. Other
types of dependencies (or, lack of independence) may be encountered in biological
data. In the study of animal behaviour for instance, if the same animal or pair of
animals is observed or tested repeatedly, these observations are not independent of one
another because the same animals are likely to display the same behaviour when
placed in the same situation. In the same way, paired samples (last paragraph in
Box 1.1) cannot be analysed as if they were independent because members of a pair
are likely to have somewhat similar responses.

Autocorrelation is a very general property of ecological variables and, indeed, of
most natural variables observed along time series (temporal autocorrelation) or over
geographic space (spatial autocorrelation). Spatial [or temporal] autocorrelation may
be described by mathematical functions such as correlograms and variograms, called
structure functions, which are studied in Chapters 12 and 13. The two possible
approaches concerning statistical inference for autocorrelated data (i.e. the design- or
randomization-based approach, and the model-based or superpopulation approach)
were discussed in Section 1.0.

The following discussion is partly derived from the papers of Legendre & Fortin
(1989) and Legendre (1993). Spatial autocorrelation is used here as the most general
case, since temporal autocorrelation behaves essentially like its spatial counterpart, but
along a single sampling dimension. The difference between the spatial and temporal
cases is that causality is unidirectional in time series, i.e. it proceeds from (1) to f and
not the opposite. Temporal processes, which generate temporally autocorrelated data,
are studied in Chapter 12, whereas spatial processes are the subject of Chapter 13.
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Independence Box 1.1

This word has several meanings. Five of them will be used in this book. Another
important meaning in statistics concerns independent random variables, which refer
to properties of the distribution and density functions of a group of variables (for a
formal definition, see Morrison, 1990, p. 7).

Independent observations — Observations drawn from the statistical population
in such a way that no observed value has any influence on any other. In the time-
honoured example of tossing a coin, observing a head does not influence the
probability of a head (or tail) coming out at the next toss. Autocorrelated data
violate this condition, their error terms being correlated across observations.

Independent descriptors — Descriptors (variables) that are not related to one
another are said to be independent. Related is taken here in some general sense
applicable to quantitative, semiquantitative as well as qualitative data (Table 1.2).

Linear independence — Two descriptors are said to be linearly independent, or
orthogonal, if their covariance is equal to zero. A Pearson correlation coefficient
may be used to test the hypothesis of linear independence. Two descriptors that are
linearly independent may be related in a nonlinear way. For example, if vector X' is
centred (x' = [x;—X]), vector [x';] is linearly independent of vector x' (their
correlation is zero) although they are in perfect quadratic relationship.

Independent variable(s) of a model — In a regression model, the variable to be
modelled is called the dependent variable. The variables used to model it, usually
found on the right-hand side of the equation, are called the independent variables of
the model. In empirical models, one may talk about response (or target) and
explanatory variables for, respectively, the dependent and independent variables,
whereas, in a causal framework, the terms criterion and predictor variables may be
used. Some forms of canonical analysis (Chapter 11) allow one to model several
dependent (target or criterion) variables in a single regression-like analysis.

Independent samples are opposed to related or paired samples. In related samples,
each observation in a sample is paired with one in the other sample(s), hence the
name paired comparisons for the tests of significance carried out on such data.
Authors also talk of independent versus matched pairs of data. Before-after
comparisons of the same elements also form related samples (matched pairs).
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Figure 1.4

Autocorre-
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The value at site j may be modelled as
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influence of the process generating the
autocorrelation (large circle).

1 — Types of spatial structures

A spatial structure may appear in a variable y because the process that has produced
the values of y is spatial and has generated autocorrelation in the data; or it may be
caused by dependence of y upon one or several causal variables x which are spatially
structured; or both. The spatially-structured causal variables x may be explicitly
identified in the model, or not; see Table 13.3.

® Model 1: autocorrelation — The value y; observed at site j on the geographic surface
is assumed to be the overall mean of the process (L) plus a weighted sum of the
centred values (y;—W,) at surrounding sites i, plus an independent error term g;:

= I f (- e (L1

The y;’s are the values of y at other sites i located within the zone of spatial influence
of the process generating the autocorrelation (Fig. 1.4). The influence of neighbouring
sites may be given, for instance, by weights w; which are function of the distance
between sites i and j (eq. 13.19); other functions may be used. The total error term is
[Zf(y,- u},) +€ j] ; it contains the autocorrelated component of variation. As written
here, the model assumes stationarity (Subsection 13.1.1). Its equivalent in time series
analysis is the autoregressive (AR) response model (eq. 12.30).

® Model 2: spatial dependence — If one can assume that there is no autocorrelation in
the variable of interest, the spatial structure may result from the influence of some
explanatory variable(s) exhibiting a spatial structure. The model is the following:

Y= My + f (explanatory variables) + & i 1.2)
where y; is the value of the dependent variable at site j and ¢; is an error term whose

value is independent from site to site. In such a case, the spatial structure, called
“trend”, may be filtered out by trend surface analysis (Subsection 13.2.1), by the
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Detrending

method of spatial variate differencing (see Cliff & Ord 1981, Section 7.4), or by some
equivalent method in the case of time series (Chapter 12). The significance of the
relationship of interest (e.g. correlation, presence of significant groups) is tested on the
detrended data. The variables should not be detrended, however, when the spatial
structure is of interest in the study. Chapter 13 describes how spatial structures may be
studied and decomposed into fractions that may be attributed to different hypothesized
causes (Table 13.3).

It is difficult to determine whether a given observed variable has been generated
under model 1 (eq. 1.1) or model 2 (eq. 1.2). The question is further discussed in
Subsection 13.1.2 in the case of gradients (“false gradients” and “true gradients”).

More complex models may be written by combining autocorrelation in variable y
(model 1) and the effects of causal variables x (model 2), plus the autoregressive
structures of the various x’s. Each parameter of these models may be tested for
significance. Models may be of various degrees of complexity, e.g. simultaneous AR
model, conditional AR model (Cliff & Ord, 1981, Sections 6.2 and 6.3; Griffith, 1988,
Chapter 4).

Spatial structures may be the result of several processes acting at different spatial
scales, these processes being independent of one another. Some of these — usually the
intermediate or fine-scale processes — may be of interest in a given study, while other
processes may be well-known and trivial, like the broad-scale effects of tides or world-
wide climate gradients.

2 — Tests of statistical significance in the presence of autocorrelation

Autocorrelation in a variable brings with it a statistical problem under the model-based
approach (Section 1.0): it impairs the ability to perform standard statistical tests of
hypotheses (Section 1.2). Let us consider an example of spatially autocorrelated data.
The observed values of an ecological variable of interest — for example, species
composition — are most often influenced, at any given site, by the structure of the
species assemblages at surrounding sites, because of contagious biotic processes such
as growth, reproduction, mortality and migration. Make a first observation at site A
and a second one at site B located near A. Since the ecological process is understood to
some extent, one can assume that the data are spatially autocorrelated. Using this
assumption, one can anticipate to some degree the value of the variable at site B before
the observation is made. Because the value at any one site is influenced by, and may be
at least partly forecasted from the values observed at neighbouring sites, these values
are not stochastically independent of one another.

The influence of spatial autocorrelation on statistical tests may be illustrated using
the correlation coefficient (Section 4.2). The problem lies in the fact that, when the two
variables under study are positively autocorrelated, the confidence interval, estimated
by the classical procedure around a Pearson correlation coefficient (whose calculation
assumes independent and identically distributed error terms for all observations), is
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Figure 1.5
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narrower than it is when calculated correctly, i.e. taking autocorrelation into account.
The consequence is that one would declare too often that correlation coefficients are
significantly different from zero (Fig. 1.5; Bivand, 1980). All the usual statistical tests,
nonparametric and parametric, have the same behaviour: in the presence of positive
autocorrelation, computed test statistics are too often declared significant under the
null hypothesis. Negative autocorrelation may produce the opposite effect, for instance
in analysis of variance (ANOVA).

The effects of autocorrelation on statistical tests may also be examined from the
point of view of the degrees of freedom. As explained in Box 1.2, in classical statistical
testing, one degree of freedom is counted for each independent observation, from
which the number of estimated parameters is subtracted. The problem with
autocorrelated data is their lack of independence or, in other words, the fact that new
observations do not each bring with them one full degree of freedom, because the
values of the variable at some sites give the observer some prior knowledge of the
values the variable should take at other sites. The consequence is that new
observations cannot be counted for one full degree of freedom. Since the size of the
fraction they bring with them is difficult to determine, it is not easy to know what the
proper reference distribution for the test should be. All that is known for certain is that
positive autocorrelation at short distance distorts statistical tests (references in the next
paragraph), and that this distortion is on the “liberal” side. This means that, when
positive spatial autocorrelation is present in the small distance classes, the usual
statistical tests too often lead to the decision that correlations, regression coefficients,
or differences among groups are significant, when in fact they may not be.

This problem has been well documented in correlation analysis (Bivand, 1980;
Cliff & Ord, 1981, §7.3.1; Clifford et al., 1989; Haining, 1990, pp. 313-330; Dutilleul,
1993a), linear regression (Cliff & Ord, 1981, §7.3.2; Chalmond, 1986; Griffith, 1988,
Chapter 4; Haining, 1990, pp. 330-347), analysis of variance (Crowder & Hand, 1990;
Legendre et al., 1990), and tests of normality (Dutilleul & Legendre, 1992). The
problem of estimating the confidence interval for the mean when the sample data are
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Degrees of freedom Box 1.2

Statistical tests of significance often call upon the concept of degrees of freedom. A
formal definition is the following: “The degrees of freedom of a model for expected
values of random variables is the excess of the number of variables [observations]
over the number of parameters in the model” (Kotz & Johnson, 1982).

In practical terms, the number of degrees of freedom associated with a statistic
is equal to the number of its independent components, i.e. the total number of
components used in the calculation minus the number of parameters one had to
estimate from the data before computing the statistic. For example, the number of
degrees of freedom associated with a variance is the number of observations minus
one (noted v =n—1): n components (x,—X) are used in the calculation, but one
degree of freedom is lost because the mean of the statistical population is estimated
from the sample data; this is a prerequisite before estimating the variance.

There is a different ¢ distribution for each number of degrees of freedom. The
same is true for the F and X2 families of distributions, for example. So, the number
of degrees of freedom determines which statistical distribution, in these families (z,
F, or xz), should be used as the reference for a given test of significance. Degrees of
freedom are discussed again in Chapter 6 with respect to the analysis of
contingency tables.

autocorrelated has been studied by Cliff & Ord (1975, 1981, §7.2) and Legendre &
Dutilleul (1991).

When the presence of spatial autocorrelation has been demonstrated, one may wish
to remove the spatial dependency among observations; it would then be valid to
compute the usual statistical tests. This might be done, in theory, by removing
observations until spatial independence is attained; this solution is not recommended
because it entails a net loss of information which is often expensive. Another solution
is detrending the data (Subsection 1); if autocorrelation is part of the process under
study, however, this would amount to throwing out the baby with the water of the bath.
It would be better to analyse the autocorrelated data as such (Chapter 13),
acknowledging the fact that autocorrelation in a variable may result from various
causal mechanisms (physical or biological), acting simultaneously and additively.

The alternative for testing statistical significance is to modify the statistical method
in order to take spatial autocorrelation into account. When such a correction is
available, this approach is to be preferred if one assumes that autocorrelation is an
intrinsic part of the ecological process to be analysed or modelled.
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Corrected tests rely on modified estimates of the variance of the statistic, and on
corrected estimates of the effective sample size and of the number of degrees of
freedom. Simulation studies are used to demonstrate the validity of the modified tests.
In these studies, a large number of autocorrelated data sets are generated under the null
hypothesis (e.g. for testing the difference between two means, pairs of observations are
drawn at random from the same simulated, autocorrelated statistical distribution,
which corresponds to the null hypothesis of no difference between population means)
and tested using the modified procedure; this experiment is repeated a large number of
times to demonstrate that the modified testing procedure leads to the nominal
confidence level.

Cliff & Ord (1973) have proposed a method for correcting the standard error of
parameter estimates for the simple linear regression in the presence of autocorrelation.
This method was extended to linear correlation, multiple regression, and #-test by Cliff
& Ord (1981, Chapter 7: approximate solution) and to the one-way analysis of
variance by Griffith (1978, 1987). Bartlett (1978) has perfected a previously proposed
method of correction for the effect of spatial autocorrelation due to an autoregressive
process in randomized field experiments, adjusting plot values by covariance on
neighbouring plots before the analysis of variance; see also the discussion by
Wilkinson et al. (1983) and the papers of Cullis & Gleeson (1991) and Grondona &
Cressis (1991). Cook & Pocock (1983) have suggested another method for correcting
multiple regression parameter estimates by maximum likelihood, in the presence of
spatial autocorrelation. Using a different approach, Legendre et al. (1990) have
proposed a permutational method for the analysis of variance of spatially
autocorrelated data, in the case where the classification criterion is a division of a
territory into nonoverlapping regions and one wants to test for differences among these
regions.

A step forward was proposed by Clifford et al. (1989), who tested the significance
of the correlation coefficient between two spatial processes by estimating a modified
number of degrees of freedom, using an approximation of the variance of the
correlation coefficient computed on data. Empirical results showed that their method
works fine for positive autocorrelation in large samples. Dutilleul (1993a) generalized
the procedure and proposed an exact method to compute the variance of the sample
covariance; the new method is valid for any sample size.

Major contributions to this topic are found in the literature on time series analysis,
especially in the context of regression modelling. Important references are Cochrane &
Orcutt (1949), Box & Jenkins (1976), Beach & MacKinnon (1978), Harvey & Phillips
(1979), Chipman (1979), and Harvey (1981).

When methods specifically designed to handle spatial autocorrelation are not
available, it is sometimes possible to rely on permutation tests, where the significance
is determined by random reassignment of the observations (Section 1.2). Special
permutational schemes have been developed that leave autocorrelation invariant;
examples are found in Besag & Clifford (1989), Legendre ef al. (1990) and ter Braak
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(1990, section 8). For complex problems, such as the preservation of spatial or
temporal autocorrelation, the difficulty of the permutational method is to design an
appropriate permutation procedure.

The methods of clustering and ordination described in Chapters 8 and 9 to study
ecological structures do not rely on tests of statistical significance. So, they are not
affected by the presence of spatial autocorrelation. The impact of spatial
autocorrelation on numerical methods will be stressed wherever appropriate.

3 — Classical sampling and spatial structure

Random or systematic sampling designs have been advocated as a way of preventing
the possibility of dependence among observations (Cochran 1977; Green 1979;
Scherrer 1982). This was then believed to be a necessary and sufficient safeguard
against violations of the independence of errors, which is a basic assumption of
classical statistical tests. It is adequate, of course, when one is trying to estimate the
parameters of a local population. In such a case, a random or systematic sample is
suitable to obtain unbiased estimates of the parameters since, a priori, each point has
the same probability of being included in the sample. Of course, the variance and,
consequently, also the standard error of the mean increase if the distribution is patchy,
but their estimates remain unbiased.

Even with random or systematic allocation of observations through space,
observations may retain some degree of spatial dependence if the average distance
between first neighbours is shorter than the zone of spatial influence of the underlying
ecological phenomenon. In the case of broad-scale spatial gradients, no point is far
enough to lie outside this zone of spatial influence. Correlograms and variograms
(Chapter 13), combined with maps, are used to assess the magnitude and shape of
autocorrelation present in data sets.

Classical books such as Cochran (1977) adequately describe the rules that should
govern sampling designs. Such books, however, emphasize only the design-based
inference (Section 1.0), and do not discuss the influence of spatial autocorrelation on
the sampling design. At the present time, literature on this subject seems to be only
available in the field of geostatistics, where important references are: David (1977,
Ch. 13), McBratney & Webster (1981), McBratney ef al. (1981), Webster & Burgess
(1984), Borgman & Quimby (1988), and Frangois-Bongargon (1991).

Ecologists interested in designing field experiments should read the paper of
Dutilleul (1993b), who discusses how to accommodate an experiment to spatially
heterogeneous conditions. The concept of spatial heterogeneity is discussed at some
length in the multi-author book edited by Kolasa & Pickett (1991), in the review paper
of Dutilleul & Legendre (1993), and in Section 13.0.
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1.2 Statistical testing by permutation

Statistic

Null
hypothesis

The role of a statistical test is to decide whether some parameter of the reference
population may take a value assumed by hypothesis, given the fact that the
corresponding statistic, whose value is estimated from a sample of objects, may have a
somewhat different value. A statistic is any quantity that may be calculated from the
data and is of interest for the analysis (examples below); in tests of significance, a
statistic is called test statistic or test criterion. The assumed value of the parameter
corresponding to the statistic in the reference population is given by the statistical null
hypothesis (written Hy), which translates the biological null hypothesis into numerical
terms; it often negates the existence of the phenomenon that the scientists hope to
evidence. The reasoning behind statistical testing directly derives from the scientific
method; it allows the confrontation of experimental or observational findings to
intellectual constructs that are called hypotheses.

Testing is the central step of inferential statistics. It allows one to generalize the
conclusions of statistical estimation to some reference population from which the
observations have been drawn and that they are supposed to represent. Within that
context, the problem of multiple testing is too often ignored (Box. 1.3). Another
legitimate section of statistical analysis, called descriptive statistics, does not rely on
testing. The methods of clustering and ordination described in Chapters 8 and 9, for
instance, are descriptive multidimensional statistical methods. The interpretation
methods described in Chapters 10 and 11 may be used in either descriptive or
inferential mode.

1 — Classical tests of significance

Consider, for example, a correlation coefficient (which is the statistic of interest in
correlation analysis) computed between two variables (Chapter 4). When inference to
the statistical population is sought, the null hypothesis is often that the value of the
correlation parameter (p, rho) in the statistical population is zero; the null hypothesis
may also be that p has some value other than zero, given by the ecological hypothesis.
To judge of the validity of the null hypothesis, the only information available is an
estimate of the correlation coefficient, r, obtained from a sample of objects drawn from
the statistical population. (Whether the observations adequately represent the
statistical population is another question, for which the readers are referred to the
literature on sampling design.) We know, of course, that a sample is quite unlikely to
produce a parameter estimate which is exactly equal to the true value of the parameter
in the statistical population. A statistical test tries to answer the following question:
given a hypothesis stating, for example, that p = 0 in the statistical population and the
fact that the estimated correlation is, say, r = 0.2, is it justified to conclude that the
difference between 0.2 and 0.0 is due to sampling error?

The choice of the statistic to be tested depends on the problem at hand. For
instance, in order to find whether two samples may have been drawn from the same
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Multiple testing Box 1.3

When several tests of significance are carried out simultaneously, the probability of
a type I error becomes larger than the nominal value o. For example, when
analysing a correlation matrix involving 5 variables, 10 tests of significance are
carried out simultaneously. For randomly generated data, there is a probability
p = 0.40 of rejecting the null hypothesis at least once over 10 tests, at the nominal
a = 0.05 level; this can easily be computed from the binomial distribution. So,
when conducting multiple tests, one should perform a global test of significance in
order to determine whether there is any significant value at all in the set.

The first approach is Fisher's method for combining the probabilities p; obtained from k
independent tests of significance. The value —2% In(p,) is distributed as X2 with 2k degrees of
freedom if the null hypothesis is true in all k tests (Fisher, 1954; Sokal & Rohlf, 1995).

Another approach is the Bonferroni correction for k independent tests: replace the
significance level, say o = 0.05, by an adjusted level o' = o/k, and compare probabilities p; to
o' This is equivalent to adjusting individual p-values p; to p}; = kp; and comparing p; to the
unadjusted significance level o.. While appropriate to test the null hypothesis for the whole
set of simultaneous hypotheses (i.e. reject Hy, for the whole set of k hypotheses if the smallest
unadjusted p-value in the set is less than or equal to o/k), the Bonferroni method is overly
conservative and often leads to rejecting too few individual hypotheses in the set .

Several alternatives have been proposed in the literature; see Wright (1992) for a review.
For non-independent tests, Holm’s procedure (1979) is nearly as simple to carry out as the
Bonferroni adjustment and it is much more powerful, leading to rejecting the null hypothesis
more often. It is computed as follows. (1) Order the p-values from left to right so that
P1<py<S... £p;... S pg (2) Compute adjusted probability values p; = (k—i+ 1)p;; adjusted
probabilities may be larger than 1. (3) Proceeding from left to right, if an adjusted p-value in
the ordered series is smaller than the one occurring at its left, make the smallest equal to the
largest one. (4) Compare each adjusted p; to the unadjusted o significance level and make
the statistical decision. The procedure could be formulated in terms of successive corrections
to the o significance level, instead of adjustments to individual probabilities.

An even more powerful solution is that of Hochberg (1988) which has the desired overall
(“experimentwise”) error rate o only for independent tests (Wright, 1992). Only step (3)
differs from Holm’s procedure: proceeding this time from right to left, if an adjusted p-value
in the ordered series is smaller than the one at its left, make the largest equal to the smallest
one. Because the adjusted probabilities form a nondecreasing series, both of these procedures
present the properties (1) that a hypothesis in the ordered series cannot be rejected unless all
previous hypotheses in the series have also been rejected and (2) that equal p-values receive
equal adjusted p-values. Hochberg’s method presents the further characteristic that no
adjusted p-value can be larger than the largest unadjusted p-value or exceed 1. More complex
and powerful procedures are explained by Wright (1992).

For some applications, special procedures have been developed to test a whole set of
statistics. An example is the test for the correlation matrix R (eq. 4.14, end of Section 4.2).
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statistical population or from populations with equal means, one would choose a
statistic measuring the difference between the two sample means (¥, -X,) or,
preferably, a pivotal form like the usual ¢ statistic used in such tests; a pivotal statistic
has a distribution under the null hypothesis which remains the same for any value of
the measured effect (here, X, — X,). In the same way, the slope of a regression line is
described by the slope parameter of the linear regression equation, which is assumed,
under the null hypothesis, to be either zero or some other value suggested by
ecological theory. The test statistic describes the difference between the observed and
hypothesized value of slope; the pivotal form of this difference is a ¢ or F statistic.

Another aspect of a statistical test is the alternative hypothesis (H;), which is also
imposed by the ecological problem at hand. H; is the opposite of H, but there may be
several statements that represent some opposite of Hj. In correlation analysis for
instance, if one is satisfied to determine that the correlation coefficient in the reference
population (p) is significantly different from zero in either the positive or the negative
direction, meaning that some linear relationship exists between two variables, then a
two-tailed alternative hypothesis is stated about the value of the parameter in the
statistical population: p # 0. On the contrary, if the ecological phenomenon underlying
the hypothesis imposes that a relationship, if present, should have a given sign, one
formulates a one-tailed hypothesis. For instance, studies on the effects of acid rain are
motivated by the general paradigm that acid rain, which lowers the pH, has a negative
effect on terrestrial and aquatic ecosystems. In a study of the correlation between pH
and diversity, one would formulate the following hypothesis H;: pH and diversity are
positively correlated (i.e. low pH is associated with low diversity; H;: p > 0). Other
situations would call for a different alternative hypothesis, symbolized by H;: p < 0.

The expressions one-tailed and two-tailed refer to the fact that, in a two-tailed test,
one would look in both tails of the reference statistical distribution for values as
extreme as, or more extreme than the reference value of the statistic (i.e. the one
computed from the actual data). In a correlation study for instance, where the reference
distribution () for the test statistic is symmetric about zero, the probability of the null
hypothesis in a two-tailed test is given by the proportion of values in the ¢ distribution
which are, in absolute value, as large as, or larger than the absolute value of the
reference statistic. In a one-tailed test, one would look only in the tail corresponding to
the sign given by the alternative hypothesis; for instance, for the proportion of values
in the ¢ distribution which are as large as or larger than the signed value of the
reference ¢ statistic, for a test in the right-hand tail (Hy: p > 0).

In standard statistical tests, the test statistic computed from the data is referred to
one of the usual statistical distributions printed in books or computed by some
appropriate computer software; the best-known are the z, ¢, F' and x2 distributions.
This, however, can only be done if certain assumptions are met by the data, depending
on the test. The most commonly encountered are the assumptions of normality of the
variable(s) in the reference population, homoscedasticity (Box 1.4) and independence
of the observations (Box 1.1). Refer to Siegel (1956, Chapter 2), Siegel & Castellan
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(1988, Chapter 2), or Snedecor & Cochran (1967, Chapter 1), for concise yet clear
classical exposés of the concepts related to statistical testing.

2 — Permutation tests

The method of permutation, also called randomization, is a very general approach to
testing statistical hypotheses. Following Manly (1997), permutation and
randomization are considered synonymous in the present book, although permutation
may also be considered to be the technique by which the principle of randomization is
applied to data during permutation tests. Other points of view are found in the
literature. For instance, Edgington (1995) considers that a randomization test is a
permutation test based on randomization. A different although related meaning of
randomization refers to the random assignment of replicates to treatments in
experimental designs.

Permutation testing can be traced back to at least Fisher (1935, Chapter 3). Instead
of comparing the actual value of a test statistic to a standard statistical distribution, the
reference distribution is generated from the data themselves, as described below; other
randomization methods are mentioned at the end of the present Section. Permutation
provides an efficient approach to testing when the data do not conform to the
distributional assumptions of the statistical method one wants to use (e.g. normality).
Permutation testing is applicable to very small samples, like nonparametric tests. It
does not resolve problems of independence of the observations, however. Nor does the
method solve distributional problems that are linked to the hypothesis subjected to a
test". Permutation remains the method of choice to test novel or other statistics whose
distributions are poorly known. Furthermore, results of permutation tests are valid
even with observations that are not a random sample of some statistical population;
this point is further discussed in Subsection 4. Edgington (1995) and Manly (1997)
have written excellent introductory books about the method. A short account is given
by Sokal & Rohlf (1995) who prefer to use the expression “randomization test”.
Permutation tests are used in several Chapters of the present book.

The speed of modern computers would allow users to perform any statistical test
using the permutation method. The chief advantage is that one does not have to worry
about distributional assumptions of classical testing procedures; the disadvantage is
the amount of computer time required to actually perform a large number of
permutations, each one being followed by recomputation of the test statistic. This
disadvantage vanishes as faster computers come on the market. As an example, let us

* For instance, when studying the differences among sample means (two groups: 7-test; several

groups: F test of ANOVA), the classical Behrens-Fisher problem (Robinson, 1982) reminds us
that two null hypotheses are tested simultaneously by these methods, i.e. equality of the means
and equality of the variances. Testing the 7 or F statistics by permutations does not change the
dual aspect of the null hypothesis; in particular, it does not allow one to unambiguously test the
equality of the means without checking first the equality of the variances using another, more
specific test (two groups: F ratio; several groups: Bartlett’s test of equality of variances).
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consider the situation where the significance of a correlation coefficient between two
variables, X and X, is to be tested.

Hypotheses
® Hy: The correlation between the variables in the reference population is zero (p = 0).
® For a two-tailed test, Hy: p # 0.

® Or for a one-tailed test, either H;: p >0, or Hy: p <0, depending on the ecological
hypothesis.

Test statistic

® Compute the son correlation coefficient r. Calculate the pivotal statistic
t = Jn-2[r/A1-7r"] (eq.4.13; n is the number of observations) and use it as the
reference value in the remainder of the test.

In this specific case, the permutation test results would be the same using either r or
t as the test statistic, because ¢ is a monotonic function of r for any constant value of n;
r and ¢ are “equivalent statistics for permutation tests”, sensu Edgington (1995). This is
not always the case. When testing a partial regression coefficient in multiple
regression, for example, the test should not be based on the distribution of permuted
partial regression coefficients because they are not monotonic to the corresponding
partial 7 statistics. The partial 7 should be preferred because it is pivotal and, hence, it is
expected to produce correct type I error.

Considering a pair of equivalent test statistics, one could choose the statistic which
is the simplest to compute if calculation time would otherwise be longer in an
appreciable way. This is not the case in the present example: calculating ¢ involves a
single extra line in the computer program compared to r. So the test is conducted using
the usual ¢ statistic.

Distribution of the test statistic

The argument invoked to construct a null distribution for the statistic is that, if the null
hypothesis is true, all possible pairings of the two variables are equally likely to occur.
The pairing found in the observed data is just one of the possible, equally likely
pairings, so that the value of the test statistic for the unpermuted data should be typical,
i.e. located in the central part of the permutation distribution.

® It is always the null hypothesis which is subjected to testing. Under Hy), the rows of
x; are seen as “‘exchangeable” with one another if the rows of x, are fixed, or
conversely. The observed pairing of x; and X, values is due to chance alone;
accordingly, any value of x; could have been paired with any value of x,.
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® A realization of H is obtained by permuting at random the values of x; while
holding the values of x, fixed, or the opposite (which would produce, likewise, a
random pairing of values). Recompute the value of the correlation coefficient and the
associated ¢ statistic for the randomly paired vectors x; and X,, obtaining a value t*.

® Repeat this operation a large number of times (say, 999 times). The different
permutations produce a set of values #* obtained under Hy,.

® Add to these the reference value of the ¢ statistic, computed for the unpermuted
vectors. Since H is being tested, this value is considered to be one that could be
obtained under Hj, and, consequently, it should be added to the reference distribution
(Hope, 1968; Edgington, 1995; Manly, 1997). Together, the unpermuted and permuted
values form an estimate of the sampling distribution of ¢ under Hy), to be used in the
next step.

Statistical decision

® As in any other statistical test, the decision is made by comparing the reference value
of the test statistic (¢) to the reference distribution obtained under Hy,. If the reference
value of 7 is typical of the values obtained under the null hypothesis (which states that
there is no relationship between x; and x,), Hj cannot be rejected; if it is unusual,
being too extreme to be considered a likely result under Hy, H is rejected and the
alternative hypothesis is considered to be a more likely explanation of the data.

® The significance level of a statistic is the proportion of values that are as extreme as,
or more extreme than the test statistic in the reference distribution, which is either
obtained by permutations or found in a table of the appropriate statistical distribution.
The level of significance should be regarded as “the strength of evidence against the
null hypothesis” (Manly, 1997).

3 — Numerical example

Let us consider the following case of two variables observed over 10 objects:

x; |-231] 1.06 | 0.76 | 1.38 |-0.26 | 1.29 |-1.31| 0.41 | -0.67 | -0.58
X, [-1.08| 1.03 | 0.90 | 0.24 | -0.24| 0.76 |-0.57|-0.05|-1.28 | 1.04

These values were drawn at random from a positively correlated bivariate normal
distribution, as shown in Fig. 1.6a. Consequently, they would be suitable for
parametric testing. So, it is interesting to compare the results of a permutation test to
the usual parametric #-test of the correlation coefficient. The statistics and associated
probabilities for this pair of variables, for v = (n — 2) = 8 degrees of freedom, are:

r=0.70156, t =2.78456, n = 10:
prob (one-tailed) = 0.0119, prob (two-tailed) = 0.0238.
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Figure 1.6 (a) Positions of the 10 points of the numerical example with respect to variables x; and Xx,.

(b) Frequency histogram of the (1 +999) permutation results (¢ statistic for correlation
coefficient); the reference value obtained for the points in (a), t = 2.78456, is also shown.

There are 10! = 3.6288 x 10° possible permutations of the 10 values of variable x;
(or X,). Here, 999 of these permutations were generated using a random permutation
algorithm; they represent a random sample of the 3.6288 x 10° possible permutations.
The computed values for the test statistic () between permuted x; and fixed x, have
the distribution shown in Fig. 1.6b; the reference value, ¢ = 2.78456, has been added to
this distribution. The permutation results are summarized in the following table, where
‘1]’ is the (absolute) reference value of the ¢ statistic ( | t| =2.78456) and ‘r*’ is a value
obtained after permutation. The absolute value of the reference ¢ is used in the table to
make it a general example, because there are cases where ¢ is negative.

t*<—|t| t*=—|t| —|t|<t*<|t| t*=|t| t*>|t|

Statistic t 8 0 974 17 17

T This count corresponds to the reference ¢ value added to the permutation results.

For a one-tailed test (in the right-hand tail in this case, since Hy: p > 0), one counts
how many values in the permutational distribution of the statistic are equal to, or larger
than, the reference value (#* > r; there are 1 + 17 = 18 such values in this case). This is
the only one-tailed hypothesis worth considering, because the objects are known in
this case to have been drawn from a positively correlated distribution. A one-tailed test
in the left-hand tail (H;: p<0) would be based on how many values in the
permutational distribution are equal to, or smaller than, the reference value (#* <7,
which are 8 + 0 + 974 +1 =983 in the example). For a two-tailed test, one counts all
values that are as extreme as, or more extreme than the reference value in both tails of
the distribution (| %] = ||, which are 8 + 0 + 1 + 17 = 26 in the example).
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Probabilities associated with these distributions are computed as follows, for a one-
tailed and a two-tailed test (results using the ¢ statistic would be the same):

One-tailed test [Hy: p =0; Hy: p > 0]:
prob (r* 22.78456) = (1 + 17)/1000 = 0.018

Two-tailed test [Hy: p = 0; Hy: p #0]:
prob( | 7| =2.78456) = (8 + 0 + 1 + 17)/1000 = 0.026

Note how similar the permutation results are to the results obtained from the
classical test, which referred to a table of Student ¢ distributions. The observed
difference is partly due to the small number of pairs of points (n = 10) sampled at
random from the bivariate normal distribution, with the consequence that the data set
does not quite conform to the hypothesis of normality. It is also due, to a certain extent,
to the use of only 999 permutations, sampled at random among the 10! possible
permutations.

4 — Remarks on permutation tests

In permutation tests, the reference distribution against which the statistic is tested is
obtained by randomly permuting the data under study, without reference to any
statistical population. The test is valid as long as the reference distribution has been
generated by a procedure related to a null hypothesis that makes sense for the problem
at hand, irrespective of whether or not the data set is representative of a larger
statistical population. This is the reason why the data do not have to be a random
sample from some larger statistical population. The only information the permutation
test provides is whether the pattern observed in the data is likely, or not, to have arisen
by chance. For this reason, one may think that permutation tests are not as “good” or
“interesting” as classical tests of significance because they might not allow one to infer
conclusions that apply to a statistical population.

A more pragmatic view is that the conclusions of permutation tests may be
generalized to a reference population if the data set is a random sample of that
population. Otherwise, they allow one to draw conclusions only about the particular
data set, measuring to what extent the value of the statistic is “usual” or “unusual” with
respect to the null hypothesis implemented in the permutation procedure. Edgington
(1995) and Manly (1997) further argue that data sets are very often not drawn at
random from statistical populations, but simply consist of observations which happen
to be available for study. The generalization of results, in classical as well as
permutation tests, depends on the degree to which the data were actually drawn at
random, or are equivalent to a sample drawn at random, from a reference population.

For small data sets, one can compute all possible permutations in a systematic way
and obtain the complete permutation distribution of the statistic; an exact or complete
permutation test is obtained. For large data sets, only a sample of all possible
permutations may be computed because there are too many. When designing a
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sampled permutation test, it is important to make sure that one is using a uniform
random generation algorithm, capable of producing all possible permutations with
equal probabilities (Furnas, 1984). Computer programs use procedures that produce
random permutations of the data; these in turn call the ‘Random’ function of computer
languages. Such a procedure is described in Section 5.8 of Manly’s book (1997).
Random permutation subprograms are also available in subroutine libraries.

The case of the correlation coefficient has shown how the null hypothesis guided
the choice of an appropriate permutation procedure, capable of generating realizations
of this null hypothesis. A permutation test for the difference between the means of two
groups would involve random permutations of the objects between the two groups
instead of random permutations of one variable with respect to the other. The way of
permuting the data depends on the null hypothesis to be tested.

Some tests may be reformulated in terms of some other tests. For example, the #-
test of equality of means is equivalent to a test of the correlation between the vector of
observed values and a vector assigning the observations to group 1 or 2. The same
value of ¢ and probability (classical or permutational) are obtained using both methods.

Simple statistical tests such as those of correlation coefficients or differences
between group means may be carried out by permuting the original data, as in the
example above. Problems involving complex relationships among variables may
require permuting the residuals of some model instead of the raw data; model-based
permutation is discussed in Subsection 11.3.2. The effect of a nominal covariable may
be controlled for by restricted permutations, limited to the objects within the groups
defined by the covariable. This method is discussed in detail by Manly (1997).
Applications are found in Brown & Maritz (1982; restrictions within replicated values
in a multiple regression) and in Sokal et al. (1987; Mantel test), for instance.

In sampled permutation tests, adding the reference value of the statistic to the
distribution has the effect that it becomes impossible for the test to produce no value
“as extreme as, or more extreme than the reference value”, as the standard expression
goes. This way of computing the probability is biased, but it has the merit of being
statistically valid (Edgington, 1995, Section 3.5). The precision of the probability
estimate is the inverse of the number of permutations performed; for instance, after
(999 + 1) permutations, the precision of the probability statement is 0.001.

The number of permutations one should perform is always a trade-off between
precision and computer time. The more permutations the better, since probability
estimates are subject to error due to sampling the population of possible permutations
(except in the rare cases of complete permutation tests), but it may be tiresome to wait
for the permutation results when studying large data sets. In the case of the Mantel test
(Section 10.5), Jackson & Somers (1989) recommend to compute 10000 to 100000
permutations in order to ensure the stability of the probability estimates. The following
recommendation can be made. In exploratory analyses, 500 to 1000 permutations may
be sufficient as a first contact with the problem. If the computed probability is close to
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the preselected significance level, run more permutations. In any case, use more
permutations (e.g. 10000) for final, published results.

Interestingly, tables of critical values in nonparametric statistical tests for small
sample sizes are based on permutations. The authors of these tables have computed
how many cases can be found, in the complete permutation distribution, that are as
extreme as, or more extreme than the computed value of the statistic. Hence,
probability statements obtained from small-sample nonparametric tests are exact
probabilities (Siegel, 1956).

Named after the famous casino of the principality of Monaco, Monte Carlo
methods use random numbers to study either real data sets or the behaviour of
statistical methods through simulations. Permutation tests are Monte Carlo methods
because they use random numbers to randomly permute data. Other such methods are
based on computer-intensive resampling. Among these are the jackknife (Tukey 1958;
Sokal & Rohlf, 1995) and the bootstrap (Efron, 1979; Efron & Tibshirani, 1993;
Manly, 1997). In these methods, the values used in each iteration to compute a statistic
form a subsample of the original data. In the jackknife, each subsample leaves out one
of the original observations. In the bootstrap, each subsample is obtained by
resampling the original sample with replacement; the justification is that resampling
the original sample approximates a resampling of the original population.

As an exercise, readers are invited to figure out how to perform a permutation test
for the difference between the means of two groups of objects on which a single
variable has been measured, using the 7 statistic; this would be equivalent to a ¢-test. A
solution is given by Edgington (1995). Other types of permutation tests are discussed
in Sections 7.3, 8.9, 10.2, 10.3, 10.5, 10.6, 11.3, 12.6, 13.1 and 13.3.

1.3 Computers

Processing complex ecological data sets almost always requires the use of a computer,
as much for the amount of data to be processed as for the fact that the operations to be
performed are often tedious and repetitious. Work with computers is made simple by
the statistical programs and packages available on microcomputers or on mainframes.
For those who want to develop new methods, advanced programming languages such
as S-PLUS® or MATLAB®, or the SAS® Language, may be extremely useful. One may
also complement programs written in one of the standard computer languages with
statistical subprograms drawn from libraries such as NAG® or IMSL®, which are
available at computing centres and contain subprograms for the numerical resolution
of most common numerical problems. The ease of using computers, however, has two
pitfalls that ecologists must bear in mind: the fact that computations are executed does
not ensure (1) that the data satisfy the conditions required by the method, or (2) that the
results produced by the computer are interpreted correctly in ecological terms.
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In fact, ecologists must thoroughly master the numerical methods they use. If they
do not, they may end up using approaches that are incompatible with their data, or
selecting techniques that do not correspond to the goal of the research, or else
interpreting the results either incompletely or incorrectly. The only role of the
computer is to relieve the user of the calculations; it makes no appraisal of the
pertinence of the selected method, or of the interpretation of the results. The aim of the
following chapters is to provide ecologists with a guide to the use of the many
numerical methods available, as well as the bases for translating, in ecological terms,
the pages of numbers produced by computers. Indeed, a computer output is not in itself
a conclusion and it will never replace ecologists for interpreting results.

Ten years ago, the statistical packages most widely available were BMDP®
(Biomedical Computer Programs), SPSS®  (Statistical Package for the Social
Sciences) and SAS® (Statistical Analysis System). Versions of these packages,
originally developed for mainframe computers, are now available for microcomputers
as well. A wide array of other programs and packages have also been developed for
microcomputers, giving users a wide choice. The selection of a given package for a
specific task may be guided by its availability for the user’s preferred machine, the
methods it contains, and its computer-friendliness. In everyday work, ecologists rely
nowadays on several packages, each specialized for specific tasks such as clustering,
ordination, canonical analysis, time series analysis, spatial analysis, graphics,
mapping, word processing, etc. While low-end microcomputers can perform most
everyday tasks of data analysis, high-end machines or mainframes retain their
usefulness to analyse large data bases or for permutation-based, computer-intensive
statistical testing methods.

A review of the contents of the main statistical packages available on the market is
beyond the scope of the present book, and would rapidly become obsolete. Such
reviews may be found in statistical Journals, for instance The American Statistician,
Applied Statistics, or Statistics and Computing. Lists of programs for some of the more
specialized fields of analysis will be provided in some chapters of this book.

Programs for all the numerical techniques described in the following chapters can
be found in one or several packages. It is, therefore, much more efficient for ecologists
to use these proven resources than to reprogram methods. Ecological data are, most of
the time, so complex that a single analysis cannot extract all their useful information.
Therefore, ecologists who judiciously use existing programs have access to a variety
of numerical methods, which are needed to cover the wide range of ecological
situations encountered in field studies.

1.4 Ecological descriptors

Descriptor  Any ecological study, classical or numerical, is based on descriptors. In the present
Variable text, the terms descriptor and variable will be used interchangeably. These refer to the
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attributes, or characters (also called items in the social sciences, and profiles or
features in the field of pattern recognition) used to describe or compare the objects of
the study. The objects that ecologists compare are the sites, quadrats, observations,
sampling units, individual organisms, or subjects which are defined a priori by the
sampling design, before making the observations (Section 2.1). Observation units are
often called “samples” by ecologists; the term sample is only used in this book to refer
to a set of observations resulting from a sampling action or campaign. Objects may be
called individuals or OTUs (Operational taxonomic units) in numerical taxonomy,
OGUs (Operational geographic units) in biogeography, cases, patterns or items in the
field of pattern recognition, etc.

The descriptors, used to describe or qualify the objects, are the physical, chemical,
ecological, or biological characteristics of these objects that are of interest for the
study. In particular, biological species are descriptors of sites for ecologists; in
(numerical) taxonomy on the contrary, the species are the objects of the study, and the
sites where the species are observed or collected may be used by the taxonomist as
descriptors of the species. It all depends on the variable defined a priori, which is fixed
as object for the study. In ecology, sites are compared using the species they contain,
there being no possibility of choosing the species, whereas taxonomists compare
populations or other taxonomic entities obtained from a number of different sites.

A descriptor is a law of correspondence established by the researcher to describe and
compare, on the same basis, all the objects of the study. This definition applies to all types of
descriptors discussed below (Table 1.2). The fundamental property of a descriptor, as understood
in the present book, is that it distributes the objects among non-overlapping states. Each
descriptor must, therefore, operate like a law that associates with each object in the group under
study one and only one element of a set of distinguishable states that belong to the descriptor.

The states that constitute a descriptor must necessarily be mutually exclusive. In
other words, two different states of the same descriptor must not be applicable to the
same object. Descriptors, on the contrary, do not have to be independent of one another
(see Box 1.1: independent descriptors). In Chapter 6, it will be seen that the
information contained in one descriptor may partially or totally overlap with the
information in an other. In Chapters 8 and 9, such redundant or correlated information
will be used as the basis for the clustering or ordination of ecological objects.

1 — Mathematical types of descriptor

The states which form a descriptor — that is, the qualities observed or determined
on the objects — may be of a qualitative or quantitative nature, so that descriptors may
be classified into several types. In ecology, a descriptor may be biological (presence,
abundance, or biomass of different species), physical, chemical, geological,
geographical, temporal, climatic, etc. Table 1.2 presents a classification of descriptors
according to their mathematical types. This classification is, therefore, independent of
the particular discipline to which the descriptors belong. The mathematical type of a
descriptor determines the type of numerical processing which can be applied to it. For
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Table 1.2

Relative scale
Interval scale

The different mathematical types of descriptors.

Descriptor types Examples

Binary (two states, presence-absence) Species present or absent

Multi-state (many states)

Nonordered (qualitative, nominal, attributes) Geological group
Ordered
Semiquantitative (rank-ordered, ordinal) Importance or abundance scores

Quantitative (metric, measurement)
Discontinuous (meristic, discrete) Equidistant abundance classes

Continuous Temperature, length

example, parametric correlations (Pearson’s r) may be calculated between quantitative
descriptors, while nonparametric correlations (such as Kendall’s T) may be used on
ordered but not necessarily quantitative descriptors, as long as their relationship is
monotonic. To measure the dependence among descriptors that are not in monotonic
relationship, or among qualitative descriptors, requires the use of other methods based
on contingency tables (Chapter 6). Section 1.5 and Chapter 10 will show how
descriptors of different mathematical types can be made compatible, in order to use
them together in ecological studies.

Quantitative descriptors, which are the most usual type in ecology, are found at the bottom
of Table 1.2. They include all descriptors of abundance and other quantities that can be plotted
on a continuous axis of real numbers. They are called quantitative, or metric (Falconer, 1960),
because they measure changes in a phenomenon in such a way that the difference between 1 and
2, for example, is quantitatively the same as the difference between, say, 6 and 7. Such
descriptors may be further subdivided into relative-scale quantitative variables, where value
‘zero’ means the absence of the characteristic of interest, and interval-scale variables where the
‘zero’ is chosen arbitrarily. For the latter type, the fact that the ‘zero’ reference is chosen
arbitrarily prevents comparisons of the type “this temperature (°C) is twice as high as that one”.
Species abundance data, or temperatures measured in Kelvin, are examples of the first type,
while temperature measured in degrees Celsius, dates, or geographic directions (of wind,
currents, etc.) in degrees, are examples of the second.

Continuous quantitative descriptors are usually processed as they are. If they are divided
into a small number of equidistant classes of abundance (further discussed below), the
discontinuous descriptors that are obtained may usually be processed as if they were continuous,
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because the distortion due to grouping is negligible for the majority of distribution types (Sneath
& Sokal, 1973). Before the advent of computers, it was usual practice, in order to facilitate
calculations, to divide continuous descriptors into a small number of classes. This
transformation is still necessary when, due to low precision of the measurements, only a small
number of classes can be distinguished, or when comparisons are sought between quantitative
and semiquantitative descriptors.

Meristic variables (the result of enumeration, or counting) theoretically should be
considered as discontinuous quantitative. In ecology, however, these descriptors are most often
counts of the number of specimens belonging to the various species, whose range of variation is
so large that they behave, for all practical purposes, as continuous variables. When they are
transformed (Section 1.5), as is often the case, they become real numbers instead of integers.

In order to speed up field observations or counts in the laboratory, it is often interesting for
ecologists to record observations in the form of semiquantitative descriptors. Usually, it is
possible to estimate environmental characteristics very rapidly by ascribing them a score using a
small number of ordered classes: score 1 < score 2 < score 3, etc. Ecologists may often proceed
in this way without losing pertinent information, whereas precise counts would have
necessitated more considerable efforts than required by the ecological phenomenon under study.
For example, in studying the influence of the unevenness of the landscape on the fauna of a
given area, it may be enough to describe the relief using ordered classes such as flat, undulated,
rough, hilly and mountainous. In the same way, counting large numbers of organisms may be
done using abundance scores instead of precise numbers of individuals. Frontier (1973), for
example, established such a scoring scale to describe the variability of zooplankton. Another
score scale, also developed by Frontier (1969) for counting zooplankton, was used to estimate
biomass (Dévaux & Millerioux, 1976b) and diversity of phytoplankton (Dévaux & Millerioux,
1977) as well as to evaluate schools of cetaceans at sea (Frontier & Viale, 1977). Frontier &
Ibanez (1974) as well as Dévaux & Millerioux (1976a) have shown that this rapid technique is
as informative as classical enumeration for principal component analysis (Section 9.1). It must
be noted that nonparametric statistical tests of significance, which are used on such
semiquantitative descriptors, have a discriminatory power almost equal to that of their
parametric equivalent. Naturally occurring semiquantitative descriptors, which give ranks to the
objects under study, as well as quantitative descriptors divided into non-equidistant classes
(which is done either to facilitate data gathering or to evidence holes in frequency distributions),
are included among the semiquantitative descriptors. Method 6.4 in Subsection 1.5.4 shows how
to normalize semiquantitative descriptors if they have to be used in methods of data analysis that
perform better in the presence of normality. Normalized semiquantitative descriptors should
only be interpreted in terms of the ordinal value that they really represent. On the other hand,
methods of data analysis may often be adapted to ranked data. This is the case, for example, with
principal component analysis (Lebart et al., 1979; Subsection 9.1.7) and linear regression (Iman
& Conover, 1979).

Qualitative descriptors often present a problem to ecologists, who are tempted to discard
them, or reduce them to a series of binary variables (Section 1.5, method 9). Let us forget the
cases where descriptors of this kind have been camouflaged as ordered variables by scientists
who did not quite know what to do with them ...Various methods based on contingency tables
(Chapter 6) may be used to compare such descriptors with one another, or to ordered descriptors
divided into classes. Special resemblance coefficients (Chapter 7) allow these descriptors to be
used as a basis for clustering (Chapter 8) or ordination (Chapter 9). The first paragraph of
Chapter 6 gives several examples of qualitative descriptors. An important class is formed by
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classifications of objects, which may in turn become descriptors of these objects for subsequent
analyses, since the definition of a classification (Section 8.1) corresponds to the definition of a
descriptor given above.

Binary or presence-absence descriptors may be noted + or —, or 1 or 0. In ecology, the most
frequently used type of binary descriptors is the presence or absence of species, when reliable
quantitative information is not available. It is only for historical reasons that they are considered
as a special class: programming the first computers was greatly facilitated by such descriptors
and, as a result, several methods have been developed for processing them. Sneath & Sokal
(1973) present various methods to recode variables into binary form; see also Section 1.5,
transformation method 7. Binary descriptors encountered in ecology may be processed either as
qualitative, semiquantitative or quantitative variables. Even though the mean and variance
parameters of binary descriptors are difficult to interpret, such descriptors may be used with
methods originally designed for quantitative variables — in a principal component analysis, for
instance, or as independent variables in regression or canonical analysis models.

When collecting ecological data, the level of precision with which descriptors are
recorded should be selected with consideration of the problem at hand. Quantitative
descriptors may often be recorded either in their original form or in semiquantitative or
qualitative form. The degree of precision should be chosen with respect to the
following factors: (1) What is the optimal degree of precision of the descriptor for
analysing this particular ecological phenomenon? (2) What type of mathematical
treatment will be used? This choice may determine the mathematical types of the
descriptors. (3) What additional cost in effort, time or money is required to raise the
level of precision? Would it not be more informative to obtain a larger number of less
precise data?

2 — Intensive, extensive, additive, and non-additive descriptors

There are other useful ways of looking at variables. Margalef (1974) classifies
ecological variables as either intensive or extensive. These notions are derived from
thermodynamics (Glandsdorff & Prigogine, 1971). A variable is said to be infensive if
its value is defined independently of the size of the sampling unit in which it is
measured. For example, water temperature is defined independently of the size of the
bucket of water in which a thermometer would be placed: we do not say “12°C per
litre” but simply “12°C”. This does not mean that the measured value of temperature
may not vary from place to place in the bucket; it may indeed, unless water is well-
mixed and therefore homogeneous. Concentration of organisms (number per unit
surface or volume), productivity, and other rate variables (e.g. birth, death) are also
intensive because, in a homogeneous system, the same value is obtained whether the
original measurements are made over 1 m? or over 100 m2. In contrast, an extensive
variable is one whose value, in a homogeneous system, changes proportionally (linear
relationship) to the size of the sampling unit (transect, quadrat, or volume). It is
formally defined as an integral over the sampling unit. Number of individuals and
biomass in a quadrat or volume, at a given point in time, are examples of extensive
variables.
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Extensive variables have the property that the values they take in two sampling
units can be added to provide a meaningful estimate of the value in the combined unit.
Other variables do not have this property; either they do not vary at all
(e.g. temperature in a homogeneous bucket of water, which is an intensive variable), or
they vary in a nonlinear way with the size of the sampling unit. For example, species
richness in a sampling unit (surface or volume) cannot be computed as the sum of the
numbers of species found in two sub-units; that sum would usually be larger than the
number of species actually found in the combined unit, because some species are
common to the two sub-units. Species diversity (Chapter 5) also has this property. The
relationship of such variables to scale is complex and depends on the distribution
patterns of the species and the size of the sampling units (grain size of the
measurements; He et al., 1994).

Another, more statistical point of view concerns additivity. This notion is well-
known in geostatistics (Olea, 1991, p. 2; Journel & Huijbregths, 1978). A variable is
said to be additive if its values can be added while retaining the same meaning as the
original variable. A good example is the number of individuals in a quadrat.
Concentrations, which are intensive variables, are additive if they are referred to the
same linear, surface or volume unit measure (e.g. individuals m‘z; kg m_3) (Journel &
Huijbregths, 1978, p. 199); values may be added to compute a mean for example.

Extensive variables (e.g. number of individuals) are, by definition, additive; a sum
or a mean has the same meaning as the original data although, if the sampling units
differ in size, the values must be weighted by the sizes of the respective sampling units
for their mean to be meaningful. For intensive additive variables (e.g. temperature or
concentration), only the (weighted) mean has the same meaning as the original values.
Variables may be additive over either time or space (Walliser, 1977); numbers of
individuals in quadrats, for example, are additive over space, but not over time if the
time lag between observations is shorter than the generation time of the organisms (the
same individuals would be counted several times).

Examples of non-additive variables are pH values, logarithms and ratios of random
variables, indices of various kinds, and directions of vectors (wind direction, aspect of
a slope, etc.). Values of non-additive variables must be transformed in some way
before (and if) they could be meaningfully combined. Logarithms of counts of
organisms, for instance, have to be back-transformed using antilogarithms before
values can be added; for ratios, the numerator and denominator must be added
separately, and the ratio recomputed from these sums. Other non-additive variables,
such as species richness and diversity, simply cannot be numerically combined; values
of these indices for combined sampling units must be recomputed from the combined
raw data.

These notions are of prime importance when analysing spatial data (Chapter 13).
To appreciate their practical usefulness, let us consider a study in which the following
variables have been measured at a site in a lake or in the ocean, at different times: solar
flux at water surface (W m_z), temperature (°C), pH, O, concentration (g m‘3),
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production of phytoplankton (gC m>s"), and concentration of zooplankton
(individuals m~>). All variables are intensive; they all have complex physical units,
except temperature (simple unit) and pH (no unit). Assuming that some form of
random sampling had been conducted with constant-sized observation units, how
could estimates be obtained for the whole study area? This question may be viewed
from two different angles, i.e. one may be looking for a mean or for an integral value
over the study area. For additive variables (i.e. all except pH), values can be computed
that represent the mean over the study area. However, integrating over the study area
to obtain values for total solar flux, zooplankton, etc. is not that simple, because it
requires the variables to be extensive. No extensive variable can be derived from
temperature or pH. In the case of variables with complex physical units, new variables
may be derived with units that are appropriate for integration:

® Consider O, concentration. Its physical dimensions (Section 3.1) are [ML_3], with
units g m~>. This indicates that the “mass” part (dimension [M], with unit g), which is
extensive, may be integrated over a volume, for example that of the surface mixed
layer over the whole study area. Also, values from different depths in the mixed layer
may be vertically integrated, to provide areal concentrations (dimensions [ML 2], with
units g m~2). The same applies to the concentration of zooplankton.

® Flux variables may be turned into variables that are additive over both space and
time. Phytoplankton production (dimensions [ML3T"!], with units gC m3sisa
flux variable since it is expressed per unit space and time. So, the extensive “mass”
part may be integrated over a volume or/and over time, e.g. the euphotic zone over the
whole study area or/and for the duration of the study. Values from different depths in
the euphotic zone may be vertically integrated, thus providing areal concentrations
(dimensions [ML’ZTl], with units g C m2 s’l), which could then be integrated over
time.

® Solar flux (W m2) represents a more complex case. The “power” part (W) can be
integrated over space (mz) only. However, because W =J s (Table 3.2), it is possible
to integrate the “energy” part (J) over both space and time. Since the solar flux is either
WmZorJm?2s, the “power” part may be integrated over space or, alternatively,
the “energy” part may be integrated over both surface (m?) and time (s). For example,
it is possible to compute solar energy over a given area during 24 h.

1.5 Coding

Coding is a technique by which original data are transformed into other values, to be
used in the numerical analysis. All types of descriptors may be coded, but nonordered
descriptors must necessarily be coded before they may be analysed numerically. The
functions or laws of correspondence used for coding qualitative descriptors are
generally discontinuous; positive integers are usually associated with the various
states.
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Consider the case where one needs to compute the dependence between a variable
with a high degree of precision and a less precisely recorded descriptor. Two
approaches are available. In the first approach, the precision of the more precise
descriptor is lowered, for example by dividing continuous descriptors into classes.
Computers can easily perform such transformations. Dependence is then computed
using a mathematical method adapted to the descriptor with the lowest level of
precision. In the second approach, the descriptor with the lower precision level will be
given a numerical scale adjusted to the more precise one. This operation is called
quantification (Cailliez & Pages, 1976; Gifi, 1990); one method of quantification using
canonical correspondence analysis is explained in Subsection 11.2.1. Other
transformations of variables, that adjust a descriptor to another, have been developed
in the regression framework; they are discussed in Section 10.3.

1 — Linear transformation

In a study where there are quantitative descriptors of different types (metres, litres,
mg Ll it may be useful to put them all on the same scale in order to simplify the
mathematical forms of relationships. It may be difficult to find an ecological
interpretation for a relationship that includes a high level of artificial mathematical
complexity, where scale effects are intermingled with functional relationships. Such
changes of scale may be linear (of the first order), or of some higher order.

A linear change of scale of variable y is described by the transformation
Y = by+b,y where y' is the value after transformation. Two different
transformations are actually included in this equation. The first one, translation,
consists in adding or subtracting a constant (b, in the equation) to all data.
Graphically, this consists in sliding the scale beneath the data distribution. Translation
is often used to bring to zero the mean, the modal class, the weak point of a bimodal
distribution, or another point of interest in the distribution. The second transformation,
expansion, is a change of scale obtained by multiplying or dividing all observed values
by a constant (b, in the equation). Graphically, this operation is equivalent to
contracting or expanding the scale beneath the distribution of a descriptor.

Two variables that are linearly related can always be put on the same scale by a
combination of a translation followed by an expansion, the values of parameters b
and b, being found by linear regression (model I or model II: Chapter 10). For
example (Fig. 1.7), if a linear regression analysis shows the equation relating y, to y,
to be 9, = b,+ by, (where J, represents the values estimated by the regression
equation for variable y, ), then transforming y, into y; = b+ b,y, successfully puts
variable y, on the same scale as variable y,, since $, = y',. If one wishes to
transform y, instead of y,, the regression equation should be computed the other way
around.
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Figure 1.7

Logarithmic
transfor-
mation
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Vi Y1 =bo+Dbyy,

The regression parameters (b and b;) found by regressing y, on y, (left panel) may be used
(right panel) to transform y, into ¥} such that y| is now on the same scale as y,.

2 — Nonlinear transformations

The methods of multidimensional analysis described in this book are often based on
covariances or linear correlations. Using them requires that the relationships among
variables be made linear by an appropriate transformation. When two variables are not
linearly related, their relationship may be described by a second- or higher-degree
equation, or by other functional forms, depending on the situation. If the nonlinear
form of the equation is derived from ecological theory, as it is often the case in
population dynamics models, interpretation of the relationship poses no problem. If,
however, a nonlinear transformation is chosen empirically, for reasons of mathematical
elegance and without grounding in ecological theory, it may be difficult to find an
ecological meaning to it.

The relationship between two variables may be determined with the help of a
scatter diagram of the objects in the plane formed by the variables (Fig. 1.8). The
principles of analytical geometry may then be used to recognize the type of
relationship, which in turn determines the most appropriate type of transformation. A
relationship frequently found in ecology is the exponential function, in which a
variable y, increases in geometric progression with respect to y, , according to one of
the following equations:

) 0140y (by3)

y )
y, = b(‘l ory, = bobl(yI ory, = byb, orelse y, = byb, (1.3)
depending on the number of constants b that shift or amplify the function. Such
relationships can easily be linearized by using the logarithm of variable y, (called y,
below) instead of y, itself. The above relationships then become:
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Figure 1.8 The relationship between variables may often be recognized by plotting them one against the

other. In the upper panel, y, varies as the natural logarithm of y, . In the lower panel, y, is an
exponential function of y,. These curves (and corresponding equations) may take different
forms, depending on the modifying constants b (eq. 1.3).

y, = log(y,) = b'y,,ory, =b+by,,
ory, =by,+b(y,+b,) ,ory, =b,+b b,y 1.4

where the b's are the logarithms of constants b in eq. 1.3.

If two variables display a logarithmic relationship of the form

Yy = logb (yl) (1.5)
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where b is the base of the logarithm, their relationship can be made linear by applying
alog™! transformation to Y,

(y,)
Y,=b" =y, (1.6)

When a nonlinear form may be assumed from knowledge of the ecological process
involved, the corresponding equation can be used as the basis for a linearizing
transformation. For instance, the nonlinear equation

N, = Ny (1.7)
describes the exponential growth of a population, as observed in population
explosions. In this equation, the independent variable is time (¢); Ny and N, are the
population sizes at times 0 and #, respectively; r is the Malthus parameter describing
the intrinsic rate of increase of the population. This nonlinear equation indicates that N,
must be transformed into its natural logarithm. After this transformation, In(¥,) is
linearly related to #: In(V,) = In(Ng) + rt.

3 — Combining descriptors

Another transformation which is often used consists in combining different descriptors
by addition, subtraction, multiplication or division. In limnology, for example, the
ratio (surface O,/ bottom O,) is often used as a descriptor. So is the Pearsall ionic ratio,
all ions being in the same physical units:

Na+ K
= - > 1.8

Mg + Ca (1.8)
Beware, however, of the spurious correlations that may appear when comparing ratio
variables to others. Jackson & Somers (1991a) describe the problem and recommend
that permutation tests (Section 1.2) be employed with ratios.

It may also be required to take into account a factor of magnitude or size. For
example, when observation units are of different sizes, the number of specimens of
each species may be divided by the area or the volume of the unit (depending on
whether the units come from an area or a volume), or by some other measure of the
sampling effort. One must exert care when interpreting the results, however, since
large observation units are more representative of populations than small ones.

4 — Ranging and standardization

Quantitative variables, used in ecology as environmental descriptors, are often
expressed in incompatible units such as metres, mg L, pH units, etc. In order to
compare such descriptors, or before using them together in a classification or
ordination procedure, they must be brought to some common scale. Among the
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methods available, some only eliminate size differences while others reduce both the
size and variability to a common scale.

Translation, a method previously discussed, allows one to centre the data,
eliminating size differences due to the position of the zero on the various scales.
Centring is done by subtracting the mean of the observations (¥) from each value y;:

Yi ==Y (1.9)

For relative-scale variables (Subsection 1.4.1), dividing each y, by the largest
observed value is a way, based on expansion, to bring all values in the range [0, 1]
(Cain & Harrison, 1958):

y; = yi/ymax (1'10)

For interval-scale variables, whose range may include negative values, the absolute
value of the largest positive or negative value is used as divisor. The transformed
values are in the interval [-1, +1].

Other methods allow the simultaneous adjustment of the magnitude and the
variability of the descriptors. The method of ranging, proposed by Sneath & Sokal
(1973), reduces the values of a variable to the interval [0, 1] by first subtracting the
minimum observed for each variable and then dividing by the range:

oo i Ymin (1.11)

i Ymax = Ymin
Equation 1.10 is the form of ranging (eq. 1.11) to use with relative-scale variables
(Subsection 1.4.1) for which y,,;, is always zero.

The most widely used method for making descriptors compatible is to standardize
the data (transformation into so-called “z-scores’). This method will be fully discussed
in Section 4.2, dealing with correlation. Principal components (Section 9.2) are
frequently computed using standardized data. Standardization is achieved by
subtracting the mean (translation) and dividing by the standard deviation (s y) of the
variable (expansion):

7, = =t 1.12)

The position of each object on the transformed variable z, is expressed in standard
deviation units; as a consequence, it refers to the group of objects from which s_ has
been estimated. The new variable z; is called a standardized variable. Such a variable
has three interesting properties: its mean is zero (Z = 0); its variance and hence its
standard deviation are 1 (s, = s_ = 1); it is also a dimensionless variable (Chapter 3)
since the physical dimensions (metres, mg L1, etc.) in the numerator and denominator
cancel out. Transformations 1.6, 1.8 and 1.9 also produce dimensionless variables.
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Beware of the “default options” of computer programs that may implicitly or
explicitly suggest to standardize all variables before data analysis. Milligan & Cooper
(1988) report simulation results showing that, for clustering purposes, if a
transformation is needed, the ranging transformation (egs. 1.10 and 1.11) gives results
that are in general far superior to those obtained using standardization (eq. 1.12).

5 — Implicit transformation in association coefficients

When descriptors with different scales are used together to compare objects, the choice
of the association coefficient (Section 7.6) may partly determine the type of
transformation that must be applied to the descriptors. Some coefficients give equal
weights to all variables independently of their scales while others take into account the
magnitude of variation of each one. Since the amount of information (in the sense of
information theory; Chapter 6) in a quantitative descriptor increases as a function of its
variance, equalizing the variances before the association coefficient is computed is a
way to ensure that all descriptors have the same weight. It is for ecologists to decide
the kind of contribution they expect from each descriptor; again, beware of the
“default options” of computer programs.

Some association coefficients require that the data be expressed as integers.
Depending on the capabilities of the computer program and the degree of
discrimination required, ecologists may decide to use the closest integer value, or to
multiply first all values by 10 or 100, or else to apply some other simple transformation
to make the data compatible with the coefficient to be computed.

6 — Normalization

Another type of transformation, called normalizing transformation, is performed on
descriptors to make the frequency distributions of their data values look like the
normal curve of errors — or, at least, as unskewed as possible. Indeed, several of the
methods used in multivariate data analysis have been developed under the assumption
that the variables are normally distributed. Although most of these methods do not
actually require full normality (i.e. no skewness nor kurtosis), they may perform better
if the distributions of values are, at least, not skewed. Skewed distributions, as in
Figs. 1.8 and 1.9, are such that the variance of the distribution is controlled mostly by
the few points in the extreme right tail; so, variance-partitioning methods such as
principal component analysis (Chapter 9) or spectral analysis (Chapter 12) would
bring out components expressing the variation of these few data points first instead of
the variation of the bulk of data values. Normalizing transformations also have the
property of reducing the heteroscedasticity of descriptors (Box 1.4).

The data analysis phase of research should always start by looking at the
distributions of values for the different variables, i.e. computing basic distribution
statistics (including skewness and kurtosis, eqs. 4.50-4.52), drawing histograms of
frequency distributions, and testing for normality (described in Section 4.9). A
normalizing transformation may have to be found for each variable separately; in other
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Homoscedasticity Box 1.4

Homoscedasticity, also called homogeneity or equality of the variances,
technically means that the variances of the error terms are equal for all
observations. Its antonym is heteroscedasticity or heterogeneity of the variances.
Homoscedasticity may actually refer to different properties of the data.

® For a single variable, homoscedasticity of the distribution means that, when the
statistical population is sampled repeatedly, the expected value of the variance
remains the same, whatever the value of the mean of the data sample. Data drawn
from a normal distribution possess this property whereas data drawn from a Poisson
distribution, for instance, do not since, in this type of distribution, the variance is
equal to the mean.

® In regression analysis, homoscedasticity means that, for all values of the
independent variable, the variances of the corresponding values of the dependent
variable (called “error variances”) are the same.

® [n t-test, analysis of variance and discriminant analysis, homoscedasticity means
that variances are equal in all groups, for each variable.

cases, one is looking for the best transformation that would normalize several
variables.

® 6.1 — Ecologists often encounter distributions where a species is abundant in a few
observation units (quadrats, etc.), fairly abundant in more, present in even more, and
absent in many; this is in agreement with the concept of ecological niche briefly
explained in Section 1.0, if the sampling programme covers a large enough area or
environmental gradient. Distributions of this type are clearly not normal, being
strongly skewed to the right (long tail in the higher values). Needless to say,
environmental variables may also have non-normal distributions. For instance, the
scales on which chemical variables are measured are conventions of chemistry which
have no relation whatsoever with the processes generating these values in nature. So,
any normalizing transformation is as good as the scale on which these data were
originally measured.

Skewed data are often transformed by taking logarithms (below) or square roots.
Square root is the least drastic transformation and is used to normalize data that have a
Poisson distribution, where the variance is equal to the mean, whereas the logarithmic
transformation is applicable to data that depart more widely from a normal distribution
(Fig. 1.9). Several intermediate transformations have been proposed between these
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Figure 1.9
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Numerical examples. Upper panel: Data that follow a Poisson distribution (left) can be
normalized by the square root transformation (right). For a given species, these frequencies may
represent the number of quadrats (ordinate) occupied by the number of specimens shown along
the abscissa. Lower panel: Data distribution (left) that can be normalized by a logarithmic

transformation (right).
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Figure 1.10  Numerical examples. Each histogram is labelled by the normalizing transformation to be used in

that case.

extremes (Fig. 1.10): cubic root, logz, log?, etc. The hyperbolic transformation is
useful for one particular type of data, which share the two extreme types at the same
time (when the standard deviation is proportional to the mean, with many observations
of a very small size which follow a Poisson distribution: Quenouille, 1950; Barnes,
1952). The angular or arcsine transformation is appropriate for percentages and

proportions (Sokal & Rohlf, 1981, 1995):

y; = arcsin,fy, 1.13)
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Logarithmic
transfor-
mation

Box-Cox
method

In case of doubt, one may try several of these transformations and perform a test of
normality (Section 4.7), or compute the skewness of the transformed data, retaining
the transformation that produces the most desirable results. Alternatively, the Box-Cox
method (point 6.2, below) may be used to find the best normalizing transformation.

A logarithmic transformation is computed as follows:
y; = log (b,+b,y,) (1.14)

The base of logarithm chosen has no influence on the normalising power, since
transformation from one base to another is a linear change of scale (expansion, see 1
above: log,y, = log_.y;,/log.d). When the data to be transformed are all strictly
positive (all y;, > 0), it is not necessary to carry out a translation (b, = 0). When the
data contain fractional values between 0 and 1, one may multiply all values by some
appropriate constant in order to avoid negative transformed values: y; = log (b,y,) .
When the data to be transformed contain negative or null values, a translation must be
applied first, y; = log (b, +y,) , since the logarithmic function is defined over the set
of positive real numbers only. One should choose for translation a constant b, which is
of the same order of magnitude as the significant digits of the variable to be
transformed; for example, b, = 0.01 for data between 0.00 and 0.09 (the same purpose
would have been achieved by selecting b, =1 and b, = 100). For species abundance
data, this rule produces the classical transformation y; = log (y,+1) .

® 6.2 — When there is no a priori reason for selecting one or the other of the above
transformations, the Box-Cox method allows one to empirically estimate what is the
most appropriate exponent of the following general transformation function:

yo= (v -1y (for y# 0) (1.15)

and y; = 1n(y,) (fory=0)

As before, y; is the transformed value of observation y,. In this transformation, the
value v is used that maximizes the following log likelihood function:

L=-(v/2)In(sy) + (y-1) (v/n) Y In(y) (1.16)

since it is this value which yields the best transformation to normality (Box & Cox,
1964; Sokal & Rohlf, 1995). The value L that maximizes this likelihood function is
found by iterative search. In this equation, s)2 is the variance of the transformed va;ues
y; - When analysing several groups of observations at the same time (below), s, is
estimated instead by the within-group, or residual variance computed in a one-way
ANOVA. The group size is n and v is the number of degrees of freedom (v =n — 1 if the
computation is made for a single group). All y, values must be strictly positive

numbers since logarithms are taken in the likelihood function L (eq. 1.16); all values
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Taylor’s
power law

Omnibus
procedure

may easily be made strictly positive by translation, as discussed in Subsection 1 above.
It is interesting to note that, if ¥ = 1, the function is a simple linear transformation; if
Y=1/2, the function becomes the square root transformation; when y=0, the
transformation is logarithmic; y = —1 yields the reciprocal transformation.

Readers are invited to take a value (say 150) and transform it, using eq. 1.15, with a
variety of values of y gradually tending toward O (say 1, 0.1, 0.01, 0.001, etc.).
Comparing the results to the logarithmic transformation will make it obvious that this
transformation is indeed the limit of eq. 1.15 when vy tends towards 0.

Another log likelihood function L' is proposed by Sokal & Rohlf (1995) in order to
achieve homogeneity of the variances for several groups of observations of a given
variable, together with the normality of their distributions. This generalized Box-Cox
transformation may also be applied to the identification of the best normalizing
transformation for several species, for a given set of sampling sites.

® 6.3 — When the data distribution includes several groups, or when the same
transformation is to be applied to several quantitative and dimensionally homogeneous
descriptors (Chapter 3; for instance, a species abundance data table), Taylor’s (1961)
power law provides the basis for another general transformation which stabilizes the
variances and thus makes the data more likely to conform to the assumptions of
parametric analysis, including normality (Southwood, 1966; see also Downing, 1979
on this subject). This law relates the means and variances of the k groups through
equation

2 b
sy, = a(y,) 1.17)
from which constants a and b can be computed by nonlinear regression. When the

latter is not available, an approximation of b may be calculated by linear regression of
the logarithmic form

log 5, =log a+blog 3, (1.18)

Having found the value of b, the variance stabilizing transformations

Y=y, (for b#2) 1.19)

or y: = In(y) (forb=2)
are applied to the data.

® 6.4 — The following method represents an omnibus normalizing procedure that
should be able to normalize most kinds of data. The procedure is easy to carry out
using most standard statistical packages running on microcomputers. The package
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Figure 1.11
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The omnibus procedure has been used to normalize a set of 200 data values with tri-modal
distribution (left). A normal curve has been fitted to the transformed data (right).

must have a pseudo-random number generator for random normal deviates, i.e. values
drawn at random from a normal distribution.

(1) Write the quantitative or semiquantitative descriptor to be normalized into a
data base. Sort the data base in increasing values for that descriptor. (2) Create a new
descriptor with the same number of values, using a pseudo-random normal deviate
generator. Write it into another data base and sort it also in order of increasing values.
(3) Copy the sorted normal deviate values into the sorted data base containing the
descriptor to be normalized. Sort the data base back into the original order if necessary.
(4) Use the normal deviates as a monotonic proxy for the original descriptor.
Figure 1.11 shows an example of this transformation.

This procedure may be modified to handle ex aequo (tied) values (Section 5.3).
Tied values may either receive the same normal deviate value, or they may be sorted in
some random order and given neighbouring normal deviate values; one should select a
solution that makes sense considering the data at hand.

Powerful as it is, this transformation only makes sense for data that have no more
than ordinal value in the analysis to be conducted. The transformed data may be used
in methods of data analysis that perform better in the presence of normality of the
distributions. Several such methods will be studied in chapters 9 and 11. The main
disadvantage is that a back-transformation is difficult. If the study requires that values
of this descriptor be forecasted by a model, the data base itself will have to be used to
find the original descriptor values which are the closest to the forecasted normal
deviate. An interpolation may have to be made between these values.



46

Complex ecological data sets

River
network

7 — Dummy variable (binary) coding

Multistate qualitative descriptors may be binary-coded as dummy variables. This
coding is interesting because it allows the use of qualitative descriptors in procedures
such as multiple regression, discriminant analysis or canonical analysis, that have been
developed for quantitative variables and in which binary variables may also be used. A
multistate qualitative descriptor with s states is decomposed into (s —1) dummy
variables. An example is the following four-state descriptor:

States Dummy variables
1 0 0

S|lo| o
— oo O

2 1 0
3 0 1
4 0 0

In this example, three dummy variables are sufficient to binary-code the four states of
the original nominal descriptor. Had a fourth dummy variable been included (shaded
column above), its information would have been totally linearly dependent (Box 1.1
and Section 2.7) on the first three variables. In other words, the first three dummy
variables are enough to determine the states of the multistate qualitative descriptor.
Actually, any one of the four dummy variables may be eliminated to return to the
condition of linear independence among the remaining ones.

Using this table, the objects are coded, in this example, by three dummy variables
instead of a single 4-state descriptor. An object with state 1, for instance, would be
recoded [1 0 0], an object with state 2, [0 1 0], and so on.

Other forms of binary coding have been developed for special types of variables. In
phylogenetic analysis, the states of multistate characters are sometimes related by a
hypothesized transformation series, going from the single hypothesized ancestral state
to all the advanced states; such a series can be represented by a directed network where
the states are connected by arrows representing evolutionary progression. A
transformation series may be coded into binary variables using a method proposed by
Kluge & Farris (1969). This same method may be applied to code the spatial
relationships among localities on any geographic network. An example in freshwater
ecology is a group of lakes connected by a river network (Fig. 1.12).

In this example, a picture made of rivers and lakes is drawn to represent the
network. A number is assigned to each river segment (which are the edges of the
connected graph), while nodes represent the furcation points. In Fig. 1.12, the coding
is based on the river segments; it could just as well be based on the nodes, if one felt
that the nodes are the important carriers of geographic information (as in Magnan et
al., 1994). If the phenomenon to be modelled is, for example, fish dispersal from
downstream, the arrows can be drawn going upstream, as in Fig. 1.12. In the lake-by-



Missing data 47

Figure 1.12
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Lakes interconnected by a river network (left) can be binary-coded as shown on the right.
Numbers are assigned in an arbitrary order to the edges (arrows) of the network. There is no use
in representing the “root” of the network (arrow 0); all lakes would be coded ‘1’ for that arrow.

arrow matrix, a value ‘1’ is assigned to each arrow found downstream from the lake,
meaning that the corresponding river segment is available for fish to reach that lake.
All other arrows are coded ‘0’ for the lake. The resulting matrix is a complete
numerical coding of the hydrographic network information: knowing the coding
procedure, one could reconstruct the picture from the matrix entries.

The coding method may be tailored to the ecological problem at hand. For a
dispersion phenomenon going downstream, arrows could point the other way around;
in this case, a lake would be coded ‘1’ in the table for arrows arriving in that lake from
upstream. The pattern of interconnections does not even need to be a tree-like
structure; it may form a more general type of directed network, but note that no cycle
is allowed. Coding the information allows the use of this type of geographical
information in different types of numerical models, like multiple regression
(Chapter 10) or canonical analysis (Chapter 11). In many of these methods, zeros and
ones are interchangeable.

1.6 Missing data

Ecological data matrices are often plagued by missing data. They do not necessarily
result from negligence on the part of the field team; most often, they are caused by the
breakdown of measuring equipment during field surveys, weather events that prevent
sampling sites from being visited on a given date, lost or incorrectly preserved
specimens, improper sampling procedures, and so on.
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Three families of solutions are available to cope with this problem for the analysis
of field survey data, if one can make the assumption that the missing values occur at
random in the data set. Most of the approaches mentioned below are discussed by
Little & Rubin (1987), who also propose methods for estimating missing values in
controlled experiments (when the missing values are only found in the outcome
variable; their Chapter 2) as well as valid model-based likelihood estimation of
missing values for situations where the distribution of missing values does not meet
the randomness assumption stated above.

Missing values may be represented in data matrices by numbers that do not
correspond to possible data values. Codes such as —1 or -9 are often used when the real
data in the table are all positive numbers, as it is the case with species abundance data;
otherwise, —99 or -999, or other such unambiguous codes, may be used. In
spreadsheets, missing values are represented by bullets or other such symbols.

1 — Deleting rows or columns

Delete any row or column of the data matrix (Section 2.1) containing missing values.
If a few rows contain most of the missing values, proceed by rowwise (also called
listwise) deletion; conversely, if most missing values are found in a few variables only,
proceed by columnwise deletion. This is the simplest, yet the most costly method, as it
throws away the valuable information present in the remainder of these rows or
columns.

2 — Accommodating algorithms to missing data

Accommodate the numerical method in such a way that the missing values are skipped
during calculations. For instance, when computing resemblance coefficients among
rows (Q-mode; Chapter 7) or columns (R-mode) of the data matrix, a simple method is
pairwise deletion of missing values. This means, for example, that when computing a
correlation coefficient between variables y; and y,, if the value of the tenth object is
missing for y,, object Xy is skipped in the computation of this correlation value. When
it comes to comparing y; and y3, if X;( has no missing data for these variables, it is
then kept in the calculation for this pair of variables. However, one must be aware that
covariance and correlation matrices computed in this way may be indefinite (i.e. they
may have negative eigenvalues; Table 2.2). Wishart (1978, 1985) lists several such
methods developed in the cluster analysis framework, that are used in the CLUSTAN
clustering package.

3 — Estimating missing values

Estimate the missing values (called imputation by Little & Rubin, 1987). This is the
best strategy when missing values are located all over the data matrix — contrary to
the situation where the missing values are found in a few rows or columns only, in
which case deletion of these rows or columns may be the strategy of choice. The
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assumption one has to make when estimating missing values is that the missing data
are not grossly atypical compared to those present in the data set. Methods for
estimating missing data are interesting in cases where the numerical algorithm
required for analysing the data set cannot accommodate missing values. Ecologists
should never imagine, however, that the estimated values are ecologically meaningful;
as a consequence, they should refrain from attempting to interpret these numbers in
ecological terms. Ecologists should also keep in mind that the estimation procedure
has not created the missing degrees of freedom that would have accompanied
observations carried out in nature or in the laboratory.

Three groups of methods are available for filling in missing values for quantitative
data.

® 3.1 — The easiest way, which is often used in computer programs, is to replace
missing values by the mean of the variable, estimated from the values present in the
data table. When doing so, one assumes that nothing is known about the data, outside
of the weak assumption mentioned above that the missing value comes from the same
population as the non-missing data. Although this solution produces covariance and
correlation matrices that are positive semidefinite (Section 2.10), the variances and
covariances are systematically underestimated. One way around this problem is to
select missing value estimates at random from some distribution with appropriate
mean and variance. This is not recommended, however, when the relative positions of
the objects are of interest (principal component analysis; Section 9.1). A variant of the
same method is to use the median instead of the mean; it is more robust in the sense
that it does not assume the distribution of values to be unskewed. It is also applicable
to semiquantitative descriptors. For qualitative descriptors, use the most frequent state
instead of the mean or median.

® 3.2 — Estimate the missing values by regression. Multiple linear regression
(Section 10.3), with rowwise deletion of missing values, may be used when there are
only a few missing values to estimate. The dependent (response) variable of the
regression is the descriptor with missing value(s) while the independent (explanatory)
variables are the other descriptors in the data table. After the regression equation has
been computed from the objects without missing data, it can be used to estimate the
missing value(s). Using this procedure, one assumes the descriptor with missing values
to be linearly related to the other descriptors in the data table (unless some form of
nonparametric or nonlinear multiple regression is being used) and the data to be
approximately multivariate normal. This method also leads to underestimating the
variances and covariances, but less so than in 3.1. An alternative approach is to use a
regression program allowing for pairwise deletion of missing values in the estimation
of the regression coefficients, although, in that case, a maximum likelihood estimation
of the covariance matrix would be preferable (Little & Rubin, 1987, p. 152 ef seq.).

If such a method cannot be used for estimating the covariance matrix and if the
missing values are scattered throughout the data table, an approximate solution may be
obtained as follows. Compute a series of simple linear regressions with pairwise



50

Complex ecological data sets

deletion of missing values, and estimate the missing value from each of these simple
regression equations in turn. The mean of these estimates is taken as the working
estimated value. The assumptions are basically the same as in the multiple regression
case (above).

To estimate missing values in qualitative (nominal) descriptors, use logistic
regression (Section 10.3) instead of linear regression.

® 3.3 — Interpolate missing values in autocorrelated data. Positive autocorrelation
(Section 1.1) means that near points in time or space are similar. This property allows
the interpolation of missing or otherwise unknown values from the values of near
points in the series. With spatial data, interpolation is the first step of any mapping
procedure, and it may be done in a variety of ways (Subsection 13.2.2), including the
kriging method developed by geostatisticians. The simplest such method is to assign to
a missing data the value of its nearest neighbour. In time series, interpolation of
missing values may be performed using the same methods; see also Shumway &
Stoffer, 1982, as well as Mendelssohn & Cury, 1987, for a maximum likelihood
method for estimating missing data in a time series using a state-space model.

Myers (1982, 1983, 1984) has proposed a method, called co-kriging, that combines
the power of principal component analysis (Section 9.1) with that of kriging. It allows
the estimation of unknown values of a data series using both the values of the same
variable at neighbouring sites and the known values of other variables, correlated with
the first one, observed at the same or neighbouring points in space; the spatial inter-
relationships of these variables are measured by a cross-variogram. This method
should become very important in the future, for estimating missing data in broad-scale
ecological surveys and to compute values at unobserved sites on a geographic surface.
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2 Matrix algebra:
a summary

2.0 Matrix algebra

Matrix language is the algebraic form best suited to the present book. As a
consequence, the following chapters will systematically use the flexible and synthetic
formulation of matrix algebra, with which many ecologists are already acquainted.

There are many reasons why matrix algebra is especially well suited for ecology.
The format of computer spreadsheets, in which ecological data sets are now most
often recorded, is a matrix format. The use of matrix notation thus provides an elegant
and compact representation of ecological information and matrix algebra allows
operations on whole data sets to be performed. Finally, multidimensional methods,
discussed in following chapters, are almost impossible to conceptualise and explain
without resorting to matrix algebra.

Matrix algebra goes back more than one century: “After Sylvester had introduced
matrices [...], it is Cayley who created their algebra [in 1851]” (translated from
Bourbaki, 1960). Matrices are of great conceptual interest for theoretical formulations,
but it is only with the increased use of computers that matrix algebra became truly
popular with ecologists. The use of computers naturally enhances the use of matrix
notation. Most scientific programming languages are adapted to matrix logic, some
languages allowing programmers to write matrix operations directly.

Ecologists who are familiar with matrix algebra could read Sections 2.1 and 2.2
only, where the vocabulary and symbols used in the remainder of this book are defined.
Other sections may be consulted whenever necessary.

The present chapter is only a summary of matrix algebra. Readers looking for more
complete presentations of the subject should consult Bronson (1989), where numerous
exercises are found; Graybill (1983), which provides applications in general statistics;
or the handbook by Searle (1966), which is oriented towards biological statistics. One
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Table 2.1

Ecological data matrix.

Descriptors
Objects yi Y2 Y3 Y Yp
X] Y11 Y12 Y13 yij Yip
X2 Y21 Y22 Y23 oee Yaj e Yop
X3 Y31 Y32 V33 V3 3p
Xi Yil Yi2 Vi3 Vij Yip
X, Ynl Yn2 Yn3 y,,j ynp

may also consult the book of Green & Carroll (1976), which stresses the geometric
interpretation of various matrix operations commonly used in statistics.

2.1 The ecological data matrix

Descriptor
Object

As explained in Section 1.4, ecological data are obtained as object-observations or
sampling units which are described by a set of state values corresponding to as many
descriptors, or variables. Ecological data are generally recorded in a table
(spreadsheet) where each column j corresponds to a descriptor y; (species present in
the sampling unit, physical or chemical variable, etc.) and each object i (sampling site,
sampling unit, locality, observation) occupies one row. In each cell (i,j) of the table is
found the state taken by object i for descriptor j (Table 2.1). Objects will be denoted by
a boldface, lower-case letter x, with a subscript i varying form 1 to n, referring to
object x;. Similarly, descriptors will be denoted by a boldface, lower case letter y
subscripted j, with j taking values from 1 to p, referring to descriptor y;. When
considering two set of descriptors, members of the second set will generally have
subscripts k from 1 to m.
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Following the same logic, the different values in a data matrix will be denoted by a
doubly-subscripted y, the first subscript designating the object being described and the
second subscript the descriptor. For example, yg; is the value taken by object 8 for
descriptor 3.

It is not always obvious which are the objects and which are the descriptors. In
ecology, for example, the different sampling sites (objects) may be studied with
respect to the species found therein. In contrast, when studying the behaviour or
taxonomy of organisms belonging to a given taxonomic group, the objects are the
organisms themselves, whereas one of the descriptors could be the types of habitat
found at different sampling sites. To unambiguously identify objects and descriptors,
one must decide which is the variable defined a priori (i.e. the objects). When
conducting field or laboratory observations, the variable defined a priori is totally left
to the researcher, who decides how many observations will be included in the study.
Thus, in the first example above, the researcher could choose the number of sampling
sites needed to study their species composition. What is observed, then, are the
descriptors, namely the different species present and possibly their abundances.
Another approach to the same problem would be to ask which of the two sets of
variables the researcher could theoretically increase to infinity; this identifies the
variable defined a priori, or the objects. In the first example, it is the number of
samples that could be increased at will — the samples are therefore the objects —
whereas the number of species is limited and depends strictly on the ecological
characteristics of the sampling sites. In the second example, the variable defined a
priori corresponds to the organisms themselves, and one of their descriptors could be
their different habitats (states).

The distinction between objects and descriptors is not only theoretical. One may
analyse either the relationships among descriptors for the set of objects in the study (R
mode analysis), or the relationships among objects given the set of descriptors (Q
mode study). It will be shown that the mathematical techniques that are appropriate for
studying relationships among objects are not the same as those for descriptors. For
example, coefficients of correlation can only be used for studying relationships among
descriptors, which are vectors with a theoretically infinite number of elements; they
are in fact limited by the sampling effort. It would be incorrect to use a correlation
coefficient to study the relationship between two objects for the set of descriptors,
other measures of association being available for this purpose (see Section 7.3).
Similarly, when using methods of multidimensional analysis, to be discussed later in
this book, it is important to know which are the descriptors and which are the objects,
in order to avoid methodological errors. The results of incorrectly conducted analyses
— and there are unfortunately many in the literature — are not necessarily wrong
because, in ecology, phenomena which are easily identified are usually sturdy enough
to withstand considerable distortion. What is a pity, however, is that the more subtle
phenomena, i.e. the very ones for which advanced numerical techniques are used,
could very well not emerge at all from a study based on inappropriate methodology.
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Linear

algebra

Order

Square
matrix

The table of ecological data described above is an array of numbers known as a
matrix. The branch of mathematics dealing with matrices is linear algebra.

Matrix Y is a rectangular, ordered array of numbers y;;, set out in rows and columns
as in Table 2.1:

Yudo ...
Yor Yoo o v Y2y

Y = [)’,-j] = * : (2-1)

nt Yu2 o o o Ynp)
There are n rows and p columns. When the order (also known as its dimensions or
format) of the matrix must be specified, a matrix of order (n X p), which contains n X p
elements, is written Y,,,. As above, any given element of Y is denoted y;;, where
subscripts i and j identify the row and column, respectively (always in that
conventional order).

In linear algebra, ordinary numbers are called scalars, to distinguish them from
matrices.

The following notation will be used hereinafter: a matrix will be symbolised by a
capital letter in boldface, such as Y. The same matrix could also be represented by its
general element in italics and in brackets, such as[y;], or alternatively by an
enumeration of all its elements, also in italics and in brackets, as in eq. 2.1. Italics will
only be used for algebraic symbols, not for actual numbers. Occasionally, other
notations than brackets may be found in the literature, i.e. (yl-j), ( y{ ). 1y, j} s , or

J
Vi
(iyj) .

Any subset of a matrix can be explicitly recognized. In the above matrix (eq. 2.1),
for example, the following submatrices could be considered:

Yii Y2
Yo1 Yo

a square matrix

Y12
Y

a row matrix [yn Vig o oo ylp} , or a column matrix
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Matrix notation simplifies the writing of data sets. It also corresponds to the way
computers work. Indeed, most programming languages are designed to input data as
matrices (arrays) and manipulate them either directly or through a simple system of
subscripts. This greatly simplifies programming the calculations. Accordingly,
computer packages generally input data as matrices. In addition, many of the statistical
models used in multidimensional analysis are based on linear algebra, as will be seen
later. So, it is convenient to approach them with data already set in matrix format.

2.2 Association matrices

Two important matrices may be derived from the ecological data matrix: the
association matrix among objects and the association matrix among descriptors. Any
association matrix is denoted A, and its general element g;;. Although Chapter 7 is
entirely devoted to association matrices, it is important to mention them here in order
to better understand the purpose of methods presented in the remainder of the present
chapter.

Using data from matrix Y (eq. 2.1), one may examine the relationship between the
first two objects x; and X,. In order to do so, the first and second rows of matrix Y

[yu y12'°°ylp] and [yzl yzz"'yzp]

are used to calculate a measure of association (similarity or distance: Chapter 7), to
assess the degree of resemblance between the two objects. This measure, which
quantifies the strength of the association between the two rows, is denoted ay,. In the
same way, the association of x; with x5, x4, ..., X, can be calculated, as can also be
calculated the association of x, with all other objects, and so on for all pairs of objects.
The coefficients of association for all pairs of objects are then recorded in a table,
ordered in such a way that they could be retrieved for further calculations. This table is
the association matrix A among objects:

Ay Ay« ap,

Ay Ayp =« + - Gy,

A =" : (2.2)

nn

A, Ay« ooy,

A most important characteristic of any association matrix is that it has a number of
rows equal to the number of columns, this number being equal here to the number of

objects n. The number of elements in the above square matrix is therefore n?,
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Similarly, one may wish to examine the relationships among descriptors. For the
first two descriptors, y; and y,, the first and second columns of matrix Y

Y1 Y12
Yau Yn
and
V] [Vn2]

are used to calculate a measure of dependence (Chapter 7) which assesses the degree
of association between the two descriptors. In the same way as for the objects, p X p
measures of association can be calculated among all pairs of descriptors and recorded
in the following association matrix:

A Ay o« alp

Ayy Ay + + Oy,

A,=1" . 2.3)

A 0 5 ee.d
L"pl “p2 22

Association matrices are most often symmetric, with elements in the upper right
triangle being equal to those in the lower left triangle (a;; = a;;). Elements a;; on the
diagonal measure the association of a row or a column of matrix Y with itself. In the
case of objects, the measure of association g;; of an object with itself usually takes a
value of either 1 (similarity coefficients) or O (distance coefficients). Concerning the
association between descriptors (columns), the correlation a; of a descriptor with
itself is 1, whereas the (co)variance provides an estimate a;; of the variability among
the values of descriptor i.

At this point of the discussion, it should thus be noted that the data, to which the
models of multidimensional analysis are applied, are not only matrix Y,,, = [objects x
descriptors] (eq. 2.1), but also the two association matrices A,,, = [objects X objects]
(eq. 2.2) and A, = [descriptors x descriptors] (eq. 2.3), as shown in Fig. 2.1.

2.3 Special matrices

Matrices with an equal number of rows and columns are called square matrices
(Section 2.1). These, as will be seen in Sections 2.6 ef seq., are the only matrices for
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Figure 2.1

Descriptors Objects
.a Y * Ann
8 P for Q-mode analysis
5
= App
é’ for R-mode analysis

Data analysed in numerical ecology include matrix Y,,, = [objects x descriptors] (eq. 2.1) as well
as the two association matrices A,, = [objects X objects] (eq. 2.2) and AW = [descriptors X
descriptors] (eq. 2.3). The Q and R modes of analysis are defined in Section 7.1.

which it is possible to compute a determinant, an inverse, and eigenvalues and
eigenvectors. As a corollary, these operations can be carried out on association
matrices, which are square matrices.

Some definitions pertaining to square matrices now follow. In matrix B,,,, of order
(n % n) (often called “square matrix of order n” or “matrix of order n”),

b, by,...b,

by byy v v by,
B = [b] =" . (2.4)

nn ij

L nl “n2 *°* Ynn
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the diagonal elements are those with identical subscripts for the rows and columns
(b;;). They are located on the main diagonal (simply called the diagonal) which, by
convention, goes from the upper left to the lower right corners. The sum of the
Trace diagonal elements is called the trace of the matrix.
Diagonal A diagonal matrix is a square matrix where all non-diagonal elements are zero.
matrix Thus,
300
070
000
is a diagonal matrix. Diagonal matrices that contain on the diagonal values coming
from a vector [x;] are noted D(x). Special examples used later in the book are the
diagonal matrix of standard deviations D (o) and the diagonal matrix of eigenvalues
D()), also noted A.
A diagonal matrix where all diagonal elements are equal to unity is called a unit
Identity matrix or identity matrix. It is denoted D (1) or I:
matrix
10...0
01...0
D(l) =1=|* . (2.5)
00...1]
This matrix plays the same role, in matrix algebra, as the number 1 in ordinary algebra,
i.e. it is the neutral element in multiplication (e.g. IB = BI = B).
Scalar Similarly, a scalar matrix is a diagonal matrix of the form
matrix

(70...0
07...0

=71

00...7

All the diagonal elements are identical since a scalar matrix is the unit matrix
multiplied by a scalar (here, of value 7).
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Null
matrix

Triangular
matrix

Transpose

A matrix, square or rectangular, whose elements are all zero is called a null matrix
. . *
or zero matrix. It is denoted 0 or [0].

A square matrix with all elements above (or below) the diagonal being zero is
called a lower (or upper) triangular matrix. For example,

123
045
006

is an upper triangular matrix. These matrices are very important in matrix algebra
because their determinant (Section 2.6) is equal to the product of all terms on the main
diagonal (i.e. 24 in this example). Diagonal matrices are also triangular matrices.

The transpose of a matrix B with format (n X p) is denoted B' and is a new matrix
of format (p X n) in which b; ;= b i In other words, the rows of one matrix are the
columns of the other. Thus, the transpose of matrix

1 23
B = 4 5 6
7 8 9
10 11 12
is matrix
14710
B = 125811
36912

Transposition is an important operation in linear algebra, and also in ecology where a
data matrix Y (eq. 2.1) is often transposed to study the relationships among descriptors
after the relationships among objects have been analysed (or conversely).

* Although the concept of zero was known to Babylonian and Mayan astronomers, inclusion of

the zero in a decimal system of numeration finds its origin in India, in the eighth century A.D. at
least (Ifrah, 1981). The ten Western-world numerals are also derived from the symbols used by
ancient Indian mathematicians. The word zero comes from the Arabs, however. They used the
word sifr, meaning “empty”, to refer to a symbol designating nothingness. The term turned into
cipher, and came to denote not only zero, but all 10 numerals. Sifr is at the root of the latin
zephirum, which became zefiro in Italian and was then abbreviated to zero. It is also the root of
the medieval latin cifra, which became chiffre in French where it designates any of the 10
numerals.
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Symmetric
matrix

Non-
symmetric
matrix

Skew-
symmetric
matrix

A square matrix which is identical to its transpose is symmetric. This is the case
when corresponding terms b;; and bj;, on either side of the diagonal, are equal. For
example,

146
425
653

is symmetric since B' = B. All symmetric matrices are square.

It was mentioned in Section 2.2 that association matrices are generally symmetric.
Non-symmetric (or asymmetric) matrices may be encountered, however. This happens,
for example, when each coefficient in the matrix measures the ecological influence of
an organism or a species on another, these influences being asymmetrical (e.g. A'is a
predator of B, B is a prey of A). Asymmetric matrices are also found in behaviour
studies, serology, DNA pairing analysis, etc.

Matrix algebra tells us that any non-symmetric matrix may be expressed as the sum
of two other matrices, one symmetric and one skew-symmetric, without loss of
information. Consider for instance the two numbers 1 and 3, found in opposite
positions (1,2) and (2,1) of the first matrix in the following numerical example:

112 2 1 20 15 1.0 0 -1.0 05 1.0
3 10-1_/20 1 1.0-25_|10 0 -1.0 L5
1 210 15 1.0 1 15 -05 1.0 0 -15
0-4 3 1 1.0-25 15 1 -1.0-15 15 0

Non-symmetric ~ Symmetric (average) Skew-symmetric

The symmetric part is obtained by averaging these two numbers: (1 + 3)/2 =2.0. The
skew-symmetric part is obtained by subtracting one from the other and dividing by 2:
(1-3)2= -1.0 and (3-1)/2=+1.0 so that, in the skew-symmetric matrix,
corresponding elements on either side of the diagonal have the same absolute values
but opposite signs. When the symmetric and skew-symmetric components are added,
the result is the original matrix: 2 — 1 = 1 for the upper original number, and 2+ 1 =3
for the lower one. Using letters instead of numbers, one can derive a simple algebraic
proof of the additivity of the symmetric and skew-symmetric components. The
symmetric component can be analysed using the methods applicable to symmetric
matrices (for instance, metric or non-metric scaling, Sections 9.2 and 9.3), while
analysis of the skew-symmetric component requires methods especially developed to
assess asymmetric relationships. Basic references are Coleman (1964) in the field of
sociometry and Digby & Kempton (1987, Ch. 6) in numerical ecology. An application
to biological evolution is found in Casgrain et al. (1996). Relevant biological or
ecological information may be found in the symmetric portion only and, in other
instances, in the skew-symmetric component only.
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2.4 Vectors and scaling

Vector

Another matrix of special interest is the column matrix, with format (n X 1), which is
also known as a vector. Some textbooks restrict the term ‘vector’ to column matrices,
but the expression row vector (or simply vector, as in Chapter 4) may also be used for
row matrices, with format (1 X p).

A (column) vector is noted as follows:

b=|" (2.6)

n

A vector generally refers to a directed line segment, forming a mathematical entity
on which operations can be performed. More formally, a vector is defined as an
ordered n-tuple of real numbers, i.e. a set of n numbers with a specified order. The n
numbers are the coordinates of a point in a n-dimensional Euclidean space, which may
be seen as the end-point of a line segment starting at the origin.

For example, (column) vector [4 3] is an ordered doublet (or 2-tuple) of two real

numbers (4, 3), which may be represented in a two-dimensional Euclidean space:

*(43)

This same point (4, 3) may also be seen as the end-point of a line segment starting at
the origin:

4.3)
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These figures illustrate the two possible representations of a vector; they also stress the
ordered nature of vectors, since vector [3 4]' is different from vector [4 3]'.

Using the Pythagorean theorem, it is easy to calculate the length of any vector. For
example, the length of vector [4 3]' is that of the hypotenuse of a right triangle with

base 4 and height 3:
3
-« 41—
Length The length (or norm) of vector [4 3]' is therefore /4%2+32 = 5 ; it is also the length
Norm (norm) of vector [3 4]'. The norm of vector b is noted ||b] .

The comparison of different vectors, as to their directions, often requires an

Scaling operation called scaling. In the scaled vector, all elements are divided by the same
Normali- characteristic value. A special type of scaling is called normalization. In the
zation normalized vector, each element is divided by the length of the vector:

normalization

N

Normalized The importance of normalization lies in the fact that the length of a normalized vector
vector is equal to unity. Indeed, the length of vector [4/5 3/5]', calculated by means of the
Pythagorean formula, is J(4/5)2+ (3/5)2 = 1.

The example of doublet (4, 3) may be generalized to any n-tuple (by, by, ..., b,),

which specifies a vector in n-dimensional space. The length of the vector is
[2 2 2 . . .
b, +b,+ ... + b, , so that the corresponding normalized vector is:
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b/ bl +bs+ ... +b b ]
b,/ b +bs+ ...+ b b,

= ! . 2.7)

/bf+b§+ +bi
b
b/ bl +by+ ...+ b -

The length of any normalized vector, in the n-dimensional space, is 1.

=

2.5 Matrix addition and multiplication

Recording the data in table form, as is usually the case in ecology, opens the possibility
of performing operations on these tables. The basic operations of matrix algebra
(algebra, from the Arabic “al-jabr” which means reduction, is the theory of addition
and multiplication) are very natural and familiar to ecologists.

Numerical example. Fish (3 species) were sampled at five sites in a lake, once a month
during the summer (northern hemisphere). In order to get a general idea of the differences
among sites, total numbers of fish caught at each site are calculated over the whole summer:

July August September Whole summer
Sitel | 1 5 35 15 23 10 48 78 170 64 106 215
Site2 |14 2 0 54 96 240 2 0 0 70 98 240
Site3 | 0 31 67/t 0 3 9/*t| 0 11 14| = 0 45 90

Site4 | 96 110 78 12 31 27 25 13 12 133 154 117
Site5 [ 0 0 O 814 6 131 96 43 139 110 49

spl sp2 sp3  spl sp2 sp3 spl sp2 sp3 spl sp2 sp3

This operation is known as matrix addition. Note that only matrices of the same
order can be added together. This is why, in the first matrix, site 5 was included even if
no fish had been caught there in July. Adding two matrices consists in a term-by-term
addition. Matrix addition is associative and commutative; its neutral element is the null
matrix 0.

To study seasonal changes in fish productivity at each site, one possible approach would be
to add together the terms in each row of each monthly matrix. However, this makes sense only if
the selectivity of the fishing gear (say, a net) is comparable for the three species. Let us imagine
that the efficiency of the net was 50% for species 2 and 25% for species 3 of what it was for
species 1. In such a case, values in each row must be corrected before being added. Correction
factors would be as follows: 1 for species 1, 2 for species 2, and 4 for species 3. To obtain
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Scalar
product

estimates of total fish abundances, correction vector [1 2 4]' is first multiplied by each row of
each matrix, after which the resulting values are added. Thus, for the first site in July:

Site 1 Correction Total fish abundance
July factors Site 1, July

1
[1535] ) (1x1) + (5%2) + (35%x4) = 1+10+140 = 151

4

This operation is known in linear algebra as a scalar product, because it is a
product of two vectors resulting in a scalar.

In physics, there is another product of two vectors, called the external or vector
product, where the multiplication of two vectors results in a third one which is
perpendicular to the plane formed by the first two. This product is not used in
multidimensional analysis. It is however important to know that, in the literature, the
expression “vector product” may be used for either this product or the scalar product of
linear algebra, and that the latter is also called “inner product” or “dot product”. The
vector product (of physics) is sometimes called “cross product”. This last expression is
also used in linear algebra, for example in “sum of squares and cross products” (SSCP)
which refers to the product of a matrix with its transpose.

In matrix algebra, and unless otherwise specified, multiplication follows a
convention which is illustrated by the scalar product above: in this product of a column
vector by a row vector, the row vector multiplies the column vector or, which is
equivalent, the column vector is multiplied by the row vector. This convention, which
should be kept in mind, will be followed in the remainder of the book.

The result of a scalar product is a number which is equal to the sum of the products
of those elements with corresponding order numbers. The scalar product is designated
by a dot, or is written <a,b>, or else there is no sign between the two terms. For
example:

be=bec= [bl bz---bj “| =bje; +bycy+ ... + by, =ascalar.  (2.8)

c

p]

The rules for computing scalar products are such that only vectors with the same
numbers of elements can be multiplied.
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Orthogonal
vectors

In analytic geometry, it can be shown that the scalar product of two vectors obeys
the relationship:

b ¢ ¢ = (length of b) X (length of ¢) X cos 6 2.9)

When the angle between two vectors is 0 = 90°, then cos 6 = 0 and the scalar product
b ¢ ¢ =0. As a consequence, two vectors whose scalar product is zero are orthogonal
(i.e. at right angle). This property will be used in Section 2.9 to compute eigenvectors.
A matrix whose (column) vectors are all at right angle of each other is called
orthogonal.

Numerical example. Returning to the above example, it is possible to multiply each row of
each monthly matrix with the correction vector (scalar product), in order to compare total
monthly fish abundances. This operation, which is the product of a vector by a matrix, is a
simple extension of the scalar product (eq. 2.8). The product of the July matrix B with the
correction vector ¢ is written as follows:

1 535 1(1) + 5(2) +35(4) 151
14 2 0|1 14(1) + 2(2) + 0(4) 18
0 3167||2 =] 0(1)+ 31(2) +67(4)| =330
96 110 78] |4 96 (1) + 110(2) + 78 (4) 628
0 00 0+ 0(2)+ 0(4) 0

The product of a vector by a matrix involves calculating, for each row of matrix B,
a scalar product with vector ¢. Such a product of a vector by a matrix is only possible if
the number of elements in the vector is the same as the number of columns in the
matrix. The result is no longer a scalar, but a column vector with dimension equal to
the number of rows in the matrix on the left. The general formula for this product is:

by, b12"'blq c, b“cl+blzcz+...+blch

by by o v bzq c, byc,+ byoy + oo+ bzch
Bygtcq= =

_bp1 bp2 .. bpq_ <4 _bplcl + bpzc2 + ...+ bpqc%
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Using summation notation, this equation may be rewritten as:

i
Zblkck

k=1

B, ec, = (2.10)

q
Z b,

k=1

The product of two matrices is the logical extension of the product of a vector by a
matrix. Matrix C, to be multiplied by B, is simply considered as a set of column
vectors €, €, ...; €q. 2.10 is repeated for each column. Following the same logic, the
resulting column vectors are juxtaposed to form the result matrix. Matrices to be
multiplied must be conformable, which means that the number of columns in the
matrix on the left must be the same as the number of rows in the matrix on the right.
For example, given

102 1 2

| 311 and C=121

121 3-1

~132 C=1[d e

the product of B with each of the two columns of C is:

1(1) +0(2) +2(3) 7 1(2) +0(1) +2(=1) 0
Bd=| 3D +1@+13)| _ | 8] L4 Bec| 3@ +1(1)+1(-1)| _ |6
1(1) +2(2) +1(3) 8 1(2) +2(1) +1(=1) 3
—1(1) +3(2) +2(3) 11 ~1(2) +3(1) +2(=1) -1

so that the product matrix is:

BC =

— 00 00
w N O

|
—_
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Thus, the product of two conformable matrices B and C is a new matrix with the same
number of rows as B and the same number of columns as C. Element d,-j, in row i and
column j of the resulting matrix, is the scalar product of row i of B with column j of C.

The only way to master the mechanics of matrix products is to go through some
numerical examples. As an exercise, readers could apply the above method to two
cases which have not been discussed so far, i.e. the product of a row vector by a
column vector, which gives a matrix and not a scalar, and the product of a matrix by a
row vector, which results in a row vector. This exercise would help to better understand
the rule of conformability.

As supplementary exercises, readers could calculate numerical examples of the
eight following properties of matrix products, which will be used later in the book:

(1) B,, C; D,y =E,, of order (p X 5).

(2) The existence of product BC does not imply that product CB exists, because
matrices are not necessarily conformable in the reverse order; however, C'C and CC'
always exist.

(3) BC is generally not equal to CB, i.e. matrix products are not commutative.
(4) B? = B x B exists only if B is a square matrix.

(5) [AB]' = B'A" and, more generally, [ABCD...]'=...D'C'B'A".

(6) The products XX' and X'X always give rise to symmetric matrices.

(7) In general, the product of two symmetric but different matrices A and B is not a
symmetric matrix.

(8) If B is an orthogonal matrix (i.e. a rectangular matrix whose column vectors are
orthogonal to one another), then B'B =D, where D is a diagonal matrix. All non-
diagonal terms are zero because of the property of orthogonality, while the diagonal
terms are the squares of the lengths of the column vectors. That B'B is diagonal does
not imply that BB' is also diagonal. BB' = B'B only when B is square and symmetric.

The last type of product to be considered is that of a matrix or vector by a scalar. It
is carried out according to the usual algebraic rules of multiplication and factoring,
i.e. for matrix B = [bjk] or vector ¢ = [cj], dB = [dbjk] and dc = [dcj]. For example:

I S I R
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The terms premultiplication and postmultiplication may be encountered in the
literature. Product BC corresponds to premultiplication of C by B, or to
postmultiplication of B by C. Unless otherwise specified, it is always premultiplication
which is implied and BC simply reads: C is multiplied by B.

2.6 Determinant

It is often necessary to transform a matrix into a new one, in such a way that the
information of the original matrix is preserved, while new properties which are
essential to subsequent calculations are acquired. Such matrices, which are linearly
derived from the original matrix, will be studied in following sections under the names
inverse matrix, canonical form, etc.

The new matrix must have a minimum number of characteristics in common with
the matrix from which it is linearly derived. The connection between the two matrices
is a matrix function f(B), whose properties are the following:

(1) The function must be multilinear, which means that it should respond linearly
to any change taking place in the rows or columns of the matrix.

(2) Since the order of the rows and columns of a matrix is specified, the function
should be able to detect, through alternation of signs, any change in the positions of
rows or columns. As a corollary, if two columns (or rows) are identical, f(B)=0;
indeed, if two identical columns (or rows) are interchanged, f(B) must change sign but
it must also remain identical, which is possible only if f(B) = 0.

(3) Finally, there is a scalar associated with this function; it is called its norm or
value. For convenience, the norm is calibrated in such a way that the value associated
with the unit matrix Lis 1, i.e. f(I) = 1.

It can be shown that the determinant, as defined below, is the only function which
has the above three properties, and that it only exists for square matrices. Therefore, it
is not possible to calculate a determinant for a rectangular matrix. The determinant of
matrix B is denoted det B or, more often, | B | :

b, by,...b,

b21 b22 ¢t b2n

nl “n2 *** “nn
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The value of function | B | is a scalar, i.e. a number.

What follows is the formal definition of the value of a determinant. The way to compute it in
practice is explained later. The value of a determinant is calculated as the sum of all possible
products containing one, and only one, element from each row and each column; these products
receive a sign according to a well-defined rule:

Bl = X(by; by, b, )

where indices jy, j,, ..., j,, g0 through the n! permutations of the numbers 1, 2, ..., n. The sign
depends on the number of inversions, in the permutation considered, relative to the regular
sequence 1, 2, ..., n: if the number of inversions is even, the sign is (+) and, if the number is
odd, the sign is (-).

The determinant of a matrix of order 2 is calculated as follows:

b, b
Bl = | "2 = b, by, —b,bs, 2.1D)
b21 b22

In accordance with the formal definition above, the scalar so obtained is composed of
2! =2 products, each product containing one, and only one, element from each row
and each column.

The determinant of a matrix of order higher than 2 may be calculated using
Expansion  different methods, among which is the expansion by minors. When looking for a
by minors  determinant of order 3, a determinant of order 3 — 1 =2 may be obtained by crossing
out one row (i) and one column (j). This lower-order determinant is the minor

associated with b;;:

crossing out row 1 and column 2

b, by, b by, by o1
b21 b22 b23 - b31 b33
by by, b

33 minor of b,

The minor being here a determinant of order 2, its value is calculated using eq. 2.11.
When multiplied by (=1)'*J, the minor becomes a cofactor. Thus, the cofactor of
b12 is:

1+2| by b - _ by, by

cof b, = (-1)
b3y b33 b3y b33

(2.13)
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The expansion by minors of a determinant of order 7 is:

B| = Zbijcof b,; for any column j (2.14)

i=1

n
B| = Z bcof b, for any row i
=1
The expansion may involve the elements of any row or any column, the result being

always the same. Thus, going back to the determinant of eq. 2.12, expansion by the
elements of the first row gives:

IB| = b, cof by, + by,cof by, + byscof by, (2.15)
b, b b, b b, b
B| = b“(—l)Hl 22 Po3 +b12(—1)1+2 21 o3 +b13(—1)1+3 21 P2
32 933 31 933 by, by,

Numerical example. Equation 2.15 is applied to a simple numerical example:
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1l
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+

= 1(5x10-6x8) —2(4x10-6x7) +3(4x8-5x7)= -3

~N B~ o=
o W N
AN W
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The amount of calculations required to expand a determinant increases very
quickly with increasing order n. This is because the minor of each cofactor must be
expanded, the latter producing new cofactors whose minors are in turn expanded, and
so forth until cofactors of order 2 are reached. Another, faster method is normally used
to calculate determinants by computer. Before describing this method, however, some
properties of determinants must be examined; in all cases, column may be substituted
for row.

(1) The determinant of a matrix is equal to that of its transpose, since a determinant
may be computed from either the rows or columns of the matrix: | A’ | = | A | .

(2) If two rows are interchanged, the sign of the determinant is reversed.

(3) If two rows are identical, the determinant is null (corollary of the second
property; see beginning of the present Section).



Determinant 71

Pivotal
condensation

(4) If a scalar is a factor of one row, it becomes a factor of the determinant (since it
appears once in each product).

(5) If a row is a multiple of another row, the determinant is null (corollary of
properties 4 and 3, i.e. factoring out the multiplier produces two identical rows).

(6) If all elements of a row are O, the determinant is null (corollary of property 4).

(7) If a scalar c is a factor of all rows, it becomes a factor ¢ of the determinant
(corollary of property 4), i.e. | cB | =" | B | .

(8) If a multiple of a row is added to another row, the value of the determinant
remains unchanged.

(9) The determinant of a triangular matrix (and therefore also of a diagonal matrix)
is the product of its diagonal elements.

(10) The sum of the products of the elements of a row with the corresponding
cofactors of a different row is equal to zero.

Properties 8 and 9 can be used for rapid computer calculation of the value of a
determinant; the method is called pivotal condensation. The matrix is first reduced to
triangular form using property 8. This property allows the stepwise elimination of all
terms on one side of the diagonal through combinations of multiplications by a scalar,
and addition and subtraction of rows or columns. Pivotal condensation may be
performed in either the upper or the lower triangular parts of a square matrix. If the
lower triangular part is chosen, the upper left-hand diagonal element is used as the first
pivot to modify the other rows in such a way that their left-hand terms become zero.
The technique consists in calculating by how much the pivot must be multiplied to
cancel out the terms in the rows below it; when this value is found, property 8 is used
with this value as multiplier. When all terms under the diagonal element in the first
column are zero, the procedure is repeated with the other diagonal terms as pivots, to
cancel out the elements located under them in the same column. Working on the pivots
from left to right insures that when values have been changed to 0, they remain so.
When the whole lower triangular portion of the matrix is zero, property 9 is used to
compute the determinant which is then the product of the modified diagonal elements.

Numerical example. The same numerical example as above illustrates the method:

1 2 3 1 2 3 1 2 3 1 2 3
45 6(~]0-3-6/=]0-3 -6|=]0-3-6
7 810 7 810 0-6-11 0 0 1
a b c
a: (row 2 -4 xrow 1) b: (row 3 -7 xXrow 1) c: (row 3 —2 X row 2)

The determinant is the product of the diagonal elements: 1 X (=3) X 1 = (-3).
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2.7 The rank of a matrix

Rank of
a square
matrix

A square matrix contains n vectors (rows or columns), which may be linearly
independent or not (for the various meanings of “independence”, see Box 1.1). Two
vectors are linearly dependent when the elements of one are proportional to those of
the other. For example:

—4 2 -4 2
_6| and |3| are linearly dependent, since |_g| = -2|3
-8 4 -8 4

Similarly, a vector is linearly dependent on two others, which are themselves
linearly independent, when its elements are a linear combination of the elements of the
other two. For example:

-1 [-1 1
3|-| ofand |2
4] |1 -3

illustrate a case where a vector is linearly dependent on two others, which are
themselves linearly independent, since

-1 -1 1
(=2)| 3 =] o/ +3|=2
4 1 -3

The rank of a square matrix is defined as the number of linearly independent row
vectors (or column vectors) in the matrix. For example:

1o
3 02 or:row 1 =row 2 —row 3

L 4 1-3 rank =2

(=2 X column 1) = column 2 + (3 X column 3)

-2 1 4
21 4 or:tow 1 =row 2 =row 3

-2 1 4] rank =1

(=2 X column 1) = (4 X column 2) = column 3

According to property 5 of determinants (Section 2.6), a matrix whose rank is lower
than its order has a determinant equal to zero. Finding the rank of a matrix may
therefore be based on the determinant of the lower-order submatrices it contains. The
rank of a square matrix is the order of the largest non-zero determinant it contains; this
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is also the maximum number of linearly independent vectors found among the rows or
the columns.

123
4 5 6| = -3#0,sothatthe rank = 3
7 810
-1-1 1 -1-1]_3
3 0-2(=0 3.0
4 1-3 rank = 2
Rank of a It is also possible to determine the rank of a rectangular matrix. Several square
rectangular  submatrices may be extracted from a rectangular matrix, by eliminating rows or/and
matrix columns from the matrix. The rank of a rectangular matrix is the highest rank of all the

square submatrices that can be extracted from it. A first example illustrates the case
where the rank of a rectangular matrix is equal to the number of rows:

2010-1-2 3 201
12200 1-1]—|122|=5 rank = 3
0123 1-10 012

In a second example, the rank is lower than the number of rows:

21 3 4 21 3 2 1 4 2 34 1 3 4
1 630[7|-163=|-160[/=|-130/=|630[=0
120-3 8 120 -3 120 8 1-3 8 20 -3 8
rank <3 — 21 =13 rank = 2
-1 6

In this case, the three rows are clearly linearly dependent: (2 X row 1) + (3 X row 2) =
row 3. Since it is possible to find a square matrix of order 2 that has a non-null
determinant, the rank of the rectangular matrix is 2.

2.8 Matrix inversion

In algebra, division is expressed as either ¢ + b, or ¢/b, or ¢ (1/b), or ¢ b!. In the last
two expressions, division as such is replaced by multiplication with a reciprocal or
inverse quantity. In matrix algebra, division of C by B does not exist. The equivalent
operation is multiplication of C with the inverse or reciprocal of matrix B. The inverse
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of matrix B is denoted B~ and the operation through which it is computed is called
inversion of matrix B.

To serve its purpose, matrix B! must be unique and the relation BB =B 'B=1
must be satisfied (see also the concept of generalized inverse in textbooks of advanced
linear algebra; several types of generalized inverse are not unique). It can be shown
that only square matrices have unique inverses; so, it is only for square matrices that
the relation BB™' = B™!B is satisfied. Indeed, there are rectangular matrices B for
which several matrices C can be found, satisfying for example CB =1 but not BC = 1.
There are also rectangular matrices for which no matrix C can be found such that
CB =1, whereas an infinite number of matrices C may exist that satisfy BC = 1. For

example:
c= |31 B=1 BC=zI
11 251
B=11o9
3-1 c=1[4154 CB=1  BC=I
7256
Inverse of To calculate the inverse of a square matrix B, the adjugate or adjoint matrix of B is
a square first defined. In the matrix of cofactors of B, each element b;; is replaced by its cofactor
matrix (cof byj; see Section 2.6). The adjugate matrix of B is the transpose of the matrix of
cofactors:
b, by,...b, cof by, cof by, ...cof b
by by o .. by, cof by, cof by, . ..cof b,
- . . (2.16)
b,b,...b,, cof b,, cof b, ...cof b,
matrix B adjugate matrix of B

In the case of second order matrices, cofactors are scalar values, e.g. cof by| = by»,
cof by =—byy, etc.
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The inverse of matrix B is the adjugate matrix of B divided by the determinant
| B | . The product of the matrix with its inverse gives the unit matrix:

[cof by, cof by, ... cof b, | [b,, byy...b]
cof by, cof by, . ..cof b, by by o . . by,

1

2 =1

B 2.17)
cof b, cof b,, ...cofb,, b,b,...b,,

B B
All diagonal terms resulting from the multiplication B~'B (or BB™!) are of the form
Zbijcof bii’ which is the expansion by minors of a determinant (not taking into
account, at this stage, the division of each element of the matrix by |B|). Each
diagonal element consequently has the value of the determinant |B| (eq. 2.14). All

other elements of matrix B~'B are sums of the products of the elements of a row with
the corresponding cofactors of a different row. According to property 10 of
determinants (Section 2.6), each non-diagonal element is therefore null. It follows that:

Bl 0...0| [10...0
0O Bl...0| |01...0

=" =1 (2.18)

0 0...B] [00...1

An important point is that B! exists only if IB| #0.A square matrix with a null
Singular determinant is known as a singular matrix and it has no inverse (but see singular value
matrix decomposition, Section 2.11). Matrices which can be inverted are called nonsingular.

Numerical example. The numerical example of Sections 2.6 and 2.7 is used again to
illustrate the calculations:

=N A~ =
oo WL N
S N W
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Gauss-
Jordan

The determinant is already known (Section 2.6); its value is —3. The matrix of cofactors is
computed, and its transpose (adjugate matrix) is divided by the determinant to give the inverse
matrix:

2 2-3 2 4-3 | 2 4-3

4-11 6 2-11 6 3 2-11 6

-3 6-3 -3 6-3 -3 6-3
matrix of cofactors adjugate matrix inverse of matrix

As for the determinant (Section 2.6), various methods exist for quickly inverting
matrices using computers; they are especially useful for matrices of higher rank.
Description of these methods, which are available in computer packages, is beyond the
scope of the present book. One such method is briefly explained here, because it is
somewhat similar to the pivotal condensation presented above for determinants.

Inversion of matrix B may be conducted using the method of Gauss-Jordan. To do so, matrix
B(;, x » is first augmented to the right with a same-size identity matrix I, thus creating a n X 2n
matrix. This is illustrated for n = 3:

b, b,03100
by by by 010
by by b3, 001

If the augmented matrix is multiplied by matrix C,,  ,), and if C = B!, then the resulting matrix
(n % 2n) has an identity matrix in its first n columns and matrix C = B! in the last 7 columns.

€1y €1p C13|| L1y by b3 100 100 ¢ ¢y
Cyy Cop Co3|| Doy bap bp3 0 10) =10 1.0 ¢y ¢py €55
€31 C3p C33)| b3y b3y b33 001 001 ¢35 ¢35 €35

This shows that, if matrix [B,I] is transformed into an equivalent matrix [L,C], then C = B~".
The Gauss-Jordan transformation proceeds in two steps.

* In the first step, the diagonal terms are used, one after the other and from left to right, as pivots
to make all the off-diagonal terms equal to zero. This is done in exactly the same way as for the
determinant: a factor is calculated to cancel out the target term, using the pivot, and property 8 of
the determinants is applied using this factor as multiplier. The difference with determinants is
that the whole row of the augmented matrix is modified, not only the part belonging to matrix B.
If an off-diagonal zero value is encountered, then of course it is left as is, no cancellation by a
multiple of the pivot being necessary or even possible. If a zero is found on the diagonal, this
pivot has to be left aside for the time being (in actual programs, rows and columns are
interchanged in a process called pivoting); this zero will be changed to a non-zero value during
the next cycle unless the matrix is singular. Pivoting makes programming of this method a bit
complex.
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* Second step. When all the off-diagonal terms are zero, the diagonal terms of the former matrix
B are brought to 1. This is accomplished by dividing each row of the augmented matrix by the
value now present in the diagonal terms of the former B (left) portion. If the changes introduced
during the first step have made one of the diagonal elements equal to zero, then of course no
division can bring it back to 1 and the matrix is singular (i.e. it cannot be inverted).

A Gauss-Jordan algorithm with pivoting is available in Numerical recipes (Press et al.,
1986, pp. 28-29).

Numerical example. To illustrate the Gauss-Jordan method, the same square matrix as
above is first augmented, then transformed so that its left-hand portion becomes the identity
matrix:

123 123100
(@45 6456010
7 8100 [7 810'0 0 1

12 3100 3 0-31-5 2 0 30012 —43
B 03 -6,-4 10 (©) |0-3-6-4 10 d) [0-3 0, 2-116
0—6—11:—701 0 0 1:1—21 001:1 21
row 2 — row 2 —4row 1 row 1 — 3row 1 + 2row 2 row 1 — row 1 + 3row 3
row 3 — row 3 — 7row 1 row 3 — row 3 — 2row 2 row 2 — row 2 + 6row 3

100,-2/3-4/3 1 2 4-3

(¢) 010 1-2/311/3 =2 (H =3 2-11 6

001 1 -2 1 -3 6-3

row 1 — (1/3) row 1 inverse of matrix B

row 2 — —(1/3) row 2
row 3 — row 3

The inverse of matrix B is the same as calculated above.
The inverse of a matrix has several interesting properties, including:
(HB'B=BB =1
@ B =v[B].
3 [B7'] =B.
@ BT =[B].
(5) If B and C are nonsingular square matrices, [BC]™' = C"'B~.

(6) In the case of a symmetric matrix, since B' = B, then [B1]'=BL
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Orthonormal
matrix

System of
linear
equations

Simple
linear
regression

(7) An orthogonal matrix (Section 2.5) whose column vectors are normalized
(scaled to length 1: Section 2.4) is called orthonormal. A square orthonormal matrix B
has the property that B' = B!, This may be shown as follows: on the one hand,
B 'B=1 by definition of the inverse of a square matrix. On the other hand, property 8
of matrix products (Section 2.5) shows that B'B = D(1) when the column vectors in B
are normalized (which is the case for an orthonormal matrix); D(1) is a diagonal
matrix of 1’s, which is the identity matrix I (eq. 2.5). Given that B'B = B 'B= I, then
B'=B~'. Furthermore, combining the properties BB~ = I (which is true for any square
matrix) and B' = B! shows that BB' = I. For example, the matrix of normalized
eigenvectors of a symmetric matrix, which is square and orthonormal (Section 2.9),
has these properties.

(8) The inverse of a diagonal matrix is a diagonal matrix whose elements are the
reciprocals of the original elements: [D (xl-)]_1 = D(1/x;).

Inversion is used in many types of applications, as will be seen in the remainder of this book.
Classical examples of the role of inverse matrices are solving systems of equations and the
calculation of regression coefficients.

A system of linear equations can be represented in matrix form; for example:

b+ 2by,+ 3by;=2 12 3 b, 2
4b + 5by+ 6by;=2 = |45 6||by| = |2
Tb, + 8by + 10b, =3 7810 b, 3

which may be written Ab = ¢. To find the values of the unknowns by, b, and b3, vector b must be
isolated to the left, which necessitates an inversion of the square matrix A:

-1
bil 12 372
byl =145 6 |2
b| 7810 |3

The inverse of A has been calculated above. Multiplication with vector ¢ provides the solution
for the three unknowns:

-1

b, |2 42
byl = 3| 211 6[[2[=73]| 0/ =] 0 )
b -3 6 -3]|3

NS RN
1]
- o

3

Regression analysis is reviewed in Section 10.3. Regression coefficients are easily calculated
for several models, using matrix inversion, so that the approach is briefly discussed here. The
mathematical model for simple linear regression (model I: Subsection 10.3.1) is § = b + byx.
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Least
squares

Multiple
linear
regression

Polynomial
regression

The regression coefficients by and b, are estimated from the observed data x and y. This is
equivalent to resolving the following system of equations:

Y =by+ bx; Y I x;
Yy =by+ bx, Yy I x,
bO
—)y: . X = A b =
bl
Yn = bO + blxn ¥yng ¥1 xng

Coefficients b are estimated by the method of least squares (Subsection 10.3.1), which
minimizes the sum of squares of the differences between observed values y and values ¥
calculated using the regression equation. In order to obtain a least-squares best fit, each member
(left and right) of matrix equation y =Xb is multiplied by the transpose of matrix X,
i.e. X'y = X'Xb. By doing so, the rectangular matrix X produces a square matrix X'X, which can
be inverted. The values of coefficients by and b; are computed directly after inverting the square
matrix [X'X]:

b=[XX]" [XY] (2.19)

Using the same approach, it is easy to compute coefficients by, by, ..., b, of a multiple linear
regression (Subsection 10.3.3). In this type of regression, variable y is a linear function of
several (p) variables x;, so that one can write: § = b+ byxy + ... + byx,. Vectors y and b and
matrix X are defined as follows:

Y lx”...xlp b,

Yy Ixy oo *2p 1
y = X = b =

V] ¥l Xpp v Xl ¥bpg

The least-squares solution is again eq. 2.19. However, readers should consult Section 10.3 for
computational methods to be used in multiple linear regression when the variables x; are
strongly intercorrelated, as is often the case in ecology.

In polynomial regression (Subsection 10.3.4), several regression parameters b,
corresponding to powers of a single variable x, are fitted to the observed data. The general
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regression model is y = by + byx + b2x2 + ...+ bkxk. The vector of parameters, b, is computed in
the same way. Vectors y and b, and matrix X, are defined as follows:

- = 1 2 k - =
¥, XX oo Xy 0
2 k
Yy 1x2x2...x2 bl
y: X: b:
[Vn| 1 x xz...xk ¥bkg
L "nn n]

The least-squares solution is computed using eq. 2.19. Readers should consult Section 10.3
where practical considerations concerning the calculation of polynomial regression with
ecological data are discussed.

2.9 Eigenvalues and eigenvectors

There are other problems, in addition to those examined above, where the
determinant and the inverse of a matrix are used to provide simple and elegant
solutions. An important one in data analysis is the derivation of an orthogonal form
(i.e. a matrix whose vectors are at right angles; Sections 2.5 and 2.8) for a non-
orthogonal symmetric matrix. This will provide the algebraic basis for most of the
methods studied in Chapters 9 and 11. In ecology, data sets generally include a large
number of variables, which are associated to one another (e.g. linearly correlated;
Section 4.2). The basic idea underlying several methods of data analysis is to reduce
this large number of intercorrelated variables to a smaller number of composite, but
linearly independent (Box 1.1) variables, each explaining a different fraction of the
observed variation. One of the main goals of numerical data analysis is indeed to
generate a small number of variables, each explaining a large portion of the variation,
and to ascertain that these new variables explain different aspects of the phenomena
under study. The present section only deals with the mathematics of the computation of
eigenvalues and eigenvectors. Applications to the analysis of multidimensional
ecological data are discussed in Chapters 4, 9 and 11.

Mathematically, the problem may be formulated as follows. Given a square matrix
A, one wishes to find a diagonal matrix which is equivalent to A. In ecology, square
matrices are most often symmetric association matrices (Section 2.2), hence the use of
symbol A:
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Canonical
form

all 6112 ...dl

Ay Ay o o o Uy,

_anl Ay » == Ay,

In matrix A, the terms located above and below the diagonal characterize the degree of
association of either the objects, or the ecological variables, with one another
(Fig. 2.1). In the new matrix A (capital lambda) being sought, all elements outside the
diagonal are null:

A, 0 ...0] [o...o0
0 Apovr O [0%...0

A<l = - : (2.20)
0 0 ...4,] |00...2%,

This new matrix is called the matrix of eigenvalues*. The new variables (eigenvectors;
see below) whose association is described by this matrix A are thus linearly
independent of one another. The use of the Greek letter A (lower-case lambda) to
represent eigenvalues stems from the fact that eigenvalues are actually Lagrangian
multipliers A, as will be shown in Section 4.4. Matrix A is known as the canonical
form of matrix A; for the exact meaning of canonical in mathematics, see
Subsection 10.2.1.

1 — Computation
The eigenvalues and eigenvectors of matrix A are found from equation
Alli = 7\«1'11[' (2.21)

which allows one to compute the different eigenvalues A; and their associated
eigenvectors u,. First, the validity of eq. 2.21 must be demonstrated.

* In the literature, the following expressions are synonymous:

eigenvalue eigenvector
characteristic root characteristic vector
latent root latent vector

Eigen is the German word for characteristic.
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To do so, one uses any pair / and i of eigenvalues and eigenvectors, corresponding to matrix
A. Equation 2.21 becomes

Aw,=2u, and Au;=Au;, respectively.
Multiplying the two equations by row vectors u'; and u'y, respectively, gives:

u,Au, = A, wu, and ujAu, = Auu,
It can be shown that, in the case of a symmetric matrix, the left-hand members of these two
equations are equal: w;Au, = u, Au,; this would not be true for an asymmetric matrix,
however. Using a (2 X 2) matrix A, readers can easily check that the equality holds only when
ajp =ay;, i.e. when A is symmetric. So, in the case of a symmetric matrix, the right-hand
members are also equal:

Augu, =Awu,

Since we are talking about two distinct values for A;, and A;, the only possibility for the above
equality to be true is that the product of vectors u;, and u; be 0 (i.e. wu, = w,u, = 0), which
is the condition of orthogonality for two vectors (Section 2.5). It is therefore concluded that
eq. 2.21

Aui = Xiui
can be used to compute vectors u; which are indeed orthogonal, when matrix A is symmetric. In
the case of a non-symmetric matrix, eigenvectors can also be calculated, but they are not

orthogonal and therefore not linearly independent.

If scalars A; and their associated vectors u; exist, then eq. 2.21 can be transformed
as follows:

Au; - Mu;=0 (difference between two vectors)
and vector u; can be factorized:
A-ADuy;=0 (2.22)

Because of the nature of the elements in eq. 2.22, it is necessary to introduce a unit
matrix I inside the parentheses, where one now finds a difference between two square
matrices. According to eq. 2.22, multiplication of the square matrix (A — A,I) with
column vector u; must result in a null column vector (0).

Besides the trivial solution, where u; is itself a null vector, eq. 2.22 has the
following solution:

|A-nI| =0 (2.23)
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Character-
istic equation

That is, the determinant of the difference between matrices A and A,I must be equal to
0 for each A;. Resolving eq. 2.23 provides the eigenvalues A; associated with matrix A.
Equation 2.23 is known as the characteristic or determinantal equation.

Demonstration of eq. 2.23 is as follows:

1) One solution to (A — A,I)u; = 0 is that u; is the null vector: u = [0]. This solution is trivial,
since it corresponds to the centroid of the scatter of data points. A non-trivial solution must thus
involve (A — AJ).

2) Solution (A — A1) = [0] is not acceptable either, since it implies that A = A,I and thus that
A be a scalar matrix, which is generally not true.

3) The solution thus requires that A; and u; be such that the product (A — AJ)u; is a null
vector. In other words, vector u; must be orthogonal to the space corresponding to A after A;I has
been subtracted from it; orthogonality of two vectors or matrices is obtained when their product
is equal to O (Section 2.5). Solution | A=Al | = 0 (eq. 2.23) means that, for each value A;, the
rank of (A — AJ) is lower than its order, which makes the determinant equal to zero
(Section 2.7). Each AT corresponds to one dimension of matrix A (Section 4.4). It is easy to
calculate the eigenvector u;, which is orthogonal to space (A — A,I) which is of lower dimension.
This eigenvector is the solution to eq. 2.22, which specifies orthogonality.

For a matrix A of order n, the characteristic equation is a polynomial of degree n,
whose solutions are the values A;. When these values are found, it is easy to use
eq. 2.22 to calculate the eigenvector u; corresponding to each eigenvalue A;. There are
therefore as many eigenvectors as there are eigenvalues.

There are methods which enable the quick and efficient calculation of eigenvalues
and eigenvectors by computer. Two of these are described in Subsection 9.1.8.

Ecologists, who are more concerned with shedding light on natural phenomena
than on mathematical entities, may have found unduly technical this discussion of the
computation of eigenvalues and eigenvectors. The same subject will be considered
again in Section 4.4, in the context of the multidimensional normal distribution.
Mastering the bases of this algebraic operation is essential to understand the methods
based on eigenanalysis (Chapters 9 and 11), which are of prime importance to the
analysis of ecological data.

2 — Numerical examples

Numerical example 1. The characteristic equation of symmetric matrix

glts
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6 — 4 -
24 — —
4 M=-1 ~_ 7\,1—4\)1
0 ~
27 -2 =0
0 7‘2 1 7"1 =6 ~ 4
=
< 6]
2 .
4 - -10 -
—12
-6 ~14 b
-8 -16
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Figure 2.2 (a) The eigenvalues of numerical example 1 are the values along the A axis where the function

A% =7\ + 6 is zero. (b) Similarly for numerical example 2, the eigenvalues are the values along
the A axis where the function A> =302 — 41 is zero.

is (eq. 2.23) {2 2}—7{1 OJ 0
25 01
therefore 22(_|»0 0
25 0 A
and thus 2-1 2 =0
2 5-A

The characteristic polynomial is found by expanding the determinant (Section 2.6):
2-MNGB-M-4=0
A -TA+6=0

which gives

from which it is easy to calculate the two values of A which satisfy the equation (Fig. 2.2a). The
two eigenvalues of A are therefore:

M=6 and Ay=1
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The ordering of eigenvalues is arbitrary; it would have been equally correct to state that
A;=1 and A, = 6. Equation 2.22 is used to calculate eigenvectors u; and u, corresponding to
eigenvalues A; and A,, respectively:

for\ =6 ford,=1
(22_610*]"1120 [ZZﬁ_lkIO]"’lz:O
25] [0 1])|uy, 25 [0 1])|uy
{—4 2} “l 1 o2l|ma] _
2 1] |uy| (2 4] |uy,

which is equivalent to the following pairs of linear equations:
4u11+2u21 =0 1M]2+2M22=0
2M11— 1bt21 =0 2u12+4u22=0

These sets of linear equations are always indeterminate. The solution is given by
any point (vector) in the direction of the eigenvector being sought. To remove the
indetermination, an arbitrary value is assigned to one of the elements u, which
specifies a particular vector. For example, value # = 1 may be arbitrarily assigned to
first term u in each set:

given that up =1 up =1

it follows that —4uy; + 2uy; =0 lupp + 2uypy =0
become —4+2uy; =0 142uy,=0
so that Uy =2 Uy =—1/2

Eigenvectors u; and u, are therefore:

B )

Values other than 1 could have been arbitrarily assigned to u;; and u;, (or, for that matter, to any
other term in each vector). For example, the following vectors also satisfy the two pairs of linear
equations, since these eigenvectors differ only by a multiplication by a scalar:

KNP
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This is the reason why eigenvectors are generally standardized. One method is to
assign value 1 to the largest element of each vector, and adjust the other elements
accordingly. Another standardization method, used for instance in principal component
and principal coordinate analyses (Sections 9.1 and 9.2), is to make the length of each
eigenvector u; equal to the square root of its eigenvalue (eigenvector scaled to ﬁ ).

Another, more common and more practical method, is to normalize eigenvectors,
i.e. to make their lengths equal to 1. Thus, a normalized eigenvector is in fact scaled to
1,1.e. u'u = 1. As explained in Section 2.4, normalization is achieved by dividing each
element of a vector by the length of this vector, i.e. the square root of the sum of
squares of all elements in the vector.

In the numerical example, the two eigenvectors

i K

4 - L
2/.5 -1/.5

are normalized to

Since the eigenvectors are both orthogonal and normalized, they are orthonormal (property 7 in
Section 2.8).

Had the eigenvectors been multiplied by a negative scalar, their normalized forms would
now be the following:

ERE
-2/.5 175

These forms are strictly equivalent to those above.

Since matrix A is symmetric, its eigenvectors must be orthogonal. This is easily verified as
their product is equal to zero, which is the condition for two vectors to be orthogonal
(Section 2.5):

wu,=[1,./5 2,03 LZ/ﬂ =2/5-2/5=0

1/.45

The normalized eigenvectors may be plotted in the original system of coordinates, i.e. the
Cartesian plane whose axes are the two original descriptors; the association between these
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descriptors is given by matrix A. This plot (full arrows) shows that the angle between the
eigenvectors is indeed 90° (cos 90° = 0) and that their lengths are 1:

W' s, avs)

(=25, IV5)
*

~N
~N

/
/

(2/V5, -1V3)

(=IN35, 2IV53)

The dashed arrows illustrate the same eigenvectors with inverted signs. The eigenvectors with
dashed arrows are equivalent to those with full arrows.

Resolving the system of linear equations used to compute eigenvectors is greatly
facilitated by matrix inversion. Defining matrix C,, = (A — A, I) allows eq. 2.22 to be
written in a simplified form:

C,u,=0 (224

nn=n

Indices n designate here the dimensions of matrix C and vector u. Matrix C,,,, contains
all the coefficients by which a given eigenvector u,, is multiplied. The system of
equations is indeterminate, which prevents the inversion of C and calculation of u. To
remove the indetermination, it is sufficient to determine any one element of vector u.
For example, one may arbitrarily decide that u; = o (ot # 0). Then,

Ci1 €2 ==« Cpp| | O 0
Cop Cog oo v Coul | U2 0
(€t €z v =+ Con (U 10]
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can be written

ClO+ Ccpuy + oo o U, 0
Cop O+ Cpplly + oo +Cp U, 0
_cnloc + Uyt e+ cnnun_ Y]
so that
Cppsy + oo o+ Cp 1, Ci
Coplly + oo o + Cy U, €y
= -
_anuz + ...+ cnnun_ _cnl_

After setting u; = a,, the first column of matrix C is transferred to the right. The last
n—1 rows of C are then enough to define a completely determined system. The first
row is removed from C in order to obtain a square matrix of order n — 1, which can be
inverted. The determined system thus obtained is:

Copplly + o oo+ Cy U, Cyy
= -0
Cpplly + oo+ Cpplty Ca)
which can be written CoinymnUun =-0€C, | (2.25)

This system can be resolved by inversion of C, as in Section 2.8:

-1

u, )= —ocC(n_]) -1 Cn-1) (2.26)
This method of computing the eigenvectors may not work, however, in the case of
multiple eigenvalues (see Property 3, below). The following example provides an
illustration of the computation through inversion.
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Numerical example 2. The characteristic polynomial (see eq. 2.23) of the asymmetric
matrix

A= W
—_ N

is A3 — 3A% — 4A = 0, from which the three eigenvalues 4, 0 and —1 are calculated (Fig. 2.2b).

The eigenvectors are computed by inserting each eigenvalue, in turn, into eq. 2.22. For
)\,1 =4

(1-4) 3 -1 [["1| o
0 (1-4) 2 |luy| =10
1 4 (1-9]luy| o

The above system is determined by setting u;; = 1. Using eq. 2.25 gives:

{(14) 2 }”21 =_1H
4 (-4 |uy, 1

from which it follows (eq. 2.26) that
-1
Uar| _ [ (1-4) 2 0
Usg 4 (1-4) -1

The inverse of matrix -3 2 is -3-2 so that
4 -3 -4 -3

Up| _ |-3-2]] 0| _ |2

Uz, -4 -3]|-1 3
The two other eigenvectors are computed in the same fashion, from eigenvalues A, =0 and
A3 =—1. The resulting matrix of eigenvectors (columns) is:

111 17 2
U= [“1 u, u3] =12-2/7-1/2 or else 2-2-1
3 1/7 1/2 311



90

Matrix algebra: a summary

which is normalized to:

027 095 0.82
U = |0.53 —0.27 -0.41
0.80 0.14 041

Readers can easily check that the above eigenvectors, which were extracted from a non-
symmetric matrix, are indeed not orthogonal; none of the scalar products between pairs of
columns is equal to zero.

2.10 Some properties of eigenvalues and eigenvectors

First property. — A simple rearrangement of eq.2.21 shows that matrix U of
eigenvectors is a transform matrix, allowing one to go from system A to system A.
Indeed, the equation can be rewritten so as to include all eigenvalues and eigenvectors:

AU=UA (2.27)

Numerical example. Equation 2.27 can be easily verified using numerical example 2 from
Section 2.9:

1 3-1|{1 7 2 1 7 21400
01 2{|12-2-1 = |2-2-1{{]0 0 0
14 1311 31 1][0 0-1
The left and right-hand sides of the equation are identical:
4 0-2 4 0-2
80 1= |80 1
12 0-1 12 0 -1

On the left-hand side of the equation, matrix A is postmultiplied by matrix U of the
eigenvectors whereas, on the right-hand side, the matrix of eigenvalues A is
premultiplied by U. It follows that U achieves a two-way transformation (rows,
columns), from reference system A to system A. This transformation can go both
ways, as shown by the following equations which are both derived from eq. 2.27:

A =UAU"! and A=U"'AU (2.28)

A simple formula may be derived from A = UAU™!, which can be used to raise
matrix A to any power x:

A* = (UAUHUA ... U \(uAau
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A*=UAUOA ... (U lu)au™!
A* = UA*U™!, because U'U =1

Raising a matrix to some high power is greatly facilitated by the fact that A* is the
matrix of eigenvalues, which is diagonal. Indeed, a diagonal matrix can be raised to
any power x by raising each of its diagonal elements to power x. It follows that the last
equation may be rewritten as:

A" =uut! (2.29)
This may easily be verified using the above example.

Second property. — It was shown in Section 2.7 that, when the rank (r) of matrix
A,,, is smaller than its order (r < n), determinant | A | equals 0. It was also shown that,
when it is necessary to know the rank of a matrix, as for instance in dimensional
analysis (Section 3.3), |A| =0 indicates that one must test for rank. Such a test
naturally follows from the calculation of eigenvalues. Indeed, the determinant of a
matrix is equal to the product of its eigenvalues:

Al =TT (2.30)

i=1

so that |A | = 0 if one or several of the eigenvalues A; = 0. When the rank of a matrix
is smaller than its order (r<mn), this matrix has (n—r) null eigenvalues. Thus,
eigenvalues can be used to determine the rank of a matrix: the rank is equal to the
number of nonzero eigenvalues. In the case of an association matrix among variables,
the number of nonzero eigenvalues (i.e. the rank of A) is equal to the number of
independent dimensions which are required to account for all the variance (Chapter 9).

Third property. — It was implicitly assumed, up to this point, that the eigenvalues
were all different from one another. It may happen, however, that some (say, m)
eigenvalues are equal. These are known as multiple eigenvalues. In such a case, the
question is whether or not matrix A, has n distinct eigenvectors. In other words, are
there m linearly independent eigenvectors which correspond to the same eigenvalue?

By definition, the determinant of (A — A1) is null (eq. 2.23):
A-21l=0

which means that the rank of (A—AJ) is smaller than n. In the case of multiple
eigenvalues, if there are m distinct eigenvectors corresponding to the m identical
eigenvalues A;, the determinant of (A — A;I) must be null for each of these eigenvalues,
but in a different way each time. When m = 1, the condition for | A-\I | =0 is for its
rank to be r =n — 1. Similarly, in a case of multiplicity, the condition for |A -1 | to
be null m times, but distinctly, is for its rank to be r =n —m. Consequently, for n
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distinct eigenvectors to exist, the rank of (A — A1) must be r = n — m, and this for any
eigenvalue A; of multiplicity m.

Numerical example. The following matrix has eigenvalues A; =1, = 1 and A3 = -1:

-1-2-22 50
A = 1 2 1 SOthat,fOI'?Ll:xz:], (A—]I) — 111
-1-1 0 -1-1-1

The rank of (A —A;I) is 7 =1 because all three columns of this matrix are identical. Thus, for
AM=XA=1(@m=2),n-m=3-2=1, so that r =n —m. It follows that there exist two distinct
eigenvectors u; and u,. They can indeed be found:

1 1 2
u =19 and u, = |1 whereas u; = |
-1 0 1

Eigenvectors u; and u, both correspond to multiple eigenvalue A = 1. Any linear combination of
such eigenvectors is also an eigenvector of matrix A corresponding to A. For example:

0 3
u-u, = |1 u +2u, = |9
-1 -1

It can easily be verified that the above two eigenvectors, or any other linear combination of u,
and u,, are indeed eigenvectors of A corresponding to A = 1. Of course, the new eigenvectors are
not linearly independent of u; and u,, so that there are still only two distinct eigenvectors
corresponding to multiple A = 1.

Numerical example. The eigenvalues of the following matrix are A; =3 and A, = A3 = 1:

A =

BRSNS I )

-1 1 I -1 1
3.0 so that, for A, = Ay = 1, (A-1D) = |3 2 2
1 0 4 1-1

The rank of (A — A1) is r = 2 because any two of the three rows (or columns) of this matrix are
independent of one another. Thus, for Ay =A3=1(m=2),n—-m=3-2=1, so that r#n—m.
The conclusion is that there do not exist two independent eigenvectors associated with the
eigenvalue of multiplicity m = 2.

In the case of a symmetric matrix, it is always possible to calculate m orthogonal
eigenvectors corresponding to multiple eigenvalues, when present. This is not
necessarily true for non-symmetric matrices, where the number of eigenvectors may be
smaller than m. Therefore, whatever their multiplicity, eigenvalues of most matrices of
interest to ecologists, including association matrices (Section 2.2), have distinct
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Table 2.2

Quadratic
form

Types of symmetric matrices and corresponding characteristics of their eigenvalues.

Symmetric matrix

Eigenvalues

All elements of matrix A are real
(i.e. non-imaginary)

Matrix A is positive definite

Matrix A,,, is positive semidefinite
and of rank r

Matrix A,,, is negative semidefinite
and of rank r

Matrix A,,, is indefinite and of rank r

Matrix A is diagonal

All eigenvalues are real (i.e. non-imaginary)

All eigenvalues are positive

There are r positive and (n — r) null
eigenvalues

There are r negative and (n — r) null
eigenvalues

There are r non-null (positive and negative)
and (n — r) null eigenvalues

The diagonal elements are the eigenvalues

eigenvectors associated with them. In any case, it is unlikely that eigenvalues of
matrices computed from real data be exactly equal (i.e. multiple).

Fourth property. — A property of symmetric matrices may be used to predict the
nature of their eigenvalues (Table 2.2). A symmetric matrix A may be combined with
any vector t # 0, in a matrix expression of the form t'At which is known as a quadratic
form. This expression results in a scalar whose value leads to the following definitions:

® if t'At is always positive, matrix A is positive definite;

® if t'At can be either positive or null, matrix A is positive semidefinite;

® if t'At can be either negative or null, matrix A is negative semidefinite;

® if t'At can be either negative, null or positive, matrix A is indefinite.
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2.11 Singular value decomposition

In a well-known theorem, Eckart & Young (1936) showed that any rectangular matrix
Y can be decomposed as follows:

Y(nxp) = V(nxp) W(diagonal, pxp) U'(pxp) (2.31)

where both U and V are column-orthonormal matrices (i.e. matrices containing
column vectors that are normalized and orthogonal to one another; Section 2.8) and W
is a diagonal matrix D(w;). The method is known as singular value decomposition
(SVD). The following illustration shows more clearly the shapes of these matrices:

W, 0 0 .. 0
0wy, 0 ... 0

Yo = Vsp) 0 0 wy... O U'pxp)
0 0 0 w

Demonstrating eq. 2.31 is beyond the scope of this book. The diagonal values w; in W
are non-negative; they are called the singular values of Y. The method is discussed in
more detail by Press et al. (1986 and later editions), who propose computer programs
for SVD". Programs are also available in major subroutine packages.

SVD offers a way of handling matrices that are singular (Section 2.8) or
numerically very close to singular. SVD may either give users a clear diagnostic of the
problem, or solve it. Singularity may be encountered when solving sets of
simultaneous linear equations represented by matrix equation Ab = ¢, where matrix A
is square (Section 2.8), A and ¢ are known, and b is unknown. A must be inverted in
order to find b. A can always be decomposed using eq. 2.31:

A=VDw)U

In that case, V, W and U are all square matrices of the same size as A. Using property 5
of matrix inverses (above), the inverse of A is simple to compute:

A= [VDw)UT! = [UT ' Dy V]!

* The Numerical recipes routines are available in FORTRAN and C from the following WWWeb

site: <http://www.nr.com>.
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Singular
matrix

Il1-
conditioned
matrix

Since U and V are orthonormal, their inverses are equal to their transposes (property
7), whereas the inverse of a diagonal matrix is a diagonal matrix whose elements are
the reciprocals of the original elements (property 8). So, one can write:

A= UDUW) V' (2.32)

It may happen that one or more of the w;’s are zero, so that their reciprocals are
infinite; A is then a singular matrix. It may also happen that one or more of the w,’s are
numerically so small that their values cannot be properly computed because of the
machine’s precision in floating point calculation; in that case, A is said to be ill-
conditioned. When A is singular, the columns of U corresponding to the zero elements
in W form an orthonormal basis” for the space where the system of equations has no
solution, whereas the columns of V corresponding to the zero elements in W are an
orthonormal basis for the space where the system has a solution. When A is singular or
ill-conditioned, it is still possible to find one or several vectors b that satisfy the set of
simultaneous linear equations, either exactly or approximately. How to find these
solutions is explained in the book of Press et al. (1986), for instance.

Singular value decomposition may be applied to situations where there are more
equations than unknowns (e.g.least-squares estimation of parameters, as in
Section 2.8), or fewer equations than unknowns. It may also be used for eigenvalue
decomposition, although it is not a general method for eigenanalysis; in particular, it
does not allow one to estimate negative eigenvalues. In the present book, SVD will be
used as one of the possible algorithms for principal component analysis
(Subsection 9.1.9) and correspondence analysis (Subsection 9.4.1).

* Aset of k linearly independent vectors form a basis for a k-dimensional vector space. Any

vector in that space can be uniquely written as a linear combination of the base vectors.
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Chapter

3  Dimensional
analysis in ecology

3.0 Dimensional analysis

Dimensional analysis is generally not part of the curriculum of ecologists, so that
relatively few are conversant with this simple but remarkably powerful tool. Yet,
applications of dimensional analysis are found in the ecological literature, where
results clearly demonstrate the advantage of using this mathematical approach.

“Dimensional analysis treats the general forms of equations that describe natural
phenomena” (Langhaar, 1951). The basic principles of this discipline were established
by physicists (Fourier, 1822; Maxwell, 1871) and later applied by engineers to the very
important area of small-scale modelling. Readers interested in the fundamentals and
engineering applications of dimensional analysis should refer, for example, to
Langhaar (1951), from which are taken several of the topics developed in the present
Chapter. Other useful references are Ipsen (1960), Huntley (1967), and Schneider
(1994).

The use of dimensional analysis in ecology rests on the fact that a growing number
of areas in ecological science use equations; for example, populations dynamics and
ecological modelling. The study of equations is the very basis of dimensional analysis.
This powerful approach can easily be used by ecologists, given the facts that it can be
reduced to a single theorem (the Il theorem) and that many of its applications
(Sections 3.1 and 3.2) only require a knowledge of elementary mathematics.

Dimensional analysis can resolve complex ecological problems in a simple and
elegant manner. Readers should therefore not be surprised that ecological applications
in the present Chapter are of a rather high level, since the advantage of dimensional
analysis lies precisely in its ability to handle complex problems. It follows that
dimensional analysis is mainly useful in those cases where it would be difficult to
resolve the ecological problem by conventional approaches.
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3.1 Dimensions

International
System
of Units

All fields of science, including ecology, rest on a number of abstract entities such as
the mass, length, time, temperature, speed, acceleration, radioactivity, concentration,
energy or volume. These entities, which can be measured, are called quantities.
Designing a system of units requires to: (1) arbitrarily choose a small number of
Sfundamental quantities, on which a coherent and practical system can be constructed,
and (2) arbitrarily assign, to each of these quantities, base units chosen as reference for
comparing measurements.

Various systems of units have been developed in the past, e.g. the British system
and several versions of the metric system. The latter include the CGS metric system
used by scientists (based on the centimetre, the gram and the second), the MKS (force)
metric system used by engineers (based on the metre, the kilogram and the second,
where the kilogram is the unit of force), and the MKS (mass) metric system (where the
kilogram is the unit of mass). Since 1960, there is an internationally accepted version
of the metric system, called the International System of Units (SI, from the French
name Systeme international d’unités). The SI is based on seven quantities, to which
are associated seven base units (Table 3.1; the mole was added to the SI'in 1971 only).
In addition to these seven base units, the SI recognizes two supplementary units, the
radian (rad) and the steradian (sr), which measure planar and solid angles, respectively.
All other units, called derived units, are combinations of the base and supplementary

Table 3.1

Base units of the International System of Units (SI).

Fundamental quantity —Quantity symbol* Dimension symbol Base unit  Unit symbol

mass m [M] kilogram kg
length I [L] metre’ m
time t [T] second s
electric current 1 1] ampere
thermodynamic temperature T# [6] kelvin*

amount of substance n [N] mole mol
luminous intensity I, [J] candela cd

* Quantity symbols are not part of the SI, and they are not unique.
i Spelled meter in the United States of America.

fIn ecology, temperature is generally measured on the Celsius scale, where the unit is the
degree Celsius (°C); the quantity symbol for temperatures expressed in °C is usually 7.
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Dimension

units. Some frequently used derived units have special names, e.g. volt, lux, joule,
newton, ohm. It must be noted that: (1) unit names are written with small letters only,
the sole exception being the degree Celsius; (2) unit symbols are written with small
letters only, except the symbols of derived units that are surnames, whose first letter is
a capital (e.g. Pa for pascal), and the litre (see Table 3.2, footnote). Unit symbols are
not abbreviations, hence they are never followed by a point.”

Table 3.2 shows that derived units are not only simple products of the fundamental
units, but that they are often powers and combinations of powers of these units.
Maxwell (1871) used symbols such as [M], [L], [T], and [6] to represent the quantities
mass, length, time and temperature (Table 3.1). The dimensions of the various
quantities are products of powers of the symbols of fundamental quantities. Thus, the
dimension of an area is [L2], of a volume [L3], of a speed [LT_I], and of an
acceleration [LT2]. Table 3.2 gives the exponents of the dimensional form of the most
frequently encountered quantities.

Since the various quantities are products of powers, going from one quantity to
another is done simply by adding (or subtracting) exponents of the dimensions. For
example, one calculates the dimensions of heat conductivity W (m K)~! by subtracting,
from the dimension exponents of power W, the sum of the dimension exponents of
length m and of temperature K:

IMIL2T3]/ (LY x [8']) = IMIL@ - D139 (D) = (MILIT 307

The first three fundamental quantities (Table 3.1), mass [M], length [L], and time
[T], are enough to describe any Newtonian mechanical system. Ecologists may
require, in addition, temperature [0], amount of substance [N], and luminous intensity
[J]. Research in electromagnetism calls for electric current [I] and, in quantum
mechanics, one uses the quantum state of the system ['].

Four types of entities are recognized:
(1) dimensional variables, e.g. most of the quantities listed in Table 3.2;

(2) dimensional constants, for instance: the speed of light in vacuum [LTI],
€=2.998 x 108 m s’l; the acceleration due to Earth’s gravity at sea level [LTZ],
£2=9.807m s’z; the number of elementary entities in a mole N = 6.022 X 105 mol’l,
where N, is the Avogadro number (note that the nature of the elementary entities in a
mole must always be specified, e.g. mol C, mol photons);

A program (for MS-DOS machines), called The Unit Calculator, deals with most problems

involving physical measurement units. It recognizes over 600 units commonly used in science
and business. This program may be used to: convert data, for instance between the American and
International System of Units; carry out calculations, even with mixed units; and perform
computations on the units themselves, from checking that physical equations are homogeneous
to actual dimensional analysis. The program is distributed by: Applied Biomathematics, 100
North Country Road, Setauket, New York 11733, U.S.A.
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Table 3.2 Dimensions, units, and names of quantities. Units follow the standards of the International
System of Units (SI).

Quantity [M] [L] [T] [1] [6] [N] [J] Units Name"
mass 1 0 0 0 0 0 O kg kilogram
length 01 0 0 0 0 O metre
time 0 0 1 0 0 0 O S second
electric current 0 0 O 1 0 0 O A ampere
temperature 0 0 O 01 0 O K kelvin
amount of substance 0 0 O 00 1 0 mol mole
luminous intensity 0 0 O 0 0 0 1 cd candela
absorbed dose 0 2 -2 0 0 0 O J kg’1 =Gy gray
acceleration (angular) 0 0-=2 0 0 0 O rad s~

acceleration (linear) 0 1 =2 0 0 0 O ms™

activity of radioactive source 0 0-1 00 0 O sh= Bq becquerel
angle (planar) 0 0 O 0 0 0 O rad radian
angle (solid) 0 0 O 0 0 0 O sr steradian
angular momentum 1 2 -1 0 0 0 O kg m? s~}

angular velocity 0 0 -1 0 0 0 0 rad s~

area 020 0000 m?

compressibility -1 1 2 0 0 0 O Pa’!

concentration (molarity) 0-3 0 0 0 1 O mol m™

current density 0-2 0 1 0 0 O Am™?

density (mass density) 1 -3 0 0 0 0 O kg m™

electric capacitance -1 -2 4 2 0 0 O cvl=F farad
electric charge 0 0 1 1 0 0 O As=C coulomb
electric conductance -1 -2 3 2 0 0 O Ql=s siemens
electric field strength 1 1 -3 -1 0 0 O Vm!

electric resistance 1 23 -2 0 0 0 VATl=0 ohm
electric potential 1 23 -1 0 0 O WA=V volt
energy 1 22 0 0 0 O Nm=]J] joule
force 1 1-=2 0 0 0 O kgl ms2=N newton
frequency 0 0 -1 0 0 0 O s =Hz hertz
heat capacity 1 22 0-1 0 O JK!

heat conductivity 1 1-3 0-1 0 0 W(mK)™!

heat flux density 1 0 -3 00 0 0 W m™2

illuminance 0-2 0 0 0 0 1 Imm2=1x lux
inductance 1 22 =200 0 WbA~'=H henry
light exposure 0-2 1 0 0 0 1 Ix s

luminance 0-2 0 00 0 1 cdm™

Iuminous flux 0 0 O 0 0 0 1 cd sr=1Im lumen

* Only base units and special names of derived units are listed.

¥ The litre (spelled liter in the United States of America) is the capacity (vs. cubic) unit of
volume. Its symbol (letter 1) may be confused with digit one (1) in printed texts so that it was
decided in 1979 that capital L could be used as well; 1 m3 =1000L.
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Table 3.2

Dimensions, units, and names of quantities (continued).

Quantity [M] [L] [T] [1] [6] [N] [J] Units Name
magnetic field strength 0-1 0 1 0 0 O Am™!

magnetic flux 1 22 -1 0 0 O Vs=Wb weber
magnetic flux density 1 02 -1 0 0 O Wbm2=T tesla
magnetic induction 1 0-=2 -1 0 0 O Wbm?2=T tesla
magnetic permeability 1 12 2000 Qsm™!

mass flow rate 1 0 -1 0 0 0 O kg s

molality -1 0 0 00 1 0 mol kg~

molarity 0-3 0 0 0 1 0 mol m”

molar internal energy 1 22 0 0-1 0 Jmol™!

molar mass 1 0 0 0 0-1 0 kg;mol_l

molar volume 0 3 0 0 0-1 0 m> mol~!

moment of force 1 22 0 0 0 O Nm

moment of inertia 1 2 0 0 0 0 O kg m’

momentum 1 1-1 0 0 0 O kg m 57!

period 0 0 1 0 0 0 O S

permittivity -1 -3 4 2.0 0 0 Fm!

power 1 2-3 0 0 0 0 IJsl=w watt
pressure 1 -1 -2 0 0 0 O Nm?2=Pa pascal
quantity of light 0 0 1 0 0 0 1 Ims

radiant intensity 1 2 -3 0 0 0 O Wsr!

relative density 0 0 O 0 0 0 O (no unit)

rotational frequency 0 0 -1 0 0 0 O s

second moment of area 0 4 0 0 0 0 O N

specific heat capacity 0 2 -2 0-1 0 O J(kg K) !

specific latent heat 0 2 -2 0 0 0 O J kg_l

specific volume -1 3 0 0 0 0 O m’ kig’]

speed 0 1 -1 0 0 0 O ms~

stress 1 -1 -2 0 0 0 O Nm2=Pa pascal
surface tension 1 02 0 0 0 O Nm!

torque 1 2-2 0 0 0 O Nm

viscosity (dynamic) 1 -1-1 0 0 0 O Pas

viscosity (kinetic) 0 2 -1 0 0 0 O m?s!

volume' 030 0000 m

volume flow rate 0 3 -1 0 0 0 O m?s7!

wavelength 01 0 0 0 0 O m

wave number 0-1 0 0000 m!

work 1 22 0 0 0 O Nm=]J] joule

(3) dimensionless variables, such as angles, relative density (Table 3.2), or
dimensionless products which will be studied in following sections;

(4) dimensionless constants, e.g. T, e, 2, 7; it must be noted that exponents are, by
definition, dimensionless constants.
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The very concept of dimension leads to immediate applications in physics and
ecology. In physics, for example, one can easily demonstrate that the first derivative of
distance with respect to time is a speed:

. . dl . [L] _ ety s
dimensions ofa : [T} =[LT ], i.e. speed.

Similarly, it can be shown that the second derivative is an acceleration:

2
N dz_d(dl)_ L7 _ 2 .
dimensions of a7 S anai) [TT} = [LT ], i.e. acceleration.

Note that italics are used for quantity symbols such as length (I), mass (m), time (%),
area (A), and so on. This distinguishes them from unit symbols (roman type; Tables 3.1
and 3.2), and dimension symbols (roman capitals in brackets; Table 3.1).

Ecological application 3.1

Platt (1969) studied the efficiency of primary (phytoplankton) production in the aquatic
environment. Primary production is generally determined at different depths in the water
column, so that it is difficult to compare values observed under different conditions. The solution
to this problem consists in finding a method to standardize the values, for example by
transforming field estimates of primary production into values of energy efficiency. Such a
transformation would eliminate the effect on production of solar irradiance at different locations
and different depths. Primary production at a given depth P(z) may be expressed in J m3 7!
[ML_1 T'3], while irradiance at the same depth E(z) is inJ m2s! [MT‘S] (energy units).

The dimension of the ratio P(z)/E(z), which defines the energy efficiency of primary
production, is thus [L™"]. Another property determined in the water column, which also has
dimension [L™'], is the attenuation of diffuse light as a function of depth. The coefficient of
diffuse light attenuation (o) is defined as:

E(zy) = E(z) e *®2~ %)

where E(z5) and E(z) are irradiances at depths z, and z;, respectively. Given the fact that an
exponent is, by definition, dimensionless, the dimension of o. must be [L_l] since that of depth z
is [L].

Based on the dimensional similarity between efficiency and attenuation, and considering the
physical aspects of light attenuation in the water column, Platt partitioned the attenuation
coefficient (o) into physical (kp) and biological (k) components, i.e. 0. = kp + ky. The biological
attenuation coefficient k, may be used to estimate the attenuation of light caused by
photosynthetic processes. In the same paper and in further publications by Platt & Subba Rao
(1970) and Legendre (1971b), it was shown that there exists a correlation in the marine
environment between k;, and the concentration of chlorophyll a. The above papers used the
calorie as unit of energy but, according to the SI standard, this unit should no longer be used.
Coherency requires here that primary production be expressed in J m s~! and irradiance in
Tm2s! (or W m‘z).
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This example illustrates how a simple reflection, based on dimensions, led to an
interesting development in the field of ecology.

It is therefore useful to think in terms of dimensions when dealing with ecological
equations that contain physical quantities. Even if this habit is worth cultivating, it
would not however, in and of itself, justify an entire chapter in the present book. So, let
us move forward in the study of dimensional analysis.

3.2 Fundamental principles and the Pi theorem

Dimensional
homogeneity

It was shown in the previous section that going from one quantity to another is
generally done by multiplying or dividing quantities characterized by different
dimensions. In contrast, additions and subtractions can only be performed on quantities
having the same dimensions — hence the fundamental principle of dimensional
homogeneity. Any equation of the general form

a+b+c+...=g+h+...

is dimensionally homogeneous if and only if all variables a, b, ¢, ... g, h, ... have the
same dimensions. This property applies to all equations of a theoretical nature, but it
does not necessarily apply to those derived empirically. Readers must be aware that
dimensional analysis only deals with dimensionally homogeneous equations. In
animal ecology, for example, the basic equation for energy budgets is:

dw/dt = R-T 3.1)

where W is the mass of an animal, R its food ration, and T its metabolic expenditure
rate (oxygen consumption). This equation, which describes growth dW/dt as a function
of ration R and metabolic rate 7, is dimensionally homogeneous. The rate of oxygen
consumption 7 is expressed as mass per unit time, its dimensions thus being [MT '],
as those of food ration R. The dimensions of dW/dt are also clearly [MT_I]. This same
equation will be used in Ecological applications 3.2e and 3.3b, together with other
ecological equations — all of which are dimensionally homogeneous.

In dimensional analysis, the correct identification of quantities to be included in a
given equation is much more important than the exact form of the equation.
Researchers using dimensional analysis must therefore have prior knowledge of the
phenomenon under study, in order to identify the pertinent dimensional variables and
constants. On the one hand, missing key quantities could lead to incomplete or
incorrect results, or even to a deadlock. On the other hand, including unnecessary
terms could overburden the solution needlessly. Hence, dimensional analysis cannot be
conducted without first considering the ecological bases of the problem. A simple
example, taken from hydrodynamics, will illustrate the dimensional method.
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Dimension-
less product

The question considered here relates to the work of many ecologists in aquatic
environments, i.e. estimating the drag experienced by an object immersed in a current.
Ecologists who moor current meters or other probes must consider the drag, lest the
equipment might be carried away. To simplify the problem, one assumes that the
immersed object is a smooth sphere and that the velocity of the current V is constant.
The drag force F is then a function of: the velocity (V), the diameter of the sphere (D),
the density of water (p), and its dynamic viscosity (). The simplest equation relating
these five quantities is:

F=f(V,D,p,m) (3.2)

At first sight, nothing specifies the nature of the dependency of F on V, D, p, and m,
except that such a dependency exists. Dimensional analysis allows one to find the form
of the equation that relates F to the variables identified as governing the drag.

A number of variables are regularly encountered in hydrodynamics problems,
ie. F,V,L, p,n, to which one must also add g, the acceleration due to gravity. Some of
these variables may be combined to form dimensionless products. Specialists of
hydrodynamics have given names to some often-used dimensionless products:

Reynolds number: Re = Vip _ [LT] [L] [ML~] = [MLZT] = [11 @33
n [ML-IT-1] [ML-IT-1]
Newton number: Ne = F [MLT] = [MLT?] [11 (34

pL2V2  [ML-] [L?] [L’T2] [MLT2] _

! _ V2 [L2T2] _ [L*T?] _
Froude number: Fr = Iz = T2 = (277 = [1] 3.5)

Each of the above products is clearly dimensionless. It should also be noted that each
product of this set is independent of the others, since each contains one exclusive
variable, i.e. | for Re, F for Ne, and g for Fr. Finally, any other dimensionless product
of these same variables would inevitably be a product of powers of dimensionless
products from the above set. The three dimensionless products thus form a complete
set of dimensionless products for variables F, V, L, p, | and g. It would obviously be
possible to form other complete sets of dimensionless products using these same
variables, by combining them differently.

The first important concept to remember is that of dimensionless product. This
concept leads to the sole theorem of dimensional analysis, the IT theorem, which is
also known as the Buckingham theorem.

Given the fundamental principle of dimensional homogeneity (see above), it
follows that any equation that combines dimensionless products is dimensionally
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I1 theorem

homogeneous. Thus, a sufficient condition for an equation to be dimensionally
homogeneous is that it could be reduced to an equation combining dimensionless
products. Indeed, any equation that can be reduced to an equation made of
dimensionless products is dimensionally homogeneous. Buckingham (1914) did show
that this condition is not only sufficient but also necessary. This leads to the IT (Pi)
theorem (the capital Greek letter I is the mathematical symbol for product):

If an equation is dimensionally homogeneous, it can be reduced to a relationship
among the members of a complete set of dimensionless products.

This theorem alone summarizes the whole theory of dimensional analysis.

The power of the IT theorem is illustrated by the solution of the drag problem,
introduced above. Equation 3.2 is, by definition, dimensionally homogeneous:

F=f(.,D,p,n)

It may be rewritten as:

f(Fv V, D, P,n)=0 (3.6)

The complete set of dimensionless products of the five variables F, V, D, p, N
contains two products, i.e. the Reynolds (Re) and Newton (Ne) numbers (D being a
length, it is a quantity of type L). Hence, eq. 3.6 may be rewritten as a relation between
the members of this complete set of dimensionless products (I theorem):

Ne = f(Re)
S VZDZ = f(Re) 3.7)

in which function f is, for the time being, unknown, except that it depends on the sole
dimensionless variable Re.

The projected area (A) of a sphere is:

A=7(D/2)? = (1/4) & D?, so that D* = 4A/1t

which allows one to rewrite eq. 3.7 as:

F

4A
y224
P T

= f(Re)

-
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Figure 3.1

Chart

LOglO Cx

Log;o Re

Drag coefficient on smooth spheres. Adapted from Eisner (1931).

In hydrodynamics, the term (8/7) f (Re) is called the drag coefficient and is represented
by C, so that the drag exerted on a sphere is:

F=(1/2) C,pV?A, where C, = (8/T) f (Re) (3.8)

Since C, is a function of the sole dimensionless coefficient Re, the problem is
resolved by determining, in the laboratory, the experimental curve of C, as a function
of Re. This curve will be valid for any density (p) or dynamic viscosity (1) of any fluid
under consideration (the same curve can thus be used for water, air, etc.) and for
objects of any size, or any flow speed. The curve may thus be determined by
researchers under the most suitable conditions, i.e. choosing fluids and flow speeds
that are most convenient for laboratory work. As a matter of fact, this curve is already
known (Fig. 3.1).

Two important properties follow from the above example.

(1) First, data for a dimensionless graph may be obtained under the most
convenient conditions. For example, determining C, for a sphere of diameter 3.48 m
immersed in air at 14.4°C with a velocity of 15.24 m s~! would be difficult and costly.
In contrast, it would be much easier, in most laboratories, to determine C, by using a
sphere of diameter 0.61 m in water at 14.4°C with a speed of 5.79 m s~!. In both cases,
Re is the same so that the measured value of C, is the same. This first property is the
basis for model testing in engineering (Section 3.4), the sphere in air being here the
prototype and that in water, the model.

(2) The dimensionless graph of Fig. 3.1 contains much more information than a set
of charts depicting the function of the 4 variables. In a chart (Fig. 3.2), a function of
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Figure 3.2

fo.2 %

\

Chart representing a function of two variables. One curve is required for each value of the
second variable (z;, 2, 23, -..)

two variables is represented by a family of curves, one curve being required for each
value of the second variable. A function of three variables would be represented by a
set of sets of charts. Hence, for four variables and assuming that there were only five
values measured per variable, a total of 625 experimental points would be required,
i.e. five sets of five charts each. With 25 times fewer experimental points, one can
easily obtain a dimensionless graph (e.g. Fig. 3.1) which is both more exact and much
more convenient.

The above physical example illustrated the great simplicity and remarkable power
of dimensional analysis. Let us now examine examples from ecology.

Ecological application 3.2a

This first example belongs to the disciplines of ecology and physiology, since it concerns the
dimensions of animals and their muscular dynamics. Hill (1950) compared different cetaceans,
as a set of similar animals which differ in size. All these cetaceans (porpoises, dolphins, and
whales), with a 5000-fold mass range, travel at high speed (ca. 7.5 m s7!) which they can
maintain for a long time. Table 3.3 compares the two extreme cases of the common dolphin
(Delphinus delphis) and the blue whale (Balaenoptera musculus).
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Table 3.3

Body characteristics of two cetaceans.

Common dolphin Blue whale
Maximum length (m) 2.4 30
Maximum mass (103 kg) 0.14 150
Mass/length? 0.01 0.006
Area/length? 0.45 0.40

Since these two animals can maintain a cruising speed of ca. 7.5 m s7! for long periods, one
may assume that they are then in a physiological steady state. The question is: how is it possible
for two species with such different sizes to cruise at the same speed?

To answer this question, one must first consider the drag (F) on a streamlined body moving
in a fluid. The equation is similar to eq. 3.8, except that the drag coefficient C, is replaced here
by the friction coefficient Cy

F=05CipV2A

where p is the density of the fluid, V the velocity of the body, and A its fotal surface area. For
laminar flow, sz 1.33 Re™12 whereas, for turbulent flow, sz 0.455 (log;g Re)_2'58, Re being
the Reynolds number. Low values of Re correspond to laminar flow, where resistance to motion
is relatively weak, whereas high values of Re are associated with turbulent flow, which creates
stronger resistance to motion. Normally, for a streamlined body, the flow is laminar over the
front portion only and is turbulent towards the back.

The power developed by the muscles of moving cetaceans is calculated in three steps.
¢ Calculation of Re, for the animal under study:
Re=7x10° (s m’z) VL, in sea water at 5°C
* Calculation of drag (F):
F=05CipV’A
Crbeing computed from Re, using the equation for either laminar or turbulent flow.
¢ Calculation of power (P) developed during motion:
P=FV

For the purpose of the calculation, consider (1) a dolphin with a length of 2 m, weighing 80 kg,
whose surface area is 1.75 m® and (2) a whale 25 m long, with a mass of 100 t and surface area
of 250 m2.
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(1) The value of Re for a dolphin moving at 7.5 m s7!is of the order of 107, which seems to
indicate highly turbulent flow. In the case of laminar flow,

Cr=1.33x (10" =42x 107

and, for turbulent flow,

Cr=0.455 (log;(l07)>*¥ =3 x 107
The drag (F) corresponding to these two flow regimes is:
F (laminar) = 0.5 (4.2 x 107) (1028 kg m™) (7.5 m s H? (1.75 m?) =22 N

F (turbulent) = 0.5 (3 x 1073) (1028 kg m ™) (7.5 m s ) (1.75m?) = 155 N

The power (P = F x7.5m s7!) that a dolphin should develop, if its motion resulted in perfectly
laminar flow, would be 165 W and, for turbulent flow, 1165 W. Since the size of a dolphin is of
the same order as that of a man, it is reasonable to assume that the power it can develop under
normal conditions is not higher than that of an athlete, i.e. a maximum power of 260 W. It
follows that the flow must be laminar for the 9/10 front portion of the dolphin’s body, with the
rear 1/10 being perhaps turbulent. This conclusion is consistent with observations made in
nature on dolphins. It is assumed that the absence of turbulence along the front part of the
dolphin’s body comes from the fact that the animal only uses its rear section for propulsion.

(2) The blue whale also swims at 7.5 m s\, its Re being ca. 12.5 X 107 which corresponds to
a turbulent flow regime. A laminar flow would lead to a value

Cr=133x(125x 10" =12x10"

and a turbulent flow to

Cr=0.455 (log912.5 x 107y >¥ =21 x 107
The corresponding drag (F) would be:

F (laminar) = 0.5 (1.2 x 107 (1028 kg m™) (7.5 m s 1) (250 m?) =745 N
F (turbulent) = 0.5 (2.1 x 1073) (1028 kg m™>) (7.5 ms™")? (250 m?) = 13 kN.

The power a whale should develop, if its motion at 7.5 m s~ was accompanied by laminar flow,
would be 5.6 kW and, in the case of turbulent flow, 100 kW. The maximum power developed by
a 80 kg dolphin was estimated to be 260 W so that, if the maximum power of an animal was
proportional to its mass, a 10° kg whale should be able to develop 325 kW. One should,
however, take into account the fact that the available energy depends on blood flow. Since
cardiac rate is proportional to (mass) %27 the heart of a whale beats at a rate
(100/0.08Y 027 = 1/7 that of a dolphin. The maximum power of a whale is thus ca. 1/7 of
325 kW, i.e. 46.5 kW. This leads to the conclusion that laminar flow takes place along the 2/3
front portion of the animal and that only the 1/3 rear part can sustain turbulent flow.

Ecological application 3.2b

A second study, taken from the same paper as the previous application (Hill, 1950), deals with
land animals. It has been observed that several terrestrial mammals run more or less at the same
speed and jump approximately the same height, even if their sizes are very different. Table 3.4
gives some approximate maximal values. The question is to explain the small differences
observed between the performances of animals with such different sizes.
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Table 3.4

Performances (maximal values) of five mammals.

Running speed (m s7h Height of jump (m)
Man 12 2
Horse 20 2
Greyhound (25 kg) 18 —
Hare 20 1.5
Deer 15 25

One of the explanations proposed by the author involves a relatively simple dimensional
argument. The strength of tissues in the bodies of animals cannot be exceeded, during athletic
performances, without great risk. For two differently sized animals, consider a pair of systems
with lengths /; and [, respectively, carrying out similar movements within times f; and f,,
respectively. The stress at any point in these systems has dimensions [ML™'T2], which
corresponds to the product of density [ML ™3] with the square of speed [L*T2].

Assuming that the densities of systems are the same for the two species
(i.e. m, l]*3 = mzlES , which is reasonable, since the densities of bones, muscles, etc. are similar
for all mammals), the stresses at corresponding points of the systems are in the ratio
(127%) : (1215%) . 1If the two systems operate at speeds such that the stresses are the same at
corresponding points, it follows that (!, 11‘1) = (lztil) . In other words, the speed is the same at
corresponding points of the two systems. It is therefore the strength of their tissues which would
explain why athletic animals of very different sizes have the same upper limits for running

speeds and jumping heights.

It is interesting to note that, over the years, the topic of maximal running speed of terrestrial
mammals has been the subject of many papers, which considered at least four competing
theories. These include the theory of geometric similarity, briefly explained in this example, and
theories that predict an increase of maximum running speed with body mass. These are
summarized in the introduction of a paper by Garland (1983), where maximum running speeds
for 106 species of terrestrial mammals are analysed. The study led to several interesting
conclusions, including that, even if maximal running speed is mass-independent within some
mammalian orders, this is not the case when species from different orders are put together; there
is then a tendency for running speed to increase with mass, up to an optimal mass of ca. 120 kg.
This is quite paradoxical since, when considering mammals in general, limb bone proportions do
scale consistently with geometric similarity. The author refers to Giinther’s (1975, p. 672)
conclusion that “no single similarity criterion can provide a satisfactory quantitative explanation
for every single function of an organism that can be submitted to dimensional analysis”.
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Figure 3.3 INlustration of the Michaelis-Menten equation, showing the role of parameter K. In the curve
with higher K, 1L approaches the asymptote L1, more slowly than in the other curve.

Ecological application 3.2¢

An example from aquatic ecology (Platt & Subba Rao, 1973) illustrates the use of dimensionless
graphs. The dependence of phytoplankton growth on a given nutrient is often described by
means of the Michaelis-Menten equation, borrowed from enzymology. In this equation, the
growth rate (W), with dimension [T'l], is a function of the maximum specific growth rate (1,,),
the concentration (S) of the nutrient, and the concentration (K) of nutrient at which the growth
rate L = 1/2 W,

_lap _ M5
" Bdt K +S
[T = [1]  [ML-] _ [T-1] [ML-3]
(ML-3]  [T] [ML-3] + [ML-3]

where B is the concentration of phytoplankton biomass. This equation is that of a rectangular
hyperbola, where K determines how fast the asymptote L, is approached. When Kj is high, pt
approaches the asymptote [, slowly, which indicates a weak dependence of i on S in the
unsaturated part of the curve (Fig. 3.3).

In order to compare the effects of two different variables on phytoplankton growth, the
authors defined a new entity S« = S/K,. Since this entity is dimensionless, the abscissa of the
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Character-
istic value

graph H(Sx) as a function of S is dimensionless; W(Sx) stands for the specific growth rate,
normalized to Sx The Michaelis-Menten equation is thus rewritten as:

1S

n(s,) = a+5)

Hence, the strength of the dependence of [ on Sxis:

du(S.) g [ H,S« ) W,
ds,  ~dS\1+S.)  (1+s,)2

Using this expression, it is possible to determine the relative strength of the dependence of | on
two different variables (i and j):

du (i) /dsi  u,
Eij) = ————— =

(1+5§)2
" du (S /dsi i,

(1+8i)2

Under conditions that do not limit phytoplankton growth, the maximum specific growth rate is
the same for the two variables, i.e. iu',, = /.. In such a case, the dependence of 1 on the two
variables becomes:

Ei) = (1+80)2/ (1+55)2
This dimensionless approach makes it possible to compare the effects of different variables
on phytoplankton growth, regardless of the dimensions of these variables. Using the above
equation, one could assess, for example, the relative importance of irradiance (wmol photons
m~2s! also denoted UEinstein m2 s_l) [NL_ZT‘l] and of a nutrient [ML_3] for phytoplankton
growth.

The method described here is actually of general interest in ecology, since it shows
how to approach a problem involving several variables with no common measure. In
all cases, it is recommended to transform the dimensional variables into dimensionless
ones. The most obvious transformation, proposed by Platt & Subba Rao (1973),
consists in dividing each variable by a characteristic value, which has the same
dimensions as the variable itself. In the case of the Michaelis-Menten equation, the
characteristic value is K, which has the same dimensions as S. This elegant and
efficient approach is also used in parametric statistics, where variables are transformed
through division by their standard deviations. For this and other transformations, see
Section 1.5. The approach which consists in dividing an ecologically interesting
variable by another variable with the same dimensions, so as to create a dimensionless
variable, is known as “scaling” (e.g. in Schneider, 1994). Scaling analysis has been
used, for example, in coral reef studies (Hatcher and Firth, 1985; Hatcher et al., 1987).

The following example illustrates some basic characteristics of dimensional
analysis. It also stresses a major weakness of the method, of which ecologists should
be aware.
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Ecological application 3.2d

The study discussed here (Kierstead & Slobodkin, 1953) did not use dimensional analysis, but it
provides material to which the method may usefully be applied. The authors did develop their
theory for phytoplankton, but it is general enough to be used with several other types of
organisms. Given a water mass containing a growing population, which loses individuals
(e.g. phytoplankton cells) by diffusion and regenerates itself by multiplication, the problem is to
define the minimum size of the water mass below which the growth of the population is no
longer possible.

The problem is simplified by assuming that: (1) the diffusion (D) of organisms remains
constant within the water mass, but is very large outside where the population cannot maintain
itself, and (2) the water mass is one-dimensional (long and narrow), so that the concentration (c)
of organisms is a function of the position (x) along the axis of the water mass. The equation
describing the growth of the population is thus:

2
dc . dc
E—Da7+[(c

where K is the growth rate. On the right-hand side of the equation, the first term accounts for
diffusion, while the second represents linear growth. A complicated algebraic solution led the
authors to define a critical length (L) for the water mass, under which the population would
decrease and above which it could increase:

L, = nJ/D/K

It must be noted that this equation is analogous to that of the critical mass in a nuclear reactor.
Associated with this critical length is a characteristic time (t) of the process, after which the
critical length L. becomes operative:

t = L2/ (8n2D)

The above results are those given in the paper of Kierstead and Slobodkin. The same
problem is now approached by means of dimensional analysis, which will allow one to compare
the dimensional solution of Platt (1981) to the algebraic solution of Kierstead and Slobodkin. In
order to approach the question from a dimensional point of view, the dimensions of variables in
the problem must first be specified:

x [L] K: [T

t [T] D: [LTh
The only dimensions that are not immediately evident are those of D, but these can easily be
found using the principle of dimensional homogeneity of theoretical equations.

The equation of Kierstead & Slobodkin involves three variables (c, ¢, x) and two constants
(D, K). According to the general method developed in the previous ecological application, the
variables are first transformed to dimensionless forms, through division by suitable
characteristic values. Dimensionless variables C, T and X are defined using characteristic
values c, , t, and x,,:

C=c/c, T=t/t, X=x/x,

hence c=Cec, t=Tt, x=Xx,
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Substitution of these values in the equation gives:

c,0C ¢, 02C
t*BT = D;}%—a—)(—z +Kc,C

The next step is to make all terms in the equation dimensionless, by multiplying each one by x2
and dividing it by D, after eliminating from all terms the common constant c, :

Vﬂac Ko [Kﬂ
— = ==+ C
Dt |oT ~ 9x2 D

The resulting equation thus contains three dimensionless variables (C, T and X) and two
dimensionless products (in brackets).

Since the dimensions of the two products are [1], these may be transformed to isolate the
characteristic values x,, and f, :

x?
D1,

xi
} =[1], it follows that [ ¢, | = {_}

since { D

. Kx? . 5 D D11/2
since | —= | = [1] it follows that [2] = [E} and thus [x, ] = [ﬂ

Using these relationships, the following proportionalities are obtained:

X.oc A/D/K and t, o< x2/D

Dimensional analysis thus easily led to the same results as those obtained by Kierstead and
Slobodkin (1953), reported above, except for the constant factors 7w and 872 This same example
will be reconsidered in the next section (Ecological application 3.3a), where the two
dimensionless products will be calculated directly.

The above example illustrates the fact that dimensional analysis cannot generate
dimensionless constants, which is a limit of the method that must be kept in mind.
Thus, in order to take advantage of the power of dimensional analysis, one must give
up some precision. It is obvious that such a simple method as dimensional analysis
cannot produce the same detailed results as complex algebraic developments. As
mentioned above (Section 3.0), dimensional analysis deals with general forms of
equations. Yet, starting from simple concepts, one can progress quite far into complex
problems, but the final solution is only partial. As noted by Langhaar (1951): “The
generality of the method is both its strength and its weakness. With little effort, a
partial solution to nearly any problem is obtained. On the other hand, a complete
solution is not obtained.”



Fundamental principles and the Pi theorem 115

Ecological application 3.2e

It often happens that ecologists must synthesize published data on a given subject, either as a
starting point for new research, or to resolve a problem using existing knowledge, or else as a
basis for a new theoretical perspective. This is nowadays more necessary than ever, because of
the explosion of ecological information. However, such syntheses are confronted to a real
difficulty, which is the fact that available data are often very diversified, and must thus be unified
before being used. Paloheimo & Dickie (1965) met this problem when they synthesized the
mass of information available in the literature on the growth of fish as a function of food intake.
As in the previous application, the authors did not themselves use dimensional analysis in their
work. The dimensional solution discussed here is modified from Platt (1981).

The metabolism of fish may be described using the following relationship:

T = aw'
where T is the rate of oxygen consumption, o. specifies the level of metabolic expenditure per
unit time, W is the mass of the fish, and y specifies the rate of change of metabolism with body
mass. Growth is expressed as a function of food ration (R), by means of the following equation:

AW _ Rie-(a+bR)]

dt

which shows that growth efficiency decreases by a constant fraction ¢ for each unit increase in
the amount of food consumed per unit time. The value of R at maximum growth is determined,
as usual, by setting the partial derivative equal to 0:
i(iw) = (1-bR)e (@a+bR) = 0
JdR\dt
Growth is thus maximum when bR = 1.

The basic equation for the energy budget (eq. 3.1) is:

dw
— =R-T

dt
so that T = R—d—W
dt

Replacing, in this last equation, dW/dt by its expression in the second equation, above, and
isolating R, one obtains:

T = R[1 _e—(a+br)]

Then, replacing 7 by its expression in the first equation leads to:

oOWY = R[1-e(a+bn]

which is a general equation for energy budgets. This equation may be used to calculate, for any
fish of mass W, the ration R required to maintain a given metabolic level. Furthermore, with an
increase in ration, the term [1 — et bR)] tends towards 1, which indicates that the metabolism
then approaches R. In other words, growth decreases at high values of R.
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Values for coefficient » and food intake found in the literature are quite variable. It was
shown above that the product bR determines growth. Paloheimo & Dickie therefore suggested to
standardize the relationship between growth and ration in terms of bR.

Since growth is maximum when bR = 1, the ration can be brought to a common measure by
expressing it in units of 1/b. On this new scale, the ration (r) is defined as:
r=>bR

When growth is maximum, bR = 1, so that R = 1/b. Replacing, in the general equation for the
energy budget, R by 1/b (and bR by 1) yields:

aWY = 1/b[1-e(a+D]

l_e—(a+1)} 1/

h =
so that w [ ob

from which it is concluded that the mass should be expressed in units of (1/ocb)1/ 7 in order to
bring data from the literature to a common measure. On this new scale, the mass (w) is defined
as:

w = (b)Y W
wY
so that - —aWY =T

Using the scaled ration (r) and mass (w), the general equation for energy budgets may be
rewritten as:

wl _r

= l(l1—e(a+n)

5 b[ e ]
and finally wY = r[l—e(a+n]

In this last equation, the use of r and w brings to a common measure the highly variable values
of R and W, which are available in the literature for different species or for different groups
within a given fish species.

These same results could have been obtained much more easily using dimensional analysis.
As with all problems of the kind, it is essential, first of all, to identify the dimensions of variables
involved in the problem. The first two equations are used to identify the dimensions of all
variables in the study:

T = oW
IMT!] = (MU0 MY

AW _ Re-(a+bR)]

dt

[MT-1] = [MT-'] [1] [1] + [M7'T] [MT-]

The dimensions of o, which were not immediately obvious, are determined using the principle
of dimensional homogeneity (i.e. same dimensions on the two sides of the equation). The
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dimensions of a and b are also found by applying the principle of dimensional homogeneity,
taking into account the fact that an exponent is by definition dimensionless.

The problem is then to define characteristic values (or, more appropriately, scale factors) so
as to obtain dimensionless ration (r), mass (w), and time (7). Obviously, these scale factors must
contain the two dimensional parameters of the above equations, o and b.

Because the product bR is dimensionless, the scale factor r for ration is:
r=>bR

The cases of w and 7 require the calculation of unknown exponents. These are easily found by
dimensional analysis. In order to do so, unknown exponents y and z are assigned to o and b, and
these unknowns are solved using the principle of dimensional homogeneity:

Calculation of w:
(w]=[11=[o] [b]F [W]
(W1 = [a] [bF
MO = (MOD T (MO = (M0 0= 1 #)

so that yl-y-z=-1
and -y+2z=0
hence y=1/y=z

Consequently, the scale factor w for the mass is:
w = (ab)'W
Calculation of T:
[t]=[1]=[o] [6] [1]
(17 = [ap (b
[MOT_I] = MYz Ty 7

so that yl-y-2z=0
and -y+z=-1
hence y=1l/yandz=1/y-1

It follows that the scale factor T for time is:
1= OCl/y b(l/y— 1)t
= [(ab) Vbt
These scale factors can be used to compare highly diversified data. Ration is then expressed
in units of (1/b), mass in units of (otb)™/¥, and time in units of b/(otb)™ /Y. With this approach, it is

possible to conduct generalized studies on the food intake and growth of fish as a function of
time.

Other applications of dimensionless products in ecology are found, for example, in
Tranter & Smith (1968), Rubenstein & Koehl (1977), and Okubo (1987). The first
application analyses the performance of plankton nets, the second explores the
mechanisms of filter feeding by aquatic organisms, and the third examines various
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aspects of biofluid mechanics, including a general relationship between the Reynolds
number (Re) and the sizes and swimming speeds of aquatic organisms from bacteria to
whales. Platt (1981) provides other examples of application of dimensional analysis in
the field of biological oceanography.

Ecological applications 3.2d and 3.2e showed that dimensional analysis may be a
powerful tool in ecology. They do, however, leave potential users somewhat uncertain
as to how personally apply this approach to new problems. The next section outlines a
general method for solving problems of dimensional analysis, which will lead to more
straightforward use of the method. It will be shown that it is not even necessary to
know the basic equations pertaining to a problem, provided that all the pertinent
variables are identified. The above last two examples will then be reconsidered, as
applications of the systematic calculation of dimensionless products.

3.3 The complete set of dimensionless products

As shown in the previous section, the resolution of problems using dimensional
analysis involves two distinct steps: (1) the identification of variables pertinent to the
phenomenon under study — these are derived from fundamental principles, for
example of ecological nature — and (2) the computation of a complete set of
dimensionless products. When the number of variables involved is small, complete
sets of dimensionless products can be formed quite easily, as seen above. However, as
the number of variables increases, this soon becomes unwieldy, so that one must
proceed to a systematic calculation of the complete set of dimensionless products.

The physical example of the drag on smooth spheres (Section 3.2) will first be used
to illustrate the principles of the calculation. The problem involved five variables (F, V,
L, p, and n; see eq. 3.2), whose dimensions are written here in a dimensional matrix:

FnoplLyV

M|1 1100
Li1-1-3 11 3.9)
T|-2-1 0 0-1

It must be kept in mind that the numbers in matrix 3.9 (i.e. dimensions) are
exponents. Dimensionless products are products of powers of variables in the matrix
(columns). In each product, the exponents given to the variables must be such that the
result is dimensionless.
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In other words, the systematic calculation of dimensionless products consists in
finding exponents xy, x5, x3, X4 and x5 for variables F, M, p, L, and V, such that a product
I1, of the general form

I = Fxlnxsz3Lx4Vx5

be dimensionless. Taking into account the respective dimensions of the five variables,
the general dimensions of IT are:

I1 = [MLT-2]" [ML-IT-!]"2[ML-3]"[L]*[LT-1]"
I = [1\/[()5l +x2+x3)L(x] —x2—3x3+x4+x5)T(—2x1 —xz—xs)]
The exponents of dimensions [M], [L], and [T] carry exactly the same information as

the dimensional matrix (eq. 3.9). These exponents could therefore have been written
directly, using matrix notation:

_XI_
1 1 1 0 0]f*
1213 1 1||x (3.10)
-2-1 0 0-1 X,

Xs

where the dimensional matrix is on the left-hand side.

Since the products IT are dimensionless, the exponent of each dimension [M], [L],
and [T], respectively, must be zero. In follows that:

x+x+x3=0
xl—x2—3x3+x4+x5=0
—2X1—X2—X5=0

or, in matrix notation:

1110 0%
1-1-3 1 1|[xy] =0 @3.11)

-2-1 0 0-1f|x,
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Calculation of dimensionless products Il is thus achieved by simultaneously
solving three equations. However, the above system of equations is indeterminate,
since there are only three equations for five unknowns. Arbitrary values must thus be
assigned to two of the unknowns, for example x; and x,. The general solution is then
given in terms of x; and x,. The steps are as follows:

(1) Matrix equation 3.11 is rewritten so as to isolate x; and x, together with the
associated first two columns of the matrix. This operation simply involves transferring
all terms in x3, x4 and x5 to the right-hand side of the equation:

1], 10 0f|%
L=t ===3 1 1]|x, (3.12)
X
-2 -1 0 0-1]|x,

It must be noted that there is now a negative sign in front of the matrix on the right-
hand side. Matrix eq. 3.12 is identical to the algebraic form:

X1+ Xy =—Xx3
XI—X2=3X3—X4—X5
—2X1—.X2=)C5

(2) One then solves for the unknowns x3, x4 and x5, using the general method of
matrix inversion (Section 2.8):

-1

1 0 0 1 1 X3
X

-3 1 1 | 141 = |x,

)
0 1-1 -2 -1 X
1 0 O] 1 1 X3
X
-3 1 1 1-1“— x,
X
0 1-1]|-2-1|L2 X,
X
-1 -1 X, 3
2 = |x, 3.13)
2o



The complete set of dimensionless products 121

(3) The simplest approach consists in successively assigning the value 1 to each
unknown while setting the other equal to 0, i.e. (1) x; = 1 and x, =0 and (2) x; =0 and
xo = 1. It follows that the first two columns of the solution matrix are a unit matrix:

FnplLYV

X1 Xp X3 X4 X5

I |1 0-1-2=2 (3.14)
M, 0 1-1-1-1

The dimensionless products of the complete set are therefore (as in Section 3.2):

I, = pL%Vz ,the Newton number (Ne; eq. 3.4)
m, = p%V , the inverse of the Reynolds number (1/Re; eq. 3.3)

This example clearly shows that the systematic calculation of dimensionless
products rests solely on recognizing the variables involved in the problem under
consideration, without necessarily knowing the corresponding equations. The above
solution, which was developed using a simple example, can be applied to all problems
of dimensional analysis, since it has the following characteristics:

(1) Because the left-hand part of the solution matrix is an identity matrix (I), the
dimensionless products Il are independent of one another. Indeed, given I, each
product contains one variable which is not included in any other product, i.e. the first
variable is only in I, the second is only in I'l,, and so on.

(2) When partitioning the dimensional matrix, one must isolate on the right-hand
side a matrix that can be inverted, i.e. a matrix whose determinant is non-zero.

(3) The rank (r) of the dimensional matrix is the order of the largest non-zero
determinant it contains (Section 2.7). Therefore, it is always possible to isolate, on the
right-hand side, a matrix of order r whose determinant is non-zero. The order r may
however be lower than the number of rows in the dimensional matrix, as seen later.

(4) The number of dimensionless products in the complete set is equal to the
number of variables isolated on the left-hand side of the dimensional matrix. It follows
from item (3) that the number of dimensionless products is equal to the total number of
variables minus the rank of the dimensional matrix. In the preceding example, the
number of dimensionless products in the complete set was equal to the number of
variables (5) minus the rank of the dimensional matrix (3), i.e. 5 — 3 = 2 dimensionless
products.
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(5) When the last r columns of a dimensional matrix of order » do not lead to a non-
zero determinant, the columns of the matrix must be rearranged so as to obtain a non-
zero determinant.

Numerical example 1. An example will help understand the consequences of the above five
characteristics on the general method for the systematic calculation of the complete set of
dimensionless products. The dimensional matrix is as follows:

Vi Vy V3 Vy Vs Vg Vy

M2 01 0-1-2 3
L1 22 00 1-1
TO 1 2 3 1-10

The rank (r) of this matrix is 3 (numerical example in Section 2.7), so that the number of
dimensionless products of the complete set is equal to 7 — 3 = 4. However, the determinant of
the r = 3 last columns is zero:

12 3
0 1-1| =0
1-1 0

Calculating the complete set of dimensionless products thus requires a reorganization of the
dimensional matrix by rearranging, for example, the columns as follows:

Vi Vs Vo Vg Vy Vg V3

Mi|2-1 3 0 0-2 1
Li{1 0-1 0 2 1 2
TOT1 0 3 1-1 2

The solution then follows from the general method described above:

2 02 1|21 3 o],

xl=-]2 12 |1 0o-1 o

%, 121 2 lo 1 0 3|7
Xy
X1

2 4 3-5/12-1 3 0|,

x| =-|-2-1 2|[1 0-1 0

X 32 4/lo 1 0 3||"7
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X
Yl =11 99 15|,

5
Xl = | 5-4 5 -6

X
Xy 8 -7 7-12||"7

Xy

Vi Vs Vo VgV, Vg Vg

Mo o0 0-115 3
hlo 1 0 0 94 7
n,0 0 1 095 7
m 0 0 0 1 15-6-12

Numerical example 2. This example illustrates the case of a singular dimensional matrix,
i.e a dimensional matrix whose rank is less than its number of rows. This matrix has already
been considered in Section 2.7:

ViV, V3 Vy
M|2 1 3 4
L|-1 6-3 0
T|[120-3 8

It was shown (Section 2.7) that the rank of this matrix is r = 2, so that it is not possible to find a
combination of three columns that could be inverted. The matrix is thus singular (Section 2.8).

The solution consists in making the number of rows equal to the rank. This is done by
eliminating any one row of the dimensional matrix, since the matrix has only two independent
rows (Section 2.7). The number of dimensionless products in the complete set is thus equal to
4-2=2.

ViV, VsV,
M[2 13 4
L -1 6-3 0
I, {1 0-1/3 —1/4}

M, 01 2 -7/4

It is possible to eliminate fractional exponents by multiplying each row of the solution matrix by
its lowest common denominator:
112 0-4-3
I, [0 4 8-7
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Identical results would have been obtained if any other row of the dimensional matrix had been
eliminated instead of row 3, since each of the three rows is a linear combination of the other two.
This can easily be checked as exercise.

There now remains to discuss how to choose the ordering of variables in a
dimensional matrix. This order determines the complete set of dimensionless products
obtained from the calculation. The rules are as follows:

(1) The dependent variable is, of necessity, in the first column of the dimensional
matrix, since it must be present in only one IT (the first dimensionless product is thus
called the dependent dimensionless variable). As a consequence, this first variable can
be expressed as a function of all the others, which is the goal here. For example, in
eq. 3.9, the drag F is in the first column of the dimensional matrix since it is clearly the
dependent variable.

(2) The other variables are then arranged in decreasing order, based on their
potential for experimental variation. Indeed, a maximum amount of information will
result from experimentation if those variables with a wide range of experimental
variability occur in a single I

(3) The initial ordering of variables must obviously be changed when the last r
columns of the dimensional matrix have a zero determinant. However, one must then
still comply as well as possible with the first two rules.

Two ecological applications, already discussed in Section 3.2, will now be treated
using the systematic calculation of complete sets of dimensionless products.

Ecological application 3.3a

The first example reconsiders Ecological application 3.2d, devoted to the model of Kierstead &
Slobodkin (1953). This model provided equations for the critical size of a growing
phytoplankton patch and the characteristic time after which this critical size becomes operative.

The dimensional matrix of variables involved in the problem includes: length x, time t,
diffusion of cells D, and growth rate k. The dependent variables being x and 7, they are in the first
two columns of the dimensional matrix:

x t D k

Lil 020

T[O 1-1-1
The rank of the dimensional matrix being 2, the number of dimensionless products is 4 — 2 = 2.
These two products are found using the general method for calculating the complete set:

LIRg-Ted
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x t D k x t D k
Mt o-1/2172 _[2 0-1 1
I, [0 1 0 1 01 01
I, = kx’/D and I, = tk
These two dimensionless products describe, as in Ecological application 3.2d, the critical length

x and the characteristic time t as:

xoec A/D/k and to< 1/k o x2/D

Ecological application 3.3b

A second example provides an easy solution to the problem which confronted Paloheimo &
Dickie (1965), concerning the synthesis of data on the growth of fish with respect to food intake.
The question was discussed at length in Ecological application 3.2e, which led to three scale
factors, for food ration, mass, and time. These scale factors were used by the authors to compare
diversified data from the ecological literature.

The solution is found directly, here, using the dimensional matrix of the six variables
involved in the problem: time t, mass W, food ration R, rate of oxygen consumption T, rate of
metabolic expenditure 0., and coefficient b. The variables to be isolated being 7, W, and R, they
are in the first three columns of the dimensional matrix:

t WRT o b

M[0O1 1 1 (1-7) -1
T|10-1-1 -1 1

Since the rank of the dimensional matrix is » = 2, the number of dimensionless products is
6 — 2 = 4. The four products are calculated by the method of the complete set:

_(1—y)—1_10 111 _ 1/ 1/Y 0 0
-1 1 [1 0-1-1 [(1/y)-1] 1/y 1 1

t WRT o b

T 000 1y (-1
Mio1oo 17y 1/
M, 0010 0 1
m looot o 1

1, = i D = (o) b )t
I, = Wa " = (ob)'w
I3 = Rb = bR

I, =1Tb =bT
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The first three dimensionless products define the three scale factors already found in Ecological
application 3.2e, i.e. II; for time, II, for mass, and II5 for ration. 11, defines a scale factor for
oxygen consumption.

Direct calculations of complete sets of dimensionless products thus led to the same
results as obtained before, but operations here were more straightforward than in
Section 3.2.

It should not be necessary, after these examples, to dwell on the advantage of
systematically calculating the complete set of dimensionless products. In addition to
providing a rapid and elegant solution to problems of dimensional analysis, the above
matrix method sets researchers on the right track when tackling a problem to be
investigated using the dimensional tool. The success of a dimensional study depends
on: (1) adequate knowledge of the problem under study, so that all the pertinent
variables are considered; and (2) clear ideas about which variables are functions of the
others. It should be noted, as explained above, that the systematic calculation of the
complete set of dimensionless products does not require prior knowledge of the
fundamental equations. These, however, may be necessary to derive the dimensions of
some complex variables. Dimensional analysis may be a powerful tool, provided that
the ecological bases of the problem under consideration are thoroughly understood and
that the objectives of the research are clearly stated.

3.4 Scale factors and models

Physical
model

Given the increased awareness in society for environmental problems, major
engineering projects cannot be undertaken, in most countries, before their
environmental impacts have been assessed. As a consequence, an increasing number of
ecologists now work within multidisciplinary teams of consultants. At the planning
stage, one of the most powerful tools available to engineers, although very costly, is
the small-scale model. Tests performed with such models help choose the most
appropriate engineering solution. Actually, ecologists may encounter two types of
model, i.e. mathematical and physical. Mathematical models have already been
discussed in the Foreword. Physical models are small-scale replica of the natural
environment, to which changes can be made that reproduce those planned for the real
situation. Tests with physical models are generally more costly to perform than
mathematical simulations, so that the latter are becoming increasingly more popular
than the former. Physical models are often based on dimensional analysis, so that it is
this type of model which is considered here. It should be noted that physical models
may originate from the empirical approach of engineers, which is distinct from the
dimensional approach.

In order to communicate with engineers conducting tests on small-scale models,
ecologists must have some basic understanding of the principles governing model
testing. In some cases, ecologists may even play a role in the study, when it is possible
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Prototype

Geometric
similarity

to integrate in the model variables of ecological significance (e.g.in a model of a
harbour or estuary, such variables as salinity, sediment transport, etc.). Since small-
scale models are based in part on dimensional analysis, their basic theory is thus
relatively easy to understand. The actual testing, however, requires the specific
knowledge and experience of model engineers. In addition to their possible
involvement in applications of modelling to environmental impact studies, ecologists
may at times use small-scale models to resolve problems of their own (e.g. studying
the interactions between benthic organisms and sediment in a hydraulic flume). These
various aspects are introduced here very briefly.

In the vocabulary of physical modelling, the full-size system is called prototype
and the small-size replica is called model. A model may be geometrically similar to the
prototype, or it may be distorted. In the case of geometric similarity, all parts of the
model have the same shapes as the corresponding parts of the prototype. In certain
cases, geometric similarity would lead to errors, so that one must use a distorted
model. In such models, one or several scales may be distorted. For example, a
geometrically similar model of an estuary could result in some excessively small water
depths. With such depths, the flow in the model could become subject to surface
tension, which would clearly be incorrect with respect to the real flow. In the model,
the depth must therefore be relatively greater than in nature, hence a distorted model.

The physical example of the drag on smooth spheres, already discussed in
Sections 3.2 and 3.3, is now used to introduce the basic principles of scaling and
small-scale modelling. Equation 3.7 describes the drag (F) acting on a smooth sphere
of diameter D, immersed in a stream with velocity V of a fluid with density p and
dynamic viscosity 1:

F=pV’D’f(Re) (3.7)
_ 2n2¢( VDp
F=pV°D f( 5 )

In order to experimentally determine the drag, under convenient laboratory
conditions (e.g. wind tunnel or hydraulic flume), it may be appropriate to use a
geometrically similar model of the sphere. Quantities pertaining to the model are
assigned prime indices. If the curve of the drag coefficient for smooth spheres was not
known (Fig. 3.1), the calculation of F would require that the value of the unknown
Sfunction f be the same for both the model and the prototype. In order to do so, the test
engineer should make sure that the Reynolds numbers for the two systems are equal:

Re =Re’

VDp _ V'D'p’ (3.15)
n n’
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Scale factor

A scale factor is defined as the ratio of the size of the model to that of the
prototype. Scale factors are therefore dimensionless numbers. The scale factors (K)
corresponding to eq. 3.15 are:

Ky=V'/V Kp=D'/D Ky=p'lp Ky=m"m
These scales are used to rewrite eq. 3.15 as:
KyKpK, = Ky, (3.16)
Because Re = Re’, the scale factor of the unknown function fis equal to unity:
K¢ (rey=1 3.17)

The ratio between the drag measured for the model and the real drag on the prototype
is computed by combining eq. 3.7 with the above scale factors:

K. = KpK\Z/Kzzij(Re)
Because of eq. 3.17, it follows that:

K, = K,K}K}, (3.18)

Equation 3.16 is used to find the value of K-

is squared K‘Z/KzDKS = K}
; QK2R = K2
from which KiyKpK, = Kn/Kp
and, given eq. 3.18 K, = K;/K, (3.19)

Equation 3.19 leads to the following practical conclusions, for determining the
drag on smooth spheres in the laboratory:

(1) If the model is tested using the same fluid as for the prototype, the drag
measured during the test is the same as for the prototype. This follows from the fact
that, if K, = 1 and Kp =1 (same fluid), K is equal to unity (eq. 3.19), hence F’ = F.

(2) If testing is conducted using the same fluid as for the prototype, conservation of
Re requires that the velocity for the model be greater than for the prototype (i.e. the
model is smaller than the prototype). This follows from the fact that, when K;, =1 and
K, =1 (same fluid), KyKp =1 (eq. 3.16); consequently any decrease in K must be
compensated by a proportional increase in Ky
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Similarity

(3) When it is more convenient to use different fluids, testing may be conducted
while conserving Re. It has already been shown (Section 3.2) that, for example, going
from a large-size prototype, in air, to a model 6 times smaller, in water, allows a
reduction of the flow speed during the test by a factor of 3. The drag measured for the
model would not, however, be necessarily the same as that of the prototype, since that
force varies as a function of the ratio between the squares of the dynamic viscosities
(Kﬁ) and the densities (Kp) of the two fluids (eq. 3.19). Knowing this ratio (Kp), it is
easy to derive the drag for the model (F) from that measured during the test (F”) since:

F=F'/Kp

In more complex cases, it is sometimes necessary to simultaneously conserve two
or more dimensionless products, which are incompatible. In such a situation, where a
choice must be made between contradictory constraints, it rests on the test engineer to
justify discrepancies in similarity and to apply theoretical corrections to compensate
for them. Hence modelling, although derived from scientific concepts, becomes an art
based on the experience of the researcher.

A general concept of similarity follows from the previous discussion. In a
Cartesian space, the model and the prototype are described by coordinates (x” y” z”)
and (x y z), respectively. Correspondence between the two systems is established by
means of scale factors (K), which define homologous times as well as homologous
points in the three dimensions of space:

V=Kt x =Kux Yy =Ky 7 =Kz
The time scale factor (K,) would be used, for example, in the case of a flow where A’
and A, are the time intervals during which two homologous particles go through
homologous parts of their respective trajectories. It would then be defined as

K =N JA,

Geometric similarity is defined as: K, = K, = K, = K;. In distorted models, a single
length scale is usually modified, so that K, = K, # K. The ratio K/K, is the distortion
factor. It would be possible, using this same approach, to define characteristics of
kinematic similarity, for similar motions, and of dynamic similarity, for systems
subjected to homologous forces.

There are several types of similarity in addition to the geometric, dynamic and
kinematic similarities. These include the hydrodynamic, transport, and thermal
similarities. Readers interested in applications of dimensional analysis to the theory of
biological similarity may refer to the review of Giinther (1975), where the various
types of physical similarity are briefly described.



This Page Intentionally Left Blank



Chapter

4 Multidimensional
quantitative data

4.0 Multidimensional statistics

Basic statistics are now part of the curriculum of most ecologists. However, statistical
techniques based on such simple distributions as the unidimensional normal
distribution are not really appropriate for analysing complex ecological data sets.
Nevertheless, researchers sometimes perform series of simple analyses on the various
descriptors in the data set, expecting to obtain results that are pertinent to the problem
under study. This type of approach is incorrect because it does not take into account
the covariance among descriptors; see also Box 1.3, where the statistical problem
created by multiple testing is explained. In addition, such an approach only extracts
minimum information from data which have often been collected at great cost and it
usually generates a mass of results from which it is difficult to draw much sense.
Finally, in studies involving species assemblages, it is usually more interesting to
describe the variability of the structure of the assemblage as a whole (i.e. mensurative
variation observed through space or time, or manipulative variation resulting from
experimental manipulation; Hurlbert, 1984) than to look at each species independently.

Fortunately, methods derived from multidimensional statistics, which are used
throughout this book, are designed for analysing complex data sets. These methods
take into account the co-varying nature of ecological data and they can evidence the
structures that underlie the data set. The present chapter discusses the basic theory and
characteristics of multidimensional data analysis. Mathematics are kept to a minimum,
so that readers can easily reach a high level of understanding. In addition, many
approaches of practical interest are discussed, including several types of linear
correlation, with their statistical tests. It must be noted that this chapter is limited to
linear statistics.

A number of excellent textbooks deal with detailed aspects of multidimensional
statistics. For example, formal presentations of the subject are found in Muirhead
(1982) and Anderson (1984). Researchers less interested in mathematical theory may
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Table 4.1 Numerical example of two species observed at four sampling sites. Figure 4.1 shows that each
row of the data matrix may be construed as a vector, as defined in Section 2.4.
Sampling sites Species (descriptors)
(objects) 1 2 =2
1 5 1
2 3 2
3 8 3
4 6 4
(n=4)
refer to Cooley & Lohnes (1971), Tatsuoka (1971), Press (1972), Graybill (1983), or
Morrison (1990). These books describe a number of useful methods, among which the
multidimensional analysis of variance. However, none of these books specifically
deals with ecological data.
Multidi- Several authors use the term multivariate as abbreviation for multidimensional
mensional  variate (the latter term meaning random variable; Section 1.0). As an adjective,

Multivariate multivariate is interchangeable with multidimensional.

4.1 Multidimensional variables and dispersion matrix

As stated in Section 1.0, the present textbook deals with the analysis of random
variables. Ecological data matrices have n rows and p columns (Section 2.1). Each
row is a vector (Section 2.4) which is, statistically speaking, one realization of a
p-dimensional random variable. In other words, for example, when p species are
observed at n sampling sites, the species are the p dimensions of a random variable
“species” and each site is one realization of this p-dimensional random variable.

To illustrate this concept, four sampling units with two species (Table 4.1) are
plotted in a two-dimensional Euclidean space (Fig. 4.1). Vector “site 1” is the doublet
(5,1). It is plotted in the same two-dimensional space as the three other vectors “site i”.
Each row of the data matrix is a two-dimensional vector, which is one realization of
the (bivariate) random variable “species”. The random variable “species” is said to be
two-dimensional because the sampling units (objects) contain two species
(descriptors), the two dimensions being species 1 and 2, respectively.
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Figure 4.1
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Four realizations (sampling sites from Table 4.1) of the two-dimensional random variable
“species” are plotted in a two-dimensional Euclidean space.

As the number of descriptors (e.g. species) increases, the number of dimensions of
the random variable “species” similarly increases, so that more axes are necessary to
construct the space in which the objects are plotted. Thus, the p descriptors make up a
p-dimensional random variable and the n vectors of observations are as many
realizations of the p-dimensional vector “descriptors”. The present chapter does not
deal with samples of observations, which result from field or laboratory work (for a
brief discussion on sampling, see Section 1.1), but it focuses instead on populations,
which are investigated by means of the samples.

Before approaching the multidimensional normal distribution, it is necessary to
define a p-dimensional random variable “descriptors”:

Y= [yl’ YZ, yla Yp] (4'1)

Each element y; of multidimensional variable Y is a unidimensional random variable.
Every descriptor y; is observed in each of the n vectors “object”, each sampling unit
providing one realization of the p-dimensional random variable (Fig. 4.2).

In ecology, the structure of dependence among descriptors is, in many instances,
the matter being investigated. Researchers who study multidimensional data sets using
univariate statistics assume that the p unidimensional y; variables in'Y are independent
of one another (this refers to the third meaning of independence in Box 1.1). This is the
reason why univariate statistical methods are inappropriate with most ecological data
and why methods that take into account the dependence among descriptors must be
used when analysing sets of multidimensional data. Only these methods will generate
proper results when there is dependence among descriptors; it is never acceptable to
replace a multidimensional analysis by a series of unidimensional treatments.
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Figure 4.2 Structure of ecological data. Given their nature, ecological descriptors are dependent of one

another. In statistics, the objects are often assumed to be independent observations, but this is
generally not the case in ecology (Section 1.1)

Several multivariate statistical models require, however, “that successive sample
observation vectors from the multidimensional population have been drawn in such a
way that they can be construed as realizations of independent random vectors”
(Morrison, 1990, p. 80). It has been shown in Section 1.1 that this assumption of
independence among observations is most often not realistic in ecology. This major
discrepancy between statistical theory and ecological data does not really matter as
long as statistical models are used for descriptive purposes only, as it is generally the
case in the present book. However, as explained in Section 1.1, this problem prevents
utilisation of the wusual tests of significance and thus statistical inference
(i.e. generalization of statistics derived from the samples to parameters of
populations), unless corrected tests are used.

To sum up: (1) the p descriptors in ecological data matrices are the p dimensions of
a random variable “descriptors”; (2) the p descriptors are not independent of one
another; methods of multidimensional analysis are designed to evidence the structure
of dependence among descriptors; (3) each of the n sampling units is a realization of
the p-dimensional vector “descriptors”; (4) most methods assume that the n sampling
units are realizations of independent random vectors. The latter condition is generally
not met in ecology, with consequences that were mentioned in the previous paragraph
and discussed in Section 1.1. For the various meanings of the term independence in
statistics, see Box 1.1.
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Dispersion
matrix

Variance

Covariance

Standard
deviation

The dependence among quantitative variables y; brings up the concept of
covariance. Covariance is the extension, to two descriptors, of the concept of variance.
Variance is a measure of the dispersion of a random variable y; around its mean; it is
denoted Gj? . Covariance measures the joint dispersion of two random variables y; and
¥x around their means; it is denoted 0. The dispersion matrix of Y, called matrix X
(sigma), contains the variances and covariances of the p descriptors (Fig. 4.2):

6, Gp---0y,

Gy Oy« + Oy,

zz . . o o e . (4.2)

10,1 Cpr v+ -G,

Matrix X is an association matrix [descriptors X descriptors] (Section 2.2). The
elements Gj; of matrix X are the covariances between all pairs of the p random
variables. The matrix is symmetric because the covariance of y; and y, is identical to
that of y; and y;. A diagonal element of X is the covariance of a descriptor y; with
itself, which is the variance of yj, so that ¢ i = 612

The estimate of the variance of Yjs denoted s2 is computed on the centred variable
(y;i— =Y ) . Variable y; is centred by subtractlng the mean y. ; from each of the n
observations Yjj- As a result, the mean of the centred variable is zero. The variance sj2
is computed using the well-known formula:

=3 -9 43

i=1

where the sum of squares of the centred data, for descriptor j, is divided by the number
of objects minus one (n —1). The summation is over the n observations of descriptor j.
In the same way, the estimate (s;) of the covariance (Gj) of y; and y; is computed on
the centred variables (y,; — T ]) and (y;, yk) using the formula of a “bivariate
variance”. The covariance s is calculated as:

S = 3 0= G ) (4.4)

i=1

When k = j, eq. 4.4 is identical to eq. 4.3. The positive square root of the variance is
called the standard deviation (G ). Its estimate s; is thus:

s; = 52 4.5)
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Table 4.2

Parameter
Statistic

Symbols used to identify (population) parameters and (sample) statistics.

Parameter Statistic

Matrix or vector Elements Matrix or vector Elements

Covariance Y (sigma) Ojk (sigma)

wn
<&
B3

Correlation P (rho) Pjk (rho)

=~
<
x

~<
~.

Mean B (mu) Y (mu) y

The symbols for matrix X and summation Y, should not be confused.

Contrary to the variance, which is always positive, the covariance may take any
positive or negative value. In order to understand the meaning of the covariance, let us
imagine that the object points are plotted in a scatter diagram, where the axes are
descriptors y; and y;. The data are then centred by drawing new axes, whose origin is
at the centroid (y P y,) of the cloud of points (see Section 1.5, linear transformation:
translation). A positive covariance means that most of the points are in quadrants I and
III of the centred plot, where the centred values (y, T j) and (y;,—y,) have the
same signs. This corresponds to a positive relationship between the two descriptors.
The converse is true for a negative covariance, for which most of the points are in
quadrants IT and IV of the centred plot. In the case of a null or small covariance, the
points are equally distributed among the four quadrants of the centred plot.

Greek and roman letters are both used here. The properties of a population (called
parameters) are denoted by greek letters. Their estimates (called statistics), which are
computed from samples, are symbolized by the corresponding roman letters. Along
with these conventions are also those pertaining to matrix notation (Section 2.1). This
is summarized in Table 4.2.

The dispersion matrix” S can be computed directly, by multiplying the matrix of centred
data [y-y] withits transpose [y—y]':

1 -, -
S=-—-yI"ly-yl 4.6)

* Some authors, including Lefebvre (1980), call [y—y]'[y—y] a dispersion matrix and S a
covariance matrix. For these authors, a covariance matrix is then a dispersion matrix divided by
(n-1).
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(y”_yi) (yzl_yil) e (ynl_)Tl) (y”_)T]) (ylz_)Tz) LA (y]p_)Tp)
V1p=92) U= oo v W=D || g =¥) (gp=¥p) v+ (3y,-Y)
1
S = n—-1
(G, Uap=3) o U=V ) [ [ G =9 Ga=2) v (3,77,
D On-E Y O my) Gy e Y =) -y,
i=1 i=1 i=1
Z (yi2_;2) (yil_;l) 2 (yiz_yiz)2 s 2 (yi2_;2) (yip_;p)
1 |i=1 i=1 i=1
S =
n-1
D Gy Ui =y) X 0=y Gp=¥y) «oo 2 =)
=1 i=1 i=1 ]

This elegant and rapid procedure emphasizes once again the advantage of matrix algebra in
numerical ecology, where the data sets are generally large.

Numerical example. Four species (p =4) were observed at five stations (n=5). The
estimated population parameters, for the species, are the means ( )7 .), the variances (s]z ), and the
covariances (s;). The original and centred data are shown in Table 4.3. Because sj; = sy, the
dispersion matrix is symmetric. The mean of each centred variable is zero.

In this numerical example, the covariance between species 2 and the other three species is
zero. This does not necessarily mean that species 2 is independent of the other three, but simply
that the joint linear dispersion of species 2 with any one of the other three is zero. This example
will be considered again in Section 4.2.

The square root of the determinant of the dispersion matrix |S|!/2 is known as the
generalized variance. It is also equal to the square root of the product of the
eigenvalues of S.

Any dispersion matrix S is positive semidefinite (Table 2.2). Indeed, the quadratic
form of S (p X p) with any real and non-null vector t (of size p) is:

t'St
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Table 4.3 Numerical example. Calculation of centred data and covariances.

Sites Original data Centred data
1 1526 -2 2-1 2
2 2218 B -1-1-2 4
3 Y=13134 y=yI =102 0 0
4 4250 1-1 2-4
5 5542 2 2 12
Means )7'= [3334} [y—;z]'= [0 00 0}
250 2 -4

1 ot -

n—-1=4 S=_——b-yI'ly-yl = 035 0 0
n- 2 0 25-5
-4 0 -5 10

This expression may be expanded using eq. 4.6:

' —_— lL __l __
tSt =t-— [y-yl'[y-ylt

t'St = ﬁ[(y—i)t]'[(y—i)t] = a scalar

This scalar is the variance of the variable resulting from the product Yt. Since variance
can only be positive or null, it follows that:

t'St 20

so that S is positive semidefinite. Therefore, all the eigenvalues of S are positive or
null. This property of dispersion matrices is fundamental in numerical ecology, since it
allows one to partition the variance among real principal axes (Sections 4.4 and 9.1).

Ideally, matrix S (of order p) should be estimated from a number of observations n
larger than the number of descriptors p. When n < p, the rank of matrix S is n — 1 and,
consequently, only n — 1 of its rows or columns are independent, so that p — (n — 1) null
eigenvalues are produced. The only practical consequence of n < p is thus the presence
of null eigenvalues in the principal component solution (Section 9.1). The first few
eigenvalues of S, which are generally those of interest to ecologists, are not affected.
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Figure 4.3
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>

Yj

Several observations (objects), with descriptors Y and y;, were made under two different sets of
conditions (A and B). The two ellipses delineate clouds of point-objects corresponding to A and
B, respectively. The covariance of y; and y; is twice as large for B as it is for A (larger ellipse),
but the correlation between the two descriptors is the same in these two cases (i.e. the ellipses
have the same shape).

4.2 Correlation matrix

The previous section has shown that the covariance provides information on the
orientation of the cloud of data points in the space defined by the descriptors. That
statistic, however, does not provide any information on the intensity of the relationship
between variables y; and y;. Indeed, the covariance may increase or decrease without
changing the relationship between y; and y;. For example, in Fig. 4.3, the two clouds
of points correspond to different covariances (factor two in size, and thus in
covariance), but the relationship between variables is identical (same shape). Since the
covariance depends on the dispersion of points around the mean of each variable
(i.e. their variances), determining the intensity of the relationship between variables
requires to control for the variances.

The covariance measures the joint dispersion of two random variables around their
means. The correlation is defined as a measure of the dependence between two
random variables y; and y;. As already explained in Section 1.5, it often happens that
matrices of ecological data contain descriptors with no common scale, e.g. when some
species are more abundant than others by orders of magnitude, or when the descriptors
have different physical dimensions (Chapter 3). Calculating covariances on such
variables obviously does not make sense, except if the descriptors are first reduced to a
common scale. The procedure consists in centring all descriptors on a zero mean and
reducing them to unit standard deviation (eq. 1.12). By using standardized descriptors,
it is possible to calculate meaningful covariances, because the new variables have the
same scale (i.e. unit standard deviation) and are dimensionless (see Chapter 3).
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Linear
correlation

Correlation
matrix

The covariance of two standardized descriptors is called the linear correlation
(Pearson r). This statistic has been proposed by the statistician Karl Pearson, so that it
is named after him. Given two standardized descriptors (eq. 1.12)

_ Vi Yk
7., = L2J and D= et

calculating their covariance (eq. 4.4) gives

1 n _
s(zjzp) = mz (2;;=0) (24— 0) because 2, =7,=0
i=1

_ 1 c yij_;j yik_y_k
e - 2

i=1 J

S(Zj,Zk) = (L) L 2 (yij_;j) (yik_y_k)
=1

88, /n = 1:’

1 . . .
$(2p2)) = (; Sik = Tiks the coefficient of linear correlation between y; and yy.
ok

The developed formula is:

Y =) Ou=3)
Fy = Sik o __i=1 4.7

Z (y,'j_;j)22 (yik_y_k)2

i=1 i=1

As in the case of dispersion (Section 4.1), it is possible to construct the correlation
matrix of Y, i.e. the P (rho) matrix, whose elements are the coefficients of linear
correlation pj :

L pyyeeepy,
Py 1 .. P2,
P=| - . eee e 4.8)

_ppl Ppoe - 1
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The correlation matrix is the dispersion matrix of the standardized variables. This
concept will play a fundamental role in principal component analysis (Section 9.1). It
should be noted that the diagonal elements of P are all equal to 1. This is because the
comparison of any descriptor with itself is a case of complete dependence, which leads
to a correlation p; = 1. When y; and y; are independent of each other, p; = 0. However,
a correlation equal to zero does not necessarily imply that y; and y; are independent of
each other, as shown by the following numerical example. A correlation p; =-1 is
indicative of a complete, but inverse dependence of the two variables.

Numerical example. Using the values in Table 4.3, matrix R can easily be computed. Each

element ry combines, according to eq. 4.7, the covariance s with variances s; and s;:

1 0 08-08
R-| 01 0 0
08 0 1 -1
08 0 -1 1

Matrix R is symmetric, as was matrix S. The correlation » = —1 between species 3 and 4 means
that these species are fully, but inversely, dependent (Fig. 4.4a). Correlations = 0.8 and —0.8 are
interpreted as indications of strong dependence between species 1 and 3 (direct) and species 1
and 4 (inverse), respectively. The zero correlation between species 2 and the other three species
must be interpreted with caution. Figure 4.4d clearly shows that species 1 and 2 are completely
dependent of each other since they are related by equation y, =1+ 3 - yl)z; the zero
correlation is, in this case, a consequence of the linear model underlying statistic r. Therefore,
only those correlations which are significantly different from zero should be considered, since a
null correlation has no unique interpretation.

Since the correlation matrix is the dispersion matrix of standardized variables, it is
possible, as in the case of matrix S (eq. 4.6), to compute R directly by multiplying the
matrix of standardized data with its transpose:

R = nil[(y—b/sj[(y—&)/sj = nill'l 4.9)

Table 4.4 shows how to calculate correlations rj;, of the example as in Table 4.3, using
this time the standardized data. The mean of each standardized variable is zero and its
standard deviation is equal to unity. The dispersion matrix of Z is identical to the
correlation matrix of Y, which was calculated above using the covariances and
variances.
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Figure 4.4 Numerical example. Relationships between species (a) 3 and 4, (b) 2 and 4, (c) 2 and 3, and
(d)2 and 1.

Matrices X and P are related to each other by the diagonal matrix of standard
deviations of Y. This new matrix, which is specifically designed for relating X and P, is
symbolized by D(c) and its inverse by D(G)_I:

6, 0...0 /6, 0
0o0,...0 0 1/o0,...

D() =|* =+ | and D(c)! =

0 ....0 0 . ...1/0

L ja L

Using these two matrices, one can write:

5 —1/2 5 172 1 -1
P=D (o) D (o) =D(c) XD(o) (4.10)
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Table 4.4

Significance
of r

Numerical example. Calculation of standardized data and correlations.

Sites Original data Standardized data

1 1526 -1.27 1.07 -0.63 0.63
2 2218 -0.63 -0.53 -1.27 1.27

3 Y=13134 Z=| 0 -107 0 0
4 4250 0.63 -0.53 1.27 -1.27
5 5542 1.27 1.07 0.63 -0.63
Means }7=[3334J i'=[0 0 0 0}
1 0 08-0.8

n-1=4 R(y) = S(2) =__1__sz= 01 0 O
n—1 08 0 1 -1

-08 0 -1 1

where D(c?) is the matrix of the diagonal elements of Z. It follows from eq. 4.10 that:
2 =D(c) PD(o) 4.11)

The theory underlying tests of significance is discussed in Section 1.2. In the case
of r, inference about the statistical population is in most instances through the null
hypothesis Hy: p = 0. Hy may also state that p has some other value than zero, which
would be derived from ecological hypotheses. The general formula for testing
correlation coefficients is given in Section 4.5 (eq. 4.39). The Pearson correlation
coefficient rj involves two descriptors (i.e. y; and y;, hence m =2 when testing a
coefficient of simple linear correlation using eq. 4.39), so that vi=2-1=1 and
Vv, =n—2 =V. The general formula then becomes:

r2
F=v—2 4.12)

- _ 2
1 i

where v = n — 2. Statistic F is tested against Fy[ -

Since the square root of a statistic F,,
. I
also be tested using:

is a statistic 7 | Whenvy =1, rmay

V,] v=yv,

t = TV (4.13)

J1-r3
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Test of in-
dependence
of variables

The 7 statistic is tested against the value 74y In other words, Hy is tested by
comparing the F (or #) statistic to the value found in a table of critical values of F (or ?).
Results of tests with eqs. 4.12 and 4.13 are identical. The number of degrees of
freedom is v = (n—2) because calculating a correlation coefficient requires prior
estimation of two parameters, i.e. the means of the two populations (eq. 4.7). Hy is
rejected when the probability corresponding to F' (or £) is smaller than a predetermined
level of significance (o for a two-tailed test, and /2 for a one-tailed test; the difference
between the two types of tests is explained in Section 1.2). In principle, this test
requires that the sample of observations be drawn from a population with a bivariate
normal distribution (Section 4.3). Testing for normality and multinormality is
discussed in Section 4.7, and normalizing transformations in Section 1.5. When the
data do not satisfy the condition of normality, ¢ can be tested by randomization, as
shown in Section 1.2.

It is also possible to test the independence of all variables in a data matrix by
considering the set of all correlation coefficients found in matrix R. The null
hypothesis here is that the p(p — 1)/2 coefficients are all equal to zero, Hy: R =1 (unit
matrix). According to Bartlett (1954), R can be transformed into a X2 (chi-square) test
statistic:

X?=—[n-(2p+11)/6] In|R| (4.14)

where In|R| is the natural logarithm of the determinant of R. This statistic is
approximately distributed as XZ with v =p(p — 1)/2 degrees of freedom. When the
probability associated with X is significantly low, the null hypothesis of complete
independence of the p descriptors is rejected. In principle, this test requires the
observations to be drawn from a population with a multivariate normal distribution
(Section 4.3). If the null hypothesis of independence of all variables is rejected, the
p(p — 1)/2 correlation coefficients in matrix R may be tested individually; see Box 1.3
about multiple testing.

Other correlation coefficients are described in Sections 4.5 and 5.2. Wherever the
coefficient of linear correlation must be distinguished from other coefficients, it is
referred to as Pearson's r. In other instances, r is simply called the coefficient of linear
correlation or correlation coefficient. Table 4.5 summarizes the main properties of this
coefficient.

4.3 Multinormal distribution

In general, the mathematics of the normal distribution are of little concern to ecologists
using unidimensional statistical methods. In the best case, data are normalized
(Section 1.5) before being subjected to tests that are based on parametric hypotheses.
It must be remembered that all parametric tests require the data to follow a specific
distribution, most often the normal distribution. When the data do not obey this
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Table 4.5

Main properties of the coefficient of linear correlation. Some of these properties are discussed in
later sections.

Properties Sections

1. The coefficient of linear correlation measures the intensity of the linear
relationship between two random variables. 4.2

2. The coefficient of linear correlation between two variables can be calculated
using their respective variances and their covariance. 4.2

3. The correlation matrix is the dispersion matrix of standardized variables. 4.2
4. The square of the coefficient of linear correlation is the coefficient of

determination. It measures how much of the variance of each variable is

explained by the other. 10.3

5. The coefficient of linear correlation is a parameter of a multinormal distribution. 4.3

6. The coefficient of linear correlation is the geometric mean of the coefficients
of linear regression of each variable on the other. 10.3

condition, the results of parametric tests may be invalid. There also exist
nonparametric tests, for which no reference is made to any theoretical distribution of
the population, hence no use of parameters. Another advantage of nonparametric tests
of significance is that they remain valid even for very small sample sizes, as are often
encountered in ecological research. These tests (Chapter 5) are of great interest to
ecologists, who may nevertheless attempt to normalize their data in order to have
access to the powerful toolbox of parametric statistics.

Multidimensional statistics require careful examination of the main characteristics
of the multinormal (or multivariate normal) distribution. Several of the methods
described in the present chapter, and also in Chapters 9, 10 and 11, are founded on
principles derived from the multinormal distribution. This is true even in cases where
no test of significance is performed, which is often the case in numerical ecology
(i.e. descriptive versus inferential statistics, Sections 1.1 and 4.4).

The logic of an approach centred on the multinormal distribution is based upon a
theorem which is undoubtedly one of the most important of statistics. According to the
central limit theorem, when a random variable results from several independent and
additive effects, of which none has a dominant variance, then this variable tends
towards a normal distribution even if the effects are not themselves normally
distributed. Since ecological variables (descriptors) are often influenced by several
independent random factors, the above theorem explains why the normal distribution
is frequently invoked to describe ecological phenomena. This justifies a careful
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Figure 4.5 Role of the standard deviation ¢ in the normal distribution function.

Normal

examination of the properties of the multinormal distribution, before studying the
methods for analysing multidimensional quantitative data.

The probability density of a normal random variable y is (Laplace-Gauss
equation):

1

yrra ot el

where exp [...] reads “e to the power [...]7, e being the Napierian base
(e = 2.71828...). Calculation of f(y), for a given y, only requires i and 6. The mean
(W) and standard deviation (o) of the theoretical population completely determine the
shape of the probability distribution. This is why they are called the parameters of the
normal distribution. The curve is symmetric on both sides of W and its exact shape
depends on ¢ (Fig. 4.5).

f) = 4.15)

The value ¢ determines the position of the inflexion points along the normal curve.
These points are located on both sides of L, at a distance &, whereas L positions the
curve on the abscissa (y axis). In Fig. 4.5, the surface under each of the two curves is
identical for the same number of G units on either side of |. The height of the curve is
the probability density corresponding to the y value; for a continuous function such as
that of the normal distribution, the probability of finding a value betweeny =aandy =
b (a < b) is given by the surface under the curve between a and b. For example, the
probability of finding a value between U — 1.966 and 1 + 1.966 is 0.95.

In view of examining the properties of the multinormal distribution, it is
convenient to first consider the joint probability density of p independent
unidimensional normal variables. For each of these p variables y;, the probability
density is given by eq. 4.15, with mean |I; and standard deviation G;:
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s~ s [- 4252 416

A basic law of probabilities states that the joint probability density of several
independent variables is the product of their individual densities. It follows that the
joint probability density for p independent variables is:

FO1 Y2 o3 = FOD X F(92) X oo X £3)

P
_ 1 1 y,-—u,-)z
01722 o3p) = (2m) P/chcz...cpeXp {_ Qz(c—j @17

j=1
Using the conventions of Table 4.2, one defines the following matrices:

67 0...0
Y=[y1y2.--y,,} 063...0
T e 4.18)

u=[ul uz---u,,]

10 0... GI%_
where y is the p-dimensional vector of coordinates of the point for which the
probability density (i.e. the ordinate along the p-dimensional normal curve) is sought,
M is the vector of means, and X is the dispersion matrix among the p independent
variables. The determinant of a diagonal matrix being equal to the product of the
diagonal elements (Section 2.6), it follows that:

|}:|1/2=(61 0 ...0p)

From definitions (4.18) one may write:

o (VW
1 " J J
-nl = -l = 3 (22)
j=1 J
Using these relationships, eq. 4.17 is rewritten as:
1 — l
fy = exp {~(1/2) [y-p] =" [y-p]'} 4.19)

(ZTE) p/Z‘Z‘ 172

Do not confuse, here, the summation symbol Z with matrix X.
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Multi-
normal

Bivariate
normal

The above equations are for the joint probability density of p independent
unidimensional normal variables y;. It is easy to go from there to the multinormal
distribution, where y is a p-dimensional random variable whose p dimensions are not
independent. In order to do so, one simply replaces the above matrix Z by a dispersion
matrix with variances and covariances, i.e. (eq. 4.2):

G, Gp---0y,

Gy Oy« + Oy,

10,1 Cpr v+ G,

Using this dispersion matrix X, eq. 4.19 now describes the probability density f(y) for
a p-dimensional multinormal distribution.

Given eq. 4.11, eq. 4.19 may be rewritten as:

1

G077 oy P (012 -l Do) P Do) [y-ul} 4.20)

fy)=

Replacing, in eq. 4.20, the p-dimensional matrix Y by the p-dimensional standardized
matrix Z (eq. 1.12) gives:

1

= Gm A P {~a2yzpP'z} @.21)

f@)

given the fact that [y — ] D(6)”' = Z and, in the case of Z, D(c) = L.

Equation 4.21 stresses a fundamental point, which was already clear in eq. 4.20:
the correlations p are parameters of the multinormal distribution, together with the
means U and standard deviations 6. This new property of p is listed in Table 4.5.

Three sets of parameters are therefore necessary to specify a multidimensional
normal distribution, i.e. the vector of means W, the diagonal matrix of standard
deviations D(c), and the correlation matrix P. In the unidimensional normal
distribution (eq.4.15), u and ¢ were the only parameters because there is no
correlation p for a single variable.

It is not possible to represent, in a plane, more than three dimensions. Thus, for the
purpose of illustration, only the simplest case of multinormal distribution will be
considered, i.e. the bivariate normal distribution, where:
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o1 =143

Figure 4.6

fOi,y2)

Roles of 6| and 0, in the bivariate normal distribution.

o, 0
m= (o, ) D(o) = [01 G] P= [; ‘j
2

Since | D(o) | =00, and | P| =(1- pz) in this case, eq. 4.20 becomes:

fO1y) = ! exp{~(1/2) [y - p] D(1/0) (1 - p?)! { ! ‘P} D(1/o) [y-p]'}

216,6,4/1 - p? —-p 1

=——————————1 exp{_l 1 Hyl_MIJZ_Zp[yl_Mlj(yz_l'b]_'_(yz_uzjz}}
216 ,6,4/1 - p? 2(1-p?) S o G, NP

Figure 4.6 shows bivariate normal distributions, with typical “bell” shapes. The
two examples illustrate the roles of 6| and ,. Further examination of the multinormal
mathematics is required to specify the role of p.

Neglecting the constant —1/2, the remainder of the exponent in eq. 4.19 is:

[y-pul = [y —ul
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When it is made equal to a positive constant (o), this algebraic form specifies the
equation of an ellipsoid in the p-dimensional space:

h-plZ' [y-pl'=o (4.22)

A family of such ellipsoids may be generated by varying constant o. All these
ellipsoids have the multidimensional point [ as their common centre.

It is easy to understand the meaning of eq. 4.22 by examining the two-dimensional
case. Without loss of generality, it is convenient to use the standardized variable (z;,2,)
instead of (yy,y,), so that the family of ellipses (i.e. two-dimensional ellipsoids) be
centred on the origin L= [0 0]. The exponent of the standardized bivariate normal
density is:

1
5 [28 = 2pzy2, + 23]

This exponent specifies, in two-dimensional space, the equation of a family of ellipses:

s[28-2pziz,+23] =@
I-p

22 -2pzyz,+ 23 = a(l —p)
Figure 4.7 illustrates the role played by p in determining the general shape of the
family of ellipses. As p approaches zero, the shapes of the ellipses tend to become

circular. In contrast, as p approaches +1 or —1, the ellipses tend to elongate. The sign of
p determines the orientation of the ellipses relative to the axes.

Actually, when p = 0 (Fig. 4.8), the equation for the family of ellipses becomes:
22— [2x0xzz,] +23 = a(1-0)
or z?+ 22 = o, which is the equation of a circle.
In contrast, when p = £1, the equation becomes:
27— (2% (1) Xz,2,] +25 = a[1 - (£1)?]
2} F272,+23 = 0
hence [z, F z,] ? =0, so that Z; ¥z, = 0, and thus z, = *z,,

which is the equation of a straight line with a positive or negative slope of 1
(£45° angle).
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p=0.333

Figure 4.7 Concentration ellipses of a standardized bivariate normal distribution. Role of the correlation p.

|
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Figure 4.8 Concentration ellipses of a standardized bivariate normal distribution. Extreme values of
correlation p.
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Such a family of ellipses, called concentration ellipses, is comparable to a series of
“contour lines” for the two-dimensional normal distribution (Fig. 4.6). Increasing the
value of o corresponds to moving down along the sides of the distribution. The
concentration ellipses pass through points of equal probabilities around the bivariate
normal distribution. The role of p then becomes clear: when p =0, the “bell” of
probability densities is perfectly circular (in overhead view); as p increases, the “bell”
of the probability densities flattens out, until it becomes unidimensional when p = =*1.
Indeed, when there is a perfect correlation between two dimensions (i.e. p ==*1), a
single dimension, at angle of 45° with respect to the two original variables, is sufficient
to specify the distribution of probability densities.

When the number of dimensions is p =3, the family of concentration ellipses
becomes a family of concentration ellipsoids and, when p >3, a family of
hyperellipsoids. The meaning of these ellipsoids and hyperellipsoids is the same as in
the two-dimensional case, although it is not possible to illustrate them.

4.4 Principal axes

Various aspects of the multinormal distribution have been examined in the previous
section. One of these, namely the concentration ellipses (Fig. 4.7), opens a topic of
great importance for ecologists. In the present section, a method will be developed for
determining the principal axes of the concentration hyperellipsoids; for simplicity, the
term ellipsoid will be used in the following discussion. The first principal axis is the
line that passes through the greatest dimension of the ellipsoid. The next principal axes
go through the next greatest dimensions, smaller and smaller, of the p-dimensional
ellipsoid. Hence, p consecutive principal axes are determined. These principal axes
will be used, in Section 9.1, as the basis for principal component analysis.

In the two-dimensional case, the first principal axis corresponds to the major axis
of the concentration ellipse and the second principal axis to the minor axis. These two
axes are perpendicular to each other. Similarly in the p-dimensional case, there are p
consecutive axes, which are all perpendicular to one another in the hyperspace.

The first principal axis goes through the p-dimensional centre = [U; W, ... },Lp] of the
ellipsoid, and it crosses the surface of the ellipsoid at a point called here y = [y; y, ... yp]. The
values of W and y specify a vector in the p-dimensional space (Section 2.4). The length of the
axis, from [ to the surface of the ellipsoid, is calculated using Pythagoras’ formula:

[0 =) + (2= 1) + o+ (0 = )12 = Iy - plly — )

Actually, this is only half the length of the axis, which extends equally on both sides of W. The
coordinates of the first principal axis must be such as to maximize the length of the axis. This
can be achieved by maximizing the square of the half-length:

y—ully—ul
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Principal
axis

Lagrangian
multiplier

Calculating coordinates corresponding to the axis with the greatest length is subjected to the
constraint that the end point y be on the surface of the ellipsoid. This constraint is made explicit
using eq. 4.22 which specifies the ellipsoid:

- Z! y-pl'=a

- Z!' [y-pl'-a=0

Lagrangian multipliers (A) are used to compute the maximum and minimum values of a
function of several variables when the relationships among the variables are known. In the
present case, the above two equations, for the square of the half-length of the first principal axis
and for the constraint, are combined into a single function:

f =l -plly-pl' A {[y-ul =" [y -pl' - o}

The values that maximize this function are found by the usual method of setting the equation's
partial derivative equal to 0:

0 -
Wf()’)—o

b=l =l =2 2 (=W = [yl - ) =0

Scalar A is called a Lagrangian multiplier. It is important to remember here that y is a
p-dimensional vector (y{, ys, ....y,), Which means that the above equation is successively
derived with respect to yy, y,, ... and y,. Therefore, derivation with respect to y represents in fact
a series of p partial derivatives (dy /)- Consequently the results of the derivation may be rewritten
as a (column) vector with p elements:

2[y-pl 222" [y-pul=0
One may factor out [y — 1] and eliminate the constant 2:
A-AZ) [y-ul=0
Multiplying both sides of the equation by X gives:
E-AD[y-ul=0 4.23)

The general equation defining eigenvectors (eq.2.22) is (A—AI) u=0. Replacing, in this
equation, A by X and u by [y — ] gives the above equation. This leads to the conclusion that the
vector of the coordinates which specifies the first principal axis is one of the eigenvectors [y — |L]
of matrix Z.

In order to find out which of the p eigenvectors of Z is the vector of coordinates of the first

principal axis, come back to the equation resulting from the partial derivation (above) and
transfer the second term to the right, after eliminating the constant 2:

-ul=2Z" [y-ul
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Eigenvalue

The two sides are then premultiplied by [y — u]":

b-ul'y-pl=Aly-pl' 2" [y-u]
Since [y —u]' ! [y — u] = o (eq. 4.22), it follows that:

-ul'[y-ul=2ro

The term on the left-hand side of the equation is the square of the half-length of the first
principal axis (see above). Thus, for a given value o, the length of the first principal axis is
maximized by taking the largest possible value for A or, in other words, the largest eigenvalue A
of matrix X. The vector of coordinates of the first principal axis is therefore the eigenvector
corresponding to the largest eigenvalue of Z.

Numerical example. The above equations are illustrated using the 2-dimensional data
matrix from Section 9.1 (principal component analysis). The covariance matrix is:

v (8216

1.6 5.8
There are two eigenvalues, A; = 9 and A, = 5, computed using eq. 2.23. To normalize the
eigenvectors (written as column vectors), one arbitrarily decides that [y — u]' [y — ] = Ao = 1 for
each of them; in other words, o; = 1/9 and 0, = 1/5. The normalized eigenvectors provide the

coordinates of the point where each of the two principal axes crosses the surface of the ellipsoid
(vectors y; and y,):

vz = |08 gy Jy, o [F04472
0.4472 0.8944

Given means [l; = U, = 0, it can be verified, for both y; and y,, that [y — p]' [y — u] = 1. This
example will be further developed in Chapter 9.

In the above demonstration, y; was defined as the point (vector) where principal axis j
crosses the surface of the ellipsoid. Since vectors y; are eigenvectors, they will be denoted u;
from now on, as in Sections 2.9 and 2.10, whereas y; will only be used to represent descriptors.

To find the vectors of coordinates specifying the p successive principal axes,

* rank the p eigenvalues of matrix X in decreasing order:
M>M>.. >k, 20

Note that the eigenvalues of a matrix X are all positive (end of Section 4.1);

* associate the p eigenvectors to their corresponding eigenvalues. The orientation of
the p successive principal axes are given by the eigenvectors, which are associated
with the p eigenvalues ranked in decreasing order. The eigenvectors of a covariance
matrix X are orthogonal to one another because X is symmetric (Section 2.9). In the
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case of multiplicity (Section 2.10, Fourth property), the orthogonal axes may be
rotated to an infinity of “principal” directions, i.e. two equal A’s result in a circle and
several determine a hypersphere (multidimensional sphere) where no orientation
prevails.

The next step consists in calculating a new p-dimensional variable along which the
dispersion ellipses are positioned with respect to the principal axes instead of the
original Cartesian system. This new variable (v) is related to the original variables
(yj: Section 4.1) through the following transformation:

v=ly-plU 4.24)

where each of the p columns in matrix U is the normalized eigenvector uy,
corresponding to the k-th principal axis. Because vectors u, are both orthogonal and
normalized, matrix U is said to be orthonormal (Section 2.8). This transformation
results in shifting the origin of the system of axes to the p-dimensional point W,
followed by a solid rotation of the translated axes into the principal axes (Fig. 4. 9),
which forms matrix V.

The dispersion matrix of V is:

1 1 —_ ; 1 _ l _ _— 1
(V)= W(VV) = 1)U [y-ul'ly-p]U=UZU
where X is the dispersion matrix of the original variables y. So, the variance of the k-th
dimension (i.e. the k-th principal axis) is:

s2(vp) = u, Xu;
Since, by definition, Zu; = A,u; (eq. 2.21) and u), u; = 1, it follows that:
s2(vp) = w), Zuy = ) Mg = A wjug =2y (1) = Ay (4.25)

with A; = 0 in all cases since X is positive definite. The covariance of two vectors is
zero because the product of two orthogonal vectors u; and u, is zero (Section 2.8):

S(Vk,Vh) = ll'k Zuh = ll'k lhuh = }\‘h ll'k u,= )\‘k (O) =0 (4.26)

The last two points are of utmost importance, since they are the basis for using the
principal axes (and thus principal component analysis; Section 9.1) in ecology: (1) the
variance of a principal axis is equal to the eigenvalue associated with that axis
(eq.4.25) and (2) the p dimensions of the transformed variable are linearly
independent, since their covariances are zero (eq. 4.26).

A last point concerns the meaning of the p elements uj; of each eigenvector u;. The
values of these elements determine the rotation of the system of axes, so that they
correspond to angles. Figure 4.10 illustrates, for the two-dimensional case, how the
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Y2 Y2

+ - - — — — — —

[ — Mol |

(11, M2)

N

Original system: concentration ellipses Translation of the origin

Rotation of the translated axes
into principal axes

Figure 4.9 Result of the transformation v = [y — 1] U (eq. 4.24).

elements of the eigenvectors are related to the rotation angles. Using the trigonometric
functions for right-angled triangles, the angular relationships in Fig. 4.10 may be

rewritten as cosines:
cos 07 = length uy; / length of vector (1, uy;) = uyy
cos 0Oy = length uy; / length of vector (uyy, uyy) = Uy
cos 05 = length uy, / length of vector (uyy, uyy) = uy

cos Olpy = length uy, / length of vector (uyy, uyr) = Uy
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Figure 4.10
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Geometrical meaning of the principal axes.

because the lengths of the normalized vectors (uyy, up;) and (uyp, uyy) are 1
(Section 2.4). Eigenvector u; determines the direction of the k-th main axis; it follows
from the above trigonometric relationships that elements u; of normalized
eigenvectors are direction cosines. Each direction cosine specifies the angle between
an original Cartesian axis j and a principal axis k.

The two-dimensional case, illustrated in Figs. 4.9 and 4.10, is the simplest to compute. The
standardized dispersion matrix is of the general form:

gt

When p is positive, the eigenvalues of P are A; = (1 + p) and A, = (1 — p). The normalized

eigenvectors are:
u, = 1/.2 u, = -1/.2
1/J2 172
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Therefore, the first principal axis goes through the point (1/ M2, 1/42), so that it cuts the first
and third quadrants at a 45° angle. Its direction cosines are cosoy;= 1/42 and
cosop,=1/ 2 which indeed specifies a 45° angle with respect to the two axes in the first
quadrant. The second principal axis goes through (—=1/./2, 1/./2), so that it cuts the second
and fourth quadrants at 45°. Its direction cosines are cos 0y; = —1/4/2 and cos 0y = 1/4/2,
which determines a 45°angle with respect to the two axes in the second quadrant.

When p is negative, the eigenvalues of P are A; = (1 — p) and A, = (1 + p). Consequently the
first principal axis goes through (—1/.4/2, 1/.,/2) in the second quadrant, while the second
principal axis with coordinates (1/4/2, 1/4/2) cuts the first quadrant. A value p =0 entails a
case of multiplicity, since A; = A, = 1. This results in an infinite number of “principal” axes,
i.e. any two perpendicular diameters would fit the concentration ellipse, which is here a circle
(Fig. 4.8).

These concepts, so far quite abstract, will find direct applications to ecology in
Section 9.1, dealing with principal component analysis.

4.5 Multiple and partial correlations

Section 4.2 considered, in a multidimensional context, the correlation between two
variables, or two dimensions of a p-dimensional random variable. However, the
multidimensional nature of ecological data offers other approaches to correlation.
They are examined in the present section.

The following developments will require that the correlation matrix R be
partitioned into four submatrices. Indices assigned to the submatrices follow the
general convention on matrix indices (Section 2.1):

Rll R12
R21 R22

R = 4.27)

There are two possible approaches to linear correlation involving several variables
or several dimensions of a multidimensional variable. The first one, which is called
multiple (linear) correlation, measures the intensity of the relationship between a
response variable and a linear combination of several explanatory variables. The
second approach, called partial (linear) correlation, measures the intensity of the
linear relationship between two variables, while taking into account their relationships
with other variables.

1 — Multiple linear correlation

Multiple correlation applies to cases where there is one response variable and several
explanatory variables. This situation is further studied in Section 10.3, within the
context of multiple regression. The coefficient of multiple determination (Rz;
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eq. 10.19) measures the fraction of the variance of y; which is explained by a linear
combination of yj, y, ..., Y oo and Yp!

bysy+bysy+ .. +bisy+...+bs

2
Si

R2

k12.j.p = (4.28)

where p is here the number of explanatory variables. It is calculated in a way which is
analogous to the coefficient of determination between two variables (eq. 10.8).
Coefficients b are identical to those of multiple linear regression (Section 10.3). A
coefficient R? |, iy = 0.73, for example, would mean that the linear relationships of
variables y;, y», ..., ¥, ... and y, with y; explain 73% of the variability of y, around its
mean. The multiple correlation coefficient (R) is the square root of the coefficient of
multiple determination:

Reirjp = JRE (4.29)

In order to calculate R? using matrix algebra, a correlation matrix R is written for
variables y; and {y, 2, ..., ¥}, ..., ¥,}, with y; in the first position. Partitioning this
matrix following eq. 4.27 gives, for multiple correlation:

Ljrgy rege s T
il 1 ATI
Fog | Py 1 oo "2p 1 r,
R = = (4.30)
5 Ry
L Tpk| Tt Tpo o e e 1_
where r;, = r,, is a vector containing the correlation coefficients ryy, i, ...,
Using rj,, rp; and R,, as defined in eq. 4.30, R? is calculated as:
2 — ~1 R 1
R® = r,Ryr,, = 1Ry, (4.31)

Equation 4.31 is expanded using eq. 2.17:

cof (ryy) cof(ry) ... cof(rpl)
cof (ry,) cof(ry,) ... cof(rpz)
1

2 o Rl = g L . . . .
R> =1, Ryr, = I'21‘R ‘ Iy
2

cof(rlp) cof(rzp) cee cof(rpp)



160 Multidimensional quantitative data

1
R = g (Rl -IRD = —_— 4.32)
22 22

As an exercise, it is easy to check that
IR,,| - IRl = 1}, [adjugate matrix of Ry, ] 1y

Multiple The coefficient of multiple correlation is calculated from eqs. 4.31 or 4.32:
correlation

T R|
Riis j.p=ANyRyry or Ry o= 1‘@ (4.33)

A third way of calculating R?is given below (eq. 4.38), at the end of Subsection 2 on
partial correlation.

When two or more variables in matrix Ry, are perfectly correlated (i.e. r=1 or
r=-1), the rank of Ry, is smaller than its order (Section 2.7) so that |R22| =0.
Calculation of R thus requires the elimination of redundant variables from matrix R.

Numerical example. A simple example, with three variables (y, y, and y3), illustrates the
above equations. Matrix R is:

1 0408
R =104 1 05
0.8 05 1

The coefficient of multiple determination R12.23 is first calculated using eq. 4.31:

Ifs

Rix = |04 0 {_1-33 0.67} {oﬂ

R?55 = [0.4 0.8] {015 Oﬁ

0.67 1.33]]0.8

2 —
R2,, = 0.64

Equation 4.32 leads to an identical result:

1 0408
04 1 05
2 0805 1
1.23
1 05

05 1
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0.27

R? e
0.75

13 =1

= 0.64

The linear combination of variables y, and y; explains 64% of the variance of y,. The multiple
correlation coefficient is Ry 3 = 0.8.

2 — Partial correlation

The second approach to correlation, in the multidimensional context, applies to
situations where the relationship between two variables is influenced by their
relationships with other variables. The partial correlation coefficient is related to
partial multiple regression (Subsection 10.3.5). It measures what the correlation
between y; and y; would be if other variables yj, y,, ... and y,, hypothesized to
influence both y; and y;, were held constant at their means. The partial correlation
between variables y; and y;, when controlling for their relationships with yy, y», ... and
Yp, 1s written rj 12 -

In order to calculate the partial correlation coefficients, the set of variables is
divided into two subsets. The first one contains the variables between which the partial
correlation is to be computed while controlling for the influence of the variables in the
second subset. The second thus contains the variables whose influence is being taken
into account. Matrix R is partitioned as follows (eq. 4.27):

Rll R12
R21 R22

R =

R (of order 2 x 2 for partial correlations) and Ry, contain the correlations among
variables in the first and the second subsets, respectively, whereas R;, and R,; both
contain the correlations between variables from the two subsets; R, = R}, .

The number of variables in the second subset determines the order of the partial
correlation coefficient. This order is the number of variables whose effects are
eliminated from the correlation between y; and y;. For example rq; 345 (third-order
coefficient) means that the correlation between variables y; and y, is calculated while
controlling for the linear effects of y3, y4, and ys.

The computation consists in subtracting from Ry (matrix of correlations among
variables in the first subset) a second matrix containing the coefficients of multiple
determination of the variables in the second subset on those in the first subset. These
coefficients measure the fraction of the variance and covariance of the variables in the
first subset which is explained by linear combinations of variables in the second
subset. They are computed by replacing vector r,; by submatrix R,; in eq. 4.31:

R,RZR, = R, RIR,,
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Rl‘2

The subtraction gives the matrix of conditional correlations:
R,,-R,R3IR,, (4.34)

It can be shown that the maximum likelihood estimate (R| ;) of the partial correlation
matrix Py ; is:

R, =D (ry) (R, -R,RHR, D (r,) /2 (4.35)

where D(r; ,) is the matrix of diagonal elements of the conditional correlation matrix
(eq. 4.34).

Computation for the three-dimensional case provides the algebraic formula for the
partial correlation coefficients of order 1:

Lory, g
Ro=1r 1 ry
ETREIR
Coefficients pertaining to variables of the first subset (y; and y,) are in the first two
rows and columns. Using eq. 4.35 gives:

2
r . r2, rr
1 _ "3 _ 3 13’23
R ,RLRy = I:l:l ["31 r32] - )
3 P33 T3

_ Lor, iy T3l (I-rf)  (rp=ri3ras)
R, -R,R; R, = - , | T ) 5
ry 1 T3l T3 (rip=ri3rs)  (1=r33)
_ 1/ l—rlz3 0 (1—r123) (ria=r1373) || 17 1—r123 0
0 1/ J1=r%| [ (2= T13723) (1-r3) 0 1/ /112
| o= T1373
R.. = dl_’"%w/l_r% s
12 = =
o= T13023 1 s 1
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The last matrix equation provides the formula for first-order partial correlation
coefficients:

Fipo =T33 (4.36)

r T e
123
M_2 [1_,2
L—ri; J1—r3

The general formula, for coefficients of order p, is:

_ ikt -0 T ipa -t (p-1) 4.37)
_ 2 _ 2
Jl rjp.l...(p—l)A/l Tip 1. (p-1)

When there are four variables, it is possible to calculate 12 first-order and 6 second-
order partial correlation coefficients. Computing a second-order coefficient
necessitates the calculation of 3 first-order coefficients. For example:

Tik1..p

T3~ 1143243 Tio4a=T1347234

r = =r =

12.34 12.43
h_2 [_,2 h_ 2 [_.2
L—riy s 1 =735 L—rizqfl =13,

It is thus possible, as the number of variables increases, to calculate higher-order
coefficients. Computing a coefficient of a given order requires the calculation of three
coefficients of the previous order, each of these requiring itself the calculation of
coefficients of the previous order, and so on depending on the number of variables
involved. Obviously, such a cascade of calculations is advantageously replaced by the
direct matrix approach of eq. 4.35.

Numerical example. Partial correlations are calculated on the simple example already used
for multiple correlation. Matrix R is:

1 0408
R=1041 05
0805 1

Two subsets are formed, the first one containing descriptors y; and y, (between which the partial
correlation is computed) and the second one y; (whose influence on r, is controlled for).
Computations follow eqgs. 4.34 and 4.35:

1 04| lo8]r7-1
S . = -
12 {0.4 1} {0.5} 1) os o3
s = |1 04| J064040 _ [036 0
127104 1] (040025 0 075

R - 167 0036 0 |[167 0] _ |10
12 0o 115]| 0 075/| 0 115 |01
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Nondeter-
mination

Multiple de-
termination

Thus, the partial correlation r, 3 = 0, which was unexpected given that r|, = 0.4. It is concluded
that, when their (linear) relationships with y; are taken into account, descriptors y; and y, are
(linearly) independent. Similar calculations for the other two pairs of descriptors give:
7132, =0.76 and ry3 | =0.33. The meaning of these correlation coefficients will be further
discussed in Subsections 4 and 5.

There is obviously a relationship between the coefficients of multiple and partial
correlation. The equation linking the two types of coefficients can easily be derived; in
the multiple correlation equation, p is the number of variables other than y, :

when p =1, the fraction of the variance of y; which is not explained by y; is the
complement of the coefficient of determination (1-r7 ); this
expression is sometimes called the coefficient of nondetermination;

when p =2, the fraction of the variance of y; which is not explained by y,, without
taking into account the influence of y, is (1 — ”1%2,1 ), so that the fraction
of the variance of y, which is not explained by y; and y, is

(1-r2) (A=rk ).

This leads to a general expression for the fraction of the variance of y; which is not
explained by yy, ¥, ..., ¥j, ... and y,;:

(L=rg) (L=rf ) .. (1 _r/%j.u.“) e _rl%p.ll..j...(p—l))

The fraction of the variance of y; which is explained by yy, y5, ..., yj, ... and y,,
i.e. the coefficient of multiple determination (square of the multiple correlation
coefficient), is thus:

RI%.IZ...p =1-[(1-r3) (1=13)) ... (l_r/%p.u...pq)] (4.38)

Numerical example. The same example as above is used to illustrate the calculation of the
multiple correlation coefficient, using eq. 4.38:

R%.23 =1- [(1‘r122) (1_’%3.2)]

R?,, =1-[1-(04)2] [1-(0.76)2] = 0.64
which is identical to the result obtained above using either eq. 4.31 or eq. 4.32.

Tables 4.6 and 4.7 summarize the main conclusions relative to the coefficients of
multiple and partial correlation, respectively.

3 — Tests of statistical significance

The test of significance of the linear correlation coefficient r is discussed in Section 4.2
(eqs. 4.12-4.14). The null hypothesis Hy, is usually that the correlation coefficient is
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Table 4.6

Main properties of the multiple (linear) correlation coefficient.

Properties Sections

1. The multiple correlation coefficient measures the intensity of the relationship
between a response variable and a linear combination of several explanatory
variables. 4.5

2. The square of the multiple correlation coefficient, called coefficient of
multiple determination, measures the fraction of the variance of the response
variable which is explained by a linear combination of the explanatory variables. 4.5

3. The coefficient of multiple determination is the extension, to the multidimensional
case, of the coefficient of determination between two variables. 4.5 and 10.3

4. The multiple correlation coefficient can be computed from the matrix of
correlations among explanatory variables and the vector of correlations
between the explanatory and response variables. 4.5

5. The multiple correlation coefficient can be computed from the determinant of
the matrix of correlations among explanatory variables and that of the matrix of
correlations among all variables involved. 4.5

6. The multiple correlation coefficient can be computed from the product of a
series of complements of coefficients of partial determination. 4.5

equal to zero (i.e. independence of the descriptors), but it could also be that the
coefficient has some particular value other than zero. The general formula for testing
correlation coefficients is:

rj?k/ v,
F=an~ 4.39)
Jjk 2

with vi =m -1 and v, =n —m, where m is the number of variables involved in the

correlation; this F statistic is tested against F, | ;. In the specific case of the
. . . . 1272

bivariate correlation coefficient where m = 2, eq. 4.39 becomes eq. 4.12 or 4.13.

For the multiple correlation coefficient R, eq. 4.39 becomes (with m = p):

2
Ri, /vy

= —r (4.40)
2
(I-Rf, )7V,
Section 4.6 will show that the partial correlation coefficient is a parameter of the
multinormal conditional distribution. This distribution being a special case or aspect of
the multinormal distribution, partial correlation coefficients are tested in the same way



166

Multidimensional quantitative data

Table 4.7

Main properties of the partial (linear) correlation coefficient. Some of these properties are
discussed in later sections.

Properties Sections

1. The partial correlation coefficient measures the intensity of the linear relationship
between two random variables while taking into account their relationships
with other variables. 4.5

2. The partial correlation coefficient can be computed from the submatrix of
correlations among variables in partial relationship (first subset), the submatrix
of variables that influence the first subset, and the submatrix of correlations
between the rwo subsets of variables. 4.5

3. The partial correlation coefficient can be computed from the coefficients of
simple correlation between all pairs of variables involved. 4.5

4. The partial correlation coefficient is a parameter of the conditional distribution
of multinormal variables. 4.6

5. The partial correlation coefficient can be defined as the geometrical mean of
the coefficients of partial regression of each of the two variables on the other. 10.3

6. The square of the partial correlation coefficient (coefficient of partial
determination; name seldom used) measures the fraction of the total variance
of each variable which is mutually explained by the other, the influence
of some other variables being taken into account. 10.3

as coefficients of simple correlation (eq. 4.12 for the F-test, or eq. 4.13 for the t-test,
where v = n — 2). In the present case, one additional degree of freedom is lost for each
successive order of the coefficient. For example, the number of degrees of freedom for
rjk.123 (third-order partial correlation coefficient) would be v=(n-2)-3=n-5.
Equations 4.12 and 4.13 are, respectively:

2

r= r.
F=v—=r 412) and 1= L2 413)
1-r;

[[_ 2
jkdop “Tiktp

As usual (see Sections 1.2 and 4.2), Hy is tested by comparing the computed
statistic (F or f) to a table of critical values and it is rejected when the associated
probability is smaller than a predetermined level of significance o

4 — Interpretation of correlation coefficients

In the ecological literature, correlation coefficients are often interpreted in terms of
causal relationships among descriptors. It will now be shown that this should never be
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Table 4.8

Relationships between a primary descriptor y; and a dependent descriptor y5 in the presence of a
secondary descriptor y,. Predictions about the relationships among linear correlation coefficients
(adapted from De Neufville & Stafford, 1971) and the corresponding partial correlation
coefficients.

Elementary causal models Causal Conditions Predictions among
diagrams simple partial r

Secondary descriptor y, in the middle Yi

Intgrvening sequence: secondary descriptor Y, r2#20  ri3=rpors ri32=0

¥, intervenes between y; and y3 v ry3#0 [r12.3] < |ral

r <|r

Y; | 23.l| I 23|

Spurious correlation: primary de.scriptor yi Ya rip#0  riz=rpars rizp=0

and supposedly dependent descriptor y3 ¥y 370 [r123] < |ral

are correlated but not causally connected ¥ Y3 [r23 1] < |ra3)

Primary descriptor y; in the middle y:

Deyelopmental sequence: y, which is N rin#z0  ryy=rpri3 r31=0

partially caused by y,, causes y3 v ri3#0 [r12.3] < |rpal
Y3 |r13.0l < lrial

Double effect: primary descriptor y, y rip#0 3 =rpor;3 r31=0

causes both y, and y3 ¥ 1\ rz#0 |r12.3] < |rpal

lr13.2l < lrial
Y2 NE]

Dependent descriptor ys in the middle

Double cause: both y; and y, yi Y2 r320  rp=0 F123%20

independently affect y; X F =0 |r13.0l 2 |r13)
ME [r23.1] = [ra3]

done when the only information available is the correlation coefficients themselves.
The matter is examined using the simple case of three linearly related descriptors yy,
¥2, and y3. Considering two causal relationships only, there are five elementary models
describing the possible interactions between a primary descriptor y, and a response
descriptor ys in the presence of a secondary descriptor y,. The five models are shown
in Table 4.8. Arrows symbolize causal relationships between descriptors (e.g. y; = y;:
y;j is caused by y;). Using path analysis (Section 10.4), De Neufville & Stafford (1971)
computed, for each causal model, the relationships that should be found among the
simple linear correlation coefficients, assuming the conditions specified in the Table.

Table 4.8 also gives the first-order partial correlation coefficients computed from
the coefficients of simple linear correlation. (1) When the correlation between the
primary descriptor (y;) and the dependent descriptor (ys3) is caused by the presence of
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Causal
model

a secondary variable (i.e.y, in the middle: intervening sequence or spurious
correlation), controlling for the effect of y, through partial correlation evidences the
lack of causal relationship between y; and y; (i.e. {3, =0). The two other partial
correlations (r;p3 and rp31) are then smaller (i.e closer to zero) than the
corresponding simple correlations (ry, and rp3). (2) When there is a direct causal
relationship from the primary (y;) to the dependent (y3) descriptor (i.e. y; in middle:
developmental sequence or double effect), partial correlation r,3 | = 0 shows that there
is no direct relationship between the secondary (y,) and the dependent (y3) descriptors.
The two other partial correlations (rj;3 and ry3,) follow the same rule as in the
previous case. (3) When the dependent descriptor (ys3) is caused by both the primary
(y1) and secondary (y,) descriptors (i.e.y; in the middle: double cause), the three
partial correlation coefficients are larger than the corresponding coefficients of simple
correlation.

These five elementary causal models, for the simple case where three descriptors
only are involved, show how difficult it is to interpret correlation matrices, especially
when several ecological descriptors are interacting in complex ways. Partial
correlations may be used to help elucidate the relationships among descriptors.
However, the choice of a causal model always requires hypotheses, or else the input of
external ecological information. When it is possible, from a priori information or
ecological hypotheses, to specify the causal ordering among descriptors, path analysis
(Section 10.4) may be used to assess the correspondence between the data
(i.e. correlations) and causal models. It must be stressed again that a causal model may
never be derived from a correlation matrix, whereas a causal model is needed to
interpret a correlation matrix.

Numerical example. The simple example already used for multiple and partial correlations
illustrates here the problem inherent to all correlation matrices, i.e. that it is never possible to
interpret correlations per se in terms of causal relationships. In the following matrix, the upper
triangle contains the coefficients of simple correlation whereas the lower triangle contains the
partial correlation coefficients:

1 04 08
0 1 05
0.76 0.33 1

It may have looked as though descriptors y; and y, were somewhat correlated (r, = 0.4), but the
first-order partial correlation coefficient r{, 3 = 0 shows that this is not the case. This numerical
example corresponds to any of the first four models in Table 4.8, assuming that all the non-zero
simple and partial correlation coefficients are significantly different from O; see also the next
Subsection. In the absence of external information or ecological hypotheses, there is no way of
determining which pattern of causal relationships among descriptors fits the correlation matrix.
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Causality

5 — Causal modelling using correlations

A simple form of causal modelling may be carried out on three variables. It simply
involves looking at simple and partial correlation coefficients. One basic condition
must be fulfilled for such a model to encompass the three variables; it is that at least
two of the simple correlation coefficients be significantly different from zero. Under
the assumption of linear relationships among variables, these two coefficients support
two “causal arrows”. In the remainder of the present Subsection, the three variables y,,
¥, and y,. are denoted a, b, and ¢ for simplicity. “Causality” refers, in statistics, to the
hypothesis that changes occurring in one variable have an effect on changes in another
variable; causality resides in the hypotheses only. Within the framework of a specific
sampling design (i.e. spatial, temporal, or experimental) where variation is controlled,
data are said to support the causality hypothesis if a significant portion of the variation
in b is indeed explained by changes taking place in a. If the relationship is assumed to
be linear, a significant linear correlation coefficient is interpreted as supporting the
hypothesis of linear “causation”.

Four different linear models only can be formulated, when at least two of the
simple correlation coefficients among three variables are significantly different from
zero. Their characteristics are specified in Fig. 4.11. Model 1 corresponds to any one of
the two sequences in Table 4.8 and model 2 is the double effect. As shown above, it is
not possible to distinguish between models 1 and 2 from the correlation coefficients
alone, i.e. the two models are distinct only in their hypotheses. Model 3 is the double
cause. Model 4 describes a triangular relationship, which may be seen as a
combination of models 1 and 2. The direct and indirect effects implied in model 4 may
be further analysed using path analysis (Section 10.4). Examining model 1 in some
detail illustrates how the “expectations of the model” are derived.

» Significance of the simple correlations. Obviously (Table 4.8), r,y, and 1y, must be
significantly different from zero for the model to hold. The model can accommodate
Tac Deing significant or not, although the value of r,, should always be different from
ZEro SINCE I'ye = Fap/pe-

» Significance of the partial correlations. The condition rp¢ = ryprpe Stated in Table 4.8
implies that . — 7" = O or, in other words (eq. 4.36), r,cp, = 0. In addition, for the
model to hold, partial correlations ryy, . and ry,. , must be significantly different from 0.
Indeed, r,}, . being equal to zero would mean that ry;, = 7,7, Which would imply that
c¢ is in the centre of the sequence; this is not the case in the model as specified, where b
is in the centre. The same reasoning explains the relationship ry¢ 5 # 0.

» Comparison of simple correlation values. Since correlation coefficients are smaller
than or equal to 1 in absolute value, the relationship r,. = rapr, implies that
|rabl = [racl and [rpe| > [rael-
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Figure 4.11

Model 1

AT €D

Model 3

a b

¥

Expectations

of the model
Fap Signif.# 0
I'he Signif.# 0
|l = [rac]
|”bc| 2 |rac|
Tab.c Signif.# 0
'pe.a Signif.# 0

Fac.p DOt signif.

|"ab.c| < |"ab|
|rbc.a| < |rbc|
Tab X "pe = Tac

Expectations

of the model

T'ap DOt signif.
T'ac Signif.# 0
I'pe Signif.# 0
Tab.c Signif.# 0
be.a Signif.# 0
Tac.p Signif.# 0
|Fac.ol 2 |acl
rbe.al Z [nel

Model 2

Y\

Model 4

a—>>b

\/

Expectations
of the model
Fap Signif.# 0
Fae Signif.# 0
|rabl = [l

|racl = [nel
Tab.c Signif.# 0
Fac.p Signif.# 0
'be.a DOt signif.
|7ab.c| < |7ap
Fac.ol < [acl
Tab X Tac = I'be

Expectations
of the model

Tap Signif.# 0

T'ac Signif.# 0*
T'pe signif.# O*
Tab.c Signif.# 0
Tac.p Signif.# 0
be.a Signif.# 0

Predictions of the four possible models of causal relationships involving three variables, in
terms of the expected values for the simple and partial linear correlation coefficients.
‘rap signif.# 0’ means that, under the model, the correlation must be significantly different from
zero. ‘ryp, not signif.” means that the correlation is not necessarily significantly different from
zero at the pre-selected significance level. ¥ Model 4 holds even if one, but only one, of these
two simple correlation coefficients is not significant. Adapted from Legendre (1993).

* Comparison of partial correlation values. Consider the partial correlation formula for
Fab.c (€q. 4.36). Is it true that |ryy, o| < |rap| ? The relationship r,. = raprpe allows one to
replace rp¢ by rap/pe in that equation. After a few lines of algebra, the inequality

‘rab‘ [1_r12)c]

Ju

2 2 2
- rabrbc] [1 _rbc]

< ‘rab‘
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Eel Fishing Air Air
catches effort temperature temperature
Eel - r=0.730%** r=0.096
catches (N.S.)
Fishing
. . effort
Fishing partial r = -—-- r=-0.180%*
effort 0.763%%**
Y

Air partial r = partial » = -—-- Eel
temperature 0.338%%%* —0.368*** catches
Figure 4.12  Left: simple and partial correlations among temperature, fishing effort, and eel catches using the

‘capéchade’ fishing gear, from Bach et al. (1992). Right: causal model supported by the data.
*:0.05 2 p > 0.01; ***: p<0.001; N.S.: non-significant correlation (o = 0.05).

leads to the relationship %y (1 - 7%,p) =0 which is true in all cases because re # 0
and |ryp| < 1. This also shows that ryy, o = rap, Only when ryy, = 1. The same method may
be used to demonstrate that [rpe.ql < |rpel -

The (3 x 3) matrix of simple and partial correlations used as numerical example in
the previous Subsection obeys all the conditions corresponding to models 1 and 2.
Which of these two models is the correct one? This would depend on the nature of the
three variables and, foremost, on the hypotheses one intends to test. The hypotheses
determine the presence and direction of the arrows among variables in causal models.

Ecological application 4.5

Bach et al. (1992) analysed a 28-month long time series (weekly sampling) of eel catches
(Anguilla anguilla) in the Thau marine lagoon, southern France. Fixed gears called
‘capéchades’, made of three funnel nets (6-mm mesh) and an enclosure, were used near the
shore in less than 1.5 m of water. In the deeper parts of the lagoon, other types of gears were
used: heavier assemblages of funnel nets with larger mesh sizes, called ‘brandines’, ‘triangles’
and ‘gangui’, as well as longlines. Various hypotheses were stated by the authors and tested
using partial correlation analysis and path analysis. These concerned the influence of
environmental variables on the behaviour of fish and fishermen and their effects on landings.
Coefficients of linear correlation reported in the paper are used here to study the relationships
among air temperature, fishing effort, and landings, for the ‘capéchade’ catches (Fig 4.12). The
analysis in the paper was more complex; it also considered the effects of wind and moon.
Linearity of the relationships was checked. The correlation coefficients support a type-4 model,
stating that both effort and temperature affect the landings (temperature increases eel
metabolism and thus their activity and catchability) and that the effort, represented by the
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number of active ‘capéchade’ fishermen, is affected by temperature (lower effort at high
temperature, ‘capéchades’ being not much used from August to October). Interesting is the non-
significant simple linear correlation between temperature and catches. The partial correlations
indicate that this simple correlation corresponds to two effects of temperature on catches that are
both significant but of opposite signs: a positive partial correlation of temperature on catches and
a negative one of temperature on effort. In the paper of Bach et al., partial correlation analysis
was used as a first screen to eliminate variables that clearly did not influence catches. Path
analysis (Section 10.4) was then used to study the direct and indirect effects of the potentially
explanatory variables on catches.

Partial correlations do not provide the same information as path analysis
(Section 10.4). On the one hand, partial correlations, like partial regression coefficients
(Section 10.3), indicate whether a given variable has some unique (linear) relationship
with some other variable, after the linear effects of all the other variables in the model
have been taken into account. In path analysis, on the other hand, one is mostly
interested in partitioning the relationship between predictor (explanatory, independent)
and criterion (response, dependent) variables into direct and indirect components.

The above discussion was based on linear correlation coefficients. Advantages of
the linear model include ease of computation and simplicity of interpretation.
However, environmental processes are not necessarily linear. This is why linearity
must be checked, not only assumed, before embarking in this type of computation.
When the phenomena are not linear, two choices are open: either proceed with non-
linear statistics (nonparametric simple and partial correlation coefficients, in particular,
are available and may be used in this type of modelling), or linearize the relationships
that seem promising. Monotonic relationships, identified in scatter diagrams, may
usually be linearized using the transformations of Section 1.5 to one or both variables.
There is no ‘cheating’ involved in doing so; either a monotonic relationship exists, and
linearizing transformations allow one to apply linear statistics to the data; or such a
relationship does not exist, and no amount of transformation will ever create one.

Simple causal modelling, as presented in this Subsection, may be used in two
different types of circumstances. A first, common application is exploratory analysis,
which is performed when ‘weak’ ecological hypotheses only can be formulated. What
this means is the following: in many studies, a large number of causal hypotheses may
be formulated a priori, some being contradictory, because processes at work in
ecosystems are too numerous for ecologists to decide which ones are dominant under
given circumstances. So, insofar as each of the models derived from ecological theory
can be translated into hypothesized correlation coefficients, partial correlation analysis
may be used to clear away those hypotheses that are not supported by the data and to
keep only those that look promising for further analysis. Considering three variables,
for instance, one may look at the set of simple and partial correlation coefficients and
decide which of the four models of Fig.4.11 are not supported by the data.
Alternatively, when the ecosystem is better understood, one may wish to test a single
set of hypotheses (i.e. a single model), to the exclusion of all others. With three
variables, this would mean testing only one of the models of Fig. 4.11, to the exclusion
of all others, and deciding whether that model is supported or not by the data.
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Several correlation coefficients are tested in Fig. 4.11. Three simultaneous tests are
performed for the simple correlation coefficients and three for the partial correlation
coefficients. In order to determine whether such results could have been obtained by
chance alone, some kind of global test of significance, or correction, must be
performed (Box 1.3; eq. 4.14).

The simple form of modelling described here may be extended beyond the frame of
linear modelling, as long as formulas exist for computing partial relationships.
Examples are the partial nonparametric correlation coefficients (partial Kendall 7,
eq. 5.9) and partial Mantel statistics (Subsection 10.5.2).

4.6 Multinormal conditional distribution

In Section 4.3, which deals with the multinormal distribution, an important property
was demonstrated, namely that correlation coefficients are parameters of the
multinormal distribution. In the same way, it will be shown here that partial correlation
coefficients, described in the previous section, are parameters of a distribution, derived
from the multinormal distribution, which is called the conditional distribution of
multinormal random variables (or multinormal conditional distribution). The fact that
p is a parameter of the multinormal distribution is the basis for testing the significance
of simple correlation coefficients. Similarly, the fact that partial correlation
coefficients are parameters of a distribution is the basis for testing their significance,
using the approach explained in the previous section.

In the multidimensional context, a set of random variables is sometimes partitioned
into two subsets, so as to study the distribution of the variables in the first set
(¥1:y2,---»yp) While maintaining those in the second set (y,1,.-..Vp+4) fixed. These are
the conditions already described for partial correlations (eqs. 4.34 to 4.37). Such a
probability distribution is called a conditional distribution. It can be shown that the
conditional distribution of variables of the first set, given the second set of fixed
variables, is:

FOuYo oo YV puts s Ypuo)
EV Yy s V|V pstr s Vo) = P s
102 p‘ p+1 p+q h(yp+1""’yp+q)

(4.41)

where f(y1.y2, ..., ¥p14) is the joint probability density of the (p + g) variables in the
two subsets and /(Y11 ..., ¥p44) 18 the joint probability density of the g fixed variables
(second subset). When the two subsets are independent, it has already been shown
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(Section 4.3) that their joint probability density is the product of the densities of the
two subsets, so that:

e (yny 3, [y vy = T Yo s VIR, 0 Y,0 )
Y2 o Vp|Yp+1o e ptq h(yp+1,.“’yp+q)

8D Yo s Yol Ypurr o0 Vpug) = F (V1Yo e ¥)) 4.42)

The conditional density is then the probability density of the p random variables in the
first subset; this is because variables in this subset are not influenced by those in the
second subset.

In most cases of interest to ecologists, the variables under study are not
independent of one another (Section 4.1). The corresponding multinormal population
(i.e. with all variables intercorrelated) may be partitioned into two subsets:

Y =[y; y2l

where y; represents the p variables belonging to the first subset and y, the g variables
belonging to the second subset:

yi=Dnye o3l and Y2 = [pats Ypa2s s Vgl

The multidimensional mean W and dispersion matrix X are partitioned in the same way:

B= (1 pol and T= [z“ z”}
z21 z22

The values of the elements in X, (or X,;), with respect to those in Xy, and Xy,
determine the dependence between the two subsets of variables, as in eq. 11.2.

The conditional probability density of y;, for fixed values of y,, is:

fy,y)

—_— 4.43
h(y,) ( )

gy |y2) =

The probability densities for the whole set of variables f(y, y,) and for the subset
of fixed variables h(y,) are calculated as in eq. 4.19:

191:¥2= GGz O HOD b-ul 2 h-ul) @49
1 .
h(yp) = W exp {-(1/2) [y, - ua] 5} 2 - o'} (4.45)
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Submatrices X;; and Z,, being square, the determinant of the whole matrix £ may be
expressed as a function of the determinants of its four submatrices:

1z = ‘222‘ ’ ‘211 —Z,E0 %,

Using the above three equations, the conditional probability density of y, for fixed
values of y,, (eq. 4.43) becomes:

(2m) 4/2|Z,| 1/ 2exp...
(27) (P+q)/2‘):22‘ 1/2‘211 - ):122521221‘ 172exp...

8 (yl‘YQ) =

1
(2m) p/z‘z“ - 2122521221‘ e

8(y1]yy) = (4.46)

This shows that the dispersion matrix of the conditional probability distribution is:
Z,=Z,-Z,2,%, (4.47)

Developing the exponent (exp...) of eq. 4.46 would show that the corresponding mean
is:

R, =K+ [, 5%, (4.48)

It is not easy to understand, from the above equations, what are exactly the respective roles
of the two subsets of variables, y; and y,, in the conditional distribution. Examination of the
simplest case, with each of the two subsets containing only one variable, shows the main
characteristics of this special distribution. In this simple case, y; = y; and y, = y,, which leads to
the following conditional density (eqs. 4.44 to 4.46):

g(y[yy) = ! exp{—(l/Z) (v _u)_c_lz(y ) 2 62_0_%2 _1}
172" am) 172 (62 - 62,/09) 12 1R —F 02k | (0T

Since p = 61,/00,, it follows that:
62-06%,/03 = 62 (1-p?) and —~ =p—

Thus:

el o]
& ([72) mm“p{ 2012(1_‘)2){@1 H) =Pg (= Hy)



176

Multidimensional quantitative data

where p is the correlation between the two variables. This last equation may be rewritten in a
simplified form, after defining the conditional mean W, 2 and variance 012‘2 :

(e
g = H1+p(5_; (y,—Hy) (512‘2 = (512(1—92)

el = ;exp{_l Nt }
1‘ 2 /\/ﬁc”z 2 01‘2

which is the conditional form of the one-dimensional normal distribution (eq.4.15). The
equation for [, 2 shows that, in the conditional case, the mean L, 2 is a function of the value
taken by the fixed variable y,.

Figure 4.13 illustrates the conditional distribution of a variable y;, for four values of a fixed
variable y,. Given Wy, Wy, O, G and Py, the position of the conditional mean W, , depends
solely on the value taken by y,. This property of the conditional distribution appears clearly
when examining the line along which means [1;, are located (dashed line). The position of the
conditional normal distribution g(y;|y,), in the plane of axes y; and y,, is determined by the
position of W, 2 since a normal distribution is centred on its mean.

Understanding the multidimensional case requires a little imagination. When the
first subset y; contains two variables (y; and y,) and the second (y,) only one variable
(y3), each one-dimensional normal curve in Fig. 4.13 is replaced by a two-dimensional
probability “bell” (Fig. 4.6). These bells represent the binormal distribution of y; and
¥, for values of the fixed variable y5. This would be the case of the partial correlation
r12.3 calculated between variables y; and y, while controlling for the effect of a third
one (y3); this case has been examined in Subsection 4.5.2 (eq. 4.36).

In the more complex situation where y; = [y; yo] and y, = [y3 y4], the “bells”,
representing the binormal distribution of y; and y,, are located in a three-dimensional
space instead of a plane, since the position of 1| is then determined by the values of
the two fixed variables y3 and y,. This would be the case of the partial correlation
r12.34, calculated between variables y; and y, while controlling for the effects of
variables y; and y4. It is not easy to picture higher dimensions which, however, have
actual mathematical existence — and real ecological significance — since the
conditional distribution of multinormal variables is that of all descriptors in partial
correlation.

It was shown above (eq.4.47) that the dispersion matrix of the conditional
probability distribution is:

- -1
L,=2%,-L,2,%,
Extending eq. 4.10 to the conditional case, the partial correlation matrix is:

2 -1/72 2 -172
Pi2=D(c,)  ZipD(0)) (4.49)
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Figure 4.13

oi=0y=1 g(yl|)’2)T
0 =0.745

Y1

Line of conditional means (U |2)

Conditional distribution of a normal variable y;, for four values of a fixed variable y,.
Conditional means My are located along the dashed line.

2. . . . .
where D (0] ,) is the matrix of the diagonal elements of X, ,. Equation 4.49 is the
same as eq. 4.35 except for the fact that it is formulated in terms of dispersion instead
of correlation, and it concerns parameters instead of statistics.

Equation 4.49 shows that partial correlation coefficients are parameters of the
multinormal conditional distribution in the same way as simple correlation coefficients
are parameters of the multinormal distribution (eqs. 4.20 and 4.21). As stated at the
beginning of the present section, this property is the basis for testing partial correlation
coefficients (Subsection. 4.5.3). It thus has practical significance for ecologists.
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4.7 Tests of normality and multinormality

Skewness

Kurtosis

Testing the normality of empirical distributions is an important concern for ecologists
who want to use linear models for analysing their data. Tests of normality are carried
out in two types of circumstances. On the one hand, many tests of statistical
significance, including those described in the present chapter, require the empirical
data to be drawn from normally distributed populations. On the other hand, the linear
methods of multivariate data analysis discussed in Chapters 9, 10, and 11 do
summarize data in more informative ways if their underlying distributions are
multinormal — or at least are not markedly skewed, as discussed below. Testing the
normality of empirical variables is thus an important initial step in the analysis of a
data set. Variables that are not normally distributed may be subjected to normalizing
transformations (Section 1.5). The historical development of the tests of normality has
been reviewed by D’ Agostino (1982) and Dutilleul & Legendre (1992).

The problem may first be approached by plotting frequency distributions of
empirical variables. Looking at these plots immediately identifies distributions that
have several modes, for instance, or that are obviously too skewed, or too ‘flat’ or
‘peaked’, to have been possibly drawn from normally distributed populations.

Next, for unimodal distributions, one may examine the parameters skewness and
kurtosis. Skewness (0.,) is a measure of asymmetry; it is defined as the third moment

of the distribution (the first moment being equal to zero, m; = 0, and the second being
the variance, m, = sz),

my =X (x-%"/(n-1)
divided by the cube of the standard deviation:
0y = my/s (4.50)

Skewness is O for a normal distribution. Positive skewness corresponds to a frequency
distribution with a longer ‘tail’ to the right than to the left, whereas a distribution with
a longer ‘tail’ to the left than to the right shows negative skewness. Kurtosis
(o, or oy )is a measure of flatness or peakedness; it is defined as the fourth moment
of the frequency distribution,

my, = Z(x-%"/(n-1)
divided by the standard deviation to the power 4:

o, = my/s. 4.51)
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K-S test

Since the kurtosis of a normal distribution is o, = 3, authors (and computer packages)
in the U. S. tradition use a modified formula for kurtosis,

o, =o,-3 (4.52)

which is such that the kurtosis of a normal distribution is o, = 3. Distributions flatter
than the normal distribution have negative values for o, whereas distributions that
have more observations around the mean than the normal distribution have positive
values for oy, indicating that they are more ‘peaked’.

Although tests of significance have been developed for skewness and kurtosis, they
are not used any longer because more powerful tests of goodness-of-fit are now
available. For the same reason, testing the goodness-of-fit of an empirical frequency
distribution to a normal distribution with same mean and variance (as in Fig 4.14a)
using a chi-square test is no longer in fashion because it is not very sensitive to
departures from normality (Stephens, 1974; D’ Agostino, 1982), even though it is often
presented in basic texts of biological statistics as a procedure of choice. The main
problem is that it does not take into account the ordering of classes of the two
frequency distributions that are being compared. This explains why the main statistical
packages do not use it, but propose instead one or the other (or both) procedure
described below.

One of the widely used tests of normality is the Kolmogorov-Smirnov test of
goodness-of-fit. In Fig. 4.14b, the same data as in Fig.4.14a are plotted as a
cumulative frequency distribution. The cumulative theoretical normal distribution is
also plotted on the same graph; it can easily be obtained from a published table, or by
requesting in a statistical package the normal probability values corresponding to the
relative cumulative frequencies. One looks for the largest deviation D between the
cumulative empirical relative frequency distribution and the cumulative theoretical
normal distribution. If D is larger than the critical value in the table, for a given
number of observations n and significance level o, the hypothesis of normality is
rejected.

The Kolmogorov-Smirnov test of goodness-of-fit is especially interesting for small
sample sizes because it does not require to lump the data into classes. When they are
divided into classes, the empirical data are discontinuous and their cumulative
distribution is a step-function, whereas the theoretical normal distribution to which
they are compared is a continuous function. D is then formally defined as the
maximum of D~ and D*, where D™ is the maximum difference computed just before a
data value and D™ is the maximum difference computed at the data value (i.e. at the
top of each step of the cumulative empirical step-function). A numerical example is
given by Sokal & Rohlf (1995).

Standard Kolmogorov-Smirnov tables for the comparison of two samples, where
the distribution functions are completely specified (i.e.the mean and standard
deviation are stated by hypothesis), are not appropriate for testing the normality of
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Figure 4.14  Numerical example with n = 100. (a) Frequency distribution and fitted theoretical normal curve,
(b) relative cumulative frequencies and Kolmogorov-Smirnov test of goodness-of-fit, showing
that the maximum deviation D = 0.032 is too small in this case to reject the hypothesis of
normality.
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Normal
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Wilk test

empirical data since the mean and standard deviation of the reference normal
distribution must be estimated from the observed data; critical values given in these
tables are systematically too large, and thus lead to accepting too often the null
hypothesis of normality. Corrected critical values for testing whether a set of
observations is drawn from a normal population, that are valid for stated probabilities
of type I error, have been computed by Lilliefors (1967) and, with additional
corrections based on larger Monte Carlo simulations, by Stephens (1974). Critical
values computed from the formulas and coefficients of Stephens are given in Table A.
The same paper by Stephens evaluates other statistics to perform tests of normality,
such as Cramér-von Mises W2 and Anderson-Darling A2 which, like D, are based on
the empirical cumulative distribution function (only the statistics differ), and proposes
corrections where needed for the situation where the mean and variance of the
reference normal distribution are unknown and are thus estimated from the data.

The second widely used test of normality is due to Shapiro & Wilk (1965). It is
based on an older graphical technique which will be described first. This technique,
called normal probability plotting, was developed as an informal way of assessing
deviations from normality. The objective is to plot the data in such a way that, if they
come from a normally distributed population, they will fall along a straight line.
Deviations from a straight line may be used as indication of the type of non-normality.
In these plots, the values along the abscissa are either the observed or the standardized
data (in which case the values are transformed to standard deviation units), while the
ordinate is the percent cumulative frequency value of each point plotted on a normal
probability scale. Sokal & Rohlf (1995) give computation details. Fig. 4.15 shows the
same data as in Fig 4.14a, which are divided into classes, plotted on normal probability
paper. The same type of plot could also be produced for the raw data, not grouped into
classes. For each point, the upper limit of a class is used as the abscissa, while the
ordinate is the percent cumulative frequency (or the cumulative percentage) of that
class. Perfectly normal data would fall on a straight line passing through the point (¥,
50%). A straight line is fitted trough the points, using reference points based on the
mean and variance of the empirical data (see the caption of Fig. 4.15); deviations from
that line indicate non-normality. Alternatively, a straight line may be fitted through the
points, either by eye or by regression; the mean of the distribution may be estimated as
the abscissa value that has an ordinate value of 50% on that line. D’ Agostino (1982)
gives examples illustrating how deviations from linearity in such plots indicate the
degree and type of non-normality of the data.

Shapiro & Wilk (1965) proposed to quantify the information in normal probability
plots using a so-called ‘analysis of variance W statistic’, which they defined as the
F-ratio of the estimated variance obtained from the weighted least-squares of the slope
of the straight line (numerator) to the variance of the sample (denominator). The
statistic is used to assess the goodness of the linear fit:

n 2 n
W = (Zwixl) DN (4.53)

i=1 i=1
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Figure 4.15  The cumulative percentages of data in Fig. 4.14a are plotted here on normal probability paper as
a function of the upper limits of classes. Cumulative percentiles are indicated on the right-hand
side of the graph. The last data value cannot be plotted on this graph because its cumulated
percentage value is 100. The diagonal line represents the theoretical cumulative normal
distribution with same mean and variance as the data. This line is positioned on the graph using
reference values of the cumulative normal distribution, for example 0.13% at y—3s and
99.87% at y + 3s, and it passes through the point (y, 50%). This graph contains exactly the
same information as Fig. 4.14b; the difference lies in the scale of the ordinate.
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where the x; are the ordered observations (x; <x, <... <x,) and coefficients w; are
optimal weights for a population assumed to be normally distributed. Statistic W may
be viewed as the square of the correlation coefficient (i.e. the coefficient of
determination) between the abscissa and ordinate of the normal probability plot
described above. Large values of W indicate normality (points lying along a straight
line give 72 close to 1), whereas small values indicate lack of normality. Shapiro &
Wilk did provide critical values of W for sample sizes up to 50. D’ Agostino (1971,
1972) and Royston (1982a, b, ¢) proposed modifications to the W formula (better
estimates of the weights w;), which extend its application to much larger sample sizes.
Extensive simulation studies have shown that W is a sensitive omnibus test statistic,
meaning that it has good power properties over a wide range of non-normal
distribution types and sample sizes.

Which of these tests is best? Reviewing the studies on the power of tests of
normality published during the past 25 years, D’ Agostino (1982) concluded that the
best omnibus tests are the Shapiro-Wilk W-test and a modification by Stephens (1974)
of the Anderson-Darling AZ-test mentioned above. In a recent Monte Carlo study
involving autocorrelated data (Section 1.1), however, Dutilleul & Legendre (1992)
showed (1) that, for moderate sample sizes, both the D-test and the W-test are too
liberal (in an asymmetric way) for high positive (p >0.4) and very high negative
(p <-0.8) values of autocorrelation along time series and for high positive values of
spatial autocorrelation (p > 0.2) and (2) that, overall, the Kolmogorov-Smirnov D-test
is more robust against autocorrelation than the Shapiro-Wilk W-test, whatever the sign
of the first-order autocorrelation.

As stated at the beginning of the Section, ecologists must absolutely check the
normality of data only when they wish to use parametric statistical tests that are based
on the normal distribution. Most methods presented in this book, including clustering
and ordination techniques, do not require statistical testing and hence may be applied
to non-normal data. With many of these methods, however, ecological structures
emerge more clearly when the data do not present strong asymmetry; this is the case,
for example, with principal component analysis. Since normal data are not skewed
(coefficient o3 =0), testing the normality of data is also testing for asymmetry;
normalizing transformations, applied to data with unimodal distributions, reduce or
eliminate asymmetries. So, with multidimensional data, it is recommended to check at
least the normality of variables one by one.

Some tests of significance require that the data be multinormal (Section 4.3).
Section 4.6 has shown that the multidimensional normal distribution contains
conditional distributions; it also contains marginal distributions, which are
distributions on one or several dimensions, collapsing all the other dimensions. The
normality of unidimensional marginal distributions, which correspond to the p
individual variables in the data set, can easily be tested as described above. In a
multivariate situation, however, showing that each variable does not significantly
depart from normality does not prove that the multivariate data set is multinormal
although, in many instances, this is the best researchers can practically do.
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Test of multi-  Dagnelie (1975) proposed an elegant and simple way of testing the multinormality
normality  of a set of multivariate observations. The method is based on the Mahalanobis

generalized distance (Ds; Section 7.4, eq.7.40) which is described in Chapter 7.
Generalized distances are computed, in the multidimensional space, between each
object and the multidimensional mean of all objects. The distance between object X;
and the mean point X is computed as:

D(x,%) = /ly-31,8" [y-7I; @.54)

where [y— 3], is the vector corresponding to object x; in the matrix of centred data
and S is the dispersion matrix (Section4.1). Dagnelie’s approach is that, for
multinormal data, the generalized distances should be normally distributed. So, the n
generalized distances (corresponding to the n objects) are put in increasing order, after
which the relative cumulative frequency of each i-th distance is calculated as
(i — 0.5)/n. The data are then plotted on a normal probability scale (Fig. 4.15), with the
generalized distances on the abscissa and the relative cumulative frequencies on the
ordinate. From visual examination of the plot, one can decide whether the data points
are well aligned; if so, the hypothesis of multinormality of the original data may be
accepted. Alternatively, the list of generalized distances may be subjected to a Shapiro-
Wilk test of normality, whose conclusions are applied to the multinormality of the
original multivariate data. With standardized variables z;; = (y; -, /s;, eq. 4.54
becomes:

D(x,X) = JzR 'z (4.55)

4 L

where R is the correlation matrix.
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5.0 Nonparametric statistics

Section 1.2 has explained that statistical testing often refers to the concepts of
parameter and reference population. Section 4.3 has shown that the mean, standard
deviation and correlation are parameters of the multinormal distribution, so that this
distribution and others play a key role in testing quantitative data. When the data are
semiquantitative, however, it does not make sense to compute statistics such as the
mean or the standard deviation. In that case, hypothesis testing must be conducted with
nonparametric statistics. Nonparametric tests are distribution-free, i.e. they do not
assume that the samples were drawn from a population with a specified distribution
(e.g. multinormal). Because of this, nonparametric statistics are useful not only when
descriptors are semiquantitative, but also when quantitative descriptors do not conform
to the multinormal distribution and researchers do not wish, or succeed, to normalize
them. Many of the nonparametric tests are called ranking tests, because they are based
on ranks of observations instead of actual quantitative values. Another advantage of
nonparametric statistics is computational simplicity. Last but not least, nonparametric
tests may be used with small samples, a situation that frequently occurs with
ecological data. Nonparametric measures corresponding to the mean and variance
(Section 4.1) are the median and range, respectively.

Nonparametric statistics cover all statistical methods developed for analysing
either semiquantitative (rank statistics; Sections 5.2) or qualitative (Chapter 6) data.
Rank statistics should always be used in the following situations:
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Figure 5.1 Three types of monotonic relationships between two descriptors: (a) linear (increasing and
decreasing); (b) logistic (increasing monotonic); (c) atypical (decreasing monotonic).
1) One or several descriptors among those to be compared are semiquantitative.
Monotonic 2) The purpose of the study is to evidence monotonic relationships between

quantitative descriptors. In a monotonic relationship, one of the descriptors keeps
increasing or decreasing as the other increases (Fig. 5.1); the increase (or decrease) is
not necessarily linear or smoothly curvilinear.

3) One or several (quantitative) descriptors are not normally distributed (see
Section 4.7 for tests of normality and multinormality) and researchers do not wish to
normalize them or do not succeed in doing so. Normalizing transformations are
described in Subsection 1.5.6.

4) The number of observations is small.

The present Chapter first summarizes the methods available in the nonparametric
approach, with reference to the corresponding parametric methods (Section 5.1).
Ranking tests are then described for analysing relationships (Section 5.2) among
groups of qualitative, semiquantitative, or quantitative descriptors and (Section 5.3)
among groups of descriptors with mixed levels of precision (R analysis: Section 7.1).
Most statistical computer packages include nonparametric procedures.

5.1 Quantitative, semiquantitative, and qualitative multivariates

As discussed in Section 1.4, ecological descriptors may be of different levels of
precision (Table 1.2). Ecologists generally observe several descriptors on the same
objects, so that multidimensional ecological variates may be either quantitative,
semiquantitative, or qualitative, or mixed, i.e. consisting of descriptors with different
precision levels. For a number of years, quantitative ecology has been based almost
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exclusively on quantitative descriptors and on parametric tests, even though there exist
a large number of methods that can efficiently analyse semiquantitative or qualitative
multivariates as well as multivariates of mixed precision levels. These methods have
become increasingly popular in ecology, not only because non-quantitative descriptors
often provide unique information, but also because parametric statistics cannot be
tested for significance when quantitative data do not conform to a number of
conditions, including multinormality. This section briefly reviews numerical methods
for analysing multivariates with various levels of precision.

Table 5.1 summarizes and compares methods described elsewhere in the present
book. In the same row are corresponding methods, listed under one of four column
headings. The applicability of methods increases from left to right. Methods in the first
(left-hand) column are restricted to quantitative multivariates, which must also, in
most cases, be linearly related or/and multinormally distributed. Methods in the second
column have been developed for semiquantitative descriptors exhibiting monotonic
relationships. These methods may also be used (a) with quantitative descriptors
(especially when they do not follow the conditions underlying methods in the first
column) and (b) for the combined analysis of quantitative and semiquantitative
descriptors. Methods in the third column were developed for the numerical analysis of
qualitative descriptors. They may also be used for analysing quantitative or
semiquantitative descriptors exhibiting nonmonotonic relationships, after partitioning
these continuous descriptors into classes (see Section 6.3). Methods for qualitative
descriptors thus represent a first type of techniques for multivariates of mixed
precision, since they can be used for analysing together quantitative, semiquantitative,
and qualitative descriptors, partitioned into classes. An alternative is to recode
multiclass qualitative descriptors into dummy variables (Subsection 1.5.7) and use
parametric methods (first column of the Table) on the resulting assemblage of
quantitative and binary descriptors; this approach is often used in regression and
canonical analyses (Chapter 10).

Other methods (right-hand column) have been developed specifically for
multivariates with mixed levels of precision, so that these can be used for analysing
together quantitative, semiquantitative and qualitative descriptors. Such methods are
very general, since they may replace equivalent methods in the other three columns;
the price to be paid is often greater mathematical and/or computational complexity.

There are many types of multidimensional methods (rows of Table 5.1). One
interesting aspect of the Table is that there is always at least one, and often several
methods for descriptors with low precision levels. Thus, ecologists should never
hesitate to collect information in semiquantitative or qualitative form, since there exist
numerical methods for processing descriptors with all levels of precision. However, it
is always important to consider, at the very stage of the sampling design, how data will
eventually be analysed, so as to avoid problems at later stages. These problems often
include the local availability of specific computer programs or the lack of human
resources to efficiently use sophisticated methods. Researchers could use the period
devoted to sampling to acquire computer programs and improve their knowledge of
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Table 5.1 Methods for analysing multidimensional ecological data sets, classified here according to the

levels of precision of descriptors (columns). For methods concerning data series, see Table 11.1.

To find pages where a given method is explained, see the Subject index (end of the book).

Quantitative
descriptors

Semiquantitative
descriptors

Qualitative
descriptors

Descriptors of
mixed precision

Difference between two samples:

Hotelling 7>

Difference among several samples:

MANOVA
db-RDA, CCA

Scatter diagram

Rank diagram

Association coefficients R:

Log-linear models

Log-linear models
db-RDA, CCA

MANOVALS
db-RDA

Multiway contingency Quantitative-rank

table

diagram

Covariance - Information, X2 -
Pearson r Spearman r Contingency -
Kendall ©
Partial r Partial ©
Multiple R Kendall W
Species diversity:

Diversity measures

Association coeff. Q

Diversity measures

Association coeff. Q

Number of species

Association coeff. Q

Association coeff. Q

Clustering Clustering Clustering Clustering
Ordination:
Principal component a. - Correspondence a. PRINCALS
Correspondence a. HoMALS PRINCIPALS

Principal coordinate a.
Nonmetric multi-
dimensional scaling

Principal coordinate a.

Nonmetric multi-
dimensional scaling

ALSCAL, GEMSCAL

Factor analysis - --- FACTALS
Regression Regression Correspondence Regression
simple linear (I and II) nonparametric logistic
multiple linear dummy

polynomial MORALS

partial linear

nonlinear, logistic

smoothing (splines, LOWESS)

multivariate; see also canonical a.
Path analysis - Log-linear models PATHALS
Canonical analysis: Logit models

Redundancy analysis (RDA) CORALS, OVERALS

Canonical correspondence a. (CCA) CCA db-RDA

Canonical correlation a. (CCorA)

Discriminant analysis

Discrete discriminant a. CRIMINALS

Log-linear models

Logistic regression
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methods. In any case, the type of data collected must take into account the local
computer and human resources.

Coming back to Table 5.1, it is possible to compare groups of objects, described by
quantitative multivariate data, using multidimensional analysis of variance (MANOVA).
In this analysis, a test of Wilks” A (lambda) statistic replaces the usual F-test of one-
dimensional ANOVA. When there are only two groups, another approach is Hotelling’s
T? (Section 7.4). In the case of qualitative multivariate data, the comparison may be
done by adjusting log-linear models to a multiway contingency table (the relationship
between contingency table analysis and analysis of variance is explained in
Section 6.0; see also the caveat concerning the use of multiway contingency tables as
qualitative equivalent to MANOVA, at the end of Section 6.3). Multivariate analysis of
variance of descriptors with mixed levels of precision is possible using MANOVALS (a
Gifi/ALSOS algorithm; Section 10.2). Multivariate analysis of variance of species
presence-absence or abundance tables may be obtained using either canonical
correspondence analysis (CCA, Section 11.2), or the distance-based redundancy
analysis method (db-RDA) of Legendre & Anderson (1999) briefly described in
Subsection 11.3.1.

The simplest approach to investigate the relationships among descriptors,
considered two at a time (Fig. 5.2), is to plot the data as a scatter diagram, whose
semiquantitative and qualitative equivalent are the rank-rank diagram and the
contingency table, respectively. Quantitative-rank diagrams may be used to compare a
quantitative to a semiquantitative descriptor (Legendre & Legendre, 1982). Two
families of methods follow from these diagrams, for either measuring the dependence
among descriptors, or forecasting one or several descriptors using other ones. The first
family of methods is based on R-mode association coefficients (i.e. coefficients of
dependence; Section 7.5), which are explained in Chapter 4 (quantitative descriptors),
Chapter 5 (semiquantitative descriptors), and Chapter 6 (qualitative descriptors). It is
interesting to note that measures of information and X? (chi-square) calculated on
contingency tables (Chapter 6) are equivalent, for qualitative descriptors, to the
covariance between quantitative descriptors. Methods in the second family belong to
regression analysis (Section 10.4), which has a nonparametric form and whose
qualitative equivalent is the analysis of correspondence in contingency tables
(Section 6.4).

Various measures of species diversity are reviewed in Section 6.5. They are usually
computed on quantitative species counts, but Dévaux & Millerioux (1977) have shown
that this may be done just as well on semiquantitative counts. When there are no
counts, the number of species present may be used to assess diversity; this is indeed
the first diversity index described in the literature (Patrick, 1949; Subsection 6.5.1).

There are Q-mode association coefficients (Sections 7.3 and 7.4) adapted to
descriptors of all levels of precision (see Tables 7.3 and 7.4). Some of the similarity
coefficients (Chapter 7: S5, Sig, Sj9 and S,) are yet another way of combining
quantitative and qualitative descriptors in multivariate data analysis. Concerning
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Figure 5.2 Comparison of two descriptors. (a) Scatter diagram (quantitative descriptors on both axes).

(b) Quantitative-rank diagram (quantitative descriptor on the abscissa, ranked classes of a
semiquantitative descriptor on the ordinate). (c) Rank-rank diagram (ranked classes of
semiquantitative descriptors on both axes). (d) Two-way contingency table (nonordered classes
of qualitative descriptors on both axes). From Legendre & Legendre (1982).

clustering algorithms (Chapter 8), most of them are indifferent to the precision of
descriptors, since clustering is in general conducted on an association matrix, most
often of type Q.

Methods of ordination in reduced space are seldom restricted to descriptors of a
single level of precision, with the exception of principal component analysis which
must be computed on quantitative or presence-absence data (Section 9.1).
Correspondence analysis (Section 9.4) was first described for qualitative descriptors
(contingency tables), but it is currently used for analysing descriptors of any precision.
These must, however, be coded in such a way as to be positive and dimensionally
homogenous. Principal coordinate analysis (Section9.2) and nonmetric
multidimensional scaling (Section 9.3) are indifferent to the precision of descriptors,
since they are computed on an association matrix (generally Q-type). Ordination of
descriptors with mixed levels of precision is also possible using the Gifi/ALSOS
algorithms HOMALS, PRINCIPALS, ALSCAL, and GEMSCAL. Factor analysis
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(Section 9.5) is restricted to quantitative descriptors, except when using the
Gifi/ALSOS algorithm FACTALS for descriptors of mixed precision. (Algorithms
PRINCIPALS, GEMSCAL and FACTALS are not discussed elsewhere in this book.)

For the interpretation of ecological structures, regression, which was briefly
discussed a few paragraphs above, is the chief technique when the dependent variable
is a single quantitative variable. Various forms of canonical analysis are available to
interpret the structure of quantitative data sets: redundancy analysis, canonical
correspondence analysis, canonical correlation analysis, and discriminant analysis
(Chapter 11). Canonical correspondence analysis, in particular, allows an
interpretation of the structure of species abundance or presence-absence data. For
qualitative descriptors, Table 5.1 proposes methods equivalent to discriminant and
path analyses. For descriptors of mixed precision, there are methods available for all
types of analyses.

Table 5.1 shows that ecological data can efficiently be analysed irrespective of their
levels of precision. Researchers should use ecological criteria, such as allowable effort
in the field and biological meaningfulness of the decimal places to be recorded, to
decide about the level of precision of their data. The strictly numerical aspects play but
a secondary role.

5.2 One-dimensional nonparametric statistics

Independent
samples
Related
samples

The present book is devoted to numerical methods for analysing sets of
multidimensional ecological data. Methods for one-dimensional variables are not
discussed in depth since they are the subject of many excellent textbooks.
Nonparametric tests for one-dimensional descriptors are explained, among others, in
the books of Siegel (1956), Héjek (1969), Siegel & Castellan (1988), and Sokal &
Rohlf (1995). Because ecologists are often not fully conversant with these tests, the
correspondence between approaches for quantitative, semiquantitative, and qualitative
descriptors is not always clearly understood. This is why the one-dimensional methods
to carry out tests of differences among groups of objects are summarized in Table 5.2.

Methods in the Table are divided in two main families: those for independent
samples, which are the most generally applicable, and those for related samples.
Related samples are often called matched or paired samples (Box 1.1). With such
samples, the effect of differences among the matched objects is eliminated from the
comparison among groups. Matching may be achieved, for example, by repeating
observations at the same sampling sites, or by making observations at sites
representing corresponding conditions (e.g. same geological substrate, same
temperature, or same depth in the water column). Related samples could be analysed
using the methods for independent samples, but the information carried by the
matching is then lost. Within each of the two families, methods in Table 5.2 are
classified according to the number of groups (k) which are compared.
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Table 5.2

Methods to carry out tests of differences among groups of objects (one-dimensional data) are
classified here according to the levels of precision of the descriptors (columns). Most of these
methods are not discussed elsewhere in the present book. Table modified from Siegel (1956) and
Legendre & Legendre (1982).

Number of Quantitative Semiquantitative Qualitative
groups (k) descriptors* descriptors descriptors

Independent samples:

k=2 Student 7 (unpaired) = Mann-Whitney U test X2 (2 X no. states)
Median test Fisher’s exact
Kolmogorov-Smirnov test probability test
etc. Logistic regression
k =2 (one-way) One-way ANOVA Kruskal-Wallis” H X2 (k X no. states)
and F-test Extension of the median test Discriminant a.

Related samples:

k=2 Student 7 (paired) Sign test McNemar test
Wilcoxon signed-ranks test (binary descriptors)
k22 (two-way)  Two-way ANOVA Friedman test Cochran Q
and F-tests (binary descriptors)
k22 (multiway)  Multiway ANOVA - -
and F-tests

* When quantitative data do not meet the distributional assumptions underlying parametric tests,
they must be analysed using ranking tests (for semiquantitative descriptors). Another way would
be to test the parametric statistics by randomization (Section 1.2).

Univariate comparison of two independent samples (k=72), when the data are
quantitative, is generally done by using Student’s ¢, to test the hypothesis (Hg) of
equality of the group means (i.e. that the two groups of objects were drawn from the
same statistical population, or at least from populations with equal means, assuming
equal standard deviations). When the data are semiquantitative, computing means and
standard deviations would not make sense, so that the approach must be
nonparametric. The Mann-Whitney U statistic first combines and ranks all objects in a
single series, then allows one to test that the ranked observations come from the same
statistical population (Hp). The median test, which is not as powerful as the previous
one (except in cases when there are ties), is used for testing that the two groups of
objects have similar medians (Hg). Other nonparametric tests consider not only the
positions of the two groups along the abscissa but also the differences in dispersion
and shape (e.g. skewness) of their distributions. The best-known is the Kolmogorov-
Smirnov test; this is not the same test as the one described in Section 4.7 for
comparing an empirical to a theoretical distribution. The method discussed here allows
one to test the hypothesis (H) that the largest difference between the cumulative
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distributions of the two groups is so small that these may come from the same or
identical populations. Finally, when the data are qualitative, the significance of
differences between two groups of objects may be tested using a X2 statistic calculated
on a two-way contingency table. Section 6.2 describes contingency table analysis for
the comparison of two descriptors. In the present case, the contingency table has two
rows (i.e. two groups of objects) and as many columns as there are states in the
quantitative descriptor. The hypothesis tested (Hy) is that the frequency distributions in
the two rows are similar; this is the same as stating the more usual hypothesis of
independence between rows and columns of the contingency table (see Section 6.0).
When the descriptor is binary (e.g. presence or absence) and the number of
observations in the two groups is small, it is possible to test the hypothesis (H) that
the two groups exhibit similar proportions for the two states, using Fisher’s powerful
exact probability test. Logistic regression (Subsection 10.3.7) may also be used in this
context; in the regression, the two groups are represented by a binary response variable
while the qualitative explanatory descriptors are recoded as a series of dummy
variables as in Subsection 1.5.7.

The standard parametric technique for testing that the means of several
independent samples (k=2) are equal, when the data are quantitative, is one-way
analysis of variance (ANOVA). It may be considered as a generalization of the Student
t—test. In one-way ANOVA, the overall variance is partitioned between two orthogonal
(i.e. linearly independent; see Box 1.1) components, the first one reflecting differences
among the k groups and the second one accounting for the variability among objects
within the groups. The hypothesis (H) of equal means is rejected (F-test) when the
among-groups variability is significantly larger than the within-groups component. For
semiquantitative data, the Kruskal-Wallis’ H test (also called Kruskal-Wallis’ one-way
ANOVA by ranks) first ranks all objects from the k groups into a single series, and then
tests (H) that the sums of ranks calculated for the various groups are so similar that
the objects are likely to have been drawn from the same or identical populations. When
applied to quantitative data that are meeting all the assumptions of parametric ANOVA,
Kruskal-Wallis’ H is almost as efficient as the F-test. Another possibility is to extend to
k =2 groups the median test, described in the previous paragraph for k = 2. The latter
is less efficient than Kruskal-Wallis’ H because it uses less of the information in the
data. As in the above case where k=2, qualitative data can be analysed using a
contingency table, but this time with k = 2 rows. Multiple logistic regression, available
for example in procedure CATMOD of SAS (Subsection 10.3.7), may also be used here.
Discriminant analysis could be used in the same spirit, after recoding the qualitative
descriptor of interest into a series of dummy variables forming the set of
discriminating variables, as in Subsection 1.5.7. See, however, the discussion on
discriminant analysis versus logistic regression (Subsection 10.3.7 and Section 11.6).

Comparing two related samples (k =2) is usually done, for quantitative data, by
testing (Hy) that the mean of the differences between matched pairs of observations is
null (Student #-test; the differences are assumed to be normally and independently
distributed). When the data are semiquantitative, one can use the sign test, which first
codes pairs of observations (y;, y;) as either (+) when y; > y; or (-) when y; <y, and
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then tests the hypothesis (H) that the numbers of pairs with each sign are equal; an
equivalent formulation is that the proportion of pairs with either sign is equal to 0.5.
This test uses information about the direction of the differences between pairs. When
the relative magnitude of the differences between pairs is also known, it becomes
possible to use the more powerful Wilcoxon matched-pairs signed-ranks test.
Differences between pairs are first ranked according to their magnitude (absolute
values), after which the sign of the difference is affixed to each rank. The null
hypothesis of the test (H) is that the sum of the ranks having a (+) sign is equal to that
of the ranks with a () sign. The McNemar test provides a means of comparing paired
samples of binary data. For example, using binary observations (e.g. presence or
absence) made at the same sites, before and after some event, one could test (H) that
no overall change has occurred.

When there are several related samples (k >2) and the data are quantitative, the
parametric approach for testing (H) that the means of the k groups are equal is two-
way analysis of variance, with or without replication. One classification criterion of the
two-way ANOVA accounts for the variability among the k groups (as in one-way
ANOVA above, for k > 2 independent samples) and the other for that among the related
samples. Consider, for an example, 16 sites (i.e. k groups) that have been sampled at 5
depths in the water column (or at 5 different times, or using 5 different methods, etc.).
The nonparametric equivalent, for semiquantitative data, is Friedman’s two-way
analysis of variance by ranks without replication, which is based on a two-way table
similar to Table 5.7. In the two-way table, the k groups (e.g. 16 sites) are in rows and
the corresponding samples (e.g. 5 depths) are in columns. Values within each column
are ranked separately, and the Friedman statistic (eq. 5.10) is used to test (Hy) that the
rank totals of the various rows (i.e. groups) are equal. For binary data, the Cochran Q
test is an extension to k = 2 groups of the McNemar test, described above for k = 2.

Finally, when there are several samples (k=>2), related across several
classification criteria (e.g. 16 sites all sampled at 8 different times, using each time 5
different methods), multiway ANOVA is the standard parametric method for testing the
null hypothesis (Hy) that the means of the k groups are equal (F-test). In that case,
there are no obvious equivalent approaches for semiquantitative or qualitative data.

5.3 Multidimensional ranking tests

Textbooks of nonparametric statistics propose a few methods only for the analysis of
bi- or multivariate semiquantitative data. Section 5.1 has shown that there actually
exist many numerical approaches for analysing multidimensional data, corresponding
to all levels of precision (Table 5.1). These methods, which include most of those
described in this book, belong to nonparametric statistics in a general sense, because
they do not focus on the parameters of the data distributions. Within the specific realm
of ranking tests, however, the only statistical techniques available for
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Table 5.3

Spearman
corr. coeff.

Numerical example. Perfect rank correlation between descriptors y; and y,.

Objects Ranks of objects on the two descriptors
(observation units) A A
X 5 5
Xy 1 1
X3 4 4
X4 2 2
X5 3 3

multidimensional semiquantitative data are two rank correlation coefficients
(Spearman r and Kendall t), which both quantify the relationship between two
descriptors, and the coefficient of concordance (Kendall W), which assesses the
relationship among several descriptors. These are described in some detail in the
present section.

The Spearman r statistic, also called p (rho), is based on the idea that two
descriptors y; and y, carry the same information if the largest object on y; also has the
highest rank on y,, and so on for all other objects. Two descriptors are said to be in
perfect correlation when the ranks of all object are the same on both descriptors, as in
the numerical example of Table 5.3. If, however, object x; which has rank 5 on y; had
rank 2 on y,, it would be natural to use the difference between these ranks d; =
(11 —¥12) = (6 = 2) = 3 as a measure of the difference between the two descriptors, for
this object. For the whole set of objects, differences d; are squared before summing
them, in order to prevent differences with opposite signs from cancelling each other
out.

The expression for the Spearman r may be derived from the general formula of correlation
coefficients (Kendall, 1948):

z (yij_yj) (yik_yk)
it izl (5.1

/\/2 (yij_yj')zz (yik_yk)z

i =1 i=1

‘
1]
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For ranked data, the average ranks y; and y, are equal, so that (y,;—¥,) = (y;=¥) =
(yij —¥;)- One can write the difference between the ranks of object i on the two descriptors as
di =y~ yip) = (yij - 5’1‘) = (¥, —¥;) » which leads to:

n 5 n ) n 2 n
Dodi= D I Y I =2 Y (=) (g Ty
i=1 i=1 i=1 i=1

Isolating the right-hand sum gives:

Z (ylj_yj) (yik_yk) = %{z (yij—yj)2+ Z (yik_yk)z_ Zd?}

i=1 i=1 i=1 i=1

Using this result, eq. 5.1 is rewritten as:

%{2 (yij_yj)z"' z (yik_yk)z_ zdlz}
— i=1 i=1 i=1 (5.2)

/\/z (yij_yj)zz (y,'k—yk)z
i =1 i=1
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The sum of ranks for each descriptor, which is the sum of the first n integers, is equal to
n
n(n + 1)/2 and the sum of their squares is z y?]. =n(n+1) (2n+1) /6. Since the sum of

.. . i=1
deviations from the mean rank is

n n n 2
212 2 1

i=1 i=1

one can write:

n 2 2 3
2 _nnm+1)2n+1) 1in (n+l) | _n —n
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i=1

It follows that, when using ranks, the numerator of eq. 5.2 becomes:

~ N

n n n 3 3 n

1 _ .2 _ .2 2 1\n-n n —-n
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while its denominator reduces to:
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i=1 i=1
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Table 5.4

Numerical example. Ranks of four objects on two descriptors, y; and y,.

Objects Ranks of objects on the two descriptors
(observation units) A A
X 3 3
X, 4 1
X3 2 4
X4 1 2

The final formula is obtained by replacing the above two expressions in eq. 5.2.
This development shows that, when using ranks, eq. 5.1 simplifies to the following
formula for Spearman’s r:

3 3 n n
lln-n n —-n 2 2
3|t 2 6 d;
_ i=1 _ i=1
Fig = 3 = 1——3 (5.3)
n—-n n—-n
12

Alternatively, the Spearman rank correlation coefficient may be obtained in two steps:
(1) replace all observations by ranks (columnwise) and (2) compute the Pearson
correlation coefficient (eq. 4.7) between the ranked variables. The result is the same as
obtained from eq. 5.3.

The Spearman r coefficient varies between +1 and -1, just like the Pearson r.
Descriptors that are perfectly matched, in terms of ranks, exhibit values » = +1 (direct
relationship) or r = —1 (inverse relationship), whereas r = 0 indicates the absence of a
monotonic relationship between the two descriptors. (Relationships that are not
monotonic, e.g. Fig. 4.4d, can be quantified using polynomial or nonlinear regression,
or else contingency coefficients; see Sections 6.2 and 10.3.)

Numerical example. A small example (ranked data, Table 5.4) illustrates the equivalence
between eq. 5.1 computed on ranks and eq. 5.3. Using eq. 5.1 gives:

-2 -2

= = —==-04
ARG TS
The same result is obtained from eq. 5.3:
S 2.5 C U < S S R

12 60
4 _4 60
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Kendall
corr. coeff.

Two or more objects may have the same rank on a given descriptor. This is often
the case with descriptors used in ecology, which may have a small number of states or
ordered classes. Such observations are said to be tied. Each of them is assigned the
average of the ranks which would have been assigned had no ties occurred. If the
proportion of tied observations is large, correction factors must be introduced into the
sums of squared deviations of eq. 5.2, which become:

n q
Z(Yij_)_’j)z = %{(”3_’1) _2 (tij_trj)}

i=1 r=1

and

> a3 = %z{("s‘”) - Ufk—r,k)}

i=1 r=1

where #,; and 7, are the numbers of observations in descriptors y; and y; which are tied
at ranks r, these values being summed over the g sets of tied observations in
descriptor j and the s sets in descriptor k.

Significance of the Spearman r is usually tested against the null hypothesis
Hy: r=0. When n 2 10, the test statistic is the same as for Pearson’s r (eq. 4.13):

f = ki (5.4)

NI =T

H, is tested by comparing statistic ¢ to the value found in a table of critical values of ¢,
with v = n — 2 degrees of freedom. Hy, is rejected when the probability corresponding
to t is smaller than a predetermined level of significance (o, for a two-tailed test). The
rules for one-tailed and two-tailed tests are the same as for the Pearson r (Section 4.2).
When n < 10, which is not often the case in ecology, one must refer to a special table
of critical values of the Spearman rank correlation coefficient, found in textbooks of
nonparametric statistics.

Kendall’s T (tau) is another rank correlation coefficient, which can be used for the
same types of descriptors as Spearman’s . One major advantage of T over Spearman’s
r is that the former can be generalized to a partial correlation coefficient (below),
which is not the case for the latter. While Spearman’s r was based on the differences
between the ranks of objects on the two descriptors being compared, Kendall’s T refers
to a somewhat different concept, which is best explained using an example.

Numerical example. Kendall’s T is calculated on the example of Table 5.4, already used for
computing Spearman’s r. In Table 5.5, the order of the objects was rearranged so as to obtain
increasing ranks on one of the two descriptors (here y;). The Table is used to determine the
degree of dependence between the two descriptors. Since the ranks are now in increasing order
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Table 5.5

Numerical example. The order of the four objects from Table 5.4 has been rearranged in such a
way that the ranks on y; are now in increasing order

Objects Ranks of objects on the two descriptors
(observation units) yi A
X4 1 2
X3 2 4
X, 3 3
X, 4 1

on yy, it is sufficient to determine how many pairs of ranks are also in increasing order on y, to
obtain a measure of the association between the two descriptors. Considering the object in first
rank (i.e. X4), at the top of the right-hand column, the first pair of ranks (2 and 4, belonging to
objects x4 and X3) is in increasing order; a score of +1 is assigned to it. The same goes for the
second pair (2 and 3, belonging to objects x4 and x;). The third pair of ranks (2 and 1, belonging
to objects x4 and X,) is in decreasing order, however, so that it earns a negative score —1. The
same operation is repeated for every object in successive ranks along y, i.e. for the object in
second rank (X3): first pair of ranks (4 and 3, belonging to objects x5 and x;), etc. The sum S of
scores assigned to each of the n(n — 1)/2 different pairs of ranks is then computed.

Kendall's rank correlation coefficient is defined as follows:

T = S _ 28
¢ nn-1/2 n(n-1)

(5.5)

where S stands for “sum of scores”. Kendall's 7, is thus the sum of scores for pairs in
increasing and decreasing order, divided by the total number of pairs (n(n — 1)/2). For
the example of Tables 5.4 and 5.5, 1, is:

_2(0+1-1-1-1-1) _2(2) _

a 4x3 12 033

Clearly, in the case of perfect agreement between two descriptors, all pairs receive a
positive score, so that S=n(n—1)/2 and thus T,=+1. When there is complete
disagreement, S =-n(n—1)/2 and thus t,=-1. When the descriptors are totally
unrelated, the positive and negative scores cancel out, so that S as well as T, are near 0.

Equation 5.5 cannot be used for computing T when there are tied observations. This
is often the case with ecological semiquantitative descriptors, which may have a small
number of states. The Kendall rank correlation is then computed on a contingency
table (see Chapter 6) crossing two semiquantitative descriptors.



200

Multidimensional semiquantitative data

Table 5.6

Numerical example. Contingency table giving the distribution of 80 objects among the states of
two semiquantitative descriptors, a and b. Numbers in the table are frequencies (f).

bl b2 b3 b4 tj
a 20 10 10 0 40
a 0 10 0 10 20
as 0 0 10 0 10
ay 0 0 0 10 10
1 20 20 20 20 80

Table 5.6 is a contingency table crossing two ordered descriptors. For example, descriptor a
could represent the relative abundances of arthropods in soil enumerated on a semiquantitative
scale (e.g. absent, present, abundant and very abundant), while descriptor b could be the
concentration of organic matter in the soil, divided into 4 classes. For simplicity, descriptors are
called a and b here, as in Chapter 6. The states of a vary from 1 to r (number of rows) while the
states of b go from 1 to ¢ (number of columns).

To compute T with tied observations, S is calculated as the difference between the
numbers of positive (P) and negative (Q) scores, S=P— Q. P is the sum of all
frequencies f in the contingency table, each one multiplied by the sum of all
frequencies located lower and on its right:

A

j=1 k=1 Il=j+1 m=k+1

Likewise, Q is the sum of all frequencies fin the table, each one multiplied by the sum
of all frequencies lower and on its left:

55 ¥

j=1 k=1 I=j+1 m=1

Numerical example. For Table 5.6:

P = (20 x 40) + (10 X 30) + (10 x 20) + (10 x 20) + (10 x 10) = 1600
0= (10 x 10) + (10 x 10) = 200
S=P—Q=1600-200 = 1400
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Using this value S, there are two approaches for calculating T, depending on the
numbers of states in the two descriptors. When a and b have the same numbers of
states (r=c), Tp, is computed using a formula that includes the total number of pairs
n(n — 1)/2, as in the case of T, (eq. 5.5). The difference with eq. 5.5 is that 7, includes
corrections for the number of pairs L; tied in a and the number of pairs L, tied in b,
where

L, = z% t;(t;— 1) in which #; is the marginal total for row j
j=1

L,

2 % t, (t,— 1) in which #; is the marginal total for column k.
k=1

The formula for T, is:
S

5.6
; - (5.6)
A/En(n—l) —LI/\/En(n—l) -L,

T, =

When there are no tied observations, L; = L, = 0 and eq. 5.6 becomes identical to
eq.5.5.

Numerical example. For Table 5.6:

_ 40x39 20x19 10x9 10x9

L, > + > + > + > = 1060
20x19 20x19 20x19 20x19
L, = 3 + > + 3 + > = 760
T 1400 = 0.62

b =
ﬁ (80 x 79) — 1060£ (80 x 79) — 760

Without correction for ties, the calculated value (eq. 5.5) would have been
T, =(2x1400) /(80 x 79) = 0.44

The second approach for calculating T with tied observations should be used when
a and b do not have the same number of states (r # ¢). The formula for 7. uses the
minimum number of states in either a or b, min(r, c):

T =— 5 (5.7)

¢ 1n2(min -1 )
2 min
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Power

The significance of Kendall’s T is tested by reference to the null hypothesis
Hy: r=0 (i.e. independence of the two descriptors). A test statistic is obtained by
transforming 7 into z (or ¢,,) using the following formula (Kendall, 1948):

RPN I 18
£= [‘T‘«/2(2n+5) }_A/n(n—l) (2n+5) (5:8)

When n > 30, the second term of eq. 5.8 becomes negligible (at n = 30, the value of
this term is only 0.0178). For n = 10, the sampling distribution of T is almost the same
as the normal distribution, so that Hy) is tested using a table of z. Since z tables are one-
tailed, the z statistic of eq. 5.8 may be used directly for one-tailed tests by comparing it
to the value z, read in the table. For two-tailed tests, the statistic is compared to the
value zy/, from the z table. When n < 10, which is seldom the case in ecology, one
should refer to Table B, at the end of this book. Table B gives the critical values of T
for 4 < n <50 (one-tailed and two-tailed tests).

Spearman’s r provides a better approximation of Pearson’s r when the data are
almost quantitative and there are but a few tied observations, whereas Kendall’s T does
better when there are many ties. Computing both Spearman’s r and Kendall’s T, on the
same numerical example, above, produced different numerical values (i.e. r =-0.40
versus T,=-0.33). This is because the two coefficients have different underlying
scales, so that their numerical values cannot be directly compared. However, given
their different sampling distributions, they both reject Hj at the same level of
significance. If applied to quantitative data that are meeting all the requirements of
Pearson’s r, both Spearman’s  and Kendall’s T have power nearly as high (about 91%;
Hotelling & Pabst, 1936) as their parametric equivalent. In all other cases, they are
more powerful than Pearson’s r. This refers to the notion of power of statistical tests: a
test is more powerful than another if it is more likely to detect small deviations from
Hj (i.e. smaller type II error), for constant type I error.

The chief advantage of Kendall’s T over Spearman’s r, as already mentioned, is that
it can be generalized to a partial correlation coefficient, which cannot be done with
Spearman’s (Siegel, 1956: 214). The formula for a partial T is:

- T2~ 03703 (5.9)
n3 = T .
[1-13, /1 -13

This formula is algebraically the same as that of first-order partial Pearson r (eq. 4.36)
although, according to Kendall (1948: 103), this would be merely coincidental because
the two formulae are derived using entirely different approaches. The three 7
coefficients on the right-hand side of eq. 5.9 may themselves be partial T’s, thus
allowing one to control for more than one descriptor (i.e. high order partial correlation
coefficients). It is not possible, however, to test the significance of partial rank
correlation coefficients, because quantities Py3, Py3, Q13 and Q53 used for computing
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Kendall
coeff. of
concordance

Ty2.3 are not independent, their sum being n(n — 1)/2 instead of n (Kendall, 1948: 122;
Seigel, 1956: 229).

Rank correlation coefficients should not be used in the Q mode, i.e. for comparing
objects instead of descriptors. This is also the case for the Pearson r (Section 7.5). The
reasons for this are the following:

® While physical dimensions disappear when computing correlation coefficients
between variables expressed in different units, the same coefficients computed
between objects have complex and non-interpretable physical dimensions.

® Physical descriptors are usually expressed in somewhat arbitrary units (e.g. mm, cm,
m, or km are all equally correct, in principle). Any arbitrary change in units could
dramatically change the values of correlations computed between objects.

® Descriptors may be standardized first to alleviate these problems but standardization
of quantitative descriptors, before rank-ordering the data within objects, changes the
values along object vectors in a nonmonotonic way. The correlation between two
objects is a function of the values of all the other objects in the data set.

® Consider species abundance data. At most sampling sites, several species are
represented by a small number of individuals, this number being subject to stochastic
variability. It follows that their ranks, in a given observation unit, may not strictly
correspond to their quantitative importance in the ecosystem. A rank correlation
coefficient computed between observation units would thus have high variance since it
would be computed on many uncertain ranks, giving a preponderant importance to the
many poorly sampled species.

® While the central limit theorem insures that means, variances, covariances, and
correlations converge towards their population values when the number of objects
increases, computing these same parameters in the Q mode is likely to have the
opposite effect since the addition of new variables into the calculations is likely to
change the values of these parameters in a non-trivial way.

The rank correlation coefficients described above measure the correlation for pairs
of descriptors, based on n objects. In contrast, Kendall’s coefficient of concordance W
measures the relationship among several rank-ordered variables for n objects. In
Table 5.1, Kendall’s W is listed as equivalent to the coefficient of multiple linear
correlation R, but the approach is actually quite different.

The analysis is conducted on a table which contains, in each column, the ranks of
the n objects on one of the p descriptors, e.g. Table 5.7. Friedman (1937) has shown
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that, when the number of rows and/or columns is large enough, the following statistic
is approximately distributed as xz with v =n — 1 degrees of freedom:

¥ - L%Zzﬂ_zsp(nﬂ) (5.10)

i=1

where R; is the sum of the ranks for row i. This is Friedman’s statistic for two-way
analysis of variance by ranks. Kendall’s coefficient of concordance (Kendall, 1948) is
a simple transform of Friedman’s X2 statistic:

2
X
W= —" (5.11)
p(n—-1)
It can be shown that the following expression is equivalent to eq. 5.11:
12y (R,~R) ?
W = % (5.12)
p (n—n)

Two properties are used to demonstrate the equivalence of egs. 5.11 and 5.12. The first
one is that

n n n 2
.2 1
> (R,-R)" = ERf—E[E Ri]

i=1 i=1 i=1
and the second is that the sum of the all R; values in the table is pn(n + 1)/2.

Coefficient W varies between 0 (no concordance) and 1 (maximum concordance).
Its significance is tested either using eq. 5.11 directly, or after transforming W into the
associated X? statistic:

X?=p(n-1HW

The null hypothesis (H) subjected to testing is that the row sums R; are equal or, in
other words, that the p sets of ranks (or the p semiquantitative descriptors) are
independent of one another. The X statistic is compared to a X, Vvalue read in a table
of critical values of Xz’ for v=(n-1). When X2 is smaller than the critical value Xo
(i.e. probability larger than o), the null hypothesis that the row sums R; are equal
cannot be rejected; this leads to the conclusion that the p descriptors are independent
and differ in the way they rank the n objects. On the contrary, X2 > X, (i-e. probability
smaller than or equal to o) indicates good agreement among the descriptors in the way
they rank the objects. Textbooks of nonparametric statistics provide modified formulae
for X2, for data sets with tied observations.
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Table 5.7

Numerical example. Ranks of six objects on three descriptors, yq, y,, and y3.

Objects Ranks of objects on the three descriptors Row sums
(observation units) yi A5 Y3 R;
X| 1 1 6 8
X, 6 5 3 14
X3 3 6 2 11
X4 2 4 5 11
X5 5 2 4 11
Xq 4 3 1 8

Numerical example. Calculation of Kendall’s coefficient of concordance is illustrated using
the numerical example of Table 5.7. Data could be semiquantitative rank scores, or quantitative
descriptors coded into ranks. It is important to note that the n = 6 objects are ranked on each
descriptor (column) separately. The last column gives, for each object i, the sum R; of its ranks
on the p = 3 descriptors. The Friedman statistic is calculated with eq. 5.10:

2 12
X = [m(64+196+121+121+121+64)}—[3><3(6+1)] = 2429

Using eq. 5.11, the X statistic is transformed into Kendall’s W

2429

Alternatively, W could have been computed using eq. 5.12:

_ 12x(6.25+1225+0.25+0.25 + 0.25 + 6.25)

W 9(216-6)

= 0.162

A table of critical values of x2 indicates that X?=2.43, for v=6—1=35, corresponds to a
probability of ca. 0.80; the probability associated with this X statistic is actually 0.787. The
hypothesis (Hy) that the row sums R; are equal cannot be rejected. One concludes that the three
descriptors differ in the way they rank the 6 objects.
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Chapter

6 Multidimensional
qualitative data

6.0 General principles

Ecologists often use variables that are neither quantitative nor ordered (Table 1.2).
Variables of this type may be of physical or biological nature. Examples of qualitative
physical descriptors are the colour, locality, geological substrate, or nature of surface
deposits. Qualitative biological descriptors include the captured or observed species;
the different states of this nonordered descriptor are the different possible species.
Likewise, the presence or absence of a species cannot, in most cases, be analysed as a
quantitative variable; it must be treated as a semiquantitative or qualitative descriptor.
A third group of qualitative descriptors includes the results of classifications — for
example, the biological associations to which the zooplankton of various lakes belong,
or the chemical groups describing soil cores. Such classifications, obtained or not by
clustering (Chapter 8), define qualitative descriptors and, as such, they are amenable to
numerical interpretation (see Chapter 10).

The present Chapter discusses the analysis of qualitative descriptors; methods
appropriate for bivariate or multivariate analysis are presented. Information theory is
an intuitively appealing way of introducing these methods of analysis. Section 6.1
shows how the amount of information in a qualitative descriptor may be measured.
This paradigm is then used in the following sections.

The comparison of qualitative descriptors is based on contingency tables. In order
to compare pairs of qualitative descriptors, the objects are first allocated to the cells of
a table with two criteria (i.e. the rows and columns). In a two-way contingency table,
the number of rows is equal to the number of states of the first descriptor and the
number of columns to that of the second descriptor. Any cell in the table, at the
intersection of a row and a column, corresponds to one state of each descriptor; the
number of objects with these two states is recorded in this cell. The analysis of two-
way contingency tables is described in Section 6.2. When there are more than two
descriptors, multiway (or multidimensional) contingency tables are constructed as



208

Multidimensional qualitative data

ANOVA
hypothesis

Correlation
hypothesis

extensions of two-way tables. Their analysis is discussed in Section 6.3. Finally,
Section 6.4 deals with the correspondence between descriptors in a contingency table.

Contingency table analysis is the qualitative equivalent of both correlation analysis
and analysis of variance; in the particular case of a two-way contingency table, the
analysis is the equivalent of a one-way ANOVA. It involves the computation of X? (chi-
square) statistics or related measures, instead of correlation or F statistics. Two types
of null hypotheses (Hg) may be tested. The first one is the independence of the two
descriptors, which is the usual null hypothesis in correlation analysis (Hy: the
correlation coefficient p=0 in the statistical population). The second type of
hypothesis is similar to that of the analysis of variance. In a two-way contingency
table, the classification criterion of the analysis of variance corresponds to the states of
one of the descriptors. The null hypothesis says that the distributions of frequencies
among the states of the second descriptor (dependent variable) are the same, among
the groups defined by the states of the first descriptor. In other words, the observations
form a homogeneous group. For example, if the groups (classification criterion) form
the columns whereas the dependent variable is in the rows, H, states that the frequency
distributions in all columns are the same. These two types of hypotheses require the
calculation of the same expected values and the same test statistics. In multiway tables,
the hypotheses tested are often quite complex because they take into account
interactions among the descriptors (Section 6.3).

Considering species data, the various species observed at a sampling site are the
states of a qualitative multi-state descriptor. Section 6.5 will discuss species diversity
as a measure of dispersion of this qualitative descriptor.

The mathematics used throughout this chapter are quite simple and require no prior
knowledge other than the intuitive notion of probability. Readers interested in
applications only may skip Section 6.1 and come back to it when necessary. To
simplify the notation, the following conventions are followed throughout this chapter.
When a single descriptor is considered, this descriptor is called a and its states have
subscripts i going from 1 to ¢, as in Fig. 1.1. In two-way contingency tables, the
descriptors are called a and b. The states of a are denoted a; with subscripts i varying
from 1 to r (number of rows), while the states of b are denoted b; with subscripts j
varying from 1 to ¢ (number of columns).

6.1 Information and entropy

Chapters 1 and 2 have shown that the ecological information available about the
objects under study is usually (or may be reformulated as) a set of biological and/or
physical characteristics, which correspond to as many descriptors. Searching for
groups of descriptors that behave similarly across the set of objects, or that may be
used to forecast one another (R analysis, Section 7.1), requires measuring the amount
of information that these descriptors have in common. In the simplest case of two
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Entropy

descriptors a and b (called y; and y, in previous chapters), one must assess how much
information is provided by the distribution of the objects among the states of a, that
could be used to forecast their distribution among the states of b. This approach is
central to the analysis of relationships among ecological phenomena.

In 1968, Ludwig von Bertalanffy wrote, in his General System Theory (p. 32):
“Thus, there exist models, principles, and laws that apply to generalized systems or
their subclasses, irrespective of their particular kind, the nature of their component
elements, and the relations or ‘forces’ between them”. This is the case with
information, which can be viewed and measured in the same manner for all systems.
Some authors, including Pielou (1975), think that the concepts derived from
information theory are, in ecology, a model and not a homology. Notwithstanding this
opinion, the following sections will discuss how to measure information for biological
descriptors in terms of information to be acquired, because such a presentation
provides a better understanding of the nature of information in ecological systems.

The problem thus consists in measuring the amount of information contained in
each descriptor and, further, the amount of information that two (or several)
descriptors have in common. If, for example, two descriptors share 100% of their
information, then they obviously carry the same information. Since descriptors are
constructed so as to partition the objects under study into a number of states, two
descriptors have 100% of their information in common when they partition a set of
objects in exactly the same way, i.e. into two equal and corresponding sets of states.
When descriptors are qualitative, this correspondence does not need to follow any
ordering of the states of the two descriptors. For ordered descriptors, the ordering of
the correspondence between states is important and the techniques for analysing the
information in common belong to correlation analysis (Chapters 4 and 5).

The mathematical theory of information is based on the concept of entropy. Its
mathematical formulation was developed by Shannon (Bell Laboratories) who
proposed, in 1948, the well-known equation:

q
H = —Zpi log p; (6.1
i=1

where H is a measure of the uncertainty or choice associated with a frequency
distribution (vector) p; p; is the probability that an observation belongs to state i of the
descriptor (Fig. 1.1). In practice, p; is the proportion (or relative frequency, on a 0-1
scale) of observations in state i. Shannon recognized that his equation is similar to the
equation of entropy, published in 1898 by the physicist Boltzmann as a quantitative
formulation of the second law of thermodynamics, which concerns the degree of
disorganization in closed physical systems. He thus concluded that H corresponds to
the entropy of information systems.
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Table 6.1

Negative
entropy

Information

Contingency table (numerical example). Distribution of 120 objects on descriptors a and b.

b, by by by

30 30 30 30
ap =60 30 10 15 5
ar =30 0 20 0 10
ay=15 0 0 0 15
ay=15 0 0 15 0

Note that the entropy of information theory is actually the negative entropy of
physicists. In thermodynamics, an increase in entropy corresponds to an increase in
disorder, which is accompanied by a decrease of information. Strictly speaking,
information is negative entropy and it is only for convenience that it is simply called
entropy. In information theory, entropy and information are taken as synonymous.

Numerical example. In order to facilitate the understanding of the presentation up to
Section 6.4, a small numerical example will be used in which 120 objects are described by two
descriptors (a and b) with 4 states each. The question is to determine to what extent one
descriptor can be used to forecast the other. The data in the numerical example could be, for
example, the benthos sampled at 120 sites of an estuary, or the trees observed in 120 vegetation
quadrats. Descriptor a might be the dominant species at each sampling site and descriptor b,
some environmental variable with 4 states. The following discussion is valid for any type of
qualitative descriptor and also for ordered descriptors divided into classes.

Assume that the 120 observations are distributed as 60, 30, 15 and 15 among the 4 states of
descriptor a and that there are 30 observations in each of the 4 states of descriptor b. The states
of the observations (objects), for the two descriptors combined, are given in Table 6.1.

For each descriptor, the probability of a state is estimated by the relative frequency with
which the state is found in the set of observations. Thus, the probability distributions associated
with descriptors a and b are:

a;: 60p(ay) =172 by: 30pbp=1/4
ay: 30p(ay) =1/4 by: 30 p(by) =1/4
ay. 15p(az)=1/8 by 30 p(bs) = 1/4
ay: 15plagy)=1/8 by: 30 p(by) = 1/4

120 120
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Binary
question

The relative frequency of a given state is the probability of observing that state when taking an
object at random.

Within the framework of information theory, the entropy of a probability
distribution is measured, not in kilograms, metres per second, or other such units, but
in terms of decisions. The measurement of entropy must reflect how difficult it is to
find, among the objects under study, one that has a given state of the descriptor. An
approximate measure of entropy is the average minimum number of binary questions
that are required for assigning each object to its correct state. Thus, the amount of
information which is gained by asking binary questions, and answering them after
observing the objects, is equal to the degree of disorder or uncertainty initially
displayed by the frequency distribution. In this sense, the terms entropy and
information may be used synonymously. A few numerical examples will help
understand this measure.

(1) When all the objects exhibit the same state for a descriptor, everything is known a priori
about the distribution of observations among the different states of the descriptor. There is a
single state in this case; hence, the number of binary questions required to assign a state to an
object is zero (H = 0), which is the minimum value of entropy.

(2) The simplest case of a descriptor with non-null entropy is when there are two states
among which the objects are distributed equally:

Set of observations

4— Binary question

State 1 State 2
p(a;) =12 p(ay) =172

In order to assign a state to any given object, a single binary question is necessary, of the type
“Does this object belong to state 17 If so, state 1 is assigned to the object; if not, the object
belongs to state 2. The entropy associated with the descriptor is thus H = 1.

(3) Applying the above approach to a descriptor with four states among which the objects
are distributed equally, one gets an entropy H =2 since exactly two binary questions are
required to assign a state to each object:

Set of observations

«—First binary question

Second
4— binary
question

State 1 State 2 State 3 State 4
p(ay)=1/4 p(ay)=1/4 p(ay)=1/4 p(as)=1/4
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This would be the case of descriptor b in the numerical example of Table 6.1.

(4) For an eight-state descriptor with the objects equally distributed among the states, the
binary questions are as follows:

Set of observations

4—First binary question

Second

/ binary question\

Third

/binary question\

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8
p(a)=18| |p(ay)=18| |p(az)=1/8| |p(ay)=1/8| |p(as)=1/8| |p(ag)=1/8| |p(a;)=1/8| |p(ag)=1/8

The total entropy of the descriptor is thus:

[3 questions X 8 (1/8 of the objects)] =3

and, in general, the entropy associated with a descriptor in which the objects are equally
distributed among states is equal to the base 2 logarithm (if the questions are binary) of the
number of states:

log, 1=0 log, 8 =3
log,2=1 log, 16=4
logr4=2 etc.

Measuring the entropy from the number of binary questions is strictly equal to the
logarithmic measure only when the number of states is an integer power of 2, or when
the number of observations in the various states is such that binary questions divide
them into equal groups (see the numerical example, below). In all other cases, the
number of binary questions required is slightly larger than log,(number of states),
because binary questions are then a little less efficient than in the previous case
(Table 6.2). Binary questions have been used in the above discussion only to provide
readers with a better understanding of entropy; the true measure is the logarithmic one.
One may refer to Shannon (1948), or a textbook on information theory, for a more
formal discussion of the measure of entropy.

The following example illustrates the relationship between probability and
information. If an ecologist states that water in the Loch Ness is fresh, this is trivial
since the probability of the event is 1 (information content null). If, however, he/she
announces that she/he has captured a specimen of the famous monster, this statement
contains much information because of its low probability (the dynamic aspects of Loch
Ness Monster populations have been discussed by Sheldon & Kerr, 1972, Schneider &
Wallis, 1973, and Rigler, 1982; see also Lehn, 1979, and Lehn & Schroeder, 1981, for
a physical explanation of the Loch Ness and other aquatic monsters). Thus,
information theory deals with a specific technical definition of information, which may
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Table 6.2

The average minimum number of binary questions required to remove the uncertainty about the
position of an object in the state-vector is equal to log, (number of states) when the number of
states is an integer power of 2 (in boldface) and the objects are equally distributed among the
states. In all other cases, the number of binary questions is slightly larger than the entropy H. For
example, for a three state descriptor with equal frequencies, the minimum number of binary
questions is (2 questions x 2/3 of the objects) + (1 question X 1/3 of the objects) = 1.66666
binary questions.

Number of states log, (number of states) Average minimum number
of binary questions

1 0.00000 0.00000
2 1.00000 1.00000
3 1.58496 1.66666
4 2.00000 2.00000
5 2.32193 2.40000
6 2.58496 2.66666
7 2.80735 2.85714
8 3.00000 3.00000
9 3.16993 3.22222
10 3.32193 3.40000
11 3.45943 3.54545
12 3.58496 3.66666
13 3.70044 3.76154
14 3.80735 3.85714
15 3.90689 3.93333
16 4.00000 4.00000

not correspond to the intuitive concept. A nontechnical example is that a book should
contain the same amount of information before and after one has read it. From the
information theory point of view, however, after one has read the book once, there is
no information to be gained the next time he/she reads it (unless she/he has forgotten
part of it after the first reading).

It should be clear, at this point of the discussion, that the entropy of a descriptor depends,
among other characteristics, on the number of its states, among which the entropy is partitioned.
In the case of the above four-state descriptor, for example, 1/4 of the entropy of the descriptor is
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attributed to each state, i.e. [1/4 log, 4], which is equal to [1/4 10g2(1/4)'1]. The total entropy of
the descriptor is thus:

H= Y (1/4)log,(1/4)"!

4 states

The same holds for the example of the eight-state descriptor. The entropy of each state is
[1/8 log, 8] =[1/8 10g2(1/8)'1], so that the total entropy of the descriptor is

H= % (1/8)log,(1/8)"!

8 states

(5) Descriptor a in the numerical example (Table 6.1) illustrates the case of a descriptor for
which the objects are not equally distributed among states. The probability distribution is [1/2,
1/4, 1/8, 1/8], which corresponds to the following scheme of binary questions:

Set of observations

First binary question
Second binary question

Third binary question

State 1 State 2 State 3 State 4
p(a;)=112 p(ay)=1/4 p(az)=1/8 p(ay)=1/8

‘When the objects are not distributed evenly among the states, the amount of information one has
a priori is higher than in the case of an even distribution, so that the information to be acquired
by actual observation of the objects (i.e. the entropy) decreases. It follows that the entropy of the
above descriptor should be H < 2, which is the maximum entropy for a four-state descriptor.
Using binary questions, it is more economical to isolate half of the objects with the first
question, then half of the remaining objects with the second question, and use a third question
for the last two groups of 1/8 of the objects (see above). Since half of the objects require one
question, 1/4 require 2, and the two groups of 1/8 require 3, the total entropy of this descriptor is:

H@) =12x1)+(1/4x2)+ (1/8 x3) + (1/8 x3)=1.75
As in the previous examples, this is equal to:
H(a) =1/2 1ogy 2+ 1/4 1ogy 4 + 1/8 1og, 8 + 1/8 1og, 8

H(a) = 1/2 1og, (1/2)7! + 1/4 1og, (1/4)™" + 1/8 1og, (1/8)~! + 1/8 1og, (1/8)7!

H() = Y p() log,[p()]-!

all states

Following the law of exponents for logarithms, exponent —1 is eliminated by writing the
equation as:

H(a) = - Y p(i)log,p (i)

all states
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Bit
Hartley
Decit
Nat

Communi-
cation

Alphabet

English
French

This is exactly Shannon's formula for entropy (eq. 6.1). When the base for the logarithms is 2,
the model is that of binary questions and the unit of entropy is the bit or hartley (Pinty &
Gaultier, 1971). The model may be reformulated using questions with 10 answers, in which case
the base of the logarithms is 10 and the unit is the decit. For natural logarithms, the unit is the
nat (Pielou, 1975). These units are dimensionless, as are angles for example (Chapter 3).

Equation 6.1 may be applied to human communications, to calculate the
information content of strings of symbols. For example, in a system of numbers with
base n, there are n possible numbers containing N digits (in a base-10 system, there
are 10? = 100 numbers containing 2 digits, i.e. the numbers 00 to 99). It follows that
the information content of a number with N digits is:

H =log, nN= Nlogy n
The information per symbol (digit) is thus:
HIN =logy n 6.2)

In the case of a binary (base 2) number, the information per symbol is log, 2 = 1 bit;
for a decimal (base 10) number, it is log, 10 = 3.32 bits. A decimal digit contains 3.32
bits of information so that, consequently, a binary representation requires on average
3.32 times more digits than a decimal representation of the same number.

For an alphabet possessing 27 symbols (26 letters and the blank space), the
information per symbol is log, 27 = 4.76 bits, assuming that all symbols have the same
frequency. In languages such as English and French, each letter has a frequency of its
own, so that the information per symbol is less than 4.76 bits. The information per
letter is 4.03 bits in English and 3.95 bits in French. Hence, the translation from French
to English should entail shorter text, which is generally the case.

Each language is characterized by a number of properties, such as the frequencies
of letters, groups of letters, etc. These statistical properties, together with a defined
syntax, determine a particular structure. For a given alphabet, the specific constraints
of a language limit the number of messages which can actually be formulated. Thus,
the number of lexical elements with 4, 5 or 6 letters is much smaller than the
theoretical possible number (Table 6.3). This difference arises from the fact that every
language contains a certain amount of information that is inherently embodied in its
structure, which is termed redundancy. Without redundancy it would be impossible to
detect errors slipping into communications, since any possible group of symbols
would have some meaning.

In a language with n different symbols, each having a characteristic frequency
(N1, N, ... N,), the total number of possible messages (P) made up of N symbols is
equal to the number of combinations:

P=N!/(N;!Ny! ... N,))
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Table 6.3

Redundancy in the French language. Number of lexical elements with 4 to 6 letters (from

Bourbeau et al., 1984).

Number of letters Possible number of Actual number of lexical
lexical elements elements in French
4 26* = 457 000 3558
5 26°~ 12000 000 11 351
6 26~ 300 000 000 24 800

The information content of a message with N symbols is:
H=logy, P=1log,[N!/(N{! N,! ... NI
Hence, the information per symbol is:
HIN =1/Nlog,[N!/ (N{! Ny! ... N,D)] (6.3)

which is the formula of Brillouin (1956). It will used later (Section 6.5) to calculate the
species diversity of a sample, considered as representing a “message”.

6.2 Two-way contingency tables

Null
hypothesis

In order to compare two qualitative descriptors, the objects are allocated to the cells of
a table with two criteria (i.e.the rows and columns). Each cell of a two-way
contingency table (e.g. Tables 6.1 and 6.4) contains the number of observations with
the corresponding pair of states of the qualitative descriptors. Numbers in the cells of a
contingency table are absolute frequencies, i.e. not relative frequencies. The number of
cells in the table is equal to the product of the number of states in the two descriptors.
The first question relative to a contingency table concerns the relationship between the
two descriptors: given the bivariate distribution of observations in the table, are the
two descriptors related to each other, or not? This question is answered by calculating
the expected frequency E for each cell of the table, according to a null hypothesis H,
and performing a chi-square (Xz) test of the null hypothesis.

The simplest null hypothesis is that of independence of the two descriptors. Ej; is
the number of observations that is expected in each cell (7, j) under Hy. Under this null
hypothesis, Ej; is computed as the product of the marginal totals (i.e. the product of the
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Table 6.4

Expected
frequency

Pearson
chi-square

Wilks
chi-square

Contingency table giving the observed (from Table 6.1) and expected (in parentheses)
frequencies in each cell; n =120. The observed frequerzlcies that exceed the corresponding
expectations are in boldface. Wilks’ chi-square statistic: Xy, = 150.7 (v =9, p <0.001).

b, by by by
30 30 30 30

a; =60 30 (15) 10 (15) 15 (15) 5 (15)

ar =30 0 (7.5 20 (7.5) 0 (7.5 10 (7.5)

a3=15 0 (3.75) 0 (3.75) 0 (3.75) 15 (3.75)

ay=15 0 (3.75) 0 (3.75) 15 (3.75) 0 (3.75)

sum of row i with the sum of column j), divided by n which is the total number of
observations in the table:

E = [(row sum) X (column sum)] / n (6.4)

This equation generates expected frequencies whose relative distribution across the
states of descriptor a, within each state of descriptor b, is the same as the distribution
of all observed data across the states of a, and conversely (Table 6.4). The null
hypothesis is tested using a X? statistic which compares the observed (Oy) to the
expected frequencies (Ej).

In textbooks of basic statistics, the significance of relationships in two-way
contingency tables is often tested using Pearson chi-square statistic (Pearson, 1900):

X?, = Z (0-E)* (6.5)

all cells

where (O — E) measures the contingency of each cell. Instead of X?,, it is possible to
compute Wilks’ likelihood ratio (1935), also known as the G or 21 statistic (Sokal &
Rohlf, 1995) or G? (Bishop et al., 1975; Dixon, 1981):

Xy=2% 0 ln(%) 6.6)

all cells

where In is the natural logarithm. For null frequencies, lim [O In (O/E)] =0.
0—-0
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Degrees of
freedom

Williams’
correction

For a contingency table with r rows and ¢ columns, the number of degrees of
freedom used to determine the probability of accepting H, using a X2 table, is:

v=(r—-1(c-1) (6.7)

When this probability is lower than a predetermined significance level, for example
o= 0.05, the null hypothesis (Hg) of independence of the two descriptors is rejected.

When the number of observations (n) is large (i.e. larger than ten times the number
of cells, rc, in the table), the asymptotic distributions of X2 and X are x In other
words, the two statistics are equivalent, when Hy is true. There is however a problem
when the number of observations is small, i.e. less than five times the number of cells.
Small numbers of observations often lead to several null observed values (Oij) in the
contingency table, with correspondingly very low expected frequencies (Ej).
According to Cochran (1954) and Siegel (1956), when there is one value of Eij smaller
than 1, or when 20% or more of the expected values El-j are smaller than 5, some states
(rows or columns) must be grouped to increase the expected frequencies, provided that
there is a logical basis to do so. It now appears that this empirical rule concerning
expected frequencies is too conservative. Fienberg (1980, p. 172) cites results of
simulations that lead to believe that, for oo = 0.05, the computed statistic is distributed
like X2 (if Hy is true) as long as all Ej; values are larger than 1.

Concerning the choice of X2 or Xév, there is no difference when the number of
observations n is large (see the previous paragraph). When # is small, Larntz (1978) is
of the opinion that X}, is better than X2 Sokal & Rohlf (1995) recommend using X
but suggest to correct it as proposed by Williams (1976) to obtain a better
approximation of x This correction consists in dividing X by a correction factor
Gmin- The correction factor, which is based on eq. 6.7, is computed as:

Gmin = 1 + [ = 1)(c® = 1)/6Vn] (6.8)

When # is large relative to the number of cells in the contingency table, it is not
necessary to apply a correction to Xy, since g,;, = 1 in that case. William’s correction
is especially interesting when one must use Xy, as in the study of multiway
contingency tables; the general formula for g,,;, is given in Subsection 6.3. Several
computer programs allow users to compute both X, and Xy,

Another correction, available in some computer programs, consists in adding a
small value (e.g. 0.5) to each observed value Oj; in the contingency table, when some
of the O;’s are small. As indicated by Dixon (1981) and Sokal & Rohlf (1995), the
effect of this correction is to lower the X? statistic, which makes the test more
conservative. Hy may then be rejected in a proportion of cases smaller than o, when
the null hypothesis is true.

Another measure of interest to ecologists, which is related to the Wilks statistic (see
below), refers to the concept of entropy (or information) discussed above. In the
numerical example (Tables 6.1 and 6.4), if the correspondence between the states of
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descriptors a and b was perfect (i.e. descriptors completely dependent of each other),
the contingency table would only have four non-zero cells — one in each row and each
column. It would then be possible, using a, to perfectly predict the distribution of the
observations among the states of b, and vice versa. In other words, given one state of
the first descriptor, one would immediately know the state of the other descriptor.
Thus, there would be no uncertainty (or entropy) concerning the distribution of the
objects on b, after observing a, so that the entropy remaining in b after observing a
would be null, i.e. H(bJa) =0. On the contrary, if the descriptors were completely
independent, the distribution of observations in each row of descriptor a would be in
the same proportions as their overall distribution in b (found at top of Tables 6.1 and
6.4); the same would be true for the columns. H(b|a) = H(b) would indicate that all the
entropy contained in the distribution of b remains after observing a.

The two conditional entropies H(alb) and H(b|a), as well as the entropy shared by
the two descriptors, can be computed using the total information H(a,b) and the
information of each descriptor, H(a) and H(b), already computed in Section 6.1.
H(a,b) is computed on all the observed frequencies in the contingency table, using
Shannon’s formula (eq. 6.1):

H@b) = - Y > p(iyj) log p(ij) 6.9)
statesofa statesofb

where p(ij) is the observed frequency in each cell (i,j) of the contingency table,
divided by the total number of observations n. For the example (Tables 6.1 or 6.4):

H(ab) =— {1/4 log, (1/4) + 1/6 log, (1/6) + 3 [1/8 log, (1/8)] + 2 [1/12 log, (1/12)]
+1/24 log, (1/24)} =2.84

H(b) = A + B and H(a) = B + C, represented by circles in the Venne diagram below,
have been computed in Section 6.1. H(a,b) is the total information in the union of the
two descriptors, A + B + C. The information (B) shared by the two descriptors is
computed as:

B=(A+B)+B+C)—(A+B+C)
B = H(b) + H(a) - H(a,b) (6.10)
B=2.00+1.75-2.84=091

Information B C Information
in b — 091 /0.84) -a— in a
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The information exclusive to each descriptor, A and C, is computed by subtraction:
A=(A+B+0O)-B+0)
A = H(bla) = H(a,b) — H(a) (6.11)
A=284-1.75=1.09
and C=(A+B+0C)-(A+B)
C =H(alb) = H(a,b) - H(b) (6.12)
C=2.84-2.00=0.84
There is a relationship between the reciprocal information B and Wilks’ Xiv
statistic. It can be shown that B = (1/n) X, O In(O/E) when B is computed with natural
logarithms (In), or else B1n2 = (1/n) 2. O In(O/E) when B is in bits. Using these
relationships, it is possible to calculate the probability associated with B after
transforming B into a X? statistic:
Xév =2nB (when B is in nats) (6.13)
X%V =2nBIn2=nB1In4=1.38629nB (when B is in bits) (6.14)
Using the measures of information A, B and C, various coefficients of reciprocal
Similarity  information may be computed. The similarity of descriptors a and b can be calculated
as the amount of information that the two descriptors have in common, divided by the
total information of the system:
S@b)=B/(A+B+C) (6.15)
S(a,b) =0.91/2.84 =0.32, for the numerical example.
If the following steps of the analysis (clustering and ordination, Chapters 8 and 9)
require that the measure of association between a and b be a metric, one may use the
corresponding distance, defined as the sum of the information that the two descriptors
possess independently, divided by the total information:
Rajski’s D(ab)=(A+C)/(A+B+C) (6.16)
metric
D(a,b) = (1.09 + 0.84) / 2.84 = 0.68, for the numerical example.
Obviously, S(a,b) + D(a,b) = 1.
The measure of distance in eq. 6.16 is Rajski’s metric (1961). This author has
Coherence  proposed another measure of similarity among descriptors, the coherence coefficient,
coefficient ~ which is used to assess the stochastic independence of two random variables:

S’ = J1-D? (6.17)
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Another version of this coefficient,

S”=B/(A+2B+C) (6.18)

is available in some computer programs under the name symmetric uncertainty
coefficient. Two asymmetric uncertainty coefficients have also been proposed. They are
used, for example, to compare the explanatory power of a descriptor with respect to
several other descriptors: B /(A + B) controls for the total amount of information in b,
whereas B / (B + C) controls for the total information in a.

The construction of an association matrix, containing any of the symmetric forms
of coefficient described above, requires calculating p(p — 1)/2 contingency tables; this
matrix is symmetric and its diagonal is S=1 or D =0. Qualitative (nonordered)
descriptors can thus be used to compute quantitative association coefficients, thus
leading to numerical analysis of multivariate qualitative data sets. Furthermore, since
quantitative or semiquantitative descriptors can be recoded into discrete states, it is
possible, using uncertainty coefficients, to compute association matrices among
descriptors of mixed types.

It is only through B, as discussed above, that a probability can be associated to the
various uncertainty coefficients. For coefficient S above, one can state in very general
terms that two descriptors are very closely related when S(a,b) > 0.5; they are well
associated when 0.5 > S >0.3; and some association exists when S < 0.3 without
coming too close to 0 (Hawksworth et al., 1968).

The probability associated with a X? statistic, calculated on a contingency table,
assesses the hypothesis that the relationship between the two descriptors is random.
Biological associations, for example, could be defined on the basis of relationships
found to be non-random between pairs of species — the relationship being defined by
reference to a pre-selected probability level (e.g. oo = 0.05 or 0.01) associated with the
X? measuring the contingency between two species (Section 7.5). The value of X? may
itself be used as a measure of the strength of the relationship between species. This is
also the case for the reciprocal information measures defined above. With the same
purpose in mind, it is possible to use one of the following contingency coefficients,
which are merely transformations of a X? statistic on a scale from 0 to 1 (Kendall &
Buckland, 1960; Morice, 1968):

Pearson contingency coefficient, C = X2/ (n + X?) 6.19)

Tschuproff contingency coefficient, T = A/ X2/ (n./degrees of freedom) (6.20)

where n is the number of observations. These contingency coefficients are not
frequently used in ecology, however. They can only be used for comparing
contingency tables of the same size.
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Contingency tables are the main approach available to ecologists for the numerical
analysis of relationships among qualitative descriptors, or else between qualitative
descriptors and ordered variables divided into classes. Contingency tables are also
convenient for analysing nonmonotonic relationships among ordered descriptors (a
relationship is monotonic when there is a constant evolution of one descriptor with
respect to the other; see Fig. 5.1). Reciprocal information and X? coefficients are
sensitive enough that they could be used even with ordered variables, when
relationships among a large number of descriptors are analysed by computer. One must
simply make sure that the ordered data are divided into a sufficiently large number of
classes to avoid clumping together observations that one would want to keep distinct in
the results. If a first analysis indicates that redefining the boundaries of the classes
could improve the interpretation of the phenomenon under study (the classes used to
recode quantitative variables do not need to have the same width), ecologists should
not hesitate to repeat the analysis using the recoded data. Far from being circular, this
process corresponds to a progressive discovery of the structure of the information.

It is also possible to use the association coefficients described above to interpret the
classifications or ordinations resulting from a first analysis of the data (Chapters 8 and
9). A classification may be compared to the descriptors from which it originates, in
order to determine which descriptors are mostly responsible for it; or else, it may be
compared to a new series of descriptors that could potentially explain it. Finally, one
may use contingency tables to compare several classifications of the same objects,
obtained through different methods. Chapter 10 deals with these higher-level analyses.

Ecological application 6.2

Legendre et al. (1978) analysed data from a winter aerial survey of land fauna, using
contingency tables. They compared the presence or absence of tracks of different species to a
series of 11 environmental descriptors. Five of these descriptors were qualitative, i.e. bioclimatic
region, plant association, nature of the dominant and sub-dominant surface materials, and
category of aquatic ecosystem. The others were semiquantitative, i.e. height of the trees,
drainage, topography, thickness of the surface materials, abundance of streams and wetlands.
The analysis identified the descriptors that determined or limited the presence of the 10 species
that had been observed with sufficient frequency to permit their analysis. This allowed the
authors to describe the niche of the 10 species.

6.3 Multiway contingency tables

When there are more than two descriptors, one might consider the possibility of
analysing the data set using a series of two-way contingency tables, in which each pair
of descriptors would be treated separately. Such an approach, however, would not take
into account possible interactions among several descriptors and might thus miss part
of the potential offered by the multidimensional structure of the data. This could lead
to incorrect, or at least incomplete conclusions. Information on the analysis of
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multiway contingency tables can be found in Kullback (1959), Plackett (1974), Bishop
et al. (1975), Upton (1978), Gokhale & Kullback (1978), Fienberg (1980) and Sokal &
Rohlf (1995).

The most usual approach for analysing multiway contingency tables is to adjust to
the data a log-linear model, where the natural logarithm (In) of the expected frequency
E for each cell of the table is estimated as a sum of main effects and interactions. For
example, in the case of two-way contingency tables (Section 6.2), the expected
frequencies could have been computed using the following equation:

In £ =1[6] + [A] + [B] + [AB] (6.21)

Symbols in brackets are the effects. [A] and [B] are the main effects of descriptors a
and b, respectively, and [AB] is the effect resulting from the interaction between a and
b. [0] is the mean of the logarithms of the expected frequencies. In a two-way table,
the hypothesis tested is that of independence between the two descriptors,
i.e. Hy: [AB] = 0. The log-linear model corresponding to this hypothesis is thus:

In E=1[6] + [A] + [B] (6.22)

since [AB] = 0. The expected frequencies E computed using eq. 6.22 are exactly the
same as those computed in Section 6.2 (eq. 6.4). The advantage of log-linear models
becomes obvious when analysing contingency tables with more than two dimensions
(or criteria).

For a contingency table with three descriptors (a, b, and ¢), the log-linear model
containing all possible effects is:

In E=[0] + [A] + [B] + [C] + [AB] + [AC] + [BC] + [ABC]

Such a model is referred to as the saturated model. In practice, the effect resulting
from the interaction among all descriptors is never included in any log-linear model,
i.e. here [ABC]. This is because the expected frequencies for the saturated model are
always equal to the observed frequencies (E = O), so that this model is useless. The
general log-linear model for a three-way table is thus:

In E=[06] + [A] + [B] + [C] + [AB] + [AC] + [BC] (6.23)

where Hj: [ABC] =0. In other words, the logarithm of the expected frequency for
each cell of the contingency table is computed here by adding, to the mean of the
logarithms of the expected frequencies, one effect due to each of the three descriptors
and one effect resulting from each of their two-way interactions.

Different log-linear models may be formulated by setting some of the effects equal
to zero. Normally, one only considers hierarchical models, i.e. models in which the
presence of a higher-order effect implies that all the corresponding lower effects are
also included; the order of an effect is the number of symbols in the bracket. For
example, in a hierarchical model, including [BC] implies that both [B] and [C] are also
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Table 6.5

Possible log-linear models for a three-way contingency table. Hypotheses and corresponding
models. All models include the three main effects.

Hypotheses (Hp) Log-linear models
1.[ABC] =0 In E = [6] + [A] + [B] + [C] + [AB] + [AC] + [BC]
2.[ABC] =0, [AB] =0 In E = [0] + [A] + [B] + [C] + [AC] + [BC]
3.[ABC] =0, [AC] =0 In E = [0] + [A] + [B] + [C] + [AB] + [BC]
4.[ABC] =0, [BC] =0 In E = [6] + [A] + [B] + [C] + [AB] + [AC]
5.[ABC] =0, [AB] =0, [AC] =0 In E = [0] + [A] + [B] + [C] + [BC]

6.[ABC] =0, [AB] =0, [BC] =0 In E = [0] + [A] + [B] + [C] + [AC]

7.[ABC] =0, [AC] =0, [BC] = 0 In E = [0] + [A] + [B] + [C] + [AB]

8.[ABC] =0, [AB] = 0, [AC] = 0, [BC] = 0 In E = [6] + [A] + [B] + [C]

included. For a three-way contingency table, there are eight possible hierarchical
models, corresponding to as many different hypotheses (Table 6.5). Models in the
Table all include the three main effects. Each hypothesis corresponds to different types
of interaction among the three variables. Methods for calculating the expected
frequencies E are detailed in the general references cited above. In practice, one uses a
program available in a computer package (e.g. BMDPA4F, or FUNCAT in SAS), with
which it is easy to estimate the expected frequencies for any hierarchical model
defined by the user.

The number of degrees of freedom (v) depends on the interactions which are
included in the model. For the general hierarchical model of eq. 6.23,

v=rst—[1+(r= D+(s = D+t = D= D(s = D+ = Dt = D+(s = Dt = 1)] (6.24)

where r, s and ¢ are the numbers of states of descriptors a, b and ¢, respectively. If there
were only two descriptors, a and b, the log-linear model would not include the
interaction [AB], so that eq. 6.24 would become:

v=rs—[1l+(r-D+G-1D]=F-D(-1)

which is identical to eq. 6.7. In Table 6.5, model 4, for example, does not include the
interaction [BC], so that:

v=rst—[1+F-D+GE-D+@E-1D+@F-DE-1)+r-DE-1)]
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Programs in computer packages calculate the number of degrees of freedom
corresponding to each model.

It is possible to test the goodness of fit of a given model to the observed data by
using one of the X? statistics already described for two-way tables, X?, or Xy
(egs. 6.5 and 6.6). The null hypothesis (Hy) tested is that the effects excluded from the
model are null. Rejecting Hj, however, does not allow one to accept the alternative
hypothesis that all the effects included in the model are not null. The only conclusion
to be drawn from rejecting Hy is that at least some of the effects in the model are not
null. When the probability of a model is larger than the significance level «, the
conclusion is that the model fits the data well.

R As in the case of two-way contingency tables (eq. 6.8), it is recommended to divide
Xy, by a correction factor, g,;, (Williams, 1976), when the number of observations n
is small, i.e. less than 4 or 5 times the number of cells in the table. For the general
hierarchical model (eqs. 6.23 and 6.24):

Gmin =1+ 1/6vn) [P —1- (P -1 = (s> 1) = (- 1)
—P-DEE-D-FP-DE@-D-(*-DEF-1]  (6.25)

In the case of two descriptors, eq. 6.25 becomes:
Gmin = 1+ (1/6vn) [Ps? =1 - (2 = 1) = (s> = 1]
Gmin = 1+ (1/6vn) [P = (s> = 1)
which is identical to eq. 6.8. For model 4 in Table 6.5, used above as example:

Gmin =1+ (1/6vn) [P -1 - (P - 1) = (s> - 1) = (- 1)
(P -DEE-D =P -DE-1)]

This correction cannot be applied, as such, to contingency tables containing null
expected frequencies (see below). The other possible correction, which consists in
adding to each cell of the table a small value, e.g. 0.5, has the same effect here as in
two-way contingency tables (see Section 6.2).

Ecological application 6.3a

Legendre (1987a) analysed biological oceanographic data obtained at 157 sites in Baie des
Chaleurs (Gulf of St. Lawrence, eastern Canada). The data set (observations made at 5-m depth)
included measurements of temperature, salinity, nutrients (phosphate and nitrate), and
chlorophyll a (estimated from the in vivo fluorescence of water pumped on board the ship). As it
often happens in ecology, the numerical analysis was hampered by three practical problems.
(1) The measured concentrations of nutrients were often near or below the detection limit, with
the result that many of them exhibited large experimental errors. (2) Relationships between
variables were often nonmonotonic, i.e. they did not continuously increase or decrease but
reached a maximum (or a minimum) after which they decreased (or increased). (3) Most of the
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Table 6.6

Multiway contingency table analysis of oceanographic data recoded into discrete classes
(Legendre, 1987a). Using a hierarchy of log-linear models, the concentrations of chlorophyll a
(C; 4 classes) are analysed as a function of the temperature-salinity (TS) characteristics of the
water masses (symbol in this Table: T; 3 classes) and the concentrations of phosphate (P; 2
classes) and nitrate (N; 2 classes). When a higher-order effect is present, all the corresponding
lower-order effects are included in the model.

Effects in the model Interpretation v X%V
[NTP], [C] Chl a is independent of the environmental variables 30 121 *
Difference Adding [CT] to the model significantly improves the fit 9 89 *
[NTP], [CT] Chl a depends on the TS characteristics 21 32
Difference Adding [CP] to the model significantly improves the fit 3 13 %
[NTP], [CT], [CP] Chl a depends on the TS characteristics and on phosphate 18 19
Difference Adding [CN] does not significantly improve the fit 7 5
[NTP], [CT], [CP], [CN] The most parsimonious model does not include a 11 14

dependence of chl a on nitrate

*p <0.05; bold Xf,v values correspond to models with p > 0.05 of fitting the data

variables were intercorrelated, so that no straightforward interpretation of phytoplankton
(i.e. chlorophyll a) concentrations was possible in terms of the environmental variables. Since
multiway contingency table analysis can handle these three types of problems, it was decided to
partition the (ordered) variables into discrete classes and analyse the transformed data using
hierarchical log-linear models.

The initial model in Table 6.6 (line 1) only includes the interaction among the three
environmental variables, with no effect of these on chl a. This initial model does not fit the data
well. Adding the interaction between chl a and the temperature-salinity (TS) characteristics
significantly improves the fit (i.e. there is a significant difference between models; line 2). The
resulting model could be accepted (line 3), but adding the interaction between chla and
phosphate further improves the fit (significant difference, line 4) and the resulting model fits the
data well (line 5). Final addition of the interaction between chl a and nitrate does not improves
the fit (difference not significant, line 6). The most parsimonious model (line 5) thus shows a
dependence of chl a concentrations on the TS characteristics and phosphate. The choice of the
initial model, for this example, is explained in Ecological application 6.3b.

There are 8 hierarchical models associated with a three-way contingency table, 113
with a four-way table, and so forth, so that the choice of a single model, among all
those possible, rapidly becomes a major problem. In fact, it often happens that several



Multiway contingency tables 227

Partltlonlng
the X

Stepwise
selection

Effect
screening

models could fit the data well. Also, in many instances, the fit to the data could be
improved by adding supplementary terms (i.e. effects) to the model. However, this
improved fit would result in a more complex ecological interpretation because of the
added interaction(s) among descriptors. It follows that the choice of a model generally
involves a compromise between goodness of fit and simplicity of interpretation.
Finally, even if it was possible to test the fit of all possible models to the data, this
would not be an acceptable approach since these tests would not be independent. One
must therefore use some other strategy to choose the “best” model.

There are several methods to select a model which are both statistically acceptable
and ecologically parsimonious. These methods are described in the general references
mentioned at the beginning of this Section. In practice, since none of the methods is
totally satisfactory, one could simply use, with care, those included in the available
computer package.

1) A first method consists in partitioning the Xév statistics associated with a
hierarchy of log-linear models. The hierarchy contains a series of models, which are
made progressively simpler (or more complex) by removing (or adding) one effect at a
time. It can be shown that the dlfference between the Xy, statistics of two successive
models in the hierarchy is itself a XW statistic, which can therefore be tested. The
corresponding number of degrees of freedom is the difference between those of the
two models. The approach is illustrated using Ecological application 6.3a (Table 6.6).
The initial model (line 1) does not fit the data well. The difference (line 2) between it
and the next model is significant, but the second model in the hierarchy (line 3) still
does not fit the data very well. The difference (line 4) between the second and third
models is significant and the resulting model (line 5) fits the data well. The difference
(line 6) between the third model and the next one being non-significant, the most
parsimonious model in the hierarchy is that on line 5. The main problem with this
method is that one may find different “most parsimonious” models depending on the
hierarchy chosen a priori. Partitioning X? statistics is possible only with X\ZN ,not Xp.

2) A second family of approaches lies in the stepwise forward selection or
backward elimination of terms in the model. As always with stepwise methods (see
Section 10.3), (a) it may happen that forward selection lead to models quite different
from those resulting from backward elimination, and (b) the tests of significance must
be interpreted with caution because the computed statistics are not independent.
Stepwise methods thus only provide guidance, which may be used for limiting the
number of models to be considered. It often happens that models other than those
identified by the stepwise approach are found to be more parsimonious and interesting,
and to fit the data just as well (Fienberg 1980: 80).

3) Other methods simultaneously consider all possible effects. An example of effect
screening (Brown 1976) is given in Dixon (1981). The approach is useful for reducing
the number of models to be subsequently treated, for example, by the method of
hierarchical partitioning of Xy, statistics (see method 1 above).
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When analysing multiway contingency tables, ecologists must be aware of a
number of possible practical problems, which may sometimes have significant impact
on the results. These potential problems concern the cells with zero expected
frequencies, the limits imposed by the sampling design, the simultaneous analysis of
descriptors with mixed levels of precision (i.e. qualitative, semiquantitative, and
quantitative), and the use of contingency tables for the purpose of explanation or
forecasting.

1) Multiway contingency tables, in ecology, often include cells with expected
frequencies E =0. There are two types of zero expected frequencies, i.e.those
resulting from sampling and those that are of structural nature.

Sampling zeros are caused by random variation, combined with small sample size
relative to the number of cells in the multiway contingency table. Such zeros would
normally disappear if the size of the sample was increased. The presence of cells with
null observations (O =0) may result, when calculating specific models, in some
expected frequencies £ = 0. This is accompanied by a reduction in the number of
degrees of freedom. For example, according to eq. 6.24, the number of degrees of
freedom for the initial model in Table 6.6 (line 1) should be v = 33, since this model
includes four main effects [C], [N], [P], and [T] and interactions [NP], [NT], [PT], and
[NPTT; however, the presence of cells with null observations (O = 0) leads to cells with
E =0, which reduces the number of degrees of freedom to v = 30. Rules to calculate
the reduction in the number of degrees of freedom are given in Bishop et al. (1975: 116
et seq.) and Dixon (1981: 666). In practice, computer programs generally take into
account the presence of zero expected frequencies when computing the number of
degrees of freedom for multiway tables. The problem does not occur with two-way
contingency tables because cells with £E=0 are only possible, in the two-way
configuration, if all the observations in the corresponding row or column are null, in
which case the corresponding state is automatically removed from the table.

Structural zeros correspond to combinations of states that cannot occur a priori or
by design. For example, in a study where two of the descriptors are sex (female, male)
and sexual maturity (immature, mature, gravid), the expected frequency of the cell
“gravid male” would a priori be E = 0. Another example would be combinations of
states which have not been sampled, either by design or involuntarily (e.g. lack of
time, or inadequate planning). Several computer programs allow users to specify the
cells which contain structural zeros, before computing the expected frequencies.

2) In principle, the methods described here for multiway contingency tables can
only be applied to data resulting from simple random sampling or stratified sampling
designs. Fienberg (1980: 32) gives some references in which methods are described
for analysing qualitative descriptors within the context of nested sampling or a
combination of stratified and nested sampling designs. Sampling designs are described
in Cochran (1977), Green (1979), and Thompson (1992), for example.
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3) Analysing together descriptors with mixed levels of precision (e.g. a mixture of
qualitative, semiquantitative, and quantitative descriptors) may be done using
multiway contingency tables. In order to do so, continuous descriptors must first be
partitioned into a small number of classes. Unfortunately, there exists no general
approach to do so. When there is no specific reason for setting the class limits, it has
been suggested, for example, to partition continuous descriptors into classes of equal
width, or containing an equal number of observations. Alternatively, Cox (1957)
describes a method which may be used for partitioning a normally distributed
descriptor into a predetermined number of classes (2 to 6). For the specific case
discussed in the next paragraph, where there is one response variable and several
explanatory variables, Legendre & Legendre (1983b) describe a method for
partitioning the ordered explanatory variables into classes in such a way as to
maximize the relationships to the response variable. It is important to be aware that,
when analysing the contingency table, different ways of partitioning continuous
descriptors may sometimes lead to different conclusions. In practice, the number of
classes of each descriptor should be as small as possible, in order to minimize the
problems discussed above concerning the calculation of Xy, (see egs. 6.8 ad 6.25 for
correction factor ¢,,;,) and the presence of sampling zeros. Another point is that
contingency table analysis considers the different states of any descriptor to be
nonordered. When some of the descriptors are in fact ordered (i.e.originally
semiquantitative or quantitative), the information pertaining to the ordering of states
may be used when adjusting log-linear models (see for example Fienberg 1980: 61 et
seq.).

4) There is an analogy between log-linear models and analysis of variance since
the two approaches use the concepts of effects and interactions. This analogy is
superficial, however, since analysis of variance aims at assessing the effects of
explanatory factors on a single response variable, whereas log-linear models have been
developed to describe structural relationships among several descriptors corresponding
to the dimensions of the table.

5) It is possible to use contingency table analysis for interpreting a response
variable in terms of several interacting explanatory variables. In such a case, the
following basic rules must be followed. (1) Any log-linear model fitted to the data
must include by design the term for the highest-order interaction among all
explanatory variables. In this way, all possible interactions among the explanatory
variables are included in the model, because of its hierarchical nature. (2) When
interpreting the model, one should not discuss the interactions among the explanatory
variables. They are incorporated in the model for the reason given above, but no test of
significance is performed on them. In any case, one is only interested in the
interactions between the explanatory and response variables. An example follows.

Ecological application 6.3b

The example already discussed in application 6.3a (Legendre, 1987a) aimed at interpreting the
horizontal distribution of phytoplankton in Baie des Chaleurs (Gulf of St. Lawrence, eastern
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Canada), in terms of selected environmental variables. In such a case, where a single response
variable is interpreted as a function of several potentially explanatory variables, all models
considered must include by design the highest-order interaction among the explanatory
variables. Thus, all models in Table 6.6 include the interaction [NPT]. The simplest model in the
hierarchy (line 1 in Table 6.6) is that with effects [NPT] and [C]. In this simplest model, there is
no interaction between chlorophyll and any of the three environmental variables, i.e. the model
does not include [CN], [CP] or [CT]. When interpreting the model selected as best fitting the
data, one should not discuss the interaction among the explanatory variables, because the
presence of [NPT] prevents a proper analysis of this interaction. Table 6.6 then leads to the
interpretation that the horizontal distribution of phytoplankton depends on the TS characteristics
of water masses and on phosphate concentration.

When the qualitative response variable is binary, one may use the logistic linear
(or logit) model instead of the log-linear model. Fitting such a model to data is also
called logistic regression (Subsection 10.3.7). In logistic regression, the explanatory
descriptors do not have to be divided into classes; they may be discrete or continuous.
This type of regression is available in various computer packages and some programs
allow the response variable to be multi-state. Efficient use of logistic regression
requires that all the explanatory descriptors be potentially related to the response
variable. This method may also replace discriminant analysis in cases discussed in
Subsection 10.3.7 and Section 11.6.

There are many cases where multiway contingency tables have been successfully
used in ecology. Examples are found in Fienberg (1970) and Schoener (1970) for the
habitat of lizards, Jenkins (1975) for the selection of trees by beavers, Legendre &
Legendre (1983b) for marine benthos, and Fréchet (1990) for cod fishery.

6.4 Contingency tables: correspondence

Once it has been established that two or more qualitative descriptors in a contingency
table are not independent (Sections 6.2 and 6.3), it is often of interest to identify the
cells of the table that account for the existing relationship between descriptors. These
cells, which show how the descriptors are related, define the correspondence between
the rows and columns of the contingency table. By comparison with parametric and
nonparametric statistics (Chapters 4 and 5), the measures of contingency described in
Sections 6.2 and 6.3 are, for qualitative descriptors, analogous to the correlation
between ordered descriptors, whereas correspondence would be analogous to
regression (Section 10.3) because it makes it possible to forecast the state of one
descriptor using another descriptor. Correspondence analysis (Section 8.4) is another
method that allows, among other objectives, the identification of the relationships
between the rows and columns of a contingency table. This can be achieved directly
through the approach described in the present section.

In a contingency table where the descriptors are not independent (i.e. the null
hypothesis of independence has been rejected), the cells of interest to ecologists are
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those in which the observed frequencies (Oij) are very different from the
corresponding expected frequencies (Ej;). Each of these cells corresponds to a given
state for each descriptor in the contingency table. The fact that O;; # Ej; is indicative of
a stronger interaction, between the states in question, than expected under the null
hypothesis used for computing E. For example, hypothesis H in Table 6.4 is that of
independence between descriptors a and b. This hypothesis being rejected (p < 0.001),
one may identify in the contingency table the observed frequencies O;; that are higher
than the corresponding expected frequencies Ej;. Values Oy > E;; (bold-face type in
Table 6.4) give an indication of how a and b are related. These values may be located
anywhere in the table, since contingency table analysis does not take into account the
ordering of states.

A mathematically identical result is reached using the concept of entropy of
Sections 6.1 and 6.2. The entropy of a single descriptor (Section 6.1) is called the
unconditional entropy of its probability distribution. When analysing contingency
tables, one may also calculate the conditional probability distribution of, say,
descriptor b for each state of descriptor a. A particular example of such a distribution,
the conditional multinormal distribution, has been discussed in Section 4.7.

Section 6.1 has shown that the entropy of a descriptor is equal to the amount of
information that can be gained by observing the distribution of objects among the
states of this descriptor. It follows that the entropy of descriptor b is the maximum
amount of information which may be obtained concerning b. Let us assume that,
instead of b, it is a which is observed in order to learn something about b. Information
can be obtained only insofar as a and b have information in common. If the two
descriptors have no information in common, the sum of the conditional entropies of b
is equal to its unconditional entropy, as calculated in Section 6.1. If a and b have
information in common, the entropy of b is lowered by an amount equal to the
information shared by the two descriptors (i.e.the reciprocal information B,
Section 6.2), as shown by this Venne diagram:

Information
in common

remaining in b
after observing a

Information in b ——/ L

Conditional entropy }‘

Information in a

The first step in analysing the correspondence in a two-way contingency table,
using conditional entropy, is to construct a table in which the frequencies of the
objects, for each state of descriptor a, are distributed among the states of b. The result
is a table of the conditional probabilities of b for each state of a (Table 6.7). Each row
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Table 6.7

Test of
0;j=Ej

Conditional probability distributions of b, for each state of descriptor a. The conditional
probabilities that exceed the corresponding unconditional probabilities (heading row) are in
bold-face type. These are the same as the cells with bold-face values in Table 6.4

p(b1) p(by) p(b3) p(bs)

0.25 0.25 0.25 0.25 2
ay 0.50 0.17 0.25 0.08 1.00
ap 0.00 0.67 0.00 0.33 1.00
aj 0.00 0.00 0.00 1.00 1.00
ay 0.00 0.00 1.00 0.00 1.00

of the table contains the probabilities of selecting an object having the various states of
descriptor b, assuming that this object has the state of descriptor a corresponding to the
row. The first row, for example, contains all the objects with dominant species ay, and
it gives their probability distribution on descriptor b. The sum of each row is 1, since
each frequency in the contingency table (Table 6.1, for the example) has been divided
by the (marginal) total of the corresponding row.

To analyse a table of conditional probabilities, one identifies the conditional
probabilities that are larger than the corresponding unconditional probabilities, in the
column headings. Under the null hypothesis of independence of the two descriptors,
each conditional probability distribution (i.e. each row of the table) should be
approximately equal to the unconditional distribution (heading row). Thus, in
Table 6.7, b; has a probability of 0.50 among the objects with dominant species ay,
while this same state b; has a probability of 0.25 among all objects. A similar table of
conditional probabilities could have been computed with descriptor a conditional on b;
the cells of interest, and thus the ecological conclusions, would have been exactly the
same.

It is also possible to zest the significance of the difference between O;; and Ej; in
each cell of the contingency table. Ecologists may be interested in any difference,
whatever its sign, or only in cases where Oy is significantly higher than Ej
(preference) or significantly lower (avoidance, exclusion).

Bishop et al. (1975: 136 et seq.) describe three statistics for measuring the
difference between O and E. They may be used for two-way or multiway contingency
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.. 2 2
tables. The three statistics are the components of X, components of Xy, and
Freeman-Tukey deviates:

component of Xlz,: (O-E)/ (ﬁ) (6.26)
component of Xf,v :2 O In(O/E) (6.27)
Freeman-Tukey deviate: JE +JO+1-J4E+ 1 (6.28)

These statistics are available in various computer packages. A critical value has been
proposed by Bishop et al. (1975) for testing the significance of statistics 6.26 and 6.28:

/\/X%v, o/ (no.cells)

Ej; is said to be significantly different from O;; when the absolute value of the statistic,
for cell (i, j), is larger than the critical value. According to Sokal & Rohlf (1995),
however, the above critical value often results in a type I error much greater than the
nominal o level. These authors use instead the following approximate criterion to test
Freeman-Tukey deviates:

«/V X%l’ o/ (no.cells) (6.29)

In cells where the (absolute) value of the Freeman-Tukey deviate is larger than the
criterion, it is concluded that Ej; # Oy at significance level o. Neu et al. (1974)
recommend to test only the cells where 5 < E,-j <(n-15). It is also recommended to
apply a Bonferroni or Holm correction (Box 1.3) to significance level o in order to
account for multiple testing. An example is provided in Table 6.8.

Alternatively, the following statistic (adapted from Neu et al, 1974) may be
computed:

[0 - E|

JO(1=0/n)

where n is the total number of observations in the contingency table. When statistic Z
is larger than the critical value z[j _ (/2 no. cells)] f€ad from a table of standard normal
deviates, it is concluded that Oy is significantly different from E;; at probability level
0/2 (one-tailed test); the further division by the number of cells is the Bonferroni
correction (Box 1.3). Statistics higher than the critical value z, in Table 6.9, are in bold-
face type. As is often the case, the conclusions drawn from Tables 6.8 and 6.9 are not
the same.

Z = (6.30)

Comparing Tables 6.4 and 6.7 to Tables 6.8 and 6.9 shows that considering only
the cells where O;; > E;; may lead to conclusions which, without necessarily being
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Table 6.8

Statistics (Freeman-Tukey deviates, eq. 6.28) for testing the significance of individual cells in a
contingency table. The observed and expected values are in Table 6.4. Absolute values larger
than the criterion (eq. 6.29) [9 X2, 45 / 161"% = [9 X 3.84/ 16]" = 1.47 are in boldface type. A
Bonferroni-corrected criterion [9 X{1.0.05/16] / 16]”2 =[9%x9.5/ 16]1/2 = 2.31 would have led
to the same conclusions with the present example. Values in boldface print identify the cells of
the table in which the number of observations Oy significantly (p < 0.05) differs (higher or
lower) from the corresponding expected frequencies (Ej). The overall null hypothesis (Hy:
complete independence of descriptors a and b) was rejected first (Table 6.4) before testing the
significance of the observed values in individual cells of the contingency table.

b, by by by
ay 3.23 ~1.33 0.06 -3.12
a, -4.57 3.49 -4.57 0.91
ay ~3.00 * ~3.00 * ~3.00 * 3.87 *
a, ~3.00 * ~3.00 * 3.87 % -3.00 *

* No test because E;< 5 (Table 6.4).

incorrect, are subject to some risk of error. For example, dominant species a, may well
not be indicative of environmental condition b, as suggested in Table 6.7. Tables 6.8
and 6.9 also show that dominant species a; is significantly under-represented in
environmental condition b, suggesting that this condition is strongly adverse to the
species.

Ecological application 6.4

Legendre et al. (1982) explored the relationship between the abundance of phytoplankton and
vertical stability of the water column in a coastal embayment of Hudson Bay (Canadian Arctic).
Surface waters are influenced by the plume of the nearby Great Whale River. There were
intermittent phytoplankton blooms from mid-July through mid-September. In order to
investigate the general relationship between phytoplankton concentrations (chlorophyll @) and
the physical conditions, chl a and salinity data from 0 and 5 m depths were allocated to a
contingency table (Table 6.10). The null hypothesis of independence being rejected, the
correspondence between the two descriptors rests in three cells. (1) At high salinities
(>22mg L1, there is a significantly small number of high chl a (> 1.5 mg m3) observations.
At intermediate salinities (18-22 mg L’l), (2) high chla observations are significantly
numerous, whereas (3) low chl a observations are significantly infrequent. At low salinities
(<18 mg L), the numbers observed are not significantly different from the frequencies
expected under the null hypothesis of independence.
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Table 6.9

Statistics (eq. 6.30) for testing the significance of individual cells in a contingency table. The
observed and expected values are in Table 6.4. Values larger than zjj _ .05/ (2 x 4 x 4)] = 20.9984 =
2.95 are in boldface. They identify cells in which the number of observations (O;;) significantly
(p < 0.05) differs (higher or lower) from the corresponding expected frequency (E;).

b, by by by
a 3.16 1.65 0.00 4.57
ar 3.06 0.83
a; — S —k 311 *
ay S ek 3.11 % -k

--- Statistic not computed because the denominator is 0. * No test because E;< 5 (Table 6.4).

Table 6.10 shows that, on the one hand, high chl a concentrations were positively associated
with intermediate salinities, whereas they were much reduced in waters of high salinity. On the
other hand, low chl a concentrations were characteristically infrequent in waters of intermediate
salinities. The overall interpretation of these results, which also took into account estimates of
the vertical stability of the water column (Richardson number), was as follows: (1) strong
vertical mixing led to high salinities at the surface; this mixing favoured nutrient replenishment,
but dispersed phytoplankton biomass over the water column; (2) low salinity conditions were
not especially favourable nor adverse to phytoplankton, i.e. stratification was favourable, but
dilution by water from the nearby river was adverse; (3) intermediate salinities were associated
with intermittent conditions of stability; under such conditions, both the high nutrient
concentrations and the stability of the water column were favourable to phytoplankton growth
and accumulation. Intermittent summer blooms thus occurred upon stabilization of the water
column, as a combined result of wind relaxation and fortnightly tides.

6.5 Species diversity

Sections 4.1 and 4.3 have shown that the distribution of a quantitative variable is
characterized by its dispersion around the mean. The parametric and nonparametric
measures of dispersion are the variance (eq. 4.3) and the range, respectively. These
two measures do not apply to qualitative variables, for which the number of states (q)
may be used as a simple measure of dispersion. However, this measure does not take
advantage of the fact that, in several instances, the frequency distribution of the
observations in the various states is known (Section 6.1). When the relative
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Table 6.10

Contingency table: chlorophyll a concentrations as a function of salinity in the surface waters of
Manitounuk Sound (Hudson Bay, Canadian Arctic). In each cell: observed (O,-j) and expected
(Ejj, in parentheses) frequencies, and statistic (eq. 6.30) to test the hypothesis that O;; = Ej;
(00=0.05). Statistics in bold-face print are larger than zj; _gs/12) = 2.64, indicating that
0;; # E;;. Total no. observations n = 207. Xy, =33.78 (v =2, p <0.001); hence the hypothesis
of independence between chl a and salinity is rejected.

Chlorophyll a Salinity (mg L™1)
(mg m™) 6-18 18-22 22-26
2 22 7
1.5-6.1 (3.29) (8.09) (19.62)
(high values) * 3.14 4.85
20 32 124
0-1.5 (18.71) 45.91) (111.38)
(low values) 0.30 2.67 1.79

* Statistic not computed nor tested because E;; < 5.

frequencies of the states are available, eq. 6.1 may be used to measure the dispersion of
a qualitative variable:

q
H ==Y p,logp,

i=1

where p; is the relative frequency or proportion (on a 0-1 scale) of observations in state
i. This formula can be rewritten as:

q
1
H = ZZ—(logni—logn) n;

i=1

where n is the total number of organisms and #; is the number of organisms belonging
to species i. The latter equation is similar to the formula for the variance of n objects
divided into g classes:
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Figure 6.1 Fish catches (abundances) in (a) the Barents Sea, (b) the Indian Ocean, and (c) the Red Sea.

Species
diversity

Along the abscissa, species are arranged in order of decreasing frequencies. The ordinates of
histograms are logarithmic. Adapted from Margalef (1974).

where f; is the frequency of the ith class. In ecology, H is widely used to measure the
diversity of a species assemblage; it is generally computed for each sampling site
separately. In species diversity studies, the qualitative descriptor is the list of the ¢
species present and each state corresponds to a species name. Both the number of
species g and the entropy H belong to the same family of generalized entropies
(eq. 6.31, below).

In assemblages of biological species, there are generally several species
represented by a single or a few individuals, and a few species that are very abundant.
The few abundant species often account for many more individuals than all the rare
species together. Figure 6.1 shows, in order of decreasing frequencies, the abundances
of fish species caught in the Barents Sea, the Indian Ocean, and the Red Sea. Diversity
indices must be applicable to any type of species assemblage regardless of the shape of
the abundance distribution. One parameter of the distribution is clearly the number of
species; another is the shape of the distribution. An alternative approach is to combine
these two parameters in a single index, using the entropy measure H for example.
Species diversity may thus be defined as a measure of species composition, in terms of
both the number of species and their relative abundances. 1t is a synthetic biotic index
which captures multidimensional information relative to the species composition of an
assemblage or a community.
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Taxocene

Diversity indices characterize species composition at a given site and a given time.
These indices are used by ecologists for various purposes, which may be of theoretical
or practical nature. In theoretical ecology, measurements of diversity may be used to
compare different communities, or else the same community at different times. For
example, temporal changes in species diversity is a major characteristic of ecological
succession (Margalef, 1968, 1974; Gutierrez & Fey, 1980). Diversity may also be
compared to other characteristics that may change within communities, such as
productivity, maturity, stability, and spatial heterogeneity. In studies that encompass
several communities, species diversity may be compared to chemical,
geomorphological, or climatological environmental variables; see for example
Stromgren et al. (1973). In a more practical context, spatial or temporal changes in
diversity are often used to assess the effects of pollution on biological communities;
see for instance Wilhm & Dorris (1968). More recently, the rapid disappearance of
species in several regions and ecosystems have caused international action to assess
and preserve biodiversity.

In principle, diversity should not be computed on taxonomic levels other than
species. Similarly, species are the basic units in the niche, competition, and succession
theories. This is because the resources of an ecosystem are apportioned among the
local populations (demes) of the species present in the system, each species
representing a separate genetic pool. Attempts at measuring diversity at supraspecific
levels generally produce confusing or trivial results.

It is generally not useful to measure species diversity of a whole community
(e.g. primary, secondary, and tertiary producers and decomposers), because of the
different roles played by various species in an ecosystem. It is better (Hurlbert, 1971;
Pielou, 1975) to restrict the study of species diversity (and of the underlying
theoretical phenomena, e.g. competition, succession) to a single taxocene. A taxocene
is a set of species belonging to a given supraspecific taxon that make up a natural
ecological community or, in other words, that represent a taxonomic segment of a
community or association (Chodorowski, 1959; Hurlbert, 1971). The supraspecific
taxon must be such that its member species are about the same size, have similar life
histories, and compete over both ecological and evolutionary time for a finite amount
of similar resources (Deevey, 1969). A taxocene occupies a limited segment in space
and in the environment. For these reasons, the following information about the
reference population should accompany any measure of diversity: (1) the spatial
boundaries of the region or volume within which the population is found and a
description of the sampling method; (2) the temporal limits within which the
observations have been made; (3) the taxocene under study (Hurlbert, 1971; Pielou,
1975).

Sampling sites may harbour species that differ much in size or role in the
environment. This may occur, for example, when all plants in quadrats (ligneous and
herbaceous) are counted, or when species at different developmental stages are
collected (e.g. counting saplings as equivalent to adult trees). Comparisons of diversity
indices with production or environmental variables may be easier in such cases if
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Diversity
number

species diversity is computed, not on the numbers of individuals, but instead on
measures of biomass (Wilhm, 1968) or dry mass, productivity (Dickman, 1968),
fecundity, or any other appropriate measure of energy transfer.

Species diversity indices may be used to compare successive observations from the
same community (time series: O mode, Fig. 7.1) or sampling sites from different areas
(Q mode). Coefficients in Chapter 7 compare objects by combining paired information
available for each species. In contrast, diversity indices pool the multispecies
information into a single value for each observation, before comparing them.

Over the years, several formulae have been proposed in the ecological literature for
measuring species diversity. The present section describes only the few indices that are
usually found in the modern literature. Species diversity has been the subject of
detailed discussions, for example by Pielou (1969, 1975), Margalef (1974), Peet
(1974), and Legendre & Legendre (1983a).

1 — Diversity

Hill (1973a) and Pielou (1975) noted that the three diversity indices mostly used by
ecologists are specific cases of the generalized entropy formula of Rényi (1961)

q
1 a
H, = mlogZpi (6.31)

i=1

where: a = 0, 1, ...; g is the number of species; p; is the relative frequency or
proportion of species i. Hill (1973a) prefers the corresponding diversity numbers:

N,=expH, (6.32)

a

It can be shown that the first three entropies (order O to 2) and corresponding diversity
numbers are:

(a) H, = logg (b) Ny, =g (6.33)
() H, = —Zpi logp, = H (b) N, = exp H (6.34)
(a) H, = —logz‘p? = —log (concentration)  (b) N, = concentration " (6.35)

Hill (1973a) noted that increasing the order a diminishes the relative weights of rare
species in the resulting index. In a review of the topic, Peet (1974) proposed other
ways of creating families of diversity indices. Let us examine the first three orders of
eq. 6.31 in more detail.



240

Multidimensional qualitative data

Number
of species

Shannon’s
entropy

1) Entropy of order a = 0 — The number of species g (eq. 6.33b) is the index of
diversity most often used in ecology. It goes back to Patrick (1949):

Diversity = q (6.36)

It is more sensitive to the presence of rare species than higher-order indices. The
number of species can also be seen as a component of other diversity indices (e.g. H,
Subsection 2).

As the size of the sampling units increases, additional rare species appear. This is a
problem with all diversity indices and it is at its worst in eq. 6.36. It is incorrect to
compare the diversities of sampling units having different sizes because diversity
measures are not additive (Subsection 1.4.2). This point has been empirically shown
by He et al. (1996). This problem can be resolved by calculating the numbers of
species that the sampling units would contain if they all had the same size, for example
1000 organisms. This may be done using Sanders’ (1968) rarefaction method, whose
formula was corrected by Hurlbert (1971). The formula computes the expected number
of species ¢' in a standardized sampling unit of »n' organisms, from a nonstandard
sampling unit containing g species, a total of n organisms, and n; organisms belonging

to each species i:
n—n;
q '
n

E(q) =§‘1 1- (n)

n

(6.37)

where n' < (n — ny), n; being the number of individuals in the most abundant species
(1), and the terms in parentheses are combinations. For example:

(”) n!
n/)  nl(n-n)!

2) Entropy of order a = 1 — Margalef (1958) proposed to use Shannon’s entropy H
(egs. 6.1 and 6.34a) as an index of species diversity.

q
H ==Y p, log p,

i=1
The properties of H as a measure of diversity are the following:

e H = 0 (minimum value), when the sampling unit contains a single species; H
increases with the number of species.

e For a given number of species, H is maximum when the organisms are equally
distributed among the g species: H = logq. For a given number of species, H is lower
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when there is stronger dominance in the sampling unit by one or a few species
(e.g. Figs. 6.1a and b). The actual value of H depends on the base of logarithms (2, e,
10, or other). This base must always be reported since it sets the scale of measurement.

* Like the variance, diversity can be partitioned into different components. It follows
that the calculation of diversity can take into account not only the proportions of the
different species but also those of genera, families, etc. Partitioning diversity into a
component for genera and a component for species within genera allows one to
examine two adaptive levels among the environmental descriptors. Such partitioning
can be done using eqs. 6.10-6.12. Total diversity, H = A + B + C, which is calculated
using the proportions of species without taking into account those of genera, is equal to
the diversity due to genera, H(G) = A + B, plus that due to species within genera,
H(S| G) = C, which is calculated as the sum of the species diversities in each genus,
weighted by the proportions of genera. The formula is:

H=H(G)+H(S|G) (6.38)

This same calculation may be extended to other systematic categories. Considering,
for example, the categories family (F), genus (G), and species (S), diversity can be
partitioned into the following hierarchical components:

H=H(F)+H(G|F)+HE|GF) (6.39)

Using this approach, Lloyd et al. (1968) measured hierarchical components of
diversity for communities of reptiles and amphibians in Borneo.

Most diversity indices share the above first two properties, but only the indices
derived from eq. 6.31 have the third one (Daget, 1980). The probabilistic interpretation
of H refers to the uncertainty about the identity of an organism chosen at random in a
sampling unit. The uncertainty is small when the sampling unit is dominated by a few
species or when the number of species is small. These two situations correspond to
low H.

In principle, H should only be used when a sample is drawn from a theoretically
infinite population, or at least a population large enough that sampling does not modify
it in any noticeable way. In cases of samples drawn from small populations, or samples
whose representativeness is unknown, it is theoretically better, according to Pielou
(1966), to use Brillouin's formula (1956), proposed by Margalef (1958) for computing
diversity H. This formula was introduced in Section 6.1 to calculate the information
per symbol in a message (eq