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PREFACE

Information processing by biological systems is not an invention of the mod-
ern era. It started in the far past with the semblance of life on our planet, was
operative in single-celled organisms, and was active throughout the ages with
the evolution of higher species.

During the last few decades this area of endeavor has attracted the attention
of scientists and engineers. They were driven not only by the inborn curiosity
of human beings, but also by the quest for solutions to practical issues. Among
the latter, the most pressing were the miniaturization of devices and conferring
upon them greatly extended capabilities for information processing. More
recently, as sustained efforts were aimed at these goals, a critical warning was
issued by physicists. They pointed out that, sooner or later, the technology
currently available is bound to reach the limits of its capabilities. This will be
caused by undesired crosstalk between the densely packed ultraminiaturized
components, as well as by the inability to dissipate the heat produced. Hence,
alternative technologies had to be developed. It was at this point that the
concepts of information processing by molecular systems emerged—among
them, biomolecular systems.

This book is not intended to present either a summary of the historical
developments in the area of concern or a full and detailed account of more
recent accomplishments. Rather, it is intended to present to the reader the
progress achieved in a limited section of this area and, particularly, the rela-
tionship prevailing between two apparently unrelated fields. One field encom-
passes defined biochemical systems whose performance can be understood
and described in the rigorous terms of biochemical engineering. The other is
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xii PREFACE

concerned with the concepts of neural networks, which are now fundamental
in efforts made to understand the functioning of human brains. As such, this
book is just one stop on a long journey.

It is also our intention that the book will stir the interest of scholars
involved in related areas and in so doing we invite them to expand research
in the field of concern. To this end, the language of the book is somewhat
didactic. Moreover, a wealth of information is included regarding both the
experimental aspects (i.e., materials and equipment used) and computational
procedures involved.

The content of this book is taken in part from the Ph.D. Thesis of Orna Filo,
submitted to the Technion–Israel Institute of Technology, in Haifa, Israel.

The research described was performed at the Leonard & Diane Sherman
Center for Research in Biomaterials, in the Department of Biomedical Engi-
neering.

Orna Filo
Noah Lotan



TERMINOLOGY

Basic System

The basic system is an enzymic system including enzymes, substrates, cofac-
tors, and products that functions according to well-defined rules. The basic
system receives input, carries information-processing operations on this input,
and produces an output.

Input

The input consists of (1) data (flow rates and concentrations of substrates,
cofactors, and products), (2) mode of operation of the system, and (3) kinetic
characteristics of the enzymic system.

Information

Information consists of (1) part of the input that is processed in the basic
system or in the biochemical network (i.e., concentration profiles of substrates
and cofactors) and (2) part of the output produced by the basic system or the
biochemical network (i.e., concentration profiles of products, substrates, and
cofactors). The information is a signal defined by its type, frequency, and
amplitude.

Output

The output consists of flow rates and concentrations of substrates, cofactors,
and products.

xiii



xiv TERMINOLOGY

Information Processing

The system performs information processing when the information obtained
in the output is different from the information fed in the input in at least one
of its characteristics (i.e., signal type, frequency, or amplitude).

Biochemical Network

In a biochemical network, several basic systems are connected to one another.
The connection is achieved by the fact that the information contained in the
output of one basic system is fed as input into another basic system. For
example, the product of one basic system is also the substrate of the basic
system connected to it.
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Symbols

A Cofactor consumed in reaction (1)
Ai Cofactor taking part in the ith basic system of a biochemical

network
[A] Concentration of A in a fed-batch reactor
[A]i Concentration of A in compartment i of a continuous reactor
[Ai ] Concentration of cofactor Ai

B Cofactor consumed in reaction (2)
Bi Cofactor taking part in the ith basic system of a biochemical
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[B] Concentration of B in a fed-batch reactor
[B]i Concentration of B in compartment i of a continuous reactor
[Bi] Concentration of cofactor Bi

C j Concentration of component j in a fed-batch reactor
C j,0 Concentration of component j in the feed stream
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1
INTRODUCTION AND
LITERATURE SURVEY

1.1 INTRODUCTION

Both living organisms and computers are “information-processing machines”
that operate on the basis of internally stored programs, but the differences
between these systems are also quite large. In the case of living organisms,
self-assembly occurs following an internal program, and the nervous system
and brain formed in this way function as an autonomous information ma-
chine. Unlike traditional computers which must be “driven” from the outside,
biological systems have somehow incorporated within them rules on how
to function. Moreover, in the case of biological entities for which there is
no external blueprint, the design plan is entirely internal and is thought to
undergo changes both in the evolution of species and in the development of
individuals. These similarities and differences have drawn the attention of
computer scientists as well as of life scientists.

In order to revolutionize the current world of computers, three roads, or
any combinations of them, are clearly visible [1]

1. Changing the physical elements at the foundations of the computer
components

2. Changing the architecture of computers
3. Devising new software and computing algorithms

Information Processing by Biochemical Systems: Neural Network–Type Configurations, By Orna Filo and Noah Lotan
Copyright C© 2010 John Wiley & Sons, Inc.
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2 INTRODUCTION AND LITERATURE SURVEY

It is, however, true that a biological computer (or biocomputer) of a com-
pletely different nature from today’s electronic computers already exists in the
form of the fundamental phenomenon of life. The most advanced machinery,
a living organism, operates with functional elements that are of molecular
dimensions and actually exploits the quantum-size effects of its components
[1]. Yet the quintessentially biological functions of living forms: autonomy,
self-organization, self-replication, and development, as witnessed in both evo-
lution and individual ontogeny, are completely absent from current computing
machines [1].

Two major approaches to the construction of a biocomputer are reviewed
here:

1. Study of the operational mechanism of biological systems, particularly
those of the living brain, and the use of these results in the redesign of
computer software and hardware architecture based on semiconductor
technology (Section 1.2).

2. Development of biocomponents that are similar to and/or composed of
biological macromolecules, the development of biochips that make use
of these components, and ultimately, the construction of biocomputers
(Section 1.3).

1.2 COMPUTATIONAL PROCESSES BASED
ON BIOLOGICAL PRINCIPLES

1.2.1 Modeling Biological Processes

The involvement of biology might lead to new computational processes based
on those found in natural systems. Multiple modes of processing contribute
to the information-processing functions of biological systems, and these have
been investigated and modeled extensively [2–8]. In his pioneering work,
Rosen [9,10] introduced a two-factor model based on the idea that the fun-
damental dynamic behavior of physiological and biochemical systems is
regulated by the combined action of two factors, one excitatory and the other
inhibitory. Kampfner, Kirby, and Conrad [11–13] introduced theoretical mod-
els of enzymic neuron systems for learning processes, based on the concept
of a hypothetic enzyme called excitase. Based on the same concept, a com-
prehensive mathematical model of the enzymic neuron as a logical circuit has
been introduced by Neuschl and Menhart [14].

1.2.2 Artificial Neural Networks

The nerve cell has proved to be an extremely valuable source of ideas about
networks of automata. A fundamentally different approach to computation



COMPUTATIONAL PROCESSES BASED ON BIOLOGICAL PRINCIPLES 3

is represented by artificial neural networks (ANNs), which are designed
to mimic the basic organizational features of biological nervous systems
[15–22]. The building brick of any neural computing system is some sort of
representation of the fundamental cell of the brain: the neuron. Thus, ANNs
consist of a large number of simple interconnected processing elements which
are simplified models of neurons, and the interconnections between the pro-
cessing elements are simplified models of the synapses between neurons.
The processing of information in such networks occurs in parallel and is
distributed throughout each unit composing the network [15–22].

There has been a steady development of neuronal analogs over the past
50 years. An important early model was proposed in 1943 by McCulloch
and Pitts [23]. They described the neuron as a logical processing unit, and
the influence of their model set the mathematical tone of what is being done
today. Adaption or learning is a major focus of neural net research. The
development of a learning rule that could be used for neural models was
pioneered by Hebb, who proposed the famous Hebbian model for synaptic
modification [24]. Since then, many alternative quantitative interpretations of
synaptic modification have been developed [15–22].

There is no universally accepted definition of an artificial neural network.
However, some definitions can be found in the literature, and examples are
cited here.

� Robert Hecht-Nielsen, the inventor of one of the first commercial neuro-
computers, defined [17] a neural network as “a computing system made
up of a number of simple, highly interconnected processing elements,
which process information by its dynamic state response to external
inputs.”

� According to the DARPA Neural Network Study [18]: “A neural network
is a system composed of many simple processing elements operating
in parallel whose function is determined by network structure, connec-
tion strengths, and the processing performed at computing elements or
nodes.”

� According to Aleksander and Morton [19], neural computing can be
defined as “the study of networks of adaptable nodes which, through a
process of learning from task examples, store experiential knowledge
and make it available for use.”

� According to Zurada [20], artificial neural systems, or neural networks,
are “physical cellular systems which can acquire, store, and utilize ex-
periential knowledge.”

� According to Nigrin [21], “a neural network is a circuit composed of
a very large number of simple processing elements that are neurally
based. Each element operates only on local information. Furthermore
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each element operates asynchronously; thus, there is no overall system
clock.”

� Haykin [22] offers a definition based on Aleksander and Morton [19]:
“A neural network is a massively parallel distributed processor that has
a natural propensity for storing experiential knowledge and making it
available for use. It resembles the brain in two respects:
� Knowledge is acquired by the network through a learning process.
� Interneuron connection strengths known as synaptic weights are used

to store the knowledge.”

Significant progress in neural network research has been made in recent
decades [15–22,25]. Presently, the neural network strategy is implemented at
either the software or hardware level. The VLSI (very large scale integration)
version of neural network implementation is a technology that has approached
a certain degree of maturity [22]. Although the VLSI version serves as an
impressive demonstration of the power of the new computer architecture of
neural networks, it falls short of a radical design departure that is capable of
capturing the structural and functional flexibility inherent in biosystems [25].
Many experts believe that neural network technology will be more robust and
more powerful when its implementation becomes possible in a molecular-
based “hardware” environment [25].

1.3 MOLECULAR AND BIOMOLECULAR ELECTRONICS

1.3.1 Motivation

The high-technology revolution that made the personal computer standard
equipment was fueled primarily by astonishing advances in microelectronics
that allow more and more circuit elements to be packed into a small integrated
circuit (IC). The number of device components packaged into a single IC has
grown exponentially with the passage of time [25–28]. Moreover, we witness
increasing capability of each IC, increasing speed of operation, reduced con-
sumption of energy, reduction in sizes and weights of the finished products,
and reduced prices. Will this trend continue so that the device size eventually
reaches the atomic scale? To many experts the answer is “not if using con-
ventional microelectronics technology,” which exploits mainly macroscopic
properties of inorganic materials, because the ensuing quantum size and the
thermal effects will make such devices unreliable [25,28]. Thus, today, the
miniaturization and integration of electronic devices are being pushed to their
physical limits [25–28].
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1.3.2 Molecular Electronics

Molecular electronics is defined broadly as the encoding, manipulation, and
retrieval of information at a molecular or macromolecular level [25–29].
This approach contrasts with current techniques, in which these functions
are accomplished via lithographic manipulations of bulk materials to gener-
ate integrated circuits [28]. A key advantage of the molecular approach is
the ability to design and fabricate devices from the bottom-up, on an atom-
by-atom basis. Lithography can never provide the level of control available
through organic synthesis or genetic engineering [28]. The molecular prim-
itives allow for improvement in a number of information-processing device
characteristics compared with similar characteristics of silicon-based devices.
Thus, molecular information processing is attractive because it offers [29]:

� Integrability at the atomic scale
� High computational speed due to parallel processing, which compensates

for the inherent low processing rate of each elementary device
� Self-assembly capability of atomic or molecular processors
� Plasticity of the molecular circuit, which can reconfigure itself to op-

timize its performance, taking into account the previous experience
(learning)

� Fault-tolerance capability and even self-repair ability of the molecular
circuit

� Reduced power consumption

Since Aviram’s proposal of a molecular rectifier [30,31], a variety of
designs of molecular electronic devices have appeared. Molecular-scale de-
vices are fabricated on the nanometer scale and are composed of either a
single molecule or several molecules configured into a supramolecular com-
plex. Among these devices, molecular rectifiers, molecular switches, molec-
ular diodes, molecular photodiodes, and molecular memories are described
[30–39]. Studies also deal with assembling the individual components in
thin-film configurations [25,40,41], forming artificial membranes [25,42] and
establishing an interface between the molecules and conventional electronic
materials [43]. Another possibility that has been investigated is the use of elec-
troconductive polymers as “molecular wires” for establishing the connection
required between molecular elements [43,44].

1.3.3 Biomolecular Electronics

Biomolecular electronics is a subfield of molecular electronics that considers
the use of native and modified biological molecules in electronic or photonic
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devices [45–56]. The growing interest in the possibility of utilizing biological
molecules in molecular electronics is fostered by the basic understanding
that, in so doing, one may be able to take advantage of the specific charac-
teristics and unique capabilities of these natural molecules [44–56]. Among
the biomolecular devices investigated, protein-based molecular devices have
gained increasing attention due to the versatile and highly specific molec-
ular functionality of proteins [43,57]. Enzymes [44,58–67], receptors [68],
antibodies [43], and bacteriorhodopsin [29,69–73] have been used as either
electronic or optical devices. Computation with simple DNA manipulations
has also been demonstrated [74,75].

1.4 BIOCHEMICAL DEVICES BASED ON
ENZYMIC REACTIONS

In an extensive study, Okamoto and co-workers [76–86] introduced a bio-
chemical switching device based on a cyclic enzyme system in which two
enzymes share two cofactors in a cyclic manner. Cyclic enzyme systems
have been used as biochemical amplifiers to improve the sensitivity of enzy-
matic analysis [87–89], and subsequently, this technique was introduced into
biosensors [90–93]. In addition, cyclic enzyme systems were also widely em-
ployed in enzymic reactors, in cases where cofactor regeneration is required
[94–107]. Using computer simulations, Okamoto and associates [77,80–83]
investigated the characteristics of the cyclic enzyme system as a switching de-
vice, and their main model characteristics and simulation results are detailed
in Table 1.1, as is a similar cyclic enzyme system introduced by Hjelmfelt
et al. [109,116], which can be used as a logic element.

Subsequently, Okamoto and associates [84–86] investigated the connec-
tion of several cyclic enzyme systems in order to construct a network. In
their models the cyclic enzyme system represents a biochemical neuron that
participates in a biochemical neural network. These models are detailed in
Table 1.2. Theoretical models of such networks were also proposed by
Hjelmfelt and co-workers [109–111,116], and these are also presented in
Table 1.2.

Models for biochemical switches, logic gates, and information-processing
devices that are also based on enzymic reactions but do not use the cyclic
enzyme system were also introduced [76,115,117–122]. Examples of these
models are presented in Table 1.3. It should also be mentioned that in other
studies [108,112–114,116], models of chemical neurons and chemical neural
networks based on nonenzymic chemical reactions were also introduced.
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The works presented in Tables 1.1 to 1.3 [76–86,109–122] deal only with
theoretical aspects of the enzymic biochemical devices, and the biochemical
devices were not carried into practice. Moreover, Okamoto [85] suggests
using silicon technology instead of biomaterials for practical implementation
of the device based on the cyclic enzyme system.

This study is also based on the cyclic enzyme system, but its leading concept
is to accomplish practical implementation of this system using biomaterials.
In this respect, the analytical models developed here are related to several
biochemical reactors in which enzymic reactions take place. This practical
approach cannot be found in the models reviewed [76–86,109–122].

1.5 OSCILLATIONS IN BIOCHEMICAL SYSTEMS

Many oscillatory patterns can be found in biological systems [123–126]. It is
generally recognized in engineering that encoding information in a frequency
provides resistance to degradation by noise and enhanced precision of control.
Rapp [124] suggested that many biological oscillations can be envisaged to
reflect the biochemical implementation of this control strategy.

Intracellular communication often proceeds in a pulsatile, rhythmic manner
[126]. Moreover, an increasing number of hormones are found to be secreted
in a pulsatile manner, and the physiological efficiency of these signals appears
to be closely related to their frequency [126]. Based on this understanding, a
number of classes of drug therapies have been shown to require a periodic,
pulsatile regimen of delivery for efficacy or optimization [131], and several
delivery strategies have been proposed to respond to this need [127–131].

1.6 KINETIC CHARACTERISTICS OF CYCLIC
ENZYME SYSTEMS

Many examples of enzymatic cyclic systems have been developed in prac-
tice [87–107]. These systems can be utilized to construct the biochemical
device proposed by Okamoto et al. [76–86]. The kinetic properties of five
enzymes that catalyze reactions in which cofactors are required, and there-
fore can participate in a cyclic enzyme system, are summarized in Table 1.4
[132–144]. These enzymes are glucose-6-phosphate dehydrogenase (G6PDH,
E.C. 1.1.1.49), glutathione reductase (GR, E.C. 1.6.4.2), glucose dehydroge-
nase (GDH, E.C. 1.1.1.47), l-lactate dehydrogenase (LDH, E.C. 1.1.1.27),
and alcohol dehydrogenase (ADH, E.C. 1.1.1.1).
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2
BACKGROUND AND GOALS
OF THIS STUDY

Living organisms and computers share the common characteristic of being
information-processing machines which operate according to well-defined
programs. However, in their operation the two entities also differ from one
another. Thus, internal production and assembly of composing elements take
place in living organisms but not in artificial machines. Moreover, the opera-
tional rules governing the function of the two entities are built into the living
organisms but are provided from the outside for artificial computers. These
similarities and differences have drawn the attention of computer scientists
and of life scientists as well.

Aims of the Study

Biochemical systems have the advantage of using the “language” of the phys-
iological processes: the biochemical reactions. As such, they can be organized
into the neural network–type assemblies in much the way that natural biosys-
tems are. This book is concerned with well-delineated biochemical assemblies
and is directed at assessing their ability to perform information-processing
operations. In particular, this book is intended :

1. To examine the cyclic enzyme system proposed by Okamoto et al.
[76–86] as an information-processing unit when this model is imple-
mented in an experimental system and the enzymic reactions take place

Information Processing by Biochemical Systems: Neural Network–Type Configurations, By Orna Filo and Noah Lotan
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28 BACKGROUND AND GOALS OF THIS STUDY

in a biochemical reactor (of fed-batch, continuous stirred tank, or
packed bed type).

2. To expand the cyclic enzyme system and control the enzymic reaction
with the use of an external inhibitor, and to examine the characteristics
of this new system as an information-processing unit.

3. To develop analytical models that describe the performance of a cyclic
enzyme system (herein termed the basic system) and a cyclic enzyme
system with an external inhibitor (termed the extended basic system)
when operated in different modes: as a fed-batch reactor or a continuous
reactor. These models enable us to design systems and select operational
conditions according to needs.

4. To connect several basic systems into a biochemical network and exam-
ine the performance of various networks as a function of the connectivity
between the basic systems and their operational parameters. To this end,
analytical models for each network type will be developed.

5. To reveal the similarities and differences between the biochemical net-
works developed in this study and artificial neural networks described
in the literature.

6. To implement the principles of the basic system and extended basic sys-
tems into experimental systems operated in several operational modes.
The analytical models developed in this study will be used to design ex-
perimental operational conditions and to investigate the results obtained.

Results

The basic system considered in this study relies on well-defined enzymic
reactions and is designed to function as a “node” or “biochemical neuron” in
biochemical networks. This system involves two enzyme-catalyzed reactions,
coupled to one another by the use of a cofactor, the latter being cycled
continuously between the two. In addition, the two consumable substrates are
fed into the system continuously at predetermined concentrations and rates.
Also considered in this work was an extension of the basic system termed the
extended basic system. The extended system relies on the same reactions as
those in the basic system; in addition, an external compound, inhibitory to
one of the enzymes, is fed into the system.

The research was carried out on two main avenues. The first is a the-
oretical investigation in which analytical models were developed and their
characteristics were studied by numerical simulations; the second is exper-
imental research in which systems designed and studied in the former part
of the program were implemented as biochemical reactors. In the first stage of
the research, analytical models were developed for both the basic system and
the extended basic system. These models consider that the reactions take place
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in an enzymic reactor. For each reaction an expression for the instantaneous
rate was written that correlates the maximum reaction rate, the concentra-
tions of the substrates, and the pertinent Michaelis constants, as well as the
concentration of the products and their characteristic inhibition constants.

Subsequently, analytical expressions for the time dependence concentra-
tion of all components in the system were obtained based on mass balance
principles and also considering the reactor type, the flow rates of the feed
streams, and the concentrations of substrates. Using these models we found
that the basic system considered is able to perform several information-
processing functions, such as division, rectification, and switching.

In the second stage of the research, a higher level of organization of the
biosystems was considered. To this aim, the basic system presented above was
used to construct biochemical networks. This was achieved by connecting a
number of basic systems according to the principles of neural networks.
This part of the research allowed us to delineate the rules for connecting the
basic systems into functional biochemical networks and to study the type of
information processing that can be achieved in a defined network.

In support of the theoretical investigations mentioned above, pertinent ex-
perimental studies were also carried out. The experimental basic system con-
sidered is driven by the concerted action of two enzymes: glucose-6-phosphate
dehydrogenase and glutathione reductase. In this system glucose-6-phosphate
and oxidized glutathione were used as the consumable substrates, with NADP
and NADPH serving as the coupling cofactors. The basic system was operated
in two modes: a fed-batch reactor where soluble enzymes were employed,
and a packed bed reactor in which immobilized enzymes were employed. The
experimental extended basic system involved the same components as those
in the basic system, with the addition of d-glucosamine-6-phosphate, which
acts as an inhibitor to the enzyme glucose-6-phosphate dehydrogenase. The
extended basic system was operated in a packed bed reactor with immobilized
enzymes.

Conclusions

The results obtained from the experimental studies confirm that the
information-processing functions predicted by the pertinent analytical models
can be achieved experimentally. Moreover, these results support the view that
artificial biochemical neurons can be implemented in practice for information-
processing purposes. Furthermore, because of the very high dependence of
the system function on the internal parameters and the relations between them,
the analytical models developed are essential tools for the engineering design
of such systems as well as for determination of the operational parameters
required for these systems to perform the information-processing function
desired.





3
MATERIALS AND METHODS

3.1 MATERIALS

Enzymes

� Glucose-6-phosphate dehydrogenase (from Torula yeast) suspension
Activity: 520 Units/mg protein, Sigma (Lot 13H80602), USA

� Glutathione reductase (from baker’s yeast)
Activity: 200 Units/mg protein, Sigma (Lot 121H80701), USA

� Glucose dehydrogenase (from Bacillus megaterium)
Activity: 131 Units/mg protein, Sigma (Lot 83H1010), USA

� l-Lactic dehydrogenase (from rabbit muscle) suspension
Activity: 950 Units/mg protein, Sigma (Lot 92H9555), USA

� Alcohol dehydrogenase (from baker’s yeast)
Activity: 360 Units/mg protein, Sigma (Lot 33H8006), USA
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Substrates

� d-Glucose-6-phosphate, Sigma (Lot 51F3826), USA

O

OH

OHHO

HO

H2C

O

PO

O

O

� Pyruvic acid, Merck (Lot 9155268), Germany
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� Ethyl alcohol (absolute), Fluka, Switzerland
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� Glutathione (oxidized form), Sigma (Lot 80H82151), USA
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Cofactors

� β-Nicotinamide adenine dinucleotide (β-NAD), Sigma (Lot 123H7821),
USA

O
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COPO

O

O N+
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N N

N

NH2

� β-Nicotinamide adenine dinucleotide, reduced form (β-NADH), Sigma
(Lot 103H78062), USA
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� β-Nicotinamide adenine dinucleotide phosphate (β-NADP), Sigma (Lot
73H7879), USA
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O

HO

COP

O

O

O

OHHO

COPO

O

O

C

O

NH2

N
N

N

NH2

N

O P

O

O

O

N



EXPERIMENTAL METHODS 35

Inhibitor

� d-Glucosamine-6-phosphate, Sigma (Lot 104H7095), USA

O

OH

HO

HO

H  C2

O

PO

O

O

NH2

Enzyme Support

� Affi-Gel 10, Bio-Rad (Lot 47624A), USA.

Others

� Ethylenediaminetetraacetic acid (EDTA), Fluka, Switzerland
� Magnesium chloride hexahydrate, Merck, Germany

All other materials used were of analytical grade.

3.2 INSTRUMENTS

� Peristaltic pumps, Model P-1, Pharmacia, Sweden
� Column, Model C10/20, Pharmacia, Sweden
� Spectrophotometer, Spectronic 2000, Bausch and Lomb, USA
� Spectrophotometer, HP 8452A diode array, Hewlett-Packard, USA
� Data acquisition board, DT 2811-PGH, Data Translation Inc., USA
� Interface DT2811
� Pump controller

3.3 EXPERIMENTAL METHODS

3.3.1 Determination of Kinetic Constants

Kinetic parameters for two substrate reactions were determined by measuring
the initial reaction rates as a function of the concentration of one of the
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substrates, at constant concentration of the second substrate. Experimental
data were analyzed using Lineweaver–Burk reciprocal plots [146] and taking
into account the particular mechanism of the reaction considered.

3.3.1.1 Kinetic Constants for a Reaction Catalyzed
by Glucose Dehydrogenase

The reaction considered is

β-d-glucose + NAD → d-glucono-δ-lactone + NADH

Determination of the Michaelis constant for the cofactor NAD (Km,NAD)
was carried out by measuring the initial rate of the reduction of NAD as
a function of its concentration, at a constant concentration of glucose. All
solutions were prepared in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 2 mL of 0.87 M glucose solution
� 10 μL of enzyme solution (1.4 mg GDH in 1 mL phosphate buffer)
� 0.5 mL of NAD solution (five different solution concentrations between

0.215 and 2.15 mM)

The increase in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[NAD]) was obtained. In
this case, glucose was present at a saturating concentration. Therefore, data
were interpreted in terms of the basic Michaelis–Menten formalism.

Determination of the Michaelis constant for glucose (Km,glucose) was carried
out by measuring the initial rate of reduction of NAD as a function of glucose
concentration at a constant concentration of NAD. All solutions were prepared
in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 2 mL of 2.15 mM NAD solution
� 10 μL of enzyme solution (1.4 mg of GDH in 1 mL phosphate buffer)
� 0.5 mL of glucose solution (five different solution concentrations

between 87.12 and 3.5 mM)

The increase in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[glucose]) was obtained.
In this case, NAD was not present at a saturating concentration. Therefore,
data were interpreted in terms of the kinetic equation for the Ordered Bi–Bi
mechanism [139].
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3.3.1.2 Kinetic Constants for a Reaction Catalyzed
by Lactate Dehydrogenase

The reaction considered is

pyruvate + NADH → l-lactate + NAD

Determination of the Michaelis constant for the cofactor NADH (Km,NADH)
was carried out by measuring the initial rate of oxidation of NADH as a
function of its concentration, at a constant concentration of pyruvate. All the
solutions were prepared in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 2 mL of 7.2 mM pyruvate solution
� 10 μL of enzyme solution (1 μl LDH in 5 mL phosphate buffer)
� 0.5 mL of NADH solution (five different solution concentrations between

0.0146 and 0.146 mM)

The decrease in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[NADH]) was obtained.
In this case, pyruvate was present at saturating concentration. Therefore, data
were interpreted in terms of the basic Michaelis–Menten formalism.

Determination of the Michaelis constant for pyruvate (Km,pyruvate) was car-
ried out by measuring the initial rate of oxidation of NADH as a function of
pyruvate concentration at a constant concentration of NADH. All the solutions
were prepared in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 0.5 mL of 1.46 mM NADH solution
� 10 μL of enzyme solution (10 μL LDH in 1 mL phosphate buffer)
� 2 mL of pyruvate solution (six different solution concentrations between

0.018 and 0.18 mM)

The decrease in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[pyruvate]) was obtained.
In this case, NADH was not present at saturating concentration. Therefore,
data were interpreted in terms of the kinetic equation for the Ordered Bi–Bi
mechanism [141,142].

3.3.1.3 Kinetic Constants for a Reaction Catalyzed
by Alcohol Dehydrogenase

The reaction considered is

ethanol + NAD → acetaldehyde + NADH
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Determination of the Michaelis constant for the cofactor NAD (Km,NAD)
was carried out by measuring the initial rate of the reduction of NAD as a
function of its concentration at a constant concentration of ethanol. All the
solutions were prepared in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 30 μL of ethanol (absolute)
� 10 μL of enzyme solution (48 mg ADH in 4.6 mL phosphate buffer)
� 2 mL of NAD solution (four different solution concentrations between

0.13 and 0.65 mM)

The increase in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[NAD]) was obtained. In
this case, ethanol was present at a saturating concentration. Therefore, data
were interpreted in terms of the basic Michaelis–Menten formalism.

Determination of the Michaelis constant for ethanol (Km,ethanol) was carried
out by measuring the initial rate of reduction of NAD as a function of ethanol
concentration at a constant concentration of NAD. All the solutions were
prepared in 0.1 M phosphate buffer pH 7.55.

The reaction mixture contained:

� 2 mL of 2.61 mM NAD solution
� 10 μL of enzyme solution (48 mg ADH in 4.6 mL phosphate buffer)
� 30 μL of ethanol solution (five different solution concentrations between

17.15 and 0.57 M)

The increase in absorption at 339 nm was measured for 5 min. From the
experimental data, the reciprocal plot (1/V versus 1/[ethanol]) was obtained.
In this case, NAD was not present at a saturating concentration. Therefore,
data were interpreted in terms of the kinetic equation for the Ordered Bi–Bi
mechanism [144].

3.3.1.4 Reaction Mechanism and Kinetic Constants for a Reaction
Catalyzed by Glucose-6-Phosphate Dehydrogenase

The reaction considered is

d-glucose-6-phosphate + NADP → d-gluconate-6-phosphate + NADPH

Determination of the reaction mechanism and the Michaelis constants for
G6P (Km,G6P) and the cofactor NADP (Km,NADP) was carried out by measuring
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the initial rate of the reduction of NADP at various concentrations of G6P.
This procedure was repeated five times with another concentration of NADP
employed each time. All the solutions were prepeared in 0.1 M Tris buffer
pH 8 containing 10 mM MgCl2 and 0.94 mM EDTA.

The reaction mixture contained:

� 1 mL of NADP solution (a separate solution concentration for each
experiment: 1.25 mM, 0.63 mM, 0.31 mM, 0.19 mM, 0.125 mM)

� 10 μL of enzyme solution (60 μL of G6PDH in 1 mL of Tris buffer)
� 2 mL of G6P solution (five different solution concentrations between

1.86 and 0.23 mM)

The increase in absorption at 339 nm was measured for 5 min. From the
experimental data, reciprocal plots (1/V versus 1/[G6P] at various concentra-
tions of NADP) were obtained. A detailed analysis is given in Section 4.3.2.1.

3.3.1.5 Reaction Mechanism and Kinetic Constants for
a Reaction Catalyzed by Glutathione Reductase

The reaction considered is

glutathione (oxidized) + NADPH → glutathione (reduced) + NADP

Determination of the reaction mechanism and the Michaelis constants
for GSSG (Km,GSSG) and the cofactor NADPH (Km,NADPH) was carried out by
measuring the initial rate of the oxidation of NADPH at various concentrations
of GSSG. This procedure was repeated four times with another concentration
of NADPH employed each time. All the solutions were prepared in 0.1 M
Tris buffer pH 8 containing 10 mM MgCl2 and 0.94 mM EDTA.

The reaction mixture contained:

� 1 mL of NADPH solution (a separate solution concentration for each
experiment: 0.43 mM, 0.29 mM, 0.14 mM, 0.07 mM)

� 10 μL of enzyme solution (20 μL of G6PDH in 1 mL of Tris buffer)
� 2 mL of GSSG solution (five different solution concentrations between

0.11 and 2.21 mM)

The decrease in absorption at 339 nm was measured for 5 min. From
the experimental data, reciprocal plots (1/V versus 1/[GSSG] at various con-
centrations of NADPH) were obtained. A detailed analysis is given in Sec-
tion 4.3.2.2.
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3.3.2 Determination of the Inhibition Constant for Inhibition
of Glutathione Reductase by Glucose-6-Phosphate

The inhibition constant for the process in which the enzyme glutathione
reductase is inhibited by G6P was determined by measuring the initial rate of
the oxidation of NADPH at various concentrations of GSSG. This procedure
was repeated four times, each time with a separate concentration of the
inhibitor G6P. All the solutions were prepeared in 0.1 M Tris buffer pH 8
containing 10 mM MgCl2 and 0.94 mM EDTA.

The reaction mixture contained:

� 0.2 mL of 1.28 mM NADPH solution
� 10 μL of enzyme solution (20 μL G6PDH in 1 mL of Tris buffer)
� 1 mL of GSSG solution (five different solution concentrations between

0.22 and 4.43 mM)
� 2 mL of G6P solution (a separate solution concentration for each exper-

iment: 0, 30 mM, 60.2 mM, 120 mM)

The decrease in absorption at 339 nm was measured for 5 min. From
the experimental data, reciprocal plots (1/V versus 1/[GSSG] at various
concentrations of G6P) were obtained. The detailed analysis is given in Sec-
tion 4.3.5.

3.3.3 Immobilization on Affi-Gel 10

Immobilization of the enzymes GR and G6PDH was carried out by coupling
them to Affi-Gel 10 support. Affi-Gel 10 is an N-hydroxysuccinimide ester of
a derivatized cross-linked agarose gel. Upon addition of the enzyme to Affi-
Gel 10, the N-hydroxysuccinimide is displaced and the free amino groups
of the enzyme form a stable amide bond with the gel. The enzymes GR
and G6PDH were immobilized separately following the procedure described
below.

Five milliliters of Aff-Gel 10 were transfered to a Buchner funnel and
washed with 20 mL of cold (4◦C) 0.01 M sodium acetate pH 4.5. The washed
gel was transferred to a flask and the enzyme solution was added (0.2 mg of
enzyme in 2.5 mL of 0.1 M Hepes buffer pH 7). The suspension was agitated
gently on a wheel for 1 h at room temperature or 24 h at 4◦C. Blocking
of remaining active esters was accomplished by adding 0.5 mL of 1 M
ethanolamine HCl pH 8 to the suspension and agitating for 1 h. The gel was
transferred to a column and washed with 0.1 M Tris buffer pH 8 until it
was free of reactants, as detected by OD280 (optical density at 280 nm). The
gel was stored at 4◦C.
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3.3.4 Assay of Glucose-6-Phosphate Dehydrogenase

3.3.4.1 Assay of Soluble Glucose-6-Phosphate Dehydrogenase

The reaction mixture contained:

� 1.5 mL of 3.4 mM G6P solution
� 1.5 mL of 1.6 mM NADP solution
� 10 μL of enzyme solution

All the solutions were prepared in 0.1 M Tris buffer pH 8 containing
10 mM MgCl2 and 0.94 mM EDTA. The increase in absorption at 339 nm
was measured for 5 min, and a unit of G6PDH is defined as the amount of
enzyme that will yield 1 μmol of NADPH per minute.

3.3.4.2 Assay of Immobilized Glucose-6-Phosphate Dehydrogenase

The reaction mixture contained:

� 1.5 mL of 3.4 mM G6P solution
� 1.5 mL of 1.6 mM NADP solution
� 100 μL of the gel containing the enzyme

All the solutions were prepared in 0.1 M Tris buffer pH 8 containing
10 mM MgCl2 and 0.94 mM EDTA. The increase in absorption at 339 nm
was measured for 5 min, and a unit of immobilized G6PDH is defined as the
amount of enzyme that will yield 1 μmol of NADPH per minute.

3.3.5 Assay of Glutathione Reductase

3.3.5.1 Assay of Soluble Glutathione Reductase

The reaction mixture contained:

� 1.5 mL of 1 mM glutathione (oxidized) solution
� 1.5 mL of 0.44 mM NADPH solution
� 10 μL of enzyme solution

All the solutions were prepared in 0.1 M Tris buffer pH 8 containing
10 mM MgCl2 and 0.94 mM EDTA. The decrease in absorption at 339 nm
was measured for 5 min, and a unit of GR is defined as the amount of enzyme
that will yield 1 μmol of NADP per minute.
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3.3.5.2 Assay of Immobilized Glutathione Reductase

The reaction mixture contained:

� 1.5 mL of 1 mM glutathione (oxidized) solution
� 1.5 mL of 0.44 mM NADPH solution
� 100 μL of the gel containing the enzyme

All the solutions were prepeared in 0.1 M Tris buffer pH 8 containing
10 mM MgCl2 and 0.94 mM EDTA. The decrease in absorption at 339 nm
was measured for 5 min, and a unit of immobilized GR is defined as the
amount of enzyme that will yield 1 μmol of NADP per minute.

3.4 COMPUTATIONAL METHODS

For each system considered, an appropriate computer program was written
for solving the equations involved in the modeling presented in Section 4.1.
The first-order nonlinear differential equations were solved by numerical
integration using the Runge–Kutta procedure [141].



4
RESULTS

4.1 THE BASIC SYSTEM: THEORETICAL
CONSIDERATIONS AND RESULTS

The system presented below [76–86] relies on well-defined enzymic reactions
and is termed the basic system. This system was designed to function as an
information-processing unit and is defined and characterized in Section 4.1.1.
Its characteristics as an information-processing unit are described in Sec-
tion 4.1.2. In Section 4.1.3 the analytical models written for various opera-
tional modes of the basic system are presented. Using these models, numerical
simulations were carried out, and their results are presented in Section 4.1.4.

4.1.1 Characteristics of the Basic System

The basic system considered here relies on well-defined enzymic reactions.
This system is shown in Figure 4.1 and involves two enzyme-catalyzed
reactions:

S1 + A → P1 + B reaction (1) (1)

S2 + B → P2 + A reaction (2) (2)

These reactions are coupled to one another by the cofactors A and B, which
are cycled continuously between them. In addition, the two consumable

Information Processing by Biochemical Systems: Neural Network–Type Configurations, By Orna Filo and Noah Lotan
Copyright C© 2010 John Wiley & Sons, Inc.
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Figure 4.1 Basic system. S1, S2: substrates; P1, P2: products; E1, E2: participating enzymes.

substrates, S1 and S2, are fed into the system continuously at predetermined
concentrations ([S1]0, [S2]0) and rates.

4.1.2 The Basic System as an Information-Processing Unit

The basic system is designed to function as an information-processing unit
that receives an input signal, processes it through a specific function, and
produces the output signal.

a. Input In the basic system described here (Figure 4.1) the input signal is
composed of the concentration profiles of substrates S1 and S2 in the feed
streams entering the system. The concentration profiles used in this study are
shown in Figure 4.2. Several parameters are used here to define the input
signal (Figure 4.2):

� Cycle time (τ ): the time required for changing the concentration of
a given substrate in the feed stream from the minimum value to the
maximum value, or the other way around.
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Figure 4.2 Input signal to the basic system. (—): [S1]0; (− −):[S2]0.
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� Time period (π ): the time between two adjacent minimum or maximum
values of [S1]0 and [S2]0 (i.e., π = 2τ ).

� Range: the minimum and maximum values of [S1]0 and [S2]0 (i.e., L1

and L2, respectively).
� Amplitude: the difference between the minimum and maximum values

of [S1]0 and [S2]0 (i.e., L2 − L1).

b. Processing Function This is defined as the enzymic reactions taking
place in the basic system and is determined by the parameters of the enzymic
reactions and the operational system. This dependence is discussed in detail
in the following sections.

c. Output Signal This is the time course of the concentration of any one of
the components in the system: namely, S1, S2, A, B, P1, and P2. Thus, the
basic system described can produce six output signals.

4.1.3 Analytical Models for the Basic System

The analytical models developed in this part of the study describe the perfor-
mance of the basic system and allow one to predict the output signal produced
by the system when its operational parameters are known. Unlike previous
work [76–86], these models explicitly take into account the operational mode
of the system (i.e., the reactor type in which the reactions involved take place).
This approach was taken in order not only to use these analytical models for
numerical simulations, but also to allow us to interpret the experimental re-
sults obtained using real systems (Section 4.3) and to assess the validity of
the analytical models employed. The models developed are based on mass
balances of the components involved and on the characteristics related to the
particular reactor used. Unless otherwise indicated, the simulations described
below were carried out using these types of input signals with variations of
the parameters defined above.

4.1.3.1 Basic System in a Fed-Batch Reactor Configuration

In the fed-batch (semicontinuous) operation mode, substrates are fed into
the reactor but no material is removed from the reactor. Therefore, the total
volume of the material within the reactor increases as a function of time. For
this reactor type the mass balance for each component of the reaction mixture
is given by

d(V C j )

dt
= Q j C j,0 + r j V (3)
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where C j = concentration of component j in the reactor
C j,0 = concentration of component j in the feed stream

t = time
V = volume of the reaction mixture

Q j = volumetric flow rate of the inlet stream feeding component j
r j = rate of production of component j by reaction

Expanding the derivative in equation (3) gives

d(V C j )

dt
= V

dC j

dt
+ C j

dV

dt
(4)

Assuming that the density of the reaction mixture is not affected by the inlet
streams, equation (4) can be simplified:

d(V C j )

dt
= V

dC j

dt
+ C j

∑
Q j (5)

Combining equations (3) and (5), we obtain

dC j

dt
= 1

V

(
C j,0 Q j − C j

∑
Q j

)
+ r j (6)

We note here that

V = V0 + t
∑

Q j

where V0 is the initial volume of the reaction mixture.
Equation (6) can be used for each component in the basic system, and this

leads to equations (7) to (14). In these equations it is assumed that only the
substrates S1 and S2 enter the reactor in the feed stream, with the concentra-
tions [S1]0 and [S2]0. Moreover, the feed stream has a constant flow rate, Q.
It should be noted that the concentrations [S1]0 and [S2]0 vary with time.

d [S1]

dt
= Q

V0 + Qt
([S1]0 − [S1]) − r1 (7)

d [S2]

dt
= Q

V0 + Qt
([S2]0 − [S2]) − r2 (8)

d [A]

dt
= − Q

V0 + Qt
[A] − r1 + r2 (9)

d [B]

dt
= − Q

V0 + Qt
[B] + r1 − r2 (10)

d [P1]

dt
= − Q

V0 + Qt
[P1] + r1 (11)
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d [P2]

dt
= − Q

V0 + Qt
[P2] + r2 (12)

d [E1]

dt
= − Q

V0 + Qt
[E1] (13)

d [E2]

dt
= − Q

V0 + Qt
[E2] (14)

where r1 is the rate equation for reaction (1) and r2 is the rate equation for
reaction (2).

Equations (7) to (12) are related to the reaction mechanism considered. In
the models developed in this work, several mechanisms were considered and
they are detailed in the following subsections. In all these mechanisms the
enzyme concentrations are included in the maximum reaction rates, Vm,i , as
defined by

Vm,i = ki [Ei ] i = 1, 2 (15)

where ki is the rate constant for product production.
Initial conditions for equations (7) to (14) are defined by the concentrations

of the substrates, products, and enzymes in the reactor at the onset of operation
(at time t = 0), according to

[S1] = 0, [S2] = 0
[P1] = 0, [P2] = 0
[A] = [A]t=0 , [B] = 0

[E1] = [E1]t=0 , [E2] = [E2]t=0

(16)

Equations (7) to (14) are solved numerically according to the Runge–Kutta
method [145], with initial conditions as defined in equation (16).

a. Ping-Pong Mechanism In the basic system two substrates and two prod-
ucts are involved in each reaction. For this case a commonly encountered
mechanism is the ping-pong type [146,147], and the reaction sequence for
this mechanism is written in equation (17) in terms of reaction (1). In this
sequence the first product, P1, dissociates from the enzyme before the bind-
ing of the second substrate, A, and the enzyme oscillates between two stable
forms, E and F.

S1 P1 BA

ES1 EP1 FA        EB FE E (17)
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For this mechanism type, when both reactions in the basic system are not
reversible and inhibition is not involved, the reaction rates r1 and r2 are given
by equations (18) and (19) [146]:

r1 = Vm,1[S1][A]

Km,A[S1] + Km,S1[A] + [S1][A]
(18)

r2 = Vm,2[S2][B]

Km,B[S2] + Km,S2[B] + [S2][B]
(19)

b. Ping-Pong Mechanism and Reversible Reactions In this case, instead of
reactions (1) and (2), respectively, we consider reactions 1r and 2r respectively

S1 + A � P1 + B reaction (1r) (20)

S2 + B � P2 + B reaction (2r) (21)

When the reaction mechanisms for all the processes are of the ping-pong
type, the reaction rates are given by equations (22) and (23) [146]:

r1 = Vm,1[S1][A]

Km,A[S1] + Km,S1[A] + [S1][A]
− Vm,−1[P1][B]

Km,B[P1] + Km,P1[B] + [P1][B]

(22)

r2 = Vm,2[S2][B]

Km,B[S2] + Km,S2[B] + [S2][B]
− Vm,−2[P2][A]

Km,A[P2] + Km,P2[A] + [P2][A]

(23)

c. Ping-Pong Mechanism and Product Inhibition The reactions considered
here are described by equations (1) and (2); in addition, products P1 and P2 are
considered to be competitive inhibitors of enzymes E1 and E2, respectively.
Under these conditions, assuming that P1 and P2 compete with S1 and S2,
respectively, the following equations hold for r1 and r2 [146]:

r1 = Vm,1[S1][A]{
1 + Kb,1[P1]/Kq,1[A] + [P1]/Kq,1

}
Km,S1[A] + Km,A[S1] + [S1][A]

(24)

r2 = Vm,2[S2][B]{
1 + Kb,2[P2]/Kq,2[B] + [P2]/Kq,2

}
Km,S2[B] + Km,B[S2] + [S2][B]

(25)
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A related case is when products B and A are considered to be inhibitors
of enzymes E1 and E2, respectively. When B and A compete with A and B,
respectively, the following equations hold for r1 and r2 [146]:

r1 = Vm,1[S1][A]{
1 + Kb,1[B]/Kq,1[S1] + [B]/Kq,1

}
Km,A[S1] + Km,S1[A] + [S1][A]

(26)

r2 = Vm,2[S2][B]{
1 + Kb,2[A]/Kq,2[S2] + [A]/Kq,2

}
Km,B[S2] + Km,S2[B] + [S2][B]

(27)

d. Ordered Bi–Bi Mechanism For reactions in which two substrates yield
two products, an additional mechanism can be considered the ordered bi–bi. In
this mechanism, which is described schematically by equation (28) [146,147]
in terms of reaction (1), it is impossible for B to bind until after S1 binds and
promotes a conformational change in the enzyme that exposes the B binding
site.

A P1S1 B

EA EAS1 EBP1 EBE E (28)

For this case, and when both reactions in the basic system are not reversible
and inhibition is not involved, the reaction rates r1 and r2 become

r1 = Vm,2[S1][A]

Km,A[S1] + Km,S1[A] + [S1][A] + Ka Km,S1

(29)

r2 = Vm,1[S2][B]

Km,B[S2] + Km,S2[B] + [S2][B] + Kb Km,S2

(30)

4.1.3.2 Basic System in Continuous Operation:
CSTR and Packed Bed Configuration Reactors

For the convenience of numerical solution, the continuous reactor is modeled
in terms of compartmental analysis, as shown schematically in Figure 4.3.
The reactor is modeled as a series of n compartments, each one a homoge-
neous CSTR [148]. The compartments are all assumed to have the same vol-
ume. Applying the compartmental analysis approach enables consideration
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[S1]0, [S2]0, [A]0

i=n 

i=2 

[S1]n, [S2]n, [A]n

[B]n, [P1]n, [P2]n

[S1]2, [S2]2, [A]2

[B]2, [P1]2, [P2]2

[S1]1, [S2]1, [A]1

[B], [P1]1, [P2]1
i=1 

Figure 4.3 Compartmental modeling of the reactor. The index i indicates the compartment
number.

of backmixing effects, which can be quantified by the parameter n (number
of compartments). Thus, for extensive backmixing, the reactor approaches
the behavior of a CSTR, and in this case, n = 1. On the other hand, when
backmixing effects are not operative at all, the reactor behaves as a plug flow
reactor (PFR) and is theoretically characterized by n = ∞. Actually, when
n = 5 the reactor can be defined as a PFR [148]. When 1 < n < 5, the reactor
is defined here as a packed bed reactor.

For the reactor described in Figure 4.3, the general mass balance for com-
ponent j at stage i is

dC j,i

dt
= Q

Vi

(
C j,i−1 − C j,i

) + r j,i (31)

where C j,i = concentration of component j in the ith compartment
t = time

Vi = volume of the ith compartment
Q = volumetric flow rate through the reactor

r j,i = rate of production of component j by reaction, in the ith
compartment
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Equation (31) was written using the following assumptions:

� Each compartment is a homogeneous CSTR.
� The immobilized enzymes are distributed homogeneously in the reactor.
� No diffusion limitations (internal or external) are operative in the reactor.

Equation (31) can be applied for each of the components in the basic
system, and this leads to the equations

d [S1]i

dt
= Q

Vi

(
[S1]i−1 − [S1]i

) − r1,i (32)

d [S2]i

dt
= Q

Vi

(
[S2]i−1 − [S2]i

) − r2,i (33)

d [A]i

dt
= Q

Vi

(
[A]i−1 − [A]i

) − r1,i + r2,i (34)

d [B]i

dt
= Q

Vi

(
[B]i−1 − [B]i

) + r1,i − r2,i (35)

d [P1]i

dt
= Q

Vi

(
[P1]i−1 − [P1]i

) + r1,i (36)

d [P2]i

dt
= Q

Vi

(
[P2]i−1 − [P2]i

) + r2,i (37)

where r1,i is the rate equation for reaction (1) in the ith compartment and
r2,i is the rate equation for reaction (2) in the ith compartment.

Equations (32) to (37) are related to the reaction mechanism considered. In
the models developed in this work, several mechanisms were considered, and
they are detailed in the following subsections. Initial conditions for equations
(32) to (37) are defined by the concentrations of the substrates, products, and
enzymes in the reactor compartments at the onset of operation (at time t = 0),
for 1 ≤ i ≤ n, according to

[S1]i = 0, [S2]i = 0
[P1]i = 0, [P2]i = 0
[A]i = 0, [B]i = 0

(38)

As indicated in Figure 4.4, the feed stream to the reactor is composed of the
substrates S1 and S2 and the cofactor A. Thus, for any time t equation (39)
holds:

[S1]0 = f1 (t) , [S2]0 = f2 (t)
[P1]0 = 0, [P2]0 = 0
[A]0 = f3 (t) , [B]0 = 0

(39)
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hold. Equations (32) to (37) are solved numerically according to the Runge–
Kutta method [145], with the initial conditions defined in equation (38).

a. Ping-Pong Mechanism When the ping-pong mechanism [146,147] de-
scribed in equation (17) is considered, the following equations are used for
r1,i and r2,i , respectively:

r1,i = Vm,1[S1]i [A]i

Km,A[S1]i + Km,S1[A]i + [S1]i [A]i
(40)

r2,i = Vm,2[S2]i [B]i

Km,B[S2]i + Km,S2[B]i + [S2]i [B]i
(41)

These equations are similar to equations (18) and (19) but include indices for
the compartment number.

b. Ping-Pong Mechanism and Reversible Reactions When the reactions in
the basic system are reversible and follow the ping-pong mechanism, as
indicated in equations (20) and (21), the following equations are used for r1,i
and r2,i respectively:

r1,i = Vm,1[S1]i [A]i

Km,A[S1]i + Km,S1 [A]i + [S1]i [A]i
− Vm,−1[P1]i [B]i

Km,B[P1]i + Km,P1 [B]i + [P1]i [B]i

(42)

r2,i = Vm,2[S2]i [B]i

Km,B[S2]i + Km,S2 [B]i + S2[B]i
− Vm,−2[P2]i [A]i

Km,A[P2]i + Km,P2 [A]i + [P2]i [A]i

(43)

These equations are similar to equations (22) and (23) but include indices for
the compartment number.

c. Ping-Pong Mechanism and Product Inhibition When product B or A is
inhibitory to enzyme E1 or E2, respectively, assuming that B competes with A
in reaction (1) and that A competes with B in reaction (2), the reaction rates
considered are [146]

r1,i = Vm,1[S1]i [A]i{
1 + [B]i/Ki,B

}
Km,A1[S1]i + Km,S1[A]i + [S1]i [A]i

(44)

r2,i = Vm,2[S2]i [B]i{
1 + [A]i/Ki,A

}
Km,B[S1]i + Km,S2[B]i + [S2]i [B]i

(45)
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d. Ping-Pong Mechanism and Internal Inhibition The case when one of the
substrates of reaction (1), namely S1, is inhibitory to enzyme E2 was also
considered. In the commonly used nomenclature, substrate 1 is an external
inhibitor in the process promoted by enzyme E2. However, S1 is part of the
system considered in this study (i.e., the basic system shown in Figure 4.1).
Therefore, we here introduce the ad hoc nomenclature internal inhibitor to
indicate a compound that is part of the system considered and at the same
time acts as an inhibitor in the reaction in which it is not involved directly.
In this case, the rate equation for reaction (2) when the inhibitor S1 competes
with S2 becomes

r2,i = Vm,2[S2]i [B]i{
1 + [S1]i/Ki,S1

}
Km,S2[B]i + Km,B[S2]i + [S2]i [B]i

(46)

e. Ordered Bi–Bi Mechanism When the ordered bi–bi type [146,147] de-
scribed by equation (28) was considered, and for the case when both reactions
in the basic system are not reversible and inhibition is not involved, the fol-
lowing equations are used for r1,i and r2,i , respectively:

r1,i = Vm,2[S1]i [A]i

Km,A[S1]i + Km,S1[A]i + [S1]i [A]i + Ka Km,S1

(47)

r2,i = Vm,1[S2]i [B]i

Km,B[S2]i + Km,S2[B]i + [S2]i [B]i + Kb Km,S2

(48)

These equations are similar to equations (29) and (30) but include indices for
the compartment number.

4.1.4 Results of Numerical Simulations for the Basic System

The basic system was designed to operate as an information-processing unit.
As such, the output signal should differ from the input signal in at least
one property: type, cycle time, or amplitude. As part of this research, many
numerical simulations have been carried out. The results presented here are
only a fraction of what was done. They were chosen as being represen-
tative of the abilities of the systems considered to perform information-
processing tasks, and also to reveal the main parameters that affect the system
achievements.

4.1.4.1 Simulations for a Fed-Batch Reactor

Extensive numerical simulations were performed for the basic system when
operated as a fed-batch reactor. The sets of basic values used for the parameters
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Table 4.1 Numerical Values of the Operational Parameters Used in Simulations
of Fed-Batch and Continuous Reactors

Parameter Symbol Units Set I Set II

Initial volume of the reaction mixture V0 mL 5 50
Volume of the continuous reactor V mL 5 50
Volumetric flow rate Q mL/h 0.6 8
Cycle time τ min 20 5
Concentration range of S1 in the feed stream [S1]0 mM 8–12 11–80
Concentration range of S2 in the feed stream [S2]0 mM 8–12 11–80
Initial concentration of A (in a fed-batch reactor) [A]t=0 mM 0.03 0.03
Concentration of A in the feed stream

(in a continuous reactor)
[A]0 mM 0.03 0.03

Michaelis constant for S1 Km,S1 mM 0.01 0.036
Michaelis constant for S2 Km,S2 mM 0.01 0.061
Michaelis constant for A Km ,A mM 0.001 0.0074
Michaelis constant for B Km ,B mM 0.001 0.0076
Maximal rate of reaction (1)

S1 + A → P1 + B
Vm ,1 mM/min 0.2 0.4

Maximal rate of reaction (2)
S2 + B → P2 + A

Vm ,2 mM/min 0.2 0.4

involved are given in Table 4.1. These values are related to a large extent to
the experimental systems considered in this study. The results obtained are
collected in Figures 4.4 to 4.13 and are presented in the sections below.
Table 4.2 summarizes the various system characteristics considered in each
figure as well as the operational parameters whose effects were accounted for.

Table 4.2 System Characteristics for Figures 4.4 through 4.13

System Characteristics

Figure
No. Mechanism

Reversible
Reactions

Inhibition
by Product Effect of:

4.4 Ping-pong — — Time
4.5 Ping-pong — — Vm,1, Vm,2 (Vm,1 = Vm,2) on [S1]
4.6 Ping-pong — — Vm,1, Vm,2 (Vm,1 = Vm,2) on [B]
4.7 Ping-pong — — Vm,1/Vm,2 on [S1] and [B]
4.8 Ping-pong — — Km, j on [S1] and [B]
4.9 Ping-pong — — [S1]0, [S2]0 on [S1] and [A]
4.10 Ping-pong + — Keq on [B]
4.11 Ping-pong — By A and B Inhibition by product on [B]
4.12 Ping-pong — By P1 and P2 Inhibition by product on [B]
4.13 Ping-pong

Ordered Bi–Bi
— — Reaction mechanism on [S1] and [B]
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Figure 4.4 Time courses of concentrations of all the reactants in the basic system when
operated as a fed-batch reactor. The values of all parameters used are given in Table 4.1, set I.

a. Ping-Pong Mechanism In Figure 4.4 the time courses of the concentra-
tions of all the reactants in the basic system are presented. The concentrations
of S1 and S2 in the feed stream, S1,0 and S2,0, change with time, as shown in
the top left panel. These are considered as the input signals. Examination of
the concentration profiles obtained for the compounds S1, S2, A, B, P1, and
P2 shows that all these profiles can be considered as output signals contain-
ing processed information. It can be seen that in this reactor configuration,
products P1 and P2 accumulate in the reactor and their concentration profiles
are not very useful with respect to information processing, and the discussion
about them is limited. The concentration profiles of the substrates, S1 and S2,
and of the cofactors, A and B, show an interesting behavior, a repetitive signal,
completely different from the input signal. In the concentration profiles of A
and B, periods of “on” (constant nonzero concentration) and “off” (zero con-
centration) can be detected; thus, switching characteristics can be observed.
In Figures 4.5 to 4.9 the dependence of the output signal characteristics on
the system parameters is investigated.
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Figure 4.5 Effect of Vm,1 and Vm,2 (when Vm,1 = Vm,2) on the concentration of S1 in the basic
system when operated as a fed-batch reactor. The values of Vm,1 and Vm,2 are indicated above.
The values used for all other parameters are given in Table 4.1, set I.

In Figure 4.5 the effect of the maximum reaction rates, Vm,1 and Vm,2, on
the concentration of S1 is shown. In these simulations the values of Vm,1 and
Vm,2 were equal, and Vm,i refers to both values (i = 1 and 2). The “peak-type”
signal obtained with Vm,i = 0.2 mM cannot be observed with smaller values
of Vm,i (0.02 and 0.04 mM). In addition, the smaller values of Vm,i lead to
higher concentrations of S1 in the reactor due to a low reaction rate and low
conversion of S1. The effect of these rates on the concentration of B is shown
in Figure 4.6. It can be seen that the concentration of B is also affected by
the values of Vm,i . Peak-type signals, characterized by a sharp raise and an
equally sharp decay, are obtained for the highest value of Vm,i , and these
characteristics disappear for lower values of Vm,i .
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Figure 4.6 Effect of Vm,1 and Vm,2 (when Vm,1 = Vm,2) on the concentration of B in the basic
system when operated as a fed-batch reactor. The values of Vm,1 and Vm,2 are indicated above.
The values used for all other parameters are given in Table 4.1, set II.
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Figure 4.7 Effect of the ratio Vm,1/Vm,2 on the concentrations of S1 and B in the basic system
when operated as a fed-batch reactor. In the left panel Vm,1 = Vm,2 = 0.8 mM/min and data are
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Figure 4.7 shows the effect of the ratio of Vm,1 to Vm,2 on the concentrations
of S1 and B. While comparing the cases presented, one can see that when
Vm,1 > Vm,2, the concentration of S1 is higher than it is when Vm,1 = Vm,2, and
the sharp and repetitive characteristics of the signal disappear. Moreover, the
concentration profile of B changes from on/off behavior when Vm,1 = Vm,2

to almost constant concentration when Vm,1 > Vm,2.
Figure 4.8 shows the effect of Michaelis constants on the concentrations of

S1 and B. The results obtained are very similar to those described in Figure 4.7.
When Km, j values are multiplied by 10, the concentration of S1 is higher and
the sharp repetitive signal disappears. In addition, the concentration profile
of B changes from on/off behavior to almost constant concentration.

Figure 4.9 shows the effect of the range of variation of S1,0 and S2,0 on the
concentrations of S1 and A. The range is defined as the highest and lowest
values of both S1,0 and S2,0, and their concentrations in the feed stream vary
between these values. Decreasing this range causes the disappearance of the
sharp signals, as described above.
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The simulation results presented here show that the output signals of the
system depend to a large extent on the values of Vm,i , Km, j , and Si,0 (i = 1, 2)
and the relationships between them. From the simulations that were carried out
in this study, some empirical rules can be derived. Thus, it can be concluded
that to get the type of signals described in Figure 4.4, the values of Vm,i should
be around 20 times the largest value of Km, j , and the average values of Si,0

should be about 103 times the largest value of Km, j .

b. Ping-Pong Mechanism and Reversible Reactions The results shown in
Figure 4.10 are representative for the case when both reactions in the basic
system are reversible, and also when both directions follow the ping-pong
mechanism. This figure presents the effect of Keq on the concentration of B
when Keq is defined as the ratio between the maximal reaction rate in the
reverse direction (Vm,−1, Vm,−2) and the maximal reaction rate in the forward
direction (Vm,1, Vm,2), respectively; that is, Keq = Vm,−1/Vm,1 = Vm,−2/Vm,2.
It can be seen that the increase in Keq from 0 (no reverse reaction) to 0.5 leads
to more gradual changes in the concentration of B. However, the on/off
behavior observed when Keq = 0 and 0.5 disappears when Keq = 1, and in
the latter case, the concentration of B reaches a constant value.

c. Ping-Pong Mechanism and Product Inhibition Figures 4.11 and 4.12
show the effect of product inhibition on the concentration of B. In each case
considered, one of the products is inhibitory for the enzyme and acts com-
petitively to one of the substrates, as detailed below. The inhibition process
is defined by the constants Kb,i and Kq,i . Moreover, inhibition increases
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Figure 4.10 Effect of Keq on the concentration of B in the basic system when operated
as a fed-batch reactor. The values of Keq are indicated above. The values used for all other
parameters are given in Table 4.1, set I.
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Figure 4.11 Effect of inhibition of enzyme 2 by cofactor A and of enzyme 1 by cofactor
B (i.e., product inhibition) on the concentration of B in the basic system when operated as a
fed-batch reactor. For the central and right panels the inhibition constants are indicated on top
of each section. In the left panel, inhibition by products was not considered, and—indicates
that the parameter is not applicable. Data presented in the left panel are taken from Figure 4.4.
The values used for all other parameters ares given in Table 4.1, set I.

when increasing the value of Kb,i and/or with decreasing the value Kq,i . In
Figure 4.11, B is considered as the inhibitor in reaction (1) (i.e., S1 + A
→ P1 + B) that competes with the cofactor A, and A is considered as the
inhibitor in reaction (2) (i.e., S2 + B → P2 + A) that competes with the
cofactor B. Comparison of the results obtained for the case when product
inhibition does not take place (left panel) to those obtained when product
inhibition is operative (central and right panels) indicates that for small val-
ues of Kb,i the concentration profile of B is not affected significantly (central
panel). However, increasing the values of Kb,i causes enhanced changes in
the concentration profile of B (right panel).

In Figure 4.12, P1 is considered as the inhibitor in reaction (1) (i.e.,
S1 + A → P1 + B) that competes with substrate S1, and P2 is consid-
ered as the inhibitor in reaction (2) (i.e., S2 + B → P2 + A) that competes
with substrate S2. In this case the effects of product inhibition on the con-
centration profile of B are significant even when considering low values of
Kb,i (central panel). This is probably due to the fact that P1 and P2 accumu-
late in the reactor and reach higher concentrations than B and A in the case
presented in Figure 4.11. In the case shown here, when product inhibition is
operative, the on/off behavior (left panel) dissapears and a decaying output
signal is obtained (central panel). This decay of the output signal’s amplitude
is motivated by the accumulation of the inhibitors in the reactor during the
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Figure 4.12 Effect of inhibition of enzyme 1 by product P1 and of enzyme 2 by product P2

on the concentration of B in the basic system when operated as a fed-batch reactor. For the
central and right panels the inhibition constants are indicated on top of each section. In the
left panel, inhibition by products was not considered, and—indicates that the parameter is not
applicable. Data presented in the left panel are taken from Figure 4.8. The values used for all
other parameters ares given in Table 4.1, set I.

process, and this effect is enhaced when the values of Kb,i are increased from
0.01 to 1.00 (right panel).

d. Reactions with Different Mechanisms Figure 4.13 presents the effect of
reaction mechanisms on the concentrations of S1 and B. In the simulations
above, all the reactions are assumed to be of the ping-pong type, and this case
is presented for comparison in the left panel. In the central panel one reaction
is assumed to be of the ping-pong type, and the other is assumed to be of
the ordered bi–bi type. In the right panel both reactions are assumed to be
of the ordered bi–bi type. It can be seen that different reaction mechanisms
induce different concentration profiles. Thus, the reaction mechanism should
be an important factor in the design of these systems.

4.1.4.2 Simulations for Continuous-Operation Reactors

In Section 4.1.4.1 results of numerical simulations were presented for the
case when the basic system is operated as a fed-batch reactor. In this section,
results of the numerical simulations are presented for the case when the
basic system is operated in continuous reactors. The results were obtained for
several reactor types. In terms of compartmental analysis (see Section 4.1.3.2)
these types are determined by the number of compartments (n) considered to
make up the reactor (see Figure 4.3). Three cases are presented here: n = 1
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for a CSTR, n = 3 for a packed bed reactor with backmixing, and n = 5 for
a PFR.

a. Ping-Pong Kinetics Figures 4.14 to 4.27 present the concentrations of
the basic system components at the reactor outlet when the only processes
involved are the ones indicated in reactions (1) and (2). The simulations were
carried out for different reactor types and with different values of flow rate
(Q), concentration of cofactor A in the feed ([A]0), maximum reaction rates
(Vm,i ) and the cycle time of the input signal (τ ). The sets of the basic values
used for the parameters involved are given in Table 4.1.

In the case presented in Figure 4.14, a CSTR is considered, and it can be
seen that two types of useful output signals are obtained. One is represented
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Figure 4.14 Performance of the basic system when operated as a CSTR (n = 1). Concentra-
tions of all the reactants are indicated for the reactor outlet. The values of all parameters used
are given in Table 4.1, set I.

by the concentration profiles of S1 and S2, and the second is represented by
the concentration profiles of the cofactors A and B. However, in both cases,
periods of “on” and “off” that last 20 min are observed. Thus, the system acts
as a switching machine with periods of 20 min.

The system considered in Figure 4.15 differs from the one in Figure 4.14 in
the number of compartments considered in the reactor (n). It can be seen that
when three compartments are considered, different information processing
takes place, and regarding the concentration profiles of S1 and B the system
acts as a rectifier. Very similar behavior is obtained when n is considered to be
5, and the reactor is actually a PFR. These results are presented in Figure 4.16.
In this case the system acts as a rectifier regarding the concentration profiles
of S1, S2, and B.

The results represented in Figure 4.17 are obtained when the system is
operated as a CSTR with Q = 6 mL/h. It can be seen that after the transient
time, oscillatory output signals with a period time of 40 min are obtained and
they are represented by the concentration profiles of S1, S2, A, and B. Thus,
this system converts the sharp input signals to oscillatory signals with the same
period of time of the input signal (40 min) but with different amplitudes. Very
similar behavior is observed when a PFR is considered (n = 5), and these
results are presented in Figure 4.18.
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Figure 4.15 Performance of the basic system when operated as a packed bed reactor (n = 3).
Concentrations of all the reactants are indicated for the reactor outlet. The values of all
parameters used are given in Table 4.1, set I.
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Figure 4.16 Performance of the basic system when operated as a PFR (n = 5). Concentra-
tions of all the reactants are indicated for the reactor outlet. The values of all parameters used
are given in Table 4.1, set I.
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Figure 4.17 Performance of the basic system when operated as a CSTR (n = 1). Concentra-
tions of all the reactants are indicated for the reactor outlet. Calculations were performed with
Q = 6 mL/h. The values used for all other parameters are given in Table 4.1, set I.
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Figure 4.18 Performance of the basic system when operated as a PFR (n = 5). Concentra-
tions of all the reactants are indicated for the reactor outlet. Calculations were performed with
Q = 6 mL/h. The values used for all other parameters are given in Table 4.1, set I.
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Figure 4.19 Performance of the basic system when operated as a CSTR (n = 1). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h and [A]0 = 0.3 mM. The values used for all other parameters are given in
Table 4.1, set I.

In Figures 4.19, 4.20, and 4.21 three operation modes are considered:
CSTR, packed bed, and PFR, respectively. In these figures Q = 6 mL/h and
[A]0 = 0.3 mM. The information processing carried out by this system is also
conversion of the sharp input signals to oscillatory signals with the same time
period of the input signal but with different amplitudes. Moreover, unlike the
case presented in Figure 4.17, in which all the signals were synchronized,
phase shifts here are observed between the output signals. However, the cases
when n = 3 (Figure 4.20) and n = 5 (Figure 4.21) are very similar to one
another.

In Figures 4.22 and 4.23 simulations were also carried out with Q =
6 mL/h, [A]0 = 0.3 mM but with Vm,i = 0.1 mM/min and considering a
CSTR and a PFR, respectively. The output signal represented by the concen-
tration profiles of S1 and S2 when a CSTR is employed (Figure 4.22) is an
oscillatory signal resembling those obtained in Figures 4.19 to 4.21. However,
the concentration profiles of A and B reach constant concentrations after the
transient time. This is also the case when a PFR is employed in Figure 4.23.

Figure 4.24 presents results obtained for a CSTR with Q = 6 mL/h,
[A]0 = 0.3 mM, and Vm,i = 0.4 mM/min. In this case four different types
of output signal are observed, and these are presented by the concentration
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Figure 4.20 Performance of the basic system when operated as a packed bed reactor (n = 3).
Concentrations of all the reactants are indicated for the reactor outlet. Calculations were
performed with Q = 6 mL/h and [A]0 = 0.3 mM. The values used for all other parameters are
given in Table 4.1, set I.
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Figure 4.21 Performance of the basic system when operated as a PFR (n = 5). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h and [A]0 = 0.3 mM. The values used for all other parameters are given in
Table 4.1, set I.



68 RESULTS

0 100 200
0

5

10
S1

0 100 200
0

5

10
S2

0 100 200
0

0.2

0.4
A

0 100 200
0

0.05

0.1
B

0 100 200
0

5
P1

0 100 200
0

5
P2

Time (min)

C
on

ce
nt

ra
ti

on
 (

m
M

)

Figure 4.22 Performance of the basic system when operated as a CSTR (n = 1). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h, [A]0 = 0.3 mM and Vm,i = 0.1 mM/min. The values used for all other
parameters are given in Table 4.1, set I.
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Figure 4.23 Performance of the basic system when operated as a PFR (n = 5). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h, [A]0 = 0.3 mM, and Vm,i = 0.1 mM/min. The values used for all other
parameters are given in Table 4.1, set I.
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Figure 4.24 Performance of the basic system when operated as a CSTR (n = 1). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h, [A]0 = 0.3 mM, and Vm,i = 0.4 mM/min. The values used for all other
parameters are given in Table 4.1, set I.

profiles of S1, S2, A, and B. It can be seen that the concentration profile of
S1 is a bell type of signal that appears every 30 min and lasts 10 min. Similar
characteristics but with different parameters are observed in the concentra-
tion profile of S2. Here the signal appears every 20 min and lasts 20 min.
In addition, the concentration profiles of A and B also show “on” and “off”
periods, when for A the “on” period is 30 min and the “off” period is 10 min,
and for B both “on” and “off” periods last 20 min.

The results obtained with the same parameters employed in Figure 4.24 but
considering a PFR rather than a CSTR are shown in Figure 4.25. In this case,
regarding the concentration profile of S1, after one sharp peak the system
acts as a rectifier. The concentration profiles of S2 and B are characterized by
bell-shaped signals that appear every 20 min, and they appear with a phase
shift of 20 min. The signal represented by the concentration profile of A is a
repetitive signal with a time period of 40 min.

Figure 4.26 presents the results obtained for a CSTR with Q = 6 mL/h,
[A]0 = 0.3 mM, and a cycle time of 5 min. In this case the time period of the
output signals represented by S1, S2, and B is reduced to 10 min. Results for the
case when a PFR is employed with the same parameter values are presented in
Figure 4.27. Here the oscillations disappear and all the concentration profiles
reach a constant value after the transient time.
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Figure 4.25 Performance of the basic system when operated as a PFR (n = 5). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h, [A]0 = 0.3 mM, and Vm,i = 0.4 mM/min. The values used for all other
parameters are given in Table 4.1, set I.
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Figure 4.26 Performance of the basic system when operated as a CSTR (n = 1). Concen-
trations of all the reactants are indicated for the reactor outlet. Calculations were performed
with Q = 6 mL/h, [A]0 = 0.3 mM, and a cycle time (τ ) of 5 min. The values used for all other
parameters are given in Table 4.1, set I.
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Figure 4.27 Performance of the basic system when operated as a PFR (n = 5). Concentra-
tions of all the reactants are indicated for the reactor outlet. Calculations were performed with
Q = 6 mL/h, [A]0 = 0.3 mM, and a cycle time (τ ) of 5 min. The values used for all other
parameters are given in Table 4.1, set I.

From Figures 4.14 to 4.27 it can be seen that the concentration profiles
of products P1 and P2 are not remarkably different in the various cases pre-
sented, and in most cases a constant steady-state concentration is reached for
them. Therefore, the useful signals as a means of information processing are
obtained with the concentration profiles of S1, S2, A, and B.

To examine the effects of the parameters involved on the reactor perfor-
mance (i.e., on the output signals obtained), the results of the numerical
simulations presented in Figures 4.14 to 4.27 were reploted in Figures 4.28
to 4.35. The effect of the reactor type on the concentration profiles of S1

and B is shown in Figure 4.28. The results were obtained for three reactor
types, all operated under the same set of parameters. It can be seen that the
concentration profiles presented are affected by the reactor type considered.
The signals obtained with the fed-batch reactor and the CSTR are of the same
type but with different concentration ranges. However, a different situation is
encountered for the PFR. In this case neither S1 nor B is present in the reactor
outlet, as they are consumed completely due to a very high residence time in
the reactor (500 min) and to the fact that no backmixing is involved.

Figure 4.29 shows the effect of the flow rate on the concentrations of S1

and A when the CSTR is considered. When the flow rate is increased from
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Figure 4.28 Effect of reactor type on the concentrations of S1 and A in the basic system. The
reactor types are indicated at the top of each section. Data for fed-batch, CSTR, and PFR are
taken from Figures 4.4, 4.14, and 4.16, respectively.
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Figure 4.29 Effect of flow rate on the concentrations of S1 and A in the basic system when
operated as a CSTR (n = 1). The values of Q are indicated at the top of each section. Data for
Q = 0.6 mL/h and Q = 6 mL/h are taken from Figures 4.14 and 4.17, respectively.
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Figure 4.30 Effect of [A]0 on the concentrations of S1 and B in the basic system when
operated as a CSTR (n = 1). The values of [A]0 are indicated at the top of each section. Data
for [A]0 = 0.03 mM and [A]0 = 0.3 mM are taken from Figures 4.17 and 4.19, respectively.

0.6 mL/h to 6 mL/h, the sharp repetitive signals obtained for A disappear and
higher levels of S1 are obtained.

Figure 4.30 shows the effect of the concentration of A in the feed stream,
[A]0, on the concentrations of S1 and B when a CSTR is considered. It can
seen that when the value of [A]0 is increased from 0.03 mM to 0.3 mM,
repetitive oscillatory signals are obtained. Similar effects are obtained when
a PFR is considered, and these are shown in Figure 4.31. Moreover, the
repetitive oscillatory signal is obtained after 100 min in a PFR, whereas in
the CSTR it appears earlier, due to mixing in the reactor.

The effect of the maximum reaction rates, Vm,i , on the concentrations
of S1 and B when the CSTR is considered is presented in Figure 4.32.
The concentration profile of B changes from constant concentration when
Vm,i = 0.1 mM/min, to an oscillatory signal when Vm,i = 0.2 mM/min and
to sharp on/off behavior when Vm,i = 0.4 mM/min. Similar characteristics
of the signal can be seen in the concentration profiles of S1. When the PFR
is considered, increase in Vm,i leads to effects resembling those shown in
Figure 4.33. Here a time lag is observed in the concentration profiles of B and
the period times for the on/off periods obtained when Vm,i = 0.4 mM/min
are larger.
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Figure 4.31 Effect of [A]0 on the concentrations of S1 and B in the basic system when
operated as a PFR (n = 5). The values of [A]0 are indicated at the top of each section. Data
for [A]0 = 0.03 mM and [A]0 = 0.3 mM are taken from Figures 4.18 and 4.21, respectively.
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Figure 4.32 Effect of Vm,1 and Vm,2 (when Vm,1 = Vm,2) on the concentrations of S1 and B in
the basic system when operated as a CSTR (n = 1). The values of Vm,1 and Vm,2 are indicated
at the top of each section. Data for Vm,i = 0.1, 0.2, and 0.4 mM/min are taken from Figures
4.19, 4.22, and 4.24, respectively.
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Figure 4.33 Effect of Vm,1 and Vm,2 (when Vm,1 = Vm,2) on the concentrations of S2 and B
in the basic system when operated as a PFR (n = 5). The values of Vm,1 and Vm,2 are indicated
at the top of each section. Data for Vm,i = 0.1, 0.2, and 0.4 mM/min are taken from Figures
4.23, 4.21, and 4.25, respectively.

The effect of the cycle time of the input signal, τ , on the concentrations of
S1 and B when the CSTR is considered is presented in Figure 4.34. It can be
seen that for both S1 and B the oscillatory signals obtained when τ = 20 min
are also observed when the value of τ is reduced to 5 min. However, for the
PFR, as shown in Figure 4.35, the oscillatory behavior disappears when τ is
reduced to 5 min.

b. Ping-Pong Mechanism, Internal Inhibition, and Product Inhibition In
the following numerical simulations, B and S1 are considered as internal
inhibitors in the basic system. Component B is inhibitory to enzyme E1 (i.e.,
product inhibition) and component S1 is inhibitory to enzyme E2 (i.e., internal
inhibition; see Section 4.1.3.2d). This situation is related to the experimental
system described later (Section 4.3). In these cases, the rate of reaction (1)
is expressed using equation (44) with Ki,B = 0.027 mM, and the rate of
reaction (2) is expressed using equation (46). The sets of basic values used
for the parameters involved are given in Table 4.3.
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Figure 4.34 Effect of the cycle time (τ ) on the concentrations of S1 and B in the basic system
when operated as a PFR (n = 5). The values of τ are indicated at the top of each section. Data
for τ = 20 min and τ = 5 min are taken from Figures 4.21 and 4.27, respectively.
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Figure 4.35 Effect of the cycle time (τ ) on the concentrations of S1 and B in the basic system
when operated as a CSTR (n = 1). The values of τ are indicated on top of each section. Data
for τ = 20 min and τ = 5 min are taken from Figures 4.19 and 4.26, respectively.
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Table 4.3 Numerical Values of Operational Parameters Used in Simulations
of a Packed Bed Reactor

Parameter Symbol Units Value

Volume of the reactor V mL 7
Volumetric flow rate Q mL/h ind.a

Cycle time τ min 5
Concentration range of S1 in the feed stream S1,0 mM 1–10
Concentration range of S2 in the feed stream S2,0 mM 1–10
Concentration of A in the feed stream A0 mM 0.3
Michaelis constant for S1 Km,S2 mM 0.156
Michaelis constant for S2 Km,S1 mM 0.0469
Michaelis constant for A Km ,A mM 0.076
Michaelis constant for B Km ,B mM 0.0266
Inhibition constant for S1 Ki,S1 mM ind.a

Inhibition constant for B Ki ,B mM 0.027
Maximal rate of the reaction S1 + A → P1 + B Vm,1 mM/min 0.5
Maximal rate of the reaction S2 + B → P2 + A Vm,2 mM/min 0.5

aind.: indicated in the figure.

Figure 4.36 presents the effects of Ki,S1 on the concentration of B when
three operation modes are considered for the reactor: CSTR, packed bed, and
PFR. In all cases, increase in the value of Ki,S1 from 0.1 to 1 mM, meaning
decreasing the inhibitory ability of S1, causes a rather unexpected decrease
in the concentrations of B, although B is a substrate of enzyme E2, which is
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Figure 4.36 Effect of Ki,S1 on the concentration of B in the basic system when operated
as a CSTR (n = 1, ———), packed bed reactor (n = 3, – – –), and PFR (n = 5, · · · · · ·).
Calculations were performed with the values of Ki,S1 indicated above and Q = 20 mL/h. The
values used for all other parameters are given in Table 4.3.
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Figure 4.37 Effect of Ki,S1 on the concentration of B in the basic system when operated as
CSTR (n = 1, ———), packed bed reactor (n = 3, – – –), and PFR (n = 5, · · · · · ·). Calcula-
tions were performed with the values of Ki,S1 indicated above and Q = 60 mL/h. The values
used for all other parameters are given in Table 4.3.

the enzyme inhibited by S1. The coupling between the two reactions and the
fact that B is also an inhibitor to enzyme E1 make it difficult to predict the
results, and this case emphasizes the absolute requirement for an analytical
model such as the one developed here. The same phenomenon is observed in
Figure 4.37, where the flow rate was increased to 60 mL/h.

In Figure 4.38 the effect of the flow rate and the inhibition constant Ki,S1

on the concentration of B is shown. In this figure data are taken from Figures
4.36 (Q = 20 mL/h) and 4.37 (Q = 60 mL/h), with Ki,S1 = 0.1 mM (left
panel) and with Ki,S1 = 1 mM (right panel). In all cases the signals obtained
are oscillatory with a time period of 10 min, which is also the time period of
the input signal. However, various amplitudes and phase shifts are obtained
when the parameters or the operational modes are changed.

4.2 NEURAL NETWORK–TYPE BIOCHEMICAL
SYSTEMS FOR INFORMATION PROCESSING

Neural networks are systems built of basic, mutually interacting elements,
called neurons. The two key features of a neural network model that are of
interest to us here are the properties of each neuron and the connectivity
between neurons. In this section the construction of biochemical networks
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Figure 4.38 Effect of flow rate on the concentration of B in the basic system when operated
as a CSTR (n = 1, ———), packed bed reactor (n = 3, – – –), and PFR (n = 5, · · · · · ·).
Calculations were performed with Ki,S1 = 0.1 mM (left panel) and Ki,S1 = 1 mM (right
panel) and the values of Q indicated above. Data for Q = 20 and 60 mL/h are taken from
Figures 4.36 and 4.37, respectively.

systems is discussed. In particular, these systems are proposed as “biochem-
ical hardware” implementations of neural networks. In this study, the basic
two-enzyme system discussed in Section 4.1 was chosen as the biochemi-
cal neuron. Also, connections between individual biochemical neurons are
achieved by mass transfer: namely, by the flow of molecular species from one
biochemical neuron to another. A defined array of such connections delineates
the network characteristics.
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In principle, there are two main possibilities for connecting biochemical
neurons:

1. Chemical species that participate in one biochemical neuron can play
the role of effector for another biochemical neuron.

2. Chemical species emerging as products from one neuron may be fed as
substrates to a subsequent biochemical neuron.

Several examples studied are presented in Sections 4.2.1 to 4.2.4.

4.2.1 Network A

Network A, presented in Figure 4.39, is composed of n basic systems that
operate simultaneously in a biochemical reactor and share cofactors A and B.
The input to the network is made of 2n substrates, S1, S2, S3, . . . , S2n that are
fed to the reactor at predetermined concentrations and rates.

4.2.1.1 Information-Processing Characteristics of Network A

Network A is designed to function as an information processor when each
basic system can be seen as a node or a biochemical neuron in the network.
In this network, cofactors A and B are shared by all the biochemical neurons
of the network. Therefore, these biochemical neurons are fully connected to
one another, and the information flows back and forth from each neuron to
all others.

The input signal is composed of 2n concentration profiles of the partaking
substrates. In this study it was considered that each of these concentration
profiles either follows the pattern described in Figure 4.2 or is constant. The
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E2n–1

A B

P2n–1S2n–1
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E2n
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P3S3
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E4
S4P4
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• • •

Figure 4.39 Network A. S1, S2, . . . , S2n: substrates; P1, P2, . . . , P2n: products; E1, E2, . . . ,
E2n: participating enzymes; A, B: cofactors.
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output signal is defined as the time course of concentration of any component
in the network. Thus, this network can potentially produce 4n + 2 output
signals.

4.2.1.2 Analytical Model for Network A

Network A is built of n basic systems, and all the reactions take place in a
fed-batch reactor. As such, the analytical model developed for network A is an
extension of the model developed for the basic system (see Section 4.1.3.1).
Based on the principles detailed in Section 4.1.3.1, the operational rules of
network A are described by

d [Si ]

dt
= Q

V0 + Qt
([Si ]0 − [Si ]) − ri (49)

d [Pi ]

dt
= − Q

V0 + Qt
[Pi ] + ri (50)

d [Ei ]

dt
= − Q

V0 + Qt
[Ei ] (51)

d [A]

dt
= − Q

V0 + Qt
[A] − r1 + r2 + r3 − r4 − · · · − r2n−1 + r2n (52)

d [B]

dt
= − Q

V0 + Qt
[B] + r1 − r2 − r3 + r4 + · · · + r2n−1 − r2n (53)

where i is the reaction number (i = 1, 2, 3, 4, . . . , 2n) and ri is the rate
equation for reaction i .

Equations (49), (50), (52), and (53) are related to the reaction mechanism
considered. In this case the mechanism considered is of the Ping-Pong type
(see Section 4.1.3.1a), for which the rate equations are

ri = Vm,i [Si ][A]

Km,A[Si ] + Km,Si [A] + [Si ][A]
i = 1, 4, 5, 8, 9, . . . , 2n − 1 (54)

ri = Vm,i [Si ][B]

Km,B[Si ] + Km,Si [B] + [Si ][B]
i = 2, 3, 6, 7, 10, . . . , 2n (55)

Initial conditions for equations (49) to (53) are defined by the concentrations
of substrates, products, and enzymes prevailing in the reactor at the onset of



82 RESULTS

operation (at time t = 0):

[Si ] = 0
[Pi ] = 0
[Ei ] = [Ei ]t=0

[A] = [A]t=0

[B] = 0

(56)

where i = 1, 2, 3, 4, . . . , 2n. Equations (49) to (53) are solved numerically
according to the Runge–Kutta method [145] with the initial conditions defined
in equation (56).

4.2.1.3 Results of Numerical Simulations for Network A

Calculations were performed for a network composed of two biochemical
neurons (i.e., when two basic systems are operative). The various input signals
and Vm,i values considered are summarized in Table 4.4. All other parameter
values are given in Table 4.5. Representative time courses are presented in
Figures 4.40 to 4.43. In these figures, only the concentration profiles of S1,
S2, S3, S4, A, and B are presented. These profiles were chosen due to their
potential use as a result of information processing, and actually, each can be
considered as the output signal. As mentioned for the basic system operated as
a fed-batch reactor (Section 4.1.4.1), the concentration profiles of the reaction
products do not have much meaning as a result of information processing,
due to the fact that they accumulate in the reactor.

The characteristics of the output signals shown in Figure 4.40 are very
similar to those obtained for the basic system (see Figure 4.4), so in this case
the network has no advantage over a single basic system. This is also the case
for the results presented in Figure 4.41. Here, the varied substrates in the feed
are S1 and S3, and when compared to the results shown in Figure 4.40, it can

Table 4.4 Input Signal ([S1]0, [S2]0) and Vm,i Used to Obtain Data in Figures 4.40 through
4.43a

Figure
No. n

[S1]0

(mM)
[S2]0

(mM)
[S3]0

(mM)
[S4]0

(mM)
Vm,1, Vm,2

(mM/min)
Vm,3, Vm,4

(mM/min)

40 2 /\/\ \/\/ 45 45 0.4 0.4
41 2 /\/\ 45 \/\/ 45 0.4 0.4
42 2 /\/\ 45 45 \/\/ 0.4 0.4
43 2 /\/\ 45 45 \/\/ 0.7 0.1

a/\/\,\/\/: variable, following the profiles described in Section 4.1.2 and Figure 4.2.
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Table 4.5 Numerical Values of Operational Parameters Used in Simulations
of Biochemical Networks

Parameter Symbol Units Value

Initial volume of the reaction mixture V0 mL 50
Volumetric flow rate Q mL/h 8
Cycle time τ min 5
Concentration range of Si in the feed stream [Si]0 mM 11–80
Initial concentration of Ai [Ai]t=0 mM 0.03
Michaelis constant for S1 Km,S1 mM 0.036
Michaelis constant for S2 Km,S2 mM 0.061
Michaelis constant for S3 Km,S3 mM 0.036
Michaelis constant for S4 Km,S4 mM 0.061
Michaelis constant for Ai Km,Ai mM 0.0074
Michaelis constant for Bi Km Bi mM 0.0076

be seen that the output signal types follow this change, but they are still types
obtained using the basic system alone.

The results obtained when the varied substrates in the feed are S1 and S4

are presented in Figure 4.42. It can be seen that in this case, the output signals
obtained differ completely from those shown in Figures 4.40 and 4.41. The
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Figure 4.40 Time courses of concentrations of reactants in network A with n = 2. [S1]0 and
[S2]0 are variable, [S3]0 and [S4]0 are constant, and the values of all parameters used are given
in Table 4.5.
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Figure 4.41 Time courses of concentrations of reactants in network A with n = 2. [S1]0 and
[S3]0 are variable, [S2]0 and [S4]0 are constant, and the values of all parameters used are given
in Table 4.5.
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Figure 4.42 Time courses of concentrations of reactants in network A with n = 2. [S1]0 and
[S4]0 are variable, [S2]0 and [S3]0 are constant, and the values of all parameters used are given
in Table 4.5.
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signals represented by the concentration profiles of S1 and S2 are similar to
the input signals, and the signals represented by the concentration profiles of
S2 and S3 are almost constant. However, the interesting signal is represented
by the concentration profiles of A or B. These signals are characterized
by a time period of 5 min (compared to 10 min in the input signal), and
without intermediate periods of constant values. Thus, one can consider that
the network performs an algebric operation, particularly division by 2. This
result was not obtained with the basic system alone. Moreover, it was found
that when higher values of n are considered, this signal is always obtained
when the network is built of an even number of biochemical neurons and the
variable substrates in the feed stream are S1 and S2n. When an odd number of
biochemical neurons are connected in the network, the signals are of the type
shown in Figures 4.40 and 4.41.

The results presented in Figure 4.43 were obtained with the same feed
stream composition as for Figure 4.42, but for different values of Vm,i . Thus,
the maximum reaction rates of the first biochemical neuron were increased
from 0.4 mM/min to 0.7 mM/min, and the maximum reaction rates of the
second biochemical neuron were reduced from 0.4 mM/min to 0.1 mM/min.
It can be seen that the output signals obtained here are different from those
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Figure 4.43 Time courses of concentrations of reactants in network A with n = 2. [S1]0 and
[S4]0 are variable, [S2]0 and [S3]0 are constant, Vm,1 = Vm,2 = 0.7 mM/min, Vm,3 = Vm,4 = 0.1
mM/min, and the values of all other parameters used are given in Table 4.5.
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obtained in Figure 4.42, and they are characterized by “on” and “off” periods
similar to those in Figures 4.40 and 4.41. However, here the period times were
7 and 3 min, compared to the 5 min obtained in Figures 4.40 and 4.41.

As mentioned above, simulations were also carried out with higher values
of n. However, the signals obtained in these simulations did not differ from
those obtained with n = 2. Therefore, for the network system considered
here, there is no advantage in employing more than two biochemical neurons
in the network.

4.2.2 Network B

Network B, presented in Figure 4.44, is composed of n basic systems (the
neurons) that operate in series (i.e., the products of one neuron are the sub-
strates of the next one). The input to the system consists of the first two
substrates, S1 and S2.

4.2.2.1 Information-Processing Characteristics of Network B

Network B is designed to operate as an information processor when each
basic system functions as a node or a biochemical neuron in the network.
In this network the information proceeds from one biochemical neuron to a
subsequent neuron, but not in the opposite direction. Thus, the network is
actually of the feedforward type.

The input signal consists of two concentration profiles of the substrates
partaking, S1 and S2. In this study it was assumed that each of these con-
centration profiles can either follow the pattern described in Figure 4.2 or be
constant. The output signal is defined as the time course of concentration of
any component in the network. Thus, this network can potentially produce
4n + 2 output signals.

E1

A1 B1

P1S1
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A2 B2

P3
E2n–1

An Bn

P2n–1

• • •

P2 S2

S2

E2
P4 E4 E2n

P2n

• • •

Figure 4.44 Network B. S1, S2: substrates; P1, P2, . . . , P2n: products and substrates; E1,

E2, . . . , E2n: participating enzymes; A1, A2, . . . , An, B1, B2, . . . , Bn: cofactors.
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4.2.2.2 Analytical Model for Network B

Network B is built of n basic systems, and all the reactions take place in a fed
batch reactor. As such, the analytical model developed for network B is an
extension of the model developed for the basic system (see Section 4.1.3.1).
Based on the principles detailed in Section 4.1.3.1, the operational rules of
network B are described by

d [Si ]

dt
= Q

V0 + Qt
([Si ]0 − [Si ]) − ri i = 1, 2 (57)

d [Pi ]

dt
= − Q

V0 + Qt
[Pi ] + ri − ri+2 i = 3, 4, 5, . . . , 2n (58)

d [Ei ]

dt
= − Q

V0 + Qt
[Ei ] i = 1, 2, 3, . . . , 2n (59)

d [Ai ]

dt
= − Q

V0 + Qt
[Ai ] − r2i−1 + r2i i = 1, 2, 3, . . . , n (60)

d [Bi ]

dt
= − Q

V0 + Qt
[Bi ] + r2i−1 − r2i i = 1, 2, 3, . . . , n (61)

where n is the number of basic systems (biochemical neurons) in the network
and ri is the rate equation for the reaction catalyzed by Ei.

Equations (57), (58), (60), and (61) are related to the reaction mechanism
considered. In this case the mechanism considered is of the ping-pong type
(see Section 4.1.3.1a), for which the rate equations are

r1 = Vm,1[S1][A1]

Km,A1[S1] + Km,S1[A1] + [S1][A1]
(62)

r2 = Vm,2[S2][B1]

Km,B1[S2] + Km,S2[B1] + [S2][B1]
(63)

r2i−1 = Vm,2i−1[P2i−3][Ai ]

Km,Ai [P2i−3] + Km,P2i−3 [Ai ] + [P2i−3][Ai ]
i = 2,3,4, . . . , n (64)

r2i = Vm,2i [P2i−2][Bi ]

Km,Bi [P2i−2] + Km,P2i−2 [Bi ] + [P2i−2][Bi ]
i = 2,3,4, . . . , n (65)

Initial conditions for equations (57) to (61) are defined by the concentrations
of substrates, products, and enzymes prevailing in the reactor at the onset of
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operation (at time t = 0):

[Si ] = 0 i = 1, 2
[Pi ] = 0 i = 1, 2, 3, . . . , 2n
[Ei ] = [Ei ]t=0 i = 1, 2, 3, . . . , 2n
[Ai ] = [Ai ]t=0 i = 1, 2, 3, . . . , n
[Bi ] = 0 i = 1, 2, 3, . . . , n

(66)

Equations (57) to (61) are solved numerically according to the Runge–Kutta
method [145] with initial conditions as defined in equation (66).

4.2.2.3 Results of Numerical Simulations for Network B

Representative results obtained from the numerical simulations performed
for network B are presented below. The results collected in Figures 4.45 to
4.49 were obtained for a network composed of six biochemical neurons. The
feedforward type of network has a particular characteristic. Thus, for neuron i
in a network composed of n neurons (when 1 ≤ i ≤ n − 1), the output signals
of neuron i (i.e., P2i−1, P2i, Ai, and Bi), as well as An and Bn, are independent
of n. Moreover, for such a network, the only outputs that depend on n are
P2n−1 and P2n. Thus, the only effect of adding neurons to the network is to
increase the number of output signals available.

The concentration profiles of Bi are presented in Figures 4.45 to 4.49. They
were chosen as representative of the information-processing capabilities of
this type of network. Table 4.6 shows the parameters used to obtain the
results reported in Figures 4.45 to 4.49. All other parameter values are given
in Table 4.5. The values of the Michaelis constants were chosen as random
numbers in the range 0.0001 to 0.1 mM for Km,Si and Km,Pi and 0.0001 to
0.01 mM for Km,Ai and Km,Bi , and are detailed in Table 4.7.

Table 4.6 Input Signal ([S1]0, [S2]0), Km, j , and Vm,i Used to Obtain Data in Figures 4.45
through 4.49a

Figure No. n [S1]0 (mM) [S2]0 (mM) Km, j (mM) Vm,i (mM/min)

4.45 6 /\/\ \/\/ Set 1b 0.4
4.46 6 /\/\ \/\/ Set 2b 0.4
4.47 6 /\/\ \/\/ Set 1b Variousc

4.48 6 /\/\ \/\/ Set 2b Variousc

4.49 6 /\/\ 45.5 Set 1b 0.4

a/\/\, \/\/: variable, following the profiles described in Section 4.1.2 and Figure 4.2.
bValues are given in Table 4.7.
cVm,1 = Vm,2 = 0.4 mM, Vm,3 = Vm,4 = 0.8 mM, Vm,5 = Vm,6 = 1.2 mM, Vm,7 = Vm,8 = 0.8 mM,
Vm,9 = Vm,10 = 0.4 mM, Vm,11 = Vm,12 = 0.2 mM.
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Table 4.7 Km,Si , Km,Pi , Km,Ai , and Km,Bi Used to Obtain Data in Figures 4.45 through 4.52

Set 1 Set 2

i
Km,Si × 10

Km,Pi+2 × 10 Km,Ai × 102 Km,Bi × 102
Km,Si × 10

Km,Pi+2 × 10 Km,Ai × 102 Km,Bi × 102

1 0.7012 0.3653 0.2470 0.2190 0.5297 0.6711
2 0.9103 0.9826 0.7227 0.0470 0.0077 0.3834
3 0.7622 0.7534 0.6515 0.6789 0.0668 0.4175
4 0.2625 0.0727 0.6316 0.6793 0.6868 0.5890
5 0.0475 0.8847 0.2727 0.9347 0.9304 0.8462
6 0.7361 0.0470 0.6793 0.3835 0.5194 0.8310
7 0.3282 0.5194
8 0.6326 0.8310
9 0.7564 0.0346

10 0.9910 0.0535
11 0.2190 0.9347
12 0.6789 0.3835

The results presented in Figure 4.45 were obtained with the Km, j values
contained in set 1 of Table 4.7. In this case five types of output signals were
found, and each is different from the input signal employed. Thus, the output
signal represented by the concentration profile of B1 is the one that is obtained
when only one basic system is employed, and this is due to the fact that in
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Figure 4.45 Time courses of concentrations of cofactors in network B with n = 6. [S1]0 and
[S2]0 are variable, Vm,i = 0.4 mM/min, Km, j values are given in set 1 in Table 4.7, and the
values of all other parameters used are given in Table 4.5.
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Figure 4.46 Time courses of concentrations of cofactors in network B with n = 6. [S1]0 and
[S2]0 are variable, Vm,i = 0.4 mM/min, Km, j values are given in set 2 in Table 4.7, and the
values of all other parameters used are given in Table 4.5.

a feedforward network each basic system is influenced only by those that
precede and not by those that follow. The output signals represented by the
concentration profiles of B2 and B3 show a repetitive complex signal with
a period time of 10 min. This time period is the same as that of the input
signal; thus, the information-processing here (i.e., represented by B2 and B3)
causes a significant change in the signal type but not in the time period. The
concentration profiles of B4 and B6 show an almost constant value. This is
another type of information processing, but it can also be obtained when only
one basic system is employed, and therefore B4 and B6 are not of much use.
Of particular importance is output B5. In this case a repetitive oscillatory
signal with a time period of 5 min is obtained. Based on this observation, one
can consider this network to be a “division machine,” in which the input time
period (i.e., 10 min) is divided by a factor of 2.

The results shown in Figure 4.46 were obtained for a network that differs
from the preceding one only in the Km, j values. Here another set of random
values was employed. It can be seen that altering the Km, j values from
those used for data in Figure 4.45 led to completely different information-
processing functions performed by the network. In this case three types of
repetitive complex signals, with a time period of 10 min, were obtained. These
are represented by the concentration profiles of B3, B4 (or B5), and B6.
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Figure 4.47 Time courses of concentrations of cofactors in network B with n = 6. [S1]0 and
[S2]0 are variable, Vm,1 = Vm,2 = 0.4 mM, Vm,3 = Vm,4 = 0.8 mM, Vm,5 = Vm,6 = 1.2 mM,
Vm,7 = Vm,8 = 0.8 mM, Vm,9 = Vm,10 = 0.4 mM, Vm,11 = Vm,12 = 0.2 mM, Km, j values are
given in set 1 in Table 4.7, and the values of all other parameters used are given in Table 4.5.

The results presented in Figure 4.47 were obtained with values of Vm,i

which are different from those used for data in Figures 4.45 and 4.46. Com-
paring the results in Figure 4.47 to those presented in Figure 4.45 (where all
the Vm,i values were 0.4 mM), it can be seen that the output signals obtained
in this case are affected by this change in Vm,i . Moreover, interesting results
are presented by the concentration profile of B5. This signal can be envisaged
to be composed of two separate signals, each with a period time of 5 min
but with different amplitudes. Therefore, in analogy to what was concluded
for data on B5 in Figure 4.45, one can also conclude that this network is a
division machine in which the input signal is divided by a factor of 2.

The results shown in Figure 4.48 were obtained with a set of values similar
to those used in Figure 4.47, the only difference being in the values of Km, j .
This change affects the performance of the network, and different information
processing is achieved. Here, most of the signals are of the on/off type.

The results presented in Figure 4.49 were obtained when only one of the
substrates is fed to the system with a variable concentration profile, while
the second is constant. It can be seen that in this case, the performances
obtained differ from those shown in Figures 4.45 to 4.48. The concentration
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Figure 4.48 Time courses of concentrations of cofactors in network B with n = 6. [S1]0 and
[S2]0 are variable, Vm,1 = Vm,2 = 0.4 mM, Vm,3 = Vm,4 = 0.8 mM, Vm,5 = Vm,6 = 1.2 mM,
Vm,7 = Vm,8 = 0.8 mM, Vm,9 = Vm,10 = 0.4 mM, Vm,11 = Vm,12 = 0.2 mM, Km, j values are
given in set 2 in Table 4.7, and the values of all other parameters used are given in Table 4.5.
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Figure 4.49 Time courses of concentrations of cofactors in network B with n = 6. [S1]0 is
variable and [S2]0 is constant, Vm,i = 0.4 mM/min, Km, j values are given in set 1 in Table 4.7,
and the values of all other parameters used are given in Table 4.5.
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profile of A3 shows a peak signal that appears every 14 min and lasts for
6 min. Moreover, the concentration profile of A4 also shows a peak signal,
but this one appears every 15 min and lasts for 5 min. These results imply that
information-processing functions can also be achieved in this network when
the input signal is less complex. Thus, data in Figure 4.49 can be interpreted
to say that under these conditions, the network performs as a “pacemaker.”

4.2.3 Network C

Network C, presented in Figure 4.50, is a variation of network B (Figure
4.44). In network B the cofactors for each basic system in the network are
different. However, in network C all the basic systems in the network share
cofactors A and B (i.e., A1 = A2 = A3 = · · · = An = A and B1 = B2 = B3

= · · · = Bn = B).

4.2.3.1 Information-Processing Characteristics of Network C

In this network, the information proceeds from one biochemical neuron to a
subsequent one and also in the opposite direction, and this is due to cofactors
A and B, which are common to all the biochemical neurons in the network.
Thus, this network is “fully connected” rather than being of the feedforward
type exemplified by network B.

The input signal is composed of two concentration profiles of the substrates
partaking, S1 and S2. In this study it was assumed that each concentration
profile either follows the pattern described in Figure 4.2, or is constant. The
output signal is defined as the time course of concentration of any component
in the network. Thus, this network can potentially produce 2n + 4 output
signals.

E1

BA A A

E

P1S1

S1

E3
3

B

P
E2n–1

B

P• • •

P2 S2

S2

2
P4

4E E2n

2n–1

P2n

• • •

Figure 4.50 Network C. S1, S2: substrates; P1, P2, . . . , P2n: products and substrates; E1,

E2, . . . , E2n: participating enzymes; A, B: cofactors.
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4.2.3.2 Analytical Model for Network C

The analytical model developed for network C assumes that the reactions
take place in a fed-batch reactor and is a variation of the model developed for
network B (see Section 4.2.2.2). Equations (57) to (59), written for network B,
are valid here as well. In addition, the mass balances of the cofactors A and
B are given by

d [A]

dt
= − Q

V0 + Qt
[A] − r1 + r2 − r3 + r4 − · · · − r2n−1 + r2n (67)

d [B]

dt
= − Q

V0 + Qt
[B] + r1 − r2 + r3 − r4 + · · · + r2n−1 − r2n (68)

where n is the number of basic systems (biochemical neurons) in the network
and ri is the rate equation for the reaction catalyzed by Ei.

Equations (57) to (59), (67), and (68) are related to the reaction mechanism
considered, in this case is the ping-pong type (see Section 4.1.3.1a), and the
rate equations are

ri = Vm,i [Pi−2][A]

Km,A[Pi−2] + Km,Pi−2 [A] + [Pi−2][A]
i = 3, 5, 7, . . . , 2n − 1 (69)

ri = Vm,i [Pi−2][B]

Km,B[Pi−2] + Km,Pi−2 [B] + [Pi−2][B]
i = 4, 6, 8, . . . , 2n (70)

Initial conditions for equations (57) to (59), (67), and (68) are defined by the
concentrations of the substrates, products, and enzymes in the reactor at the
onset of operation (at time t = 0):

[Si ] = 0 i = 1, 2
[Pi ] = 0 i = 1, 2, 3, . . . , 2n
[Ei ] = [Ei ]t=0 i = 1, 2, 3, . . . , 2n
[A] = [A]t=0

[B] = 0

(71)

Equations (57) to (59), (67), and (68) are solved numerically according to
the Runge–Kutta method [145] with initial conditions as defined in equation
(71).

4.2.3.3 Results of Numerical Simulations for Network C

Representative results obtained from the numerical simulations performed
for network C are presented below. The results collected in Figures 4.51 to
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Table 4.8 Input Signal ([S1]0, [S2]0) and Km, j Used to Obtain Data in Figures 4.51
through 4.53a

Figure No. n [S1]0 (mM) [S2]0 (mM) Km, j (mM)

4.51 3 /\/\ \/\/ Set 1b

4.52 4 /\/\ \/\/ Set 1b

4.53 6 /\/\ \/\/ Set 1b

a/\/\, \/\/: variable, following the profiles in Section 4.1.2 and Figure 4.2.
bValues are given in Table 4.7.

4.53 were obtained for a network composed of three, four, and six biochemi-
cal neurons, respectively. This network is fully connected, and therefore the
results depend on the number of biochemical neurons connected. Represen-
tative concentration profiles are presented in Figures 4.51 to 4.53. Table 4.8
summarizes the number of biochemical neurons in the network, the input
signal compositions, and the Km, j values employed to obtain the results in
Figures 4.51 to 4.53. All other parameter values are given in Table 4.5. The
Km, j values are random numbers as detailed in Table 4.7.

The results presented in Figure 4.51 were obtained for a network composed
of three basic systems, and representative concentration profiles are shown. It

C
on

ce
nt

ra
ti

on
 (

m
M

)

0 20 40
0

0.1

0.2

0.3
S1

0 20 40
0

0.005

0.01

0.015
P3

0 20 40 
0

0.05

0.1

0.15
P4

0 20 40 
0

0.01

0.02

0.03
B

Time (min)

Figure 4.51 Time courses of concentrations of reactants in network C with n = 3. [S1]0 and
[S2]0 are variable, Vm,i = 0.4 mM/min, Km, j values follow set 1 in Table 4.7, and the values
of all other parameters used are given in Table 4.5.
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can be seen that the signal type represented by the concentration profiles of S1

and B had already been obtained in other simulations (e.g., in the basic system,
Section 4.1.4). Of particular interest is the concentration profile of P3. This is
a repetitive signal with a time period of 10 min, but each 10-min period can
be subdivided into two different signal types, each of which is characterized
by a time period of 5 min. Thus, division by 2 is also performed by this
network. A similar case is that of the signal represented by the concentration
profile of P4. A repetitive signal with a time period of 10 min is obtained.
This 10-min period can be subdivided into three periods, two of 2.5 min each
and one of 5 min. Thus, the network performs a combination of division by 2
and by 4.

The results obtained when the network was operated with four neurons
are presented in Figure 4.52. It can be seen that the concentration profiles
of S1 and B are of the same type as those obtained in Figure 4.51 when
n = 3. However, a completely different profile is obtained for P4, for which
a repetitive signal with a time period of 5 min is observed. Thus, this system
also performs a division by 2 operation. The concentration profile of P3 is a
repetitive signal with a time period of 10 min, but each 10-min period can be
subdivided into two different signal types, each of which is characterized by
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Figure 4.52 Time courses of concentrations of reactants in network C with n = 4. [S1]0 and
[S2]0 are variable, Vm,i = 0.4 mM/min, Km, j values follow set 1 in Table 4.7, and the values
of all other parameters used are given in Table 4.5.
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Figure 4.53 Time courses of concentrations of reactants in network C with n = 6. [S1]0 and
[S2]0 are variable, Vm,i = 0.4 mM/min, Km, j values follow set 1 in Table 4.7, and the values
of all other parameters used are given in Table 4.5.

a time period of 5 min. Therefore, here again division by 2 is performed by
the network.

The results presented in Figure 4.53 were obtained with six biochemical
neurons in the network. In this case the types of signal obtained are very
similar to those in Figure 4.52. A repetitive signal with a time period of 5 min
(that means division by 2) is obtained for P6. The concentration profile of P4

is a repetitive signal with a period of 10 min that can be subdivided into two
different signal types, each of which is characterized with a time period of
5 min. Therefore, with respect to these profiles, division by 2 is performed by
this network as well.

4.3 THE BASIC SYSTEM: EXPERIMENTAL RESULTS

The basic system was introduced and defined in Sections 4.1.1 and 4.1.2,
and pertinent analytical models for various operation modes were described
in Section 4.1.3. In this section an experimental interpretation of the basic
system is introduced, and the experimental results are investigated in terms
of the analytical models developed in Section 4.1.3.
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4.3.1 Deciding on the experimental system

To assess the validity of the analytical model developed for the basic system
as well as of the results of pertinent numerical simulations, three experimental
systems were investigated as model systems. These are presented below.

System 1

E1

E2

NADP NADPH

glutathione (oxidized)glutathione (reduced)

D-gluconate-6-phosphateD-glucose-6-phosphate

where E1 = glucose-6-phosphate-dehydrogenase (G6PDH, E.C. 1.1.1.49)
E2 = glutathione reductase (GR, E.C. 1.6.4.2)

System 2

E1

E2

NAD NADH

pyruvateL-lactate

D-glucono-δ-lactoneβ-D-glucose

where E1 = glucose dehydrogenase (GDH, E.C. 1.1.1.47)
E2 = l-lactate dehydrogenase (LDH, E.C. 1.1.1.27)

System 3

E1

E2

NAD NADH

pyruvateL-lactate

acetaldehydeethanol

where E1 = alcohol dehydrogenase (ADH, E.C. 1.1.1.1)
E2 = l-lactate dehydrogenase (LDH, E.C. 1.1.1.27)

The experimental system was selected based on the conclusions obtained
from numerical simulations. Thus, in Section 4.1.4.1a it was found that to
obtain an on/off output signal in a fed-batch reactor, the values of Vm,1 and
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Table 4.9 Values of Km, j Determined for Substrates of Experimental Systems

Km, j (mM)
System
No. Enzyme Source Buffer Substrate Experimental Literaturea

1 G6PDH Torula yeast Tris, 0.1 M, pH 8,
10 mM MgCl2,
0.94 mM EDTA

G6P
NADP

0.156
0.076

0.23
0.067

GR Baker’s yeast Tris, 0.1 M, pH 8,
10 mM MgCl2,
0.94 mM EDTA

GSSG
NADPH

0.047
0.027

0.061
0.0076

2 GDH Bacillus
megaterium

Phosphate, 0.1 M,
pH 7.55

Glucose
NAD

22.1
0.26

47.5
4.5

2,3 LDH Rabbit
muscle

Phosphate, 0.1 M,
pH 7.55

Pyruvate
NADH

0.575
0.055

0.164
0.011

3 ADH Baker’s yeast Phosphate, 0.1 M,
pH 7.55

Ethanol
NAD

99.98
0.934

26
0.108

aThe values of Km, j taken from the literature were not always obtained using the same experimental
conditions as those employed in this work. For details, see Table 1.4 in Section 1.6.

Vm,2 should be about 20 times the value of the largest Km, j value in the
system. As such, relatively large amounts of enzymes are needed in each
operation. (It should be pointed out that in the basic system, the two reactions
take place simultaneously in the same medium and therefore the reaction
conditions are not always optimal for both enzymes.) Thus, to examine the
possibility of using the systems suggested above as experimental systems, the
values of Km, j had to be determined for each of the substrates involved and
under the experimental conditions actually employed. The results obtained
are presented in Table 4.9. From these values the amounts of enzymes needed
for each operation were estimated.

From the results presented in Table 4.9 it can be seen that in systems 2
and 3, the substrates involved (i.e., glucose and ethanol) are characterized by
high Km constants. High Km values for these substrates are also indicated in
the literature. Only in system 1 do both reactions involve moderate values
of Km, j and so can be operated with reasonable amounts of enzymes. Thus,
system 1 was chosen to represent the basic system.

4.3.2 Kinetic Study of the Experimental System

The development and use of appropriate analytical models require not only
knowledge of the kinetic parameters involved but also of the mechanisms of
the participating reactions. As such, the studies performed addressed both
these aspects.
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4.3.2.1 Kinetic Parameters and Mechanism
of a Reaction Catalyzed by G6PDH

The reaction considered is

d-gluscose-6-phosphate + NADP
G6PDH−−−−−−→ d-gluconate-6-phosphate + NADPH

The kinetic characteristics of this reaction were studied according to the
procedure described in Section 3.3.1.4. The results obtained are presented in
Figure 4.54 in terms of Lineweaver–Burk reciprocal plots. The intercepts and
slopes of the lines shown in Figure 4.54 are plotted in Figure 4.55.

From Figure 4.54 it can be seen that the family of reciprocal plots obtained
at different fixed concentrations of NADP are essentially parallel to one
another. This is also indicated in Figure 4.55, where the value of the slopes
of the lines seem to be approximately constant. These results imply that the
velocity equation for the ping-pong mechanism [146] can be used to describe
the rate of the reaction catalyzed by G6PDH. Although initial velocity studies
alone cannot define the exact kinetic mechanism [146,147], we are more
interested in the appropriate rate equation that describes the reaction progress.

From the replots presented in Figure 4.55, the values of Km, j of the sub-
strates d-glucose-6-phosphate and NADP can be determined. In this case
the slope is constant and equals Km,G6P/Vmax. Furthermore, the line ob-
tained from the intercepts replot is defined by the following parameters:
slope = Km,NADP/Vmax and intercept = 1/Vmax. From these slopes and inter-
cepts the values obtained for Km, j are Km,G6P = 0.156 mM and Km,NADP =
0.076 mM.
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Figure 4.54 1/V versus 1/[G6P] at various initial concentrations of NADP.
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Figure 4.55 1/V axis intercepts and slopes of the lines shown in Figure 4.54.

4.3.2.2 Kinetic Parameters for a Reaction Catalyzed by GR

The reaction considered is

GSSG + NADPH
GR−−−−→ 2GSH + NADP

The kinetic characteristics of this reaction were studied according to the
procedure described in Section 3.3.1.5. The results obtained are presented in
Figure 4.56 in terms of Lineweaver–Burk reciprocal plots. The intercepts and
slopes of the lines shown in Figure 4.56 are plotted in Figure 4.57.

From Figure 4.56 it can be seen that the family of reciprocal plots obtained
at different fixed concentrations of NADPH are essentialy parallel to one
another. This is also indicated in Figure 4.57, where the value of the slopes
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Figure 4.56 1/V versus 1/[GSSG] at various initial concentrations of NADPH.



102 RESULTS

0

10

20

30

50403020100

1/[NADPH] (1/mM)

In
te

rc
ep

t 
(m

in
/O

.D
)

0

2

4

6

S
lo

p
e 

(m
in

.m
M

/O
.D

)

intercept

slope

Figure 4.57 1/V axis intercepts and slopes of the lines shown in Figure 4.56.

of the lines seem to be approximately constant. These results imply that the
reaction proceeds by the ping-pong mechanism [146].

From the replots presented in Figure 4.57, the values of Km, j of the
substrates glutathione (oxidized) and NADPH can be determined. In this
case the slope is constant and equals Km,GSSG/Vmax. Furthermore, the line
obtained from the intercepts replot is defined by the following parame-
ters: slope = Km,NADPH/Vmax and intercept = 1/Vmax. From these slopes
and intercepts the values obtained for Km, j are Km,GSSG = 0.0469 mM and
Km,NADPH = 0.0266 mM.

4.3.3 Control of the Input Signal

The input signal entering the experimental system is actually continuous
changes in the concentrations of one or two compounds that are fed to the
reactor. However, the concentration profiles of these compounds follow the
function described in Section 4.1.2. To achieve the desired concentration
profiles in the experimental system, the flow rates of the feed streams are
computer controlled.

In this study the concentration profiles in the feed stream are delineated
prior to operation, and these profiles are interpreted in terms of the flow rates
of the two entering streams. Thus, the compounds that are fed at variable
concentrations are each present in one vessel, and two peristaltic pumps flow
these compounds to the reactor. The peristaltic pumps are computer controlled
and change their flow rate according to the function in process.

Control of the peristaltic pumps is achieved using a DT 2811-PGH data
acquisition board and a program written for the specific case. The card enables
ordering predesigned flow-rate profiles to the pumps and reports the actual
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performance of the pumps. To operate the control system the input required
in the software is composed of the following data:

� The minimum and maximum flow rates of each pump
� The cycle time for each pump
� The total time of the experiment

Using these data the flow-rate profiles are calculated and the information
is transfered to the peristaltic pump.

4.3.4 The Basic System in a Fed-Batch Reactor

The basic system containing the enzymes G6PDH and GR was operated in
a fed-batch reactor, and this experimental system is shown schematically in
Figure 4.58. In this system the enzymes and the cofactor NADP are present in
the reactor before the onset of operation and the substrates G6P and GSSG are
fed into the system at predetermined concentration profiles. The peristaltic
pumps P1 and P2 are computer controlled and produce modified variable
flow rates between 1 and 6 mL/h, with a cycle time of 5 min. However, at
the reactor inlet the combined flow rate is always 7 mL/h and the concen-
trations of the substrates, G6P and GSSG, vary between 13.3 and 80 mM.
The output signal of the system is represented by the time-dependent con-
centration profile of NADPH. To measure the concentration of NADPH, the
reaction mixture is circulated rapidly, using peristaltic pump P3, through a
spectrophotometer flow-through cell where the optical density is measured
continuously at 339 nm and recorded using the recorder attached.

To avoid massive dilution of the reaction mixture in the fed-batch reactor,
the initial reactor volume was rather large relative to the flow rate of the feed
streams. However, the initial volume of the reactor affects the amounts of
enzymes that are required. As shown in Section 4.1.4.1, large amounts of
enzymes are needed for each volume unit in the reactor, and in order to work
with reasonable amounts of enzymes, this volume was limited to 50 mL.

The initial volume of 50 mL chosen for the fed-batch reactor imposes
relatively low flow rates for the feed stream, as indicated above. However,
variations in the concentrations of the substrates in the feed stream are based
on variations in the flow rates, and these should be accurate. These considera-
tions lead to a need for accurate changes in a limited range of flow rates. The
flow rate of 7 mL/h is in the lowest range of the rates defined by the producer
for the peristaltic pumps used, so in the settings defined by the producer,
accurate variations could not be obtained. Thus, the peristaltic pumps were
operated with tubings of very small diameter. These tubings, of 0.5 mm inner
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Figure 4.59 Experimental and theoretical results obtained for the basic system using G6PDH
and GR, and operated as a fed-batch reactor. Results were obtained with Vm ,G6PDH = Vm ,GR =
0.5 mM/min.

diameter, were not defined by the producer, and their use required special
fittings and calibration of the pumps.

Delineation of the operational parameters was achieved using computer
simulations as described in Section 4.1.3.1. The values of Km, j (determined
experimentally), the initial reactor volume, and the initial concentration of
NADP were fed into the program. Employing the conclusions obtained from
the theoretical simulations, the other parameters (i.e., flow rates, concentration
range of the substrates, and Vm,i values) were calculated according to the
output signal desired.

Figure 4.59 presents the results obtained when the basic system, contain-
ing G6PDH and GR, was operated as a fed-batch reactor in the configuration
described in Figure 4.58. For comparison, the results of pertinent numerical
simulations are also shown. It can be seen that the signal obtained in the
experimental system indeed follows the characteristic course shown by the
signal calculated, but the actual numerical values are different. This dissimi-
larity has been attributed to inhibition effects in the reactions involved, effects
that were not considered in the calculations. Therefore, a search for potential
inhibitors was undertaken.

4.3.5 Internal Inhibition in the Basic System

Based on the results of the preceding section, potential inhibitors to the
enzymes involved, G6PDH and GR, were searched for among the compounds
that participate in the experimental system considered. It was found that GR
is inhibited by G6P, the substrate of the other reaction. To determine the
inhibition constant, G6P was considered as a dead-end inhibitor [146] that
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affects a reaction proceeding by the ping-pong mechanism. The rate equation
for this case is indicated in Section 4.1.3.2d.

The value of Ki,G6P was evaluated from results of separate experiments in
which GR catalyzes the reduction of GSSG by NADPH in the presence of var-
ious concentrations of G6P as inhibitor. The procedure employed is described
in Section 3.3.2, and the pertinent results, plotted as 1/V versus 1/[GSSG],
are presented in Figure 4.60. It can be seen that whenever the inhibitor G6P
is present, the lines bend upward as they approach the 1/V axis. This bend
becomes more pronounced as the concentration of G6P increases. This be-
havior is usually associated with substrate inhibition [149] and perhaps the
inhibitor G6P affects the substrate GSSG and the latter becomes inhibitory to
the enzyme GR. However, this effect was not considered in the rate equations
used in the experimental system.

The straight lines obtained for large values of 1/[GSSG] were extrapolated
to the 1/V axis to determine the inhibition constant, and this procedure is
presented in Figure 4.61. The lines in Figure 4.61 are close to parallel, and
we can conclude that the inhibitor and the varied substrate (GSSG) combine
with different enzyme forms [146]. Thus, G6P competes with NADPH and
the value of Ki,G6P can be determined from the intercept replot presented in
Figure 4.62. From the slope of the line obtained in Figure 4.62, Ki,G6P is
evaluated as 8.4 mM.
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Figure 4.60 1/V versus 1/[GSSG] plot at different fixed concentrations of the inhibitor G6P
and a constant concentration of NADPH.
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Figure 4.61 1/V versus 1/[GSSG] plot at different fixed concentrations of the inhibitor G6P
and a constant concentration of NADPH. This plot is similar to Figure 4.60 except that the
straight lines were extrapolated to 1/[GSSG] → 0.

4.3.6 Prediction of the Analytical Model Considering Internal
Inhibition in a Fed-Batch Reactor

Based on the conclusions drawn in Section 4.3.5, the theoretical results pre-
sented in Figure 4.59 were recalculated, now taking the inhibition of GR
by G6P into consideration. The results of such calculations, using various
values for Ki,G6P, are presented in Figure 4.63. In this figure the experimental
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Figure 4.62 Replot of the 1/V intercepts obtained in Figure 4.61.
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Figure 4.63 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a fed-batch reactor. Theoretical results were obtained considering
G6P as an inhibitor to GR and with Vm ,G6PDH = Vm ,GR = 0.5 mM/min.

results shown in Figure 4.59 were also included. It can be seen that con-
sideration of the internal inhibition indeed affects the output signal, and the
results obtained from the analytical model are in better agreement with the
experimental results than when inhibition was neglected. However, this im-
provement is achieved for inhibition constants that are much smaller than the
value of 8.4 mM found experimentally.

A more detailed analysis of these results is presented in Figure 4.64.
Here the experimental results presented in Figure 4.63 are shown again, and
numerical simulations carried out using inhibition constants that are close to
0.07 mM are also presented. It can again be seen that none of the theoretical
results agree fully with the experimental concentration profile.

To investigate these systems in an even more detailed manner, consideration
was given to additional experimental findings. Thus, in previous studies it
was shown that NADPH is inhibitory to the enzyme G6PDH and competes
with NADP [132]. For this system, an inhibition constant of 0.027 mM was
calculated [132]. This inhibition process was now added to the numerical
simulation performed for our system, and new calculations were performed
considering both the inhibition of GR by G6P and of G6PDH by NADPH.
The results obtained are shown in Figure 4.65. It can be seen that in this case
good agreement between the experimental and theoretical results is obtained
when Ki,G6P = 0.15 mM and Ki,NADPH = 0.027 mM.

Results of additional studies are presented in Figure 4.66. These re-
sults were also obtained in a fed-batch reactor, but in this case differ-
ent Vm,i values were employed: namely, Vm,G6PDH = 0.211 mM/min and
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Figure 4.64 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a fed-batch reactor. Theoretical results were obtained considering
G6P as an inhibitor to GR and with Vm ,G6PDH = Vm ,GR = 0.5 mM/min.

Vm,GR = 0.136 mM/min. In Figure 4.66 theoretical results obtained from the
analytical model without considering inhibition of G6PDH by NADPH are
also presented. It can be seen that when inhibition by G6P was not considered
in the analytical model (Ki,G6P = ∞), the theoretical results are very differ-
ent from the experimental results. This agreement improves when inhibition
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Figure 4.65 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a fed-batch reactor. Theoretical results were obtained with Vm ,G6PDH

= Vm ,GR = 0.5 mM/min and considering G6P as an inhibitor of GR and NADPH as an inhibitor
of G6PDH with the inhibition constants indicated above.
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Figure 4.66 Experimental and theoretical results obtained for the basic system using
G6PDH and GR and operated as a fed-batch reactor. Theoretical results were obtained with
Vm ,G6PDH = 0.211 mM/min and Vm ,GR = 0.136 mM/min and considering G6P as an inhibitor to
GR with the indicated values of Ki ,G6P (∞ = no inhibition by G6P). No inhibition of G6PDH
by NADPH is considered here.

by G6P is considered in the analytical model. As obtained for the previous
experiment (Figures 4.63 to 4.65), good agreement is accomplished with
Ki,G6P values that are smaller than that obtained experimentally (8.4 mM).
However, in this case the Ki,G6P value that leads to the best agreement is close
to 1 mM.

An additional step along this line was taken when inhibition of the enzyme
G6PDH by NADPH and that of GR by G6P were both considered in the
numerical simulations. The results obtained are presented in Figure 4.67. It
can be seen that in this case the experimental results lay between the theo-
retical results obtained with Ki,G6P = 0.15 mM and Ki,G6P = 1 mM. These
values are close to the Ki,G6P value that gave the best fit in the previous case
(Figure 4.65), 0.15 mM. However, the value that was determined experimen-
tally for Ki,G6P is larger and equals 8.4 mM. This difference can be caused by
the existence of additional processes that were not taken into account in the
analytical model and they are therefore expressed in the value of Ki,G6P. For
example, the effect observed in Section 4.3.5, where it was suggested that
GSSG becomes inhibitory to the enzyme GR in the presence of G6P, was not
considered.
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Figure 4.67 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a fed-batch reactor. Theoretical results were obtained with
Vm ,G6PDH = 0.211 mM/min and Vm ,GR = 0.136 mM/min and considering G6P as an inhibitor
of GR and NADPH as an inhibitor of G6PDH with the inhibition constants indicated above.

4.3.7 Immobilization of G6PDH and GR

Immobilization of the enzymes G6PDH and GR on Affi-Gel 10 was carried
out according to the procedure described in Section 3.3.3. The enzymes were
immobilized separately and the results of the immobilization processes are
summarized in Table 4.10. It can be seen that even though large amounts of
the enzymes were immobilized on the gel, only a small fraction remained
active after immobilization. This is probably related to steric hindrance
caused by the immobilized proteins. The procedure in which incubation was
carried out for 24 h at 4◦C gave better results in means of the immobilized en-
zyme activity. Therefore, gels containing the immobilized enzymes obtained
in this batch were mixed together and packed in the reactor.

Table 4.10 Results Obtained in Immobilization of G6PDH and GR on Affi-Gel 10

Enzyme Incubation conditions Immobilized Units (%) Active Units (%)

G6PDH 1 h at room temp 57 0.4
GR 1 h at room temp 63 0.7
G6PDH 24 h at 4◦C 61 1.2
GR 24 h at 4◦C 42 7.8
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4.3.8 The Basic System in a Packed Bed Reactor

In this part of the study the basic system containing the enzymes G6PDH and
GR was operated as a packed bed reactor rather than the fed-batch type of
reactor studied in Sections 4.3.4 to 4.3.6. The experimental system is shown
schematically in Figure 4.68. In this system the gel containing both immo-
bilized enzymes is packed in the reactor. The substrates G6P and GSSG and
are fed into the system at predetermined concentration profiles. The cofactor
NADP is also present in the feed stream, but it is fed in a constant concen-
tration to the reactor. Peristaltic pumps P1 and P2 are computer controlled
and produce modified flow rates between 9 and 91 mL/h with a cycle time of
5 min. However, at the reactor inlet the combined flow rate is always 100 mL/h
and the concentrations of the substrates, G6P and GSSG, vary between 1 and
10 mM. The output signal produced is represented by the concentration pro-
file of NADPH. To measure the concentration of NADPH, the stream leaving
the reactor passes through a spectrophotometer and the optical density is
measured continuously at 339 nm and recorded with the attached recorder.

In Figure 4.69 experimental results obtained when the basic system was
operated in the packed bed reactor mode are presented. It can be seen that the
experimental output signal obtained is a repetitive signal having a time period
of 10 min. In this figure theoretical results are also presented. Simulations were
carried out with various values of Ki,G6P and considering five compartments
in the reactor (i.e., the reactor behaves as a PFR). The immobilized enzymes
were assumed to be distributed homogeneously in the reactor. Comparing the
experimental and theoretical results, it can be seen that when inhibition of
GR by G6P is considered, agreement improved between the theoretical and
experimental results. Unlike previous cases in which the basic system was
operated in a fed-batch reactor, here the theoretical results obtained when the
value of Ki,G6P used was the one determined experimentally (i.e., 8.4 mM)
are quite close to the experimental results.

The interpretation of the experimental results presented in Figure 4.69
was extended to include inhibition of the enzyme G6PDH by NADPH with
Ki,NADPH = 0.027 mM. A comparison between experimental and calculated
results is shown in Figure 4.70. In this case better agreement is achieved when
lower values of Ki,G6P are employed, the values being in the range obtained
in experiments carried out in a fed-batch reactor (0.15 to 1 mM).

When comparing experimental and theoretical results it should be men-
tioned that in addition to processes that are related to the reaction mechanisms
but not considered in the model (see Section 4.3.6), several assumptions re-
lated to the operational mode are also made. For example, in the analytical
model developed for the packed bed reactor it was assumed that no diffusion
limitations are operative and that the immobilized enzymes are distributed in
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Figure 4.69 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a packed bed reactor. Theoretical results were obtained with n = 5
(i.e., assuming plug flow regimen), Vm ,G6PDH = 0.6 mM/min and Vm ,GR = 0.7 mM/min and
considering G6P as an inhibitor of GR with the values of Ki ,G6P indicated.

the reactor homogeneously. This can lead to disagreement between the results
obtained when different operation modes are employed. However, the analyt-
ical model can be used to predict the output signal with good accuracy, and
this is very important in a complex system where this prediction is essential
in the design process, in which determination of the operational parameters
takes place.
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Figure 4.70 Experimental and theoretical results obtained for the basic system with G6PDH
and GR when operated as a packed bed reactor. Theoretical results were obtained with n = 5
(i.e., assuming a plug flow regimen), Vm ,G6PDH = 0.6 mM/min, and Vm ,GR = 0.7 mM/min
and considering G6P as an inhibitor of GR and NADPH as an inhibitor of G6PDH with the
inhibition constant indicated above.
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4.4 THE EXTENDED BASIC SYSTEM: THEORETICAL
CONSIDERATIONS AND RESULTS

An extension of the basic system considered in this work is termed the
extended basic system. This system was also designed to function as an
information-processing unit and is characterized in Section 4.4.1. Its chrac-
teristics as an information-processing unit are described in Section 4.4.2. In
Section 4.4.3 the analytical model that was written for the extended basic
system is presented. Using this model, numerical simulations were carried
out and their results are presented in Section 4.4.4.

4.4.1 Characteristics of the Extended Basic System

The extended basic system shown in Figure 4.71 relies on the same reactions
as those utilized in the basic system: reactions (1) and (2) of Section 4.1.1. In
addition to the processes considered in the basic system, an external inhibitor
for enzyme E1 is fed into the system.

4.4.2 Extended Basic System as an Information-Processing Unit

The extended basic system is also designed to function as an information-
processing unit with the same characteristics as those defined in Section
4.1.2 for the basic system. The difference between the systems arises from
the composition of the input signal. In the extended basic system the input
signal can follow one of the four options presented in Table 4.11. These
options were chosen as representative of the experimental systems studied
(see Section 4.5). The concentration profiles applied here are also defined

E1

E2

A B

S2P2

P1S1

S2

S1

I

Figure 4.71 Extended basic system. S1,S2: substrates; P1,P2: products; E1,E2: participating
enzymes; A,B: cofactors; I: external inhibitor to enzyme E1.
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Table 4.11 Input Signal in the Extended Basic Systema

Option No. [I]0 [S1]0 [S2]0

1 — /\/\ \/\/
2 /\/\ — —
3 /\/\ \/\/ —
4 /\/\ — \/\/
a—: constant; /\/\, \/\/: variable, following the profiles described in Section 4.1.2 and Figure 4.2.

with the parameters detailed in Section 4.1.2: cycle time (τ ), period time (π ),
range, and amplitude.

4.4.3 Analytical Model for the Extended Basic System

The analytical models developed in this part are based on those written
for the basic system and presented in Section 4.1.3. The extended basic
system is considered useful for information processing only with continuous
operational modes. This is due to the fact that the inhibitor is not consumed
in the reactor, and in a fed-batch reactor it accumulates and causes only
decay effects. Therefore, the analytical model presented here refers only to a
continuous reactor.

Applying the compartmental analysis approach leads to equations (32) to
(37), which hold for both the basic and the extended basic systems. When the
latter is considered, the following equation should also be used:

d [I]i

dt
= Q

Vi

(
[I]i−1 − [I]i

)
(72)

Equations (32) to (37) are related to the reaction mechanism considered. For
the extended basic system, the inhibition process is taken into account in rate
equations r1 and r2. The options considered in this study are detailed in the
Sections 4.4.3a and b.

Initial conditions for equations (32) to (37) and (72) are defined by the
concentrations of the substrates, products, enzymes, and external inhibitor
in the reactor compartments at the onset of operation (at time t = 0); for
1 ≤ i ≤ n,

[S1]i = 0, [S2]i = 0
[P1]i = 0, [P2]i = 0
[A]i = 0, [B]i = 0
[I]i = 0

(73)
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As indicated in Figure 4.71, the feed stream to the reactor is composed of the
substrates S1 and S2, the cofactor A, and the external inhibitor. Thus, for any
time t , the following equation holds:

[S1]0 = f1 (t) , [S2]0 = f2(t)
[P1]0 = 0, [P2]0 = 0
[A]0 = f3 (t) , [B]0 = 0
[I]0 = f4 (t)

(74)

The set of equations (32) to (37), (49), and (74) are solved numerically
according to the Runge–Kutta method [145] with initial conditions as defined
in equation (73).

a. Ping-Pong Mechanism and External Inhibition In this case the external
compound fed into the system is considered a “dead-end” inhibitor to the
enzyme E1. Such an inhibitor reacts with one or more enzyme forms to
yield a complex that cannot participate in the reaction. When the ping-pong
mechanism is considered and the inhibitor combines with the enzyme form
that reacts with S1 (i.e., I is competitive with respect to S1), the rate equation
r1 becomes [146]

r1,i = Vm,1[S1]i [A]i

{1 + [I]i/KI} Km,S1[A]i + Km,A[S1]i + [S1]i [A]i
(75)

b. Ping-Pong Mechanism, Product Inhibition, and External Inhibition In
this case the processes described in Sections 4.1.3.2c and 4.4.3a take place
simultaneously in reaction (1). For this case, the rate equation for reaction (1)
becomes [146]

r1,i = Vm,1[S1]i [A]i

{1 + [I]i/KI} Km,S1[A]i + {
1 + [B]i/Ki,B

}
Km,A[S1]i + [S1]i [A]i

(76)

4.4.4 Results of Numerical Simulations for the Extended Basic System

In this section, results of numerical simulations are presented for the case
when the extended basic system is operated in a continuous reactor. Here, the
inhibitor enters the reactor as a component of the feed stream and affects the
enzyme E1 (it is competitive with S1). In Figures 4.72 to 4.77 the effects of
the system parameters on the concentration of B in a PFR with an external
inhibitor are presented. The sets of the basic values used for the parameters
involved are given in Table 4.12, set I.
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Table 4.12 Numerical Values of the Operational Parameters Used in Simulations of the
Extended Basic System When Operated as a Packed Bed Reactor

Parameter Symbol Units Set I Set II

Volume of the reactor V mL 6 5.65
Volumetric flow rate Q mL/h 100 100
Cycle time τ min 5 5
Concentration range of S1 in

the feed stream
S1,0 mM 1 5

Concentration range of S2 in
the feed stream

S2,0 mM 1 5

Concentration range of the
external inhibitor in the
feed stream

I0 mM 1–10 ind.a

Concentration of A in the feed
stream

A0 mM 0.3 0.3

Michaelis constant for S1 Km,S1 mM 0.156 0.156
Michaelis constant for S2 Km,S2 mM 0.0469 0.0469
Michaelis constant for A Km ,A mM 0.076 0.076
Michaelis constant for B Km ,B mM 0.0266 0.0266
Inhibition constant for the

external inhibitor
KI mM ind.a 1

Maximal rate of the reaction
S1 + A → P1 + B

Vm ,1 mM/min 0.5 0.5

Maximal rate of the reaction
S2 + B → P2 + A

Vm ,2 mM/min 0.5 0.5

ind.: indicated in the figure.

Figure 4.72 presents the effect of the inhibition constant KI. In this case
the substrates are fed at constant concentrations, and the concentration of
the external inhibitor in the feed stream changes according to the function
described in Section 4.1.2. It can be seen that an oscillatory signal is obtained
and its amplitude increases as KI increases from 0.001 mM to 0.1 mM.
Another increase in the value of KI from 0.1 mM to 1 mM causes the opposite
effect, and the amplitude decreases drastically. This relationship between the
amplitude of the output signal and the value of KI is presented in Figure 4.73,
where a bell-shaped curve is observed. The amplitude of the input signal is
9 mM; therefore, the system presented decreases this amplitude by 600 or
more. This enables one to obtain very fine amplitudes that cannot be obtained
by means of flow rates.

Figure 4.74 presents the effect of constant substrate concentration in the
feed stream on the concentration profile of B. It can be seen that the am-
plitude of the oscillatory output signal obtained increases when [S1]0 and
[S2]0 increase from 0.1 mM to 10 mM. Another increase in [S1]0 and [S2]0
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Figure 4.72 Effect of KI on the concentration profile of B in the extended basic system when
operated as a PFR (n = 5). The values of KI are indicated above, [S1]0 = [S2],0 = 46.6 mM,
and the values used for all other parameters are given in Table 4.12, set I.

causes a decrease in the the amplitude of the output signal. This relationship
between the amplitude of the output signal and the values of [S1]0 and [S2]0 is
presented in Figure 4.75. The effect obtained here resembles the one obtained
in Figures 4.72 and 4.73, where KI was the variable parameter. When this
system is operated practically, changes in KI are achieved by changing the
external inhibitor, but changes in [S1]0 and [S2]0 are achieved more easily by
changing these concentrations in the feed stream.
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Figure 4.73 Amplitude of the concentration profile of B as a function of KI. Data are taken
from Figure 4.72.
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Figure 4.74 Effect of [S1]0 and [S2]0 on the concentration profile of B in the extended basic
system when operated as a PFR (n = 5). The values of [S1]0 and [S2]0 are indicated above,
KI = 1 mM, and the values used for all other parameters are given in Table 4.12, set I.

Figure 4.76 presents the effect of the flow rate on the output signal obtained.
It can be seen that an increase in the flow rate through the reactor leads to
an increase in the amplitude of the oscillatory output signal obtained. This
increase in the flow rate also causes a phase shift in the output signal, which
is presented in Figure 4.77. It can be seen that large phase shifts are obtained
when low flow rates are employed, and these tend to reach a constant value
when high flow rates are employed.
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Figure 4.75 Amplitude of the concentration profile B as a function of [S1]0 and [S2]0. Data
are taken from Figure 4.74.
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Figure 4.76 Effect of flow rate on the concentration profile of B in the extended basic system
when operated as a PFR (n = 5). The values of Q are indicated, KI = 1 mM, and the values
used for all other parameters are given in Table 4.12, set I.

The calculations discussed above (Figures 4.72 to 4.77) were performed
for a PFR. Figures 4.78 to 4.80 refer to a packed bed reactor with n = 3. In
this case the effect of the concentration range of the external inhibitor on the
signal obtained was investigated. The data in Figures 4.78 to 4.80 differ from
one another with respect to the cycle time, τ , of the concentration profile of
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Figure 4.77 Appearance time of the third peak in the concentration profile of B as a function
of Q. Data are taken from Figure 4.76.



122 RESULTS

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (min)

C
on

ce
nt

ra
ti

on
 o

f 
B

 (
m

M
)

X (mM)
0
2
4
6
8
10

20

30
40

60

100
200
400

Figure 4.78 Effect of an external inhibitor on the concentration profile of B in the extended
basic system when operated as a packed bed reactor (n = 3). The external inhibitor concentra-
tion varies between 0 and X . The values of X are indicated above, the cycle time (τ ) is 1 min,
and the values used for all other parameters are given in Table 4.12, set II.
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Figure 4.79 Effect of an external inhibitor on the concentration profile of B in the extended
basic system when operated as a packed bed reactor (n = 3). The external inhibitor concen-
tration varies between 0 and X . The values of X are indicated above, the cycle time (τ ) is 5
min, and the values used for all other parameters are given in Table 4.12, set II.



THE EXTENDED BASIC SYSTEM: THEORETICAL CONSIDERATIONS AND RESULTS 123

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (min)

C
on

ce
nt

ra
ti

on
 o

f 
B

 (
m

M
)

X (mM)
0

2
4
6
8
10

20

30
40

60
100
200
400

Figure 4.80 Effect of an external inhibitor on the concentration profile of B in the extended
basic system when operated as a packed bed reactor (n = 3). The external inhibitor concentra-
tion varies between 0 and X . The values of X are indicated above, the cycle time (τ ) is 10 min,
and the values used for all other parameters are given in Table 4.12, set II.

the external inhibitor in the feed stream. It can be seen that in the three cases
presented (τ = 1, 5, and 10 min), an increase in the concentration range of the
input signal first causes an increase in the amplitude of the oscillatory signal
obtained. This amplitude reaches a maximal value, and then an additional
increase in the concentration range of the input signal causes a decrease in
this amplitude.

The signals obtained with different values of τ are compared in Figure 4.81.
In all the cases presented here the concentration of the inhibitor in the feed
stream varies between 0 and 20 mM, and it can be seen that an increase in
the cycle time leads to an increase in the amplitude and a decrease in the time
period of the oscillatory signals obtained.

For the case presented in Figures 4.78 to 4.80 a close system can be de-
signed. The purpose of this system is to reach the maximal possible amplitude
for the output signal using a feedback algorithm. Thus, the process is based on
measurement of the amplitude obtained for the output signal, comparing this
amplitude to the former one and then calculating the gradient of the function
described in Figure 4.81. Using this gradient the concentration of the external
inhibitor in the feed stream is corrected. This process is repeated until the
gradient obtained is close enough to zero.
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Figure 4.81 Effect of τ of an external inhibitor on the concentration profile of B in the
extended basic system when operated as a packed bed reactor (n = 3). The external inhibitor
concentration varies between 0 and 20 mM. Data for τ = 1, 5, and 10 min are taken from
Figures 4.78, 4.79, and 4.80, respectively. The size of the bars indicates the values of τ .



5
DISCUSSION

5.1 THE BASIC SYSTEM

The ability of the basic system to perform information-processing functions
was examined using a series of analytical models developed in this study.
These models are also designed to serve as a tool for directing the experiments
in which the basic system is operated. In this respect the input signals were
related to those used in the experimental part.

The basic system was operated as a fed-batch reactor and as a continuous
reactor. The fed batch was used as a first implementation due to its simplicity
of operation. However, in such a reactor dilution takes place during operation
and therefore the operation conditions should involve a low flow rate and high
volume of reaction mixture. Also, this mode of operation requires sizable
amounts of the soluble enzymes, and the total operation time is limited.

When immobilized enzymes are employed in a continuous reactor, many
of these limitations are avoided. Moreover, in this case the output signal is
recorded at the reactor outlet, and this procedure therefore cannot affect the
processes taking place in the reactor, and the signals obtained can be used
in another system as actual concentrations without conversion. Yet, in this
configuration the cofactor enters the reactor in the feed stream, which requires
large amounts of cofactor, especially when a high flow rate is employed.

Information Processing by Biochemical Systems: Neural Network–Type Configurations, By Orna Filo and Noah Lotan
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5.1.1 Fed-Batch Reactor: Numerical Simulations

The main information-processing function obtained when the basic system is
operated as a fed batch reactor is conversion of the continuous input signal
to signals characterized by “ON” (nonzero concentration) and “OFF ” (zero
concentration) periods, when each period lasts for the entire cycle time of
the input signal. The numerical simulation results show that the output sig-
nals produced by the basic system depend to a large extent on the reaction
mechanism and the inhibition processes involved as well as on the values of
Vm,i , Km, j , and Si,0 (i = 1, 2) and the relationships between them. From these
results some empirical rules could be derived. Thus, it was concluded that in
order to obtain ON/OFF output signals, the following conditions should be
fulfilled:

� The values of Vm,i (in mM/min) should be around 20 times greater than
the highest value of Km, j (in mM).

� The average values of Si,0 should be about 103 times larger than the
highest value of Km, j .

5.1.2 Continuous Reactor: Numerical Simulations

When the basic system was operated as a continuous packed bed reactor, the
analytical model developed here allows us to describe the performance of all
types of reactors, from a continuous stirred tank reactor (CSTR) to a plug flow
reactor (PFR). It was shown that the information-processing function depends
on the reactor type, the flow rate through the reactor, the concentration of
the cofactor in the feed stream, the values of Vm,i , the presence of internal
inhibitors, and the cycle time of the input signal.

The information-processing function carried out in continuous reactors
produces the following signals:

� ON/OFF signals (periods of 20/20, 10/30, or 30/10 min for an input
signal with a cycle time of 20 min).

� Repetitive oscillatory signals with different amplitudes, different phases,
and time periods similar to those of the input signals.

5.1.3 Assessment of Experimental Results

The basic system was implemented experimentally utilizing the enzymes
G6PDH and GR in a fed-batch reactor (soluble enzymes) and a packed bed
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reactor (immobilized enzymes). The most important conclusions of these
experiments are that cyclic enzyme systems:

� Can actually perform information-processing functions.
� Can produce the signal types predicted by the analytical model.
� Require that for accurate prediction of their function, one must be familiar

with all the processes that take place in the system (e.g., inhibition
processes).

It should be pointed out that this is the first time that such characteristics
have been found and reported.

5.2 THE EXTENDED BASIC SYSTEM

This new system is an extension of the basic system discussed above. In the
extended basic system an external inhibitor is also involved in the processes
taking place. This component provides an additional path for control of the
enzymic activity. Thus, whereas in the basic system the input signal is com-
posed of concentration profiles of the consumable substrates, here the input
signal contains a component that is an effector for one of the enzymes but
is not consumed in the reactions. Due to this characteristic, this system is
considered useful in terms of information processing only with continuous
operational modes.

For the extended basic system the output signals obtained were repetitive
oscillatory signals, with a time period similar to that of the input signal but
with different amplitudes and phases. It was shown that this amplitude is
related to the system parameters. Therefore, the input signal characteristics
can be chosen according to the amplitude required for the output signal.
The extended basic system was implemented experimentally in a packed bed
reactor utilizing the same enzymes as those used for the basic system (i.e.,
G6PDH and GR). The results obtained show that the extended basic system
produces the signal types predicted by the analytical model and can actually
perform information-processing functions.

5.3 BIOCHEMICAL NETWORKS

The representation of nerve cells as symbolic devices such as perceptrons
led to the development of the computer-based models termed artificial neural
networks. Since proteins in general, and enzymes in particular, are capable
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of accepting inputs and producing outputs, it seems inescapable to conclude
that the interconnected network of enzyme-based reactions will share some of
the properties of artificial neural networks and to a large extent will resemble
natural information-processing systems.

A series of networks were considered in this study. In all cases the networks
were built of a number of basic systems (biochemical neurons), and commu-
nication between the individual neurons was achieved by chemical species
passing from one neuron to another, where they participate in processes tak-
ing place therein. This type of communication is operative in natural neuronic
systems, where “information” from one neuron to the other is passed as neu-
rotransmitter molecules crossing the synapses connecting the participating
neurons.

The networks considered in this study are of three main types (identified as
A, B, and C), differing from one another by the mode of connection between
the participating biochemical neurons (see Table 5.1). For each network con-
sidered, an analytical model was written describing the performance of the
network in kinetic terms. As the first stage in this program, analytical models
were developed for the case when the reactions of the biochemical networks
take place in fed-batch reactors. It is envisaged that these models will be
extended to packed bed reactors in the future.

In this part the main interest was to examine the information-processing
abilities of the networks and to assess the advantage of a network over a
single basic system. The main information-processing functions achieved by
the network systems studied are indicated in Table 5.1. It can be seen that
both single neurons and networks can perform basic switching operations.
However, unlike a single neuron, the networks can also perform more complex
processes (i.e., division and pacemaking). Moreover, any performance of the
networks is dependent on the network type (i.e., A, B, or C), on the number

Table 5.1 Characteristics and Information-Processing Operations of Biochemical Networks

Number Number of Information-
of Basic Substrates Number Processing

Network Type Systems in the Input of Outputs Operations

A Fully connected n 2n 4n + 2 Switching
Division by 2

B Feedforward n 2 4n + 2 Switching
Division by 2
Pacemaker

C Fully connected n 2 2n + 4 Switching
Division by 2
Division by 4
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of basic systems connected in the network, and on the internal parameters of
the biochemical reactions (e.g., Km, j and Vm,i ).

5.4 COMPARING ARTIFICIAL NEURAL NETWORKS
WITH BIOCHEMICAL NETWORKS

To learn the characteristic properties of the biochemical systems considered in
this study and to assess their ability to perform as ANNs, a direct comparison
between the two is made here. In so doing it should be noted that there is
no universally accepted definition of an artificial neural network. Therefore,
we refer here to the characteristics of ANNs summarized from some of the
definitions available in the literature [17–22]. The next step is to examine
if the characteristics mentioned above can also be found in the biochemical
networks proposed in this study. These characteristics are compared one by
one in Table 5.2.

5.5 COMPARING BIOCHEMICAL NETWORKS
TO COMPUTATIONAL MODELS

In 1936, A.M. Turing defined a class of abstract machines now called Turing
machines [150,151]. A Turing machine is a finite-state machine associated
with a special type of environment: its tape, in which it can store (and later
recover) sequences of symbols. At each moment the machine gets its input
stimulus by reading the symbol written at a certain point along the tape. The
response of the machine may change that symbol and also move the machine
a small distance either way along the tape. The result is that the stimulus for
the next cycle of operation will come from a different “square” of the tape,
and the machine may thus read a symbol that was written there long ago.
This means that the machine has access to a rudimentary exterior memory in
addition to that provided within its finite-state part. Since no limit is placed on
the amount of tape available, this memory has, in effect, an infinite capacity.
Turing discovered that he could set up these machines to make very complex
computations [150,151].

Despite its simplicity, the Turing machine models the computing capability
of a general-purpose computer, and since 1936 it has been the standard
accepted model of universal computation. The proposition, often called the
Church–Turing thesis, says that any process which could naturally be called
an effective procedure can be realized by a Turing machine. In other words,
this thesis states that no realizable computing device can be more powerful
than a Turing machine [150,151]. It is, however, of interest to discuss the
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Table 5.2 Comparison Between Artificial Neural Networks and Biochemical Networks

ANNs Biochemical Networks

1. ANNs are combination of rules
(software) and hardware.

The entire biochemical network can be seen as
the hardware component and does not need
attached software in order to function.

2. The network is built of a number
of elementary processing
elements (neurons or nodes).

The biochemical network is built of a number of
processing elements (i.e., the biochemical
neurons). These are the enzymic basic
systems. The term elementary is not an
absolute one. However, the processing based
on a few enzymic reactions is less complex
than the processing of electrical signals as
achieved by natural nerve cells.

3. The neurons are highly
interconnected and
information is transferred
from one element to another
along the connecting lines.

The enzymic basic systems can be highly
interconnected, due to chemical components
that participate in processes that take place in
more than one biochemical neuron.

4. The neurons operate in parallel. When all the components that are required by
the enzymic reactions in the network are
present in the reaction medium, all the
enzymes operate in parallel. Moreover, each
enzyme recognizes its specific substrates only.

5. The network responds to external
inputs by producing
well-defined outputs.

For an enzymic system, the input is the
concentration profiles of chemical species fed
into the system, while the output is the
concentration profiles of all chemical species
involved in the system. Under given
conditions, the relationship between input and
output is uniquely defined by the reaction
mechanism and the pertinent rate equations.

6. Each neuron in the network
operates only on local
information.

In the biochemical network each biochemical
neuron works only with the substrates
required for the specific reactions involved
and is not affected by the reactions that take
place in other neurons, unless they share a
particular component.

7. The network stores information
as the synaptic weights and
makes them available for
further use.

In the biochemical network, the basic
information is the kinetic mechanism and the
kinetic parameters of the participating
enzymes, and this was stored during
evolutionary processes. This information is
used when reactions are carried out.
Therefore, in biochemical networks,
information is not stored in the connection
strengths but in the enzymes catalyzing the
reactions.
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Table 5.2 (Continued)

ANNs Biochemical Networks

8. The network function is
determined by the network
structure (i.e., the particular
mode by which the individual
neurons are connected to one
another), the connection
strengths (synaptic weights)
(i.e., the quantitative rules
defining the information
transfer), and the processing
performed at the individual
neuron.

In this study we showed that the biochemical
networks function according to the mode of
connection between the basic systems (e.g.,
network A, B, or C), and also according to the
processing performed at each neuron (i.e.,
reaction mechanism or kinetic constants). For
the biochemical systems, the strengths of
connection between basic elements (i.e.,
synaptic weights) is represented by the
concentration of the component that is shared
between the neurons.

9. The networks can “adapt”
themselves to produce a
desired output. This adaptation
is usually achieved by
changing the synaptic weights,
and this process is defined as
“learning.” Some networks
carry out the learning process
by relying on task examples.

In the biochemical network, the processing
elements do not learn from task examples, but
the knowledge is already “built in.” For
example, an enzyme recognizes a specific
substrate and applies a specific rate for the
catalytic reaction, as a function of the
particular conditions, pH, temperature, and so
on. Therefore, in such systems, adaptation is
implemented by adjusting the catalytic
characteristics according to environmental
conditions and following laws already “built
in” by evolution.

computing capabilities of the biochemical networks proposed in this study
and to examine whether their special characteristics enable them to perform
as Turing machines or as different machines, even more powerful than those
conceived based on the Turing model.

Neural networks are usually studied in association with their applications
in the areas of vision, speech processing, robotics, signal processing, and
many other fields. However, it is of great interest to examine the computa-
tional power and computational capabilities of these systems. An attempt to
explain the computational basis of neural networks is presented in the work
of Siegelmann and colleagues [152–155]. In these studies particular interest
is given to recurrent neural network models. These networks have no concept
of “layers,” and they allow for loops and cycles that give rise to a dynami-
cal system. Recurrent neural networks are able to incorporate memory and,
due to this characteristic, can provide a computational model. A feedforward
network supports no memory and therefore cannot provide a computational
model. The computational models discussed by Siegelmann and co-workers
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[152–155] consider continuous recurrent networks with a finite number of
neurons in which the activation function σ is the saturated-linear function:

σ (x) :=
⎧⎨
⎩

0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

The networks are also specified by sets of coefficients called weights and
by a subset of p output processors that are used to communicate the outputs
of the network to the environment. These studies consider a uniform model
in which the structure of the networks and the values of the weights do not
change in time. The outputs of each processor are the only parameters that
change with time. Siegelmann et al. [152–155] show that the computational
power of these uniform recurrent networks depends on the classes of numbers
utilized as weights:

� If the weights are integers, the neurons may assume binary activation
values only and the network accepts a regular language [155].

� If the weights are rational numbers, the network is equivalent in power
to the Turing machine model [152–155].

� When weights are general real numbers, the network turns out to have
super-Turing capabilities [152–155].

Now we can look at the biochemical networks developed in this work
and compare them to the recurrent networks discussed above. Network A
(Section 4.2.1) and Network C (Section 4.2.3) are fully connected to one
another, and the information flows back and forth from each neuron to all the
others. This situation is very much like the one described for recurrent neural
networks, and in these cases, memory, which is a necessary to demonstrate
computational power, is clearly incorporated in the networks. Network B
(Section 4.2.2) is a feedforward network and thus appears to have no memory
in this form. However, when we examine the processes taking place in the
biochemical neuron more carefully, we can see that the enzymic reactions
take into account the concentration of the relevant substrates present in the
system. These substrates can be fed as inputs at any time t. However, part of
them also remained from the reactions that took place at time t − 1, and thus
the enzymic system in every form is influenced by the processes that took
place at early stages. Hence, memory is always incorporated.

The activation function of the biochemical neuron is defined by the reaction
mechanism and the pertinent rate equations. This function is actually a set of
differential equations derived from mass balances for the components taking
part in the enzymic reactions in each biochemical neuron (see Section 4.1.3).
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This activation function is much more complicated then the saturated linear
function used in recurrent neural networks [152–155] and is actually estab-
lished by the biochemical system. According to Siegelmann [154], use of a
complicated activation function does not increase the computational power
of the network.

The recurrent network models assume that the structure of the network, as
well as the values of the weights, do not change in time. Moreover, only the
activation values (i.e., the output of each processor that is used in the next
iteration) changes in time. In the biochemical network one cannot separate
outputs and weights. The outputs of one biochemical neurons are time depen-
dent and enter the following biochemical neurons as they are. However, the
coefficients involved in these biochemical processes are the kinetic constants
that appear in the rate equations, and these constants are real numbers. The
inputs considered in biochemical networks are continuous analog numbers
that change over time. The inputs to the recurrent neural networks are sets of
binary numbers.

There are many similarities between recurrent neural networks and the
biochemical networks presented in this work. However, the dissimilarities re-
viewed here are very closely related to the inherent characteristics of biochem-
ical systems, such as their kinetic equations. Thus, in future work one may
consider recurrent neural networks that are similar to biochemical networks—
having the same activation function and the same connections between
neurons—and this approach will allow one to assess their computational
capabilities.

In another study, Kilian and Siegelmann [156] introduced a new type
of automaton called the alarm clock machine. In this study, alarm clocks are
replaced by dynamic counters, which are very much like the input signals that
are introduced into biochemical networks (see Figure 4.2). They showed that
alarm clock machines are Turing universal and that they can be implemented
by a sigmoidal recurrent neural network. Although our biochemical networks
can also produce the types of signals used as dynamic counters, these signals
can be produced simply in other ways, such as they were produced for the
input signal in this work. Thus, in this context the use of biochemical networks
is not advantageous.

Other types of “machines” that are not based on neural networks were also
suggested as continuous-time models. Pour-El [157] constructed a general-
purpose analog computer using a finite number of the following units:

� Integrator
� Constant multiplier
� Adder
� Variable multiplier
� Constant function
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According to this model, it is required that two inputs and two outputs
never be interconnected, and in addition, each input is connected to at most
one output.

Another model for an analog computer was suggested by Rubel [158,159].
Called an extended analog computer, it is also based on a finite number of
functions that are applied on independent variables. The machine consists of
several levels, and the outputs of level N − 1 are used as the inputs of level N.
The computing is achieved by “black boxes” of various kinds, such as adders,
multipliers, substituters, and differentiators.

To build a machine based on the models suggested by Pour-El and Rubel
[157–159] and on the biochemical units developed in this work, the biochem-
ical units should be able to perform the mathematical operations defined
above. In this work it was shown that networks A, B, and C can act as con-
stant multipliers (see Table 5.1). Other units will have to be defined in the
future.



6
CONCLUSIONS

This study brings us to the following main conclusions:

1. Enzyme-based biochemical neurons can be built, analyzed, and operated
using some of the basic principles of neural networks.

2. Enzyme-based biochemical networks can be designed and analyzed
using basic principles of enzyme kinetics and compartmental analysis
procedures.

3. This study reveals many similarities between biochemical networks and
artificial neural networks. Yet there are also major differences between
ANNs and biochemical networks, and these address particularly the
principles on which the learning process is achieved. Thus, in most
ANNs the strength of connections is modified by presenting the network
with a “teaching” input and applying a learning algorithm, whereas in
biochemical networks such a process does not take place. In the latter,
for a given set of operational conditions, the performance of the network
is predictable since all the knowledge is already “built in” within the
enzymes. This knowledge was acquired during evolutionary processes
or was provided artificially by chemical or genetic modifications.

4. In biochemical networks, adaptation takes place by responding to
changes in environmental conditions, and this is achieved by adjust-
ing the kinetic parameters. This adjustment leads to changes in the
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concentrations of the chemical species transferred from one neuron to
another. As these species provide the connection between individual
neurons, a change in their concentration is equivalent to a change in the
synaptic weights.

The concepts of ANNs were inspired by studies of biological systems.
Thus, biochemical networks such as those studied here are closer to biological
systems for information processing than are the ANNs. This is because the
biological networks and the biochemical systems for information processing
use the same “language” and the same hardware (the biological molecules).
As such, the biochemical networks provide unique advantages, and these
should be utilized in the service of further progress.
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