أساسيات الكهربـاءوالإلكتوونيـات

ثنائي زينر والثنائي الباعث للضوء

دراسـة خصـائص الثنائي زينر والثـائي البـاعث للضوء وتطبيقاتها

الأهلداف :
عنـدمـا تكتمل هذه الوحدة تكـون قادرا على : 1 - رسم التركيب والرمز المنطقي للثنائي زينر 2 - رسمر وشرح منحنى الخصـائص للثنائي زينر 3 - تطبيق الزينر بِّ دوائر تثبيت الجهد

4 - رسـم التركيب الداخلي والرمز المنطقي للثتائي الباعث للضوء
5 - فهم خصـائص LED وطرق استتخدامهـ
إجراءات السلامةة:
انظر المذكرة صفحة 10 -15 واتبع التعليمـات من اجل سـلامتك

الوقتت المتوقع للتلدريب :
11 ساعة

متطلبـات الجلارة :

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \text { - إتقان التعامل مع راسم الإشـارة }
\end{aligned}
$$

ثـنائي زينر

Zener Diode

يعمل هذا النوع من هذا الدايود يِّ حالة الانحياز العكسي. غير أن جهد الانهيار العكسي للدايود زينر أقل من جهد انهيار الدايود العادي ـ ويرجع السبب يٌ ذلك إلى زيادة نسبـة الشوائب پٌِ موحد زينر

عن شوائب الدايود العادي ـ وأيضا الموحد العادي يتلف عند الانهيار العكسي بسبب ارتفاع هـا الجهد الذي يسبب مرور تيار عالٍ يرفع درجة حرارة الموحد العادي فيتلف. أمـا ثــائي زينـر فيراعى فيها الحفاظ على درجة حرارة منخفضة بالتحكـم فِ قيمة التيار العكسي. وعليه تستطيع القول إن موحد
 . ويبين شكل (2 -1) منحنى خصـائص ثـائي زينر .

شكل (2 -1) منحنى خواص لثنائي زينـر وعلى اليسـار رمز الزينر
 الانحياز العكسي فان جهد زينر Vz يمكن أن يتغير تبعاً لتغيير نسبة الشوائب المطعهة للدايود وتتراوح قيمة جهد زينر مـابين $25-200 \mathrm{C}$ بقدرة تصل إلى أكثر من 100W

شكل (2-2)

من أكثر استخدامـات الزينـر شيوعاً استخدامـه كهشبت للجهد(Regulator Voltage) ويبـين
الشكل (2 -2) الدائرة العملية البسيطة لتثبيت الجهد عند قيمـة جهد انهيار الزينر 2 (2)
يتلخص مبدأ عمل هذه الدائرة يٌْ تثبيت جهد الحمل VL عند جهد يسـاوي جهد انهيار الزينر VZ إذا تغير جهد الدخل فإن الزينر يحافظ على جهد الحمل ثابتاً عند قيمة تسـاوي VZ . . والجهد الزائد يذهبب
 الحمل RL فإن هذا يتطلب زيادة پِّ تيار الحمل وهذه الزيادة لا تأتي من تيار المصدر لأن تيار المصدر يبقي ثابتاً بدون تفير ولكن تعوض من تيـار الموحد زينر.

تحليـلـ سلامة الزيـنر :

عند قياسـاه بجهاز الأوميتر ووضع أطراف جهاز القياس بحيث يـكون وِّ انحياز أمامي فإنتا سوف نقرأ قيمـة صغيرة للمقاومة .
 يصل إلى جهد الانهيار.

ثنائي انبعاث الضوء
 (Light Emitting Diode) LED

يقوم الدايود البـاعث للضوء بتحويل الطاقة الكهربائية إلى طاقة ضوئية

الثزكيب:

شكل (2 -4) التركيب الداخلي

يوضح شكل (2 -4) التركيب الداخلي للثنائي الباعث للضوءLED حيث إنه يشبه هِّ تركيبها تركيب الدايود العادي غير أنها يصنع من مادة فوسفات الجاليوم بينمـا يصنع الدايود العادي من - السيليكـون أو الجرمـانيوم

نظريةة عمل الثنـائي البـاعث للضوي :

كمـا هو معروف توجد ثلاث مستويات للطاقة وِّشبه الموصل هي طاقة توصيل طاقة تكافؤ يفصل بينههـا نطاق المحظور . عند تطبيق جهد أمامي على LED فإن الشـحنات تتحرك خـلال الحاجز الفاصل بين طرٌٌِ الدايود وبالتالي فإنها تعبر مستويات طاقة مختلفة. هذه الشتحنات اكتسبت طاقة أثناء توليد أزواج من الإلكترونات والفجوات ستفد هذه الطاقة على شكل ضوء عند إعادة اتحاد
الإلكترونات مع الفجوات .

ֵِْ الدايود العادي المصنوع من السيليكون أو الجرمـانيوم تفقد هذه الطاقة على شكل حرارة .

انجيـاز الثنائي البـاعث للضوء LED :

ِِّ حالة الانحياز الأمـامي تمر كميـة كافية من التيـار تعمل على انبعاث الضوء وذلك إذا كان الجهد المسلط عليها أكبر من جهد التشغيل الأمامي (VF) والذي يسـاوي 2V تقريبا يٌ النوع المصنوع من - فوسفات الجاليوم

أما ِيْ حالة الانحياز العكسي فيمر تيار ضعيف جدا وِ LED لا ينتج عنه ضوء (الجهد العكسي للثتائي الباعث لضوء صغير) ويصنع غطاء LED إما من البـلاستيك أو الزجاج ويكون إمـا أحمر ــ أخضر ـ أ صفر أو برتقالي. ويعتمد لون الضوء المنبعث من LED على لون المادة المصنوع منها الموحد

الباعث للضوء.حيث إن: جاليوم النتروجين يشع ضوء أزرقاً
جاليوم الفوسفور(نتروجين) يشع ضوءاً أخضراً جاليوم زرنيخ الفسفور(تتزوجين) يشع ضوءاً أصفراً جاليوم زرنيخ الفسفور(تتزوجين) يشع ضوءاً برتقالياً جاليوم زرنيخ الفسفور يشع ضوءًا أحمراً جاليوم الزرنيخ(الزنك) يشع ضوء (تحت الحمراء) جاليوم الزرنيخ(السليـكون) يشع ضوءً (تحت الحمراء) ولأن LED يعمل على جهد أمـامي صغير لا يتعدى بضـع من الفولتيـات توصل معهه مقاومـة على التوالي تحد من التيـار شكل (2 -3) . كهما يوصل موحد يٌ انحيـاز عكسي لحمـايته من الجهد العكسي.

شكل (2-3)

بهض اسلتخلامـات الثثنـائي البـاعث للضوي :

$$
\begin{array}{r}
1 \\
2
\end{array}
$$

4 - يستخدم پِ حاسبات الجيب لإظهار الأرقام والحروف والإشـارات والرموز حيث تركب مجهوعة من
لتكوين ما يسمى بشرائح السبعة أجزاء LED

شكل (2 -5)

خصائص ثنـائي زينر
 Zener Diode Characteristics

$$
1 \text { - دراسة خصـائص الزينر . }
$$

$$
2 \text { - رسمم منحنى خصائص الخرج لموحد زينر }
$$

الاجهزة المستخدمة :
1
kl-13007 2
3 - 3 - جهاز راسم الاشارة
4 - جهاز قياس متعدد الاغراض
5 - اسـلاكك توصيل

خطوات التجربة :

a على لوحة التجارب الرئيسية. وانظر إلى المربع KL-13007 1 2 - وصل الدائرة كها هو موضح بالشكل أدناه باستخدام كلبسات التوصيل .

3 - اضبط مصدر الجهد المستمر على 15V+ وصله إلى دخل الدائرة V+.
4 - ثـائي زينر موصل وٌٌ انحياز

5 - تستخدم المقاومة VR1 لضبط جهد الدخل . اضبط جهد الدخل على القيم الموضـحة بالجـدول وذلـك بتوصـيل فولتميتر بـين الطـرف 2 والطـرف1 للمقاومـة VR1 ـ ثـم حـرك المقاومـة لضـبط
الجهد .

6 - وصل جهازاً ميتر لقياس التيار المار يٌ الزينرIz وجهاز فولتميتر لقياس الجهد على طرفِّ الزينـر
ثم أكمل الجدول أدناه ؟ . Vz

Vin	1	2	3	4	5	6	8	10	12	14	15
Vz											
Iz											

ارسم العـلاقة بـين جهد الزينر VZ وتيـار الزينر Iz بناء على القيم التي حصلت عليها ؟ - 7

$$
8 \text { - اكتب مـلاحظاتك عن التجربـة ؟ }
$$

تنظيم الجهلد بـاستخلدام ثنــئي زينر
 Voltage Regulator

$$
\text { الأهداف: } \begin{aligned}
& \text { - } 1 \\
& \text { - } 2
\end{aligned}
$$

الاجهزه المستخدمة :

$$
\begin{aligned}
& \text { kl- } 1 \\
& \text { kl-13008 } 2 \\
& 3 \text { - جهاز افوميتر + راسمم الاشارة + اسـلاك توصيل }
\end{aligned}
$$

خطوات التجربة :
1 - ضع كرت التجربة رقم KL-13008 على لوحة التجارب الرئيسية وحدد المربع C. 2 - وصل الدائرة كما بالثكل أدناه باستخدام كلبسات التوصيل .

3 - ضع المقاومة VR1 على أعلى قيمة لها (1Kת) بتحريكها لأقصى اليمين.

4 - اضبط مصدر الجهد المستمر Vinعلى القيم الموضحة بالجدول أدناه وكذلك قيمـة المقاومة و وِّ كل مرة سـجل قيمة جهد الخرج

Vin	VR1	Vout
8 V	$\operatorname{Max.}(1 \mathrm{k} \Omega)$	
12 V	$\operatorname{Max} .(1 \mathrm{k} \Omega)$	
10 V	$\operatorname{Max} .(1 \mathrm{k} \Omega)$	
10 V	$\operatorname{Min}(0 \Omega)$	

$$
5 \text { - سـجل مـلاحظاتك عن التجربة؟ }
$$

\qquad
\qquad

خصائص الثنـائي البـاعث للضوء

LED Characteristics

الاجهزه المستخدمة :

$$
\begin{array}{r}
\text { kl- } 21001 \text { - } 1 \\
\text { kl-13007 } 2
\end{array}
$$

خطوات التجربة :

1 - 1 2 - وصل الدائرة كما بالشكل أدناه باستخدام كلبسات التوصيل

3 - استخدم جهـاز قيـاس التيـار الرقمـي الموجود على لوحـة التـجـارب لقيـاس التيـار المـار بٌٌ الثـائي الباعث للضوء.
4 - اضبط مصدر الجهد المستمر على 10V وصله إلي دخل الدائرة VR .
5 - تستخدم المقاومة VR1 للتحكم يٌ قيمة التيار المار بٌِ الثتائيو
6 7 - غير وٌٌ قيمة التيار ببطء حتى يضيء الثتائي LED وسـجل قيمة التيار والجهد :

$$
\begin{gathered}
\mathrm{I}_{\mathrm{F}}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{mA} \\
\mathrm{~V}_{\mathrm{F}}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{l}
\end{gathered}
$$

$$
8 \text { - غير ٌِِ قيمة التيار وسـجل النتائج ٌٌِ الجدول التالي : }
$$

$\mathrm{I}_{\mathrm{F}}(\mathrm{mA})$	1	2	3	4	5	6	7	8	9	10
$\mathrm{~V}_{\mathrm{F}}(\mathrm{V})$										

9 - ارسم العلاقة بين التيار والجهد للثنائي LED مـن واقع النتائج التي حصـلت عليهـا پٌ الجـدول أععلاه.

$$
10 \text { - اكتب مـلاحظاتك عن التجربة ؟ }
$$

\qquad
\qquad
\qquad

أسئلة الوحلدة التاسعة

$$
\text { س } 1 \text { : ارسـم الرمز المنطقي والتركيب الداخلي لكل من : }
$$

س2: ضع عـلامة صح أمام العبارة الصحيحة وعلامـة خطأ أمـام العبارة الخاطئة :
يوصل ثـائي زينر يفٌ انحياز أمامي

يوصل الثنائي الباعث للضوء يِّ انحياز عكسي الجهد الأمامي للثنائي LED أقل من الجهد الأمـامي للثنائي العادي الجهد العكسي للثنائي LED أعلى من الجهد العكسي للثنائي العادي
يثبت الجهد على طريٌِ الزينر عند جهد الانهيار العكسي لـه

يوصل موحد عادي بالتوازي هـعLED ٌِ انحياز عكسي لحمايته من الجهد العكسي يستخدم الثـائي الباعث للضوء لتتبيـت الجهد
توصل مقاومة بالتوالي مع الزينر وثتائي LED للحـد من التيـار

تعبأ من قبل المتدرب نفسـه وذلك بعد الانتهاء من التدريب العملي والوحدة بكاملها
تعليمـات
بعد الانتهاء من التدرب على الوحدة التاسـعة قوم نفسـك وقدراتك بواسطة إكمـال هذا
التقويم الذاتي بعد الإجابة عن كل عنصر من العناصر المذكورة، وذلك بوضع علامة (أمـام مستوى الأداء الذي أتقنته ، وِ (X)

اسـم النشاط التدريبي الذي تم التدرب عليه : ثـائي زينر والثـائي البـاعث للضوء				
مستوى الأداء (هل أتقنت الأداء)				العناصر
كلياً	جزئياً	\Downarrow	غير قابل للتطبيق	
				1
				2 - شرح دائرة تتظيم الجهد باستخدام الزينر
				3 - فهم منحنى خصـائص الزينر
				4 - 4
				5
				6

يجب أن تصل النتيجة لجميع البنود المذكورة إلى درجة الإتقان الكلي يِّحالة كونها
 هذا النشـاط مرة أخرى بمسـاعدة المدرب

نموذج تقييهم مستوى الأداء (مستوى إجـادة الجدارة)

يعبأ هذا النموذج عن طريق المدرب

النقاط	بنود التقييم
	1
	2
	3
	4
	5
	المجموع

مـلاحظات :
\qquad
\qquad

الوحلدة التاسعة	الصف الأول	برناهـج
ثنـائي زينـر والثنـائي البـاعث للضوء	أساسيـات الكهربـاءوالالكتوونيات	الإلكتزونيـات

تقريـر إنجـاز عمل

