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Preface

Iwas requested by the former controller of examinations at the 
University of Madras, India, A. Sivamurthy, to prepare the 
curriculum and syllabus for a B.Tech. degree in bioinformatics 

at the Vellore Institute of Technology, Vellore, India, in 2001. I was 
requested by letter to prepare a project report on a course program 
for an M.Tech. degree in bioinformatics by Dr. B. Srinivasan, Vice Chan-
cellor at Sri. Chandrasekharendra Saraswati Viswa Mahavidyalaya 
University, Kancheepuram, India, in 2002. The Vice Chancellor at 
SASTRA University, Thanjavur, India, R. Sethuraman, chartered me 
with the task of writing a book entitled Lecture Notes in Computational 
Molecular Biology, to be used for instruction in the newly formed 
M.Tech. and B.Tech. bioinformatics programs in 2003. 

Since I wrote Lecture Notes in Computational Molecular Biology, a 
number of interesting developments in the field of bioinformatics 
has come about. The Human Genome Project has been completed 
ahead of time. The biologic databases double in size every 10 months, 
and the computing speed of microprocessors doubles in speed every 
18 months. So a database search that cost $2 today would, two years 
from now, quadruple in cost to $8 on account of the explosive growth 
of databases and would be cut back in half to $4 on account of the 
increase in computing power. There is scope for the development 
of data search and data storage algorithms and methods. It can 
be viewed as a marriage between information technology and 
computational biology. Bioinformatics is emerging as a distinct 
discipline of its own. Textbooks need to be neither mathematically 
intimidating nor biologically intensive and laborious. Over 560 
end-of-chapter exercises are provided in this book. Appendices 
with Internet hotlinks to public-domain databases and PERL code 
commands are given. This book can be used as a textbook for core 
subjects in a bioinformatics undergraduate program and as an elective 
for chemical engineering and biotechnology undergraduate and 
graduate programs. 

The dynamic programming methods of Needleman and Wunsch 
and Smith and Waterman for global, local, and semiglobal alignment 

xi
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of sequences are discussed. The affine gap model and the different 
scoring schemes to make the alignment more biologically meaningful 
are treated with worked examples. Further reductions in time and 
space efficiciency from O(n2) needed for the dynamic programming 
algorithms are introduced. These include the greedy algorithms that 
tap into the existing similarity of biologic sequences that are 
homologous. The X-drop algorithm for very similar sequences that 
can be completed in O(en) time, where e is much smaller than n, are 
discussed. Dynamic array techniques that only need O(n) space for 
dynamic programming methods are introduced. Sparse dynamic 
programming table problems are reviewed. Methods discussed in 
this text feature the software used in industry, such as MUMer, Genie, 
LAGAN, CHAOS, GLASS, QSAR, AVID, REPuter, CLUSTALW, 
T-Coffee, DIALIGN, MAFTT, PSI-BLAST, BLAST, FASTA, STAMP, 
JalView, SAM, HMMER, HMMPRO, Meta-Meme, PFAM, Profile 
HMMs, GLIMMER, GENEMARK, PROCRUSTES, GRAIL, fGENEH, 
ROSETTA, GENSCAN, SLAM, HMMSTER, PHDSec, DISULFIND, 
SAM-T99, JPRED, etc. 

Suffix trees can be used to represent sequences. Nineteen string 
algorithms that search for a pattern in a text that can be completed in 
O(n) time are discussed. Generalized suffix tree, lazy suffix tree, look-
up tables, distributed suffix tree, hash tables, etc., are discussed with 
examples. The multiple-sequence-alignment problem is shown to be 
NP complete. A chapter on preliminaries needed to obtain maximum 
use of the textbook is provided. This contains a bit of molecular 
biology, computer science, and probability. Approximate multiple-
sequence-alignment algorithms are discussed. 

Markov models are explained in detail. A genome sequence was 
obtained from NCBI and modeled using geometric distribution and 
Markov models. The three questions in hidden Markov models 
(HMMs), i.e., evaluation, decoding, and learning, are reviewed. The 
Markov, stationarity, and output independence assumptions are 
introduced to keep the problems mathematically tractable. The HMM 
is characterized completely. The number of operations needed to 
determine the sequence given the HMM, i.e., the evaluation problem 
that usually takes time O(NT), where T is the length of the sequence 
and N is the number of states, can be completed in O(N2T) time using 
the forward algorithm. The Viterbi algorithm with optimal path is 
discussed. HMM applications such as construction of a phylogenetic 
tree, protein families, wheel HMMs to predict periodicity in DNA, the 
generalized HMM, database mining, multiple alignments, classification 
using HMMs, signal peptide and signal anchor prediction by HMMs, 
and Chargaff parity rule prediction are discussed.

Gene-finding algorithms such as the greedy method of Hertz and 
Stormo, the Gibbs sampler, the binomial heap method, the interpolated 
Markov model, the SD site-finding problem, the GPHMM, splice-site 
VLMMs, Steiner trees, Manhattan distance, the PHMM, and Las Vegas 
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algorithms are reviewed. Protein secondary-structure methods such 
as the neural networks of Qian and Sejnowski, the PHD architecture of 
Rost and Sander that provided improved accuracy using evolutionary 
information, the ensemble method of Riis and Krogh, HMM methods, 
and DAG-RNNs are reviewed. 

Microarray slide preparation methods are discussed. The five steps 
in the micorray cyle are reviewed. The connection to disease eradica-
tion by 2050 is discussed. The confocal scanning microscope used for 
microarray detection is noted. The fluorescent probe and target optimi-
zation to capture gene expression in biochips is outlined. The instru-
ment performance measures are discussed. The four-step process 
of oligonucleotide synthesis is described. Mechanical microspotting, 
ink-jet printing, and photlithorgraphy of microarray manufacture are 
touched on briefly. The normalization of cDNA data using housekeeping 
genes and the Gosset t distribution is described. 

The importance of principles of diffusion in gel acrylamide 
electrophoresis is shown as a separate chapter. Fick’s laws of diffusion 
and the generalized Fick law of diffusion that can be used to account 
for finite speed in the propagation of mass are described. Eight 
reasons are given to seek to generalized Fick’s law of diffusion. It is 
derived using the Stokes-Einstein chemical potential approach. The 
acceleration term is accounted for as the ballistic term that manifests 
as damped-wave transport in short-time transient diffusion events. 
The Taitel paradox is discussed. The final condition in time is used to 
keep the solution from disobeying the Clausius inequality. The three 
different regimes of solutions during transient diffusion, conditions 
where subcritical damped oscillations can occur, are derived. The 
electrophoretic term is added to the governing equation, and an 
analytical solution obtained by the method of separation of variables. 
A new transformation method using a spatiotemporal variable that is 
symmetric in space and time is used to obtain bounded exact solutions 
in transient diffusion.

Kal Renganathan Sharma, Ph.D., P.E.
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CHAPTER 1
Preliminaries

The field of bioinformatics includes algorithms, sequence 
representation, Markov modeling, neural networks to predict 
protein secondary structure, and other computational and 

mathematical modeling methods for analysis and storage of biologic 
data. It includes the study of structure and function and evolution of 
genes, protein, and whole genomes. It can be viewed as a marriage 
between information technology and molecular biology. The Human 
Genome Project that began in October 1990 was completed years 
ahead of schedule when the rough draft was presented in June 2000 [1]. 
The project was planned to last 15 years, but rapid technological 
advances accelerated the completion to 2003. Project goals were to 
determine the complete sequence of the 3 billion DNA subunits 
(bases), identify all human genes, and make them accessible for 
further biologic study. The sequencing of the mouse genome and rat 
genome has been completed. The first bacterial genome, Haemophilus
influenzae, was completely sequenced, annotated, and published in 
1995. Since then, more than 200 prokaryote genomes have been 
sequenced completely, and over 500 prokaryote genomes are at 
various stages of completion. Seventeen eukaryote genomes and four 
eukaryote chromosomes have been completed at this writing. The 
biologic data bank size that is made available in the public domain 
doubles every 10 months. The number of genes characterized doubles 
every 2 years. The computing speed of new processors, according to 
the Moore’s law, doubles every 18 months. Thus a data bank search 
for a gene that would cost $2 today would quadruple in cost to $8 in 
20 months owing to the increase in data bank size, and because of the 
increased speed of the hardware, the cost would be cut in half nearly 
to $4. Still, a cost increase is seen from $2. There is lot of scope for 
developing new data structures to store the biologic data and efficient 
algorithms for conducting data bank searches. 

The time taken to align two genome sequences of 3 billion base 
pairs (bp) in length using an O(n2) dynamic programming algorithm 
using a gigahertz personal computer can take about 60 years. On a 
terra-flop computer, this may come down to half a day. The IBM Blue 
Gene Project, where peta-flop machines are considered, can further 
improve the time taken. The storage of data using techniques such as 

1
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parallel-disk modeling and obtaining approximate alignment in O(n) 
time solution using suffix-tree representation may be good leads in 
reducing the time taken and improving the storage efficiency of 
biologic data. Different data structures, such as the suffix tree, 
binomial heap, Steiner tree, and Manhattan network, are discussed in 
the following pages.

The preliminaries needed for getting more use out of the material 
in this textbook are a bit of molecular biology, computer science, and 
probability. These are provided in this chapter to make the textbook 
self-contained.

1.1 Molecular Biology

1.1.1 Amino Acids and Proteins
Discussions in bioinformatics frequently center on two important 
molecules. These are proteins and nucleic acids. The structures and 
properties and functions of these molecules in different organisms 
form the information in the explosive growth of biologic data banks. 
The name protein comes from the Greek word prota, meaning “of 
primary importance.” Proteins were first described and named by 
Berzelius in 1838. However, their central role in living organisms was 
not fully appreciated until 1926, when Sumner showed that the 
enzyme urease was a protein. The first protein structures to be solved 
included insulin and myoglobin; the first was by Sir Frederick Sanger 
[2–6], who won a Nobel Prize in 1958 for it, and the second by Perutz 
and Kendrew, also in 1958. Both proteins’ three-dimensional structures 
were among the first determined by x-ray diffraction analysis; the 
myoglobin structure won the Nobel Prize in chemistry for its 
discoverers.

Proteins are large bioorganic compounds that are polymeric in 
nature. They are made of amino acids arranged in a linear chain and 
joined together between the carboxyl of one amino acid and the amine 
nitrogen of the other by a bond that is called a peptide bond. The 
sequence of amino acids in a protein is defined by genes and encoded 
in the genetic code. Although this genetic code specifies the 20 
different amino acids, the residues in a protein are often chemically 
altered in posttranslational modification either before the protein can 
function in the cell or as part of control mechanisms. Proteins associate 
to form complexes that are stable. They can work in concert to achieve 
a particular function, and they participate in every function of the 
cell. Many proteins are enzymes that catalyze biochemical reactions. 
They are vital to metabolism. The cell shape is maintained by a system 
of scaffolding. Proteins in the cytoskeleton form the system of 
scaffolding. Proteins are also important in cell signaling, immune 
responses, cell adhesion, and the cell cycle. Protein is also a necessary 
component in our diet because animals cannot synthesize all the 

 



amino acids and must obtain essential amino acids from food. 
Through the process of digestion, animals break down ingested 
protein into free amino acids that can be used for protein synthesis.

1.1.2 Structures of Proteins
During formation of the polypeptide polymeric chain, one water 
molecule is lost per amino acid. This is why the constituents of 
proteins are called amino acid residues. Four different types of protein 
structures are recognized in the field. These are as follows.

Primary Structure
The primary structure of proteins is the random sequence distribution 
of the 20 different amino acids concatenated in a polypeptide chain. 
Each of the 20 different amino acids consists of two parts: (1) the 
backbone of the protein and (2) the unique side chain, or R group, 
that determines the physical and chemical properties of the amino 
acid. Each amino acid consists of an amine (NH2

+) and a carboxylic acid 
moiety (COO·). The general formula of the 20 different amino acids 
can be classified into four categories based on the net charge on the 
protein molecule. These categories and the amino acids contained in 
them are as follows:

 1. Positively charged basic amino acids: lysine (Lys), arginine (Arg), 
and histidine (His).

                      NH2
                       |
  H2N-C4H8-CH-COOH (lysine)
            NH               NH2
            ||                     |
  NH2-C-NH-C3H6-CH-COOH (arginine) 
   _______        NH2
  ⎟ ........ ⎟              ⎟   
 H2N     NH-CH2-CH-COOH (histidine)
  \        /
    \    /
       C

2. Negatively charged acidic amino acids: aspartic acid (Asp), 
glutamic acid (Glu).

                       NH2
                        ⎟
HOOC-CH2-CH-COOH (aspartic acid)

                       NH2
                       ⎟
HOOC-C2H4-CH-COOH (glutamic acid)
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3. Polar amino acids: glycine (Gly), serine (Ser), threonine (Thr), 
cysteine (Cys), tyrosine (tyr), glutamine (Gln), asparagine (Asn).

   CH2-COOH (glycine)
    ⎟
     NH2

OH- CH2CH-COOH (serine)
                 ⎟
                 NH2

 CH3-CH-CH-COOH (threonine)
          ⎟      ⎟
          OH  NH2

HS-CH2-CH-COOH (cysteine)
               ⎟
               NH2

OH-ϕ-CH2-CH-COOH (tyrosine)
                    ⎟
                    NH2

NH2-C- C2H4-CH-COOH (glutamine)
          ||            ⎟
         O           NH2

NH2-C-CH2-CH-COOH (asparagine)
          ||           ⎟
          O          NH2

4. Nonpolar amino acids: alanine (Ala), valine (Val), leucine (Leu), 
isoleucine (Ile), proline (Pro), methionine (Met), phenylalanine 
(Phe), tryptophan (Trp).

CH3-CHCOOH               C2H6CHCHCOOH

        ⎟     alanine                  valine⎟
         NH2                                       NH2

C2H6CHCH2CHCOOH   C3H8CHCHCOOH

  leucine       ⎟                     isoleucine⎟
                       NH2                             NH2

CH3SC2H4CHCOOH       ϕ-CH2CHCOOH

methionine⎟                                    ⎟
                  NH2                               NH2
                                           phenylalanine

 



  CH2____CH2
  ⎟               ⎟
  ⎟               ⎟                 (proline)
CH2           CHCOOH
 \             /
   \  NH /

ϕ-e-CH2CHCOOH (tryptophan)
                ⎟
               NH2

Secondary Structure
The polypeptide backbone exists in different sections of the protein 
either as an α-helix, β-pleated sheet, or random coil. The study of 
protein secondary structure has attracted a lot attention in the literature. 
As will be discussed in later chapters, protein secondary structures can 
be constructed from the primary structure chain sequence distribution. 
The secondary structure pertains to the stereoisomerism exhibited by the 
polypeptide chain. The problem of secondary structure prediction is 
one of hydrogen bonding. The polar groups present in the backbone of 
the polypeptide chain, C�O and N—H, are capable of hydrogen-bond 
formation. The two structures that solve the problem are the α-helix 
and β-pleated sheet, in which extended polypeptide backbones are 
side by side. These structures are stable. They can occur at the exterior 
of proteins with appropriate hydrophilic side chains or in the 
hydrophobic interior of proteins with appropriate hydrophobic side 
chains.

In the α-helix, the polypeptide backbone is twisted into a right-
hand helix, called an α-helix. The structure was first recognized in 
α-keratin by Sanger [2]. For L-amino acids, the right-handed helix is 
more stable than a left-handed one. The structure has a pitch of three 
to six amino acids per turn. This results in the C�O of each peptide 
bond being aligned to form a hydrogen bond with the peptide bond 
N—H of the fourth distant amino acid residue. The C�O groups 
point in the direction of the axis of the helix and are aimed at the 
N—H groups with which they hydrogen-bond, giving maximum 
bond strength and making the α-helix a stable structure. Thus every 
C�O and N—H group of the polypeptide backbone is hydrogen-
bonded in pairs forming a stable, cylindrical, rodlike structure. Amino 
acids vary in their tendency to form α-helices. 

Proteins are made of mixtures of α-helix and β-pleated-sheet 
structures. This is also a stable structure in which the polar groups of 
the polypeptide backbone are hydrogen-bonded to one another. The 
polypeptide chain lies in an extended or β form with the C�O and 
N—H groups hydrogen-bonded to those of a neighboring chain. The 
structure was first recognized in β-keratin. Several chains can form a 
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sheet of polypeptide. It is pleated because successive α carbon atoms 
of the amino acid residues lie slightly above and below the plane of 
the β-pleated sheet alternately. The adjacent bonded together 
polypeptide chains can run in the same direction parallel or in the 
opposite direction antiparallel. In the latter case, a polypeptide may 
make tight β turns to fold the chain back on itself. 

The random coil refers to a section of polypeptide in a protein 
whose conformation is not recognizable as one of the defined 
structures of α-helices and β-pleated sheets. It is determined by side-
chain interactions and within a given protein is fixed rather than 
varying in a random way. 

One good way to measure protein secondary structure is by x-ray 
crystallography. In addition, the techniques of neutron diffraction 
and nuclear magnetic resonance (NMR) can be used to measure 
protein secondary structure. 

Tertiary Structure
The folding of the secondary structure into a macrostructure such as 
globules is called the tertiary structure of a protein. A given protein in 
a physiologic environment can have a complex three-dimensional 
structure. The amino acid “backbone” of a protein can rotate freely, 
allowing amino acids from distal protein domains to come into close 
contact with each other. As these regions of the protein interact with 
one another, they will create and stabilize a particular protein 
conformation. Disulfide bond creation between cysteine residues is 
one of the primary stabilizing mechanisms.

Quaternary Structure
Two polypeptide chains connected by hydrogen bonding form the 
quaternary structure of a protein.

1.1.3 Sequence Distribution of Insulin 
Frederick Sanger was one of the few who won the Nobel Prize a second 
time. His first Nobel Prize was for his work on protein primary structure 
in 1958, and the second was for his elucidation of the nucleotide 
microstructure in 1980. His research work on the structure of insulin 
took him 12 years. The protein molecule consists of 20 different amino 
acids. This was known prior to Sanger’s work. The microstructure of 
the protein molecule or the chain sequence distribution of the 
molecule was not known. Sanger suspected that the differences 
between the biologic and physical properties of the protein molecule 
were because of differences in the sequence distribution of the protein 
molecule(s) [2].

Chain sequence distribution of a copolymer is the relative 
order of occurrence of the different monomers along a single 
linear chain. Thus a copolymer with two monomers A and B with 
random chain sequence distribution may have structures such as 
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BAABAAABBBABBBBAAAAAB, BBAAABAB, AABABBABABBA, 
and so on. G. N. Ramachandran had suggested that every third 
residue in mammalian protein was a certain residue. Some 
investigators had suggested a periodic microstructure for protein, 
i.e., ABABABAB for an alternating copolymer with monomers A 
and B. Some had suggested that protein was a complex mixture. 

A range of values from 36,000 to 48,000 for the molecular weight 
of insulin was reported in the literature. Sanger set out to resolve 
this discrepancy. He developed a molecular labeling procedure 
called the dinitrophenyl (DNP) method. The reagent used was 1,2,4-
fluorodinitrobenzene (FDNB). This reacts with the free amino groups of 
a protein or peptide to form a DNP derivative. The peptide bonds are 
broken under mild conditions. Hydrolysis of DNP protein results in split 
of the peptide bonds in the chain bearing the N-terminal residue in the 
form of a DNP derivative. DNP amino acids are light-yellow substances. 
They can be extracted from the unsubstituted amino acids using ether as 
a solvent. Further separation is effected using partition chromatography. 
The DNP derivatives thus can be fractionated. The chemical structure of 
the separated compounds is affected by noting the chromatographic 
rates and comparing them with those of their synthetic analogues. 
Whereas silica-gel chromatography was used in the initial work on 
insulin microstructure, paper chromatography has been found to be a 
satisfactory procedure. On separation and identification, the DNP 
derivatives could be estimated calorimetrically. When the method was 
applied to insulin, three yellow DNP derivatives were found in the 
hydrolysate of the DNP-insulin. One of these was extracted into ether 
and was identified as ε-DNP-lysine, which was formed by reaction of the 
FDNB with the free ε-amino group of lysine residues that are bound 
normally within the polypeptide chain. The others were identified as 
DNP-phenylalanine and DNP-glycine, and estimation showed that these 
were two residues of each assuming a molecular weight of 12,000. This 
lead Sanger to deduce that insulin was composed of four polypeptide 
chains, two with phenylalanine and two with glycine end groups. The 
hypothesis that chains of insulin were connected by disulfide bridges 
was explored by attempting to split the bridges by reduction to SH 
derivatives. Satisfactory results were obtained by oxidation with 
performic acid. The cystiene residues are converted to cysteic acid 
residues, thus breaking the cross-links. 

The fractionation of complex mixtures from partial hydrolysis of 
protein was a technical hurdle. Other investigators have shown that 
small peptides can be well fractionated by paper chromatography. 
Tuppy, a postdoctoral associate of Sanger, worked so hard in 1 year that 
he and Sanger were able to deduce the whole of the sequence of 
30 residues. The blueprint was unveiled by Sanger, and the finer details 
were obtained by his coworkers. The mixture from partial hydrolysis of 
fraction B was too complex for direct analysis by paper chromatography. 
They resorted to ionophoresis, ion-exchange chromatography, and 
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adsorption on charcoal. The simplified mixtures then were fractionated 
by two-dimensional paper chromatography. The peptide spots were cut 
out, and the material was eluted from the paper, subjected to complete 
hydrolysis, and analyzed for its constituent amino acids. The analysis 
from the resulting acidic fraction contained only peptides and cysteic 
acid. Thus 45 peptides were identified in various fractions of the partial 
acid hydrolysate, and the following five sequences were found to be 
present:

1. Phe-Val-Asp-Glu-His-Leu-CysSO3H-Gly (N-terminal sequence)

2. Gly-Glu-Arg-Gly

3. Thr-Pro-Lys-Ala

4. Tyr-Leu-Val-CysSO3H-Gly

5. Ser-His-Leu-Val-Glu-Ala

Proteolytic enzymes are more specific than the acid because only a 
few of the peptide bonds are susceptible. For example, they considered 
a peptide Bp3 obtained by the action of pepsin. It had the composition 
Phe-CysSO3H-Asp-Glu-Ser-Gly-Val-Leu-His, of which the most 
important components are aspartic acid and serine because they occur 
only once in the chain. Aspartic acid is present in the N-terminal 
sequence 1, and serine is in sequence 5. By studying other peptides 
obtained by the action of pepsin, trypsins, and chymotrypsin, it was 
possible to find out how the various sequences were arranged and to 
deduce the complete sequence of the phenylalanyl chain, which is

 Phe-Val-Asp-Glu-His-Leu-CysSO3H-Gly-Ser-His-Leu-Val-Glu-Ala-
Leu-Tyr-Leu-Val-CysSO3H-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-

Lys-Ala

Paper ionophoresis was required for separation at pH 2.5 for 
determining the sequence of fraction A by enzymatic hydrolysates. 
The fraction A sequence was

Gly-Ileu-Val-Glu-Glu-CysSO3H-CysSO3H-Ala-Ser-Val-CysSO3H-
Ser-Leu-Tyr-Glu-Leu-Glu-Asp-Tyr-CysSO3H-Asp 

The ammonia generated during hydrolysis with strong acid was 
used to determine the location of amide groups in the polypeptide 
chain. Thus the microstructure of insulin was obtained. This was shown 
by Sanger in his Nobel lecture and is shown below in Fig. 1.1. 

Sanger confirmed the random sequence distribution of the 
20 different amino acids in the insulin microstructure. Other naturally 
occurring polypeptides besides insulin are glutathione, carnosine, 
anserine, oxytocin, vasopressin, bradykinin, and corticotropin. The 
biologic specificity of a protein is a function of the number of amino 
acid residues and their sequence.
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1.1.4 Bioseparation Techniques
The protein chemist is confronted with the problem of isolating, 
purifying, and characterizing a protein. Identification of a suitable 
source such as a fresh tissue is the first step for purification of proteins. 
This tissue is subjected to the action of a blender for grinding to obtain 
a homogenate that is rich in protein as well as contaminating material. 
Proteins are temperature-sensitive and fragile. The homogenate is 
filtered and freed from unwanted material by treatment with suitable 
solvents. Denaturation of proteins is avoided by control of pH and 
temperature. As a general rule, purification of proteins is carried out 
at temperatures close to the freezing point. 

Salt precipitation is used to effect separation by addition of ammonium 
sulfate so that the desired protein remains either in the supernatant or 
in the precipitate. A mixture of proteins is passed down an ion-exchange 
column and separated by binding to the column. The bed is regenerated 
by eluting agents of varying pH. By increasing the pH of the effluent, 
different fractions of proteins are obtained. The protein solution binds 
to ion-exchange materials such as cellulosic polymers.

The molecular weight of the proteins can be determined by the 
use of gels. The discovery of the ultracentrifuge in the early twentieth 
century was an advancement that allowed precise determination of 
molecular weights. Svedberg won the Nobel Prize in physics in 1926 
for his efforts in the development and use of the ultracentrifuge [7]. 
Sedimentation is used to measure the molecular weights of proteins 
and in the study of protein-protein interactions. Sucrose density 
gradients can be used to separate molecular fragments. 

Electrophoresis is a method with superior resolution that is used 
to separate macromolecules from complex mixtures by the appli-
cation of an electrical field. The macromolecules, called the gel, are 
placed at one end of the matrix and are subjected to a electrical field. 
Different macromolecules in the gel will migrate at different speeds 
depending on the nature of the gel and the characteristics of the 
macromolecule. Electrophoretic techniques can be used to separate 
any biomacromolecule such as nucleic acids, polypeptides, and 
carbohydrates. Tiselius won the Nobel Prize in chemistry in 1948 for 
his work on the development of electrophoresis as a technique to 
separate and characterize proteins from complex mixtures [8]. 

FIGURE 1.1 Microstructure of insulin. Chain sequence distribution of the polypetide 
chains.

Phe-Val-Asp-Glu-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala

S  S 

S NH2

NH2 NH2

NH2 S  NH2

 Gly-Ile-Val-Glu-Glu-Cys-Cys-Ala-Ser-Val-Cys-Ser-Leu-Tyr-Glu-Leu-Gly-Asp-Tyr-Cys-Asp 

S S
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The use of polyacrylamide gel electrophoresis (PAGE) has had a 
major impact on the ability to isolate and characterize proteins. 
Polyacrylamide gels are formed by cross-linking an acrylamide 
monomer with the chemical agent N,N-methylene bisacrylamide. 
The polymerization reaction proceeds as free-radical catalysis with the 
use of ammonium persulfate and the base TEMED (N,N,N,N-
tetramethylenediamine) as the initiator. PAGE can be used to resolve 
the ladders in DNA structure, and the ladders can be used to 
characterize proteins according to their size or charge. Three 
methods were developed to measure the primary structure of 
protein: (1) Sanger’s method, (2) the Dansyl chloride method, and 
(3) the Edman degradation technique.

All three techniques are laborious. It requires lot of material and 
years of analysis to complete the analysis of even a short protein. In 
the Edman degradation method, the peptide fragment is treated with 
phenylisothiocynate at pH 8 to yield phenylthiocarbamyl derivative 
at the N terminal. The derivative is treated with acid in organic 
solvent so that the N-terminal amino acid undergoes cyclization to 
produce phenylthiohydantoin, which is cleaved from the peptide 
fragment. Thiohydantoin derivative can be identified using paper 
chromatography, and the peptide is further subjected to the same 
treatment every time, forming the thiohydantoin derivative from 
the amino end. Dansyl chloride reagent is used for determination of the 
N-terminal residue in alkaline conditions. The N-terminal residue 
forms a yellow fluorescent derivative that can be detected easily. 
Even small amounts of amino acids can be deduced. Indirect methods 
can be used to save time. The cDNA responsible for creation of the 
protein can be cloned and its sequence measured. Then, by deduction, 
the protein sequence can be obtained. 

Mass spectrometry (MS) is a method in which the mass of the 
molecules that have been ionized can be measured using a mass 
spectrometer. MS has become a key tool in proteomics research because 
it can analyze and identify compounds that are present at extremely 
low concentrations (as little as 1 pg) in very complex mixtures by 
analyzing their unique signatures. A critical concern in MS is that the 
methods used for ionization can be so harsh that they may generate 
very little product to measure at the end. The development of “soft” 
desorption ionization methods by John Fenn and Koichi Tanaka [9], 
which allowed the application of MS to biomolecules on a wide scale, 
earned them a share of the Nobel Prize in chemistry in 2002.

Isoelectric focusing is a variation of electrophoresis that can be 
used for separating mixtures of protein. A column is used that consists 
of gel having positive and negative charges. When the protein mixture 
is injected into the column, the molecules polarize in the electrical 
field in such a way that the negatively charged ones move toward the 
anode and the positively charged ones move toward the cathode. At 
the isoelectric point, i.e., the point in the tube at which each protein 
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attains a neutral pH, the driving force to migration stops. A sharp 
bend forms at this juncture.

Two-dimensional gel electrophoresis is a way to couple different 
gel systems with different resolving powers to dramatically 
improve separation and resolution of complex mixtures of proteins. 
Two-dimensional gel electrophoresis is an incredibly useful analytic 
tool that provides a foundation for what is now referred to as 
proteomics.

Chromatography is used extensively for separating different 
molecular species, including proteins. Different types of chromatography 
are recognized, such as adsorption chromatography, ion-exchange 
chromatography, and partition chromatography. Paper chromatography 
is suitable for separation of small amounts of low-molecular-weight 
compounds that are soluble in the liquid phase. The liquid phase is 
water, and the mobile phase consists of a mixture of organic solvents. 
The paper is spotted with the substance to be separated and immersed 
in a trough containing the mobile phase. The spots on the paper are 
developed using a suitable developing reagent. The partition coefficient 
Rf, is the ratio between the distance run by the compound and the 
distance traveled by the solvent. 

Ion-exchange chromatography also can be employed for 
separation and purification of proteins. The protein sample is 
prepared in the right type of buffer and then applied to the ion-
exchange column. Molecules possessing no charge will easily pass 
through, whereas charged molecules will interact with the exchanger 
and get adsorbed. Proteins then can be eluted from the exchangers. 
Gel-filtration chromatography is a technique for purification and 
separation of macromolecules based on their molecular size. Gel 
permeation, gel exclusion, and molecular sieving are similar methods. 
Gel-filtration media include polydextrin gels, polyacrylamide gels, 
agarose gels, and controlled-pore glass beads. The porosity of gel 
beads in a column is controlled depending on the problem of 
separation at hand. Larger molecules elute out, and smaller molecules 
diffuse through the pores in the beads. Later, this can be eluted by 
using a buffer. Desaltation of a sample can be effected. The use of a 
biospecific interaction of a protein with a specific ligand is used in 
affinity chromatography. The chromatographic column uses an inert 
matrix or support medium that will offer binding sites for the desired 
protein to be purified. The adsorbate has to be specific, and the 
adsorbent can be porous, hydrophilic, and capable of covalent binding. 
Agarose gel, polyacrylamide, and controlled-pore glass beads are 
examples of adsorbents used by this method. 

In thin-layer chromatography (TLC), the chromatogram can be 
developed a number of times with different solvents with good 
separation. Quantitative analysis of multiple components can be 
done in 1 hour using this method. A binding medium such as calcium 
sulfate is used in TLC. The adsorbent is activated, and then spots are 
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generated and dried. Spots in the form of colored zones also may be 
observed under ultraviolet light. 

High-performance liquid chromatography (HPLC) can be used to 
isolate, purify, and identify compounds in a mixture. Rapid analysis of 
nonvolatile, ionic, thermally labile compounds that were previously 
difficult to separate can be achieved using HPLC. Molecular components 
of the cell can be determined with high sensitivity, speed, accuracy, and 
resolution. The mobile phase is a liquid. The solute needs to be soluble 
in the mobile phase. The mobile phase is forced under high pressure of 
more than 6000 lb/in2 into the column. Normal-phase chromatography, 
bounded-phase chromatography, and reverse-phase chromatography 
are three kinds of HPLC methods. Separation of ribosomal proteins 
can be done in this manner. The effect of pore size, pore volume, silica 
density, and surface area on a given separation is complex. 

1.1.5 Nucleic Acids and Genetic Code
Crick, Watson, and Williams were awarded the Nobel Prize in medicine 
in 1962 for their work in the molecular configuration of nucleic acids, 
the genetic code, involvement of RNA in the synthesis of proteins, and 
its significance for information transfer in living material [10]. Nucleic 
acids are long-chain polymers of nucleotides. Each nucleotide consists 
of three parts: (1) a sugar, ribose or deoxyribose, (2) phosphoric acid, 
and (3) a nitrogenous base. The four different nitrogenous bases are 
adenine, guanine, cytosine, and thymine. Adenine (A) and guanine 
(G) are purines, and cytosine (C) and thymine (T) are pyrimidines. 
Uracil (U) is another nitrogenous base found in RNA instead of thymine 
(T) in DNA. The double-helix three-dimensional structure of DNA 
was elucidated by Watson, Crick, and Wilkins. They used x-ray 
crystallography to determine the structure. Rosaland Franklin was one 
of the pioneers and was deceased by the time the Nobel Prize was 
awarded. the discovery of DNA is hailed as the most important work 
in biology in the last 100 years, and the field it opened may be the next 
scientific frontier for the next 100 years. Outside the helix backbone of 
the ladder is the sugar-phosphate chain. A complete turn of the ladder 
is called pitch and is about 3.4 Å in length. The space between bases is 
2.4 Å, and the diameter of the helix is 20 Å. The sequences of bases in 
DNA, by a process called translation, determine the sequence 
distribution of protein molecules. All genetic information in living 
organisms of any kind is carried by the nucleic acids, usually by the 
DNA. Certain small viruses use RNA as their genetic material. The 
four bases in DNA can assume 4 × 4 = 16 combinatorial forms, 
64 triplets, and 256 quartets. The set of bases that code is called a codon.
The two DNA strands are antiparallel. One strand runs in 5’→3’ 
direction and the other strand in a 3’→5’ direction. The two 
polynucleotide chains of the double helix interact with each other. The 
hypothesis that the linear sequence of nucleotides in DNA specifies the 
linear sequence of amino acids in proteins evolved over a period of 
time. Kornberg and coworkers [11] discovered and characterized 
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the enzyme polymerase. This was followed a few years later by 
characterization of RNA polymerase. Kornberg and coworkers clarified 
the manner by which information in DNA is transcribed into an 
RNA that is now referred to as messenger RNA. Kornberg’s son Roger 
received the Nobel Prize in chemistry in 2006 for his studies of the 
molecular basis for eukaryotic transcription [12]. 

Genetic Code
At the time of Crick’s Nobel lecture, the genetic code had the following 
general properties:

• It was fairly certain that codons did not overlap.

• Most, if not all, codons consisted of three adjacent layers.

• Adjacent codons did not overlap.

• The message was read in the correct groups of three by 
starting at some fixed point.

• Code sequence in the gene was collinear.

• In general, more than one triplet coded each amino acid.

• It was not certain that some triplets may not code more than 
one amino acid.

• Triplets with code for the same amino acid probably were 
rather similar.

• It was not known whether there was any general rule that 
groups code together or whether the grouping was mainly 
the result of historical accident.

• The number of triplets that do not code an amino acid 
probably was small.

• Certain codes proposed earlier such as comma-less codes 
were all unlikely to be correct.

•  The code in different organisms probably was similar.

The structural chemistry of the nucleic acids was developed over a 
period of 70 years in many countries from the chemistry of the constituent 
purines, pyrimidines, and sugar moieties to work on the nucleosides.

Har Gobind Khorana was awarded the Nobel Prize in medicine 
in 1968 for his work on nucleic acid synthesis and the genetic code 
[13]. He looked at the synthesis of short-chain oligonucleotides. The 
problem he faced was activation of the phosphomonoester group of 
a mononucleotide, design of suitable protecting groups for the 
functional groups, and development of methods for the polymerization 
of specific sequences. Khorana proposed the reaction sequence for 
the preparation of high-molecular-weight RNA messengers and the 
subsequent in vitro synthesis of polypeptides of known amino acid 
sequences (Fig. 1.2). Amplification of the proposed scheme or in vitro 
studies of the coding problem to produce DNA or RNA products was 
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conceived to be a general behavior of the polymerase so long as there 
was a repeating pattern of nucleotide sequences in the chemically 
synthesized deoxypolynucleotide templates. Khorana identified the 
types of reactions catalyzed by DNA polymerase (Fig. 1.3). DNA-like 
polymers with repeating dinucleotide sequences for polymers with 
trinucleotide sequences and two polymers with tetranucleotide 
sequences were prepared. The repeating dinucleotide sequences were 
TC:GA, trinucleotide TTC:GGA, and tetranucleotide TTAC:GTAA. 
Khorana identified the transcription of DNA-like polymers by means 
of RNA polymerase to form single-stranded ribopolynucleotides. 
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FIGURE 1.2 Molecular structure of nitrogenous bases in DNA and RNA.

FIGURE 1.3 Khorana’s reaction sequence for protein synthesis. 
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1st
Letter

2nd Letter 3rd 
LetterU C A G

PHE SER TYR CYS U

PHE SER TYR CYS C

U LEU SER C.T. C.T. A

LEU SER C.T. TRY G

LEU PRO MIS ARG U

C LEU PRO HIS ARG C

LEU PRO GLN ARG A

LEU PRO GLN ARG G

ILEU THR ASN SER U

A ILEU THR ASN SER C

ILEU THR LYS ARG A

MET(C.I) THR LYS ARG G

VAL ALA ASP GLY U

G VAL ALA ASP GLY C

VAL ALA GLU GLY A

VAL(C.I) ALA GLU GLY G

TABLE 1.1 The Genetic Code

The structure of the genetic code that emerged is shown in 
Table 1.1. The code is universal. Nirenberg and Leder coshared the 
Nobel Prize in medicine with Khorana in 1968 for synthesizing 
trace amounts of protein using artificial RNA molecules. 
Universality does not mean that all organisms use the same codons 
for protein synthesis. It means that a trinucleotide codon does not 
change its meaning from one organism to the next. 

The DNA sequence is divided into a series of triplet codes 
composed of three bases called codons. Having more than one codon 
for one amino acid is called degeneracy of the genetic code. Codons 
that specify the same amino acid are called synonyms. Synonyms are 
usually similar, with variations found only in the third position of the 
codon. Since the third base of the codon can vary, this base position is 
called the wobble position. Thus the three codons UAA, UAG, and 
UGA that cause termination of polypeptide chain growth are called 
stop codons. The codons AUG and GUG that stand, respectively, for 
methionine and valine are also used as signals for initiation of 
polypeptide chain synthesis and are referred to as initiation codons. 
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The first base of the initiation codon specifies the reading frame of the 
RNA. In any base sequence, three types of reading frames are possible 
depending on which base is chosen for the first base. During protein 
synthesis, only one reading frame is meaningful. The set of codons 
that runs continuously and is bounded by the initiation codon at one 
end and the termination codon at the other end is known as an open
reading frame (ORF) and is used to determine the protein coding 
regions of DNA.

A number of studies on tRNA structure were conducted on the yeast 
Escherichia coli, rat liver, and wheat germ. Dr. Raj Bhandary and 
H. Khorana, and colleagues had determined the primary structure of 
yeast phenylalanine tRNA [14]. All tRNAs whose primary structure is 
known can adopt the cloverleaf secondary structure (Fig. 1.4). The first 
general question is, How are the trinucleotide codons recognized by the 
protein-synthesizing apparatus? The answer is the tRNA molecule. The 
next question is, What is the evidence that recognition of codons in fact involves 
nucleotide-nucleotide interaction by virtue of base pairing? If this is so, then 
one might expect to find the primary structure of an amino acid–specific 
tRNA to be three contiguous nucleotide units, complementary to the 
established codons for the particular amino acid. The concept of 
anticodons was developed. Only the simplest components of the tRNA 
structure are shown in Fig. 1.4. Some additional bonds are formed, and 
the entire structure becomes L-shaped with the 3’ ACCA sequence at one 
end and the anticodon at the other. The anticodon is complementary to 
the codon, and 3 bp can form between the codon in the mRNA and the 
anticodon of the tRNA.

FIGURE 1.4 Cloverleaf model for secondary structure of yeast phenylalanine tRNA.
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Determination of Nucleotide Sequences in DNA
A DNA sequence for the genome of bacteriophage ϕX174 of 
approximately 5375 nucleotides has been determined using the rapid 
and simple plus and minus method [4]. The sequence identifies many of 
the features responsible for the production of the proteins of the nine 
known genes of the organism, including initiation and termination 
sites for the proteins and RNAs. Two pairs of genes are coded by the 
same region of DNA using different reading frames.

General methods for determination of DNA sequences have been 
developed only recently. This is so mainly because of the large size of 
DNA molecules, the smallest being those of the simple bacteriophages 
such as ϕX174, which contains 5000 nucleotides. Initially, the smaller 
RNA molecules were used for early studies on nucleic acid sequences. 
Having uncovered the truth about amino acid sequences in protein, 
Sanger turned his attention to RNA and developed a relatively rapid 
small-scale method for the fractionation of 32P-labeled oligonucelotides.

The plus and minus method [4] is a relatively rapid and simple 
technique that has made possible determination of the sequence of the 
genome of bacteriophage ϕX174. It depends on the use of DNA 
polymerase to transcribe specific regions of the DNA under controlled 
conditions. Another rapid and simple method that depends on specific 
chemical degradation of the DNA has been described recently by 
Maxam and Gilbert [15], and this also has been used extensively for 
DNA sequencing. It has the advantage over the plus and minus method 
of being applicable to double-stranded DNA, but it requires strand 
separation or equivalent fractionation of each restriction enzyme 
fragment studied, which makes it somewhat more laborious. 

The general approach used in these studies and in those of 
proteins depended on the principle of partial degradation. The large 
molecules were broken down, usually by suitable enzymes, to give 
smaller products that were then separated from each other and their 
sequence determined. The separation was done using a gel acrylamide 
electrophoresis. When sufficient results had been obtained, they were 
fitted together by a process of deduction to give the complete sequence 
(Fig. 1.5). Copying procedures were needed for treating large DNA 
molecules. Pulse labeling with radioactively labeled nucleotides and 
copying techniques for RNA sequence determination were pioneered 
by Billeter and colleagues [16]. For DNA sequences, the enzyme DNA 
polymerase is used. The single-stranded DNA is copied. The enzyme 
requires a primer, which is a single-stranded oligonucleotide having 
a sequence that is complementary to and therefore able to hybridize 
with a region on the DNA sequence. Mononucleotide residues are 
added sequentially to the 3’ end of the primer from the corresponding 
deoxynucleoside triphosphates, making a complementary copy of the 
template DNA. By using triphosphates containing 32P in the α position, 
the newly synthesized DNA can be labeled. Synthetic oligonucleotides 
were used as primers initially, but after the discovery of restriction 



 18 C h a p t e r  O n e  

enzymes, it was more convenient to use fragments resulting from 
their action because they were more readily available. The copying 
procedure was used to prepare a short specific region of labeled 
DNA that then could be subjected to partial digestion. One of the 
difficulties in determining the sequence distribution of DNA was to 
find specific methods for breaking the strand into smaller fragments. 
It was found that good fractionations according to size could be 
obtained by ionophoresis on acrylamide gels. Plus and minus 
technique, was used to determine the almost complete sequence of 
the DNA of bacteriophage ϕX174, which contains 5386 nucleotides.

DNA Transcription, Translation, and Replication
A chromosome contains double-stranded DNA molecules. Its 
replication is described as semiconservative in that the two original 
strands called parental strands are separated, and each acts as a 
template for synthesizing a new strand. Each new double helix has 
one old and one new strand. The basis of the replication is that of 
complementarity in that a guanine (G) will base pair with a cytosine 
(C) and an adenine (A) will base pair with a thymine (T) so that a base 
on the parental strand automatically specifies which base is to be 
incorporated into the new strand as its partner. This copying process 

FIGURE 1.5 Principle of the chain terminating for DNA sequencing.
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depends on Watson-Crick hydrogen bonding of base pairs. It follows 
that strand separation is essential to unpair the bases and make them 
available for base pairing with incoming nucleotides. DNA replication 
is different in prokaryotes than it is in eukaryotes.

The information in DNA encoded in the sequence of four 
nitrogenous bases is used to direct the assemblage of 20 different 
amino acids in the correct sequence so as to produce the protein for 
which a given gene is responsible. Genes direct protein synthesis by 
sending out copies of their coded information to the cytoplasm. 
Messenger RNA is a polynucleotide essentially the same as DNA 
except for the following differences:

• Sugar is ribose and not the deoxyribose of DNA. An OH is in 
2’ position.

• mRNA is single-stranded. Bases are adenine, cytosine, 
guanine, and uracil.

mRNA is synthesized much like DNA, but the two strands are 
separated so as to produce a single-stranded template for directing 
the sequence of nucleotides to be assembled into mRNA. mRNA is 
made from ATP, CTP, GTP, and UTP by a single enzyme in E. coli RNA 
polymerase. mRNA has a half-life of 20 minutes to several hours in 
eukaryotes and about 2 minutes in bacteria. Thus, for expression of a 
gene, a continuous stream of mRNA molecules must be produced 
from that gene. The flow of information in gene expression from DNA 
to mRNA is called transcription and from mRNA to protein is referred 
to as translation. mRNA production is called gene transcription. The 
RNA molecules produced are called transcripts. The synthesis of 
proteins directed by mRNA is called translation.

mRNA in both prokaryotes and eukaryotes is proportionate in 
length to the size of the protein it codes for. In the DNA from which such 
RNA molecules are transcribed, the section contents are called introns,
and the coding stretches are called exons. There can be 2–50 introns in 
human genes, and the lengths of the introns can vary from 50–20,000 bp. 
Exons usually are less than 1000 bp in length. The primary transcript is 
processed to eliminate the introns and link together the exons into one 
mRNA molecule. This is known as mRNA splicing.

Example 1.1 The synthetic mRNA has a periodic primary microstructure. Using 
the two letters U and C, define the synthetic mRNA and its protein products. 
There are 26 = 64 patterns possible in a member sequence

1.  UUU,UUU (Phe, Phe)
2.  UCU,CUC (Ser, Leu)
3.  UUC,CUU (Phen, Leu)
4.  UUU,CCC (Phe, Pro)
5.  UUC, UUC (Phe, Phe)
6.  CCA, CCA (Pro, Pro)
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The protein sequence will depend on the start position.

Case 2 Case 3
Start position 2,  UCU,  Start position 2, UCC, UCC 
 (Ser, Leu)   (Ser, Phe)
Start position 3, CUC, UCU  Start position 3, CCU, UCC 
 (Leu, Ser)  (Pro, Ser)
 Start position 4, CUU, UUC (Leu, Phe)

Case 4  Case 5
Start position 2, UUC, CCU  Start position 2, UCU, UCU (Ser, Ser)
 (Phe, Pro) 
Start position 3, UCC, CCU  Start position 3, CUU, CUU (Leu, Leu)
 (Ser, Leu)
Start position 4, CCU, UUU  Start position 4, UUC, UUC (Phe, Phe)
 (Pro, Phe)
Case 6
Start position 2, CAC, CAC (His, His)
Start position 3, ACC, ACC (Thr, Thr)
Start position 4, CCA, CCA (Pro, Pro)

1.1.6 Genomes—–Diversity, Size, and Structure
Genomes of living organisms are diverse in nature. Some genomes 
are circular in nature, e.g., in bacteria, whereas other genomes are 
linear in nature, e.g., in mammals. A 2.91 billion bp consensus 
sequence of the euchromatic portion of the human genome was 
generated by the whole-genome shotgun sequencing method [1]. The 
14.8.billion bp DNA sequence was generated over 9 months from 
27,271,853 high-quality sequence reads (5.11-fold coverage of the 
genome) from both ends of plasmid clones made from the DNA of 
five individuals. Two assembly strategies—a whole-genome assembly 
and a regional chromosome assembly—were used, each combining 
sequence data from Celera and the publicly funded genome effort. 
The public data were shredded into 550-bp segments to create a 2.9-fold 
coverage of the genome regions that had been sequenced, without 
including biases inherent in the cloning and assembly procedure 
used by the publicly funded group. This brought the effective 
coverage in the assemblies to 8-fold, reducing the number and size of 
gaps in the final assembly over what would be obtained with 5.11-
fold coverage. The two assembly strategies yielded very similar 
results that largely agree with independent mapping data. The 
assemblies effectively cover the euchromatic regions of the human 
chromosomes. More than 90 percent of the genome is in scaffold 
assemblies of 100,000 bp or more, and 25 percent of the genome is in 
scaffolds of 10 million bp or larger. 

Analysis of the genome sequence revealed 26,588 protein-
encoding transcripts for which there was strong corroborating 
evidence and an additional 12,000 computationally derived genes 
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with mouse matches or other weak supporting evidence. Although 
gene-dense clusters are obvious, almost half the genes are dispersed 
in low G+C sequences separated by large tracts of apparently 
noncoding sequence. Only 1.1 percent of the genome is spanned by 
exons, whereas 24 percent is in introns, with 75 percent of the genome 
being intergenic DNA. Duplications of segmental blocks ranging in 
size up to chromosomal length are abundant throughout the genome 
and reveal a complex evolutionary history. Comparative genomic 
analysis indicates vertebrate expansions of genes associated with 
neuronal function, tissue-specific developmental regulation, and the 
hemostasis and immune systems. DNA sequence comparisons 
between the consensus sequence and publicly funded genome data 
provided the locations of 2.1 million single-nucleotide polymorphisms 
(SNPs). A random pair of human haploid genomes differed at a rate 
of 1 bp per 1250 on average, but there was marked heterogeneity in 
the level of polymorphism across the genome. Less than 1 percent of 
all SNPs resulted in variation in proteins, but the task of determining 
which SNPs have functional consequences remains an open 
challenge. 

The smallest genomes are found in non-self-replicating subor-
ganisms such as bacteriophages and viruses that piggy-back on the 
metabolism and replication machinery of free-living prokaryote and 
eukaryote cells, respectively. The 1.74-Mbp genome of the hypo-
thermophilic Methanococcus jannaschii was completely sequenced in 
1996. There are 5000 bacterial species per gram of soil. The 3310-Mbp 
human genome is organized into 22 chromosomes plus the two that 
determine sex. Chimpanzees, for example, have 23 chromosomes in 
addition to 4 sex chromosomes. Cats have 38 chromosomes, whereas 
dogs have 78 chromosomes. The chromosomes in some organisms are 
not stable. For instance, the Bacillus cereus chromosome has been found 
to consist of a large stable component (2.4 Mbp) and a smaller less 
stable component (1.2 Mbp) that is more easily mobilized into extra 
chromosomal elements of different stages. Genomic sequencing is 
difficult to perform when the chromosomes are not stable. The variation 
of gene number among different organism is shown in Table 1.2 [19].

The word gene was coined in 1909 by the Danish geneticist 
W. Johannes. Table 1.2 lists the number of genes in organisms 
with different evolutionary lineages. Gene number identification 
in organisms is increasing as more accurate methods for their 
determination become available. The coding and noncoding regions 
of the genome may be demarcated. The gene is widely recognized as 
a fundamental hereditary unit of the chromosome that determines 
the chemical, metabolic, and morphologic characteristics of an 
individual. The gene is a locus on a chromosome representing a 
segment of the DNA molecule (cistron) capable of transcription. A 
eukaryotic gene is a collection of introns and noncoding intervening 
sequences. Exons are coding regions that give rise to final RNA 
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product, i.e., a protein. In a nutshell, the information transfer from 
DNA consists of self-duplication of DNA into transcripts called RNA 
by transcription. This encodes the protein sequences by translation. 

Genome analysis of the number of genes present in Homo sapiens 
varied considerably from one investigator to another. The number of 
genes in humans was expected to be around 120,000 [17]. For a 
complex organism, gene multiplexing makes it possible to produce 
several different transcripts from many of the genes in the genome, as 
well as many different protein variants from each transcript. The 
complex cellular processing of genetic material offers challenges to 
modeling in bioinformatics.

The human genome data analysis [1] revealed that the gene 
content in humans may be about 30,000 genes. This is only less than 
twice the number of genes found in C. elegans. The biologic complexity 
of an organism may be related to the expected number of genes in the 
organism. Claverie gave an estimate of biologic complexity K in an 
organism and its relation to the expected number of genes in the 
genome N [18]. Different functionalities to convert K into N have been 
suggested [19]:

           K ≈ N (linear)       K ≈ Na (polynomial)
     K ≈ aN (exponential)  K ≈ N! (factorial)

The biologic complexity of an organism may be related to the 
organism’s ability to create diversity in its gene expression, i.e., to the 
number of theoretical transcription states the organism can achieve.

The human body consists of 1012 cells, 23 pairs of chromosomes 
that consist of 3,310,004,815 bp. The average gene consists of 
10,000 bases. The sizes of genes vary. The largest known human 
gene is the dystrophin gene, with 2.4 million bases. The nucleotide 

Group Species No. of Genes

Phages Bacteriophage MS2 4

Viruses Cauliflower mosaic 8

Bacteria Escherichia coli 4100

Fungi Saccharomyces cerevisiae 5800

Protoctista Oxytricha similis 12,000

Arthropoda Drosophila melanogaster 15,000

Nematoda Caenorhabditis elagans 19,000

Mollusca plantae Nicotine tobacum 30,000

Chordata Homo sapiens 40,000

TABLE 1.2 Gene Number in Organisms
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sequence is almost exactly the same for the entire human race. For 
over 50 percent of the genes, function is unknown. In constructing 
the working draft, 16 genome sequencing centers produced over 
22.1 billion bases of raw sequencing data, consisting of overlapping 
fragments totaling 3.9 billion bases, and provided sevenfold 
coverage of the human genome. Over 30 percent are high-quality, 
finished sequences, with 8- to 10-fold coverage, 99.99 percent 
accuracy, and few gaps. The goals of the projects are to identify 
approximately 30,000 genes in a human chromosome, determine 
the sequence of the nucleotide base pairs that make up human 
DNA, store the information in the databases, improve tools for 
data analysis, transfer related technologies to the private sector, 
and address the ethical, legal, and social issues that may arise from 
the project. Less than 2 percent of the genome codes for proteins. 
Junk DNA consisting of repeated sequences that do not code for 
proteins make up at least 50 percent of the human genome. 
Repetitive sequences are thought to give chromosomes the 
necessary structure and dynamics. While the genes are randomly 
distributed in the human genome, the genes of other organism are 
evenly distributed throughout the genome. 

1.2 Probability and Statistics
A gambler’s dispute in 1654 led to the creation of the mathematical
theory of probability. This was accomplished by two pioneers, B. Pascal 
and P. De Fermat. A French nobleman with an interest in gambling 
called Pascal’s attention to an apparent contradiction concerning a 
popular dice game. The game consisted of throwing a pair of dice 
two times. The problem was to decide whether or not to bet even 
money on the occurrence of at least one double six during 24 throws. 
A well-established gambling rule led the nobleman to believe that 
betting on a double six in 24 throws would be profitable, but his own 
calculations indicated just the opposite. This, among other things, led 
to a famous exchange of letters between Pascal and Fermat in which 
the fundamental principles of probability theory were formulated for 
the first time. The probability of a double six on two throws can be 
calculated for a fair six-sided pair of dice as

 P[X = (6, 6)] = 1/6 × 1/6 = 1/36 (1.1)

Thus, in 36 throws, the chance of occurrence of a double six is one. 
Equation (1.1) takes into account the occurrence of two independent 
events and that all values will occur with equal likelihood. Bernoulli 
and de Movrie were big contributors as the subject developed rapidly 
in the eighteenth century. P. de Laplace published his book, Theorie
Analytique des Probabilities, in 1912. This widened the scope of 
probability to many scientific and practical problems. The theory of 
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errors, actuarial mathematics, and statistical mechanics are some 
examples of applications developed in the nineteenth century. 
Mathematical statistics in one important branch of applied proba-
bility with applications in a wide variety of fields such as genetics, 
psychology, economics, and engineering. Important contributors to 
probability since Laplace were Chebychev, Bell, Markov, Von Mises, 
and Kolmogorov. The search for a widely acceptable definition of 
probability took nearly three centuries. This was resolved finally by 
the axiomatic approach developed by Kolmogorov.

1.2.1 Three Definitions of Probability
The classical definition of probability states that the probability P(A) of 
an event A is determined a priori without actual experimentation. It 
is given by

 P A
N
N

A( ) =  (1.2)

where N is the number of possible outcomes and NA is the number 
of outcomes that are favorable to the event A. In the die experiment, 
A is the double 6 and N is 36.

The axiomatic definition of probability uses the set theory. A certain 
event ρ is the event that occurs in every trial. The union A + B of two 
events A and B is the event that occurs when A or B both occur. The 
intersection AB of the events A and B is the event that occurs when 
both events A and B occur The events A and B are mutually exclusive 
if the occurrence of one of them excludes the occurrence of the other. 
Three postulates are given. The probability P(A) of an event A is

 P(A) ≥ 0 (1.3)

The probability of the certain event equals 1. If the events A and 
B are mutually exclusive, then

 P(A + B) = P(A) + P(B) (1.4)

The axiomatic approach is credited to Kolmogorov.
The relative-frequency approach to the definition of probability states 

that probability P(A) of an event A is the limit

 
P A

n
nn
A( ) = →∞lim  (1.5)

where nA is the number of occurrences of A, and n is the number of 
trials. Probabilities are used to define frequencies and are defined as 
limits of such frequencies. Both nA and n must be large. This approach 
was suggested by von Mises. 
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1.2.2 Bayes’ Theorem and Conditional Probability 
The conditional probability of an event A given the event G, denoted 
by P(A/G) is defined by

 P(A/G) = P(AG)/P(G)   P(G) ≠ 0 (1.6)

If G is a subset of A, then P(A/G) = 1. If A is a subset of M, then

 P(A/G) = P(A)/P(G) ≥ P(A) (1.7)

Bayes proposed a theorem in 1763 that was later named after him. 
Laplace gave its final form years later, and it can be stated as 
follows:

 
P A B

P B A P A
P B A P A P B A Pi

i i

n

( )
( ) ( )

( ) ( ) ( )
/

/
/ /

=
+ +1 1 � (( )An

 (1.8)

The conditional probability also can be written in terms of 
intersection of sets as

 
P A G

P A G
P G( )

( )
( )/ = ∩  (1.9)

 P A G P A G P G P G A P A( ) ( ) ( ) ( ) ( )∩ = =/ /  (1.10)

Bayes’ theorems then can be stated as

 
P A G

P G A P A
P G( )

( ) ( )
( )/

/=  (1.11)

1.2.3 Independent Events and Bernoulli’s Theorem
Two events A and B are said to be independent if

 P(A ∩ B) = P(A)P(B) (1.12)

Suppose that one repeatedly runs independent trials of an 
experiment in which the probability of success in each trial is p, and 
the probability of failure in q = 1 − p. Then the probability that there 
are exactly k successes in these n trials is given by nCkp

kqn.k. Let A and 
B be small positive numbers. Then there is a value of n large enough 
that the probability that the ratio of the successes in n trials is not 
within A and p is less than B. In other words, if the experiment is 
run long enough, the fraction of successes is likely to be close to the 
correct probability. 
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1.2.4 Discrete Probability Distributions

Binomial and Multinomial Distributions
The binomial distribution (Fig. 1.6) gives the discrete probability 
distribution of obtaining n successes out of N Bernoulli trials. The 
result of each Bernoulli trial is true with probability p and false with 
probability q = 1 – p. Thus 

 f(x) = P(X = x) = nCxp
xqn–x (1.13)

 = n!/x!(n – x)!pxqn–x

 = x = 0, 1, 2, . . . , n

The mean, variance, skewness, and kurtosis of the binomial 
distribution are given below.

 Mean μ = np 

 Variance σ2 = npq 

 Skewness α3 = (q – p)/(npq)1/2 

 Kurtosis α4 = 3 + (1.6pq)/(npq)1/2 

A1, A2, . . . , Ak events can occur with probabilities p1, p2, . . . , pk, 
where p1 + p2 + ⋅ ⋅ ⋅ + pk = 1. X1, X2, . . . , Xk are random variables, 
respectively, giving the number of times that A1, A2, . . . , Ak can occur 
in a total of n trials so that X1 + X2 + ⋅ ⋅ ⋅ + Xk = n. Then the multinomial 
distribution can be given by

P(X1 = n1, X2 = n2, . . . , Xk = nk) = n!/n1!n2!  ⋅ ⋅ ⋅  nk!p1
n1p2

n2  ⋅ ⋅ ⋅ pknk (1.14)
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FIGURE 1.6 Binomial distribution with n = 21 and p = q = 0.5.
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where n1 + n2 + ⋅ ⋅ ⋅ + nk = n. The joint probability function for random 
variables X1 + X2 + ⋅ ⋅ ⋅ + Xk = n. This is the general form of the 
binomial distribution and the general term in the multinomial 
expression of (p1 + p2 + ⋅ ⋅ ⋅ + pk)

n.

Poisson Distribution

 
f x P X x x

x( ) ( ) exp != = = −⎛
⎝⎜

⎞
⎠⎟

λ λ
  x = 0, 1, 2, . . . , n (1.15)

 Mean μ = λ 

 Variance σ2 = λ 

 Skewness α3 = 1/λ1/2 

 Kurtosis α4 = 3 + 1/λ 

A good example of the Poisson distribution (Fig. 1.7) is the number 
of typos generated by a good typist. The probability of 1 or 2 typos 
per page is high, and the probability of generating 10 typos per page 
is slim. In a similar fashion, the time taken at the teller counter at the 
bank also can be fit to a Poisson distribution. The probability of the 
event of the transaction taking 5 or 8 minutes may be high, and 
the probability of it taking 1 hour will be low. Yet another example is 
the arrival of students late to class. The probability of students arriving 
on time or 5 minutes before the hour is high, and the chances that they 
will arrive ½ hour late will be on the low side.

Hypergeometric Distribution
This is an example in sampling with replacement. Suppose that a box 
contains b blue marbles and r red marbles. Let us perform n trials of 

1 6

2.5

2

1.5

1

0.5

0
2111 16

FIGURE 1.7 Poisson distribution with λ = 2.0.
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an experiment in which a marble is chosen at random and its color is 
observed and the marble is put back in the box.

 f (x) = P(X = x) = bCx
rCn − x/

b + r Cn (1.16)

 Mean μ = nb/(b + r) 

 Variance σ2 = nbr(b + r − n)/(b + r)2/(b + r + 1) 

Geometric Distribution

 f (x) = P(X = x) = pqx–1   x = 1, 2, . . . (1.17)

 Mean μ = 1/p 

 Variance σ2 = q/p2 

The chain sequence distribution in copolymers was shown to be 
modeled using the geometric distribution.

1.2.5 Continuous Probability Distributions

Uniform Distribution and Cauchy Distribution

 
f x

b a
( )

( )
=

−
1

   a ≤ x ≤ b = 0 otherwise (1.18)

 Mean μ = ½(a + b) 

 Variance σ2 = 1/12(b – a)2 

A good example of the uniform distribution is the contact time of 
solid particles at the heat-exchanger surfaces in a circulating fluidized-
bed boiler (CFB). The Cauchy distribution is given by

 
f x

a
x a

a x( )
( )

, –=
+

> ∞ < < ∞
π 2 2 0

 
(1.19)

 Mean μ = 0 

Variance and higher moments do not exist. This distribution is also 
called the Lorentz distribution by physicists. It forms the solution to the 
differential equation that can be used to describe forced resonance. 

Gamma and Chi-Squared Distributions

 
f x x

x

( )
exp

( )
=

−⎛
⎝⎜

⎞
⎠⎟−α

α

β
β α

1

Γ    x > 0 (1.20)

  = 0                                   x ≤ 0  
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where Γ(α) is the gamma function.

 Mean μ = α  
 Variance σ2 = αβ2 

 
Γ(n) = t t dtn−

∞
−∫ 1

0
exp( )    n > 0

 

 Γ(n + 1) = nΓ(n)   (recurrence formula) 

 Γ(1) = 1 

when n is a positive integer, then 

 Γ(n + 1) = n! 

X1, X2, . . . , Xγ are γ independently normally distributed random 
variables with mean 0 and variance 1. Consider the random variable

 χ2 = X1
2 + X2

2 + ⋅ ⋅ ⋅ + Xγ
2 (1.21)

where γ is the number of degrees of freedom. A special case of the 
gamma distribution with α = γ/2, β = 2.

 Mean μ = γ 

 Variance σ2 = 2γ 

 f(x) = x(γ/2)–1 exp(–x/2)/[2γ/2Γ(γ/2)]   x > 0 (1.22)

 = 0                       x ≤ 0 

This is the chi-squared distribution.

Student t Distribution

 

f t

t

( )

( )
( )/

=

+ +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− +

Γ

Γ

γ
γ

γ π γ

γ
1

2
1

2

2 1 2

   – ∞ < t < ∞ (1.23)

 Mean μ = 0 

 Variance σ2 = γ/(γ − 2)   γ > 2 

where γ is the number of degrees of freedom.

Normal Distribution
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x
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σ π
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The normal distribution (Fig. 1.8) was introduced by de Movrie, 
who approximated binomial distributions for large n. His work was 
extended by Laplace, who used the normal distribution in error analysis 
in experiments. Legendre came up with the method of least squares. 
Gauss by 1809 justified the normal distribution for experimental errors. 
The name bell curve was coined by Galton and Lexis.

Generalized Normal Distribution
The generalized normal distribution was introduced by Sharma to 
capture the periodicity in pressure fluctuations in addition to the 
random component [20]. In addition to the mean and standard 
deviation, the number of saddle points also can be used to characterize 
the periodicity of pressure fluctuations.

 f(x) = A exp(–Bx – Cx2 – Dx4) (1.25)

where A, B, C, and D are parameters that can be obtained by a least-
squares fit of the experimental data. This also can be referred to as a 
Sharma distribution. Periodicity is found in DNA sequences. This 
periodicity can be represented using the Sharma distribution.

1.2.6 Statistical Inference and Hypothesis Testing 
Hypothesis testing is the use of statistics to determine the probability 
that a given hypothesis is true. The usual process of hypothesis testing 
consists of four steps: 

1.  Formulate the null hypothesis H0 (commonly, that the 
observations are the result of pure chance) and the alternative 
hypothesis H1 (commonly, that the observations show a real 
effect combined with a component of chance variation). 

2.  Identify a test statistic that can be used to assess the truth of 
the null hypothesis. 

3.  Compute the P value, which is the probability that a test statistic 
at least as significant as the one observed would be obtained 

–4 –3 –2 –1 0 1 2 3 4

FIGURE 1.8 Normal distribution with zero mean and unit variance.
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assuming that the null hypothesis were true. The smaller the 
P value, the stronger is the evidence against the null hypothesis.

4.  Compare the P value with an acceptable significance value α 
(sometimes called an alpha value). If p ≤ α, then the observed 
effect is statistically significant, the null hypothesis is ruled 
out, and the alternative hypothesis is valid.

Type I error is an error in a statistical test that occurs when a true 
hypothesis is rejected (a false negative in terms of the null hypothesis). 
Type II error is an error in a statistical test that occurs when a false hypoth-
esis is accepted (a false positive in terms of the null of hypothesis).

1.3 Which Is Larger, 2n or n2?
During the time and space efficiency analysis of string algorithms, 
the use of subsequences is encountered. The number of possible 
distinct subsequences in a sequence of length n can be seen to be

 nC0 + nC1 + 2C2 + … + nCn (1.26)

Expanding 2n = (1 + 1)n using a binomial expansion:

 
2 1

1
2

1 2
3

n n
n n n n n= + + − + − − +( )

!
( )( )

! �  (1.27)

Comparing Eq. (1.26) and Eq. (1.27),

 2n = nC0 + nC1 + 2C2 + … + nCn (1.28)

During sequence alignment of two sequences, either global or 
local by dynamic programming methods, it can be seen that the time 
taken is usually n2. It is desirable to evaluate whether 2n or n2 is greater 
for all natural numbers. An attempt is made to prove that 2n > n2 by 
the principle of induction.

Given:  2n ≥ n2 (1.29)

To show: 2n+1 ≥ (n + 1)2 (1.30)

Multiplying both sides of Eq. (1.30) by 2,

 2n+1 ≥ 2n2 (1.31)

Should 2n2 > (n + 1)2, Eq. (1.31) is shown. Compare 2n2 and (n + 1)2, 
or compare n2 and 2n + 1, or compare 1 and 2/n + 1/n2. It can be seen 
that 1 > 1/n2 + 2/n.
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For n > 2, the null case has to be taken because n = 4 as at n = 3, 
2n < n2. Thus 2n is greater than n2 for values of n greater than 4. For n 
less than 4, this is not the case. This can be seen at n = 3; in fact, n2 is 
greater than 2n.

1.4  Big O Notation and Asymptotic 
Order of Functions

The big O notation was introduced by E. Landau in 1909 for his discus-
sions of the distribution of prime numbers. The order of growth of the 
running time of an algorithm gives a simple characterization of the 
algorithm’s efficiency. This allows for comparison of relative perfor-
mance of different algorithms. When only large input sizes are consid-
ered, only the order of magnitude of the running time is important or 
relevant. This is called the asymptotic efficiency of the algorithm. The 
big O, θ, and Ω notations are introduced to facilitate the analysis of 
running time and storage space required by computer algorithms. 

The worst-case running time function is given by T(n). It is defined 
on only an integer input size. For a given function g(n), θ[g(n)] is 
denoted as the set of functions such that

 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)  (1.32)

Equation (1.32) is valid for all n ≥ n0, and there exist positive 
constants c1 and c2 such that the function is sandwiched between the 
two function c1g(n) and c2g(n) for sufficiently large n. It is said of the 
function g(n) that it is an asymptotically tight bound for f [n – f(n)] = 
θ[g(n)] denotes the fact a set of functions is involved. The θ notation 
asymptotically bounds a function from above and below. When there 
is only an asymptotic upper bound, the O notation is used. For a 
given function g(n), big O of n is denoted by O(n):

 O[g(n)] = f(n)   0 ≤ f(n) ≤ cg(n)  (1.33)

Equation (1.33) is valid for all n ≥ n0 and provides an upper bound 
on a function to within a constant factor. In a similar fashion, the 
asymptotic lower bound is introduced by Ω[g(n)]:.

 Ω[g(n)] = f(n)   0 ≤ cg(n) ≤ f(n)  (1.34)

Equation (1.34) is valid for all n ≥ n0 and provides a lower bound 
on the function that is considered. 

Lemma 1.1 A function f ∈ O(g) if f(n)/g(n) = C as n goes to infinity and C is less 
than infinity, including the case where the limit is 0. If the limit of the ratio of f 
to g exists and is not infinity, then f grows no faster than g. If the limit is infinity, 
then f does grow faster than g.
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For any real number x, the greatest integer less than or equal to x is denoted by 
⎣ x ⎦, the floor of x, and the least integer greater than or equal to x by ⎡x⎤, the 
ceiling of x. For all real x,

 x – 1 < ⎣ x ⎦ ≤ x ≤ ⎡x⎤ < x + 1 (1.35)

Example 1.1 Ordering of functions. Rank the following functions by order of 
growth: 

 lg[lg(n)], 1, n, 2n, en, n!, n2, n3 

 lg[lg(n)] < 1 < n < n2, n3, en, 2n, n! for large n (1.36)

Summary
The Human Genome Project was completed ahead of time. 
Bioinformatics involves the algorithms, mathematical models, neural 
networks, sequence representations, alignment, and other methods 
of analysis and storage of biologic data. Owing to the doubling of 
biologic databases every 10 months, there is increased need for 
inventing new data search and data storage methods. Preliminaries 
needed for getting more use out of this textbook are a bit of molecular 
biology, computer science, and probability. 

Two important molecules in bioinformatics are proteins and 
nucleic acids. Insulin was among the first primary protein structure 
identified. The sequence of amino acids in a protein is defined by 
genes and encoded by the genetic code. Primary structure, secondary 
structure, tertiary structure, and quaternary structure are the four dif-
ferent structure types of proteins. The primary structure of a protein 
consists of a random polymer chain sequence distribution of amino 
acids. There exist 20 different amino acids. Each amino acid consists 
of an amine and carboxylic acid group. The 20 different amino acids 
are lysine, arginine, histidine, which are basic; aspartic acid and glu-
tamic acid, which are acidic; glycine, serine, threonine, cysteine, tyro-
sine, glutamine, and asparagine, which are polar; and alanine, valine, 
leucine, isoleucine, proline, methionine, phenylalanine, and trypto-
phan, which are nonpolar. Owing to hydrogen-bond formation, the 
secondary structure of protein is formed depending on the primary 
sequence structure of the protein. Proteins are formed into α-helix, 
β-pleated sheet, and γ-coil shapes. F. Sanger won two Nobel Prizes—
one for discovering the primary chain sequence distribution structure 
of insulin and another for discovering the chain sequence distribu-
tion of nucleic acid. He developed a molecular labeling method. 
Paper chromatography and gel acrylamide electrophoresis are used 
to separate the molecular fragments and sequence deduced. 

There are a number of bioseparation techniques. These are salt preci-
pitation, ion exchange, ultracentrifuge, sedimentation, polyacrylamide 
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electrophoresis, Sanger’s method, the Dansyl chloride method, the 
Edman degradation technique, paper chromatography, mass spec-
trometry, isoelectric focusing, two-dimensional gel electrophoresis, 
adsorption chromatography, partition chromatography, ion-exchange 
chromatography, gel-filtration chromatography, affinity chromatography, 
thin-layer chromatography, and HPLC. 

Nucleic acids consist of a ribose sugar or deoxyribose, phosphoric 
acid, and nitrogenous bases. Adenine, guanine, cytosine, thymine, and 
uracil are nitrogenous bases. DNA has a double-helix structure 
and two antiparallel strands. The linear sequence of a protein is spec-
ified by a linear sequence of nucleic acids by a process of translation 
and transcription. Har Gobind Khorana received the Nobel Prize for 
nucleic acid synthesis and the genetic code. The flow of information 
in gene expression from DNA to mRNA is called transcription and 
from mRNA to protein is called translation. Exons are the coding 
regions of DNA, and intergenic regions are the introns. Splicing 
occurs when exons are linked together and introns are eliminated. 

Genomes vary from one organism to another. About 1.1 percent of 
the genome is spanned by exons, 24 percent by introns, and 75 percent 
by intergenic DNA. Gene number of an organism is the number of genes 
contained in the DNA. The work of Vrenter and colleagues confirmed 
that the human genome has 30,000 genes. Claverie provided an estimate 
of biologic complexity K in an organism to the expected number of genes 
in the genome. Junk DNA consists of repeated sequences that do not 
code for proteins and make up 50 percent of the human genome.

The famous exchange of letters between Pascal and Fermat on the 
gambler’s dispute gave rise to the concept of probability. Other major 
contributors to the field of probability are Bernoulli, De Movrie, 
Laplace, Chebychev, Bell, Markov, von Mises, and Kolmogorov. The 
three definitions of probability are the classical, axiomatic, and relative-
frequency approaches. Conditional probability, Bayes’ theorem, and 
Bernoulli’s theorem were discussed. The probability density function, 
mean, variance, skewness, and kurtosis of discrete distributions such 
as the binomial, Poisson, hypergeometric, and continuous distributions 
such as the uniform, Cauchy, gamma, chi-squared, student t, normal, 
and generalized normal distributions were reviewed. The formulation 
of null and alternate hypotheses, development of test statistics, and 
type I and type II errors were reviewed. 

2n > n2 when n > 4. The big O notation, floor, ceiling, and asymptotic 
order of functions O, θ, and Ω were introduced. 
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Exercises
1.0 Why does the structure of glycine lead to a polar amino acid and that of 
alanine a nonpolar amino acid? 

2.0 Name some amino acids other than the 20 that constitute the protein 
primary structure.

3.0  Which amino acids have the largest charge?

4.0 Why is the study of the tertiary structure of proteins important?

5.0 What is the meaning of amino acid residue?

6.0 Compare the principles and process of transcription and translation.
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7.0 Explain exons, introns and RNA splicing.

8.0 Show a schematic of operon structure and add a note showing terminators 
and ribosome-binding sites.

9.0 Display the molecular weights of the 20 different amino acids. What is 
the molecular weight of insulin? How does this depend on the chain sequence 
distribution.

10.0 Discuss the differences between

 a. nucleoside and nucleotide.

 b. codon and anticodon.

 c. tRNA and mRNA.

 d. amino acid and nucleotide.

 e. DNA and RNA.

11.0 Can a codon encode more than one amino acid?

12.0 Do you expect elephants to have more genes than a crocodile. Why?

13.0 Who was credited with the synthesis of a long polyribonucleotide of 
known sequence?

14.0 Enumerate the process of transcription and translation for 
CCACGCATGCAGGCGCGCGCGCGCGGCAT.

15.0 Write a note on denaturization of proteins.

16.0 State true or false.

 a. Arginine is a polar amino acid.

 b. L-Arnithine is one of the 20 different types of amino acids in protein.

 c. Lysine is a basic amino acid.

 d. There are sulfide bridges in the insulin molecule.

17.0 Do prokaryotes have genes?

18.0 Where are circular DNA and linear DNA found?

19.0 Write a note on ribosomes.

20.0 What is meant by the DNA shortening problem?

21.0 Which are the start codons and stop codons in the genetic code?

22.0 Why are 61 codons required to code 20 different amino acids?

23.0 Why are there fewer than 61 tRNA molecules?

24.0 What are chaperones and what is their role in protein synthesis?

25.0 Is the mechanism of initiation of translation in eukaryotes not compatible 
with polycistronic mRNA?
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26.0 What disease may be associated with improper protein folding?

27.0 Sketch the lariat formation and splicing of pre-mRNA in eukaryotes.

28.0 How many nucleotides can be handled by the autoradiograph method 
of directly reading nucleotide sequence distribution?

29.0 A box contains two red and three black marbles. Find the probability 
that if two marbles are drawn at random (without replacement) both are black. 
(Ans: 3/10)

30.0 The probability that both are red in problem 29.0 is _________. (Ans: 1/10)

31.0 The probability that one is red and one is blue in problem 30.0 is ________. 
(Ans: 3/5)

32.0 If at least one child in a family with two children is a boy, the probability 
that both children are boys is ____________. (Ans: 1/3)

33.0 A shelf contains 6 separate compartments. Show that the number of 
ways 12 indistinguishable marbles may be placed in the compartment so that 
no compartment is empty is 462 (Fermi Dirac Statistics). 

34.0 The probability function of a random variable X is given by

          f(x) = 2p x = 1

                  = p   x = 2

                  = 4p  x = 3

                  = 0 otherwise

where p is a constant. What is the probability of P(0 ≤ X ≤ 3)? (Ans: 3p)

35.0 What is the probability of X > 1 in Problem 34.0? (Ans: 5p)

36.0 Ten percent of the tools produced in a certain manufacturing process 
turn out to be defective. Assuming that the defective tools can be modeled as 
rare events and as a Poisson distribution, f(x) = λx exp(–λ)/x!), with λ = 1. The 
probability that in a sample of 10 tools chosen at random 2 are defective is 
_________. (Ans. 0.1839)

37.0 A typist makes an average of only one error every two pages or 
0.5 errors per page. This can be described by the Poisson distribution, f(x) = λx 
exp(–λ)/x!) with λ = 0.5. The probability that the typist will make no error on 
the next page is ___________. (Ans: 0.607)

38.0 The probability of fewer than two errors in Problem 37.0 is _______. 
(Ans: 0.986)

39.0 What is the probability of one or more errors in Problem 37.0? (Ans: 0.393)

40.0 Of 80 families with 5 children each, how many would expect to 
have (a) 3 boys, (b) 5 girls, AND (c) either two or three boys? (Ans: a.10.0; 
b. 2.5; c. 30)
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41.0 During turbulent flow, the age of eddies staying on the wall of the pipe 
is said to be exponentially distributed. f(t) = 1/tavg exp(–t/tavg), with the mean 
age being tavg and the variance tavg

2, for t > 0. The probability that for a mean 
time of 100 ms the age of the eddies is greater than 1 second is _____________. 
(Ans. 4.5 E.5)
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CHAPTER 2
Alignment of a Pair 

of Sequences

Objectives
The objectives of the chapter are to

• Understand the motivation to study sequence distribution 
and alignment of sequences.

• Learn to obtain the optimal global alignment of a pair of 
sequences using dynamic programming (Needleman and 
Wunsch algorithm).

• Discuss the time taken and space efficiency of global pairwise 
alignment.

• Learn to obtain optimal local alignment of a pair of sequences 
using dynamic programming.

• Discuss the time taken and space efficiency of the Smith 
Waterman algorithm.

• Become familiar with the affine gap model.

• Determine the connection to commercial software packages 
from techniques discussed in this chapter.

2.1 Introduction to Pairwise Sequence Alignment
Sequence comparison is a field in itself in computer science. It has a 
lot of interesting applications in bioinformatics. The process of lining 
up two or more sequences to obtain matches between them is called 
sequence alignment. When two sequences are lined up, it is called a 
pairwise alignment [1], and when more than two are examined, it is 
referred to as multiple-sequence alignment. The sequence distribution 
can consist of the 20 different amino acids in the protein primary 
structure of a polypeptide, the 4 nucleotide base pairs in the ribonucleic 
acid (RNA), or the 4 nucleotide base pairs in the deoxyribonucleic 
acid (DNA). The similarity among sequences may be based on 
evolutionary, structural, or functional relationships among them. 

41
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



 42 C h a p t e r  T w o

Similarities found among nucleotide sequences are also called identity.
Conservation refers to changes at a specific position of an amino acid 
sequence that preserve the physicochemical properties of the original 
residue. Similarity attributed to descent from a common ancestor is 
homology. When two or more sequences are aligned and linked to a 
common ancestor,  and when mismatches are found in the alignment, 
then the mismatches can be detected as point mutations.

Gaps in the sequences can be seen as indels. Sequence similarity 
among protein sequences indicates the degree of conservation among 
them. Conservation in DNA or RNA base pairs can indicate similar 
functional and structural roles. The objective of sequence alignment 
is to be able to select two or more sequences and compare them to 
determine the measure of similarity. The grade of similarity is a 
measurement used to draw conclusions about whether homology 
exists between two sequences.

Biomolecules, i.e., DNA and RNA and proteins they encode by 
gene expression, have been found to be central to the functions of 
organisms. Their structure and function and their study can be the 
next frontier in science and is an important fruit of labor from the 
study of biochemistry. These biomolecules can be viewed as 
polymers—as polynucleotide and polypeptide. The two polymers 
can be further viewed as random multicomponent copolymers. The 
polypeptide has a random microstructure with 20n possible sequence 
distributions, where n is the degree of polymerization or length of 
the polypeptide. The 20 comes from the alphabet of amino acids that 
can be found in the backbone polypeptide chain. The polynucleotide, 
on the other hand, can have 4n possible sequence distributions for a 
length of n of the poynucleotide chain. The 4 comes from the possible 
base pairs—adenine, guanine, cytosine, and thymine. The RNA 
would include uracil. The DNA molecule has up to 3 billion base 
pairs. The sequence distribution microstructures of DNA and insulin 
were discovered by F. Sanger, who was awarded the Nobel Prize 
twice, once in 1958 and then again in 1980. The information content 
in the DNA molecule is high. Most of the information is in the form 
of random sequences (Fig. 2.1).

As can be seen in the figure, during gene transcription and 
translation, the random sequences of DNA play an important role in 
the formation of the copies, and then the codons form the protein 
molecule by polymerase chain reaction (PCR) in the presence of the 
polymerase enzyme. The human genome needs to be annotated. 
Functions of organisms can be linked to the genes at various locations 
in the genome. The annotation of the genome, i.e., addressing the 
genes as the originators of such and such functions, is the study of 
functional genomics or metabolomics. Sequence information needs to be 
stored and retrieved from large databases and drives the study of 
bioinformatics. The sequence in itself is not informative. Sequence 
alignment and analysis are needed to perform these tasks.
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ORIGIN

 1 tcatagaccg tgccttctag ctgcgacctc acatggtgga aaggggaagg caacctccct
 61 gtagcctctt ttaaaagggc attaatcgca ttcacggggt ctccatcctc ttggcctaac
 121 cacctcccaa aagccctacc ttttagtaat atcacatggg gagttagaat ttcactatat
 181 gaattttggg gggacacaaa catttatgcc acagcagata tctttctacc accttatttg
 241 gtgatttctg ggttttgttt gtttgtttaa gacagagtct cgctctgtcg gccaggctgg
 301 agtgcagtgg caccatctcg gctcaatgca accttcgcct ccccggttca agcgattctc
 361 ctgcctcagc ctcccaagta gctgggatta cggacgtgtg ccaccacgcc tggctaattt
 421 ttgtattttt agtagagact gggtttcacc attttggcca ggctggtccc gaactgctga
 481 gttcaggtga tccacccgcc tcggcctccc aaagttctgg gattacaggc gtgagccacc
 541 atgtccggct ggtgatttct gtttaaaagt tttttcttaa agtgtttttt cccacctagt
 601 ttttcattga atgggtaaaa cattctacat ttgcttttat taaaacaaga aatgaatttt
 661 gctgcatttc aatttataga ttttactatc ctacctcgtg ccaggttctg tgctaagtgc
 721 tgtatatatc tgtgatcaca tttaactttt ataacaagcc aaatgagcag gaactcttat
 781 ctctatctta cagacgaaga atccaaagac cagggacagt aagtaatttg ctcacctggt
 841 ttgccagcct ccatgacaca tcgccgtcca gttctgcctt taattaccaa agcacaacac
 901 gctgctttga ttcccctctc ctcggcgcca gaattcaaga gtgaagttaa accgcaaggg
 961 ctgagttaga agattggcct cagttccctg ttcccaccag caggtggcac cgtctcctag
1021 cggaattctt acttgaacgt tttgcttcca tttctgcaga ggcatggtga acacagttac
1081 accaccaaag tgttcctcct ggctgagttt gcctatcttg ttcagtgaag acaacccatg
1141 aggacaaatg gtgttaatga gaagcttttg cggagttaca gagatcctcg tatttcttta
1201 aaatacacct aataacgtta actctgcaat aatttgtaga tcatgttaaa tcttagctat
1261 cttcctcttg ccacccagtg tgcttcaagc cacatggttc agagcaccat ttaatgtgaa
1321 actccaattt taaaacaaag tgaaccttcc ttttacaaaa ccatgagaca agttacagag
1381 taatgaccac ccacatgacc ttgaagtgat tttgagtgag tgagtgtaac ttccgtggct
1441 gccatttaaa ttggattcaa atccaaatgg ctccacctcc atgtcatcag acctcttgtg
1501 ccctgattcc cttggctaag ttcacagtac cttccacatc aggttgtggc aatgattacc
1561 tgaggttaat acgataaaag cacatggtaa gcactcctaa atgatagcca atataaagac
1621 tcagttctcc caattccaag ggtccccacc atgatagaaa aggatctttt ggtaaataga
1681 gtatgtttag ctcttgctag gtctttaaat actttgctgg gggccaggca ccatggctca
1741 cacctgtaat cccaccgcct taggagactg aggctggagg atcctttgcg gccaagagtt
1801 tgagaccagc ctgggcaaca cagcaagacc ctatttctac aaaaataaaa ataaaaatta
1861 accaggcttt gtacacactt gtagtcccat tacttgggag gctgaggcag gaggatccct
1921 caagcccaag agttcaaagc tgtagtgagc tatgattgcg ccactgcact ccagcctggg
1981 tgacagagta agactctgtt tcaaaacaac aacaacaaac aaaaacctca aaacctcttt
2041 gttggactta acttccagct cctccatgta gtaccttagt acccttgcag cccgtttctc
2101 ttttacaaga caacaatgtt gttataaact catttggatg tggtcccgtg gaggagtatt

FIGURE 2.1 Nucleotide sequence of Homo sapiens base pairs 1–3001 (From NHLBI 
Resequencing and Genotyping Service, N01.NV.48196, J. Craig Venter Institute, 
Rockville, MD, http://rsng.nhlbi.nih.gov [2].)

2.2 Why Study Sequence Alignment
Sequence alignment can be the key to finding a cure for autoimmune 
disorders. Autoimmune disorders are those in which harm is inflicted 
on a patient’s cells by signals from within the patient himself or 
herself by mistake. Rather than targeted annihilation of the culprit 
virus by the immune system, the signal from within the patient 
triggers the attack of the patient’s cells. This is a case of mistaken 
identity. Thus a double deleterious effect is in place—i.e., failure of 
the immune system and damage done to the cells. 

Researchers have shown that the protein signal in the patient is 
specific to the sequence distribution in the cells. When the sequence 
distribution of the culprit virus and the sequence distribution in the 
cells at the site of the disease in the patient are identical, the harm is 

http://rsng.nhlbi.nih.gov
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done by signal action directed at the common sequence distribution, 
and then the cells of the patient are harmed. Thus, when the signal 
from the protein to attack the infecting virus is confused and the cells 
in the body with the identical sequence distribution are attacked 
instead, autoimmune disorder sets in. Once this match is determined, 
then drugs can be designed whose therapeutic action can alter the 
gene expression, thus effecting a cure. In multiple sclerosis, the 
immune system’s T cells attack the patient’s nerve cells. In a similar 
fashion, bone cells are attacked during the onset of rheumatoid 
arthritis. The infection is still unchecked, and this results in a double 
deleterious effect on the patient. In multiple sclerosis, it was 
conjectured that the myelin sheath proteins that were sequenced were 
matched in a protein database with similar bacterial and viral 
sequences, and tests were conducted to determine whether the T cells 
attacked the myelin sheath proteins with the same sequence as the 
bacterial and virus proteins. The result was identification of certain 
bacterial and viral proteins that were confused with myelin sheath 
proteins. Thus autoimmune diseases arise from an overactive immune 
response of the human anatomy against substances and tissues 
usually present in the human anatomy—i.e., the human anatomy 
attacks its own cells. There are more than 80 autoimmune disorders 
reported today. They afflict 5.7 percent of the population. Some of the 
known autoimmune disorders are listed in Table 2.1.

Recently, a key set of genes that can be used to manipulate 
immune system activity was discovered [3]. This discovery may lead 
to new therapies for autoimmune disease. The immune system is 
often described as a kind of military unit, a defense network that 

Addison’s disease Aplastic anemia Autoimmune hepatitis

Celiac disease Crohn’s disease Diabetes mellitus

Gestational pemphigoid Goodpasture’s 
syndrome

Graves’ disease

Kawasaki’s disease Multiple scelorisis Myasthenia gravis

Opsoclonus myoclonus 
syndrome  

Optic neuritis Ord’s thyroiditis

Pemphigus Pernicious anemia Primary biliary cirrhosis

Rheumatoid arthritis Reiter’s syndrome Sjögren’s syndrome

Takayasu’s arteritis Temporal arteritis Hemolytic anemia

Wegener’s granulomatosis Primary thyroiditis Ulcerative colitus

Hashimoto’s thyroiditis Systematic lupus Dermatomyositis

TABLE 2.1 List of Autoimmune Disorders
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guards the body from invaders. White blood cells, or T cells, serve as 
frontline soldiers of immune defense, engaging invading pathogens 
head on. T cells are commanded by regulatory T cells. Regulatory 
T cells are themselves controlled by a master gene regulator called 
Foxp3. Master gene regulators bind to specific genes and control their 
level of activity, which, in turn, affects the behavior of cells. In fact, 
when Foxp3 stops functioning, the body can no longer produce 
working regulatory T cells. When this happens, the frontline T cells 
damage multiple organs and cause symptoms of type 1 diabetes and 
Crohn’s disease. Researchers have scanned the entire genome of 
T cells and have located the genes controlled by Foxp3. Roughly 
30 genes were found to be controlled directly by Foxp3, and one, 
called Ptpn22, showed a particularly strong affinity. The list of the 
genes that Foxp3 targets provides an initial map of the circuitry of 
these cells, which is important for understanding how they control a 
healthy immune response. Autoimmune diseases on a molecular 
level can be considered in a “black box.” The molecular mechanisms 
of these diseases can be understood using sequence alignment.

Sequence alignment is usually attempted in terms of sequence 
database searching. The sequence is analyzed by comparative 
methods against existing databases to develop hypotheses concerning 
relatives and function. For example, an abundant message in a cancer 
cell line may bear similarity to protein phosphates genes. This 
relationship would prompt experimental scientists to investigate the 
role of phosphorylation and dephosphorylation in the regulation of 
cellular transformation.

The common inheritance can be found and the evolutionary tree
constructed from the knowledge gained by sequence alignment. 
Evolution is considered at the molecular level in such projects. 
Chimpanzee and Homo sapiens were found to have a common ancestor 
recently. The wings of bats and those of butterflies have evolved 
independently. Evolution can be linked to changes in DNA. Molecular 
evolution is the study of the history of changes in an organism during 
evolution and its relation to changes in DNA. For example, cytochrome C 
and hemoglobin were sequenced. Family trees were constructed 
based on the assumption that closely related organisms have similar 
sequences. Thus chimpanzee was found to be closer to Homo sapiens 
than to rattlesnake. Sequence comparisons thus are motivated by the 
study of evolution at a molecular level.

Prior to analyses using DNA sequences, it is first necessary to 
determine the actual sequence itself. The length of DNA can be as 
much as 3 billion base pairs. Practical considerations limit the 
sequencing of DNA all at once because of this length. Via Sanger’s 
plus-minus method and other methods, about 450 to 500 base pairs 
can be sequenced at a time. Many overlapping small pieces are 
sequenced. Then these fragments are assembled into one long 
contiguous sequence. One problem is that the location of the fragments 
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within the genome and with respect to each other is not generally 
known. Enough fragments are sequenced so that there will be many 
overlaps between them, and the fragments can be matched up and 
assembled. This process is called shotgun sequencing. Sequence 
similarity is used to obtain the overlaps needed in shotgun sequencing. 
DNA sequence can be used to obtain the translated polypeptide
microstructure using the genetic code.

Gene finding and its role in disease mechanisms have been receiving 
increased attention in recent years. These can be achieved by sequence 
alignment. For example, genes responsible for longevity have been 
discovered recently by the scientists at the National Institute of Aging. 
These genes can be searched for in sequence databases.

The genomes of various organisms have been sequenced in their 
entirety and the information stored using computer resources world 
over. Sequence database searches can be conducted depending on the 
problem at hand. For this, reliable sequence alignment methods are 
needed. In order to reduce database search costs, more research is 
being undertaken in this area. The databases have doubled in size 
because of the advent of high-throughput automated fluorescent 
DNA sequencing technology. Analyses of DNA sequences are used in 
the construction of phylogenetic trees, in genetic engineering using 
restriction site mapping, in determining gene structure through 
intron/exon prediction, in making inferences about protein coding 
sequences through open-reading-frame (ORF) analysis, etc.

Drugs can be designed based on the sequence distribution of the 
nucleotides or protein in culprit viruses. Examples of viruses for 
which this has been done include influenza virus, Japanese yellow 
fever virus, measles virus, rabies virus, TA coliphase virus, cauliflower 
mosaic virus, human immune deficiency virus (HIV) type 2, vaccinia 
virus, polio virus, serum hepatitis virus, etc. The drugs interact with 
the protein in the virus and changes the protein signaling that 
originally caused the disease, leading to a cure. On the other hand, 
the gene expression can be altered by therapeutic action, leading to a 
change in the protein signal, effecting a cure.

The protein secondary structure can be deduced from the sequence 
distribution of the polynucleotide. There are three different types of 
protein secondary structures—α-helix, β-pleated-sheet, and γ-coil/
loop conformations. The 1997 Nobel Prize for medicine went to 
S. B. Prusiner for his work on prions [4]. Prion proteins have been 
associated with so-called mad cow disease and its human variant, 
Creutzfeldt-Jakob syndrome. In these proteins, the same sequence 
may adopt different stable conformations—a bad conformation with 
a mixture of helices and sheets and a normal conformation with a 
bundle of helices. The bad conformation prions were shown to have 
an autocatalytic effect and may be responsible for the transformation 
of normal conformation prions into bad ones. Based on local sequence 
information, such conformational conflicts those in prion proteins 
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will be difficult to solve by any prediction method. However, a local 
method may be able to report that a piece of a sequence may have a 
higher potential for both helix and sheet as opposed to coil.

The protein folding problem can be viewed as given the primary 
protein microstructure, what is the final three-dimensional (3D) 
folding of the protein? It was shown by Anfinsen and colleagues [5] 
that ribonuclease could be denatured and refolded without loss of 
enzymatic activity. This showed that all the information that a protein 
needs resides in its primary structure. Hence it is possible to derive 
the rules for protein folding from analyses of sequences with known 
structures. These rules can be applied to prediction of the 3D structure 
of protein given only a linear sequence of amino acids.

The DNA sequence of a clone can be obtained from the study of 
biologic sequences. In an experiment to clone a specific gene whose 
sequence is known, it is necessary to check and validate that the 
cloned sequence is identical to the published one. Should the results 
of sequence similarity reveal misaligned or mismatched sequences, 
the experiments must be designed to correct those sequences. For 
example, cloning errors can result from using inappropriate primers 
at the cloning step. The use of a low-fidelity enzyme in a PCR 
experiment can produce errors during cloning. 

Proteins are classified according to their sequence distribution. 
Multiple sequence alignment (MSA) is used in the study of genetic 
diseases.

2.3 Alignment Grading Function
A string is an ordered sequence of characters or symbols more 
generally. These characters or symbols in particular are usually drawn 
from a set called the alphabet. The alphabet is a set of characters or 
symbols from which the strings are constructed. Here is an example: 
Consider a section of the chain sequence distribution of DNA of Homo
sapiens as shown in Eq. (2.1):

 [S]:  cttgatctta (2.1)

[S] is a string. It can be seen that the string contains the characters c, 
t, g, and a only. Thus the alphabet Σ for string [S] is (a, c, g, t). The set 
of all strings over Σ of any length is the Kleene closure of Σ and is 
denoted Σ*. The length of the string is the number of characters 
contained in the string. String length can be fixed or variable. Now 
consider another string [T] drawn from the chimpanzee: 

[T]:  cttaatcaaa (2.2)

In order to measure how similar the strings [S] and [T] are or to 
quantitate the similarity of the two strings [S] and [T], an alignment 
grading function is introduced. 
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The simplest events that occur during the course of molecular 
evolution are substitution of one base for another and insertion or 
deletion of a base pair. Radiation can cause these changes. When a is 
deleted in string [S],

[Sa]:  c _t g a t c t t a (2.3)

[S]:  c t t g a t c t t a  (2.4)

An insertion of R between t and a is shown by

[Sa]:  c t t g a t c t t _a (2.5)

Two letters arranged one over another are called matched. If two 
matched letters are equal, then the match is called an identity.
Otherwise, the match is called a mismatch. An insertion or deletion 
(indel) is one or more letters aligned against a_. A mismatch is 
generally a substitution. When only the matches and not the details 
of the indels are specified, the resulting arrangement is called a trace.
Consider one possible alignment between [S] and [T]:

[S’]:  c t    t g a t  c  t t a (2.6)

[T’]:  c t    t a a t  c  a a a (2.7)

This alignment has 7 identities, 3 mismatches, and 0 indels. This 
alignment represents a certain hypothesis about the evolution of 
the sequences. Seven of the nucleotides have not changed, and 
three nucleotides have been inserted, deleted, or substituted. In 
order to evaluate the goodness of an alignment, an identity is 
given a value +2, and a substitution and an indel are given values 
of –1 and a mismatch a value of –1. The result for alignment [S’]
and [T’] is 7 × 2 − 3 − 1 = 11.0. 

Grading Function σ(x, y) denotes the grade of alignment of aligning x and y,
where x and y are each a single character or space. Thus, in the examples shown 
in Eqs. (2.6) and (2.7), the grading function can be written as σ(a, a) = 2, σ(_, g) =
−1 = σ(c, _); σ (a, t) = –1.

Length of String If S is a string, then⎪S⎪denotes the length of the string, and 
S[i] denotes the ith character of S. For example, from Eq. (2.7), ⎪S⎪= 10, S[2] = t, 
and S[8] = t.

Alignment of Strings An alignment A maps S and T into strings S’ and T’ that may 
contain indels or space characters, where ⎪S’⎪ = ⎪T’⎪, and removal of indels from 
S’ and T’ leaves S and T, respectively. The grade of the alignment A is given by

A = ΣL
1 σ(S’[i], T’[i]) (2.8)

where l = ⎪S’⎪ = ⎪T’⎪.
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Optimal Alignment An optimal alignment of S and T is one that has the maximum 
possible alignment grade for these two strings.

Given two strings [S] and [T] of lengths n and the other sequence m, the 
number of possible alignments of the two strings can be estimated as follows: The 
length of the new sequences after introducing indels is

Max[n, m] ≤ L ≤ n + m (2.9)

Let q(i, j) = number of alignments of i letters of S with j letters of T. It can be 
shown using advanced combinatorics that

q(n, m) = q(n – 1, m) + q(n – 1, m – 1) + q(n, m – 1) (2.10)

q n n
n

n
( , )

( )
=

+ +1 2 2 1
    (2.11)

This comes from the fact that the beginning of the alignment can be only one of 
three things—an identity, a substitution, or an indel. 

In the brute-force method for finding alignments, all the possible 
alignments are searched, and the output is the maximum grade. A 
subsequence of a string S means a sequence of characters of S that need 
not be consecutive in S but do retain their order as given in S. For 
instance, aatt is a substring of S = aattcctc. Assuming that [S] = [T] = n
and that the grading function restricted to σ(_ , _) ≤ 0, the algorithm for 
finding all the possible alignments of S and T is given in [6]. The 
running time and storage space needed for this algorithm are calculated 
as follows: String of length n has nCi subsequences of length i, that is,

n
iC

n
n i i

=
−

!
( )! !  (2.12)

The number of pairs of subsequences of length i = (nCi)
2.

Alignment length = n + n – i = 2n – I (2.13) 

With i matched, (n – i) mismatched = number of blanks. Grade of 
alignment of each pair in alignment is calculated as follows:

Total grade of basic operations = ( ) ( )n
iC n i

0

2 2
∞

∑ −  (2.14)

It can be shown by induction that

n2nCn > 22n   for n > 4 (2.15)

Null case, n = 4;   4 8
4

22
8( !)

( !)
>  (2.16)
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280 > 256 (2.17)

( )!
( !)
2

22
2n n

n
n>  (2.18)

Show that

( )( )!
( )!( )!

( )n n
n n

n+ +
+ +

> +1 2 2
1 1

22 1  (2.19)

2 1 2
2 22

2( )( )!
( !)

.
n n n

n n
n+ >  (2.20) 

Given 2
22

2n n
n

n!
( !)

> , show that

2 1n
n

n
+ >  (2.21)

or show that 

2 + 1/n > 2 (2.22)

This is true for any natural n.

n
i

n
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C n i n C2 2
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=

∞
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∞

∑∑  (2.23)

n C C C Cn
i

i

n
n n n2

0
0
2

1
2

2
2

=
∑ = + + +�  (2.24)

 Now a2 + b2 + c2 + d2 + … = (a + b + c + d + …)2 − 2(abc←) and (2.25)

nC0
2 + nC1

2 + nC2
2 + … = (nC0 + nC1 + nC2 + …)2 − 2(←) (2.26)

= 12n + 2nC1 + 2nC2 + … (2.27)

or (1 + 1)n = nC0 + nC1 + nC2 + … (2.28)

or O n C O nn
i

n( ) ( )∑ =2 22   (2.29)

Running time is at least n22n for string of length n. The rate of 
growth of the higher-order term is the most important determinant of 
how long an algorithm runs on large inputs independent of constant 
of proportionality and any lower-order terms. 
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2.4 Optimal Global Alignment of a Pair of Sequences

2.4.1 Needleman and Wunsch Algorithm
A computer-adaptable method using dynamic programming 
algorithm was suggested for optimal global alignment of two sequences
by Needleman and Wunsch [7]. In global alignment, the two sequences 
are aligned end to end. Needleman and Wunsch developed a 
computer-based statistical and general method applicable to the 
search for similarities in the amino acid sequences of two proteins. A 
number of authors have studied the question of how to construct a 
good grading function for sequence comparison, including Altschul 
and colleagues [8], Altschul [9,10], and Altschul and Gish [11]. From 
these findings it is possible to determine whether significant 
homology exists between the proteins. Another goal for seeking 
alignment is to establish full genetic relationships between proteins. 
This information is used to trace their possible evolutionary 
development. The maximum match can be defined as the largest 
number of amino acids of one protein that can be matched with those 
of another protein while allowing for all possible deletions. 

Prior to automation of sequence alignment, it was done by 
hand—by eyeballing them. Plots were generated by creating a grid 
with one sequence on top and another on the side. Red dots were 
placed wherever two sequences matched. Diagonal lines could be 
found in the graph. When connected, they formed the optimal 
alignment of the pair of sequences. One method to arrive at the 
optimal alignment is to calculate all possible alignments and assign 
each alignment a grade of alignment with penalties for the gaps—
both for quantity and size of gaps—and then to choose the alignment 
with the highest grade. This is computationally prohibitive. 

Needleman and Wunsch [7] were the first to devise a 
computationally feasible method for automated sequence alignment. 
Their application is built on an analogy with the old visual comparison 
method of alignment. They used a Pascal array that maps directly to 
the sequence alignment plot, and their algorithm then operated 
within this context. They describe the alignment process as “pathways 
through the array” that are evaluated to find the “maximum match.” 
The algorithm works by progressively building a path through the 
array, gaining rewards for obtaining matches and incurring penalties 
for gaps. This kind of approach constitutes dynamic programming, a 
common method for optimizing computer algorithms. Needleman 
and Wunsch obtained alignment of whole myoglobin and human 
β-hemoglobin and alignment of bovine pancreatic ribonuclease and 
hen’s egg lysozyme.

Given strings S and T with ⎪S⎪ = n and ⎪T⎪ = m, an optimal 
global alignment of S and T can be obtained using dynamic 
programming. A grade of alignment G(i, j) of string S(i) and T(j) is 
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defined. The grade of optimal alignment of S and T is G(m, n). The 
dynamic programming method is used to solve for the general 
problem of computing all grades G(i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ m in 
order of increasing i and j.

Algorithm 2.1 Global Alignment
Basis:

G(0, 0) = 0 (2.30)

G(i, 0) = G(i – 1, 0) + σ[S(i), _]    for i > 0 (2.31)

G(0, j) = G(0, j – 1) + σ[_, T(j)]   for j > 0 (2.32)

Recurrence formula:

G(i, j) = max{G(i – 1, j – 1) + σ[S(i), T(j)]},

G(i – 1, j) + σ[S(i), _], 

G(i, j – 1) + σ[_, T(j)] (2.33)

The interpretation of the alignment is as follows: Consider the 
optimal alignment of the first i characters from S and the first j characters 
from T. In particular, consider the last aligned pair of characters in such 
an alignment. This last pair must be one of the following:

 1. [S(i), T(j)], in which case the remaining alignment excluding 
this pair must be an optimal alignment of S(1), . . . , S(i – 1) 
and T(i), . . . , T(j – 1) (i.e., It must have grade G(i – 1, j –1) or 

 2.  [S(i), _], in which case the remaining alignment excluding this 
pair must have grade G(i – 1, j) or 

 3.  [_, T(j)], in which case the remaining alignment excluding 
this pair must have grade G(i, j –1). 

A traceback procedure is used to obtain all the alignments.

Example 2.1 Global Alignment of Two Sequences by Dynamic Programming
Demonstrate the dynamic programming method to obtain the global alignment 
of the two strings with the following sequence distribution:

S:  a  c  g  t  t  t  g  c  a 

T: c c a t g c g a

Solution
The grading function used was +2 for a match, –1 for a mismatch, and –1 for 
an indel.

Recovering the alignments:

I. a  c  g  t  t  g  c  _  a
  c  c  a  t  _  g  c  g  a

 Grade of alignment: 5 × 2 – 4 = +6  (2.34)
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II. a  c  g  t  t  g  c  _  a
   c  c  _  a  t  g  c  g  a

 Grade of alignment: 5 × 2 – 4 = +6 (2.35)

Example 2.2 When the Grade of Alignment is 0 and When the Grade of Alignment 
Is Less Than 0
In Example 2.1, what is the meaning when the grade of alignment is (a) 0 and 
(b) negative (or less than zero)? From Table 2.2, an alignment of two sequences 
in which the grade of alignment is 0 can be selected as follows: A 0 grade of 
alignment can be expected when these two sequences are aligned:

S:  a  c  g  t  t  g 
T:  c  c  a  t 

The tracebacks for alignment of S and T would be

   I. a  c  g  t  t  g
  _  c  c  a  t  _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

 II. a  c  g  t  t  g
 c  c  _  a  t _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

III. a  c  g  t  t  g
  c  c  a  _  t  _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

Compared with the alignments in Example 2.1, where the number of 
characters that were aligned was 5 out of a length of 9 of the mapped string, in 
Example 2.2, the number of characters that were aligned was 2 out of a length 6 
of the mapped string. Most of the mapped string in Example 2.1 was matched, 
and a minority of characters was aligned in Example 2.2. Maybe a positive grade 
of alignment can signify that more characters are aligned in the string, and a 
0 grade of alignment can denote that only few characters are aligned.

S[i ] a c g t t g c a

T [ j ]

c

c

0

–1

–2

–3

–4

–5

–8

–5

–2

+1

0

+1

+4

+4

+6

+2

+5

+4

+3

–7

–4

–1

–2

–1

–3

–3

–3

+3

+2

+2

+1

–6

0

–2

–2

–2

–5

+1

+1

0

0

0

0

0

–2

–1

+1

+1

–2

–1

–2

0

0

0

0

–1

+1

+2

+1

–3

–1

–1

–1

+1

+2

0

+1

+1

–4

–1

–1

–1

0

–2

–2

–3

–4

–5

–6

–7

–8

a

t

g

c

g

a

TABLE 2.2 Global Alignment of Two Sequences—Dynamic 
Programming
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From Table 2.3, two strings can be selected in which the grade of alignment 
can be expected to be negative. These strings are as follows:

S:  a  c  g  t 

T:  c  c  a 

The traceback procedure can be used, and the alignments recovered for a grade 
of alignment –1 would be

IV. a c g t 
  _ c c a 

Grade of alignment: 1 × 2 – 2 × 1 – 1 × 1 = –1

  V. a c g t  
  c c _ a  

Grade of alignment: 1 × 2 – 2 × 1 – 1 × 1 = –1

VI. a c g t  
  c c a _   

Grade of alignment: 1 × 2 – 2 × 1 – 2 × 1 = –1

In the tracebacks of the alignments shown in IV, V, and VI recovered from 
the alignments shown in Table 2.3, only one character is aligned compared with 
a length of 4 of the mapped string. The number of misaligned characters is larger 
than the aligned characters.

Thus the interpretation of the grade of alignment can be made as follows 
based on the preceding calculations:

1. When the grade of alignment is greater than 0, the number of characters 
aligned is greater than the number of mismatched characters in the 
sequence.

 2. When the grade of alignment is 0, the number of matched characters and the 
number of mismatched characters are equal to each other.

 3. When the grade of alignment is less than 0, the number of mismatched 
characters is greater than the number of matched characters.

a c g t t g

c

c

0

–1

–6

–3

–3

–3

0

–2

+1

+1

0

–1

–3

0

0

0

–1

–4

–1

–1

–1

+2

–5

–2

–2

–2

+1

–2

0

–1

–1

–1

–2

–3

–4

a

t

S[i ]

T [ j ]

TABLE 2.3 Global Alignment of Two Sequences with Grade of 
Alignment = 0
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Example 2.3 Semiglobal Alignment
Consider the two strings gatcatcgcagcgttagtagc and gctgcg. An optimal global 
alignment returns the following:

g a t c a t c g c a g c g t t a g t a g c 

g _ _c _t _ g c _ g _ _ _ _ _ _ _ _ _ 

A biologically more meaningful alignment would be

g a  t c  a t  c g c a g c g t  t a  g t  a g c 

_ _ _ _ _ _ _ g c t g c g _ _ _ _ _ _ _ _

How would you change the grading scheme to return the latter alignment 
compared with the former?

Solution
This can be done by awarding no penalty to end gaps or allowing free end 
gaps. This would be semiglobal alignment. All gaps inserted before or after the 
alignment will not be penalized. The traceback procedure is similar to that of 
the global alignment procedure.

2.5 Dynamic Programming
Bellman [12] began the systematic study of dynamic programming 
in 1955. He used a tabular solution method that was called dynamic 
programming. Prior to Bellman’s work, dynamic programming was 
used in optimization techniques such as in finding the optimal 
reactor heat-exchanger network of the sulfur trioxide–forming step 
in the oleum process to manufacture sulfuric acid. Bellman was the 
first to provide the approach with a solid mathematical basis. The 
time taken for the longest common subsequence problem, as 
suggested by Smith and Waterman [13] using dynamic programming 
methods, is O(mn). Knuth [14] posed the question of whether 
subquadratic algorithms for the longest common subsequence 
(LCS) problem exist. Masek and Paterson [15] answered this 
question in the affirmative by giving an algorithm that runs in 
O(mn)/lg(n) time, where n ≤ m, and the sequences are drawn from a 
bounded size. For the special case in which no element appears 
more than once in an input sequence, Szymanski [16] showed that 
the problem can be solved in O(n + m)lg(n + m) time. In 1970, Knuth 
conjectured that a linear time algorithm for the problem of finding 
the LCS would be impossible. It will be shown in a subsequent 
chapter that the LCS of two strings can be found in linear time using 
a generalized suffix tree.

The solutions to subproblems are combined to solve a given 
problem in the dynamic programming method. This is similar to the 
divide-and-conquer principle used a lot in computer algorithms. In 
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the divide-and-conquer strategy, the problem is split into subprob-
lems. The subproblems are solved recursively, and the solutions are 
combined to form the solution of the original problem. When the 
subproblems are not independent of each other, the dynamic pro-
gramming method may be applicable. Every subproblem is solved 
only once, and the results are saved in the tabular form in the dynamic 
programming method compared with the divide-and-conquer, 
where more work is done than necessary. Optimization problems can 
use the dynamic programming method. Many solutions are possible 
for such problems. Each solution has a grade, and the extremum is of 
interest as the optimal solution. The development of a dynamic pro-
gramming algorithm can be broken into four steps [17]:

1. Characterize the structure of an optimal solution.

 2. Recursively define the grade of an optimal solution.

 3. Compute the grade of an optimal solution in a bottom-up 
fashion.

 4. Construct an optimal solution from the computed information.

Two key ingredients to the application of dynamic programming 
problems are identification of the optimal substructure and 
overlapping subproblems. 

2.6 Time Analysis and Space Efficiency
The optimal global alignments can be obtained using dynamic 
programming in O(mn) time. When m = n, the time taken becomes O(n2). 

Proof: An (m + 1)(n + 1) table needs to be filled. Each and every entry is 
computed with a maximum of six table look-ups, three additions, and a three-
way maximum in time c.

Complexity of the algorithm = c(n + 1)(m + 1) = O(mn).
Reconstructing a single alignment = O(n + m) time. The space required 
for retaining the grades of alignment in the table is mn also.

2.7 Dynamic Arrays and O(n) Space
The space required in dynamic programming during global alignment 
of two sequences can be reduced from O(n2) as follows: It can be 
realized that only the global optimal grade of alignment is needed. 
Thus two dynamic rows at any given time will be sufficient. In order 
to construct the next row of alignments, the previous row is sufficient. 
Thus space required will be O(2m) or O(m), (Hirschberg, [18]). 
Reconstructing an alignment is somewhat more complicated but can 
be achieved in O(n + m) space and O(nm) time with a divide-and-
conquer approach [18,19].
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2.8  Subquadratic Algorithms for Longest 
Common Subsequence Problems

Hunt and Szymanski [20] introduced a fast algorithm for computing 
LCSs. They provided a running time of O(r + n)lg(n), where r is the 
total number of ordered pairs of positions at which the two sequences 
match. In the worst case, the algorithm has an O[n2 lg(n)] running 
time. However, for applications where most positions of one sequence 
have few matches in the other sequence, a running time of O[n lg(n)]
can be expected. 

Let S be a finite sequence of elements chosen from some alphabet Σ.
The length of the sequence S is ⎥S⎥ . S[i] is the ith element of S, and S[i:j]
is the sequence S[i], S[i + 1], S[i + 2], . . . , S[j]. If U and V are finite 
sequences, then U is said to be a subsequence of V if there exists a 
monotonically increasing sequence of integers r1, r2, . . . , r⎥U⎥ such that 
U[i] = V[ri] for 1 ≤ i ≤⎥U⎥. U is a common subsequence of S and T if U
is a subsequence of both S and T. A longest common subsequence is a 
common subsequence of greatest possible length. Both sequences are 
assumed to have the same length n. The number of elements in set {(i, j)
such that S[i] = T[j] } is denoted by r.

The data structure used in the algorithm of Hunt and Szymanski is 
Gi,k, an array of threshold grades defined by the smallest j such that S[1:i]
and T[1:j] contain a common subsequence of length k. Each Gi,k may be 
considered as a pointer that signifies how much of the T sequence is 
needed to produce a common subsequence of length k with the first i
elements of S. Each row of the G array can be seen to be increasing; i.e., 

Lemma 2.1 Gi,1 < Gi,2 < … < Gi,p, as defined earlier.

Lemma 2.2 Gi,k.1 < Gi +1,k ≤ Gi,k

Lemma 2.3 Gi+1,k = smallest j such that S[i + 1] = T[i] and Gi,k if no such 
j exists   Gi,k–1 < j < Gi,k

Lemmas 2.1, 2.2, and 2.3 are stated, and the proofs are available in 
[21]. This algorithm can be completed with an O[n2 lg(n)] time 
efficiency to determine the length of the common subsequence. This 
can be refined to improve the running time to O(r + n)lg(n), and the 
longest common subsequence can be recovered. 

Algorithm 2.2 Length of Longest Increasing Subsequence 

G[0] = 0
Recurrence formula:
 For i = 1 to n,

G[i] = n + 1
      For i = 1 to n
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          For j = n to 1, step 1
   If S[i] = T[j], then
 Begin
 Find k such that G[k – 1] < j ≤ G[k]

G[k] = j
  End
  Print largest k such that G[k] ≠ n + 1

A small amount of preprocessing will improve the performance of 
Algorithm 2.2 in great measure. The main source of inefficiency in 
Algorithm 2.2 is the inner loop j, in which the elements are searched for 
repeatedly in T sequences that match S[i]. A linked list can be used to 
eliminate this search step. For each I, a list of corresponding j positions 
is needed such that S[i] = T[j]. These lists must be retained in decreasing 
order in j. All positions of the S sequence that contain the same element 
may be set up to use the same physical list of matching j’s. 

Algorithm 2.3 Find and Print Longest Common Subsequence of S and T

  Initialize Arrays S[1; n], T[1; n], G[0, n], MATCHLIST 
[1, n], LINK[1, n], PTR.
Build Linked Lists
  For i = 1 to n
   MATCHLIST[i] = <j

1
, j

2
, . . . , j

p
>

such that j
1
 > j

2
 > . . . > j

p
 and S[i] = T[j

q
] for 1 ≤ q ≤ p.

Initialize Threshold Array: G[0] = 0
 For i = 1 to n

G[i] = n + 1
  LINK[0] = null
Compute Successive Threshold Grades
   For i = i to n
 For j on MATCHLIST[i]
 Find k such that G[k – 1] < j ≤ G[k];
  If j < G[k], then
    G[k] = j
    LINK[k] = new node (I, j, LINK[k – 1])
     End: End
Recover Longest Common Subsequence in Reverse Order

k = largest k such that G[k] ≠ n + 1
 PTR = LINK[k]
 While PTR ≠ null do
  Print (I, j) pair pointed to by PTR
 Advance PTR;  End

An LCS of the sequences S and T is found and printed by Algorithm 
2.3. The time efficiency of the algorithm is O(r + n)lg(n), and the space 
required is O(r + n). The key operations in the implementation of 
Algorithm 2.3 are the operations of inserting, deleting, and testing 
membership of elements in a set where all elements are restricted to the 
first n integers. van Emde Boas [21] has shown that each such operation 
can be performed in O{lg[lg(n)]} time. Time taken for initializing using 
this data structure is O{n lg[lg(n)]}. 
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2.9 Optimal Local Alignment of a Pair of Sequences

2.9.1 Smith and Waterman Algorithm
Smith and Waterman [13] introduced the local alignment problem 
and proposed an O(mn) time to solve it. The recurrence formula used 
for local alignment is similar to that used for global alignment except 
for an additional term in the max function while obtaining the grade 
of alignment and is given below:

Algorithm 2.4 Local Alignment of Two Sequences

 Basis: G(i, 0) = 0 (2.36)

G(0, j) = 0 (2.37)

σ(a, –) = σ(_, a) ≤ 0 (2.38)

Recurrence Formula:

G(i, j) = Max(0),

G(i – 1, j – 1) + σ(S⎪i⎪, T⎪j⎪),

G(i – 1, j) + σ(S⎪i⎪, _),

G(i, j –1) + σ(_, T⎪j⎪) (2.39)

Consider an optimal alignment of a suffix α of S(1), S(2), . . . , S(i)
and a suffix β of T(1), T(2), . . . , T(j). There are four possible cases:

 1. α = λ and β = λ, in which case the alignment has grade 0.

 2. α ≠ λ, β ≠ λ, and the last matched pair in A is (S⎪i⎪, T⎪j⎪), in 
which case the remainder of A has grade G(i –1, j –1).

 3. β ≠ λ, and the last matched pair in A is (_, T(j)), in which case 
the remainder of A has grade G(i, j –1).

 4. α ≠ λ, and the last matched pair in A is (S(i), _), in which case 
the remainder of A has grade V(i –1, j).

Example 2.4 Optimal Local Alignment of Two Sequences
Find the optimal local alignment of S: a c g t t g c a and T: c c a t t g c. The grading 
function has no gap penalty or different grade of alignment for mismatch. 

Solution

σ(–1, a) = σ(a, _) = σ(a, b) = –1 (2.40)

σ(a, a) = +2

The grade of alignment is shown in Table 2.4. Retracing the path from any 
maximum entry to zero entry:

 c  g  t  t  g  c 

 c  a  t  t  g  c 

Grade of alignment: 5 × 2 – 1 × 1 = 9 
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2.10 Affine Gap Model
A gap in an alignment of S and T is a maximal substring of either S’
or T’ consisting only of spaces. The motivation is that for certain 
applications, the penalty proportional to the length of a gap is not 
needed. For instance, a mutation causing insertion or deletion of a 
large substring may be considered a single evolutionary event and 
may be nearly as likely as insertion or deletion of a single residue. In 
cDNA matching, biologists are interested in learning which genes are 
expressed in which types of specialized cells and where those genes 
are located in the chromosomal DNA. To study gene expression 
within specialized cells, one way is to first capture the mRNA as it 
leaves the nucleus. Then the complementary DNA is made from the 
mRNA using an enzyme called reverse transcriptase. The cDNA is thus 
a concatenation of the gene’s exons. Then the cDNA is sequenced. 
The sequenced cDNA then is matched against chromosomal DNA to 
find the region of chromosomal DNA from which the cDNA derives. 
In this process, the introns are not heavily penalized, which will 
match the gaps in the cDNA.

In general, the gap penalty may be some arbitrary function φ(q) of 
the gap length q. The best choice of their function depends on the 
application. In the cDNA matching application, what is known about 
the common length of introns is reflected in the penalty grades/
scores. There are programs in the literature in which gap penalties are 

TABLE 2.4 Local Alignment of Two Sequences

c

c

a

t

t

g

0

0

0

0

0

0

0

0

a c g t t g c a

0

0

0

1

2

0

0

0

2

0

0

1

1

2

2

0

1

2

0

0

1

1

1

0

1

1

2

3

0

0

0

0

3

4

5

2

0

0

0

0

6

7

4

1

0

0

0

0

9

6

3

0

1

2

2

0

3

5

2

3

4

1

1

0

c

T [ j ]

S[i ]
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precise linear functions. There exist O[nm lg(m)] time algorithms for 
the case when φ(q) is concave downward [19,22]. An arbitrary function 
can be selected as a gap penalty function, but this requires cubic 
time [7]. The affine gap model can be developed in which the penalty 
for a gap has two parts—one for inserting a gap and another that 
depends linearly on the length of the gap. That is, the gap penalty is 
Wg + qWs, where Wg and Ws are both constants and Wg ≥ 0, Ws ≥ 0, and 
q ≥ 1 is the length of the gap. When a model has a constant penalty 
regardless of gap length, this is the special case of Ws = 0. The global 
alignment algorithm and local alignment algorithm presented earlier 
can be suitably modified to include the affine gap penalty.

Algorithm 2.5 Local Alignment with Affine Gap Penalty

σ(a, –1) = σ(–1, a) = 0 (2.41)

 Maximize ∑σ(S’[i], T’(j) – W
g
(#gaps) – W

s
(#spaces) (2.42)

Where S’ and T’ are S and T strings with spaces inserted in 
them and ⎪S’⎪ = ⎪T’⎪ = l. 

1. G(i, j) is the grade of an optimal alignment of S and T.

2. G’(1, j) is the grade of an optimal alignment of S and T
whose last pair matches S and T.

3. F(i, j) is the grade of an optimal alignment of S and T
whose last pair matches S(i) with space.

4. E(i, j) is the grade of an optimal alignment of S and T
whose last pair matches a space with T.

Basis:

G(0, 0) = 0 (2.43)

G(1, 0) = –W
g
 – iW

s
, for i > 0 (2.44)

G(0, j) = –W
g
 – jW

s
, for j > 0 (2.45)

E(i, 0) = –∞, for i > 0 (2.46)

F(0, j)  = –∞, for j > 0 (2.47)

Recurrence Relation:

 For i > 0 and j > 0 (2.48)

G(i, j) = max[G’(i, j), F(i, j), E(i, j)] (2.49)

G’(i, j) = G’(i –1, j –1) + σ[S(i), T(j)] (2.50)

F(i, j) = max[F(i –1, j) – W
s
, V(i –1, j) – W

g
 – W

s
](2.51)

E(i, j) = max[E(i, j –1) – W
s
, V(i, j –1) – W

g
 – W

s
 (2.52)

Time taken by affine gap model can be seen to be O(nm).

Example 2.5 Illustrate use of the affine gap model in finding the optimal local 
alignment between S: acgucguagg and T: uaggaugcgcau.

Solution
σ(–1, a) = σ(a, _) = −1; σ(a, a) = +2; σ(a, b) = –1 (2.53)
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The grading function in the first solution procedure has no separate grades for 
mismatches from indels. No gap penalty is levied. The recurrence formula as 
described by Eq. (2.44) is used. This is applicable for optimal local alignment. 
The zero is an added term in the max function compared with global alignment. 
Retracing the local alignments (Table 2.5) from maximum grade of alignment to 
zero, two possibilities can be identified:

S:  u  a  g g 

T:  u a g g (2.54)

Grade of alignment: 4 × 2 = 8.0

S:  a c g _ u _ c g u a 

T:  a g g a u g c g c a (2.55)

With six identities, two mismatches, and two indels, the optimal grade of 
alignment would be 6 × 2 – 2 × 1 – 2 × 1 = 8.0. In some applications, the 
alignment shown in Eq. (2.54) is preferred to the alignment shown in Eq. (2.55),
especially in gene finding and cDNA matching. This can be factored into the 
program as follows: Let Ws = –1, Wg = –1. The grade of alignment will be 
unchanged. Only one local alignment is obtained under the new scheme 
(Table 2.6). Another grading scheme that achieves the same result is to change 
the grading function to σ(a, a) = 2, σ(a, b) = –2.
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TABLE 2.5 Local Alignment of a Pair of Sequences with an Affine Gap Penalty
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2.11 Greedy Algorithms for Pairwise Alignment
When the two sequences that are aligned differ only by sequencing 
errors, a greedy algorithm [23] can be used that is much faster than 
traditional dynamic programming approaches and guarantees an 
optimal alignment. Chao and colleagues [24] presented greedy 
algorithms for solving a simple formulation of the alignment problem 
called the longest common subsequence problem. This problem is 
equivalent to finding the fewest one-character insertion and deletion 
operations that will convert one sequence into another. Let S and T be 
two sequences with sequence lengths m and n, and let e denote the 
minimum number of operations. e is the edit distance between the two 
sequences. When two DNA sequences are considered, for example, in 
which the shorter sequence is very similar to some concatenated 
region of the longer sequence, a similar region of the longer sequence 
is determined, and then an optimal set of single-nucleotide changes 
such as insertions, deletions, or substitutions is computed that will 
convert the shorter sequence to that region. The grade-of-alignment 
scheme is developed to model sequencing errors rather than 
evolutionary processes. 

Greedy alignment algorithms presented by Ukkonen [25] and 
Miller and colleagues [23] are best used when e is a lot smaller than 
m or n. The time efficiency of the algorithms is a worst case of 
O[min(m, n)e] and space O(m + n). The space needed is an order of 
magnitude smaller than that required by the dynamic programming 
approaches presented by Smith and Waterman [13] and Needleman 
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TABLE 2.6 Local Alignment of a Pair of Sequences—Dynamic 
Programming: Grading Function of Highest Penalty for Indel
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and Wunsch [7]. The expected-case time efficiency of greedy 
algorithms can be O(ne2).

Greedy algorithms for sequence alignment are implemented in 
the assembly of the Unigene database maintained by the National 
Center for Biotechnology Information (NCBI). The algorithm 
suggested by Chao and colleagues [24] consists of two phases. The 
interval in the longer sequence that should be aligned with the shorter 
sequence is located during phase I. A divide-and-conquer approach 
is employed to obtain the alignment in phase II. The end gaps are 
then added to the alignment. 

Algorithm 2.7 Tool for Aligning very Similar DNA Sequences [26]
Input: S: a0 a1 a2 ⋅ ⋅ ⋅ am–1; ⎥S⎥ = m

T: b0 b1 b2 ⋅ ⋅ ⋅ bm–1; ⎥T⎥ = n n ≥ m

The edit graph for sequences S and T is a directed graph with a 
vertex at each integer grid point (x, y), 0 ≤ x ≤ m and 0 ≤ y ≤ m. Let 
I(k, c) denote the x grade of the farthest point in diagonal k that can 
be reached from the source [i.e., grid point (0, 0)] with cost c and 
that is free to open an insertion gap. The grid point can be (1) reached 
by a path of cost c that ends with an insertion or (2) reached by path 
of cost c –1 and the gap-open penalty of 1 can be “paid in advance.” 
Let D(k, c) denote the grade of the farthest point in diagonal k that 
can be reached from the source with cost c and is free to open a 
deletion gap. Let S(k, c) denote the x grade of the farthest point in 
diagonal k that can be reached from the source with cost c. With 
proper initializations, these vectors can be calculated by the 
following recurrence relation:

I(k, c) = max[I(k –1, c –1), S(k,c – 1)] 

D(k, c) = max[D(k + 1, c – 1) + 1, S(k, c – 1)] 

S(k, c) = snake{k, max[S(k, c – 1) + 1, I(k, c), D(k, c)]}

where snake(k, x) = max[x, max(z: ax, . . . , az–1 = bx+k, . . . , bz–1+k)].
Since the vectors at cost c depend only on those at costs c and 

c – 1, a linear-space version of the preceding relationship can be 
derived. 

Exact phase I: Phase I can be accomplished by applying the 
recurrences for I, D, and S where all costs in row 0 are initialized to 0. 
Once row m is reached, the desired interval has been located. Although 
the worst-case running time for this approach is O(mn), the average 
running time is O(n × dist), where dist is the distance of S and T. The 
average length of a snaked fragment is a small constant. 

Phase II: Backward vectors I*(k, c) denotes the x grade of the 
farthest I node in diagonal k that can reach the sink [i.e., grid point (m, n)]
with cost c. D*(k, c) is the x grade of the farthest D node in diagonal k
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that can reach the sink with cost c. Let S*(k, c) denote the x grade of 
the farthest S node in diagonal k that can reach the sink with cost c.
After initializations, these vectors can be computed by the following 
recurrence relation:

S*(k, c) = snake*{k, min[S*(k, c –1) – 1, D*(k, c –1), I*(k, c –1)]}

D*(k, c) = min[D*(k –1, c –1) – 1, S*(k, c)]

I*(k, c) = min[I*(k + 1, c –1), S*(k, c)]

where snake*(k, x) = min[x, min(z: az, . . . , ax–1 = bz+k, . . . , bx–1+k)]’
A linear-space version of the recurrence relation can be derived. 

The pseudocode for the linear space algorithm for alignment is as 
follows:

Procedure path(I
1
, J

1
, Type

1
, I

2
, J

2
, Type

2
, Dist)

{   if boundary cases then
    {Output the edit script; return
    Else
    {
 Mid ← Dist/2
 Mid ← Dist –mid

A Linear Space Forward Pass Computes S(k, mid), D(k,
mid), and I(k, mid) for J

1
 – I

1
 – mid ≤ k ≤ J

1
 – I

1
 + mid.

A Linear Space Backward Pass Computes S*(k, mid), D*(k,
mid), and I*(k, mid) for J

2
 – I

2
 – mid* ≤ k ≤ J

2
 – I

2
 + mid*.

Let K be the diagonal such that that X(K, mid) ≥ X*(K,
mid*) where X is S, D, or I.
Path[I

1
, J

1
, Type

1
, X(K, mid), X(K, mid) + K, X, mid]

Path[X(K, mid), X(K, mid) + K, X, I
2
, J

2
, Type

2
, mid*]}}

2.12 Other Alignment Methods
Altschul and colleagues [8] developed an algorithm in which the 
sequences are searched for on diagonals of length k (k-tuples) ahead 
of time. The k-tuples then are evaluated, and groups of continuous 
tuples are labeled significant diagonals. Awindow space can be identified 
in the grid as the region around the most significant diagonals that 
represent partial matches. In this method, diagonals and regions are 
used instead of the traceback used in Needleman and Wunsch’s and 
Smith and Waterman’s algorithms. The window size is controllable 
and hence can speed up the computations. The time taken did not 
better the O(n2) needed for dynamic programming methods. Sharma 
[27,29,30] suggested a heuristic algorithm for approximate global 
alignment of a pair of sequences with less time efficiency than the 
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O(n2) time needed for dynamic programming. The two sequences are 
parsed by generating a random index i. Depending on match or 
mismatch, the indel and gap are introduced. The grade of alignment 
is calculated. The next random index is called for. This procedure is 
repeated until the maximum grade of alignment is reached. The 
maximum grade of the alignment is reached in O(en) time efficiency, 
where e is the number of indels and gaps called for. For some 
sequences, this may be O(n), but the alignment is approximate. The 
worst-case time efficiency will revert to O(n2).

2.13 Pam and Blosum Matrices
Protein sequence alignments have become an important tool for 
molecular biologists. Local alignments are frequently constructed 
with the aid of a substitution grade of alignment matrix that specifies a 
grade for aligning each pair of amino acid residues. Over the years, 
many different substitution matrices have been proposed, based on 
a wide variety of rationales. Statistical results, however, demonstrate 
that any such matrix is implicitly a log-odds matrix with a specific 
target distribution for aligned pairs of amino acid residues. In the 
light of information theory, it is possible to express the grades of 
alignments of a substitution matrix in bits and to see that different 
matrices are better adapted to different purposes. The most widely 
used matrix for protein sequence comparison has been the PAM-250 
matrix [9]. It is argued that for database searches, the PAM-120 
matrix generally is more appropriate, whereas for comparing 
two specific proteins with suspected homology, the PAM-200 
matrix is indicated. Altshcul [9] discussed the lipocalins, human 
α1, β-glycoprotein, the cystic fibrosis transmembrane conductance 
regulator, and the globins.

In protein sequence comparison, the conservative substitutions 
are given a different weighting for good reason. Matches in amino acids 
or identities should be given greater weight than substitutions. 
Among substitutions, it is desirable that more conservative 
substitutions should be given higher grade than less conservative 
and nonconservative substitutions. The PAM-250 matrix was 
constructed with certain substitution grades. The larger the 
number, the more common is a particular substitution. For 
example, glycine is commonly regulated and replaced by alanine, 
and vice versa. This is sensible because they are the amino acids 
with the smallest side chains. Similarly, aspartic acid and glutamic 
acid frequently substitute for each other. Serine and proline and 
glutamic acid and alanine substitute for each other. PAM represents 
1 unit of evolutionary divergence. After 250 cycles of change have 
taken place in 100 amino acids, 80 still may have considerable 
similarity to the original sequence. The PAM-250 matrix (Fig. 2.2) 
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FIGURE 2.2 PAM-250 matrix.
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is derived from 71 sets of sequences aligned and extrapolated 
to 250 cycles of mutations per 100 residues. In PAM, point-
accepted mutations and well-tolerated mutations are given 
certain meaningful grades based on the observed mutation 
frequencies in several thousand proteins. The PAM-250 matrix 
is the log probability of one amino acid changing into another 
amino acid. A grade of alignment above 0 indicates that such 
an amino acid change is more than expected by chance. Grades 
less than 0 denote pairs of amino acids that seldom undergo 
interchange.

The BLOSUM substitution matrix is constructed in a similar 
fashion to PAM (Fig. 2.3). Target frequencies of mutations out of 
background mutations are used. A blocks database is used for deriv-
ing the mutation frequencies. Blocks contain local multiple align-
ment of distantly related sequences. BLOSUM has an evolutionary 
model in its matrix formulation. Since it is derived from direct date 
rather than from extrapolated grades as in PAM, BLOSUM 62 means 
that sequences having 62 percent similarity are merged into a single 
sequence for detecting the matrix grade. No gap penalty is consid-
ered in either BLOSUM or PAM.
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FIGURE 2.3 Log-odds matrix for BLOSUM 62.
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Summary
Sequence alignment is a process of lining up two or more sequences 
to obtain matches among them. Sequence alignment can be used to 
develop cures for autoimmune disorders, to accomplish phylogenetic 
tree construction, to identify polypeptide microstructure, during 
shotgun sequencing, in gene finding, in restriction site mapping, in 
ORF analysis, in genetic engineering, during drug design, in protein 
secondary structure determination, and in protein folding, clone 
analysis, protein classification, etc. An alignment grading function is 
introduced to keep track of the degree of alignments and pick the 
optimal alignment.

Optimal global alignment of a pair of sequences can be achieved 
in O(n2) time using Needleman and Wunsch’s dynamic programming 
algorithm. A dynamic programming table is filled, and the optimal 
alignment falls out of the procedure. The different alignments can be 
identified using trace-back procedures. Penalty and rewards are 
selected such that when the grade of alignment is greater than 0, the 
number of characters aligned is greater than the number of mismatched 
characters in the sequence; when the grade of alignment is 0, the 
number of mismatched characters is equal to each other; and when 
the grade of alignment is less than 0, the number of mismatched 
characters is greater than the number of matched characters. 
Semiglobal alignment is obtained by awarding no penalty to end 
gaps or allowing free end gaps. Development of the dynamic 
programming algorithm consists of characterizing the structure of an 
optimal solution, recursively defining the grade of an optimal 
solution, computing the grade of an optimal solution in a bottom-up 
fashion, and constructing an optimal solution from the computed 
information. The space requirement of O(n2) can be reduced to O(n)
using Hirschberg’s dynamic array method. Algorithms for finding 
longest common subsequence in less than quadratic time are 
discussed. The Smith and Waterman algorithm can be used to obtain 
the optimal local alignment between a pair of sequences using the 
dynamic programming method in O(n2) and O(n2) space efficiency. 
The affine gap model can be used to define penalties for gaps and gap 
lengths in order to obtain biologically meaningful alignments.

Greedy algorithms can be used for aligning sequences that differ 
only by a few errors. Miller and colleagues have developed a method 
that can guarantee optimality in O(en) time, where e is much less than n,
and in O(m + n) space. These are implanted in the Unigene data-
base by NCBI. Other methods for obtaining sequence alignment include
method of significant diagonals, the heuristic method, approximate 
alignments, hamming, etc. The PAM and BLOSUM matrices are pro-
vided, and the benefits of using them for alignments are outlined. 
The methods described were applied to sequences with varying 
microstructures, such as alternating, random, and block distribution. 
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The concept of supersequence was introduced. The X-drop algorithm 
for global alignment was touched upon. The effect of repeats in a se-
quence on dynamic programming procedures is explored. The an-
tidiagonal was defined, and banded diagonal methods were explored. 
The implications of what would happen when the dynamic program-
ming table is sparse were explored. The stability of global and local 
alignment was touched on. The staircase table, inverse dynamic pro-
gramming, consensus sequencing, and sequencing errors and their 
ramifications were introduced. 
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Exercises
1.0 Amino acid sequence of ostrich [28]. Phylogenetic studies were carried out to 
compare the positioning of chicken, turkey, duck, penguin, pigeon, and ostrich 
according to their cytochrome structures. The amino acid sequence of Struthio 
camelus cytochrome C was derived by sequencing tryptic peptides. The sequence 
differs from that of the typical bird cytochrome C in a single position. What would 
be a good grading scheme to obtain the local alignment between the sequences 
using affine gap model?

2.0 What is the alphabet of (a) protein sequences, (b) DNA sequences, and 
(c) RNA sequences?

3.0 What is an indel, and what is a gap?

4.0 Why are mutations, conservation, and homology important in sequence 
alignment?
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5.0 What is the increase in database search cost expected with time and why?

6.0 What is the difference between genomics, proteomics, and 
metabolomics?

7.0 How many different sequences can exist with a length of 10 and an 
alphabet of 4 letters?

8.0 Sketch the disease mechanism of an autoimmune disorder?

9.0 Give two examples of autoimmune disorders?

10.0 What is the connection to sequence alignment during shotgun 
sequencing?

11.0 What is Kleen closure?

12.0 When seeking an alignment of two DNA sequences, can you use the 
genetic code to obtain the translated protein sequences, obtain their alignment, 
and then map the alignment to the original DNA sequences. How close to 
the optimal alignment is the alignment of DNA sequences. Discuss the time 
and space efficiency of this approach and compare it with obtaining a direct 
alignment between the DNA sequences. 

13.0 What is the expected role of sequence alignment in personalized medicine?

14.0 How are better drugs designed using sequence alignment methods?

15.0 What does sequence distribution have to do with prion proteins and 
the 1997 Nobel Prize given to Prusiner?

16.0 What is the significance of a positive grade, negative grade, and 0 in the 
grading function to obtain the grade of alignment when sequences are aligned?

17.0 What is a trace of alignment?

18.0 What does it mean when the optimal grade of alignment is 0?

19.0 Szymanski showed that for the special case when no element appears 
more than once in the input sequence, the alignment problem can be solved 
for in O(m + n)lg(n + m). This is lower than the O(n2) time efficiency needed for 
any two general sequences. Why does the time increase when the characters 
repeat in the sequences?

20.0 What is the LCS between a pair of sequences S and T?

21.0 Sequence distribution microstructure. What would be different about the 
grade of alignment during pairwise global alignment of two sequences when 
one of the sequences is (a) randomly distributed, (b) alternating distributed, 
or (c) block architecture?

22.0 Optimal global pairwise alignment. Find the optimal global alignment 
between

S: cccaaggtacg
T: acacacacaca
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23.0 Other than the optimal grade of alignment, how many alignments come 
to within 1 of the grade of optimal alignment in Exercise 3.0.

24.0 Can the optimal global alignment in Exercise 3.0 be improved on by 
using an affine gap penalty model?

25.0 Grading functions during optimal global alignment. Choose the appropriate 
grading functions to align the following strings globally:

S: uucgauugu
T: cccggguga

26.0 Prove that n m
n

n
k

m
kC C C+ = ∑ for k ≥ 0.

27.0 Second-best grade of alignment. Declump and find the second-best local 
alignment in Example 2.3. 

28.0 Reverse of sequence. Consider the string S with the sequence distribution 
shown below:

S: gcuauaauauu

Construct a string T with the sequence architecture that is the reverse of the 
sequence distribution of S. Using a global optimal alignment using dynamic 
programming, show that the optimal grade of the alignment is 11. Retrieve 
the optimal alignments. How many alignments come within ±1 of the global 
maximum grade of alignment. Is there another grade during the computation 
that is greater than the optimal grade of alignment. What is the significance 
of this?

29.0 Cell grades during local alignment vs cell grades during global alignment. An
additional term 0 is used in the maximum term when calculating the grade 
of alignment when seeking an optimal local alignment compared with the 
maximum term when calculating the grade of alignment used when seeking 
a global alignment of two sequences. Why is this?

30.0 Affine gap penalty. Repeat Example 2.5 with Wg = Ws = 2.0.

31.0 Interpretation of grade of alignment. Can the optimal grade of alignment 
take on negative numbers.

32.0 Gap penalty. Obtain the global optimal alignment between the pair of 
sequences S and T:

S: attagacttaag 
T: agctagg

The suggested grading scheme is 2 for an identity (match), –1 for mismatch, and 
–2 for the gap penalty and shows the initialization, matrix fill, and traceback 
steps. Recover all the possible alignments.

33.0 Longest common subsequence. Determine the LCS of strings S and T with 
the sequence distributions shown below:

S: dcdbddb 
T: dcbdcdba
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34.0 Optimal local alignment. Find the best local alignment between the pair 
of sequences S and T.

S: ggatgaaccgd 
T: agtatgcgagcad

35.0 Optimal Local Alignment of Protein Sequences. Show the local alignment 
between protein sequences and between the pair of sequences S and T:

S: kcitgtnvtqdigrad 
T: qmlhatndvacd.

36.0 Pair of sequences with no repetitions of characters. What can be achieved 
during global alignment of two sequences when both sequences have no 
repetitions of characters in them.

37.0 BLOSUM and PAM matrices. What are the strength and weaknesses of 
BLOSUM and PAM matrices.

38.0 Affine gap penalty affixation. What are the drawbacks of affine gap penalty 
affixation?

39.0 The best substitution matrix for Smith-Waterman comparisons of 
distant homologues is often BLOSUM-45. The best matrices for BLAST are 
different. Why?

40.0 When will the optimal alignment not be sought by the FASTA and 
BLAST software?

41.0 When is tblastx preferred to blastn?

42.0 What are the advantages of using multiple sequence alignments of 
genomic DNA sequences and a multiple sequence alignment of a group of 
homologous proteins?

43.0 What are the advantages of using multiple sequence alignment instead 
of pairwise sequence alignments.

44.0 Can you have palindromes in DNA sequences?

45.0 PAM-250 grading matrix. Align the sequences

S: eehgwagaeh
T: eaehwap 

using the PAM-250 grading matrix and a gap penalty of –8. Seek the following: 
(a) global alignment; (b) local alignment; (c) global alignment with the end-gap 
penalties. For all alignments, provide the complete dynamic programming matrix. 
Use SSEARCH, which can be run on the Internet from http://workbench.sdsc.
edu, to align these sequences and compare their alignment with your results.

46.0 Affine gap penalty with translation, gaps, and transfers. Given the following 
strings:

S: cgccautacgcgaatttta
T: catataaacgct

http://workbench.sdsc.edu
http://workbench.sdsc.edu
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seek a global alignment using the following parameters: identity = +4; 
translation = –2; gap = –8 fixed; and transfers = –4. Align the two sequences, 
and report their grade of alignment. Revise the algorithm to produce a local 
alignment.

47.0 Give examples in computational molecular biology where each of the 
following alignment strategies would be appropriate.

 (a) Global alignment with no end-gap penalties

 (b) Global alignment

 (c) Local alignment

 (d) Spaces penalty

48.0 Use dotplot analysis and view the alignment of sequences given in 
Exercise 46.0.

49.0 Match 1-tuples and 2-tuples and diagonal sum for the sequences 
in Exercise 46.0. Develop a sequence comparison by the method of 
hashing.

50.0 Award for matches, penalty for mismatch and gaps. Use a match grade of 
alignment of +5, a mismatch penalty of –4, and a gap penalty of –3 and develop 
a dynamic programming algorithm for aligning two DNA sequences.

S: acugacgagcaucaucgaugcac
T: gaagacaucgucgau

51.0 Escherichia coli promoter sequences. Align the –10 signal in E. coli promoter 
sequences TATAAT with  the sequences GTTACGTAA. Use the grading function 
2 for a match, –1 for a mismatch, and –3 for a gap. Does the complementary 
sequence of S match better. What is the time-taken efficiency?

52.0 Sequence distribution with high degree of alternation. The local alignment 
of sequences S: u c u u c a a and T: c c a u u c are shown in Table 2.7. Recover 
the alignments using the traceback procedure from a local maximum grade of 
alignment to a minimum grade of alignment. What is the meaning of two local 
maximum grades of alignments of 5?

TABLE 2.7 Local Alignment of Sequences with Alternating 
Sequence Distribution

c
c
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u
u
c

0
0
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0
0

u
0
0

2

2

2
1

c
0
2

2

1

1
4

u
0
1

1

1

3
3

c
0
2

3

2

2
5

a
0
1

2

5

3
4

a
0
0

1

4

3
0 2 1 3 2 4 4

3



 76 C h a p t e r  T w o  

53.0 Both strings with alternating sequence distribution. Consider two strings S
and T with alternating sequence distribution shown below:

S: ugugugugugugugug
T: gugugugugugugugu

Use the Needleman and Wunsch global alignment method with a grading 
function of +2 for matches and –1 for mismatches, indels, and gaps to show 
that the optimal alignment of the two sequences would be in a fashion that 
the traceback path would be along the diagonal from the right bottom cell to 
the left top cell of the dynamic programming array.

54.0 One string with block sequence distribution architecture. Consider the two 
strings S and T with one of them, S, having a chain sequence distribution with 
a block architecture.

S: uuuucccc
T: ucauuccc

Obtain the optimal local alignment between the two strings. Show that 
the optimal grade of alignment for the strings is +10. Find the second-best 
alignment.

55.0 Oligonucleotides. PBMCs are peripheral blood mononuclear cells. Single-
stranded DNA (ssDNA) can be synthesized that ligands to human PBMCs. 
PBMCs are isolated from whole blood and contain a complex mixture of cell 
types of B-lymphocytes, T-lymphocytes, and monocytes. Ligands to PBMCs 
have many uses, including imaging lymph nodes for cancer screening and flow 
cytometry for AIDS monitoring. A library of synthetic DNA oligonucleotides 
containing 40 random nucleotides was created. The sequences of two clones 
are given below:

S: aguuuggau
T: gugagaaau 

Using a grading scheme of +1 for a match, –1/3 for a mismatch, –1 for a gap 
opening, and –1/3 for a gap extension, obtain a global sequence alignment of 
strings S and T.

56.0 What are the differences in alignment of the strings S and T in Exercise 
55.0 when the grading scheme shown in Exercise 37.0 is used and when the 
following grading scheme is used:

σ(a, a) = +2; σ(a, b) = –1; σ(a, _) = –1; σ(_, a) = –1 

57.0 Hamming. Obtain an approximate global alignment of two sequences S
and T. Using an @RAND key, go to the kth position. Compare S[k] and T[k].
If there is a match, skip; if not, introduce an indel. Call for the next RAND(k).
Compute grade of alignment. Stop when grade of alignment increases to a 
maximum. What is the time-taken efficiency for this procedure? Is there a 
reduction in time-taken efficiency from O(n2 ) to O(en), where e is the number 
of indels called for? How close does this alignment come to the optimal 
alignment?
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58.0 Distance metric. Consider two strings S and T with the following sequence 
distribution obtained from Fig. 2.1:

S: gttcaggtga
T: gggacacaaa

Define a distance between the two strings in such a fashion that when they 
are parsed, if there is a match, then the distance D(a, a) = 0, and if there is a 
mismatch, D(a, b) = +1. Thus, when the distance between two strings is large, 
they are misaligned. What is the distance between strings S and T shown 
above. Using the Needleman and Wunsch algorithm, obtain a global alignment 
between strings S and T. What happens to the distance between the mapped 
strings when the optimal alignment is obtained?

59.0 Nonaligned sequences. One way to speed up the O(n2) time efficiency 
needed for optimal global alignment between two strings S and T is to 
identify regions of sequences that are misaligned. Suppose that there are two 
sequences S and T with no characters in common or only one or two characters 
in common. Would it be better to define a distance metric and maximize the 
distance between the mapped strings. In this way, the optimal nonalignment 
can be obtained. What is the biologic significance of nonalignment. When 
would this be preferred to the alignment schemes discussed in this chapter.

60.0 DNA sequence of simian varicella virus. In nonhuman primates, simian vari-
cella virus (SVV) causes a natural disease that is clinically similar to human vari-
cella-zoster virus (VZV) infections. The SVV and VZV genomes are similar in size 
and structure and share extensive DNA homology. SVV DNA is 124,138 bp in size, 
746 bp shorter than VZV DNA, and 40.4 percent G + C. The viral genome includes 
a 104,104-bp unique long component bracketed by 8-bp inverted repeat sequences 
and a short component composed of a 4904-bp unique short region bracketed by 
7557-bp inverted repeat sequences. A total of 69 distinct SVV open reading frames 
(ORFs) were identified, including three that are duplicated within the inverted 
repeats of the short component. Each of the SVV ORFs shares extensive homol-
ogy with a corresponding VZV gene. The only major difference between SVV and 
VZV DNA occurs at the leftward terminus. SVV lacks a VZV ORF 2 homologue. 
In addition, SVV encodes an 882-bp ORF A that is absent in VZV but has homol-
ogy to the SVV and VZV ORF 4. The results of this study confirm the relatedness 
of SVV and VZV. This provides further support for simian varicella as a model 
to investigate VZV pathogenesis and latency. What grading scheme would you 
suggest for seeking an alignment between SVV and VZV viral genomes?

61.0 Greedy algorithm to align DNA sequences. Obtain the optimal global 
alignment of two sequences S:  ccatacgtggttggtt and T: acgg using the greedy 
method. How is this an improvement over the dynamic programming method 
of Needleman and Wunch?

62.0 Supersequence for global alignment. Consider two sequences S and T

S: tgttgtcccc
T: cttgccttcc 

Define a supersequence U where S and T are subsequences of U. Let the 
supersequence U be given by
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U: tgtttgtccccttggcttc

How can U be used in obtaining the optimal global alignment of sequences 
S and T?

63.0 Supersequence for local alignment. How can the supersequence construction 
shown in Exercise 62.0 be used to obtain the optimal local alignment between 
sequences S and T.

64.0 X-drop algorithm for global alignment. The procedure to obtain the 
global alignment between two sequences S and T by the method of dynamic 
programming calls for the creation of table of the size of m × n at a space 
efficiency of O(n2). In order to save space and time, a method is developed 
where most of the cells in the array are not filled. Since only the traceback from 
the right bottom cell to the left top cell is important, an X-drop procedure can 
save time and space. The grade of alignment is calculated across the diagonal 
of the table. When there is a match, the next cell diagonal down can be called 
for. When there is a mismatch, x cells vertically can be traversed from the 
diagonal until a match is found. All along indels/gaps can be called for. On 
finding the match, the procedure can continue either from the diagonal cell 
branched off from or from the matched cell to the diagonal cell down. In this 
way, the space required would be O[k max(m, n)], where k is the departure 
from the diagonal in steps, and the time taken would be O[k, max(m, n)]. For 
nearly aligned sequences, k can be small, and the best-case space and time 
can be linear, O(n). Show an example of nearly aligned sequences S and T and 
the advantages of the X-drop method compared with the recurrence relation 
discussed by Eqs. (2.31) through (2.34). 

65.0 X-drop algorithm for local alignment. How suitable is the X-drop method 
outlined in Exercise 46.0 to obtain local alignment between sequences S and T?
What happened to the guaranteed optimality? Should the entire table be filled 
to confirm local maxima?

66.0 X-drop algorithm with gap penalty. For biologic applications where the 
gap penalty needs to be levied, as shown in Example 2.4, how do you expect 
the X-drop method outlined in Exercise 46.0 to fare?

67.0 Repeats in a sequence. Consider two sequences S and T as follows:

S: acgtacgtacgt
T: ccgatca

It can be seen that acgt repeats three times in the sequence S. When asked to 
obtain the global alignment between the two sequences S and T by the method 
of dynamic programming, as shown in Eqs. (2.31) through (2.34), how can 
you use the knowledge of the repeats to cut down the time taken and space 
efficiency from O(n2). Filling which cells and what cell calculations can be cut 
down to increase the time and space efficiency?

68.0 Hirschberg array for local alignment. Can the dynamic array method 
suggested by Hirchberg and discussed in the chapter be used to obtain the 
optimal local alignment using the dynamic programming method of Smith 
and Waterman. Why not?
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69.0 Antidiagonal [24]. Antidiagonal k is the set of all points (i, j) such that i + j = k.
Thus antidiagonal k = 2 would mean the cells (2, 0), (0, 2) and (1, 1). Antidiagonal 
computation and half-nodes can speed up the sequence alignment process. 
Given an example of alignment of two sequences, where does antidiagonal 
computation speed up the time taken? What is the payoff ?

70.0 Edit distance [25]. Edit distance between two sequences S and T is the 
minimum cost c of a sequence of editing steps such as insertions, deletions, 
and changes that convert one sequence into another. A tabulating method was 
developed to compute c as well as the corresponding editing sequence in time 
efficiency of O[c min(m, n)] and space efficiency of O[c min(c, m, n)], where 
all editing steps have the same cost independent of the characters involved. 
If the editing sequence that gives cost c is not required, the algorithm can be 
implemented in space efficiency of O[min(c, m, n)]. Consider two sequences 
S and T

S: aacaaagtta
T: attgaaacaa

Convert sequence S to T, and confirm the time and space efficiency of the 
editing method shown in [26].

71.0 Band across diagonal. In the method of dynamic programming, to align 
two sequences and to obtain the optimal global alignment grade, filling a 
table of grades with m rows and n columns is called for. It can be seen that 
the alignments can be recovered using a traceback procedure. The alignments 
are close to the diagonal of the table. A lot of cells in the table that are 
far from the diagonal are needed to recover the optimal global alignment. 
Thus a procedure can be developed that calls for computations only across 
the diagonal in the table from (0, 0) to (m, n) and a few cells from the top and 
bottom of the main diagonal. Thus confinement to within a band of the main 
diagonal can reduce the number of computations needed to obtain the optimal 
grade of alignment and recover the alignments. What is the speedup expected 
as a function of the width of the band? What is the space reduction achieved 
as a function of the width of the band?

72.0 Tradeoff between time efficiency and optimality. Suppose that a tradeoff is 
allowed between time efficiency and optimality. In order to obtain an optimal 
global alignment between two sequences within twice the optimal grade of 
alignment, what is the speedup and space reduction that can be expected?

73.0 Global alignment of three sequences. Show that a dynamic programming 
method can be used to obtain optimal global alignment of three sequences S,
T, and U. The time-taken efficiency would be O(n3), and the space required 
would be O(n3). A cube of cells with m rows, n columns, and o floors has to be 
filled to complete the procedure.

74.0 Local alignment of three sequences. Show that a dynamic programming 
method can be used to obtain optimal local alignment of three sequences S,
T, and U. The time-taken efficiency would be O(n3), and the space required 
would be O(n3). A cube of cells with m rows, n columns, and o floors has to be 
filled to complete the procedure.
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75.0 Affine gap penalty. Consider the local alignment of three sequences S, T, 
and U. How would you modify the procedure developed in Exercise 74.0 to 
incorporate the affine gap penalty.

76.0 Hirschberg space array for global alignment of three sequences. Show 
that the dynamic array concept developed by Hirschberg and discussed 
in Sec. 2.7 can be extended to obtaining the optimal grade of alignment 
during global alignment of three sequences S, T, and U in space efficiency 
of O(n2).

77.0 Hirschberg space array for local alignment of three sequences. Can the dynamic 
array concept developed by Hirschberg and discussed in Sec. 2.7 be extended 
to obtaining the optimal grade of alignment during local alignment of three 
sequences S, T, and U? Why?

78.0 Hamming for three sequences [28]. Can an approximate global alignment 
be obtained of the sequences S, T, and U using the @RAND key? What is the 
tradeoff between speed and optimality? What is the space required?

79.0 Dynamic programming table for global alignment. In the method of dynamic 
programming, to obtain optimal global alignment of two sequences S and T,
a table of grades has to be generated with mn cells. Are there two sequences S
and T for any set of cell grades in the table? Discuss.

80.0 Dynamic programming table for local alignment. In the method of dynamic 
programming, to obtain optimal local alignment of two sequences S and T, a 
table of grades has to be generated with mn cells. Are there two sequences S
and T for each and every set of cell grades in the table? Discuss.

81.0 Sparse table. Obtain the optimal local alignment of two sequences S and 
T given below:

S: acgtt
T: acaaa

Show that the dynamic programming table will be filled as in Table 2.8. What 
is the unique feature of Table 2.8? Is it a sparse matrix or sparse table? Once 
the sparse matrix is recognized, can the time efficiency be increased and space 
required cut down? 

82.0 Recover the local alignments from Table 2.8 using the traceback procedure. 

83.0 Note that the grading function had a +2 for matches in Table 2.8. If 
the grade of alignment for a match is –1, can a table with sparse matrix 
property such as the one in Table 2.8 be generated for any two sequences S
and T? Why?

84.0 Sparse table. During the local alignment procedure of Smith and 
Waterman, using dynamic programming depending on the nature of the 
sequences S and T, some tables can be seen to be sparse; i.e., a lot of the cells 
have zero grade. For example, only half Table 2.8 is filled, and the rest in not 
filled. How can this knowledge be used to decrease the space required and 
increase the time efficiency of the method?



 A l i g n m e n t  o f  a  P a i r  o f  S e q u e n c e s  81

85.0 Stability of global alignment. In the dynamic programming method, to 
obtain the global and optimal alignment between two sequences S and T, the
traceback procedures originate from the right bottom cell and end up at the 
left top cell. What is it in the procedure that keeps it from taking a detour to 
the right top cell or a wavy path?

86.0 Stability of local alignment. In the dynamic programming method, to 
obtain the local and optimal alignment between two sequences S and T, the
traceback procedures originate from the cell with the local maximal and end 
up at the cell with the local minima. What is it in the procedure that keeps it 
from taking a wavy path?

87.0 Smith and Waterman’s seminal article [13]. Smith and Waterman presented 
their dynamic programming work in 1981. The two sequences that they 
considered in their article in the Journal of Molecular Biology were as follows:

S: acagccuccgcuuag
T: aaugccauugacgg

Obtain the optimal local alignment of sequences S and T. 

88.0 Is there a need for use of affine gap penalty for the sequences S and T
given in Exercise 86.0.

89.0 Needleman and Wunsch’s seminal article [8]. Needleman and Wunch 
presented their dynamic programming work in 1970. The two sequences they 
considered in their article in the Journal of Molecular Biology were as follows:

S: abcnjrqclcrpm
T: ajcjnrckcrbp

Obtain the optimal global alignment of two sequences S and T.

90.0 What is the biologic significance of the weighting factors used in the 
grading scheme in Exercise 89.0.

91.0 Staircase table [29,30]. Consider the dynamic programming table 
shown in Table 2.9. When the two sequences are aligned using the dynamic 
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TABLE 2.8 Local Alignment of Two Sequences S and T in 
Exercise 81.0
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programming method for global optimal alignment, consider the special case 
where the grades of alignment for the sequences S and T form a staircase such 
as the one shown in the table. The unshaded regions are insignificant grades, 
and the significant grade of alignment only falls in the shaded region. For 
such cases, can the time efficiency of alignment be speeded up and the space 
required cut down? 

92.0 If the local optimal alignment of two sequences results in a dynamic 
programming table such as Table 2.9, how would you modify the procedure? 
What is the speed-up that can be expected and space savings that can result 
from realizing the nature of the particular sequences that form a staircase 
region in the dynamic programming table.

93.0 It is generally agreed that in problems such as matrix multiplication, 
dynamic programming, and greedy algorithms where there is an optimal 
structure to the subproblems, the time taken cannot be better than O(n2). 
Reports in the literature for a linear time solution for the longest common 
substring problem can be seen and implemented in commercial software 
successfully. How should you interpret these two observations?

94.0 Inverse dynamic programming for global alignment. Define a formal inverse 
problem of conversion of a filled dynamic programming table (with m rows 
and n columns) with grades of alignment in each cell to obtain the optimal 
global alignment into two sequences S and T.

TABLE 2.9 Staircase Table
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95.0 Inverse dynamic programming for local alignment. Define a formal inverse 
problem of conversion of a filled dynamic programming table (with m rows 
and n columns) with grades of alignment in each cell to obtain the optimal 
local alignment into two sequences S and T.

96.0 Inverse dynamic programming for local alignment with affine gap penalty. 
Define a formal inverse problem of conversion of a filled dynamic programming 
table (with m rows and n columns) with grades of alignment in each cell to 
obtain the optimal local alignment with affine gap penalty into two sequences 
S and T.

97.0 Global alignment to grading scheme. Consider a global alignment of a pair 
S’ and T’ that originated from the sequences S and T. For a desired alignment, 
how would you devise a grading scheme?

98.0 Local alignment to grading scheme. Consider a local alignment of a pair 
S’ and T’ that originated from the sequences S and T. For a desired alignment, 
how would you devise a grading scheme?

99.0 Local alignment with affine gap penalty to grading scheme. Consider a local 
alignment of a pair S’ and T’ with affine gap penalty that originated from the 
sequences S and T. For a desired alignment, how would you devise a grading 
scheme?

100.0 Consider a desired alignment such as the one shown below:

S’: a  c   _  c  g  t  _  _  c a  a
T’: _  c  g   c  t   t  a  a  c  a  t

For the global alignment shown for sequences S: accgtcaa and T: cgcttaacat, 
what grading scheme is used?

101.0 Consider a desired local alignment such as the one shown below:

S’: t a  t  a  t  a t  a  t  e e
T’: _ a  _ a  t  a _ _  t  e  e

What would be the grading scheme used be for aligning the sequences S:
tatatatatee and T: aatatee?

102.0 How would you change the grading scheme obtained in Exercise 101.0 
to obtain the following local alignment:

S’: t  a  t  a  t  a  t  a  t  e  e
T’: _ a _  a  t  a _  a  t  e  e

103.0 When you align two sequences S and T using dynamic programming, 
suppose that the indels/gaps are not allowed for one sequence and are allowed 
for the other sequence. Would this change the time-taken efficiency and space 
required to fill the table?

104.0 Sequencing errors. The experimental procedures used to obtain the 
sequence distribution of DNA usually have a 5 percent error from the wet 
laboratory and 7 percent during shotgun sequencing owing to extrapolation. 
Approximate global alignment of DNA sequences may even be preferred as 
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opposed to optimal global alignment that takes O(n2) time and O(n2) space. 
What is the tradeoff in speed versus accuracy when a sublinear time algorithm 
is developed for an approximate global alignment.

105.0 Consensus sequence. A consensus sequence C of S and T sequences can 
be defined as follows:

S: a  c  g  t  t  t  g  c  g  g  c 
T: a  a  t  g  t  a  g  c  a  g  a
C: a  a  g g  t  a  g  c  g  g  a

How can the consensus sequence C figure in obtaining alignment between S
and T?

106.0 Geometric distribution. The dynamic programming methods to align 
any two sequences S and T require O(n2) time and O(n2) space for guaranteed 
optimality. When DNA sequences are aligned, a geometric distribution 
model can be developed to characterize the two sequences S and T. When the 
sequences are parsed for a match, matched regions are given a positive weight, 
and when a mismatch is encountered, the model can be called for to check 
whether the mismatch resulted from some experimental error or from some 
biologic phenomenon. Search across a diagonal is performed, and excursions 
as in the X-drop method shown in Exercise 64.0 are allowed. Show that this 
can result in less time and space taken and that a closer to optimal grade of 
alignment can be achieved.

107.0 O(mn/K) time taken. In the BLAST software, alignment strategies 
employed are segments. Show what a segment is by an example.

108.0 Polymorphism. Polymorphism is the differences in DNA among 
individuals of the same species. Given long DNA sequences, the optimal 
solution of dynamic programming will assign a penalty for mismatches 
that result from polymorphism. Given the biologic interpretation, how 
would you devise a grading scheme to reduce the penalty only in the case of 
polymorphism?



CHAPTER 3
Sequence 

Representation and 
String Algorithms

Objectives
The objectives of this chapter are to

• Be able to store a sequence in a suffix tree data structure.

• Be able to construct a suffix tree, suffix array, and suffix links 
in O(n) time and space.

• Be able to use a suffix tree to align sequences.

• Be able to search for a pattern p in a text t.

• Be able to learn string matching algorithms such as Knuth-Morris-
Pratt (KMP), Boyer-Moore (BM), and finite automaton (FA).

• Be able to solve problems with variations in the KMP, BM, 
and FA algorithms.

• Be able to achieve sublinear time taken efficiency in pattern 
matching algorithms.

3.1 Suffix Trees

3.1.1 Overview of Suffix Trees in Sequence Analysis 
The paper that introduced the suffix tree was awarded the “Algorithm 
of the Year” award by Knuth in 1973. This feat was achieved by Weiner. 
Prior to that, the data structure was called different names, such as 
bi.tree, prefix tree, PAT tree, position tree, the repetition finder, and the sul
tree. The construction of the suffix tree was improved by Ukkonen [1] 
to give a linear time algorithm for the construction of a suffix tree. 
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A suffix tree of length n over a constant alphabet can be constructed 
in O(n) time. It can be used to find patterns in DNA and protein 
sequences [2]. 

Any string of length m can be degenerated into m suffixes, and 
these suffixes can be stored in a suffix tree. Creating this structure 
requires time O(m), and searching for a pattern in it requires time 
O(n), where n is the length of the pattern. The internal structure of a 
DNA sequence can be exposed by storing it in a suffix tree. Patterns 
that exist are identified and saved accordingly. These two properties 
make the suffix tree an appealing structure for a diverse range of 
bioinformatics applications, including multiple-genome alignment 
[3], selection of signature oligonucleotides for DNA arrays [4], and 
identification of sequence repeats [5]. The search engine REPfind of 
REPuter software uses a compact implementation of the suffix tree 
to locate exact repeats in linear time and space. Up to the size of 
human genome, the sequence can be stored in a suffix tree in linear 
time and space. Exact repeats are used as seeds from which 
significant degenerate repeats are constructed, allowing for 
mismatches, insertions, and deletions. Degenerate palindromic 
repeats also can be detected.  A suffix array is an array of all suffixes 
that are sorted. Suffix arrays and suffix trees can be derived from each 
other in O(n) time. 

The generalized suffix tree (GST), can be used to represent a set of 
strings and stores all the suffixes of all the strings. The i from the leaf 
label (i, j) denotes that the suffix is from string Si, and j represents the 
starting position of the suffix in Si. An edge label in GST is represented 
by three integers (i, j, l) and is a substring of one of the sequences. i is 
the string number, j and l are the starting and ending positions of the 
substring in Si. N is the total number of characters of all strings in set S.
The GST can be constructed in O(N) space. 

At least two programs based on suffix trees are available for 
whole-genome alignment: MUMer [6] and Multiple Genome 
Aligner (MGA) [3]. MUMmer and MGA both use common 
subsequences as anchors for the alignment. While they both use 
the same data structure, “a suffix-tree data structure”, which 
permits very fast and memory-efficient comparison (of the 
genomes) [6], the two applications take different approaches to 
genome alignment. MUMmer extracts Maximal Unique Matches 
(MUMs)—sequences that occur exactly once in each genome—
sorts these sequences to find the longest set of MUMs occurring 
in the same order in both sequences, and uses this set of 
sequences to anchor the multiple alignment. The gaps between 
anchors are filled using the Needleman and Wunsch [7] dynamic 
programming alignment algorithm. Since the Needleman and 
Wunsch algorithm does not scale well for multiple sequences 
(its time and space requirements increase exponentially with the 
number of strings), MUMmer is restricted to comparing two 
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genomes. MGA computes the longest nonoverlapping sequence 
of Maximal Multiple Exact Matches (multiMEMs) and uses these 
to guide the multiple alignment. A MEM is defined as a (k + 1)-
tuple (l, p_0, p_1, . . . , p_k –1) such that l indicates the length of 
the MEM and p_i indicates the start coordinate of the exact match 
in genome i. A maximal MEM cannot be extended to the left or 
the right and is referred to as a multiMEM. Gaps are shortened 
by recursively extracting multiMEM sequences and finally are 
filled using ClustalW—a progressive/iterative multiple-alignment 
method.

A long MUM can figure in the optimal alignment of a pair of 
sequences. Consider two sequences S and T. First, all the MUMs 
between the two sequences S and T are found. The longest sequence 
of MUMs that occurs in the same order in either sequence is found. 
The regions between the MUMs are aligned. 

Suffix tree can be used to represent the DNA sequence and is an 
interesting data structure. Consider the string S:

 S:  T T A T T A C G (3.1)
 i   1 2 3  4 5 6  7 8 

For every i, I = 1 to k; let the substring a be the shortest substring 
beginning at i that does not occur elsewhere in S.

 Position i    Substring

 1 TTAT
 2 TAT
 3 AT
 4 TTAC
 5 TAC
 6 AC
 7 C
 8 C

The suffix tree representation of the sequence in string S given in 
Eq. (3.22) is shown in Fig. 3.1.

The n terminal nodes of the suffix tree S = S1, S2, . . . , Sn consist of 
1, 2, 3, . . . , n. The sequence of labels on the edges from the root to the 
terminal node i is the identifying substring for position i. The suffix 
tree for the S, the sequence of length 8, is shown in Fig. 3.1. The 
largest matching regions between two sequences S and T can be 
found using the concept of a suffix tree. The string concatenation of 
letters from root to leaf will give the associated suffix. The longest 
repeat in sequence S is TTA. This is obtained simply by reading the 
labels at the tips of the longest branches of the tree. TTA begins at 
positions 1 and 4. Contained in the suffix tree is all the repeat 
information of sequence S.
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3.2  Algorithm for Suffix Tree 
Representation of a Sequence 

Each internal node has at least two children. An n leaf suffix tree has 
at most n – 1 internal nodes. The maximum number of children is 
bounded by ⎥∑⎥ + 1. However, for the edge labels, the size of the tree 
is O(n). Each edge label is denoted by two numbers for the starting 
and ending positions. 

Algorithm 3.1 Suffix Tree Representation of a Sequence
Input: (B, depth)  (3.2)
Output: (list, depth) for α ∝ ∑  (3.3)
 for all α ∝ ∑  (3.4)
 list(α) = φ  (3.5)
 for all i ∝ B (3.6)
 List(a

i+depth
) ← list(a

i+depth
) ∪ (i)  (3.7)

Algorithm 3.2 Find Repeats in a Sequence
Input: S

1
, S

2
, . . . , S

n
 (3.8)

 for node = top
List node ← (1, 2, 3, . . . , n)
 for all nodes with (list node) > 1 (3.9)

 Suffix [list(node, depth)]

Tandem repeats are short segments of DNA that occur more than 
once in the DNA sequence consecutively and participate in the 
polymerase chain reaction (PCR) gene expression reactions. A 
tandem repeat can be defined as τ = s’s’. This is a repeated occurrence 
of string s’ twice. τ is also called a primitive tandem repeat. A square is

A C T G

TA

CT

C T A

C T

FIGURE 3.1 Suffi x tree representation of sequence TTATTACG.
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a two-repeat tandem sequence. A tandem array is when substring s’
repeats more than two times consecutively. Thus τ = s’k. s’ is denoted 
by (i, s’, k). It also can be represented as a tuple. Crochemore [8] 
developed an algorithm that computes all occurrences of primitive 
tandem repeats in O[n lg(n)] time. All occurrences of tandem repeats 
can be found in O[n lg(n) + occ], where the number of occurrences of 
tandem repeats in the string is given by occ.

The complete system code for MUMmer 2 is freely available from 
the TIGR Web site at www/tigr.org/software/mummer. MUMmer 
uses suffix trees to create an internal representation, and based on 
this representation, two genomes can be approximately aligned in linear 
time and space [7]. The error from optimal alignment can be calculated. 
For example, MUMmer 1.0 aligns the 4.7-Mbp genome of Escherichia
coli and the 3.0-Mbp large chromosome of Vibrio cholerae in 74 seconds 
on a 1-GHz desktop computer, requiring 293 MB of memory. The 
memory requirement of 38 bytes/bp, although it grows only linearly 
with the size of the input sequences, is still a limitation of original 
system. This has been reduced dramatically in MUMmer 2.0. For the 
same two genomes, the new system computes the alignment in only 
27 seconds and requires only 100 MB of memory. Both speed and 
memory usage have been improved by a factor of nearly 3.

There are three significant technical improvements in the core 
algorithms of MUMmer 2.0. The first is the reduction in the amount 
of memory used to store suffix trees by employing techniques 
described by Kurtz and Schleiermacher [5]. At most, 20 bytes/bp for 
amino acids is used. The maximum memory usage occurs in the case 
where each internal node in the suffix tree has only two children. In 
practice, however, many nodes have more than two children, 
particularly in the case of polypeptide sequences, which reduce the 
actual memory requirement. The second significant core improvement 
is an alternative algorithm to find exact matches. The original 
algorithm built a suffix tree containing two input sequences and then 
found all MUMs between them.

3.3 Streaming a Sequence Against a Suffix Tree
Given a pair of sequences, one sequence is stored in the suffix tree. 
The second sequence or the query is streamed against the suffix tree, 
exactly as if it were being added but without actually adding it. 
This procedure was introduced by Chang and Lawler [9] and fully 
described by Gusfield [10]. Using this process, where the query 
sequence would branch off from the tree can be identified. In this 
way, all matches to the reference sequence are determined. For 
example, the query ATGTCC is streamed against the string S in 
Fig. 3.2. Wherever a branch occurs at a tree position with just a 
single leaf beneath it, the match is unique in the reference sequence. 
By checking the character immediately preceding the start of this 

www.tigr.org/software/mummer
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match, it can be determined whether it is a maximal match. Thus, 
in time proportional to the length of the query sequence, all 
maximal matches between it and a unique query string in the 
reference sequence can be identified. Because the query is streamed 
through outputting matches as they are found, it is not known 
which sequence will occur later in the query. The advantage of this 
method is that only one of the two sequences can be streamed 
against the reference sequence that is stored as a suffix tree. Delcher 
and colleagues [6] have used this technique to compare two 
assemblies of the entire genome, each approximately 2.7 billion 
characters, using each chromosome as a reference and then 
streaming the entire genome past it.

 S:  A T G T G T G T C (3.10)

 1  2 3  4  5 6  7  8 9 

Position  Subsequence

 1 A
 2 TGTGTG
 3 GTGTG
 4 TGTGTC

A1

9

C G
10

T

C8

G

T

G

C

4G

T

C

C

5
3

G

T

G

7

2

C 6

T

FIGURE 3.2 Streaming a sequence against a suffi x tree.
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 5 GTGTC
 6 TGTC
 7 GTC
 8 TC
 9 C

How a string is streamed against a suffix tree is shown in Fig. 3.2. 
Leaf 7 represents GTC, and leaf 5 represents GTGTC. At the point 
shown in the figure, the input stream starting at position i is matched 
as indicated by the arrow. The match extends to the corresponding 
arrow position in the tree. In this case, the match can be seen to be 
unique because there is a single leaf below this position in the tree. The 
number label of the leaf gives the starting position of the match in 
the suffix tree string. To find the next match, the suffix links in the 
tree are used. These are indicated by arrows at the ends of the 
curvilinear dashed lines. These links are constructed for each internal 
node in the tree. Because the match is made as far as possible in the 
tree, the matches are maximal on the right hand side (RHS) of the 
strings being compared. The one-sided uniqueness property of 
MUMmer 2.0 can be an advantage when comparing queries that 
represent only a partial genome assembly. The third technical 
improvement is the addition of a new module to cluster matches. The 
original version of MUMmer computed a single longest alignment 
between the sequences.

3.4 String Algorithms
String algorithms can be used to find patterns in DNA sequences. The 
strategy used is similar to that used to find a pattern in a text, such as 
the Find tool used in word-processing software. The string-matching 
problem can be formalized as text in an array is T(1, 2, . . . , n) of length 
n and the pattern in an array is P(1, 2, . . . , m) of length m, m ≤ n. The
elements of P and T are drawn from a finite alphabet Σ. The character 
arrays P and T are called strings of characters. The preprocessing time 
and matching times for different string-matching algorithms are 
shown in Table 3.1. The problem is to find pattern P in text T.

TABLE 3.1 Preprocessing and Matching Times for Different String-Matching 
Algorithms

Algorithm Preprocessing Time Matching Time

Rabin-Karp θ(m)  [(n – m + 1)m]

Knuth Morris Pratt θ(m) O(n)

Boyer Moore O(m + σ) O(n)

Finite automaton O(m⎪Σ⎪) O(n)
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3.4.1 Rabin-Karp Algorithm
The Rabin-Karp algorithm [11] performs well in practice and can be 
generalized to two-dimensional pattern matching. A hashing function 
is used in the algorithm. A quadratic number of comparisons is 
avoided. Instead of checking at each letter of the text, it is sufficient to 
look through a window to see whether it looks like the pattern that is 
searched for. The hashing function has to be efficiently computable 
and highly discriminating for strings. 

Algorithm 3.3 Rabin-Karp Matcher
Length(T) = n; length of (P) = m (3.11)
    d m–1 mod q = h (3.12)
    p = 0; t

0
 = 0

 For i = 1 to m,
   p = [dp + P(i)] mod q (3.13)
   t

0
 = [dt

0
 + T(i)] mod q

 For s = 0 to n – m,
  do if p = t

s

  then if P(1, . . . , m) = T(s + 1, . . . , s + m)
    then print “Pattern occurs with shift” s
  (3.14)
    if s < n – m
    then t

s+1
 = {d[t

s
 – T(s + 1)h] + T(s + m + 1)} mod q

  (3.15)

The Rabin-Karp matcher takes O(m) preprocessing time, and its 
matching time is O[m(n – m + 1)] in the worst case. 

3.4.2 Knuth-Morris-Pratt (KMP) Algorithm
This algorithm can be used for pattern-matching problems. The 
straight solution in simple string matching can be archived in worst-
case time of O(mn) and space required O(nm). For example, let the P =
AGAGU and T = AGAGAGUUA. A set Σ is defined to be the alphabet 
or set of characters from which the characters in P and T may be 
chosen from, and let α = ⎪Σ⎪. The flowchart or finite automaton 
(Fig. 3.3) has two types of nodes j.

Some are read nodes, which mean, “Read the next character. If 
there is no further character in the text string, halt; there is no match.” 
One read node is designated the start node.

Get next text character

f

s s
–

f

T G

f
f

s s

f

s
G A C

FIGURE 3.3 KMP fl owchart for TGGAC.
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A stop node, which means, “Stop; a match was found.” It is 
marked with a. The flowchart has α arrows leading out from each 
read node. Each arrow is labeled with a character from Σ. The arrow 
that matched the text character just read is the arrow to be followed; 
that is, it indicates which node to go to next. The read nodes serve as 
sort of memory. For instance, if execution reached the third read node, 
the last two characters read from the text were A’s. What preceded 
them is irrelevant. The time taken for KMP algorithm is O(n + m), an 
improvement over the O(nm) for straightforward matching [12].

Example 3.1 Find the pattern TGGAC in the text AGCTTGGAC.

 Σ = (A, G, C, T) (3.16)

Action of the KMP flow chart (Table 3.2):
 T:  A G C T T G G A C
            1  2  3  4 5  6  7  8  9

Algorithm 3.4 Knuth-Morris-Pratt Scan Algorithm
Input: P, T, the pattern and text strings; m, the 
length of P; fail the array of failure links setup in KMP 
flowchart representation algorithm
  The length of P is determined when fail array is set up.
Output:  Return value is the index in T where a copy of P
begins, or –1 if a 
  Match for P is found.
  Int kmpscan (Char []P, m Char[]T, int m, int [] fail)

KMP Cell Number Text Index Scanned Character Success or Failure
1 1 A F

0 2 G Get next char

1 2 G F

0 3 C Get next char

1 3 C F

0 4 C Get next char

1 4 T S

2 5 T F

1 5 T S

2 6 G S

3 7 G S

4 8 A S

5 9 C Stop

TABLE 3.2 KMP Cell Numbers 5, 6, 7, 8, 9 Indicate the Matched Pattern in the 
String in Example 3.1
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  Int Match
  Int j, k
  //j indexes text characters
  //k indexes the pattern and fail array match = –1

j = 1; k = 1;
  While [end text (T, j) = = false]
   If (k > m)
   Match = j – m//match found (3.17)
  Break;
  If (k = = 0)

j++:
k = 1//Start pattern over

       Else if (t
j
 = = pk)

j++
k++

       Else
  //follow fail arrow

k = Fail(k)
  //continue loop of return match

Algorithm 3.5 Knuth-Morris-Pratt Flowchart
Input: P, a string of characters; m, the length of P
Output: Fail, the array of failure links: defined for 
indexes, 1 – m. The array is passed in, and the algorithm 
fills it.
Void KMP setup (Char []P, int M, int [] fail)
 Int k, s
 1. fail [] = 0
 2. for k = 2 , k ≤ m, k++
 3. S = fail [k – 1]
 4. While (s ≥ 1)
 5. If P = = P

k–1
 (3.18)

 6. break;
 7. S = fail[S]
 8. Fail[k] = S + 1
The complexity is O(m2).

3.4.3 Boyer-Moore Algorithm 
In the Boyer-Moore algorithm [13], text characters may be skipped 
over entirely. A good algorithm should be able to jump faster past 
places in the text where the pattern cannot appear. The Boyer -Moore 
(BM) algorithm always scans the pattern from right to left. It uses two 
heuristics to decide how far the pattern may be slid over the text 
string after a mismatch. Let P be the pattern of length m and T a text 
string of length n.

 Che  w  C hew  wc  hewch  ewchewe 

 The Chief Defect of Henry VIII was chewing little bits  
 of chewing gum. 
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Since w and C do not match, there is now w in the first four letters 
and the chew is moved four matches. This is repeated a few times. 
Lining up the e, the pattern was found. The letter where there is a 
match is lined up after the text is moved. The number of comparisons 
required is less in this approach than in other methods.

Algorithm 3.5 Boyer-Moore Algorithm
Input:   Pattern String, P

m – length of P
 alphabet size, α = ⎪Σ⎪
Output:  Array charjump defined on indexes 0, 1, . . . , α - 1. 
   The array is passed in and the algorithm fills it.
    Void Compute jumps (Char [], int m, int α, int [], 

charjump)
 Char Ch;
 Int k;
 For (ch = 0; Ch < α, int [], Charjump)
 Char Ch;
 Int k
 For (ch = 0; Ch < α

j
ch++) (3.19)

 Char jump [ch] = m;
 For (k = 1; k < m; k++)
  Charjump [Pk] = m = k;

The time-taken complexity can be seen to be θ(m + ⎪Σ⎪).
There is another algorithm to compute jumps based on partial 

matches. The pattern is studied to match up a substring. This can be 
achieved in O(m) time. The behavior of the BM algorithm depends on 
the size of the alphabet and the repetition within the strings. In 
empirical studies using natural-language text and m ≥ 5, the algorithm 
did only roughly 0.24–0.3 character comparisons per character in the 
text, up to the point of the match or the end of the text. 

For binary strings, BM does not do quite as well; in another 
study, roughly 0.7 comparisons were done for each text character. 
In all cases, with m ≥ 5, the average number of comparisons is 
bounded by Cn for a constant C < 1. If the pattern is quite small 
(m ≤ 3), then the overhead of preprocessing the pattern is not 
worthwhile. BM does more comparisons than the straightforward 
approach. There are several improvements and modifications to 
the BM algorithm that make it run faster. Some of the problems at 
the end of this chapter discuss these improvements. Two extensions 
to the pattern-matching problem are often useful. Find all 
occurrences of the pattern in the text, and find any one of a finite 
set of patterns in the text.

The KMP and BM algorithms search for an exact copy of the 
pattern in the text. However, in many applications, an exact copy 
cannot be expected. A spelling corrector, for example, may search a 
dictionary for an entry that is similar to a given misspelled word. In 
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speech recognition, samples may vary. Other applications in which 
close but not exact matches are sought range from identifying 
sequences of amino acids to recognizing bird songs. A dynamic 
programming solution to the problem of finding an approximate 
match for a pattern in a string has been developed. The approximate 
match problem means that the match between pattern and text has at 
most k differences. Differences tables can be constructed and the 
solution sought in O(mn) time.

3.4.4 Finite Automaton
A finite automaton [14] is built during the execution of string-
matching algorithms. The text string is scanned, and all occurrences 
of the pattern P are searched for. These string-matching automata are 
efficient. Each text character is examined exactly once, taking constant 
time per character. The matching time used after preprocessing the 
pattern to build the automaton is therefore O(n). The time to build the 
automaton, however, can be large if Σ is large. 

A finite automaton is defined. A special string-matching automaton 
is examined. An illustration is presented on how this can be used to 
detect a given pattern in a text. The method of how to construct a 
string-matching automaton for a given input pattern is given:

A finite automaton M is defined as a 5-tuple (Q, q0, A, Σ, δ)

where Q is a finite set of states
q0 ∝ Q is the start state
A ⊆ Q is a distinguished set of accepting states
Σ is a finite input alphabet
δ is a function from Q × Σ into Q called the transition function 
of M

The finite automaton begins in state q0 and reads the characters of 
its input string one at a time. If the automaton is in state q and reads 
input character a, it moves from state q to state δ(q, a). Whenever its 
current state q is a member of A, the machine M is said to have accepted
the string read so far. An input that is not accepted is said to be rejected.
A finite automaton M induces a function φ called the final state function
from Σ+ to Q such that φ(w) is the state M ends up in after scanning the 
string w. Thus M accepts a string w if and only if φ(w) ∝ A. The function 
φ is defined by the recursive relation

 φ(ε) = q0

 φ(wa) = δ[φ(w), a]  for w ∝ Σ∗, a ∝ Σ (3.20)

There is a string-matching automaton for every pattern P. This 
automaton must be constructed from the pattern in a preprocessing 
step before it can be used to search the text string. In order to 
specify the string-matching automaton corresponding to a given 
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pattern P(1, . . . , m), an auxiliary function σ called the suffix function 
is defined corresponding to P. The function σ is a mapping from Σ∗

to (0, 1, . . . , m) such that σ(x) is the length of the longest prefix of 
P that is a suffix x:

 σ(x) = max(k: Pk] x) (3.21)

The suffix function is well defined because the empty string P0 = ε
is a suffix of every string. As examples, for the pattern P = ab, σ(ε) = 0, 
σ(ccaca) = 1, and σ(ccab) = 2. For a pattern P of length m, σ(x) = m if and 
only if P ] x. It follows from the definition of the suffix function that if 
x ] y, then σ(x) ≤ σ(y). The string-matching automaton that corresponds 
to a given pattern P(1, . . . , m) is as follows: The state set Q is (0, 1, . . . , m).
The start state q0 is state 0, and state m is the only accepting state. The 
transition function δ is defined by the following equation for any 
state q and character a:

δ(q, a) = σ(Pqa)

Algorithm 3.5 Finite-Automaton Matcher (T, δ, m)
 Length (T) = n

q = 0
   for i = 1, n
       do q = δ(q, T[i]) (3.22)
     if q = m
     then print “Pattern occurs with shift” i – m

The matching time on a text string of length n is O(n). This matching 
time does not include the preprocessing time required to compute the 
transition function δ.

3.5 Suffix Trees in String Algorithms
The suffix tree data structure has many applications in string 
algorithms. The suffixes of a given string are stored in the tree. All the 
possible substrings of the given sequence are represented by some 
unique path descending from the root. All the suffixes of a sequence can 
be encoded in linear space. A large amount of information can be 
retrieved from the index. It has been deployed intensively in pattern-
matching problems on strings, matrices, and trees. One such exercise 
consists of locating all the occurrences of a given string called the 
pattern y as a substructure of another string called the text x. A 
procedure to speed up the linear time algorithms for string 
matching both in practice and on average using suffix trees was 
introduced by Crochemore [8]. The dynamic version of the static 
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Aho-Corasick dictionary automaton [15] was obtained by Amir 
and colleagues [16]. They used a dynamic set of strings to define 
the suffix tree. The Aho-Corasick algorithm searches for strings and 
is a kind of dictionary-matching algorithm. The elements of a finite 
set of strings (the dictionary) are located within an input text. All 
patterns are matched “at once.” It can be completed in O(m + n)
time, where m and n are the lengths of the pattern and text, 
respectively. In some applications, the text is fixed and static, as in 
Webster’s English Dictionary or in DNA sequences, and the string-
matching query is repeated online for different patterns many times. 
Thus the suffix tree T is built on x$. The assumption is that y occurs 
at least once in x. The completeness prefix property guaranteed that 
there is one-to-one correspondence between all occurrences of y in x
and the leaves of T that are descending from the extended locus of y.
The longest prefix of y occurring in x can be found in time 
proportional only to the length of such a prefix. Association of the 
number of descending leaves with each node of T can lead to 
knowledge of the frequency or number of occurrences of y in x
without accessing all the leaves explicitly. Methods are being 
developed where the dynamic case can be handled without building 
the suffix tree T from scratch each time.

Suffix trees can be used to speed up the dynamic programming 
computation for solving approximate string matching. Landau and 
Vishkin [17] computed the longest common prefix of any two given 
suffixes of x using the suffix tree T in constant time. The common prefix 
property has locus in the least common ancestor (LCA) of the two 
corresponding leaves that can be computed in constant time after a 
linear time preprocessing to answer LCA queries. Chang and Lawler 
[9] used suffix trees on the pattern y to obtain matching statistics for 
text x in linear time. For each position j of x, find the longest prefix of 
x[j:n] occurring as a substring of y and its corresponding extended 
locus in the suffix tree for y. An alternative solution for matching 
statistics is applying the external matching problem for file 
transmission by building one suffix tree at time on the string y@w,
where @ is a separator and w is taken over O(⎥ x⎥ /(⎥ y⎥ ) overlapping 
substrings of x of size 2⎥ y⎥. The problem of finding the palindromes 
of maximal length in a string x can be solved in linear time with suffix 
trees for a constant-sized alphabet. First, a suffix tree T is built on the 
string w = x@xR$, where @ is a distinct separator not occurring 
elsewhere and xR is the reversed string of x. The T can be preprocessed 
to answer LCA queries, and the technique mentioned can be applied 
for finding the longest common prefix of any two suffixes of w. For 
each position j of x, the maximal palindrome having center in j can be 
found, i.e., maximum k such that x[j:j + k –1] = x[j – k;j – 1)R. The 
former condition is for palindromes having center in j. This is for 
palindromes of even length. For those with odd length, x[j + 1:j + k] =
x[j – k;j – 1]R.
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3.6 Look-up Tables
Software such as BLAST that gets used a lot for sequence queries and 
CAP3 for genome assembly uses a data structure called a look-up table.
The data structure is simple in construct, where the positions of 
occurrences of subsequences of a certain length in a couple or more 
strings are recorded. Each entry in the look-up table points to a linked list 
of specific locations within the input set of strings where the substring 
corresponding to the index for the entry occurs. A look-up table for string 
S can be constructed in O(⎥Σ⎥w + n) time, where Σ is the alphabet of the 
string, w is the window size or prescribed length, and n is the length of 
the sequence S. ⎥Σ⎥w is the number of possible substrings of length w.

Example 3.2 Construct the look-up table for the following sequence with w = 2:

S:  cgtattctggcaggg 

The mapping is as follows (Fig. 3.4): c → 0, a → 1, t → 2, and g → 3. The 
substring gg corresponds to the index (33)9 = 14. The entry at index 14 indicates 
that the substring gg occurs in the sequence at positions 9, 13, and 14. 

Construction of the look-up table consists of the following steps:

Step 1:  Create and initialize a null list. This can be done in O(⎥Σ⎥w )
time.

Step 2:  Insert substrings one at a time. Compute index = F(·) in O(w)
time. Use the following identity for insertion:

F(s[k + 1 . . . k + w + 1]) = (F(s[k . . . k + w]
 – f(s[k])⎥Σ⎥w–1) × ⎥Σ⎥ + f(s[k + w + 1]) (3.23)

0

CA

1

CC

2

CG

3

CT

4

AA

5

AC

6

AG

7

AT

8

TA

9

TC

10

TG

11

TT

12

GA

13

GC

14

GG

15

GT

11 1 7 4 3 6 8 5

13

14

10 9 2

FIGURE 3.4 Look-up table for sequence S: cgtattctggcaggg.
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This can be done in O(1) time. The total size of linked lists is 
O(n), and the size of the look-up table data structure is O(⎥Σ⎥w + n). 
This can be extended to more than one sequence or a set of strings. 
Given the look-up table for a database of strings available and a 
query string of length w, all occurrences of the query string in the 
database can be retrieved in O(w + k) time, where k is the number 
of occurrences. 

Summary
Suffix tree construction and representation of a sequence in a 
suffix tree are described. The generalized suffix tree can be used 
to represent a set of strings and stores all the suffixes of all the 
strings. The algorithm for suffix tree construction can be 
completed in O(n) time and O(n) space. Tandem repeats can be 
found in a sequence in O[n lg(n) + occ] time efficiency. Suffix trees 
can be used to obtain pairwise sequence alignment. One of the 
sequences is streamed against another sequence that is stored in 
a suffix tree. Where the query sequence branches off from the 
stored tree can be caught. In this way, all matches between the 
sequences can be determined.

String algorithms can be used to find patterns P in a text T.
Nineteen such algorithms are discussed in this chapter. The Rabin-
Karp algorithm can be executed in θ(m) preprocessing time and O(n – 
m + 1)m matching time. The Knuth-Morris-Pratt algorithm can be 
completed in θ(m) preprocessing time and O(n) matching time. The 
Boyer-Moore algorithm can be performed in O(m + σ) preprocessing 
and O(n) matching time, and the finite-automaton algorithm can be 
run in O(m⏐Σ⎟ ) preprocessing time and O(n) matching time. Suffix 
trees can be used in string matching. They can be tapped into to 
improve the speed in approximate string matching using dynamic 
programming. Look-up tables can be constructed in O(⎟ Σ⎟ w + n) time, 
where Σ and w are the alphabet and window sizes, respectively. The 
Raita algorithm, Shift algorithm, Simon algorithm, Colussi algorithm, 
Galil and Giancarlo algorithm, not-so-naïve algorithm, Horspool 
algorithm, quick-search algorithm, Berry -Ravindran algorithm, 
Smith algorithm, reverse-factor algorithm, turbo reverse-factor 
algorithm, forward DAWG matching algorithm, McCreights 
algorithm, construction of suffix trees, the Karkainnen and Sander 
algorithm, lazy suffix trees, exact string matching using suffix trees, 
suffix forests, hash tables, and finding the lowest common ancestor 
(LCA) are discussed in end-of-chapter exercises. CHAOS, LAGAN, 
MULTI-LAGAN, Shuffle-LAGAN, F index and pairwise alignment 
of sequences, GLASS, QUASAR, hash table–based tools, AVID, flat 
trees, and distributed suffix trees are also discussed in end-of-chapter 
exercises.
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Exercises
1.0 Construct the look-up table for the sequence S given in Example 3.2 
for w = 3.

2.0 Given the suffix tree shown in Fig. 3.5, deduce the sequence from which 
it was constructed.

3.0 Draw the suffix tree of the sequence S: GCGTACCGCGAA. 

4.0 Find the pattern TATT in the text GCTTGCTATT using the KMP 
algorithm.

5.0 Using the suffix tree representation, approximately align the sequences 
S and T given below in linear time.

S:  ACTGACGAGCATCATCGATGCAC
T:  GAAGACATCGTCGAT

6.0 Align the –10 signal in E. coli promoter sequences TATAAT with the 
sequences GTTACGTAA. Use the scoring function 2 for a match, –2 for a 
mismatch, and –4 for gap. Does the complementary sequence of S match better. 
What is the time taken?

7.0 Using suffix tree representation and streaming of T over S in Exercise 6.0, 
obtain the global alignment in O(n) time using the concept used in MUMer.
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8.0  Discuss the space requirements for a suffix tree representation of a 
sequence. How does it depend on whether it is a nucleotide sequence or an 
amino acid sequence?

9.0 Raita algorithm. An algorithm was proposed by Raita [18] that is called 
the Raita algorithm. Here, the last character of the pattern is compared first 
with the rightmost character of the text of the window. If they match, then 
the first character of the pattern is compared with the leftmost character 
of the text of the window. On obtaining a match, the middle character 
of the pattern is compared with the medley characters of the text of the 
window. Finally, if they match, the other characters from the second to the 
penultimate character of the pattern are compared again with the medley 
characters of text of the window. Show that the preprocessing phase of the 
Raita algorithm consists of computing the bad-character shift function and 
that it can be done in O(m + σ) time and O(σ) space complexity, where σ is 
the size of the alphabet Σ.

10.0 In Exercise 9.0, further prove that the searching phase of the Raita 
algorithm has an O(mn) worst-case time complexity.

11.0 Shift or algorithm. Bitwise techniques were used to develop the Shift 
or algorithm [19]. It is advantageous to use the Shift or algorithm when the 
pattern size is no longer than the memory word size of the machine. Let A be a 
bit array size of length n. Vector Aj is the value of the array A after text character 
y(i) has been processed. Information about all matches of prefixes of x that end 
at position j in the text for 0 < i < n – 1 is contained in the array

 Aj(i) = 0  if x(0, i) = y(j – i, j)       (3.24)

A

A

A

A

C T

T

T C

G

FIGURE 3.5 Suffi x tree for Exercise 2.0.
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Aj(i) = 1 otherwise

Aj+1 can be obtained from Aj as follows: For each Aj(i) = 0:

Aj+1(i + 1) = 0  if x(i + 1) = y(j + 1) (3.25)

Aj+1(i + 1) = 1 otherwise

Aj+1 (0) = 0  if x(0) = y(j + 1)

Aj+1 (0) = 1 otherwise

A complete match can be reported if Aj+1(m – 1) = 0. The transition from Aj to 
Aj+1 can be calculated as

Aj+1 = SHIFT(Aj) or Sy(j+1)

where Sc is a bit array of size n for each c in alphabet Σ such that for i < n –1, 
Sc(i) = 0; iff x(i) = c. The positions of the character c in the pattern x are stored 
in array Sc. Assuming that the pattern length is no longer than the memory-
word size of the machine, show that the space and time complexity of the 
preprocessing phase is O(n + σ).

12.0 Show in Exercise 11.0 in the Shift or algorithm that the time taken for 
the searching phase to be completed is O(m).

13.0 Simon algorithm. When constructing the finite automaton, the size of 
the automaton can be large, as discussed in Sec. 3.4.4. Simon [20] noted that 
there are only few significant edges in M, and the other edges lead to the 
initial state and hence can be deduced. The significant edges are the forward 
edges going from the prefix of x of length k to the prefix of length k + 1 for 0 ≤
k ≤ m (m such edges) and the backward edges from the prefix of x of length 
k to a smaller non-zero-length prefix (bounded by m edges). The bound on 
the significant edges is O(m). For each state of the automaton, now it is only 
necessary to store the list of its significant outgoing edges. A table L of size m – 2 
of linked lists is used. The list of the targets of the edges starting from state u
is given by the element L(i). During computation of the table, the integer l is 
computed such that l + 1 is the length of the longest border of x. This obviates 
the need to store the list of the state m – 1. Show that the preprocessing phase 
of the Simon algorithm can be completed in O(m) space and time. 

14.0 Show that in the Simon algorithm described in Exercise 13.0, the 
searching phase can be completed in O(m + n) time. At most, 2n – 1 text 
character comparisons are completed during the searching phase. Show that 
the maximal number of comparisons for a single text character called the delay 
is bounded by min[1 + lg(m), σ].

15.0 Colussi algorithm. A refinement of the KMP algorithm discussed in 
the Sec. 3.4.2 was suggested by Colussi [21]. The set of patterns is divided 
into two disjoint subsets. Each attempt thereafter consists of two phases. 
In phase I, the comparisons are performed from left to right with text 
characters aligned with pattern positions called noholes, for which the value 
of the KMP NEXT function is greater than –1. The second phase consists 
of comparing the remaining positions called holes from right to left. The 
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strategy offers two advantages: (1) when a mismatch occurs during the first 
phase after the appropriate shift, it is not necessary to compare the text 
characters aligned with noholes compared during the previous attempt, 
and (2) when a mismatch occurs during the second phase, it means that if a 
suffix of the pattern matches a factor of the text, and after a corresponding 
shift, a prefix of the pattern will still match a factor of the text, then it is 
not necessary to compare this factor again. Show that the space and time 
needed for the preprocessing phase are O(m). 

16.0 In the Colussi algorithm described in Exercise 15.0, show that the time 
taken for the searching phase is O(n) and that in the worst-case scenario, 3n/2
text comparisons are made. 

17.0 Galil and Giancarlo algorithm. Another refinement of the KMP algorithm 
and variation of the Colussi algorithm is the Galil and Giancarlo algorithm 
[22]. For x ≠ cm, the searching phase is modified as follows: Let l be the last 
index in the pattern such that for O ≤ i ≤ l, x(0) = x(i) and x(0) ≠ x(l + 1). At the 
previous attempt, all the noholes were matched, and a suffix of the pattern 
was matched. So after the corresponding shift, a prefix of the pattern will 
start to match a part of the text. The window is positioned on the text factor 
y(j, . . . , j + m – 1), and the portion y(j, . . . , last) matches x(0, . . . , last j). 
During the next attempt the text character will be scanned beginning with 
y(last + 1) until either the end of the text is reached or a character x(0) ≠ y(j + k)
is found. Two subcases can be identified: (1) x(l + 1) ≠ y(j + k) and too little of 
x(0) has been found (k ≤ l); then the window is shifted and positioned on the 
text factor y(k + 1, . . . , k + m), scanning of the text is resumed with the first 
nohole, and the memorized prefix of the pattern is the empty word. (2) 
x(l + 1) = y(j + k) and enough of x(0) has been found (k > l); then the window 
is shifted and positioned on the text factor y(k – l –1, . . . , k – l + m – 2), 
scanning of the text is resumed with the second nohole, and the memorized 
prefix of the pattern is x(0, . . . , l + 1). Show that the preprocessing phase can 
be completed in O(m) time and space.

18.0 Show that for the Galil and Giancarlo algorithm described in 
Exercise 17.0 the searching phase can be done in O(n) time and that at most 
4n/3 text character comparisons are performed during the searching phase.

19.0 Not-so-naïve algorithm [23]. In the not-so-naïve algorithm, the character 
comparisons are made with the pattern positions in the following order: 1, 2, 
. . . , m –2, m – 1, 0. For each attempt where the window is positioned on the 
text factor y(j, . . . , j + m + 1): If x(0) = x(1) and x(1) ≠ y(j + 1) if x(0) ≠ x(1) and 
x(1) = y(j + 1), the pattern is shifted by two positions at the end of the attempt 
and by one otherwise. Show that the preprocessing phase can be completed 
in constant time and constant space. 

20.0 Prove that the searching phase of the not-so-naïve algorithm described 
in Exercise 19.0 has a worst-case time taken of O(n2) and can be completed in 
sublinear time in the average case.

21.0 Horspool algorithm [24]. For small alphabets, the Boyer-Moore 
algorithm is not very efficient because the bad-character shift is used. 
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Horspool proposed to use only the bad-character shift of the rightmost 
character of the window to compute the shifts in the Boyer-Moore algorithm. 
Show that the preprocessing phase can be completed in O(m + σ) time and 
with O(σ) space.

22.0 Show that the searching phase of the Horspool algorithm described 
in Exercise 21.0 can be completed in the worst case in O(n2) time. Prove that 
the average number of comparisons for text characters is between 1/σ and 
2/(σ + 1).

23.0 Quick-search algorithm [25]. The bad-character shift table alone is used 
in this algorithm. The length of the shift is at least equal to 1 after an attempt 
where the window is positioned on the text factor y(j, . . . , j + k + 1). The 
character y(j + m) can be used for the bad-character shift of the current attempt 
if the character is involved in the next attempt. For c in Σ,

qsBc (c) = min(i:0 ≤ i < m) (3.26)

x(m –1, i) = c if c occurs in x; otherwise = m

The comparisons between characters of pattern and text can be in any order 
during the searching phase. Show that the preprocessing phase can be 
completed in O(m + σ) time and O(σ) space.

24.0 Further show that the searching phase of the quick-search algorithm 
described in Exercise 23.0 in the worst case can be completed in O(n2) time. 

25.0  Berry-Ravindran algorithm [26]. Shifts are performed by considering the 
bad-character shift table for the two consecutive text characters immediately to the 
right of the window. For each pair of characters (a, b) with a, b in Σ, the rightmost 
occurrence of ab in a × b is computed during the preprocessing phase. 

 1 if x(m – 1) = a

brBc(a, b) = min m – i + 1 if x(i) × (i + 1) = ab

m + 1 if x(0) = b  (3.27)

m + 2 otherwise

Show that the preprocessing phase can be completed in O(m + σ2) time 
and space. 

26.0 In Exercise 25.0, a shift of length brBc[y(i +m), y(j + m + 1)] is performed 
after an attempt where the window is positioned on the text factor y(j, . . . ,
j + m –1). In order to be able to compute the last shifts of the algorithm, 
y(n + 1) is set to the null character, and the text character y(n) is equal to 
the null character. The searching phase of the algorithm can be completed 
in O(mn) time taken.

27.0 Smith algorithm [27]. The preprocessing phase of the algorithm comprises 
of computation of the bad-character shift function and the quick-search bad-
character shift function. Shorter shifts can be achieved by computing the shift 
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with the text character just next the rightmost text character of the window 
compared with using the rightmost text character of the window. Show that 
the preprocessing phase of the Smith algorithm can be completed in O(m + σ)
time taken and requiring O(σ) space.

28.0 Reverse-factor algorithm [28]. This is an improvement on the Boyer-Moore 
algorithm. More prefixes are matched of the pattern by scanning the characters 
of the window from right to left, and then the lengths of the shifts are bettered. 
Use is made of the smallest suffix automaton of the reverse pattern. The suffix 
automaton is a directed acyclic word graph (DAWG). 

S(w) = (Q, q0, T, E)

L[S(w)] = (u in Σ*: exists ν in Σ* such that w = vu)

During the preprocessing phase, the smallest suffix automaton is computed 
for the reverse pattern xR. Show that this can be achieved in O(m) time and 
O(m) space, respectively.  

29.0 In the reverse-factor algorithm described in Exercise 28.0, during the 
searching phase, the characters of the window are parsed from right to left 
with the automaton, S(xR) starting with state q0. Stop where there is no more 
transition defined for the current character of the window from the current 
state of the automaton. The length of the longest prefix of the pattern that 
has been matched is now known. This is the length of the path taken in the 
suffix automaton from the start state to the final state. Then the right shift to 
perform is a trivial next step. Show that in the worst case the time taken for 
the searching phase by the algorithm is O(n2). On average, it is optimal. 
O[n – lgσ(m)/m] inspections of text characters are performed on average. Show 
that this is the best bound that can be reached.

30.0 Turbo reverse-factor algorithm [29]. It is possible to complete the searching 
phase in linear time taken. In the reverse-factor algorithm, it is sufficient to 
save in memory the prefix u of x matched during the previous attempt. During 
the current attempt, on reaching the right end of u, it can be readily shown 
that it is sufficient to read again at most the rightmost half of u in the turbo 
reverse-factor algorithm. A Disp(z, w) is defined as the displacement of z in w
to be the least integer d > 0 such that w(m – d – [z] – 1, . . . , m – d) = z, where 
word z is a factor of word w. Generally, a prefix u is found in the text in the 
previous attempt, and in the present attempt, the factor ν with length m – [u]
is matched in the text immediately to the right of u. When ν is not a factor of 
x, then the shift is computed as in the reverse-factor algorithm. If ν is a suffix 
of x, then the occurrence of x has been detected. If ν is not a suffix and is a 
factor of x, then the min[Per(u), [u]/2] rightmost characters of u are scanned 
again. If u is periodic, let z be the suffix of y with length Per(u). z is now an 
acyclic word. Thus z can occur in u at distances multiple of Per(u), which 
implies that the smallest proper suffix of uv that is a prefix of x with length 
equal to [uv] – disp(zν, x) = m – disp(zν, x). If u is not periodic, it is sufficient 
to scan the right part of u of length [u] – Per(u) < [u]/2 to find a nondefined 
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transition in the automaton. Function Disp is implemented in the automaton 
S directly without changing the complexity of its construction. Show that the 
preprocessing phase that consists of building the suffix automaton of xR can 
be completed in O(m) time.

31.0 Show that in the turbo reverse-factor algorithm described in 
Exercise 30.0 the searching phase can be completed in O(n) time taken. At 
most, 2n inspections of text characters are performed in the algorithm. Show 
that this is optimal on average. O[n – lgσ(m)/m] inspections of text in the 
average case are performed. 

32.0 Forward DAWG matching algorithm[30]. The longest factor of the pattern 
ending at each position in the text is computed by the forward DAWG matching 
algorithm. DAWG uses the smallest suffix automaton of the pattern. The 
preprocessing phase of the forward DAWG algorithm consists of computing the 
smallest suffix automaton for the pattern x. Show that the time taken and space 
needed both can be completed in linear time. The searching phase consists of 
parsing the characters of the text from left to right with the automaton S(x)
starting with state q0. Length (q) is the longest path from q0 to p for each state q
in S(x). The notion of suffix links is used. S(p) is denoted the suffix link for each 
state p. A transition defined for y(j) for the first state of Path(p) for which such 
a transition is defined is taken for each text character y(j) sequentially, where 
p is the current state. p then is updated with the target state of this transition 
or with the initial state q0 if no transition exists labeled with y(j) from a state of 
Path(p). An occurrence of x is found when length(p) = m. Exactly n text character 
inspections are performed. Show that the worst-case time taken is O(n).

33.0 McCreight’s algorithm for construction of suffix trees [31]. The suffixes are 
inserted in the order of S1, S2, . . . , Sn. Ti is the tree after insertion of suffix Si.
The run time for insertion is ⎥Si⎥ = n – i + 1. Show that the total run time would 
be O(n2). A linear time construct of the suffix tree can be achieved by using 
suffix links. Insertion of a suffix is speeded up. In order to insert Si if the end 
of the path labeled β is found soon, comparison of characters in Si can start 
beyond the prefix β. Show that the suffix tree construction can be completed 
in linear time in this fashion. 

34.0 Karkkainen and Sander’s algorithm [32]. Let S be a sequence of length 
n on a alphabet Σ = {1, 2, . . . ,  n}, and assume that n is a multiple of 3. The 
algorithm consist of three steps: (1) 2n/3 suffixes are sorted recursively, (2) n/3
suffixes are sorted using the result of step 1, and (3) the two sorted arrays are 
merged. Show that in this way the suffix arrays and hence suffix trees can be 
constructed in O(n) time.

35.0 MUMs during alignment of a pair of sequences. Consider two sequences 
S and T: 

 S: t c g a t
 T: a g g a t

Construct the generalized suffix tree GST of the two sequences S and T. Show 
that traversal of the tree is sufficient to identify internal nodes corresponding 
to MUMs.
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36.0 Show that the space required for the algorithm described in Exercise 35.0 
can be reduced by building the suffix tree of only one string S1 and streaming 
the other string S2 to identify the MUMs.

37.0 How many internal nodes are present in an n leaf suffix tree? What is 
the maximum number of children it can have?

38.0 What is the difference between a generalized suffix tree and suffix tree?

39.0 What is the difference between suffix tree and suffix array and suffix 
link?

40.0 What is a suffix forest?

41.0 All strings that contain pattern P. Use the suffix tree representation to 
find the query pattern P in a set of strings, S1$, S2$, . . . , Sl#. Construct a GST 
generalized suffix tree. Enter two different digits $ and # that do not appear 
in any of the strings but are stored along with the suffixes. At each node, 
store a list of all strings Si that are the start point of a suffix represented by an 
information node in the GST. 

42.0 Repeats. Represent a sequence S using a suffix tree. Find the longest 
substring of S that appears at least m times, where m > 1. 

43.0 Show that the query in Exercise 42.0 can be found in O(n) time, where 
n = ⎥ S⎥. (Hint: Traverse the labeled suffix tree at the branch nodes with the sum 
of the label lengths from the root. Traverse the tree visiting branch nodes with 
information node count ≥ m. Return to the visited branch node with longest 
label length.)

44.0 What is the difference between a tandem repeat and a tandem array?

45.0 What is the difference between a look-up table and a hash table?

46.0 What is the difference between a tuple and a hash table?

47.0 Describe the use of suffix tree in REPuter software development.

48.0 What is meant by a seed in a sequence?

49.0 At what length of the alphabet and for what sequence is a suffix tree 
not a profitable method of representation of a sequence?

50.0 Can a suffix tree be used to identify errors in a given sequence?

51.0 What is the difference between approximate alignment of a pair of 
sequences and optimal alignment of a pair of sequences?

52.0 What is a Multiple Genome Aligner (MGA)? How is a suffix tree used 
in MGA software?

53.0 What is the difference between the approached of Ukkonen [1] and that 
of McCreight [31] toward the construction of a suffix tree?

54.0 What is a palindromic repeat?
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55.0 What is Multiple Exact Match (MEM)? How is a suffix tree used in 
MEM software?

56.0 How does ClustalW software use the suffix tree representation of 
biologic sequences?

57.0 Discuss the space and time savings when a query is streamed against a 
suffix tree when seeking an alignment.

58.0 Lazy suffix trees. Kurtz and colleagues [33] provided an efficient 
implementation of lazy suffix trees. A subtree is evaluated not before it is 
traversed for the first time. Write-only top-down construction can alleviate 
some of the concerns of using a suffix tree as a data structure. This can be seen 
in the word algorithm. Discuss how this can be more efficient in space and 
time than McCreight’s algorithm [31].

59.0 Exact string matching using suffix trees. Given an input of pattern of 
length m and text of length n, prepare an output of all occurrences of P in T.
Create a suffix tree for T. Maximally match P in the suffix tree. Show that this 
can be completed in O(n) time and O(n) space. Prepare output with all the 
leaf positions below the match point. Can this be completed in O(m + k) time, 
where k is the number of matches?

60.0 Set of patterns using suffix trees. Given an input of a set of patterns (Pi) of 
total length m and text T of length n, prepare an output with the positions of all 
occurrences of each pattern Pi in T. Create a suffix tree T with a preprocessing 
time and space need of O(n). Maximally match each Pi in the suffix tree. The 
output contains all leaf positions below the match point in O(m + k) time, where 
k is the total number of matches.

61.0 Compare the Aho-Corasick approach [15] to building a keyword tree 
of a set of patterns P in O(m) preprocessing time and O(n + k) search time 
with the suffix tree approach. Show with matching statistics that the suffix 
tree approach for finding the set of patterns as discussed in Exercise 60.0 has 
a similar tradeoff as the Aho-Corasick approach.

62.0 Lowest common ancestor. Given an input of suffix tree T and two nodes v
and w of T, prepare an output with the LCA of v, w in T. Can this be completed 
in linear time?

63.0 Longest common extension. Given two strings S1 and S2, find the 
length of the longest substring of S1 beginning at i that matches substring 
S2 beginning at j using suffix trees. Show that this can be completed in O(n)
time and O(1) query time.

64.0 Discuss how the space requirements for constructing a suffix tree can 
be further reduced compared with the O(n) discussed in Sec. 3.1.

65.0 Suffix forest. Sharma [34] showed that the suffix forest method can 
be used to approximately align multiple sequences. Compare this with 
construction of a generalized suffix tree, and discuss the pros and cons of 
each method.
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66.0 Hash tables. A hash function can be used to convert a sequence of length n
into a smaller number that serves as the digital fingerprint of the sequence. 
The Rabin-Karp string search algorithm, as discussed in Sec. 3.4.1, makes use 
of hashing to compare strings. Keys are associated with values in a hash table. 
The look-up operation is supported efficiently by use of a hash table. Discuss 
the potential of hash tables to represent sequences. Can they come in handy 
to align a pair of sequences?

67.0 Can the suffix tree representation of sequences be used to obtain the 
optimal global alignment of two sequences S and T in less time and space than 
the O(n2) used by the dynamic programming approach? 

68.0 Can the suffix tree representation of sequences be used to obtain optimal 
local alignment of two sequences S and T in less time and space than the O(n2)
used by the dynamic programming approach? 

69.0 How can the affine gap penalty parameters be incorporated into the 
suffix tree construction used for obtaining local alignment with increased 
biologic significance?

70.0 Rapid global alignment of human and mouse genomes. Alignment between 
two sequences with lengths m and n would consume O(mn) time using the 
dynamic programming approach discussed in Sec. 2.4. In related genomic 
sequences, such as the human and mouse genomes, parts of the sequences are 
largely conserved between the two species and align well, and these parts of 
the sequences are separated by longer sequences that are not well conserved 
and are difficult to align. Rather than seeking a global alignment, a pragmatic 
approach would be to find islands that align readily. This can be accomplished 
by performing local alignments in linear time, and then an optimal alignment 
can be attempted by concatenating the local alignments. Suffix trees can be 
used to obtain the local alignments between the segments of the two sequences. 
All suffixes of a sequence are stored in a suffix tree such that each path from the 
root to the leaf node corresponds to a suffix of the sequence are stored in the 
suffix tree. Every leaf corresponds to a different suffix. The number of leaves 
is the number of suffixes. Discuss the time and space needed for (1) constructing 
the suffix trees for sequences S and T, (2) obtaining local alignments between 
the segments of two sequences, and (3) chaining all the local alignments to 
obtain a global alignment. Is the resulting alignment optimal?

71.0 CHAOS. CHAOS is a pairwise local alignment-finding software 
developed at Stanford University. It is optimized for noncoding and other 
poorly conserved regions of the genome. Both exact matching and degenerate 
seeds are used. Homology in the presence of gaps is detected. Discuss the 
advantages of using CHAOS.

72.0 LAGAN. LAGAN is a parameterizable pairwise global alignment 
software developed at Stanford University. Local alignments generated by 
CHAOS are used as anchors, and the search area of the Needleman-Wunsch 
algorithm is limited to around these anchors. Discuss the speed and space 
savings of using this approach compared with the dynamic programming 
method.
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73.0 MULTI-LAGAN. The approach discussed in Exercises 69.0 to 71.0 can 
be extended to multiple-sequence alignment by generalization. Progressive 
pairwise alignments are performed by a user-specified phylogenetic tree. Discuss 
the optimality and speed and space savings gained by using this method.

74.0 SHUFFLE-LAGAN. SHUFFLE-LAGAN is a novel global alignment 
algorithm developed by computer scientists at Stanford University. 
Rearrangements such as inversions, transpositions, and duplications are 
found in the framework of global alignment. Regions of conserved synteny are 
aligned using LAGAN, and a map of the rearrangements between sequences 
is built using CHAOS. Discuss the advantages of using this approach.

75.0 Discuss the hash table–based approach used in FASTA software for 
sequence queries.

76.0 F-index and alignment of sequences S and T. F-index is about 2 percent of 
the size of the sequence. A Boolean match table is constructed by partitioning 
sequence S into substrings. These substrings are searched in the F-index of 
sequence T. The columns of the match table correspond to substrings of sequence 
S, and the rows correspond to substrings of sequence T. Entries of true and false 
in the table are used to mark up corresponding substrings with similarities and 
dissimilarities, respectively. The match table is divided into slices and submitted 
for processing to a alignment tool such as BLAST. This technique is called match 
table–based pruning (MAP) [35]. Discuss the speed and space savings of this 
approach. What happened to the optimality of alignment.   

77.0 Show that the O(n2) time taken by Needleman and Wunsch’s dynamic 
programming method for obtaining global optimal alignment can be speeded 
up to O(rn), where r is the amount of error allowed. This can be done by filling 
only the required part of the distance matrix.

78.0 GLASS. In the GLASS software, speedup of the dynamic programming 
solution for optimal global alignment for a pair of sequences is obtained. Exact 
matches of long substrings are found first. The extraction of k mers is required. 
Show that the space and time complexity are still high using this approach.

79.0 QUASAR. In this software tool, a suffix array is built on one of the 
sequences. The exactly matching seeds are counted using the suffix array. If 
the number of seeds for a region exceeds a selected threshold, the region is 
searched using BLAST. Discuss the time and space needed in this approach. 

80.0 Hash table–based tools. Some of the hash table–based software tools 
developed include BLAST, MegaBLAST, BL2SEQ, WU-BLAST, SENSEI, FLASH, 
PipMaker, BLASTZ, PatternHunter, and BLAT. A hash table is constructed in all 
these tools on one of the sequences. All substrings of certain length l are inserted 
in the hash table. The length l varies for different applications. In BLAST, the 
values used are l = 11 for nucleotides and l = 3 for proteins. Exactly matching 
substrings called seeds of length l are found using the hash table. The seeds are 
extended in both directions during the second phase. Combinations are used if 
needed to seek better alignments. Discuss the time and space efficiency of this 
approach for (1) short queries and (2) long queries.
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81.0 AVID. Pachter and colleagues [38] developed a global alignment 
method called AVID in which suffix trees  and hash tables are used to represent 
sequences S and T prior to obtaining alignment. Knowledge of conserved 
regions in long genomes such as the human and mouse genomes is tapped 
into in this procedure. The input sequences S and T are preprocessed using the 
RepeatMasker program developed at the University of Washington. Masked 
and unmasked sequences are used during the alignment process. Matches 
are divided into repeat matches, clean matches, etc. Maximal unique matches 
(MUMs) are found by construction of suffix trees. The problem of finding all 
maximal matches is transformed into finding maximal repeated substrings 
in one string. The two sequences are concatenated, and a character is placed 
between them. A maximal repeat that crosses the boundary of sequence S
represents a maximal match between sequences S and T. The anchoring and 
alignment of sequences are completed in a recursive fashion. An anchor is a 
set of nonoverlapping, noncrossing matches. Noisy matches are delineated. 
Matches then are ordered. The gap score used was zero, and the mismatch score 
used was infinity. Discuss the speed and space savings that can be expected 
with this approach.

82.0 Find the maximum decreasing subsequence from {21, 27, 15, 18, 16, 14, 
17, 28, 13}. Discuss the time taken and space needed.

83.0 Compare the recursion solution obtained for Exercise 82.0 with that 
representing subsequence information in the form of a binomial heap [36]. 
[Hint: The time taken to identify the longest subsequence is almost O(n)
because it is the largest branch of the binomial heap. Space required in the 
worst case is O(2n) and may be less in the average case.]

84.0 Show that there is an n lg n solution for the maximum increasing 
subsequence problem by keeping track of the indices of a sequence, predecessor, 
and lengths of subsequences.

85.0  Sparse dynamic programming method for LCS from fragments. Given a pair 
of sequences S and T of length n and m, respectively, and a set of M of matching 
substrings of S and T, find the LCS based only on the symbol correspondence 
induced by the substrings. Giancarlo and Baker [37] developed an algorithm 
that solves the problem in O[⎥M⎥lg(M)] using balanced trees. Show by an 
example that this is an improvement over the Hunt-Szymanski algorithm 
discussed in Chap. 2. 

86.0 When Johnson’s version of flat trees was used in Exercise 85.0, show 
that the solution can be obtained in O[⎥M⎥lg lg min(M, nm/M)].

87.0 Show that the algorithm discussed in Exercise 86.0 can be adapted to 
finding the LCS problem in O[(m + n) lg(Σ) + ⎥M⎥lg(M)] time using balanced 
trees.

88.0 Show that the algorithm discussed in Exercise 87.0 can be adapted to 
finding the LCS problem in O[(m + n) lg(Σ) + ⎥M⎥lg lg min(M, nm/M)] time 
using Johnson’s version of flat trees. 

89.0 What is the connection, if any, between suffix tree and DAWG?
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90.0 How can a suffix tree representation be used to find approximate repeats 
in DNA sequences?

91.0 What is the difference between local and global alignment of sequences?

92.0 How are suffix trees used in fast look-ups in databases?

93.0 How are suffix trees used to calculate substring frequencies?

94.0 How are suffix trees used in motif- and pattern-finding algorithms?

95.0 How are suffix trees used in hybrid dynamic programming methods?

96.0 How suffix trees are used in oligo construction and microarray design 
algorithms?

97.0 What are affix trees?

98.0 How are suffix trees used in resequencing projects?

99.0 Why is use of a suffix tree an advantage when main memory is 
limited?

100.0 What is clustered storage, and how is it used in implementation of 
suffix trees?

101.0 What is a distributed suffix tree?



CHAPTER 4
Multiple-Sequence 

Alignment 

Objectives
The objectives of this chapter are to

• Define multiple-sequence alignment and grading functions.

• Define sum-of-pairs’ scores. 

• Show that the optimal multiple-sequence alignment problem 
is NP complete.

• Introduce the center star algorithm to come within twice the 
optimality.

• Introduce iterative multiple-sequence alignment methods.

• Discuss suboptimal multiple-sequence alignment by the 
greedy method.

4.1 What Is Multiple-Sequence Alignment?
The theory of evolution states that a common ancestor exists for several 
known organisms. The protein sequences in different organisms that 
evolved from a common ancestor can be expected to be homologous 
but for a few misalignments. The homologous relationships can be 
captured by multiple-sequence alignment (MSA). 

MSA methods are a topic of increasing interest. Both the 
development of grading functions and the hunt for an optimal 
alignment from all the possible alignments are of importance. The 
discussions apply to both protein and DNA alignments. Multiple 
alignments usually are found from primary sequences. Expert 
knowledge of protein sequence evolution can be used to produce 
high-quality multiple-sequence alignments. Important factors are 
specific sorts of columns in alignments, such as highly conserved 
residues or buried hydrophobic residues; the influence of secondary 
and tertiary structures, such as the alternation of hydrophobic and 
hydrophilic columns in an exposed beta sheet; and expected patterns 
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of insertions and deletions and the tendency to alternate with blocks 
of conserved sequence. The changes that occur in columns and in the 
patterns of gaps are dictated by phylogenetic relationships between 
sequences. RNA alignments are constrained by a secondary-structure 
model. The secondary structure in many cases can be inferred from 
the primary-sequence information.

Databases of proteins usually feature protein families. Proteins 
with similar secondary structures are categorized as a protein family.
They have similar function and evolutionary history. The structure, 
function, and evolutionary history of an identified protein sequence 
depends on the protein family of which the protein is a member. The 
connection between structure, function, and origin of the molecule 
and the protein sequence distribution is not strong.

Another motivation for seeking MSA arises in the analysis of 
repeats in sequences. Sections of the DNA primary-sequence 
distribution are replicative. These happen several times throughout 
the genome. Sometimes the repeats can be off by a minor number of 
insertions, deletions, and substitutions. For example, an ALU 
replication is roughly 250 bp in length and is found to occur more 
than 500,000 times in the human genome. Nearly 60 percent of the 
human genome can be attributed to these repetitions. There is no 
known biologic function that can be attributed to the repeats. Sixty 
percent of 3 billion base pairs is 1.8 billion base pairs. Thus only 
1.2 billion base pairs can be attributed with all the known functions. 

In MSA, homologous residues among a set of sequences are 
aligned together in columns. Homologous refers to both structural and 
evolutionary cohesivity. A column of aligned residues occupies 
similar three-dimensional structural positions, and all diverge from a 
common ancestral residue. 

For example, Fig. 4.1 shows a multiple alignment of immuno-
globins. A crystal structure is generated owing to one of the sequences. 
This sequence structure and alignments with other related sequences 
reveal conserved characteristics of the immunoglobin superfamily, 
including conserved beta strands and certain key residues in the 
sequences. With the exception of trivial cases of highly identical 
sequences, it is not possible to unambiguously identify structurally 
or evolutionary homologous positions and create a single, correct 
multiple alignment. Chothia and Lesk [1] examined pairwise 

 

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG—

FIGURE 4.1 Multiple sequence alignment in immunoglobins.
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structural alignments in several different protein families and found 
that for a given pair of divergent but clearly homologous (30 percent 
identical) protein sequences, usually only about 50 percent of the 
individual residues were superimposable in the two structures. In 
principle, there is always strikingly correct evolutionary alignment 
even if the structures diverge. An evolutionary correct alignment may 
be more difficult to infer than a structural alignment. The structural 
alignment has a independent point of reference—the superimposition 
of crystal or nuclear magnetic resonance (NMR) structures. Sequence 
tends to diverge more rapidly than structure. Parts of a protein are 
not alignable by structure or not alignable by sequence. 

4.2  Definitions of Multiple Global 
Alignment and Sum of Pairs

4.2.1 Multiple Global Alignment
A multiple global alignment maps the given sequences S1, S2, . . . , Sl
to sequences S1’, S2’, . . . , Sl’ that may contain spaces where

⎪S1’ ⎪ = ⎪S2’ ⎪ = … = ⎪Sl’⎪ (4.1)

Removal of spaces from S1’ leaves Si, for 1 ≤ i ≤ l. In multiple 
alignment, there are various grading methods, and it is not clear 
which is the best. A function d(x, y) that measures the distance between 
characters x and y is defined. This grading method is called the sum of 
pairs. The distance function assigns higher grades the more distant 
apart the two sequences are:

∑ d(S’[i], T’[j])   where l = ⎪S’⎪ = ⎪T’⎪  (4.2)

4.2.2 Sum of Pairs
The sum-of-pairs (SP) grade for a multiple global alignment A of l
sequences is the sum of the grades of all alignments induced by A.
The grading function is assumed to be symmetric. The issue of a 
separate gap penalty is not discussed. The optimal SP global alignment 
of sequences S1, S2, . . . , Sl is an alignment that has the minimum 
possible SP grade for these l sequences.

4.3 Optimal MSA by Dynamic Programming
The dynamic programming methods described in Chap. 2 can be 
generalized for the problem of aligning l sequences each of length n.
The dynamic programming table has l dimensions. The dimensions 
of the table are (n + 1)l. Each entry depends on 2l – 1 adjacent entries. 
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The running-time complexity of the algorithm is O(n)l. If n is around 
460, such as the typical length of a protein, it would be feasible only for 
small values of l, perhaps 6 or 7. Typical protein families have 1005 
members. In order to have an algorithm that works for l in the hundreds, 
the running time needs to be in polynomial time. As l appears as a 
power exponent such as nl, when l is large it is no longer polynomial. 

4.4 Theorem of Wang and Jiang [2]
The optimal MSA problem using dynamic programming is NP 
complete. NP stands for nondeterministic polynomial–bounded.

4.5 What Are NP Complete Problems?
Most computer algorithms have time efficiency of polynomial time on 
input sizes of n. Not all problems can be solved in polynomial time. 
Turing’s halting problem cannot be solved by any computer no matter 
how much time is provided. As a matter of general rule, problems that 
can be solved within polynomial time are considered tractable, and 
problems that require superpolynomial time are considered intractable. 
No polynomial time solution is possible for NP complete problems. 

A problem has a polynomial time solution if and only if there is 
some algorithm that solves it in O(nc) time, where c is a constant and 
n is the size of the input. For example, for the 2-sequence optimal 
global alignment problem, the time complexity is O(n2); for the 
2-sequence alignment with arbitrary gap penalty function, the time 
complexity is O(n3); and for the 100-sequence alignment problem, the 
time complexity is O(n100), comparison sorting in O(n lgn), and 
counting sort in O(n). The O(n100) is a polynomial time solution, but it 
is impractical.

NP complete problems are equivalent in the sense that if any one of 
them has a polynomial time solution, then all of them do. In 1971, Cook 
defined the notion of NP completeness. He defined NP complete 
problems to be problems that have a property that can be verified in 
polynomial time whether or not a supplied solution is correct. Karp [3] 
showed that a diverse array of problems is NP complete. Many problems 
in graph theory, combinatorial optimization and scheduling, and 
symbolic computation have been proven NP complete. There are some 
methods of dealing with NP complete problems in bioinformatics:

 1. Consider only small inputs using a non–polynomial time 
search algorithm.

 2. For inputs that are nonpolynomial on worst-case inputs, 
consider average inputs.

 3. Give up guaranteed optimality of solutions by settling for an 
approximate algorithm.

 



 4. Heuristics: Genetic algorithms can be used to seek approxi-
mate solutions. Rigorous analysis of heuristic algorithms is 
generally unavailable.

 5. Problems to be solved in practice may be more specialized 
than the general one that was proved NP complete.

4.6 Center-Star-Alignment Algorithm [4]
MSA can be performed in polynomial time using the center-star-
alignment algorithm. The SP grades are less than twice those of the 
optimal solutions. The distance function has the following properties:

 1. d(x, x) = 0

 2. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all characters 
of x, y, z      (4.3)

Distance along one edge of a triangle is at most the sum of the 
distances along the other two edges.

Algorithm 4.1 Center-Star-Alignment Algorithm 
d is defi ned as the grade of the minimum global alignment distance of sequences 
S and T.
Input: Set of T of l sequences

S
1
 is found that minimizes

d = ∑D(S
1
, S) (4.4)

The dynamic programming algorithm is run on each of lC2 pairs 
of sequences in T. The remaining sequences in T are called S2, . . . , Sl.
Addition of these sequences consecutively to a multiple alignment 
that initially contains only S1 is as follows: Suppose that S1, S2, . . . , 
Sc-1 is already aligned as S1’, S2’, . . . , Si-1’. Si” and Si’ are produced by 
executing the dynamic programming algorithm on S1’. S1 is added. 
Si” is obtained from Si’ by adding spaces to those columns where 
spaces were added. Si’ is replaced by Si”.

4.6.1 Time Analysis

Theorem The center-star-alignment approximation algorithm runs in time O(l2n2)
when given sequences each of length at most n.

Each of the lC2 grades of D(D, T) can be computed in O(n2) time. 
The total time taken is O(l2n2). After adding Si to the multiple 
alignment, the length of S1’ is at most n, so the time to add all the 
n sequences to the MSA is

O in n O l n
l

[( ) ] ( )
1

1
2 2

−

∑ =  (4.5)
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All that remains to be shown is that a solution that is less than a factor 
of 2 worse than the optimal solution can be produced using the 
algorithm. Let M be the alignment produced by this algorithm, and 
let d’(i, j) be the distance M induced on the pair Si, Sj, and let

g M d i j
j

l

i

l

( ) ( , )=
==
∑∑

11
 (4.6)

g(M) is exactly twice the SP score of M* because every pair of 
sequences is counted twice. Then for all i, d’(1, k) = D(s1, Sk). This is so 
because the algorithm used an optimal alignment of S1’_ and Skd(_, _) =
0. Let M* be the optimal alignment, d’(i, j) be the distance M* induces 
on the pair Si, Sj and

g M d i j
j

l

i

l

( *) * ( , )=
==
∑∑

11
 (4.7)

Theorem SP grade less than twice that of the optimal SP alignment is produced 
by the center-star-alignment algorithm.

g M

g M

l

l

( )

( *)

( )
≤

−
<

2 1
2  (4.8)

Proof Obtain an upper bound on v(M) and a lower bound on v(M*) and            
then take their quotient.

g M d i j
j

l

i

l
( ) '( , )= ∑∑

== 11
 (4.9)

≤ +∑∑
==

[ '( , ) '( , )]d i k d k j
j

l

i

l

11
 (4.10)

Triangle inequality = 2 1 1 2 1
22

( ) ( , ) ( ) ( , )l d k l D S Sl l
l

l

l

l
− = − ∑∑

==
 (4.11)

Equation (4.11) follows because each d(l, 1) = d(1, l) occurs in 2(l – 1) terms.

g M d i j
j

l

i

l
( *) * ( , )= ∑∑

== 11
 (4.12)

≤ ∑∑
==

D S Si
j

l

j
i

l
( , )

11
 (4.13)
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≥ ∑∑
==

D S Si j
j

l

i

l
( , )

22
 (4.14)

Combining these inequalities,

g M

g M

l

l

( )

( *)

( )
≤

−
<

2 1
2  (4.15)

4.7 Progressive Alignment Methods
The solution method in progressive alignment is by constructing a 
succession of pairwise alignments. Initially, two sequences are cho-
sen and aligned by standard pairwise alignment. Then a third 
sequence is chosen and aligned to the first alignment, and this pro-
cess is iterated until all sequences have been aligned. This method 
was suggested by Feng and Doolittle [5], among others. Different 
algorithms differ in (1) the way that they choose the order to do the 
alignment, (2) whether the progression involves only alignment of 
sequences to a single growing alignment, and (3) in the procedure 
used to align and score sequences or alignments against existing 
alignments. These alignments are heuristic in nature. A guide tree is 
usually built. This is a binary tree whose leaves represent sequences 
and whose interior nodes represent alignments. The root node rep-
resents a complete multiple alignment. The nodes furthest from the 
root represent the most similar pairs.

Algorithm 4.2 Feng-Doolittle Progressive MSA
Calculate a diagonal matrix of N(N – 1)/2 distances between all pairs of N
sequences by standard pairwise alignment, covering raw alignment scores to 
approximate pairwise distances. Construct a guide tree from the distance matrix 
using the clustering algorithm of Fitch and Margoloash [6].

Starting from the first node added to the tree, align the child nodes (which 
may be two sequences, a sequence and an alignment, or two alignments). Repeat 
for all other nodes in the order in which they were added to the tree until all 
sequences have been aligned.

The distance D is calculated as

D S
S S
S S

= − = −
−
−

log log
( )
( )max

eff
obs rand

rand

 (4.16)

where Sobs is the observed pairwise alignment score, Smax is the 
maximum score, the average of the score of aligning either sequence 
to itself, and Srand is the expected score for aligning two random 
sequences of the same length and residue composition. 
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The chosen center sequence is always attempted to be aligned with 
the unaligned sequences in the center-star algorithm discussed in the 
preceding section. However, there might be cases in which clusters are 
formed because some of the sequences are very “close.” A technical 
hurdle is how to define close and cluster. The cluster of sequences may 
have to be merged after alignment of sequences in the same cluster first.

MAFFT software was developed [15] with increased speed to 
obtain MSA. Fast Fourier transformation (FFT) is used in the 
procedure. FFT is a interesting method especially for obtaining 
periodicity in real systems. Although similarities is the object of study, 
very little has been done using FFT. Homologous segments can be 
detected rapidly by reading of the peaks in the frequency spectrum. 
A scoring system is also introduced that is designed for sequences 
with large insertions that are distantly related with similar sequence 
width. The correlation between two amino acid sequences can be 
calculated. The homologous segments can be found, and a homology 
matrix is divided. The procedure is extended to group alignments. A 
suitable similarity matrix is defined with appropriate gap penalty. 
The CPU implementation was found to be speedier than T-COFFEE, 
CLUSTALW, DILAIGN, BALIBASE, etc.

A variation of the progressive alignment strategy is called iterative 
pairwise alignment. For example, a sequence that is not aligned is selected 
and aligned to the previously obtained aligned sequences. Optimal 
pairwise alignments between individual sequences in the MSA, without 
regard to spaces inserted, are used to identify the “nearest” sequence. All 
that remains is to show how to seek an alignment of a sequence with a 
group of sequences. The method that was used to add Si to the center-
star alignment can be set as a macro and run. 

4.8 The Consensus Sequence
Given an MSA, it is sometimes useful to derive from it a consensus
sequence that can be used to represent the entire set of sequences in the 
alignment.

Defi nition Given a multiple alignment of M sequences S1, S2, . . . , Sl, the consensus 
character of column i of M is the character Ci that minimizes the sum of distances 
to it from all the characters in column i.

min ( '[ ], )imize d S i Cj i
j

l

=
∑

1
 (4.17)

Let d(i) be the minimum sum. The consensus sequence is the concatenation C1,
C2, . . . , Ci of all the consensus characters, where l = ⎪S1’⎪ = ⎪Sk’⎪. The alignment 
error of M then is defined to be

d i
i

l
'( )

=
∑

1
 (4.18)
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4.9 Greedy Method
A substantial reduction in the volume of computations to minimize 
Eq. (4.18) can be achieved using the greedy method to construct 
multiple alignments from pairwise alignments. The simplest such 
method fixes the alignment of the pair of sequences i, j with minimum 
distance. Of the remaining pairs, the minimum distance pairwise 
alignment is fixed. If each member of the pair is already in a fixed 
alignment, then the new fixed alignment joins those two aligned 
groups. The resulting multiple alignment is an upper bound. It is 
seldom optimal.

4.10 Geometry of Multiple Sequences
The geometries of multiple sequences are referred to as line geometries 
because any two points (sequences) can be joined by a straight line in 
the metric space. This geometry has some highly non-Euclidean 
properties that are not well understood. In the geometry of geodiscs, 
spaces are referred to as straight. The problem of aligning several 
sequences can be studied using this technique. If the k sequences are 
related by a binary tree, they can be aligned in O(rn2) time by a 
heuristic method naturally suggested by the geometry. If the original 
sequences are formed out of an alphabet ∑, define a weighted-average 
sequence to be a finite sequence S = S1, S2, . . . , Sn where each Si has the 
form Si = (p0, p1, . . .), where pi ≥ 0 and

∑pi = 1 (4.19)

If pi corresponds to the proportion of the ith element of A and b0
corresponds to the proportion of deletions,  -, it is then easy to convert 
a usual sequence into a weighted-average sequence by taking a 
statistical summary of the letters aligned to a given position. The 
letter, -, is thought of as a space indicating a deletion in the sequence 
in which it appears as an insertion m.

d a b w p qi i i
i

( , )
/

= −⎛
⎝⎜

⎞
⎠⎟∑

α
α1

 (4.20)

where wi is the weighting factor and α ≥ 1 is a constant. In order to 
compute the global distance D(S, T) between two weighted sequences, 
the usual dynamic programming algorithm is employed. Here

 S = S1, S2, . . . , Sn

 T = T1, T2, . . . , Tm (4.21)

 Dij = D(a1, . . . , ai, b, . . . , bj) (4.22)
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 D0j = D(_, b1, . . . , bj) (4.23)

 Di0 = D(a1, . . . , ai, _) (4.24)

 D00 = 0 (4.25)

Then

Dij = min[D(i – 1), + d(ai, _), D(i – 1, j –1)

+ d(ai, bj), D(I, j – 1) + d(_, bj)]

D(n, m) = D(S, T)

For an optimal alignment of S and T, define

g(λ) = λS ⊕ (1 – λ)T (4.26)

where  gi(λ) = λSi + (1 – λ)Ti* (4.27)

and the last + sign is simple vector addition. In the case λ = 1/2, U(1/2) is 
an equal weighting of Si’ and Ti* from an optimal alignment of S and 
T, and more can be shown in that direction. The following theorem 
states that the resulting metric space in a line geometry.

Theorem Let g(λ) = λS ⊕ (1 – λ)T (4.28)

Then D(S, T) = D[S, V(λ)] + D[b, V(λ)] (4.29)

and D[S, U(λ)] = (1 – λ)D(S, T)     (4.30)

This theorem can be proved using the triangular inequality. As a corollary to 
this theorem,

D[U(λ1), U(λ2)] = ⎪λ1 – λ2⎪D(S, T) (4.31)

The theorem implies that a weighed-average sequence can be found to represent 
any point on the line between two sequences.

Theorem If U satisfies D(S, U) + D(U, T) = D(S, T), then each gi = λiSi + (1 – λi)Ti*
for some optimal alignment of S and T.

The proof of this theorem can be found in Waterman [7]. It may be 
conjectured that the geometry for more than two sequences immediately follows. 
Unfortunately, the geometric properties of even three sequences are far from 
simple. The problem of aligning r sequences when a binary tree relating the 
sequences is assumed does have a practical heuristic solution. 

Suppose that two sets of sequences S1, S2, S3, . . . , Sn and T1, T2, . . . , Tm have 
been aligned by some method. Each such alignment can be easily made into 
weighted-average sequence S* and T*. The metric D(_, . . . ) can be applied 
to align these alignments. Note that λS* ⊕ (1 – λ)T* can be formed from any 
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alignment that gives D(S*, T*) but that the number of sequences involved m and 
n do not contribute to the complexity of computing D(S*, T*).

Consider three sequences S1, S2, and S3. Let them be related by a tree. S1 and 
S2 are nearest neighbors. Thus e2 = 1/2S1 ⊕ 1/2S2 occupies the midpoint of a line 
between S1 and S2. If all distances had the properties of Euclidean geometry, the 
center of gravity would be a point on a line from the midpoint e2 to S3, two-thirds 
of the length from S3 and one-third from C2. Therefore, the desired sequence is 
C3 = 1/2S3 ⊕ 2/3[e2]. This algorithm generalizes to r sequences, and other weightings 
can be used.

Summary
Multiple sequence alignment involves lining up more than two 
sequences and finding matches among them. The dynamic programming 
methods discussed in Chap. 2 for pairwise sequence alignment can be 
extended to multiple sequences. For k sequences, the size of the dynamic 
programming table would be (n + 1)k. Running time needed would be 
O(n)k. For sequence length greater than 30, this would be infeasible when 
k is greater than 4. When k is large, the time taken cannot be represented 
by a polynomial. The optimal sum-of-pairs alignment is NP complete, 
non–deterministic polynomial bounded. 

Center-star alignment can be used to obtain multiple sequence 
alignment in polynomial time with a grade of alignment within twice 
the optimal solution. Progressive alignment methods of MSA are 
discussed. Variations of this approach include the iterative alignment 
method. Consensus sequence and the greedy method for MSA also 
are discussed. End-of-chapter exercises include analysis of COSA, 
CLUSTALW, T-COFFEE, suffix forest, DIALIGN, MUSCLE, MAFFT, 
PSI-BLAST, STAMP, JalView, etc.
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Exercises
1.0 What are NP complete problems?

2.0 What is the Turing’s halting problem?

3.0 Name two applications of MSA?

4.0 How is MSA needed in the alignment in finding the common ancestor 
among several organisms?

5.0 How is MSA used in finding repetitive sequences?

6.0 Why is MSA performed on protein sequences?

7.0 What is meant by the distance between two sequences?

8.0 Discuss the proof of triangle inequality?

9.0 How is a smaller input going to help in dealing with NP complete 
problems?

10.0 How is using a average input going to help in dealing with NP 
complete problems?

11.0 How is solving a specialized problem compared with the general 
problem going to help in dealing with NP complete problems?

12.0 How are genetic algorithms used in obtaining solutions to NP complete 
problems?
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13.0 How does giving up optimality help in obtaining solutions to NP 
complete problems?

14.0 What are progressive alignment methods?

15.0 What is the difference between the progressive alignment method and 
the iterative alignment method?

16.0 Can the order of selection of sequences make a difference in the results 
of the progressive alignment method?

17.0 What is a guide tree?

18.0 What is meant by a clustering algorithm?

19.0 What is meant by a consensus sequence?

20.0 How is the greedy approach applied to MSA?

21.0 COSA [8]. COSA is an integer linear programming (ILP) method. It can 
be used instead of the multidimensional dynamic programming method to 
obtain MSA. An objective function is maximized subject to some constraints. 
The similarity grade is maximized—Σx.wx. Four constraints are required for 
optimal alignment. A cutting-plane algorithm is adapted. Show that solving 
an ILP is NP complete.

22.0 UPGMA [9]. The unweighted pair group method with arithmetic 
mean is a bottom-up data-clustering method. Two groups of sequences or 
alignments can be aligned to form a single alignment. All the possible NC2

pairwise alignments among N sequences are calculated, and the distance 
matrix is obtained. A guide tree can be constructed from the matrix. Then 
groups of sequences are aligned progressively following the branching order 
in the tree. UPGMA is such a distance-matrix method. Show that the accuracy 
of alignment is not superior using this method but that it can generate large 
alignments rapidly. 

23.0 CLUSTALW [10]. ClustalW is a popular computer software using the 
progressive alignment methods described in Sec. 4.7. There are three main 
steps: (1) obtain a pairwise alignment, (2) construct a phylogenetic tree, and 
(3) obtain the multiple sequence alignment. Pairwise alignments are computed 
for all sequences, and similarities are stored in a matrix. This is then converted 
into a distance matrix, where the distance measures reflect the evolutionary 
distance between each pair of sequences. From this distance matrix, a guide 
tree, or phylogenetic tree, for the order in which pairs of sequences are to 
be aligned and combined with previous alignments is constructed using a 
neighbor-joining clustering algorithm. Sequences are aligned progressively at 
each branch point starting from the least distant pair of sequences. Discuss the 
time-taken and space-needed efficiency in this approach. What is the degree 
of optimality?

24.0 T-COFFEE [11]. Tree-based consistency objective function for alignment 
evaluation (T-COFFEE) is an MSA software using a progressive approach. It 
generates a library of pairwise alignments to guide the multiple-sequence 
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alignment. Discuss the degree optimality and time-taken and space efficiency 
of this approach?

25.0 What are the advantages of using multiple-sequence alignments of 
genomic DNA sequences and a multiple-sequence alignment of a group of 
homologous proteins?

26.0 What are the advantages of using multiple-sequence alignment instead 
of pairwise-sequence alignment?

27.0 Suffix Forest [12]. Given k sequences, construct k suffix trees. How will 
you obtain a approximate multiple-sequence alignment using suffix forest? 
How close is it to optimality? What is the time-taken and space efficiency of 
this approach?

28.0 DIALIGN [13]. Segment-based multiple-sequence alignment is used in 
this approach. It is an implantation of an improved algorithm. Show that the 
time-taken efficiency would be O(kn2), where k is the length of the fragment 
size. A greedy strategy is employed. The weights for each fragment are 
recalculated. Is it NP complete?

29.0 MUSCLE [14]. This is used for creating multiple alignments of protein 
sequences. Elements of the algorithm include fast distance estimation using 
kmer counting, progressive alignment using a new profile function called 
the log-expectation score, and refinement using tree-dependent restricted 
partitioning. Discuss the degree of optimality and time-taken and space 
efficiency of the method used in the MUSCLE software.

30.0 MAFFT [15]. MSA can be performed using MAFFT software. The 
fast search for anchor points is obtained by the fast Fourier transform 
(FFT) method. The guide tree is constructed rapidly. Accurate alignments 
also can be constructed rapidly. An initial alignment is obtained using the 
progressive method twice. A roughly estimated guide tree is used to align 
sequences in the first phase. Show that the time taken would be O(n2l). 
The guide tree is constructed in a similar fashion to the UPGMA method. 
The progressive method is used in the second phase. FFT preprocessing is 
used. Discuss the degree of optimality and time-taken and space efficiency 
of this approach.

31.0 PSI-BLAST [16]. This is a profile-based methods. A database is searched 
with a single sequence for any high-scoring sequences that are found. These 
are built into a multiple alignment. This multiple alignment is used to derive 
a search “profile” for a subsequent search of the database. This process is 
repeated until no new sequences are found or after a prespecified number 
of iterations. Discuss the optimality of alignment and time-taken and space 
efficiency of this approach.

32.0 STAMP [17]. Two or more structures can be aligned using STAMP 
simultaneously. Multiple alignments are sought using hierarchical methods. 
Structures are superimposed, assuming that the alignment is correct. The 
structural similarity is provided in a matrix of grades for all possible pairs 
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of residues. A dynamic programming algorithm is used to obtain the best 
grade and an alignment of the sequences. The process is repeated until 
convergence. Discuss the degree of optimality and time-taken and space 
efficiency of this approach. 

33.0 JalView [18]. Automatic multiple-sequence alignments can be improved 
by manual editing. JalView is a Java alignment editor. It has a number of core 
alignment viewing and editing options. Principal components analysis (PCA) 
can be performed. How is this tool going to help improve the accuracy of the 
alignment? What is the additional time taken and space needed? 

34.0 What are the differences between structural and evolutionary 
alignments?

35.0 What is the importance of the quality of alignment in MSA?

36.0 What is a subalignment during MSA?

37.0 What is meant by automatic alignment?

38.0 For the methods of MSA discussed, should the genomes be linear or 
circular?

39.0 Where is MSA used in finding the protein secondary structure?

40.0 What are the requirements on the quality of alignment in MSA in order 
to obtain the protein secondary structure?

41.0 Where does the affine gap penalty figure during MSA?

42.0 Given k sequences, does there exist one unique set of sequences for all 
the possible cell values in a k-dimensional dynamic programming table?

43.0 What are the considerations of stability of alignment in the dynamic 
programming method of MSA?

44.0 What are the considerations of stability of alignment in the center-star 
alignment method of MSA?

45.0 What are the considerations of stability of alignment in the progressive 
alignment method of MSA?

46.0 What are the considerations of stability of alignment in iterative 
alignment method of MSA?

47.0 What are the considerations of stability of alignment in the greedy 
method of MSA?

48.0 Consider a set of k sequences that differ by a few errors. Is obtaining the 
multiple-sequence alignment of these sequences NP complete? Why?

49.0 Can the banded diagonal approach discussed in Chap. 2 for pairwise 
alignment be extended to MSA?

50.0 Can the inverse dynamic programming method be applied to multiple 
sequences?
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51.0 Consider a sparse k-dimensional dynamic programming table. Is this 
problem NP complete? Why?

52.0 Can the dynamic array method of Hirschberg used for pairwise 
alignment be extended to MSA? 

53.0 Is there a tradeoff between time efficiency and degree of optimality 
during MSA? How can this be tapped into?
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CHAPTER 5
Hidden Markov 

Models and 
Applications

Objectives
The objectives of this chapter are to

• Construct zeroth-order, first-order, second-order, and kth-
order Hidden Markov models (HMMs).

• Represent DNA sequences using the HMM.

• Characterize the HMM.

• Learn the forward, backward, and Viterbi algorithms.

• Apply probability models to
• Phylogenetic tree construction.
• Evolution.
• The proteome.

• Seek pairwise and multiple alignment using the HMM.

• Accomplish protein family characterization.

• Model periodicity in DNA by wheel HMMs.

• Understand the Chargaff’s parity rule.

• Accomplish signal peptide and signal anchor prediction.

5.1 Introduction
Hidden Markov models (HHMs) are constructed by using concepts 
such as conditional probability. They are used in a variety of 
applications in bioinformatics. They are classified under a useful class 
of probabilistic models. HMMs are a special case of neural networks, 
stochastic networks, and Bayesean networks. Sequence consensus, 
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profiles, flexible patterns, and blocks can be special cases of the HMM 
approach. A DNA sequence can be represented using an HMM. Such 
an example is shown in Fig. 5.1. In the early 1990s, Krogh and 
colleagues [1] at the University of California at Santa Cruz described 
preliminary results on modeling protein sequence multiple 
alignments with probabilistic HMMs. Information available in biologic 
sequences can be captured using Markov models and heuristics.

Two HMM software packages for sequence analysis were 
developed and made available free of charge. There is a lot of interest 
centering around HMMs in the literature. They are still viewed as 
black boxes instead of natural models of sequence alignment 
problems. Many of the key papers where HMMs are described are in 
the field of speech recognition and therefore not readily accessible to 
the bioinformatics community. HMMs can be applied to a lot of 
problems, such as protein structure modeling, gene finding, 
phylogenetic analysis, modeling time series, speech recognition, 
modeling coding and noncoding regions of DNA, protein subfamilies, 
and machine learning techniques, among others.

5.2 kth-order Markov Chain
A Markov chain is a sequence of random variables whose probabilities 
at a time interval depend on the value of the number at the previous 
time or times. The controlling parameter in a Markov chain is the 
transition probability. This is a conditional probability for the system 
to go to a particular new state given the current state of the system. In 
a kth-order Markov chain, the distribution of Xt depends on the 
k values immediately preceding it.

 Transition probability of Xt = P(Xt = X/Xt–k, Xt–k–1, . . . , Xt–1)  (5.1)

A

C

G
End

Begin

T

FIGURE 5.1 Markov chain model for DNA sequence with a begin and end state.
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The transition probabilities in a first-order Markov model for Xt 
would depend on only one previous value, Xt–1. Dyad dependencies 
can be modeled using a first-order model. The transition probabilities 
in a zeroth-order Markov model for Xt would not depend on the 
previous values and would be independent of them. Similarly, in a 
second-order Markov model, the transition probabilities for Xt would 
depend on two previous values, Xt–1 and Xt–2. A kth-order Markov 
chain is said to be stationary for all t and u:

 P(Xt = X/Xt–k, Xt–k+1, . . . , Xt–1) = P(Xu/Xu–k, Xu–k+1, . . . , Xu–1) (5.2)

That is, for a stationary Markov chain, the distribution of Xt is 
independent of the value of t and depends only on the previous k 
variables. The transition probabilies for a first-order Markov model 
to represent the primary sequence structure of DNA with the 
beginning and ending base pair can be represented in the form of a 
diagram similar to the one shown in Fig. 5.1. That diagram is a 
directed graph with nonzero tij connections and can be called the 
architecture of the Markov chain. The arrows point to the next occurrence 
of the base pair.

5.3  DNA Sequence and Geometric 
Distribution [2–4]

The chain sequence length distribution of DNA can be represented 
using the geometric distribution. The mechanism of formation of the 
polynucleotide may have a role in the parameter of the geometric 
distribution. For instance, a terpolymer formed by free-radical 
polymerization can be modeled with respect to the sequence 
distribution as follows: When three termonomers enter a long 
copolymer chain at M1, M2, and M3 concentration with reactivity 
ratios r12, r21, r23, r32, r13, and r31, 
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Then the probability of an M2M2 dyad is
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The sequence length of the repeats of monomer 2 in the chain is 
given by

 

N x x2 1
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 (5.6)

The mean of the distribution is given by

 
λ β γ

β γ
= +

+ +
( )

( )1  (5.7)

The variance σ2 of the distribution can be written as      

 
σ

β γ β γ
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For a tetrapolymer with four monomers, such as the case for DNA 
polynucleotides,

 P22 = 
1

1( )+ + +β γ δ  (5.9)

where δ =
M

r M
4

24 2  

The sequence length of a single base in the polynucleotide chain can 
be given by a geometric distribution:
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The mean and variance of the distribution can be written as
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The polymer compositions can be related to the monomer 
compositions by simple relations. Thus the run lengths of A, AA, 
AAA, AAAA, etc. for each of the four bases can be calculated. 
Modifications to (β + γ + δ) can be made depending on the mechanism 
of formation of the polynucleotide chain. The assumption that the 
composition of adenine, guanine, cytosine, and thymine occurs in 
equal proportions in the polymer chain can be used to simplify the 
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terms. The triad and tetrad probabilities, such as AGC or AAC, AGG, 
etc., can be computed via the dyad probabilities. 

Example 5.1 Chaves and colleagues [5] submitted the DNA sequence with 660 
bases in Homo sapiens shown in Fig. 5.2 to the National Center for Biotechnology 
Information (NCBI). Develop a Markov model of the third order to represent this 
information. Calculate the transition probabilities, and represent the information 
in the form of a suitable table.

 Number of triads that need to be studied = 43 = 64 (5.12)

 Alphabet = {A, C, G, T} (5.13)

 Number of transition probabilities that  
 need to be calculated = 4 × 64 = 256 (5.14)

The 256 transition probabilities P(A/AAA), P(G/AAA) , . . . are calculated 
from the information provided in Fig. 5.2 and presented in the Table 5.1. 
Columns 3–6 are conditional probability values for the base pair shown at the 
top of the column given the preceding triad that occurred in the sequence in 
column 2. A triad number is also given to the 64 possible triads for DNA.

Example 5.2 Develop a first-order Markov model for the DNA sequence given 
in Example 5.1 to represent the first 60 base pairs. Calculate the transition 
probabilities, and represent the information in the form of a suitable diagram.

 ctatatatcttaatggcacatgcagcgcaagtaggtctacaagacgctacttcccctatc 

 Alphabet = {A, C, G, T} (5.15)

 Number of transition probabilities that need to be calculated 
 = 4 × 4 = 16 (5.16)

A

3/59

1/59 4/59 6/59

4/59

5/59

2/59

8/59

5/59

4/59

6/59

2/59

2/59

3/59

2/59 2/59

C

TG

FIGURE 5.2 660 base pairs of DNA in Homo sapiens [5].
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Triad No. Triad P(A/Triad) P(G/Triad) P(C/Triad) P(T/Triad)

 1 AAA 3/657 0 6/657 3/657

 2 AAC 5/657 1/657 6/657 4/657

 3 AAG 3/657 0 1/657 1/657

 4 AAT 3/657 3/657 4/657 5/657

 5 ACC 5/657 4/657 0 3/657

 6 AGG 1 0 2/657 2/657

 7 ACG 4/657 2/657 4/657 3/657

 8 ATG 2/657 2/657 5/657 0

 9 ATC 7/657 2/657 5/657 5/657

10 AGC 1/657 1/657 1/657 2/657

11 ATT 4/657 2/657 4/657 1/657

12 AGT 4/657 0 2/657 1/657

13 ACT 7/657 1/657 5/657 3/657

14 ATA 4/657 2/657 3/657 2/657

15 AGA 4/657 1/657 3/657 1/657

16 ACA 4/657 3/657 3/657 6/657

17 GGA 1/657 1/657 2/657 0

18 GGC 1/657 2/657 1/657 1/657

19 GGT 2/657 0 3/657 0

20 GCA 3/657 1/657 2/657 1/657

21 GCG 2/657 1/657 1/657 0

22 GCC 2/657 0 6/657 0

23 GCT 2/657 1/657 1/657 3/657

24 GTA 0 2/657 3/657 3/657

25 GTG 0 1/657 0 0

26 GTC 2/657 0 4/657 4/657

27 GTT 1/657 1/657 0 1/657

28 GAA 3/657 2/657 3/657 1/657

29 GAG 0 1/657 3/657 2/657

30 GAC 1/657 6/657 2/657 3/657

31 GAT 0 1/657 2/657 1/657

32 GGG 0 2/657 1/657 1/657

TABLE 5.1 Transition Probabilities in the Third-Order Markov Model to Represent 
the DNA Sequence from Homo sapiens
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Triad No. Triad P(A/Triad) P(G/Triad) P(C/Triad) P(T/Triad)

33 CCA 2/657 1/657 4/657 5/657

34 CCG 2/657 1/657 2/657 1/657

35 CCC 5/657 2/657 7/657 8/657

36 CCT 9/657 3/657 4/657 6/657

37 CAA 4/657 3/657 3/657 5/657

38 CAG 2/657 2/657 1/657 1/657

39 CAC 4/657 2/657 4/657 3/657

40 CAT 3/657 4/657 8/657 4/657

41 CGA 0 3/657 4/657 2/657

42 CGG 1/657 1/657 1/657 1/657

43 CGC 2/657 0 2/657 3/657

44 CGT 1/657 0 4/657 0

45 CTA 5/657 4/657 8/657 3/657

46 CTG 3/657 0 3/657 3/657

47 CTC 6/657 0 5/657 0

48 CTT 5/657 1/657 4/657 4/657

49 TTA 1/657 3/657 3/657 3/657

50 TTG 2/657 1/657 1/657 0

51 TTC 4/657 1/657 7/657 0

52 TTT 1/657 0 5/657 2/657

53 TAA 2/657 0 4/657 6/657

54 TAG 4/657 2/657 0 3/657

55 TAC 6/657 4/657 1/657 6/657

56 TAT 4/657 1/657 5/657 1/657

57 TCA 5/657 1/657 4/657 7/657

58 TCG 1/657 0 0 2/657

59 TCC 0 0 10 11/657

60 TCT 2/657 4/657 2/657 3/657

61 TGA 4/657 1/657 1/657 1/657

62 TGG 1/657 0 2/657 1/657

63 TGC 3/657 1/657 3/657 1/657

64 TGT 1/657 1/657 1/657 1/657

TABLE 5.1 (Continued)
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The 16 transition probabilities P(A/A), P(G/A), . . . are calculated (Fig. 5.3) 
from the information provided in Table 5.2. Columns 3–6 are conditional 
probability values for the base pair shown at the top of the column given 
the preceding base pair that occurred in the sequence in column 2. A base 
pair number is also given to the four possible base pairs, adenine, guanine, 
cytosine, and thymine.

DNA strings can be generated from a four-letter alphabet {A, C, G, T}. 
A simple sequence model can be developed by assuming that the 
sequences have been obtained by independent tosses of a four-sided 

No.
Given
Base Pair P(A/#) P(G/#) P(C/#) P(T/#)

1 A 3/59 4/59 4/59 6/59

2 G 1/59 2/59 5/59 2/59

3 C 5/59 2/59 3/59 6/59

4 T 8/59 2/59 4/59 2/59

TABLE 5.2 Transition Probabilities in the First-Order Markov Model to 
Represent the DNA Sequence from Homo sapiens

1/41/4

1/2

1/2

1/2

Start End

1/2

1/4

1/4

0

0

0

0

FIGURE 5.3 First-order Markov model with 16 transition probabilities to 
represent 60 base pairs in Homo sapiens [5].
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die. Let the data be represented by D and the model by M. The model 
M has four parameters, namely, PA, PC, PG, and PT for the probabilities 
of the bases adenine, cyotosine, guanine, and thymine. Thus 

PA + PB + PG + PT = 1 (5.17)

Equation (5.17) is written based on the simple surmise that each 
sequence member has to be among the four nucleotide base pairs. 
Further,

P(D/M) = PA
naPC

ncPG
ngPT

nt (5.18)

where na, nc, ng, and nt are the number of times the letters A, C, G, or 
T, respectively, appear in the sequence O.

P(D/M) = ΠPx
nx x ∈ A (5.19)

where N: D = {0}, with O = x1 ⋅ ⋅ ⋅  xN, where xi ∈ A.

The negative logarithm of Eq. (5.19) yields

–log[P(M/D)] = ∑nx log Px  x ∈ A (5.20)

Functional regions can be identified from biologic sequence data. 
This includes the problem of how to identify relatively long functional 
regions such as genes. A site is a short sequence that contains some 
signal that is often recognized by some enzyme. Examples of 
nucleotide sequence sites include the origins of replication, the sites 
where DNA polymerase binds, transcription start and stop sites, 
ribosome binding in prokaryotes, promoters or transcription factor 
binding sites, and intron splicing sites. 

Consider a large sample A of length n sites and a large sample B
of length n nonsites. Given a sequence S = S1, S2, . . . , Sn of length n, is 
S more likely to be a site or a nonsite? Once this can be determined, 
then the entire genome can be screened, testing every length n
sequence and thereby generate a complete list of candidate sites. For 
example, the cyclic AMP receptor CRP is a transcription factor in 
Escherichia coli. Its binding sites are DNA sequences of length 
approximately 22". Stormo and Hertzel [6] identified 23 bonafide CRP 
binding sites from unaligned DNA fragments. Positions 3–9 of 
22 sequence positions are shown in Table 5.3.

The most relevant information from these 23 sites needs to be 
identified. To do this, a profile is constructed. A probability 
profile shows the distribution of residues in each of the n positions. 
For instance, the profile for the information provided in Table 5.3 
is a 4 × 7 matrix (Table 5.4). The elements of the matrix comprise 
of Arj, the fraction of sequences in Arj that have a residue r in 
position j.
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T T G T G G C

T T T T G A T

A T T T G C A

C T G T G A G

A T G C A A A

G T G T T A A

A T T T G A A

T T G T G A T

A T T T A T T

A C G T G A T

A T G T G A G

C T G T A A C

C T G T G A A

G C C T G A C

T T G T G A T

T T G T G A T

G T G T G A A

C T G T G A C

A T G A G A C

T T G T G A G

TABLE 5.3 Positions 3–9 from 23 CRP Binding Sites [6]

A 0.35 0.04 0 0.043 0.13 0.83 0.26

C 0.17 0.087 0.043 0.043 0 0.043 0.3

G 0.13 0 0.78 0 0.83 0.043 0.17

T 0.35 0.87 0.17 0.91 0.043 0.087 0.26

TABLE 5.4 Transition Probabilities for CRP Binding Sites

Arj can be thought of in terms of probability. Let t = t1t2 . . . tn be 
chosen randomly and uniformly from A. Then

 Arj = P(tj = r/t ∝ A) (5.21)

Arj is the probability that the jtj residue of t is the residue r, given 
that t is chosen randomly from A. For example, AT2 = 0.87. It is 
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assumed that these events are independent. Residue that occurs at 
position j is independent of the residues occurring at other positions. 
Residues of any two different positions are uncorrelated. 

The probability of two independent events are multiplied together 
to calculate the probability that they both occur. The probability that 
a randomly chosen site has a specified sequence r1, r2, . . . , rn is 
determined as follows:

    P(t = r1, r2, . . . , rn/t is a site) = P(t1 = r1 and t2 = r2 . . .)

  = ∏P(tj = rj/t is a site) = ∏Arj (5.22)

For example, the probability that a randomly chosen CRP binding 
sites will be CTGTGAC is given by

 P(t = CTGTGAC/t = site)  

 = 0.17 × 0.87 × 0.78 × 0.91 × 0.83 × 0.83 × 0.3  

 = 0.0447 (5.23)

The sequences corresponding to this value are

 A T  G  T  G A  C 

 T  T  G  T   G A  C 

Using the profiles A and B, the question of whether a given 
sequence S is more likely to be a site or a nonsite remains. A likelihood 
ratio is defined as follows: Given the sequence S = S1, S2, . . . , Sn, the 
likelihood ratio denoted by LR(A, B, S) is defined to be

 

P t S t
P t S t

A

B

Asij

sij

( / )
( / )

= →
= →

= =site
nonsite

Π
Π

Π ssij

sijB  (5.24)

5.4 Three Questions in the HMM
The hidden Markov model (HMM) is a finite set of states, each of 
which is associated with a probability distribution. Transition 
probabilities are used to govern the transitions among the states. 
Some states are hidden from the external observer. These are the 
hidden states. They are used to generate the desired output from 
the given input. For instance, an outcome can be generated given 
the associated probability distribution. In Sec. 5.2, the geometric 
distribution was identified as one that can describe DNA 
polynucleotide sequence distribution. Complete description of the 
HMM requires the following [7]:
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Number of states N
Number of observation symbols σ in the alphabet ∑ 
A set of transition probabilities, namely,

 Aij = P(qt+1 = j/qt = i)  1 < i, j ≤ N (5.25)

where qt denotes the current state. The normal stochastic constraints 
are met by the transition probabilities such that

 Aij ≥ 0, 1 < i, j ≤ N, and ∑NAij = 1 (5.26)

A probability distribution in each of the states B
Initial state distribution π = (πi)

Given a sequence S = ATCCTTTTTTTCA, three questions arise in 
an HMM. These questions are as follows:

 1.  Evaluation question: How likely is this sequence for a particular 
HMM?

 P(O/λ) (5.27)

 2. Decoding question: What is the most probable sequence of 
transitions and emissions through the HMM underlying the 
production of this particular HMM?

 3. Learning question: How should the transition and emission 
parameters be revised in light of the observed sequence?

 Maximize[P(O/λ)] (5.28)

For sequences that appear frequently in bioinformatics, the main 
alphabets of the HMM are the 20 different amino acids for proteins 
and the 4-letter nucleotide base pairs set for DNA/RNA. Selection of 
the architecture of the HMM depends on the problem at hand. The 
directed graph associated with nonzero Aij connections is called the 
architecture of the HMM. The hidden states and interconnections are 
examples of the structural parameters of the architecture. Depending 
on the task at hand, a 64-letter alphabet of triplets of codons can be 
used or a three-symbol set (α, β, and γ) for the secondary structure of 
proteins and other alphabets such as the hydrophobic alphabet, the 
charge alphabet, the functional alphabet, the chemical alphabet, the 
structural alphabet, and the hydrogen-bonding alphabet can be used. 

More complex HMM architectures than the one with two hidden 
states may be considered. The linear aspects of sequences can be 
captured by left-right architectures. An architecture is left-right if it 
prevents returning to any state once a transition from that state to any 
other state has occurred. In the standard HMM architecture, in 
addition to the start and end, there are other classes of states—main 
states, delete states, and insert states. Assuming that the emissions 
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and transitions depend on the current state only and not on the past, 
two special states, i.e., the start state and the end state, are chosen. 
The transition and emission probabilities are the parameters of the 
model. The sequence S = ATCCTTTTTTTCA is represented by an HMM 
with two states in addition to the start and end states (Fig. 5.4). 

For the sake of mathematical and computational tractability, the 
following assumptions are made in the theory of HMMs:

 1. Markov assumption: Transition probabilities are defined in 
Eq. (5.28). The next state depends only on the current state. 
The resulting model is a first-order HMM. Higher-order 
HMMs with greater complexity can be used.

 2.  Stationarity assumption: State transition probabilities are 
independent of the real time at which the transitions take 
place. Aij remains the same in Eq. (5.28) regardless of the t1 or 
t2 considered for q.

 3. Output independence assumption: The current observation is 
independent of previous observations. For an HMM, λ that 
describes sequence O = o1, o2, . . . , oT.

 P(O/q1, q2, . . . , qT, λ) = ∏P(Ot/qt, λ) (5.29)

1/41/4

1/2

1/2

1/2

Start End

1/2

1/4

1/4

0

0

0

0

FIGURE 5.4 HMM with four states for sequence S = ATCCTTTTTTTCA.
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5.5 Evaluation Problem and Forward Algorithm
Given a sequence O and the HMM, for λ that is used to represent the 
sequence O, find P(O/λ). When calculated from simple probabilistic 
arguments, the number of operations needed is on the order of NT, 
where N is the number of states of the HMM and T is the length of the 
sequence. This is large even for a moderate length of sequence. To 
save time, an auxiliary variable called the forward variable αt(i) is 
defined. The forward variable is defined as the probability of the 
partial observation sequence O when it terminates at state i. That is,

 αt(i) = P(o1, o2, . . . , ot, qt = i/λ) (5.30)

It can be seen that the following recursive relationship is valid:

 αt+ (j) = bj[ot+1∑
Nαt(i)Aij]  1 ≤ j ≤ N, 1 ≤ t ≤ T – 1  i = 1 (5.31)

where α1(j) = πjbj(o1)  1 ≤ j ≤ N (5.32)

and  P(O/λ) = ∑NαT(i)    i = 1 (5.33)

The time taken to complete the task is O(N2T). This is less than 
O(NT), especially for long sequences [8]. It is linear with respect to the 
length of the sequence. The backward variable can be defined in a 
similar fashion. 

5.6 Decoding Problem and Viterbi Algorithm
The problem is to find the most likely state sequence for a given 
sequence of observations O and an HMM λ. The solution depends on 
the definition of “most likely state sequence.” One approach is to find 
the most likely state qt at t = t and to concatenate all such qt’s. Some 
of the time, the solution from this method is not physically meaningful. 
Another method has been developed called the Viterbi algorithm [9]. 
Here, the whole state sequence with the maximum likelihood is 
found. An auxiliary variable is defined as

 δt(i) = max[P(q1, q2, . . . , qt–1), qt = i, o1, o2, . . . , ot–1/λ]  (5.34)

This auxiliary variable denotes the highest probability that the 
partial observation sequence and state sequence up to t can have 
when the current state is i. It can be seen that the following recursive 
relationship will hold:

 δt+1(i) = bj(ot+1){max[δt(i)Aij]}  1 ≤ i ≤ N, 1 ≤ t ≤ T – 1 (5.35)

where δ1(i) = πjbj(o1)  1 ≤ j ≤ N (5.36)
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A pointer to the winning state is kept throughout the recursion 
process. The state j* is finally found where it is the arg max[δT(j)]. 
Starting from this state, the sequence of states is backtracked as 
the pointer in each state indicates. This gives the required set of 
states. This algorithm is like a search graph whose nodes are 
formed in the states of the HMM in each of the time instants t in 
the closed interval of (1, T).

The learning problem generally is how to adjust the HMM 
parameters so that the given set of observations called the training set 
is represented by the model in the best way for the intended 
application. Quantity for optimization changes with the application. 
Some examples of optimization criteria are maximun likelihood (ML) 
and maximum mutual information (MMI). 

5.7 Relative Entropy
Given the sequence S = S1, S2, . . . , Sn, the log-likelihood (LLR) (A, B, S) 
is defined by

 log2LR(A, B, S)  = log2 ∏Asj,j/Bsj,j (5.37)

S is more likely to be a site if LLR (A, B, S) ≥ log2 L. To test for sites, a 
scoring matrix W is defined whose entries are the log-likelihood 
ratios:

 Wr,j = log2(Arj/Brj) (5.38)

The weight matrix for the example of CRP samples A and B is shown 
in Table 5.5.

To compute LLR (A, B, S) from the preceding definition, the 
corresponding scores from W: LLR (A, B, S) = Wsj,j need to be added. 
When the entry Arj = 0, a problem arises because the entry becomes –∞ 
if the residue r cannot occur in position j of any site for biologic 
reasons. Often this is a result of having too small a sample A of sites. 
In this case, there are various “small sample correction” formulas that 
replace Arj with a small positive number.

The log-likelihood matrix shown in Table 5.5 is an example of a 
weight matrix. A score is assigned to each sequence S = S1, S2, . . . , Sn 
according to the formula ∑Wsj,j in weight matrix A that is C × n. 

TABLE 5.5 Log-Likelihood Weight Matrix for CRP Binding Sites

A 0.48 –2.5 –∞ –2.5 –0.94 1.7 0.061

C –0.52 –1.5 –2.5 –2.5 –∞ –2.5 0.28

G –0.94 –∞ 1.6 –∞ 1.7 –2.5 –0.52

T 0.48 1.8 –0.52 1.9 –2.5 –1.5 0.061
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A large portion of the genome is taken to be the background 
distribution when computing log-likelihood ratios. Brj, the background 
distribution of residue r in the entire genome, is the frequency with 
which residue r appears in the genome as a whole:

 Brj = Brj
1  for all j and j1 (5.39)

A uniform distribution is a fair estimate for the nucleotide 
composition of E. coli, and Brj = 0.25. This is not a fair estimate for 
other organisms. For instance, the nucleotide composition for the 
archaeon Methanococcus Jannaschii is approximately

 BA1,j = BT1j = 0.34 

 BC1,j = BG1j = 0.16 (5.40)

A sample space is the set of all possible values of some random 
variable S. A probability distribution P for a sample space S assigns a 
probability P(S) to every s ∈ S satisfying

 P ≤ P(S) ≤ 1 (5.41)

 ∑P(s) = 1 (5.42)

The sample space is a set of length n sequences. The site profile A
induces a probability distribution on this sample space according to 
the definition, as does the nonsite profile B.

Defi nition Let P and Q be probability distributions on the sample space S. The 
relative entropy, information content, or Kullback-Leibler measure of P [10] with 
respect to Q is denoted Db(P[]Q) and is defined as follows:

 Db(P[]Q) = ∑P(S) logb[P(S)/Q(S)] (5.43)

By convention, define P(s) logb[P(S)/Q(S)] to be O whenever P(S) = 0, in 
agreement with the fact from calculus that limit as X → 0,

 x log x = 0 (5.44)

Since log[P(S)/Q(S)] is the log-likelihood ratio, Db(P[]Q) is a weighted average 
of the log-likelihood ratio with the weights P(S).

Defi nition The expected value of a function f(S) with respect to probability 
distribution P on sample space S is

 E[f(s)] = ∑p(s)f(s) (5.45)

In these terms, the relative entropy is the expected value of LLR (P, Q, S) 
when S is picked randomly according to P(S). That is, it is the expected log-
likelihood score of a randomly chosen site. 

Now, when P and Q are the sample distribution, the relative entropy will 
be zero. The relative entropy measures how different the distributions P and 
Q are. The relative entropy needs to be large to be able to distinguish between 
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sites and nonsites. The relative entropy is the measure of how informative the 
log-likelihood ratio test is. When the sample space is all length n sequences and 
independence of the n positions is assumed, it can be proved that the relative 
entropy satisfies

 Db(P[]Q) = ∑Db(Pj[]Qj) (5.46)

where Pj is the distribution P imposed on the jth position. When b = 2, the relative 
entropy is measured in bits. Unless specified otherwise, this will be the usual 
case. 

Theorem For any probability distribution P and Q over a sample space Db, 
(P[]Q) ≥ 0, with equality if and only if P and Q are identical. 

 ln(x) ≤ x – 1   for all real numbers x, with equality if and only if x = 1

The reason is that the curve y = ln(x) is concave downward, and its tangent x = 1 
is the straight line y = x. Thus

 ln(1/x) = –ln(x) ≥ 1 – x

The inequality with x = Q(s)/P(S) is used up below:

 
Db(P[]Q) =

 
P s

P S

Q Sb( ) lg
( )
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∑  (5.47)

 ≥ 1

ln( )
[ ( ) ( )]

b
P s Q s−∑  (5.48)

   = 1/ln(b)∑[P(s) – ∑Q(s)] (5.49)

because ∑P(S) = ∑Q(S) = 1. 
Note that the relative entropy is equal to 0 if and only if x = Q(s)/P(s) = 1 for 

all s. P and Q are identical probability distributions.

5.8 Probabilistic Approach to Phylogeny
A phylogenetic tree is one in which the evolutionary relationships 
among various species that are believed to have a common ancestor 
are shown. The conditional probability P(Data/tree) is the likelihood 
of the sequence occurring given the tree and the posterior probability. 
P(Tree/data) is a way of constructing the tree given the data. Each 
node with descendants represents the recent common ancestor, with 
edge lengths corresponding to time estimates. P(x*/T, t0) is the 
probability of a set of data that can be defined and calculated given a 
tree. A model of evolution is needed and selection of events that 
change sequences along the edges of a tree.

During the course of evolution, residues are substituted by others, 
deletions and insertions occur among groups of residues, and more 
complex constraints are imposed by the structures of nucleic acids 
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and proteins. Models for deletions and insertions can be sought. Let 
P(b/a, t) denote the probability of a residue a having been substituted 
by a residue b over an edge length t. For two aligned, gapless 
sequences x and y, P(x/y, t) = ∏P(xu/yu, t), where u represents sites in 
the alignment. All possible forms for the substitution probabilities 
P(b/a, t) for residues a and b are examined. Given a residue alphabet 
of size K, these can be written as a K × K matrix that depends on t,
which is denoted by S(t):

P(A1/A1, t) P(A2/A1, t) . . . P(Ak/A1, t)

P(A1/A2, t) P(A2/A2, t) . . . P(Ak/A2, t)

S(t) = ....……………………………………………………… (5.50)

P(A1/AK,t)    P(A2/AK,t) . . . P(AK/AK,t)

For several important families of substitution matrices, the family 
is multiplicative, that is, 

S(t)S(s) = S(t + s) (5.51)

for all values of lengths s and t. The probabilities should satisfy 

∑P(a/b, t)P(b/c, s) = P(a/c, s + t) (5.52)

for all a, c, s, and t. The substitution process is Markovian and 
stationary, and the probabilities are multiplicative. Jukes and Cantor 
[11, 12] proposed a model for DNA sequences. This assumes that a 
matrix R of rates of substitution takes the form shown in Fig. 5.5.

The nucleotides undergo transitions at the same rate α. The 
substitution matrix for a short time S(∈) is approximately given by 
S(∈) ≈ (I + R∈), where I is the identity matrix with ones down the 
diagonal and zeros elsewhere.

(I + R∈) becomes by multiplicativity 

S(t + ∈) = S(t)S(∈) ≈ S(t)(I + R∈)
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FIGURE 5.5 
Substitution matrix 
R in Jukes and 
Cantor model [12].
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In the limit of small ∈,

 [S(t + ∈) – S(t)]/∈ ≈ S(t)R (5.53)

 dS(t)/dt = S(t)*R (5.54)

Substituting for S(t) in Eq. (5-60) gives

 dr/dt = –3αr + 3αs (5.55)

 ds/dt = –αs + αr (5.56)

These equations can be solved and the solutions written as

 rt = ¼[1 + exp(–4αt)] (5.57)

 st = ¼[1 – exp(–4αt)] (5.58)

The matrix given by Eq. (5.58) constitutes the Jukes-Cantor 
model. At infinite time, the nucleotide equilibrium frequencies can 
be seen to be ¼. The Jukes and Cantor model does not capture 
some important features of nucleotide substitution. For instance, 
transitions, namely, purine to purine or pyrimidine to pyrimidine 
substitutions, are common. Transversions, where the nucleotide type 
is changed, is less common. Kimura [13] proposed a model with the 
rate matrix shown in Fig. 5.6.

The matrix can be solved to give

 st = ¼[1 – exp(–4βt)] (5.59)

 yt = ¼{1 + exp(–4βt) – 2 exp[–2(α+ β)t]} (5.60)

 rt = 1 – 2st – ut (5.61)
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FIGURE 5.6 
Rate matrix in 
Kimura’s
model [13].
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5.9 Sequence Alignment Using HMMs
The similarity between two sequences can be scored using 
probabilistic models. The gapped alignment process can be 
converted into HMMs. The reliability of the alignment can be 
explored. A finite-state automaton with three states can be used to 
represent pairwise alignment with affine gap penalties. The match 
is given by state M, and the insert is given by the X and Y states 
(Fig. 5.7). The recurrence relation for updating the values in the 
dynamic programming matrix was given in Chap. 2. This is used 
for global alignment of sequences. Suitable changes can be included 
for local alignment. The HMM is derived from the machine 
diagram shown in Fig. 5.8. The symbols that derive from the states 
are assigned probabilities, and transition values are provided 
between states. For example, state M has probability distribution 
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–e
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s(xi, y1)

M(1, 1)

X(1, 0)
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FIGURE 5.7 
Finite state 
machine diagram 
for affi ne gap 
alignment.

FIGURE 5.8 
Probabilistic model 
for affi ne gap 
alignment.
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Pab for emitting an aligned pair a:b, and states X and Y will have 
distributions qa for emitting symbol a against a gap. qxi represents 
state X, and state X emits symbol xi from sequence x. Transition 
probabilities are specified between states. The parameters of the 
model are indentified and shown in Fig. 5.8 [14]. The transition 
from M to an insert state is given by δ, and the probability of 
staying in an insert state is given by ε. A begin and end state may 
be added to Fig. 5.8. The addition of an end state may introduce 
another model parameter τ. This is to represent the probability of 
transition into the end state. Thus the HMM emits a pairwise 
alignment. Most discussions of HMMs can be extended to pair 
HMMs. They need an extra dimension of search space to store the 
extra emitted sequence. A pair HMM can be used to generate an 
aligned pair of sequences. 

5.10 Protein Families
HMMs have been applied with success to many protein families [15], 
such as globins, immunoglobins, kinases, and G protein–coupled 
receptors (GPCRs). They have been used to model the secondary 
structures of proteins such as α-helices, β-sheets, and γ-coil structures, 
as well as the consensus patterns of protein superfamilies. FORESST, 
the database containing protein family secondary structures, and 
Pfam, the database containing protein families, were available in 
1997. In 1997, Pfam contained 527 manually verified families, consisting 
of 39,113 sequence alignments and 6.8 million residues in the full 
alignments, and they are available for browsing and online searching 
via the World Wide Web. Pfam was developed to use HMM profile 
analysis to complement BLAST analysis in the Caenor habditis elegans 
genome project. Protein family databases typically are based on 
multiple sequence alignments of known family members. The main 
distinction between Pfam and most other protein family databases is 
that for all of Pfam, both the family definition and the search method 
span entire domains, including not only conserved motifs but also 
less conserved regions, insertions, and deletions. HMM profile 
methods allow variable conservation and insertions/deletions to be 
dealt with in a fairly robust way. Modeling of complete domains 
should facilitate more biologically meaningful sequence annotation 
and in some cases more sensitive detection. 

For each protein domain family in Pfam, there are three important 
files. The seed alignment is a manually verified multiple alignment of 
representative sets of sequences. An HMM profile is built from the 
seed alignment for database searching and alignment purposes. A 
full alignment is generated automatically from the HMM seed profile 
by searching Swissprot for all detectable members and aligning them 
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with the HMM profile. Most Pfam families are based on and cross-
referenced to corresponding PROSITE entries. For comprehen-
siveness, all Swissprot sequences not in Pfam are clustered 
automatically by the Program Domainer (Pro Dom), which also 
constructs multiple alignments automatically and is the basis for the 
Pro Dom protein family database. The quality of these alignments 
tends to be low. These are made available as Pfam B. Pfam B contains 
13,289 clusters, 62,611 subsequences, and 8.2 million residues. On 
average, alignments are 146 residues wide and contain 5 members. 
Fifty-eight percent of the sequences and 32 percent of the residues in 
Swissprot 34 are included in annotated Pfam alignments. 

GPCRs are a family of transmembrane proteins capable of 
transducing a variety of extracellular signals carried out by hormones, 
neurotransmitters, odorants, and light. A total of 142 GPCR sequences 
extracted form PROSITE database were used to train an HMM 
architecture of length N = 430, the average length of the training 
sequences, using online Viterbi learning during 12 iterations through 
the entire training set. The entropy of the emission distribution of the 
main states of the model is derived. The amplitude profile of the 
entropy contains seven major oscillations directly related to the seven 
transmembrane domains. The structural feature was discovered by the 
HMM without any prior knowledge of α-helices or hydrophobicity. To 
test the discriminative abilities of the model, 1600 random sequences 
were generated with the same average composition as GPCRs in the 
training set with lengths 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 
800, 1000, 1500, and 2000. For any sequence, random or otherwise, its 
raw score according to the model is calculated. The raw sequence is the 
negative log likelihood of the corresponding Viterbi path. 

Random sequences with similar average composition are 
discriminated using the model from that of GPCRs. The scores of 
random sequences and the Swissprot sequences cluster among two 
similar lines. On average, the clustering along a line indicates that the 
cost of adding one amino acid is roughly constant. For very short 
sequences, the linearity is not preserved. These can have irregular 
Viterbi paths. The linearity becomes increasingly precise for very 
long sequences. Viterbi paths of very long sequences with a fixed 
average composition must rely on insert states and, in fact, are forced 
to loop many times in a particular insert state that becomes 
predominant as the length goes to infinity. The cost-effectiveness of 
an insert state k depends equally on two factors—its self-transition 
probability tkk and the cross-entropy between its emission probability 
vector ekk and the fixed probability distribution associated with the 
sequences under construction. Long random sequences generated 
using a fixed some p – px as a function of sequence length on 
examination scores cluster along a regression line with slope

 min(–log tkk – ∑px log ekx) (5.62)
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Furthermore, for a large fixed length l, the scores are approxi-
mately normally distributed according to the central limit theorem 
with variance

 l[Ep log2 ehk – Ep log(ehk)] = var p(log ehx) (5.63)

In particular, the standard deviation of the scores increases as the 
square root of length l. 

Discrimination tests can be developed to decide whether a 
sequence belongs to the GPCR family or not. The scores produced by 
the model need to discriminate between GPCR and non-GPCR 
sequences. In the case of the HMM library, a fixed set of randomly 
generated sequences with the same average composition as Swissprot 
can be used across different models. In the GPCR example, for any 
sequence O of length l, the normalized score Es(0) was used based on 
the residual with respect to the empirical regression line of the random 
sequences of similar average composition divided by the approximate 
standard deviation:

 
Es

E
l

( )
. . ( )

. ( ) /0
3 0381 122 11 0

0 66 1 2= + −
 (5.64)

where E(0) is the negative log likelihood of the Viterbi path. Setting of 
the detection threshold is an issue. The smallest score here on the 
training set is 16.03 for the sequence labeled UK33-HCMVA. This low 
score is isolated because there are no other scores smaller than 18. The 
threshold can be 16 or higher. The search algorithm presents no false 
negatives and two false positives. This is accomplished by removing 
very long sequences exceeding the maximal GPCR length, as well as 
sequences containing ambiguous amino acids. At short lengths, 
below the length of the model, Eq. (5.64) is not a reasonable 
approximation. It may be wise to try a mixed scheme where a 
normalization factor is calculated empirically at short lengths, l < N, 
and Eq. (5.64) is used for larger lengths, l > N. Thresholds may be set 
from the fact that the extreme score of a set of random sequences of 
fixed length follows an extreme value distribution.

By construction of a hydropathy plot, it should be possible to detect 
easily whether a given sequence belongs to the class of GPCRs. The 
hydropathy scales are used. Hydropathy plots (Fig. 5.9) of a number 
of sequences were constructed using a 20-amino-acid window. 
Examples of plots obtained for these sequences are shown in Fig 5.10. 
As can be seen, the data can be noisy and ambiguous. The vertical 
axis represents free energy for transferring a hypothetical α-helix of 
length 20 at the corresponding location from the membrane interior 
to water. A peak of 20 kcal/mol or more usually signals the possible 
presence of a transmembrane α-helix.
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Detection from hydropathy plots alone cannot be relied on 
completely. Consensus-pattern hydropathy plots and HMMs should 
be considered complementary techniques. A hydropathy plot can be 
constructed from the HMM probabilities. This would display the 
expected hydropathy at each position rather than the hydropathy 
observed in any individual sequences. Signal amplification is effected, 
and the seven transmembrane regions are clearly identifiable. 

5.11 Wheel HMMs to Model Periodicity in DNA 
Periodic patterns in exons and introns can be indentified by using 
novel HMM architectures such as loop HMM and wheel HMM.Wheel 
HMMs are designed with a better ability to reveal periodic patterns 
in the presence of noise. The conventional left-right architecture is not 
ideal to represent exons owing to the large length variation. A 
different sort of loop model was trained on both exon and intron 
sequences. The HMM architecture was in the form of a wheel with 
the given number of main states, without flanking states, arranged 
linearly or any distinction between main states and insert states. 
Sequences can enter the wheel at any point. The point of entry can be 
determined using dynamic programming. The most likely periodicity 
can be revealed by using wheels with different numbers of states and 
comparing the negative log likelihood of the training set. Should 
the wheels of 9 states perform better than wheels of 10 states, the 
periodicity can be assumed to be related to the triplet reading frame 
rather than to structural aspects of the DNA. The wheel model 
architecture is displayed in Fig. 5.10.

Lengths of 10 nucleotides with sequences can enter the wheel at 
any point. The thickness of the arrows from outside represents the 
probability of starting from the corresponding state. A periodic 
pattern was inferred after training the emission parameters in the 
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FIGURE 5.9 Hydropathy plots for three GPCRS of length 1000.
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wheel model. By training wheels of many different lengths, it was 
found that models of length 10 yielded the best fit. This is confirmed 
by recognizing that the skip probabilities are not strong in these 
models. If the data were nine-periodic, a wheel model with a loop of 
length 10 should be able to fit the data by heavy use of the possibility 
of skipping a state in the wheel. State repeating in a 9-state wheel is 
nonequivalent to state skipping in a 10-state wheel. These wheel 
models do not contain independent insert states (as the left-right 
HMM architectures). A repeat of the same state does not give the 
same freedom in terms of likelihood as if independent inserts were 
allowed. HMM training procedure uses a regularization term favoring 
main states over skip states. All the experiments were repeated using 
several subsets of exons starting in one of the three codon positions in 
the reading frame without any significant change in the observed 
patterns of emission probabilities. 

5.12 Generalized HMM (GHMM)
Genie is based on a generalized hidden Markov model (GHMM) that 
describes the grammar of a legal parse of a multiexon gene in a DNA 
sequence. Reese and colleagues [16] proposed an improved splice-site 
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FIGURE 5.10 Eight-state circular HMM used for modeling DNA periodicity [8].
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predictor for the gene-finding progam Genie. In Genie, probabilities 
are estimated for gene features by using dynamic programming to 
combine information from different sources. One of the toughest 
problems in gene finding is to determine the complete gene structure 
correctly. Two novel neural networks based on dinucleotide 
frequencies are used to overcome this. Significant improvements in 
the sensitivity and specificity of gene structure identification are 
achieved. Experimental results using a standard set of annotated 
genes show that Genie identified 82 percent of coding nucleotides 
correctly with a specificity of 81 percent versus 74 and 81 percent in 
the older system.

Gene-finding systems such as FGENEH, GenLang, and GenMark 
use known, recognized techniques in concert. The GRAIL Gene Parser 
combines mutiple statistical measures with database homology 
searching to identify gene features. The design in Genie is similar to 
that in the Gene Parser. Genie is a implementation of the GHMM 
whose states are arbitrary submodels emitting variable-length 
sequences rather than signal letters (as in HMM). A GHMM is defined 
in Fig. 5.11 with a simple gene structure syntax as an example.

A GHMM is an enhancement of the standard HMM often used 
for pattern recognition and time series in computational biology. A 
GHMM describes a more general model in which each state can 
emit one or more symbols according to an arbitrary distribution. 
Each state represents an independent submodel that may itself be 
an HMM or any statistical model. A simple GHMM that models 
eukaryotic gene structure is shown in Fig. 5.12. The arcs represent 
states that emit strings of bases, and the nodes represent transitions 
between states.

The GHMM is represented as a graph. Nodes in the graph 
represent transitions between states. This is different from typical 
graphic representations of regular HMMs. Each state corresponds to 
a submodel of an abstract gene feature such as an internal exon (E) or 
intron (I). For any sequence of bases x and state q, the submodel 
associated with the state q defines a likelihood for the sequence x. 
This likelihood is denoted by P(x/q). When the GHMM is viewed as 
a generative statistical model, this is the probability of the sequence 
emitted when the Markov process is in state q. These likelihood 
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FIGURE 5.11 Simple GHMM for a sequence with multiple-exon genes.
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functions, one for each state, are part of the definition of the GHMM. 
The graph of the GHMM has a unique source model B for begin and 
a unique single node f for final. The process of generating a string 
from a GHMM can be q, and the mode that the arc for state q leads to 
is denoted node(q). Once in this node, a next state is chosen at random 
from among the outgoing arcs from this node, independent of any 
previous choices made. The probability of choosing the next state r is 
denoted P[r/node(q)].

Define a parse φ of the sequence X to be a pair consisting of a 
sequence of state q1, . . . , qk and a corresponding sequence of substrings 
x1, . . . , xk, where X = x1, . . . , xk, q1 is a state coming out of a unique source 
mode (B), and qk is a state leading to the unique sink node (f ). The 
GHMM defines a joint likelihood of the sequence X = x1, . . . , xk and the 
parse φ = q1, . . . , qk; x1, . . . , xk, according to the generative model described 
earlier. It is the joint independent probability of the subsequences 
given the corresponding states and the probability of the transitions 
between states, that is, 

 P(x, φ) = P(q1/B)∏P(xi/qi)∏P[qi+1/node(qi)] (5.65)

Given only the observed sequence X, using a variant of the Viterbi 
algorithm, the parse φ can be calculated that maximizes Eq. (5.65). In 
a GHMM that represents gene structure, such as the one in Fig. 5.12, 
this parse probably represents the model prediction of the most likely 
gene structure within the sequence x. This variant of the Viterbi 
algorithm is used to find the most likely parse in a dynamic 
programming algorithm. The GHMM in Fig. 5.12 represents only the 
basic ordering of gene feature and does not fully capture the 
syntactic restrictions of a “legal gene parse.” In an ideal DNA 
sequence, the parse is frame consistent; i.e., the total number of coding 
nucleotides is a multiple of three, and the reading frame is consistent 
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D A

D A
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FIGURE 5.12 A GHMM including frame constraints.
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from exon to exon. Additional states can be added to the model graph 
that only allow consistent parses. The model graph representing the 
resulting frame-consistent GHMM is shown in Fig. 5.12. The 
additional acceptor and donor transition nodes ensure that only 
syntactically correct parses are considered. The three levels represent 
the three frames. Exon lengths can be restricted in the likelihood 
functions P(X/Q) to equal 0, 1, or 2 for the various exon states in this 
GHMM in such a way as to enforce frame consistency. This more 
complex state structure is used by Genie. Further extensions to the 
GHMM graph also can be added to make the model more realistic. For 
example, an arc leading back from node T to node S labeled with a state 
that generates noncoding bases between genes would allow the 
GHMM to model sequences that have multiple genes within them. 

5.13 Database Mining
Given a trained model, the likelihood of any given sequence can be 
computed. These scores can be used in discrimination tests and in 
database searches to separate sequences associated with the training 
family from the rest. This is applicable to both complete sequences 
and fragments. Such scores can be calibrated as a function of sequence 
length. HMMs also can be used in classification problems, e.g., across 
protein families or across subfamilies of a single protein family. This 
can be done by training a model for each class, if class-specific training 
sets are available. This approach was used to build two HMMs that 
can reliably discriminate between tyrosine and serine–threonine 
kinase subfamilies. Otherwise unsupervised algorithms related to 
clustering can be used in combination with HMMs to represent the 
total number of protein superfamilies. The number of protein 
superfamilies is relatively small on the order of 1000. A global protein 
classification system with roughly 1 HMM per family is becoming a 
feasible goal from both an algorithmic and a computational stand-
point. Global classification projects of this sort are currently under way 
and should become auxiliary tools in a number of tasks, such as gene 
finding, protein classification, and structure/function prediction.

5.14 Multiple Alignments
Multiple alignments can be derived by aligning the Viterbi paths with 
each other. Training a model can be done offline. The multiple 
alignment of K sequences after the training phase is completed 
requires the computation of K Viterbi paths and scales of O(KN2). All 
Viterbi paths consists only of main-state emissions or gaps with 
respect to main states. Multiple alignments derived by an HMM with 
both insert and delete states are potentially richer and, in fact, should 
be plotted in three dimensions rather than the two used by 
conventional multiple alignments. The insert and delete states of an 
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HMM represent formal operations on sequences. These need to be 
related to evolutionary events. When a single HMM is used as a basis, 
they correspond only to the first step of a full Bayesean treatment. 
HMMs also can be used in conjunction with substitution matrices. 
HMM emission distributions can be used to calculate substitution 
matrices, and substitution matrices can be used to influence HMMs 
during or after training. In the case of large training sets, most 
substitution information is already present in the data itself, and no 
major gains would be derived from an external infusion of such 
knowledge. 

5.15 Classification Using HMMs
The organization of families of sequences into subclasses is called 
classification. It is used, for example, in phylogenetic reconstruction. 
There are two different ways of classification using HMMs. These are

 1. Training several models in parallel and using some form of 
competitive learning (Fig. 5.13).

 2. Looking at how likelihoods and paths cluster within a single 
model.

The number of sequences for some receptor classes is too small to 
train using the parallel approach. In the second approach, it is clear 
from visual inspection of the multiple alignment that there are 
clusterings and interesting relationships among the Viterbi paths 
corresponding to different receptor subgroups. The clustering of all 
the sequences in a given receptor subclass around a particular 
distance is striking. Olfactory receptors are the closest to being 

S F

FIGURE 5.13 Representation of multiple HMM architecture for detecting 
subfamilies within a protein family [15].
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random. Adrenergic receptors are the most distant from the random 
regression line and hence appear to be the most constrained.

There are also apparent differences in the standard deviation of 
each class. For instance, the angiotensin receptors occupy a narrow 
band, and only one angiotensin receptor type is known, whereas the 
opsin receptors are more spread out. Most classes have a bell-shaped 
distribution. There are exceptions. The opsins appear to have a 
bimodal distribution. This can be the result of the existence of 
subclasses within the opsins. The second peak corresponds mostly to 
rhodopsin (OPSD) sequences and a few red-sensitive opsins (OPSR). 
The presence of two peaks does not seem to result from differences 
between vertebrate and invertebrate opsins. With future database 
releases, it is possible to improve the resolution and reduce sampling 
effects. These results suggest a string relationship between the score 
assigned to a sequence by the HMM model and the sequence’s 
membership in a given receptor class.

5.16  Signal Peptide and Signal Anchor 
Prediction by HMMs

Nielsen and Krogh [17] constructed an HMM designed both to 
discriminate between signals peptides and nonsignal peptides and to 
locate the cleavage site. The HMM was designed so that it took known 
signal peptide features into account. A prediction tool can be 
developed that can discriminate between signal peptides and anchors. 
The signal peptide model is shown in Fig. 5.14. An explicit modeling 
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FIGURE 5.14 HMM used for signal peptide discrimination.
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of length distribution is implemented in the various regions using 
tied states that have the same amino acid distribution in the emission 
and transition probabilities associated with them. To discriminate 
among signal peptides, signal anchors, and soluble nonsecondary 
proteins, the model was augmented by a model of anchors. This is 
shown in Fig. 5.15. The entire model was trained using all types of 
sequences, including signal peptides, anchor sequences, and 
cytoplasmic and nuclear sequences. The prediction of which of three 
classes the protein belongs to is given by the most likely path taken 
throught the combined model. In terms of predictive performance, 
the combination of C score and S score networks had a discrimination 
level comparable with the HMM. The HMM was found to be better at 
recognizing signal anchors and therefore at detecting this type of 
membrane-associated protein. 

5.17 Markov Model and Chargaff’s Parity Rules
The Chargaff’s first parity rule [18] states that in a place of double-
helical DNA, the number of A’s is equal to the number of T’s, and the 
number of C’s is equal to the number of G’s. The Chargaff’s second 
parity rule states that the same relation holds good for a piece of 
single-stranded DNA of reasonable size. The validity of Chargaff’s 
second parity rule can be studied across different organisms and 
different coding and noncoding DNA at different length scales. For 
instance, genomic DNA in yeast was considered [8]. Symmetry was 
observed for both the strands of DNA, as shown in Table 5.6. The 
compositions were found to be stable.

It was found to be roughly 30 percent for A and T and 20 percent 
for C and G. In mitochondrial DNA, the same symmetry also was 
observed. To study the symmetries of double-stranded DNA, how 
often each nucleotide occurs on each strand over a length is counted. 
These frequencies correspond to a probabilistic Markov model of 
order 1. 

For dinucleotides, a second-order Markov model may be used for 
determining whether Chargaff’s second parity rule holds. A DNA 
Markov model of order N has 4N parameters associated with the 

n regionMet state

Begin

Signal anchor model

h region

FIGURE 5.15 HMM design for delineating signal peptides and signal anchors.
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transition probabilities P(XN/X1, . . . , XN–1), also denoted P(X1, . . . , 
XN–1 XN), for all possible X1, . . . , XN in the alphabet, together with a 
starting distribution of the form π (X1, . . . , XN–1).

Since the number of parameters grows exponentially, only models 
up to a certain order can be determined from a finite data set. A DNA 
Markov model of order 5, for instance, has 1024 parameters, and a 
DNA Markov model of order 10 has over 1 million parameters. 
Conversely, the higher the order, the larger is the data set needed to 
properly fit the model. 

Summary
Markov models are explained in detail. A genome sequence from 
NCBI is obtained and modeled using geometric distribution and a 
Markov model. The kth-order Markov model is defined. Worked 
examples in the construction of zeroth-, first-, second-, and third-order 
Markov models are illustrated. The potential for the use of geometric 

TABLE 5.6 Percent Values of the Nucleotide Bases

A C G T

Chr 1 30.3 19.4 19.9 30.4

Chr 2 30.7 19.4 19.0 31.0

Chr 3 31.1 19.7 18.9 30.3

Chr 4 31.1 18.9 19.0 31.0

Chr 5 30.6 19.0 19.5 31.0

Chr 6 30.7 19.3 19.4 30.6

Chr 7 31.0 19.0 19.0 31.0

Chr 8 30.9 19.4 19.5 30.6

Chr 9 30.5 19.4 18.9 30.6

Chr 10 31.0 19.2 18.9 31.0

Chr 11 30.9 19.2 18.9 31.0

Chr 12 30.7 19.3 19.2 30.9

Chr 13 31.0 19.1 19.1 30.8

Chr 14 30.8 19.3 19.3 30.6

Chr 15 31.1 19.2 19.0 30.9

Chr 16 31.0 19.0 19.0 30.9

Chr.mt 42.2   8.0   9.1 40.7

16 nucl chr. 30.9 19.2 19.1 30.8

All chr. 31.0 19.1 19.1 30.9
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distribution to model DNA sequences is explored. Rabiner’s tutorial 
on HMM is referred to. The three questions in HMM, i.e., evaluation, 
decoding, and learning, are reviewed. The Markov, stationarity, and 
output independence assumptions are introduced to keep the 
problems mathematically tractable. The HMM is characterized 
completely. The number of operations needed to determine the 
sequence given the HMM, i.e., the evaluation problem, which usually 
takes time O(NT), where T is the length of the sequence and N is the 
number of states, can be completed in O(N2T) time using the forward 
algorithm. The Viterbi algorithm with optimal path is discussed. 
HMM applications such as construction of a phylogenetic tree, 
protein families, wheel HMMs to predict periodicity in DNA, the 
generalized HMM, database mining, multiple alignments, classication 
using HMMs, signal peptide and signal anchor prediction by HMMs, 
and Chargaff’s parity rule predictions are discussed. Commercial 
software such as SAM, HMMER, HMMPRO, MetaMeme, PSI-BLAST, 
and PFAM are discussed and alanyzed as end-of-chapter exercises. 
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Exercises
1.0 Given the sequence

 S:  TATATGCGTAACCGGTT 

construct a first-order HMM to represent the information in sequence S. Show 
the transition probabilities in Fig. 5.16.

2.0 Construct a second-order HMM to represent the information in 
sequence T.

 T:   ACGTTGACTGACTGTATACTGGTTAGTGT 

A C

TG

FIGURE 5.16 HMM of the fi rst order to represent sequence S:
TATATGCGTAACCGGTT.
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3.0 Show by schematic the construction of a first-order HMM to represent 
the following sequence information:

 GCCGCGCTTG 

 GCTTGGTGGC 

 TGGCCGTTGC 

4.0 Chaves and colleagues submitted the DNA sequence with 660 bases 
in Homo sapiens shown in Fig. 5.2 to the NCBI. Develop a Markov model of 
the second order to represent this information. Calculate the 64 transition 
probabilities, and represent the information in the form of a suitable table such 
as Table 5.7. The 64 transition probabilities P(A/AA), P(G/AA), . . . can be 
calculated from the information provided in Fig. 5.2 and presented in a tabular 
form as shown in the table below. Columns 3–6 are conditional probability 
values for the base pair shown at the top of the column given the preceding 
dyad that occurred in the sequence in column 2. A dyad number is also given 
to the 16 possible dyads for DNA.

Dyad No. Dyad
P 
(A/Dyad#)

P 
(C/Dyad#)

P 
(G/Dyad#)

P 
(T/Dyad#)

 1 AA

 2 AC

 3 AG

 4 AT

 5 CA

 6 CC

 7 CG

 8 CT

 9 GA

 10 GC

 11 GG

 12 GT

 13 TA

 14 TC

 15 TG

 16 TT

TABLE 5.7 Transition Probabilities in the Second-Order Markov Model to 
Represent 660 Base Pairs of a DNA Sequence from Homo sapiens
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5.0 Eight hypothetical translation start sites are shown below:

 ATG 

 ATG 

 ATG 

 ATG 

 ATG 

 GTG 

 GTG 

 TTG 

Show the (1) site-profile matrix and (2) the log-likelihood ratio of the weight 
matrix. 

6.0 The effect of background distribution that is nonuniform is studied. 
Consider the eight translation start sites of Exercise 5.0, but change the 
background distribution to BAj = BTj = 0.375, Bij = Bgj = 0.125. The site-profile 
matrix remains unchanged. Find the weight matrix and relative entropies. 
Interpret the results using the Kullback-Leibler measure.

7.0 Verify the first-order HMM for the 23 CRP binding sites given in Table 5.3 
(see Fig. 5.17). 

1/1387/138

16/1385/138

1/138

18/13

19/138

34/138

12/138

2/1381/138

1/138

2/138

3/138

6/138

A C

TG

FIGURE 5.17 First-order HMM for the 23 CRP binding sites.
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8.0 Develop a zeroth-order HMM model to represent the information in 
Fig. 5.2.

9.0 Find the probability of the sequence ATGTGAC using the HMM of the 
first order in Exercise 7.0.

10.0 Develop an HMM of the second order to represent the information in 
Table 5.3. 

11.0 Given the following five sequences:

 ACAATG 

 TCAACTATG 

 ACACATC 

 AGAATC 

 ACCGATC 

construct an HMM of zeroth order to represent the information.

12.0 Construct an HMM of the first order to represent the five sequences 
in Exercise 11.0.

13.0 Show that

 ∂eix/∂Wix = eix(1 – eix)  and  ∂eix/∂Wix = –eixeiy

14.0 Give a generalized expression for k random variables for joint 
probability, Bayes’ rule, and applications to HMM.

15.0 As an example of Markov chain model application, consider the CpG 
islands. CG nucleoides are rarer in eukaryotic genomes than expected given 
the marginal probabilities C and G. But the regions upstream of genes are 
richer in CG dinucleotides. These are referred to as CpG islands. Markov chains 
can be used to predict the CpG islands. Given the set of sequences from CpG 
islands, how can the probability parameters of the model be determined? Use 
the maximum likelihood estimation. Given a set of data D, a set of parameters 
θ is obtained to maximize P(D/θ). The sequences given are

 ACCGCGCTTA 

 GCTTAGTGAC 

 TAGCCGTTAC 

16.0 Given the sequences

 GCCGCGCTTG 

 GCTTGGTGGC 

 TGGCCGTTGC 

calculate the maximum likelihood estimates of A, C, G, and T.
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17.0 Construct a first-order HMM model to represent the information 
provided in Exercise 16.0.

18.0 Verify Chargaff’s parity rule for the 660 base pairs of DNA sequence 
given in Example 5.1.

19.0 Construct a wheel HMM for introns.

20.0 Distinguish protein quarternary structure from tertiary structure with 
an example.

21.0 Find the likely ancestor of the following five proteins 

 V A G H L Cy GL Ser His Leu

 V A G – L – GL – His –

 V A G – – – GL Ser His –

 V – – – L Cy – Ser Hia Leu

 V A G H L – – – His Leu

22.0 Develop a statistical model for the following 12 related proteins.

 PVAGTL 

 PCHSVL 

 PCHVTL 

 PCHGTL 

 PAHGPL 

 PAHGPL 

 PGGTPP 

 XGSLAA 

 STVTGG 

 YLLLTV 

 YLTTLL 

23.0 Construct an HMM for the protein sequence of insulin. What order 
would you choose?

 VAGHLCYG 

24.0 Show the matrix for the Viterbi algorithm for PVAGHLCyG.

25.0 Estimate the database size requirements for a string HMM to represent 
1000 protein families.

26.0 Distinguish left-right HMM models from ergodic models. Why is left-
right preferred in bioinformatics?
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27.0 Develop a loop HMM for the following sequence and indentify the 
periodicity.

 AAGGCCCCAAGGCTGCAAGG 

28.0 Rederive the Felsentein algorithm for variable rates of a substitution 
process.

29.0 Rederive expressions for α, β, and γ for the protein alphabet with 20 
different amino acids. Obtain the expression for sequence fidelity. Draw neatly 
the Markov model for sequence evolution and the corresponding finite-state 
automaton for sequence alignment. 

30.0 Discuss the utility and implications of a GHMM for a human 
proteome.

31.0 Why can’t the training of the model for multiple alignments be 
conducted offline? Discuss with proof.

32.0 Can misclassification of protein families occur during HMM 
construction? If so, what are the remedies?

33.0 Discuss the propagation of noise when clustering and HMM are 
combined to generate classification during database mining.

34.0 Given Pfam and FORESST, what are the motivations for a database of 
protein tertiary structure? Discuss size requirements and issues.

35.0 What are some of the issues in constructing Viterbi paths for very long 
sequences.

36.0 Discuss the utility of a hydropathy plot for nucleic acids with alphabet 
(A, C, G, T).

37.0 Provide a fit with generalized normal distribution of opsins:

 f(z) = A exp[−(Az + bz2 + cz3 + dz4)] 

Point out the saddle points owing to rhodopsin sequences.

38.0 Why is a multiple-HMM architecture needed for detecting protein 
subfamilies.

39.0 Discuss the utility of an HMM in annotation of protein sequences, 
especially the regions whose functions are not known. 

40.0 Can you expect an analogous relationship to the Chargaff’s parity rule 
in a human proteome? How about other organisms?

41.0 Discuss two extensions of HMMs and their applications.

42.0 Discuss the limitations of HMMs and there advantages.

43.0 Distinsuigh the heuristic Markov model from shotgun sequencing.

44.0 Maximum likelihood criterion (ML). In the Viterbi algorithm, one way to 
settle for the optimization criteria is ML, the probability of a given sequence 
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of observations Ow belonging to a class w given the HMM λw of the class w 
with respect to the parameters of the model λw. This probability of the total 
likelihood of the observations can be expressed as

 Ltoto = P(Ow/λw) 

When only one class w at a time is considered, the subscript and superscript 
w can be dropped, and the ML criterion can be written as

 Ltoto = P(O/λ) 

Discuss why there is no analytical solution for HMM λ that maximize Ltoto. 

45.0 Baum-Welch algorithm. This is an iterative method to obtain the solution 
set out in Exercise 44.0 and Sec. 5.6. This method can be derived using simple 
“occurrence counting” arguments or using calculus to maximize the auxiliary 
quantity:

 Q(λ, λ ) = ∑P(q/O,λ) lg[P(O,q,λ)] 

Show that the convergence is gaurenteed in this method. Two more variables 
can be defined in addition to the forward and backward variables. Describe the 
Baum-Welch learning process where the parameters of the HMM are updated 
in such a way as to maximize the quantity P(O/λ). With a initial guess of λ, 
the four variables are calculated recursively, and the HMM parameters are 
updated appropriately.

46.0 Gradient-based method. In continuation of the pursuits in Exercise 44.0 
and Sec. 5.6, in the gradient-based method, any parameter θ of the HMM λ is 
updated by minimization of a certain J equivalent to the maximization of Ltoto. 
J can be related to the model parameters via Ltoto. Show that the gradient ∂J/∂θ 
can be found from the two main parameter sets in the HMM, i.e., the transition 
probabilities Aij and observation probabilities Bij. 

47.0 Maximum mutual information (MMI) criterion. In ML, the HMM 
is optimized only one class at a time, and the HMMs are not touched for 
other classes at that time. This procedure does not involve the concept of 
“discrimination,” which is of great interest in pattern recognition. Thus the 
ML learning procedure gives a poor discrimination ability to the HMM system, 
especially when the estimated parameters (in the training phase) of the HMM 
system do not match with the speech inputs used in the recognition phase. 
This type of mismatch can arise for two reasons. One is that the training and 
recognition data have considerably different statistical properties, and the 
other is the difficulties of obtaining reliable parameter estimates in the training. 
Show that in the MMI criterion, on the other hand, HMMs of all the classes 
are considered simultaneously during training. Parameters of the correct 
model are updated to enhance its contribution to the observations, whereas 
parameters of the alternative models are updated to reduce their contributions. 
Show that this procedure gives a high discriminative ability to the system and 
thus that MMI belongs to the so-called discriminative training category.

48.0 Alternating-sequence distribution. Consider the sequence S: 
AUAUAUAUAUAUAUAUAUAU with the alternating-sequence-distribution 
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microstructure. Construct a zeroth-order HMM to represent the sequence S. 
Show that P(A) = P(U) = 0.5.

49.0 Construct a first-order HMM to represent the sequence S in Exercise 48.0. 
Represent the information in the form of a schematic similar to Fig. 5.1. Show 
that P(A/A) = P(U/U) = 0, P(A/U) = 9/19, and P(U/A) = 10/19.

50.0 Construct a second-order HMM to represent the sequence S. Show that 
P(A/AU) = 5/18 = P(U/UA) and that the rest of the probabilities P(A/UU) = 
P(U/UU) = P(A/AA) = P(U/AA) = 0 = P(U/AU) = P(A/UA) = 0.

51.0 Given the results from Exercises 48.0, 49.0, and 50.0, what is the best 
HMM to represent the sequence S in Exercise 48.0 that has the alternating-
sequence distribution.

52.0 Block-sequence distribution. Consider a sequence S: 
AAAAAAAAAAUUUUUUUUUU with the block-sequence-distribution 
microstructure. Construct a zeroth-order HMM to represent the sequence S. 
Show that P(A) = P(U) = 0.5. 

53.0 How do the results of Exercise 52.0 compare with the results of 
Exercise 48.0? Should they be the same? What is missing in the zeroth-order 
HMM analysis?

54.0 Construct the sequence S’ given the zeroth-order HMM results from 
Exercise 52.0. Is there a unique result?

55.0 Construct a first-order HMM to represent the sequence S in 
Exercise 53.0. Show that P(A/A) = 9/19, P(U/U) = 9/19, P(U/A) = 1/19, 
and P(A/U) = 0. Do the results of Exercise 54.0 differ from the results of 
Exercise 49.0. What is being done right during the construction of the 
first-order HMM?

56.0 Construct the sequence S’ given the results of the first-order HMM in 
Exercise 55.0. Is the sequence given in Exercise 52.0 obtained?

57.0 Construct a second-order HMM to represent the sequence given in 
Exercise 52.0. Show that P(A/AA) = 4/9 = P(U/UU), P(U/AA) = 1/18, 
P(U/AU) = 1/18, and P(A/UU) = P(A/UA) = P(A/AU) = P(U/UA) = 0.

58.0 Construct the sequence S’ given the results of the second-order HMM 
from Exercise 57.0. Is the sequence given in Exercise 52.0 arrived at?

59.0 Can you conclude based on the results from Exercises 48.0 through 58.0 
that the order of the HMM selected to represent a given sequence depends 
on the microstructure of the sequence and only beyond a certain order do 
the results have one-to-one correspondence between the sequence and the 
model.

60.0 Random-sequence distribution. Consider the sequence S: 
UUUAUAUAAUUAAUAUAAAU with the random-sequence-distribution 
microstructure. Construct a zeroth-order HMM to represent sequence S. Show 
that P(U) = P(A) = 0.5.
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61.0 Given the results of the zeroth-order HMM in Exercise 60.0, reconstruct 
the sequence S’. Is it different from the sequences given in Exercises 48.0, 52.0, 
and 60.0?

62.0 Construct a first-order HMM to represent the sequence given in 
Exercise 60.0. Show that P(A/A) = 4/19, P(U/U) = 3/19, P(A/U) = 6/19, 
and P(U/A) = 6/19. 

63.0 Given the results of the first-order HMM in Exercise 62.0, reconstruct 
the sequence S’. Do you obtain the sequence you started out with in 
Exercise 60.0?

64.0 Construct a second-order HMM to represent the sequence given in 
Exercise 60.0. Show that P(U/UU) = 1/18, P(A/AA) = 1/18, P(U/UA) = 1/6, 
P(A/UA) = 1/6, P(A/UU) = 1/9, P(U/AA) = 1/6, P(A/AU) = 2/9, and 
P(U/AU) = 1/18.

65.0 Reconstruct the sequence S’ given the results obtained from the first-
order HMM in Exercise 64.0. Is there a one-to-one correspondence between 
the sequence and the model? Use the information given in Exercise 60.0 if 
necessary.

66.0 Construct a third-order HMM to represent the sequence S given in 
Exercise 60.0. Show that 

P(A/AAA) = 0 P(A/AUA) = 2/17 P(A/UUA) = 1/17 P(A/AUU) = 1/17

P(U/AAA) = 1/17 P(U/AUA) = 2/17 P(U/UUA) = 1/17 P(U/AUU) = 0

P(A/UUU) = 1/17 P(A/UAA) = 1/17 P(A/UAU) = 3/17 P(A/AAU) = 1/17

P(U/UUU) = 0 P(U/UAA) = 2/17 P(U/UAU) = 0 P(U/AAU ) = 1/17

67.0 Reconstruct the sequence S’ given the results of the third-order HMM 
in Exercise 66.0. Do you get the same sequence given in Exercise 60.0?

68.0 Can the third-order HMM for sequence S given in Exercise 62.0 be 
constructed given the results in Exercise 64.0. Why?

69.0 Can the third-order HMM for sequence S given in Exercise 62.0 be 
constructed given the results in Exercise 62.0. Why?

70.0 SAM. The sequence-alignment modeling system (SAM) is a collection 
of software tools used for creating, refining, and using linear HMMs for 
biologic sequence analysis. The sequence of columns in a multiple-sequence 
alignment are represented by model states with provisions for arbitrary 
position-dependent insertions and deletions in each sequence. An expectation-
maximization algorithm is used to train the models on a family of protein or 
nucleic acid sequences. The algorithms and methods in SAM can be accesed 
via the hotlink www.cse.ucsc.edu/research/compbio/sam.html. Discuss the 
advantages of using the HMM for seeking alignment compared with other 
database search strategies.

www.cse.ucsc.edu/research/compbio/sam.html
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71.0 HMMER. HMMER is an implementation of profile HMM methods for 
sensitive database searches using multiple-sequence alignments as queries. 
An HMM is built based on the multiple-sequence alignment as input. Nine 
programs are supported in the HMMER@ package. These are Hmmalign, 
hmmbuild, hmmcalibrate. hmmconvert_hmmer, hmmemit, hmmfetch, 
hmmindex, hmmpfam, and hmmsearch. A number of utility programs that 
are not HMMs are also offered that may be useful. These are aftech, alistat, 
seqstat, sfetch, shuffle, and sreformat. Discuss the advantages of using HMMs 
when seeking multiple-sequence alignment. How close to the optimal can 
you come?

72.0 HMMPRO. HMMPRO is used for biologic sequence simulations. 
Models of protein families or DNA functional elements can be interactively 
built and analyzed using a graphic user interface (GUI). These models 
then can be used for multiple-sequence alignment, pattern discovery, and 
sensitive data mining. HMMpro 2.2 is available from www.netid.com. Some 
of the highlights of the software include support for editing individual 
emission and transition weights, the ability to fix emission or transition 
weights on a node-by-node basis during training, and support for importing 
and exporting HMMER 2.x models. Given the NP complete nature of the 
multiple-sequence-alignment problem, how close to optimality can one get? 
What are the advantages of using HMMPRO in seeking multiple-sequence 
alignment?

73.0 Meta-MEME. A motiff-based hidden Markov model (Meta-MEME) of 
biologic sequences is a software toolkit for building and using motif-based 
HMMs of DNA and proteins. Input is a set of protein sequences and motif 
models discovered by MEME. These models are combined in Meta-MEME, 
and the model is used to search a sequence database for homologues. Discuss 
the advantages of using Meta-MEME and the degree of optimality of multiple-
sequence alignments.

74.0 PSI-BLAST. A position-specific scoring matrix (PSSM) is used and 
is a particular feature of BLAST 2.0. PSSM is constructed from a multiple 
alignment of the highest-scoring hits in an initial BLAST search. PSSM is 
generated by calculation of position-specific scores for each position in the 
alignment. High scores are awarded to highly conserved regions, and near-
zero scores are awarded to weakly conserved positions. A second BLAST 
seach is performed, and the results from the iteration are used to refine the 
model. How many alignments are needed before the problem is considered 
NP complete? How close to the optimality would this procedure come? What 
are the advantages of using the PSI-BLAST in terms of biologic significance, 
increased sensitivity, etc.?

75.0 PFAM. PFAM is a large collection of multiple-sequence alignments and 
HMMs that includes many common protein domains and families. Multiple 
alignments can be looked up, protein domain architectures can be viewed, 
links to other databases can be followed, and protein structures can be viewed. 
What are the storage issues involved in PFAM?

www.netid.com
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76.0 Profile HMMs. A multiple-sequence alignment is converted to a position-
specific scoring system by profile HMMs. This is suitable for searching protein 
sequences with weak homology. Compare profile HMM methods with 
pairwise sequence-comparison methods such as those of Smith and Waterman 
for global and Needleman and Wunsch for local alignments.

77.0 What are linear left-right models?

78.0 How is the affine gap penalty handled in profile HMMs?

79.0 The probability parameters in a profile HMM are usually converted to 
additive log-odds scores before aligning and scoring a query sequence [14]. 
The score for aligning a residue to a profile match state emitting residue x is 
Px, the expected background frequency of residue x in the sequence database 
is fx, and the score for residue c at this match state is log(Px)/fx. Show that this 
gives rise to nontrivial optima.

80.0 What are the differences between the Jukes and Cantor substitution 
matrix and Kimura matrix in the model for evolution?

81.0 What are the three questions in HMM?

82.0 What are the three assumptions that are needed for the tractability of 
HMMs?

83.0 Discuss the time efficiency gained in the forward algorithm.

84.0 What is a Viterbi path?

85.0 What is meant by relative entropy of a sequence?

86.0 Can HMMs be used to obtain pairwise multiple-sequence alignment?

87.0 In the model of evolution, can the solution to the model equations 
exhibit subcritical damped oscillations?

88.0 What makes the system of equations in the model of evolution stable?

89.0 What is the difference between a GHMM and a loop HMM?

90.0 What are the limitations of a wheel HMM?

91.0 Can an HMM be constructed to obtain a semiglobal alignment?

92.0 Can an HMM be constructed to obtain a glocal alignment?

93.0 How would the design of an HMM differ when seeking a global 
alignment and when seeking a local alignment? 

94.0 What are the pros and cons of representing a DNA sequence using a 
suffix tree versus using an HMM?

95.0 What are the pros and cons of representing a protein sequence using a 
suffix tree versus using an HMM? 
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96.0 Can the banded diagonal algorithms using the greedy strategy to obtain 
global alignment in lesser time be implemented using pairwise HMMs?

97.0 Can an HMM be used to represent a tRNA sequence? What would be 
different in the design?

98.0 Would the alignment of protein sequences that are encoded by the 
nucleotide sequence using an HMM result in a better alignment compared 
with aligning DNA sequences?

99.0 Given two sequences S and T, design an HMM to generate the 
supersequence S’.

100.0 Given two suffix trees of sequences S and T, design an HMM to 
construct a generalized suffix tree.

101.0 Construct an HMM to find tandem repeats in a DNA sequence.

102.0 What are the storage requirements to obtain a pairwise alignment 
using HMM?

103.0 Given an alignment of two sequences S’ and T’, construct an HMM to 
deduce the sequences S and T.

104.0 For very similar DNA sequences, what would be different in the 
construction of an HMM that is designed to obtain pairwise global alignment?

105.0 Given two sequences S and T and the alignments S’ and T’, what are 
the issues involved in constructing an HMM to obtain the scoring scheme and 
affine gap penalty parameters?

106.0 What would be the modifications to the HMM necessary to seek a more 
biologically meaningful alignment once more is known about the substitution 
and mutation rates in organisms whose sequences are being studied?

107.0 What is the biologic significance of the eigenvalues in the substitution 
matrix of Jukes and Cantor taking on imaginary values?

108.0 What is the biologic significance of the eigenvalues in the substitution 
matrix of Kimura taking on imaginary values?
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CHAPTER 6
Gene Finding, 

Protein Secondary 
Structure

Objectives
The objectives of this chapter are to

• Learn the greedy algorithm for relative site-selection 
problems.

• Use binomial heap to obtain the maximum increasing 
subsequence.

• Learn the interpolated Markov Model (IMM) to find out its 
use in GLIMMER.

• Propose a solution to the Shine Dalgarno (SD) site-selection 
problem.

• Annotate genes using a dictionary.

• Devise GPHMM for cross-species gene finding.

• Be familiar with Steiner trees, the spliced alignment problem, 
and the fragment-matching problem.

• Be familiar with protein secondary structure and neural networks.

• Learn the Profilenetwork HeiDelberg (PHD) architecture of 
Rost and Sander and DAG-RNNS.

• Use hidden Markov models (HMMs) to obtain protein 
secondary structure.

6.1 Introduction
Gene finding, simply stated, refers to methods of finding regions in 
sequences of DNA that are functional. The explosive growth of 
biologic data resulting from the completion of various genome 
projects led to blossoming of the field of genomics. The sequencing of 
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proteins and the relation between the protein and signals that govern 
the functions of the organism is the field of proteomics. These projects 
are not complete unless the genomes are functionally annotated. 
Functional genomics, or metabolomics, is the area that pertains to the 
mapping of every function of the organism to its originating gene. 
This continues to be a challenge. The accurate annotation of sequenced 
genomic data is a key technical hurdle. This is a fertile area of research. 
The coding regions, exons and introns of the genes, need to be 
identified. Very large databases of proteins, Expressed Sequence Tags 
(ESTs), and smaller databases of annotated genes are available to 
complete this task. 

6.2 Relative Entropy Site-Selection Problem
The relative entropy site-selection problem was shown by Akutsu 
and colleagues [1] to be NP complete. Provided that the optimality 
constraint is relaxed, “good” solutions are plausible. Relative 
entropy is a function of P(S), the fraction of sites containing each 
residue S and not the absolute number of sites. Increasing the 
length n of each site does increase the number of sites and will not 
increase the relative entropy. The relative entropy is a function of 
P(S), the fraction of sites containing each residue S, and not the 
absolute number of sites. For example, a conserved protein has 
P(S) = 1 regardless of the number of sites present. It measures the 
degree of conservation. However, with more instances of a 
conserved residue, this measure needs to be increased. Increasing 
the length n of each site does increase the relative entropy because 
it is additive and always nonnegative. Normalization can be used 
when comparing relative entropies of different length sites by 
dividing by the length n of the site.

6.2.1 Greedy Approach
Hertz and Stormo [2] presented a “greedy” approach to develop an 
efficient algorithm for the relative entropy site-selection problem. 
Best choices at a local level without regard for ramifications on 
subsequent choices are picked using the greedy algorithm. The 
greedy method will result in solutions that are far from optimal for 
some input instances. The user specifies the length n of sites. The user 
also specifies a maximum number d of profiles to retain at each step. 
Profiles with lower relative entropy scores than the top d will be 
discarded. This is the greedy aspect of the algorithm.

Algorithm 6.1 Hertz and Stromo Algorithm
Input: Sequences S1, S2, . . . , Sk and d, the background distribution.

 1. Create a singleton set, i.e., only one member for each possible length n
substring of each of the k input sequences.
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 2. For each set S retained so far, add each possible length n substring from an 
input sequence Si not yet represented in S. Compute the profile and relative 
entropy with respect to the background for each new set. Retain the d sets 
with the highest relative entropy.

 3. Repeat step 2 until each set has k members.

In order to avoid exponential possible sets, the number of sets is 
pruned to d. The greedy nature of this pruning biases the selection 
from the remaining input sequences. The remaining sequences may 
not contain high scoring profiles chosen from the first few sequences. 
Superior scores would result if that were the case. The single-set-
per-sequence assumption may be relaxed, and multiple substrings 
may be permitted to be chosen from the same sequence. A different 
stopping condition is needed. The procedure was applied to Cyclic 
AMP Receptor Proteins (CRP) binding sites by Hertz and Stormo 
[2]. Their best solution contained 19 correct sites plus 3 more from 
overlapping correct sites from 18 genes containing 24 known CRP 
binding sites.

6.2.2 Gibbs Sampler
An iterative approach is used in the Gibbs sampling method for 
solution to the relative entropy site-selection problem. By trial and 
error, one of a set of k starting strings is removed at random and then 
replaced with another one at random with probability proportional 
to its score. An improved score may result. The assumption made is 
one site per input sequence. 

The stopping condition is sewn into the routine to let the iteration 
continue as desired. A fixed number of iterations or relative stability 
of the score could be the stopping condition. The calculations return 
a best solution T. Some degree of greediness was retained by the 
Gibbs sampler. The principle of it is to enable a strong signal in only 
a few sequences to outweigh a weaker signal in all the sequences.

Algorithe 6.2 Gibbs Sampling Algorithm
Input: Sequences S1, S2, . . . , Sk, n and k background distribution
Algorithm:  Initialize set T to contain substrings t1, t2, . . . , tk, where ti is 
a substring of Si chosen randomly and uniformly. Now perform a series of 
iterations, each of which consists of the following steps:

1. Choose one randomly and uniformly from {1, 2, . . . , k} and remove it 
from T.

 2. For every j in {1, 2, . . . , s – n + 1},
 a. Let tij be the length n substring of Si that starts at position j.
 b. Compute Dj, the relative entropy of T ∪ tij with respect to the 

background.
 c. Let pj = Dj/∑hDh.

 3. Randomly choose ti to be tij with probability Pj, and add ti to T.
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Motifs were found in the protein families by Lawrence et. al. [3]. 
A helix-turn-helix motif and motifs in lipocalins and prenyltrans-
ferases were discovered.

6.3 Maximum-Subsequence Problem
A corollary to the problem of finding the coding regions in DNA is 
the maximum-subsequence problem. Given a sequence X1, X2, . . . , Xn
of real numbers, where Xi corresponds to the score of the ith element 
of the sequence, the problem is to find a contiguous subsequence Xi,
Xi+1, . . . , Xj that maximizes Xi, Xi+1, . . . , Xj.

6.3.1 Bates and Constable Algorithm
The following algorithm for finding a maximum subsequence was 
given by Bates and Constable [4]. They use the principle of recursion. 
Suppose that the maximum subsequence of B, of X1, X2, . . . , Xk, has 
score b and is known, how can the maximum subsequence of X1, X2,
. . . , Xk, Xk+1 be found ? If Xk+1 > 0, add Xk+1 to B, and if not, leave B
unchanged. But what if Xk+1 is not included in B? In this case, in 
addition to B, we will have to keep track of the score of the maximum 
suffix F of X1, X2, . . . , Xk; F is the suffix X5, X5+1, . . . , Xk that maximizes 
F = X5 + X5+1 + ⋅ ⋅ ⋅ + Xk. It is assumed that F is also known for X1, X2, . . . , 
Xk. Now, given Xk+1, B and F are to be updated accordingly. The 
complexity of the algorithm is O(n) because a constant amount of 
work is done for every new element Xk+1, and there are n such 
elements.

Algorithm 6.3 Bates and Constable Algorithm for Maximum Subsequence
If X

k+1
 + f > b

 then add X
k+1
 to f and replace B by F

 else if F + X
k+1
 > 0

 then add X
k+1
 to F

 else reset f to be empty

6.3.2 Binomial Heap [5–7]
The maximum increasing subsequence can be found as the deepest 
branch of a binomial heap [5–7]. For example, find the largest 
increasing subsequence for 

S = {11, 17, 5, 8, 6, 4, 7, 12, 3}  

using binomial heap. A binomial heap H is a set of binomial trees that 
satisfies the following binomial heap properties:
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 1. Each binomial tree in H obeys the min-heap property. The 
key of a node is greater than or equal to the key of its parent. 
Each such tree is said to be minimum-heap-ordered.

 2.  For any negative integer k, there is at most one binomial tree 
in H whose root has degree k.

The root of a minimum-heap ordered tree contains the smallest 
key in the tree from the first property. The second property implies 
that an n-node binomial heap H consists of at most lg n + 1 binomial 
trees.

Each binomial tree within a binomial heap is stored in the left-
child, right-sibling, and parent nodes. Each node has a key field 
and any other satellite information required by the application. In 
addition, each node x contains pointers P(x) to its parent, child (x)
to its leftmost child and sibling (x) to the sibling of x immediately 
to its right. If node x is a root, then p(x) = maximum likelihood 
(ML). If node x has no children, then child (x) = ML, and x is the 
field degree (X), which is the number of children of x. The roots of 
the binomial trees within a binomial heap are organized in a 
linked list that is referred to as the root list. The degrees of the 
roots strictly increase as the root list is traversed. By the second 
binomial heap property in an n-node binomial heap, the degrees 
of the roots are a subset of {0, 1, . . . , lg(n)}. The sibling field has a 
different meaning for roots than for nonroots. If x is a root, then 
sibling (x) points to the next root in the root list. A given binomial 
heap is accessed by the field head (H), which is simply a pointer 
to the first root in the root list of H. If binomial heap H has no 
elements, then head (H) = nil.

The binomial tree Bk is an ordered tree, defined recursively. The 
binomial tree Bk consists of two binomial trees Bk–1 that are linked 
together. Some properties of binomial trees are given by the 
following lemma.

Lemma For the binomial tree Bk,
 1. There are 2k nodes.

 2. The height of the tree is k.

 3. There are exactly kCi nodes at depth i, for i = 0, 1, . . . , k.

 4. The root has degree k, which is greater than any of the other nodes. Moreover, 
if the children of the root are numbered from left to right by k – 1, k – 2, . . . , 
0, child i is the root of a subtree Bi.

The maximum increasing subsequence is found in the deepest 
branch. Once ordered, the time taken is O(n). All maximum 
increasing subsequences are available in the binomial heap. See 
Fig. 6.1.
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6.4 Interpolated Markov Model (IMM)
The software package Gene Locator and Interpolated Markov 
Modeler (GLIMMER) is used for finding genes in bacteria and 
Archaea. Interpolated Markov Models (IMMs) from first to eighth 
order were used in this software. GLIMMER is the primary microbial 
gene finder at Institute of Genomic Research (TIGR) and has been 
used to annotate complete genomes. A special version of GLIMMER 
was designed for small eukaryotes (GlimmerM) and was used to find 
the genes in chromosome 2 of the malaria parasite Plasmodium
falciparum [8]. It also has been trained on the plants Arabidopsis thaliana
and Oryza sativa (rice), the parasite Thieleria P arva, the fungus 
Aspergillus fumigatus, and other organisms. The GLIMMER system 
consists of two main programs: (1) a training program, build-imm,
which takes an input set of sequences and builds and outputs the 
IMM for them (the sequences can be complete genes or just partial 
open reading frames), and (2) Glimmer itself, which uses this IMM to 
identify putative genes in an entire genome. Conflicts are resolved 
automatically between most overlapping genes by choosing one of 
them. It also identifies genes that are suspected to truly overlap and 
flags these for closer inspection by the user. 

The accuracy for 10 complete bacterial and archael genomes are 
shown in Table 6.1. Organisms are listed in the order in which the 
sequencing projects were completed. All these results were obtained 
by a very simple training procedure: GLIMMER was trained by first 
extracting all nonoverlapping open reading frames (orfs) over 500 bp 
(using the long-orfs program that comes with the system). The trained 
model then was used to find genes in the complete genome. 
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FIGURE 6.1 Binomial heap representation of maximum increasing 
subsequence.
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6.5 Shine Dalgarno SD Sites Finding
The accurate prediction of the translation start site, i.e., the correct 
start codon, is important in order to analyze the putative protein 
product of a gene. At the initiation of protein synthesis, the ribosome 
binds to the mRNA at a region near the end of the mRNA called the 
ribosome-binding site. This is a region of approximately 30 nucleotides 
of the mRNA that is protected by the ribosome during initiation. This 
short mRNA sequence is called the SD site. The mechanism by which 
the ribosome recognizes the SD site is relatively simple base-pairing: 
The SD site is complementary to a short sequence near the end of the 
ribosome’s 16S rRNA, one of its ribosomal RNAs. The SD site was 
first postulated by Shine and Dalgarno [9] for E. coli. Subsequent 
experiments demonstrated that the SD site in E. coli mRNA usually 
matches at least four or five consecutive bases in the sequence 
AAGGAGG (Table 6.2) and is separated from the translation start site 
by approximately seven nucleotides, although this distance is 
variable. This SD site can be used to improve start-codon prediction. 
The simplest way to identify whether a candidate start codon is 
likely to be correct is by checking for approximate base pair 
complementarity between the end of the 16S rRNA sequence and the 
DNA sequence just upstream of the candidate codon. 

A greedy version of the Gibbs sampler was used in another study 
to find likely SD sites. Tompa [10] proposed a method to discover SD 
sites by looking for statistically significant patterns in the sequences 
upstream from the putative genes. The statistical significance is 

Organism Genes Annotated
Percent Annotated 
Genes Found

Haemophilus influenzae 1738 99

Mycoplasma genitallium   483 99.4

Methanococcus
jannaschii

1727 99.7

Helicobacter pylori 1590 97.5

Escherichia coli 4269 97.4

Bacillus subtilis 4100 98.3

Archaeoglobus fulgidis 2437 98.6

Borrelia burgdorferi   853 99.3

Treponema pallidum 1039 97.3

Thermatoga maritima 1877 98.8

TABLE 6.1 Accuracy for 10 Complete Genomes
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measured by the t statistic. The sites with the highest t sores are 
unlikely to be from the background and are likely to be potential SD 
sites. For each possible k-mers, this approach takes into account both 
the absolute number N of upstream sequences containing s and the 
background distribution. It then calculates the unlikelihood of seeing 
Ns such occurrences if the sequences had been drawn at random from 
the background distribution. The random process used in this 
calculation is a first-order Markov chain based on the dinucelotide 
frequency of the sequences. The measure of unlikelihood used is 
based on the t statistics defined as follows: Let N be the number of 
upstream sequences that are input and Ps the probability that a single 
random upstream sequence contains at least one occurrence of S.
Then NPs is the expected number of input sequences containing s,
and NPs(1 – Ps)

1/2 is its standard deviation. The t score is defined as

t
N NP

NP P
s s

s s

=
−

−
( )

( )1  (6.1)

The measure ts is the number of standard deviations by which the 
observed value Ns exceeds expectations and is sometimes called the 
normal deviate or deviation in standard units. The measure τs is normalized 
to have zero and standard deviation of 1, making it suitable for 

Bacillus subtilis CUGGAUCACCUCCUUUCUA _ _

Lactobacillus delbrueckii CUGGAUCACCUCCUUUCUA _ _

Mycoplasma pneumoniae GUGGAUCACCUCCUUUCUA _ _

Mycobacterium bovis CUGGAUCACCUCCUUUCU

Aquifex aeolicus CUGGAUCACCUCCUUUA _ _

Synechocystis spp. CUGGAUCACCUCCUUU _ _

Escherichia coli UUGGAUCACCUCCUUA _ _

Haemophilus influenzae UUGGAUCACCUCCUUA _ _

Helicobacter pylori UUGGAUCACCUCCU _ _

Archaeoglobus fulgidus CUGGAUCACCUCCU _ _

Methanobacterium
thermoautotrophicum

CUGGAUCACCUCCU _ _

Pyrococcus horikoshii CUCGAUCACCUCCU _ _

Methanococcus jannaschii CUGGAUCACCUCC _ _

Mycoplasma genitalium GUGGAUCACCUC _ _

TABLE 6.2 End of 16S rRNA for Various Prokaryotes
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comparing different motifs. The algorithm was run on 14 prokaryotic 
genomes. The motifs with the highest score showed a strong 
predominance of motifs complementary for the 3’ end of the 
genome’s 16S rRNA.

6.6 Gene Annotation Methods
Pachter and colleagues [11] have provided a dictionary-based 
approach to gene annotation. The OWL and dBEST databases are 
used in this approach. A parse of the gene into introns and exons can 
be produced using the dynamic programming algorithm. Several 
scoring schemes for the exons are available. BLAST software [17] is 
often applied for the purposes of gene annotation and includes exon 
prediction and repeat finding. In the FLASH program, a hash table is 
used cleverly to keep tab of matches and positions of pairs of 
nucleotides in a database. The resulting information can be used to 
extract close matches to a given sequence. GenScan, Genie, GeneMark, 
fGENEH, and VEIL are statistical programs based on HMMs. GRAIL 
is based on nueral networks. In the PROCRUSTES program [12, 13], 
coding regions of a gene can be identified using protein sequences as 
targets. The INFO program is based on the idea of finding similarity 
to long stretches of a sequence in a protein database and then finding 
splice sites around those regions. These programs are becoming more 
important as the sizes of the protein and EST databases increase.

The distinct problems of sequence alignment and gene finding 
were treated with a unifying framework by Pachter and Lam [14]. 
They sought best alignment between two sequences while 
simultaneously annotating the regions. 

The HMM developed is both a generalized HMM and a pair 
HMM. The former is used for gene finding, and the latter is used for 
sequence alignment. Such an HMM is called the generalized pair hidden 
Markov model (GPHMM, Fig. 6.2). These HMMs have been 
implemented successfully in GenScan and Genie. In ROSETTA, the 
steps of alignment and gene finding are separated. The alignment is 
equivalent to the Needleman-Wunsch dynamic programming 
algorithm discussed in Chap. 2. A program called SLAM was
developed that implements these ideas and can be used to annotate 
syntenic sequences by finding codingexons and conserved noncoding 
sequences, or it can be used as a global alignment program that takes 
advantage of the biologic features of the sequences to improve the 
accuracy of the alignments.

There are two types of HMMs relevant to the problem: pair 
HMMs and generalized HMMs. Whereas one single output is 
generated by HMMs in each step, output in pairs were generated by 
PHMM, and GHMMs can generate output of different lengths 
(determined from a distribution) in each hidden state. The SLAM 
GPHMM is a combination of a PHMM and a GHMM. The main 



 188 C h a p t e r  S i x  

difference between the SLAM GPHMM model and previous HMM-
based gene finders is in interpretation of the outputsof the states. The 
SLAM model is a PHMM, so the outputs in every state are aligned 
pairs of DNA bases. It is also a GHMM, meaning that a duration 
distribution is associated with each of the generalized states (the exon 
states in this case). The result of combining the two HMMs is that the 
generalized states now generate two sets of durations (or lengths) for 
the exons, one for each of the sequences.

A naive implementation of the GPHMM described has the 
drawback that the Viterbi algorithm has a running time on the order of 
O(D4N2TU), where D is the maximum allowable length for an exon (on 
the order of thousands), N is the number of states, and T and U are the 
two sequence lengths. The memory requirements are on the order of 
NTU, which also scales as the product of the sequence lengths—ideally, 
we would like the problem to grow linearly in the length of the larger 
of the observation sequences. Because most alignments in the space of 
all possible alignments are very unlikely to be real, we adopted the 
approach of preprocessing to restrict the alignment search space to a 
set of more likely or more reasonable alignments. A set of possible 
alignments is called an approximate alignment.

Initial and transition probabilities, splice-site Variable Length 
Hidden Markov Models (VLMM) state duration distributions, and 

E(0,1)

E(0,0)

E(1,2)

E(2,1)

E(2,2)

Intron

Intergene

IntronIntron

E(0,2)

E(o,2)

E(o,1)

EsingE(i,2)

E(i,1)

E(i,0)

E(2,0)

E(1,1)

E(1,0)

E(o,0)

FIGURE 6.2 A GPHMM for alignment and prediction of exons using genomic DNA 
from two different organisms.
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output probabilities were all obtained from appropriate training sets. 
Parameters were stratified by gene content. Parameter sets for 
different pairs of organisms can be obtained easily with the SLAM 
parameter toolbox, which parses GenBank files containing annotated 
sequences, generating all the required parameters.

Pachter and Lam [14] presented a solution to the problem of 
designing efficient search spaces for pair hidden Markov models 
(Fig. 6.3) that align biologic sequences by taking advantage of their 
associated features. Their approach leads to an optimization problem, 
for which was obtained a two-approximation algorithm, that is based 
on the construction of Manhattan networks, which are close relatives 
of Steiner trees (Fig. 6.4). The underlying theory was described and 
how their methods can be applied to alignment of DNA sequences in 
practice was shown, succesfully reducing the Viterbi algorithm search 
space of alignment PHMMs by three orders of magnitude.

The problem of designing efficient search spaces for pair hidden 
Markov model alignment algorithms that take advantage of the 
conservation patterns of biologic sequences was studied by Pachter 
and Lam [14]. This lead naturally to consideration of three 
computational problems, each of which has been studied individually 
in considerable detail but whose connection has not been well 
explored. The problems are

 1.  The alignment problem for biologic sequences

 2.  Development of efficient Viterbi algorithms for pair hidden 
Markov models

 3.  Construction of rectilinear Steiner networks
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FIGURE 6.3 State space of a PHMM.

FIGURE 6.4  Minimum spanning tree and Steiner tree for a confi guration of four 
points in a plane.
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The first of these problems, the alignment of biologic sequences, is 
arguably the most successful application of computational biology to 
date. It remains a challenge to develop accurate alignment algorithms 
that are able to correctly align exons and other biologically interesting 
sequence features in large sequences. The improvements have been in 
the areas of speedup of alignment and more biologically meaningful 
alignments. For the first problem, there have been numerous investiga-
tions on how to normalize alignments taking lengths into account. 
“Optimal alignments” are very sensitive to the choice of parameters.

The connection between alignments, PHMMs, and Steiner trees 
raises a number of interesting questions that go beyond the immediate 
applications Pachter and Lam [14] have highlighted. Optimal 
networks for more complicated PHMMs, such as the GPHMMs, led 
to more complicated variants of the Manhattan network problem. 
Even the Manhattan network problem has not been “solved” in the 
sense that it is still unknown whether it is NP complete. The running 
time of the Pachter and Lam algorithm is O(n3) (worst case), where n
is the number of highest-scoring pairs (HSPs), and the resulting 
PHMM algorithm for producing an alignment will run in time 
proportional to the size of the network, which in the worst case will 
be O(n2). It is possible to reduce the O(n3) running time for obtaining 
the network to O(n log n) at the expense of increasing the bound for 
the size of the network from twice optimal to four times optimal. 

Even human genes can be predicted accurately, even in the case 
where only distantly related bacterial or yeast proteins are available. 
Gelfend and colleagues [13] achieved this by using a spliced alignment 
algorithm for similarity-based gene recognition. The spliced-
arrangement algorithm provides 99 percent accurate recognition of 
human genes, i.e., average correlation coefficient of prediction 
99 percent if a related mammalian protein is available. Sze and Pevzner 
[15] felt that although 99 percent accuarate gene predictions look like 
an acme of perfection, they are not sufficiently reliable for sequence 
annotation. They tried to develop an algorithm that either predicts an 
exon assembly with accuracy sufficient for sequence annotation or 
warns a biologist that accuracy of a prediction is insufficient and that 
further experimental work is required to complete the annotation. In this 
case, their goal is to provide biologists with accurate primer prediction. 
A 100 percent accurate gene prediction would greatly reduce experi-
mental work on gene verification in large-scale sequencing projects.

Algorithms that provide a correct answer in some cases and have 
an option “No answer” in other cases are called Las Vegas algorithms 
in computer science. The term Las Vegas was introduced by Brassard 
and Bratley [16] to distinguish algorithms that reply correctly when 
they reply at all from Monte Carlo algorithms that occasionally make 
mistakes. Similar to many Las Vegas algorithms that benefit from the 
“No answer” option, Las Vegas algorithms for gene recognition use 
the “No answer” option to avoid unreliable predictions and benefit 
from reduction in experimental work in the correct answer cases.
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Gelfend and colleagues [13] proposed a dynamic programming 
algorithm for the spliced alignment problem. The spliced alignment 
problem captures the major computational challenges of the 
similarity-search approach to exon assembly. However, in realistic 
situations, there exists important complications that do not seriously 
affect the running time of the algorithm, although they greatly 
increase the complexity of software implementation.

6.7 Secondary Structures of Proteins
The prediction of the secondary structure of a protein given the 
primary amino acid sequence distribution is one of the classic 
problems in bioinformatics. The secondary structure of a protein 
pertains to its three-dimensional stereochemical structure. As 
discussed in Chap. 1, this consists of α-helix, β-sheet, and γ-coil states 
(Fig. 6.5). With advances in sequencing technology, the number of 

Sheet

Helix

FIGURE 6.5 α-Helix, β-sheet, and γ-loop/coil states in the secondary 
structures of proteins.
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proteomes completely sequenced increases rapidly with time. But the 
number of known secondary structures of proteins is fewer in number. 
It was realized that for five of six protein primary structures available, 
the secondary structures are not available. The experimental methods 
of obtaining the secondary structures of proteins, such as x-ray 
crystallography or nuclear magnetic resonance (NMR) spectroscopy, 
are expensive, not accurate enough, and time-consuming. A number 
of methods can be used to achieve this goal, such as using statistical 
information, physicochemical properties, sequence patterns and 
multilayered artificial neural networks, and/or incorporating 
evolutionary information from sequence families. Advanced neural 
network architectures have been suggested to predict the secondary 
structures of proteins.

The prediction problem is posed as that of predicting whether 
each residue in a protein forms part of an α-helix, β-sheet, or γ-loop/coil 
state. The secondary structure of a new protein can be found from another
protein with a known secondary structure that is homologous. If no 
homologous proteins can be found, empirical correlations that have 
been developed between amino acids and local secondary structures 
of proteins can be used. These correlations were developed from 
known secondary structures at the time they were developed. 

One such example is the Chou and Fasman rules [18]. Briefly 
stated, when four α-helix formers out of six residues or three β-sheet
formers out of five residues are found clustered together in any native 
protein segment, the nucleation of these secondary structures begins 
and propagates in both directions until terminated by a sequence of 
tetrapeptides, designated as breakers. These rules were successful in 
locating 88 percent of α-helical and 95 percent of β-sheet regions, as 
well as correctly predicting 80 percent of the α-helical and 86 percent 
of the β-sheet residues in the 19 proteins evaluated. The accuracy of 
predicting the three conformational states for all residues is 77percent 
and shows great improvement over earlier prediction methods, 
which considered only the α-helix and γ-coil states.

Qian and Sejnowski [21] pioneered the use of neural networks to 
predict the secondary structures of proteins. They used 106 proteins 
from the Brookhaven National Laboratory with known secondary 
structures in their study. The performance measure of prediction of 
the secondary structures of proteins is the success rate Q3. This is the 
percent of correctly predicted residues on all three types of secondary 
structures:

Q
P P P

N3 =
+ +( )α β γ  (6.2)

where N is the number of predicted values and Pα is the number of 
correctly predicted α-helix states, for example. Other performance 
measures such as correlation coefficients also can be used.
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6.7.1 Neural Networks
Any reasonable function to any degree of required precision can be 
approximated by neural networks. An artificial neural network 
(ANN) is used in pattern recognition and knowledge acquisition and 
control. HMMs are closely related to or a special case of neural 
networks, stochastic grammars, and Bayesean networks. The 
structure of an ANN consists of a number of computing elements 
that resemble neurons and synapses of the human brain organized in 
a network [19–20]. Presently most of the implementations of neural 
networks are software-based. Interconnections higher than 2 units 
may lead to “higher order” or “sigma pi” networks. A number of 
important architectures can be recognized. These are (1) recurrent, (2) 
feed-forward, and (3) layered.

A recurrent architecture contains directed loops. An architecture 
devoid of directed loops is said to be feed-forward. Recurrent 
architectures are more complex. An architecture is layered if the units 
are partitioned into classes also called layers, and the connectivity 
patterns are defined between the classes. A feed-forward architecture 
is not necessarily layered. The number of layers is referred to as the 
depth of the network. 

In the backpropagation model, the network is processed in three 
distinct steps. The first step is the forward sweep. In the forward 
sweep, the input is given to the input units. The output values of each 
unit are calculated and moved over the connections to the units in the 
next layer.

The units in the next layer receive the input from units in the 
previous layer. The output values of the units then are calculated 
and passed to the units in the next layer, and so on. The next step is 
error calculation. In this step, the values of the output units are 
compared with the desired output (teaching). If the difference 
between the actual output and the teaching is within the acceptable 
error range, then learning is successful. If the difference is not within 
an acceptable range, then an error value is calculated, and learning 
is unsuccessful.

The third step is backpropagation of the error value. In this step, if 
learning is unsuccessful, then the error value is propagated backward 
through the net. The weights of the connections between the units are 
adjusted to minimize the error value. The main objective of this step 
is to close the gap between the actual output and the desired output. 
These three steps are repeated until learning is successful.

The behavior of each unit in time can be described using either 
differential equations or discrete update equations. Typically, a unit i
receives a total input Xi from the units connected to it and then 
produces an output Yi – f(xi), where f is the transfer function of the 
unit. In general, all units in the same layer have the same transfer 
function, and the total input is a weighted sum of incoming outputs 
from the previous layer so that
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where Wi is called the bias or threshold of the unit. Wij and Wi are the 
parameters of the neural network (NN). Other parameters such as 
time constants, gains, and delays are possible. Usually, the total 
number of parameters is determined by the number of layers, the 
number of units per layer, and the connectivity between layers. The 
NN is said to be fully connected when each unit in one layer is connected 
to every unit in the following layer. 

A normalized exponential unit is used to compute the probability 
of an event with n possible outcomes, such as classification into one 
of n possible classes. Let j run over a group of n output units, 
computing the n membership probabilities, and xj denote the total 
input provided by the rest of the NN into each output unit. Then the 
final activity yi of each output unit is given by
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When n = 2, the normalized exponential is equivalent to a logistic 
function via a simple transformation: 

y
e

e ei

x

x x
=

+⎡⎣ ⎤⎦

−

− −

1

1 2  (6.7)

Any probability distribution Pi (1 ≤ j ≤ m) can be represented in 
normalized exponential from a set of variables xj (1 ≤ j ≤ m):
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as long as m ≥ n. This can be done in infinitely many ways by fixing a 
positive constant k and letting Xi = log(pi) + kj, for i = 1, . . . , n. If m < n,
there is no exact solution, unless the pi assumes only m distinct values 
at most.
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The radial basis function (RBF) is another type of widely used 
function. Here, f is a bell-shaped function like a Gaussian function. 
Each RBF unit i has a reference input xi, and f operates in the distance 
d(xi

∞, xi) measured with respect to some metric yi = f(d). In a spatial 
problem, d is usually the Euclidean distance. 

Thus some of the important features of the ANN model depend 
on the task at hand. The process of computing approximate weights 
is called learning or training in the ANN paradigm. There are many 
ANN learning algorithms that employ the principles just described. 
In general, ANN learning algorithms are classified by either the tasks 
to be achieved or the methodologies to achieve a task: (1) 
autoassociation, (2) classification, (3) heteroassociation, and (4) 
regularity detection. ANN learning algorithms are divided into two 
classes: (1) supervised and (2) unsupervised.

In supervised learning, a network is given an input along with its 
desired output. On the other hand, a network in unsupervised learning
is given only an input. After each presentation of an input, the 
performance is measured to tell how the network is doing. A network 
is expected to self-organize information by using the performance 
measure as guidance. Algorithms in these two categories are further 
divided into two groups on the basis of the input formats: binary or 
continuous-valued input. Taxonomy of the ANN algorithm is given 
in Fig. 6.6.

In Qian and Sejnowski’s work [21], orthogonal encoding was 
used as input, with the alphabet corresponding to 20 different amino 
acids. A terminator symbol to encode the N and C terminals is also 
included, making the alphabet size 21. The input window had an 
optimal size, rougly of 13 amino acids. The input layer has 21 × 13 =
273 units. The typical size of the hidden layer consists of 40 sigmoidal 
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input

ANN learning algorithms

Supervised

Hopfield net
boltzmann
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Art I
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Peceptron &
back

propagation
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kohenen’s

SOM
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FIGURE 6.6 Taxonomy of ANN learning algorithms.
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units. The number of parameters used for this architecture was 11,083. 
Three sigmoidal units were present in the output layer. The α-helix,
β-sheet, and γ-coil structures were encoded. The classification was 
represented in the output. The networks were initialized using 
random uniform weights. Subsequently, the network was trained 
using backpropagation with the LMS error function. A more 
appropriate use would be the normalized exponential output layer 
with the relative entropy as error function. The training set is 20,000 
residues in length. These are extracted from the Protein Data Bank 
(PDB). Many protein structures have been solved by experimentation. 
Peformance oscillations associated with the use of contiguous 
windows is avoided by using a random order of presentation when 
training on protein sequences. The performance increases from a 
33 percent choice level to 60 percent using this architecture. Beyond 
this point, overfitting begins. If there is an imbalance in the amount of 
helix, sheet, and coil proportions from the usual number of 0.3/0.2/0.5, 
percentages of correctly predicted window configurations can be pair 
indicators of the predictive performance. The correlation coefficient 
can be used and is found to be a better measure of performance.

6.7.2 PHD Architecture of Rost and Sander
The most important performance improvement has been achieved by 
the work of Rost and Sander [22]. Their work resulted in the creation 
of a Profilenetwork HeiDelberg (PHD) server. The PHD method 
reached a performance level of 74 percent on an unknown test set. A 
reduction of the database of three-dimensional protein structures to a 
sequence of secondary structure patterns is achieved with statistical 
and neural network methods (Fig. 6.7). A sequence profile of a protein 
family, rather than just a single sequence, is used as input to a neural 
network for structure prediction. Each sequence position is 
represented by the amino acid residue frequencies derived from 
multiple sequence alignments as taken from the Homology-Derived 
Structure of Proteins (HSSP) database. The residue frequencies for 
the 20 residue types are represented by 3 bits each (or by one real 
number). To code the N- and C-terminal ends adds an additional 
3 bits (or one real number). The 63 bits originating from one sequence 
position are mapped onto 63 (21 for real numbers) input units of the 
neural network 

A window of 13 sequence positions thus corresponds to 819 (273) 
input units. The input signal is propagated through the network with 
one input layer, one hidden layer, and one output layer. The output 
layer has three units corresponding to the three secondary-structure 
states, helix, strand, and loop, at the central position of the input 
sequence window. Output values are between 0 and 1. The 
experimentally observed secondary structure states are encoded as 1, 
0, 0 for helix, 0, 1, 0 for strand, and 0, 0, 1 for loop. The error function 
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to be minimized in training is the sum over the squared difference 
between current output and target output values. The net cascade 
consists of the first network (sequence-to-structure), followed by a 
second network (structure-to-structure) to learn structural context 
(not shown). Input to the second network is the three output real 
numbers for helix, strand, and loop from the first network plus a 
fourth spacer unit for each position in a 17-residue window. From 
the 17 × (3 + 1) = 68 input nodes, the signal is propagated via a 
hidden layer to three output nodes for helix, strand, and loop, as in 
the first network. In prediction mode, a 13-residue sequence window 
is presented to the network, and the secondary-structure state of the 
central residue is chosen, according to the output unit with the 
largest signal.

More balanced predictions are achieved by the PHD server. Better 
accuracy is achieved from multiple sequence alignments and using 
evolutionary information, better prediction of the sheets achieved by 
balanced training, and better prediction of helix and strand lengths 
using structure context training. The neural network was tested on a 
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database of 130 representative proteins with known structure. The 
overall improvement shown by this method is as follows:

 1. The overall accuracy is 69.7 percent, three percentage points 
above the highest value reported so far (66.4 percent). The 
improvement is six percentage points relative to the best 
classical method tested on our database (63.4 percent, ALB).

 2. Accuracy is well balanced at 70 percent helix and 64 percent 
strand, measured as the percentage “correct of observed.” 
The percentages “correct of predicted,” i.e., the probability of 
correct prediction, given a residue predicted in a particular 
state, are 72 percent helix and 57 percent strand.

 3. The length distribution of segments is more proteinlike. 
Unfortunately, the length distribution is not generally given in 
the literature, but most methods are inferior in this regard.

There are two practical limitations to this method. Most of the gains 
of the PHD architecture are lost when no sequence homologues are 
available. These are not valid for membrane proteins and other 
nonglobular or water-insoluble proteins. Another limitation of the 
method is its limited goal. This method is useful in practice, such as for 
the planning of point mutations experiments, for the selection of 
antigenic peptides, or for identification of the structural class of a protein. 
Evolution may be the key to the puzzle posed of protein folding. 

6.7.3 Ensemble Method of Riis and Krough [23]
The work of Riis and Krogh [23] addresses the overfitting problem by 
redesign of the NN architecture. Their approach has four main 
components:

 1. The larger input (13 × 21) caused a large number of parameters 
to be cut using an adaptive encoding of amino acids. An 
optimal and compressed representation of the input letters is 
found by the NN. This technique is also referred to as weight
sharing.

 2. A different network is designed for each of the three classes. 
A three-residue periodicity between the first and second 
hidden layers was built for the case of α-helices. The second 
hidden layer is fully interconnected to the second hidden 
layer, which has a typical size of 5–10 units. A typical α-helix
network contains 160 adjustable parameters. About 300–500 
adjustable parameters is contained in a β-sheet or γ-coil
network. Balanced training sets were used with the same 
number of positive and negative examples on training these 
architectures in isolation. 

 3. They use ensembles of networks and filtering to improve the 
prediction.
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Five different networks are used for each type of structure at each 
position. The combining network takes a window of 15 consecutive 
single predictions. The input layer to the combining network has size 
225. To keep the number of parameters within a reasonable range, the 
connectivity is restricted by having one hidden unit per position and 
per ensemble class. The input is locally connected to a hidden layer 
with 45 units. The hidden layer is fully connected to three normalized 
exponential output units. The error measure used is the negative log 
likelihood, which in this case is the relative entropy between the true 
assignment and the predicted probabilities.

Riis and Krogh use a weighting scheme along with the multiple 
alignments. The maximum entropy weighting scheme is used. 
Averaging operates on soft probability values produced by single-
sequence prediction algorithm. A small network with a single hidden 
layer of 5 units is then applied to filter the consensus secondary-
structure prediction derived using multiple alignment. Coil regions are 
less conserved and hence have higher per-column entropy in a multiple 
alignment. The performance is improved with an overall accuracy of 
71.5 percent and with better correlation coefficients. It is comparable 
with the method of Rost and Sander [22]. The consensus is that there 
appears an upper bound on accuracy of slightly above 70 to 75 percent 
on any prediction method based on local information only.

6.7.4 Protein Secondary Structure Using HMMs
HMMSTR is a model for general protein sequences based on the I-sites 
library of sequence-structure motifs. Unlike the linear hidden 
Markov models used to model individual protein families, HMMSTR 
has a highly branched topology and captures recurrent local features 
of protein sequences and structures that transcend protein family 
boundaries. The model extends the I-sites library by describing the 
adjacencies of different sequence-structure motifs as observed in 
the PDB and by representing overlapping motifs in a much more 
compact form, achieving a great reduction in parameters. The HMM 
attributes a considerably higher probability to coding sequence than 
does an equivalent dipeptide model and predicts secondary 
structure with an accuracy of 74.3 percent, backbone torsion angles 
better than any previously reported method, and the structural 
context of β-strands and turns with an accuracy that should be 
useful for tertiary-structure prediction.

Helix-capping motifs are specific patterns of hydrogen bonding 
and hydrophobic interactions found at or near the ends of helices in 
both proteins and peptides. In an α-helix, the first four >N–H groups 
and last four >C=O groups necessarily lack intrahelical hydrogen 
bonds. Instead, such groups are often capped by alternative 
hydrogen-bond partners. A hydrophobic interaction that straddles 
the helix terminus is always associated with hydrogen-bonded 
capping. From a global survey among proteins of known structure, 
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seven distinct capping motifs are identified—three at the helix N 
terminus and four at the C terminus. The consensus sequence 
patterns of these seven motifs, together with results from simple 
molecular modeling, are used to formulate useful rules of thumb for 
helix termination. Finally, we examine the role of helix capping as a 
bridge linking the conformation of secondary structure to 
supersecondary structure.

A novel method to model and predict the location and orientation 
of α-helices in membrane-spanning proteins was presented by 
Sonnhammer et. al. [24]. It is based on an HMM with an architecture 
that corresponds closely to the biologic system. The model is cyclic 
with seven types of states for helix core, helix caps on either side, loop
on the cytoplasmic side, two loops for the noncytoplasmic side, and a 
globular domain state in the middle of each loop. The two-loop paths 
on the noncytoplasmic side are used to model short and long loops 
separately, which corresponds biologically to the two known different 
membrane insertion mechanisms. The close mapping between the 
biologic and computational states allows us to infer which parts of 
the model architecture are important to capture the information that 
encodes the membrane topology and to gain a better understanding 
of the mechanisms and constraints involved. Models were estimated 
both by maximum likelihood and a discriminative method, and a 
method for reassignment of the membrane helix boundaries was 
developed. In a cross-validated test on single sequences, our 
transmembrane HMM (TMHMM) correctly predicted the entire 
topology for 77 percent of the sequences in a standard data set of 
83 proteins with known topology. The same accuracy was achieved 
on a larger data set of 160 proteins. These results compare favorably 
with existing methods.

Secondary structures such as helix, sheet, and coil can be learned 
by HMMs, and these HMMs are applied to new sequences whose 
structures are unknown. The output probabilities from the HMMs are 
used to predict the secondary structures of the sequences. Sonhammer 
et. al. [24] tested this prediction system on approximately 100 sequences 
from a public database (Brookhaven PDB). Although the 
implementation was “without grammar” (no rule for the appearance 
patterns of secondary structure), the result was reasonable.

6.7.5  DAG RNNs: Directed Acyclic Graphs and Recursive 
NN Architecture and 3D Protein Structure Prediction

Baldi and Pollastri [25] tackled protein secondary-structure prediction, 
which is one of the open problems in bioinformatics, by using DAG 
RNNs. DAG-RNNs are directed acyclic graphs and recursive 
neural network architectures. Protein structures are invariant after 
undergoing translations and rotations. This was included in the 
approach of Baldi and Pollastri. They proposed a machine-learning 
pipeline that consisted of three steps:
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1. Representation of a given domain using directed acyclic 
graphs

 2. Parameterizaion of the relationship between each variable 
and its parent variables by feedforward neural networks

 3. Application of weight sharing within appropriate subsets 
of DAG 

 4. Connections to capture stationarity and control model 
complexity.

It is a three-step process. The specific class of DAG-RNN 
architectures is derived from lattices, trees, and other structural 
graphs. The overall models resulting are probabilistic. The internal 
deterministic dynamics allows efficient propagation of information 
as well as training by gradient descent to tackle large-scale 
problems.

All the weights of the BRNN architecture, including the weights 
in the recurrent wheels, can be trained in a supervised fashion using 
a generalized form of gradient descent derived by unfolding the 
wheels in space. BRNN architectural variations are obtained by 
changing the size of the input windows, the size of the window of 
hidden states that directly influences the output, the number and size 
of the hidden layers in each network, and so forth. Thus BRNN 
architectures have been used in the first state of the prediction 
pipeline, giving rise to the state-of-art predictors for secondary 
structure, solvent accessibility, and coordination number. 

6.7.6  Annotate Subcellular Localization 
for Protein Structure

LOC3D [26], at http://cubic.bioc.columbia.edu/db/Loc3d, is both a 
weekly updated database and a Web server with predictions of 
subcellular localization for eukaryotic proteins of known 3D structure. 
Neural networks are used in the prediction of localization. The 
LOC3D database currently contains predictions for greater than 8700 
eukaryotic protein chains taken from the PDB. The Web server can be 
used to predict subcellular localization for protein for which only a 
predicted structure is available from threading servers.

The native subcellular localization of a protein is important for 
understanding gene/protein function. Aberrant subcellular localization 
of proteins has been observed in the cells of patients with several 
disease, such as cancer and Alzheimer’s disease. Attempts to predict 
subcellular localization either experimentally or computationally have 
become one of the central problems in bioinformatics.

Subcellular localization is annotated for not many of the proteins 
deposited in the PDB. The LOC3D database is the first comprehensive 
database of predicted and inferred subcellular localizations for 
proteins of known structure. The LOC3D database can be useful in 

http://cubic.bioc.columbia.edu/db/Loc3d
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complementing functional information for proteins from domain 
databases such as SMART and PFam and functional site resources 
such as ELM, Protfun, and PROSITE. The LOC3D has four different 
paths to annotate subcellular localization (Fig. 6.8).

These are (1) Predict NLS, (2) Lochomi, (3) Lockey, and (4) 
Loc3DIni. From the query PDB structure, the amino acid sequence, 
three-state secondary structure, and solvent-accessible surface 
residues of the protein are extracted. In Predict NLS, the amino acid 
sequence is scanned for nuclear localization signals. In Lochomi, the 
sequence is first aligned using PSI-BLAST to a localized annotated 
database of proteins. If any sequence homologues are discovered, 
subcellular localization annotation is transferred from the homologue. 
Lockey infers subcellular localization based on keyword entries. 
These three programs are based solely on the amino acid sequence of 
the protein and do not use any structural information. Subcellular 
localization is predicted by a system of neural networks in LOC3 
Dini. The NNs are trained in a number of global features such as 
amino acid composition, secondary structure composition, and 
surface residue composition. The final localization annotation in the 
LOC3D database is taken from individual methods.

LOC3 Dini is a prediction system that predicts subcellular 
localization from sequence and structure using NNs. Subcellular 
localization is predicted using a number of global features of protein 
sequence and structure. The LOC3 Dini system consists of three layers 
and sorts proteins into one of four localization classes: extracellular, 
cytoplasmic, nuclear, and mitochondrial.

PBB structure
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1.0 The first layer consists of four dedicated of neural networks 
that use particular features from protein sequences, alignments, and 
secondary structures to presort proteins into L/not L, where L=
cytoplasmic, nuclear, extracellular, or mitochondrial. The features 
used include amino acid composition, composition of surface-
accessible residues, and composition of amino acid residues in one of 
the three secondary structure states (helix, sheet, or coil). Evolutionary 
information was incorporated by replacing the amino acid with 
profile-based amino acid composition.

2.0 The second layer consists of neural networks combining 
output from networks trained on different input features. The third 
layer uses a simple jury decision to assign one of four localization 
states to each protein. Major sources of improvement over publically 
available methods originating from using (1) secondary structure 
information, (2) solvent accessibility, and (3) evolutionary information 
from sequence profiles as input to the neural networks. The final 
four-state classification accuracy of the system was 76.5 percent. This 
is greater than 10 percentage points higher than systems using only 
amino acid composition.

Summary
The relative entropy site-selection problem is NP complete. Hertz 
and Stormo presented a greedy approach to develop an efficient 
algorithm for the relative entropy site-selection problem. Profiles 
with lower relative entropy scores than d will be discarded. An 
iterative approach is used in the Gibbs sampling method for the 
solution to the relative entropy site-selection problem. The maximum-
subsequence problem is a corollary of the problem of finding the 
coding regions in DNA. Bates and Constable suggested an algorithm 
that solves the maximum-subsequence problem using the principle 
of recursion. Sharma has shown that maximum subsequence is found 
in the deepest branch of the binomial heap. The time taken is O(n).
All subsequences are available in the binomial heap. The interpolated 
Markov model (IMM) is implanted in GLIMMER. Markov models 
from first to eighth order are used in this procedure. For prediction of 
the translation start-site codon, the SD sites problem can be solved by 
using the t statistic and measurement of statistical significance. OWL 
and dBEST databases are used in the dictionary-based approach to 
gene annotation. The problems of sequence alignment and gene 
finding were treated with a unifying framework by Pachter and Lam. 
The GPHMM is both a generalized HMM and a pair HMM. Manhattan 
networks and Steiner trees are used in the optimization problem of 
designing efficient search spaces for HMMs. The Viterbi algorithm 
search space was reduced from O(D4N2TU) by three orders of 
magnitude. The Pachter algorithm consumes O(n3), where n is the 
number of highest-scoring pairs. It can be reduced to O[n lg(n)] at the 
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expense of increasing the bound for the size of the network from 
twice optimal to four times optimal. The spliced alignment algorithm 
for similarity-based gene recognition is reviewed. The Las Vegas 
algorithm provides the option of “No answer.”

The protein secondary structure—α-helix, β-sheet, or γ-coil—
given the primary sequence of the protein can be determined using 
neural networks. Although the number of proteomes sequenced 
increases rapidly with time, the number of known secondary 
structures is not commensurate with growth of the proteomes. 
Empirical correlations have been developed between protein primary 
structure and protein secondary structure, such as in the Chou and 
Fasman rules. Pioneering work on predicting protein secondary 
structure using neural networks was that of Qian and Sejnowski. 
They used 106 proteins in their study. The fundamentals of neural 
networks were reviewed. Rost and Sander came up with the most 
important performance improvement by using evolutionary 
conformation in their PHD server to predict protein secondary 
structure. The NN had 819 input units, one hidden layer, and one 
output layer. The output layer had 3 units. The work of Riis and 
Krogh is a redesign of NN architecture to solve the overfitting 
problem. The NN was designed with a larger input layer, balanced 
training sets, 160 adjustable parameters for the α-helix network, 300 to 
500 adjustable parameters contained in the β-sheet or γ-coil network, 
ensembles of networks, and filtering for improved prediction. HMMs 
can be used to predict protein secondary structure. Baldi and Pollastri 
used DAG-RNNs for protein secondary-structure prediction. It is a 
three- step process. Weights of the BRNN architecture, including the 
weights in the recurrent wheels, can be trained in a supervised 
fashion. Native subcellular localization of a protein is important for an 
understanding of gene/protein function.
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Exercises
1.0 Show that the longest increasing subsequence for S = {11, 17, 5, 8, 6, 4, 7, 
12, 3} can be found by keeping track of its indices in O[n lg(n)] time.

 Si    11  17  5  8  6  4  7  12  3 

 i     1    2  3  4  5  6  7   8  9 

 Length of h  1  2  1  2  2  1  3  4  1 

 Predecessor  1  3  3

So the maximum increasing subsequence {5, 6, 7, 12}.

2.0 Develop the relative entropy of the site-selection procedure introduced 
by Hertz and Stormo for the following four sequences:

 T G C A A T A 

 T T  A T C G G 

 C A A T A  A A 

 T G T G C G C 

3.0 What is the implication of negative number occurring in the binomial 
heap of all maximum increasing subsequences problem?

4.0 Define the mutual information of three pairs (x, y, z) and random 
variables.

5.0 Define score as log4 CK/CB. Would the choice of base 4 for DNA be a 
better representation than the base 2?

6.0 Discuss the limitation of the recursion principle for the maximum 
subsequence problem. Start with one element at different locations in the 
sequence. Do you get the same answer?

7.0 Show how the interpolated context model tree will look like for three pairs.

8.0 What is the reason for the value 0.5 used as a cutoff for the different 
definitions of λ?

9.0 What if the overlap of A and B starts at the same location? What remains 
the same?

10.0 Under what circumstances will the t statistics be less desirable. How 
about a periodic probability distribution? Do you need a generalized normal 
distribution? If so, what is the equivalent of the z score?

11.0 What if in the Steiner problem the points fall on a square grid or a 
rectangular grid?

12.0 Construct an alignment and state space for the following sequences:

 G  C G A T A T 

 C  G G T T A G
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13.0 Can you have a curvilinear Steiner tree? When?

14.0 Discus the merits and demerits of glueing in space requirements 
reduction.

15.0 Discuss the spliced alignment with nucleotide comparison with Δ
mismatch = –2, Δ match = 2, Δ indel = 0. 

16.0 When the databases reach the level of petabytes, which system will be 
preferred? What are ORACLE Company’s latest forays in this area? When is 
a supercomputer apt for the occasion?

17.0 Some investigators use neural networks to predict secondary structures, 
whereas others use HMMs. What is the difference in approach? What is 
predicted, and what is learned?

18.0 The Ramachandran plot results in α-helices and β-sheets given the 
dihedral angles. The primary sequence of the protein is entered as input 
into a neural network, and the output is the geometric secondary structure 
of the protein. What are the similarities of the two methods? What are the 
differences?

19.0 Can you design a neural network to predict the tertiary structure of a 
protein?

20.0 Show using a neat schematic what would be the strategy to obtain the 
protein secondary structure from the nucleic acid sequence distribution.

21.0 Can two protein structures be aligned if their three-dimensional 
structures are known? Will such an alignment be easier to achive given 
that there are only three possibilities, α-helix, β-sheet, and γ-coil, compared 
with the primary sequence distribution with 20 different amino acids as the 
alphabet.

22.0 What is the relation between disease and protein secondary structure?

23.0 Can drugs be designed using protein secondary structure?

24.0 There are experimental methods to obtain the protein secondary 
structure. Which is preferred, the experimental methods or the neural 
networks? Why?

25.0 Are computer calculations needed to calculate the protein secondary 
structure using the Chou Fasman rules?

26.0 Is there a secondary structure to DNA as in protein? Why?

27.0 Design the architecture of an NN to learn the standard genetic code. 
How many output units, input units, and intermediate units are needed?

28.0 Why is backpropagation preferred in Exercise 27.0?

29.0 How would your design change if reverse transcription, i.e., from RNA 
to DNA, is sought? Can you start from a protein?
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30.0 Devise an NN to learn a DNA sequence and output a suffix tree.

31.0 Design an HMM to learn the standard genetic code.

32.0 Devise an NN to learn a polypeptide sequence. Compare this with an 
HMM that can perform the same task.

33.0 Can a phylogenetic tree be constructed using a neural network?

34.0 Can neural networks be used to obtain a multiple-sequence 
alignment?

35.0 Can a neural network be designed to replace the effect of the affine gap 
penalty model introduced in Chap. 2?

36.0 Can you retrieve a sequence alignment using a neural network?

37.0 Can protein family classification be achieved using neural networks? 
Provide a sketch of your strategy.

38.0 Can you achieve the same results as the wheel HMM shown in 
Fig. 5.13 using a neural network? How many hidden layers are needed 
to find the periodicity in DNA?

39.0 Why are HMMs preferred to neural networks in database mining?

40.0 Why are HMMs preferred to predict the Chargaff parity rules compared 
with neural networks?

41.0 Can local alignment of two sequences be performed by neural 
networks?

42.0 What is a structural alignment? Design a neural network to achieve the 
structural alignment.

43.0 When are “sigma-pi” networks used?

44.0 PHDsec. The secondary structures of proteins are predicted by PHDsec 
using neural networks. The Internet link to the Predict protein site is www.
predictprotein.org. Show that the neural network used by this software is of 
the feed-forward type. Discuss the accuracy level reached, the architecture of 
the ANN (e.g., number of hidden layers), and the weighting functions used 
in this approach.

45.0 Why is a feed-forward architecture used in PHDsec discussed in 
Exercise 44.0? What tasks are performed by the NN?

46.0 DISULFIND. The disulfide bridges in the microstructure of a polypeptide 
are predicted in DISULFIND. The Internet hotlink to this site is http://
cassandra.dsi.unifi.it/cysteines/index.html. Show that the architecture of the 
neural network used is bidirectional and recurrent. What tasks are performed 
by the NN?

47.0 What is the accuracy reached in DISULFIND discussed in Exercise 46.0? 
Discuss the architecture of the NN used.

www.predictprotein.org
www.predictprotein.org
http://cassandra.dsi.unifi.it/cysteines/index.html
http://cassandra.dsi.unifi.it/cysteines/index.html
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48.0 SAM-T99. The secondary structures of proteins can be predicted using 
HMMs in SAM-T99. This was developed at the University of California, Santa 
Cruz, and the Internet hotlink is www.soe.ucsc.edu/compbio/HMM-apps.
What order of HMM is used? What is achieved in the hidden layers?

49.0 What is the accuracy level reached in SAM-T99 discussed in 
Exercise 48.0? What can you suggest to improve the time taken and 
space needed using HMMs?

50.0 JPRED. Protein secondary structure and solvent accessibility are 
predicted by JPRED. Show that the NN used has three layers and is fully 
connected. Profiles generated by HMMs and PSI-BLAST are used by the 
software. Discuss the accuracy reached in this approach.

51.0 Discuss the architecture of the NN used in JPRED in Exercise 50.0.

52.0 Can neural networks be designed to measure the periodicity in protein 
primary structure? If so, how does this help in elucidation of protein secondary 
structure?

53.0 The forward algorithm was developed to solve the evaluation problem 
with increased time efficiency and storage needs. In a similar fashion, what 
ought to be the strategy for neural networks and the primary structures of 
proteins?

54.0 What is the equivalent of the Viterbi algorithm to the decoding problem 
in the construction of an HMM to represent sequences to the neural network 
representation of protein primary and secondary structures?

www.soe.ucsc.edu/compbio/HMM-apps
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CHAPTER 7
Biochips

Objectives
The objectives of this chapter are to

• Learn what a biochip is and prepare a microarray slide.

• Draw parallels between biochips and the microprocessor 
industry.

• Learn the five steps in the microarray cycle.

• Employ microarray detection using a confocal scanning 
microscope.

• Know the criteria for microarray surfaces.

• Understand optimal probe, optimal target concentrations.

• Learn phosphoramadite synthesis

• Be familiar with the three manufacturing methods for ink-jet 
printing, mechanical microspotting, and photolithography.

• Be familiar with t test statistics and normalization of gene 
expression data.

•  Read the case study in the detection of cancer.

7.1 Introduction
Microarrays can be used to understand disease states by enabling the 
analysis of gene expression patterns, sequence variation, and other 
biochemical reactions. According to Schena [1–4], in another 50 years, 
human disease will be eradicated. Although Pauling was the first to 
correlate gene mutations, altered proteins, and disease, the biochip 
technique that is rapidly gaining worldwide acceptance can lead to a 
better understanding of disease mechanisms and suitable drug 
designs to effect cures.

Professor Ron Davis wanted his Ph.D. student Mark Schena to 
study the function of transcription factors in the flowering plant 
Arabidopsis thaliana based on solid-state assays over a cup of 
coffee. They decided to use glass as substrate because it offered 
less background fluorescence and better signal detection at the 
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photomultiplier tube diode arrays. Other materials used by prior 
investigators were nylon and nitrocellulose. The company Affymetrix 
joined hands with the academics, and the rest is history. With stark 
similarity to the growth of the computer chip and microprocessor 
industry, microarray technology is gaining momentum. The concepts 
of miniaturization, automation, and parallelism are used. More genes 
per minute can be scanned in the slides with tiny dots arranged in 
uniform rows and columns.

When the work on microarrays was first presented at a conference 
in the Netherlands in 1994, the audience howled with laughter. Schena 
presented the first microarray enzymatic labeling procedure, 
demonstrating the feasibility of preparing fluorescent probes from 
yeast and plant messenger RNA. Some luminaries in the field noted 
that repetitive sequences in the human genome would prevent the use 
of microarray assays for human studies. The first human microarray 
data were presented at the Stanford Sierra retreat in October 1995. The 
field has exploded in size since the appearance of the paper in Science
magazine in 1995 [2], and several thousands of papers in microarray 
technique and statistical analysis of the same have been published. 
Microarray analysis will lead to a better understanding of the genetic, 
molecular, and cellular processes common to aging, as well as how 
these processes may differ in individuals.

7.1.1 Microarrays, Biochips, and Disease
A microarray is a small analytical device that allows genomic 
exploration with speed and precision unprecedented in the history of 
biology. Glass chips containing thousands of genes are used to 
examine fluorescent samples prepared by labeling mRNA from cells, 
tissues, and other biologic sources. Molecules in the florescent sample 
react with cognate sequences on the chip, causing each spot to glow. 
The intensity of the glow is proportional to the activity of the 
expressed gene (Fig. 7.1). The entire genome can be analyzed in a 
single experiment. Since patterns of gene expression correlate strongly 
with function, microarrays can be used to generate unprecedented 
information on human disease, aging, drug and hormone action, 
mental illness, diet, and many other clinical matters. Microarrays can 
be used to find alterations in gene sequences. This can usher in a new 
era of genetic screening, testing, and diagnostics. Tissue and protein 
microarrays are miniaturizations of traditional histologic and 
biochemical assays. This speeds up the analysis of tumor specimens, 
protein-protein interactions, and enzymes. 

A microarray is an ordered array of microscopic elements on a 
planar substrate that allows the specific binding of genes or gene 
products. The word microarray is derived from the greek word mikro,
meaning “small” and the French word arayer, meaning “arranged.” 
Microarrays are also called biochips, DNA chips, and gene chips. They 
contain collections of small elements or spots arranged in rows and 
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columns. To qualify as a microarray, the analytical device must be (1) 
ordered, (2) microscopic, (3) planar, and (4) specific.

An ordered array is any collection of analytical elements configured 
in rows and columns. Each row of elements must form a straight line 
horizontally across the substrate, and each column of elements must 
form a straight line vertically down the substrate in a manner 
perpendicular to the rows. Ordered elements must have a uniform 
size and spacing and a unique location on the microarray substrate. 
Microscopic is defined as any object smaller than 1 mm. Microarrays 
manufactured using photolithography produce 15- to 30-μm
features. Most tissue microarrays contain spots of 200 to 600 μm. 
Microarray elements are collections of target molecules that allow 
specific binding of probe molecules, including genes and gene 
products, and a typical printed DNA spot contains approximately 
109 molecules attached to the glass substrate. The microarray target 
material can be derived from whole genes or parts of genes and may 
include genomic DNA, cDNA, mRNA, protein, small molecules, 
tissues, or any other type of molecule that allows quantitative gene 
analysis. Target molecules include natural and synthetic derivatives 
obtained from a variety of sources, such as cells, enzymatic reactions, 
and machines that carry out chemical synthesis. Synthetic 
oligonucelotides, short single-stranded molecules that contain chemical 
syntheses, provide an excellent source of target material.

Microscopic elements enable a density greater than 5000 
elements/cm2, rapid kinetics, and the analysis of entire genomes 

FIGURE 7.1 Example of an approximately 40,000-probe spotted oligo 
microarray.
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on a single chip, i.e., miniaturization and automation. Filter arrays 
and other nonmicroarray formats made with larger elements prevent 
miniaturization and automation and do not allow whole-genome 
analysis in a miniature format. 

A planar substrate is parallel and unbending support such as 
glass, plastic, or silicon onto which a microarray is configured. Glass 
is the most widely used substrate material owing to the many 
advantages offered by SiO2. Planar materials are flat over the entire 
surface. Flat supports are amenable to automated manufacture and 
high-quality manufactured microarrays. They allow for accurate 
scanning and imaging and rely on a uniform detection distance 
between the substrate and the detector. Impermeable to liquids, they 
allow for small feature size and low reaction volumes. 

Specific binding refers to unique biochemical interactions between 
probe molecules in solution and their cognate target molecules on the 
microarray. Each microarray spot/target should bind essentially to a 
single species in the labeled probe mixture to provide the most 
accurate measure of genes or gene products. Microarray assays 
exploit a one-target, one-probe-molecule paradigm, and assay 
precision can be enhanced using multiple microarray elements per 
gene. Between 15 and 25 nucleotide target sequences define the 
minimal target length required to achieve single-gene specificity. 

Microarray technology development used the combined expertise 
of different disciplines such as biology, chemistry, physics, 
engineering, mathematics, and computer science. The correlation 
between gene mutations, altered proteins, and disease was made first 
by Pauling in 1949. Pauling showed that hemoglobin from sickle-cell 
patients differs from hemoglobin from healthy individuals in that it 
migrates aberrantly in gel electrophoresis assays. This finding was 
correctly attributed to a change in the surface charge of the molecule. 
By examining normal individuals, carriers, and patients with sickle-
cell disease, Pauling concluded that changes in the hemoglobin gene 
were responsible for the altered protein, and this was verified later in 
gene sequencing studies. This landmark journal article paved the 
way for the molecular genetic analysis of human disease and provided 
a conceptual foundation for the use of microarrays in genetic 
screening, testing, and diagnostics. 

The discovery of the double-helical structure of DNA by Watson, 
Crick, and Williams is the chemical basis of microarray hybridization 
reactions. The discovery of polymerase chain reactions (PCRs) with 
the catalytic activity of the enzymes DNA polymerase, RNA 
polymerase, and reverse transcriptase has contributed to microarray 
analysis. Kornberg discovered polymerase. Reverse transcriptase 
catalyzes the synthesis of DNA [5]. Last year, the Nobel Prize went to 
Roger Kornberg, the son of Arthur Kornberg, for elucidating the 
molecular basis of transcription. Maxam, Gilbert, and Sanger 
developed DNA sequencing technology independently. Berg received 
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the Nobel Prize in 1980 for his fundamental studies of the biochem-
istry of nucleic acids. Bergy developed recombinant DNA technology.

The growth of the microarray industry has a striking resemblance 
to the history of the microprocessor industry. Computer chip 
discovery was credited to Shockley, a cocreator of the transistor and 
recipient of the Nobel Prize in physics in 1956. He is also called the 
“father of silicon valley.” He founded the Shockley Semiconductor 
Laboratories at Palo Alto, California. It transformed northern 
California from a sleepy pastoral community into a world center for 
technological innovation. His aversion to silicon lead to the “traitorous 
eight,” a group of disgruntled employees who left Shockley’s 
company to start Fairchild Semiconductor. Noyce and Moore were 
two of its founders. 

The new company quickly exploited silicon-based fabrication 
methods and manufactured the integrated circuit. The first commercial 
integrated circuits were manufactured in 1961, Moore’s law was 
formulated in 1965, and the computer mouse invented in 1962. Moore, 
the head of research and development at Fairchild, noticed that 
transistor density and computing power were doubling every 12 to 
18 months. Noyce and Moore left Fairchild Semiconductors to found 
Integrated Electronics (Intel) in Santa Clara. 

Intel released the first commercial microprocessor in 1971, and 
the 4004 chip contained 2300 transistors capable of performing 
approximately 100,000 calculations per second (108 kHz). As Moore 
predicted, modern chips have greater computing power. The Pentium 
IV chip, released in 2000, contains 42 million transistors capable of 
carrying out 1.5 billion calculations per second (1.5 GHz) with 180-nm 
circuit lines. 

Microarrays similarly have grown in analytical power and have 
decreased in feature size. The first plant microarrays printed in 1995 
contained 96 genes with 200-μm features, compared with the highest-
density microarrays manufactured in 2001, which contain 30,000 
genes with 16-μm features. Microarray gene content has increased 
more than 300-fold in 6 years, doubling once every 8 months during 
the 6-year period. In due course, the feature size of the microarray 
will be in the nanometer range. New scanning devices such as x-rays 
are needed because the wavelength of light is 400 nm, and the optical 
scanning microscopes currently used to image the microarrays may 
not be sufficient. In addition to analytical power, other similarities 
between microprocessors and microarrays are the parallelism, 
miniaturization, and automation. 

The NanoPrint Microarrayer is a robust and customizable 
platform for all microarray manufacturing applications regardless of 
the type of biomolecule. The NanoPrint systems manufacture high-
quality, precision microarrays using TeleChem’s ArrayIt brand 
patented and widely used Professional-946, and Stealth Style Micro 
Spotting Pins. The NanoPrint uses superior linear drive motion 
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control technology and proprietary Warp1 controllers from Dynamic 
Devices. The NanoPrint is compatible with all standard microarray 
surfaces made by ArrayIt and other vendors. The system is easily 
configured to print microarrays into the flat bottoms of 96-well plates 
by taking advantage of its flexible deck configuration and easy-to-use 
software interface. The Microarray Manager Software combines 
unparalleled power and simplicity into a graphic Windows-based 
package.

Features include a method-creation wizard, user and version 
control management, custom calibration of the slide and microplate 
positions, complete sample tracking, support of input-output data 
files, custom array designs, speed profiles and wash protocols, 
automatic method validation, runtime sample and spotting views, 
and a simulation mode and easy-to-use graphic reprint wizard. The 
high-speed, high-precision linear servo control system of the 
NanoPrint results into superior instrument performance in both 
speed and precision. Combined with the efficient benchtop design, 
user-configurable worktable, humidity and dust control, a host of 
available options, and the flexible and sophisticated software, the 
NanoPrint system is the complete solution for high-performance 
microarray printing. 

7.1.2 Five Steps and Ten Tips
The microarray analysis life cycle consists of five steps, as shown in 
Fig. 7.2. These steps are formulation of a biologic question, sample 
preparation, biochemical reaction, detection, and data analysis and 

Data
analysis/
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reaction
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FIGURE 7.2 Five steps in microarray analysis life cycle.
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modeling. A biologic question has to be formulated prior to embarking 
on a microarray study. For example, how do gene expression patterns 
in a normal human and a patient with cancer differ from each other? 
The goal of the project is to better understand the mechanism of 
cancer disease affliction. 

The second step is sample preparation. This includes DNA and 
RNA isolation [7] and purification, target synthesis, probe amplification
and preparation, and microarray manufacture. The biochemical reaction
involves the incubation of the fluorescent sample with the microarray 
to allow productive biochemical interactions to occur between target 
and probe molecules. DNA microarrays use hybridization for 
this step. Protein microarrays use protein-protein interactions for 
this step. 

The fourth step is the detection step. This involves use of a 
confocal scanning microscope to obtain the image of the microarray 
during gene expression on a photomultiplier tube using diodes. 
Lenses and mirrors are used to effectively illuminate the sample and 
detect the key reactions of interest. Captured images are analyzed 
and modeled to complete the fifth step. Microarray manufacture can 
be achieved using different methods, such as photolithography, ink-
jet printing, and mechanical microspotting. 

The following 10 tips will ensure success in microarray 
analysis [1]:

 1. Follow the protocol. The experimental recipes have been opti-
mized within a specific set of reagents, surfaces, fluorescent 
labels, tools, methods, and techniques. The recipe has to be 
followed to the letter.

 2. Read the mannual. Microarray manufacturers estimate that 
greater than 50 percent of the damage that occurs to expensive 
microarray instruments is incurred in the first 24 hours of 
use. It is prudent to read the manual prior to use of the 
instrument.

 3. Think small. The nucleic acid concentration in a microarray 
hybridization reaction containing 1000 ng of fluorescent 
probe in 5 μL (200 ng/μL) is 40,000 times greater than a filter 
hybridization containing 100 ng of probe in 20 mL. Quantita-
tive gene expression data from 10,000 genes can be obtained 
in a 5-minute scan at a rate of 2000 genes/min using a micro-
array slide compared with 2 weeks required to measure a 
single gene using a filter blot. There is an increase by a factor 
of 80 million over traditional methods. 

 4. Keep it clean. Even a small amount of contamination will alter 
the microarray reaction and skew the data. Protective gloves 
should be worn at all times, and clean rooms are recommended 
for exacting procedures.
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 5. Keep it warm, and keep it hydrated. Elevated background 
fluorescence can harm the data. Background fluorescence can 
be minimized by using elevated reaction temperatures and 
proper hydration. Water evaporates at 0.1 μL/min at ambient 
conditions, and a low-volume microarray reaction can lose a 
significant percentage of its volume quickly if steps are not 
taken to minimize evaporation. Thus keeping it at an elevated 
temperature and hydration is a challenge.

 6. Think globally. A holistic view of biologic systems is required. 
Traditional studies focus on one gene. Global interactions of 
genes and proteins are more important. The global view of 
the cell afforded by gene expression studies using microarrays 
has to be taken into account. 

 7. Do the small experiments first. It is prudent to perform a pilot 
study before scaling it up to the entire genome. 

 8. Confirm as you go. It is recommended to confirm the identity 
of a small number of genes by microarrays before a large 
number of precious samples are achieved. Confirming 
microarray analysis pathway early saves a lot of heartache 
later on.

 9. Look early. Given the complexity of cell signaling pathways, 
looking early after stimulation, i.e., within 1 to 4 hours will 
maximize the chances of identifying the primary response 
genes and will yield a gene fingerprint specific to a particular 
response.

 10. Don’t panic: One way to combat the microarray data flood 
that results in panic is to use data quantitation, mining, 
modeling tools, and focused experimentation to narrow the 
list of candidate genes before embarking on detailed study of 
each gene.

7.1.3 Applications of Microarrays
One of the important applications of microarrays is the study of gene
expression. Eighty-one percent of the scientific publications on 
microarrays contain such studies. Researchers in the United 
States have contributed 71 percent of the microarrays, but 
scientists from nine other nations, including Japan, the United 
Kingdom, Germany, Canada, France, Australia, Sweden, China, and 
Finland, have provided nearly 33 percent of the publications. 

By measurement of gene expression levels as a function of cell 
and tissue type and storing the results in databases, a deeper insight 
into multicellular development and a better understanding of 
pathologic cellular events can be achieved. Human brain tissue has 
been most actively studied to date, but other tissues, including liver, 
breast, prostate, lung, colon, kidney, heart, bladder, and skin, have 
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also been studied. The key to longevity-causing genes can be 
obtained from microarray studies. The onset and progression of 
human disease are determined by a complex set of factors that include 
genetics, diet, the environment, and the presence of infectious 
agents. Microarray analysis is unique in its ability to detect each of 
the contributing factors.

Oncologic studies have accounted for 83 percent of microarray 
publications. Diabetes, cardiovascular disease, Alzheimer’s disease, 
stroke, AIDS, cystic fibrosis, Parkinson’s disease, autism, and 
anemia are under intense investigation using microarray analysis 
by scientists around the world. Through the study of differential 
gene expression using microarrays, the mechanism of cancer 
formation can be better understood—and the cure will soon follow. 
The ultimate goal of microarray analysts is to eradicate every human 
disease by the year 2050.

Many drugs impart their therapeutic action to specific cellular 
targets, inhibiting protein function and altering gene expression. In 
principle, microarrays can be used for drug discovery and clinical trials 
by generating gene-expression profiles in patients undergoing drug 
treatment. Many illness result in specific changes in gene expression, 
and drugs that reverse these changes are expected to ameliorate the 
disease. The cost of drug development may be cut down and safer 
medicines may be produced on account of microarray studies. 
Microarrays can be used for patient genotyping and dividing the 
population into drug responders and nonresponders.

Microarrays can be used in genetic screening and diagnostics.
Thousands of disease-causing sequence variants are known, and 
affordable microarray screens for these diseases are of tremendous 
scientific and commercial interest. Microarray screening can be used 
to distinguish the population as normal, carrier, and disease 
genotypes. Treatable and curable genetic diseases can be identified at 
an early stage. Genetic testing kits can reduce health care costs. The 
commonly inherited diseases, such as cystic fibrosis, sickle-cell 
anemia, Tay-Sachs disease, and breast cancer, can be studied using 
microarrays, and the genomic information can be provided to the 
public by confidential access.

Protein chips can be used to obtain the polypeptide sequence 
distribution. Metabolomics, like genomics and proteomics, is the 
complete functional annotation of the genome. The functions of 
the organism are triggered by the signals from the proteins that are 
generated by the DNA. Microarray analysis can be used in 
metabolomics.

Gene chip technology is a practical method for determining the 
sequence of genetic building block. It can speed up searches for 
disease-related genetic changes. Using gene chips and analysis, a 
team of scientists at Johns Hopkins University was able to accurately 
determine the order of 2 million blocks of each of 40 individuals’ 
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genomes in just a year. This is in a fraction of the time required by 
traditional technology. Only 10 errors of every 10,000 points were 
detected. Researchers at Washington University School of Medicine 
in St. Louis helped to explain how genes dictate our biologic clock. 
The circadian rhythm was studied using microarray analysis. How 
do you feel when you get up at 4:00 a.m. compared with 4:00 p.m.? 
Events such as this are driven by the internal clock, connected to 
external cues such as the sun. 

So far products of eight different genes have been discovered to 
be essential to operations of this clock. Three laboratories in 
collaboration with Affymetrix have identified 22 genes that appear to 
be rhythmically regulated by the internal clock of the Drosophila fly. 
Drosophila melanogaster has 14,000 genes. Microarrays can be used to 
prepare a comprehensive list of all the active genes in a tissue sample. 
The fly was exposed to light for 12 hours, followed by darkness for 
12 hours. The cycle continued for a total of 96 hours. Genetic analyses 
were performed on half the flies at six different time-points on the 
fifth day. Seventy readings of 14,000 genes were taken, and a million 
individual measurements were completed. Sophisticated computer 
statistical analyses were performed, and the team determined that 
between 72 and 200 of the flies’ 14,000 genes showed significant 
rhythm of gene expression in normal flies living in a daily light-dark 
cycle. Oscillating genes also were detected. So were mutant flies. 

The chip is embedded with DNA molecules instead of electronic 
circuitry. It is designed to probe a biologic sample for genetic 
information that indicates whether the person has a genetic 
predisposition for certain diseases. A University of Houston scientist 
has developed a chemical process for building a device that could 
help doctors predict a patient’s response to drugs or screen patients 
for thousands of genetic mutations and diseases, all with one simple 
lab test. This is a highly parallel technology—10,000 experiments can 
be performed at once. 

Aging of the human retina has been found by researchers to be 
accompanied by distinct changes in gene expression. Using 
commercially available DNA slides, a team of researchers directed by 
Swaroop has established the first-ever gene profile of the aging 
human retina, an important step in understanding the mechanisms of 
aging and its impact on vision disorders. In the Journal of Investigative 
Ophthalmology and Visual Science, Swaroop and colleagues show that 
retinal aging is associated, in particular, with expression changes of 
genes involved in stress response and energy metabolism. The term 
gene expression means that in any given cell, only a portion of the 
genes is expressed or switched on. For example, a person’s pancreas 
and retina have the same genes, but only the pancreas can turn on the 
genes that allow it to make insulin.

Swaroop believes that these findings will help scientists to 
understand whether age predisposes one to changes in the retina 
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that, in turn, lead to age-related diseases. For vision researchers, one 
of the most pressing disorders is age-related mascular degeneration 
(AMD), a progressive eye disease that affects the retina and results 
in the loss of one’s fine central vision. Microarray technology is an 
important tool for gene profiling because it allows rapid comparison 
of thousands of genes, something that was unheard of even few 
years ago. 

7.2 Microarray Detection

7.2.1 Fluorescence Detection and Optical Requirements
All microarrays require fluorescence scanning to facilitate reliable 
imaging of the gene expression pattern or the problem at hand. The 
confocal laser scanner delivers the highest image and data quality. 
Commercial devices such as ScanArray are used currently. In future, 
as the minimum feature size of the microarray dot size reaches the 
nanometer range, x-ray scanners may have to be developed because 
the wavelength of light is 400 nm. The substrate is chemically treated 
glass in the form of a 25 × 75 mm slide. DNA arrays incorporate 
samples tagged with multiple fluorescent probes. Differential gene 
expression leads to a ratiometric approach and renders absolute 
calibration unnecessary. The glass substrate gives minimal back-
ground fluorescence and hence is a good choice. 

Fluorescence in biologic detection is a vast topic and has been 
discussed comprehensively elsewhere [6]. Fluorescent light is emitted 
from a dye or fluorophore that is illuminated by excitation light. The 
fluorescence emission wavelength is always longer than the 
wavelength of excitation light. For example, fluorescein isothiocynate 
(FITC) exhibits a excitation curve peak at 494 nm and an emission 
peak at 518 nm. The wavelength difference between the emission and 
excitation peaks is 24 nm. Typical for most dyes used in microarrays, 
this wavelength difference is called the Stokes shift.

The optical requirements of a detection instrument are as follows:

Excitation. A number of sources are possible for providing the 
excitation. These are lasers, arc or filament lamps, and light-
emitting diodes (LEDs). Excitation wavelength range cannot 
overlap with that of the emitted wavelength range. Flood illu-
mination may not be desirable on account of the nonuniformity 
introduced. Excitation wavelengths may be chosen based on the 
dyes used. The wavelength should be smaller than that of the 
dye. Excessive light may cause harm to the sample. This is so 
because of the onset of photobleaching.
Emission light collection. The fl uorescent light is collected using an 
objective lens. The angle of collection is critical. Fluorescent emis-
sions are spherical in nature. The light-collection angle of the lens 
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is often characterized by the numerical aperture (NA). An NA of 
1.0 describes a lens that collects light over an entire hemisphere, 
corresponding to a light-collection effi ciency of 50 percent. Most 
confocal laser microarray scanners have NAs between 0.5 and 0.9. 
CCD-based array scanners have NAs between 0.2 and 0.5.
Spatial addressing. The sample is divided into pixels. Pixel size 
needs to be smaller than the dot size. Scanners for 100-μm-
diameter microarray dots commonly used pixel sizes between 
5 and 20 μm. As the microarray technology develops into the 
nanometer feature size range, pixel size in the nanorange will 
be a challenge. 
Excitation/emission discrimination. Microarray fl uorescence emis-
sion power is orders of magnitude smaller than the excitation 
power. An optical device that can delineate the two sources of 
light is needed. Most objective-lens–based microarray scanners are 
epi-illuminated. In epi-illuminated systems, the excitation and emis-
sion beams follow the same path through the objective lens to and 
from the sample but in opposite directions. A beamsplitter is used to 
separate the mixture of light. One type of beamsplitter is a color-
separating dichroic or multichroic interference fi lter that refl ects 
the excitation beam and transmits the emission beam. This device 
can handle two or three different excitation/emission wavelength 
pairs. More than four wavelengths will make it a diffi cult separa-
tion task even for a multichroic lens. Since all devices are real and 
far from ideal, emission fi lters are placed in the path of the light 
beam. A geometric beamsplitter can be used where the excitation 
beam and emitted beam do not mix or cross each other. 
Detection: Detectors found in array scanners include photomulti-
plier tubes (PMTs), charged coupled devices (CCDs) arrays, and 
avalanche photodiodes (APDs). In the visible wavelength range, 
PMTs are the most sensitive detectors. PMT sensitivity falls rap-
idly between the red and near-infrared ranges. A CCD does not 
posses the inherent low noise amplifi cation of a PMT and therefore 
needs external amplifi cation. It has a high NA (0.6–0.9), limiting 
the optical signal available for collection. CCD inclusion is imprac-
tical in the confocal scanning arrangement. 

7.2.2 Confocal Scanning Microscope
Confocal scanners [8] have two focal points (Fig. 7.3) configured to limit 
the field of view in three dimensions. They image a small area with an 
aim of point resolution using pixels. The collimated laser beam is 
reflected from the beamsplitter into the objective lens. The laser beam 
fills only a fraction of the lens. The degree of fill depends on the choice 
of the lens NA and pixel size. The laser beam in focused on the sample, 
where it induces spherical fluorescence in all directions. The excitation 
beam also reflects back up toward the detector. The objective lens 
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collects a fraction of the spherical fluorescence emission and collimates 
it into a parallel beam. It also collects the reflected laser light, which 
is three to seven orders of magnitude higher in intensity than the 
fluorescent light. The return beam is again directed to the beamsplitter, 
which reflects most of the laser light back toward the laser source and 
transmits most of the fluorescent beam toward the detector. A mirror 
then reflects the system without any optical functionality, followed 
by the emission filter, which selects a narrow band of fluorescence 
and rejects all remaining laser excitation light. The pinhole 
arrangement facilitates the depth of focus of the objective lens, 
coinciding with the imaging in the detector.

Restricted depth of focus is a disadvantage of the confocal 
scanning arrangement. It has a moving substrate scanner. Using a 
moving lens and a moving substrate, higher light collection 
efficiencies can be obtained. Useful microarray scanners must detect 
low levels of fluorescence in the picowatt range. At these low levels, 
almost all materials fluoresce—the glass substrate, the chemicals 
comprising the substrate’s surface coating, sample washing 
chemicals, lenses, filters, and even DNA molecules. The scanning 
instrument needs to maximize detection of the target dye’s emission 
while minimizing detection of all the other fluorescence sources. 
The reflected and scattered light must be rejected even though it is 
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FIGURE 7.3 Confocal scanning arrangement in a microarray scanner.
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1 million times brighter than the dim fluorescent light. A PMT can 
detect a single photon or a beam of light that is low in power. PMT 
amplifies the photon event into an electron event. By varying the 
tube high voltage, the PMT sensitivity or gain increases by a range 
of several hundred to one. 

Some of the instrument performance measures are as follows:

1. Number of lasers and fluoresence channels. A single excitation 
laser may excite several dyes and can be used with emission 
filters. Crosstalk between multiple dyes has to be 
minimized.

 2. Detectivity. Detectivity is the minimum dot fluorescent 
brightness that can be distinguished from the background 
when the sensitivity is set so that the brightest element of the 
sample produces an intensity level at full scale. Dye molecules 
per unit area (fluors/μm2) may be the unit of measure. 
Directivity for the array preparation process is often defined 
by the dimmest dot in the dilution series that can be detected. 

 3. Sensitivity. Instrument conversion efficiency of light power to 
a digital value at a particular wavelength is called the 
sensitivity. It is a measure of a “gain” of the instrument. 
Sensitivity is independent of properties of the sample.

 4. Crosstalk. When scanning samples with multiple dyes, 
crosstalk can occur. Crosstalk is the excitation and detection 
of dye with the “wrong,” or unintended, excitation wavelength 
and emission filter. In differential gene expression, crosstalk 
negatively distorts the expression ratio between two channels. 
It is minimized by the use of narrow-band emission filers 
centered on the dye peaks with good attenuation of out-of-
band wavelengths. 

 5. Resolution. Spatial resolution of a microarray scanner is 
usually expressed as a pixel size, with 5, 10, and 20 μm being 
common in commercial devices. Each microarray dot has to 
be imaged into many pixels. Edge effects and other defects 
can be rejected at the quantitation stage. Pixel dimension 
should be no larger than one-eighth to one-tenth the diameter 
of the smallest microarray dot to be imaged.

 6. Field size. Field size, the area on the substrate that can be 
scanned, must match the array-making process. The larger 
the scan area, the more dots there are that can be placed on 
each sample. Usually a 1- to 1.5-mm border around the 
periphery of the slide is not used because it may be clipped or 
not flat. Maximum usable area is about 22 × 73 mm. 

 7. Uniformity. Uniformity is a measure of the consistency of 
fluorescence emission and detection across the field. 
Uniformity of light collection throughout the image field is of 



 B i o c h i p s  227

particular concern in confocal scanners. Scanner uniformity 
within ±10 percent is sought by the users. 

 8. Image geometry. Image quantitation software is used for 
postprocessing of the image data. The image size, x-y
orthogonality, and pixel placement linearity are important 
considerations. Tolerance of ±2 percent in image size and 
linearity is allowed. There may be some errors owing to 
random geometry. Jitter manifests as vertical lines in the 
image.

 9. Throughput. It is a measure of the number of samples scanned 
in a day. It depends on the resolution, image field size, and 
number of channels. Some CCD camera–based scanners 
exhibit high throughput. Dim samples are an important 
consideration. Throughput for multichannel scanning can be 
increased dramatically by incorporating color-separating 
beamsplitters in the emission path. Multiple detectors can 
scan multiple colors simultaneously, and multiple signal-
processing modules are used. The specification of first-
generation scanners in a single-color, 20 × 60 mm field is 5 to 
15 minutes at 10-μm resolution. 

 10. Superposition of signal sources. The image viewed on the 
scanner’s monitor is not a simple image of dye fluorescence 
in the microarray dots. It is a superposition of several images, 
of which only one is desired. The image acquired has to be 
postprocessed, and some salient considerations are (1) 
fluorescence of the target dye being scanned, (2) photon 
statistical noise, (3) fluorescence of the background owing to 
other chemicals and the glass, (4) laser light reflection, and (5) 
electronic noise.

7.3 Microarray Surfaces
High-quality surfaces are needed for the preparation of microarray 
samples. How well the molecules attach to the surface determines the 
efficiency of the biochemical reactions, the precision of detection, and 
the quality of the resulting data. A microarray experiment is only as 
good as the surface used to create it. An ideal microarray surface has 
to be (1) dimensional, (2) flat, (3) planar, (4) uniform, (5) durable, (6) 
inert, (7) efficient, and (8) accessible.

There exists an optimal target concentration. This is the number of 
target molecules per unit volume of printed sample that provides the 
strongest signal in a microarray assay. Optimal target density is the 
number of target molecules per unit area on a microarray substrate 
that provides the strongest signal in a microarray assay. Experiments 
were conducted, and microarray signals are plotted as a function of 
the target molecule concentration. A 15-base oligonucleotide was 
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printed on a microarray substrate at a concentration range of 1 to 
100 μM. Hybridization with probe solution containing a fluorescent 
15-mer complementary to the target sequence was performed. The 
scanning was measured at different target concentrations of 1, 3, 10, 
30, 50, and 100 μM. Examination of the results revealed that the 
fluorescent intensity increased steadily in the range of 1 to 10 μM
target and reached a peak intensity at 30 μM oligonucleotide, at which 
point the signal leveled off and decreased significantly as the target 
concentration reached 100 μM. At the optimal target concentration, 
the number of target molecules bound to the microarray surface area 
can be calculated. Assuming that 30 percent of the printed 
oligonucleotide couples to the substrate and that a typical printed 
droplet is 300 pL, a 30-μM solution of oligonucleoides gives 2.6 lakh 
oligonucleotide molecules per square micron of the substrate. This is 
the optimal target density. Additional calculations reveal that 2.6 lakh 
molecules/μm2 correspond to 1 oligonucleotide per 400 Å2 or 1 target 
molecule per 20 Å in a single dimension. It is interesting that a single-
stranded DNA is 12 Å in diameter. The probe-target duplexes (Fig. 7.4)
would be approximately 24 Å in diameter. Owing to major and minor 
grooves, the effective diameter is 20 Å. A spacing of 1 target per 20 Å 
defines the optimal target concentration. More material would cause 
steric hindrance in the packing. Insufficient target density means too 
few molecules available for hybridization. Physical interference at 
higher concentrations cause damage and a fall in signal intensity. In a 
similar fashion, optimal probe concentration is the number of probe 
molecules per unit volume of sample that provides the strongest 
signal in a microarray assay.

FIGURE 7.4 Target DNA molecules hybridized with probe molecules with 
fl uorescent tags and attached to the substrate via linker molecules.
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Probe concentrations greater than the optimal concentration are 
useful under certain circumstances. Target (T) molecules on the 
microarray surface form productive interactions with probe (P)
molecules in the solution to form probe-target (T-P) pairs. The 
generalized biochemical reaction for target-probe binding can be 
given as

T + P → T-P (7.1)

The rate of formation of target-probe products depends on the 
concentration of the two reactants and can be expressed as the product 
of the concentration of T and P times a proportionality constant k:

Rate = –k[T][P] = d[T]/dt = d[P]/dt (7.2)

As indicated by Eq. (7.2), the reaction between target and probe is 
a second-order biochemical reaction. The constant k is the rate 
constant. Under optimal experimental conditions, the printed 
microarray will contain a much larger number of target molecules 
than are required to form T-P pairs during the course of the reaction. 
Target excess is a kinetic condition in a microarray assay in which the 
concentration of target molecules on the surface exceeds the 
concentration of probe molecules in solution. Under target-excess 
conditions, the concentration of target molecules is relatively constant 
and can be lumped with the reaction rate constant term k. Thus

Rate = –k’[P] (7.3)

where k’ denotes the fact that the constant target concentration has 
become part of this term. As can be seen by Eq. (7.3), the reaction 
rate becomes a pseudo-first-order expression. Integrating with 
respect to time,

[P]/[P0] = exp(–k’t) (7.4)

The probe molecules get consumed during the course of the 
reaction in an exponential fashion. Doubling the concentration of a 
microarray probe solution will double the rate of the reaction. Because 
faster rates result in more target-probe pairs per unit time and greater 
[T-P] means greater signal, it is desirable to use as much probe 
material as possible in any given microarray experiment as long as 
the performance of the assay is not compromised. The probe 
concentration that gives the strongest microarray signals is known as 
the optimal probe concentration. The linear portion of the graph is called 
the linear range of the assay. A saturated condition occurs when the 
microarray target element in which most or all of the target molecules 
are located contains bound probe molecules. Selective target saturation 
refers to a microarray assay condition in which a subset of the target 
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elements becomes largely or fully bound, leading to a loss of 
quantitation. Signal compression is a microarray assay condition in 
which the fluorescent readings underestimate the number of 
molecules present on the target element or in the probe mixture, 
leading to a loss of assay quantitation. 

A glass surface is preferred as the substrate because of the low 
background fluorescence generated from it. The smoothness of the 
glass can be measured using a scratch and dig specification. There 
are different types of glass. The structure of the glass is SiO2
tetrahedra. The smoothness of the glass surface can be accessed at 
high resolution using atomic force microscopy (AFM). The AFM 
technique employs a fine silicon tip that traces back and forth across 
the surface, detecting and recording surface irregularities as it 
moves. Three-dimensional images are produced in AFM scans. A 
typical microarray glass substrate subject to AFM analysis reveals a 
maximal roughness of 5.3 nm over a 4-μm2 area, corresponding to a 
distance of approximately 40 Si—O bonds or about twice the 
diameter of duplex DNA. 

Etching refers to a chemical process used to score glass surfaces 
for the purpose of labeling and indentification. The glass surface 
may be treated by using either amine or aldehyde. Silane reagents 
are used for this purpose. The reaction of glass with three-
aminopropyl trimethoxysilane is a typical treatment reaction. The 
overall positive charge of amine microarray surfaces allows 
attachment of printed biomolecules that carry negative charges. 
Attachment occurs primarily via electrostatic interactions or 
attractive forces between positive charges on the amine groups and 
negative charges on biomolecules such as nucleic acids. Attachment 
of nucleic acids to an amine surface occurs via interactions between 
negatively charged amine groups. The DNA phosphate backbone 
can be attached along the side of the chain with the microarray 
glass substrate. 

Denaturation is the process of converting DNA into single strands. 
Aldehyde surface treatment uses a spacer arm and an amino linker. 
The substituted amine attaches by covalent coupling. Covalent 
coupling is an attachment scheme that involves electron sharing 
between target molecules and the microarray substrate. Molecules 
couple to an aldehyde surface in a directional manner such that the 
end of the molecule containing the amino linker bonds to the 
microarray surface. Proper reaction conditions and blocking agents 
all but eliminate background fluorescence with aldehyde surfaces. 

Steric availability is a desirable spatial configuration such as end 
attachment that maximizes the physical accessibility of target 
molecules to incoming probe molecules. Blocking agents are chemical 
or biochemical agent such as borohydrate or bovine serum albumin 
used to inactivate reactive groups on a microarray substrate to prevent 
nonspecific reactivity.
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7.4 Phosphoramadite Synthesis
Oilgonucleotides are short chains of single-stranded DNA or RNA. 
Single-stranded oligonucleotides provide another common source of 
target sequences for nucleic acid microarrays. Microarrays of 
oligonucleotides can be prepared using delivery or synthesis methods. 
In the delivery strategies, oligonucelotides made offline are prepared 
using standard phosphoramadite synthesis, suspended in a suitable 
printing buffer, and formed into a microarray using a contact or 
noncontact printing technology. In the synthesis approaches, 
oligonucleotides are made in situ one base at a time, and many 
synthesis cycles are used until the microarrays are complete. Owing 
to reduced coupling efficiency and large synthesis time, the length of 
the oligonucleotides is only 5 to 25 nucleotides. The main advantages 
of oligonucleotide targets are increased specificity and the capacity to 
work directly from sequence database information. Two disadvan-
tages of oligonucleotide targets are the requirement for sequence 
information prior to manufacture and the loss of signal when using 
certain types of fluorescent probes. 

The chemistry used in the phosphoramadite synthesis in the 
industry was developed by Caruthers in the early 1980s. 
Phosphoramadite-based oligonucleotide synthesis underlies most of 
the synthetic DNA market. The DNA market includes 75 commercial 
vendors worldwide and annual revenues totaling hundreds of 
millions of dollars. The oligoncucleotides of any sequence can be 
built from the four DNA building blocks. The four DNA bases used 
most often are known as cyanoethyl phosphoramidites. Each base is 
identical to its natural counterpart except for the presence of several 
chemical substituents that protect the phosphoramidites during 
synthesis and activate the 3’ phosphate for chemical coupling. 

Three of the phosphoramadite bases, A, C, and G, contain a reactive 
primary amine on the purine or pyrimidine ring and therefore require 
a protecting group on the amine to avoid damaging this position 
during synthesis. A benzoyl protecting group is typically used for bases 
A and C, whereas an isobutyryl group is usually employed on G. The 
fourth base, T, does not contain a primary amine on the pyrimidine 
ring and thus does not require a protecting group. All four 
phosphoramidite bases also contain a dimethoxytrityl (DMT) group on 
the 5’ hydroxyl that blocks the 5’ hydroxyl from chemical coupling 
until it is intentionally deprotected during synthesis. Selective 
deprotection allows synthesis to proceed in a stepwise manner. The 3’ 
phosphate is protected against side reaction and activated for 
nucleophilic attack by the presence of β-cyanoethl and diisopropyl 
groups, respectively. The protecting groups are removed at the end of 
synthesis, yielding an oligonucleotide that is identical to native DNA. 

The synthesis process proceeds in a 3’ and 5’ direction as follows: 
The initial step in oligonucelotide synthesis involves coupling the 
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first base to the solid support. Oligonucleotides can be synthesized 
on a variety of different supports, but the most common matrix is 
controlled-pore glass (CPG). CPG contain pores of identified 
diameters inside of which synthesis occurs. A deprotection step in 
oligonucelotide synthesis allows the 5’ hydroxyl to act as a 
nucleophile, attacking the 3’ activated phosphate group of the second 
base that is added to the activated CPG matrix by coupling to the first 
base. The result is dinucelotide bond formation in the 3’ to 5’ direction. 
After the coupling step, unreacted 5’ hydroxyl groups are inactivated 
or capped by acetylation to prevent these bases from reacting with 
phosphoramidites in subsequent coupling steps. Capping prevents 
the formation of frame-shift oligonucelotides that are missing one or 
more bases compared with the full-length product, a process that 
occurs if unreacted 5’ hydroxyls are not capped before the next 
coupling cycle. After capping, the phosphate trimester of the newly 
formed dinucleotide is oxidized to the phosphate form to stabilize 
the phosphate linkage.

The four-step process of deprotection, coupling, capping, and 
oxidation is the basis of phosphoramidite synthesis and is shown in 
Fig. 7.5. An oligonucleotide of a known sequence is synthesized by 
repeating the cycles a few times and using the right bases and reagents 
efficiently. Each four-step cycle takes 5 to 7 minutes, enabling synthesis 
of a synthetic 70-mer in less than 8 hours. Following synthesis, the 
nascent oligonucleotides are treated overnight with ammonium 
hydroxide to remove the protecting groups from the base and 
phosphate groups and to cleave the oligonucelotides from the CPG 
support. With coupling efficiencies exceeding 99 percent per cycle, 
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FIGURE 7.5 The four-step process of oligonucleotide synthesis on CPG.
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a synthetic 70-mer preparation would contain more than 60 percent 
full-length product. Full-length oligonucleotides can be purified 
away from shorter products using polyacrylamide gel electrophoresis 
(PAGE) or high-pressure liquid chromatography (HPLC).

7.5 Microarray Manufacture
New superconductors are prepared using combinatorial mixtures of 
components. Combinatorial synthesis programs are the state-of-the-
art mode for discovery of novel drug leads. And in biology, arrays of 
unique sequences are used commonly to assay the genetic state of 
cells. In all cases, small volumes of liquids must be metered precisely 
at high rates of speed. Technology derived from ink-jet printing has 
been applied to meet such liquid-handling needs. Ink-jet printing,
mechanical microspotting, and photolithography are the three primary 
methods of manufacture of microarray slides.

There are two modes of DNA microarray fabrication using ink-jet 
technology. First is the step-step synthesis of DNA by applying 
reactive nucleotide monomers to individual surface sites. Second is 
the spotting and immobilization of presynthesized DNA. Ink-jet 
technology has been used for over 20 years to control delivery of 
small volumes of liquid to defined locations on two-dimensional 
surfaces. Different droplet-generating devices are available, such as 
piezoelectric capillary, piezoelectric cavity, thermal, acoustic, 
continuous-flow, etc. Drop diameters of 25 μm at up to 10 kHz can be 
readily achieved using piezoelectric devices. Smaller-diameter 
droplets and higher frequencies can be generated using piezoelectric 
cavity devices, and even higher with thermal devices. No nozzle is 
used in the acoustic device, which possess high rates of drop formation 
(5 mHz) and small drop diameters (<1 μm). In continuous-flow 
droplet-generating devices, stream or liquid is broken into distinct 
droplets by oscillatory pressure. A typical device consists of static-
pressure ink reservoir, a small-diameter orifice, and a pressure-
generating element. The orifice plays a significant role in determining 
the diameter of the droplets ejected from the device. Drops can be 
generated on demand, and ink can be consumed efficiently. Another 
method of printing uses a continuous stream of droplets directed via 
an electric or magnetic field onto a print area or, alternatively, a gutter 
where the ink is recycled. The printing mode is quite robust because 
the jet is primed by pressurizing the liquid reservoir. Nozzle-less 
acoustic jet is an interesting development in technology. The drop 
size can be derived by equating the forces acting on the surface of the 
drop from the internal and external pressures:

ΔP(4π)R2 = σ2πR (7.5)

or R = σ/2ΔP (7.6)
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A piezoelectric capillary jet consists of a glass capillary fixed with 
an orifice and surrounded by a cylindrical piezoelectric. Droplet 
formation with piezoelectric capillary jets is accomplished by 
alternately expanding and contracting the piezoelectric element to 
generate shock pulses in the fluid chamber. When appropriately 
tuned to the characteristics of the liquid, pressure pulses sufficient to 
eject droplets from the nozzle can be generated. Drop formation rates 
can be up to 10 kHz. Droplet formation is easier at certain frequencies. 
The size of droplets from these devices depends on the diameter of 
nozzle, the magnitude of the driving force, and the physical properties 
of the liquid in use. Care must be taken when manufacturing high-
quality nozzles and in supplying the appropriate waveform to obtain 
droplets that are satellite-free and propagating perpendicular to the 
nozzle plate. Two commercial instruments that are built using this 
concept are the CombiJet and the GeneJet. 

The CombiJet can be used to synthesize DNA microarrays by 
delivering reagents for phosphoramidite oligonucleotide synthesis to 
defined locations on glass substrates. GeneJet is used to manufacture 
DNA microarrays by spotting presynthesized DNA fragments. Localized 
DNA synthesis is achieved by using jets to deliver reagents for one of 
two reactions in the phosphoramidite oligonucleotide synthesis cycle. 
The first uses this single-jet device to deliver reagent to deprotect the 
5’ hydroxyl position at specific regions on the two-dimensional 
surface. Oxidation of the phosphor and coupling of one of the four 
bases are done in bulk chemical treatment of the entire surface. The 
second method uses five jets, one for each of the four phosphoramidites 
and one for the activating reagent. The CombiJet III was designed to 
fully automate all steps of DNA microarray synthesis. During in situ 
synthesis of DNA, no purification is possible. All the reactant products 
have to remain on the surface. The quality of the material in each 
locus thus is determined by the stepwise coupling efficiency.

In order to evaluate the coupling yield, a set of 64 spots of identical 
sequence was synthesized with a cleavable attachment to the surface. 
At the end of 15 cycles, the slide was subjected to a gas-phase base 
reaction to disrupt the surface treatment. The oligos were collected by 
washing the surface. After complete removal of the remaining 
protecting groups, the oligo product was end labeled with 
[32P]phosphate and subjected to PAGE. The banding patterns of the 
oligo products were analyzed quantitatively to derive an average 
stepwise yield of 91 percent. 

To increase the efficiency of hybridization and the DNA attach-
ment of the surface, linker molecules can be used. Linkers attach 
themselves to the substrate on one of its end and to the target molecule 
on the other. One example of a linker molecule is polyethylene glycol 
polymers. Solvents that are compatible both with the ink-jet hardware 
and the particular chemical reactions desired are difficult to find. 
Acetonitrile was used as a solvent for phosphoramidites. For the 
deprotection reagent, di- or trichloroacetic acid is common. The 
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volatility of these solvents makes them less suitable. Less volatile 
dibromomethane was used in place of dichloromethane to reduce the 
loss of solvent during preparation. This approach offers flexibility 
and is low in cost.

To scale up the microarray synthesis into commercial practice, 
some technical hurdles have to be overcome. With a cycle time for the 
instrument of 10 minutes, an array of 18-mer is printed in 3 hours. 
The next-generation instrument will be expected to print more than 
one array at a time. Robustness of jetting has to be improved. Jet-to-
jet variability has to be reduced. Sensitivity of drop size to nozzle 
characteristics needs to be reduced. Change from a uniform glass 
substrate to a patterned region is desirable.

Deposition of presynthesized biologic material is another method 
of fabrication. The GeneJet III device can use up to eight jets to aspirate 
samples from 384- or 1536-well microtiter plates and apply them to 
microarrays. The instrument has five independent axes. The jets are 
connected by solenoid valves. Monitoring by video camera can be 
used to deliver droplets free of satellites. The equipment is operated 
in two modes of printing—start-stop mode and print-on-the fly 
mode. Appropriate software is used in the control of the instrument 
during its operation. Based on the concentration of material and the 
expected amount of cross-linking to the surface, 5 to 50 attomoles of 
material are available in each spot. No shearing of DNA strands has 
been observed with material up to 2000 base pairs in length. Viscosity 
limits the length of the DNA that can be studied. At the desired 
concentration, such as 1 μg/μL, DNA of 5 kb and larger likely will be 
too viscous for a small-orifice (30-μm) jet. Viscosity reduction by 
adding cosolvents may alleviate the problem.

The total time to print a batch of arrays includes the setup time, 
the time spent cleaning and loading the liquid deposition devices, 
and the print time itself:

Total time = print time + fi ll time + setup time (7.7)

All time associated with movement and deposition of spots is 
included in the print time. Fill time includes all wash steps for 
deposition device, time for loading the device, and time for testing 
the load and getting into position for printing. Setup time includes 
the time to load the array substrates and microtitre plates, etc. 
containing array element material, as well as time to offload the 
instrument when the batch run is complete. 

For either the pin or jet instruments, the sum of the print time and 
fill time can be expressed in terms of the number of instrument cycles 
and the time per cycle for each component: 

Print time + fi ll time = number of cycles × (print time/cycle
    + fi ll time/cycle) (7.8)

T = C(P × Tcycle + Tf) + Ts (7.9)
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where T is total time, C is cycles, P × Tcyc is print time per cycle, Tf is 
fill time per cycle, and Ts is setup time. For the pin tool,

P × Tcycle = NTc (7.10)

where N is the number of arrays printed and Tc is contact time per 
array, including motion

C
G
P

=  (7.11)

where G is the number of genes and P is the number of pins. 
Combining terms, the total print time for a batch-mode pin device 
thus is 

Tp = G/P(NTc + Tf,p) + Tsp (7.12)

where R is the number of rows of arrays on a platter, T1 is the print 
time per line, and J is the number of jets. By arranging the arrays as a 
square, the number of rows can be calculated:

R = (N)1/2 (7.13)

Combining the preceding terms, the total time for batch printing with 
the jet approach is

Tj = G/J(RT1 + Tf,j) + Ts,j (7.14)

The time for printing for the jet approach depends on the number 
of rows in the arrays, and time for pin printing depends on the 
number of arrays. The time grows linearly with the number of arrays 
in the pin tool and changes with the square root of the number of 
arrays in the jet instrument. For an equal number of jets and pins, the 
jet instrument always will have the time advantage. The crossover 
point is independent of the number of genes printed. 

7.6 Normalization for cDNA Microarray Data
There are many sources of systematic variation in microarray 
experiments that affect the measured gene expression levels. 
Normalization is the term used to describe the process of removing 
such variation, e.g., for differences in labeling efficiency between the 
two fluorescent dyes. In this case, a constant adjustment is commonly 
used to force the distribution of the log ratios to have a median of 
zero for each slide. For cDNA microarrays, the purpose of dye 
normalization is to balance the fluorescence intensities of the two 
dyes green Cy3 and red Cy5 dye as well as to allow the comparison 
of expression levels across experiments. Dye bias can be seen most 
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obviously in an experiment where two identical mRNA samples are 
labeled with different dyes and subsequently hybridized to the same 
slide. The bias can stem from a number of factors, including physical 
properties of the dyes (e.g., heat and light sensitivity and relative 
half-life), efficiency of dye incorporation, experimental variability in 
probe coupling and processing procedures, and scanner settings at 
the data-collection step. The relative gene expression levels measured 
as log ratios from replicate experiments may have different spreads 
owing to differences in experimental conditions. Some scale 
adjustment then may be required so that the relative expression levels 
from one particular experiment do not dominate the average relative 
expression levels across replicate experiments. 

Speed [9] developed a normalization procedure using gene 
expression data from lipid metabolism in mice. He attempted to 
identify genes with altered expression in apoliprotein AI knockout 
mice with low high-density lipoprotein (HDL) cholesterol levels 
compared with inbred C57B1/6 control mice. The normalization 
procedure depends on the experimental setup. Three situations are 
identified:

 1. Within-slide normalization

 2. Paired-slide normalization

 3. Multiple-slide normalization

A number of considerations influence this decision, such as the 
proportion of genes that are expected to be expressed differentially in 
the red and green samples and the availability of control DNA 
sequences. Three types of approaches were described:

 1. All genes in the array. Frequently, biologic comparisons made 
on microarrays are very specific in nature, i.e., only a small 
proportion of genes are expected to be differentially expressed. 
Therefore, the remaining genes are expected to have constant 
expression, and so can be used as indicators of the relative 
intensities of the two dyes. Almost all genes on the array may 
be used for normalization.

 2. Constantly expressed genes. Instead of using all genes on the 
array for normalization, a smaller set of genes called 
housekeeping genes has constant expression across a variety of 
conditions, e.g., β-actin. Although it is very hard to identify a 
set of housekeeping genes that does not change significantly 
under any conditions, it may be possible to find sets of 
“temporary” housekeeping genes for particular experimental 
conditions.

 3. Controls. An alternative to normalization by housekeeping 
genes is used to spike controls or a titration series of control 
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sequences. In the spiked-controls method, synthetic DNA 
sequences or DNA sequences from an organism different 
from the one being studied are spotted on the array (with 
possible replication) and included in the two mRNA samples 
in equal amounts. These spotted control sequences thus 
should have equal red and green intensities and could be 
used for normalization. In the titration-series approach, spots 
consisting of different concentrations of the same gene or 
expressed sequence tag (EST) are printed on the array. These 
spots are expected to have equal red and green intensities 
across the range of intensities. Genomic DNA that is supposed 
to have constant expression levels across various conditions 
may be used in the titration series. In practice, however, 
genomic DNA is often too complex to exhibit much signal, 
and setting a titration series that spans the range of intensities 
for different experiments is technically very challenging. 

The apo AI experiment was carried out as part of a study of 
lipid metabolism and artheroscelerosis susceptibility in mice. 
Apoliprotein AI is a gene known to play a pivotal role in HDL 
metabolism. The treatment group consisted of 8 mice with the apo 
AI gene knocked out, and the control group consisted of 8 normal 
C57B1/6 mice. For each of these 16 mice, target cDNA was obtained 
from mRNA by reverse transcription and labeled using a red 
fluorescent dye, Cy5. The reference sample used in all hybridizations 
was prepared by pooling cDNA from the 8 control mice and was 
labeled with a green fluorescent dye, Cy3. In this experiment, 
target cDNA was hybridized to microarrays containing 6384 cDNA 
probes, including 200 related to lipid metabolism. Each of the 
16 hybridizations produced a pair of 16-bit images that were 
processed using the software package Spot. The main quantities of 
interest produced by the image-analysis methods are the (R, G) 
fluorescence intensity pairs for each gene on the array.

After image processing and normalization, the gene expression 
data can be summarized by a matrix X of log-intensity ratios 
lg2(R/G) with p rows corresponding to the genes being studied and 
n = n1 + n2 columns corresponding to the n1 control hybridizations 
(C57BI/6) and n2 treatment hybridizations (apo AI knockout). In the 
experiment considered, n1 = n2 = 8 and p = 5548. Differentially 
expressed genes were identified by computing t statistics. For genes, 
j, the t statistic comparing gene expression in the control and 
treatment groups, is
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where x1j and x2j denote the average background corrected and 
normalized expression levels of gene j in the n1 control and n2
treatment hybridizations, respectively. Similarly, s1j

2 and s2j
2 denote 

the variances of gene j’s expression levels in the control and treatment 
hybridizations, respectively. Large absolute t statistics suggest that 
the corresponding genes have different expression levels in the 
control and treatment groups. The statistical significance of the results 
was assessed based on p values adjusted for multiple comparisons. 

Global normalization methods assume that the red and green 
intensities are related by a constant factor. That is R = kG, and in 
practice, the center of the distribution of log ratios is shifted to zero:

 log2(R/G)→ log2(R/G) – c = log2[R/(kG)] (7.16)

A common choice for the location parameter c = log2(k) is the 
median or mean of the log intensity ratios for a particular gene set. 
Global normalization methods are mentioned in the preprocessing 
steps in a number of papers on the identification of differentially 
expressed genes in single-slide cDNA microarray experiments. In 
many cases, the dye bias appears to depend on spot intensity, as 
revealed by plots of the log-ratio M versus overall sport intensity A.
An intensity- or A-dependent dye normalization method thus may be 
preferable to global methods. A local A-dependent normalization 
was performed using the robust scatter plot smoother Lowess from 
the statistical software package R7.

log2(R/G)→log2(R/G) – c(A) = log2{R/[k(A)G]} (7.17)

where c(A) is the lowess fit to the M versus A plot. The Lowess (·) 
function is a scatter plot smoother that was found to perform robust 
locally linear fits. The Lowess (·) function will not be affected by a 
small percentage of differentially expressed genes, which will appear 
as outliers in the M versus A plot. The user-defined parameter f is the 
fraction of the data used for smoothing at each point; the larger the f
value, the smoother is the fit. The M versus A plot amounts to a 
45-degree counterclockwise rotation of the log(G), log(R) coordinate 
system. Within the print-tip group, normalization is simply a (print 
tip + A)–dependent normalization that is

log2(R/G)→ log2(R/G) → ci(A) = log2[R/ki(A)G] (7.18)

where ci(A) is the Lowess fit to the M versus A plot for the ith grid 
only, I = 1, 2, . . . , i represents the number of print tips.

Paired-slides normalization applied dye-swamp experiments, 
two hybridizations for two mRNA samples with dye assignment 
reversed in the second hybridization. The normalized log ratios for 
the first slide are denoted by log2(R/G) – c and those for the second 
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slide by log2(R’/G’) – c’. Here, c and c’ denote the normalization 
functions for the two slides. These could be obtained by any of the 
within-slide normalization methods described earlier. If c ≈ c’,

½{log2(R/G) – c – [log2(R’/G’) – c’]}

≈ ½[log2(R/G) + log2(G’/R’)]

    = ½ log2(RG’/GR’) = ½(M – M’) (7.19)

The relative expression levels for the two slides may be combined for 
the two slides without explicit normalization by a procedure referred 
to as self-normalization. The validity of the assumption can be checked 
using housekeeping genes or genomic DNA. Given that the dye 
assignments are reversed in the two experiments, one expects that the 
normalized log ratios on the two slides are of equal magnitude and 
opposite sign, that is,

log2(R/G) – c ≈ log2(R’/G’) – c’ (7.20)

Therefore, rearranging the equation and assuming again that 
c ≈ c’, the normalization function c can be given by

c ≈ ½[log2(R/G) + log2(R’/G’)] = ½(M + M’) (7.21)

In practice, c = c(A) is estimated by the Lowess fit to the plot of 
½(M + M’) = ½log2(RR’/GG’) versus ½(A + A’), where this time all the 
genes are used. Global normalization amounts to a vertical translation 
in an M versus A plot and does not allow for spatial- or intensity-
dependent dye biases.

Summary
Microarray techniques can be used to measure gene expression, 
understand disease states better, and effect cures by better drug 
design. Schena used glass substrates with less background 
fluorescence and developed the enzymatic labeling procedure using 
fluorescent probes from yeast and plant mRNA. The microarray 
industry is expected to grow in a similar fashion as the microprocessor 
industry has grown. A microarray is an ordered array of microscopic 
elements on a planar substrate that allows the specific binding of 
genes or gene products. To qualify as a microarray, the analytical 
device must be ordered, microscopic, planar, and specific. The 
microarray analysis life cycle consists of five steps: formulation of a 
biologic question, sample preparation, biochemical reaction, 
detection, and data analysis and modeling. Ten tips were given to 
ensure success in microarray analysis. Some of the interesting 
applications of microarrays are gene expression, drug delivery, 
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genetic screening and diagnostics, gene profiling, understanding 
mechanism of aging, the study of cancer, etc.

The confocal scanning microscope can be used in microarray 
detection that uses fluorescence scanning. The sample is excited by 
laser beam, and fluorescence light is emitted from the probe in the 
sample and can be detected using the difference in wavelength of 
24 nm between excitation and emitted light beams. Epi-illumination 
is used in the scanning process. The excitation and emitted beams 
pass through the objective lens to and from the sample but in opposite 
directions. PMT is used as a detecting element. The instrument 
performance measures are number of lasers and fluorescence channels, 
detectivity, sensitivity, crosstalk, resolution, field size, uniformity, 
image geometry, throughput, and superposition of signal sources. 
High-quality surfaces are needed for the preparation of microarray 
samples. An ideal microarray surface has to be dimensional, flat, 
planar, uniform, inert, efficient, and accessible. 

Optimal target concentration occurs at a spacing of 1 DNA target 
molecule per 20 Å. The probe duplex is approximately 24 Å. Optimal 
probe concentration is the number of probe molecules per unit volume 
of sample that provides the strongest signal in a microarray assay. 
Microarrays of oligonucleotides can be prepared using delivery or 
synthesis methods. The four steps in the process of oligonucleotide 
synthesis are deprotection, coupling, capping, and oxidation. The three 
manufacturing methods used during microarray manufacture are ink-
jet printing, mechanical microspotting, and photolithography. 
Stepwise coupling efficiency can be defined to gauge the quality of 
microarray synthesis. Linker molecules can be used to increase the 
efficiency of hybridization and DNA attachment at the surface. The 
time taken for ink-jet printing when jets or pins are used is compared. 

Statistical normalization procedures can be used to remove 
systematic variation in microarray experiments that affects the 
measured gene expression levels. Speed developed a normalization 
procedure using gene expression data from lipid metabolism in 
mice. He used housekeeping genes that have constant levels of 
expression across a variety of conditions. Differentially expressed 
genes were identified by computing t statistics. Global normalization 
methods, M versus A plot, paired-slide normalization, within-slide 
normalization, and multiple-slide normalization methods are 
discussed.
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Exercises
1.0 Compare the silicon chip with the biochip, including the same three 
fundamental principles.

2.0 Describe the four basic criteria for microarray.

3.0 Why are there maxima in intensity versus target concentration?

4.0 Show how the DNA gets attached along the entire length of the molecule 
to an amine glass surface.

5.0 Describe the role of blocking agents. 

6.0 Describe with a schematic the four-step process of the oligonucleotide 
synthesis.

7.0 Discuss the hybridization parameters of probe and target with glass 
substrate.

8.0 What is the role of the mirror in the confocal scanning arrangement in a 
microarray scanner?

9.0 Show by schematic a geometric beamsplitter in an epi-illuminated 
scanner.

10.0 Compare the time taken for jet printing versus pin printing of microarray 
dots.

11.0 What is the drop size dispensed by a nanocapillary jet?

12.0 Discuss the protocol for SNP array synthesis with a schematic.

13.0 Elaborate the protocol for short tandem repeat array synthesis.

14.0 How is the student t test used during normalization?

15.0 What are housekeeping genes?

16.0 Discuss k means clustering with an illustration.

17.0 Name two examples of target molecules other than DNA.
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18.0 What is the difference between an amine-treated and an aldehyde-
treated surface?

19.0 Discuss the first prototype confocal scanning microscope.

20.0 What is a Stokes shift?

21.0 What is the role of a PMT detector?

22.0 What is the role of hydration in microarray sample preparation?

23.0 Who was the first to discover the correlation between disease and gene 
expression?

24.0 Discuss the binding efficiency during hybridization.

25.0 Why is glass a superior choice for a substrate?

26.0 What is a dichroic lens?

27.0 Discuss the instrument performance measures of a confocal scanning 
microscope.

28.0 What is the difference between photolithography and ink-jet 
printing?

29.0 What should be the considerations for printing a nanoarray?

30.0 What is dye bias?

31.0 Discuss T. P. Speed’s experiments on the lipid metabolism in mice.

32.0 Discuss the pioneering event in the development of the field of 
microarray technology and the exploration of the function of transcription 
factors in the flowering plant Arabidopsis thaliana.

33.0 Discuss the study of yeast in Brown’s laboratory using microrrrays.

34.0 Discuss the properties of zinc titania glass and the advantages of using 
it as a substrate.

35.0 Draw a neat schematic of the confocal scanning microscope.

36.0 Distinguish between global normalization and within-slide 
normalization.

37.0 Discuss the key requirements of the microarray substrate.

38.0 Enumerate the 10 tips for sample preparation.

39.0 Distinguish between in situ synthesis and delivery methods of target 
preparation.

40.0 What is the optimal probe concentration?

41.0 What are amine- and aldehyde-treated surfaces?

42.0 What is an M versus A plot?
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43.0 What is dendrimer technology?

44.0 Write notes on pharmacogenomics.

45.0 What is the role of the fluorescent probe in sample preparation?

46.0 Discuss the five steps of microarray preparation.

47.0 Name the three methods of manufacture of microarray analysis.

48.0 Why is controlled-pore glass used during the synthesis of 
phosphoramidite?

49.0 What are optical requirements of excitation and emittance?

50.0 What is the difference between microarray and macroarray?

51.0 The presence of water is required during the hybridization reactions. 
Evaporation rate also increases with temperature. How can the sample be kept 
warm and hydrated?

52.0 Given Tuppy’s estimate for sequencing proteins, how long will it 
take to sequence a DNA? What would be the reduction in time if microarray 
technology were used?

53.0 Why is uniformity among different dots important in microarray 
analysis?



CHAPTER 8
Electrophoretic 
Techniques and 

Finite Speed 
of Diffusion

Objectives
The objectives of this chapter are to

• Understand the role of electrophoresis in sequence distribu-
tion measurement.

• Understand the role of molecular diffusion in electrophoresis.

• Understand the limitations of Fick’s laws of diffusion.

• Derive a generalized Fick’s law of diffusion.

• Apply a generalized Fick’s law of diffusion to standard 
geometries.

• Apply a generalized Fick’s law of diffusion to electrophoretic 
transport.

8.1  Role of Electrophoresis in the Measurement 
of Sequence Distribution

As discussed in Chap. 1, the sequence distribution of DNA can be 
obtained by the method of gel acrylamide electrophoresis. The 
technique of electrophoresis is not described in detail in the current 
literature. A similar technique, paper chromatography, is used in the 
acquisition of the sequence distribution of polypeptides. In both these 
techniques, diffusion plays an important role. Fick’s laws of diffusion 
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have limitations, especially in the time frame of the critical events 
that take place during measurement of sequence distribution. 

The critical events are the migration of molecular fragments 
over varying distances depending on their molecular sizes. Usu-
ally, calibration is used to convert the raw measurements to sequence 
data. Why are mathematical models not used for interpretation of the 
electrophoretic pattern or the paper chromatographic pattern? It is 
being realized increasingly among investigators that at short time 
scales, Fick’s description of transient diffusion is not an adequate 
representation of all the events. This chapter reviews molecular 
diffusion principles with particular attention to the limitations of 
Fick’s laws of diffusion. A generalized Fick’s law of diffusion is 
used to account for all the transient time events that occur during 
a real process. The implications on the electrophoretic techniques 
and sequence errors and shotgun sequencing cannot be overem-
phasized.

8.2 Fick’s Laws of Molecular Diffusion
Diffusion is the migration of a species from a region of a higher con-
centration to a region of lower concentration under the driving forces 
of a concentration gradient in a primary manner. Other forces can 
cause such movement in a secondary manner, such as a superim-
posed temperature gradient, as in thermophoresis; a superimposed 
concentration gradient of a second species, as in diffusophoresis; a 
superimposed electromotive gradient, as in electrophoresis; an 
osmotic potential; a steam sweep; a centripetal force; a pressure drop; 
a surface tension gradient; a surface force; and so on. The term 
molecular diffusion refers to the Brownian motion of molecules from a 
region of higher concentration to a region of lower concentration. The 
movement of species from a region of lower concentration to a region 
of higher concentration would be in violation of the second law of 
thermodynamics.

The Clausius inequality states that heat always will flow from a 
region of higher temperature to a region of lower temperature. It can 
never flow from a region of lower temperature to a region of higher 
temperature in a spontaneous fashion. Not all heat can be converted 
to work without discarding some heat to the lower temperature 
region. In an analogous manner, mass cannot diffuse from a region of 
low concentration or low chemical potential to a region of higher 
concentration or high chemical potential in a spontaneous manner. 
The direction of transfer is to equalize the concentration. 

By another analogy between heat and mass transfer, the stipula-
tion of the third law of thermodynamics that the lowest attainable 
temperature anywhere in the universe is 0 K translates into the law 
that there can exist no negative concentration. The lowest concentra-
tion achievable anywhere in the universe is 0 mol/m3. Diffusion plays 
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a pivotal role in the sequence distribution analysis in genome and 
proteome projects. 

Albert Einstein, one of the best physicists of the twentieth century, 
observed that a cube of sugar placed in the bottom of a hot cup of tea 
diffused, and a uniform concentration of sugar throughout the entire 
cup results at the final state. If a few crystals of potassium 
permanganate (KMnO4) are placed at the bottom of a tall bottle filled 
with triple distilled water, the pink color will spread slowly throughout 
the bottle. At first, the color will be concentrated in the bottom of the 
bottle. After a day, it will penetrate upward a few centimeters. After 
several years, the solution will appear homogeneous. The process 
responsible for movement of the colored material is diffusion. 
Diffusion is a molecular phenomenon. In gases, diffusion progresses 
at a rate of about 10 cm/min, in liquids its rate is about 0.05 cm/min, 
and in solids its rate is about 100 nm/min.

In the middle of the nineteenth century, Fick introduced two 
differential equations that provide a mathematical framework to 
describe the otherwise random phenomenon of molecular diffusion. 
The flow of mass by diffusion across a plane was proportional to the 
concentration gradient of the diffusant across the plane. The 
components in a mixture are transported by a driving force during 
diffusion. The ability of the diffusant to pass through a body depends 
on the diffusion coefficient D (m2/s). The solubility of the species in 
the body is also a salient consideration in determining the permeation 
rates of the species in the body. Fick stated the first two laws of 
diffusion in the year 1855. He was the youngest of five children of a 
civil engineer. He was very much interested in mathematics in his 
high school and was enamored by the work of Poisson. His brother, a 
professor of anatomy, persuaded Fick to switch to medicine from 
mathematics. Ludwig served as Fick’s tutor. Fick’s thesis was on 
visual errors caused by astigmatism. He performed outstanding work 
on mechanics in hydrodynamics and hemorheology and in the visual 
and thermal functioning of the human body. In his first paper on 
diffusion, published in 1855, Fick interpreted the experiments of 
Graham with interesting theories, analogies, and quantitative 
experiments. He showed that diffusion can be described on the same 
mathematical basis as Fourier’s law of heat conduction and Ohm’s 
law of electricity. Fick’s first law of diffusion can be written as [1]

 
J AD

C
x

A= −
∂
∂

 (8.1)

where J is defined as the one-dimensional molar flux. The diffusivity 
is the proportionality constant that depends on the material under 
consideration, a thin shell of thickness Δx with constant cross-sectional 
area A across which the diffusion is considered to occur. A mass 
balance in the incremental volume considered AΔx for an incremental 
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time Δt, neglecting any reaction or accumulation of the species, can be 
written as

 Mass in − mass out ± mass reacted/generated 
 = mass accumulated (8.2)

 Δt(Jx − Jx+Δx) = AΔxΔCA (8.3)

Dividing Eq. (8.3) throughout by AΔxΔt and obtaining the limits 
as Δx and Δt go to zero gives

 
− ∂

∂
=

∂
∂

J
x

A
C
t
A  (8.4)

Combining Eqs. (8.1) and (8.4), the governing equation for the 
diffusing species when the area across which the diffusion occurs is a 
constant becomes 
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Equation (8.5) is Fick’s second law of diffusion in one dimension. 
This is a fundamental equation that described the transient one-
dimensional diffusion of the migrating species. When Fick attempted 
to integrate Eq. (8.5), he was discouraged by the numerical effort 
needed. He found the second derivative difficult to measure 
experimentally, and he ran into the effect of experimental errors 
increase by the second difference. Finally, he demonstrated in a 
cylindrical cell the steady-state linear concentration gradient of 
sodium chloride (NaCl). He uses a glass cylinder containing crys-
talline sodium chloride in the bottom and a large volume of water in 
the top. By periodically changing the water in the top volume, he was 
able to establish a steady-state concentration gradient in the cylindrical 
cell. He confirmed his equation from this steady-state gradient. 

The Skylab science demonstration was the first in a series of 
investigations designed by Facimire [2] to study low-gravity diffusive 
mass transfer. The specific objective of the demonstration was to 
photographically document the diffusion of tea in water in spacecraft. 
In preparation for the experiment, Skylab pilot Jack Lousma filled a 
½-in-diameter, 6-ft-long transparent tube three-quarters full with 
water. A highly concentrated tea solution then was delivered to the 
water surface (via a 5-cc syringe) through a synthetic fiber wad. 
The tube was then capped. The fiber pad was employed to try to 
bring the tea and water in contact without entrapped air. Three 
attempts to produce the wad were unsuccessful. During the fourth 
attempt, an “a good bubble-free interface” was realized. The next day, 
Lousma reported that no diffusion of the tea in the liquid had 
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occurred. Thus the experiment was initiated again. During this new 
experimental run, the wad was removed, and the tea was delivered 
on top of the water. After an air bubble between the tea and water 
was removed via the syringe, a “smooth, continuous interface” was 
achieved. The tea was allowed to diffuse over the next 3 days. After 
the flight, 16-mm photographs of the diffusion were analyzed. In 
51.15 hours, the visible diffusion front advanced 1.96 cm. It was noted 
that the diffusion front become increasingly parabolic during the 
demonstration. It also was noted that very little diffusion occurred 
near the container wall. A similar ground-based experiment was 
performed for comparison with the space investigation. After 
45.5 hours, three different zones were visible: (1) a dark area, (2) an 
area of medium darkness, and (3) a very light area. The medium-
colored area had advanced 1.6 cm in 45.5 hours.

8.3 Generalized Fick’s Law of Diffusion
Fick’s model of molecular diffusion is not universal. It is analogous to 
Fourier’s law of heat conduction, as Fick proposed in his stated laws. 
There are seven reasons to seek a generalized Fick’s law of molecular 
diffusion:

 1. The theory of Onsager and the contradiction of Fick’s law 
of molecular diffusion by the theory of microscopic 
reversibility [3]. 

 2. Nernst [4] found that heat can have inertia in good thermal 
conductors at low temperatures, which can lead to oscillatory 
discharge. This cannot be fully explained by Fourier and, by 
analogy, Fick.

 3. Events at high mass flux rates cannot be described using 
Fick’s parabolic equations.

 4. Landau and Lifshitz [5] noted that the speed of heat and, 
by analogy, the speed of mass cannot be greater than the 
speed of light. That the speed of a moving object has to be 
less than the speed of light was examined by Kelly [6] for 
diffusion.

 5. Singularities can be found in the solutions to the Fick parabolic 
model for industrially important cases:

 a. Blowup of surface flux as time goes to zero during 
transient molecular diffusion in a semi-infinite medium 
subject to a constant wall concentration in Cartesian 
coordinates [7]. 

 b. Surface flux during transient molecular diffusion within 
a finite slab of width 2a subject to a step change in surface 
concentration.
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 c. The concentration term in the constant wall flux problem 
in cylindrical coordinates in infinite medium is solved for 
using the Boltzmann transformation [8], leading to a 
solution in an exponential integral [9–15].

 d. In the short time limit, solutions to the parabolic equations 
by Boltzmann transformation for an infinite sphere 
blowup can be found.

 6. Fick’s law was developed from empirical observations at 
steady state, and when used in transient applications, it is an 
extrapolation that is not confirmed adequately by systematic 
experimental study or molecular theories.

 7. Overpredictions of the theory to experimental observations 
were found in gel electrophoresis [16], restriction mapping 
[17], adsorption [18], nuclear fuel rods [19], drug delivery 
systems [20], and heat transfer systems [21,22] when the Fick 
model is used. This indicates that there is another mechanism 
that has not been accounted for.

Boley [23] found that addition of the second derivative in time of 
temperature to the governing equation is the only way to remove the 
singularities in the solution to parabolic heat conduction equations. 
Thus a generalized Fick’s law of mass diffusion can be written as
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This is a damped-wave diffusion and relaxation equation or a 
generalized Fick’s law of molecular diffusion. When the relaxation 
time τr is zero, Eq. (8.6) will revert to Fick’s model of molecular 
diffusion. Reference to the use of this equation was found in heat 
conduction and can be traced back to Maxwell [24], Morse and 
Feshbach [25], Cattaneo [26], and Vernotte [27], who postulated this 
equation independently. This equation can be used to account for the 
finite speed of molecular diffusion and removes the infinite speed 
implied in Fick’s model of molecular diffusion. Experimental evidence 
in heat conduction has been found, and relaxation times on the order 
of 20 seconds have been reported by Mitra and colleagues [28]. During 
drying of solids, the relaxation time can be on the order of few 
thousand seconds [29]. Tzou [30] found the relaxation times to be on 
the order of a few nanoseconds in heat conduction in stainless steel. 
A table of relaxation time values is not available in the literature. 
More research is needed to tabulate the relaxation-time values for 
molecular diffusion for different species that migrate.

The diffusion coefficient depends on a number of parameters, 
including the temperature of the medium of migration [31]. One 
method of deriving an expression for diffusion coefficient for liquids 
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has been reported, and the derived expression is called the Stokes-
Einstein equation to calculate diffusion coefficients. 

8.3.1 Derivation of a Generalized Fick’s Law of Diffusion
The Stokes-Einstein equation can be used to calculate diffusion 
coefficients in liquids:

 
D
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where kB is the Boltzmann constant, f is the frictional drag coefficient, 
T is the temperature, μ is the viscosity of the surrounding medium, 
and R0 is the radius of the solute that is diffusing. Equation (8.7) can 
be derived as follows: A rigid solute sphere is assumed for the 
molecule diffusing in a common solvent. The frictional drag force 
acting on the molecule opposing its motion is proportional to the 
velocity of the sphere:

 Drag force = fv1 (8.8)

where v1 is the velocity of the molecule. From Stokes law [32] for a 
sphere moving in a fluid, f = 6πμR0. The driving force was taken by 
Einstein [33] to be the negative of the chemical potential gradient 
(–∇μA) defined per molecule:

 –∇μA = (6πμR0)vA (8.9)

Equation (8.9) is valid when the molecule reaches a steady-state 
velocity. This occurs when the net force acting on the molecule is zero. 
The solution is assumed to be ideal and dilute:

 μA = μA
0 + kBT ln(xA) = μ1

0 + kBT ln CA − kBT ln CB (8.10)

For dilute solutions, the concentration of the second species CB far 
exceeds the solute concentration and can be taken as constant. The 
gradient at constant temperature, then, is
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Comparing Eq. (8.12) with Fick’s model of molecular diffusion given 
in Eq. (8.4), the Stokes-Einstein relationship of Eq. (8.7) results.
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Equation (8.4) is valid only at steady state. Often, in transient 
applications, a sudden step change in concentration, i.e., the driving 
force, is imposed on the system. The molecule will experience an 
accelerating regime prior to reaching steady state. During the 
accelerating regime,

 –∇μA − (6πμR0)vA = m
dv
dt

A  (8.13)

where m is the mass of the molecule. Then

 mCA dv
dt

A  = –(6πμR0)CAvA (8.14)
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Equation (8.15) is a generalized Fick’s law of diffusion that 
accounts for the acceleration regime of the molecule as well as the 
steady-state regime. An expression for the relaxation time for 
molecular diffusion falls out of the analysis, that is, 
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In terms of Ptot, the system pressure for ideal gas, the relaxation time 
can be written as
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where ρm is the molar density of the migrating species. The velocity of 
mass diffusion is given by
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Equation (8.17) can be rewritten in terms of the molar gas constant 
and molecular weight as

 vm = 
D RT

Mrτ
=  (8.18)

The kinetic representation of pressure can be written after 
observing that a molecule moving in a cube of dimensions l with a 
velocity of vx undergoes a momentum change of 2mvx on one collision 
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with the wall. The number of collisions on the wall can be estimated 
by first calculating the time taken by the molecule to move the round 
trip from the wall after a collision to the opposite wall and back as 
2l/vx. The number of collisions undergone by a molecule is vx/2l. The 
rate of transfer of momentum to the surface from the molecular 
collisions then is mvx

2/l. The total force exerted by all the molecules 
colliding can be obtained by summing the contributions from each 
molecule, and the pressure is obtained by dividing the sum by the 
area of the wall and is given by [34]

 Ptot = m
l3

 (vx1
2 + vx2

2 + vx3
2 + …) (8.19)

Let Nm be the number of molecules in the system and n the number 
of molecules per unit volume. Then Eq. (8.19) can be rewritten after 
multiplying the numerator and denominator by Nm:

 Ptot = mn<vx
2> = ρ<vx

2> = 1/3ρ<v2> (8.20)

Since the molecules treated as particles move in random, there is 
no preferred direction in the box. Hence v2 = vx

2 + vy
2 + vz

2. The square 
root of v2 is called the root mean squared speed of the molecule and is a 
widely accepted average molecular speed. From the ideal gas law, 
Ptot = ρRT/M. Combining this with Eq. (8.18) gives
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Comparing Eqs. (8.21) and Eq. (8.17), it can be seen the velocity of 
mass is one-third the root mean square velocity. This could be due to 
the fact that only one-dimensional diffusion has been considered. 
When all three dimensions are considered, these two velocities would 
be identical, although derived from different first principles.

The concentration in Cartesian, cylindrical, and spherical 
coordinates, taking into account the generalized Fick’s law of mass 
diffusion and relaxation, is given by the following equations:
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8.3.2 Taitel Paradox and Final Time Condition
Previous reports by Taitel [34] and Barletta and Zanchini [36] have 
raised some concerns about the second law of thermodynamics and 
the Cattaneo and Vernotte equation. The Cattaneo and Vernotte 
equation is an analogous equation in heat transfer to the generalized 
Fick’s law of molecular diffusion. Taitel considered heat conduction 
in an infinitely wide parallel slab with thickness 2L such that the 
thermal conductivity k, the thermal diffusivity α, the specific heat at 
constant volume, and the thermal relaxation time τr of the slab can be 
considered constant. He notes that at time zero, ∂T/∂t = 0 and uses it 
as one of the time conditions and T = T0 at time zero as the second 
time condition. For times greater than zero, the temperature 
distribution on the two sides of the slab is kept uniform with a value 
Tw ≠ T0. By symmetry, at the center of the slab, ∂T/∂x = 0 is the fourth 
space condition. A second-order hyperbolic partial differential 
equation (PDE) can be completely described by two space and two 
time conditions. On obtaining the transient temperature, Taitel points 
out that the absolute value of the temperature change (T − T0) may 
exceed |Tw − T0|. Barletta and Zanchini develop a solution for the finite 
slab problem by the method of separation of variables. They show by 
a plot of 1 − u versus X for Vernotte number 1 (ατr/4L2) and Fourier 
number 0.7 (αt/4L2) that |T − T0| may exceed |Tw − T0|, as pointed out 
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by Taitel. In another plot of 1 − u versus X for Vernotte number 1 and 
Fourier number 0.25, the equilibrium value for the temperature was 
attained by an oscillatory process. The parabolic conduction predicts 
a continuous increase in temperature from 0 to 1 at any internal 
position. The solution obtained by Taitel for the centerline temperature 
of the finite slab is given below. He considered a constant wall 
temperature, and the initial time conditions included a ∂T/∂t = 0 term 
in addition to the initial temperature condition. The exact solution 
presented by Taitel is as follows:
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Multiplying both sides of the Eq. (8.25) by exp(τ/2) gives
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At infinite times, the left hand side (LHS) of Eq. (8.26) is 0 times ∞ 
and is 0. The right hand side (RHS) does not vanish. Thus the expres-
sion given by Taitel and later discussed as a temperature overshoot 
may be a result of the growing exponential term in the preceding 
expression. 

Sharma [7] considered a finite slab of width 2a with an initial 
concentration at C0. The sides of the slab are maintained at constant 
concentration of CAS. The governing equation in the dimensionless 
form is then
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The initial condition is given as

 t = 0,  u = 1 (8.28)
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The boundary conditions in space are given by

 t > 0, X = 0, ∂u/∂X = 0 (8.29)

 t > 0, X = ±Xa, u = 0 (8.30)

The fourth and final condition in time is

 t = ∞, u = 0 (8.31)

The governing equation was obtained by a one-dimensional mass 
balance (in − out + reaction = accumulation). This is achieved by 
eliminating J” between the damped-wave diffusion and relaxation 
equation and the equation from mass balance (–∂J”/∂x = ∂C/∂t). This 
is achieved by differentiating the constitutive equation with respect 
to x and the mass balance equation with respect to t and eliminating 
the second cross-derivative of J” with respect to x and time. This 
equation is then nondimensionalized. The solution is obtained by the 
method of separation of variables. Let 

 u = V(τ)φ(X) (8.32)

Equation (8.27) becomes 

 φ”(X)/φ(X) = [V’(τ) + V”(τ)]/V(τ) = –λn
2 (8.33)

 φ(X) = c1 sin(λnX) + c2 cos(λnX)  (8.34)

From the boundary conditions, at X = 0, 

 ∂φ/∂X = 0,  so c1 = 0 (8.35)

 φ(X) = c1 cos(λnX)  (8.36)

 0 = c1 cos(λnXa)  (8.37)

 (2n − 1)π/2 = λnXa (8.38)

 λn = (2n − 1)π ( )/ατr a2   n = 1, 2, 3, . . . (8.39)

The time domain solution would be

 

V c cn= −⎛
⎝⎜

⎞
⎠⎟

−
⎛

⎝
⎜

⎞

⎠
⎟ + −exp exp exp

τ τ λ τ λ
2

1
4

1
43

2
4 nn

nV c

2

32
1
4

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

= −or exp exp
τ τ λ22

4
21

4

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

c nexp τ λ  (8.40)



 E l e c t r o p h o r e t i c  T e c h n i q u e s  a n d  F i n i t e  S p e e d  o f  D i f f u s i o n  257

from the final condition u = 0 at infinite time. So Vφexp(τ/2) = W, the 
wave concentration at infinite time. The wave concentration is that 
portion of the solution that remains after dividing the damping 
component from either the solution or the governing equation. For 
any nonzero φ, it can be seen that at infinite time the LHS of Eq. (8.40) 
is a product of zero and infinity and a function of x and is zero. Hence 
the RHS of Eq. (8.40) is also zero, and hence in Eq. (8.40), c3 needs to 
be set to zero. Hence
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where λn is described by Eq. (8.39). Cn can be shown using the 
orthogonality property to be 4(–1)n+1/(2n − 1)π . It can be seen that 
Eq. (8.41) is bifurcated. As the value of the thickness of the slab 
changes, the characteristic nature of the solution changes from 
monotonic exponential decay to subcritical damped oscillatory. For 
a < π ( )Dτr , even for n =1, λn > ½ . This is when the argument within 
the square root sign in the exponentiated time domain expression 
becomes negative, and the result becomes imaginary. Using 
Demovrie’s theorem and taking the real part for small width of the 
slab, 
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Equations (8.41) and (8.42) can be seen to be well bounded. 
Equation (8.42) becomes zero after some time. This would be the time 
taken to reach steady state. Thus, for a ≥ π ( )D mrτ , the transient 
concentration is described by Eq. (8.41), where cn = 4(–1)n+1/(2n − 1)π 
and λn = (2n –1)π ( )DAB rτ /2a.

The centerline concentration is shown in Fig. 8.1. Eight terms in 
the infinite series given in Eq. (8.41) were taken, and the values were 
calculated on a 1.9-GHz Pentium IV desktop personal computer. The 
number of terms was decided on the incremental change or 
improvement obtained by doubling the number of terms. The number 
of terms was arrived at a 4 percent change in the dimensionless 
temperature. The subcritical damped oscillations can be seen in the 
figure. The time taken to steady state can be read from the x intercept. 
The figure shows a parametric study of the relaxation time. A small 
slab of thickness of 1 cm and binary diffusivity of 10–5 m2/s is 
considered. Twelve terms were taken in the infinite series solution, 
and four different relaxation times were calculated. The accuracy of 
the data was less than 4 percent. For the case where the relaxation 
time was small, i.e., when Eq. (8.41) was applicable for the solution, 
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the centerline concentration decayed monotonically with the x axis as 
its asymptote. When the relaxation time considered was large in such 
a fashion that Eq. (8.42) is applicable, the subcritical damped 
oscillations can be seen. The time taken to steady state can be read 
from the x intercept in such cases. This happens when
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At infinite relaxation time, the governing equation will revert to 
the wave equation [7], and the D’Alambert solution will result. For a 
wide range of mass relaxation times, this approach can be seen to be 
viable.

The Taitel paradox is obviated by examining the final steady-state 
condition and expressing the state in mathematical terms. The W 
term, which is the dimensionless concentration on removal of the 
damping term, needs to go to zero at infinite time. This resulted in a 
well-bounded solution. Use of the final condition may be what is 
needed for this problem to be used extensively in engineering 
analysis without being branded as violating the second law of 
thermodynamics. The conditions that were touted as violations of the 
second law are not physically realistic. A bifurcated solution results. 
For small slab width, a < π ( )D mrτ , the transient concentration is 
subcritical damped oscillatory. 

An exact well-bounded solution that is bifurcated depending on 
the width of the slab is provided. The transient solution to the 
damped-wave non-Fick hyperbolic wave propagative and relaxation 
equation is obtained by the method of separation of variables. 
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A well-bounded infinite series expression is provided. The tempera-
ture overshoot identified by Taitel [35] is obviated by examining 
the final steady-state condition and expressing the state in mathe-
matical terms. A bifurcated solution results. For small slab width, 
a < π ( )D rτ , the transient concentration is subcritical damped 
oscillatory. In both Taitel [35] and Barletta and Zanchini [36], four 
conditions were used for initial and boundary constraints. The two 
in the space domain are retained here. The initial concentration at 
time zero is also retained. However, the slope with the time domain 
of the concentration at time zero is replaced with the final condition 
for the time domain, i.e., at steady state, the transient concentration 
will decay out to a constant value or to zero in the dimensionless 
form. This consideration is shown to change the nature of the solu-
tion considerably to a well-bounded expression that is bifurcated. For 
small values of the slab, the transient concentration is subcritical 
damped oscillatory. For other values, the Fourier series representa-
tion is augmented by a modification to the exponential time domain 
portion of the solution. In this section, use of the final condition at 
steady state as the fourth condition to give a bounded solution in 
obeyance of the Clausius inequality was achieved.

8.3.3 Relativistic Transformation of Coordinates
The semi-infinite medium is considered to study the spatiotemporal 
patterns that the solution of the non-Fick damped-wave diffusion 
and relaxation equation exhibit. This kind of consideration has been 
used in the study of Fick mass diffusion. The boundary conditions 
can be different, such as constant wall concentration, constant wall 
flux (CWF), pulse injection, and convective, impervious, and 
exponential decay. The similarity or Boltzmann transformation 
worked out well in the case of parabolic PDE, where an error function 
solution can be obtained in the transformed variable. The conditions 
at infinite width and zero time are the same. The conditions at zero 
distance from the surface and infinite time are also the same. 

Baumeister and Hamill [37] solved the hyperbolic heat conduction 
equation in a semi-infinite medium subjected to a step change in 
temperature at one of its ends using the method of Laplace 
transformation. The space-integrated expression for the temperature 
in the Laplace domain had the inversion readily available within the 
tables. This expression was differentiated using Leibniz’s rule, and 
the resulting temperature distribution was given for τ > X as
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The method of relativistic transformation of coordinates is 
evaluated to obtain the exact solution for the transient temperature. 
Consider a semi-infinite slab at initial concentration C0 imposed by 
a constant wall concentration Cs for times greater than zero at one 
of the ends. The transient concentration as a function of time and 
space in one dimension is obtained. Obtaining the dimensionless 
variables,
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The mass balance on a thin spherical shell at x with thickness Δx 
is written in one dimension as –∂J*/∂X = ∂u/∂τ. The governing 
equation can be obtained in terms of the mass flux after eliminating 
the concentration between the mass balance equation and the non-
Fick expression: 
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It can be seen that the governing equation for the dimensionless 
mass flux is identical in form with that of the dimensionless 
concentration. The initial condition is

 τ = 0,  J* = 0 (8.47)

The boundary conditions are

 X = ∞, J* = 0 (8.48)

 X = 0, C = Cs, u = 1 (8.49)

Let us suppose that the solution for J* is of the form w exp(–nτ), 
for τ > 0, where W is the transient wave flux. Then, when n = ½, 
Eq. (8.46) becomes
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Equation (8.50) can also be generated from Eq. (8.46) by 
multiplying Eq. (8.46) throughout with exp(nτ) and realizing that 
w = uexp(nτ) at n = ½. The solution to Eq. (8.50) can be obtained 
by the following relativistic transformation of coordinates for τ > X. 
Let η = (τ2 − X2). Then Eq. (8.50) becomes
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Combining Eqs. (8.51) and (8.52) into Eq. (8.50) gives
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Equation (8.54) can be seen to be a special differential equation in 
one independent variable. The number of variables in the hyperbolic 
PDE thus has been reduced from two to one. Comparing Eq. (8.54) 
with the generalized form of Bessel’s equation [35], it can be seen that 
a = 1, b = 0, c = 0, s = ½, and d = −1/16. The order of the solution is 
calculated as 0, and the general solution is given by
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The wave flux w is finite when η = 0, and hence it can be seen that 
c2 is zero. c1 can be solved from the boundary condition given in 
Eq. (8.49). The expression for the dimensionless mass flux for times τ 
> X is thus

 
J c I X* exp= −⎛

⎝⎜
⎞
⎠⎟ −⎡

⎣⎢
⎤
⎦⎥1 0

2 2

2
1
2

τ τ  (8.56)

For large times, the modified Bessel’s function can be given as 
an exponential and reciprocal in the square root of time by asymptotic 
expansion. Consider the surface flux, i.e., when in Eq. (8.56) X is set 
as zero:
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For times when exp(τ) is much greater than the mass flux, it can 
be seen that the second derivative in time of the dimensionless flux in 
Eq. (8.46) can be neglected compared with the first derivative. The 
resulting expression is the familiar expression for surface flux 
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from the Fourier parabolic governing equation for constant wall 
concentration in a semi-infinite medium and is given by
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 (8.58)

Comparing Eqs. (8.58) and (8.57), it can be seen that c1 is 1. Thus 
the dimensionless heat flux is given by
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The solution for J* needs to be converted to the dimensionless 
concentration u and then the boundary conditions applied. From the 
mass balance,
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Thus, differentiating Eq. (8.59) with respect to X, substituting in 
Eq. (8.60), and integrating both sides with respect to τ, for τ > X, 
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It can be left as an indefinite integral, and the integration 
constant can be expected to be a function of space. The c(X) can be 
solved for by examining what happens at the wave front. At the 
wave front, η = 0, and time elapsed equals the time taken for a mass 
disturbance to reach the location x given the wave speed D mr/ τ . 
The governing equations for the dimensionless mass flux and dimension-
less concentration are identical in form. At the wave front, Eq. (8.53) 
reduces to
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Thus c(X) = c’ exp(–X/2). Thus
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From the boundary condition in Eq. (8.49) it can be seen that c’ = 1. 
Thus, for τ > X, Eq. (8.64) gives the exact solution for dimensionless 
concentration.

It can be seen that the boundary conditions are satisfied by the 
Eq. (8.64) and describe the transient concentration as a function of 
space and time that is governed by the hyperbolic wave diffusion and 
relaxation equation. The flux expression is given by Eq. (8.59). 

It also can be seen that expressions for dimensionless mass flux 
and dimensionless concentration given by Eqs. (8.59) and (8.64) are 
valid only in the open interval for τ > X. When τ = X, the wave front 
condition results, and the dimensionless mass flux and concentration 
are identical and are
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When X > τ, the transformation variable can be redefined as η = X2 − τ2. 
Equation (8.50) becomes
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The general solution for this Bessel equation is given by
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The wave temperature W is finite when η = 0, and hence it can be 
seen that c2 is zero. c1 can be solved from the boundary condition 
given in Eq. (8.49). The expression in the open interval or the 
dimensionless heat flux for times τ smaller than X is thus
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 (8.68)

On examining the Bessel function in Eq. (8.68), it can be seen that 
the first zero occurs when the argument becomes 2.4048. Beyond that 
point, the Bessel function will take on negative values, indicating a 
reversal of heat flux. There is no good reason for the mass flux to 
reverse in direction at short times. Hence Eq. (8.68) is valid from the 
wave front down to where the first zero of the Bessel function occurs. 
Thus the plane of zero transfer explains the initial condition 
verification from the solution. 

By using the expression at the wave front for the dimensionless 
mass flux, c1 can be solved for and is found to be 1. Equation (8.68) 
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also can be obtained directly from Eq. (8.56) by using I0(η) = J0(iη). The 
expression for temperature in a similar vein for the open interval X > τ 
is thus
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Consider a point Xp in the semi-infinite medium. Three regimes 
can be identified in the mass flux at this point from the surface as a 
function of time. Series expansion of the modified Bessel composite 
function of the first kind and zeroth order was accomplished using a 
Microsoft Excel spreadsheet on a Pentium IV desktop computer. The 
three regimes and the mass flux at the wave front are summarized as 
follows:

 1. The first regime is a thermal inertia regime when there is no 
transfer. 

 2. The second regime is given by Eq. (8.68) for the mass flux 
and 
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The first zero of the zeroth-order Bessel function of the first kind 
occurs at 2.4048. This is when

 
2 4048

2
23 132

2 2
2. .= − = −X

X
τ τor lag

  (8.71)

Thus τlag is the inertial lag that will ensue before the mass flux is 
realized at an interior point in the semi-infinite medium at a 
dimensionless distance X from the surface. As a demonstration, one 
value of X is used, i.e., 5. Thus, for points closer to the surface, the 
time lag may be zero. Only for dimensionless distances greater than 
4.8096 is the time lag finite. For distances closer than 4.8096 ατr

, the 
thermal lag experienced will be zero. For distances

 
x mr> 4 8096. ατ  (8.72)

the time lag experienced is given by Eq. (8.71) and is X 2
1
24− β , 

where β1 is the first zero of the Bessel function of the first kind and 
zeroth order and is 2.4048. In a similar fashion, the penetration 
distance of the disturbance for a considered instant in time 
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beyond which the change in initial temperature is zero can be 
calculated as

 
X ipen = +23 132 2. τ

 

 3. The third regime starts at the wavefront and is described by 
Eq. (8.59): 
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 4. At the wave front, J* = u = exp(–X/2) = exp(–τ/2). 

The expressions for transient concentration derived above need 
integration prior to use. More easily usable expressions can be 
developed by making suitable approximations. Realizing that for 
PDE, a set of functions instead of constants as in the case of ODE 
needs to be solved from the boundary conditions, the c in Eq. (8.68) is 
allowed to vary with time. This results in an expression for transient 
concentration that is more readily available for direct use of the 
practitioner. Extensions to three dimensions in space are also 
straightforward in this method.

In this section, the exact solution for the constant wall concentra-
tion problem in semi-infinite medium in one dimension is revisited 
because of the discussion of the method of Laplace transforms by 
Baumeister and Hamill. In this section I attempt to derive an 
expression that does not need further integration. Consider a semi-
infinite slab at initial concentration C0 subjected to a sudden change 
in concentration at one of the ends to Cs. The mass propagative 
velocity is Vm = DAB r/ τ . The initial conditions are

 t = 0, Vx, C = C0 (8.74)

 t > 0, x = 0, C = Cs (8.75)

 t > 0, x = ∞, C = C0 (8.76)

Obtaining the dimensionless variables
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the mass balance on a thin spherical shell at x with thickness Δx is 
written. The governing equation can be obtained after eliminating 
J” between the mass balance equation and the derivative with 
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respect to x of the flux equation and introducing the dimensionless 
variables. 
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Suppose that u = exp(–nτ)w(X, τ). By choosing n = ½, the damping 
component of the equation is removed. Thus, for n = ½, the governing 
equation becomes 
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The solution to Eq. (8.79) can be obtained by the following relativistic 
transformation of coordinates for τ > X. Let η = (τ2 − X2). Then 
Eq. (8.50) becomes
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Combining Eqs. (8.80) and (8.81) into Eq. (8.79) gives
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Equation (8.83) can be seen to be a special differential equation in 
one independent variable. The number of variables in the hyperbolic 
PDE thus has been reduced from two to one. Comparing Eq. (8.83) 
with the generalized form of Bessel equation [35], it can be seen that 
a = 1, b = 0, c = 0, s = ½, and d = −1/16. The order of the solution is 
calculated as 0, and the general solution is given by
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The wave temperature w is finite when η = 0, and hence it can be 
seen that c2 is zero. c1 can be solved from the boundary condition given 
in Eq. (8.75). For X = 0, u is 1. Writing the expression for u at X = 0, 
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c1 can be eliminated by dividing Eq. (8.84) after setting c2 = 0 by 
Eq. (8.85) to yield in the open interval of τ > X
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In the open interval X > τ,
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It can be inferred that an expression in time is used for c1. A 
domain-restricted solution for short and long times may be in order. 

8.3.4 Periodic Boundary Condition
Consider a semi-infinite slab at initial concentration C0 imposed by a 
periodic concentration at one of the ends by C0 + C1 cos(wt). The 
transient concentration as a function of time and space in one 
dimension is obtained. Obtaining the dimensionless variables
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; u  = (C − C0)/(C1);

 τ = t/τr; X = x/ D rτ  (8.88)

The mass balance on a thin shell at x with thickness Δx is written. 
The governing equation is obtained after eliminating J between the 
mass balance equation and the derivative with respect to x of the flux 
equation and introducing the dimensionless variables. The initial 
conditions are

 t = 0, C = C0, u = 0  (8.89) 

The boundary conditions are

 X = ∞, C = C0, u = 0 (8.90) 

 X = 0, C = C0 + C1 cos(ωt); u = cos(ω*τ) (8.91)

Let us suppose that the solution for u is of the form f(x) exp(–iω*τ), 
for τ > 0, where ω is the frequency of the concentration wave imposed 
on the surface and the C1 is the amplitude of the wave. Then

 (–iω*)f exp(–iω*τ) + (i2ω*2)f exp(–iωτ) = f” exp(–iω*τ) (8.92)
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 i2f(ω*2 + iω*) = f”  f(X) = c exp(–iXω* ω* + i )  (8.93) 

Then d can be seen to be zero as at X = ∞, u = 0.

 
u c iX i i= − + −exp( * * )exp( * )ω ω ω τ

 (8.94)

From the boundary condition at X = 0, 

 cos(ω*τ) = real part[c exp(–iω*τ)] or c =1 (8.95)

 u = exp[–Xω*(A + iB) exp(–iω*τ)]  

 = exp(–Aω*X) exp[–i(BXω* + ω*τ)] (8.96)

where  A + iB = i ω* + i . (8.97)

Squaring both sides gives

 A2 − B2 + 2AiB = i2(ω* + i) = –ω* − i  (8.98)

 A2 − B2 = –ω*  2AB = –1 or B = –½A  

or  A2 − ¼A2 = –ω*  (8.99)

 A2 = (–ω* ± ω*2 + 1 )/2  B = –½A (8.100)

Obtaining the real part

 u = exp(–Aω*X) cos[ω*(BX + τ)] (8.101)

The time lag in the propagation of the periodic disturbance at the 
surface is captured by the preceding relation. Thus the boundary 
conditions can be seen to be satisfied by Eq. (8.101). In a similar vein 
to the supposition of f(x) exp(–iω*τ), the mass flux J” can be supposed 
to be of the form J* = g(x) exp(–iω*τ). Thus
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'
( *)1 ω  (8.102)

Combining the f from Eq. (8.93) into Eq. (8.102) gives

 J* = –ω*(A + iB) exp[–Xω*(A + iB)] exp(–iω*τ) 

  = –ω*(A + iB) exp(–Aω*X) exp[–i(BXω* + ω*τ)] 

  = –ω*(A + iB) exp(–Aω*X)[cos(BXω* + ω*τ) + i sin(BXω* + ω*τ)] 
  (8.103)
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Obtaining the real part

 
J” = 

D

mrτ ω* exp(–Aω*X){B sin[ω*(BX + τ)] 
 

 – A cos[ω*(BX + τ)]} (8.104) 

8.4 Electrophoresis Apparatus
The term electrophoresis refers to the movement of a solid particle 
through a stationary fluid under the influence of an electric field 
(Fig. 8.2). The constituent that migrates under the field can be large 
molecules, colloids, fibers, clay particles, and latex spheres. 
Electrophoresis is often applied to polymeric and biologic samples. It 
is applied frequently in the analysis of proteins and DNA fragment 
mixtures. The differences in mobility of different species under an 
electric field are used to obtain a separation between two or more 
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FIGURE 8.2 Schematic of an electrophoresis apparatus.
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species. The advancement of biotechnology was in some measure 
due to electrophoresis. Variations of this method are used in obtaining 
the nucleic acid sequences of DNA; isolating active biologic factors 
associated with diseases such as cystic fibrosis, sickle-cell anemia, 
myelomas, and leukemia; and establishing immunologic reactions 
between samples on the basis of individual compounds. The 
technique is sensitive to small differences in molecular charge and 
mass. It does not interfere with the species under investigation 
during the investigation.

The charge separation between the surface of the particle and the 
fluid surrounding it is tapped into in the electrophoresis technique. 
The particle is caused to move by the electric force it experiences from 
the electric field and resulting charge on the particle. The electric field 
also generates heat. 

Different types of gel matrices can be employed. These are 
agarose, polyacrylamide, paper, capillaries, and flowing buffers. The 
gel and capillary modes can be used alone or in combination in the 
different matrices listed to achieve the target objectives for a given 
application. Over a period of time, a number of different types of 
electrophoresis methods have been developed. Some of them 
are (1) disk electrophoresis, (2) zone electrophoresis, (3) native zone 
electrophoresis, (4) reduced sodium dodecyl sulfate (SDS) elec-
trophoresis, (5) pulsed-field gel electrophoresis, (6) isoelectric focusing, 
(7) isotachophoresis, (8) agarose electrophoresis, (9) polyacrylamide 
electrophoresis, (10) paper electrophoresis, (11) capillary electrophoresis, 
and (12) force-flow electrophoresis.

8.5  Electrophoretic Term, Ballistic Term, and 
Fick Term in the Governing Equation

The molar flux after taking into account the electric field effects and 
the finite speed of molecular diffusion effects can be written as
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zAF is the charge per molecule, and F is the Faraday’s constant in 
coulombs per gram. zA is the valency of the species A, and m is its 
mass. Lumping the electrophoretic effects as ε = zFm/RT and combin-
ing with the mass balance equation in transient diffusion, the 
governing equation for concentration of species A under transient 
conditions can be written as
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Equation (8.106) is a hyperbolic partial differential equation with 
four terms in the governing equation. Analytical general solutions to 
the equation are not reported in the literature. There have been some 
attempts to solve this equation numerically. However, given what is 
known about the transient nature of the process, the nature and 
salient characteristics of the solution can be examined. This is done as 
follows: Equation (8.106) is made dimensionless by the following 
substitutions:
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Then the governing equation transforms from Eq. (8.106) into
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The Peclect number (electric) Peelec is given by the ratio of the 
electrophoretic velocity and the velocity of mass propagation. 
Consider a slab with length l maintained at concentration CAS at 
one end at all times. At length l, the gel is impervious to any further 
migration, and hence the adiabatic boundary condition of zero 
flux at the boundary can be assumed. The time and space conditions 
are then

 X = 0, u = 0 (8.109)

 
X = Xl, 

∂
∂

=u
X

0  (8.110)

 τ = 0, u = 1 (8.111)

 τ = ∞, u = 0 (8.112)

It is generally known that problems in transient diffusion have an 
exponential decaying time component to their solution. Further, since 
the problem is driven by a surface concentration maintained at a 
higher concentration at X = 0, and further, since the end of the 
apparatus is impervious to diffusion, the species concentration will 
have a decaying component in space as well. In order to examine the 
salient characteristics of the solution to Eq. (8.108), let the solution be 
assumed to take the form

 u n mX w= − −exp( )exp( )τ  (8.113)
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where w is the wave concentration, which is a function of space and 
time. It can be shown that at n = ½ and m = ½Peelec, Eq. (8.108) 
becomes
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It can be seen from Eq. (8.114) that when the Peclect number 
(electric) equals 1, Eq. (8.114) reverts to the wave equation. The 
solution then would be D’Alembert’s solution, as discussed in 
Sharma [35]. When the Peclect (electric) number is equal to 1, the 
electrophoretic velocity and the velocity of molecular diffusion are 
equal. Equation (8.114) can be solved by the method of separation of 
variables. Let

 w = g(X)V(τ) (8.115)

Substituting Eq. (8.115) into Eq. (8.114) and separating the variables 
in space and time gives the two differential equations that govern the 
solution in space and time:
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The solution to Eq. (8.116) can be seen to be

 g = c1 sin(λnX) + c2 cos(λnX) (8.118)

From the boundary conditions at X = 0, it can be seen that c2 = 0. 
From the boundary conditions at X = Xl, the eigenvalues can be 
solved for as

 λnXl = ( )2 1
2

n − π   n = 1, 2, 3, . . . (8.119)

It can be seen that the solution to Eq. (8.117) depends on the relaxation 
time and other parameters of the system. It is a bifurcated solution. 
For small eigenvalues,
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In a similar fashion, as discussed in Sec. 8.2.1, at steady state 
or infinite time, or from the time condition stated in Eq. (8.112), it 
can be seen that w = u exp(τ/2) exp(X/2Peelec) will become 0 times 
infinity and equal to 0. Hence the c4 in Eq. (8.120) can be set to 0. 
Thus the general solution to the transient concentration can be 
written as
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The cn can be solved for from the initial condition using the 
orthogonality property and be shown to be
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Further, it can be seen that for large eigenvalues, the solution for 
the concentration given in Eq. (8.121) becomes damped oscillatory. 
Thus, when
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The implications of Eq. (8.122) can be seen that when n = 1,
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Thus, when the length of the electrophoretic apparatus is less 
than a critical length, the concentration of species A will undergo 
subcritical damped oscillations. This would be the case for gel 
matrices with high relaxation times and low molecular diffusion 
velocities.
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Summary
The sequence distribution of deoxyribonucleic acid (DNA) is obtained 
by the method of gel acrylamide electrophoresis. The sequence distri-
bution of polypeptide (protein) is obtained by using paper chromatog-
raphy. In both these techniques molecular diffusion phenomena is a 
important consideration. At short time scales, such as those associated 
with critical events during electrophoresis and paper chromatography, 
Fick’s laws of diffusion is not adequate to represent the transient 
events. There are seven reasons to seek a generalized Fick’s law of 
molecular diffusion. These are the contradiction of Fick’s law with 
the theory of microscopic reversibility of Onsager, observation of 
Nernst that heat and hence mass possess inertia and in good 
conductors and hence in good diffusing media lead to oscillatory 
discharge, Landau and Lifshitz’s observation that light possess 
speediest velocity, high mass rate applications cannot be described by 
Fick’s laws, singularities were found in the description of surface flux 
in cartesian, cylindrical, of and spherical coordinates using Fick’s 
representation of transient concentration, Fick’s laws were developed 
from empirical observations, overprediction of theory to experiment 
were found in a number of important industrial applications of 
Fick’s laws.

The generalized Fick’s law of diffusion is analogous to the 
Cattaneo and Vernotte hyperbolic heat conduction equation. It was 
derived by considering the acceleration of a moving molecule under 
the Sotkes-Einstein formulation of chemical potential and drag. 
Expressions for relaxation time of mass was developed in terms of the 
diffusion coefficient of mass. The Taitel paradox of a temperature 
overshoot and hence a implied concentration overshoot during 
damped wave diffusion and relaxation was re-examined. The use of 
the final condition in time leads to well bounded infinite series 
solution. No overshoot was found in the solution to damped wave 
diffusion and relaxation in a finite slab subject to constant wall 
concentration boundary condition. At large relaxation times, the 
solution is found to exhibit subcritical, damped oscillations in 
concentration of migrating species.

The method of relativistic transformation of coordinates was 
developed to obtain physically realistic solutions to the semi-infinite 
medium problem subject to constant wall concentration boundary 
condition. Three different regimes of solution were identified. A 
inertial regime characterized with zero transfer, a second regime 
characterized by Bessel composite function of space and time of the 
zeroth order and first kind, and a third regime of a modified Bessel 
composite function of space and time of the zeroth order and first 
kind. Expressions for penetration distance and inertial lag time were 
developed. The characteristics of the solution to the damped wave 
diffusion and relaxation subject to a periodic boundary condition 
were studied using the method of complex temperature.
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A schematic of electrophoresis apparatus was provided. Different 
methods of electrophoresis techniques were discussed. The governing 
equation for the migrating species subject to finite speed diffusion 
and electrophoretic force was developed. A dimensionless group, 
Peclect number (electric) was defined. This was the ratio of the 
electrophoretic velocity to the finite speed of mass. Well bounded 
infinite series solution for the migrating species were developed for a 
finite slab subject to a constant concentration boundary condition. 
The conditions were the concentration is expected to undergo 
subcritical, damped oscillations were derived. The mathematical 
model can be used in place of the calibration method used in 
electrophoresis methods. This may lead to less errors in the sequence 
distribution of DNA and protein molecules.
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Exercises
1.0 What is the difference between binary and ternary diffusion 
coefficients?

2.0 During Brownian motion, the molecules follow a random zigzag path 
and sometimes move in the opposite direction compared with the imposed 
concentration difference driving the diffusion. Is this a violation of the second 
law of thermodynamics?
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3.0 What is self-diffusivity? Is a concentration difference needed for 
movement of the species that defines the self-diffusivity?

4.0 What are the differences between multicomponent diffusion and binary 
diffusion?

5.0 What happens to the formula for total flux during equimolar 
counterdiffusion compared with that for molecular diffusion?

6.0 Correlations for diffusion in gases, liquids, and solids were discussed. 
What would be appropriate for liquid diffusing in a solid or for gases diffusing 
in a liquid?

7.0 Explain the effect of temperature on the mass propagation velocity. What 
happens to the diffusion coefficient and relaxation time at high pressure?

8.0 Why are insects larger in size in the tropics than insects in the arctic 
region?

9.0 Is the force of gravity taken into account in the derivation of the Stokes-
Einstein relationship for diffusivity coefficients?

10.0 Can you expect a plane of zero concentration or null transfer during 
drug delivery in the tissue region? How so?

11.0 The diffusion coefficient is a proportionality constant in Fick’s first law 
of diffusion independent of concentration. For concentrated solutions, it is said 
to vary with concentration. How can this be interpreted?

12.0 State the Onsager reciprocal relations. Show that D12 = D21.

13.0 What was Landau’s observation of infinite speed of propagation?

14.0 What is an overshoot?

15.0 What is the drag force experienced by an electron compared with the 
acceleration term?

16.0 What is penetration length?

17.0 What is inertial lag time?

18.0 What is the first zero of the Bessel function of the first order? How is 
this used in the derivation of the penetration length and inertial lag time in a 
three-dimensional medium?

19.0 What is the physical significance of the maxima in Fig. 8.1?

20.0 What is the physical significance of the x intercept in Fig. 8.1? Can an 
expression for the time taken to steady state be derived from these x-intercept 
values?

21.0 Examine I0(τ/2)exp(–τ/2) in terms of extremas and asymptotic 
limits, and under what conditions can I0(τ/2) be reduced to a simpler 
expression?
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22.0 What is the meaning of a negative mass flux? What happens to the ratio 
of the accumulation and diffusion terms?

23.0 It was shown that for large relaxation times, the transient concentration 
in a finite slab exhibits subcritical damped oscillations. What is the critical size 
of the slab below which the oscillations can be seen? What is the value of the 
diffusion coefficients when the oscillations can be seen?

24.0 Contrast subcritical damped oscillations with critical and underdamped 
oscillations. What does resonance mean for this problem?

25.0 Scale the governing equation and show that when the temporal 
derivative of the dimensionless concentration exceeds exp(τ), the hyperbolic 
PDE reduces to the wave equation. Further, when exp(τ) is greater than the 
temporal derivative, the hyperbolic PDE reverts to the parabolic PDE identical 
to that of Fick’s second law of diffusion.

26.0 Why is there a maxima in the dimensionless flux as a function of time?

27.0 Estimate of the diffusion coefficient of argon in hydrogen. Calculate the 
diffusion coefficient of argon in hydrogen at 1 atm and 195°C. Compare this 
with the experimental values reported in the literature.

28.0 Parabolic law of oxidation. During the corrosion of metals, an oxide layer 
is formed on the metal. Assuming that oxygen diffuses through the oxide layer, 
show that the thickness of the oxide layer δ can be given by (CbulkDABt/ρm)1/2 
using Fick’s law of diffusion. A gentle breeze is blowing at a constant velocity 
U over the corroded layer. Is this going to increase the rate of corrosion owing 
to the convection contribution?

29.0 Krogh tissue cylinder. Capillaries through which blood flows in the 
human anatomy are surrounded by tissue space. The oxygen and other drugs 
that are dissolved in the bloodstream need to diffuse through the capillary 
walls into the tissues. Write the governing equations for the concentration of 
solute in the capillaries and in the tissue as

 –VdC/dz = 2/rcK0(C − CT|rc + tm) 

Considering the effects of diffusion in the x direction only in the tissue and 
assuming a zeroth order reaction rate,

 DAB∂2CT/∂x2 = R0 

Integrating and substituting for the boundary conditions

 x = xc + tm, CT = CT|xc + tm 

 x = xT, dCT/dx = 0 

show that the concentration profile is

 CT − CT|xc + tm = (R0/2DAB)[x2 − (xc + tm)2] − R0xT/DAB[x − (xc + tm)]  

Show that the variation in concentration as a function of z can be calculated as

 C = C0 − R0zAT/VA 
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Combine the two equations and show that

 CT − C0 = R0zAT/VA + K0xcR0AT/2A + (R0/2DAB)[x2 − (xc + tm)2]  

 – R0xT/DAB[x − (xc + tm)] 

Show that at a critical distance from the capillary wall the concentration in the 
solute will become zero. This can be solved for from the preceding equations. 
At and beyond the critical distance,

 dCT/dx = 0 = CT 

Replacing xT with xcritical gives

0 = C0 + R0zAT/VA + K0xcR0AT/2A + (R0/2DAB)[x2 – (xc + tm)2] 

 – R0xcritical/DAB[x – (xc + tm)]

 xcritical
2(–R0/2DAB) = C0 + R0zAT/VA + K0xcR0AT/2A – (R0/2DAB)(xc + tm)2

 – R0xcritical/DAB[x – (xc + tm)]  

The quadratic equation in xcritical is then 

 Axcritical
2 + Bxcritical + C = 0 

where  A = –(R0/2DAB) 

       B = + (xc + tm)R0/DAB

      C = C0 + R0zAT/VA + K0xcR0AT/2A − (R0/2DAB)(xc + tm)2 + R0(xc + tm)/DAB

When the solutions of the quadratic expression for the critical distance in the 
tissue are real and are found to be less than the thickness of the tissue, then the 
onset of zero concentration will occur before the periphery of the tissue. This 
zone can be seen as the anorexic or oxygen-depleted regions in the tissue.

30.0 Sacred pond. Evaporation from ponds is retarded by the introduction of 
lotus leaves in sacred ponds at temples. Assume that in a pond of area 9 × 9 m, 
4130 leaves each with a diameter of 3 in were placed. Calculate the reduction in 
diffusion rate on account of the reduction in area of the path of evaporation. 

31.0 Diffusion coefficient of tobacco mosaic virus. Estimate the diffusion 
coefficient of tobacco mosaic virus that is shaped as a cylinder of 0.35 μm 
length and 9 nm diameter in water at 20°C. Its molecular weight is 42 million 
and partial specific volume is 0.53 cm3/g. 

32.0 Diffusion of oxygen through spiracles. Many insects breathe through 
spiracles. Spiracles are open tubes that extend into the insect’s body. Oxygen 
diffuses from the surrounding air, and gas exchange takes place through the 
walls. For every mole of oxygen diffusing in, there is one mole of CO2 diffusing 
out. To prevent water losses, the walls of the spiracles are coated with cuticle 
of 10-μm thickness. The oxygen concentration outside the cuticle is constant 
and is 5 percent of the equilibrium concentration. What is the local oxygen flux 
in the spiracle to the tissue? Derive an oxygen concentration profile within the 
tissue. Is the spiracle an efficient method of respiration?

Spiracle radius: 100 μm 

Spiracle length: 9 mm 
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Oxygen solubility in tissue Ct = 0.2 mmol/L

D0,cuticle: –3 E-5 cm2/s

D0,air:  –0.15 cm2/s

33.0 Scrubbing of SO2. During coal combustion, the emission of sulfur dioxide 
from power plants can be reduced by using CaO scrubbers. In the scrubber,

 2CaO + 2SO2 + O2 → 2CaSO4 

Consider the diffusion of SO2 into a spherical particle of CaO. Show that the 
governing equation can be derived from the shell balance as

 DAB[1/r2∂/∂r(r2∂CA/∂r)] = k”’CA 

Show that the concentration profile of SO2 in the spherical lime particle can 
be written as 

 CA/CAs = X−1/2I1/2[r(k”’/DAB)1/2]/I1/2[R(k”’/DAB)1/2] 

The Thiele modulus is φ = R(k”’/DAB)1/2.

34.0 Coextrusion. In the manufacture of the casings of a solid rocket motor 
(SRM), the material requirements are bifunctional. They have to have high 
hoop strength on one side and high ablation resistance on the other. In order to 
prepare such materials, the technology of coextrusion is used. In a twin-screw 
extruder, both the materials are coextruded together. During the residence 
time of the polymers in the extruder, the interdiffusion of either material in the 
other occurs. Calculate the interlayer thickness as a function of the extruder 
residence time and diffusivities of the two materials.

35.0 Diffusion coefficient of milk in the refrigerator. Estimate the diffusion 
coefficient of lactic acid in the refrigerator. Compare this with the value at 
room temperature and that of milk through a plastic container.

36.0 Wilting of lettuce. Lettuce leaves in a salad wilt. The process of wilting is 
accelerated if the lettuce is salted. The water droplets on the surface of the leaves 
comes from the interior of the lettuce cells. Consequently, the turgor pressure 
and internal rigidity of the leaves are lowered, and they wilt. The process of 
water transport out of the cells caused by increase in external salt concentration 
is an example of osmosis. Dutrochet made systematic observations of osmotic 
pressure in the 1800s. He observed that small animal bladders filled with a 
dense solution and completely closed and plunged in water became turgid 
and swollen excessively. Water flowed into the bladder so as to dilute the 
solution inside. Van’t Hoff noted that the osmotic pressure was proportional 
to the product of the solute concentration and the absolute temperature with 
a constant of proportionality that equaled the molar gas constant R. Darcy’s 
law provided the solvent flux as a function of the pressure gradient and the 
constant of proportionality called hydraulic permeability:

 Jsolv = −κ∂(p − π)/∂x  

where Jsolv is the solvent flux, κ is the hydraulic permeability, and π is the 
osmotic pressure, which can be written as RTCsol, where Csol is the solute 
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concentration. For the wilting of lettuce, show that the governing equations can 
be written assuming the salt can permeate through the lettuce and neglecting 
the hydraulic pressure gradient at steady state as

0 = κRT∂2Csolv/∂x2

with the following space conditions:

x = δ, Csolv = 0

x = 0, Csolv = Csolv,0

Show that if the lettuce is a semipermeable membrane, at steady state the 
solvent transport can be given by

p − p0 − (π − π0) = –Jsolv/κ(x − x0)

where x0 is the reference location at which the hydraulic and osmotic pressures 
are known.

37.0 Restriction mapping. Endonucleases or restriction enzymes cut the 
unmethylated DNA at several sites and restrict their activity. About 300 
restriction enzymes are known, and they act on 100 distinct restriction sites 
that are palindromes. Some cuts leave blunt ends, and others leave them sticky. 
The restriction fragment lengths can be measured by using the technique of gel 
electrophoresis. The solid matrix is usually agarose or polyacrylamide gel that 
is permeated with liquid buffer. Since DNA is a negatively charged molecule, 
when placed in an electric field, the DNA migrates toward the positive pole. 
DNA migration is a function of its size. Calibration is used to relate the 
migration distance as a function of size. Migration distance of DNA under a 
field for a set time is measured. The DNA molecule is made to fluoresce and 
made visible under ultraviolet light by staining the gel with ethidium bromide. 
A second method is to tag the DNA with a radioactive label and then to expose 
the x-ray film to the gel. Show that the migration under gel electrophoresis 
can be given by

Jfrag = –(zAuAF)*∂E/∂x − Dfrag∂CA/∂x 

Show that the governing equation can be written in one dimension as

0 = Dfrag∂
2CA/∂x2 + –(zAuAF)*∂2E/∂x2

38.0 Pheromones and insect control. During insect control, controlled release 
of pheromones is used. Pheromones are sex attractants released by insects. 
When mixed with an insecticide and applied, it annihilates all of one sex of 
a particular insect pest. The pheromone sublimation rate in the impermeable 
holder can be given as

S0 = 9 E -16 (1 − 1E6 C1)

where C1 is the concentration in the vapor. The diffusivity through the polymer 
is 1.2 E-11 cm2/s. It can be assumed that the pheromone level outside the 
chamber is 0. If the polymeric diffusion barrier is 600 μm thick and has an area 
of 1.6 cm2, what is the concentration of pheromones in the vapor? How fast is 
the pheromone released by the device? 
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39.0 Oxygen transport in the eye. The cornea is a unique living tissue and is a 
transparent window through which light enters the eye to be focused on the 
retina, thus forming the images of our surroundings and enabling sight. When 
the eye is open, it receives all its oxygen requirements from the surrounding 
air. Other nutrients are likely delivered via the tear duct fluid that bathes the 
outer surface of the cornea or the aqueous humor that fills the chamber behind 
the cornea and in front of the lens. Some oxygen may enter the aqueous humor 
from the vasculature in the muscle at the periphery of the lens. When the eye 
is closed, it is cut off from the O2 source in the air. There is a rich microvascular 
bed (well perfused with high vascular density on the inner surface of the 
eyelid) that supplies the cornea with oxygen (and possibly other nutrients). 
What is the PO2 at the surface of the cornea when the eye is closed? 

Layer
Thickness,
μm

Diffusion 
Coefficient, cm2/s

VO2, mL
O2/mL/s

Epithelium  40 3.8 E-10 2.0 E-4

Stroma 450 3.8 E-10 1.0 E-5

Endothelium   10 3.8 E-4 2.0 E-4

Table of Model Parameters

40.0 Loss from beverage containers. Coca-Cola bottles are made out of plastic. 
The contents diffuse at a slow rate through the walls of the container and out 
into the air and result in some losses. It has been suggested to coat the inner 
wall of the container to reduce the losses. With a coating thickness of 25 μm
and a diffusion coefficient in the coating of 1 E-9 m2/s, what would be the 
benefit to the manufacturer? Assume a thickness of 1.5 mm for the plastic 
container and a diffusion coefficient of the contents in the plastic container 
as 1 E-6 m2/s. 

41.0 Dasangam. Dasangam is offered to the gods during special pooja. 
Idealize a dasangam into a cone. Consider the reaction between oxygen and 
dasangam on ignition to be of first order. As the reaction proceeds, consider 
an added ash layer through that the oxygen will have to diffuse. Obtain the 
concentration profile of oxygen in the ash layer. Make suitable assumptions 
and estimate the time taken for consumption of two dasangams of a cone 
height of 3 cm and a diameter of 1.5 cm. Consider the diffusion coefficient of 
oxygen in the ash layer to be 1 E-12 cm2/s.

42.0 Reaction and diffusion in a nuclear fuel rod. In autocatalytic reactions such 
as during nuclear fission, the neutrons can be studied by a first-order reaction. 
The mass balance in a long cylindrical rod with first-order autocatalytic 
reaction can be written at steady state as

1/r∂(rJr)/∂r + k”’C = 0
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The long cylindrical rod is at zero initial concentration of autocatalytic reactant 
A. The surface of the rod is maintained at a constant concentration Cs for times 
greater than zero. The boundary conditions are 

 r = 0, ∂C/∂r = 0 

 r = R, C = Cs 

Show that the steady-state solution can be obtained as follows after redefining 
us = C/Cs: 

 ∂2us/∂X2 + 1/X∂us/∂X + k*us = 0 

 X2∂2us/∂X2 + X∂us/∂X + X2k*us = 0      

The preceding equation can be recognized as the Bessel equation. The solution is

 us = c1J0(X√k*) + c2Y0(X√k*)   

It can be seen that c2 = 0 because the concentration is finite at X = 0. The 
boundary condition for surface concentration is used to obtain c1. Thus 

c1 = 1/J0(R√k*/Dτr)

Thus

 us = J0(X√k*)/J0(R√k*/Dτr) 

43.0 Grooming hair with oil. In order to keep the hair on the human skull 
from becoming dehydrated, it is oiled or hair cream is applied every day. 
During the course of the day, estimate the loss of the oil from the human hair 
by diffusion. Show that there are two contributions: One is from molecular 
diffusion from the head to the atmosphere in the vertical direction, and the 
other is by convection from wind blowing in the horizontal direction. Show 
that the governing equation can be given by

∂2u/∂z2 = (Udhair/D) ∂u/∂x

Show that the solution for the concentration profile of the oil in the surrounding 
region of the human skull at steady state can be given by

 u = 1 − erf Z(Pem/4X)1/2 

Assuming that the diameter of the hair is 2 μm, the velocity of air is 1 m/s, and 
the diffusivity is 1 E-5 m2/s, estimate the time taken for the layer of cream 
of 1 μm to be replaced. Make suitable assumptions, such as a cranial area of 
2500 cm2 and a length of the hair of 5 cm.  

44.0 Dyeing of the wool. A dye bath at a concentration C0 and a volume V is 
used to dye wool that is bathed in it. The dye diffuses into the wool. Measuring 
the concentration of the dye in the wool as a function of time, can you (a) 
estimate the diffusion coefficient of the dye? If so, how? And (b) can you 
estimate the relaxation time?

45.0 Dopant profile by ion implantation. Ion implantation is used to introduce 
dopant atoms into a semiconductor material to alter its electrical conductivity. 
During ion implantation, a beam of ions containing the dopant is directed 
at the semiconductor surface. For example, boron atoms are implanted into 
silicon wafers by Lucent Technologies, Murray Hill, NJ. Assume that the 
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transfer of boron into the silicon surface is on account of both the convection 
and diffusion contributions at steady state. Show that the governing equation 
for the transfer of boron at the gas-solid interface is given by

 –∂CA/∂z = DAB∂2CA/∂z2 

Given a characteristic length l, show that the equation can be reduced to

 –Pem∂u/∂Z = ∂2u/∂Z2 

and the solution is

 u = 1 − J*ss/Pem exp(–PemZ) 

46.0 Soot from a steam engine. The steam engine that powers the train that 
takes you from Chennai to New Delhi in 31 hours discharges coal dust at 
steady rate of 68 kg · mol/h. The train moves at a velocity of 90 km/h. Estimate 
the thickness of soot that will deposit on a passenger sitting near the window 
of S6 during the entire journey. S6 is about 200 ft from the engine. Assume that 
the diffusion coefficient of the soot in air is 1 E-6 m2/s. Repeat the analysis for a 
wind speed of 10 km/h. (Hint: Bulk concentration of soot in the surrounding air 
can be calculated by considering a basis of time as that taken for a passenger to 
move 600 ft to the discharge point in fixed space, and in that time the discharge 
amount is calculated from the discharge rate and the dispersed region from 
the penetration length in all three directions.)

47.0 Steady diffusion in a hollow sphere. Develop the concentration profile in 
a hollow sphere when a species is diffusing without any chemical reaction. 
Consider the concentration of the species to be held constant at the inner and 
outer surfaces of the cylinder at CAi and CAo, respectively. Show that

(CA − CAi)/(CAi − CAo) = (1 − Ri/r)/(1 − Ri/Ro)

48.0 Determination of diffusivity. Unimolar diffusion can be used to estimate 
the binary diffusivity of a binary gas pair. Consider the evaporation of carbon 
tetrachloride (CCl4) into a tube containing oxygen. The distance between the 
CCl4 level and the top of the tube is 16.5 cm. The total pressure in the system 
is 760 mm Hg, and the temperature –5°C. The vapor pressure of CCl4 at that 
temperature is 29.5 mm Hg. The area of the diffusion path in the diffusion tube 
may be taken as 0.80 cm2. Determine the binary diffusivity of O2–CCl4 when in 
an 11-hour period after steady state, 0.026 cm3 of CCl4 has evaporated.

49.0 Helium separation from natural gas. McAfee [38] proposed a method 
to separate helium from natural gas. He noted that Pyrex glass is almost 
impermeable to all gases but helium. The diffusion coefficient of helium 
is 25 times the diffusion coefficient of hydrogen. Consider a Pyrex tubing of 
length L and inner and outer radii Ri and Ro. Show that the rate at which helium 
will diffuse through the Pyrex can be given by

JHe = 2πLDHe,pyrex(CHe,1 − CHe,2)/ln(Ro/Ri)

50.0 Solid dissolution into a falling film. A liquid is flowing in laminar motion 
down a vertical wall. The wall consists of a species that is slightly soluble in 
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the liquid. Show that the governing equation for the species diffusing into the 
liquid from the wall can be written as 

 ∂2u/∂z2 = (UL/D) ∂u/∂x 

Show that an error function solution results for this PDE. 

51.0 Carburizing steel. Low-carbon steel can be hardened to improve wear 
resistance by carburizing. Steel is carburized by exposing it to a gas, liquid, 
or solid that provides a high carbon concentration at the surface. Given the 
percent carbon versus depth graphs for various times at 930°C, how can the 
diffusion coefficient be estimated from the graphs?

52.0 Electrophoretic term
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For some systems, there is a minus sign in the electrophoretic term, as shown 
in the equation above. What are the implications of the minus sign in this 
equation? How will this manifest in applications?
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APPENDIX A
Internet Hotlinks 
to Public-Domain 

Databases
$99 Genetrack DNA Test www.genetrackus.com
2D-PAGE Databases for Human 
Proteome

http://biobase.dk/cgi-bin

Affymetrix www.affymetrix.com
Alignment tools www.SuccessFactors.

com/FreeTrial
Alscript www.compbio.dundee.

ac.uk/Software/Alscript
American Type Culture Collection www.atcc.org
Applied Biosystems www.appliedbiosystems.

com
Atlas assembler www.hgsc.bcm.tmc.edu
ArrayExpress www.ebi.ac.uk/

arrayexpress
AAT http://genome.cs.mtu.

edu/aat.html
AMAS www.compbio.dundee.

ac.uk/Software/Amas/
AMPS www.compbio.dundee.

ac.uk/Software/Amps/
AVID http://bio.math.berkeley.

edu
BASE http://base.thep.lu.se
Bacillus subtilis http://pbil.univ-lyon1.

fr/nrsub
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BankIt www.ncbi.nlm.nih.gov/
BankIt

Baylor College of Medicine, RNA 
Database

http://mbcr.bcm.tmc.
edu/smallRNA

BioConductor www.bioconductor.org
BioMedNet Library http://biomednet.com
BioPerl www.bioperl.org
BLAST www.ncbi.nlm.nih.gov/

blast/Blast.cgi
BLAST2 www.Bork.EMBL-

Heidelberg.DE/Blast2e
BLASTZ http://bio.cse.psu.edu
BLAT http://genome.ucsc.

edu/cgi-bin/hgBlat
BLOCKS http://blocks.fhcrc.org/
BLOSUM substitution matrix www.ncbi.nlm.nih.gov/

Education/BLASTinfo/
Cambridge Structural Database www.ccdc.cam.ac.uk
Carbohydrate Databases www.boc.chem.ruu.nl/

sugabase
CDD www.ncbi.nlm.nih.gov/

Stucture/cdd.cdd.shtml
Center for Applied Genomics www.tcag.ca/
Center for Inherited Disease Research www.cidr.jhmi.edu/

markerset.html
CEPH Genotype Database www.cephb.fr
CHAOS www.molecularstation.

com/bioinformatics/link
Cholinesterase Gene Server www.ensam.inra.fr
Chromosomes and karyotypes www.selu.com/bio/

cyto/human/
CIBEX http://cibex.nig.ac.jp
ClustaL www-igmc.u-strasbg.fr/

BioInfo
CLUSTALW www.ebi.ac.uk
Cooperative Human Linkage Center http://gai.nci.nih.gov/

CHLC
Database of Enzymes and Metabolic 
Pathways

www.empproject.com

Database of Protein Structure Domains http://barton.ebi.ac.uk
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Database for Rice Transcription 
Factors

http://drtf.cbi.pku.
edu.cn/

Department of Molecular and 
Cellular Biology

http://golgi.harvard.edu

DAVID http://david.niaid.
nih.gov

DIALIGN www.gsf.de/biodv/
dialign.html

Digital gene expression www.NanoString.com
DISULFIND http://disulfind.dsi.

unifi.it
DNA Database of Japan www.ddbj.nig.ac.jp
DNA search www.genomequest.com
DNA sequence assembly www.genecodes.com
DNA sequencing software www.codoncode.com/

aligner
Database of Genome Sizes (DOGS) www.cbs.dtu.dk/

databases/DOGS
Dotlet www.isrec.isb-sib.ch/

java/dotlet/Dotlet.html
Dotter www.cgr.ki.se/cgr/

groups/sonhammer/
Dotter.html

Dottup www.emboss.org
DoubleScan www.sanger.ac.uk/

Software/analysis/
doublescan

Drosophila melanogaster http://flybase.bio.
indiana.edu

EBI Protein Topology Atlas www3.ebi.ac.uk/tops
Ebioinformatics www.ebioinformatics.org
EcoCyc www.ai.sri.com/ecocyc
EMBO structural databases http://xray.bmc.uu.se
EMBOSS http://cbrmain.cbr.nrc.ca
Ensembl  www.ensembl.org
EnteriX http://bio.cse.psu.edu
Entrez www.ncbi.nlm.nih.gov/

sites/gquery
ENZYME www.expasy.org/

enzyme/
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Escherichia coli Database Collection http://susi.bio.uni-
giessen.de

eGenome http://genome.chop.edu
eShadow http://eshadow.dcode.org
euGenes http://iubio.bio.indiana.

edu:8089
European Bioinformatics Institute www.ebi.ac.uk
European Molecular Biology Institute   www.embl-heidelberg.de
ExoFish www.genoscope.cns.fr/

proxy/cgi-bin/exofish.cgi
Exon Annotation Database http://hollywood.mit.edu
Exon-Intron Database www.meduohio.edu/

bioinfo/eid/
ExPASy www.expasy.org
FASTA—EBI www.ebi.ac.uk/fasta33/
FASTA—Virginia http://fasta.bioch.

virginia.edu
fGENEH www.bioscience.org/

urllists/genefind.htm
Finishing standards www.genome.wustl.

edu/Overview/
g16stand.php

Flicker 2D gel analysis software www-lecb.ncifcrf.gov/
flicker

FootPrinter http://bio.cs.
washington.edu/
software.html

Free bioinformatics tools www.clcbio.com
GALA http://bio.cse.psu.edu
GenBank www.ncbi.nlm.nih.gov/

Web/Genbank
Gene expression for mouse brain www.brain-map.org/

welcome.do
Gene Expression Omnibus www.ncbi.nlm.nih.

gov/geo
Gene Ontology Consortium http://genome-www.

stanford.edu
Gene Ontology Project http://geneontology.org
GeneBuilder http://125.itba.mi.cnr.it/

~webgene/genebuilder.
html
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GeneCards http://bioinformatics.
weizmann.ac.il/cards

Genedoc www.psc.edu/biomed/
genedoc

GeneExpress www.mgs.bionet.nsc.ru/
mgs/systems/
geneexpress/

GeneLoc http://genecards.
weizmann.ac.il/cards

GeneMark.hmm http://genemark.biology.
gatech.edu/GeneMark/
hum.cgi

GeneID www1.imim.es/geneid.
html

GeneView http://125.itba.mi.cnr.it/
~webgene/wwwgene.
html

GeneWise www.sanger.ac.uk/
Software/Wise2

GENEMARK http://exon.gatech.edu/
GeneMark

GenePaint www.genepaint.org/
Genetic analysis software http://linkage.

rockefeller.edu/soft
Genie www.fruitfly.org/seq_

tools/genie.html
GenomeScan http://genes.mit.edu/

genomescan
GenomeVista http://pipeline.lbl.gov
Genome programs of the DOE http://genomics.energy.

gov/
Genome Sequence Database www.ncgr.org
Genomics Institute of Novartis 
Research Foundation

http://symatlas.gnf.org/
SymAtlas/

GENSCAN http://genes.mit.edu/
GENSCAN.html

GLASS http://groups.csail.mit.
edu/cb/glass/cgi-bin/
glass.cgi

GLIMMER www.cbcb.umd.edu/
software/glimmer

GPCRD www.gpcr.org/
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GRAIL http://compbio.ornl.
gov/grailexp

GRAILEXP http://grail.lsd.ornl.
gov/grailexp/

Hemophilia A Mutation Database http://europium.csc.
mrc.ac.uk

Haemophilus influenzae Database http://susi.bio.uni-
giessen.de

HIV Immunology Database—
Harvard University

http://hiv-web.lanl.gov/
immuno/index.html

HMMER http://bioweb.pasteur.
fr/seqanal/motif/
hmmer-uk.html

HMMgene www.cbs.dtu.dk/
services/HMMgene

HMMPRO www.bio.net/bionet/
mm/bio-soft/1999-
January

HMMSTR www.bioinfo.rpi.edu/
~bystrc/hmmstr/about.
html

Human Genome Project Information www.ornl.gov/sci/
techresources/Human_
Genome/

HUPO Proteomics Standards http://psidev.
sourceforge.net

IBM Bioinformatics and Pattern 
Discovery Group

http://cbcsrv.watson.
ibm.com/Tspd.html

Immunogenetics Database www.ebi.ac.uk
Institute for Genomic Biology www.igb.uiuc.edu/
Institute of Genomic Research www.tigr.org/
InterPro www.ebi.ac.uk
J. Craig Venter Institute, 
Rockville, MD 

http://rsng.nhlbi.nih.gov

JalView www.jalview.org
Johns Hopkins University 
OWL Web Server 

www.bis.med.jhmi.edu/

JPRED www.compbio.dundee.
ac.uk/~www-jpred/

Kyoto Encyclopedia of Genes and 
Genomes

www.genome.ad.jp/
kegg/
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LAGAN http://lagan.stanford.
edu/lagan_web/index.
html

Listing of molecular biology databases gopher://gopher.nih.
gov/11/molbio/other

MAFTT www.biophys.kyoto-u.
ac.jp/~katoh/prgrams

Mammalian Genome Size Database www.unipv.it
MAP-O-MAT http://compgen.rutgers.

edu/mapp,at
MASCOT www.matrixscience.com
Mauve http://gel.ahabs.wisc.

edu/mauve/
documentation.php

MegaBLAST www.ncbi.nlm.nih.gov/
BLAST

Meta-Meme http://metameme.
sdsc.edu

MGC http://mgc.nci.nih.gov
Microarray Gene Expression 
Data Society

www.mged.org

Molecular diagnostics www.G2Reports.com
Molecular Informatics Resource for 
Analysis

www.ifti.org/Mirage.
mirage.html

Molecular modeling servers and 
databases

www.rsc.org/lap/
rsccom/dab

Molecular Probe Database www.biotech.ist.unige.it
Molecules R Us http://cmm.info.nih.

gov/modeling/net_
services.html

Molscript www.chemie.fu-berlin.
de/chemnet/use/suppl/
molscript

Mouse Genome Database http://BioMedNet.com/
cgi-bin/mko

Mulan http://mulan.dcode.ord
MUMer http://mummer.

sourceforge.net/
MUSCLE www.drive5.com/muscle
MyHits http://myhits.isb-sib.ch
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MZEF http://argon.cshl.org/
genefinder/human.htm

National Institute of Genetics www.nig.ac.jp/index-e.
html

NCBI www.ncbi.nlm.nih.gov
NCBI BLAST Accelerator www.BlastStation.com
Nobel Museum  http://nobel.se
NRL_3D, Sequence-Structure Database www.gdb.org
Of Gene Expression, MIRAGE www.ifti.org/
O-GLYCBASE www.cbs.dtu.dk/

OGLYCBASE
OMIM www.ncbi/nlm.nih.gov/

omim
OPAL http://opal.cs.arizona.edu
p53 mutations in human tumors 
and cell lines

ftp://ftp.ebi.ac.uk/pub/
databases/p53

PAH mutation analysis www.mcgill.ca
Pairwise sequence alignment http://searchlauncher.

bcm.tmc.edu
PEPTIDESEARCH www.narrador.embl-

heidelberg.de
PFAM www.sanger.ar.uk/

Software/Pfam/
PHDSec www.predictprotein.org/

doc/methodsPP.html
PHYLIP http://evolution.genetics.

washington.edu/
PROCLAME http://prclame.unc.edu
PhyloBLAST www.pathogenomics.bc.

ca/phyloBLAST
Phylogeny programs http://evolution.

genetics.washington.
edu/phylip

PipMaker http://bio.cse.psu.edu/
pipmaker

PIR http://pir.georgetown.edu
PROCRUSTES www-hto.usc.edu/

software/procrustes/
qpn.html

http://argon.cshl.org/genefinder/human.htm
http://argon.cshl.org/genefinder/human.htm
www.nig.ac.jp/index-e.html
www.nig.ac.jp/index-e.html
www.BlastStation.com
http://nobel.se
www.gdb.org
www.ifti.org/
www.cbs.dtu.dk/OGLYCBASE
www.cbs.dtu.dk/OGLYCBASE
www.ncbi/nlm.nih.gov/omim
www.ncbi/nlm.nih.gov/omim
http://opal.cs.arizona.edu
www.mcgill.ca
http://searchlauncher.bcm.tmc.edu
http://searchlauncher.bcm.tmc.edu
www.narrador.emblheidelberg.de
www.narrador.emblheidelberg.de
www.sanger.ar.uk/Software/Pfam/
www.sanger.ar.uk/Software/Pfam/
www.predictprotein.org/doc/methodsPP.html
www.predictprotein.org/doc/methodsPP.html
http://evolution.genetics.washington.edu/
http://evolution.genetics.washington.edu/
http://prclame.unc.edu
www.pathogenomics.bc.ca/phyloBLAST
www.pathogenomics.bc.ca/phyloBLAST
http://evolution.genetics.washington.edu/phylip
http://evolution.genetics.washington.edu/phylip
http://evolution.genetics.washington.edu/phylip
http://bio.cse.psu.edu/pipmaker
http://bio.cse.psu.edu/pipmaker
http://pir.georgetown.edu
www.hto.usc.edu/software/procrustes/qpn.html
www.hto.usc.edu/software/procrustes/qpn.html
www.hto.usc.edu/software/procrustes/qpn.html
www.ncbi.nlm.nih.gov


 I n t e r n e t  H o t l i n k s  t o  P u b l i c - D o m a i n  D a t a b a s e s  295

Profile HMMs http://helix.nih.gov/
docs/gcg/hmmanalysis.
html

PROSITE http://expasy.hcuge.ch/
sprot/prosite.html

Protein kinase resource www.sdsc.edu/projects/
kinases

Protein microarrays www.
proteinbiotechnologies.
com

Protein Mutant Database http://pmd.ddbj.nig.
ac.jp/

ProteinProspector http://prospector.
ucsf.edu

Proteins in gene regulation www.access.digex.net
PROWL http://mcphar04.med.

nyu.edu
PSI-BLAST www.ncbi.nlm.nih.gov/

BLAST
PubMed   www.ncbi.nlm.nih.gov/

Genbank/index.html
PubMed Central www.pubmedcentral.

nih.gov
PUZZLEBOOT www.tree-puzzle.de
QSAR www.cris.com/

~Hyposoft
RCSB PDB www.rcsb.org/pdb/

home/home.do
Rat Genome Database http://rgd.mcw.edu
ReadSeq http://dot.imgen.bcm.

tmc.edu
REBASE—Restriction Enzymes www.neb.com/rebase
RepeatMasker http://repeatmsaker.

genome.washington.edu
REPuter www,genomes.de
Rfam www.sanger.ac.uk/

Software/Rfam
Ribosomal Database Project http://rdpwww.life.

uiuc.edu
Ribosomal Database Project II www.cme.msu.edu/

RDP/html

http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://expasy.hcuge.ch/sprot/prosite.html
http://expasy.hcuge.ch/sprot/prosite.html
www.proteinbiotechnologies.com
www.proteinbiotechnologies.com
www.proteinbiotechnologies.com
http://pmd.ddbj.nig.ac.jp/
http://pmd.ddbj.nig.ac.jp/
http://prospector.ucsf.edu
http://prospector.ucsf.edu
www.access.digex.net
http://mcphar04.med.nyu.edu
http://mcphar04.med.nyu.edu
www.ncbi.nlm.nih.gov/BLAST
www.ncbi.nlm.nih.gov/BLAST
www.ncbi.nlm.nih.gov/Genbank/index.html
www.ncbi.nlm.nih.gov/Genbank/index.html
www.pubmedcentral.nih.gov
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http://repeatmsaker.genome.washington.edu
http://repeatmsaker.genome.washington.edu
www.genomes.de
www.sanger.ac.uk/Software/Rfam
www.sanger.ac.uk/Software/Rfam
http://rdpwww.life.uiuc.edu
http://rdpwww.life.uiuc.edu
www.cme.msu.edu/RDP/html
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www.sdsc.edu/projects/kinases
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RNA Modification Database http://medlib.med.
utah.edu

ROSETTA www.rosettabio.com
Rutgers University Linkage 
Physical Maps

http://compgen.rutgers.
edu/maps

Saccharomyces cerevisiae www.proteome.com
Sakura http://sakura.ddbj.nig.

ac.jp
SAM www.cse.ucsc.edu/

research/compbio/
sam.html

SAM-T99 www.soe.ucsc.edu/
compbio/HMM-apps/

Sanger Institute www.sanger.ac.uk
SCOP http://scop.berkeley.edu
SEG ftp://ncbi.nlm.nih.gov/

pub/seg
Sequence alignment tool www.Geneious.com
Sequest http://fields.scripps.

edu/sequest
Sequin www.ncbi.nlm.nih.gov
Sequences of tRNA www.uni-bayreuth.de
SLAM http://bio.math.berkeley.

edu/slam
SGP-I www.1.imim.es/

datasets/humanmouse
SNP Consortium GL Maps http://snp.cshl.org/

linkage.maps
Source Database http://source.stanford.edu
STAMP www.compbio.dundee.

ac.uk/Software/Stamp/
Stanford Microarray Database http://genome-www5.

stanford.edu/
STRAP www.charite.de/bioinf/

strap
Structural classification of proteins http://scop/mrc-lmb.

cam.ac.uk
SWISS-2DPAGE www.expasy.org/ch2d/
SWISS-MODEL. http://swissmodel.

expasy.org/repository/
Swiss-Prot (EBI) www.ebi.ac.uk/swissprot

http://medlib.med.utah.edu
http://medlib.med.utah.edu
www.rosettabio.com
http://compgen.rutgers.edu/maps
http://compgen.rutgers.edu/maps
www.proteome.com
http://sakura.ddbj.nig.ac.jp
http://sakura.ddbj.nig.ac.jp
www.cse.ucsc.edu/research/compbio/sam.html
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http://scop.berkeley.edu
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http://fields.scripps.edu/sequest
http://fields.scripps.edu/sequest
www.ncbi.nlm.nih.gov
www.uni-bayreuth.de
http://bio.math.berkeley.edu/slam
http://bio.math.berkeley.edu/slam
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www.ebi.ac.uk/swissprot
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Swiss-Prot (Ex-PASy) www.expasy.org/sprot
T-Coffee www.ch.embnet.org/

software/TCoffee.html
TM4 Software www.tigr.org/

software/tm4
The Better Bradford Assay www.piercenet.com
TPF assembly tool www.ncbi.nlm.nih.gov/

projects/zoo_seq
Tree of Life http://phylogeny.

arizona.edu
TreeView http://taxonomy.

zoology.gla.ac.uk/rod/
treeview.html

TWINSCAN http://genes.cs.wustl.edu
UCSC http://genome.ucsc.edu
UIUC Metabolomics Center www.biotech.uiuc.edu/

centers/
MetabolomicsCenter/

UK Human Genome Mapping Project http://hgmp.mrc.ac.uk
Unimode www.unimod.org
Uniprot www.uniprot.org
UP Patent Citation Database http://cos.gdb.org/

repos/pat/
UW-Madison Server for Virology www.bocklabs.wisc.edu
VBASE www.mrc-cpe.cam.ac.uk
VISTA www-gsd.lbl.gov/vista
VISTA Browser http://pipeline.lbl.gov
WEBPHYLIP http://sdmc.krdl.org.

sg:8080
Washington University Genome 
Sequencing Center

http://genome.
wustl.edu

WHS www.cladistics.org/
education.html

Worldwide Protein Databank www.wwpdb.org/
Wormbase www.wormbase.org/ 
Yeast Homology Databases www.ch.embnet.org
zPicture and multi-zPicture http://zpicture.

dcode.org

www.expasy.org/sprot
www.ch.embnet.org/software/TCoffee.html
www.ch.embnet.org/software/TCoffee.html
www.tigr.org/software/tm4
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www.gsd.lbl.gov/vista
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http://sdmc.krdl.org.sg:8080
http://sdmc.krdl.org.sg:8080
http://genome.wustl.edu
http://genome.wustl.edu
www.cladistics.org/education.html
www.cladistics.org/education.html
www.wwpdb.org/
www.wormbase.org/
www.ch.embnet.org
http://zpicture.dcode.org
http://zpicture.dcode.org
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APPENDIX B
PERL for 

Bioinformaticists

Practical Extraction and Report Language (PERL) was invented by 
Larry Wall in 1986. It is an excellent pattern-matching scripting 
language. It is a programming language with good string processing 
capabilities and can be used for doing such things as sequence 
analysis, database management, etc. It has few data types. The source 
code for PERL is free. PERL is distributed under the General Public 
License (GPU). It is user-friendly for biologists. Small programs can 
be downloaded easily from the Comprehensive PERL Archive 
Network (CPAN), as well as from BIOPERL. It is a glue language. It 
is superb at common gateway interface (CGI) front. The source code 
of programs can contain few lines. The Internet access is at www.perl.
org and www.bioperl.org. PERL is supported on UNIX, MS DOS, 
VMS, OS/2, Mac, Windows, and LINUX operating systems. PERL is 
made of sed, awk, UNIX shell, and C. It does not need compiling 
processes like JAVA. The code can be written in Notepad, available 
with Windows. The generated file can be saved with a .pl extension. 
Some of the special features of PERL are

• Hashes (or associated arrays). % is used before hashes. 

 % translation = (aug => ‘ALA’; caa => ‘CYT’; ctt => ‘GLU’;). 
One line of PERL as a hash is used to convert the three-letter 
amino acid codons (AUG, GAA, CAT, etc.) to the amino acids 
(ALA, GLU, THY, SER, etc.). 

 $translation (aug), where PERL will interpret aug as ALA. 
There are commands for repeating a sequence and for pattern 
finding.

 $pattern = “aaaa”; 

                        $sequence − agttcgaaaaccggt; 

               @result = split/$pattern/$sequence;

                       print @result; 

299
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 The program splits the sentence and finds the pattern, and a 
gap is inserted to denote its presence.

The function list in PERL is as follows:

• Array   Chomp, join, keys, map, pop, push, 
reverse, shift, sort, splice, split, unshift, 
values

• Database dbmclose, dbmopen

• Directory  chdir, closedir, mkdir, opendir, readdir,  
rewindir, rmdir, seekdir, telldir

• File  binmode, chdir, chmod, chown, chr 
close, eof, fnctl, filenxflock, getc, glob, 
loctl, link, lstat, open, print, printf, read, 
readdir, readlink, rename, rmdir, seek, 
select, start, symlink, sysopen, sysread, 
syswrite, tell, truncate, umask, unlink, 
write

• Group  endgrent, getgrent, getgrid, getgrname, 
getpgrp, setgrent, setpgrp

• Hash delete, each, exists, keys, values

• Host  endhostent, gethostbyaddr, gethostby-
name, gethostent

• Input  getc, read, sysread

• Interprocess msgctl, msggct, msgrcv, msgsnd, pipe,
communication semctl, semgct, semop, shmctl, shmget, 

shmread, shmwrite

• Math   abs, atan2, cos, exp, hex, int, log, oct, 
rand, sin, sqrt, srand

• Message queues  msgctl, msgget, msgrcv, msgsnd

• Time gmtime, localtime, time

• Unix   chnwd, chown, chroot, dump, endgrent,  
endhostent, endnetent, endprotent, endp-
went, endservent, fnetl, fork, getgrgrid, 
getgrname, gethostent, getlogin, getnetent, 
getpgrp

• Miscellaneous bless, defined, do, eval, formline, import, 
ref, scalar, syscall, tie, tred, undf, untie, 
wantarray

• Network  endnetent, getnetbyaddr, getnetbyname, 
getnetent, setnetent

• Output                   die, print, printf, syswrite, write, wavn

 



• Password  endpwent, getpvent, getpwname, getp-
waid, setpwent

• Process                  alarm, die, dump, exec, exit, fork, 
getlogin, getpgrp, getppid, getpriority, 
kill, setpriority, sleep, system, times, 
unmask, wait, waitpid

• Protocol   endprotent, getprotobyname, getproto-
bynumber, getprotent, getservname, 
getservbyport, getservent, getprotoent

• Regular  grep, pos, quotemeta, rest, split, study
expression

• Scope local, my, culler

• Service endservant, getservbyname, getservbyport, 
getservent, setservent

• Socket  accept, bind, connect, gethostbyaddr, 
gethostbyname, gethostent, getpeername, 
getservbyport, getservent, getsocketname, 
get sockoporet, listen, reev, select, send, 
setsockoport, shutdown, socket, socketpair

• String chop, chr, crypt, hex, index, join, le, 
lcfirst, length, oct, pack, q, qq, quotemetr, 
qw, reverse, rindex, split, spintf, susbtr, 
uc, ucfirst, unpack, vec
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AA
Acetonitrile, 234
Acetylation capping, 232
Adenine, 12, 18
Adrenergic receptors, 162
Affine gap model, 60–63
Affine gap penalty:

affixation (exercise), 74
exercises, 73, 80
generally, 60–62
with translation, gaps, and transfers 

(exercise), 74–75
Affinity chromatography, 11
Affymetrix, 214, 222
AFM (atomic force microscopy), 230
Age-related diseases, 222–223
Age-related macular degeneration 

(AMD), 223
Aho-Corasick dictionary automaton, 98
Alanine, 4, 66
Aldehyde surface treatment, 230
Algorithm or shift (exercise), 103–104
Aligned residues, 116
Alignment(s):

approximate, 89
global, 117
multiple, 117, 160–161
number of, 49
optimal, 49
semiglobal, 55
string, 48
(See also Multiple-sequence 

alignment; Sequence alignment)
Alignment grading function, 

47–50
Alpha value, 31
α-helix structure, 5, 191
α-keratin, 5
Alphabet, 47

Alternating-sequence distribution 
(exercise), 172–173

Alternative hydrogen-bond 
partners, 199

Alternative hypothesis, 30, 31
Altschul, S. F., 65, 66
AMD (age-related macular 

degeneration), 223
Amines, 3
Amino acids, 2–3

change in, 68
DNP, 7
essential, 3
free, 3
L-, 5
negatively charged basic, 3
nonpolar, 4–5
ostrich (exercise), 71
polar, 4
positively charged basic, 3
sequence of, 2, 71

Amir, A., 98
Ammonia, 8
Ammonium hydroxide, 232
Anfinsen, C. B., 47
Angiotensin receptors, 162
Annotate subcellular localization, 

201–203
Annotation of the genome, 42
ANNs (see Artificial neural networks)
Anserine, 8
Anticodons, 16
Antidiagonal (exercise), 79
APDs (avalanche photodiodes), 

224
Apoliprotein AI gene, 238
Approximate alignment, 89, 188
Approximate match, 96

Index
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Aquifex aeolicus, 186
Arabidopsis thaliana, 184, 213
Archaeoglobus fulgidis, 185, 186
Architecture(s):

BRNN, 201
DAG-RNN, 200–201
feed-forward, 193
HMM, 144
layered, 193
left-right, 144
Markov chain, 135
recurrent, 193

Arginine, 3
Argon in hydrogen (exercise), 278
ArrayIt (TeleChem), 217, 218
Artificial neural networks (ANNs), 

193, 195
Asparagine, 4
Aspartic acid, 3, 8, 66
Aspergillus fumigatus, 184
Asymptotic efficiency, 32
Asymptotic lower bound, 32
Asymptotic order of functions, 

32–33
Asymptotic upper bound, 32
Asymptotically tight bound, 32
Atomic force microscopy (AFM), 230
Autoimmune disorders, 43–45
Automated sequence alignment, 51
Auxiliary variable, 146
Avalanche photodiodes (APDs), 224
AVID (exercise), 113
Award for matches, 75
Axiomatic definition, of probability, 24

BB
Bacillus cereus chromosome, 21
Bacillus subtilis, 185, 186
Back propagation model, 193
Backbone, of protein, 3
Background distribution, 148
Background fluorescence, 220, 230
Backward variable, 146
Bacterial genome, 1
Bacteriophage ϕX174, 17, 18
Bacteriophages, 21
Baldi, P., 200
Band across diagonal (exercise), 79
Barletta, A., 254, 259
Base pairs:

deletion/insertion of, 48
number of, 42

Bates and Constable algorithm, 182
Bats, 45
Baumeister, K. J., 259

Baum-Welch algorithm (exercise), 
172

Bayes’ theorems, 25
Beamsplitter, 224
Bell, John, 24
Bell curve, 30
Bellman, R., 55
Benzoyl protecting group, 231
Berg, Paul, 216–217
Bernoulli, Daniel, 23
Bernoulli’s theorem, 25
Berry-Ravindran algorithm (exercise), 

106
Berzelius, Jöns Jakob, 2
Bessel equation, 263
β-hemoglobin, 51
β-keratin, 5
β-pleated-sheet structures, 5–6
β-sheet structures, 191
Bhandary, Raj, 16
Bias, 194
Big O notation, 32
Billeter, M. A., 17
Binding sites, 141–143
Binomial distribution, 26, 27
Binomial heap, 182–184
Biochemical reaction, 219
Biochemistry, 42
Biochips (see Microarrays)
Bioinformatics, 1, 42
Biologic complexity, of organisms, 

22
Biologic data bank, 1
Biologic question formulation, 

219
Biologic sequence alignment, 190
Biomolecules, 42
Bioseparation techniques, 9–12
BLAST software, 99, 153, 187
Blocking agents, 230
Block-sequence distribution 

(exercises), 76, 173
BLOSUM and PAM matrices 

(exercise), 74
BLOSUM substitution matrix, 68
BM algorithm (see Boyer-Moore 

algorithm)
Boley, A. K., 250
Bone cells, 44
Borrelia burgdorferi, 185
Boundary condition, 267–269
Bounded-phase chromatography, 12
Bovine pancreatic ribonuclease, 51
Boyer-Moore (BM) algorithm, 91, 

94–96
Bradykinin, 8
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Branched topology, 199
Brasard, G., 190
Bratley, P., 190
Breakers, 192
BRNN architecture, 201
Brookhaven National Laboratory, 

192
Brute-force method, 49
Butterflies, 45

 C C
C. elegans, 22
Caenor habditis elegans, 153
Calibration, 246
Calorimetric estimation, 7
Cancer formation, 221
CAP3 software, 99
Capping, 199–200, 232
Carboxylic acid moiety, 3
Carburizing steel (exercise), 285
Carnosine, 8
Carticotropin, 8
Caruthers, M. H., 231
Cats, 21
Cattaneo and Vernotte equation, 254
Cauchy distribution, 28
CCD (charge coupled devices), 224
cDNA (see Complementary DNA)
cDNA microarray data, 236–240
Cell grades during local alignment vs. 

global alignment (exercise), 73
Cell shape, 2
Center-star-alignment algorithm, 

119–122
Chain sequence distribution, of 

copolymers, 6–7
Chang, W. I., 89, 98
Chao, K. M., 63, 64
CHAOS (exercise), 111
Charge coupled devices (CCD), 224
Charge separation, 270
Chargaff's parity rules, 163, 164
Chebychev, Pafnuty, 24
Children, 88
Chimpanzees, 21, 45
Chi-squared distribution, 29
Chothia, C., 116
Chou and Fasman rules, 192
Chromatography, 7–8, 11–12, 245
Chromosome(s):

Bacillus cereus, 21
eukaryote, 1
regional assembly of, 20

Circadian rhythm, 222
Cistron, 21

Classical definition, of probability, 24
Classification:

HMM, 161–162
protein, 47

Clausius inequality, 246
Claverie, J. M., 22
Cleanliness, 219
Cloning, 47
Cloverleaf secondary structure, 16
ClustalW (exercise), 127
Clustering, 154, 161
Clusters, 122
Codons, 12, 13, 15
Coextrusion (exercise), 280
Collisions, number of, 253
Color-separating interference filter, 224
Colussi algorithm (exercise), 104–105
CombiJet, 234
Combinatorial synthesis, 233
Common inheritance, 45
Common prefix property, 98
Competitive learning, 161
Complementarity, 18
Complementary DNA (cDNA), 60, 

236–240
Computer mouse, 217
Concentration equalization, 246
Conditional probability, 25, 149–151
Confirmation, 220
Confocal scanning microscope, 219, 

224–227
Consensus sequence:

defined, 122
exercise, 84

Consensus-pattern hydropathy 
plots, 156

Conservation, 42
Constant wall flux (CWF), 259
Continuous probability distributions, 

28–30
Controlled-pore glass (CPG), 232
Cook, Stephen, 118
Copolymers, chain sequence 

distribution of, 6–7
COSA (exercise), 127
Coupling, 232
Covalent coupling, 230
CPG (controlled-pore glass), 232
Creutzfeldt-Jakob syndrome, 46
Crick, F. H. C., 12
Crochemore, M., 89, 97
Crosstalk, 226
CRP (Cyclic AMP Receptor Proteins) 

binding sites, 181
CWF (constant wall flux), 259
Cyanoethyl phosphoramidites, 231



 306 I n d e x  

Cyclic AMP Receptor Proteins (CRP) 
binding sites, 181

Cysteine, 4
Cytosine, 12, 18
Cytoskeleton, 2

DD
DAG-RNN (see Directed Acyclic 

Graphs and Recursive NN 
architecture)

D’Alembert’s solution, 272
Damped oscillations, 273
Dansyl chloride method, 10
Dasangam (exercise), 282
Database(s):

of annotated genes, 180
dBEST, 187
FORESST, 153
HSSP, 196
OWL, 187
Pfam, 153, 154, 202
SMART, 202
Unigene, 64

Database mining, 160
Davis, Ron, 213
DAWG (directed acyclic word graph), 

107
DBEST database, 187
De Moivre, Abraham, 23, 30
De Moivre’s theorem, 257
Decoding problem (HMM), 

144, 146–147
Degeneracy, of genetic code, 15
Delcher, A. L., 90
Deletion, of base pair, 48
Denaturation, 230
Deposition, 235
Deprotection, 231, 232
Depth, of network, 193
Desaltation, 11
Desorption ionization, 10
Detection, 219, 224
Detection threshold, 155
Detectivity, 226
Determination of diffusivity (exercise), 

284
Deviation in standard units, 186
Diabetes, 45
Diagonals search algorithm, 65–66
DIALIGN (exercise), 128
Dibromomethane, 235
Dice game, 23
Dichloroacetic acid, 234
Dichroic interference filter, 224
Dictionary-based gene annotation, 187

Dictionary-matching algorithm, 98
Differential equations, 193, 254
Diffusion:

defined, 246
Fick’s laws of molecular, 246–249
heat, 246
mass, 246, 252
of oxygen through spiracles 

(exercise), 279–280
and reaction in a nuclear fuel rod 

(exercise), 282–283
steady diffusion in a hollow sphere 

(exercise), 284
of tea in water in spacecraft, 248–249
transient, 270–273

Diffusion coefficient:
defined, 247, 250–251
of milk in the refrigerator (exercise), 

280
Stokes-Einstein equation to 

calculate, 250–251
of tobacco mosaic virus (exercise), 

279
Diffusivity, determination of (exercise), 

284
Dimensionless concentration, 263
Dimensionless heat flux, 263
Dimensionless mass flux, 260–263
Dimethoxytrityl (DMT) group, 231
Dinitrophenyl (DNP) method, 7
Dinucleotide bond formation, 232
Dinucleotide sequences, repeating, 14
Directed Acyclic Graphs and 

Recursive NN (DAG-RNN) 
architecture, 200–201

Directed acyclic word graph (DAWG), 
107

Discrete probability distributions, 
26–28

Discrete update equations, 193
Discrimination tests, 155
Distance metric (exercise), 77
Disulfide bond creation, 6
Disulfide bridges, 7
DISULFIND (exercise), 208
Divide-and-conquer principle, 55–56
DMT (dimethoxytrityl) group, 231
DNA:

determination of nucleotide 
sequences in, 17–18

double-helix three dimensional 
structure of, 12

number of base pairs in molecule of, 
42

transcription/translation/
replication of, 18–20
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DNA chips (see Microarrays)
DNA microarray synthesis, 234
DNA polymerase, 17
DNA sequence(s):

geometric distribution 
representation of, 135–143

HMM representation of, 134
Jukes–Cantor model for, 150–151
of simian varicella virus (exercise), 

77
triplet-code divisions of, 15

DNA sequencing, 216
DNP amino acids, 7
DNP derivatives, 7
DNP (dinitrophenyl) method, 7
DNP-glycine, 7
DNP-phenylalanine, 7
Dogs, 21
Dopant profile by ion implantation 

(exercise), 283–284
Double-helix structure (of DNA), 

12, 216
Drag force, 251
Driving force, 251
Droplet-generating devices, 

233–234
Drosophila fly, 222
Drug design, 46
Drug discovery, 221
Dyes/dyeing:

bias in, 236–237, 239, 240
normalization of, 236, 238–240
of wool (exercise), 283

Dynamic arrays, 56
Dynamic Devices, 218
Dynamic programming:

description of, 55–56
gene annotation by, 187
Needleman and Wunsch algorithm 

as, 51–53
optimal MSA by, 117–118
for spliced alignment problem, 191
steps of, 56

Dynamic programming table 
(exercises):

for global alignment, 80
for local alignment, 80

Dystrophin gene, 22

EE
Edge labels, 86, 88
Edit distance (e):

defined, 63
exercise, 79

Edman degradation method, 10
Einstein, Albert, 247

Electrophoresis:
apparatus for, 269–270
bioseparation via, 9
defined, 269
gel acrylamide, 17
governing equation for, 270–273
in measurement of sequence 

distribution, 245–246
minus sign in term (exercise), 285
polyacrylamide gel, 10
two-dimensional gel, 11
types of, 270

ELM, 202
Emission discrimination, 224
Emission filters, 224
Emission light collection, 223–224
End state, 145
Ensemble method, 198–199
Enzymatic labeling, 214
Enzymes, 2
Epi-illuminated systems, 224
ε-DNP-lysine, 7
Error calculation, 193
Error value, back propagation of, 193
Escherichia coli (E. coli), 19

gene annotation of, 185
promoter sequences (exercise), 75
sequence matching for, 185, 186

Essential amino acids, 3
EST (see Expressed sequence tag)
Estimate of the diffusion coefficient of 

argon in hydrogen (exercise), 278
Etching, 230
Eukaryote chromosomes, 1
Eukaryote genomes, 1
Eukaryotic gene, 21
Eukaryotic transcription, 13
Evaluation problem (HMM), 144, 146
Evolution, study of, 45
Evolutionary divergence, 66
Evolutionary tree, 45
Excitation, 223
Excitation beam, 224
Excitation discrimination, 224
Exons, 21, 22
Expressed sequence tag (EST), 180, 238
Eye, oxygen transport in the (exercise), 

282

FF
Fabrication, silicon-based, 217
Fairchild Semiconductor, 217
Fast Fourier transformation (FFT), 122
FDNB (fluorodinitrobenzene), 7
Feed-forward architecture, 193
Feng-Doolittle progressive MSA, 121
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Fenn, John, 10
Fermat, P. De, 23
FFT (fast Fourier transformation), 122
FGENEH, 158, 187
Fick, Adolf Eugen, 247
Fick’s laws of molecular diffusion, 

246–249
first, 247–248
generalized (see Generalized Fick’s 

laws of molecular diffusion)
second, 248–249

Field size, 226
Fill time, 235–236
Film, solid dissolution into a falling 

(exercise), 284–285
Final time condition, 254
F-index and alignment of sequences S 

and T (exercise), 112
Finite automaton, 91, 96–97
First-order Markov model, 135, 

137, 140
FITC (fluorescein isothiocynate), 223
Fitch and Margoloash clustering 

algorithm, 121
FLASH program, 187
Fluorescein isothiocynate (FITC), 223
Fluorescence:

background, 220, 230
detection of, 223–224

Fluorescence channels, 226
Fluorescence emission wavelength, 223
Fluorescent samples, 214
Fluorodinitrobenzene (FDNB), 7
Flux:

constant-wall, 259
heat, 263
mass, 260–264
molar, 270
surface, 261–262

Focus, 225
FORESST database, 153
Forward algorithm, 146
Forward DAWG matching algorithm 

(exercise), 108
Forward sweep, 193
Forward variable, 146
Foxp3 master gene regulator, 45
Fraction A sequence, 8
Fractionation, of 32P-labeled

oligonucleotides, 17
Fragments, sparse dynamic 

programming method for LCS 
from (exercise), 113

Frame consistent, 159
Franklin, Rosalind, 12
Free amino acids, 3

Fully connected NNs, 194
Functional genomics, 42, 180
Functional regions, 141

GG
G protein–coupled receptors (GPCRs), 

153–155
Galil and Giancarlo algorithm 

(exercise), 105
Galton, Francis, 30
Gambling, 23
Gamma distribution, 28–29
γ-coil state, 191
Gap model, 60–63
Gap penalty:

affine (see Affine gap penalty)
exercise, 73

Gapped alignment, 152
Gaps:

exercise, 75
in sequences, 42

Gases, 247
Gauss, Carl Friedrich, 30
Gel acrylamide electrophoresis, 17
Gel matrices, 270
Gelfend, M. S., 190, 191
Gel-filtration chromatography, 11
Gels, 9
GenBank, 189
Gene(s):

human, 22
as term, 21

Gene annotation, 187–191
Gene chips (see Microarrays)
Gene expression, 220–223
Gene finding, 46, 158, 179, 187
Gene Locator and Interpolated 

Markov Modeler (GLIMMER), 184
Gene number identification, 21, 22
Gene Parser, 158
Gene profiling, 223
Gene regulators, 45
Gene transcription, 19
GeneJet, 234, 235
GeneMark, 187
Generalized Fick’s laws of molecular 

diffusion, 249–269
derivation of, 251–254
formula, 250
and periodic boundary condition, 

267–269
reasons to seek, 249–250
and relativistic transformation of 

coordinates, 259–267
and Taitel paradox/final time 

condition, 254–259
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Generalized hidden Markov model 
(GHMM), 157–160

Generalized normal distribution, 30
Generalized pair hidden Markov 

model (GPHMM), 187–188
Generalized suffix tree (GST), 86
Genetic code:

amino acid sequence in, 2
general properties of, 13
structure of, 15

Genetic predisposition for 
disease, 222

Genetic screening and diagnostics, 
221

Genie program, 158, 160, 187
GenLang, 158
GenMark, 158
Genomes:

annotation of, 42
diversity/size/structure of, 20–23

Genomics:
functional, 42, 180
growth of, 179

GenScan, 187
Geometric distribution:

and DNA sequence, 135–143
exercise, 84
formula for, 28

GHMM (see Generalized hidden 
Markov model)

Gibbs sampling method, 181–182
Gilbert, W., 17, 216
GLASS (exercise), 112
Glass chips, 214
Glass substrate, 213–214, 216, 

223, 230
GLIMMER (Gene Locator and 

Interpolated Markov Modeler), 184
GlimmerM, 184
Global alignment: 

to grading scheme (exercise), 83
of pair of sequences, 51–55
of three sequences (exercise), 79

Global classification projects, 160
Global distance, 123–124
Global view, 220
Glutamic acid, 3, 66
Glutamine, 4
Glutathione, 8
Glycine, 4, 66
GPCRs (see G protein–coupled 

receptors)
GPHMM (see Generalized pair hidden 

Markov model)
Grade of similarity, 42
Gradient-based method (exercise), 172

Grading function:
constructing a good, 51–55
defined, 48
during optimal global alignment 

(exercise), 73
GRAIL, 158, 187
Greedy algorithms:

to align DNA sequences (exercise), 77
for multiple-sequence alignment, 123
for pairwise alignment, 63–65
for relative entropy site-selection, 

180–181
for SD sites finding, 185

Grooming hair with oil (exercise), 283
GST (generalized suffix tree), 86
Guanine, 12, 18
Guide tree, 121
Gusfield, D., 89

HH
Haemophilus influenzae, 1, 185, 186
Hamill, T. D., 259
Hamming (exercises), 76, 80
Hash table–based tools (exercise), 112
Hash tables:

exercise, 111
in FLASH, 187

Hashing function, 92
HDL metabolism, 238
Heat diffusion, 246
Helicobacter pylori, 185, 186
Helium separation from natural gas 

(exercise), 284
Helix capping, 199, 200
Helix state, 196
Hemoglobin, 51, 216
Hen’s egg lysozyme, 51
Hidden Markov models (HHMs), 133–134

architecture of the, 144
classifications using, 161–162
and database mining, 160
decoding problem in, 146–147
evaluation problem in, 146
evaluation/decoding/learning

questions in, 143–145
gene annotation methods based on, 

187
generalized, 157–160
learning problem in, 147
multiple alignments derived by, 

160–161
with protein families, 153–156
sequence alignment using, 152–153
signal-peptide/signal-anchor

prediction by, 162–163
wheel, 156–157
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Hidden states, 143
Higher order networks, 193
Highest-scoring pairs (HSPs), 190
High-performance liquid 

chromatography (HPLC), 12
Hirschberg array (exercises):

for global alignment of three 
sequences, 80

local alignment, 78
for local alignment of three 

sequences, 80
Histidine, 3
HMMR, 165, 175
HMMPRO (exercise), 175
HMMSTR, 199
HMMWE (exercise), 175
Holes, 104
Hollow sphere, steady diffusion in a 

(exercise), 284
Homologous proteins, 192
Homologous residues, 116
Homology, 42
Homology-Derived Structure of 

Proteins (HSSP) database, 196
Horspool algorithm (exercise), 

105–106
Housekeeping genes, 237
HPLC (high-performance liquid 

chromatography), 12
HSPs (highest-scoring pairs), 190
HSSP (Homology-Derived Structure of 

Proteins) database, 196
Human brain tissue, 220
Human diseases:

genetic predisposition for, 222
onset/progression of, 221

Human genome data analysis, 22
Human Genome Project, 1
Human genomes, rapid global 

alignment of mouse and 
(exercise), 111

Human microarray data, 214
Humans:

largest known gene in, 22
number of genes in, 22

Hunt, J. W., 57
Hybridization, 219
Hydration, 220
Hydrogen, estimate of the diffusion 

coefficient of argon in (exercise), 
278

Hydrogen bonding, 5
Hydrogen-bonded capping, 199
Hydropathy plot, 155–156
Hydrophobic interaction, 199
Hypergeometric distribution, 27, 28
Hypothesis testing, 30–31

II
IBM Blue Gene Project, 1
Ideal gas law, 253
Identity, 42, 48
ILP (integer linear programming), 127
Image geometry, 227
IMM (see Interpolated Markov model)
Immune system, 43–45
Immunoglobins, 116
Indels, 42, 48
Independent events, 25
INFO program, 187
Inheritance, common, 45
Initiation codons, 16
Ink-jet printing, 233–236
Insect control (exercise), 281
Insertion, of base pair, 48
Institute of Genomic Research (TIGR), 

89, 184
Insulin:

discovery of protein structure of, 
2, 42

microstructure of, 9
sequence distribution of, 6–9

Integer linear programming (ILP), 127
Integrated circuits, 217
Integrated Electronics (Intel), 217
Interference filter, 224
Intergenic DNA, 21
Internal nodes, 88
Interpolated Markov model (IMM), 

184–185
Interpretation of grade of alignment 

(exercise), 73
Intractable problems, 118
Introns, 19, 21
Inverse dynamic programming 

(exercises):
for global alignment, 82
for local alignment, 83
for local alignment with affine gap 

penalty, 83
Ion-exchange chromatography, 11
Ionization, soft desorption, 10
Ionophoresis, 18
Isobutyryl group, 231
Isoelectric focusing, 10–11
Isoleucine, 4
Iterative pairwise alignment, 122

JJ
JalView (exercise), 129
Johannes, W., 21
Johns Hopkins University, 221
Joint probability function for random 

variables, 27
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JPRED (exercise), 208
Jukes–Cantor model for DNA 

sequences, 150–151
Junk DNA, 23

KK
Karkkainen and Sander’s algorithm 

(exercise), 108
Karp, R. M., 118
Kelly, D. C., 249
Kendrew, John, 2
Keratin, 5
Khorana, Har Gobind, 13–16
Kleene closure, 47, 72
KMP algorithm (see Knuth-Morris-

Pratt algorithm)
Knuth, R. E., 55
Knuth-Morris-Pratt (KMP) algorithm, 

91–94
Kolmogorov, Andrey, 24
Kornberg, A., 12, 13, 216
Kornberg, Roger, 13, 216
Krogh, A., 162
Krogh tissue cylinder (exercise), 

278–279
kth-order Markov chain, 134–135
Kurtosis, 26
Kurtz, S., 89

LL
Labeling:

microarray enzymatic, 214
molecular, 7
pulse, 17

Lactobacillus delbrueckii, 186
LAGAN (exercise), 111
Lam, F., 187, 189, 190
L-amino acids, 5
Landau, E., 32
Landau, G. M., 98
Landau, L., 249
Laplace, P. de, 23, 25, 30
Larger of (2n or n2) problem, 

31–32
Las Vegas algorithms, 190
Laser beam, 224
Lasers, 226
Lawler, E. L., 89, 98
Layered architecture, 193
Lazy suffix trees (exercise), 110
LCA (least common ancestor), 98
LCS, sparse dynamic programming 

method for (exercise), 113
LCS problems (see Longest common 

subsequence problems)

Learning:
in ANN, 195
competitive, 161
machine, 200–201
supervised/unsupervised, 195

Learning problem (HMM), 144, 147
Least common ancestor (LCA), 98
Leder, Philip, 15
LEDs (light-emitting diodes), 223
Left-hand side (LHS), 255
Left-right architectures, 144
Legendre, Adrien-Marie, 30
Lesk, A. M., 116
Lettuce wilting (exercise), 280–281
Leucine, 4
Lexis, Wilhelm, 30
LHS (left-hand side), 255
Life cycle, of microarray analysis, 

218–220
Lifshitz, E. M., 249
Light, 225–226
Light-emitting diodes (LEDs), 223
Likelihood functions: 

and GHMM, 158, 159
log-likelihood, 147
maximum likelihood, 147

Line geometries, 123
Linear range, 229
Linker molecules, 234
Liquid chromatography, 12
Liquid phase (of paper 

chromatography), 11
Liquids, 247
LLR (log-likelihood), 147
LOC3 Dini prediction system, 

202–203
LOC3D, 201–203
Local alignment:

with affine gap penalty (exercise), 83
to grading scheme (exercise), 83
of pair of sequences, 59–60, 62–63, 

66
of three sequences (exercise), 79

Localization prediction, 201–203
Log-likelihood (LLR), 147
Longest common extension (exercise), 

110
Longest common subsequence (LCS) 

problems:
exercise, 73
greedy algorithms for solving, 63
subquadratic algorithms for, 55, 

57–58
Longest increasing subsequence, 

length of, 57–58
Longevity, 46, 221
Look-up tables, 99–100
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Loop state, 196
Lorentz distribution, 28
Loss from beverage containers 

(exercise), 282
Lousma, Jack, 248–249
Lowess function, 239
Lowest common ancestor (exercise), 

110
Low-fidelity enzyme, 47
Lysine, 3
Lysozyme, 51

MM
Machine learning, 200–201
Macular degeneration, 223
Mad cow disease, 46
MAFFT software:

development of, 122
exercise, 128

Malaria parasite, 184
Manhattan networks, 189, 190
Manuals, reading, 219
MAP (Match table-based pruning), 112
Markov, Andrey, 24
Markov assumption, 145
Markov chain:

architecture of, 135
kth-order, 134–135

Markov model(s):
first-order, 135, 137, 140
GHMM, 157–160
GLIMMER, 184
GPHMM, 187–188
hidden (see Hidden Markov models)
IMM, 184–185
of order N, 163, 164
second-order, 135
third-order, 137–139
VLMMs, 188

Masek, W. J., 55
Mass balance, 260, 267
Mass diffusion, 246, 252
Mass flux, 260, 264
Mass propagative velocity, 265
Mass spectrometry (MS), 10
Master gene regulators, 45
Match table-based pruning (MAP), 112
Matched letters, 48
Maxam, A. M., 17, 216
Maximal Multiple Exact Matches 

(multiMEMs), 87
Maximal Unique Matches (MUMs), 86
Maximum increasing subsequence, 

182–184
Maximum likelihood (ML), 147
Maximum match, 51

Maximum mutual information 
(MMI), 147

Maximum mutual information (MMI) 
criterion (exercise), 172

Maximum-subsequence problem, 
182–184

Bates and Constable algorithm for, 
182

binomial heap approach to, 182–184
McCreight’s algorithm for 

construction of suffix trees 
(exercise), 108

Mean, 26, 135
Mechanical microspotting, 233
Memory usage, 89, 188
Messenger RNA (mRNA), 13, 19
Metabolomics, 42, 180, 221
Meta-MEME (exercise), 175
Methanobacterium thermoautotrophicum,

186
Methanococcus jannaschii, 21, 148, 

185, 186
Methionine, 4, 15
MGA (see Multiple Genome Aligner)
Microarray analysis, 214
Microarray analysis life cycle, 

218–220
Microarray detection, 223–227

confocal scanning microscope, 
224–227

fluorescence, 223–225
Microarray enzymatic labeling, 

214
Microarray scanners, objective 

lens-based, 224
Microarrayer (NanoPrint), 

217–218
MicroarrayManager Software, 218
Microarrays:

applications of, 220–223
defined, 214
development of, 216–218
and disease, 213–218
example of, 215
manufacture of, 233–236
normalization of cDNA microarray 

data, 236–240
and phosphoramadite synthesis, 

231–233
qualifications for, 215–216
surfaces required for, 227–230

Microprocessors, 217
Microscopic devices, 215–216 

(See also Scanning microscopes)
Microscopy, atomic force, 230
Migration, of molecular fragments, 

246
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Milk in refrigerator, diffusion 
coefficient of (exercise), 280

Miller, W., 63
Minimum-heap-ordered, 183
Mismatch, 48
ML (maximum likelihood), 147
MMI (maximum mutual information), 

147
Mobile phase (of paper 

chromatography), 11, 12
Molar flux, 270
Molecular biology, 2–23

amino acids/proteins, 2–3
bioseparation techniques, 9–12
genomes, 20–23
insulin, sequence distribution of, 

6–9
nucleic acids/genetic code, 12–20
protein structures, 3–6

Molecular diffusion, Fick’s laws of, 
246–249

Molecular evolution, 45
Molecular labeling, 7
Molecular weight, of proteins, 9
Mononucleotide residues, 17
Monte Carlo algorithms, 190
Moore, Gordon, 217
Moore’s law, 1, 217
“Most likely state sequence,” 146
Mouse genome:

rapid global alignment of human 
and (exercise), 111

sequencing completed for, 1
mRNA (see Messenger RNA)
mRNA splicing, 19
MS (mass spectrometry), 10
MSA (see Multiple-sequence 

alignment)
Multichroic interference filter, 224
Multichroic lens, 224
MULTI-LAGAN (exercise), 112
MultiMEMs (Maximal Multiple Exact 

Matches), 87
Multinomial distribution, 26–27
Multiple alignments, 117, 

160–161
Multiple Genome Aligner (MGA), 

86, 87
Multiple global alignment, 117
Multiple sclerosis, 44
Multiple-sequence alignment (MSA), 

115–125
center-star alignment algorithm for, 

119–121
consensus sequence derived from, 

122
defined, 41, 115

by dynamic programming, 
117–118

geometry of, 123–125
greedy method of, 123
and NP completeness, 118–119
progressive methods for, 

121–122
in study of genetic diseases, 47
Wang–Jiang theorem, 118

Multiplicativity, 150
MUMmer, 86–87, 91
MUMmer 1.0, 89
MUMmer 2, 89
MUMmer 2.0, 91
MUMs (Maximal Unique Matches), 

86
MUMs during alignment of pair of 

sequences (exercise), 108
Mycobacterium bovis, 186
Mycoplasma genitallium, 185, 186
Mycoplasma pneumoniae, 186
Myelin sheath proteins, 44
Myoglobin, 2

NN
NA (numerical aperture), 224
NanoPrint Microarrayer, 

217–218
National Center for Biotechnology 

Information (NCBI), 64
National Institute of Aging, 46
Natural gas–helium separation 

(exercise), 284
NCBI (National Center for 

Biotechnology Information), 64
Needleman and Wunsch algorithm, 

51–55, 86, 187
Needleman and Wunsch article 

(exercise), 81
Negatively charged basic amino 

acids, 3
Nernst, W., 249
Neural networks (NNs):

artificial, 193, 195
fully connected, 194
gene annotation methods based on, 

187
in localization prediction, 

201–203
in secondary-structure prediction, 

192–197
Neutron diffraction, 6
Nielsen, H., 162
Nirenberg, Marshall W., 15
Nitrogenous bases, 12–14
NMR (see Nuclear magnetic resonance)
NNs (see Neural networks)



 314 I n d e x  

Node(s):
graph, 158
internal, 88
read, 92, 93
root, 121
start, 92
stop, 93

Noholes, 104
Nonaligned sequences (exercise), 77
Nondeterministic polynomial (NP), 

118
Nonpolar amino acids, 4–5
Non-self-replicating suborganisms, 21
Normal deviate, 186
Normal distribution, 29–30
Normalization:

for cDNA microarray data, 236–240
in relative entropy comparisons, 180

Normal-phase chromatography, 12
Not-so-naïve algorithm (exercise), 105
Noyce, Robert, 217
Nozzle-less acoustic jets, 233
NP (nondeterministic polynomial), 118
NP complete problems, 118–119, 180
Nuclear fuel rod, reaction and 

diffusion (exercise), 282–283
Nuclear magnetic resonance (NMR), 

6, 192
Nucleic acid synthesis, 13
Nucleic acids, 12–20

determination of nucleotide 
sequences in DNA, 17–18

DNA transcription/translation/
replication, 18–20

and genetic code, 13–16
Nucleotide sequence sites, 141
Nucleotide substitution, 151
Nucleotides:

di-, 14, 232
mono-, 17
oligo-, 17, 215, 231–233
parts of, 12
poly-, 42

Null hypothesis, 30–31
Numerical aperture (NA), 224

OO
Objective lens, 224, 225
Objective lens–based microarray 

scanners, 224
Olfactory receptors, 161
Oligonucleotides:

exercise, 76
fractionation of 32P-labeled, 17
synthetic, 215, 231–233

Oncologic studies, 221
Onsager, L., 249
Open reading frame (ORF), 16, 184
OPSD (rhodopsin) sequences, 162
Opsin receptors, 162
OPSR (red-sensitive opsins), 162
Optical requirements, 223–224
Optimal alignment, 49, 190
Optimal global pairwise alignment 

(exercise), 72
Optimal local alignment (exercise), 74
Optimal probe concentration, 228, 229
Optimal target concentration, 227–228
Optimal target density, 227, 228
Optimality–time-efficiency tradeoff 

(exercise), 79
Ordered arrays, 215
Ordering of functions, 32–33
ORF (see Open reading frame)
ORF analysis, 46
Oryza Sativa, 184
O(n) space, 56
Ostrich, amino acid sequence of 

(exercise), 71
O(mn) time, 55
O(mn/K) time taken (exercise), 84
Output independence assumption, 145
Overfitting problem, 198–199
OWL database, 187
Oxidation:

parabolic law of (exercise), 278
in phosphoramidite synthesis, 232

Oxygen diffusion through spiracles 
(exercise), 279–280

Oxygen transport in the eye (exercise), 
282

Oxytocin, 8

PP
Pachter, L., 187, 189, 190
PAGE (polyacrylamide gel 

electrophoresis), 10
Pair of sequences with no repetitions 

of characters (exercise), 74
Pairwise alignment:

and affine gap model, 60–63
BLOSUM matrix for, 68
defined, 41
description of, 41–43
diagonals search method for, 65–66
global, 51–55
greedy algorithms for, 63–65
iterative, 122
local, 59–60
PAM matrix for, 66–67
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PAM and BLOSUM matrices 
(exercise), 74

PAM-120 matrix, 66
PAM-200 matrix, 66
PAM-250 grading matrix (exercise), 74
PAM-250 matrix, 66–68
Paper chromatography, 7–8, 11, 245
Paper ionophoresis, 8
Parabolic law of oxidation (exercise), 

278
Parental strands, 18
Parse φ, 159
Partial degradation, 17
Partial differential equation (PDE), 254
Partition chromatography, 7
Pascal, B., 23
Paterson, M. S., 55
Pauling, L., 5, 213, 216
PCR (see Polymerase chain reaction)
PDB (Protein Data Bank), 196
PDE (partial differential equation), 254
Peclect number (electric) (Peelec), 271, 

272
Penalty for mismatch (exercise), 75
Penetration distance, 264–265
Pentium IV chip, 217
Peptide bonds, 2, 7
Peptide fractionation, 7
Periodic boundary condition, 267–269
Periodicity, 30, 156–157
Perutz, Max, 2
Pevzner, P. A., 190
PFAM database:

exercise, 175
generally, 153, 154
and LOC3D, 202

PHD (Profilenetwork HeiDelberg) 
server, 196

PHDsec (exercise), 208
Phenylalanine, 4
Phenylalanyl chain, 8
Pheromones (exercise), 281
PHMM, 187–189
Phosphoramadite synthesis, 231–233
Photobleaching, 223
Photolithography, 233
Photomultiplier tubes (PMTs), 224, 226
Phylogeny, probabilistic approach to, 

149–151
Piezoelectric capillary jets, 234
Piezoelectric cavity devices, 233
Piezoelectric devices, 233
Pitch, 12
Planar substrates, 216
Plasmodium falciparum, 184
Plus and minus method, 17, 18, 45
PMTs (see Photomultiplier tubes)

Point mutations, 42
Poisson, Siméon-Denis, 247
Poisson distribution, 27
Polar amino acids, 4
Pollastri, G., 200
Polyacrylamide gel electrophoresis 

(PAGE), 10
Polyethylene glycol polymers, 234
Polymerase, 13
Polymerase chain reaction (PCR), 42, 

88, 216
Polymers, 42
Polymorphism:

exercise, 84
level of, 21

Polynomial time solution, 118
Polynucleotides, 42
Polypeptide sequences, 89
Polypeptides:

backbone of, 5
microstructure of, 42, 46
naturally occurring, 8

Position-specific scoring matrix 
(PSSM), 175

Positively charged basic amino acids, 3
Posttranslational modification, 2
Praline, 66
Prediction problem, 192
Presynthesized DNA fragments, 234
Primary structure, of proteins, 3–5

information in, 47
measuring, 10
negatively charged basic amino 

acids, 3
nonpolar amino acids, 4–5
polar amino acids, 4
positively charged basic amino 

acids, 3
Primers, 17, 18
Primitive tandem repeat, 88
Print modes, 235
Print time, 235–236
Prion proteins, 46–47
Pro Dom (Program Domainer), 154
Probabilistic models:

HMM, 133, 134
of phylogeny, 149–151

Probability, 23–31
conditional, 25, 149–151
continuous probability distributions, 

28–30
definitions of, 24
discrete probability distributions, 

26–28
function for random variables, 27
of independent events, 25
transition (see Transition probability)
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Probability distribution(s):
continuous, 28–30
discrete, 26–28
HMM, 143
for sample space, 148

Probability profile, 141
Probability theory, 23
Probe concentration, 228, 229
PROCRUSTES program, 187
Profile HMMs (exercise), 176
Profilenetwork HeiDelberg (PHD) 

server, 196
Program Domainer (Pro Dom), 154
Progressive alignment methods, 121–122
Prokaryote genomes, 1
Proline, 4, 5, 66
PROSITE, 154, 202
Protein(s):

biologic specificity of, 8
classification of, 47
in diet, 2–3
discovery of, 2
molecular weight of, 9

Protein chips, 221
Protein Data Bank (PDB), 196
Protein families, 116, 153–156
Protein folding problem, 47
Protein sequences, optimal local 

alignment of (exercise), 74
Protein signal, 43–44, 46
Protein structures, 3–6

primary, 3–5
quaternary, 6
secondary, 5–6
tertiary, 6

Protein synthesis, 3, 14
Protein–coupled receptors, G (see G 

protein–coupled receptors)
Proteomics, 10, 11, 180
Protfun, 202
Protocols, 219
Prusiner, S. B., 46
PSI-BLAST:

exercises, 128, 175
and Lochomi, 202

PSSM (position-specific scoring 
matrix), 175

Ptpn22 master gene regulator, 45
Pulse labeling, 17
Purines, 12
Pyrimidines, 12
Pyrococcus horikoshii, 186

QQ
Qian, N., 192, 195
QUASAR (exercise), 112

Quaternary structure, of proteins, 6
Quick-search algorithm (exercise), 106

RR
R group, 3
Rabin-Karp algorithm, 91, 92
Radial basis function (RBF), 195
Raita algorithm (exercise), 103
Ramachandran, G. N., 7
Random coil, 6
Random variables, joint probability 

function for, 27
Random-sequence distribution 

(exercise), 173
Rapid global alignment of human and 

mouse genomes (exercise), 111
Rat genome, 1
RBF (radial basis function), 195
Reaction and diffusion in a nuclear 

fuel rod (exercise), 282–283
Read nodes, 92, 93
Reading frames, 16, 184
Recombinant DNA, 217
Recurrence formula, 59
Recurrent architecture, 193
Red-sensitive opsins (OPSR), 162
Reese, M. G., 157
Reflected light, 225–226
Regional chromosome assembly, 20
Regulatory T cells, 45
Relative entropy, 147–149
Relative entropy site-selection 

problem, 180–182
Gibbs sampling approach to, 

181–182
greedy approach to, 180–181

Relative-frequency approach to 
definition of probability, 24

Relativistic transformation of 
coordinates, 259–267

Relaxation times, 250, 252
Repeating dinucleotide sequences, 14
Repeats (exercise), 78, 109
Repetitive sequences, 23
REPfind search engine, 86
REPuter software, 86
Residues:

aligned, 116
homologous, 116
mammalian, 7
mononucleotide, 17

Resolution, 226
Restriction mapping (exercise), 281
Retina, 222–223
Reverse of sequence (exercise), 73
Reverse transcriptase, 60
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Reverse-factor algorithm (exercise), 
107

Reverse-phase chromatography, 12
Rheumatoid arthritis, 44
Rhodopsin (OPSD) sequences, 162
RHS (see Right-hand side)
Ribosome-binding site, 185
Right-hand side (RHS), 91, 255
Riis and Krough ensemble method, 

198
RNA, 16
RNA by transcription, 22
Root list, 183
Root mean squared speed, 253
Root node, 121
ROSETTA, 187–188
Rost, B., 196

SS
Sacred pond (exercise), 279
Salt precipitation, 9
SAM (sequence-alignment modeling) 

system (exercise), 174
Sample preparation, 219
Sample space, 148
Sampling, with replacement, 27, 28
SAM-T99 (exercise), 208
Sander, C., 196
Sanger, Sir  Frederick, 2, 6–8, 17, 42, 216
Sanger’s method, 10
Saturated condition, 229
Scaffolding, 2
Scaffolds, 20
Scanners, objective lens–based 

microarray, 224
Scanning microscopes, 217, 219, 

224–227
Scattered light, 225–226
Schena, Mark, 213, 214
Schleiermacher, C., 89
Scratch and dig specification, 230
Scrubbing of SO2 (exercise), 280
SD site finding (see Shine Dalgarno site 

finding)
SD sites, 185–186
Secondary structure, of proteins, 5–6, 

191–203
and DAG-RNNs, 200–201
and HMMs, 153, 199–200
and LOC3D, 201–203
and neural networks, 193–196
and PHD server, 196–198
prediction of, 192
and Riis–Krogh ensemble method, 

198–199
types of, 46

Second-best grade of alignment 
(exercise), 73

Second-order Markov model, 135
Sedimentation, 9
Seed alignment, 153
Sejnowski, T. J., 192, 195
Selective deprotection, 231
Selective target saturation, 229–230
Self-normalization, 240
Semiglobal alignment, 55
Sensitivity, 226
Sequence alignment:

automated, 51
biologic, 190
defined, 41
grading function for, 47–50
HMMs for, 152–153, 187
multiple (see Multiple-sequence 

alignment)
objective of, 42
pairwise (see Pairwise alignment)
rationale for studying, 43–47

Sequence database searching, 45, 46
Sequence distribution:

electrophoresis in measurement of, 
245–246

with high degree of alternation 
(exercise), 75

of insulin, 6–9
Sequence distribution microstructure 

(exercise), 72
Sequence length, 135
Sequence representation, suffix-tree 

(see Suffix tree(s))
Sequence-alignment modeling (SAM) 

system (exercise), 174
Sequencing errors (exercise), 83–84
Serine, 4, 8, 66
Sharma, K. R., 30, 65, 255, 272
Sharma distribution, 30
Shift or algorithm (exercise), 103–104
Shine Dalgarno (SD) site finding, 

185–187
Shockley, William B., 217
Shockley Semiconductor Laboratories, 

217
Shotgun sequencing, 46
SHUFFLE-LAGAN (exercise), 112
Sickle-cell patients, 216
Side chain, 3
Sigma pi networks, 193
Signal anchor model, 162–163
Signal compression, 230
Signal peptide model, 162–163
Significant diagonals, 65
Silane reagents, 230
Silica-gel chromatography, 7
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Silicon-based fabrication, 217
Simian varicella virus (SVV), 77
Simon algorithm (exercise), 104
Single-nucleotide polymorphisms 

(SNPs), 21
Site finding, 185–187
Site profile, 148
Sites, 141–143
Skewness, 26
Skylab, 248–249
SLAM program, 187–189
SMART database, 202
Smith, T. F., 55
Smith algorithm (exercise), 106–107
Smith and Waterman algorithm, 59–60
Smith and Waterman’s seminal article 

(exercise), 81
SNPs (single-nucleotide 

polymorphisms), 21
SO2 scrubbing (exercise), 280
“Soft” desorption ionization, 10
Solid dissolution into a falling film 

(exercise), 284–285
Solids, 247
Solubility, 247
Sonnhammer, E. L., 200
Soot from a steam engine (exercise), 

284
SP (sum-of-pairs) grade, 117
Space efficiency, 56
Space required, 58
Sparse dynamic programming method 

for LCS from fragments (exercise), 
113

Sparse table (exercise), 80–81
Spatial addressing, 224
Specific binding, 216
Spectrometry, mass, 10
Speech recognition, 134
Speed, T. P., 237
Spiked-controls method, 237–238
Spiracles, diffusion of oxygen through 

(exercise), 279–280
Spliced alignment algorithm, 190, 191
Splice-site predictor, 157–158
Spot software, 238
Square, 88–89
Stability (exercises):

of global alignment, 81
of local alignment, 81

Staircase table (exercise), 81–82
STAMP (exercise), 128–129
Start node, 92
Start state, 145
Stationary assumption, 145
Stationary Markov chain, 135

Statistical inference, 30–31
Statistics, 24
Steady diffusion in a hollow sphere 

(exercise), 284
Steam engine soot (exercise), 

284
Steiner trees, 189
Stepwise coupling efficiency, 234
Stereoisomerism, 5
Steric availability, 230
Stokes shift, 223
Stokes-Einstein equation, 251
Stop codons, 15
Stop node, 93
Straight spaces, 123
Strand state, 196
Streaming sequence, against 

suffix tree, 89–91
String(s):

with alternating sequence 
distribution (exercise), 76

with block sequence distribution 
architecture (exercise), 76

containing pattern P (exercise), 
109

defined, 47, 91
String algorithms, 91–97

Boyer-Moore, 94–96
finite automaton, 96–97
Knuth-Morris-Pratt, 92–94
Rabin-Karp, 92
suffix trees in, 97–98

String alignment, 48
String length, 48
String matching, 99–100

automata for, 96–97
KMP algorithm for, 92
preprocessing/matching times for, 

91
problem of, 91
with suffix trees (exercise), 110
suffix trees for, 97–98

Struthio camelus, 71
Student t distribution, 29
Subcellular localization, 201–203
Subquadratic algorithms, 57–58
Subsequence(s):

longest common problems, 55, 
57–58, 63, 73

maximum problems, 182–184
of strings, 31, 49

Substitution grade, of alignment 
matrix, 66

Substitution matrices, 150
Substrates, 213–214
Sucrose density gradients, 9
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Suffix forest (exercises), 110, 128
Suffix function, 97
Suffix tree(s), 85–91

description of, 85–86
McCreight’s algorithm for 

construction of (exercise), 108
programs based on, 86–87
sequence-representation algorithm 

using, 88–89
set of patterns using (exercise), 110
streaming sequence against, 

89–91
in string algorithms, 97–98

Sugar-phosphate chain, 12
Sumner, James B., 2
Sum-of-pairs (SP) grade, 117
Superposition of signal sources, 227
Supersequence (exercises):

for global alignment, 77–78
for local alignment, 78

Supervised learning, 195
Surface flux, 261–262
Svedberg, T., 9
Swaroop, Anand, 222–223
Swissprot, 153–155
Swissprot 34, 154
Synechocystis spp., 186
Synonyms, 15
Synthetic oligonucleotides, 215, 

231–233
Sze, S. H., 190
Szymanski, T. G., 55, 57

TT
T cells, 44, 45
t score, 186
Taitel paradox, 254–259
Tanaka, Koichi, 10
Tandem array, 89
Tandem repeats, 88–89
Target concentration, 227–228
Target density, 227, 228
Target excess, 229
Target-probe binding, 229
T-COFFEE (exercise) (see Tree-based 

consistency objective function for 
alignment evaluation (exercise))

Teaching in ANN, 193
TeleChem, 217
Temperature, 220, 264
Temperature distribution, 254–255, 259
Termonomers, 135
Terpolymers, 135
Tertiary structure, of proteins, 6
Tetrapeptides, 192
Tetrapolymers, 135

Theorie Analytique des Probabilities
(P. de Laplace), 23

Thermal devices, 233
Thermatoga maritima, 185
Thieleria parva, 184
Thin-layer chromatography (TLC), 

11–12
Third-order Markov model, 137–139
3D protein structure prediction, 

200–201
Threonine, 4
Threshold, 194
Throughput, 227
Thymine, 12, 18
TIGR (see Institute of Genomic 

Research)
Time analysis, 56, 119–121
Time domain solution, 256
Time efficiency:

formula for, 58
tradeoff between optimality and 

(exercise), 79
Time lag, 264, 268
Tiselius, A., 9
TLC (see Thin-layer chromatography)
TMHMM (transmembrane HMM), 200
Tobacco mosaic virus diffusion 

coefficient (exercise), 279
Tompa, M., 185
Trace, 48
Tractable problems, 118
Tradeoff between time efficiency and 

optimality (exercise), 79
Training, in ANN, 195
Training set, 147, 196
Transcription, 19, 216
Transcripts, 20, 22
Transient concentration, 265
Transient diffusion, 270–273
Transition probability, 134–135, 137, 

140, 143, 153
Translation, 12, 19, 22
Transmembrane HMM (TMHMM), 

200
Transversions, 151
Tree-based consistency objective 

function for alignment evaluation 
(T-COFFEE) (exercise), 
127–128

Treponema pallidum, 185
Trichloroacetic acid, 234
Triplet codes, 15
Triplets, 13
tRNA structure, 16
Tryptophan, 4, 5
Tuppy, H., 7
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Turbo reverse-factor algorithm 
(exercise), 107–108

Turing’s halting problem, 118
Two-dimensional gel electrophoresis, 11
Type 1 diabetes, 45
Type I error, 31
Type II error, 31
Tyrosine, 4

UU
UK33-HCMVA, 155
Ukkonen, E., 63, 85
Ultracentrifuge, 9
Uniform distribution, 28, 148
Uniformity, 226–227
Unigene database, 64
Universality, 15
University of Houston, 222
Unsupervised learning, 195
Unweighted pair group method with 

arithmetric mean (UPGMA) 
(exercise), 127

Uracil, 12
Urease, 2

VV
Valine, 4, 15
Van Emde Boas, P., 58
Variable Length Hidden Markov 

Models (VLMMs), 188
Variance, 26, 135
Vasopressin, 8
VEIL, 187
Velocity:

of mass diffusion, 252
mass-propagative, 265

Viruses:
diffusion coefficient of tobacco 

mosaic virus (exercise), 279
DNA sequence of simian varicella 

virus (exercise), 77
and drug design, 46
genomes in, 21
RNA as genetic material of, 12

Vishkin, U., 98
Viterbi algorithm, 146, 188

Viterbi paths, 154, 160
VLMMs (Variable Length Hidden 

Markov Models), 188
Von Mises, Richard, 24

WW
Washington University School of 

Medicine, 222
Waterman, M. S., 55
Watson, James D., 12
Wave concentration, 257
Wave temperature, 263, 266
Wavelength difference, 223
Weight matrix, 147
Weight sharing, 198–199
Weighted-average sequence, 124
Weighting, 66
Weiner, P., 85
Wheel HMMs, 156–157
White blood cells, 45
Whole myoglobin, 51
Whole-genome alignment, 86
Whole-genome assembly, 20
Whole-genome shotgun sequencing 

method, 20
Wilkins, Maurice, 12
Wilting of lettuce (exercise), 

280–281
Window space, 65
Wobble position, 15
Worst-case running time, 32

XX
X-drop algorithm (exercises):

with gap penalty, 78
for global alignment, 78
for local alignment, 78

X-ray crystallography, 6, 192
X-ray diffraction analysis, 2

YY
Yeast phenylalanine tRNA, 16

ZZ
Zanchini, E., 254, 259
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