

Bioinformatics
Sequence Alignment and

Markov Models

Kal Renganathan Sharma, Ph.D., P.E.
Adjunct Professor

Department of Chemical Engineering
Prairie View A&M University

Prairie View, Texas

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071593063

Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

0-07-159307-1

The material in this eBook also appears in the print version of this title: 0-07-159306-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licen-
sors reserve all rights in and to the work. Use of this work is subject to these terms. Except as per-
mitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and per-
sonal use; any other use of the work is strictly prohibited. Your right to use the work may be termi-
nated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETE-
NESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or
anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any dam-
ages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been advised of the possibili-
ty of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071593063

http://dx.doi.org/10.1036/0071593063

This work is dedicated to my son
R. Hari Subrahmanyan Sharma

(alias Ramkishan, born August 13, 2001)
 with unconditional love.

About the Author
Kal Renganathan Sharma, Ph.D., P.E., has written five
books, 12 journal articles, and 448 conference papers.
He has earned three degrees in chemical engineering—
a B.Tech. from the Indian Institute of Technology,
Chennai, and an M.S. and a Ph.D. from West Virginia
University, Morgantown. He has held a number of high-
level positions at engineering colleges and universities.
Dr. Sharma currently teaches at Prairie View A&M
University in Prairie View, Texas.

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Contents
Preface . xi
Acknowledgments . xv

 1 Preliminaries . 1
 1.1 Molecular Biology . 2

1.1.1 Amino Acids and Proteins 2
1.1.2 Structures of Proteins 3
1.1.3 Sequence Distribution of Insulin 6
1.1.4 Bioseparation Techniques 9
1.1.5 Nucleic Acids and Genetic Code 12
1.1.6 Genomes—Diversity, Size, and

 Structure . 20
 1.2 Probability and Statistics 23

1.2.1 Three Defi nitions of Probability 24
1.2.2 Bayes’ Theorem and Conditional

 Probability . 25
1.2.3 Independent Events and

 Bernoulli’s Theorem 25
1.2.4 Discrete Probability Distributions . . . 26
1.2.5 Continuous Probability

 Distributions . 28
1.2.6 Statistical Inference and

 Hypothesis Testing 30
 1.3 Which Is Larger, 2n or n2? 31
 1.4 Big O Notation and Asymptotic

 Order of Functions . 32
Summary . 33
References and Sources . 34
Exercises . 35

 Part 1 Sequence Alignment and Representation
 2 Alignment of a Pair of Sequences 41

Objectives . 41
 2.1 Introduction to Pairwise Sequence

 Alignment . 41
 2.2 Why Study Sequence Alignment 43
 2.3 Alignment Grading Function 47

v

For more information about this title, click here

http://dx.doi.org/10.1036/0071593063

 vi C o n t e n t s

 2.4 Optimal Global Alignment of a Pair
 of Sequences . 51

2.4.1 Needleman and Wunsch
 Algorithm . 51

 2.5 Dynamic Programming 55
 2.6 Time Analysis and Space Effi ciency 56
 2.7 Dynamic Arrays and O(N) Space 56
 2.8 Subquadratic Algorithms for Longest

 Common Subsequence Problems 57
 2.9 Optimal Local Alignment of a Pair

 of Sequences . 59
2.9.1 Smith and Waterman

 Algorithm . 59
2.10 Affi ne Gap Model . 60
2.11 Greedy Algorithms for Pairwise

 Alignment . 63
2.12 Other Alignment Methods 65
2.13 Pam and Blosum Matrices 66
Summary . 69
References . 70
Further Reading . 71
Exercises . 71

 3 Sequence Representation and String Algorithms. . . 85
Objectives . 85
 3.1 Suffi x Trees . 85

3.1.1 Overview of Suffi x Trees
 in Sequence Analysis 85

 3.2 Algorithm for Suffi x Tree
 Representation of a Sequence 88

 3.3 Streaming a Sequence Against a Suffi x Tree . . . 89
 3.4 String Algorithms . 91

3.4.1 Rabin-Karp Algorithm 92
3.4.2 Knuth-Morris-Pratt (KMP) Algorithm . 92
3.4.3 Boyer-Moore Algorithm 94
3.4.4 Finite Automaton 96

 3.5 Suffi x Trees in String Algorithms 97
 3.6 Look-up Tables . 99
Summary . 100
References . 101
Exercises . 102

 4 Multiple-Sequence Alignment 115
Objectives . 115
 4.1 What Is Multiple-Sequence Alignment? 115

 C o n t e n t s vii

 4.2 Defenitions of Multiple Global Alignment
 and Sum of Pairs . 117

4.2.1 Multiple Global Alignment 117
4.2.2 Sum of Pairs . 117

 4.3 Optimal MSA by Dynamic Programming . . . 117
 4.4 Theorem of Wang and Jiang [2] 118
 4.5 What Are NP Complete Problems? 118
 4.6 Center-Star-Alignment Algorithm [4] 119

4.6.1 Time Analysis . 119
 4.7 Progressive Alignment Methods 121
 4.8 The Consensus Sequence 122
 4.9 Greedy Method . 123
4.10 Geometry of Multiple Sequences 123
Summary . 125
References . 125
Exercises . 126

 Part 2 Probability Models
 5 Hidden Markov Models and Applications 133

Objectives . 133
 5.1 Introduction . 133
 5.2 kth-order Markov Chain 134
 5.3 DNA Sequence and Geometric

 Distribution [2–4] . 135
 5.4 Three Questions in the HMM 143
 5.5 Evaluation Problem and Forward

 Algorithm . 146
 5.6 Decoding Problem and Viterbi Algorithm . . . 146
 5.7 Relative Entropy . 147
 5.8 Probabilistic Approach to Phylogeny 149
 5.9 Sequence Alignment Using HMMs 152
5.10 Protein Families . 153
5.11 Wheel HMMs to Model Periodicity

 in DNA . 156
5.12 Generalized HMM (GHMM) 157
5.13 Database Mining . 160
5.14 Multiple Alignments . 160
5.15 Classifi cation Using HMMs 161
5.16 Signal Peptide and Signal Anchor

 Prediction by HMMs . 162
5.17 Markov Model and Chargaff's Parity Rules . 163
Summary . 164
References . 165
Exercises . 166

 viii C o n t e n t s

 6 Gene Finding, Protein Secondary Structure 179
Objectives . 179
 6.1 Introduction . 179
 6.2 Relative Entropy Site-Selection Problem 180

6.2.1 Greedy Approach 180
6.2.2 Gibbs Sampler . 181

 6.3 Maximum-Subsequence Problem 182
6.3.1 Bates and Constable Algorithm 182
6.3.2 Binomial Heap [4–7] 182

 6.4 Interpolated Markov Model (IMM) 184
 6.5 Shine Dalgarno SD Sites Finding 185
 6.6 Gene Annotation Methods 187
 6.7 Secondary Structures of Proteins 191

6.7.1 Neural Networks 193
6.7.2 PHD Architecture of Rost and

 Sander . 196
6.7.3 Ensemble Method of Riis and

 Krogh [23] . 198
6.7.4 Protein Secondary Structure

 Using HMMs . 199
6.7.5 DAG RNNs: Directed Acyclic

 Graphs and Recursive NN
 Architecture and 3D Protein
 Structure Prediction 200

6.7.6 Annotate Subcellular Localization
 for Protein Structure 201

Summary . 203
References . 204
Exercises . 206

 Part 3 Measurement Techniques
 7 Biochips . 213

Objectives . 213
 7.1 Introduction . 213

7.1.1 Microarrays, Biochips, and
 Disease . 214

7.1.2 Five Steps and Ten Tips 218
7.1.3 Applications of Microarrays 220

 7.2 Microarray Detection . 223
7.2.1 Fluorescence Detection and

 Optical Requirements 223
7.2.2 Confocal Scanning Microscope 224

 7.3 Microarray Surfaces . 227
 7.4 Phosphoramadite Synthesis 231

 C o n t e n t s ix

 7.5 Microarray Manufacture 233
 7.6 Normalization for cDNA

 Microarray Data . 236
Summary . 240
References . 241
Exercises . 242

 8 Electrophoretic Techniques and Finite
 Speed of Diffusion . 245

Objectives . 245
 8.1 Role of Electrophoresis in the

 Measurement of Sequence Distribution 245
 8.2 Fick’s Laws of Molecular Diffusion 246
 8.3 Generalized Fick’s Law of Diffusion 249

8.3.1 Derivation of a Generalized Fick’s
 Law of Diffusion 251

8.3.2 Taitel Paradox and Final Time
 Condition . 254

8.3.3 Relativistic Transformation
 of Coordinates . 259

8.3.4 Periodic Boundary Condition 267
8.4 Electrophoresis Apparatus 269
8.5 Electrophoretic Term, Ballistic Term, and

 Fick Term in the Governing Equation 270
Summary . 274
References . 275
Exercises . 276

 A Internet Hotlinks to Public-Domain Databases 287

 B PERL for Bioinformaticists . 299

 Index . 303

This page intentionally left blank

Preface

Iwas requested by the former controller of examinations at the
University of Madras, India, A. Sivamurthy, to prepare the
curriculum and syllabus for a B.Tech. degree in bioinformatics

at the Vellore Institute of Technology, Vellore, India, in 2001. I was
requested by letter to prepare a project report on a course program
for an M.Tech. degree in bioinformatics by Dr. B. Srinivasan, Vice Chan-
cellor at Sri. Chandrasekharendra Saraswati Viswa Mahavidyalaya
University, Kancheepuram, India, in 2002. The Vice Chancellor at
SASTRA University, Thanjavur, India, R. Sethuraman, chartered me
with the task of writing a book entitled Lecture Notes in Computational
Molecular Biology, to be used for instruction in the newly formed
M.Tech. and B.Tech. bioinformatics programs in 2003.

Since I wrote Lecture Notes in Computational Molecular Biology, a
number of interesting developments in the field of bioinformatics
has come about. The Human Genome Project has been completed
ahead of time. The biologic databases double in size every 10 months,
and the computing speed of microprocessors doubles in speed every
18 months. So a database search that cost $2 today would, two years
from now, quadruple in cost to $8 on account of the explosive growth
of databases and would be cut back in half to $4 on account of the
increase in computing power. There is scope for the development
of data search and data storage algorithms and methods. It can
be viewed as a marriage between information technology and
computational biology. Bioinformatics is emerging as a distinct
discipline of its own. Textbooks need to be neither mathematically
intimidating nor biologically intensive and laborious. Over 560
end-of-chapter exercises are provided in this book. Appendices
with Internet hotlinks to public-domain databases and PERL code
commands are given. This book can be used as a textbook for core
subjects in a bioinformatics undergraduate program and as an elective
for chemical engineering and biotechnology undergraduate and
graduate programs.

The dynamic programming methods of Needleman and Wunsch
and Smith and Waterman for global, local, and semiglobal alignment

xi
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

of sequences are discussed. The affine gap model and the different
scoring schemes to make the alignment more biologically meaningful
are treated with worked examples. Further reductions in time and
space efficiciency from O(n2) needed for the dynamic programming
algorithms are introduced. These include the greedy algorithms that
tap into the existing similarity of biologic sequences that are
homologous. The X-drop algorithm for very similar sequences that
can be completed in O(en) time, where e is much smaller than n, are
discussed. Dynamic array techniques that only need O(n) space for
dynamic programming methods are introduced. Sparse dynamic
programming table problems are reviewed. Methods discussed in
this text feature the software used in industry, such as MUMer, Genie,
LAGAN, CHAOS, GLASS, QSAR, AVID, REPuter, CLUSTALW,
T-Coffee, DIALIGN, MAFTT, PSI-BLAST, BLAST, FASTA, STAMP,
JalView, SAM, HMMER, HMMPRO, Meta-Meme, PFAM, Profile
HMMs, GLIMMER, GENEMARK, PROCRUSTES, GRAIL, fGENEH,
ROSETTA, GENSCAN, SLAM, HMMSTER, PHDSec, DISULFIND,
SAM-T99, JPRED, etc.

Suffix trees can be used to represent sequences. Nineteen string
algorithms that search for a pattern in a text that can be completed in
O(n) time are discussed. Generalized suffix tree, lazy suffix tree, look-
up tables, distributed suffix tree, hash tables, etc., are discussed with
examples. The multiple-sequence-alignment problem is shown to be
NP complete. A chapter on preliminaries needed to obtain maximum
use of the textbook is provided. This contains a bit of molecular
biology, computer science, and probability. Approximate multiple-
sequence-alignment algorithms are discussed.

Markov models are explained in detail. A genome sequence was
obtained from NCBI and modeled using geometric distribution and
Markov models. The three questions in hidden Markov models
(HMMs), i.e., evaluation, decoding, and learning, are reviewed. The
Markov, stationarity, and output independence assumptions are
introduced to keep the problems mathematically tractable. The HMM
is characterized completely. The number of operations needed to
determine the sequence given the HMM, i.e., the evaluation problem
that usually takes time O(NT), where T is the length of the sequence
and N is the number of states, can be completed in O(N2T) time using
the forward algorithm. The Viterbi algorithm with optimal path is
discussed. HMM applications such as construction of a phylogenetic
tree, protein families, wheel HMMs to predict periodicity in DNA, the
generalized HMM, database mining, multiple alignments, classification
using HMMs, signal peptide and signal anchor prediction by HMMs,
and Chargaff parity rule prediction are discussed.

Gene-finding algorithms such as the greedy method of Hertz and
Stormo, the Gibbs sampler, the binomial heap method, the interpolated
Markov model, the SD site-finding problem, the GPHMM, splice-site
VLMMs, Steiner trees, Manhattan distance, the PHMM, and Las Vegas

 xii P r e f a c e

algorithms are reviewed. Protein secondary-structure methods such
as the neural networks of Qian and Sejnowski, the PHD architecture of
Rost and Sander that provided improved accuracy using evolutionary
information, the ensemble method of Riis and Krogh, HMM methods,
and DAG-RNNs are reviewed.

Microarray slide preparation methods are discussed. The five steps
in the micorray cyle are reviewed. The connection to disease eradica-
tion by 2050 is discussed. The confocal scanning microscope used for
microarray detection is noted. The fluorescent probe and target optimi-
zation to capture gene expression in biochips is outlined. The instru-
ment performance measures are discussed. The four-step process
of oligonucleotide synthesis is described. Mechanical microspotting,
ink-jet printing, and photlithorgraphy of microarray manufacture are
touched on briefly. The normalization of cDNA data using housekeeping
genes and the Gosset t distribution is described.

The importance of principles of diffusion in gel acrylamide
electrophoresis is shown as a separate chapter. Fick’s laws of diffusion
and the generalized Fick law of diffusion that can be used to account
for finite speed in the propagation of mass are described. Eight
reasons are given to seek to generalized Fick’s law of diffusion. It is
derived using the Stokes-Einstein chemical potential approach. The
acceleration term is accounted for as the ballistic term that manifests
as damped-wave transport in short-time transient diffusion events.
The Taitel paradox is discussed. The final condition in time is used to
keep the solution from disobeying the Clausius inequality. The three
different regimes of solutions during transient diffusion, conditions
where subcritical damped oscillations can occur, are derived. The
electrophoretic term is added to the governing equation, and an
analytical solution obtained by the method of separation of variables.
A new transformation method using a spatiotemporal variable that is
symmetric in space and time is used to obtain bounded exact solutions
in transient diffusion.

Kal Renganathan Sharma, Ph.D., P.E.

 P r e f a c e xiii

This page intentionally left blank

Acknowledgments

Irecord here with sorrow the demise of my maternal uncle, V. V. Giri,
M.D., at the residence of his eldest son, Kartik Giri, M.D., near
New York City on June 29, 2007; the death of my great uncle,

V. Ramanathan, M.D., in March 2007 in Chennai, India; and the pass-
ing of my cousin-aunt, Dr. Renganayaki Mahapatra, Head of the
Department of Languages at the University of Calcutta, India, in June
2007. Success profiles of my aunt, Janaki Giri, M.D., a leading oncolo-
gist near New York City, and my cousin-uncle, Dr. Viswanathan
Bringi, Professor of Electrical and Computer Engineering at Colo-
rado State University, Fort Collins, are inspirational. The courage
shown by my first wife, Najma Dalal Sharma, M.D., in battling three
cerebral aneurysms is tremendous. I helped her with her medical
school fees, and we were married on June 24, 1990. I used to drive
between Indian Orchard, Massachusetts, and Morgantown, West Vir-
ginia, where we had apartments between 1990 and 1993. She obtained
a divorce in 1996. Many thanks to Dr. Vidya, my second wife, and my
son, Hari Subrahmanyan Sharma (alias Ramkishan), who I get to see
during annual vacations since the marital separation. I am indebted
to my parents, S. Kalyanaraman and Shyamala Kalyanaraman, for
their unfailing support. We recently celebrated their 70th birthdays
on a holy trail in South India.

As author of 448 conference papers, I record with gratitude the
financial support received from sources through the years. J. W. Zondlo,
Professor of Chemical Engineering at West Virginia University,
Morgantown, funded my first paper presentation at Maastricht,
Netherlands, in October 1987. Coast-to-coast trips in 1989 for conference
paper presentations were funded by Richard Turton, Professor of
Chemical Engineering at West Virginia University. Victoria Franchetti
Haynes, President, Research Triangle Institute, Research Triangle Park,
North Carolina, was forthcoming with aid to attend the American
Institute of Chemical Engineers annual meetings in Chicago in 1990,
Los Angeles in 1991, and Miami in 1992, and for the annual trips to
techonolgy symposiums in St. Louis. Based on my performance
reviews, the director told me that when the time comes, I could be
nominated for the research fellow program. In October 1995, I was on

xv
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

a transatlantic flight funded by R. Shankar Subramanian, formerly
chairman of chemical engineering at Clarkson University, Potsdam,
New York, for BDPU test validation in Turin, Italy, and tracer particle
technique development at Frieberg, Germany.

Nason Pritchard Funds were granted for my paper presentation
at the World Congress of Chemical Engineering in San Diego in the
summer of 1996. In 1998 and 1999, I presented 90 conference papers
at 19 major conferences. Special thanks to Edward J. Wegmann,
Director of the Center for Computational Statistics, George Mason
University, Fairfax, Virginia, and N. T. Sivaneri, Professor, Mechanical
& Aerospace Engineering, West Virginia University, for their
encouragement. Funds were allocated by The Honorable
G. Viswanathan, former minister in the state government of Tamil
Nadu, for me to travel first class and present papers at national
conferences at Kochi, Jodhpur, and Chennai, India. I acknowledge
the T. R. Rajagopalan research cell at SATRA University for enabling
me to present papers in New Orleans in 2003 and Atlanta in 2006.

Special thanks to Dr. Irvin Osborne-Lee, Head of the Department
of Chemical Engineering at Prairie View A&M University, Prairie
View, Texas, for financial support to fly from Houston to Salt Lake
City in November 2007. Also, thanks to a number of other contributors
over the years who cannot be mentioned here on account of space
limitations.

 xvi A c k n o w l e d g m e n t s

CHAPTER 1
Preliminaries

The field of bioinformatics includes algorithms, sequence
representation, Markov modeling, neural networks to predict
protein secondary structure, and other computational and

mathematical modeling methods for analysis and storage of biologic
data. It includes the study of structure and function and evolution of
genes, protein, and whole genomes. It can be viewed as a marriage
between information technology and molecular biology. The Human
Genome Project that began in October 1990 was completed years
ahead of schedule when the rough draft was presented in June 2000 [1].
The project was planned to last 15 years, but rapid technological
advances accelerated the completion to 2003. Project goals were to
determine the complete sequence of the 3 billion DNA subunits
(bases), identify all human genes, and make them accessible for
further biologic study. The sequencing of the mouse genome and rat
genome has been completed. The first bacterial genome, Haemophilus
influenzae, was completely sequenced, annotated, and published in
1995. Since then, more than 200 prokaryote genomes have been
sequenced completely, and over 500 prokaryote genomes are at
various stages of completion. Seventeen eukaryote genomes and four
eukaryote chromosomes have been completed at this writing. The
biologic data bank size that is made available in the public domain
doubles every 10 months. The number of genes characterized doubles
every 2 years. The computing speed of new processors, according to
the Moore’s law, doubles every 18 months. Thus a data bank search
for a gene that would cost $2 today would quadruple in cost to $8 in
20 months owing to the increase in data bank size, and because of the
increased speed of the hardware, the cost would be cut in half nearly
to $4. Still, a cost increase is seen from $2. There is lot of scope for
developing new data structures to store the biologic data and efficient
algorithms for conducting data bank searches.

The time taken to align two genome sequences of 3 billion base
pairs (bp) in length using an O(n2) dynamic programming algorithm
using a gigahertz personal computer can take about 60 years. On a
terra-flop computer, this may come down to half a day. The IBM Blue
Gene Project, where peta-flop machines are considered, can further
improve the time taken. The storage of data using techniques such as

1
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 2 C h a p t e r O n e

parallel-disk modeling and obtaining approximate alignment in O(n)
time solution using suffix-tree representation may be good leads in
reducing the time taken and improving the storage efficiency of
biologic data. Different data structures, such as the suffix tree,
binomial heap, Steiner tree, and Manhattan network, are discussed in
the following pages.

The preliminaries needed for getting more use out of the material
in this textbook are a bit of molecular biology, computer science, and
probability. These are provided in this chapter to make the textbook
self-contained.

1.1 Molecular Biology

1.1.1 Amino Acids and Proteins
Discussions in bioinformatics frequently center on two important
molecules. These are proteins and nucleic acids. The structures and
properties and functions of these molecules in different organisms
form the information in the explosive growth of biologic data banks.
The name protein comes from the Greek word prota, meaning “of
primary importance.” Proteins were first described and named by
Berzelius in 1838. However, their central role in living organisms was
not fully appreciated until 1926, when Sumner showed that the
enzyme urease was a protein. The first protein structures to be solved
included insulin and myoglobin; the first was by Sir Frederick Sanger
[2–6], who won a Nobel Prize in 1958 for it, and the second by Perutz
and Kendrew, also in 1958. Both proteins’ three-dimensional structures
were among the first determined by x-ray diffraction analysis; the
myoglobin structure won the Nobel Prize in chemistry for its
discoverers.

Proteins are large bioorganic compounds that are polymeric in
nature. They are made of amino acids arranged in a linear chain and
joined together between the carboxyl of one amino acid and the amine
nitrogen of the other by a bond that is called a peptide bond. The
sequence of amino acids in a protein is defined by genes and encoded
in the genetic code. Although this genetic code specifies the 20
different amino acids, the residues in a protein are often chemically
altered in posttranslational modification either before the protein can
function in the cell or as part of control mechanisms. Proteins associate
to form complexes that are stable. They can work in concert to achieve
a particular function, and they participate in every function of the
cell. Many proteins are enzymes that catalyze biochemical reactions.
They are vital to metabolism. The cell shape is maintained by a system
of scaffolding. Proteins in the cytoskeleton form the system of
scaffolding. Proteins are also important in cell signaling, immune
responses, cell adhesion, and the cell cycle. Protein is also a necessary
component in our diet because animals cannot synthesize all the

amino acids and must obtain essential amino acids from food.
Through the process of digestion, animals break down ingested
protein into free amino acids that can be used for protein synthesis.

1.1.2 Structures of Proteins
During formation of the polypeptide polymeric chain, one water
molecule is lost per amino acid. This is why the constituents of
proteins are called amino acid residues. Four different types of protein
structures are recognized in the field. These are as follows.

Primary Structure
The primary structure of proteins is the random sequence distribution
of the 20 different amino acids concatenated in a polypeptide chain.
Each of the 20 different amino acids consists of two parts: (1) the
backbone of the protein and (2) the unique side chain, or R group,
that determines the physical and chemical properties of the amino
acid. Each amino acid consists of an amine (NH2

+) and a carboxylic acid
moiety (COO·). The general formula of the 20 different amino acids
can be classified into four categories based on the net charge on the
protein molecule. These categories and the amino acids contained in
them are as follows:

 1. Positively charged basic amino acids: lysine (Lys), arginine (Arg),
and histidine (His).

 NH2
 |
 H2N-C4H8-CH-COOH (lysine)
 NH NH2
 || |
 NH2-C-NH-C3H6-CH-COOH (arginine)
 _______ NH2
 ⎟ ⎟ ⎟
 H2N NH-CH2-CH-COOH (histidine)
 \ /
 \ /
 C

2. Negatively charged acidic amino acids: aspartic acid (Asp),
glutamic acid (Glu).

 NH2
 ⎟
HOOC-CH2-CH-COOH (aspartic acid)

 NH2
 ⎟
HOOC-C2H4-CH-COOH (glutamic acid)

 P r e l i m i n a r i e s 3

 4 C h a p t e r O n e

3. Polar amino acids: glycine (Gly), serine (Ser), threonine (Thr),
cysteine (Cys), tyrosine (tyr), glutamine (Gln), asparagine (Asn).

 CH2-COOH (glycine)
 ⎟
 NH2

OH- CH2CH-COOH (serine)
 ⎟
 NH2

 CH3-CH-CH-COOH (threonine)
 ⎟ ⎟
 OH NH2

HS-CH2-CH-COOH (cysteine)
 ⎟
 NH2

OH-ϕ-CH2-CH-COOH (tyrosine)
 ⎟
 NH2

NH2-C- C2H4-CH-COOH (glutamine)
 || ⎟
 O NH2

NH2-C-CH2-CH-COOH (asparagine)
 || ⎟
 O NH2

4. Nonpolar amino acids: alanine (Ala), valine (Val), leucine (Leu),
isoleucine (Ile), proline (Pro), methionine (Met), phenylalanine
(Phe), tryptophan (Trp).

CH3-CHCOOH C2H6CHCHCOOH

 ⎟ alanine valine⎟
 NH2 NH2

C2H6CHCH2CHCOOH C3H8CHCHCOOH

 leucine ⎟ isoleucine⎟
 NH2 NH2

CH3SC2H4CHCOOH ϕ-CH2CHCOOH

methionine⎟ ⎟
 NH2 NH2
 phenylalanine

 CH2____CH2
 ⎟ ⎟
 ⎟ ⎟ (proline)
CH2 CHCOOH
 \ /
 \ NH /

ϕ-e-CH2CHCOOH (tryptophan)
 ⎟
 NH2

Secondary Structure
The polypeptide backbone exists in different sections of the protein
either as an α-helix, β-pleated sheet, or random coil. The study of
protein secondary structure has attracted a lot attention in the literature.
As will be discussed in later chapters, protein secondary structures can
be constructed from the primary structure chain sequence distribution.
The secondary structure pertains to the stereoisomerism exhibited by the
polypeptide chain. The problem of secondary structure prediction is
one of hydrogen bonding. The polar groups present in the backbone of
the polypeptide chain, C�O and N—H, are capable of hydrogen-bond
formation. The two structures that solve the problem are the α-helix
and β-pleated sheet, in which extended polypeptide backbones are
side by side. These structures are stable. They can occur at the exterior
of proteins with appropriate hydrophilic side chains or in the
hydrophobic interior of proteins with appropriate hydrophobic side
chains.

In the α-helix, the polypeptide backbone is twisted into a right-
hand helix, called an α-helix. The structure was first recognized in
α-keratin by Sanger [2]. For L-amino acids, the right-handed helix is
more stable than a left-handed one. The structure has a pitch of three
to six amino acids per turn. This results in the C�O of each peptide
bond being aligned to form a hydrogen bond with the peptide bond
N—H of the fourth distant amino acid residue. The C�O groups
point in the direction of the axis of the helix and are aimed at the
N—H groups with which they hydrogen-bond, giving maximum
bond strength and making the α-helix a stable structure. Thus every
C�O and N—H group of the polypeptide backbone is hydrogen-
bonded in pairs forming a stable, cylindrical, rodlike structure. Amino
acids vary in their tendency to form α-helices.

Proteins are made of mixtures of α-helix and β-pleated-sheet
structures. This is also a stable structure in which the polar groups of
the polypeptide backbone are hydrogen-bonded to one another. The
polypeptide chain lies in an extended or β form with the C�O and
N—H groups hydrogen-bonded to those of a neighboring chain. The
structure was first recognized in β-keratin. Several chains can form a

 P r e l i m i n a r i e s 5

 6 C h a p t e r O n e

sheet of polypeptide. It is pleated because successive α carbon atoms
of the amino acid residues lie slightly above and below the plane of
the β-pleated sheet alternately. The adjacent bonded together
polypeptide chains can run in the same direction parallel or in the
opposite direction antiparallel. In the latter case, a polypeptide may
make tight β turns to fold the chain back on itself.

The random coil refers to a section of polypeptide in a protein
whose conformation is not recognizable as one of the defined
structures of α-helices and β-pleated sheets. It is determined by side-
chain interactions and within a given protein is fixed rather than
varying in a random way.

One good way to measure protein secondary structure is by x-ray
crystallography. In addition, the techniques of neutron diffraction
and nuclear magnetic resonance (NMR) can be used to measure
protein secondary structure.

Tertiary Structure
The folding of the secondary structure into a macrostructure such as
globules is called the tertiary structure of a protein. A given protein in
a physiologic environment can have a complex three-dimensional
structure. The amino acid “backbone” of a protein can rotate freely,
allowing amino acids from distal protein domains to come into close
contact with each other. As these regions of the protein interact with
one another, they will create and stabilize a particular protein
conformation. Disulfide bond creation between cysteine residues is
one of the primary stabilizing mechanisms.

Quaternary Structure
Two polypeptide chains connected by hydrogen bonding form the
quaternary structure of a protein.

1.1.3 Sequence Distribution of Insulin
Frederick Sanger was one of the few who won the Nobel Prize a second
time. His first Nobel Prize was for his work on protein primary structure
in 1958, and the second was for his elucidation of the nucleotide
microstructure in 1980. His research work on the structure of insulin
took him 12 years. The protein molecule consists of 20 different amino
acids. This was known prior to Sanger’s work. The microstructure of
the protein molecule or the chain sequence distribution of the
molecule was not known. Sanger suspected that the differences
between the biologic and physical properties of the protein molecule
were because of differences in the sequence distribution of the protein
molecule(s) [2].

Chain sequence distribution of a copolymer is the relative
order of occurrence of the different monomers along a single
linear chain. Thus a copolymer with two monomers A and B with
random chain sequence distribution may have structures such as

 P r e l i m i n a r i e s 7

BAABAAABBBABBBBAAAAAB, BBAAABAB, AABABBABABBA,
and so on. G. N. Ramachandran had suggested that every third
residue in mammalian protein was a certain residue. Some
investigators had suggested a periodic microstructure for protein,
i.e., ABABABAB for an alternating copolymer with monomers A
and B. Some had suggested that protein was a complex mixture.

A range of values from 36,000 to 48,000 for the molecular weight
of insulin was reported in the literature. Sanger set out to resolve
this discrepancy. He developed a molecular labeling procedure
called the dinitrophenyl (DNP) method. The reagent used was 1,2,4-
fluorodinitrobenzene (FDNB). This reacts with the free amino groups of
a protein or peptide to form a DNP derivative. The peptide bonds are
broken under mild conditions. Hydrolysis of DNP protein results in split
of the peptide bonds in the chain bearing the N-terminal residue in the
form of a DNP derivative. DNP amino acids are light-yellow substances.
They can be extracted from the unsubstituted amino acids using ether as
a solvent. Further separation is effected using partition chromatography.
The DNP derivatives thus can be fractionated. The chemical structure of
the separated compounds is affected by noting the chromatographic
rates and comparing them with those of their synthetic analogues.
Whereas silica-gel chromatography was used in the initial work on
insulin microstructure, paper chromatography has been found to be a
satisfactory procedure. On separation and identification, the DNP
derivatives could be estimated calorimetrically. When the method was
applied to insulin, three yellow DNP derivatives were found in the
hydrolysate of the DNP-insulin. One of these was extracted into ether
and was identified as ε-DNP-lysine, which was formed by reaction of the
FDNB with the free ε-amino group of lysine residues that are bound
normally within the polypeptide chain. The others were identified as
DNP-phenylalanine and DNP-glycine, and estimation showed that these
were two residues of each assuming a molecular weight of 12,000. This
lead Sanger to deduce that insulin was composed of four polypeptide
chains, two with phenylalanine and two with glycine end groups. The
hypothesis that chains of insulin were connected by disulfide bridges
was explored by attempting to split the bridges by reduction to SH
derivatives. Satisfactory results were obtained by oxidation with
performic acid. The cystiene residues are converted to cysteic acid
residues, thus breaking the cross-links.

The fractionation of complex mixtures from partial hydrolysis of
protein was a technical hurdle. Other investigators have shown that
small peptides can be well fractionated by paper chromatography.
Tuppy, a postdoctoral associate of Sanger, worked so hard in 1 year that
he and Sanger were able to deduce the whole of the sequence of
30 residues. The blueprint was unveiled by Sanger, and the finer details
were obtained by his coworkers. The mixture from partial hydrolysis of
fraction B was too complex for direct analysis by paper chromatography.
They resorted to ionophoresis, ion-exchange chromatography, and

 8 C h a p t e r O n e

adsorption on charcoal. The simplified mixtures then were fractionated
by two-dimensional paper chromatography. The peptide spots were cut
out, and the material was eluted from the paper, subjected to complete
hydrolysis, and analyzed for its constituent amino acids. The analysis
from the resulting acidic fraction contained only peptides and cysteic
acid. Thus 45 peptides were identified in various fractions of the partial
acid hydrolysate, and the following five sequences were found to be
present:

1. Phe-Val-Asp-Glu-His-Leu-CysSO3H-Gly (N-terminal sequence)

2. Gly-Glu-Arg-Gly

3. Thr-Pro-Lys-Ala

4. Tyr-Leu-Val-CysSO3H-Gly

5. Ser-His-Leu-Val-Glu-Ala

Proteolytic enzymes are more specific than the acid because only a
few of the peptide bonds are susceptible. For example, they considered
a peptide Bp3 obtained by the action of pepsin. It had the composition
Phe-CysSO3H-Asp-Glu-Ser-Gly-Val-Leu-His, of which the most
important components are aspartic acid and serine because they occur
only once in the chain. Aspartic acid is present in the N-terminal
sequence 1, and serine is in sequence 5. By studying other peptides
obtained by the action of pepsin, trypsins, and chymotrypsin, it was
possible to find out how the various sequences were arranged and to
deduce the complete sequence of the phenylalanyl chain, which is

 Phe-Val-Asp-Glu-His-Leu-CysSO3H-Gly-Ser-His-Leu-Val-Glu-Ala-
Leu-Tyr-Leu-Val-CysSO3H-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-

Lys-Ala

Paper ionophoresis was required for separation at pH 2.5 for
determining the sequence of fraction A by enzymatic hydrolysates.
The fraction A sequence was

Gly-Ileu-Val-Glu-Glu-CysSO3H-CysSO3H-Ala-Ser-Val-CysSO3H-
Ser-Leu-Tyr-Glu-Leu-Glu-Asp-Tyr-CysSO3H-Asp

The ammonia generated during hydrolysis with strong acid was
used to determine the location of amide groups in the polypeptide
chain. Thus the microstructure of insulin was obtained. This was shown
by Sanger in his Nobel lecture and is shown below in Fig. 1.1.

Sanger confirmed the random sequence distribution of the
20 different amino acids in the insulin microstructure. Other naturally
occurring polypeptides besides insulin are glutathione, carnosine,
anserine, oxytocin, vasopressin, bradykinin, and corticotropin. The
biologic specificity of a protein is a function of the number of amino
acid residues and their sequence.

 P r e l i m i n a r i e s 9

1.1.4 Bioseparation Techniques
The protein chemist is confronted with the problem of isolating,
purifying, and characterizing a protein. Identification of a suitable
source such as a fresh tissue is the first step for purification of proteins.
This tissue is subjected to the action of a blender for grinding to obtain
a homogenate that is rich in protein as well as contaminating material.
Proteins are temperature-sensitive and fragile. The homogenate is
filtered and freed from unwanted material by treatment with suitable
solvents. Denaturation of proteins is avoided by control of pH and
temperature. As a general rule, purification of proteins is carried out
at temperatures close to the freezing point.

Salt precipitation is used to effect separation by addition of ammonium
sulfate so that the desired protein remains either in the supernatant or
in the precipitate. A mixture of proteins is passed down an ion-exchange
column and separated by binding to the column. The bed is regenerated
by eluting agents of varying pH. By increasing the pH of the effluent,
different fractions of proteins are obtained. The protein solution binds
to ion-exchange materials such as cellulosic polymers.

The molecular weight of the proteins can be determined by the
use of gels. The discovery of the ultracentrifuge in the early twentieth
century was an advancement that allowed precise determination of
molecular weights. Svedberg won the Nobel Prize in physics in 1926
for his efforts in the development and use of the ultracentrifuge [7].
Sedimentation is used to measure the molecular weights of proteins
and in the study of protein-protein interactions. Sucrose density
gradients can be used to separate molecular fragments.

Electrophoresis is a method with superior resolution that is used
to separate macromolecules from complex mixtures by the appli-
cation of an electrical field. The macromolecules, called the gel, are
placed at one end of the matrix and are subjected to a electrical field.
Different macromolecules in the gel will migrate at different speeds
depending on the nature of the gel and the characteristics of the
macromolecule. Electrophoretic techniques can be used to separate
any biomacromolecule such as nucleic acids, polypeptides, and
carbohydrates. Tiselius won the Nobel Prize in chemistry in 1948 for
his work on the development of electrophoresis as a technique to
separate and characterize proteins from complex mixtures [8].

FIGURE 1.1 Microstructure of insulin. Chain sequence distribution of the polypetide
chains.

Phe-Val-Asp-Glu-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala

S S

S NH2

NH2 NH2

NH2 S NH2

 Gly-Ile-Val-Glu-Glu-Cys-Cys-Ala-Ser-Val-Cys-Ser-Leu-Tyr-Glu-Leu-Gly-Asp-Tyr-Cys-Asp

S S

 10 C h a p t e r O n e

The use of polyacrylamide gel electrophoresis (PAGE) has had a
major impact on the ability to isolate and characterize proteins.
Polyacrylamide gels are formed by cross-linking an acrylamide
monomer with the chemical agent N,N-methylene bisacrylamide.
The polymerization reaction proceeds as free-radical catalysis with the
use of ammonium persulfate and the base TEMED (N,N,N,N-
tetramethylenediamine) as the initiator. PAGE can be used to resolve
the ladders in DNA structure, and the ladders can be used to
characterize proteins according to their size or charge. Three
methods were developed to measure the primary structure of
protein: (1) Sanger’s method, (2) the Dansyl chloride method, and
(3) the Edman degradation technique.

All three techniques are laborious. It requires lot of material and
years of analysis to complete the analysis of even a short protein. In
the Edman degradation method, the peptide fragment is treated with
phenylisothiocynate at pH 8 to yield phenylthiocarbamyl derivative
at the N terminal. The derivative is treated with acid in organic
solvent so that the N-terminal amino acid undergoes cyclization to
produce phenylthiohydantoin, which is cleaved from the peptide
fragment. Thiohydantoin derivative can be identified using paper
chromatography, and the peptide is further subjected to the same
treatment every time, forming the thiohydantoin derivative from
the amino end. Dansyl chloride reagent is used for determination of the
N-terminal residue in alkaline conditions. The N-terminal residue
forms a yellow fluorescent derivative that can be detected easily.
Even small amounts of amino acids can be deduced. Indirect methods
can be used to save time. The cDNA responsible for creation of the
protein can be cloned and its sequence measured. Then, by deduction,
the protein sequence can be obtained.

Mass spectrometry (MS) is a method in which the mass of the
molecules that have been ionized can be measured using a mass
spectrometer. MS has become a key tool in proteomics research because
it can analyze and identify compounds that are present at extremely
low concentrations (as little as 1 pg) in very complex mixtures by
analyzing their unique signatures. A critical concern in MS is that the
methods used for ionization can be so harsh that they may generate
very little product to measure at the end. The development of “soft”
desorption ionization methods by John Fenn and Koichi Tanaka [9],
which allowed the application of MS to biomolecules on a wide scale,
earned them a share of the Nobel Prize in chemistry in 2002.

Isoelectric focusing is a variation of electrophoresis that can be
used for separating mixtures of protein. A column is used that consists
of gel having positive and negative charges. When the protein mixture
is injected into the column, the molecules polarize in the electrical
field in such a way that the negatively charged ones move toward the
anode and the positively charged ones move toward the cathode. At
the isoelectric point, i.e., the point in the tube at which each protein

 P r e l i m i n a r i e s 11

attains a neutral pH, the driving force to migration stops. A sharp
bend forms at this juncture.

Two-dimensional gel electrophoresis is a way to couple different
gel systems with different resolving powers to dramatically
improve separation and resolution of complex mixtures of proteins.
Two-dimensional gel electrophoresis is an incredibly useful analytic
tool that provides a foundation for what is now referred to as
proteomics.

Chromatography is used extensively for separating different
molecular species, including proteins. Different types of chromatography
are recognized, such as adsorption chromatography, ion-exchange
chromatography, and partition chromatography. Paper chromatography
is suitable for separation of small amounts of low-molecular-weight
compounds that are soluble in the liquid phase. The liquid phase is
water, and the mobile phase consists of a mixture of organic solvents.
The paper is spotted with the substance to be separated and immersed
in a trough containing the mobile phase. The spots on the paper are
developed using a suitable developing reagent. The partition coefficient
Rf, is the ratio between the distance run by the compound and the
distance traveled by the solvent.

Ion-exchange chromatography also can be employed for
separation and purification of proteins. The protein sample is
prepared in the right type of buffer and then applied to the ion-
exchange column. Molecules possessing no charge will easily pass
through, whereas charged molecules will interact with the exchanger
and get adsorbed. Proteins then can be eluted from the exchangers.
Gel-filtration chromatography is a technique for purification and
separation of macromolecules based on their molecular size. Gel
permeation, gel exclusion, and molecular sieving are similar methods.
Gel-filtration media include polydextrin gels, polyacrylamide gels,
agarose gels, and controlled-pore glass beads. The porosity of gel
beads in a column is controlled depending on the problem of
separation at hand. Larger molecules elute out, and smaller molecules
diffuse through the pores in the beads. Later, this can be eluted by
using a buffer. Desaltation of a sample can be effected. The use of a
biospecific interaction of a protein with a specific ligand is used in
affinity chromatography. The chromatographic column uses an inert
matrix or support medium that will offer binding sites for the desired
protein to be purified. The adsorbate has to be specific, and the
adsorbent can be porous, hydrophilic, and capable of covalent binding.
Agarose gel, polyacrylamide, and controlled-pore glass beads are
examples of adsorbents used by this method.

In thin-layer chromatography (TLC), the chromatogram can be
developed a number of times with different solvents with good
separation. Quantitative analysis of multiple components can be
done in 1 hour using this method. A binding medium such as calcium
sulfate is used in TLC. The adsorbent is activated, and then spots are

 12 C h a p t e r O n e

generated and dried. Spots in the form of colored zones also may be
observed under ultraviolet light.

High-performance liquid chromatography (HPLC) can be used to
isolate, purify, and identify compounds in a mixture. Rapid analysis of
nonvolatile, ionic, thermally labile compounds that were previously
difficult to separate can be achieved using HPLC. Molecular components
of the cell can be determined with high sensitivity, speed, accuracy, and
resolution. The mobile phase is a liquid. The solute needs to be soluble
in the mobile phase. The mobile phase is forced under high pressure of
more than 6000 lb/in2 into the column. Normal-phase chromatography,
bounded-phase chromatography, and reverse-phase chromatography
are three kinds of HPLC methods. Separation of ribosomal proteins
can be done in this manner. The effect of pore size, pore volume, silica
density, and surface area on a given separation is complex.

1.1.5 Nucleic Acids and Genetic Code
Crick, Watson, and Williams were awarded the Nobel Prize in medicine
in 1962 for their work in the molecular configuration of nucleic acids,
the genetic code, involvement of RNA in the synthesis of proteins, and
its significance for information transfer in living material [10]. Nucleic
acids are long-chain polymers of nucleotides. Each nucleotide consists
of three parts: (1) a sugar, ribose or deoxyribose, (2) phosphoric acid,
and (3) a nitrogenous base. The four different nitrogenous bases are
adenine, guanine, cytosine, and thymine. Adenine (A) and guanine
(G) are purines, and cytosine (C) and thymine (T) are pyrimidines.
Uracil (U) is another nitrogenous base found in RNA instead of thymine
(T) in DNA. The double-helix three-dimensional structure of DNA
was elucidated by Watson, Crick, and Wilkins. They used x-ray
crystallography to determine the structure. Rosaland Franklin was one
of the pioneers and was deceased by the time the Nobel Prize was
awarded. the discovery of DNA is hailed as the most important work
in biology in the last 100 years, and the field it opened may be the next
scientific frontier for the next 100 years. Outside the helix backbone of
the ladder is the sugar-phosphate chain. A complete turn of the ladder
is called pitch and is about 3.4 Å in length. The space between bases is
2.4 Å, and the diameter of the helix is 20 Å. The sequences of bases in
DNA, by a process called translation, determine the sequence
distribution of protein molecules. All genetic information in living
organisms of any kind is carried by the nucleic acids, usually by the
DNA. Certain small viruses use RNA as their genetic material. The
four bases in DNA can assume 4 × 4 = 16 combinatorial forms,
64 triplets, and 256 quartets. The set of bases that code is called a codon.
The two DNA strands are antiparallel. One strand runs in 5’→3’
direction and the other strand in a 3’→5’ direction. The two
polynucleotide chains of the double helix interact with each other. The
hypothesis that the linear sequence of nucleotides in DNA specifies the
linear sequence of amino acids in proteins evolved over a period of
time. Kornberg and coworkers [11] discovered and characterized

 P r e l i m i n a r i e s 13

the enzyme polymerase. This was followed a few years later by
characterization of RNA polymerase. Kornberg and coworkers clarified
the manner by which information in DNA is transcribed into an
RNA that is now referred to as messenger RNA. Kornberg’s son Roger
received the Nobel Prize in chemistry in 2006 for his studies of the
molecular basis for eukaryotic transcription [12].

Genetic Code
At the time of Crick’s Nobel lecture, the genetic code had the following
general properties:

• It was fairly certain that codons did not overlap.

• Most, if not all, codons consisted of three adjacent layers.

• Adjacent codons did not overlap.

• The message was read in the correct groups of three by
starting at some fixed point.

• Code sequence in the gene was collinear.

• In general, more than one triplet coded each amino acid.

• It was not certain that some triplets may not code more than
one amino acid.

• Triplets with code for the same amino acid probably were
rather similar.

• It was not known whether there was any general rule that
groups code together or whether the grouping was mainly
the result of historical accident.

• The number of triplets that do not code an amino acid
probably was small.

• Certain codes proposed earlier such as comma-less codes
were all unlikely to be correct.

• The code in different organisms probably was similar.

The structural chemistry of the nucleic acids was developed over a
period of 70 years in many countries from the chemistry of the constituent
purines, pyrimidines, and sugar moieties to work on the nucleosides.

Har Gobind Khorana was awarded the Nobel Prize in medicine
in 1968 for his work on nucleic acid synthesis and the genetic code
[13]. He looked at the synthesis of short-chain oligonucleotides. The
problem he faced was activation of the phosphomonoester group of
a mononucleotide, design of suitable protecting groups for the
functional groups, and development of methods for the polymerization
of specific sequences. Khorana proposed the reaction sequence for
the preparation of high-molecular-weight RNA messengers and the
subsequent in vitro synthesis of polypeptides of known amino acid
sequences (Fig. 1.2). Amplification of the proposed scheme or in vitro
studies of the coding problem to produce DNA or RNA products was

 14 C h a p t e r O n e

conceived to be a general behavior of the polymerase so long as there
was a repeating pattern of nucleotide sequences in the chemically
synthesized deoxypolynucleotide templates. Khorana identified the
types of reactions catalyzed by DNA polymerase (Fig. 1.3). DNA-like
polymers with repeating dinucleotide sequences for polymers with
trinucleotide sequences and two polymers with tetranucleotide
sequences were prepared. The repeating dinucleotide sequences were
TC:GA, trinucleotide TTC:GGA, and tetranucleotide TTAC:GTAA.
Khorana identified the transcription of DNA-like polymers by means
of RNA polymerase to form single-stranded ribopolynucleotides.

Cytosine (Mw 111)

NH

O

N
H

O

Thymine (Mw 126)

NH2

N
NH

O

NN
H

Guanine (Mw 151)

N

NH2

N
H

O

NH

O

N
H

O

Uracil (Mw 112)

N
N

H2N

NN
H

Adenine (Mw 135)

FIGURE 1.2 Molecular structure of nitrogenous bases in DNA and RNA.

FIGURE 1.3 Khorana’s reaction sequence for protein synthesis.

In Vitro Protein Synthesis

Short
polydeoxynucleotide
of known sequence

Long
polyribonucleotide
of known sequence

Polypeptide of
known sequence

Long
polydeoxynucleotide
of known sequence

RNA
polymerase

RNA
polymerase

DNA polymerase

 P r e l i m i n a r i e s 15

1st
Letter

2nd Letter 3rd
LetterU C A G

PHE SER TYR CYS U

PHE SER TYR CYS C

U LEU SER C.T. C.T. A

LEU SER C.T. TRY G

LEU PRO MIS ARG U

C LEU PRO HIS ARG C

LEU PRO GLN ARG A

LEU PRO GLN ARG G

ILEU THR ASN SER U

A ILEU THR ASN SER C

ILEU THR LYS ARG A

MET(C.I) THR LYS ARG G

VAL ALA ASP GLY U

G VAL ALA ASP GLY C

VAL ALA GLU GLY A

VAL(C.I) ALA GLU GLY G

TABLE 1.1 The Genetic Code

The structure of the genetic code that emerged is shown in
Table 1.1. The code is universal. Nirenberg and Leder coshared the
Nobel Prize in medicine with Khorana in 1968 for synthesizing
trace amounts of protein using artificial RNA molecules.
Universality does not mean that all organisms use the same codons
for protein synthesis. It means that a trinucleotide codon does not
change its meaning from one organism to the next.

The DNA sequence is divided into a series of triplet codes
composed of three bases called codons. Having more than one codon
for one amino acid is called degeneracy of the genetic code. Codons
that specify the same amino acid are called synonyms. Synonyms are
usually similar, with variations found only in the third position of the
codon. Since the third base of the codon can vary, this base position is
called the wobble position. Thus the three codons UAA, UAG, and
UGA that cause termination of polypeptide chain growth are called
stop codons. The codons AUG and GUG that stand, respectively, for
methionine and valine are also used as signals for initiation of
polypeptide chain synthesis and are referred to as initiation codons.

 16 C h a p t e r O n e

The first base of the initiation codon specifies the reading frame of the
RNA. In any base sequence, three types of reading frames are possible
depending on which base is chosen for the first base. During protein
synthesis, only one reading frame is meaningful. The set of codons
that runs continuously and is bounded by the initiation codon at one
end and the termination codon at the other end is known as an open
reading frame (ORF) and is used to determine the protein coding
regions of DNA.

A number of studies on tRNA structure were conducted on the yeast
Escherichia coli, rat liver, and wheat germ. Dr. Raj Bhandary and
H. Khorana, and colleagues had determined the primary structure of
yeast phenylalanine tRNA [14]. All tRNAs whose primary structure is
known can adopt the cloverleaf secondary structure (Fig. 1.4). The first
general question is, How are the trinucleotide codons recognized by the
protein-synthesizing apparatus? The answer is the tRNA molecule. The
next question is, What is the evidence that recognition of codons in fact involves
nucleotide-nucleotide interaction by virtue of base pairing? If this is so, then
one might expect to find the primary structure of an amino acid–specific
tRNA to be three contiguous nucleotide units, complementary to the
established codons for the particular amino acid. The concept of
anticodons was developed. Only the simplest components of the tRNA
structure are shown in Fig. 1.4. Some additional bonds are formed, and
the entire structure becomes L-shaped with the 3’ ACCA sequence at one
end and the anticodon at the other. The anticodon is complementary to
the codon, and 3 bp can form between the codon in the mRNA and the
anticodon of the tRNA.

FIGURE 1.4 Cloverleaf model for secondary structure of yeast phenylalanine tRNA.

AG

C

C
G

A
G

C

A
G

A
G

G
G U

U

U
C

GG A

A
CU

Y

CAGA

GUCY

G
G

U
G

U
C

A
C

A
C

C

A
UG
7 M

e

Me

Me

G

C

UY
T

C
G A

A

DI

DIM
e

HDI H

U U C G C A C C A

U U U A G G C GP

Me

O
M

e
O

M
e

2
M

e

 P r e l i m i n a r i e s 17

Determination of Nucleotide Sequences in DNA
A DNA sequence for the genome of bacteriophage ϕX174 of
approximately 5375 nucleotides has been determined using the rapid
and simple plus and minus method [4]. The sequence identifies many of
the features responsible for the production of the proteins of the nine
known genes of the organism, including initiation and termination
sites for the proteins and RNAs. Two pairs of genes are coded by the
same region of DNA using different reading frames.

General methods for determination of DNA sequences have been
developed only recently. This is so mainly because of the large size of
DNA molecules, the smallest being those of the simple bacteriophages
such as ϕX174, which contains 5000 nucleotides. Initially, the smaller
RNA molecules were used for early studies on nucleic acid sequences.
Having uncovered the truth about amino acid sequences in protein,
Sanger turned his attention to RNA and developed a relatively rapid
small-scale method for the fractionation of 32P-labeled oligonucelotides.

The plus and minus method [4] is a relatively rapid and simple
technique that has made possible determination of the sequence of the
genome of bacteriophage ϕX174. It depends on the use of DNA
polymerase to transcribe specific regions of the DNA under controlled
conditions. Another rapid and simple method that depends on specific
chemical degradation of the DNA has been described recently by
Maxam and Gilbert [15], and this also has been used extensively for
DNA sequencing. It has the advantage over the plus and minus method
of being applicable to double-stranded DNA, but it requires strand
separation or equivalent fractionation of each restriction enzyme
fragment studied, which makes it somewhat more laborious.

The general approach used in these studies and in those of
proteins depended on the principle of partial degradation. The large
molecules were broken down, usually by suitable enzymes, to give
smaller products that were then separated from each other and their
sequence determined. The separation was done using a gel acrylamide
electrophoresis. When sufficient results had been obtained, they were
fitted together by a process of deduction to give the complete sequence
(Fig. 1.5). Copying procedures were needed for treating large DNA
molecules. Pulse labeling with radioactively labeled nucleotides and
copying techniques for RNA sequence determination were pioneered
by Billeter and colleagues [16]. For DNA sequences, the enzyme DNA
polymerase is used. The single-stranded DNA is copied. The enzyme
requires a primer, which is a single-stranded oligonucleotide having
a sequence that is complementary to and therefore able to hybridize
with a region on the DNA sequence. Mononucleotide residues are
added sequentially to the 3’ end of the primer from the corresponding
deoxynucleoside triphosphates, making a complementary copy of the
template DNA. By using triphosphates containing 32P in the α position,
the newly synthesized DNA can be labeled. Synthetic oligonucleotides
were used as primers initially, but after the discovery of restriction

 18 C h a p t e r O n e

enzymes, it was more convenient to use fragments resulting from
their action because they were more readily available. The copying
procedure was used to prepare a short specific region of labeled
DNA that then could be subjected to partial digestion. One of the
difficulties in determining the sequence distribution of DNA was to
find specific methods for breaking the strand into smaller fragments.
It was found that good fractionations according to size could be
obtained by ionophoresis on acrylamide gels. Plus and minus
technique, was used to determine the almost complete sequence of
the DNA of bacteriophage ϕX174, which contains 5386 nucleotides.

DNA Transcription, Translation, and Replication
A chromosome contains double-stranded DNA molecules. Its
replication is described as semiconservative in that the two original
strands called parental strands are separated, and each acts as a
template for synthesizing a new strand. Each new double helix has
one old and one new strand. The basis of the replication is that of
complementarity in that a guanine (G) will base pair with a cytosine
(C) and an adenine (A) will base pair with a thymine (T) so that a base
on the parental strand automatically specifies which base is to be
incorporated into the new strand as its partner. This copying process

FIGURE 1.5 Principle of the chain terminating for DNA sequencing.

Template
primer

TAGCAACT

DNA

3' 5'

ATP
GTP
CTP
TTP+ddTTP

–ATCGTddT
–ATCGddT
–AddT

–ATddC

T C G A

–ATCGTTddG
–ATCddG

–ATCGTTddA
–ddA

ATP
GTP
CTP+ddCTP
TTP

ATP
GTP+ddGTP
CTP
TTP

ATP+ddATP
GTP
CTP
TTP

 P r e l i m i n a r i e s 19

depends on Watson-Crick hydrogen bonding of base pairs. It follows
that strand separation is essential to unpair the bases and make them
available for base pairing with incoming nucleotides. DNA replication
is different in prokaryotes than it is in eukaryotes.

The information in DNA encoded in the sequence of four
nitrogenous bases is used to direct the assemblage of 20 different
amino acids in the correct sequence so as to produce the protein for
which a given gene is responsible. Genes direct protein synthesis by
sending out copies of their coded information to the cytoplasm.
Messenger RNA is a polynucleotide essentially the same as DNA
except for the following differences:

• Sugar is ribose and not the deoxyribose of DNA. An OH is in
2’ position.

• mRNA is single-stranded. Bases are adenine, cytosine,
guanine, and uracil.

mRNA is synthesized much like DNA, but the two strands are
separated so as to produce a single-stranded template for directing
the sequence of nucleotides to be assembled into mRNA. mRNA is
made from ATP, CTP, GTP, and UTP by a single enzyme in E. coli RNA
polymerase. mRNA has a half-life of 20 minutes to several hours in
eukaryotes and about 2 minutes in bacteria. Thus, for expression of a
gene, a continuous stream of mRNA molecules must be produced
from that gene. The flow of information in gene expression from DNA
to mRNA is called transcription and from mRNA to protein is referred
to as translation. mRNA production is called gene transcription. The
RNA molecules produced are called transcripts. The synthesis of
proteins directed by mRNA is called translation.

mRNA in both prokaryotes and eukaryotes is proportionate in
length to the size of the protein it codes for. In the DNA from which such
RNA molecules are transcribed, the section contents are called introns,
and the coding stretches are called exons. There can be 2–50 introns in
human genes, and the lengths of the introns can vary from 50–20,000 bp.
Exons usually are less than 1000 bp in length. The primary transcript is
processed to eliminate the introns and link together the exons into one
mRNA molecule. This is known as mRNA splicing.

Example 1.1 The synthetic mRNA has a periodic primary microstructure. Using
the two letters U and C, define the synthetic mRNA and its protein products.
There are 26 = 64 patterns possible in a member sequence

1. UUU,UUU (Phe, Phe)
2. UCU,CUC (Ser, Leu)
3. UUC,CUU (Phen, Leu)
4. UUU,CCC (Phe, Pro)
5. UUC, UUC (Phe, Phe)
6. CCA, CCA (Pro, Pro)

 20 C h a p t e r O n e

The protein sequence will depend on the start position.

Case 2 Case 3
Start position 2, UCU, Start position 2, UCC, UCC
 (Ser, Leu) (Ser, Phe)
Start position 3, CUC, UCU Start position 3, CCU, UCC
 (Leu, Ser) (Pro, Ser)
 Start position 4, CUU, UUC (Leu, Phe)

Case 4 Case 5
Start position 2, UUC, CCU Start position 2, UCU, UCU (Ser, Ser)
 (Phe, Pro)
Start position 3, UCC, CCU Start position 3, CUU, CUU (Leu, Leu)
 (Ser, Leu)
Start position 4, CCU, UUU Start position 4, UUC, UUC (Phe, Phe)
 (Pro, Phe)
Case 6
Start position 2, CAC, CAC (His, His)
Start position 3, ACC, ACC (Thr, Thr)
Start position 4, CCA, CCA (Pro, Pro)

1.1.6 Genomes—–Diversity, Size, and Structure
Genomes of living organisms are diverse in nature. Some genomes
are circular in nature, e.g., in bacteria, whereas other genomes are
linear in nature, e.g., in mammals. A 2.91 billion bp consensus
sequence of the euchromatic portion of the human genome was
generated by the whole-genome shotgun sequencing method [1]. The
14.8.billion bp DNA sequence was generated over 9 months from
27,271,853 high-quality sequence reads (5.11-fold coverage of the
genome) from both ends of plasmid clones made from the DNA of
five individuals. Two assembly strategies—a whole-genome assembly
and a regional chromosome assembly—were used, each combining
sequence data from Celera and the publicly funded genome effort.
The public data were shredded into 550-bp segments to create a 2.9-fold
coverage of the genome regions that had been sequenced, without
including biases inherent in the cloning and assembly procedure
used by the publicly funded group. This brought the effective
coverage in the assemblies to 8-fold, reducing the number and size of
gaps in the final assembly over what would be obtained with 5.11-
fold coverage. The two assembly strategies yielded very similar
results that largely agree with independent mapping data. The
assemblies effectively cover the euchromatic regions of the human
chromosomes. More than 90 percent of the genome is in scaffold
assemblies of 100,000 bp or more, and 25 percent of the genome is in
scaffolds of 10 million bp or larger.

Analysis of the genome sequence revealed 26,588 protein-
encoding transcripts for which there was strong corroborating
evidence and an additional 12,000 computationally derived genes

 P r e l i m i n a r i e s 21

with mouse matches or other weak supporting evidence. Although
gene-dense clusters are obvious, almost half the genes are dispersed
in low G+C sequences separated by large tracts of apparently
noncoding sequence. Only 1.1 percent of the genome is spanned by
exons, whereas 24 percent is in introns, with 75 percent of the genome
being intergenic DNA. Duplications of segmental blocks ranging in
size up to chromosomal length are abundant throughout the genome
and reveal a complex evolutionary history. Comparative genomic
analysis indicates vertebrate expansions of genes associated with
neuronal function, tissue-specific developmental regulation, and the
hemostasis and immune systems. DNA sequence comparisons
between the consensus sequence and publicly funded genome data
provided the locations of 2.1 million single-nucleotide polymorphisms
(SNPs). A random pair of human haploid genomes differed at a rate
of 1 bp per 1250 on average, but there was marked heterogeneity in
the level of polymorphism across the genome. Less than 1 percent of
all SNPs resulted in variation in proteins, but the task of determining
which SNPs have functional consequences remains an open
challenge.

The smallest genomes are found in non-self-replicating subor-
ganisms such as bacteriophages and viruses that piggy-back on the
metabolism and replication machinery of free-living prokaryote and
eukaryote cells, respectively. The 1.74-Mbp genome of the hypo-
thermophilic Methanococcus jannaschii was completely sequenced in
1996. There are 5000 bacterial species per gram of soil. The 3310-Mbp
human genome is organized into 22 chromosomes plus the two that
determine sex. Chimpanzees, for example, have 23 chromosomes in
addition to 4 sex chromosomes. Cats have 38 chromosomes, whereas
dogs have 78 chromosomes. The chromosomes in some organisms are
not stable. For instance, the Bacillus cereus chromosome has been found
to consist of a large stable component (2.4 Mbp) and a smaller less
stable component (1.2 Mbp) that is more easily mobilized into extra
chromosomal elements of different stages. Genomic sequencing is
difficult to perform when the chromosomes are not stable. The variation
of gene number among different organism is shown in Table 1.2 [19].

The word gene was coined in 1909 by the Danish geneticist
W. Johannes. Table 1.2 lists the number of genes in organisms
with different evolutionary lineages. Gene number identification
in organisms is increasing as more accurate methods for their
determination become available. The coding and noncoding regions
of the genome may be demarcated. The gene is widely recognized as
a fundamental hereditary unit of the chromosome that determines
the chemical, metabolic, and morphologic characteristics of an
individual. The gene is a locus on a chromosome representing a
segment of the DNA molecule (cistron) capable of transcription. A
eukaryotic gene is a collection of introns and noncoding intervening
sequences. Exons are coding regions that give rise to final RNA

 22 C h a p t e r O n e

product, i.e., a protein. In a nutshell, the information transfer from
DNA consists of self-duplication of DNA into transcripts called RNA
by transcription. This encodes the protein sequences by translation.

Genome analysis of the number of genes present in Homo sapiens
varied considerably from one investigator to another. The number of
genes in humans was expected to be around 120,000 [17]. For a
complex organism, gene multiplexing makes it possible to produce
several different transcripts from many of the genes in the genome, as
well as many different protein variants from each transcript. The
complex cellular processing of genetic material offers challenges to
modeling in bioinformatics.

The human genome data analysis [1] revealed that the gene
content in humans may be about 30,000 genes. This is only less than
twice the number of genes found in C. elegans. The biologic complexity
of an organism may be related to the expected number of genes in the
organism. Claverie gave an estimate of biologic complexity K in an
organism and its relation to the expected number of genes in the
genome N [18]. Different functionalities to convert K into N have been
suggested [19]:

 K ≈ N (linear) K ≈ Na (polynomial)
 K ≈ aN (exponential) K ≈ N! (factorial)

The biologic complexity of an organism may be related to the
organism’s ability to create diversity in its gene expression, i.e., to the
number of theoretical transcription states the organism can achieve.

The human body consists of 1012 cells, 23 pairs of chromosomes
that consist of 3,310,004,815 bp. The average gene consists of
10,000 bases. The sizes of genes vary. The largest known human
gene is the dystrophin gene, with 2.4 million bases. The nucleotide

Group Species No. of Genes

Phages Bacteriophage MS2 4

Viruses Cauliflower mosaic 8

Bacteria Escherichia coli 4100

Fungi Saccharomyces cerevisiae 5800

Protoctista Oxytricha similis 12,000

Arthropoda Drosophila melanogaster 15,000

Nematoda Caenorhabditis elagans 19,000

Mollusca plantae Nicotine tobacum 30,000

Chordata Homo sapiens 40,000

TABLE 1.2 Gene Number in Organisms

 P r e l i m i n a r i e s 23

sequence is almost exactly the same for the entire human race. For
over 50 percent of the genes, function is unknown. In constructing
the working draft, 16 genome sequencing centers produced over
22.1 billion bases of raw sequencing data, consisting of overlapping
fragments totaling 3.9 billion bases, and provided sevenfold
coverage of the human genome. Over 30 percent are high-quality,
finished sequences, with 8- to 10-fold coverage, 99.99 percent
accuracy, and few gaps. The goals of the projects are to identify
approximately 30,000 genes in a human chromosome, determine
the sequence of the nucleotide base pairs that make up human
DNA, store the information in the databases, improve tools for
data analysis, transfer related technologies to the private sector,
and address the ethical, legal, and social issues that may arise from
the project. Less than 2 percent of the genome codes for proteins.
Junk DNA consisting of repeated sequences that do not code for
proteins make up at least 50 percent of the human genome.
Repetitive sequences are thought to give chromosomes the
necessary structure and dynamics. While the genes are randomly
distributed in the human genome, the genes of other organism are
evenly distributed throughout the genome.

1.2 Probability and Statistics
A gambler’s dispute in 1654 led to the creation of the mathematical
theory of probability. This was accomplished by two pioneers, B. Pascal
and P. De Fermat. A French nobleman with an interest in gambling
called Pascal’s attention to an apparent contradiction concerning a
popular dice game. The game consisted of throwing a pair of dice
two times. The problem was to decide whether or not to bet even
money on the occurrence of at least one double six during 24 throws.
A well-established gambling rule led the nobleman to believe that
betting on a double six in 24 throws would be profitable, but his own
calculations indicated just the opposite. This, among other things, led
to a famous exchange of letters between Pascal and Fermat in which
the fundamental principles of probability theory were formulated for
the first time. The probability of a double six on two throws can be
calculated for a fair six-sided pair of dice as

 P[X = (6, 6)] = 1/6 × 1/6 = 1/36 (1.1)

Thus, in 36 throws, the chance of occurrence of a double six is one.
Equation (1.1) takes into account the occurrence of two independent
events and that all values will occur with equal likelihood. Bernoulli
and de Movrie were big contributors as the subject developed rapidly
in the eighteenth century. P. de Laplace published his book, Theorie
Analytique des Probabilities, in 1912. This widened the scope of
probability to many scientific and practical problems. The theory of

 24 C h a p t e r O n e

errors, actuarial mathematics, and statistical mechanics are some
examples of applications developed in the nineteenth century.
Mathematical statistics in one important branch of applied proba-
bility with applications in a wide variety of fields such as genetics,
psychology, economics, and engineering. Important contributors to
probability since Laplace were Chebychev, Bell, Markov, Von Mises,
and Kolmogorov. The search for a widely acceptable definition of
probability took nearly three centuries. This was resolved finally by
the axiomatic approach developed by Kolmogorov.

1.2.1 Three Definitions of Probability
The classical definition of probability states that the probability P(A) of
an event A is determined a priori without actual experimentation. It
is given by

 P A
N
N

A() = (1.2)

where N is the number of possible outcomes and NA is the number
of outcomes that are favorable to the event A. In the die experiment,
A is the double 6 and N is 36.

The axiomatic definition of probability uses the set theory. A certain
event ρ is the event that occurs in every trial. The union A + B of two
events A and B is the event that occurs when A or B both occur. The
intersection AB of the events A and B is the event that occurs when
both events A and B occur The events A and B are mutually exclusive
if the occurrence of one of them excludes the occurrence of the other.
Three postulates are given. The probability P(A) of an event A is

 P(A) ≥ 0 (1.3)

The probability of the certain event equals 1. If the events A and
B are mutually exclusive, then

 P(A + B) = P(A) + P(B) (1.4)

The axiomatic approach is credited to Kolmogorov.
The relative-frequency approach to the definition of probability states

that probability P(A) of an event A is the limit

P A

n
nn
A() = →∞lim (1.5)

where nA is the number of occurrences of A, and n is the number of
trials. Probabilities are used to define frequencies and are defined as
limits of such frequencies. Both nA and n must be large. This approach
was suggested by von Mises.

 P r e l i m i n a r i e s 25

1.2.2 Bayes’ Theorem and Conditional Probability
The conditional probability of an event A given the event G, denoted
by P(A/G) is defined by

 P(A/G) = P(AG)/P(G) P(G) ≠ 0 (1.6)

If G is a subset of A, then P(A/G) = 1. If A is a subset of M, then

 P(A/G) = P(A)/P(G) ≥ P(A) (1.7)

Bayes proposed a theorem in 1763 that was later named after him.
Laplace gave its final form years later, and it can be stated as
follows:

P A B

P B A P A
P B A P A P B A Pi

i i

n

()
() ()

() () ()
/

/
/ /

=
+ +1 1 � (()An

 (1.8)

The conditional probability also can be written in terms of
intersection of sets as

P A G

P A G
P G()

()
()/ = ∩ (1.9)

 P A G P A G P G P G A P A() () () () ()∩ = =/ / (1.10)

Bayes’ theorems then can be stated as

P A G

P G A P A
P G()

() ()
()/

/= (1.11)

1.2.3 Independent Events and Bernoulli’s Theorem
Two events A and B are said to be independent if

 P(A ∩ B) = P(A)P(B) (1.12)

Suppose that one repeatedly runs independent trials of an
experiment in which the probability of success in each trial is p, and
the probability of failure in q = 1 − p. Then the probability that there
are exactly k successes in these n trials is given by nCkp

kqn.k. Let A and
B be small positive numbers. Then there is a value of n large enough
that the probability that the ratio of the successes in n trials is not
within A and p is less than B. In other words, if the experiment is
run long enough, the fraction of successes is likely to be close to the
correct probability.

 26 C h a p t e r O n e

1.2.4 Discrete Probability Distributions

Binomial and Multinomial Distributions
The binomial distribution (Fig. 1.6) gives the discrete probability
distribution of obtaining n successes out of N Bernoulli trials. The
result of each Bernoulli trial is true with probability p and false with
probability q = 1 – p. Thus

 f(x) = P(X = x) = nCxp
xqn–x (1.13)

 = n!/x!(n – x)!pxqn–x

 = x = 0, 1, 2, . . . , n

The mean, variance, skewness, and kurtosis of the binomial
distribution are given below.

 Mean μ = np

 Variance σ2 = npq

 Skewness α3 = (q – p)/(npq)1/2

 Kurtosis α4 = 3 + (1.6pq)/(npq)1/2

A1, A2, . . . , Ak events can occur with probabilities p1, p2, . . . , pk,
where p1 + p2 + ⋅ ⋅ ⋅ + pk = 1. X1, X2, . . . , Xk are random variables,
respectively, giving the number of times that A1, A2, . . . , Ak can occur
in a total of n trials so that X1 + X2 + ⋅ ⋅ ⋅ + Xk = n. Then the multinomial
distribution can be given by

P(X1 = n1, X2 = n2, . . . , Xk = nk) = n!/n1!n2! ⋅ ⋅ ⋅ nk!p1
n1p2

n2 ⋅ ⋅ ⋅ pknk (1.14)

0.18

0.16

0.14

0.12

0.1

0.08f(
x)

0.06

0.04

0.02

0
1 3 5 7 9 11

x

Binomial Distribution

13 15 17 19 21

FIGURE 1.6 Binomial distribution with n = 21 and p = q = 0.5.

 P r e l i m i n a r i e s 27

where n1 + n2 + ⋅ ⋅ ⋅ + nk = n. The joint probability function for random
variables X1 + X2 + ⋅ ⋅ ⋅ + Xk = n. This is the general form of the
binomial distribution and the general term in the multinomial
expression of (p1 + p2 + ⋅ ⋅ ⋅ + pk)

n.

Poisson Distribution

f x P X x x

x() () exp != = = −⎛
⎝⎜

⎞
⎠⎟

λ λ
 x = 0, 1, 2, . . . , n (1.15)

 Mean μ = λ

 Variance σ2 = λ

 Skewness α3 = 1/λ1/2

 Kurtosis α4 = 3 + 1/λ

A good example of the Poisson distribution (Fig. 1.7) is the number
of typos generated by a good typist. The probability of 1 or 2 typos
per page is high, and the probability of generating 10 typos per page
is slim. In a similar fashion, the time taken at the teller counter at the
bank also can be fit to a Poisson distribution. The probability of the
event of the transaction taking 5 or 8 minutes may be high, and
the probability of it taking 1 hour will be low. Yet another example is
the arrival of students late to class. The probability of students arriving
on time or 5 minutes before the hour is high, and the chances that they
will arrive ½ hour late will be on the low side.

Hypergeometric Distribution
This is an example in sampling with replacement. Suppose that a box
contains b blue marbles and r red marbles. Let us perform n trials of

1 6

2.5

2

1.5

1

0.5

0
2111 16

FIGURE 1.7 Poisson distribution with λ = 2.0.

 28 C h a p t e r O n e

an experiment in which a marble is chosen at random and its color is
observed and the marble is put back in the box.

 f (x) = P(X = x) = bCx
rCn − x/

b + r Cn (1.16)

 Mean μ = nb/(b + r)

 Variance σ2 = nbr(b + r − n)/(b + r)2/(b + r + 1)

Geometric Distribution

 f (x) = P(X = x) = pqx–1 x = 1, 2, . . . (1.17)

 Mean μ = 1/p

 Variance σ2 = q/p2

The chain sequence distribution in copolymers was shown to be
modeled using the geometric distribution.

1.2.5 Continuous Probability Distributions

Uniform Distribution and Cauchy Distribution

f x

b a
()

()
=

−
1

 a ≤ x ≤ b = 0 otherwise (1.18)

 Mean μ = ½(a + b)

 Variance σ2 = 1/12(b – a)2

A good example of the uniform distribution is the contact time of
solid particles at the heat-exchanger surfaces in a circulating fluidized-
bed boiler (CFB). The Cauchy distribution is given by

f x

a
x a

a x()
()

, –=
+

> ∞ < < ∞
π 2 2 0

(1.19)

 Mean μ = 0

Variance and higher moments do not exist. This distribution is also
called the Lorentz distribution by physicists. It forms the solution to the
differential equation that can be used to describe forced resonance.

Gamma and Chi-Squared Distributions

f x x

x

()
exp

()
=

−⎛
⎝⎜

⎞
⎠⎟−α

α

β
β α

1

Γ x > 0 (1.20)

 = 0 x ≤ 0

 P r e l i m i n a r i e s 29

where Γ(α) is the gamma function.

 Mean μ = α
 Variance σ2 = αβ2

Γ(n) = t t dtn−

∞
−∫ 1

0
exp() n > 0

 Γ(n + 1) = nΓ(n) (recurrence formula)

 Γ(1) = 1

when n is a positive integer, then

 Γ(n + 1) = n!

X1, X2, . . . , Xγ are γ independently normally distributed random
variables with mean 0 and variance 1. Consider the random variable

 χ2 = X1
2 + X2

2 + ⋅ ⋅ ⋅ + Xγ
2 (1.21)

where γ is the number of degrees of freedom. A special case of the
gamma distribution with α = γ/2, β = 2.

 Mean μ = γ

 Variance σ2 = 2γ

 f(x) = x(γ/2)–1 exp(–x/2)/[2γ/2Γ(γ/2)] x > 0 (1.22)

 = 0 x ≤ 0

This is the chi-squared distribution.

Student t Distribution

f t

t

()

()
()/

=

+ +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− +

Γ

Γ

γ
γ

γ π γ

γ
1

2
1

2

2 1 2

 – ∞ < t < ∞ (1.23)

 Mean μ = 0

 Variance σ2 = γ/(γ − 2) γ > 2

where γ is the number of degrees of freedom.

Normal Distribution

f x

x
() exp=

⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

1

2

1
2

2

σ π
μ

σ (1.24)

 30 C h a p t e r O n e

The normal distribution (Fig. 1.8) was introduced by de Movrie,
who approximated binomial distributions for large n. His work was
extended by Laplace, who used the normal distribution in error analysis
in experiments. Legendre came up with the method of least squares.
Gauss by 1809 justified the normal distribution for experimental errors.
The name bell curve was coined by Galton and Lexis.

Generalized Normal Distribution
The generalized normal distribution was introduced by Sharma to
capture the periodicity in pressure fluctuations in addition to the
random component [20]. In addition to the mean and standard
deviation, the number of saddle points also can be used to characterize
the periodicity of pressure fluctuations.

 f(x) = A exp(–Bx – Cx2 – Dx4) (1.25)

where A, B, C, and D are parameters that can be obtained by a least-
squares fit of the experimental data. This also can be referred to as a
Sharma distribution. Periodicity is found in DNA sequences. This
periodicity can be represented using the Sharma distribution.

1.2.6 Statistical Inference and Hypothesis Testing
Hypothesis testing is the use of statistics to determine the probability
that a given hypothesis is true. The usual process of hypothesis testing
consists of four steps:

1. Formulate the null hypothesis H0 (commonly, that the
observations are the result of pure chance) and the alternative
hypothesis H1 (commonly, that the observations show a real
effect combined with a component of chance variation).

2. Identify a test statistic that can be used to assess the truth of
the null hypothesis.

3. Compute the P value, which is the probability that a test statistic
at least as significant as the one observed would be obtained

–4 –3 –2 –1 0 1 2 3 4

FIGURE 1.8 Normal distribution with zero mean and unit variance.

 P r e l i m i n a r i e s 31

assuming that the null hypothesis were true. The smaller the
P value, the stronger is the evidence against the null hypothesis.

4. Compare the P value with an acceptable significance value α
(sometimes called an alpha value). If p ≤ α, then the observed
effect is statistically significant, the null hypothesis is ruled
out, and the alternative hypothesis is valid.

Type I error is an error in a statistical test that occurs when a true
hypothesis is rejected (a false negative in terms of the null hypothesis).
Type II error is an error in a statistical test that occurs when a false hypoth-
esis is accepted (a false positive in terms of the null of hypothesis).

1.3 Which Is Larger, 2n or n2?
During the time and space efficiency analysis of string algorithms,
the use of subsequences is encountered. The number of possible
distinct subsequences in a sequence of length n can be seen to be

 nC0 + nC1 + 2C2 + … + nCn (1.26)

Expanding 2n = (1 + 1)n using a binomial expansion:

2 1

1
2

1 2
3

n n
n n n n n= + + − + − − +()

!
()()

! � (1.27)

Comparing Eq. (1.26) and Eq. (1.27),

 2n = nC0 + nC1 + 2C2 + … + nCn (1.28)

During sequence alignment of two sequences, either global or
local by dynamic programming methods, it can be seen that the time
taken is usually n2. It is desirable to evaluate whether 2n or n2 is greater
for all natural numbers. An attempt is made to prove that 2n > n2 by
the principle of induction.

Given: 2n ≥ n2 (1.29)

To show: 2n+1 ≥ (n + 1)2 (1.30)

Multiplying both sides of Eq. (1.30) by 2,

 2n+1 ≥ 2n2 (1.31)

Should 2n2 > (n + 1)2, Eq. (1.31) is shown. Compare 2n2 and (n + 1)2,
or compare n2 and 2n + 1, or compare 1 and 2/n + 1/n2. It can be seen
that 1 > 1/n2 + 2/n.

 32 C h a p t e r O n e

For n > 2, the null case has to be taken because n = 4 as at n = 3,
2n < n2. Thus 2n is greater than n2 for values of n greater than 4. For n
less than 4, this is not the case. This can be seen at n = 3; in fact, n2 is
greater than 2n.

1.4 Big O Notation and Asymptotic
Order of Functions

The big O notation was introduced by E. Landau in 1909 for his discus-
sions of the distribution of prime numbers. The order of growth of the
running time of an algorithm gives a simple characterization of the
algorithm’s efficiency. This allows for comparison of relative perfor-
mance of different algorithms. When only large input sizes are consid-
ered, only the order of magnitude of the running time is important or
relevant. This is called the asymptotic efficiency of the algorithm. The
big O, θ, and Ω notations are introduced to facilitate the analysis of
running time and storage space required by computer algorithms.

The worst-case running time function is given by T(n). It is defined
on only an integer input size. For a given function g(n), θ[g(n)] is
denoted as the set of functions such that

 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) (1.32)

Equation (1.32) is valid for all n ≥ n0, and there exist positive
constants c1 and c2 such that the function is sandwiched between the
two function c1g(n) and c2g(n) for sufficiently large n. It is said of the
function g(n) that it is an asymptotically tight bound for f [n – f(n)] =
θ[g(n)] denotes the fact a set of functions is involved. The θ notation
asymptotically bounds a function from above and below. When there
is only an asymptotic upper bound, the O notation is used. For a
given function g(n), big O of n is denoted by O(n):

 O[g(n)] = f(n) 0 ≤ f(n) ≤ cg(n) (1.33)

Equation (1.33) is valid for all n ≥ n0 and provides an upper bound
on a function to within a constant factor. In a similar fashion, the
asymptotic lower bound is introduced by Ω[g(n)]:.

 Ω[g(n)] = f(n) 0 ≤ cg(n) ≤ f(n) (1.34)

Equation (1.34) is valid for all n ≥ n0 and provides a lower bound
on the function that is considered.

Lemma 1.1 A function f ∈ O(g) if f(n)/g(n) = C as n goes to infinity and C is less
than infinity, including the case where the limit is 0. If the limit of the ratio of f
to g exists and is not infinity, then f grows no faster than g. If the limit is infinity,
then f does grow faster than g.

 P r e l i m i n a r i e s 33

For any real number x, the greatest integer less than or equal to x is denoted by
⎣ x ⎦, the floor of x, and the least integer greater than or equal to x by ⎡x⎤, the
ceiling of x. For all real x,

 x – 1 < ⎣ x ⎦ ≤ x ≤ ⎡x⎤ < x + 1 (1.35)

Example 1.1 Ordering of functions. Rank the following functions by order of
growth:

 lg[lg(n)], 1, n, 2n, en, n!, n2, n3

 lg[lg(n)] < 1 < n < n2, n3, en, 2n, n! for large n (1.36)

Summary
The Human Genome Project was completed ahead of time.
Bioinformatics involves the algorithms, mathematical models, neural
networks, sequence representations, alignment, and other methods
of analysis and storage of biologic data. Owing to the doubling of
biologic databases every 10 months, there is increased need for
inventing new data search and data storage methods. Preliminaries
needed for getting more use out of this textbook are a bit of molecular
biology, computer science, and probability.

Two important molecules in bioinformatics are proteins and
nucleic acids. Insulin was among the first primary protein structure
identified. The sequence of amino acids in a protein is defined by
genes and encoded by the genetic code. Primary structure, secondary
structure, tertiary structure, and quaternary structure are the four dif-
ferent structure types of proteins. The primary structure of a protein
consists of a random polymer chain sequence distribution of amino
acids. There exist 20 different amino acids. Each amino acid consists
of an amine and carboxylic acid group. The 20 different amino acids
are lysine, arginine, histidine, which are basic; aspartic acid and glu-
tamic acid, which are acidic; glycine, serine, threonine, cysteine, tyro-
sine, glutamine, and asparagine, which are polar; and alanine, valine,
leucine, isoleucine, proline, methionine, phenylalanine, and trypto-
phan, which are nonpolar. Owing to hydrogen-bond formation, the
secondary structure of protein is formed depending on the primary
sequence structure of the protein. Proteins are formed into α-helix,
β-pleated sheet, and γ-coil shapes. F. Sanger won two Nobel Prizes—
one for discovering the primary chain sequence distribution structure
of insulin and another for discovering the chain sequence distribu-
tion of nucleic acid. He developed a molecular labeling method.
Paper chromatography and gel acrylamide electrophoresis are used
to separate the molecular fragments and sequence deduced.

There are a number of bioseparation techniques. These are salt preci-
pitation, ion exchange, ultracentrifuge, sedimentation, polyacrylamide

 34 C h a p t e r O n e

electrophoresis, Sanger’s method, the Dansyl chloride method, the
Edman degradation technique, paper chromatography, mass spec-
trometry, isoelectric focusing, two-dimensional gel electrophoresis,
adsorption chromatography, partition chromatography, ion-exchange
chromatography, gel-filtration chromatography, affinity chromatography,
thin-layer chromatography, and HPLC.

Nucleic acids consist of a ribose sugar or deoxyribose, phosphoric
acid, and nitrogenous bases. Adenine, guanine, cytosine, thymine, and
uracil are nitrogenous bases. DNA has a double-helix structure
and two antiparallel strands. The linear sequence of a protein is spec-
ified by a linear sequence of nucleic acids by a process of translation
and transcription. Har Gobind Khorana received the Nobel Prize for
nucleic acid synthesis and the genetic code. The flow of information
in gene expression from DNA to mRNA is called transcription and
from mRNA to protein is called translation. Exons are the coding
regions of DNA, and intergenic regions are the introns. Splicing
occurs when exons are linked together and introns are eliminated.

Genomes vary from one organism to another. About 1.1 percent of
the genome is spanned by exons, 24 percent by introns, and 75 percent
by intergenic DNA. Gene number of an organism is the number of genes
contained in the DNA. The work of Vrenter and colleagues confirmed
that the human genome has 30,000 genes. Claverie provided an estimate
of biologic complexity K in an organism to the expected number of genes
in the genome. Junk DNA consists of repeated sequences that do not
code for proteins and make up 50 percent of the human genome.

The famous exchange of letters between Pascal and Fermat on the
gambler’s dispute gave rise to the concept of probability. Other major
contributors to the field of probability are Bernoulli, De Movrie,
Laplace, Chebychev, Bell, Markov, von Mises, and Kolmogorov. The
three definitions of probability are the classical, axiomatic, and relative-
frequency approaches. Conditional probability, Bayes’ theorem, and
Bernoulli’s theorem were discussed. The probability density function,
mean, variance, skewness, and kurtosis of discrete distributions such
as the binomial, Poisson, hypergeometric, and continuous distributions
such as the uniform, Cauchy, gamma, chi-squared, student t, normal,
and generalized normal distributions were reviewed. The formulation
of null and alternate hypotheses, development of test statistics, and
type I and type II errors were reviewed.

2n > n2 when n > 4. The big O notation, floor, ceiling, and asymptotic
order of functions O, θ, and Ω were introduced.

References and Sources
 [1] J. C. Venter, M. D. Adams, E. W. Myers, et al., “The sequence of the human

genome,” Science 291 (2001), 1304–1351.
 [2] F. Sanger, “The chemistry of insulin,” Nobel lecture, December 1958. In Nobel

Lectures. Amsterdam: Elsevier, 1964.

 P r e l i m i n a r i e s 35

 [3] F. Sanger and S. Nicklen Coulson, “DNA sequencing with chain-terminating
inhibitors,” Proc. Natl. Acad. Sci. USA 74 (1977), 5463–5467.

 [4] F. Sanger, “Determination of nucleotide sequences in DNA.” In Les Prix Nobel.
Stockholm, Sweden: Nobel Committee, 1980.

 [5] F. Sanger and H.Tuppy, “The amino-acid sequence in the phenylalanyl chain
of insulin. The investigation of peptides from enzymic hydrolysates,” Biochem J.
49, (1951), 481–500.

 [6] F. Sanger, G. M. Air, B. G. Barell, et al., “Nucleotide Sequence of Bacteriophage
X174 DNA,” Nature. 26, (1977), 687–702.

 [7] T. Svedberg, “The Ultracentrifuge.” In Les Prix Nobel. Stockholm, Sweden:
Nobel Committee, 1928.

 [8] A. Tiselius, “Electrophoresis and adsorption analysis as aids in investigations
of large molecular weight substances and their breakdown products.” In Les
Prix Nobel. Stockholm, Sweden: Nobel Committee, 1948.

 [9] K. Tanaka, “The origin of macromolecule ionization by laser irradiation.” In
Les Prix Nobel. Stockholm, Sweden: Nobel Committee, 2002.

[10] F. H. C. Crick,“On the genetic code.” In Les Prix Nobel. Stockholm, Sweden:
Nobel Committee, 1962.

[11] A. Kornberg, J. Bertsch, and H. Khorana, “Enzymatic synthesis of DNA—
Oligonucleotides as templates and the mechanism of their replication,” Proc.
of National Academy of Sciences. 61, (1964), 315–323.

[12] R. Kornberg, “The molecular basis of eukaryotic transcription.” In Les Prix
Nobel. Stockholm, Sweden: Nobel Committee, 2006.

[13] H. G. Khorana, “Nucleic acid synthesis and genetic code.” In Les Prix Nobel.
Stockholm, Sweden: Nobel Committee, 1968.

[14] V. L. Raj Bhandary, S. H. Chang, A. Stuart, et al., “t-RNA—Molecular Structure,
Sequence and Properties,” Annual Reviews Biochem. 5 (1976), 805–860.

[15] A. M. Maxam and W. Gilbert, “A New Method for Sequencing DNA,” Proc.
of National Academy of Sciences. 74 (1977), 560–564.

[16] M. A. Billeter, J. E. Dahlberg, H. M. Goodman, et al., “The nucleatide
sequence at the 5’-Terminus of the QB RNA minus strand,” Proc. of National
Academy of Sciences. 67 (1970), 921–928.

[17] F. Liang, I. Holt, S. Karamycheve, et al., “Gene index analysis of the human
genome estimates approximately 120,000 genes,” Nat. Genet. 25 (2000),
239–240.

[18] J. M. Claverie, “What if there are only 30,000 human genes,” Science 291
(2001), 1255–1277.

[19] P. Baldi and S. Brunak, Bioinfomatics: The Machine Learning Approach. Boston:
MIT Press, 2001.

[20] K. R. Sharma, “Generalized normal distribution to predict periodicity,” 93rd
AIChE Annual Meeting, Reno, Nev., 2001.

Exercises
1.0 Why does the structure of glycine lead to a polar amino acid and that of
alanine a nonpolar amino acid?

2.0 Name some amino acids other than the 20 that constitute the protein
primary structure.

3.0 Which amino acids have the largest charge?

4.0 Why is the study of the tertiary structure of proteins important?

5.0 What is the meaning of amino acid residue?

6.0 Compare the principles and process of transcription and translation.

 36 C h a p t e r O n e

7.0 Explain exons, introns and RNA splicing.

8.0 Show a schematic of operon structure and add a note showing terminators
and ribosome-binding sites.

9.0 Display the molecular weights of the 20 different amino acids. What is
the molecular weight of insulin? How does this depend on the chain sequence
distribution.

10.0 Discuss the differences between

 a. nucleoside and nucleotide.

 b. codon and anticodon.

 c. tRNA and mRNA.

 d. amino acid and nucleotide.

 e. DNA and RNA.

11.0 Can a codon encode more than one amino acid?

12.0 Do you expect elephants to have more genes than a crocodile. Why?

13.0 Who was credited with the synthesis of a long polyribonucleotide of
known sequence?

14.0 Enumerate the process of transcription and translation for
CCACGCATGCAGGCGCGCGCGCGCGGCAT.

15.0 Write a note on denaturization of proteins.

16.0 State true or false.

 a. Arginine is a polar amino acid.

 b. L-Arnithine is one of the 20 different types of amino acids in protein.

 c. Lysine is a basic amino acid.

 d. There are sulfide bridges in the insulin molecule.

17.0 Do prokaryotes have genes?

18.0 Where are circular DNA and linear DNA found?

19.0 Write a note on ribosomes.

20.0 What is meant by the DNA shortening problem?

21.0 Which are the start codons and stop codons in the genetic code?

22.0 Why are 61 codons required to code 20 different amino acids?

23.0 Why are there fewer than 61 tRNA molecules?

24.0 What are chaperones and what is their role in protein synthesis?

25.0 Is the mechanism of initiation of translation in eukaryotes not compatible
with polycistronic mRNA?

 P r e l i m i n a r i e s 37

26.0 What disease may be associated with improper protein folding?

27.0 Sketch the lariat formation and splicing of pre-mRNA in eukaryotes.

28.0 How many nucleotides can be handled by the autoradiograph method
of directly reading nucleotide sequence distribution?

29.0 A box contains two red and three black marbles. Find the probability
that if two marbles are drawn at random (without replacement) both are black.
(Ans: 3/10)

30.0 The probability that both are red in problem 29.0 is _________. (Ans: 1/10)

31.0 The probability that one is red and one is blue in problem 30.0 is ________.
(Ans: 3/5)

32.0 If at least one child in a family with two children is a boy, the probability
that both children are boys is ____________. (Ans: 1/3)

33.0 A shelf contains 6 separate compartments. Show that the number of
ways 12 indistinguishable marbles may be placed in the compartment so that
no compartment is empty is 462 (Fermi Dirac Statistics).

34.0 The probability function of a random variable X is given by

 f(x) = 2p x = 1

 = p x = 2

 = 4p x = 3

 = 0 otherwise

where p is a constant. What is the probability of P(0 ≤ X ≤ 3)? (Ans: 3p)

35.0 What is the probability of X > 1 in Problem 34.0? (Ans: 5p)

36.0 Ten percent of the tools produced in a certain manufacturing process
turn out to be defective. Assuming that the defective tools can be modeled as
rare events and as a Poisson distribution, f(x) = λx exp(–λ)/x!), with λ = 1. The
probability that in a sample of 10 tools chosen at random 2 are defective is
_________. (Ans. 0.1839)

37.0 A typist makes an average of only one error every two pages or
0.5 errors per page. This can be described by the Poisson distribution, f(x) = λx
exp(–λ)/x!) with λ = 0.5. The probability that the typist will make no error on
the next page is ___________. (Ans: 0.607)

38.0 The probability of fewer than two errors in Problem 37.0 is _______.
(Ans: 0.986)

39.0 What is the probability of one or more errors in Problem 37.0? (Ans: 0.393)

40.0 Of 80 families with 5 children each, how many would expect to
have (a) 3 boys, (b) 5 girls, AND (c) either two or three boys? (Ans: a.10.0;
b. 2.5; c. 30)

 38 C h a p t e r O n e

41.0 During turbulent flow, the age of eddies staying on the wall of the pipe
is said to be exponentially distributed. f(t) = 1/tavg exp(–t/tavg), with the mean
age being tavg and the variance tavg

2, for t > 0. The probability that for a mean
time of 100 ms the age of the eddies is greater than 1 second is _____________.
(Ans. 4.5 E.5)

PART 1
Sequence Alignment
and Representation

CHAPTER 2
Alignment of a Pair of
Sequences

CHAPTER 3
Sequence Representation and
String Algorithms

CHAPTER 4
Multiple-Sequence Alignment

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

CHAPTER 2
Alignment of a Pair

of Sequences

Objectives
The objectives of the chapter are to

• Understand the motivation to study sequence distribution
and alignment of sequences.

• Learn to obtain the optimal global alignment of a pair of
sequences using dynamic programming (Needleman and
Wunsch algorithm).

• Discuss the time taken and space efficiency of global pairwise
alignment.

• Learn to obtain optimal local alignment of a pair of sequences
using dynamic programming.

• Discuss the time taken and space efficiency of the Smith
Waterman algorithm.

• Become familiar with the affine gap model.

• Determine the connection to commercial software packages
from techniques discussed in this chapter.

2.1 Introduction to Pairwise Sequence Alignment
Sequence comparison is a field in itself in computer science. It has a
lot of interesting applications in bioinformatics. The process of lining
up two or more sequences to obtain matches between them is called
sequence alignment. When two sequences are lined up, it is called a
pairwise alignment [1], and when more than two are examined, it is
referred to as multiple-sequence alignment. The sequence distribution
can consist of the 20 different amino acids in the protein primary
structure of a polypeptide, the 4 nucleotide base pairs in the ribonucleic
acid (RNA), or the 4 nucleotide base pairs in the deoxyribonucleic
acid (DNA). The similarity among sequences may be based on
evolutionary, structural, or functional relationships among them.

41
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 42 C h a p t e r T w o

Similarities found among nucleotide sequences are also called identity.
Conservation refers to changes at a specific position of an amino acid
sequence that preserve the physicochemical properties of the original
residue. Similarity attributed to descent from a common ancestor is
homology. When two or more sequences are aligned and linked to a
common ancestor, and when mismatches are found in the alignment,
then the mismatches can be detected as point mutations.

Gaps in the sequences can be seen as indels. Sequence similarity
among protein sequences indicates the degree of conservation among
them. Conservation in DNA or RNA base pairs can indicate similar
functional and structural roles. The objective of sequence alignment
is to be able to select two or more sequences and compare them to
determine the measure of similarity. The grade of similarity is a
measurement used to draw conclusions about whether homology
exists between two sequences.

Biomolecules, i.e., DNA and RNA and proteins they encode by
gene expression, have been found to be central to the functions of
organisms. Their structure and function and their study can be the
next frontier in science and is an important fruit of labor from the
study of biochemistry. These biomolecules can be viewed as
polymers—as polynucleotide and polypeptide. The two polymers
can be further viewed as random multicomponent copolymers. The
polypeptide has a random microstructure with 20n possible sequence
distributions, where n is the degree of polymerization or length of
the polypeptide. The 20 comes from the alphabet of amino acids that
can be found in the backbone polypeptide chain. The polynucleotide,
on the other hand, can have 4n possible sequence distributions for a
length of n of the poynucleotide chain. The 4 comes from the possible
base pairs—adenine, guanine, cytosine, and thymine. The RNA
would include uracil. The DNA molecule has up to 3 billion base
pairs. The sequence distribution microstructures of DNA and insulin
were discovered by F. Sanger, who was awarded the Nobel Prize
twice, once in 1958 and then again in 1980. The information content
in the DNA molecule is high. Most of the information is in the form
of random sequences (Fig. 2.1).

As can be seen in the figure, during gene transcription and
translation, the random sequences of DNA play an important role in
the formation of the copies, and then the codons form the protein
molecule by polymerase chain reaction (PCR) in the presence of the
polymerase enzyme. The human genome needs to be annotated.
Functions of organisms can be linked to the genes at various locations
in the genome. The annotation of the genome, i.e., addressing the
genes as the originators of such and such functions, is the study of
functional genomics or metabolomics. Sequence information needs to be
stored and retrieved from large databases and drives the study of
bioinformatics. The sequence in itself is not informative. Sequence
alignment and analysis are needed to perform these tasks.

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 43

ORIGIN

 1 tcatagaccg tgccttctag ctgcgacctc acatggtgga aaggggaagg caacctccct
 61 gtagcctctt ttaaaagggc attaatcgca ttcacggggt ctccatcctc ttggcctaac
 121 cacctcccaa aagccctacc ttttagtaat atcacatggg gagttagaat ttcactatat
 181 gaattttggg gggacacaaa catttatgcc acagcagata tctttctacc accttatttg
 241 gtgatttctg ggttttgttt gtttgtttaa gacagagtct cgctctgtcg gccaggctgg
 301 agtgcagtgg caccatctcg gctcaatgca accttcgcct ccccggttca agcgattctc
 361 ctgcctcagc ctcccaagta gctgggatta cggacgtgtg ccaccacgcc tggctaattt
 421 ttgtattttt agtagagact gggtttcacc attttggcca ggctggtccc gaactgctga
 481 gttcaggtga tccacccgcc tcggcctccc aaagttctgg gattacaggc gtgagccacc
 541 atgtccggct ggtgatttct gtttaaaagt tttttcttaa agtgtttttt cccacctagt
 601 ttttcattga atgggtaaaa cattctacat ttgcttttat taaaacaaga aatgaatttt
 661 gctgcatttc aatttataga ttttactatc ctacctcgtg ccaggttctg tgctaagtgc
 721 tgtatatatc tgtgatcaca tttaactttt ataacaagcc aaatgagcag gaactcttat
 781 ctctatctta cagacgaaga atccaaagac cagggacagt aagtaatttg ctcacctggt
 841 ttgccagcct ccatgacaca tcgccgtcca gttctgcctt taattaccaa agcacaacac
 901 gctgctttga ttcccctctc ctcggcgcca gaattcaaga gtgaagttaa accgcaaggg
 961 ctgagttaga agattggcct cagttccctg ttcccaccag caggtggcac cgtctcctag
1021 cggaattctt acttgaacgt tttgcttcca tttctgcaga ggcatggtga acacagttac
1081 accaccaaag tgttcctcct ggctgagttt gcctatcttg ttcagtgaag acaacccatg
1141 aggacaaatg gtgttaatga gaagcttttg cggagttaca gagatcctcg tatttcttta
1201 aaatacacct aataacgtta actctgcaat aatttgtaga tcatgttaaa tcttagctat
1261 cttcctcttg ccacccagtg tgcttcaagc cacatggttc agagcaccat ttaatgtgaa
1321 actccaattt taaaacaaag tgaaccttcc ttttacaaaa ccatgagaca agttacagag
1381 taatgaccac ccacatgacc ttgaagtgat tttgagtgag tgagtgtaac ttccgtggct
1441 gccatttaaa ttggattcaa atccaaatgg ctccacctcc atgtcatcag acctcttgtg
1501 ccctgattcc cttggctaag ttcacagtac cttccacatc aggttgtggc aatgattacc
1561 tgaggttaat acgataaaag cacatggtaa gcactcctaa atgatagcca atataaagac
1621 tcagttctcc caattccaag ggtccccacc atgatagaaa aggatctttt ggtaaataga
1681 gtatgtttag ctcttgctag gtctttaaat actttgctgg gggccaggca ccatggctca
1741 cacctgtaat cccaccgcct taggagactg aggctggagg atcctttgcg gccaagagtt
1801 tgagaccagc ctgggcaaca cagcaagacc ctatttctac aaaaataaaa ataaaaatta
1861 accaggcttt gtacacactt gtagtcccat tacttgggag gctgaggcag gaggatccct
1921 caagcccaag agttcaaagc tgtagtgagc tatgattgcg ccactgcact ccagcctggg
1981 tgacagagta agactctgtt tcaaaacaac aacaacaaac aaaaacctca aaacctcttt
2041 gttggactta acttccagct cctccatgta gtaccttagt acccttgcag cccgtttctc
2101 ttttacaaga caacaatgtt gttataaact catttggatg tggtcccgtg gaggagtatt

FIGURE 2.1 Nucleotide sequence of Homo sapiens base pairs 1–3001 (From NHLBI
Resequencing and Genotyping Service, N01.NV.48196, J. Craig Venter Institute,
Rockville, MD, http://rsng.nhlbi.nih.gov [2].)

2.2 Why Study Sequence Alignment
Sequence alignment can be the key to finding a cure for autoimmune
disorders. Autoimmune disorders are those in which harm is inflicted
on a patient’s cells by signals from within the patient himself or
herself by mistake. Rather than targeted annihilation of the culprit
virus by the immune system, the signal from within the patient
triggers the attack of the patient’s cells. This is a case of mistaken
identity. Thus a double deleterious effect is in place—i.e., failure of
the immune system and damage done to the cells.

Researchers have shown that the protein signal in the patient is
specific to the sequence distribution in the cells. When the sequence
distribution of the culprit virus and the sequence distribution in the
cells at the site of the disease in the patient are identical, the harm is

http://rsng.nhlbi.nih.gov

 44 C h a p t e r T w o

done by signal action directed at the common sequence distribution,
and then the cells of the patient are harmed. Thus, when the signal
from the protein to attack the infecting virus is confused and the cells
in the body with the identical sequence distribution are attacked
instead, autoimmune disorder sets in. Once this match is determined,
then drugs can be designed whose therapeutic action can alter the
gene expression, thus effecting a cure. In multiple sclerosis, the
immune system’s T cells attack the patient’s nerve cells. In a similar
fashion, bone cells are attacked during the onset of rheumatoid
arthritis. The infection is still unchecked, and this results in a double
deleterious effect on the patient. In multiple sclerosis, it was
conjectured that the myelin sheath proteins that were sequenced were
matched in a protein database with similar bacterial and viral
sequences, and tests were conducted to determine whether the T cells
attacked the myelin sheath proteins with the same sequence as the
bacterial and virus proteins. The result was identification of certain
bacterial and viral proteins that were confused with myelin sheath
proteins. Thus autoimmune diseases arise from an overactive immune
response of the human anatomy against substances and tissues
usually present in the human anatomy—i.e., the human anatomy
attacks its own cells. There are more than 80 autoimmune disorders
reported today. They afflict 5.7 percent of the population. Some of the
known autoimmune disorders are listed in Table 2.1.

Recently, a key set of genes that can be used to manipulate
immune system activity was discovered [3]. This discovery may lead
to new therapies for autoimmune disease. The immune system is
often described as a kind of military unit, a defense network that

Addison’s disease Aplastic anemia Autoimmune hepatitis

Celiac disease Crohn’s disease Diabetes mellitus

Gestational pemphigoid Goodpasture’s
syndrome

Graves’ disease

Kawasaki’s disease Multiple scelorisis Myasthenia gravis

Opsoclonus myoclonus
syndrome

Optic neuritis Ord’s thyroiditis

Pemphigus Pernicious anemia Primary biliary cirrhosis

Rheumatoid arthritis Reiter’s syndrome Sjögren’s syndrome

Takayasu’s arteritis Temporal arteritis Hemolytic anemia

Wegener’s granulomatosis Primary thyroiditis Ulcerative colitus

Hashimoto’s thyroiditis Systematic lupus Dermatomyositis

TABLE 2.1 List of Autoimmune Disorders

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 45

guards the body from invaders. White blood cells, or T cells, serve as
frontline soldiers of immune defense, engaging invading pathogens
head on. T cells are commanded by regulatory T cells. Regulatory
T cells are themselves controlled by a master gene regulator called
Foxp3. Master gene regulators bind to specific genes and control their
level of activity, which, in turn, affects the behavior of cells. In fact,
when Foxp3 stops functioning, the body can no longer produce
working regulatory T cells. When this happens, the frontline T cells
damage multiple organs and cause symptoms of type 1 diabetes and
Crohn’s disease. Researchers have scanned the entire genome of
T cells and have located the genes controlled by Foxp3. Roughly
30 genes were found to be controlled directly by Foxp3, and one,
called Ptpn22, showed a particularly strong affinity. The list of the
genes that Foxp3 targets provides an initial map of the circuitry of
these cells, which is important for understanding how they control a
healthy immune response. Autoimmune diseases on a molecular
level can be considered in a “black box.” The molecular mechanisms
of these diseases can be understood using sequence alignment.

Sequence alignment is usually attempted in terms of sequence
database searching. The sequence is analyzed by comparative
methods against existing databases to develop hypotheses concerning
relatives and function. For example, an abundant message in a cancer
cell line may bear similarity to protein phosphates genes. This
relationship would prompt experimental scientists to investigate the
role of phosphorylation and dephosphorylation in the regulation of
cellular transformation.

The common inheritance can be found and the evolutionary tree
constructed from the knowledge gained by sequence alignment.
Evolution is considered at the molecular level in such projects.
Chimpanzee and Homo sapiens were found to have a common ancestor
recently. The wings of bats and those of butterflies have evolved
independently. Evolution can be linked to changes in DNA. Molecular
evolution is the study of the history of changes in an organism during
evolution and its relation to changes in DNA. For example, cytochrome C
and hemoglobin were sequenced. Family trees were constructed
based on the assumption that closely related organisms have similar
sequences. Thus chimpanzee was found to be closer to Homo sapiens
than to rattlesnake. Sequence comparisons thus are motivated by the
study of evolution at a molecular level.

Prior to analyses using DNA sequences, it is first necessary to
determine the actual sequence itself. The length of DNA can be as
much as 3 billion base pairs. Practical considerations limit the
sequencing of DNA all at once because of this length. Via Sanger’s
plus-minus method and other methods, about 450 to 500 base pairs
can be sequenced at a time. Many overlapping small pieces are
sequenced. Then these fragments are assembled into one long
contiguous sequence. One problem is that the location of the fragments

 46 C h a p t e r T w o

within the genome and with respect to each other is not generally
known. Enough fragments are sequenced so that there will be many
overlaps between them, and the fragments can be matched up and
assembled. This process is called shotgun sequencing. Sequence
similarity is used to obtain the overlaps needed in shotgun sequencing.
DNA sequence can be used to obtain the translated polypeptide
microstructure using the genetic code.

Gene finding and its role in disease mechanisms have been receiving
increased attention in recent years. These can be achieved by sequence
alignment. For example, genes responsible for longevity have been
discovered recently by the scientists at the National Institute of Aging.
These genes can be searched for in sequence databases.

The genomes of various organisms have been sequenced in their
entirety and the information stored using computer resources world
over. Sequence database searches can be conducted depending on the
problem at hand. For this, reliable sequence alignment methods are
needed. In order to reduce database search costs, more research is
being undertaken in this area. The databases have doubled in size
because of the advent of high-throughput automated fluorescent
DNA sequencing technology. Analyses of DNA sequences are used in
the construction of phylogenetic trees, in genetic engineering using
restriction site mapping, in determining gene structure through
intron/exon prediction, in making inferences about protein coding
sequences through open-reading-frame (ORF) analysis, etc.

Drugs can be designed based on the sequence distribution of the
nucleotides or protein in culprit viruses. Examples of viruses for
which this has been done include influenza virus, Japanese yellow
fever virus, measles virus, rabies virus, TA coliphase virus, cauliflower
mosaic virus, human immune deficiency virus (HIV) type 2, vaccinia
virus, polio virus, serum hepatitis virus, etc. The drugs interact with
the protein in the virus and changes the protein signaling that
originally caused the disease, leading to a cure. On the other hand,
the gene expression can be altered by therapeutic action, leading to a
change in the protein signal, effecting a cure.

The protein secondary structure can be deduced from the sequence
distribution of the polynucleotide. There are three different types of
protein secondary structures—α-helix, β-pleated-sheet, and γ-coil/
loop conformations. The 1997 Nobel Prize for medicine went to
S. B. Prusiner for his work on prions [4]. Prion proteins have been
associated with so-called mad cow disease and its human variant,
Creutzfeldt-Jakob syndrome. In these proteins, the same sequence
may adopt different stable conformations—a bad conformation with
a mixture of helices and sheets and a normal conformation with a
bundle of helices. The bad conformation prions were shown to have
an autocatalytic effect and may be responsible for the transformation
of normal conformation prions into bad ones. Based on local sequence
information, such conformational conflicts those in prion proteins

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 47

will be difficult to solve by any prediction method. However, a local
method may be able to report that a piece of a sequence may have a
higher potential for both helix and sheet as opposed to coil.

The protein folding problem can be viewed as given the primary
protein microstructure, what is the final three-dimensional (3D)
folding of the protein? It was shown by Anfinsen and colleagues [5]
that ribonuclease could be denatured and refolded without loss of
enzymatic activity. This showed that all the information that a protein
needs resides in its primary structure. Hence it is possible to derive
the rules for protein folding from analyses of sequences with known
structures. These rules can be applied to prediction of the 3D structure
of protein given only a linear sequence of amino acids.

The DNA sequence of a clone can be obtained from the study of
biologic sequences. In an experiment to clone a specific gene whose
sequence is known, it is necessary to check and validate that the
cloned sequence is identical to the published one. Should the results
of sequence similarity reveal misaligned or mismatched sequences,
the experiments must be designed to correct those sequences. For
example, cloning errors can result from using inappropriate primers
at the cloning step. The use of a low-fidelity enzyme in a PCR
experiment can produce errors during cloning.

Proteins are classified according to their sequence distribution.
Multiple sequence alignment (MSA) is used in the study of genetic
diseases.

2.3 Alignment Grading Function
A string is an ordered sequence of characters or symbols more
generally. These characters or symbols in particular are usually drawn
from a set called the alphabet. The alphabet is a set of characters or
symbols from which the strings are constructed. Here is an example:
Consider a section of the chain sequence distribution of DNA of Homo
sapiens as shown in Eq. (2.1):

 [S]: cttgatctta (2.1)

[S] is a string. It can be seen that the string contains the characters c,
t, g, and a only. Thus the alphabet Σ for string [S] is (a, c, g, t). The set
of all strings over Σ of any length is the Kleene closure of Σ and is
denoted Σ*. The length of the string is the number of characters
contained in the string. String length can be fixed or variable. Now
consider another string [T] drawn from the chimpanzee:

[T]: cttaatcaaa (2.2)

In order to measure how similar the strings [S] and [T] are or to
quantitate the similarity of the two strings [S] and [T], an alignment
grading function is introduced.

 48 C h a p t e r T w o

The simplest events that occur during the course of molecular
evolution are substitution of one base for another and insertion or
deletion of a base pair. Radiation can cause these changes. When a is
deleted in string [S],

[Sa]: c _t g a t c t t a (2.3)

[S]: c t t g a t c t t a (2.4)

An insertion of R between t and a is shown by

[Sa]: c t t g a t c t t _a (2.5)

Two letters arranged one over another are called matched. If two
matched letters are equal, then the match is called an identity.
Otherwise, the match is called a mismatch. An insertion or deletion
(indel) is one or more letters aligned against a_. A mismatch is
generally a substitution. When only the matches and not the details
of the indels are specified, the resulting arrangement is called a trace.
Consider one possible alignment between [S] and [T]:

[S’]: c t t g a t c t t a (2.6)

[T’]: c t t a a t c a a a (2.7)

This alignment has 7 identities, 3 mismatches, and 0 indels. This
alignment represents a certain hypothesis about the evolution of
the sequences. Seven of the nucleotides have not changed, and
three nucleotides have been inserted, deleted, or substituted. In
order to evaluate the goodness of an alignment, an identity is
given a value +2, and a substitution and an indel are given values
of –1 and a mismatch a value of –1. The result for alignment [S’]
and [T’] is 7 × 2 − 3 − 1 = 11.0.

Grading Function σ(x, y) denotes the grade of alignment of aligning x and y,
where x and y are each a single character or space. Thus, in the examples shown
in Eqs. (2.6) and (2.7), the grading function can be written as σ(a, a) = 2, σ(_, g) =
−1 = σ(c, _); σ (a, t) = –1.

Length of String If S is a string, then⎪S⎪denotes the length of the string, and
S[i] denotes the ith character of S. For example, from Eq. (2.7), ⎪S⎪= 10, S[2] = t,
and S[8] = t.

Alignment of Strings An alignment A maps S and T into strings S’ and T’ that may
contain indels or space characters, where ⎪S’⎪ = ⎪T’⎪, and removal of indels from
S’ and T’ leaves S and T, respectively. The grade of the alignment A is given by

A = ΣL
1 σ(S’[i], T’[i]) (2.8)

where l = ⎪S’⎪ = ⎪T’⎪.

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 49

Optimal Alignment An optimal alignment of S and T is one that has the maximum
possible alignment grade for these two strings.

Given two strings [S] and [T] of lengths n and the other sequence m, the
number of possible alignments of the two strings can be estimated as follows: The
length of the new sequences after introducing indels is

Max[n, m] ≤ L ≤ n + m (2.9)

Let q(i, j) = number of alignments of i letters of S with j letters of T. It can be
shown using advanced combinatorics that

q(n, m) = q(n – 1, m) + q(n – 1, m – 1) + q(n, m – 1) (2.10)

q n n
n

n
(,)

()
=

+ +1 2 2 1
 (2.11)

This comes from the fact that the beginning of the alignment can be only one of
three things—an identity, a substitution, or an indel.

In the brute-force method for finding alignments, all the possible
alignments are searched, and the output is the maximum grade. A
subsequence of a string S means a sequence of characters of S that need
not be consecutive in S but do retain their order as given in S. For
instance, aatt is a substring of S = aattcctc. Assuming that [S] = [T] = n
and that the grading function restricted to σ(_ , _) ≤ 0, the algorithm for
finding all the possible alignments of S and T is given in [6]. The
running time and storage space needed for this algorithm are calculated
as follows: String of length n has nCi subsequences of length i, that is,

n
iC

n
n i i

=
−

!
()! ! (2.12)

The number of pairs of subsequences of length i = (nCi)
2.

Alignment length = n + n – i = 2n – I (2.13)

With i matched, (n – i) mismatched = number of blanks. Grade of
alignment of each pair in alignment is calculated as follows:

Total grade of basic operations = () ()n
iC n i

0

2 2
∞

∑ − (2.14)

It can be shown by induction that

n2nCn > 22n for n > 4 (2.15)

Null case, n = 4; 4 8
4

22
8(!)

(!)
> (2.16)

 50 C h a p t e r T w o

280 > 256 (2.17)

()!
(!)
2

22
2n n

n
n> (2.18)

Show that

()()!
()!()!

()n n
n n

n+ +
+ +

> +1 2 2
1 1

22 1 (2.19)

2 1 2
2 22

2()()!
(!)

.
n n n

n n
n+ > (2.20)

Given 2
22

2n n
n

n!
(!)

> , show that

2 1n
n

n
+ > (2.21)

or show that

2 + 1/n > 2 (2.22)

This is true for any natural n.

n
i

n
i

ii

C n i n C2 2

00

2()− >
=

∞

=

∞

∑∑ (2.23)

n C C C Cn
i

i

n
n n n2

0
0
2

1
2

2
2

=
∑ = + + +� (2.24)

 Now a2 + b2 + c2 + d2 + … = (a + b + c + d + …)2 − 2(abc←) and (2.25)

nC0
2 + nC1

2 + nC2
2 + … = (nC0 + nC1 + nC2 + …)2 − 2(←) (2.26)

= 12n + 2nC1 + 2nC2 + … (2.27)

or (1 + 1)n = nC0 + nC1 + nC2 + … (2.28)

or O n C O nn
i

n() ()∑ =2 22 (2.29)

Running time is at least n22n for string of length n. The rate of
growth of the higher-order term is the most important determinant of
how long an algorithm runs on large inputs independent of constant
of proportionality and any lower-order terms.

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 51

2.4 Optimal Global Alignment of a Pair of Sequences

2.4.1 Needleman and Wunsch Algorithm
A computer-adaptable method using dynamic programming
algorithm was suggested for optimal global alignment of two sequences
by Needleman and Wunsch [7]. In global alignment, the two sequences
are aligned end to end. Needleman and Wunsch developed a
computer-based statistical and general method applicable to the
search for similarities in the amino acid sequences of two proteins. A
number of authors have studied the question of how to construct a
good grading function for sequence comparison, including Altschul
and colleagues [8], Altschul [9,10], and Altschul and Gish [11]. From
these findings it is possible to determine whether significant
homology exists between the proteins. Another goal for seeking
alignment is to establish full genetic relationships between proteins.
This information is used to trace their possible evolutionary
development. The maximum match can be defined as the largest
number of amino acids of one protein that can be matched with those
of another protein while allowing for all possible deletions.

Prior to automation of sequence alignment, it was done by
hand—by eyeballing them. Plots were generated by creating a grid
with one sequence on top and another on the side. Red dots were
placed wherever two sequences matched. Diagonal lines could be
found in the graph. When connected, they formed the optimal
alignment of the pair of sequences. One method to arrive at the
optimal alignment is to calculate all possible alignments and assign
each alignment a grade of alignment with penalties for the gaps—
both for quantity and size of gaps—and then to choose the alignment
with the highest grade. This is computationally prohibitive.

Needleman and Wunsch [7] were the first to devise a
computationally feasible method for automated sequence alignment.
Their application is built on an analogy with the old visual comparison
method of alignment. They used a Pascal array that maps directly to
the sequence alignment plot, and their algorithm then operated
within this context. They describe the alignment process as “pathways
through the array” that are evaluated to find the “maximum match.”
The algorithm works by progressively building a path through the
array, gaining rewards for obtaining matches and incurring penalties
for gaps. This kind of approach constitutes dynamic programming, a
common method for optimizing computer algorithms. Needleman
and Wunsch obtained alignment of whole myoglobin and human
β-hemoglobin and alignment of bovine pancreatic ribonuclease and
hen’s egg lysozyme.

Given strings S and T with ⎪S⎪ = n and ⎪T⎪ = m, an optimal
global alignment of S and T can be obtained using dynamic
programming. A grade of alignment G(i, j) of string S(i) and T(j) is

 52 C h a p t e r T w o

defined. The grade of optimal alignment of S and T is G(m, n). The
dynamic programming method is used to solve for the general
problem of computing all grades G(i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ m in
order of increasing i and j.

Algorithm 2.1 Global Alignment
Basis:

G(0, 0) = 0 (2.30)

G(i, 0) = G(i – 1, 0) + σ[S(i), _] for i > 0 (2.31)

G(0, j) = G(0, j – 1) + σ[_, T(j)] for j > 0 (2.32)

Recurrence formula:

G(i, j) = max{G(i – 1, j – 1) + σ[S(i), T(j)]},

G(i – 1, j) + σ[S(i), _],

G(i, j – 1) + σ[_, T(j)] (2.33)

The interpretation of the alignment is as follows: Consider the
optimal alignment of the first i characters from S and the first j characters
from T. In particular, consider the last aligned pair of characters in such
an alignment. This last pair must be one of the following:

 1. [S(i), T(j)], in which case the remaining alignment excluding
this pair must be an optimal alignment of S(1), . . . , S(i – 1)
and T(i), . . . , T(j – 1) (i.e., It must have grade G(i – 1, j –1) or

 2. [S(i), _], in which case the remaining alignment excluding this
pair must have grade G(i – 1, j) or

 3. [_, T(j)], in which case the remaining alignment excluding
this pair must have grade G(i, j –1).

A traceback procedure is used to obtain all the alignments.

Example 2.1 Global Alignment of Two Sequences by Dynamic Programming
Demonstrate the dynamic programming method to obtain the global alignment
of the two strings with the following sequence distribution:

S: a c g t t t g c a

T: c c a t g c g a

Solution
The grading function used was +2 for a match, –1 for a mismatch, and –1 for
an indel.

Recovering the alignments:

I. a c g t t g c _ a
 c c a t _ g c g a

 Grade of alignment: 5 × 2 – 4 = +6 (2.34)

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 53

II. a c g t t g c _ a
 c c _ a t g c g a

 Grade of alignment: 5 × 2 – 4 = +6 (2.35)

Example 2.2 When the Grade of Alignment is 0 and When the Grade of Alignment
Is Less Than 0
In Example 2.1, what is the meaning when the grade of alignment is (a) 0 and
(b) negative (or less than zero)? From Table 2.2, an alignment of two sequences
in which the grade of alignment is 0 can be selected as follows: A 0 grade of
alignment can be expected when these two sequences are aligned:

S: a c g t t g
T: c c a t

The tracebacks for alignment of S and T would be

 I. a c g t t g
 _ c c a t _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

 II. a c g t t g
 c c _ a t _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

III. a c g t t g
 c c a _ t _

Grade of alignment: 2 × 2 – 2 × 1 – 2 × 1 = 0

Compared with the alignments in Example 2.1, where the number of
characters that were aligned was 5 out of a length of 9 of the mapped string, in
Example 2.2, the number of characters that were aligned was 2 out of a length 6
of the mapped string. Most of the mapped string in Example 2.1 was matched,
and a minority of characters was aligned in Example 2.2. Maybe a positive grade
of alignment can signify that more characters are aligned in the string, and a
0 grade of alignment can denote that only few characters are aligned.

S[i] a c g t t g c a

T [j]

c

c

0

–1

–2

–3

–4

–5

–8

–5

–2

+1

0

+1

+4

+4

+6

+2

+5

+4

+3

–7

–4

–1

–2

–1

–3

–3

–3

+3

+2

+2

+1

–6

0

–2

–2

–2

–5

+1

+1

0

0

0

0

0

–2

–1

+1

+1

–2

–1

–2

0

0

0

0

–1

+1

+2

+1

–3

–1

–1

–1

+1

+2

0

+1

+1

–4

–1

–1

–1

0

–2

–2

–3

–4

–5

–6

–7

–8

a

t

g

c

g

a

TABLE 2.2 Global Alignment of Two Sequences—Dynamic
Programming

 54 C h a p t e r T w o

From Table 2.3, two strings can be selected in which the grade of alignment
can be expected to be negative. These strings are as follows:

S: a c g t

T: c c a

The traceback procedure can be used, and the alignments recovered for a grade
of alignment –1 would be

IV. a c g t
 _ c c a

Grade of alignment: 1 × 2 – 2 × 1 – 1 × 1 = –1

 V. a c g t
 c c _ a

Grade of alignment: 1 × 2 – 2 × 1 – 1 × 1 = –1

VI. a c g t
 c c a _

Grade of alignment: 1 × 2 – 2 × 1 – 2 × 1 = –1

In the tracebacks of the alignments shown in IV, V, and VI recovered from
the alignments shown in Table 2.3, only one character is aligned compared with
a length of 4 of the mapped string. The number of misaligned characters is larger
than the aligned characters.

Thus the interpretation of the grade of alignment can be made as follows
based on the preceding calculations:

1. When the grade of alignment is greater than 0, the number of characters
aligned is greater than the number of mismatched characters in the
sequence.

 2. When the grade of alignment is 0, the number of matched characters and the
number of mismatched characters are equal to each other.

 3. When the grade of alignment is less than 0, the number of mismatched
characters is greater than the number of matched characters.

a c g t t g

c

c

0

–1

–6

–3

–3

–3

0

–2

+1

+1

0

–1

–3

0

0

0

–1

–4

–1

–1

–1

+2

–5

–2

–2

–2

+1

–2

0

–1

–1

–1

–2

–3

–4

a

t

S[i]

T [j]

TABLE 2.3 Global Alignment of Two Sequences with Grade of
Alignment = 0

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 55

Example 2.3 Semiglobal Alignment
Consider the two strings gatcatcgcagcgttagtagc and gctgcg. An optimal global
alignment returns the following:

g a t c a t c g c a g c g t t a g t a g c

g _ _c _t _ g c _ g _ _ _ _ _ _ _ _ _

A biologically more meaningful alignment would be

g a t c a t c g c a g c g t t a g t a g c

_ _ _ _ _ _ _ g c t g c g _ _ _ _ _ _ _ _

How would you change the grading scheme to return the latter alignment
compared with the former?

Solution
This can be done by awarding no penalty to end gaps or allowing free end
gaps. This would be semiglobal alignment. All gaps inserted before or after the
alignment will not be penalized. The traceback procedure is similar to that of
the global alignment procedure.

2.5 Dynamic Programming
Bellman [12] began the systematic study of dynamic programming
in 1955. He used a tabular solution method that was called dynamic
programming. Prior to Bellman’s work, dynamic programming was
used in optimization techniques such as in finding the optimal
reactor heat-exchanger network of the sulfur trioxide–forming step
in the oleum process to manufacture sulfuric acid. Bellman was the
first to provide the approach with a solid mathematical basis. The
time taken for the longest common subsequence problem, as
suggested by Smith and Waterman [13] using dynamic programming
methods, is O(mn). Knuth [14] posed the question of whether
subquadratic algorithms for the longest common subsequence
(LCS) problem exist. Masek and Paterson [15] answered this
question in the affirmative by giving an algorithm that runs in
O(mn)/lg(n) time, where n ≤ m, and the sequences are drawn from a
bounded size. For the special case in which no element appears
more than once in an input sequence, Szymanski [16] showed that
the problem can be solved in O(n + m)lg(n + m) time. In 1970, Knuth
conjectured that a linear time algorithm for the problem of finding
the LCS would be impossible. It will be shown in a subsequent
chapter that the LCS of two strings can be found in linear time using
a generalized suffix tree.

The solutions to subproblems are combined to solve a given
problem in the dynamic programming method. This is similar to the
divide-and-conquer principle used a lot in computer algorithms. In

 56 C h a p t e r T w o

the divide-and-conquer strategy, the problem is split into subprob-
lems. The subproblems are solved recursively, and the solutions are
combined to form the solution of the original problem. When the
subproblems are not independent of each other, the dynamic pro-
gramming method may be applicable. Every subproblem is solved
only once, and the results are saved in the tabular form in the dynamic
programming method compared with the divide-and-conquer,
where more work is done than necessary. Optimization problems can
use the dynamic programming method. Many solutions are possible
for such problems. Each solution has a grade, and the extremum is of
interest as the optimal solution. The development of a dynamic pro-
gramming algorithm can be broken into four steps [17]:

1. Characterize the structure of an optimal solution.

 2. Recursively define the grade of an optimal solution.

 3. Compute the grade of an optimal solution in a bottom-up
fashion.

 4. Construct an optimal solution from the computed information.

Two key ingredients to the application of dynamic programming
problems are identification of the optimal substructure and
overlapping subproblems.

2.6 Time Analysis and Space Efficiency
The optimal global alignments can be obtained using dynamic
programming in O(mn) time. When m = n, the time taken becomes O(n2).

Proof: An (m + 1)(n + 1) table needs to be filled. Each and every entry is
computed with a maximum of six table look-ups, three additions, and a three-
way maximum in time c.

Complexity of the algorithm = c(n + 1)(m + 1) = O(mn).
Reconstructing a single alignment = O(n + m) time. The space required
for retaining the grades of alignment in the table is mn also.

2.7 Dynamic Arrays and O(n) Space
The space required in dynamic programming during global alignment
of two sequences can be reduced from O(n2) as follows: It can be
realized that only the global optimal grade of alignment is needed.
Thus two dynamic rows at any given time will be sufficient. In order
to construct the next row of alignments, the previous row is sufficient.
Thus space required will be O(2m) or O(m), (Hirschberg, [18]).
Reconstructing an alignment is somewhat more complicated but can
be achieved in O(n + m) space and O(nm) time with a divide-and-
conquer approach [18,19].

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 57

2.8 Subquadratic Algorithms for Longest
Common Subsequence Problems

Hunt and Szymanski [20] introduced a fast algorithm for computing
LCSs. They provided a running time of O(r + n)lg(n), where r is the
total number of ordered pairs of positions at which the two sequences
match. In the worst case, the algorithm has an O[n2 lg(n)] running
time. However, for applications where most positions of one sequence
have few matches in the other sequence, a running time of O[n lg(n)]
can be expected.

Let S be a finite sequence of elements chosen from some alphabet Σ.
The length of the sequence S is ⎥S⎥ . S[i] is the ith element of S, and S[i:j]
is the sequence S[i], S[i + 1], S[i + 2], . . . , S[j]. If U and V are finite
sequences, then U is said to be a subsequence of V if there exists a
monotonically increasing sequence of integers r1, r2, . . . , r⎥U⎥ such that
U[i] = V[ri] for 1 ≤ i ≤⎥U⎥. U is a common subsequence of S and T if U
is a subsequence of both S and T. A longest common subsequence is a
common subsequence of greatest possible length. Both sequences are
assumed to have the same length n. The number of elements in set {(i, j)
such that S[i] = T[j] } is denoted by r.

The data structure used in the algorithm of Hunt and Szymanski is
Gi,k, an array of threshold grades defined by the smallest j such that S[1:i]
and T[1:j] contain a common subsequence of length k. Each Gi,k may be
considered as a pointer that signifies how much of the T sequence is
needed to produce a common subsequence of length k with the first i
elements of S. Each row of the G array can be seen to be increasing; i.e.,

Lemma 2.1 Gi,1 < Gi,2 < … < Gi,p, as defined earlier.

Lemma 2.2 Gi,k.1 < Gi +1,k ≤ Gi,k

Lemma 2.3 Gi+1,k = smallest j such that S[i + 1] = T[i] and Gi,k if no such
j exists Gi,k–1 < j < Gi,k

Lemmas 2.1, 2.2, and 2.3 are stated, and the proofs are available in
[21]. This algorithm can be completed with an O[n2 lg(n)] time
efficiency to determine the length of the common subsequence. This
can be refined to improve the running time to O(r + n)lg(n), and the
longest common subsequence can be recovered.

Algorithm 2.2 Length of Longest Increasing Subsequence

G[0] = 0
Recurrence formula:
 For i = 1 to n,

G[i] = n + 1
 For i = 1 to n

 58 C h a p t e r T w o

 For j = n to 1, step 1
 If S[i] = T[j], then
 Begin
 Find k such that G[k – 1] < j ≤ G[k]

G[k] = j
 End
 Print largest k such that G[k] ≠ n + 1

A small amount of preprocessing will improve the performance of
Algorithm 2.2 in great measure. The main source of inefficiency in
Algorithm 2.2 is the inner loop j, in which the elements are searched for
repeatedly in T sequences that match S[i]. A linked list can be used to
eliminate this search step. For each I, a list of corresponding j positions
is needed such that S[i] = T[j]. These lists must be retained in decreasing
order in j. All positions of the S sequence that contain the same element
may be set up to use the same physical list of matching j’s.

Algorithm 2.3 Find and Print Longest Common Subsequence of S and T

 Initialize Arrays S[1; n], T[1; n], G[0, n], MATCHLIST
[1, n], LINK[1, n], PTR.
Build Linked Lists
 For i = 1 to n
 MATCHLIST[i] = <j

1
, j

2
, . . . , j

p
>

such that j
1
 > j

2
 > . . . > j

p
 and S[i] = T[j

q
] for 1 ≤ q ≤ p.

Initialize Threshold Array: G[0] = 0
 For i = 1 to n

G[i] = n + 1
 LINK[0] = null
Compute Successive Threshold Grades
 For i = i to n
 For j on MATCHLIST[i]
 Find k such that G[k – 1] < j ≤ G[k];
 If j < G[k], then
 G[k] = j
 LINK[k] = new node (I, j, LINK[k – 1])
 End: End
Recover Longest Common Subsequence in Reverse Order

k = largest k such that G[k] ≠ n + 1
 PTR = LINK[k]
 While PTR ≠ null do
 Print (I, j) pair pointed to by PTR
 Advance PTR; End

An LCS of the sequences S and T is found and printed by Algorithm
2.3. The time efficiency of the algorithm is O(r + n)lg(n), and the space
required is O(r + n). The key operations in the implementation of
Algorithm 2.3 are the operations of inserting, deleting, and testing
membership of elements in a set where all elements are restricted to the
first n integers. van Emde Boas [21] has shown that each such operation
can be performed in O{lg[lg(n)]} time. Time taken for initializing using
this data structure is O{n lg[lg(n)]}.

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 59

2.9 Optimal Local Alignment of a Pair of Sequences

2.9.1 Smith and Waterman Algorithm
Smith and Waterman [13] introduced the local alignment problem
and proposed an O(mn) time to solve it. The recurrence formula used
for local alignment is similar to that used for global alignment except
for an additional term in the max function while obtaining the grade
of alignment and is given below:

Algorithm 2.4 Local Alignment of Two Sequences

 Basis: G(i, 0) = 0 (2.36)

G(0, j) = 0 (2.37)

σ(a, –) = σ(_, a) ≤ 0 (2.38)

Recurrence Formula:

G(i, j) = Max(0),

G(i – 1, j – 1) + σ(S⎪i⎪, T⎪j⎪),

G(i – 1, j) + σ(S⎪i⎪, _),

G(i, j –1) + σ(_, T⎪j⎪) (2.39)

Consider an optimal alignment of a suffix α of S(1), S(2), . . . , S(i)
and a suffix β of T(1), T(2), . . . , T(j). There are four possible cases:

 1. α = λ and β = λ, in which case the alignment has grade 0.

 2. α ≠ λ, β ≠ λ, and the last matched pair in A is (S⎪i⎪, T⎪j⎪), in
which case the remainder of A has grade G(i –1, j –1).

 3. β ≠ λ, and the last matched pair in A is (_, T(j)), in which case
the remainder of A has grade G(i, j –1).

 4. α ≠ λ, and the last matched pair in A is (S(i), _), in which case
the remainder of A has grade V(i –1, j).

Example 2.4 Optimal Local Alignment of Two Sequences
Find the optimal local alignment of S: a c g t t g c a and T: c c a t t g c. The grading
function has no gap penalty or different grade of alignment for mismatch.

Solution

σ(–1, a) = σ(a, _) = σ(a, b) = –1 (2.40)

σ(a, a) = +2

The grade of alignment is shown in Table 2.4. Retracing the path from any
maximum entry to zero entry:

 c g t t g c

 c a t t g c

Grade of alignment: 5 × 2 – 1 × 1 = 9

 60 C h a p t e r T w o

2.10 Affine Gap Model
A gap in an alignment of S and T is a maximal substring of either S’
or T’ consisting only of spaces. The motivation is that for certain
applications, the penalty proportional to the length of a gap is not
needed. For instance, a mutation causing insertion or deletion of a
large substring may be considered a single evolutionary event and
may be nearly as likely as insertion or deletion of a single residue. In
cDNA matching, biologists are interested in learning which genes are
expressed in which types of specialized cells and where those genes
are located in the chromosomal DNA. To study gene expression
within specialized cells, one way is to first capture the mRNA as it
leaves the nucleus. Then the complementary DNA is made from the
mRNA using an enzyme called reverse transcriptase. The cDNA is thus
a concatenation of the gene’s exons. Then the cDNA is sequenced.
The sequenced cDNA then is matched against chromosomal DNA to
find the region of chromosomal DNA from which the cDNA derives.
In this process, the introns are not heavily penalized, which will
match the gaps in the cDNA.

In general, the gap penalty may be some arbitrary function φ(q) of
the gap length q. The best choice of their function depends on the
application. In the cDNA matching application, what is known about
the common length of introns is reflected in the penalty grades/
scores. There are programs in the literature in which gap penalties are

TABLE 2.4 Local Alignment of Two Sequences

c

c

a

t

t

g

0

0

0

0

0

0

0

0

a c g t t g c a

0

0

0

1

2

0

0

0

2

0

0

1

1

2

2

0

1

2

0

0

1

1

1

0

1

1

2

3

0

0

0

0

3

4

5

2

0

0

0

0

6

7

4

1

0

0

0

0

9

6

3

0

1

2

2

0

3

5

2

3

4

1

1

0

c

T [j]

S[i]

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 61

precise linear functions. There exist O[nm lg(m)] time algorithms for
the case when φ(q) is concave downward [19,22]. An arbitrary function
can be selected as a gap penalty function, but this requires cubic
time [7]. The affine gap model can be developed in which the penalty
for a gap has two parts—one for inserting a gap and another that
depends linearly on the length of the gap. That is, the gap penalty is
Wg + qWs, where Wg and Ws are both constants and Wg ≥ 0, Ws ≥ 0, and
q ≥ 1 is the length of the gap. When a model has a constant penalty
regardless of gap length, this is the special case of Ws = 0. The global
alignment algorithm and local alignment algorithm presented earlier
can be suitably modified to include the affine gap penalty.

Algorithm 2.5 Local Alignment with Affine Gap Penalty

σ(a, –1) = σ(–1, a) = 0 (2.41)

 Maximize ∑σ(S’[i], T’(j) – W
g
(#gaps) – W

s
(#spaces) (2.42)

Where S’ and T’ are S and T strings with spaces inserted in
them and ⎪S’⎪ = ⎪T’⎪ = l.

1. G(i, j) is the grade of an optimal alignment of S and T.

2. G’(1, j) is the grade of an optimal alignment of S and T
whose last pair matches S and T.

3. F(i, j) is the grade of an optimal alignment of S and T
whose last pair matches S(i) with space.

4. E(i, j) is the grade of an optimal alignment of S and T
whose last pair matches a space with T.

Basis:

G(0, 0) = 0 (2.43)

G(1, 0) = –W
g
 – iW

s
, for i > 0 (2.44)

G(0, j) = –W
g
 – jW

s
, for j > 0 (2.45)

E(i, 0) = –∞, for i > 0 (2.46)

F(0, j) = –∞, for j > 0 (2.47)

Recurrence Relation:

 For i > 0 and j > 0 (2.48)

G(i, j) = max[G’(i, j), F(i, j), E(i, j)] (2.49)

G’(i, j) = G’(i –1, j –1) + σ[S(i), T(j)] (2.50)

F(i, j) = max[F(i –1, j) – W
s
, V(i –1, j) – W

g
 – W

s
](2.51)

E(i, j) = max[E(i, j –1) – W
s
, V(i, j –1) – W

g
 – W

s
 (2.52)

Time taken by affine gap model can be seen to be O(nm).

Example 2.5 Illustrate use of the affine gap model in finding the optimal local
alignment between S: acgucguagg and T: uaggaugcgcau.

Solution
σ(–1, a) = σ(a, _) = −1; σ(a, a) = +2; σ(a, b) = –1 (2.53)

 62 C h a p t e r T w o

The grading function in the first solution procedure has no separate grades for
mismatches from indels. No gap penalty is levied. The recurrence formula as
described by Eq. (2.44) is used. This is applicable for optimal local alignment.
The zero is an added term in the max function compared with global alignment.
Retracing the local alignments (Table 2.5) from maximum grade of alignment to
zero, two possibilities can be identified:

S: u a g g

T: u a g g (2.54)

Grade of alignment: 4 × 2 = 8.0

S: a c g _ u _ c g u a

T: a g g a u g c g c a (2.55)

With six identities, two mismatches, and two indels, the optimal grade of
alignment would be 6 × 2 – 2 × 1 – 2 × 1 = 8.0. In some applications, the
alignment shown in Eq. (2.54) is preferred to the alignment shown in Eq. (2.55),
especially in gene finding and cDNA matching. This can be factored into the
program as follows: Let Ws = –1, Wg = –1. The grade of alignment will be
unchanged. Only one local alignment is obtained under the new scheme
(Table 2.6). Another grading scheme that achieves the same result is to change
the grading function to σ(a, a) = 2, σ(a, b) = –2.

U

A

A C

G

G

A

U

G

C

G

C

A

U

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

2

1

0

0

0

0

2

1

0

0

1

1

0

1

1

0

2

1

2

1

1

G

0

0

0

2

3

2

1

3

1

4

3

2

1

U

2

0

1

1

2

2

4

3

2

3

3

2

4

C

1

0

0

1

1

1

3

3

5

4

5

4

3

G

0

0

0

2

2

1

2

5

4

7

6

5

4

U

2

0

0

1

1

1

3

4

4

6

6

5

7

A

1

0

4

1

0

3

2

2

3

3

5

8

7

G

0

0

1

6

3

2

2

4

3

5

4

7

7

G

0

0

0

3

8

5

4

4

3

5

4

6

6

TABLE 2.5 Local Alignment of a Pair of Sequences with an Affine Gap Penalty

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 63

2.11 Greedy Algorithms for Pairwise Alignment
When the two sequences that are aligned differ only by sequencing
errors, a greedy algorithm [23] can be used that is much faster than
traditional dynamic programming approaches and guarantees an
optimal alignment. Chao and colleagues [24] presented greedy
algorithms for solving a simple formulation of the alignment problem
called the longest common subsequence problem. This problem is
equivalent to finding the fewest one-character insertion and deletion
operations that will convert one sequence into another. Let S and T be
two sequences with sequence lengths m and n, and let e denote the
minimum number of operations. e is the edit distance between the two
sequences. When two DNA sequences are considered, for example, in
which the shorter sequence is very similar to some concatenated
region of the longer sequence, a similar region of the longer sequence
is determined, and then an optimal set of single-nucleotide changes
such as insertions, deletions, or substitutions is computed that will
convert the shorter sequence to that region. The grade-of-alignment
scheme is developed to model sequencing errors rather than
evolutionary processes.

Greedy alignment algorithms presented by Ukkonen [25] and
Miller and colleagues [23] are best used when e is a lot smaller than
m or n. The time efficiency of the algorithms is a worst case of
O[min(m, n)e] and space O(m + n). The space needed is an order of
magnitude smaller than that required by the dynamic programming
approaches presented by Smith and Waterman [13] and Needleman

T

A

G

G

A

T

G

C

G

C

A

T

0

0

0

0

0

0

0

0

0

0

0

0

A

0

2

0

0

2

0

0

0

0

0

2

0

0

C

0

0

0

0

0

0

0

2

0

2

0

0

0

G

0

0

2

2

0

0

2

0

4

2

0

2

0

T

2

0

0

0

0

2

0

0

2

2

0

2

0

C

0

0

0

0

0

0

0

2

0

4

2

0

0

G

0

0

2

2

0

0

2

0

4

2

2

0

0

T

2

0

0

0

0

2

0

0

2

2

0

4

0

A

0

4

2

0

2

0

0

0

0

0

4

2

0

G

0

2

6

4

2

0

2

0

2

0

2

2

0

G

0

0

0

4

8

6

4

2

0

2

0

0

0

TABLE 2.6 Local Alignment of a Pair of Sequences—Dynamic
Programming: Grading Function of Highest Penalty for Indel

 64 C h a p t e r T w o

and Wunsch [7]. The expected-case time efficiency of greedy
algorithms can be O(ne2).

Greedy algorithms for sequence alignment are implemented in
the assembly of the Unigene database maintained by the National
Center for Biotechnology Information (NCBI). The algorithm
suggested by Chao and colleagues [24] consists of two phases. The
interval in the longer sequence that should be aligned with the shorter
sequence is located during phase I. A divide-and-conquer approach
is employed to obtain the alignment in phase II. The end gaps are
then added to the alignment.

Algorithm 2.7 Tool for Aligning very Similar DNA Sequences [26]
Input: S: a0 a1 a2 ⋅ ⋅ ⋅ am–1; ⎥S⎥ = m

T: b0 b1 b2 ⋅ ⋅ ⋅ bm–1; ⎥T⎥ = n n ≥ m

The edit graph for sequences S and T is a directed graph with a
vertex at each integer grid point (x, y), 0 ≤ x ≤ m and 0 ≤ y ≤ m. Let
I(k, c) denote the x grade of the farthest point in diagonal k that can
be reached from the source [i.e., grid point (0, 0)] with cost c and
that is free to open an insertion gap. The grid point can be (1) reached
by a path of cost c that ends with an insertion or (2) reached by path
of cost c –1 and the gap-open penalty of 1 can be “paid in advance.”
Let D(k, c) denote the grade of the farthest point in diagonal k that
can be reached from the source with cost c and is free to open a
deletion gap. Let S(k, c) denote the x grade of the farthest point in
diagonal k that can be reached from the source with cost c. With
proper initializations, these vectors can be calculated by the
following recurrence relation:

I(k, c) = max[I(k –1, c –1), S(k,c – 1)]

D(k, c) = max[D(k + 1, c – 1) + 1, S(k, c – 1)]

S(k, c) = snake{k, max[S(k, c – 1) + 1, I(k, c), D(k, c)]}

where snake(k, x) = max[x, max(z: ax, . . . , az–1 = bx+k, . . . , bz–1+k)].
Since the vectors at cost c depend only on those at costs c and

c – 1, a linear-space version of the preceding relationship can be
derived.

Exact phase I: Phase I can be accomplished by applying the
recurrences for I, D, and S where all costs in row 0 are initialized to 0.
Once row m is reached, the desired interval has been located. Although
the worst-case running time for this approach is O(mn), the average
running time is O(n × dist), where dist is the distance of S and T. The
average length of a snaked fragment is a small constant.

Phase II: Backward vectors I*(k, c) denotes the x grade of the
farthest I node in diagonal k that can reach the sink [i.e., grid point (m, n)]
with cost c. D*(k, c) is the x grade of the farthest D node in diagonal k

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 65

that can reach the sink with cost c. Let S*(k, c) denote the x grade of
the farthest S node in diagonal k that can reach the sink with cost c.
After initializations, these vectors can be computed by the following
recurrence relation:

S*(k, c) = snake*{k, min[S*(k, c –1) – 1, D*(k, c –1), I*(k, c –1)]}

D*(k, c) = min[D*(k –1, c –1) – 1, S*(k, c)]

I*(k, c) = min[I*(k + 1, c –1), S*(k, c)]

where snake*(k, x) = min[x, min(z: az, . . . , ax–1 = bz+k, . . . , bx–1+k)]’
A linear-space version of the recurrence relation can be derived.

The pseudocode for the linear space algorithm for alignment is as
follows:

Procedure path(I
1
, J

1
, Type

1
, I

2
, J

2
, Type

2
, Dist)

{ if boundary cases then
 {Output the edit script; return
 Else
 {
 Mid ← Dist/2
 Mid ← Dist –mid

A Linear Space Forward Pass Computes S(k, mid), D(k,
mid), and I(k, mid) for J

1
 – I

1
 – mid ≤ k ≤ J

1
 – I

1
 + mid.

A Linear Space Backward Pass Computes S*(k, mid), D*(k,
mid), and I*(k, mid) for J

2
 – I

2
 – mid* ≤ k ≤ J

2
 – I

2
 + mid*.

Let K be the diagonal such that that X(K, mid) ≥ X*(K,
mid*) where X is S, D, or I.
Path[I

1
, J

1
, Type

1
, X(K, mid), X(K, mid) + K, X, mid]

Path[X(K, mid), X(K, mid) + K, X, I
2
, J

2
, Type

2
, mid*]}}

2.12 Other Alignment Methods
Altschul and colleagues [8] developed an algorithm in which the
sequences are searched for on diagonals of length k (k-tuples) ahead
of time. The k-tuples then are evaluated, and groups of continuous
tuples are labeled significant diagonals. Awindow space can be identified
in the grid as the region around the most significant diagonals that
represent partial matches. In this method, diagonals and regions are
used instead of the traceback used in Needleman and Wunsch’s and
Smith and Waterman’s algorithms. The window size is controllable
and hence can speed up the computations. The time taken did not
better the O(n2) needed for dynamic programming methods. Sharma
[27,29,30] suggested a heuristic algorithm for approximate global
alignment of a pair of sequences with less time efficiency than the

 66 C h a p t e r T w o

O(n2) time needed for dynamic programming. The two sequences are
parsed by generating a random index i. Depending on match or
mismatch, the indel and gap are introduced. The grade of alignment
is calculated. The next random index is called for. This procedure is
repeated until the maximum grade of alignment is reached. The
maximum grade of the alignment is reached in O(en) time efficiency,
where e is the number of indels and gaps called for. For some
sequences, this may be O(n), but the alignment is approximate. The
worst-case time efficiency will revert to O(n2).

2.13 Pam and Blosum Matrices
Protein sequence alignments have become an important tool for
molecular biologists. Local alignments are frequently constructed
with the aid of a substitution grade of alignment matrix that specifies a
grade for aligning each pair of amino acid residues. Over the years,
many different substitution matrices have been proposed, based on
a wide variety of rationales. Statistical results, however, demonstrate
that any such matrix is implicitly a log-odds matrix with a specific
target distribution for aligned pairs of amino acid residues. In the
light of information theory, it is possible to express the grades of
alignments of a substitution matrix in bits and to see that different
matrices are better adapted to different purposes. The most widely
used matrix for protein sequence comparison has been the PAM-250
matrix [9]. It is argued that for database searches, the PAM-120
matrix generally is more appropriate, whereas for comparing
two specific proteins with suspected homology, the PAM-200
matrix is indicated. Altshcul [9] discussed the lipocalins, human
α1, β-glycoprotein, the cystic fibrosis transmembrane conductance
regulator, and the globins.

In protein sequence comparison, the conservative substitutions
are given a different weighting for good reason. Matches in amino acids
or identities should be given greater weight than substitutions.
Among substitutions, it is desirable that more conservative
substitutions should be given higher grade than less conservative
and nonconservative substitutions. The PAM-250 matrix was
constructed with certain substitution grades. The larger the
number, the more common is a particular substitution. For
example, glycine is commonly regulated and replaced by alanine,
and vice versa. This is sensible because they are the amino acids
with the smallest side chains. Similarly, aspartic acid and glutamic
acid frequently substitute for each other. Serine and proline and
glutamic acid and alanine substitute for each other. PAM represents
1 unit of evolutionary divergence. After 250 cycles of change have
taken place in 100 amino acids, 80 still may have considerable
similarity to the original sequence. The PAM-250 matrix (Fig. 2.2)

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 9
Arg 4
Asn 6
Asp 8
Cys 1
Gln 5
Glu 7
Gly 10
His 5
Ile 2
Leu 4
Lys 10
Met 1
Phe 2
Pro 5
Ser 8
Thr 6
Trp 0
Tyr 2
Val

13
3
4
5
2
3
5

12
2
3
6
6
1
2
7
9
9
0
1
7

6
17
4
4
1
5
4
5
5
2
4

18
1
1
5
6
5
2
1
4 4

9
3
7

11
1
6

11
10
4
2
3
8
1
1
4
7
6
0
1
4

5
2
2
1

52
1
1
4
2
2
2
2
0
1
3
7
4
0
3
4

8
5
5
7
1

10
9
7
7
2
6

10
1
1
5
6
5
0
1
4

9
3
6

10
1
7

12
9
4
2
4
8
1
1
4
7
5
0
1
5

12
2
4
5
2
3
5

27
2
2
3
5
1
1
5
9
6
0
1
4

6
6
6
2
7
6
5
5

15
2
5
8
1
3
5
6
4
1
3

15

8
3
3
3
2
2
3
5
2

10
15
5
2
5
3
5
6
0
2

10

6
2
2
2
1
3
2
4
2
6

34
4
3
6
3
4
4
1
2
4

7
9
5
5
1
5
5
6
3
2
4

24
2
1
4
7
6
0
1

10

7
4
3
3
1
3
3
5
2
6

20
9
6
4
3
5
5
0
2
4

4
1
2
1
1
1
1
3
2
5

13
2
2

32
2
3
3
1

15
10

11
4
4
4
2
4
4
8
3
2
5
6
1
1

20
9
6
0
1
5

11
4
5
5
3
3
5

11
3
3
4
8
1
2
6

10
8
1
2
5

11
3
4
5
2
3
5
9
2
4
6
8
1
2
5
9

11
0
2
5

2
7
2
1
1
1
1
2
2
1
6
4
1
4
1
4
2

55
3
v

4
2
3
2
4
2
2
3
3
3
7
3
1

20
2
4
3
1

31
4

9
2
3
3
2
3
3
7
2
9

13
5
2
3
4
6
6
0
2

17

FIGURE 2.2 PAM-250 matrix.

67

 68 C h a p t e r T w o

is derived from 71 sets of sequences aligned and extrapolated
to 250 cycles of mutations per 100 residues. In PAM, point-
accepted mutations and well-tolerated mutations are given
certain meaningful grades based on the observed mutation
frequencies in several thousand proteins. The PAM-250 matrix
is the log probability of one amino acid changing into another
amino acid. A grade of alignment above 0 indicates that such
an amino acid change is more than expected by chance. Grades
less than 0 denote pairs of amino acids that seldom undergo
interchange.

The BLOSUM substitution matrix is constructed in a similar
fashion to PAM (Fig. 2.3). Target frequencies of mutations out of
background mutations are used. A blocks database is used for deriv-
ing the mutation frequencies. Blocks contain local multiple align-
ment of distantly related sequences. BLOSUM has an evolutionary
model in its matrix formulation. Since it is derived from direct date
rather than from extrapolated grades as in PAM, BLOSUM 62 means
that sequences having 62 percent similarity are merged into a single
sequence for detecting the matrix grade. No gap penalty is consid-
ered in either BLOSUM or PAM.

C

C

9
S

S

–1

4
T

T

–1

1

4
P

P

–3

–1

1

7
A

A

0

1

–1

–1

4
G

G

–3

0

1

–2

0

6
N

N

–3

1

0

–1

–1

–2

6
D

D

–3

0

1

–1

–2

–1

1

6
E

E

–4

0

0

–1

–1

–2

0

2

5
Q

Q

–3

0

0

–1

–1

–2

0

0

2

5
H

H

–3

–1

0

–2

–2

–2

–1

–1

0

0

8
R

R

–3

–1

–1

–2

–1

–2

0

–2

0

1

0

5
K

K

–3

0

0

–1

–1

–2

0

–1

1

1

–1

2

5
M

M

–1

–1

–1

–2

–1

–3

–2

–3

–2

0

–2

–1

–1

5
I

I

–1

–2

–2

–3

–1

–4

–3

–3

–3

–3

–3

–3

–3

1

4
L

L

–1

–2

–2

–3

–1

–4

–3

–4

–3

–2

–3

–2

–2

2

2

4
V

V

–1

–2

–2

–2

–2

0

–3

–3

–3

–2

–2

–3

–3

–2

1

3

4
F

F

–2

–2

–2

–4

–2

–3

–3

–3

–3

–3

–1

–3

–3

0

0

0

–1

6
Y

Y

–2

–2

–2

–3

–2

–3

–2

–3

–2

–1

2

–2

–2

–1

–1

–1

–1

3

7
W

W

–2

–3

–3

–4

–3

–2

–4

–4

–3

–2

–2

–3

–3

–1

–3

–2

–3

1

2

11

FIGURE 2.3 Log-odds matrix for BLOSUM 62.

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 69

Summary
Sequence alignment is a process of lining up two or more sequences
to obtain matches among them. Sequence alignment can be used to
develop cures for autoimmune disorders, to accomplish phylogenetic
tree construction, to identify polypeptide microstructure, during
shotgun sequencing, in gene finding, in restriction site mapping, in
ORF analysis, in genetic engineering, during drug design, in protein
secondary structure determination, and in protein folding, clone
analysis, protein classification, etc. An alignment grading function is
introduced to keep track of the degree of alignments and pick the
optimal alignment.

Optimal global alignment of a pair of sequences can be achieved
in O(n2) time using Needleman and Wunsch’s dynamic programming
algorithm. A dynamic programming table is filled, and the optimal
alignment falls out of the procedure. The different alignments can be
identified using trace-back procedures. Penalty and rewards are
selected such that when the grade of alignment is greater than 0, the
number of characters aligned is greater than the number of mismatched
characters in the sequence; when the grade of alignment is 0, the
number of mismatched characters is equal to each other; and when
the grade of alignment is less than 0, the number of mismatched
characters is greater than the number of matched characters.
Semiglobal alignment is obtained by awarding no penalty to end
gaps or allowing free end gaps. Development of the dynamic
programming algorithm consists of characterizing the structure of an
optimal solution, recursively defining the grade of an optimal
solution, computing the grade of an optimal solution in a bottom-up
fashion, and constructing an optimal solution from the computed
information. The space requirement of O(n2) can be reduced to O(n)
using Hirschberg’s dynamic array method. Algorithms for finding
longest common subsequence in less than quadratic time are
discussed. The Smith and Waterman algorithm can be used to obtain
the optimal local alignment between a pair of sequences using the
dynamic programming method in O(n2) and O(n2) space efficiency.
The affine gap model can be used to define penalties for gaps and gap
lengths in order to obtain biologically meaningful alignments.

Greedy algorithms can be used for aligning sequences that differ
only by a few errors. Miller and colleagues have developed a method
that can guarantee optimality in O(en) time, where e is much less than n,
and in O(m + n) space. These are implanted in the Unigene data-
base by NCBI. Other methods for obtaining sequence alignment include
method of significant diagonals, the heuristic method, approximate
alignments, hamming, etc. The PAM and BLOSUM matrices are pro-
vided, and the benefits of using them for alignments are outlined.
The methods described were applied to sequences with varying
microstructures, such as alternating, random, and block distribution.

 70 C h a p t e r T w o

The concept of supersequence was introduced. The X-drop algorithm
for global alignment was touched upon. The effect of repeats in a se-
quence on dynamic programming procedures is explored. The an-
tidiagonal was defined, and banded diagonal methods were explored.
The implications of what would happen when the dynamic program-
ming table is sparse were explored. The stability of global and local
alignment was touched on. The staircase table, inverse dynamic pro-
gramming, consensus sequencing, and sequencing errors and their
ramifications were introduced.

References
[1] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and

Computation. Reading, MA: Addison-Wesley, 1979.
 [2] T. B. Stockwell, D. A. Busam, S. M. Ferriera, et al., “Nucleotide sequence in

Homo sapiens,” J. Craig Venter Institute (submitted 2006).
 [3] A. Marson, K. Kretschmer, G. M. Framton, et al., “Foxp3 occupancy and

regulation of key target genes during T-cell stimulation,” Nature 445 (2007),
931–935.

 [4] S. B. Prusiner, “Prions,” Nobel Lecture, http://nobel.se, 1997.
 [5] C. B. Anfinsen, E. Haber, M. Sela, and F. H. White, Jr. “The kinetics of forma-

tion of native ribonuculease during oxidation of the reduced polypeptide
chain,” Proc. Natl. Acad. Sci. USA 47, (1961), 1309–1314.

 [6] M. Tompa’s Course Notes, Computational Biology, CSE 527, University of
Washington, Seattle, winter 2000.

 [7] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarites in the amino acid sequence of two proteins,” J. Mol.
Biol. 48 (1970), 443–453.

 [8] S. F. Altschul, W. Gish, W. Miller, et al., “Basic local alignment search tool,”
J. Mol. Biol. 215 (1990), 403–410.

 [9] S. F. Altschul, “Amino acid substitution matrices from an information theo-
retic perspective,” J. Mol. Biol. 219 (1991), 555–565.

[10] S. F. Altschul, “A protein scoring system sensitive at all holutiny distances,”
J. Mol. Evol. 36 (1993), 290–300.

[11] S. F. Altschul and W. Gish, “Local alignment statistics,” Methods Enzymol. 266
(1996), 460–480.

[12] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press,
1957.

[13] T. F. Smith and M. S. Waterman, “Indentification of common molecular sub-
sequences,” J. Mol. Biol. 147 (1981), 195–197.

[14] R. E. Knuth, The Art of Computer Programming. Reading, MA: Addison-Wesley,
1997.

[15] W. J. Masek and M. S. Paterson, “A faster algorithm computing string edit
distances,” J. Comput. Syst. Sci. 20 (1980), 18–31.

[16] T. G. Szymanski, “A special case of the maximal common subsequence
problem,” Technical Report TR-170, Princeton University Computer Science
Laboratory, Princeton, NJ, 1985.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Boston, MA: MIT Press, 2001.

[18] D. S. Hirschberg, “A linear-space algorithm for computing maximal common
subsequences,” Commun. ACM 18 (1975), 341–343.

[19] E. W. Myers and W. Miller, “Optimal alignments in linear space,” Comput.
Appl. Biosci. 4 (1988), 11–17.

[20] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Commun. ACM 20 (1977), 350–353.

http://nobel.se

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 71

[21] P. van Emde Boas, “Preserving order in a forest in less than logarithmic
time.” In Proceedings of the 16th Annual Symposium on the Foundations Computer
Science, October 1975, pp. 75–84.

[22] Z. Galil and R. Giancarlo, “Speeding up dynamic programming with
applications to molecular biology,” Theoretical Comput. Sci. 64 (1989),
107–118.

[23] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm for
aligning DNA sequences,” J. Comput. Biol. 7 (2000), 203–214.

[24] K. M. Chao, J. Zhang, J. Ostell, and W. Miller, “A tool for aligning very similar
DNA sequences,” CABIOS 13 (1997), 75–80.

[25] E. Ukkonen, “Algorithms for approximate string matching,” Information
Control 64 (1985), 100–118.

[26] N. L. Howard, F. J. Joubert, and D. J. Strydom, “The amino acid sequence
of ostrich (Struthio camelus) cytochrome C,” Comp. Biochem. Physiol. [B] 48
(1974), 75–85.

[27] K. R. Sharma, “Seeking opitmal hamming distance between nucleoide
sequence using @RAND key,” 58th Northwest Regional Meeting of the
Americal Chemical Society, Bozeman, MT, June 2003.

[28] W. L. Gray, B. Starnes, M. W. White, and R. Mahalingam, “The DNA sequence
of the simian varicella virus genome,” Virology 284 (2001), 123–130.

[29] K. R. Sharma, “New data structures for increased efficiency of database search
in genomics,” 227th ACS National Meeting, Anaheim, CA, March–April
2004.

[30] K. R. Sharma, “New data structures in bioinformatics to improve search cost,”
AIChE Spring Meeting, New Orleans, April 2004.

Further Reading
S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from protein

blocks,” Proc. Natl. Acad. Sci. USA 89 (1992), 10915–10919.
W. R. Pearson and D. J .Lipman, “Improved tools for biological sequence compari-

son,” Proc. Natl. Acad. Sci. USA 85 (1988), 2444–2448.
D. Sankoff and J. B. Kruskal, Time Warps, String Edits and Macromolecules: The Theory

and Practice of Sequence Comparison. Reading, MA: Addison-Wesley, 1983.
K. R. Sharma, Lecture Notes in Computational Molecular Biology. Kumbakonam,

Tamil Nadu, India: SASTRA University Press, 2005.

Exercises
1.0 Amino acid sequence of ostrich [28]. Phylogenetic studies were carried out to
compare the positioning of chicken, turkey, duck, penguin, pigeon, and ostrich
according to their cytochrome structures. The amino acid sequence of Struthio
camelus cytochrome C was derived by sequencing tryptic peptides. The sequence
differs from that of the typical bird cytochrome C in a single position. What would
be a good grading scheme to obtain the local alignment between the sequences
using affine gap model?

2.0 What is the alphabet of (a) protein sequences, (b) DNA sequences, and
(c) RNA sequences?

3.0 What is an indel, and what is a gap?

4.0 Why are mutations, conservation, and homology important in sequence
alignment?

 72 C h a p t e r T w o

5.0 What is the increase in database search cost expected with time and why?

6.0 What is the difference between genomics, proteomics, and
metabolomics?

7.0 How many different sequences can exist with a length of 10 and an
alphabet of 4 letters?

8.0 Sketch the disease mechanism of an autoimmune disorder?

9.0 Give two examples of autoimmune disorders?

10.0 What is the connection to sequence alignment during shotgun
sequencing?

11.0 What is Kleen closure?

12.0 When seeking an alignment of two DNA sequences, can you use the
genetic code to obtain the translated protein sequences, obtain their alignment,
and then map the alignment to the original DNA sequences. How close to
the optimal alignment is the alignment of DNA sequences. Discuss the time
and space efficiency of this approach and compare it with obtaining a direct
alignment between the DNA sequences.

13.0 What is the expected role of sequence alignment in personalized medicine?

14.0 How are better drugs designed using sequence alignment methods?

15.0 What does sequence distribution have to do with prion proteins and
the 1997 Nobel Prize given to Prusiner?

16.0 What is the significance of a positive grade, negative grade, and 0 in the
grading function to obtain the grade of alignment when sequences are aligned?

17.0 What is a trace of alignment?

18.0 What does it mean when the optimal grade of alignment is 0?

19.0 Szymanski showed that for the special case when no element appears
more than once in the input sequence, the alignment problem can be solved
for in O(m + n)lg(n + m). This is lower than the O(n2) time efficiency needed for
any two general sequences. Why does the time increase when the characters
repeat in the sequences?

20.0 What is the LCS between a pair of sequences S and T?

21.0 Sequence distribution microstructure. What would be different about the
grade of alignment during pairwise global alignment of two sequences when
one of the sequences is (a) randomly distributed, (b) alternating distributed,
or (c) block architecture?

22.0 Optimal global pairwise alignment. Find the optimal global alignment
between

S: cccaaggtacg
T: acacacacaca

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 73

23.0 Other than the optimal grade of alignment, how many alignments come
to within 1 of the grade of optimal alignment in Exercise 3.0.

24.0 Can the optimal global alignment in Exercise 3.0 be improved on by
using an affine gap penalty model?

25.0 Grading functions during optimal global alignment. Choose the appropriate
grading functions to align the following strings globally:

S: uucgauugu
T: cccggguga

26.0 Prove that n m
n

n
k

m
kC C C+ = ∑ for k ≥ 0.

27.0 Second-best grade of alignment. Declump and find the second-best local
alignment in Example 2.3.

28.0 Reverse of sequence. Consider the string S with the sequence distribution
shown below:

S: gcuauaauauu

Construct a string T with the sequence architecture that is the reverse of the
sequence distribution of S. Using a global optimal alignment using dynamic
programming, show that the optimal grade of the alignment is 11. Retrieve
the optimal alignments. How many alignments come within ±1 of the global
maximum grade of alignment. Is there another grade during the computation
that is greater than the optimal grade of alignment. What is the significance
of this?

29.0 Cell grades during local alignment vs cell grades during global alignment. An
additional term 0 is used in the maximum term when calculating the grade
of alignment when seeking an optimal local alignment compared with the
maximum term when calculating the grade of alignment used when seeking
a global alignment of two sequences. Why is this?

30.0 Affine gap penalty. Repeat Example 2.5 with Wg = Ws = 2.0.

31.0 Interpretation of grade of alignment. Can the optimal grade of alignment
take on negative numbers.

32.0 Gap penalty. Obtain the global optimal alignment between the pair of
sequences S and T:

S: attagacttaag
T: agctagg

The suggested grading scheme is 2 for an identity (match), –1 for mismatch, and
–2 for the gap penalty and shows the initialization, matrix fill, and traceback
steps. Recover all the possible alignments.

33.0 Longest common subsequence. Determine the LCS of strings S and T with
the sequence distributions shown below:

S: dcdbddb
T: dcbdcdba

 74 C h a p t e r T w o

34.0 Optimal local alignment. Find the best local alignment between the pair
of sequences S and T.

S: ggatgaaccgd
T: agtatgcgagcad

35.0 Optimal Local Alignment of Protein Sequences. Show the local alignment
between protein sequences and between the pair of sequences S and T:

S: kcitgtnvtqdigrad
T: qmlhatndvacd.

36.0 Pair of sequences with no repetitions of characters. What can be achieved
during global alignment of two sequences when both sequences have no
repetitions of characters in them.

37.0 BLOSUM and PAM matrices. What are the strength and weaknesses of
BLOSUM and PAM matrices.

38.0 Affine gap penalty affixation. What are the drawbacks of affine gap penalty
affixation?

39.0 The best substitution matrix for Smith-Waterman comparisons of
distant homologues is often BLOSUM-45. The best matrices for BLAST are
different. Why?

40.0 When will the optimal alignment not be sought by the FASTA and
BLAST software?

41.0 When is tblastx preferred to blastn?

42.0 What are the advantages of using multiple sequence alignments of
genomic DNA sequences and a multiple sequence alignment of a group of
homologous proteins?

43.0 What are the advantages of using multiple sequence alignment instead
of pairwise sequence alignments.

44.0 Can you have palindromes in DNA sequences?

45.0 PAM-250 grading matrix. Align the sequences

S: eehgwagaeh
T: eaehwap

using the PAM-250 grading matrix and a gap penalty of –8. Seek the following:
(a) global alignment; (b) local alignment; (c) global alignment with the end-gap
penalties. For all alignments, provide the complete dynamic programming matrix.
Use SSEARCH, which can be run on the Internet from http://workbench.sdsc.
edu, to align these sequences and compare their alignment with your results.

46.0 Affine gap penalty with translation, gaps, and transfers. Given the following
strings:

S: cgccautacgcgaatttta
T: catataaacgct

http://workbench.sdsc.edu
http://workbench.sdsc.edu

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 75

seek a global alignment using the following parameters: identity = +4;
translation = –2; gap = –8 fixed; and transfers = –4. Align the two sequences,
and report their grade of alignment. Revise the algorithm to produce a local
alignment.

47.0 Give examples in computational molecular biology where each of the
following alignment strategies would be appropriate.

 (a) Global alignment with no end-gap penalties

 (b) Global alignment

 (c) Local alignment

 (d) Spaces penalty

48.0 Use dotplot analysis and view the alignment of sequences given in
Exercise 46.0.

49.0 Match 1-tuples and 2-tuples and diagonal sum for the sequences
in Exercise 46.0. Develop a sequence comparison by the method of
hashing.

50.0 Award for matches, penalty for mismatch and gaps. Use a match grade of
alignment of +5, a mismatch penalty of –4, and a gap penalty of –3 and develop
a dynamic programming algorithm for aligning two DNA sequences.

S: acugacgagcaucaucgaugcac
T: gaagacaucgucgau

51.0 Escherichia coli promoter sequences. Align the –10 signal in E. coli promoter
sequences TATAAT with the sequences GTTACGTAA. Use the grading function
2 for a match, –1 for a mismatch, and –3 for a gap. Does the complementary
sequence of S match better. What is the time-taken efficiency?

52.0 Sequence distribution with high degree of alternation. The local alignment
of sequences S: u c u u c a a and T: c c a u u c are shown in Table 2.7. Recover
the alignments using the traceback procedure from a local maximum grade of
alignment to a minimum grade of alignment. What is the meaning of two local
maximum grades of alignments of 5?

TABLE 2.7 Local Alignment of Sequences with Alternating
Sequence Distribution

c
c

a
u
u
c

0
0

0

0
0

u
0
0

2

2

2
1

c
0
2

2

1

1
4

u
0
1

1

1

3
3

c
0
2

3

2

2
5

a
0
1

2

5

3
4

a
0
0

1

4

3
0 2 1 3 2 4 4

3

 76 C h a p t e r T w o

53.0 Both strings with alternating sequence distribution. Consider two strings S
and T with alternating sequence distribution shown below:

S: ugugugugugugugug
T: gugugugugugugugu

Use the Needleman and Wunsch global alignment method with a grading
function of +2 for matches and –1 for mismatches, indels, and gaps to show
that the optimal alignment of the two sequences would be in a fashion that
the traceback path would be along the diagonal from the right bottom cell to
the left top cell of the dynamic programming array.

54.0 One string with block sequence distribution architecture. Consider the two
strings S and T with one of them, S, having a chain sequence distribution with
a block architecture.

S: uuuucccc
T: ucauuccc

Obtain the optimal local alignment between the two strings. Show that
the optimal grade of alignment for the strings is +10. Find the second-best
alignment.

55.0 Oligonucleotides. PBMCs are peripheral blood mononuclear cells. Single-
stranded DNA (ssDNA) can be synthesized that ligands to human PBMCs.
PBMCs are isolated from whole blood and contain a complex mixture of cell
types of B-lymphocytes, T-lymphocytes, and monocytes. Ligands to PBMCs
have many uses, including imaging lymph nodes for cancer screening and flow
cytometry for AIDS monitoring. A library of synthetic DNA oligonucleotides
containing 40 random nucleotides was created. The sequences of two clones
are given below:

S: aguuuggau
T: gugagaaau

Using a grading scheme of +1 for a match, –1/3 for a mismatch, –1 for a gap
opening, and –1/3 for a gap extension, obtain a global sequence alignment of
strings S and T.

56.0 What are the differences in alignment of the strings S and T in Exercise
55.0 when the grading scheme shown in Exercise 37.0 is used and when the
following grading scheme is used:

σ(a, a) = +2; σ(a, b) = –1; σ(a, _) = –1; σ(_, a) = –1

57.0 Hamming. Obtain an approximate global alignment of two sequences S
and T. Using an @RAND key, go to the kth position. Compare S[k] and T[k].
If there is a match, skip; if not, introduce an indel. Call for the next RAND(k).
Compute grade of alignment. Stop when grade of alignment increases to a
maximum. What is the time-taken efficiency for this procedure? Is there a
reduction in time-taken efficiency from O(n2) to O(en), where e is the number
of indels called for? How close does this alignment come to the optimal
alignment?

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 77

58.0 Distance metric. Consider two strings S and T with the following sequence
distribution obtained from Fig. 2.1:

S: gttcaggtga
T: gggacacaaa

Define a distance between the two strings in such a fashion that when they
are parsed, if there is a match, then the distance D(a, a) = 0, and if there is a
mismatch, D(a, b) = +1. Thus, when the distance between two strings is large,
they are misaligned. What is the distance between strings S and T shown
above. Using the Needleman and Wunsch algorithm, obtain a global alignment
between strings S and T. What happens to the distance between the mapped
strings when the optimal alignment is obtained?

59.0 Nonaligned sequences. One way to speed up the O(n2) time efficiency
needed for optimal global alignment between two strings S and T is to
identify regions of sequences that are misaligned. Suppose that there are two
sequences S and T with no characters in common or only one or two characters
in common. Would it be better to define a distance metric and maximize the
distance between the mapped strings. In this way, the optimal nonalignment
can be obtained. What is the biologic significance of nonalignment. When
would this be preferred to the alignment schemes discussed in this chapter.

60.0 DNA sequence of simian varicella virus. In nonhuman primates, simian vari-
cella virus (SVV) causes a natural disease that is clinically similar to human vari-
cella-zoster virus (VZV) infections. The SVV and VZV genomes are similar in size
and structure and share extensive DNA homology. SVV DNA is 124,138 bp in size,
746 bp shorter than VZV DNA, and 40.4 percent G + C. The viral genome includes
a 104,104-bp unique long component bracketed by 8-bp inverted repeat sequences
and a short component composed of a 4904-bp unique short region bracketed by
7557-bp inverted repeat sequences. A total of 69 distinct SVV open reading frames
(ORFs) were identified, including three that are duplicated within the inverted
repeats of the short component. Each of the SVV ORFs shares extensive homol-
ogy with a corresponding VZV gene. The only major difference between SVV and
VZV DNA occurs at the leftward terminus. SVV lacks a VZV ORF 2 homologue.
In addition, SVV encodes an 882-bp ORF A that is absent in VZV but has homol-
ogy to the SVV and VZV ORF 4. The results of this study confirm the relatedness
of SVV and VZV. This provides further support for simian varicella as a model
to investigate VZV pathogenesis and latency. What grading scheme would you
suggest for seeking an alignment between SVV and VZV viral genomes?

61.0 Greedy algorithm to align DNA sequences. Obtain the optimal global
alignment of two sequences S: ccatacgtggttggtt and T: acgg using the greedy
method. How is this an improvement over the dynamic programming method
of Needleman and Wunch?

62.0 Supersequence for global alignment. Consider two sequences S and T

S: tgttgtcccc
T: cttgccttcc

Define a supersequence U where S and T are subsequences of U. Let the
supersequence U be given by

 78 C h a p t e r T w o

U: tgtttgtccccttggcttc

How can U be used in obtaining the optimal global alignment of sequences
S and T?

63.0 Supersequence for local alignment. How can the supersequence construction
shown in Exercise 62.0 be used to obtain the optimal local alignment between
sequences S and T.

64.0 X-drop algorithm for global alignment. The procedure to obtain the
global alignment between two sequences S and T by the method of dynamic
programming calls for the creation of table of the size of m × n at a space
efficiency of O(n2). In order to save space and time, a method is developed
where most of the cells in the array are not filled. Since only the traceback from
the right bottom cell to the left top cell is important, an X-drop procedure can
save time and space. The grade of alignment is calculated across the diagonal
of the table. When there is a match, the next cell diagonal down can be called
for. When there is a mismatch, x cells vertically can be traversed from the
diagonal until a match is found. All along indels/gaps can be called for. On
finding the match, the procedure can continue either from the diagonal cell
branched off from or from the matched cell to the diagonal cell down. In this
way, the space required would be O[k max(m, n)], where k is the departure
from the diagonal in steps, and the time taken would be O[k, max(m, n)]. For
nearly aligned sequences, k can be small, and the best-case space and time
can be linear, O(n). Show an example of nearly aligned sequences S and T and
the advantages of the X-drop method compared with the recurrence relation
discussed by Eqs. (2.31) through (2.34).

65.0 X-drop algorithm for local alignment. How suitable is the X-drop method
outlined in Exercise 46.0 to obtain local alignment between sequences S and T?
What happened to the guaranteed optimality? Should the entire table be filled
to confirm local maxima?

66.0 X-drop algorithm with gap penalty. For biologic applications where the
gap penalty needs to be levied, as shown in Example 2.4, how do you expect
the X-drop method outlined in Exercise 46.0 to fare?

67.0 Repeats in a sequence. Consider two sequences S and T as follows:

S: acgtacgtacgt
T: ccgatca

It can be seen that acgt repeats three times in the sequence S. When asked to
obtain the global alignment between the two sequences S and T by the method
of dynamic programming, as shown in Eqs. (2.31) through (2.34), how can
you use the knowledge of the repeats to cut down the time taken and space
efficiency from O(n2). Filling which cells and what cell calculations can be cut
down to increase the time and space efficiency?

68.0 Hirschberg array for local alignment. Can the dynamic array method
suggested by Hirchberg and discussed in the chapter be used to obtain the
optimal local alignment using the dynamic programming method of Smith
and Waterman. Why not?

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 79

69.0 Antidiagonal [24]. Antidiagonal k is the set of all points (i, j) such that i + j = k.
Thus antidiagonal k = 2 would mean the cells (2, 0), (0, 2) and (1, 1). Antidiagonal
computation and half-nodes can speed up the sequence alignment process.
Given an example of alignment of two sequences, where does antidiagonal
computation speed up the time taken? What is the payoff ?

70.0 Edit distance [25]. Edit distance between two sequences S and T is the
minimum cost c of a sequence of editing steps such as insertions, deletions,
and changes that convert one sequence into another. A tabulating method was
developed to compute c as well as the corresponding editing sequence in time
efficiency of O[c min(m, n)] and space efficiency of O[c min(c, m, n)], where
all editing steps have the same cost independent of the characters involved.
If the editing sequence that gives cost c is not required, the algorithm can be
implemented in space efficiency of O[min(c, m, n)]. Consider two sequences
S and T

S: aacaaagtta
T: attgaaacaa

Convert sequence S to T, and confirm the time and space efficiency of the
editing method shown in [26].

71.0 Band across diagonal. In the method of dynamic programming, to align
two sequences and to obtain the optimal global alignment grade, filling a
table of grades with m rows and n columns is called for. It can be seen that
the alignments can be recovered using a traceback procedure. The alignments
are close to the diagonal of the table. A lot of cells in the table that are
far from the diagonal are needed to recover the optimal global alignment.
Thus a procedure can be developed that calls for computations only across
the diagonal in the table from (0, 0) to (m, n) and a few cells from the top and
bottom of the main diagonal. Thus confinement to within a band of the main
diagonal can reduce the number of computations needed to obtain the optimal
grade of alignment and recover the alignments. What is the speedup expected
as a function of the width of the band? What is the space reduction achieved
as a function of the width of the band?

72.0 Tradeoff between time efficiency and optimality. Suppose that a tradeoff is
allowed between time efficiency and optimality. In order to obtain an optimal
global alignment between two sequences within twice the optimal grade of
alignment, what is the speedup and space reduction that can be expected?

73.0 Global alignment of three sequences. Show that a dynamic programming
method can be used to obtain optimal global alignment of three sequences S,
T, and U. The time-taken efficiency would be O(n3), and the space required
would be O(n3). A cube of cells with m rows, n columns, and o floors has to be
filled to complete the procedure.

74.0 Local alignment of three sequences. Show that a dynamic programming
method can be used to obtain optimal local alignment of three sequences S,
T, and U. The time-taken efficiency would be O(n3), and the space required
would be O(n3). A cube of cells with m rows, n columns, and o floors has to be
filled to complete the procedure.

 80 C h a p t e r T w o

75.0 Affine gap penalty. Consider the local alignment of three sequences S, T,
and U. How would you modify the procedure developed in Exercise 74.0 to
incorporate the affine gap penalty.

76.0 Hirschberg space array for global alignment of three sequences. Show
that the dynamic array concept developed by Hirschberg and discussed
in Sec. 2.7 can be extended to obtaining the optimal grade of alignment
during global alignment of three sequences S, T, and U in space efficiency
of O(n2).

77.0 Hirschberg space array for local alignment of three sequences. Can the dynamic
array concept developed by Hirschberg and discussed in Sec. 2.7 be extended
to obtaining the optimal grade of alignment during local alignment of three
sequences S, T, and U? Why?

78.0 Hamming for three sequences [28]. Can an approximate global alignment
be obtained of the sequences S, T, and U using the @RAND key? What is the
tradeoff between speed and optimality? What is the space required?

79.0 Dynamic programming table for global alignment. In the method of dynamic
programming, to obtain optimal global alignment of two sequences S and T,
a table of grades has to be generated with mn cells. Are there two sequences S
and T for any set of cell grades in the table? Discuss.

80.0 Dynamic programming table for local alignment. In the method of dynamic
programming, to obtain optimal local alignment of two sequences S and T, a
table of grades has to be generated with mn cells. Are there two sequences S
and T for each and every set of cell grades in the table? Discuss.

81.0 Sparse table. Obtain the optimal local alignment of two sequences S and
T given below:

S: acgtt
T: acaaa

Show that the dynamic programming table will be filled as in Table 2.8. What
is the unique feature of Table 2.8? Is it a sparse matrix or sparse table? Once
the sparse matrix is recognized, can the time efficiency be increased and space
required cut down?

82.0 Recover the local alignments from Table 2.8 using the traceback procedure.

83.0 Note that the grading function had a +2 for matches in Table 2.8. If
the grade of alignment for a match is –1, can a table with sparse matrix
property such as the one in Table 2.8 be generated for any two sequences S
and T? Why?

84.0 Sparse table. During the local alignment procedure of Smith and
Waterman, using dynamic programming depending on the nature of the
sequences S and T, some tables can be seen to be sparse; i.e., a lot of the cells
have zero grade. For example, only half Table 2.8 is filled, and the rest in not
filled. How can this knowledge be used to decrease the space required and
increase the time efficiency of the method?

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 81

85.0 Stability of global alignment. In the dynamic programming method, to
obtain the global and optimal alignment between two sequences S and T, the
traceback procedures originate from the right bottom cell and end up at the
left top cell. What is it in the procedure that keeps it from taking a detour to
the right top cell or a wavy path?

86.0 Stability of local alignment. In the dynamic programming method, to
obtain the local and optimal alignment between two sequences S and T, the
traceback procedures originate from the cell with the local maximal and end
up at the cell with the local minima. What is it in the procedure that keeps it
from taking a wavy path?

87.0 Smith and Waterman’s seminal article [13]. Smith and Waterman presented
their dynamic programming work in 1981. The two sequences that they
considered in their article in the Journal of Molecular Biology were as follows:

S: acagccuccgcuuag
T: aaugccauugacgg

Obtain the optimal local alignment of sequences S and T.

88.0 Is there a need for use of affine gap penalty for the sequences S and T
given in Exercise 86.0.

89.0 Needleman and Wunsch’s seminal article [8]. Needleman and Wunch
presented their dynamic programming work in 1970. The two sequences they
considered in their article in the Journal of Molecular Biology were as follows:

S: abcnjrqclcrpm
T: ajcjnrckcrbp

Obtain the optimal global alignment of two sequences S and T.

90.0 What is the biologic significance of the weighting factors used in the
grading scheme in Exercise 89.0.

91.0 Staircase table [29,30]. Consider the dynamic programming table
shown in Table 2.9. When the two sequences are aligned using the dynamic

a

c

a

a

a

0

0

0

0

0

a

T(j)

S(i)

0

2

1

1

1

c

0

0

4

3

1

g

0

0

0

3

1

t

0

0

0

0

1

t

0

0

0

00

1 2 2 2 0

1

TABLE 2.8 Local Alignment of Two Sequences S and T in
Exercise 81.0

 82 C h a p t e r T w o

programming method for global optimal alignment, consider the special case
where the grades of alignment for the sequences S and T form a staircase such
as the one shown in the table. The unshaded regions are insignificant grades,
and the significant grade of alignment only falls in the shaded region. For
such cases, can the time efficiency of alignment be speeded up and the space
required cut down?

92.0 If the local optimal alignment of two sequences results in a dynamic
programming table such as Table 2.9, how would you modify the procedure?
What is the speed-up that can be expected and space savings that can result
from realizing the nature of the particular sequences that form a staircase
region in the dynamic programming table.

93.0 It is generally agreed that in problems such as matrix multiplication,
dynamic programming, and greedy algorithms where there is an optimal
structure to the subproblems, the time taken cannot be better than O(n2).
Reports in the literature for a linear time solution for the longest common
substring problem can be seen and implemented in commercial software
successfully. How should you interpret these two observations?

94.0 Inverse dynamic programming for global alignment. Define a formal inverse
problem of conversion of a filled dynamic programming table (with m rows
and n columns) with grades of alignment in each cell to obtain the optimal
global alignment into two sequences S and T.

TABLE 2.9 Staircase Table

 A l i g n m e n t o f a P a i r o f S e q u e n c e s 83

95.0 Inverse dynamic programming for local alignment. Define a formal inverse
problem of conversion of a filled dynamic programming table (with m rows
and n columns) with grades of alignment in each cell to obtain the optimal
local alignment into two sequences S and T.

96.0 Inverse dynamic programming for local alignment with affine gap penalty.
Define a formal inverse problem of conversion of a filled dynamic programming
table (with m rows and n columns) with grades of alignment in each cell to
obtain the optimal local alignment with affine gap penalty into two sequences
S and T.

97.0 Global alignment to grading scheme. Consider a global alignment of a pair
S’ and T’ that originated from the sequences S and T. For a desired alignment,
how would you devise a grading scheme?

98.0 Local alignment to grading scheme. Consider a local alignment of a pair
S’ and T’ that originated from the sequences S and T. For a desired alignment,
how would you devise a grading scheme?

99.0 Local alignment with affine gap penalty to grading scheme. Consider a local
alignment of a pair S’ and T’ with affine gap penalty that originated from the
sequences S and T. For a desired alignment, how would you devise a grading
scheme?

100.0 Consider a desired alignment such as the one shown below:

S’: a c _ c g t _ _ c a a
T’: _ c g c t t a a c a t

For the global alignment shown for sequences S: accgtcaa and T: cgcttaacat,
what grading scheme is used?

101.0 Consider a desired local alignment such as the one shown below:

S’: t a t a t a t a t e e
T’: _ a _ a t a _ _ t e e

What would be the grading scheme used be for aligning the sequences S:
tatatatatee and T: aatatee?

102.0 How would you change the grading scheme obtained in Exercise 101.0
to obtain the following local alignment:

S’: t a t a t a t a t e e
T’: _ a _ a t a _ a t e e

103.0 When you align two sequences S and T using dynamic programming,
suppose that the indels/gaps are not allowed for one sequence and are allowed
for the other sequence. Would this change the time-taken efficiency and space
required to fill the table?

104.0 Sequencing errors. The experimental procedures used to obtain the
sequence distribution of DNA usually have a 5 percent error from the wet
laboratory and 7 percent during shotgun sequencing owing to extrapolation.
Approximate global alignment of DNA sequences may even be preferred as

 84 C h a p t e r T w o

opposed to optimal global alignment that takes O(n2) time and O(n2) space.
What is the tradeoff in speed versus accuracy when a sublinear time algorithm
is developed for an approximate global alignment.

105.0 Consensus sequence. A consensus sequence C of S and T sequences can
be defined as follows:

S: a c g t t t g c g g c
T: a a t g t a g c a g a
C: a a g g t a g c g g a

How can the consensus sequence C figure in obtaining alignment between S
and T?

106.0 Geometric distribution. The dynamic programming methods to align
any two sequences S and T require O(n2) time and O(n2) space for guaranteed
optimality. When DNA sequences are aligned, a geometric distribution
model can be developed to characterize the two sequences S and T. When the
sequences are parsed for a match, matched regions are given a positive weight,
and when a mismatch is encountered, the model can be called for to check
whether the mismatch resulted from some experimental error or from some
biologic phenomenon. Search across a diagonal is performed, and excursions
as in the X-drop method shown in Exercise 64.0 are allowed. Show that this
can result in less time and space taken and that a closer to optimal grade of
alignment can be achieved.

107.0 O(mn/K) time taken. In the BLAST software, alignment strategies
employed are segments. Show what a segment is by an example.

108.0 Polymorphism. Polymorphism is the differences in DNA among
individuals of the same species. Given long DNA sequences, the optimal
solution of dynamic programming will assign a penalty for mismatches
that result from polymorphism. Given the biologic interpretation, how
would you devise a grading scheme to reduce the penalty only in the case of
polymorphism?

CHAPTER 3
Sequence

Representation and
String Algorithms

Objectives
The objectives of this chapter are to

• Be able to store a sequence in a suffix tree data structure.

• Be able to construct a suffix tree, suffix array, and suffix links
in O(n) time and space.

• Be able to use a suffix tree to align sequences.

• Be able to search for a pattern p in a text t.

• Be able to learn string matching algorithms such as Knuth-Morris-
Pratt (KMP), Boyer-Moore (BM), and finite automaton (FA).

• Be able to solve problems with variations in the KMP, BM,
and FA algorithms.

• Be able to achieve sublinear time taken efficiency in pattern
matching algorithms.

3.1 Suffix Trees

3.1.1 Overview of Suffix Trees in Sequence Analysis
The paper that introduced the suffix tree was awarded the “Algorithm
of the Year” award by Knuth in 1973. This feat was achieved by Weiner.
Prior to that, the data structure was called different names, such as
bi.tree, prefix tree, PAT tree, position tree, the repetition finder, and the sul
tree. The construction of the suffix tree was improved by Ukkonen [1]
to give a linear time algorithm for the construction of a suffix tree.

85
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 86 C h a p t e r T h r e e

A suffix tree of length n over a constant alphabet can be constructed
in O(n) time. It can be used to find patterns in DNA and protein
sequences [2].

Any string of length m can be degenerated into m suffixes, and
these suffixes can be stored in a suffix tree. Creating this structure
requires time O(m), and searching for a pattern in it requires time
O(n), where n is the length of the pattern. The internal structure of a
DNA sequence can be exposed by storing it in a suffix tree. Patterns
that exist are identified and saved accordingly. These two properties
make the suffix tree an appealing structure for a diverse range of
bioinformatics applications, including multiple-genome alignment
[3], selection of signature oligonucleotides for DNA arrays [4], and
identification of sequence repeats [5]. The search engine REPfind of
REPuter software uses a compact implementation of the suffix tree
to locate exact repeats in linear time and space. Up to the size of
human genome, the sequence can be stored in a suffix tree in linear
time and space. Exact repeats are used as seeds from which
significant degenerate repeats are constructed, allowing for
mismatches, insertions, and deletions. Degenerate palindromic
repeats also can be detected. A suffix array is an array of all suffixes
that are sorted. Suffix arrays and suffix trees can be derived from each
other in O(n) time.

The generalized suffix tree (GST), can be used to represent a set of
strings and stores all the suffixes of all the strings. The i from the leaf
label (i, j) denotes that the suffix is from string Si, and j represents the
starting position of the suffix in Si. An edge label in GST is represented
by three integers (i, j, l) and is a substring of one of the sequences. i is
the string number, j and l are the starting and ending positions of the
substring in Si. N is the total number of characters of all strings in set S.
The GST can be constructed in O(N) space.

At least two programs based on suffix trees are available for
whole-genome alignment: MUMer [6] and Multiple Genome
Aligner (MGA) [3]. MUMmer and MGA both use common
subsequences as anchors for the alignment. While they both use
the same data structure, “a suffix-tree data structure”, which
permits very fast and memory-efficient comparison (of the
genomes) [6], the two applications take different approaches to
genome alignment. MUMmer extracts Maximal Unique Matches
(MUMs)—sequences that occur exactly once in each genome—
sorts these sequences to find the longest set of MUMs occurring
in the same order in both sequences, and uses this set of
sequences to anchor the multiple alignment. The gaps between
anchors are filled using the Needleman and Wunsch [7] dynamic
programming alignment algorithm. Since the Needleman and
Wunsch algorithm does not scale well for multiple sequences
(its time and space requirements increase exponentially with the
number of strings), MUMmer is restricted to comparing two

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 87

genomes. MGA computes the longest nonoverlapping sequence
of Maximal Multiple Exact Matches (multiMEMs) and uses these
to guide the multiple alignment. A MEM is defined as a (k + 1)-
tuple (l, p_0, p_1, . . . , p_k –1) such that l indicates the length of
the MEM and p_i indicates the start coordinate of the exact match
in genome i. A maximal MEM cannot be extended to the left or
the right and is referred to as a multiMEM. Gaps are shortened
by recursively extracting multiMEM sequences and finally are
filled using ClustalW—a progressive/iterative multiple-alignment
method.

A long MUM can figure in the optimal alignment of a pair of
sequences. Consider two sequences S and T. First, all the MUMs
between the two sequences S and T are found. The longest sequence
of MUMs that occurs in the same order in either sequence is found.
The regions between the MUMs are aligned.

Suffix tree can be used to represent the DNA sequence and is an
interesting data structure. Consider the string S:

 S: T T A T T A C G (3.1)
 i 1 2 3 4 5 6 7 8

For every i, I = 1 to k; let the substring a be the shortest substring
beginning at i that does not occur elsewhere in S.

 Position i Substring

 1 TTAT
 2 TAT
 3 AT
 4 TTAC
 5 TAC
 6 AC
 7 C
 8 C

The suffix tree representation of the sequence in string S given in
Eq. (3.22) is shown in Fig. 3.1.

The n terminal nodes of the suffix tree S = S1, S2, . . . , Sn consist of
1, 2, 3, . . . , n. The sequence of labels on the edges from the root to the
terminal node i is the identifying substring for position i. The suffix
tree for the S, the sequence of length 8, is shown in Fig. 3.1. The
largest matching regions between two sequences S and T can be
found using the concept of a suffix tree. The string concatenation of
letters from root to leaf will give the associated suffix. The longest
repeat in sequence S is TTA. This is obtained simply by reading the
labels at the tips of the longest branches of the tree. TTA begins at
positions 1 and 4. Contained in the suffix tree is all the repeat
information of sequence S.

 88 C h a p t e r T h r e e

3.2 Algorithm for Suffix Tree
Representation of a Sequence

Each internal node has at least two children. An n leaf suffix tree has
at most n – 1 internal nodes. The maximum number of children is
bounded by ⎥∑⎥ + 1. However, for the edge labels, the size of the tree
is O(n). Each edge label is denoted by two numbers for the starting
and ending positions.

Algorithm 3.1 Suffix Tree Representation of a Sequence
Input: (B, depth) (3.2)
Output: (list, depth) for α ∝ ∑ (3.3)
 for all α ∝ ∑ (3.4)
 list(α) = φ (3.5)
 for all i ∝ B (3.6)
 List(a

i+depth
) ← list(a

i+depth
) ∪ (i) (3.7)

Algorithm 3.2 Find Repeats in a Sequence
Input: S

1
, S

2
, . . . , S

n
 (3.8)

 for node = top
List node ← (1, 2, 3, . . . , n)
 for all nodes with (list node) > 1 (3.9)

 Suffix [list(node, depth)]

Tandem repeats are short segments of DNA that occur more than
once in the DNA sequence consecutively and participate in the
polymerase chain reaction (PCR) gene expression reactions. A
tandem repeat can be defined as τ = s’s’. This is a repeated occurrence
of string s’ twice. τ is also called a primitive tandem repeat. A square is

A C T G

TA

CT

C T A

C T

FIGURE 3.1 Suffi x tree representation of sequence TTATTACG.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 89

a two-repeat tandem sequence. A tandem array is when substring s’
repeats more than two times consecutively. Thus τ = s’k. s’ is denoted
by (i, s’, k). It also can be represented as a tuple. Crochemore [8]
developed an algorithm that computes all occurrences of primitive
tandem repeats in O[n lg(n)] time. All occurrences of tandem repeats
can be found in O[n lg(n) + occ], where the number of occurrences of
tandem repeats in the string is given by occ.

The complete system code for MUMmer 2 is freely available from
the TIGR Web site at www/tigr.org/software/mummer. MUMmer
uses suffix trees to create an internal representation, and based on
this representation, two genomes can be approximately aligned in linear
time and space [7]. The error from optimal alignment can be calculated.
For example, MUMmer 1.0 aligns the 4.7-Mbp genome of Escherichia
coli and the 3.0-Mbp large chromosome of Vibrio cholerae in 74 seconds
on a 1-GHz desktop computer, requiring 293 MB of memory. The
memory requirement of 38 bytes/bp, although it grows only linearly
with the size of the input sequences, is still a limitation of original
system. This has been reduced dramatically in MUMmer 2.0. For the
same two genomes, the new system computes the alignment in only
27 seconds and requires only 100 MB of memory. Both speed and
memory usage have been improved by a factor of nearly 3.

There are three significant technical improvements in the core
algorithms of MUMmer 2.0. The first is the reduction in the amount
of memory used to store suffix trees by employing techniques
described by Kurtz and Schleiermacher [5]. At most, 20 bytes/bp for
amino acids is used. The maximum memory usage occurs in the case
where each internal node in the suffix tree has only two children. In
practice, however, many nodes have more than two children,
particularly in the case of polypeptide sequences, which reduce the
actual memory requirement. The second significant core improvement
is an alternative algorithm to find exact matches. The original
algorithm built a suffix tree containing two input sequences and then
found all MUMs between them.

3.3 Streaming a Sequence Against a Suffix Tree
Given a pair of sequences, one sequence is stored in the suffix tree.
The second sequence or the query is streamed against the suffix tree,
exactly as if it were being added but without actually adding it.
This procedure was introduced by Chang and Lawler [9] and fully
described by Gusfield [10]. Using this process, where the query
sequence would branch off from the tree can be identified. In this
way, all matches to the reference sequence are determined. For
example, the query ATGTCC is streamed against the string S in
Fig. 3.2. Wherever a branch occurs at a tree position with just a
single leaf beneath it, the match is unique in the reference sequence.
By checking the character immediately preceding the start of this

www.tigr.org/software/mummer

 90 C h a p t e r T h r e e

match, it can be determined whether it is a maximal match. Thus,
in time proportional to the length of the query sequence, all
maximal matches between it and a unique query string in the
reference sequence can be identified. Because the query is streamed
through outputting matches as they are found, it is not known
which sequence will occur later in the query. The advantage of this
method is that only one of the two sequences can be streamed
against the reference sequence that is stored as a suffix tree. Delcher
and colleagues [6] have used this technique to compare two
assemblies of the entire genome, each approximately 2.7 billion
characters, using each chromosome as a reference and then
streaming the entire genome past it.

 S: A T G T G T G T C (3.10)

 1 2 3 4 5 6 7 8 9

Position Subsequence

 1 A
 2 TGTGTG
 3 GTGTG
 4 TGTGTC

A1

9

C G
10

T

C8

G

T

G

C

4G

T

C

C

5
3

G

T

G

7

2

C 6

T

FIGURE 3.2 Streaming a sequence against a suffi x tree.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 91

 5 GTGTC
 6 TGTC
 7 GTC
 8 TC
 9 C

How a string is streamed against a suffix tree is shown in Fig. 3.2.
Leaf 7 represents GTC, and leaf 5 represents GTGTC. At the point
shown in the figure, the input stream starting at position i is matched
as indicated by the arrow. The match extends to the corresponding
arrow position in the tree. In this case, the match can be seen to be
unique because there is a single leaf below this position in the tree. The
number label of the leaf gives the starting position of the match in
the suffix tree string. To find the next match, the suffix links in the
tree are used. These are indicated by arrows at the ends of the
curvilinear dashed lines. These links are constructed for each internal
node in the tree. Because the match is made as far as possible in the
tree, the matches are maximal on the right hand side (RHS) of the
strings being compared. The one-sided uniqueness property of
MUMmer 2.0 can be an advantage when comparing queries that
represent only a partial genome assembly. The third technical
improvement is the addition of a new module to cluster matches. The
original version of MUMmer computed a single longest alignment
between the sequences.

3.4 String Algorithms
String algorithms can be used to find patterns in DNA sequences. The
strategy used is similar to that used to find a pattern in a text, such as
the Find tool used in word-processing software. The string-matching
problem can be formalized as text in an array is T(1, 2, . . . , n) of length
n and the pattern in an array is P(1, 2, . . . , m) of length m, m ≤ n. The
elements of P and T are drawn from a finite alphabet Σ. The character
arrays P and T are called strings of characters. The preprocessing time
and matching times for different string-matching algorithms are
shown in Table 3.1. The problem is to find pattern P in text T.

TABLE 3.1 Preprocessing and Matching Times for Different String-Matching
Algorithms

Algorithm Preprocessing Time Matching Time

Rabin-Karp θ(m) [(n – m + 1)m]

Knuth Morris Pratt θ(m) O(n)

Boyer Moore O(m + σ) O(n)

Finite automaton O(m⎪Σ⎪) O(n)

 92 C h a p t e r T h r e e

3.4.1 Rabin-Karp Algorithm
The Rabin-Karp algorithm [11] performs well in practice and can be
generalized to two-dimensional pattern matching. A hashing function
is used in the algorithm. A quadratic number of comparisons is
avoided. Instead of checking at each letter of the text, it is sufficient to
look through a window to see whether it looks like the pattern that is
searched for. The hashing function has to be efficiently computable
and highly discriminating for strings.

Algorithm 3.3 Rabin-Karp Matcher
Length(T) = n; length of (P) = m (3.11)
 d m–1 mod q = h (3.12)
 p = 0; t

0
 = 0

 For i = 1 to m,
 p = [dp + P(i)] mod q (3.13)
 t

0
 = [dt

0
 + T(i)] mod q

 For s = 0 to n – m,
 do if p = t

s

 then if P(1, . . . , m) = T(s + 1, . . . , s + m)
 then print “Pattern occurs with shift” s
 (3.14)
 if s < n – m
 then t

s+1
 = {d[t

s
 – T(s + 1)h] + T(s + m + 1)} mod q

 (3.15)

The Rabin-Karp matcher takes O(m) preprocessing time, and its
matching time is O[m(n – m + 1)] in the worst case.

3.4.2 Knuth-Morris-Pratt (KMP) Algorithm
This algorithm can be used for pattern-matching problems. The
straight solution in simple string matching can be archived in worst-
case time of O(mn) and space required O(nm). For example, let the P =
AGAGU and T = AGAGAGUUA. A set Σ is defined to be the alphabet
or set of characters from which the characters in P and T may be
chosen from, and let α = ⎪Σ⎪. The flowchart or finite automaton
(Fig. 3.3) has two types of nodes j.

Some are read nodes, which mean, “Read the next character. If
there is no further character in the text string, halt; there is no match.”
One read node is designated the start node.

Get next text character

f

s s
–

f

T G

f
f

s s

f

s
G A C

FIGURE 3.3 KMP fl owchart for TGGAC.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 93

A stop node, which means, “Stop; a match was found.” It is
marked with a. The flowchart has α arrows leading out from each
read node. Each arrow is labeled with a character from Σ. The arrow
that matched the text character just read is the arrow to be followed;
that is, it indicates which node to go to next. The read nodes serve as
sort of memory. For instance, if execution reached the third read node,
the last two characters read from the text were A’s. What preceded
them is irrelevant. The time taken for KMP algorithm is O(n + m), an
improvement over the O(nm) for straightforward matching [12].

Example 3.1 Find the pattern TGGAC in the text AGCTTGGAC.

 Σ = (A, G, C, T) (3.16)

Action of the KMP flow chart (Table 3.2):
 T: A G C T T G G A C
 1 2 3 4 5 6 7 8 9

Algorithm 3.4 Knuth-Morris-Pratt Scan Algorithm
Input: P, T, the pattern and text strings; m, the
length of P; fail the array of failure links setup in KMP
flowchart representation algorithm
 The length of P is determined when fail array is set up.
Output: Return value is the index in T where a copy of P
begins, or –1 if a
 Match for P is found.
 Int kmpscan (Char []P, m Char[]T, int m, int [] fail)

KMP Cell Number Text Index Scanned Character Success or Failure
1 1 A F

0 2 G Get next char

1 2 G F

0 3 C Get next char

1 3 C F

0 4 C Get next char

1 4 T S

2 5 T F

1 5 T S

2 6 G S

3 7 G S

4 8 A S

5 9 C Stop

TABLE 3.2 KMP Cell Numbers 5, 6, 7, 8, 9 Indicate the Matched Pattern in the
String in Example 3.1

 94 C h a p t e r T h r e e

 Int Match
 Int j, k
 //j indexes text characters
 //k indexes the pattern and fail array match = –1

j = 1; k = 1;
 While [end text (T, j) = = false]
 If (k > m)
 Match = j – m//match found (3.17)
 Break;
 If (k = = 0)

j++:
k = 1//Start pattern over

 Else if (t
j
 = = pk)

j++
k++

 Else
 //follow fail arrow

k = Fail(k)
 //continue loop of return match

Algorithm 3.5 Knuth-Morris-Pratt Flowchart
Input: P, a string of characters; m, the length of P
Output: Fail, the array of failure links: defined for
indexes, 1 – m. The array is passed in, and the algorithm
fills it.
Void KMP setup (Char []P, int M, int [] fail)
 Int k, s
 1. fail [] = 0
 2. for k = 2 , k ≤ m, k++
 3. S = fail [k – 1]
 4. While (s ≥ 1)
 5. If P = = P

k–1
 (3.18)

 6. break;
 7. S = fail[S]
 8. Fail[k] = S + 1
The complexity is O(m2).

3.4.3 Boyer-Moore Algorithm
In the Boyer-Moore algorithm [13], text characters may be skipped
over entirely. A good algorithm should be able to jump faster past
places in the text where the pattern cannot appear. The Boyer -Moore
(BM) algorithm always scans the pattern from right to left. It uses two
heuristics to decide how far the pattern may be slid over the text
string after a mismatch. Let P be the pattern of length m and T a text
string of length n.

 Che w C hew wc hewch ewchewe

 The Chief Defect of Henry VIII was chewing little bits
 of chewing gum.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 95

Since w and C do not match, there is now w in the first four letters
and the chew is moved four matches. This is repeated a few times.
Lining up the e, the pattern was found. The letter where there is a
match is lined up after the text is moved. The number of comparisons
required is less in this approach than in other methods.

Algorithm 3.5 Boyer-Moore Algorithm
Input: Pattern String, P

m – length of P
 alphabet size, α = ⎪Σ⎪
Output: Array charjump defined on indexes 0, 1, . . . , α - 1.
 The array is passed in and the algorithm fills it.
 Void Compute jumps (Char [], int m, int α, int [],

charjump)
 Char Ch;
 Int k;
 For (ch = 0; Ch < α, int [], Charjump)
 Char Ch;
 Int k
 For (ch = 0; Ch < α

j
ch++) (3.19)

 Char jump [ch] = m;
 For (k = 1; k < m; k++)
 Charjump [Pk] = m = k;

The time-taken complexity can be seen to be θ(m + ⎪Σ⎪).
There is another algorithm to compute jumps based on partial

matches. The pattern is studied to match up a substring. This can be
achieved in O(m) time. The behavior of the BM algorithm depends on
the size of the alphabet and the repetition within the strings. In
empirical studies using natural-language text and m ≥ 5, the algorithm
did only roughly 0.24–0.3 character comparisons per character in the
text, up to the point of the match or the end of the text.

For binary strings, BM does not do quite as well; in another
study, roughly 0.7 comparisons were done for each text character.
In all cases, with m ≥ 5, the average number of comparisons is
bounded by Cn for a constant C < 1. If the pattern is quite small
(m ≤ 3), then the overhead of preprocessing the pattern is not
worthwhile. BM does more comparisons than the straightforward
approach. There are several improvements and modifications to
the BM algorithm that make it run faster. Some of the problems at
the end of this chapter discuss these improvements. Two extensions
to the pattern-matching problem are often useful. Find all
occurrences of the pattern in the text, and find any one of a finite
set of patterns in the text.

The KMP and BM algorithms search for an exact copy of the
pattern in the text. However, in many applications, an exact copy
cannot be expected. A spelling corrector, for example, may search a
dictionary for an entry that is similar to a given misspelled word. In

 96 C h a p t e r T h r e e

speech recognition, samples may vary. Other applications in which
close but not exact matches are sought range from identifying
sequences of amino acids to recognizing bird songs. A dynamic
programming solution to the problem of finding an approximate
match for a pattern in a string has been developed. The approximate
match problem means that the match between pattern and text has at
most k differences. Differences tables can be constructed and the
solution sought in O(mn) time.

3.4.4 Finite Automaton
A finite automaton [14] is built during the execution of string-
matching algorithms. The text string is scanned, and all occurrences
of the pattern P are searched for. These string-matching automata are
efficient. Each text character is examined exactly once, taking constant
time per character. The matching time used after preprocessing the
pattern to build the automaton is therefore O(n). The time to build the
automaton, however, can be large if Σ is large.

A finite automaton is defined. A special string-matching automaton
is examined. An illustration is presented on how this can be used to
detect a given pattern in a text. The method of how to construct a
string-matching automaton for a given input pattern is given:

A finite automaton M is defined as a 5-tuple (Q, q0, A, Σ, δ)

where Q is a finite set of states
q0 ∝ Q is the start state
A ⊆ Q is a distinguished set of accepting states
Σ is a finite input alphabet
δ is a function from Q × Σ into Q called the transition function
of M

The finite automaton begins in state q0 and reads the characters of
its input string one at a time. If the automaton is in state q and reads
input character a, it moves from state q to state δ(q, a). Whenever its
current state q is a member of A, the machine M is said to have accepted
the string read so far. An input that is not accepted is said to be rejected.
A finite automaton M induces a function φ called the final state function
from Σ+ to Q such that φ(w) is the state M ends up in after scanning the
string w. Thus M accepts a string w if and only if φ(w) ∝ A. The function
φ is defined by the recursive relation

 φ(ε) = q0

 φ(wa) = δ[φ(w), a] for w ∝ Σ∗, a ∝ Σ (3.20)

There is a string-matching automaton for every pattern P. This
automaton must be constructed from the pattern in a preprocessing
step before it can be used to search the text string. In order to
specify the string-matching automaton corresponding to a given

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 97

pattern P(1, . . . , m), an auxiliary function σ called the suffix function
is defined corresponding to P. The function σ is a mapping from Σ∗

to (0, 1, . . . , m) such that σ(x) is the length of the longest prefix of
P that is a suffix x:

 σ(x) = max(k: Pk] x) (3.21)

The suffix function is well defined because the empty string P0 = ε
is a suffix of every string. As examples, for the pattern P = ab, σ(ε) = 0,
σ(ccaca) = 1, and σ(ccab) = 2. For a pattern P of length m, σ(x) = m if and
only if P] x. It follows from the definition of the suffix function that if
x] y, then σ(x) ≤ σ(y). The string-matching automaton that corresponds
to a given pattern P(1, . . . , m) is as follows: The state set Q is (0, 1, . . . , m).
The start state q0 is state 0, and state m is the only accepting state. The
transition function δ is defined by the following equation for any
state q and character a:

δ(q, a) = σ(Pqa)

Algorithm 3.5 Finite-Automaton Matcher (T, δ, m)
 Length (T) = n

q = 0
 for i = 1, n
 do q = δ(q, T[i]) (3.22)
 if q = m
 then print “Pattern occurs with shift” i – m

The matching time on a text string of length n is O(n). This matching
time does not include the preprocessing time required to compute the
transition function δ.

3.5 Suffix Trees in String Algorithms
The suffix tree data structure has many applications in string
algorithms. The suffixes of a given string are stored in the tree. All the
possible substrings of the given sequence are represented by some
unique path descending from the root. All the suffixes of a sequence can
be encoded in linear space. A large amount of information can be
retrieved from the index. It has been deployed intensively in pattern-
matching problems on strings, matrices, and trees. One such exercise
consists of locating all the occurrences of a given string called the
pattern y as a substructure of another string called the text x. A
procedure to speed up the linear time algorithms for string
matching both in practice and on average using suffix trees was
introduced by Crochemore [8]. The dynamic version of the static

 98 C h a p t e r T h r e e

Aho-Corasick dictionary automaton [15] was obtained by Amir
and colleagues [16]. They used a dynamic set of strings to define
the suffix tree. The Aho-Corasick algorithm searches for strings and
is a kind of dictionary-matching algorithm. The elements of a finite
set of strings (the dictionary) are located within an input text. All
patterns are matched “at once.” It can be completed in O(m + n)
time, where m and n are the lengths of the pattern and text,
respectively. In some applications, the text is fixed and static, as in
Webster’s English Dictionary or in DNA sequences, and the string-
matching query is repeated online for different patterns many times.
Thus the suffix tree T is built on x$. The assumption is that y occurs
at least once in x. The completeness prefix property guaranteed that
there is one-to-one correspondence between all occurrences of y in x
and the leaves of T that are descending from the extended locus of y.
The longest prefix of y occurring in x can be found in time
proportional only to the length of such a prefix. Association of the
number of descending leaves with each node of T can lead to
knowledge of the frequency or number of occurrences of y in x
without accessing all the leaves explicitly. Methods are being
developed where the dynamic case can be handled without building
the suffix tree T from scratch each time.

Suffix trees can be used to speed up the dynamic programming
computation for solving approximate string matching. Landau and
Vishkin [17] computed the longest common prefix of any two given
suffixes of x using the suffix tree T in constant time. The common prefix
property has locus in the least common ancestor (LCA) of the two
corresponding leaves that can be computed in constant time after a
linear time preprocessing to answer LCA queries. Chang and Lawler
[9] used suffix trees on the pattern y to obtain matching statistics for
text x in linear time. For each position j of x, find the longest prefix of
x[j:n] occurring as a substring of y and its corresponding extended
locus in the suffix tree for y. An alternative solution for matching
statistics is applying the external matching problem for file
transmission by building one suffix tree at time on the string y@w,
where @ is a separator and w is taken over O(⎥ x⎥ /(⎥ y⎥) overlapping
substrings of x of size 2⎥ y⎥. The problem of finding the palindromes
of maximal length in a string x can be solved in linear time with suffix
trees for a constant-sized alphabet. First, a suffix tree T is built on the
string w = x@xR$, where @ is a distinct separator not occurring
elsewhere and xR is the reversed string of x. The T can be preprocessed
to answer LCA queries, and the technique mentioned can be applied
for finding the longest common prefix of any two suffixes of w. For
each position j of x, the maximal palindrome having center in j can be
found, i.e., maximum k such that x[j:j + k –1] = x[j – k;j – 1)R. The
former condition is for palindromes having center in j. This is for
palindromes of even length. For those with odd length, x[j + 1:j + k] =
x[j – k;j – 1]R.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 99

3.6 Look-up Tables
Software such as BLAST that gets used a lot for sequence queries and
CAP3 for genome assembly uses a data structure called a look-up table.
The data structure is simple in construct, where the positions of
occurrences of subsequences of a certain length in a couple or more
strings are recorded. Each entry in the look-up table points to a linked list
of specific locations within the input set of strings where the substring
corresponding to the index for the entry occurs. A look-up table for string
S can be constructed in O(⎥Σ⎥w + n) time, where Σ is the alphabet of the
string, w is the window size or prescribed length, and n is the length of
the sequence S. ⎥Σ⎥w is the number of possible substrings of length w.

Example 3.2 Construct the look-up table for the following sequence with w = 2:

S: cgtattctggcaggg

The mapping is as follows (Fig. 3.4): c → 0, a → 1, t → 2, and g → 3. The
substring gg corresponds to the index (33)9 = 14. The entry at index 14 indicates
that the substring gg occurs in the sequence at positions 9, 13, and 14.

Construction of the look-up table consists of the following steps:

Step 1: Create and initialize a null list. This can be done in O(⎥Σ⎥w)
time.

Step 2: Insert substrings one at a time. Compute index = F(·) in O(w)
time. Use the following identity for insertion:

F(s[k + 1 . . . k + w + 1]) = (F(s[k . . . k + w]
 – f(s[k])⎥Σ⎥w–1) × ⎥Σ⎥ + f(s[k + w + 1]) (3.23)

0

CA

1

CC

2

CG

3

CT

4

AA

5

AC

6

AG

7

AT

8

TA

9

TC

10

TG

11

TT

12

GA

13

GC

14

GG

15

GT

11 1 7 4 3 6 8 5

13

14

10 9 2

FIGURE 3.4 Look-up table for sequence S: cgtattctggcaggg.

 100 C h a p t e r T h r e e

This can be done in O(1) time. The total size of linked lists is
O(n), and the size of the look-up table data structure is O(⎥Σ⎥w + n).
This can be extended to more than one sequence or a set of strings.
Given the look-up table for a database of strings available and a
query string of length w, all occurrences of the query string in the
database can be retrieved in O(w + k) time, where k is the number
of occurrences.

Summary
Suffix tree construction and representation of a sequence in a
suffix tree are described. The generalized suffix tree can be used
to represent a set of strings and stores all the suffixes of all the
strings. The algorithm for suffix tree construction can be
completed in O(n) time and O(n) space. Tandem repeats can be
found in a sequence in O[n lg(n) + occ] time efficiency. Suffix trees
can be used to obtain pairwise sequence alignment. One of the
sequences is streamed against another sequence that is stored in
a suffix tree. Where the query sequence branches off from the
stored tree can be caught. In this way, all matches between the
sequences can be determined.

String algorithms can be used to find patterns P in a text T.
Nineteen such algorithms are discussed in this chapter. The Rabin-
Karp algorithm can be executed in θ(m) preprocessing time and O(n –
m + 1)m matching time. The Knuth-Morris-Pratt algorithm can be
completed in θ(m) preprocessing time and O(n) matching time. The
Boyer-Moore algorithm can be performed in O(m + σ) preprocessing
and O(n) matching time, and the finite-automaton algorithm can be
run in O(m⏐Σ⎟) preprocessing time and O(n) matching time. Suffix
trees can be used in string matching. They can be tapped into to
improve the speed in approximate string matching using dynamic
programming. Look-up tables can be constructed in O(⎟ Σ⎟ w + n) time,
where Σ and w are the alphabet and window sizes, respectively. The
Raita algorithm, Shift algorithm, Simon algorithm, Colussi algorithm,
Galil and Giancarlo algorithm, not-so-naïve algorithm, Horspool
algorithm, quick-search algorithm, Berry -Ravindran algorithm,
Smith algorithm, reverse-factor algorithm, turbo reverse-factor
algorithm, forward DAWG matching algorithm, McCreights
algorithm, construction of suffix trees, the Karkainnen and Sander
algorithm, lazy suffix trees, exact string matching using suffix trees,
suffix forests, hash tables, and finding the lowest common ancestor
(LCA) are discussed in end-of-chapter exercises. CHAOS, LAGAN,
MULTI-LAGAN, Shuffle-LAGAN, F index and pairwise alignment
of sequences, GLASS, QUASAR, hash table–based tools, AVID, flat
trees, and distributed suffix trees are also discussed in end-of-chapter
exercises.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 101

References
 [1] E. Ukkonen, “Online construction of suffix trees,” Algorithmica 14 (1995),

249–260.
 [2] S. Aluru (ed.), Handbook of Computational Molecular Biology. New York:

Chapman Hall/CRC Computer and Information Series, 2006.
 [3] M. Hohl, S. Kurtz, and E. Ohlebusch, “Efficient multiple genome alignment,”

Bioinformatics 18 (2002), S312–320.
 [4] L. Kaderali and A. Schliep, “Selecting signature oligonucleotides to organisms

using DNA arrays,”Bioinformatics 18 (2002), 1340–1349.
 [5] S. Kurtz and C. Schleiermacher, “REPuter: Fast computation of maximal

repeats in complete genomes,” Bioinformatics 15 (1999), 426–427.
 [6] A. L. Delcher, S. Kasif, R. D. Fleischmann, et al., “Alignment of whole

genomes,” Nucleic Acids Res. 27 (1999), 2369–2376.
 [7] S. B. Needleman and C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins,” J. Mol.
Biol. 28 (1970), 443–453.

 [8] M. Crochemore, “An optimal algorithm for computing the repetitions in a
word,” Inform. Process. Lett. 12 (1981), 244–250.

 [9] W. I. Chang and E. L. Lawler, “Sublinear expected time approximate string
matching and biological applications,” Algorithmica 12 (1994), 327–344.

[10] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge, UK: Cambridge University Press, 1997.

[11] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algo-
rithms,” IBM J. Res. Dev. 31 (1987), 249–260.

[12] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching in
strings,” SIAM J. Comput. 6 (1977), 323–350.

[13] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun.
ACM 20 (1977), 762–772.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Boston: MIT Press, 2001.

[15] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to biblio-
graphic search,” Commun. ACM 18 (1975), 333–340.

[16] A. Amir, G. Benson, and M. Farach, “Let sleeping files lie: Pattern matching
Z-compressed file,” J. Syst. Sci. 52 (1992), 879–884.

[17] G. M. Landau and U. Vishkin, “Fast string matching with k differences,”
J. Comp. Sys. Sci. 37 (1988), 63–78.

[18] T. Raita, “Turning the Boyer-Moore-Horspool string searching algorithm,”
Software Pract. Exp. 22 (1992), 879–884.

[19] R. Baeza-Yates, G. Navarro, and B. Ribeiro-Neto, “Indexing and searching,”
Modern Information Retrieval. Reading, MA: Addison-Wesley, 1999, Chap. 8,
pp. 191–228.

[20] I. Simon, “String matching algorithms and automata,” in Results and Trends
in Theoretical Computer Science. Graz, Austria, 1994.

[21] L. Colussi, “Correctness and efficiency of the pattern matching algorithms,”
Inform. Comput. 95 (1994), 225–251.

[22] Z. Galil and R. Giancarlo, “On the exact complexity of string matching: upper
bounds,” SIAM J. Comput. 21 (1992), 407–437.

[23] A. Cardon and C. Charras, Introduction a’ l’algorithmique et a’ la Programmation.
Paris: Ellipses, (1996), Chap. 9, p. 254.

[24] R. N. Horspool, “Practical fast searching in strings,” Software Pract. Exp. 10
(1980), 501–506.

[25] D. M. Sunday, “A very fast substring search algorithm,” Commun. ACM 33
(1990), 132–142.

[26] T. Berry and S. Ravindran, “A fast string matching algorithm and experi-
mental results,” in J. Holub, M. Simanek, et al. (eds.), Proceedings of the Prague
Stringology Club Workshop ’99. Collaborative Report DC-99-05. Prague: Czech
Tech University, 1999, pp. 16–26.

 102 C h a p t e r T h r e e

[27] P. D. Smith, “Experiments with a very fast substring search algorithm,”
Software Pract. Exp. 21 (1991), 1065–1074.

[28] R. Baeza-Yates, G. Navarro, and B. Ribeiro-Neto, “Indexing and searching,”
in Modern Information Retrieval. Reading, MA: Addison-Wesley, 1999, Chap. 8,
pp. 191–228.

[29] M. Crochemore, “Off-line serial exact string searching,” in A. Apostolico and
Z. Galil (eds.), Pattern Matching Algorithms. Oxford, UK: Oxford University
Press, 1997, Chap. 1, pp. 1–53.

[30] M. Crochemore and W. Rytter, Text Algorithms. Oxford, UK: Oxford University
Press, 1994.

[31] E. M. McCreight, “A space-economical suffix tree construction algorithm,”
J. ACM 23 (1973), 262–272.

[32] J. Karkkainen and P. Sanders, “Simpler linear work suffix array construction,”
in Proceedings of the 30th International Colloquium on Automata, Languages and
Programming. Netherlands: Eindonven, 2003, pp. 943–955.

[33] R. Giegerich, S. Kurtz, and J. Stoye, “Efficient implementation of lazy suffix
trees,” in Proceedings of the 3rd Workshop on Algorithm Engineering. London,
UK: Springer, 1999, pp. 30–42.

[34] K. R. Sharma, “Approximate solution to multiple sequence alignment prob-
lem using suffix forest method,” in CHEMCON 2005. New Delhi, India,
Indian Institute of Chemical Engineers, 2005.

[35] T. Kahveci, V. Ljosa, and A. K. Singh, “Speeding up whole genome alignment
by indexing frequency vectors,” Bioinformatics 20 (2004), 2122–2134.

[36] K. R. Sharma, “Binomial-tree representation of maximum increasing subse-
quence problem,” in 41st Annual Convention of Chemists. New Delhi, India,
Indian Chemical Socierty, 2004.

[37] B. S. Baker and R. Giancarlo, “Sparse dynamic programming for longest
common subsequence from fragments,” J. Algorithms 42 (2002), 231–254.

[38] N. Bray, I. Dubchak and L. Pachter, “AVID: A Global Alignment Program,”
Genome Research, 13, 1, (2003), 97–102.

Exercises
1.0 Construct the look-up table for the sequence S given in Example 3.2
for w = 3.

2.0 Given the suffix tree shown in Fig. 3.5, deduce the sequence from which
it was constructed.

3.0 Draw the suffix tree of the sequence S: GCGTACCGCGAA.

4.0 Find the pattern TATT in the text GCTTGCTATT using the KMP
algorithm.

5.0 Using the suffix tree representation, approximately align the sequences
S and T given below in linear time.

S: ACTGACGAGCATCATCGATGCAC
T: GAAGACATCGTCGAT

6.0 Align the –10 signal in E. coli promoter sequences TATAAT with the
sequences GTTACGTAA. Use the scoring function 2 for a match, –2 for a
mismatch, and –4 for gap. Does the complementary sequence of S match better.
What is the time taken?

7.0 Using suffix tree representation and streaming of T over S in Exercise 6.0,
obtain the global alignment in O(n) time using the concept used in MUMer.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 103

8.0 Discuss the space requirements for a suffix tree representation of a
sequence. How does it depend on whether it is a nucleotide sequence or an
amino acid sequence?

9.0 Raita algorithm. An algorithm was proposed by Raita [18] that is called
the Raita algorithm. Here, the last character of the pattern is compared first
with the rightmost character of the text of the window. If they match, then
the first character of the pattern is compared with the leftmost character
of the text of the window. On obtaining a match, the middle character
of the pattern is compared with the medley characters of the text of the
window. Finally, if they match, the other characters from the second to the
penultimate character of the pattern are compared again with the medley
characters of text of the window. Show that the preprocessing phase of the
Raita algorithm consists of computing the bad-character shift function and
that it can be done in O(m + σ) time and O(σ) space complexity, where σ is
the size of the alphabet Σ.

10.0 In Exercise 9.0, further prove that the searching phase of the Raita
algorithm has an O(mn) worst-case time complexity.

11.0 Shift or algorithm. Bitwise techniques were used to develop the Shift
or algorithm [19]. It is advantageous to use the Shift or algorithm when the
pattern size is no longer than the memory word size of the machine. Let A be a
bit array size of length n. Vector Aj is the value of the array A after text character
y(i) has been processed. Information about all matches of prefixes of x that end
at position j in the text for 0 < i < n – 1 is contained in the array

 Aj(i) = 0 if x(0, i) = y(j – i, j) (3.24)

A

A

A

A

C T

T

T C

G

FIGURE 3.5 Suffi x tree for Exercise 2.0.

 104 C h a p t e r T h r e e

Aj(i) = 1 otherwise

Aj+1 can be obtained from Aj as follows: For each Aj(i) = 0:

Aj+1(i + 1) = 0 if x(i + 1) = y(j + 1) (3.25)

Aj+1(i + 1) = 1 otherwise

Aj+1 (0) = 0 if x(0) = y(j + 1)

Aj+1 (0) = 1 otherwise

A complete match can be reported if Aj+1(m – 1) = 0. The transition from Aj to
Aj+1 can be calculated as

Aj+1 = SHIFT(Aj) or Sy(j+1)

where Sc is a bit array of size n for each c in alphabet Σ such that for i < n –1,
Sc(i) = 0; iff x(i) = c. The positions of the character c in the pattern x are stored
in array Sc. Assuming that the pattern length is no longer than the memory-
word size of the machine, show that the space and time complexity of the
preprocessing phase is O(n + σ).

12.0 Show in Exercise 11.0 in the Shift or algorithm that the time taken for
the searching phase to be completed is O(m).

13.0 Simon algorithm. When constructing the finite automaton, the size of
the automaton can be large, as discussed in Sec. 3.4.4. Simon [20] noted that
there are only few significant edges in M, and the other edges lead to the
initial state and hence can be deduced. The significant edges are the forward
edges going from the prefix of x of length k to the prefix of length k + 1 for 0 ≤
k ≤ m (m such edges) and the backward edges from the prefix of x of length
k to a smaller non-zero-length prefix (bounded by m edges). The bound on
the significant edges is O(m). For each state of the automaton, now it is only
necessary to store the list of its significant outgoing edges. A table L of size m – 2
of linked lists is used. The list of the targets of the edges starting from state u
is given by the element L(i). During computation of the table, the integer l is
computed such that l + 1 is the length of the longest border of x. This obviates
the need to store the list of the state m – 1. Show that the preprocessing phase
of the Simon algorithm can be completed in O(m) space and time.

14.0 Show that in the Simon algorithm described in Exercise 13.0, the
searching phase can be completed in O(m + n) time. At most, 2n – 1 text
character comparisons are completed during the searching phase. Show that
the maximal number of comparisons for a single text character called the delay
is bounded by min[1 + lg(m), σ].

15.0 Colussi algorithm. A refinement of the KMP algorithm discussed in
the Sec. 3.4.2 was suggested by Colussi [21]. The set of patterns is divided
into two disjoint subsets. Each attempt thereafter consists of two phases.
In phase I, the comparisons are performed from left to right with text
characters aligned with pattern positions called noholes, for which the value
of the KMP NEXT function is greater than –1. The second phase consists
of comparing the remaining positions called holes from right to left. The

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 105

strategy offers two advantages: (1) when a mismatch occurs during the first
phase after the appropriate shift, it is not necessary to compare the text
characters aligned with noholes compared during the previous attempt,
and (2) when a mismatch occurs during the second phase, it means that if a
suffix of the pattern matches a factor of the text, and after a corresponding
shift, a prefix of the pattern will still match a factor of the text, then it is
not necessary to compare this factor again. Show that the space and time
needed for the preprocessing phase are O(m).

16.0 In the Colussi algorithm described in Exercise 15.0, show that the time
taken for the searching phase is O(n) and that in the worst-case scenario, 3n/2
text comparisons are made.

17.0 Galil and Giancarlo algorithm. Another refinement of the KMP algorithm
and variation of the Colussi algorithm is the Galil and Giancarlo algorithm
[22]. For x ≠ cm, the searching phase is modified as follows: Let l be the last
index in the pattern such that for O ≤ i ≤ l, x(0) = x(i) and x(0) ≠ x(l + 1). At the
previous attempt, all the noholes were matched, and a suffix of the pattern
was matched. So after the corresponding shift, a prefix of the pattern will
start to match a part of the text. The window is positioned on the text factor
y(j, . . . , j + m – 1), and the portion y(j, . . . , last) matches x(0, . . . , last j).
During the next attempt the text character will be scanned beginning with
y(last + 1) until either the end of the text is reached or a character x(0) ≠ y(j + k)
is found. Two subcases can be identified: (1) x(l + 1) ≠ y(j + k) and too little of
x(0) has been found (k ≤ l); then the window is shifted and positioned on the
text factor y(k + 1, . . . , k + m), scanning of the text is resumed with the first
nohole, and the memorized prefix of the pattern is the empty word. (2)
x(l + 1) = y(j + k) and enough of x(0) has been found (k > l); then the window
is shifted and positioned on the text factor y(k – l –1, . . . , k – l + m – 2),
scanning of the text is resumed with the second nohole, and the memorized
prefix of the pattern is x(0, . . . , l + 1). Show that the preprocessing phase can
be completed in O(m) time and space.

18.0 Show that for the Galil and Giancarlo algorithm described in
Exercise 17.0 the searching phase can be done in O(n) time and that at most
4n/3 text character comparisons are performed during the searching phase.

19.0 Not-so-naïve algorithm [23]. In the not-so-naïve algorithm, the character
comparisons are made with the pattern positions in the following order: 1, 2,
. . . , m –2, m – 1, 0. For each attempt where the window is positioned on the
text factor y(j, . . . , j + m + 1): If x(0) = x(1) and x(1) ≠ y(j + 1) if x(0) ≠ x(1) and
x(1) = y(j + 1), the pattern is shifted by two positions at the end of the attempt
and by one otherwise. Show that the preprocessing phase can be completed
in constant time and constant space.

20.0 Prove that the searching phase of the not-so-naïve algorithm described
in Exercise 19.0 has a worst-case time taken of O(n2) and can be completed in
sublinear time in the average case.

21.0 Horspool algorithm [24]. For small alphabets, the Boyer-Moore
algorithm is not very efficient because the bad-character shift is used.

 106 C h a p t e r T h r e e

Horspool proposed to use only the bad-character shift of the rightmost
character of the window to compute the shifts in the Boyer-Moore algorithm.
Show that the preprocessing phase can be completed in O(m + σ) time and
with O(σ) space.

22.0 Show that the searching phase of the Horspool algorithm described
in Exercise 21.0 can be completed in the worst case in O(n2) time. Prove that
the average number of comparisons for text characters is between 1/σ and
2/(σ + 1).

23.0 Quick-search algorithm [25]. The bad-character shift table alone is used
in this algorithm. The length of the shift is at least equal to 1 after an attempt
where the window is positioned on the text factor y(j, . . . , j + k + 1). The
character y(j + m) can be used for the bad-character shift of the current attempt
if the character is involved in the next attempt. For c in Σ,

qsBc (c) = min(i:0 ≤ i < m) (3.26)

x(m –1, i) = c if c occurs in x; otherwise = m

The comparisons between characters of pattern and text can be in any order
during the searching phase. Show that the preprocessing phase can be
completed in O(m + σ) time and O(σ) space.

24.0 Further show that the searching phase of the quick-search algorithm
described in Exercise 23.0 in the worst case can be completed in O(n2) time.

25.0 Berry-Ravindran algorithm [26]. Shifts are performed by considering the
bad-character shift table for the two consecutive text characters immediately to the
right of the window. For each pair of characters (a, b) with a, b in Σ, the rightmost
occurrence of ab in a × b is computed during the preprocessing phase.

 1 if x(m – 1) = a

brBc(a, b) = min m – i + 1 if x(i) × (i + 1) = ab

m + 1 if x(0) = b (3.27)

m + 2 otherwise

Show that the preprocessing phase can be completed in O(m + σ2) time
and space.

26.0 In Exercise 25.0, a shift of length brBc[y(i +m), y(j + m + 1)] is performed
after an attempt where the window is positioned on the text factor y(j, . . . ,
j + m –1). In order to be able to compute the last shifts of the algorithm,
y(n + 1) is set to the null character, and the text character y(n) is equal to
the null character. The searching phase of the algorithm can be completed
in O(mn) time taken.

27.0 Smith algorithm [27]. The preprocessing phase of the algorithm comprises
of computation of the bad-character shift function and the quick-search bad-
character shift function. Shorter shifts can be achieved by computing the shift

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 107

with the text character just next the rightmost text character of the window
compared with using the rightmost text character of the window. Show that
the preprocessing phase of the Smith algorithm can be completed in O(m + σ)
time taken and requiring O(σ) space.

28.0 Reverse-factor algorithm [28]. This is an improvement on the Boyer-Moore
algorithm. More prefixes are matched of the pattern by scanning the characters
of the window from right to left, and then the lengths of the shifts are bettered.
Use is made of the smallest suffix automaton of the reverse pattern. The suffix
automaton is a directed acyclic word graph (DAWG).

S(w) = (Q, q0, T, E)

L[S(w)] = (u in Σ*: exists ν in Σ* such that w = vu)

During the preprocessing phase, the smallest suffix automaton is computed
for the reverse pattern xR. Show that this can be achieved in O(m) time and
O(m) space, respectively.

29.0 In the reverse-factor algorithm described in Exercise 28.0, during the
searching phase, the characters of the window are parsed from right to left
with the automaton, S(xR) starting with state q0. Stop where there is no more
transition defined for the current character of the window from the current
state of the automaton. The length of the longest prefix of the pattern that
has been matched is now known. This is the length of the path taken in the
suffix automaton from the start state to the final state. Then the right shift to
perform is a trivial next step. Show that in the worst case the time taken for
the searching phase by the algorithm is O(n2). On average, it is optimal.
O[n – lgσ(m)/m] inspections of text characters are performed on average. Show
that this is the best bound that can be reached.

30.0 Turbo reverse-factor algorithm [29]. It is possible to complete the searching
phase in linear time taken. In the reverse-factor algorithm, it is sufficient to
save in memory the prefix u of x matched during the previous attempt. During
the current attempt, on reaching the right end of u, it can be readily shown
that it is sufficient to read again at most the rightmost half of u in the turbo
reverse-factor algorithm. A Disp(z, w) is defined as the displacement of z in w
to be the least integer d > 0 such that w(m – d – [z] – 1, . . . , m – d) = z, where
word z is a factor of word w. Generally, a prefix u is found in the text in the
previous attempt, and in the present attempt, the factor ν with length m – [u]
is matched in the text immediately to the right of u. When ν is not a factor of
x, then the shift is computed as in the reverse-factor algorithm. If ν is a suffix
of x, then the occurrence of x has been detected. If ν is not a suffix and is a
factor of x, then the min[Per(u), [u]/2] rightmost characters of u are scanned
again. If u is periodic, let z be the suffix of y with length Per(u). z is now an
acyclic word. Thus z can occur in u at distances multiple of Per(u), which
implies that the smallest proper suffix of uv that is a prefix of x with length
equal to [uv] – disp(zν, x) = m – disp(zν, x). If u is not periodic, it is sufficient
to scan the right part of u of length [u] – Per(u) < [u]/2 to find a nondefined

 108 C h a p t e r T h r e e

transition in the automaton. Function Disp is implemented in the automaton
S directly without changing the complexity of its construction. Show that the
preprocessing phase that consists of building the suffix automaton of xR can
be completed in O(m) time.

31.0 Show that in the turbo reverse-factor algorithm described in
Exercise 30.0 the searching phase can be completed in O(n) time taken. At
most, 2n inspections of text characters are performed in the algorithm. Show
that this is optimal on average. O[n – lgσ(m)/m] inspections of text in the
average case are performed.

32.0 Forward DAWG matching algorithm[30]. The longest factor of the pattern
ending at each position in the text is computed by the forward DAWG matching
algorithm. DAWG uses the smallest suffix automaton of the pattern. The
preprocessing phase of the forward DAWG algorithm consists of computing the
smallest suffix automaton for the pattern x. Show that the time taken and space
needed both can be completed in linear time. The searching phase consists of
parsing the characters of the text from left to right with the automaton S(x)
starting with state q0. Length (q) is the longest path from q0 to p for each state q
in S(x). The notion of suffix links is used. S(p) is denoted the suffix link for each
state p. A transition defined for y(j) for the first state of Path(p) for which such
a transition is defined is taken for each text character y(j) sequentially, where
p is the current state. p then is updated with the target state of this transition
or with the initial state q0 if no transition exists labeled with y(j) from a state of
Path(p). An occurrence of x is found when length(p) = m. Exactly n text character
inspections are performed. Show that the worst-case time taken is O(n).

33.0 McCreight’s algorithm for construction of suffix trees [31]. The suffixes are
inserted in the order of S1, S2, . . . , Sn. Ti is the tree after insertion of suffix Si.
The run time for insertion is ⎥Si⎥ = n – i + 1. Show that the total run time would
be O(n2). A linear time construct of the suffix tree can be achieved by using
suffix links. Insertion of a suffix is speeded up. In order to insert Si if the end
of the path labeled β is found soon, comparison of characters in Si can start
beyond the prefix β. Show that the suffix tree construction can be completed
in linear time in this fashion.

34.0 Karkkainen and Sander’s algorithm [32]. Let S be a sequence of length
n on a alphabet Σ = {1, 2, . . . , n}, and assume that n is a multiple of 3. The
algorithm consist of three steps: (1) 2n/3 suffixes are sorted recursively, (2) n/3
suffixes are sorted using the result of step 1, and (3) the two sorted arrays are
merged. Show that in this way the suffix arrays and hence suffix trees can be
constructed in O(n) time.

35.0 MUMs during alignment of a pair of sequences. Consider two sequences
S and T:

 S: t c g a t
 T: a g g a t

Construct the generalized suffix tree GST of the two sequences S and T. Show
that traversal of the tree is sufficient to identify internal nodes corresponding
to MUMs.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 109

36.0 Show that the space required for the algorithm described in Exercise 35.0
can be reduced by building the suffix tree of only one string S1 and streaming
the other string S2 to identify the MUMs.

37.0 How many internal nodes are present in an n leaf suffix tree? What is
the maximum number of children it can have?

38.0 What is the difference between a generalized suffix tree and suffix tree?

39.0 What is the difference between suffix tree and suffix array and suffix
link?

40.0 What is a suffix forest?

41.0 All strings that contain pattern P. Use the suffix tree representation to
find the query pattern P in a set of strings, S1$, S2$, . . . , Sl#. Construct a GST
generalized suffix tree. Enter two different digits $ and # that do not appear
in any of the strings but are stored along with the suffixes. At each node,
store a list of all strings Si that are the start point of a suffix represented by an
information node in the GST.

42.0 Repeats. Represent a sequence S using a suffix tree. Find the longest
substring of S that appears at least m times, where m > 1.

43.0 Show that the query in Exercise 42.0 can be found in O(n) time, where
n = ⎥ S⎥. (Hint: Traverse the labeled suffix tree at the branch nodes with the sum
of the label lengths from the root. Traverse the tree visiting branch nodes with
information node count ≥ m. Return to the visited branch node with longest
label length.)

44.0 What is the difference between a tandem repeat and a tandem array?

45.0 What is the difference between a look-up table and a hash table?

46.0 What is the difference between a tuple and a hash table?

47.0 Describe the use of suffix tree in REPuter software development.

48.0 What is meant by a seed in a sequence?

49.0 At what length of the alphabet and for what sequence is a suffix tree
not a profitable method of representation of a sequence?

50.0 Can a suffix tree be used to identify errors in a given sequence?

51.0 What is the difference between approximate alignment of a pair of
sequences and optimal alignment of a pair of sequences?

52.0 What is a Multiple Genome Aligner (MGA)? How is a suffix tree used
in MGA software?

53.0 What is the difference between the approached of Ukkonen [1] and that
of McCreight [31] toward the construction of a suffix tree?

54.0 What is a palindromic repeat?

 110 C h a p t e r T h r e e

55.0 What is Multiple Exact Match (MEM)? How is a suffix tree used in
MEM software?

56.0 How does ClustalW software use the suffix tree representation of
biologic sequences?

57.0 Discuss the space and time savings when a query is streamed against a
suffix tree when seeking an alignment.

58.0 Lazy suffix trees. Kurtz and colleagues [33] provided an efficient
implementation of lazy suffix trees. A subtree is evaluated not before it is
traversed for the first time. Write-only top-down construction can alleviate
some of the concerns of using a suffix tree as a data structure. This can be seen
in the word algorithm. Discuss how this can be more efficient in space and
time than McCreight’s algorithm [31].

59.0 Exact string matching using suffix trees. Given an input of pattern of
length m and text of length n, prepare an output of all occurrences of P in T.
Create a suffix tree for T. Maximally match P in the suffix tree. Show that this
can be completed in O(n) time and O(n) space. Prepare output with all the
leaf positions below the match point. Can this be completed in O(m + k) time,
where k is the number of matches?

60.0 Set of patterns using suffix trees. Given an input of a set of patterns (Pi) of
total length m and text T of length n, prepare an output with the positions of all
occurrences of each pattern Pi in T. Create a suffix tree T with a preprocessing
time and space need of O(n). Maximally match each Pi in the suffix tree. The
output contains all leaf positions below the match point in O(m + k) time, where
k is the total number of matches.

61.0 Compare the Aho-Corasick approach [15] to building a keyword tree
of a set of patterns P in O(m) preprocessing time and O(n + k) search time
with the suffix tree approach. Show with matching statistics that the suffix
tree approach for finding the set of patterns as discussed in Exercise 60.0 has
a similar tradeoff as the Aho-Corasick approach.

62.0 Lowest common ancestor. Given an input of suffix tree T and two nodes v
and w of T, prepare an output with the LCA of v, w in T. Can this be completed
in linear time?

63.0 Longest common extension. Given two strings S1 and S2, find the
length of the longest substring of S1 beginning at i that matches substring
S2 beginning at j using suffix trees. Show that this can be completed in O(n)
time and O(1) query time.

64.0 Discuss how the space requirements for constructing a suffix tree can
be further reduced compared with the O(n) discussed in Sec. 3.1.

65.0 Suffix forest. Sharma [34] showed that the suffix forest method can
be used to approximately align multiple sequences. Compare this with
construction of a generalized suffix tree, and discuss the pros and cons of
each method.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 111

66.0 Hash tables. A hash function can be used to convert a sequence of length n
into a smaller number that serves as the digital fingerprint of the sequence.
The Rabin-Karp string search algorithm, as discussed in Sec. 3.4.1, makes use
of hashing to compare strings. Keys are associated with values in a hash table.
The look-up operation is supported efficiently by use of a hash table. Discuss
the potential of hash tables to represent sequences. Can they come in handy
to align a pair of sequences?

67.0 Can the suffix tree representation of sequences be used to obtain the
optimal global alignment of two sequences S and T in less time and space than
the O(n2) used by the dynamic programming approach?

68.0 Can the suffix tree representation of sequences be used to obtain optimal
local alignment of two sequences S and T in less time and space than the O(n2)
used by the dynamic programming approach?

69.0 How can the affine gap penalty parameters be incorporated into the
suffix tree construction used for obtaining local alignment with increased
biologic significance?

70.0 Rapid global alignment of human and mouse genomes. Alignment between
two sequences with lengths m and n would consume O(mn) time using the
dynamic programming approach discussed in Sec. 2.4. In related genomic
sequences, such as the human and mouse genomes, parts of the sequences are
largely conserved between the two species and align well, and these parts of
the sequences are separated by longer sequences that are not well conserved
and are difficult to align. Rather than seeking a global alignment, a pragmatic
approach would be to find islands that align readily. This can be accomplished
by performing local alignments in linear time, and then an optimal alignment
can be attempted by concatenating the local alignments. Suffix trees can be
used to obtain the local alignments between the segments of the two sequences.
All suffixes of a sequence are stored in a suffix tree such that each path from the
root to the leaf node corresponds to a suffix of the sequence are stored in the
suffix tree. Every leaf corresponds to a different suffix. The number of leaves
is the number of suffixes. Discuss the time and space needed for (1) constructing
the suffix trees for sequences S and T, (2) obtaining local alignments between
the segments of two sequences, and (3) chaining all the local alignments to
obtain a global alignment. Is the resulting alignment optimal?

71.0 CHAOS. CHAOS is a pairwise local alignment-finding software
developed at Stanford University. It is optimized for noncoding and other
poorly conserved regions of the genome. Both exact matching and degenerate
seeds are used. Homology in the presence of gaps is detected. Discuss the
advantages of using CHAOS.

72.0 LAGAN. LAGAN is a parameterizable pairwise global alignment
software developed at Stanford University. Local alignments generated by
CHAOS are used as anchors, and the search area of the Needleman-Wunsch
algorithm is limited to around these anchors. Discuss the speed and space
savings of using this approach compared with the dynamic programming
method.

 112 C h a p t e r T h r e e

73.0 MULTI-LAGAN. The approach discussed in Exercises 69.0 to 71.0 can
be extended to multiple-sequence alignment by generalization. Progressive
pairwise alignments are performed by a user-specified phylogenetic tree. Discuss
the optimality and speed and space savings gained by using this method.

74.0 SHUFFLE-LAGAN. SHUFFLE-LAGAN is a novel global alignment
algorithm developed by computer scientists at Stanford University.
Rearrangements such as inversions, transpositions, and duplications are
found in the framework of global alignment. Regions of conserved synteny are
aligned using LAGAN, and a map of the rearrangements between sequences
is built using CHAOS. Discuss the advantages of using this approach.

75.0 Discuss the hash table–based approach used in FASTA software for
sequence queries.

76.0 F-index and alignment of sequences S and T. F-index is about 2 percent of
the size of the sequence. A Boolean match table is constructed by partitioning
sequence S into substrings. These substrings are searched in the F-index of
sequence T. The columns of the match table correspond to substrings of sequence
S, and the rows correspond to substrings of sequence T. Entries of true and false
in the table are used to mark up corresponding substrings with similarities and
dissimilarities, respectively. The match table is divided into slices and submitted
for processing to a alignment tool such as BLAST. This technique is called match
table–based pruning (MAP) [35]. Discuss the speed and space savings of this
approach. What happened to the optimality of alignment.

77.0 Show that the O(n2) time taken by Needleman and Wunsch’s dynamic
programming method for obtaining global optimal alignment can be speeded
up to O(rn), where r is the amount of error allowed. This can be done by filling
only the required part of the distance matrix.

78.0 GLASS. In the GLASS software, speedup of the dynamic programming
solution for optimal global alignment for a pair of sequences is obtained. Exact
matches of long substrings are found first. The extraction of k mers is required.
Show that the space and time complexity are still high using this approach.

79.0 QUASAR. In this software tool, a suffix array is built on one of the
sequences. The exactly matching seeds are counted using the suffix array. If
the number of seeds for a region exceeds a selected threshold, the region is
searched using BLAST. Discuss the time and space needed in this approach.

80.0 Hash table–based tools. Some of the hash table–based software tools
developed include BLAST, MegaBLAST, BL2SEQ, WU-BLAST, SENSEI, FLASH,
PipMaker, BLASTZ, PatternHunter, and BLAT. A hash table is constructed in all
these tools on one of the sequences. All substrings of certain length l are inserted
in the hash table. The length l varies for different applications. In BLAST, the
values used are l = 11 for nucleotides and l = 3 for proteins. Exactly matching
substrings called seeds of length l are found using the hash table. The seeds are
extended in both directions during the second phase. Combinations are used if
needed to seek better alignments. Discuss the time and space efficiency of this
approach for (1) short queries and (2) long queries.

 S e q u e n c e R e p r e s e n t a t i o n a n d S t r i n g A l g o r i t h m s 113

81.0 AVID. Pachter and colleagues [38] developed a global alignment
method called AVID in which suffix trees and hash tables are used to represent
sequences S and T prior to obtaining alignment. Knowledge of conserved
regions in long genomes such as the human and mouse genomes is tapped
into in this procedure. The input sequences S and T are preprocessed using the
RepeatMasker program developed at the University of Washington. Masked
and unmasked sequences are used during the alignment process. Matches
are divided into repeat matches, clean matches, etc. Maximal unique matches
(MUMs) are found by construction of suffix trees. The problem of finding all
maximal matches is transformed into finding maximal repeated substrings
in one string. The two sequences are concatenated, and a character is placed
between them. A maximal repeat that crosses the boundary of sequence S
represents a maximal match between sequences S and T. The anchoring and
alignment of sequences are completed in a recursive fashion. An anchor is a
set of nonoverlapping, noncrossing matches. Noisy matches are delineated.
Matches then are ordered. The gap score used was zero, and the mismatch score
used was infinity. Discuss the speed and space savings that can be expected
with this approach.

82.0 Find the maximum decreasing subsequence from {21, 27, 15, 18, 16, 14,
17, 28, 13}. Discuss the time taken and space needed.

83.0 Compare the recursion solution obtained for Exercise 82.0 with that
representing subsequence information in the form of a binomial heap [36].
[Hint: The time taken to identify the longest subsequence is almost O(n)
because it is the largest branch of the binomial heap. Space required in the
worst case is O(2n) and may be less in the average case.]

84.0 Show that there is an n lg n solution for the maximum increasing
subsequence problem by keeping track of the indices of a sequence, predecessor,
and lengths of subsequences.

85.0 Sparse dynamic programming method for LCS from fragments. Given a pair
of sequences S and T of length n and m, respectively, and a set of M of matching
substrings of S and T, find the LCS based only on the symbol correspondence
induced by the substrings. Giancarlo and Baker [37] developed an algorithm
that solves the problem in O[⎥M⎥lg(M)] using balanced trees. Show by an
example that this is an improvement over the Hunt-Szymanski algorithm
discussed in Chap. 2.

86.0 When Johnson’s version of flat trees was used in Exercise 85.0, show
that the solution can be obtained in O[⎥M⎥lg lg min(M, nm/M)].

87.0 Show that the algorithm discussed in Exercise 86.0 can be adapted to
finding the LCS problem in O[(m + n) lg(Σ) + ⎥M⎥lg(M)] time using balanced
trees.

88.0 Show that the algorithm discussed in Exercise 87.0 can be adapted to
finding the LCS problem in O[(m + n) lg(Σ) + ⎥M⎥lg lg min(M, nm/M)] time
using Johnson’s version of flat trees.

89.0 What is the connection, if any, between suffix tree and DAWG?

 114 C h a p t e r T h r e e

90.0 How can a suffix tree representation be used to find approximate repeats
in DNA sequences?

91.0 What is the difference between local and global alignment of sequences?

92.0 How are suffix trees used in fast look-ups in databases?

93.0 How are suffix trees used to calculate substring frequencies?

94.0 How are suffix trees used in motif- and pattern-finding algorithms?

95.0 How are suffix trees used in hybrid dynamic programming methods?

96.0 How suffix trees are used in oligo construction and microarray design
algorithms?

97.0 What are affix trees?

98.0 How are suffix trees used in resequencing projects?

99.0 Why is use of a suffix tree an advantage when main memory is
limited?

100.0 What is clustered storage, and how is it used in implementation of
suffix trees?

101.0 What is a distributed suffix tree?

CHAPTER 4
Multiple-Sequence

Alignment

Objectives
The objectives of this chapter are to

• Define multiple-sequence alignment and grading functions.

• Define sum-of-pairs’ scores.

• Show that the optimal multiple-sequence alignment problem
is NP complete.

• Introduce the center star algorithm to come within twice the
optimality.

• Introduce iterative multiple-sequence alignment methods.

• Discuss suboptimal multiple-sequence alignment by the
greedy method.

4.1 What Is Multiple-Sequence Alignment?
The theory of evolution states that a common ancestor exists for several
known organisms. The protein sequences in different organisms that
evolved from a common ancestor can be expected to be homologous
but for a few misalignments. The homologous relationships can be
captured by multiple-sequence alignment (MSA).

MSA methods are a topic of increasing interest. Both the
development of grading functions and the hunt for an optimal
alignment from all the possible alignments are of importance. The
discussions apply to both protein and DNA alignments. Multiple
alignments usually are found from primary sequences. Expert
knowledge of protein sequence evolution can be used to produce
high-quality multiple-sequence alignments. Important factors are
specific sorts of columns in alignments, such as highly conserved
residues or buried hydrophobic residues; the influence of secondary
and tertiary structures, such as the alternation of hydrophobic and
hydrophilic columns in an exposed beta sheet; and expected patterns

115
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 116 C h a p t e r F o u r

of insertions and deletions and the tendency to alternate with blocks
of conserved sequence. The changes that occur in columns and in the
patterns of gaps are dictated by phylogenetic relationships between
sequences. RNA alignments are constrained by a secondary-structure
model. The secondary structure in many cases can be inferred from
the primary-sequence information.

Databases of proteins usually feature protein families. Proteins
with similar secondary structures are categorized as a protein family.
They have similar function and evolutionary history. The structure,
function, and evolutionary history of an identified protein sequence
depends on the protein family of which the protein is a member. The
connection between structure, function, and origin of the molecule
and the protein sequence distribution is not strong.

Another motivation for seeking MSA arises in the analysis of
repeats in sequences. Sections of the DNA primary-sequence
distribution are replicative. These happen several times throughout
the genome. Sometimes the repeats can be off by a minor number of
insertions, deletions, and substitutions. For example, an ALU
replication is roughly 250 bp in length and is found to occur more
than 500,000 times in the human genome. Nearly 60 percent of the
human genome can be attributed to these repetitions. There is no
known biologic function that can be attributed to the repeats. Sixty
percent of 3 billion base pairs is 1.8 billion base pairs. Thus only
1.2 billion base pairs can be attributed with all the known functions.

In MSA, homologous residues among a set of sequences are
aligned together in columns. Homologous refers to both structural and
evolutionary cohesivity. A column of aligned residues occupies
similar three-dimensional structural positions, and all diverge from a
common ancestral residue.

For example, Fig. 4.1 shows a multiple alignment of immuno-
globins. A crystal structure is generated owing to one of the sequences.
This sequence structure and alignments with other related sequences
reveal conserved characteristics of the immunoglobin superfamily,
including conserved beta strands and certain key residues in the
sequences. With the exception of trivial cases of highly identical
sequences, it is not possible to unambiguously identify structurally
or evolutionary homologous positions and create a single, correct
multiple alignment. Chothia and Lesk [1] examined pairwise

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG—

FIGURE 4.1 Multiple sequence alignment in immunoglobins.

 M u l t i p l e - S e q u e n c e A l i g n m e n t 117

structural alignments in several different protein families and found
that for a given pair of divergent but clearly homologous (30 percent
identical) protein sequences, usually only about 50 percent of the
individual residues were superimposable in the two structures. In
principle, there is always strikingly correct evolutionary alignment
even if the structures diverge. An evolutionary correct alignment may
be more difficult to infer than a structural alignment. The structural
alignment has a independent point of reference—the superimposition
of crystal or nuclear magnetic resonance (NMR) structures. Sequence
tends to diverge more rapidly than structure. Parts of a protein are
not alignable by structure or not alignable by sequence.

4.2 Definitions of Multiple Global
Alignment and Sum of Pairs

4.2.1 Multiple Global Alignment
A multiple global alignment maps the given sequences S1, S2, . . . , Sl
to sequences S1’, S2’, . . . , Sl’ that may contain spaces where

⎪S1’ ⎪ = ⎪S2’ ⎪ = … = ⎪Sl’⎪ (4.1)

Removal of spaces from S1’ leaves Si, for 1 ≤ i ≤ l. In multiple
alignment, there are various grading methods, and it is not clear
which is the best. A function d(x, y) that measures the distance between
characters x and y is defined. This grading method is called the sum of
pairs. The distance function assigns higher grades the more distant
apart the two sequences are:

∑ d(S’[i], T’[j]) where l = ⎪S’⎪ = ⎪T’⎪ (4.2)

4.2.2 Sum of Pairs
The sum-of-pairs (SP) grade for a multiple global alignment A of l
sequences is the sum of the grades of all alignments induced by A.
The grading function is assumed to be symmetric. The issue of a
separate gap penalty is not discussed. The optimal SP global alignment
of sequences S1, S2, . . . , Sl is an alignment that has the minimum
possible SP grade for these l sequences.

4.3 Optimal MSA by Dynamic Programming
The dynamic programming methods described in Chap. 2 can be
generalized for the problem of aligning l sequences each of length n.
The dynamic programming table has l dimensions. The dimensions
of the table are (n + 1)l. Each entry depends on 2l – 1 adjacent entries.

 118 C h a p t e r F o u r

The running-time complexity of the algorithm is O(n)l. If n is around
460, such as the typical length of a protein, it would be feasible only for
small values of l, perhaps 6 or 7. Typical protein families have 1005
members. In order to have an algorithm that works for l in the hundreds,
the running time needs to be in polynomial time. As l appears as a
power exponent such as nl, when l is large it is no longer polynomial.

4.4 Theorem of Wang and Jiang [2]
The optimal MSA problem using dynamic programming is NP
complete. NP stands for nondeterministic polynomial–bounded.

4.5 What Are NP Complete Problems?
Most computer algorithms have time efficiency of polynomial time on
input sizes of n. Not all problems can be solved in polynomial time.
Turing’s halting problem cannot be solved by any computer no matter
how much time is provided. As a matter of general rule, problems that
can be solved within polynomial time are considered tractable, and
problems that require superpolynomial time are considered intractable.
No polynomial time solution is possible for NP complete problems.

A problem has a polynomial time solution if and only if there is
some algorithm that solves it in O(nc) time, where c is a constant and
n is the size of the input. For example, for the 2-sequence optimal
global alignment problem, the time complexity is O(n2); for the
2-sequence alignment with arbitrary gap penalty function, the time
complexity is O(n3); and for the 100-sequence alignment problem, the
time complexity is O(n100), comparison sorting in O(n lgn), and
counting sort in O(n). The O(n100) is a polynomial time solution, but it
is impractical.

NP complete problems are equivalent in the sense that if any one of
them has a polynomial time solution, then all of them do. In 1971, Cook
defined the notion of NP completeness. He defined NP complete
problems to be problems that have a property that can be verified in
polynomial time whether or not a supplied solution is correct. Karp [3]
showed that a diverse array of problems is NP complete. Many problems
in graph theory, combinatorial optimization and scheduling, and
symbolic computation have been proven NP complete. There are some
methods of dealing with NP complete problems in bioinformatics:

 1. Consider only small inputs using a non–polynomial time
search algorithm.

 2. For inputs that are nonpolynomial on worst-case inputs,
consider average inputs.

 3. Give up guaranteed optimality of solutions by settling for an
approximate algorithm.

 4. Heuristics: Genetic algorithms can be used to seek approxi-
mate solutions. Rigorous analysis of heuristic algorithms is
generally unavailable.

 5. Problems to be solved in practice may be more specialized
than the general one that was proved NP complete.

4.6 Center-Star-Alignment Algorithm [4]
MSA can be performed in polynomial time using the center-star-
alignment algorithm. The SP grades are less than twice those of the
optimal solutions. The distance function has the following properties:

 1. d(x, x) = 0

 2. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all characters
of x, y, z (4.3)

Distance along one edge of a triangle is at most the sum of the
distances along the other two edges.

Algorithm 4.1 Center-Star-Alignment Algorithm
d is defi ned as the grade of the minimum global alignment distance of sequences
S and T.
Input: Set of T of l sequences

S
1
 is found that minimizes

d = ∑D(S
1
, S) (4.4)

The dynamic programming algorithm is run on each of lC2 pairs
of sequences in T. The remaining sequences in T are called S2, . . . , Sl.
Addition of these sequences consecutively to a multiple alignment
that initially contains only S1 is as follows: Suppose that S1, S2, . . . ,
Sc-1 is already aligned as S1’, S2’, . . . , Si-1’. Si” and Si’ are produced by
executing the dynamic programming algorithm on S1’. S1 is added.
Si” is obtained from Si’ by adding spaces to those columns where
spaces were added. Si’ is replaced by Si”.

4.6.1 Time Analysis

Theorem The center-star-alignment approximation algorithm runs in time O(l2n2)
when given sequences each of length at most n.

Each of the lC2 grades of D(D, T) can be computed in O(n2) time.
The total time taken is O(l2n2). After adding Si to the multiple
alignment, the length of S1’ is at most n, so the time to add all the
n sequences to the MSA is

O in n O l n
l

[()] ()
1

1
2 2

−

∑ = (4.5)

 M u l t i p l e - S e q u e n c e A l i g n m e n t 119

 120 C h a p t e r F o u r

All that remains to be shown is that a solution that is less than a factor
of 2 worse than the optimal solution can be produced using the
algorithm. Let M be the alignment produced by this algorithm, and
let d’(i, j) be the distance M induced on the pair Si, Sj, and let

g M d i j
j

l

i

l

() (,)=
==
∑∑

11
 (4.6)

g(M) is exactly twice the SP score of M* because every pair of
sequences is counted twice. Then for all i, d’(1, k) = D(s1, Sk). This is so
because the algorithm used an optimal alignment of S1’_ and Skd(_, _) =
0. Let M* be the optimal alignment, d’(i, j) be the distance M* induces
on the pair Si, Sj and

g M d i j
j

l

i

l

(*) * (,)=
==
∑∑

11
 (4.7)

Theorem SP grade less than twice that of the optimal SP alignment is produced
by the center-star-alignment algorithm.

g M

g M

l

l

()

(*)

()
≤

−
<

2 1
2 (4.8)

Proof Obtain an upper bound on v(M) and a lower bound on v(M*) and
then take their quotient.

g M d i j
j

l

i

l
() '(,)= ∑∑

== 11
 (4.9)

≤ +∑∑
==

['(,) '(,)]d i k d k j
j

l

i

l

11
 (4.10)

Triangle inequality = 2 1 1 2 1
22

() (,) () (,)l d k l D S Sl l
l

l

l

l
− = − ∑∑

==
 (4.11)

Equation (4.11) follows because each d(l, 1) = d(1, l) occurs in 2(l – 1) terms.

g M d i j
j

l

i

l
(*) * (,)= ∑∑

== 11
 (4.12)

≤ ∑∑
==

D S Si
j

l

j
i

l
(,)

11
 (4.13)

 M u l t i p l e - S e q u e n c e A l i g n m e n t 121

≥ ∑∑
==

D S Si j
j

l

i

l
(,)

22
 (4.14)

Combining these inequalities,

g M

g M

l

l

()

(*)

()
≤

−
<

2 1
2 (4.15)

4.7 Progressive Alignment Methods
The solution method in progressive alignment is by constructing a
succession of pairwise alignments. Initially, two sequences are cho-
sen and aligned by standard pairwise alignment. Then a third
sequence is chosen and aligned to the first alignment, and this pro-
cess is iterated until all sequences have been aligned. This method
was suggested by Feng and Doolittle [5], among others. Different
algorithms differ in (1) the way that they choose the order to do the
alignment, (2) whether the progression involves only alignment of
sequences to a single growing alignment, and (3) in the procedure
used to align and score sequences or alignments against existing
alignments. These alignments are heuristic in nature. A guide tree is
usually built. This is a binary tree whose leaves represent sequences
and whose interior nodes represent alignments. The root node rep-
resents a complete multiple alignment. The nodes furthest from the
root represent the most similar pairs.

Algorithm 4.2 Feng-Doolittle Progressive MSA
Calculate a diagonal matrix of N(N – 1)/2 distances between all pairs of N
sequences by standard pairwise alignment, covering raw alignment scores to
approximate pairwise distances. Construct a guide tree from the distance matrix
using the clustering algorithm of Fitch and Margoloash [6].

Starting from the first node added to the tree, align the child nodes (which
may be two sequences, a sequence and an alignment, or two alignments). Repeat
for all other nodes in the order in which they were added to the tree until all
sequences have been aligned.

The distance D is calculated as

D S
S S
S S

= − = −
−
−

log log
()
()max

eff
obs rand

rand

 (4.16)

where Sobs is the observed pairwise alignment score, Smax is the
maximum score, the average of the score of aligning either sequence
to itself, and Srand is the expected score for aligning two random
sequences of the same length and residue composition.

 122 C h a p t e r F o u r

The chosen center sequence is always attempted to be aligned with
the unaligned sequences in the center-star algorithm discussed in the
preceding section. However, there might be cases in which clusters are
formed because some of the sequences are very “close.” A technical
hurdle is how to define close and cluster. The cluster of sequences may
have to be merged after alignment of sequences in the same cluster first.

MAFFT software was developed [15] with increased speed to
obtain MSA. Fast Fourier transformation (FFT) is used in the
procedure. FFT is a interesting method especially for obtaining
periodicity in real systems. Although similarities is the object of study,
very little has been done using FFT. Homologous segments can be
detected rapidly by reading of the peaks in the frequency spectrum.
A scoring system is also introduced that is designed for sequences
with large insertions that are distantly related with similar sequence
width. The correlation between two amino acid sequences can be
calculated. The homologous segments can be found, and a homology
matrix is divided. The procedure is extended to group alignments. A
suitable similarity matrix is defined with appropriate gap penalty.
The CPU implementation was found to be speedier than T-COFFEE,
CLUSTALW, DILAIGN, BALIBASE, etc.

A variation of the progressive alignment strategy is called iterative
pairwise alignment. For example, a sequence that is not aligned is selected
and aligned to the previously obtained aligned sequences. Optimal
pairwise alignments between individual sequences in the MSA, without
regard to spaces inserted, are used to identify the “nearest” sequence. All
that remains is to show how to seek an alignment of a sequence with a
group of sequences. The method that was used to add Si to the center-
star alignment can be set as a macro and run.

4.8 The Consensus Sequence
Given an MSA, it is sometimes useful to derive from it a consensus
sequence that can be used to represent the entire set of sequences in the
alignment.

Defi nition Given a multiple alignment of M sequences S1, S2, . . . , Sl, the consensus
character of column i of M is the character Ci that minimizes the sum of distances
to it from all the characters in column i.

min ('[],)imize d S i Cj i
j

l

=
∑

1
 (4.17)

Let d(i) be the minimum sum. The consensus sequence is the concatenation C1,
C2, . . . , Ci of all the consensus characters, where l = ⎪S1’⎪ = ⎪Sk’⎪. The alignment
error of M then is defined to be

d i
i

l
'()

=
∑

1
 (4.18)

 M u l t i p l e - S e q u e n c e A l i g n m e n t 123

4.9 Greedy Method
A substantial reduction in the volume of computations to minimize
Eq. (4.18) can be achieved using the greedy method to construct
multiple alignments from pairwise alignments. The simplest such
method fixes the alignment of the pair of sequences i, j with minimum
distance. Of the remaining pairs, the minimum distance pairwise
alignment is fixed. If each member of the pair is already in a fixed
alignment, then the new fixed alignment joins those two aligned
groups. The resulting multiple alignment is an upper bound. It is
seldom optimal.

4.10 Geometry of Multiple Sequences
The geometries of multiple sequences are referred to as line geometries
because any two points (sequences) can be joined by a straight line in
the metric space. This geometry has some highly non-Euclidean
properties that are not well understood. In the geometry of geodiscs,
spaces are referred to as straight. The problem of aligning several
sequences can be studied using this technique. If the k sequences are
related by a binary tree, they can be aligned in O(rn2) time by a
heuristic method naturally suggested by the geometry. If the original
sequences are formed out of an alphabet ∑, define a weighted-average
sequence to be a finite sequence S = S1, S2, . . . , Sn where each Si has the
form Si = (p0, p1, . . .), where pi ≥ 0 and

∑pi = 1 (4.19)

If pi corresponds to the proportion of the ith element of A and b0
corresponds to the proportion of deletions, -, it is then easy to convert
a usual sequence into a weighted-average sequence by taking a
statistical summary of the letters aligned to a given position. The
letter, -, is thought of as a space indicating a deletion in the sequence
in which it appears as an insertion m.

d a b w p qi i i
i

(,)
/

= −⎛
⎝⎜

⎞
⎠⎟∑

α
α1

 (4.20)

where wi is the weighting factor and α ≥ 1 is a constant. In order to
compute the global distance D(S, T) between two weighted sequences,
the usual dynamic programming algorithm is employed. Here

 S = S1, S2, . . . , Sn

 T = T1, T2, . . . , Tm (4.21)

 Dij = D(a1, . . . , ai, b, . . . , bj) (4.22)

 124 C h a p t e r F o u r

 D0j = D(_, b1, . . . , bj) (4.23)

 Di0 = D(a1, . . . , ai, _) (4.24)

 D00 = 0 (4.25)

Then

Dij = min[D(i – 1), + d(ai, _), D(i – 1, j –1)

+ d(ai, bj), D(I, j – 1) + d(_, bj)]

D(n, m) = D(S, T)

For an optimal alignment of S and T, define

g(λ) = λS ⊕ (1 – λ)T (4.26)

where gi(λ) = λSi + (1 – λ)Ti* (4.27)

and the last + sign is simple vector addition. In the case λ = 1/2, U(1/2) is
an equal weighting of Si’ and Ti* from an optimal alignment of S and
T, and more can be shown in that direction. The following theorem
states that the resulting metric space in a line geometry.

Theorem Let g(λ) = λS ⊕ (1 – λ)T (4.28)

Then D(S, T) = D[S, V(λ)] + D[b, V(λ)] (4.29)

and D[S, U(λ)] = (1 – λ)D(S, T) (4.30)

This theorem can be proved using the triangular inequality. As a corollary to
this theorem,

D[U(λ1), U(λ2)] = ⎪λ1 – λ2⎪D(S, T) (4.31)

The theorem implies that a weighed-average sequence can be found to represent
any point on the line between two sequences.

Theorem If U satisfies D(S, U) + D(U, T) = D(S, T), then each gi = λiSi + (1 – λi)Ti*
for some optimal alignment of S and T.

The proof of this theorem can be found in Waterman [7]. It may be
conjectured that the geometry for more than two sequences immediately follows.
Unfortunately, the geometric properties of even three sequences are far from
simple. The problem of aligning r sequences when a binary tree relating the
sequences is assumed does have a practical heuristic solution.

Suppose that two sets of sequences S1, S2, S3, . . . , Sn and T1, T2, . . . , Tm have
been aligned by some method. Each such alignment can be easily made into
weighted-average sequence S* and T*. The metric D(_, . . .) can be applied
to align these alignments. Note that λS* ⊕ (1 – λ)T* can be formed from any

 M u l t i p l e - S e q u e n c e A l i g n m e n t 125

alignment that gives D(S*, T*) but that the number of sequences involved m and
n do not contribute to the complexity of computing D(S*, T*).

Consider three sequences S1, S2, and S3. Let them be related by a tree. S1 and
S2 are nearest neighbors. Thus e2 = 1/2S1 ⊕ 1/2S2 occupies the midpoint of a line
between S1 and S2. If all distances had the properties of Euclidean geometry, the
center of gravity would be a point on a line from the midpoint e2 to S3, two-thirds
of the length from S3 and one-third from C2. Therefore, the desired sequence is
C3 = 1/2S3 ⊕ 2/3[e2]. This algorithm generalizes to r sequences, and other weightings
can be used.

Summary
Multiple sequence alignment involves lining up more than two
sequences and finding matches among them. The dynamic programming
methods discussed in Chap. 2 for pairwise sequence alignment can be
extended to multiple sequences. For k sequences, the size of the dynamic
programming table would be (n + 1)k. Running time needed would be
O(n)k. For sequence length greater than 30, this would be infeasible when
k is greater than 4. When k is large, the time taken cannot be represented
by a polynomial. The optimal sum-of-pairs alignment is NP complete,
non–deterministic polynomial bounded.

Center-star alignment can be used to obtain multiple sequence
alignment in polynomial time with a grade of alignment within twice
the optimal solution. Progressive alignment methods of MSA are
discussed. Variations of this approach include the iterative alignment
method. Consensus sequence and the greedy method for MSA also
are discussed. End-of-chapter exercises include analysis of COSA,
CLUSTALW, T-COFFEE, suffix forest, DIALIGN, MUSCLE, MAFFT,
PSI-BLAST, STAMP, JalView, etc.

References
 [1] C. Chothia and A. M. Lesk, “The relation between the divergence of sequence

and structure in proteins,” EMBO J. 5 (1986), 823–-826.
 [2] L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,”

J. Comput. Biol. 9 (1994), 337–349.
 [3] R. M. Karp, “Reducibility among combinatorial problems.” In R. E. Miller and

J. W. Thatcher (eds.), Complexity of Computer Applications. New York: Plenum
Press, (1972), pp. 85–104.

 [4] M. Tompa’s course notes, Computational Biology, CSE 527, University of
Washington, Seattle, WA, Winter 2000, DBI-9601046 and NSF Grant, DBI-
997 4498.

 [5] D. F. Feng and R. F. Doolittle, “Progressive sequence alignment as a prerequi-
site to correct phylogenetic tree,” J. Mol. Evol. 25 (1987), 351–360.

 [6] W. M. Fitch and E. Margoliash, “Construction of phylogenetic trees,” Science
155 (1967), 279–284.

 [7] M. S. Waterman, Introduction to Computational Biology. New York: Chapman
and Hall, 1995.

 [8] E. Althaus, A. Caprara, H. P. Lenhof, and K. Reinert, “Multiple sequence
alignment with arbitrary gap costs: Computing an optimal solution using
polyhedral combinatorics,” Bioinformatics. 18 (2002), S4–S16.

 126 C h a p t e r F o u r

 [9] P. H. A. Sneath and R. P. Sokal, Numerical Taxonomy. San Francisco: Freeman,
1973.

[10] R. Chenna, H. Sugawara, T. Koike, et al., “Multiple sequence alignment with
the clustal series of programs,” Nucleic Acids Res. 31 (2003), 3497–3500.

[11] C. Notredame, D. G. Higgins, and J. Heringa, “T-Coffee: A novel method
for fast and accurate multiple sequence alignment,” J. Mol. Biol. 302 (2000),
205–217.

[12] K. R. Sharma, “On the use of suffix trees in multiple sequence alignment,”
230th ACS National Meeting, Washington, DC, August–September 2005.

[13] A. R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern,
“DIALIGN-T: An improved algorithm for segment-based multiple sequence
alignment,” Bioinformatics. 6 (2005), 66.

[14] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high accuracy and
high throughput,” Nucleic Acids Res. 32 (2004), 1792–1797.

[15] K. Katoh, K. Misawa, K. Kuma, and T. Miyata, “MAFFT: A novel method for
rapid multiple sequence alignment based on fast Fourier transform,” Nucleic
Acids Res. 30 (2002), 3059–3066.

[16] S. F. Altschul, T. L. Madden, A. A. Schaffer, et al., “Gapped Blast and PSI-Blast:
A new generation of protein database search programs,” Nucleic Acids Res.
25 (1997), 3389–3402.

[17] R. B. Russell and G. J. Barton, “Multiple protein sequence alignment from
tertiary structure comparison: Assignment of global and residue confidence
levels,” Proteins. 14 (1992), 309–323.

[18] M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, “The Jalview Java alignment
editor,” Bioinformatics. 20 (2004), 426–427.

Exercises
1.0 What are NP complete problems?

2.0 What is the Turing’s halting problem?

3.0 Name two applications of MSA?

4.0 How is MSA needed in the alignment in finding the common ancestor
among several organisms?

5.0 How is MSA used in finding repetitive sequences?

6.0 Why is MSA performed on protein sequences?

7.0 What is meant by the distance between two sequences?

8.0 Discuss the proof of triangle inequality?

9.0 How is a smaller input going to help in dealing with NP complete
problems?

10.0 How is using a average input going to help in dealing with NP
complete problems?

11.0 How is solving a specialized problem compared with the general
problem going to help in dealing with NP complete problems?

12.0 How are genetic algorithms used in obtaining solutions to NP complete
problems?

 M u l t i p l e - S e q u e n c e A l i g n m e n t 127

13.0 How does giving up optimality help in obtaining solutions to NP
complete problems?

14.0 What are progressive alignment methods?

15.0 What is the difference between the progressive alignment method and
the iterative alignment method?

16.0 Can the order of selection of sequences make a difference in the results
of the progressive alignment method?

17.0 What is a guide tree?

18.0 What is meant by a clustering algorithm?

19.0 What is meant by a consensus sequence?

20.0 How is the greedy approach applied to MSA?

21.0 COSA [8]. COSA is an integer linear programming (ILP) method. It can
be used instead of the multidimensional dynamic programming method to
obtain MSA. An objective function is maximized subject to some constraints.
The similarity grade is maximized—Σx.wx. Four constraints are required for
optimal alignment. A cutting-plane algorithm is adapted. Show that solving
an ILP is NP complete.

22.0 UPGMA [9]. The unweighted pair group method with arithmetic
mean is a bottom-up data-clustering method. Two groups of sequences or
alignments can be aligned to form a single alignment. All the possible NC2

pairwise alignments among N sequences are calculated, and the distance
matrix is obtained. A guide tree can be constructed from the matrix. Then
groups of sequences are aligned progressively following the branching order
in the tree. UPGMA is such a distance-matrix method. Show that the accuracy
of alignment is not superior using this method but that it can generate large
alignments rapidly.

23.0 CLUSTALW [10]. ClustalW is a popular computer software using the
progressive alignment methods described in Sec. 4.7. There are three main
steps: (1) obtain a pairwise alignment, (2) construct a phylogenetic tree, and
(3) obtain the multiple sequence alignment. Pairwise alignments are computed
for all sequences, and similarities are stored in a matrix. This is then converted
into a distance matrix, where the distance measures reflect the evolutionary
distance between each pair of sequences. From this distance matrix, a guide
tree, or phylogenetic tree, for the order in which pairs of sequences are to
be aligned and combined with previous alignments is constructed using a
neighbor-joining clustering algorithm. Sequences are aligned progressively at
each branch point starting from the least distant pair of sequences. Discuss the
time-taken and space-needed efficiency in this approach. What is the degree
of optimality?

24.0 T-COFFEE [11]. Tree-based consistency objective function for alignment
evaluation (T-COFFEE) is an MSA software using a progressive approach. It
generates a library of pairwise alignments to guide the multiple-sequence

 128 C h a p t e r F o u r

alignment. Discuss the degree optimality and time-taken and space efficiency
of this approach?

25.0 What are the advantages of using multiple-sequence alignments of
genomic DNA sequences and a multiple-sequence alignment of a group of
homologous proteins?

26.0 What are the advantages of using multiple-sequence alignment instead
of pairwise-sequence alignment?

27.0 Suffix Forest [12]. Given k sequences, construct k suffix trees. How will
you obtain a approximate multiple-sequence alignment using suffix forest?
How close is it to optimality? What is the time-taken and space efficiency of
this approach?

28.0 DIALIGN [13]. Segment-based multiple-sequence alignment is used in
this approach. It is an implantation of an improved algorithm. Show that the
time-taken efficiency would be O(kn2), where k is the length of the fragment
size. A greedy strategy is employed. The weights for each fragment are
recalculated. Is it NP complete?

29.0 MUSCLE [14]. This is used for creating multiple alignments of protein
sequences. Elements of the algorithm include fast distance estimation using
kmer counting, progressive alignment using a new profile function called
the log-expectation score, and refinement using tree-dependent restricted
partitioning. Discuss the degree of optimality and time-taken and space
efficiency of the method used in the MUSCLE software.

30.0 MAFFT [15]. MSA can be performed using MAFFT software. The
fast search for anchor points is obtained by the fast Fourier transform
(FFT) method. The guide tree is constructed rapidly. Accurate alignments
also can be constructed rapidly. An initial alignment is obtained using the
progressive method twice. A roughly estimated guide tree is used to align
sequences in the first phase. Show that the time taken would be O(n2l).
The guide tree is constructed in a similar fashion to the UPGMA method.
The progressive method is used in the second phase. FFT preprocessing is
used. Discuss the degree of optimality and time-taken and space efficiency
of this approach.

31.0 PSI-BLAST [16]. This is a profile-based methods. A database is searched
with a single sequence for any high-scoring sequences that are found. These
are built into a multiple alignment. This multiple alignment is used to derive
a search “profile” for a subsequent search of the database. This process is
repeated until no new sequences are found or after a prespecified number
of iterations. Discuss the optimality of alignment and time-taken and space
efficiency of this approach.

32.0 STAMP [17]. Two or more structures can be aligned using STAMP
simultaneously. Multiple alignments are sought using hierarchical methods.
Structures are superimposed, assuming that the alignment is correct. The
structural similarity is provided in a matrix of grades for all possible pairs

 M u l t i p l e - S e q u e n c e A l i g n m e n t 129

of residues. A dynamic programming algorithm is used to obtain the best
grade and an alignment of the sequences. The process is repeated until
convergence. Discuss the degree of optimality and time-taken and space
efficiency of this approach.

33.0 JalView [18]. Automatic multiple-sequence alignments can be improved
by manual editing. JalView is a Java alignment editor. It has a number of core
alignment viewing and editing options. Principal components analysis (PCA)
can be performed. How is this tool going to help improve the accuracy of the
alignment? What is the additional time taken and space needed?

34.0 What are the differences between structural and evolutionary
alignments?

35.0 What is the importance of the quality of alignment in MSA?

36.0 What is a subalignment during MSA?

37.0 What is meant by automatic alignment?

38.0 For the methods of MSA discussed, should the genomes be linear or
circular?

39.0 Where is MSA used in finding the protein secondary structure?

40.0 What are the requirements on the quality of alignment in MSA in order
to obtain the protein secondary structure?

41.0 Where does the affine gap penalty figure during MSA?

42.0 Given k sequences, does there exist one unique set of sequences for all
the possible cell values in a k-dimensional dynamic programming table?

43.0 What are the considerations of stability of alignment in the dynamic
programming method of MSA?

44.0 What are the considerations of stability of alignment in the center-star
alignment method of MSA?

45.0 What are the considerations of stability of alignment in the progressive
alignment method of MSA?

46.0 What are the considerations of stability of alignment in iterative
alignment method of MSA?

47.0 What are the considerations of stability of alignment in the greedy
method of MSA?

48.0 Consider a set of k sequences that differ by a few errors. Is obtaining the
multiple-sequence alignment of these sequences NP complete? Why?

49.0 Can the banded diagonal approach discussed in Chap. 2 for pairwise
alignment be extended to MSA?

50.0 Can the inverse dynamic programming method be applied to multiple
sequences?

 130 C h a p t e r F o u r

51.0 Consider a sparse k-dimensional dynamic programming table. Is this
problem NP complete? Why?

52.0 Can the dynamic array method of Hirschberg used for pairwise
alignment be extended to MSA?

53.0 Is there a tradeoff between time efficiency and degree of optimality
during MSA? How can this be tapped into?

PART 2
Probability
Models

CHAPTER 5
Hidden Markov Models and
Applications

CHAPTER 6
Gene Finding, Protein
Secondary Structure

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

CHAPTER 5
Hidden Markov

Models and
Applications

Objectives
The objectives of this chapter are to

• Construct zeroth-order, first-order, second-order, and kth-
order Hidden Markov models (HMMs).

• Represent DNA sequences using the HMM.

• Characterize the HMM.

• Learn the forward, backward, and Viterbi algorithms.

• Apply probability models to
• Phylogenetic tree construction.
• Evolution.
• The proteome.

• Seek pairwise and multiple alignment using the HMM.

• Accomplish protein family characterization.

• Model periodicity in DNA by wheel HMMs.

• Understand the Chargaff’s parity rule.

• Accomplish signal peptide and signal anchor prediction.

5.1 Introduction
Hidden Markov models (HHMs) are constructed by using concepts
such as conditional probability. They are used in a variety of
applications in bioinformatics. They are classified under a useful class
of probabilistic models. HMMs are a special case of neural networks,
stochastic networks, and Bayesean networks. Sequence consensus,

133
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 134 C h a p t e r F i v e

profiles, flexible patterns, and blocks can be special cases of the HMM
approach. A DNA sequence can be represented using an HMM. Such
an example is shown in Fig. 5.1. In the early 1990s, Krogh and
colleagues [1] at the University of California at Santa Cruz described
preliminary results on modeling protein sequence multiple
alignments with probabilistic HMMs. Information available in biologic
sequences can be captured using Markov models and heuristics.

Two HMM software packages for sequence analysis were
developed and made available free of charge. There is a lot of interest
centering around HMMs in the literature. They are still viewed as
black boxes instead of natural models of sequence alignment
problems. Many of the key papers where HMMs are described are in
the field of speech recognition and therefore not readily accessible to
the bioinformatics community. HMMs can be applied to a lot of
problems, such as protein structure modeling, gene finding,
phylogenetic analysis, modeling time series, speech recognition,
modeling coding and noncoding regions of DNA, protein subfamilies,
and machine learning techniques, among others.

5.2 kth-order Markov Chain
A Markov chain is a sequence of random variables whose probabilities
at a time interval depend on the value of the number at the previous
time or times. The controlling parameter in a Markov chain is the
transition probability. This is a conditional probability for the system
to go to a particular new state given the current state of the system. In
a kth-order Markov chain, the distribution of Xt depends on the
k values immediately preceding it.

 Transition probability of Xt = P(Xt = X/Xt–k, Xt–k–1, . . . , Xt–1) (5.1)

A

C

G
End

Begin

T

FIGURE 5.1 Markov chain model for DNA sequence with a begin and end state.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 135

The transition probabilities in a first-order Markov model for Xt
would depend on only one previous value, Xt–1. Dyad dependencies
can be modeled using a first-order model. The transition probabilities
in a zeroth-order Markov model for Xt would not depend on the
previous values and would be independent of them. Similarly, in a
second-order Markov model, the transition probabilities for Xt would
depend on two previous values, Xt–1 and Xt–2. A kth-order Markov
chain is said to be stationary for all t and u:

 P(Xt = X/Xt–k, Xt–k+1, . . . , Xt–1) = P(Xu/Xu–k, Xu–k+1, . . . , Xu–1) (5.2)

That is, for a stationary Markov chain, the distribution of Xt is
independent of the value of t and depends only on the previous k
variables. The transition probabilies for a first-order Markov model
to represent the primary sequence structure of DNA with the
beginning and ending base pair can be represented in the form of a
diagram similar to the one shown in Fig. 5.1. That diagram is a
directed graph with nonzero tij connections and can be called the
architecture of the Markov chain. The arrows point to the next occurrence
of the base pair.

5.3 DNA Sequence and Geometric
Distribution [2–4]

The chain sequence length distribution of DNA can be represented
using the geometric distribution. The mechanism of formation of the
polynucleotide may have a role in the parameter of the geometric
distribution. For instance, a terpolymer formed by free-radical
polymerization can be modeled with respect to the sequence
distribution as follows: When three termonomers enter a long
copolymer chain at M1, M2, and M3 concentration with reactivity
ratios r12, r21, r23, r32, r13, and r31,

P
M

r M
M

r M

22
1

21 2

3

23 2

1=
+

⎡

⎣
⎢

⎤

⎦
⎥ (5.3)

Let β γ= =
M

r M
M

r M
3

23 2

3

23 2

; (5.4)

Then the probability of an M2M2 dyad is

P22

1
1

=
+ +()β γ (5.5)

 136 C h a p t e r F i v e

The sequence length of the repeats of monomer 2 in the chain is
given by

N x x2 1

1

1
1

1
1

=
+ +⎡⎣ ⎤⎦

−
+ +

⎡
⎣⎢

⎤
⎦⎥−

β γ β γ()
 (5.6)

The mean of the distribution is given by

λ β γ

β γ
= +

+ +
()

()1 (5.7)

The variance σ2 of the distribution can be written as

σ

β γ β γ
2

2

1 1=
+

+
+() () (5.8)

For a tetrapolymer with four monomers, such as the case for DNA
polynucleotides,

 P22 =
1

1()+ + +β γ δ (5.9)

where δ =
M

r M
4

24 2

The sequence length of a single base in the polynucleotide chain can
be given by a geometric distribution:

N x x2 1

1

1
1

1
1

=
+ + +⎡⎣ ⎤⎦

−
+ + +

⎡
⎣⎢

⎤
⎦⎥−

β γ δ β γ δ()
 (5.10)

The mean and variance of the distribution can be written as

λ β γ δ

β γ δ
σ

β γ δ β γ δ
= + +

+ + +
=

+ +
+

+ +
()

()
;

() ()1
1 12

2 (5.11)

The polymer compositions can be related to the monomer
compositions by simple relations. Thus the run lengths of A, AA,
AAA, AAAA, etc. for each of the four bases can be calculated.
Modifications to (β + γ + δ) can be made depending on the mechanism
of formation of the polynucleotide chain. The assumption that the
composition of adenine, guanine, cytosine, and thymine occurs in
equal proportions in the polymer chain can be used to simplify the

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 137

terms. The triad and tetrad probabilities, such as AGC or AAC, AGG,
etc., can be computed via the dyad probabilities.

Example 5.1 Chaves and colleagues [5] submitted the DNA sequence with 660
bases in Homo sapiens shown in Fig. 5.2 to the National Center for Biotechnology
Information (NCBI). Develop a Markov model of the third order to represent this
information. Calculate the transition probabilities, and represent the information
in the form of a suitable table.

 Number of triads that need to be studied = 43 = 64 (5.12)

 Alphabet = {A, C, G, T} (5.13)

 Number of transition probabilities that
 need to be calculated = 4 × 64 = 256 (5.14)

The 256 transition probabilities P(A/AAA), P(G/AAA) , . . . are calculated
from the information provided in Fig. 5.2 and presented in the Table 5.1.
Columns 3–6 are conditional probability values for the base pair shown at the
top of the column given the preceding triad that occurred in the sequence in
column 2. A triad number is also given to the 64 possible triads for DNA.

Example 5.2 Develop a first-order Markov model for the DNA sequence given
in Example 5.1 to represent the first 60 base pairs. Calculate the transition
probabilities, and represent the information in the form of a suitable diagram.

 ctatatatcttaatggcacatgcagcgcaagtaggtctacaagacgctacttcccctatc

 Alphabet = {A, C, G, T} (5.15)

 Number of transition probabilities that need to be calculated
 = 4 × 4 = 16 (5.16)

A

3/59

1/59 4/59 6/59

4/59

5/59

2/59

8/59

5/59

4/59

6/59

2/59

2/59

3/59

2/59 2/59

C

TG

FIGURE 5.2 660 base pairs of DNA in Homo sapiens [5].

 138 C h a p t e r F i v e

Triad No. Triad P(A/Triad) P(G/Triad) P(C/Triad) P(T/Triad)

 1 AAA 3/657 0 6/657 3/657

 2 AAC 5/657 1/657 6/657 4/657

 3 AAG 3/657 0 1/657 1/657

 4 AAT 3/657 3/657 4/657 5/657

 5 ACC 5/657 4/657 0 3/657

 6 AGG 1 0 2/657 2/657

 7 ACG 4/657 2/657 4/657 3/657

 8 ATG 2/657 2/657 5/657 0

 9 ATC 7/657 2/657 5/657 5/657

10 AGC 1/657 1/657 1/657 2/657

11 ATT 4/657 2/657 4/657 1/657

12 AGT 4/657 0 2/657 1/657

13 ACT 7/657 1/657 5/657 3/657

14 ATA 4/657 2/657 3/657 2/657

15 AGA 4/657 1/657 3/657 1/657

16 ACA 4/657 3/657 3/657 6/657

17 GGA 1/657 1/657 2/657 0

18 GGC 1/657 2/657 1/657 1/657

19 GGT 2/657 0 3/657 0

20 GCA 3/657 1/657 2/657 1/657

21 GCG 2/657 1/657 1/657 0

22 GCC 2/657 0 6/657 0

23 GCT 2/657 1/657 1/657 3/657

24 GTA 0 2/657 3/657 3/657

25 GTG 0 1/657 0 0

26 GTC 2/657 0 4/657 4/657

27 GTT 1/657 1/657 0 1/657

28 GAA 3/657 2/657 3/657 1/657

29 GAG 0 1/657 3/657 2/657

30 GAC 1/657 6/657 2/657 3/657

31 GAT 0 1/657 2/657 1/657

32 GGG 0 2/657 1/657 1/657

TABLE 5.1 Transition Probabilities in the Third-Order Markov Model to Represent
the DNA Sequence from Homo sapiens

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 139

Triad No. Triad P(A/Triad) P(G/Triad) P(C/Triad) P(T/Triad)

33 CCA 2/657 1/657 4/657 5/657

34 CCG 2/657 1/657 2/657 1/657

35 CCC 5/657 2/657 7/657 8/657

36 CCT 9/657 3/657 4/657 6/657

37 CAA 4/657 3/657 3/657 5/657

38 CAG 2/657 2/657 1/657 1/657

39 CAC 4/657 2/657 4/657 3/657

40 CAT 3/657 4/657 8/657 4/657

41 CGA 0 3/657 4/657 2/657

42 CGG 1/657 1/657 1/657 1/657

43 CGC 2/657 0 2/657 3/657

44 CGT 1/657 0 4/657 0

45 CTA 5/657 4/657 8/657 3/657

46 CTG 3/657 0 3/657 3/657

47 CTC 6/657 0 5/657 0

48 CTT 5/657 1/657 4/657 4/657

49 TTA 1/657 3/657 3/657 3/657

50 TTG 2/657 1/657 1/657 0

51 TTC 4/657 1/657 7/657 0

52 TTT 1/657 0 5/657 2/657

53 TAA 2/657 0 4/657 6/657

54 TAG 4/657 2/657 0 3/657

55 TAC 6/657 4/657 1/657 6/657

56 TAT 4/657 1/657 5/657 1/657

57 TCA 5/657 1/657 4/657 7/657

58 TCG 1/657 0 0 2/657

59 TCC 0 0 10 11/657

60 TCT 2/657 4/657 2/657 3/657

61 TGA 4/657 1/657 1/657 1/657

62 TGG 1/657 0 2/657 1/657

63 TGC 3/657 1/657 3/657 1/657

64 TGT 1/657 1/657 1/657 1/657

TABLE 5.1 (Continued)

 140 C h a p t e r F i v e

The 16 transition probabilities P(A/A), P(G/A), . . . are calculated (Fig. 5.3)
from the information provided in Table 5.2. Columns 3–6 are conditional
probability values for the base pair shown at the top of the column given
the preceding base pair that occurred in the sequence in column 2. A base
pair number is also given to the four possible base pairs, adenine, guanine,
cytosine, and thymine.

DNA strings can be generated from a four-letter alphabet {A, C, G, T}.
A simple sequence model can be developed by assuming that the
sequences have been obtained by independent tosses of a four-sided

No.
Given
Base Pair P(A/#) P(G/#) P(C/#) P(T/#)

1 A 3/59 4/59 4/59 6/59

2 G 1/59 2/59 5/59 2/59

3 C 5/59 2/59 3/59 6/59

4 T 8/59 2/59 4/59 2/59

TABLE 5.2 Transition Probabilities in the First-Order Markov Model to
Represent the DNA Sequence from Homo sapiens

1/41/4

1/2

1/2

1/2

Start End

1/2

1/4

1/4

0

0

0

0

FIGURE 5.3 First-order Markov model with 16 transition probabilities to
represent 60 base pairs in Homo sapiens [5].

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 141

die. Let the data be represented by D and the model by M. The model
M has four parameters, namely, PA, PC, PG, and PT for the probabilities
of the bases adenine, cyotosine, guanine, and thymine. Thus

PA + PB + PG + PT = 1 (5.17)

Equation (5.17) is written based on the simple surmise that each
sequence member has to be among the four nucleotide base pairs.
Further,

P(D/M) = PA
naPC

ncPG
ngPT

nt (5.18)

where na, nc, ng, and nt are the number of times the letters A, C, G, or
T, respectively, appear in the sequence O.

P(D/M) = ΠPx
nx x ∈ A (5.19)

where N: D = {0}, with O = x1 ⋅ ⋅ ⋅ xN, where xi ∈ A.

The negative logarithm of Eq. (5.19) yields

–log[P(M/D)] = ∑nx log Px x ∈ A (5.20)

Functional regions can be identified from biologic sequence data.
This includes the problem of how to identify relatively long functional
regions such as genes. A site is a short sequence that contains some
signal that is often recognized by some enzyme. Examples of
nucleotide sequence sites include the origins of replication, the sites
where DNA polymerase binds, transcription start and stop sites,
ribosome binding in prokaryotes, promoters or transcription factor
binding sites, and intron splicing sites.

Consider a large sample A of length n sites and a large sample B
of length n nonsites. Given a sequence S = S1, S2, . . . , Sn of length n, is
S more likely to be a site or a nonsite? Once this can be determined,
then the entire genome can be screened, testing every length n
sequence and thereby generate a complete list of candidate sites. For
example, the cyclic AMP receptor CRP is a transcription factor in
Escherichia coli. Its binding sites are DNA sequences of length
approximately 22". Stormo and Hertzel [6] identified 23 bonafide CRP
binding sites from unaligned DNA fragments. Positions 3–9 of
22 sequence positions are shown in Table 5.3.

The most relevant information from these 23 sites needs to be
identified. To do this, a profile is constructed. A probability
profile shows the distribution of residues in each of the n positions.
For instance, the profile for the information provided in Table 5.3
is a 4 × 7 matrix (Table 5.4). The elements of the matrix comprise
of Arj, the fraction of sequences in Arj that have a residue r in
position j.

 142 C h a p t e r F i v e

T T G T G G C

T T T T G A T

A T T T G C A

C T G T G A G

A T G C A A A

G T G T T A A

A T T T G A A

T T G T G A T

A T T T A T T

A C G T G A T

A T G T G A G

C T G T A A C

C T G T G A A

G C C T G A C

T T G T G A T

T T G T G A T

G T G T G A A

C T G T G A C

A T G A G A C

T T G T G A G

TABLE 5.3 Positions 3–9 from 23 CRP Binding Sites [6]

A 0.35 0.04 0 0.043 0.13 0.83 0.26

C 0.17 0.087 0.043 0.043 0 0.043 0.3

G 0.13 0 0.78 0 0.83 0.043 0.17

T 0.35 0.87 0.17 0.91 0.043 0.087 0.26

TABLE 5.4 Transition Probabilities for CRP Binding Sites

Arj can be thought of in terms of probability. Let t = t1t2 . . . tn be
chosen randomly and uniformly from A. Then

 Arj = P(tj = r/t ∝ A) (5.21)

Arj is the probability that the jtj residue of t is the residue r, given
that t is chosen randomly from A. For example, AT2 = 0.87. It is

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 143

assumed that these events are independent. Residue that occurs at
position j is independent of the residues occurring at other positions.
Residues of any two different positions are uncorrelated.

The probability of two independent events are multiplied together
to calculate the probability that they both occur. The probability that
a randomly chosen site has a specified sequence r1, r2, . . . , rn is
determined as follows:

 P(t = r1, r2, . . . , rn/t is a site) = P(t1 = r1 and t2 = r2 . . .)

 = ∏P(tj = rj/t is a site) = ∏Arj (5.22)

For example, the probability that a randomly chosen CRP binding
sites will be CTGTGAC is given by

 P(t = CTGTGAC/t = site)

 = 0.17 × 0.87 × 0.78 × 0.91 × 0.83 × 0.83 × 0.3

 = 0.0447 (5.23)

The sequences corresponding to this value are

 A T G T G A C

 T T G T G A C

Using the profiles A and B, the question of whether a given
sequence S is more likely to be a site or a nonsite remains. A likelihood
ratio is defined as follows: Given the sequence S = S1, S2, . . . , Sn, the
likelihood ratio denoted by LR(A, B, S) is defined to be

P t S t
P t S t

A

B

Asij

sij

(/)
(/)

= →
= →

= =site
nonsite

Π
Π

Π ssij

sijB (5.24)

5.4 Three Questions in the HMM
The hidden Markov model (HMM) is a finite set of states, each of
which is associated with a probability distribution. Transition
probabilities are used to govern the transitions among the states.
Some states are hidden from the external observer. These are the
hidden states. They are used to generate the desired output from
the given input. For instance, an outcome can be generated given
the associated probability distribution. In Sec. 5.2, the geometric
distribution was identified as one that can describe DNA
polynucleotide sequence distribution. Complete description of the
HMM requires the following [7]:

 144 C h a p t e r F i v e

Number of states N
Number of observation symbols σ in the alphabet ∑
A set of transition probabilities, namely,

 Aij = P(qt+1 = j/qt = i) 1 < i, j ≤ N (5.25)

where qt denotes the current state. The normal stochastic constraints
are met by the transition probabilities such that

 Aij ≥ 0, 1 < i, j ≤ N, and ∑NAij = 1 (5.26)

A probability distribution in each of the states B
Initial state distribution π = (πi)

Given a sequence S = ATCCTTTTTTTCA, three questions arise in
an HMM. These questions are as follows:

 1. Evaluation question: How likely is this sequence for a particular
HMM?

 P(O/λ) (5.27)

 2. Decoding question: What is the most probable sequence of
transitions and emissions through the HMM underlying the
production of this particular HMM?

 3. Learning question: How should the transition and emission
parameters be revised in light of the observed sequence?

 Maximize[P(O/λ)] (5.28)

For sequences that appear frequently in bioinformatics, the main
alphabets of the HMM are the 20 different amino acids for proteins
and the 4-letter nucleotide base pairs set for DNA/RNA. Selection of
the architecture of the HMM depends on the problem at hand. The
directed graph associated with nonzero Aij connections is called the
architecture of the HMM. The hidden states and interconnections are
examples of the structural parameters of the architecture. Depending
on the task at hand, a 64-letter alphabet of triplets of codons can be
used or a three-symbol set (α, β, and γ) for the secondary structure of
proteins and other alphabets such as the hydrophobic alphabet, the
charge alphabet, the functional alphabet, the chemical alphabet, the
structural alphabet, and the hydrogen-bonding alphabet can be used.

More complex HMM architectures than the one with two hidden
states may be considered. The linear aspects of sequences can be
captured by left-right architectures. An architecture is left-right if it
prevents returning to any state once a transition from that state to any
other state has occurred. In the standard HMM architecture, in
addition to the start and end, there are other classes of states—main
states, delete states, and insert states. Assuming that the emissions

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 145

and transitions depend on the current state only and not on the past,
two special states, i.e., the start state and the end state, are chosen.
The transition and emission probabilities are the parameters of the
model. The sequence S = ATCCTTTTTTTCA is represented by an HMM
with two states in addition to the start and end states (Fig. 5.4).

For the sake of mathematical and computational tractability, the
following assumptions are made in the theory of HMMs:

 1. Markov assumption: Transition probabilities are defined in
Eq. (5.28). The next state depends only on the current state.
The resulting model is a first-order HMM. Higher-order
HMMs with greater complexity can be used.

 2. Stationarity assumption: State transition probabilities are
independent of the real time at which the transitions take
place. Aij remains the same in Eq. (5.28) regardless of the t1 or
t2 considered for q.

 3. Output independence assumption: The current observation is
independent of previous observations. For an HMM, λ that
describes sequence O = o1, o2, . . . , oT.

 P(O/q1, q2, . . . , qT, λ) = ∏P(Ot/qt, λ) (5.29)

1/41/4

1/2

1/2

1/2

Start End

1/2

1/4

1/4

0

0

0

0

FIGURE 5.4 HMM with four states for sequence S = ATCCTTTTTTTCA.

 146 C h a p t e r F i v e

5.5 Evaluation Problem and Forward Algorithm
Given a sequence O and the HMM, for λ that is used to represent the
sequence O, find P(O/λ). When calculated from simple probabilistic
arguments, the number of operations needed is on the order of NT,
where N is the number of states of the HMM and T is the length of the
sequence. This is large even for a moderate length of sequence. To
save time, an auxiliary variable called the forward variable αt(i) is
defined. The forward variable is defined as the probability of the
partial observation sequence O when it terminates at state i. That is,

 αt(i) = P(o1, o2, . . . , ot, qt = i/λ) (5.30)

It can be seen that the following recursive relationship is valid:

 αt+ (j) = bj[ot+1∑
Nαt(i)Aij] 1 ≤ j ≤ N, 1 ≤ t ≤ T – 1 i = 1 (5.31)

where α1(j) = πjbj(o1) 1 ≤ j ≤ N (5.32)

and P(O/λ) = ∑NαT(i) i = 1 (5.33)

The time taken to complete the task is O(N2T). This is less than
O(NT), especially for long sequences [8]. It is linear with respect to the
length of the sequence. The backward variable can be defined in a
similar fashion.

5.6 Decoding Problem and Viterbi Algorithm
The problem is to find the most likely state sequence for a given
sequence of observations O and an HMM λ. The solution depends on
the definition of “most likely state sequence.” One approach is to find
the most likely state qt at t = t and to concatenate all such qt’s. Some
of the time, the solution from this method is not physically meaningful.
Another method has been developed called the Viterbi algorithm [9].
Here, the whole state sequence with the maximum likelihood is
found. An auxiliary variable is defined as

 δt(i) = max[P(q1, q2, . . . , qt–1), qt = i, o1, o2, . . . , ot–1/λ] (5.34)

This auxiliary variable denotes the highest probability that the
partial observation sequence and state sequence up to t can have
when the current state is i. It can be seen that the following recursive
relationship will hold:

 δt+1(i) = bj(ot+1){max[δt(i)Aij]} 1 ≤ i ≤ N, 1 ≤ t ≤ T – 1 (5.35)

where δ1(i) = πjbj(o1) 1 ≤ j ≤ N (5.36)

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 147

A pointer to the winning state is kept throughout the recursion
process. The state j* is finally found where it is the arg max[δT(j)].
Starting from this state, the sequence of states is backtracked as
the pointer in each state indicates. This gives the required set of
states. This algorithm is like a search graph whose nodes are
formed in the states of the HMM in each of the time instants t in
the closed interval of (1, T).

The learning problem generally is how to adjust the HMM
parameters so that the given set of observations called the training set
is represented by the model in the best way for the intended
application. Quantity for optimization changes with the application.
Some examples of optimization criteria are maximun likelihood (ML)
and maximum mutual information (MMI).

5.7 Relative Entropy
Given the sequence S = S1, S2, . . . , Sn, the log-likelihood (LLR) (A, B, S)
is defined by

 log2LR(A, B, S) = log2 ∏Asj,j/Bsj,j (5.37)

S is more likely to be a site if LLR (A, B, S) ≥ log2 L. To test for sites, a
scoring matrix W is defined whose entries are the log-likelihood
ratios:

 Wr,j = log2(Arj/Brj) (5.38)

The weight matrix for the example of CRP samples A and B is shown
in Table 5.5.

To compute LLR (A, B, S) from the preceding definition, the
corresponding scores from W: LLR (A, B, S) = Wsj,j need to be added.
When the entry Arj = 0, a problem arises because the entry becomes –∞
if the residue r cannot occur in position j of any site for biologic
reasons. Often this is a result of having too small a sample A of sites.
In this case, there are various “small sample correction” formulas that
replace Arj with a small positive number.

The log-likelihood matrix shown in Table 5.5 is an example of a
weight matrix. A score is assigned to each sequence S = S1, S2, . . . , Sn
according to the formula ∑Wsj,j in weight matrix A that is C × n.

TABLE 5.5 Log-Likelihood Weight Matrix for CRP Binding Sites

A 0.48 –2.5 –∞ –2.5 –0.94 1.7 0.061

C –0.52 –1.5 –2.5 –2.5 –∞ –2.5 0.28

G –0.94 –∞ 1.6 –∞ 1.7 –2.5 –0.52

T 0.48 1.8 –0.52 1.9 –2.5 –1.5 0.061

 148 C h a p t e r F i v e

A large portion of the genome is taken to be the background
distribution when computing log-likelihood ratios. Brj, the background
distribution of residue r in the entire genome, is the frequency with
which residue r appears in the genome as a whole:

 Brj = Brj
1 for all j and j1 (5.39)

A uniform distribution is a fair estimate for the nucleotide
composition of E. coli, and Brj = 0.25. This is not a fair estimate for
other organisms. For instance, the nucleotide composition for the
archaeon Methanococcus Jannaschii is approximately

 BA1,j = BT1j = 0.34

 BC1,j = BG1j = 0.16 (5.40)

A sample space is the set of all possible values of some random
variable S. A probability distribution P for a sample space S assigns a
probability P(S) to every s ∈ S satisfying

 P ≤ P(S) ≤ 1 (5.41)

 ∑P(s) = 1 (5.42)

The sample space is a set of length n sequences. The site profile A
induces a probability distribution on this sample space according to
the definition, as does the nonsite profile B.

Defi nition Let P and Q be probability distributions on the sample space S. The
relative entropy, information content, or Kullback-Leibler measure of P [10] with
respect to Q is denoted Db(P[]Q) and is defined as follows:

 Db(P[]Q) = ∑P(S) logb[P(S)/Q(S)] (5.43)

By convention, define P(s) logb[P(S)/Q(S)] to be O whenever P(S) = 0, in
agreement with the fact from calculus that limit as X → 0,

 x log x = 0 (5.44)

Since log[P(S)/Q(S)] is the log-likelihood ratio, Db(P[]Q) is a weighted average
of the log-likelihood ratio with the weights P(S).

Defi nition The expected value of a function f(S) with respect to probability
distribution P on sample space S is

 E[f(s)] = ∑p(s)f(s) (5.45)

In these terms, the relative entropy is the expected value of LLR (P, Q, S)
when S is picked randomly according to P(S). That is, it is the expected log-
likelihood score of a randomly chosen site.

Now, when P and Q are the sample distribution, the relative entropy will
be zero. The relative entropy measures how different the distributions P and
Q are. The relative entropy needs to be large to be able to distinguish between

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 149

sites and nonsites. The relative entropy is the measure of how informative the
log-likelihood ratio test is. When the sample space is all length n sequences and
independence of the n positions is assumed, it can be proved that the relative
entropy satisfies

 Db(P[]Q) = ∑Db(Pj[]Qj) (5.46)

where Pj is the distribution P imposed on the jth position. When b = 2, the relative
entropy is measured in bits. Unless specified otherwise, this will be the usual
case.

Theorem For any probability distribution P and Q over a sample space Db,
(P[]Q) ≥ 0, with equality if and only if P and Q are identical.

 ln(x) ≤ x – 1 for all real numbers x, with equality if and only if x = 1

The reason is that the curve y = ln(x) is concave downward, and its tangent x = 1
is the straight line y = x. Thus

 ln(1/x) = –ln(x) ≥ 1 – x

The inequality with x = Q(s)/P(S) is used up below:

Db(P[]Q) =

P s

P S

Q Sb() lg
()

()
∑ (5.47)

 ≥ 1

ln()
[() ()]

b
P s Q s−∑ (5.48)

 = 1/ln(b)∑[P(s) – ∑Q(s)] (5.49)

because ∑P(S) = ∑Q(S) = 1.
Note that the relative entropy is equal to 0 if and only if x = Q(s)/P(s) = 1 for

all s. P and Q are identical probability distributions.

5.8 Probabilistic Approach to Phylogeny
A phylogenetic tree is one in which the evolutionary relationships
among various species that are believed to have a common ancestor
are shown. The conditional probability P(Data/tree) is the likelihood
of the sequence occurring given the tree and the posterior probability.
P(Tree/data) is a way of constructing the tree given the data. Each
node with descendants represents the recent common ancestor, with
edge lengths corresponding to time estimates. P(x*/T, t0) is the
probability of a set of data that can be defined and calculated given a
tree. A model of evolution is needed and selection of events that
change sequences along the edges of a tree.

During the course of evolution, residues are substituted by others,
deletions and insertions occur among groups of residues, and more
complex constraints are imposed by the structures of nucleic acids

 150 C h a p t e r F i v e

and proteins. Models for deletions and insertions can be sought. Let
P(b/a, t) denote the probability of a residue a having been substituted
by a residue b over an edge length t. For two aligned, gapless
sequences x and y, P(x/y, t) = ∏P(xu/yu, t), where u represents sites in
the alignment. All possible forms for the substitution probabilities
P(b/a, t) for residues a and b are examined. Given a residue alphabet
of size K, these can be written as a K × K matrix that depends on t,
which is denoted by S(t):

P(A1/A1, t) P(A2/A1, t) . . . P(Ak/A1, t)

P(A1/A2, t) P(A2/A2, t) . . . P(Ak/A2, t)

S(t) =……………………………………………………… (5.50)

P(A1/AK,t) P(A2/AK,t) . . . P(AK/AK,t)

For several important families of substitution matrices, the family
is multiplicative, that is,

S(t)S(s) = S(t + s) (5.51)

for all values of lengths s and t. The probabilities should satisfy

∑P(a/b, t)P(b/c, s) = P(a/c, s + t) (5.52)

for all a, c, s, and t. The substitution process is Markovian and
stationary, and the probabilities are multiplicative. Jukes and Cantor
[11, 12] proposed a model for DNA sequences. This assumes that a
matrix R of rates of substitution takes the form shown in Fig. 5.5.

The nucleotides undergo transitions at the same rate α. The
substitution matrix for a short time S(∈) is approximately given by
S(∈) ≈ (I + R∈), where I is the identity matrix with ones down the
diagonal and zeros elsewhere.

(I + R∈) becomes by multiplicativity

S(t + ∈) = S(t)S(∈) ≈ S(t)(I + R∈)

A

C

G

T

A

–3α

α

α

α

C

α

–3α

α

α

G

α

α

–3α

α

T

α

α

α

–3α

FIGURE 5.5
Substitution matrix
R in Jukes and
Cantor model [12].

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 151

In the limit of small ∈,

 [S(t + ∈) – S(t)]/∈ ≈ S(t)R (5.53)

 dS(t)/dt = S(t)*R (5.54)

Substituting for S(t) in Eq. (5-60) gives

 dr/dt = –3αr + 3αs (5.55)

 ds/dt = –αs + αr (5.56)

These equations can be solved and the solutions written as

 rt = ¼[1 + exp(–4αt)] (5.57)

 st = ¼[1 – exp(–4αt)] (5.58)

The matrix given by Eq. (5.58) constitutes the Jukes-Cantor
model. At infinite time, the nucleotide equilibrium frequencies can
be seen to be ¼. The Jukes and Cantor model does not capture
some important features of nucleotide substitution. For instance,
transitions, namely, purine to purine or pyrimidine to pyrimidine
substitutions, are common. Transversions, where the nucleotide type
is changed, is less common. Kimura [13] proposed a model with the
rate matrix shown in Fig. 5.6.

The matrix can be solved to give

 st = ¼[1 – exp(–4βt)] (5.59)

 yt = ¼{1 + exp(–4βt) – 2 exp[–2(α+ β)t]} (5.60)

 rt = 1 – 2st – ut (5.61)

–2β–α

β

α

β

β

–2β–α

β

α

α

β

–2β–α

β

β

α

β

–2β–α

FIGURE 5.6
Rate matrix in
Kimura’s
model [13].

 152 C h a p t e r F i v e

5.9 Sequence Alignment Using HMMs
The similarity between two sequences can be scored using
probabilistic models. The gapped alignment process can be
converted into HMMs. The reliability of the alignment can be
explored. A finite-state automaton with three states can be used to
represent pairwise alignment with affine gap penalties. The match
is given by state M, and the insert is given by the X and Y states
(Fig. 5.7). The recurrence relation for updating the values in the
dynamic programming matrix was given in Chap. 2. This is used
for global alignment of sequences. Suitable changes can be included
for local alignment. The HMM is derived from the machine
diagram shown in Fig. 5.8. The symbols that derive from the states
are assigned probabilities, and transition values are provided
between states. For example, state M has probability distribution

–d

–d

–e

–e

s(xi, y1)

s(xi, y1)

s(xi, y1)

M(1, 1)

X(1, 0)

Y(0, 1)

FIGURE 5.7
Finite state
machine diagram
for affi ne gap
alignment.

FIGURE 5.8
Probabilistic model
for affi ne gap
alignment.

Y qyj

δ

δ

ε

ε

1–ε

1–2δ

1–ε

M Pxiyj

X qxi

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 153

Pab for emitting an aligned pair a:b, and states X and Y will have
distributions qa for emitting symbol a against a gap. qxi represents
state X, and state X emits symbol xi from sequence x. Transition
probabilities are specified between states. The parameters of the
model are indentified and shown in Fig. 5.8 [14]. The transition
from M to an insert state is given by δ, and the probability of
staying in an insert state is given by ε. A begin and end state may
be added to Fig. 5.8. The addition of an end state may introduce
another model parameter τ. This is to represent the probability of
transition into the end state. Thus the HMM emits a pairwise
alignment. Most discussions of HMMs can be extended to pair
HMMs. They need an extra dimension of search space to store the
extra emitted sequence. A pair HMM can be used to generate an
aligned pair of sequences.

5.10 Protein Families
HMMs have been applied with success to many protein families [15],
such as globins, immunoglobins, kinases, and G protein–coupled
receptors (GPCRs). They have been used to model the secondary
structures of proteins such as α-helices, β-sheets, and γ-coil structures,
as well as the consensus patterns of protein superfamilies. FORESST,
the database containing protein family secondary structures, and
Pfam, the database containing protein families, were available in
1997. In 1997, Pfam contained 527 manually verified families, consisting
of 39,113 sequence alignments and 6.8 million residues in the full
alignments, and they are available for browsing and online searching
via the World Wide Web. Pfam was developed to use HMM profile
analysis to complement BLAST analysis in the Caenor habditis elegans
genome project. Protein family databases typically are based on
multiple sequence alignments of known family members. The main
distinction between Pfam and most other protein family databases is
that for all of Pfam, both the family definition and the search method
span entire domains, including not only conserved motifs but also
less conserved regions, insertions, and deletions. HMM profile
methods allow variable conservation and insertions/deletions to be
dealt with in a fairly robust way. Modeling of complete domains
should facilitate more biologically meaningful sequence annotation
and in some cases more sensitive detection.

For each protein domain family in Pfam, there are three important
files. The seed alignment is a manually verified multiple alignment of
representative sets of sequences. An HMM profile is built from the
seed alignment for database searching and alignment purposes. A
full alignment is generated automatically from the HMM seed profile
by searching Swissprot for all detectable members and aligning them

 154 C h a p t e r F i v e

with the HMM profile. Most Pfam families are based on and cross-
referenced to corresponding PROSITE entries. For comprehen-
siveness, all Swissprot sequences not in Pfam are clustered
automatically by the Program Domainer (Pro Dom), which also
constructs multiple alignments automatically and is the basis for the
Pro Dom protein family database. The quality of these alignments
tends to be low. These are made available as Pfam B. Pfam B contains
13,289 clusters, 62,611 subsequences, and 8.2 million residues. On
average, alignments are 146 residues wide and contain 5 members.
Fifty-eight percent of the sequences and 32 percent of the residues in
Swissprot 34 are included in annotated Pfam alignments.

GPCRs are a family of transmembrane proteins capable of
transducing a variety of extracellular signals carried out by hormones,
neurotransmitters, odorants, and light. A total of 142 GPCR sequences
extracted form PROSITE database were used to train an HMM
architecture of length N = 430, the average length of the training
sequences, using online Viterbi learning during 12 iterations through
the entire training set. The entropy of the emission distribution of the
main states of the model is derived. The amplitude profile of the
entropy contains seven major oscillations directly related to the seven
transmembrane domains. The structural feature was discovered by the
HMM without any prior knowledge of α-helices or hydrophobicity. To
test the discriminative abilities of the model, 1600 random sequences
were generated with the same average composition as GPCRs in the
training set with lengths 300, 350, 400, 450, 500, 550, 600, 650, 700, 750,
800, 1000, 1500, and 2000. For any sequence, random or otherwise, its
raw score according to the model is calculated. The raw sequence is the
negative log likelihood of the corresponding Viterbi path.

Random sequences with similar average composition are
discriminated using the model from that of GPCRs. The scores of
random sequences and the Swissprot sequences cluster among two
similar lines. On average, the clustering along a line indicates that the
cost of adding one amino acid is roughly constant. For very short
sequences, the linearity is not preserved. These can have irregular
Viterbi paths. The linearity becomes increasingly precise for very
long sequences. Viterbi paths of very long sequences with a fixed
average composition must rely on insert states and, in fact, are forced
to loop many times in a particular insert state that becomes
predominant as the length goes to infinity. The cost-effectiveness of
an insert state k depends equally on two factors—its self-transition
probability tkk and the cross-entropy between its emission probability
vector ekk and the fixed probability distribution associated with the
sequences under construction. Long random sequences generated
using a fixed some p – px as a function of sequence length on
examination scores cluster along a regression line with slope

 min(–log tkk – ∑px log ekx) (5.62)

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 155

Furthermore, for a large fixed length l, the scores are approxi-
mately normally distributed according to the central limit theorem
with variance

 l[Ep log2 ehk – Ep log(ehk)] = var p(log ehx) (5.63)

In particular, the standard deviation of the scores increases as the
square root of length l.

Discrimination tests can be developed to decide whether a
sequence belongs to the GPCR family or not. The scores produced by
the model need to discriminate between GPCR and non-GPCR
sequences. In the case of the HMM library, a fixed set of randomly
generated sequences with the same average composition as Swissprot
can be used across different models. In the GPCR example, for any
sequence O of length l, the normalized score Es(0) was used based on
the residual with respect to the empirical regression line of the random
sequences of similar average composition divided by the approximate
standard deviation:

Es

E
l

()
. . ()

. () /0
3 0381 122 11 0

0 66 1 2= + −
 (5.64)

where E(0) is the negative log likelihood of the Viterbi path. Setting of
the detection threshold is an issue. The smallest score here on the
training set is 16.03 for the sequence labeled UK33-HCMVA. This low
score is isolated because there are no other scores smaller than 18. The
threshold can be 16 or higher. The search algorithm presents no false
negatives and two false positives. This is accomplished by removing
very long sequences exceeding the maximal GPCR length, as well as
sequences containing ambiguous amino acids. At short lengths,
below the length of the model, Eq. (5.64) is not a reasonable
approximation. It may be wise to try a mixed scheme where a
normalization factor is calculated empirically at short lengths, l < N,
and Eq. (5.64) is used for larger lengths, l > N. Thresholds may be set
from the fact that the extreme score of a set of random sequences of
fixed length follows an extreme value distribution.

By construction of a hydropathy plot, it should be possible to detect
easily whether a given sequence belongs to the class of GPCRs. The
hydropathy scales are used. Hydropathy plots (Fig. 5.9) of a number
of sequences were constructed using a 20-amino-acid window.
Examples of plots obtained for these sequences are shown in Fig 5.10.
As can be seen, the data can be noisy and ambiguous. The vertical
axis represents free energy for transferring a hypothetical α-helix of
length 20 at the corresponding location from the membrane interior
to water. A peak of 20 kcal/mol or more usually signals the possible
presence of a transmembrane α-helix.

 156 C h a p t e r F i v e

Detection from hydropathy plots alone cannot be relied on
completely. Consensus-pattern hydropathy plots and HMMs should
be considered complementary techniques. A hydropathy plot can be
constructed from the HMM probabilities. This would display the
expected hydropathy at each position rather than the hydropathy
observed in any individual sequences. Signal amplification is effected,
and the seven transmembrane regions are clearly identifiable.

5.11 Wheel HMMs to Model Periodicity in DNA
Periodic patterns in exons and introns can be indentified by using
novel HMM architectures such as loop HMM and wheel HMM.Wheel
HMMs are designed with a better ability to reveal periodic patterns
in the presence of noise. The conventional left-right architecture is not
ideal to represent exons owing to the large length variation. A
different sort of loop model was trained on both exon and intron
sequences. The HMM architecture was in the form of a wheel with
the given number of main states, without flanking states, arranged
linearly or any distinction between main states and insert states.
Sequences can enter the wheel at any point. The point of entry can be
determined using dynamic programming. The most likely periodicity
can be revealed by using wheels with different numbers of states and
comparing the negative log likelihood of the training set. Should
the wheels of 9 states perform better than wheels of 10 states, the
periodicity can be assumed to be related to the triplet reading frame
rather than to structural aspects of the DNA. The wheel model
architecture is displayed in Fig. 5.10.

Lengths of 10 nucleotides with sequences can enter the wheel at
any point. The thickness of the arrows from outside represents the
probability of starting from the corresponding state. A periodic
pattern was inferred after training the emission parameters in the

Fr
ee

 e
ne

rg
y,

 G

FIGURE 5.9 Hydropathy plots for three GPCRS of length 1000.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 157

wheel model. By training wheels of many different lengths, it was
found that models of length 10 yielded the best fit. This is confirmed
by recognizing that the skip probabilities are not strong in these
models. If the data were nine-periodic, a wheel model with a loop of
length 10 should be able to fit the data by heavy use of the possibility
of skipping a state in the wheel. State repeating in a 9-state wheel is
nonequivalent to state skipping in a 10-state wheel. These wheel
models do not contain independent insert states (as the left-right
HMM architectures). A repeat of the same state does not give the
same freedom in terms of likelihood as if independent inserts were
allowed. HMM training procedure uses a regularization term favoring
main states over skip states. All the experiments were repeated using
several subsets of exons starting in one of the three codon positions in
the reading frame without any significant change in the observed
patterns of emission probabilities.

5.12 Generalized HMM (GHMM)
Genie is based on a generalized hidden Markov model (GHMM) that
describes the grammar of a legal parse of a multiexon gene in a DNA
sequence. Reese and colleagues [16] proposed an improved splice-site

A
G

C
T

A
G

C
T

A
G

C

TA

G

C
T

A G C T A G C T

A
G
C
T

A
G
C
T

FIGURE 5.10 Eight-state circular HMM used for modeling DNA periodicity [8].

 158 C h a p t e r F i v e

predictor for the gene-finding progam Genie. In Genie, probabilities
are estimated for gene features by using dynamic programming to
combine information from different sources. One of the toughest
problems in gene finding is to determine the complete gene structure
correctly. Two novel neural networks based on dinucleotide
frequencies are used to overcome this. Significant improvements in
the sensitivity and specificity of gene structure identification are
achieved. Experimental results using a standard set of annotated
genes show that Genie identified 82 percent of coding nucleotides
correctly with a specificity of 81 percent versus 74 and 81 percent in
the older system.

Gene-finding systems such as FGENEH, GenLang, and GenMark
use known, recognized techniques in concert. The GRAIL Gene Parser
combines mutiple statistical measures with database homology
searching to identify gene features. The design in Genie is similar to
that in the Gene Parser. Genie is a implementation of the GHMM
whose states are arbitrary submodels emitting variable-length
sequences rather than signal letters (as in HMM). A GHMM is defined
in Fig. 5.11 with a simple gene structure syntax as an example.

A GHMM is an enhancement of the standard HMM often used
for pattern recognition and time series in computational biology. A
GHMM describes a more general model in which each state can
emit one or more symbols according to an arbitrary distribution.
Each state represents an independent submodel that may itself be
an HMM or any statistical model. A simple GHMM that models
eukaryotic gene structure is shown in Fig. 5.12. The arcs represent
states that emit strings of bases, and the nodes represent transitions
between states.

The GHMM is represented as a graph. Nodes in the graph
represent transitions between states. This is different from typical
graphic representations of regular HMMs. Each state corresponds to
a submodel of an abstract gene feature such as an internal exon (E) or
intron (I). For any sequence of bases x and state q, the submodel
associated with the state q defines a likelihood for the sequence x.
This likelihood is denoted by P(x/q). When the GHMM is viewed as
a generative statistical model, this is the probability of the sequence
emitted when the Markov process is in state q. These likelihood

ES

EI

E

J5' J3'EF
B S D A T F

FIGURE 5.11 Simple GHMM for a sequence with multiple-exon genes.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 159

functions, one for each state, are part of the definition of the GHMM.
The graph of the GHMM has a unique source model B for begin and
a unique single node f for final. The process of generating a string
from a GHMM can be q, and the mode that the arc for state q leads to
is denoted node(q). Once in this node, a next state is chosen at random
from among the outgoing arcs from this node, independent of any
previous choices made. The probability of choosing the next state r is
denoted P[r/node(q)].

Define a parse φ of the sequence X to be a pair consisting of a
sequence of state q1, . . . , qk and a corresponding sequence of substrings
x1, . . . , xk, where X = x1, . . . , xk, q1 is a state coming out of a unique source
mode (B), and qk is a state leading to the unique sink node (f). The
GHMM defines a joint likelihood of the sequence X = x1, . . . , xk and the
parse φ = q1, . . . , qk; x1, . . . , xk, according to the generative model described
earlier. It is the joint independent probability of the subsequences
given the corresponding states and the probability of the transitions
between states, that is,

 P(x, φ) = P(q1/B)∏P(xi/qi)∏P[qi+1/node(qi)] (5.65)

Given only the observed sequence X, using a variant of the Viterbi
algorithm, the parse φ can be calculated that maximizes Eq. (5.65). In
a GHMM that represents gene structure, such as the one in Fig. 5.12,
this parse probably represents the model prediction of the most likely
gene structure within the sequence x. This variant of the Viterbi
algorithm is used to find the most likely parse in a dynamic
programming algorithm. The GHMM in Fig. 5.12 represents only the
basic ordering of gene feature and does not fully capture the
syntactic restrictions of a “legal gene parse.” In an ideal DNA
sequence, the parse is frame consistent; i.e., the total number of coding
nucleotides is a multiple of three, and the reading frame is consistent

B S

J5 EI

EI2

EF J3'

D A

D A

D A

T F

FIGURE 5.12 A GHMM including frame constraints.

 160 C h a p t e r F i v e

from exon to exon. Additional states can be added to the model graph
that only allow consistent parses. The model graph representing the
resulting frame-consistent GHMM is shown in Fig. 5.12. The
additional acceptor and donor transition nodes ensure that only
syntactically correct parses are considered. The three levels represent
the three frames. Exon lengths can be restricted in the likelihood
functions P(X/Q) to equal 0, 1, or 2 for the various exon states in this
GHMM in such a way as to enforce frame consistency. This more
complex state structure is used by Genie. Further extensions to the
GHMM graph also can be added to make the model more realistic. For
example, an arc leading back from node T to node S labeled with a state
that generates noncoding bases between genes would allow the
GHMM to model sequences that have multiple genes within them.

5.13 Database Mining
Given a trained model, the likelihood of any given sequence can be
computed. These scores can be used in discrimination tests and in
database searches to separate sequences associated with the training
family from the rest. This is applicable to both complete sequences
and fragments. Such scores can be calibrated as a function of sequence
length. HMMs also can be used in classification problems, e.g., across
protein families or across subfamilies of a single protein family. This
can be done by training a model for each class, if class-specific training
sets are available. This approach was used to build two HMMs that
can reliably discriminate between tyrosine and serine–threonine
kinase subfamilies. Otherwise unsupervised algorithms related to
clustering can be used in combination with HMMs to represent the
total number of protein superfamilies. The number of protein
superfamilies is relatively small on the order of 1000. A global protein
classification system with roughly 1 HMM per family is becoming a
feasible goal from both an algorithmic and a computational stand-
point. Global classification projects of this sort are currently under way
and should become auxiliary tools in a number of tasks, such as gene
finding, protein classification, and structure/function prediction.

5.14 Multiple Alignments
Multiple alignments can be derived by aligning the Viterbi paths with
each other. Training a model can be done offline. The multiple
alignment of K sequences after the training phase is completed
requires the computation of K Viterbi paths and scales of O(KN2). All
Viterbi paths consists only of main-state emissions or gaps with
respect to main states. Multiple alignments derived by an HMM with
both insert and delete states are potentially richer and, in fact, should
be plotted in three dimensions rather than the two used by
conventional multiple alignments. The insert and delete states of an

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 161

HMM represent formal operations on sequences. These need to be
related to evolutionary events. When a single HMM is used as a basis,
they correspond only to the first step of a full Bayesean treatment.
HMMs also can be used in conjunction with substitution matrices.
HMM emission distributions can be used to calculate substitution
matrices, and substitution matrices can be used to influence HMMs
during or after training. In the case of large training sets, most
substitution information is already present in the data itself, and no
major gains would be derived from an external infusion of such
knowledge.

5.15 Classification Using HMMs
The organization of families of sequences into subclasses is called
classification. It is used, for example, in phylogenetic reconstruction.
There are two different ways of classification using HMMs. These are

 1. Training several models in parallel and using some form of
competitive learning (Fig. 5.13).

 2. Looking at how likelihoods and paths cluster within a single
model.

The number of sequences for some receptor classes is too small to
train using the parallel approach. In the second approach, it is clear
from visual inspection of the multiple alignment that there are
clusterings and interesting relationships among the Viterbi paths
corresponding to different receptor subgroups. The clustering of all
the sequences in a given receptor subclass around a particular
distance is striking. Olfactory receptors are the closest to being

S F

FIGURE 5.13 Representation of multiple HMM architecture for detecting
subfamilies within a protein family [15].

 162 C h a p t e r F i v e

random. Adrenergic receptors are the most distant from the random
regression line and hence appear to be the most constrained.

There are also apparent differences in the standard deviation of
each class. For instance, the angiotensin receptors occupy a narrow
band, and only one angiotensin receptor type is known, whereas the
opsin receptors are more spread out. Most classes have a bell-shaped
distribution. There are exceptions. The opsins appear to have a
bimodal distribution. This can be the result of the existence of
subclasses within the opsins. The second peak corresponds mostly to
rhodopsin (OPSD) sequences and a few red-sensitive opsins (OPSR).
The presence of two peaks does not seem to result from differences
between vertebrate and invertebrate opsins. With future database
releases, it is possible to improve the resolution and reduce sampling
effects. These results suggest a string relationship between the score
assigned to a sequence by the HMM model and the sequence’s
membership in a given receptor class.

5.16 Signal Peptide and Signal Anchor
Prediction by HMMs

Nielsen and Krogh [17] constructed an HMM designed both to
discriminate between signals peptides and nonsignal peptides and to
locate the cleavage site. The HMM was designed so that it took known
signal peptide features into account. A prediction tool can be
developed that can discriminate between signal peptides and anchors.
The signal peptide model is shown in Fig. 5.14. An explicit modeling

I

Begin

Met state

I

II

II

III

III IV

XVII

n region

mI c Region cIII cIV
End mIV

FIGURE 5.14 HMM used for signal peptide discrimination.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 163

of length distribution is implemented in the various regions using
tied states that have the same amino acid distribution in the emission
and transition probabilities associated with them. To discriminate
among signal peptides, signal anchors, and soluble nonsecondary
proteins, the model was augmented by a model of anchors. This is
shown in Fig. 5.15. The entire model was trained using all types of
sequences, including signal peptides, anchor sequences, and
cytoplasmic and nuclear sequences. The prediction of which of three
classes the protein belongs to is given by the most likely path taken
throught the combined model. In terms of predictive performance,
the combination of C score and S score networks had a discrimination
level comparable with the HMM. The HMM was found to be better at
recognizing signal anchors and therefore at detecting this type of
membrane-associated protein.

5.17 Markov Model and Chargaff’s Parity Rules
The Chargaff’s first parity rule [18] states that in a place of double-
helical DNA, the number of A’s is equal to the number of T’s, and the
number of C’s is equal to the number of G’s. The Chargaff’s second
parity rule states that the same relation holds good for a piece of
single-stranded DNA of reasonable size. The validity of Chargaff’s
second parity rule can be studied across different organisms and
different coding and noncoding DNA at different length scales. For
instance, genomic DNA in yeast was considered [8]. Symmetry was
observed for both the strands of DNA, as shown in Table 5.6. The
compositions were found to be stable.

It was found to be roughly 30 percent for A and T and 20 percent
for C and G. In mitochondrial DNA, the same symmetry also was
observed. To study the symmetries of double-stranded DNA, how
often each nucleotide occurs on each strand over a length is counted.
These frequencies correspond to a probabilistic Markov model of
order 1.

For dinucleotides, a second-order Markov model may be used for
determining whether Chargaff’s second parity rule holds. A DNA
Markov model of order N has 4N parameters associated with the

n regionMet state

Begin

Signal anchor model

h region

FIGURE 5.15 HMM design for delineating signal peptides and signal anchors.

 164 C h a p t e r F i v e

transition probabilities P(XN/X1, . . . , XN–1), also denoted P(X1, . . . ,
XN–1 XN), for all possible X1, . . . , XN in the alphabet, together with a
starting distribution of the form π (X1, . . . , XN–1).

Since the number of parameters grows exponentially, only models
up to a certain order can be determined from a finite data set. A DNA
Markov model of order 5, for instance, has 1024 parameters, and a
DNA Markov model of order 10 has over 1 million parameters.
Conversely, the higher the order, the larger is the data set needed to
properly fit the model.

Summary
Markov models are explained in detail. A genome sequence from
NCBI is obtained and modeled using geometric distribution and a
Markov model. The kth-order Markov model is defined. Worked
examples in the construction of zeroth-, first-, second-, and third-order
Markov models are illustrated. The potential for the use of geometric

TABLE 5.6 Percent Values of the Nucleotide Bases

A C G T

Chr 1 30.3 19.4 19.9 30.4

Chr 2 30.7 19.4 19.0 31.0

Chr 3 31.1 19.7 18.9 30.3

Chr 4 31.1 18.9 19.0 31.0

Chr 5 30.6 19.0 19.5 31.0

Chr 6 30.7 19.3 19.4 30.6

Chr 7 31.0 19.0 19.0 31.0

Chr 8 30.9 19.4 19.5 30.6

Chr 9 30.5 19.4 18.9 30.6

Chr 10 31.0 19.2 18.9 31.0

Chr 11 30.9 19.2 18.9 31.0

Chr 12 30.7 19.3 19.2 30.9

Chr 13 31.0 19.1 19.1 30.8

Chr 14 30.8 19.3 19.3 30.6

Chr 15 31.1 19.2 19.0 30.9

Chr 16 31.0 19.0 19.0 30.9

Chr.mt 42.2 8.0 9.1 40.7

16 nucl chr. 30.9 19.2 19.1 30.8

All chr. 31.0 19.1 19.1 30.9

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 165

distribution to model DNA sequences is explored. Rabiner’s tutorial
on HMM is referred to. The three questions in HMM, i.e., evaluation,
decoding, and learning, are reviewed. The Markov, stationarity, and
output independence assumptions are introduced to keep the
problems mathematically tractable. The HMM is characterized
completely. The number of operations needed to determine the
sequence given the HMM, i.e., the evaluation problem, which usually
takes time O(NT), where T is the length of the sequence and N is the
number of states, can be completed in O(N2T) time using the forward
algorithm. The Viterbi algorithm with optimal path is discussed.
HMM applications such as construction of a phylogenetic tree,
protein families, wheel HMMs to predict periodicity in DNA, the
generalized HMM, database mining, multiple alignments, classication
using HMMs, signal peptide and signal anchor prediction by HMMs,
and Chargaff’s parity rule predictions are discussed. Commercial
software such as SAM, HMMER, HMMPRO, MetaMeme, PSI-BLAST,
and PFAM are discussed and alanyzed as end-of-chapter exercises.

References
 [1] A. Krogh, M. Brown, I. S. Mian, et al., “Hidden Markov models in compu-

tational biology: Applications to protein modeling,” J. Mol. Biol. 235 (1994),
1501–1531.

 [2] K. R. Sharma, “Hidden Markov model of order n,” 230th ACS National
Meeting, Washington, DC, 2005.

 [3] K. R. Sharma, “Geometric distribution representation of DNA sequences,”
230th ACS National Meeting, Washington, DC, 2005.

 [4] K. R. Sharma, “Geometric distribution effects in quality of continuous copo-
lymerization of alpha-methylstyrene acrylonitrile,” 91st AIChE Annual
Meeting, Dallas, TX, 1999.

 [5] P. B. Chaves, M. F. Paes, S. L. Mendes, et al., “Noninvasive genetic sampling of
endangered Muriqui (primates, atelidae): Efficiency of fecal DNA extraction,”
Genet. Mol. Biol. 29 (2006), 750–754.

 [6] G. D. Stormo and G. W. Hertzel, “Identifying protein-binding sites
from unaligned DNA fragments,” Proc. Natl. Acad. Sci. U.S.A. 8 (1989),
1183–1187.

 [7] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proc. IEEE 77. (1989), 257–286.

 [8] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach. Boston:
MIT Press, 2001.

 [9] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inform. Theory. 13 (1967),
260–269.

[10] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math.
Statistics. 22 (1951), 79–86.

[11] R. Durbin, S. Eddy, A. Krogh, and G. Michison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge
University Press, 1998.

[12] T. H. Jukes and C. R. Cantor, “Evolution of protein molecules.” In H. N. Munro
(ed.), Mammalian Protein Metabolism. New York: Academic Press, 1969.

[13] M. Kimura, “A simple method for estimating evolutionary rate of base
substitution through comparative studies of nucleotide sequences,” J. Mol.
Evolution. 16 (1980), 111–120.

 166 C h a p t e r F i v e

[14] R. Hughey and A. Krogh, “Hidden Markov models for sequence analysis:
Extension and analysis of the basic method,” Comput. Appl. Biosci. 12 (1996),
95–107.

[15] A.Krogh, M. Brown, I. S. Mian, et al., “Hidden Markov models in compu-
tational biology: Applications to protein modeling,” J. Mol. Biol. 235 (1994),
1501–1531.

[16] M. G. Reese, D. Kulp, H. Tammana, and D. Haussler, “Genie: Gene finding
in Drosophila melanogaster,” Genome Res. 10 (2000), 529–538.

[17] H. Nielsen and A. Krogh, “Prediction of Signal Peptides and Signal Anchors
by a Hidden Markov Model”, Proc. of the 6th International Conference on
Intelligent Systems in Molecular Biology, (1998), 122–130.

[18] E. Chargaff, “Some recent studies on the composition and structure of nucleic
acids,” J. Cell Phys. Suppl. 38 (1951), 41–59.

Exercises
1.0 Given the sequence

 S: TATATGCGTAACCGGTT

construct a first-order HMM to represent the information in sequence S. Show
the transition probabilities in Fig. 5.16.

2.0 Construct a second-order HMM to represent the information in
sequence T.

 T: ACGTTGACTGACTGTATACTGGTTAGTGT

A C

TG

FIGURE 5.16 HMM of the fi rst order to represent sequence S:
TATATGCGTAACCGGTT.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 167

3.0 Show by schematic the construction of a first-order HMM to represent
the following sequence information:

 GCCGCGCTTG

 GCTTGGTGGC

 TGGCCGTTGC

4.0 Chaves and colleagues submitted the DNA sequence with 660 bases
in Homo sapiens shown in Fig. 5.2 to the NCBI. Develop a Markov model of
the second order to represent this information. Calculate the 64 transition
probabilities, and represent the information in the form of a suitable table such
as Table 5.7. The 64 transition probabilities P(A/AA), P(G/AA), . . . can be
calculated from the information provided in Fig. 5.2 and presented in a tabular
form as shown in the table below. Columns 3–6 are conditional probability
values for the base pair shown at the top of the column given the preceding
dyad that occurred in the sequence in column 2. A dyad number is also given
to the 16 possible dyads for DNA.

Dyad No. Dyad
P
(A/Dyad#)

P
(C/Dyad#)

P
(G/Dyad#)

P
(T/Dyad#)

 1 AA

 2 AC

 3 AG

 4 AT

 5 CA

 6 CC

 7 CG

 8 CT

 9 GA

 10 GC

 11 GG

 12 GT

 13 TA

 14 TC

 15 TG

 16 TT

TABLE 5.7 Transition Probabilities in the Second-Order Markov Model to
Represent 660 Base Pairs of a DNA Sequence from Homo sapiens

 168 C h a p t e r F i v e

5.0 Eight hypothetical translation start sites are shown below:

 ATG

 ATG

 ATG

 ATG

 ATG

 GTG

 GTG

 TTG

Show the (1) site-profile matrix and (2) the log-likelihood ratio of the weight
matrix.

6.0 The effect of background distribution that is nonuniform is studied.
Consider the eight translation start sites of Exercise 5.0, but change the
background distribution to BAj = BTj = 0.375, Bij = Bgj = 0.125. The site-profile
matrix remains unchanged. Find the weight matrix and relative entropies.
Interpret the results using the Kullback-Leibler measure.

7.0 Verify the first-order HMM for the 23 CRP binding sites given in Table 5.3
(see Fig. 5.17).

1/1387/138

16/1385/138

1/138

18/13

19/138

34/138

12/138

2/1381/138

1/138

2/138

3/138

6/138

A C

TG

FIGURE 5.17 First-order HMM for the 23 CRP binding sites.

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 169

8.0 Develop a zeroth-order HMM model to represent the information in
Fig. 5.2.

9.0 Find the probability of the sequence ATGTGAC using the HMM of the
first order in Exercise 7.0.

10.0 Develop an HMM of the second order to represent the information in
Table 5.3.

11.0 Given the following five sequences:

 ACAATG

 TCAACTATG

 ACACATC

 AGAATC

 ACCGATC

construct an HMM of zeroth order to represent the information.

12.0 Construct an HMM of the first order to represent the five sequences
in Exercise 11.0.

13.0 Show that

 ∂eix/∂Wix = eix(1 – eix) and ∂eix/∂Wix = –eixeiy

14.0 Give a generalized expression for k random variables for joint
probability, Bayes’ rule, and applications to HMM.

15.0 As an example of Markov chain model application, consider the CpG
islands. CG nucleoides are rarer in eukaryotic genomes than expected given
the marginal probabilities C and G. But the regions upstream of genes are
richer in CG dinucleotides. These are referred to as CpG islands. Markov chains
can be used to predict the CpG islands. Given the set of sequences from CpG
islands, how can the probability parameters of the model be determined? Use
the maximum likelihood estimation. Given a set of data D, a set of parameters
θ is obtained to maximize P(D/θ). The sequences given are

 ACCGCGCTTA

 GCTTAGTGAC

 TAGCCGTTAC

16.0 Given the sequences

 GCCGCGCTTG

 GCTTGGTGGC

 TGGCCGTTGC

calculate the maximum likelihood estimates of A, C, G, and T.

 170 C h a p t e r F i v e

17.0 Construct a first-order HMM model to represent the information
provided in Exercise 16.0.

18.0 Verify Chargaff’s parity rule for the 660 base pairs of DNA sequence
given in Example 5.1.

19.0 Construct a wheel HMM for introns.

20.0 Distinguish protein quarternary structure from tertiary structure with
an example.

21.0 Find the likely ancestor of the following five proteins

 V A G H L Cy GL Ser His Leu

 V A G – L – GL – His –

 V A G – – – GL Ser His –

 V – – – L Cy – Ser Hia Leu

 V A G H L – – – His Leu

22.0 Develop a statistical model for the following 12 related proteins.

 PVAGTL

 PCHSVL

 PCHVTL

 PCHGTL

 PAHGPL

 PAHGPL

 PGGTPP

 XGSLAA

 STVTGG

 YLLLTV

 YLTTLL

23.0 Construct an HMM for the protein sequence of insulin. What order
would you choose?

 VAGHLCYG

24.0 Show the matrix for the Viterbi algorithm for PVAGHLCyG.

25.0 Estimate the database size requirements for a string HMM to represent
1000 protein families.

26.0 Distinguish left-right HMM models from ergodic models. Why is left-
right preferred in bioinformatics?

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 171

27.0 Develop a loop HMM for the following sequence and indentify the
periodicity.

 AAGGCCCCAAGGCTGCAAGG

28.0 Rederive the Felsentein algorithm for variable rates of a substitution
process.

29.0 Rederive expressions for α, β, and γ for the protein alphabet with 20
different amino acids. Obtain the expression for sequence fidelity. Draw neatly
the Markov model for sequence evolution and the corresponding finite-state
automaton for sequence alignment.

30.0 Discuss the utility and implications of a GHMM for a human
proteome.

31.0 Why can’t the training of the model for multiple alignments be
conducted offline? Discuss with proof.

32.0 Can misclassification of protein families occur during HMM
construction? If so, what are the remedies?

33.0 Discuss the propagation of noise when clustering and HMM are
combined to generate classification during database mining.

34.0 Given Pfam and FORESST, what are the motivations for a database of
protein tertiary structure? Discuss size requirements and issues.

35.0 What are some of the issues in constructing Viterbi paths for very long
sequences.

36.0 Discuss the utility of a hydropathy plot for nucleic acids with alphabet
(A, C, G, T).

37.0 Provide a fit with generalized normal distribution of opsins:

 f(z) = A exp[−(Az + bz2 + cz3 + dz4)]

Point out the saddle points owing to rhodopsin sequences.

38.0 Why is a multiple-HMM architecture needed for detecting protein
subfamilies.

39.0 Discuss the utility of an HMM in annotation of protein sequences,
especially the regions whose functions are not known.

40.0 Can you expect an analogous relationship to the Chargaff’s parity rule
in a human proteome? How about other organisms?

41.0 Discuss two extensions of HMMs and their applications.

42.0 Discuss the limitations of HMMs and there advantages.

43.0 Distinsuigh the heuristic Markov model from shotgun sequencing.

44.0 Maximum likelihood criterion (ML). In the Viterbi algorithm, one way to
settle for the optimization criteria is ML, the probability of a given sequence

 172 C h a p t e r F i v e

of observations Ow belonging to a class w given the HMM λw of the class w
with respect to the parameters of the model λw. This probability of the total
likelihood of the observations can be expressed as

 Ltoto = P(Ow/λw)

When only one class w at a time is considered, the subscript and superscript
w can be dropped, and the ML criterion can be written as

 Ltoto = P(O/λ)

Discuss why there is no analytical solution for HMM λ that maximize Ltoto.

45.0 Baum-Welch algorithm. This is an iterative method to obtain the solution
set out in Exercise 44.0 and Sec. 5.6. This method can be derived using simple
“occurrence counting” arguments or using calculus to maximize the auxiliary
quantity:

 Q(λ, λ) = ∑P(q/O,λ) lg[P(O,q,λ)]

Show that the convergence is gaurenteed in this method. Two more variables
can be defined in addition to the forward and backward variables. Describe the
Baum-Welch learning process where the parameters of the HMM are updated
in such a way as to maximize the quantity P(O/λ). With a initial guess of λ,
the four variables are calculated recursively, and the HMM parameters are
updated appropriately.

46.0 Gradient-based method. In continuation of the pursuits in Exercise 44.0
and Sec. 5.6, in the gradient-based method, any parameter θ of the HMM λ is
updated by minimization of a certain J equivalent to the maximization of Ltoto.
J can be related to the model parameters via Ltoto. Show that the gradient ∂J/∂θ
can be found from the two main parameter sets in the HMM, i.e., the transition
probabilities Aij and observation probabilities Bij.

47.0 Maximum mutual information (MMI) criterion. In ML, the HMM
is optimized only one class at a time, and the HMMs are not touched for
other classes at that time. This procedure does not involve the concept of
“discrimination,” which is of great interest in pattern recognition. Thus the
ML learning procedure gives a poor discrimination ability to the HMM system,
especially when the estimated parameters (in the training phase) of the HMM
system do not match with the speech inputs used in the recognition phase.
This type of mismatch can arise for two reasons. One is that the training and
recognition data have considerably different statistical properties, and the
other is the difficulties of obtaining reliable parameter estimates in the training.
Show that in the MMI criterion, on the other hand, HMMs of all the classes
are considered simultaneously during training. Parameters of the correct
model are updated to enhance its contribution to the observations, whereas
parameters of the alternative models are updated to reduce their contributions.
Show that this procedure gives a high discriminative ability to the system and
thus that MMI belongs to the so-called discriminative training category.

48.0 Alternating-sequence distribution. Consider the sequence S:
AUAUAUAUAUAUAUAUAUAU with the alternating-sequence-distribution

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 173

microstructure. Construct a zeroth-order HMM to represent the sequence S.
Show that P(A) = P(U) = 0.5.

49.0 Construct a first-order HMM to represent the sequence S in Exercise 48.0.
Represent the information in the form of a schematic similar to Fig. 5.1. Show
that P(A/A) = P(U/U) = 0, P(A/U) = 9/19, and P(U/A) = 10/19.

50.0 Construct a second-order HMM to represent the sequence S. Show that
P(A/AU) = 5/18 = P(U/UA) and that the rest of the probabilities P(A/UU) =
P(U/UU) = P(A/AA) = P(U/AA) = 0 = P(U/AU) = P(A/UA) = 0.

51.0 Given the results from Exercises 48.0, 49.0, and 50.0, what is the best
HMM to represent the sequence S in Exercise 48.0 that has the alternating-
sequence distribution.

52.0 Block-sequence distribution. Consider a sequence S:
AAAAAAAAAAUUUUUUUUUU with the block-sequence-distribution
microstructure. Construct a zeroth-order HMM to represent the sequence S.
Show that P(A) = P(U) = 0.5.

53.0 How do the results of Exercise 52.0 compare with the results of
Exercise 48.0? Should they be the same? What is missing in the zeroth-order
HMM analysis?

54.0 Construct the sequence S’ given the zeroth-order HMM results from
Exercise 52.0. Is there a unique result?

55.0 Construct a first-order HMM to represent the sequence S in
Exercise 53.0. Show that P(A/A) = 9/19, P(U/U) = 9/19, P(U/A) = 1/19,
and P(A/U) = 0. Do the results of Exercise 54.0 differ from the results of
Exercise 49.0. What is being done right during the construction of the
first-order HMM?

56.0 Construct the sequence S’ given the results of the first-order HMM in
Exercise 55.0. Is the sequence given in Exercise 52.0 obtained?

57.0 Construct a second-order HMM to represent the sequence given in
Exercise 52.0. Show that P(A/AA) = 4/9 = P(U/UU), P(U/AA) = 1/18,
P(U/AU) = 1/18, and P(A/UU) = P(A/UA) = P(A/AU) = P(U/UA) = 0.

58.0 Construct the sequence S’ given the results of the second-order HMM
from Exercise 57.0. Is the sequence given in Exercise 52.0 arrived at?

59.0 Can you conclude based on the results from Exercises 48.0 through 58.0
that the order of the HMM selected to represent a given sequence depends
on the microstructure of the sequence and only beyond a certain order do
the results have one-to-one correspondence between the sequence and the
model.

60.0 Random-sequence distribution. Consider the sequence S:
UUUAUAUAAUUAAUAUAAAU with the random-sequence-distribution
microstructure. Construct a zeroth-order HMM to represent sequence S. Show
that P(U) = P(A) = 0.5.

 174 C h a p t e r F i v e

61.0 Given the results of the zeroth-order HMM in Exercise 60.0, reconstruct
the sequence S’. Is it different from the sequences given in Exercises 48.0, 52.0,
and 60.0?

62.0 Construct a first-order HMM to represent the sequence given in
Exercise 60.0. Show that P(A/A) = 4/19, P(U/U) = 3/19, P(A/U) = 6/19,
and P(U/A) = 6/19.

63.0 Given the results of the first-order HMM in Exercise 62.0, reconstruct
the sequence S’. Do you obtain the sequence you started out with in
Exercise 60.0?

64.0 Construct a second-order HMM to represent the sequence given in
Exercise 60.0. Show that P(U/UU) = 1/18, P(A/AA) = 1/18, P(U/UA) = 1/6,
P(A/UA) = 1/6, P(A/UU) = 1/9, P(U/AA) = 1/6, P(A/AU) = 2/9, and
P(U/AU) = 1/18.

65.0 Reconstruct the sequence S’ given the results obtained from the first-
order HMM in Exercise 64.0. Is there a one-to-one correspondence between
the sequence and the model? Use the information given in Exercise 60.0 if
necessary.

66.0 Construct a third-order HMM to represent the sequence S given in
Exercise 60.0. Show that

P(A/AAA) = 0 P(A/AUA) = 2/17 P(A/UUA) = 1/17 P(A/AUU) = 1/17

P(U/AAA) = 1/17 P(U/AUA) = 2/17 P(U/UUA) = 1/17 P(U/AUU) = 0

P(A/UUU) = 1/17 P(A/UAA) = 1/17 P(A/UAU) = 3/17 P(A/AAU) = 1/17

P(U/UUU) = 0 P(U/UAA) = 2/17 P(U/UAU) = 0 P(U/AAU) = 1/17

67.0 Reconstruct the sequence S’ given the results of the third-order HMM
in Exercise 66.0. Do you get the same sequence given in Exercise 60.0?

68.0 Can the third-order HMM for sequence S given in Exercise 62.0 be
constructed given the results in Exercise 64.0. Why?

69.0 Can the third-order HMM for sequence S given in Exercise 62.0 be
constructed given the results in Exercise 62.0. Why?

70.0 SAM. The sequence-alignment modeling system (SAM) is a collection
of software tools used for creating, refining, and using linear HMMs for
biologic sequence analysis. The sequence of columns in a multiple-sequence
alignment are represented by model states with provisions for arbitrary
position-dependent insertions and deletions in each sequence. An expectation-
maximization algorithm is used to train the models on a family of protein or
nucleic acid sequences. The algorithms and methods in SAM can be accesed
via the hotlink www.cse.ucsc.edu/research/compbio/sam.html. Discuss the
advantages of using the HMM for seeking alignment compared with other
database search strategies.

www.cse.ucsc.edu/research/compbio/sam.html

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 175

71.0 HMMER. HMMER is an implementation of profile HMM methods for
sensitive database searches using multiple-sequence alignments as queries.
An HMM is built based on the multiple-sequence alignment as input. Nine
programs are supported in the HMMER@ package. These are Hmmalign,
hmmbuild, hmmcalibrate. hmmconvert_hmmer, hmmemit, hmmfetch,
hmmindex, hmmpfam, and hmmsearch. A number of utility programs that
are not HMMs are also offered that may be useful. These are aftech, alistat,
seqstat, sfetch, shuffle, and sreformat. Discuss the advantages of using HMMs
when seeking multiple-sequence alignment. How close to the optimal can
you come?

72.0 HMMPRO. HMMPRO is used for biologic sequence simulations.
Models of protein families or DNA functional elements can be interactively
built and analyzed using a graphic user interface (GUI). These models
then can be used for multiple-sequence alignment, pattern discovery, and
sensitive data mining. HMMpro 2.2 is available from www.netid.com. Some
of the highlights of the software include support for editing individual
emission and transition weights, the ability to fix emission or transition
weights on a node-by-node basis during training, and support for importing
and exporting HMMER 2.x models. Given the NP complete nature of the
multiple-sequence-alignment problem, how close to optimality can one get?
What are the advantages of using HMMPRO in seeking multiple-sequence
alignment?

73.0 Meta-MEME. A motiff-based hidden Markov model (Meta-MEME) of
biologic sequences is a software toolkit for building and using motif-based
HMMs of DNA and proteins. Input is a set of protein sequences and motif
models discovered by MEME. These models are combined in Meta-MEME,
and the model is used to search a sequence database for homologues. Discuss
the advantages of using Meta-MEME and the degree of optimality of multiple-
sequence alignments.

74.0 PSI-BLAST. A position-specific scoring matrix (PSSM) is used and
is a particular feature of BLAST 2.0. PSSM is constructed from a multiple
alignment of the highest-scoring hits in an initial BLAST search. PSSM is
generated by calculation of position-specific scores for each position in the
alignment. High scores are awarded to highly conserved regions, and near-
zero scores are awarded to weakly conserved positions. A second BLAST
seach is performed, and the results from the iteration are used to refine the
model. How many alignments are needed before the problem is considered
NP complete? How close to the optimality would this procedure come? What
are the advantages of using the PSI-BLAST in terms of biologic significance,
increased sensitivity, etc.?

75.0 PFAM. PFAM is a large collection of multiple-sequence alignments and
HMMs that includes many common protein domains and families. Multiple
alignments can be looked up, protein domain architectures can be viewed,
links to other databases can be followed, and protein structures can be viewed.
What are the storage issues involved in PFAM?

www.netid.com

 176 C h a p t e r F i v e

76.0 Profile HMMs. A multiple-sequence alignment is converted to a position-
specific scoring system by profile HMMs. This is suitable for searching protein
sequences with weak homology. Compare profile HMM methods with
pairwise sequence-comparison methods such as those of Smith and Waterman
for global and Needleman and Wunsch for local alignments.

77.0 What are linear left-right models?

78.0 How is the affine gap penalty handled in profile HMMs?

79.0 The probability parameters in a profile HMM are usually converted to
additive log-odds scores before aligning and scoring a query sequence [14].
The score for aligning a residue to a profile match state emitting residue x is
Px, the expected background frequency of residue x in the sequence database
is fx, and the score for residue c at this match state is log(Px)/fx. Show that this
gives rise to nontrivial optima.

80.0 What are the differences between the Jukes and Cantor substitution
matrix and Kimura matrix in the model for evolution?

81.0 What are the three questions in HMM?

82.0 What are the three assumptions that are needed for the tractability of
HMMs?

83.0 Discuss the time efficiency gained in the forward algorithm.

84.0 What is a Viterbi path?

85.0 What is meant by relative entropy of a sequence?

86.0 Can HMMs be used to obtain pairwise multiple-sequence alignment?

87.0 In the model of evolution, can the solution to the model equations
exhibit subcritical damped oscillations?

88.0 What makes the system of equations in the model of evolution stable?

89.0 What is the difference between a GHMM and a loop HMM?

90.0 What are the limitations of a wheel HMM?

91.0 Can an HMM be constructed to obtain a semiglobal alignment?

92.0 Can an HMM be constructed to obtain a glocal alignment?

93.0 How would the design of an HMM differ when seeking a global
alignment and when seeking a local alignment?

94.0 What are the pros and cons of representing a DNA sequence using a
suffix tree versus using an HMM?

95.0 What are the pros and cons of representing a protein sequence using a
suffix tree versus using an HMM?

 H i d d e n M a r k o v M o d e l s a n d A p p l i c a t i o n s 177

96.0 Can the banded diagonal algorithms using the greedy strategy to obtain
global alignment in lesser time be implemented using pairwise HMMs?

97.0 Can an HMM be used to represent a tRNA sequence? What would be
different in the design?

98.0 Would the alignment of protein sequences that are encoded by the
nucleotide sequence using an HMM result in a better alignment compared
with aligning DNA sequences?

99.0 Given two sequences S and T, design an HMM to generate the
supersequence S’.

100.0 Given two suffix trees of sequences S and T, design an HMM to
construct a generalized suffix tree.

101.0 Construct an HMM to find tandem repeats in a DNA sequence.

102.0 What are the storage requirements to obtain a pairwise alignment
using HMM?

103.0 Given an alignment of two sequences S’ and T’, construct an HMM to
deduce the sequences S and T.

104.0 For very similar DNA sequences, what would be different in the
construction of an HMM that is designed to obtain pairwise global alignment?

105.0 Given two sequences S and T and the alignments S’ and T’, what are
the issues involved in constructing an HMM to obtain the scoring scheme and
affine gap penalty parameters?

106.0 What would be the modifications to the HMM necessary to seek a more
biologically meaningful alignment once more is known about the substitution
and mutation rates in organisms whose sequences are being studied?

107.0 What is the biologic significance of the eigenvalues in the substitution
matrix of Jukes and Cantor taking on imaginary values?

108.0 What is the biologic significance of the eigenvalues in the substitution
matrix of Kimura taking on imaginary values?

This page intentionally left blank

CHAPTER 6
Gene Finding,

Protein Secondary
Structure

Objectives
The objectives of this chapter are to

• Learn the greedy algorithm for relative site-selection
problems.

• Use binomial heap to obtain the maximum increasing
subsequence.

• Learn the interpolated Markov Model (IMM) to find out its
use in GLIMMER.

• Propose a solution to the Shine Dalgarno (SD) site-selection
problem.

• Annotate genes using a dictionary.

• Devise GPHMM for cross-species gene finding.

• Be familiar with Steiner trees, the spliced alignment problem,
and the fragment-matching problem.

• Be familiar with protein secondary structure and neural networks.

• Learn the Profilenetwork HeiDelberg (PHD) architecture of
Rost and Sander and DAG-RNNS.

• Use hidden Markov models (HMMs) to obtain protein
secondary structure.

6.1 Introduction
Gene finding, simply stated, refers to methods of finding regions in
sequences of DNA that are functional. The explosive growth of
biologic data resulting from the completion of various genome
projects led to blossoming of the field of genomics. The sequencing of

179
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 180 C h a p t e r S i x

proteins and the relation between the protein and signals that govern
the functions of the organism is the field of proteomics. These projects
are not complete unless the genomes are functionally annotated.
Functional genomics, or metabolomics, is the area that pertains to the
mapping of every function of the organism to its originating gene.
This continues to be a challenge. The accurate annotation of sequenced
genomic data is a key technical hurdle. This is a fertile area of research.
The coding regions, exons and introns of the genes, need to be
identified. Very large databases of proteins, Expressed Sequence Tags
(ESTs), and smaller databases of annotated genes are available to
complete this task.

6.2 Relative Entropy Site-Selection Problem
The relative entropy site-selection problem was shown by Akutsu
and colleagues [1] to be NP complete. Provided that the optimality
constraint is relaxed, “good” solutions are plausible. Relative
entropy is a function of P(S), the fraction of sites containing each
residue S and not the absolute number of sites. Increasing the
length n of each site does increase the number of sites and will not
increase the relative entropy. The relative entropy is a function of
P(S), the fraction of sites containing each residue S, and not the
absolute number of sites. For example, a conserved protein has
P(S) = 1 regardless of the number of sites present. It measures the
degree of conservation. However, with more instances of a
conserved residue, this measure needs to be increased. Increasing
the length n of each site does increase the relative entropy because
it is additive and always nonnegative. Normalization can be used
when comparing relative entropies of different length sites by
dividing by the length n of the site.

6.2.1 Greedy Approach
Hertz and Stormo [2] presented a “greedy” approach to develop an
efficient algorithm for the relative entropy site-selection problem.
Best choices at a local level without regard for ramifications on
subsequent choices are picked using the greedy algorithm. The
greedy method will result in solutions that are far from optimal for
some input instances. The user specifies the length n of sites. The user
also specifies a maximum number d of profiles to retain at each step.
Profiles with lower relative entropy scores than the top d will be
discarded. This is the greedy aspect of the algorithm.

Algorithm 6.1 Hertz and Stromo Algorithm
Input: Sequences S1, S2, . . . , Sk and d, the background distribution.

 1. Create a singleton set, i.e., only one member for each possible length n
substring of each of the k input sequences.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 181

 2. For each set S retained so far, add each possible length n substring from an
input sequence Si not yet represented in S. Compute the profile and relative
entropy with respect to the background for each new set. Retain the d sets
with the highest relative entropy.

 3. Repeat step 2 until each set has k members.

In order to avoid exponential possible sets, the number of sets is
pruned to d. The greedy nature of this pruning biases the selection
from the remaining input sequences. The remaining sequences may
not contain high scoring profiles chosen from the first few sequences.
Superior scores would result if that were the case. The single-set-
per-sequence assumption may be relaxed, and multiple substrings
may be permitted to be chosen from the same sequence. A different
stopping condition is needed. The procedure was applied to Cyclic
AMP Receptor Proteins (CRP) binding sites by Hertz and Stormo
[2]. Their best solution contained 19 correct sites plus 3 more from
overlapping correct sites from 18 genes containing 24 known CRP
binding sites.

6.2.2 Gibbs Sampler
An iterative approach is used in the Gibbs sampling method for
solution to the relative entropy site-selection problem. By trial and
error, one of a set of k starting strings is removed at random and then
replaced with another one at random with probability proportional
to its score. An improved score may result. The assumption made is
one site per input sequence.

The stopping condition is sewn into the routine to let the iteration
continue as desired. A fixed number of iterations or relative stability
of the score could be the stopping condition. The calculations return
a best solution T. Some degree of greediness was retained by the
Gibbs sampler. The principle of it is to enable a strong signal in only
a few sequences to outweigh a weaker signal in all the sequences.

Algorithe 6.2 Gibbs Sampling Algorithm
Input: Sequences S1, S2, . . . , Sk, n and k background distribution
Algorithm: Initialize set T to contain substrings t1, t2, . . . , tk, where ti is
a substring of Si chosen randomly and uniformly. Now perform a series of
iterations, each of which consists of the following steps:

1. Choose one randomly and uniformly from {1, 2, . . . , k} and remove it
from T.

 2. For every j in {1, 2, . . . , s – n + 1},
 a. Let tij be the length n substring of Si that starts at position j.
 b. Compute Dj, the relative entropy of T ∪ tij with respect to the

background.
 c. Let pj = Dj/∑hDh.

 3. Randomly choose ti to be tij with probability Pj, and add ti to T.

 182 C h a p t e r S i x

Motifs were found in the protein families by Lawrence et. al. [3].
A helix-turn-helix motif and motifs in lipocalins and prenyltrans-
ferases were discovered.

6.3 Maximum-Subsequence Problem
A corollary to the problem of finding the coding regions in DNA is
the maximum-subsequence problem. Given a sequence X1, X2, . . . , Xn
of real numbers, where Xi corresponds to the score of the ith element
of the sequence, the problem is to find a contiguous subsequence Xi,
Xi+1, . . . , Xj that maximizes Xi, Xi+1, . . . , Xj.

6.3.1 Bates and Constable Algorithm
The following algorithm for finding a maximum subsequence was
given by Bates and Constable [4]. They use the principle of recursion.
Suppose that the maximum subsequence of B, of X1, X2, . . . , Xk, has
score b and is known, how can the maximum subsequence of X1, X2,
. . . , Xk, Xk+1 be found ? If Xk+1 > 0, add Xk+1 to B, and if not, leave B
unchanged. But what if Xk+1 is not included in B? In this case, in
addition to B, we will have to keep track of the score of the maximum
suffix F of X1, X2, . . . , Xk; F is the suffix X5, X5+1, . . . , Xk that maximizes
F = X5 + X5+1 + ⋅ ⋅ ⋅ + Xk. It is assumed that F is also known for X1, X2, . . . ,
Xk. Now, given Xk+1, B and F are to be updated accordingly. The
complexity of the algorithm is O(n) because a constant amount of
work is done for every new element Xk+1, and there are n such
elements.

Algorithm 6.3 Bates and Constable Algorithm for Maximum Subsequence
If X

k+1
 + f > b

 then add X
k+1
 to f and replace B by F

 else if F + X
k+1
 > 0

 then add X
k+1
 to F

 else reset f to be empty

6.3.2 Binomial Heap [5–7]
The maximum increasing subsequence can be found as the deepest
branch of a binomial heap [5–7]. For example, find the largest
increasing subsequence for

S = {11, 17, 5, 8, 6, 4, 7, 12, 3}

using binomial heap. A binomial heap H is a set of binomial trees that
satisfies the following binomial heap properties:

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 183

 1. Each binomial tree in H obeys the min-heap property. The
key of a node is greater than or equal to the key of its parent.
Each such tree is said to be minimum-heap-ordered.

 2. For any negative integer k, there is at most one binomial tree
in H whose root has degree k.

The root of a minimum-heap ordered tree contains the smallest
key in the tree from the first property. The second property implies
that an n-node binomial heap H consists of at most lg n + 1 binomial
trees.

Each binomial tree within a binomial heap is stored in the left-
child, right-sibling, and parent nodes. Each node has a key field
and any other satellite information required by the application. In
addition, each node x contains pointers P(x) to its parent, child (x)
to its leftmost child and sibling (x) to the sibling of x immediately
to its right. If node x is a root, then p(x) = maximum likelihood
(ML). If node x has no children, then child (x) = ML, and x is the
field degree (X), which is the number of children of x. The roots of
the binomial trees within a binomial heap are organized in a
linked list that is referred to as the root list. The degrees of the
roots strictly increase as the root list is traversed. By the second
binomial heap property in an n-node binomial heap, the degrees
of the roots are a subset of {0, 1, . . . , lg(n)}. The sibling field has a
different meaning for roots than for nonroots. If x is a root, then
sibling (x) points to the next root in the root list. A given binomial
heap is accessed by the field head (H), which is simply a pointer
to the first root in the root list of H. If binomial heap H has no
elements, then head (H) = nil.

The binomial tree Bk is an ordered tree, defined recursively. The
binomial tree Bk consists of two binomial trees Bk–1 that are linked
together. Some properties of binomial trees are given by the
following lemma.

Lemma For the binomial tree Bk,
 1. There are 2k nodes.

 2. The height of the tree is k.

 3. There are exactly kCi nodes at depth i, for i = 0, 1, . . . , k.

 4. The root has degree k, which is greater than any of the other nodes. Moreover,
if the children of the root are numbered from left to right by k – 1, k – 2, . . . ,
0, child i is the root of a subtree Bi.

The maximum increasing subsequence is found in the deepest
branch. Once ordered, the time taken is O(n). All maximum
increasing subsequences are available in the binomial heap. See
Fig. 6.1.

 184 C h a p t e r S i x

6.4 Interpolated Markov Model (IMM)
The software package Gene Locator and Interpolated Markov
Modeler (GLIMMER) is used for finding genes in bacteria and
Archaea. Interpolated Markov Models (IMMs) from first to eighth
order were used in this software. GLIMMER is the primary microbial
gene finder at Institute of Genomic Research (TIGR) and has been
used to annotate complete genomes. A special version of GLIMMER
was designed for small eukaryotes (GlimmerM) and was used to find
the genes in chromosome 2 of the malaria parasite Plasmodium
falciparum [8]. It also has been trained on the plants Arabidopsis thaliana
and Oryza sativa (rice), the parasite Thieleria P arva, the fungus
Aspergillus fumigatus, and other organisms. The GLIMMER system
consists of two main programs: (1) a training program, build-imm,
which takes an input set of sequences and builds and outputs the
IMM for them (the sequences can be complete genes or just partial
open reading frames), and (2) Glimmer itself, which uses this IMM to
identify putative genes in an entire genome. Conflicts are resolved
automatically between most overlapping genes by choosing one of
them. It also identifies genes that are suspected to truly overlap and
flags these for closer inspection by the user.

The accuracy for 10 complete bacterial and archael genomes are
shown in Table 6.1. Organisms are listed in the order in which the
sequencing projects were completed. All these results were obtained
by a very simple training procedure: GLIMMER was trained by first
extracting all nonoverlapping open reading frames (orfs) over 500 bp
(using the long-orfs program that comes with the system). The trained
model then was used to find genes in the complete genome.

11

17

17

5

8

8

6

4

3

6

7 7

7

12

12 12

12

12

12

12

7

1212

FIGURE 6.1 Binomial heap representation of maximum increasing
subsequence.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 185

6.5 Shine Dalgarno SD Sites Finding
The accurate prediction of the translation start site, i.e., the correct
start codon, is important in order to analyze the putative protein
product of a gene. At the initiation of protein synthesis, the ribosome
binds to the mRNA at a region near the end of the mRNA called the
ribosome-binding site. This is a region of approximately 30 nucleotides
of the mRNA that is protected by the ribosome during initiation. This
short mRNA sequence is called the SD site. The mechanism by which
the ribosome recognizes the SD site is relatively simple base-pairing:
The SD site is complementary to a short sequence near the end of the
ribosome’s 16S rRNA, one of its ribosomal RNAs. The SD site was
first postulated by Shine and Dalgarno [9] for E. coli. Subsequent
experiments demonstrated that the SD site in E. coli mRNA usually
matches at least four or five consecutive bases in the sequence
AAGGAGG (Table 6.2) and is separated from the translation start site
by approximately seven nucleotides, although this distance is
variable. This SD site can be used to improve start-codon prediction.
The simplest way to identify whether a candidate start codon is
likely to be correct is by checking for approximate base pair
complementarity between the end of the 16S rRNA sequence and the
DNA sequence just upstream of the candidate codon.

A greedy version of the Gibbs sampler was used in another study
to find likely SD sites. Tompa [10] proposed a method to discover SD
sites by looking for statistically significant patterns in the sequences
upstream from the putative genes. The statistical significance is

Organism Genes Annotated
Percent Annotated
Genes Found

Haemophilus influenzae 1738 99

Mycoplasma genitallium 483 99.4

Methanococcus
jannaschii

1727 99.7

Helicobacter pylori 1590 97.5

Escherichia coli 4269 97.4

Bacillus subtilis 4100 98.3

Archaeoglobus fulgidis 2437 98.6

Borrelia burgdorferi 853 99.3

Treponema pallidum 1039 97.3

Thermatoga maritima 1877 98.8

TABLE 6.1 Accuracy for 10 Complete Genomes

 186 C h a p t e r S i x

measured by the t statistic. The sites with the highest t sores are
unlikely to be from the background and are likely to be potential SD
sites. For each possible k-mers, this approach takes into account both
the absolute number N of upstream sequences containing s and the
background distribution. It then calculates the unlikelihood of seeing
Ns such occurrences if the sequences had been drawn at random from
the background distribution. The random process used in this
calculation is a first-order Markov chain based on the dinucelotide
frequency of the sequences. The measure of unlikelihood used is
based on the t statistics defined as follows: Let N be the number of
upstream sequences that are input and Ps the probability that a single
random upstream sequence contains at least one occurrence of S.
Then NPs is the expected number of input sequences containing s,
and NPs(1 – Ps)

1/2 is its standard deviation. The t score is defined as

t
N NP

NP P
s s

s s

=
−

−
()

()1 (6.1)

The measure ts is the number of standard deviations by which the
observed value Ns exceeds expectations and is sometimes called the
normal deviate or deviation in standard units. The measure τs is normalized
to have zero and standard deviation of 1, making it suitable for

Bacillus subtilis CUGGAUCACCUCCUUUCUA _ _

Lactobacillus delbrueckii CUGGAUCACCUCCUUUCUA _ _

Mycoplasma pneumoniae GUGGAUCACCUCCUUUCUA _ _

Mycobacterium bovis CUGGAUCACCUCCUUUCU

Aquifex aeolicus CUGGAUCACCUCCUUUA _ _

Synechocystis spp. CUGGAUCACCUCCUUU _ _

Escherichia coli UUGGAUCACCUCCUUA _ _

Haemophilus influenzae UUGGAUCACCUCCUUA _ _

Helicobacter pylori UUGGAUCACCUCCU _ _

Archaeoglobus fulgidus CUGGAUCACCUCCU _ _

Methanobacterium
thermoautotrophicum

CUGGAUCACCUCCU _ _

Pyrococcus horikoshii CUCGAUCACCUCCU _ _

Methanococcus jannaschii CUGGAUCACCUCC _ _

Mycoplasma genitalium GUGGAUCACCUC _ _

TABLE 6.2 End of 16S rRNA for Various Prokaryotes

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 187

comparing different motifs. The algorithm was run on 14 prokaryotic
genomes. The motifs with the highest score showed a strong
predominance of motifs complementary for the 3’ end of the
genome’s 16S rRNA.

6.6 Gene Annotation Methods
Pachter and colleagues [11] have provided a dictionary-based
approach to gene annotation. The OWL and dBEST databases are
used in this approach. A parse of the gene into introns and exons can
be produced using the dynamic programming algorithm. Several
scoring schemes for the exons are available. BLAST software [17] is
often applied for the purposes of gene annotation and includes exon
prediction and repeat finding. In the FLASH program, a hash table is
used cleverly to keep tab of matches and positions of pairs of
nucleotides in a database. The resulting information can be used to
extract close matches to a given sequence. GenScan, Genie, GeneMark,
fGENEH, and VEIL are statistical programs based on HMMs. GRAIL
is based on nueral networks. In the PROCRUSTES program [12, 13],
coding regions of a gene can be identified using protein sequences as
targets. The INFO program is based on the idea of finding similarity
to long stretches of a sequence in a protein database and then finding
splice sites around those regions. These programs are becoming more
important as the sizes of the protein and EST databases increase.

The distinct problems of sequence alignment and gene finding
were treated with a unifying framework by Pachter and Lam [14].
They sought best alignment between two sequences while
simultaneously annotating the regions.

The HMM developed is both a generalized HMM and a pair
HMM. The former is used for gene finding, and the latter is used for
sequence alignment. Such an HMM is called the generalized pair hidden
Markov model (GPHMM, Fig. 6.2). These HMMs have been
implemented successfully in GenScan and Genie. In ROSETTA, the
steps of alignment and gene finding are separated. The alignment is
equivalent to the Needleman-Wunsch dynamic programming
algorithm discussed in Chap. 2. A program called SLAM was
developed that implements these ideas and can be used to annotate
syntenic sequences by finding codingexons and conserved noncoding
sequences, or it can be used as a global alignment program that takes
advantage of the biologic features of the sequences to improve the
accuracy of the alignments.

There are two types of HMMs relevant to the problem: pair
HMMs and generalized HMMs. Whereas one single output is
generated by HMMs in each step, output in pairs were generated by
PHMM, and GHMMs can generate output of different lengths
(determined from a distribution) in each hidden state. The SLAM
GPHMM is a combination of a PHMM and a GHMM. The main

 188 C h a p t e r S i x

difference between the SLAM GPHMM model and previous HMM-
based gene finders is in interpretation of the outputsof the states. The
SLAM model is a PHMM, so the outputs in every state are aligned
pairs of DNA bases. It is also a GHMM, meaning that a duration
distribution is associated with each of the generalized states (the exon
states in this case). The result of combining the two HMMs is that the
generalized states now generate two sets of durations (or lengths) for
the exons, one for each of the sequences.

A naive implementation of the GPHMM described has the
drawback that the Viterbi algorithm has a running time on the order of
O(D4N2TU), where D is the maximum allowable length for an exon (on
the order of thousands), N is the number of states, and T and U are the
two sequence lengths. The memory requirements are on the order of
NTU, which also scales as the product of the sequence lengths—ideally,
we would like the problem to grow linearly in the length of the larger
of the observation sequences. Because most alignments in the space of
all possible alignments are very unlikely to be real, we adopted the
approach of preprocessing to restrict the alignment search space to a
set of more likely or more reasonable alignments. A set of possible
alignments is called an approximate alignment.

Initial and transition probabilities, splice-site Variable Length
Hidden Markov Models (VLMM) state duration distributions, and

E(0,1)

E(0,0)

E(1,2)

E(2,1)

E(2,2)

Intron

Intergene

IntronIntron

E(0,2)

E(o,2)

E(o,1)

EsingE(i,2)

E(i,1)

E(i,0)

E(2,0)

E(1,1)

E(1,0)

E(o,0)

FIGURE 6.2 A GPHMM for alignment and prediction of exons using genomic DNA
from two different organisms.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 189

output probabilities were all obtained from appropriate training sets.
Parameters were stratified by gene content. Parameter sets for
different pairs of organisms can be obtained easily with the SLAM
parameter toolbox, which parses GenBank files containing annotated
sequences, generating all the required parameters.

Pachter and Lam [14] presented a solution to the problem of
designing efficient search spaces for pair hidden Markov models
(Fig. 6.3) that align biologic sequences by taking advantage of their
associated features. Their approach leads to an optimization problem,
for which was obtained a two-approximation algorithm, that is based
on the construction of Manhattan networks, which are close relatives
of Steiner trees (Fig. 6.4). The underlying theory was described and
how their methods can be applied to alignment of DNA sequences in
practice was shown, succesfully reducing the Viterbi algorithm search
space of alignment PHMMs by three orders of magnitude.

The problem of designing efficient search spaces for pair hidden
Markov model alignment algorithms that take advantage of the
conservation patterns of biologic sequences was studied by Pachter
and Lam [14]. This lead naturally to consideration of three
computational problems, each of which has been studied individually
in considerable detail but whose connection has not been well
explored. The problems are

 1. The alignment problem for biologic sequences

 2. Development of efficient Viterbi algorithms for pair hidden
Markov models

 3. Construction of rectilinear Steiner networks

a

a c g

I M

D

c a t g

c

c

t

t

c

g

M

DI

FIGURE 6.3 State space of a PHMM.

FIGURE 6.4 Minimum spanning tree and Steiner tree for a confi guration of four
points in a plane.

 190 C h a p t e r S i x

The first of these problems, the alignment of biologic sequences, is
arguably the most successful application of computational biology to
date. It remains a challenge to develop accurate alignment algorithms
that are able to correctly align exons and other biologically interesting
sequence features in large sequences. The improvements have been in
the areas of speedup of alignment and more biologically meaningful
alignments. For the first problem, there have been numerous investiga-
tions on how to normalize alignments taking lengths into account.
“Optimal alignments” are very sensitive to the choice of parameters.

The connection between alignments, PHMMs, and Steiner trees
raises a number of interesting questions that go beyond the immediate
applications Pachter and Lam [14] have highlighted. Optimal
networks for more complicated PHMMs, such as the GPHMMs, led
to more complicated variants of the Manhattan network problem.
Even the Manhattan network problem has not been “solved” in the
sense that it is still unknown whether it is NP complete. The running
time of the Pachter and Lam algorithm is O(n3) (worst case), where n
is the number of highest-scoring pairs (HSPs), and the resulting
PHMM algorithm for producing an alignment will run in time
proportional to the size of the network, which in the worst case will
be O(n2). It is possible to reduce the O(n3) running time for obtaining
the network to O(n log n) at the expense of increasing the bound for
the size of the network from twice optimal to four times optimal.

Even human genes can be predicted accurately, even in the case
where only distantly related bacterial or yeast proteins are available.
Gelfend and colleagues [13] achieved this by using a spliced alignment
algorithm for similarity-based gene recognition. The spliced-
arrangement algorithm provides 99 percent accurate recognition of
human genes, i.e., average correlation coefficient of prediction
99 percent if a related mammalian protein is available. Sze and Pevzner
[15] felt that although 99 percent accuarate gene predictions look like
an acme of perfection, they are not sufficiently reliable for sequence
annotation. They tried to develop an algorithm that either predicts an
exon assembly with accuracy sufficient for sequence annotation or
warns a biologist that accuracy of a prediction is insufficient and that
further experimental work is required to complete the annotation. In this
case, their goal is to provide biologists with accurate primer prediction.
A 100 percent accurate gene prediction would greatly reduce experi-
mental work on gene verification in large-scale sequencing projects.

Algorithms that provide a correct answer in some cases and have
an option “No answer” in other cases are called Las Vegas algorithms
in computer science. The term Las Vegas was introduced by Brassard
and Bratley [16] to distinguish algorithms that reply correctly when
they reply at all from Monte Carlo algorithms that occasionally make
mistakes. Similar to many Las Vegas algorithms that benefit from the
“No answer” option, Las Vegas algorithms for gene recognition use
the “No answer” option to avoid unreliable predictions and benefit
from reduction in experimental work in the correct answer cases.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 191

Gelfend and colleagues [13] proposed a dynamic programming
algorithm for the spliced alignment problem. The spliced alignment
problem captures the major computational challenges of the
similarity-search approach to exon assembly. However, in realistic
situations, there exists important complications that do not seriously
affect the running time of the algorithm, although they greatly
increase the complexity of software implementation.

6.7 Secondary Structures of Proteins
The prediction of the secondary structure of a protein given the
primary amino acid sequence distribution is one of the classic
problems in bioinformatics. The secondary structure of a protein
pertains to its three-dimensional stereochemical structure. As
discussed in Chap. 1, this consists of α-helix, β-sheet, and γ-coil states
(Fig. 6.5). With advances in sequencing technology, the number of

Sheet

Helix

FIGURE 6.5 α-Helix, β-sheet, and γ-loop/coil states in the secondary
structures of proteins.

 192 C h a p t e r S i x

proteomes completely sequenced increases rapidly with time. But the
number of known secondary structures of proteins is fewer in number.
It was realized that for five of six protein primary structures available,
the secondary structures are not available. The experimental methods
of obtaining the secondary structures of proteins, such as x-ray
crystallography or nuclear magnetic resonance (NMR) spectroscopy,
are expensive, not accurate enough, and time-consuming. A number
of methods can be used to achieve this goal, such as using statistical
information, physicochemical properties, sequence patterns and
multilayered artificial neural networks, and/or incorporating
evolutionary information from sequence families. Advanced neural
network architectures have been suggested to predict the secondary
structures of proteins.

The prediction problem is posed as that of predicting whether
each residue in a protein forms part of an α-helix, β-sheet, or γ-loop/coil
state. The secondary structure of a new protein can be found from another
protein with a known secondary structure that is homologous. If no
homologous proteins can be found, empirical correlations that have
been developed between amino acids and local secondary structures
of proteins can be used. These correlations were developed from
known secondary structures at the time they were developed.

One such example is the Chou and Fasman rules [18]. Briefly
stated, when four α-helix formers out of six residues or three β-sheet
formers out of five residues are found clustered together in any native
protein segment, the nucleation of these secondary structures begins
and propagates in both directions until terminated by a sequence of
tetrapeptides, designated as breakers. These rules were successful in
locating 88 percent of α-helical and 95 percent of β-sheet regions, as
well as correctly predicting 80 percent of the α-helical and 86 percent
of the β-sheet residues in the 19 proteins evaluated. The accuracy of
predicting the three conformational states for all residues is 77percent
and shows great improvement over earlier prediction methods,
which considered only the α-helix and γ-coil states.

Qian and Sejnowski [21] pioneered the use of neural networks to
predict the secondary structures of proteins. They used 106 proteins
from the Brookhaven National Laboratory with known secondary
structures in their study. The performance measure of prediction of
the secondary structures of proteins is the success rate Q3. This is the
percent of correctly predicted residues on all three types of secondary
structures:

Q
P P P

N3 =
+ +()α β γ (6.2)

where N is the number of predicted values and Pα is the number of
correctly predicted α-helix states, for example. Other performance
measures such as correlation coefficients also can be used.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 193

6.7.1 Neural Networks
Any reasonable function to any degree of required precision can be
approximated by neural networks. An artificial neural network
(ANN) is used in pattern recognition and knowledge acquisition and
control. HMMs are closely related to or a special case of neural
networks, stochastic grammars, and Bayesean networks. The
structure of an ANN consists of a number of computing elements
that resemble neurons and synapses of the human brain organized in
a network [19–20]. Presently most of the implementations of neural
networks are software-based. Interconnections higher than 2 units
may lead to “higher order” or “sigma pi” networks. A number of
important architectures can be recognized. These are (1) recurrent, (2)
feed-forward, and (3) layered.

A recurrent architecture contains directed loops. An architecture
devoid of directed loops is said to be feed-forward. Recurrent
architectures are more complex. An architecture is layered if the units
are partitioned into classes also called layers, and the connectivity
patterns are defined between the classes. A feed-forward architecture
is not necessarily layered. The number of layers is referred to as the
depth of the network.

In the backpropagation model, the network is processed in three
distinct steps. The first step is the forward sweep. In the forward
sweep, the input is given to the input units. The output values of each
unit are calculated and moved over the connections to the units in the
next layer.

The units in the next layer receive the input from units in the
previous layer. The output values of the units then are calculated
and passed to the units in the next layer, and so on. The next step is
error calculation. In this step, the values of the output units are
compared with the desired output (teaching). If the difference
between the actual output and the teaching is within the acceptable
error range, then learning is successful. If the difference is not within
an acceptable range, then an error value is calculated, and learning
is unsuccessful.

The third step is backpropagation of the error value. In this step, if
learning is unsuccessful, then the error value is propagated backward
through the net. The weights of the connections between the units are
adjusted to minimize the error value. The main objective of this step
is to close the gap between the actual output and the desired output.
These three steps are repeated until learning is successful.

The behavior of each unit in time can be described using either
differential equations or discrete update equations. Typically, a unit i
receives a total input Xi from the units connected to it and then
produces an output Yi – f(xi), where f is the transfer function of the
unit. In general, all units in the same layer have the same transfer
function, and the total input is a weighted sum of incoming outputs
from the previous layer so that

 194 C h a p t e r S i x

X W y Wi ij j
j N i

i= +∑
ε ()

 (6.3)

Y f x f W Y Wi i ij j i
j N i

= = +⎛
⎝

⎞
⎠

∑()
()ε

 (6.4)

where Wi is called the bias or threshold of the unit. Wij and Wi are the
parameters of the neural network (NN). Other parameters such as
time constants, gains, and delays are possible. Usually, the total
number of parameters is determined by the number of layers, the
number of units per layer, and the connectivity between layers. The
NN is said to be fully connected when each unit in one layer is connected
to every unit in the following layer.

A normalized exponential unit is used to compute the probability
of an event with n possible outcomes, such as classification into one
of n possible classes. Let j run over a group of n output units,
computing the n membership probabilities, and xj denote the total
input provided by the rest of the NN into each output unit. Then the
final activity yi of each output unit is given by

y
e

e
i

x

x

k

n

i

k

=
−

−

−
∑

1

 (6.5)

yi
i

n

=
=
∑ 1

1

 (6.6)

When n = 2, the normalized exponential is equivalent to a logistic
function via a simple transformation:

y
e

e ei

x

x x
=

+⎡⎣ ⎤⎦

−

− −

1

1 2 (6.7)

Any probability distribution Pi (1 ≤ j ≤ m) can be represented in
normalized exponential from a set of variables xj (1 ≤ j ≤ m):

P
e

e
i

x

x

k

m

i

k

=
−

−

=
∑

1

 (6.8)

as long as m ≥ n. This can be done in infinitely many ways by fixing a
positive constant k and letting Xi = log(pi) + kj, for i = 1, . . . , n. If m < n,
there is no exact solution, unless the pi assumes only m distinct values
at most.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 195

The radial basis function (RBF) is another type of widely used
function. Here, f is a bell-shaped function like a Gaussian function.
Each RBF unit i has a reference input xi, and f operates in the distance
d(xi

∞, xi) measured with respect to some metric yi = f(d). In a spatial
problem, d is usually the Euclidean distance.

Thus some of the important features of the ANN model depend
on the task at hand. The process of computing approximate weights
is called learning or training in the ANN paradigm. There are many
ANN learning algorithms that employ the principles just described.
In general, ANN learning algorithms are classified by either the tasks
to be achieved or the methodologies to achieve a task: (1)
autoassociation, (2) classification, (3) heteroassociation, and (4)
regularity detection. ANN learning algorithms are divided into two
classes: (1) supervised and (2) unsupervised.

In supervised learning, a network is given an input along with its
desired output. On the other hand, a network in unsupervised learning
is given only an input. After each presentation of an input, the
performance is measured to tell how the network is doing. A network
is expected to self-organize information by using the performance
measure as guidance. Algorithms in these two categories are further
divided into two groups on the basis of the input formats: binary or
continuous-valued input. Taxonomy of the ANN algorithm is given
in Fig. 6.6.

In Qian and Sejnowski’s work [21], orthogonal encoding was
used as input, with the alphabet corresponding to 20 different amino
acids. A terminator symbol to encode the N and C terminals is also
included, making the alphabet size 21. The input window had an
optimal size, rougly of 13 amino acids. The input layer has 21 × 13 =
273 units. The typical size of the hidden layer consists of 40 sigmoidal

Binary valued
input

Continuous valued
input

ANN learning algorithms

Supervised

Hopfield net
boltzmann
machine

Art I

Unsupervised

Peceptron &
back

propagation

ART II
kohenen’s

SOM

Supervised Unsupervised

FIGURE 6.6 Taxonomy of ANN learning algorithms.

 196 C h a p t e r S i x

units. The number of parameters used for this architecture was 11,083.
Three sigmoidal units were present in the output layer. The α-helix,
β-sheet, and γ-coil structures were encoded. The classification was
represented in the output. The networks were initialized using
random uniform weights. Subsequently, the network was trained
using backpropagation with the LMS error function. A more
appropriate use would be the normalized exponential output layer
with the relative entropy as error function. The training set is 20,000
residues in length. These are extracted from the Protein Data Bank
(PDB). Many protein structures have been solved by experimentation.
Peformance oscillations associated with the use of contiguous
windows is avoided by using a random order of presentation when
training on protein sequences. The performance increases from a
33 percent choice level to 60 percent using this architecture. Beyond
this point, overfitting begins. If there is an imbalance in the amount of
helix, sheet, and coil proportions from the usual number of 0.3/0.2/0.5,
percentages of correctly predicted window configurations can be pair
indicators of the predictive performance. The correlation coefficient
can be used and is found to be a better measure of performance.

6.7.2 PHD Architecture of Rost and Sander
The most important performance improvement has been achieved by
the work of Rost and Sander [22]. Their work resulted in the creation
of a Profilenetwork HeiDelberg (PHD) server. The PHD method
reached a performance level of 74 percent on an unknown test set. A
reduction of the database of three-dimensional protein structures to a
sequence of secondary structure patterns is achieved with statistical
and neural network methods (Fig. 6.7). A sequence profile of a protein
family, rather than just a single sequence, is used as input to a neural
network for structure prediction. Each sequence position is
represented by the amino acid residue frequencies derived from
multiple sequence alignments as taken from the Homology-Derived
Structure of Proteins (HSSP) database. The residue frequencies for
the 20 residue types are represented by 3 bits each (or by one real
number). To code the N- and C-terminal ends adds an additional
3 bits (or one real number). The 63 bits originating from one sequence
position are mapped onto 63 (21 for real numbers) input units of the
neural network

A window of 13 sequence positions thus corresponds to 819 (273)
input units. The input signal is propagated through the network with
one input layer, one hidden layer, and one output layer. The output
layer has three units corresponding to the three secondary-structure
states, helix, strand, and loop, at the central position of the input
sequence window. Output values are between 0 and 1. The
experimentally observed secondary structure states are encoded as 1,
0, 0 for helix, 0, 1, 0 for strand, and 0, 0, 1 for loop. The error function

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 197

to be minimized in training is the sum over the squared difference
between current output and target output values. The net cascade
consists of the first network (sequence-to-structure), followed by a
second network (structure-to-structure) to learn structural context
(not shown). Input to the second network is the three output real
numbers for helix, strand, and loop from the first network plus a
fourth spacer unit for each position in a 17-residue window. From
the 17 × (3 + 1) = 68 input nodes, the signal is propagated via a
hidden layer to three output nodes for helix, strand, and loop, as in
the first network. In prediction mode, a 13-residue sequence window
is presented to the network, and the secondary-structure state of the
central residue is chosen, according to the output unit with the
largest signal.

More balanced predictions are achieved by the PHD server. Better
accuracy is achieved from multiple sequence alignments and using
evolutionary information, better prediction of the sheets achieved by
balanced training, and better prediction of helix and strand lengths
using structure context training. The neural network was tested on a

Alignment

5
.
.
.

. . . . 5

. . . 5 .

. . 3 . .

. . . . 1
5
. . . . 5
. . . 5 .
. . . . 4
. . . . 1
4
.
. . . 1 .
. . . 5 .

5
.
. 1 1 . 1
.

.

.

. . 2 . .

.

.

.

. . 2 . .

. . 2 . .

.

.

.

. 1 . . .
3 . . . 1
1
.
1 . 1 2 .
.

.

. 5 . . .

. . 1 1 .

.

.

.

. . . 3 .

.

.

.

.

. 2 . . .

.

.

.

.

.

.

. 4 . 1 .

.

.

.

.

.

.

.

. . 5 . .

.

. . 5 . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . 5 .

Profile Table

Pick
maximal

unit
?>

current
production

α >

β >

c >

GSAPD NT EKQC VHIR LM YFW
.
.
G
Y
I
Y

G
T
D
F
.
.

D
P
E
D
G
D
P
D
D
G
V
N
P

.

.
G
Y
I
Y

.

.
G
Y
I
Y

.

.
G
Y
E
Y

.

.
G
Y
E
Y

G
T
E
F
.
.

G
T
K
F
.
.

G
T
S
F
.
.

G
T
A
F
.
.

D
P
A
V
G
D
P
D
N
G
V
E
P

D
P
E
V
G
D
P
T
Q
N
I
P
P

D
P
A
E
G
D
P
D
N
G
V
K
P

D
P
A
E
G
D
P
D
N
G
V
K
P

Protein

Input
layer

s0 s1 s2

Fine or
hidden layer

Second or
output layer

FIGURE 6.7 Neural network architecture for secondary structure prediction [20].

 198 C h a p t e r S i x

database of 130 representative proteins with known structure. The
overall improvement shown by this method is as follows:

 1. The overall accuracy is 69.7 percent, three percentage points
above the highest value reported so far (66.4 percent). The
improvement is six percentage points relative to the best
classical method tested on our database (63.4 percent, ALB).

 2. Accuracy is well balanced at 70 percent helix and 64 percent
strand, measured as the percentage “correct of observed.”
The percentages “correct of predicted,” i.e., the probability of
correct prediction, given a residue predicted in a particular
state, are 72 percent helix and 57 percent strand.

 3. The length distribution of segments is more proteinlike.
Unfortunately, the length distribution is not generally given in
the literature, but most methods are inferior in this regard.

There are two practical limitations to this method. Most of the gains
of the PHD architecture are lost when no sequence homologues are
available. These are not valid for membrane proteins and other
nonglobular or water-insoluble proteins. Another limitation of the
method is its limited goal. This method is useful in practice, such as for
the planning of point mutations experiments, for the selection of
antigenic peptides, or for identification of the structural class of a protein.
Evolution may be the key to the puzzle posed of protein folding.

6.7.3 Ensemble Method of Riis and Krough [23]
The work of Riis and Krogh [23] addresses the overfitting problem by
redesign of the NN architecture. Their approach has four main
components:

 1. The larger input (13 × 21) caused a large number of parameters
to be cut using an adaptive encoding of amino acids. An
optimal and compressed representation of the input letters is
found by the NN. This technique is also referred to as weight
sharing.

 2. A different network is designed for each of the three classes.
A three-residue periodicity between the first and second
hidden layers was built for the case of α-helices. The second
hidden layer is fully interconnected to the second hidden
layer, which has a typical size of 5–10 units. A typical α-helix
network contains 160 adjustable parameters. About 300–500
adjustable parameters is contained in a β-sheet or γ-coil
network. Balanced training sets were used with the same
number of positive and negative examples on training these
architectures in isolation.

 3. They use ensembles of networks and filtering to improve the
prediction.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 199

Five different networks are used for each type of structure at each
position. The combining network takes a window of 15 consecutive
single predictions. The input layer to the combining network has size
225. To keep the number of parameters within a reasonable range, the
connectivity is restricted by having one hidden unit per position and
per ensemble class. The input is locally connected to a hidden layer
with 45 units. The hidden layer is fully connected to three normalized
exponential output units. The error measure used is the negative log
likelihood, which in this case is the relative entropy between the true
assignment and the predicted probabilities.

Riis and Krogh use a weighting scheme along with the multiple
alignments. The maximum entropy weighting scheme is used.
Averaging operates on soft probability values produced by single-
sequence prediction algorithm. A small network with a single hidden
layer of 5 units is then applied to filter the consensus secondary-
structure prediction derived using multiple alignment. Coil regions are
less conserved and hence have higher per-column entropy in a multiple
alignment. The performance is improved with an overall accuracy of
71.5 percent and with better correlation coefficients. It is comparable
with the method of Rost and Sander [22]. The consensus is that there
appears an upper bound on accuracy of slightly above 70 to 75 percent
on any prediction method based on local information only.

6.7.4 Protein Secondary Structure Using HMMs
HMMSTR is a model for general protein sequences based on the I-sites
library of sequence-structure motifs. Unlike the linear hidden
Markov models used to model individual protein families, HMMSTR
has a highly branched topology and captures recurrent local features
of protein sequences and structures that transcend protein family
boundaries. The model extends the I-sites library by describing the
adjacencies of different sequence-structure motifs as observed in
the PDB and by representing overlapping motifs in a much more
compact form, achieving a great reduction in parameters. The HMM
attributes a considerably higher probability to coding sequence than
does an equivalent dipeptide model and predicts secondary
structure with an accuracy of 74.3 percent, backbone torsion angles
better than any previously reported method, and the structural
context of β-strands and turns with an accuracy that should be
useful for tertiary-structure prediction.

Helix-capping motifs are specific patterns of hydrogen bonding
and hydrophobic interactions found at or near the ends of helices in
both proteins and peptides. In an α-helix, the first four >N–H groups
and last four >C=O groups necessarily lack intrahelical hydrogen
bonds. Instead, such groups are often capped by alternative
hydrogen-bond partners. A hydrophobic interaction that straddles
the helix terminus is always associated with hydrogen-bonded
capping. From a global survey among proteins of known structure,

 200 C h a p t e r S i x

seven distinct capping motifs are identified—three at the helix N
terminus and four at the C terminus. The consensus sequence
patterns of these seven motifs, together with results from simple
molecular modeling, are used to formulate useful rules of thumb for
helix termination. Finally, we examine the role of helix capping as a
bridge linking the conformation of secondary structure to
supersecondary structure.

A novel method to model and predict the location and orientation
of α-helices in membrane-spanning proteins was presented by
Sonnhammer et. al. [24]. It is based on an HMM with an architecture
that corresponds closely to the biologic system. The model is cyclic
with seven types of states for helix core, helix caps on either side, loop
on the cytoplasmic side, two loops for the noncytoplasmic side, and a
globular domain state in the middle of each loop. The two-loop paths
on the noncytoplasmic side are used to model short and long loops
separately, which corresponds biologically to the two known different
membrane insertion mechanisms. The close mapping between the
biologic and computational states allows us to infer which parts of
the model architecture are important to capture the information that
encodes the membrane topology and to gain a better understanding
of the mechanisms and constraints involved. Models were estimated
both by maximum likelihood and a discriminative method, and a
method for reassignment of the membrane helix boundaries was
developed. In a cross-validated test on single sequences, our
transmembrane HMM (TMHMM) correctly predicted the entire
topology for 77 percent of the sequences in a standard data set of
83 proteins with known topology. The same accuracy was achieved
on a larger data set of 160 proteins. These results compare favorably
with existing methods.

Secondary structures such as helix, sheet, and coil can be learned
by HMMs, and these HMMs are applied to new sequences whose
structures are unknown. The output probabilities from the HMMs are
used to predict the secondary structures of the sequences. Sonhammer
et. al. [24] tested this prediction system on approximately 100 sequences
from a public database (Brookhaven PDB). Although the
implementation was “without grammar” (no rule for the appearance
patterns of secondary structure), the result was reasonable.

6.7.5 DAG RNNs: Directed Acyclic Graphs and Recursive
NN Architecture and 3D Protein Structure Prediction

Baldi and Pollastri [25] tackled protein secondary-structure prediction,
which is one of the open problems in bioinformatics, by using DAG
RNNs. DAG-RNNs are directed acyclic graphs and recursive
neural network architectures. Protein structures are invariant after
undergoing translations and rotations. This was included in the
approach of Baldi and Pollastri. They proposed a machine-learning
pipeline that consisted of three steps:

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 201

1. Representation of a given domain using directed acyclic
graphs

 2. Parameterizaion of the relationship between each variable
and its parent variables by feedforward neural networks

 3. Application of weight sharing within appropriate subsets
of DAG

 4. Connections to capture stationarity and control model
complexity.

It is a three-step process. The specific class of DAG-RNN
architectures is derived from lattices, trees, and other structural
graphs. The overall models resulting are probabilistic. The internal
deterministic dynamics allows efficient propagation of information
as well as training by gradient descent to tackle large-scale
problems.

All the weights of the BRNN architecture, including the weights
in the recurrent wheels, can be trained in a supervised fashion using
a generalized form of gradient descent derived by unfolding the
wheels in space. BRNN architectural variations are obtained by
changing the size of the input windows, the size of the window of
hidden states that directly influences the output, the number and size
of the hidden layers in each network, and so forth. Thus BRNN
architectures have been used in the first state of the prediction
pipeline, giving rise to the state-of-art predictors for secondary
structure, solvent accessibility, and coordination number.

6.7.6 Annotate Subcellular Localization
for Protein Structure

LOC3D [26], at http://cubic.bioc.columbia.edu/db/Loc3d, is both a
weekly updated database and a Web server with predictions of
subcellular localization for eukaryotic proteins of known 3D structure.
Neural networks are used in the prediction of localization. The
LOC3D database currently contains predictions for greater than 8700
eukaryotic protein chains taken from the PDB. The Web server can be
used to predict subcellular localization for protein for which only a
predicted structure is available from threading servers.

The native subcellular localization of a protein is important for
understanding gene/protein function. Aberrant subcellular localization
of proteins has been observed in the cells of patients with several
disease, such as cancer and Alzheimer’s disease. Attempts to predict
subcellular localization either experimentally or computationally have
become one of the central problems in bioinformatics.

Subcellular localization is annotated for not many of the proteins
deposited in the PDB. The LOC3D database is the first comprehensive
database of predicted and inferred subcellular localizations for
proteins of known structure. The LOC3D database can be useful in

http://cubic.bioc.columbia.edu/db/Loc3d

 202 C h a p t e r S i x

complementing functional information for proteins from domain
databases such as SMART and PFam and functional site resources
such as ELM, Protfun, and PROSITE. The LOC3D has four different
paths to annotate subcellular localization (Fig. 6.8).

These are (1) Predict NLS, (2) Lochomi, (3) Lockey, and (4)
Loc3DIni. From the query PDB structure, the amino acid sequence,
three-state secondary structure, and solvent-accessible surface
residues of the protein are extracted. In Predict NLS, the amino acid
sequence is scanned for nuclear localization signals. In Lochomi, the
sequence is first aligned using PSI-BLAST to a localized annotated
database of proteins. If any sequence homologues are discovered,
subcellular localization annotation is transferred from the homologue.
Lockey infers subcellular localization based on keyword entries.
These three programs are based solely on the amino acid sequence of
the protein and do not use any structural information. Subcellular
localization is predicted by a system of neural networks in LOC3
Dini. The NNs are trained in a number of global features such as
amino acid composition, secondary structure composition, and
surface residue composition. The final localization annotation in the
LOC3D database is taken from individual methods.

LOC3 Dini is a prediction system that predicts subcellular
localization from sequence and structure using NNs. Subcellular
localization is predicted using a number of global features of protein
sequence and structure. The LOC3 Dini system consists of three layers
and sorts proteins into one of four localization classes: extracellular,
cytoplasmic, nuclear, and mitochondrial.

PBB structure

Amino acid
sequence

Secondary
structure

Surface
residues

Feed
forward
neural

network

Transfer
annotation

from
sequence

Nuclear
localization

Localization

LOC3D database

FIGURE 6.8 LOC3D database.

1.0 The first layer consists of four dedicated of neural networks
that use particular features from protein sequences, alignments, and
secondary structures to presort proteins into L/not L, where L=
cytoplasmic, nuclear, extracellular, or mitochondrial. The features
used include amino acid composition, composition of surface-
accessible residues, and composition of amino acid residues in one of
the three secondary structure states (helix, sheet, or coil). Evolutionary
information was incorporated by replacing the amino acid with
profile-based amino acid composition.

2.0 The second layer consists of neural networks combining
output from networks trained on different input features. The third
layer uses a simple jury decision to assign one of four localization
states to each protein. Major sources of improvement over publically
available methods originating from using (1) secondary structure
information, (2) solvent accessibility, and (3) evolutionary information
from sequence profiles as input to the neural networks. The final
four-state classification accuracy of the system was 76.5 percent. This
is greater than 10 percentage points higher than systems using only
amino acid composition.

Summary
The relative entropy site-selection problem is NP complete. Hertz
and Stormo presented a greedy approach to develop an efficient
algorithm for the relative entropy site-selection problem. Profiles
with lower relative entropy scores than d will be discarded. An
iterative approach is used in the Gibbs sampling method for the
solution to the relative entropy site-selection problem. The maximum-
subsequence problem is a corollary of the problem of finding the
coding regions in DNA. Bates and Constable suggested an algorithm
that solves the maximum-subsequence problem using the principle
of recursion. Sharma has shown that maximum subsequence is found
in the deepest branch of the binomial heap. The time taken is O(n).
All subsequences are available in the binomial heap. The interpolated
Markov model (IMM) is implanted in GLIMMER. Markov models
from first to eighth order are used in this procedure. For prediction of
the translation start-site codon, the SD sites problem can be solved by
using the t statistic and measurement of statistical significance. OWL
and dBEST databases are used in the dictionary-based approach to
gene annotation. The problems of sequence alignment and gene
finding were treated with a unifying framework by Pachter and Lam.
The GPHMM is both a generalized HMM and a pair HMM. Manhattan
networks and Steiner trees are used in the optimization problem of
designing efficient search spaces for HMMs. The Viterbi algorithm
search space was reduced from O(D4N2TU) by three orders of
magnitude. The Pachter algorithm consumes O(n3), where n is the
number of highest-scoring pairs. It can be reduced to O[n lg(n)] at the

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 203

 204 C h a p t e r S i x

expense of increasing the bound for the size of the network from
twice optimal to four times optimal. The spliced alignment algorithm
for similarity-based gene recognition is reviewed. The Las Vegas
algorithm provides the option of “No answer.”

The protein secondary structure—α-helix, β-sheet, or γ-coil—
given the primary sequence of the protein can be determined using
neural networks. Although the number of proteomes sequenced
increases rapidly with time, the number of known secondary
structures is not commensurate with growth of the proteomes.
Empirical correlations have been developed between protein primary
structure and protein secondary structure, such as in the Chou and
Fasman rules. Pioneering work on predicting protein secondary
structure using neural networks was that of Qian and Sejnowski.
They used 106 proteins in their study. The fundamentals of neural
networks were reviewed. Rost and Sander came up with the most
important performance improvement by using evolutionary
conformation in their PHD server to predict protein secondary
structure. The NN had 819 input units, one hidden layer, and one
output layer. The output layer had 3 units. The work of Riis and
Krogh is a redesign of NN architecture to solve the overfitting
problem. The NN was designed with a larger input layer, balanced
training sets, 160 adjustable parameters for the α-helix network, 300 to
500 adjustable parameters contained in the β-sheet or γ-coil network,
ensembles of networks, and filtering for improved prediction. HMMs
can be used to predict protein secondary structure. Baldi and Pollastri
used DAG-RNNs for protein secondary-structure prediction. It is a
three- step process. Weights of the BRNN architecture, including the
weights in the recurrent wheels, can be trained in a supervised
fashion. Native subcellular localization of a protein is important for an
understanding of gene/protein function.

References
[1] T. Akutsu, H. Asimira, and S. Shimozono, “An approximation algorithm for

local multiple alignment.” In RECOMB 2000, Proceedings of the 4th Annual
International Conference on Computational Molecular Biology. Tokyo, Japan:
ACM, 2000.

 [2] G. T. Hertz and G. D. Stormo, “Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences.” Bioinformatics. 15
(1999), 563–577.

 [3] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Nuewald and
J. c. Wooton, “Detecting Subtle Sequence Signals- A Gibbs Sampling Strategy
for Multiple Alignment”, Science. 262, 8, (1993), 208–214.

 [4] J. C. Bates and R. L. Constable, “Proofs as programs,” ACM Trans. Programming
Languages and Systema 7 (1985), 113–136.

 [5] K. R. Sharma, “Binomial tree representation for the maximum subsequence
problem,” Central Regional Meeting of the ACS, Pittsburgh, PA, 2003.

 [6] K. R. Sharma, “Binomial tree representation of maximum increasing sub-
sequence problem,” 41st Annual Convention of Chemists Meeting, Delhi
University, New Delhi, India, 2004.

 [7] K. R. Sharma, “New data structures in bioinformatics to improve search cost,”
AIChE Spring Meeting, New Orleans, LA, 2004.

 [8] A. L. Delcher, D. Harmon, S. Kasif, et al., “Improved microbial gene identifica-
tion with GLIMMER.” Nucleic Acids Res. 27 (1999), 4636–4641.

 [9] J. Shine and L. Dalgorno, “The 3’ terminal sequence of Escherichia coli 16S
ribosomal RNA: Complementary to nonsense triplets and ribosome binding
sites,” Proc. Natl. Acad. Sci. U.S.A. 71 (1974), 1342–1346.

[10] M. Tompa, “An exact method for finding short motifs in sequences with
application to the ribosome binding site problem.” In Proceedings of 7th
International Conference an Intelligent Systems for Molecular Biology. Heidelberg:
AAAI Press, 1999, pp, 262–271.

[11] L. Pachter, S. Batzoglou, V. I. Spitkovshy, et al., “A dictionary based
approach for gene annotation.” In Proceedings of the Third Annual
International Conference on Compuational Molecular Biology. Cologne: ACM,
1999, pp. 285–294.

[12] L. Pachter, M. Alexanderssan, and S. Cawley, “Applications of generalized
pair HMM to alignment and gene finding problem.” In Proceedings 5th Annual
International Conference on Computational Biology. Montreal, Canada: ACM,
2001, pp. 241–248.

[13] M. S. Gelfend, A. Mironov, and P. A. Pevzner, “Gene recognition via spliced
alignment,” Proc. Natl. Acad. Sci. U.S.A. 93 (1996), 9061–9066.

[14] L. Pachter and F. Lam, “Picking alignments from Steiner trees.” In Proceedings
of the Sixth Annual International Conference on Computationsl Biology. New York,
NY: ACM, 2002, pp. 246–253.

[15] S. H. Sze and P. A. Pevzner, “Las Vegas algorithms for gene recognition:
Suboptimal and error-tolerant spliced alignment.” In Proceedings of 1st Annual
International Conference on Computational Molecular Biology. Sante Fe, NM:
ACM, 1997, pp. 300–309.

[16] G. Brassard and P. Bratley, Fundamentals of Algorithmica. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[17] S. F. Altschul, W. Gish, W. Miller, et al., “Basic local alignment search tool,”
J. Mol. Biol. 215 (1990), 400–403.

[18] P. Y. Chou and G. D. Fasman, “Prediction of protein conformation,”
Biochemistry. 13 (1974), 222–245.

[19] J. L. McClellland, D. E. Rumelhart, and G. E. Hilton, “The appeal of parallel
distributed processing.” In D. E. Rumelhart and J. C. McCelelland (eds.),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Boston: MIT Press, 1986.

[20] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach. Boston:
MIT Press, 2001.

[21] N. Qian and T. J. Sejnowski, “Predicting the secondary structure of glob-
ular proteins using neural network models,” J. Mol. Biol. 202 (1988),
865–884.

[22] B. Rost and C. Sander, “Improved prediction of protein secondary structure
by use of sequence profiles and neural networks,” Proc. Natl. Acad. Sci. U.S.A.
90 (1993), 7558–7562.

[23] S. K. Riis and A. Krogh, “Improving prediction of protein secondary struc-
ture using structured neural networks and multiple sequence alignments,”
J. Comput. Biol. 3 (1996), 163–183.

[24] E. L. Sonnhammer, G. von Heijne, and A. Krogh, “A hidden Markov model
to predict trans-membrane helices.” In Proceedings of the 6th International
Conference on Intelligent Systems for Molecular Biology, Montreal, Canada:
Quebec,Vol. 6., 1998, pp. 175–182.

[25] P. Baldi and G. Pollastri, “The principled design of large-scale recursive
neural network architectures—DAG-RNNs—and the protein structure pre-
diction problem,” J. Machine Learning Res. 4 (2003), 575–602.

[26] R. Nair and B. Rost, “Loc3D: Annotate subcellular localization for protein
structures,” Nucleic Acids Res. 31 (2003), 3337–3340.

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 205

 206 C h a p t e r S i x

Exercises
1.0 Show that the longest increasing subsequence for S = {11, 17, 5, 8, 6, 4, 7,
12, 3} can be found by keeping track of its indices in O[n lg(n)] time.

 Si 11 17 5 8 6 4 7 12 3

 i 1 2 3 4 5 6 7 8 9

 Length of h 1 2 1 2 2 1 3 4 1

 Predecessor 1 3 3

So the maximum increasing subsequence {5, 6, 7, 12}.

2.0 Develop the relative entropy of the site-selection procedure introduced
by Hertz and Stormo for the following four sequences:

 T G C A A T A

 T T A T C G G

 C A A T A A A

 T G T G C G C

3.0 What is the implication of negative number occurring in the binomial
heap of all maximum increasing subsequences problem?

4.0 Define the mutual information of three pairs (x, y, z) and random
variables.

5.0 Define score as log4 CK/CB. Would the choice of base 4 for DNA be a
better representation than the base 2?

6.0 Discuss the limitation of the recursion principle for the maximum
subsequence problem. Start with one element at different locations in the
sequence. Do you get the same answer?

7.0 Show how the interpolated context model tree will look like for three pairs.

8.0 What is the reason for the value 0.5 used as a cutoff for the different
definitions of λ?

9.0 What if the overlap of A and B starts at the same location? What remains
the same?

10.0 Under what circumstances will the t statistics be less desirable. How
about a periodic probability distribution? Do you need a generalized normal
distribution? If so, what is the equivalent of the z score?

11.0 What if in the Steiner problem the points fall on a square grid or a
rectangular grid?

12.0 Construct an alignment and state space for the following sequences:

 G C G A T A T

 C G G T T A G

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 207

13.0 Can you have a curvilinear Steiner tree? When?

14.0 Discus the merits and demerits of glueing in space requirements
reduction.

15.0 Discuss the spliced alignment with nucleotide comparison with Δ
mismatch = –2, Δ match = 2, Δ indel = 0.

16.0 When the databases reach the level of petabytes, which system will be
preferred? What are ORACLE Company’s latest forays in this area? When is
a supercomputer apt for the occasion?

17.0 Some investigators use neural networks to predict secondary structures,
whereas others use HMMs. What is the difference in approach? What is
predicted, and what is learned?

18.0 The Ramachandran plot results in α-helices and β-sheets given the
dihedral angles. The primary sequence of the protein is entered as input
into a neural network, and the output is the geometric secondary structure
of the protein. What are the similarities of the two methods? What are the
differences?

19.0 Can you design a neural network to predict the tertiary structure of a
protein?

20.0 Show using a neat schematic what would be the strategy to obtain the
protein secondary structure from the nucleic acid sequence distribution.

21.0 Can two protein structures be aligned if their three-dimensional
structures are known? Will such an alignment be easier to achive given
that there are only three possibilities, α-helix, β-sheet, and γ-coil, compared
with the primary sequence distribution with 20 different amino acids as the
alphabet.

22.0 What is the relation between disease and protein secondary structure?

23.0 Can drugs be designed using protein secondary structure?

24.0 There are experimental methods to obtain the protein secondary
structure. Which is preferred, the experimental methods or the neural
networks? Why?

25.0 Are computer calculations needed to calculate the protein secondary
structure using the Chou Fasman rules?

26.0 Is there a secondary structure to DNA as in protein? Why?

27.0 Design the architecture of an NN to learn the standard genetic code.
How many output units, input units, and intermediate units are needed?

28.0 Why is backpropagation preferred in Exercise 27.0?

29.0 How would your design change if reverse transcription, i.e., from RNA
to DNA, is sought? Can you start from a protein?

 208 C h a p t e r S i x

30.0 Devise an NN to learn a DNA sequence and output a suffix tree.

31.0 Design an HMM to learn the standard genetic code.

32.0 Devise an NN to learn a polypeptide sequence. Compare this with an
HMM that can perform the same task.

33.0 Can a phylogenetic tree be constructed using a neural network?

34.0 Can neural networks be used to obtain a multiple-sequence
alignment?

35.0 Can a neural network be designed to replace the effect of the affine gap
penalty model introduced in Chap. 2?

36.0 Can you retrieve a sequence alignment using a neural network?

37.0 Can protein family classification be achieved using neural networks?
Provide a sketch of your strategy.

38.0 Can you achieve the same results as the wheel HMM shown in
Fig. 5.13 using a neural network? How many hidden layers are needed
to find the periodicity in DNA?

39.0 Why are HMMs preferred to neural networks in database mining?

40.0 Why are HMMs preferred to predict the Chargaff parity rules compared
with neural networks?

41.0 Can local alignment of two sequences be performed by neural
networks?

42.0 What is a structural alignment? Design a neural network to achieve the
structural alignment.

43.0 When are “sigma-pi” networks used?

44.0 PHDsec. The secondary structures of proteins are predicted by PHDsec
using neural networks. The Internet link to the Predict protein site is www.
predictprotein.org. Show that the neural network used by this software is of
the feed-forward type. Discuss the accuracy level reached, the architecture of
the ANN (e.g., number of hidden layers), and the weighting functions used
in this approach.

45.0 Why is a feed-forward architecture used in PHDsec discussed in
Exercise 44.0? What tasks are performed by the NN?

46.0 DISULFIND. The disulfide bridges in the microstructure of a polypeptide
are predicted in DISULFIND. The Internet hotlink to this site is http://
cassandra.dsi.unifi.it/cysteines/index.html. Show that the architecture of the
neural network used is bidirectional and recurrent. What tasks are performed
by the NN?

47.0 What is the accuracy reached in DISULFIND discussed in Exercise 46.0?
Discuss the architecture of the NN used.

www.predictprotein.org
www.predictprotein.org
http://cassandra.dsi.unifi.it/cysteines/index.html
http://cassandra.dsi.unifi.it/cysteines/index.html

 G e n e F i n d i n g , P r o t e i n S e c o n d a r y S t r u c t u r e 209

48.0 SAM-T99. The secondary structures of proteins can be predicted using
HMMs in SAM-T99. This was developed at the University of California, Santa
Cruz, and the Internet hotlink is www.soe.ucsc.edu/compbio/HMM-apps.
What order of HMM is used? What is achieved in the hidden layers?

49.0 What is the accuracy level reached in SAM-T99 discussed in
Exercise 48.0? What can you suggest to improve the time taken and
space needed using HMMs?

50.0 JPRED. Protein secondary structure and solvent accessibility are
predicted by JPRED. Show that the NN used has three layers and is fully
connected. Profiles generated by HMMs and PSI-BLAST are used by the
software. Discuss the accuracy reached in this approach.

51.0 Discuss the architecture of the NN used in JPRED in Exercise 50.0.

52.0 Can neural networks be designed to measure the periodicity in protein
primary structure? If so, how does this help in elucidation of protein secondary
structure?

53.0 The forward algorithm was developed to solve the evaluation problem
with increased time efficiency and storage needs. In a similar fashion, what
ought to be the strategy for neural networks and the primary structures of
proteins?

54.0 What is the equivalent of the Viterbi algorithm to the decoding problem
in the construction of an HMM to represent sequences to the neural network
representation of protein primary and secondary structures?

www.soe.ucsc.edu/compbio/HMM-apps

This page intentionally left blank

PART 3
Measurement
Techniques

CHAPTER 7
Biochips

CHAPTER 8
Electrophoretic Techniques and
Finite Speed of Diffusion

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

CHAPTER 7
Biochips

Objectives
The objectives of this chapter are to

• Learn what a biochip is and prepare a microarray slide.

• Draw parallels between biochips and the microprocessor
industry.

• Learn the five steps in the microarray cycle.

• Employ microarray detection using a confocal scanning
microscope.

• Know the criteria for microarray surfaces.

• Understand optimal probe, optimal target concentrations.

• Learn phosphoramadite synthesis

• Be familiar with the three manufacturing methods for ink-jet
printing, mechanical microspotting, and photolithography.

• Be familiar with t test statistics and normalization of gene
expression data.

• Read the case study in the detection of cancer.

7.1 Introduction
Microarrays can be used to understand disease states by enabling the
analysis of gene expression patterns, sequence variation, and other
biochemical reactions. According to Schena [1–4], in another 50 years,
human disease will be eradicated. Although Pauling was the first to
correlate gene mutations, altered proteins, and disease, the biochip
technique that is rapidly gaining worldwide acceptance can lead to a
better understanding of disease mechanisms and suitable drug
designs to effect cures.

Professor Ron Davis wanted his Ph.D. student Mark Schena to
study the function of transcription factors in the flowering plant
Arabidopsis thaliana based on solid-state assays over a cup of
coffee. They decided to use glass as substrate because it offered
less background fluorescence and better signal detection at the

213
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 214 C h a p t e r S e v e n

photomultiplier tube diode arrays. Other materials used by prior
investigators were nylon and nitrocellulose. The company Affymetrix
joined hands with the academics, and the rest is history. With stark
similarity to the growth of the computer chip and microprocessor
industry, microarray technology is gaining momentum. The concepts
of miniaturization, automation, and parallelism are used. More genes
per minute can be scanned in the slides with tiny dots arranged in
uniform rows and columns.

When the work on microarrays was first presented at a conference
in the Netherlands in 1994, the audience howled with laughter. Schena
presented the first microarray enzymatic labeling procedure,
demonstrating the feasibility of preparing fluorescent probes from
yeast and plant messenger RNA. Some luminaries in the field noted
that repetitive sequences in the human genome would prevent the use
of microarray assays for human studies. The first human microarray
data were presented at the Stanford Sierra retreat in October 1995. The
field has exploded in size since the appearance of the paper in Science
magazine in 1995 [2], and several thousands of papers in microarray
technique and statistical analysis of the same have been published.
Microarray analysis will lead to a better understanding of the genetic,
molecular, and cellular processes common to aging, as well as how
these processes may differ in individuals.

7.1.1 Microarrays, Biochips, and Disease
A microarray is a small analytical device that allows genomic
exploration with speed and precision unprecedented in the history of
biology. Glass chips containing thousands of genes are used to
examine fluorescent samples prepared by labeling mRNA from cells,
tissues, and other biologic sources. Molecules in the florescent sample
react with cognate sequences on the chip, causing each spot to glow.
The intensity of the glow is proportional to the activity of the
expressed gene (Fig. 7.1). The entire genome can be analyzed in a
single experiment. Since patterns of gene expression correlate strongly
with function, microarrays can be used to generate unprecedented
information on human disease, aging, drug and hormone action,
mental illness, diet, and many other clinical matters. Microarrays can
be used to find alterations in gene sequences. This can usher in a new
era of genetic screening, testing, and diagnostics. Tissue and protein
microarrays are miniaturizations of traditional histologic and
biochemical assays. This speeds up the analysis of tumor specimens,
protein-protein interactions, and enzymes.

A microarray is an ordered array of microscopic elements on a
planar substrate that allows the specific binding of genes or gene
products. The word microarray is derived from the greek word mikro,
meaning “small” and the French word arayer, meaning “arranged.”
Microarrays are also called biochips, DNA chips, and gene chips. They
contain collections of small elements or spots arranged in rows and

 B i o c h i p s 215

columns. To qualify as a microarray, the analytical device must be (1)
ordered, (2) microscopic, (3) planar, and (4) specific.

An ordered array is any collection of analytical elements configured
in rows and columns. Each row of elements must form a straight line
horizontally across the substrate, and each column of elements must
form a straight line vertically down the substrate in a manner
perpendicular to the rows. Ordered elements must have a uniform
size and spacing and a unique location on the microarray substrate.
Microscopic is defined as any object smaller than 1 mm. Microarrays
manufactured using photolithography produce 15- to 30-μm
features. Most tissue microarrays contain spots of 200 to 600 μm.
Microarray elements are collections of target molecules that allow
specific binding of probe molecules, including genes and gene
products, and a typical printed DNA spot contains approximately
109 molecules attached to the glass substrate. The microarray target
material can be derived from whole genes or parts of genes and may
include genomic DNA, cDNA, mRNA, protein, small molecules,
tissues, or any other type of molecule that allows quantitative gene
analysis. Target molecules include natural and synthetic derivatives
obtained from a variety of sources, such as cells, enzymatic reactions,
and machines that carry out chemical synthesis. Synthetic
oligonucelotides, short single-stranded molecules that contain chemical
syntheses, provide an excellent source of target material.

Microscopic elements enable a density greater than 5000
elements/cm2, rapid kinetics, and the analysis of entire genomes

FIGURE 7.1 Example of an approximately 40,000-probe spotted oligo
microarray.

 216 C h a p t e r S e v e n

on a single chip, i.e., miniaturization and automation. Filter arrays
and other nonmicroarray formats made with larger elements prevent
miniaturization and automation and do not allow whole-genome
analysis in a miniature format.

A planar substrate is parallel and unbending support such as
glass, plastic, or silicon onto which a microarray is configured. Glass
is the most widely used substrate material owing to the many
advantages offered by SiO2. Planar materials are flat over the entire
surface. Flat supports are amenable to automated manufacture and
high-quality manufactured microarrays. They allow for accurate
scanning and imaging and rely on a uniform detection distance
between the substrate and the detector. Impermeable to liquids, they
allow for small feature size and low reaction volumes.

Specific binding refers to unique biochemical interactions between
probe molecules in solution and their cognate target molecules on the
microarray. Each microarray spot/target should bind essentially to a
single species in the labeled probe mixture to provide the most
accurate measure of genes or gene products. Microarray assays
exploit a one-target, one-probe-molecule paradigm, and assay
precision can be enhanced using multiple microarray elements per
gene. Between 15 and 25 nucleotide target sequences define the
minimal target length required to achieve single-gene specificity.

Microarray technology development used the combined expertise
of different disciplines such as biology, chemistry, physics,
engineering, mathematics, and computer science. The correlation
between gene mutations, altered proteins, and disease was made first
by Pauling in 1949. Pauling showed that hemoglobin from sickle-cell
patients differs from hemoglobin from healthy individuals in that it
migrates aberrantly in gel electrophoresis assays. This finding was
correctly attributed to a change in the surface charge of the molecule.
By examining normal individuals, carriers, and patients with sickle-
cell disease, Pauling concluded that changes in the hemoglobin gene
were responsible for the altered protein, and this was verified later in
gene sequencing studies. This landmark journal article paved the
way for the molecular genetic analysis of human disease and provided
a conceptual foundation for the use of microarrays in genetic
screening, testing, and diagnostics.

The discovery of the double-helical structure of DNA by Watson,
Crick, and Williams is the chemical basis of microarray hybridization
reactions. The discovery of polymerase chain reactions (PCRs) with
the catalytic activity of the enzymes DNA polymerase, RNA
polymerase, and reverse transcriptase has contributed to microarray
analysis. Kornberg discovered polymerase. Reverse transcriptase
catalyzes the synthesis of DNA [5]. Last year, the Nobel Prize went to
Roger Kornberg, the son of Arthur Kornberg, for elucidating the
molecular basis of transcription. Maxam, Gilbert, and Sanger
developed DNA sequencing technology independently. Berg received

 B i o c h i p s 217

the Nobel Prize in 1980 for his fundamental studies of the biochem-
istry of nucleic acids. Bergy developed recombinant DNA technology.

The growth of the microarray industry has a striking resemblance
to the history of the microprocessor industry. Computer chip
discovery was credited to Shockley, a cocreator of the transistor and
recipient of the Nobel Prize in physics in 1956. He is also called the
“father of silicon valley.” He founded the Shockley Semiconductor
Laboratories at Palo Alto, California. It transformed northern
California from a sleepy pastoral community into a world center for
technological innovation. His aversion to silicon lead to the “traitorous
eight,” a group of disgruntled employees who left Shockley’s
company to start Fairchild Semiconductor. Noyce and Moore were
two of its founders.

The new company quickly exploited silicon-based fabrication
methods and manufactured the integrated circuit. The first commercial
integrated circuits were manufactured in 1961, Moore’s law was
formulated in 1965, and the computer mouse invented in 1962. Moore,
the head of research and development at Fairchild, noticed that
transistor density and computing power were doubling every 12 to
18 months. Noyce and Moore left Fairchild Semiconductors to found
Integrated Electronics (Intel) in Santa Clara.

Intel released the first commercial microprocessor in 1971, and
the 4004 chip contained 2300 transistors capable of performing
approximately 100,000 calculations per second (108 kHz). As Moore
predicted, modern chips have greater computing power. The Pentium
IV chip, released in 2000, contains 42 million transistors capable of
carrying out 1.5 billion calculations per second (1.5 GHz) with 180-nm
circuit lines.

Microarrays similarly have grown in analytical power and have
decreased in feature size. The first plant microarrays printed in 1995
contained 96 genes with 200-μm features, compared with the highest-
density microarrays manufactured in 2001, which contain 30,000
genes with 16-μm features. Microarray gene content has increased
more than 300-fold in 6 years, doubling once every 8 months during
the 6-year period. In due course, the feature size of the microarray
will be in the nanometer range. New scanning devices such as x-rays
are needed because the wavelength of light is 400 nm, and the optical
scanning microscopes currently used to image the microarrays may
not be sufficient. In addition to analytical power, other similarities
between microprocessors and microarrays are the parallelism,
miniaturization, and automation.

The NanoPrint Microarrayer is a robust and customizable
platform for all microarray manufacturing applications regardless of
the type of biomolecule. The NanoPrint systems manufacture high-
quality, precision microarrays using TeleChem’s ArrayIt brand
patented and widely used Professional-946, and Stealth Style Micro
Spotting Pins. The NanoPrint uses superior linear drive motion

 218 C h a p t e r S e v e n

control technology and proprietary Warp1 controllers from Dynamic
Devices. The NanoPrint is compatible with all standard microarray
surfaces made by ArrayIt and other vendors. The system is easily
configured to print microarrays into the flat bottoms of 96-well plates
by taking advantage of its flexible deck configuration and easy-to-use
software interface. The Microarray Manager Software combines
unparalleled power and simplicity into a graphic Windows-based
package.

Features include a method-creation wizard, user and version
control management, custom calibration of the slide and microplate
positions, complete sample tracking, support of input-output data
files, custom array designs, speed profiles and wash protocols,
automatic method validation, runtime sample and spotting views,
and a simulation mode and easy-to-use graphic reprint wizard. The
high-speed, high-precision linear servo control system of the
NanoPrint results into superior instrument performance in both
speed and precision. Combined with the efficient benchtop design,
user-configurable worktable, humidity and dust control, a host of
available options, and the flexible and sophisticated software, the
NanoPrint system is the complete solution for high-performance
microarray printing.

7.1.2 Five Steps and Ten Tips
The microarray analysis life cycle consists of five steps, as shown in
Fig. 7.2. These steps are formulation of a biologic question, sample
preparation, biochemical reaction, detection, and data analysis and

Data
analysis/
modeling

Biological
question

Sample
preparation

Biochemical
reaction

Detection

FIGURE 7.2 Five steps in microarray analysis life cycle.

 B i o c h i p s 219

modeling. A biologic question has to be formulated prior to embarking
on a microarray study. For example, how do gene expression patterns
in a normal human and a patient with cancer differ from each other?
The goal of the project is to better understand the mechanism of
cancer disease affliction.

The second step is sample preparation. This includes DNA and
RNA isolation [7] and purification, target synthesis, probe amplification
and preparation, and microarray manufacture. The biochemical reaction
involves the incubation of the fluorescent sample with the microarray
to allow productive biochemical interactions to occur between target
and probe molecules. DNA microarrays use hybridization for
this step. Protein microarrays use protein-protein interactions for
this step.

The fourth step is the detection step. This involves use of a
confocal scanning microscope to obtain the image of the microarray
during gene expression on a photomultiplier tube using diodes.
Lenses and mirrors are used to effectively illuminate the sample and
detect the key reactions of interest. Captured images are analyzed
and modeled to complete the fifth step. Microarray manufacture can
be achieved using different methods, such as photolithography, ink-
jet printing, and mechanical microspotting.

The following 10 tips will ensure success in microarray
analysis [1]:

 1. Follow the protocol. The experimental recipes have been opti-
mized within a specific set of reagents, surfaces, fluorescent
labels, tools, methods, and techniques. The recipe has to be
followed to the letter.

 2. Read the mannual. Microarray manufacturers estimate that
greater than 50 percent of the damage that occurs to expensive
microarray instruments is incurred in the first 24 hours of
use. It is prudent to read the manual prior to use of the
instrument.

 3. Think small. The nucleic acid concentration in a microarray
hybridization reaction containing 1000 ng of fluorescent
probe in 5 μL (200 ng/μL) is 40,000 times greater than a filter
hybridization containing 100 ng of probe in 20 mL. Quantita-
tive gene expression data from 10,000 genes can be obtained
in a 5-minute scan at a rate of 2000 genes/min using a micro-
array slide compared with 2 weeks required to measure a
single gene using a filter blot. There is an increase by a factor
of 80 million over traditional methods.

 4. Keep it clean. Even a small amount of contamination will alter
the microarray reaction and skew the data. Protective gloves
should be worn at all times, and clean rooms are recommended
for exacting procedures.

 220 C h a p t e r S e v e n

 5. Keep it warm, and keep it hydrated. Elevated background
fluorescence can harm the data. Background fluorescence can
be minimized by using elevated reaction temperatures and
proper hydration. Water evaporates at 0.1 μL/min at ambient
conditions, and a low-volume microarray reaction can lose a
significant percentage of its volume quickly if steps are not
taken to minimize evaporation. Thus keeping it at an elevated
temperature and hydration is a challenge.

 6. Think globally. A holistic view of biologic systems is required.
Traditional studies focus on one gene. Global interactions of
genes and proteins are more important. The global view of
the cell afforded by gene expression studies using microarrays
has to be taken into account.

 7. Do the small experiments first. It is prudent to perform a pilot
study before scaling it up to the entire genome.

 8. Confirm as you go. It is recommended to confirm the identity
of a small number of genes by microarrays before a large
number of precious samples are achieved. Confirming
microarray analysis pathway early saves a lot of heartache
later on.

 9. Look early. Given the complexity of cell signaling pathways,
looking early after stimulation, i.e., within 1 to 4 hours will
maximize the chances of identifying the primary response
genes and will yield a gene fingerprint specific to a particular
response.

 10. Don’t panic: One way to combat the microarray data flood
that results in panic is to use data quantitation, mining,
modeling tools, and focused experimentation to narrow the
list of candidate genes before embarking on detailed study of
each gene.

7.1.3 Applications of Microarrays
One of the important applications of microarrays is the study of gene
expression. Eighty-one percent of the scientific publications on
microarrays contain such studies. Researchers in the United
States have contributed 71 percent of the microarrays, but
scientists from nine other nations, including Japan, the United
Kingdom, Germany, Canada, France, Australia, Sweden, China, and
Finland, have provided nearly 33 percent of the publications.

By measurement of gene expression levels as a function of cell
and tissue type and storing the results in databases, a deeper insight
into multicellular development and a better understanding of
pathologic cellular events can be achieved. Human brain tissue has
been most actively studied to date, but other tissues, including liver,
breast, prostate, lung, colon, kidney, heart, bladder, and skin, have

 B i o c h i p s 221

also been studied. The key to longevity-causing genes can be
obtained from microarray studies. The onset and progression of
human disease are determined by a complex set of factors that include
genetics, diet, the environment, and the presence of infectious
agents. Microarray analysis is unique in its ability to detect each of
the contributing factors.

Oncologic studies have accounted for 83 percent of microarray
publications. Diabetes, cardiovascular disease, Alzheimer’s disease,
stroke, AIDS, cystic fibrosis, Parkinson’s disease, autism, and
anemia are under intense investigation using microarray analysis
by scientists around the world. Through the study of differential
gene expression using microarrays, the mechanism of cancer
formation can be better understood—and the cure will soon follow.
The ultimate goal of microarray analysts is to eradicate every human
disease by the year 2050.

Many drugs impart their therapeutic action to specific cellular
targets, inhibiting protein function and altering gene expression. In
principle, microarrays can be used for drug discovery and clinical trials
by generating gene-expression profiles in patients undergoing drug
treatment. Many illness result in specific changes in gene expression,
and drugs that reverse these changes are expected to ameliorate the
disease. The cost of drug development may be cut down and safer
medicines may be produced on account of microarray studies.
Microarrays can be used for patient genotyping and dividing the
population into drug responders and nonresponders.

Microarrays can be used in genetic screening and diagnostics.
Thousands of disease-causing sequence variants are known, and
affordable microarray screens for these diseases are of tremendous
scientific and commercial interest. Microarray screening can be used
to distinguish the population as normal, carrier, and disease
genotypes. Treatable and curable genetic diseases can be identified at
an early stage. Genetic testing kits can reduce health care costs. The
commonly inherited diseases, such as cystic fibrosis, sickle-cell
anemia, Tay-Sachs disease, and breast cancer, can be studied using
microarrays, and the genomic information can be provided to the
public by confidential access.

Protein chips can be used to obtain the polypeptide sequence
distribution. Metabolomics, like genomics and proteomics, is the
complete functional annotation of the genome. The functions of
the organism are triggered by the signals from the proteins that are
generated by the DNA. Microarray analysis can be used in
metabolomics.

Gene chip technology is a practical method for determining the
sequence of genetic building block. It can speed up searches for
disease-related genetic changes. Using gene chips and analysis, a
team of scientists at Johns Hopkins University was able to accurately
determine the order of 2 million blocks of each of 40 individuals’

 222 C h a p t e r S e v e n

genomes in just a year. This is in a fraction of the time required by
traditional technology. Only 10 errors of every 10,000 points were
detected. Researchers at Washington University School of Medicine
in St. Louis helped to explain how genes dictate our biologic clock.
The circadian rhythm was studied using microarray analysis. How
do you feel when you get up at 4:00 a.m. compared with 4:00 p.m.?
Events such as this are driven by the internal clock, connected to
external cues such as the sun.

So far products of eight different genes have been discovered to
be essential to operations of this clock. Three laboratories in
collaboration with Affymetrix have identified 22 genes that appear to
be rhythmically regulated by the internal clock of the Drosophila fly.
Drosophila melanogaster has 14,000 genes. Microarrays can be used to
prepare a comprehensive list of all the active genes in a tissue sample.
The fly was exposed to light for 12 hours, followed by darkness for
12 hours. The cycle continued for a total of 96 hours. Genetic analyses
were performed on half the flies at six different time-points on the
fifth day. Seventy readings of 14,000 genes were taken, and a million
individual measurements were completed. Sophisticated computer
statistical analyses were performed, and the team determined that
between 72 and 200 of the flies’ 14,000 genes showed significant
rhythm of gene expression in normal flies living in a daily light-dark
cycle. Oscillating genes also were detected. So were mutant flies.

The chip is embedded with DNA molecules instead of electronic
circuitry. It is designed to probe a biologic sample for genetic
information that indicates whether the person has a genetic
predisposition for certain diseases. A University of Houston scientist
has developed a chemical process for building a device that could
help doctors predict a patient’s response to drugs or screen patients
for thousands of genetic mutations and diseases, all with one simple
lab test. This is a highly parallel technology—10,000 experiments can
be performed at once.

Aging of the human retina has been found by researchers to be
accompanied by distinct changes in gene expression. Using
commercially available DNA slides, a team of researchers directed by
Swaroop has established the first-ever gene profile of the aging
human retina, an important step in understanding the mechanisms of
aging and its impact on vision disorders. In the Journal of Investigative
Ophthalmology and Visual Science, Swaroop and colleagues show that
retinal aging is associated, in particular, with expression changes of
genes involved in stress response and energy metabolism. The term
gene expression means that in any given cell, only a portion of the
genes is expressed or switched on. For example, a person’s pancreas
and retina have the same genes, but only the pancreas can turn on the
genes that allow it to make insulin.

Swaroop believes that these findings will help scientists to
understand whether age predisposes one to changes in the retina

 B i o c h i p s 223

that, in turn, lead to age-related diseases. For vision researchers, one
of the most pressing disorders is age-related mascular degeneration
(AMD), a progressive eye disease that affects the retina and results
in the loss of one’s fine central vision. Microarray technology is an
important tool for gene profiling because it allows rapid comparison
of thousands of genes, something that was unheard of even few
years ago.

7.2 Microarray Detection

7.2.1 Fluorescence Detection and Optical Requirements
All microarrays require fluorescence scanning to facilitate reliable
imaging of the gene expression pattern or the problem at hand. The
confocal laser scanner delivers the highest image and data quality.
Commercial devices such as ScanArray are used currently. In future,
as the minimum feature size of the microarray dot size reaches the
nanometer range, x-ray scanners may have to be developed because
the wavelength of light is 400 nm. The substrate is chemically treated
glass in the form of a 25 × 75 mm slide. DNA arrays incorporate
samples tagged with multiple fluorescent probes. Differential gene
expression leads to a ratiometric approach and renders absolute
calibration unnecessary. The glass substrate gives minimal back-
ground fluorescence and hence is a good choice.

Fluorescence in biologic detection is a vast topic and has been
discussed comprehensively elsewhere [6]. Fluorescent light is emitted
from a dye or fluorophore that is illuminated by excitation light. The
fluorescence emission wavelength is always longer than the
wavelength of excitation light. For example, fluorescein isothiocynate
(FITC) exhibits a excitation curve peak at 494 nm and an emission
peak at 518 nm. The wavelength difference between the emission and
excitation peaks is 24 nm. Typical for most dyes used in microarrays,
this wavelength difference is called the Stokes shift.

The optical requirements of a detection instrument are as follows:

Excitation. A number of sources are possible for providing the
excitation. These are lasers, arc or filament lamps, and light-
emitting diodes (LEDs). Excitation wavelength range cannot
overlap with that of the emitted wavelength range. Flood illu-
mination may not be desirable on account of the nonuniformity
introduced. Excitation wavelengths may be chosen based on the
dyes used. The wavelength should be smaller than that of the
dye. Excessive light may cause harm to the sample. This is so
because of the onset of photobleaching.
Emission light collection. The fl uorescent light is collected using an
objective lens. The angle of collection is critical. Fluorescent emis-
sions are spherical in nature. The light-collection angle of the lens

 224 C h a p t e r S e v e n

is often characterized by the numerical aperture (NA). An NA of
1.0 describes a lens that collects light over an entire hemisphere,
corresponding to a light-collection effi ciency of 50 percent. Most
confocal laser microarray scanners have NAs between 0.5 and 0.9.
CCD-based array scanners have NAs between 0.2 and 0.5.
Spatial addressing. The sample is divided into pixels. Pixel size
needs to be smaller than the dot size. Scanners for 100-μm-
diameter microarray dots commonly used pixel sizes between
5 and 20 μm. As the microarray technology develops into the
nanometer feature size range, pixel size in the nanorange will
be a challenge.
Excitation/emission discrimination. Microarray fl uorescence emis-
sion power is orders of magnitude smaller than the excitation
power. An optical device that can delineate the two sources of
light is needed. Most objective-lens–based microarray scanners are
epi-illuminated. In epi-illuminated systems, the excitation and emis-
sion beams follow the same path through the objective lens to and
from the sample but in opposite directions. A beamsplitter is used to
separate the mixture of light. One type of beamsplitter is a color-
separating dichroic or multichroic interference fi lter that refl ects
the excitation beam and transmits the emission beam. This device
can handle two or three different excitation/emission wavelength
pairs. More than four wavelengths will make it a diffi cult separa-
tion task even for a multichroic lens. Since all devices are real and
far from ideal, emission fi lters are placed in the path of the light
beam. A geometric beamsplitter can be used where the excitation
beam and emitted beam do not mix or cross each other.
Detection: Detectors found in array scanners include photomulti-
plier tubes (PMTs), charged coupled devices (CCDs) arrays, and
avalanche photodiodes (APDs). In the visible wavelength range,
PMTs are the most sensitive detectors. PMT sensitivity falls rap-
idly between the red and near-infrared ranges. A CCD does not
posses the inherent low noise amplifi cation of a PMT and therefore
needs external amplifi cation. It has a high NA (0.6–0.9), limiting
the optical signal available for collection. CCD inclusion is imprac-
tical in the confocal scanning arrangement.

7.2.2 Confocal Scanning Microscope
Confocal scanners [8] have two focal points (Fig. 7.3) configured to limit
the field of view in three dimensions. They image a small area with an
aim of point resolution using pixels. The collimated laser beam is
reflected from the beamsplitter into the objective lens. The laser beam
fills only a fraction of the lens. The degree of fill depends on the choice
of the lens NA and pixel size. The laser beam in focused on the sample,
where it induces spherical fluorescence in all directions. The excitation
beam also reflects back up toward the detector. The objective lens

 B i o c h i p s 225

collects a fraction of the spherical fluorescence emission and collimates
it into a parallel beam. It also collects the reflected laser light, which
is three to seven orders of magnitude higher in intensity than the
fluorescent light. The return beam is again directed to the beamsplitter,
which reflects most of the laser light back toward the laser source and
transmits most of the fluorescent beam toward the detector. A mirror
then reflects the system without any optical functionality, followed
by the emission filter, which selects a narrow band of fluorescence
and rejects all remaining laser excitation light. The pinhole
arrangement facilitates the depth of focus of the objective lens,
coinciding with the imaging in the detector.

Restricted depth of focus is a disadvantage of the confocal
scanning arrangement. It has a moving substrate scanner. Using a
moving lens and a moving substrate, higher light collection
efficiencies can be obtained. Useful microarray scanners must detect
low levels of fluorescence in the picowatt range. At these low levels,
almost all materials fluoresce—the glass substrate, the chemicals
comprising the substrate’s surface coating, sample washing
chemicals, lenses, filters, and even DNA molecules. The scanning
instrument needs to maximize detection of the target dye’s emission
while minimizing detection of all the other fluorescence sources.
The reflected and scattered light must be rejected even though it is

Mirror

Laser beam

Flourescent
beam

Emission
filter

Detector
lens

Confocal
pinhole

Detector

Beamspliter

Objective
lens

Substrate

Flourescent spherical emission

FIGURE 7.3 Confocal scanning arrangement in a microarray scanner.

 226 C h a p t e r S e v e n

1 million times brighter than the dim fluorescent light. A PMT can
detect a single photon or a beam of light that is low in power. PMT
amplifies the photon event into an electron event. By varying the
tube high voltage, the PMT sensitivity or gain increases by a range
of several hundred to one.

Some of the instrument performance measures are as follows:

1. Number of lasers and fluoresence channels. A single excitation
laser may excite several dyes and can be used with emission
filters. Crosstalk between multiple dyes has to be
minimized.

 2. Detectivity. Detectivity is the minimum dot fluorescent
brightness that can be distinguished from the background
when the sensitivity is set so that the brightest element of the
sample produces an intensity level at full scale. Dye molecules
per unit area (fluors/μm2) may be the unit of measure.
Directivity for the array preparation process is often defined
by the dimmest dot in the dilution series that can be detected.

 3. Sensitivity. Instrument conversion efficiency of light power to
a digital value at a particular wavelength is called the
sensitivity. It is a measure of a “gain” of the instrument.
Sensitivity is independent of properties of the sample.

 4. Crosstalk. When scanning samples with multiple dyes,
crosstalk can occur. Crosstalk is the excitation and detection
of dye with the “wrong,” or unintended, excitation wavelength
and emission filter. In differential gene expression, crosstalk
negatively distorts the expression ratio between two channels.
It is minimized by the use of narrow-band emission filers
centered on the dye peaks with good attenuation of out-of-
band wavelengths.

 5. Resolution. Spatial resolution of a microarray scanner is
usually expressed as a pixel size, with 5, 10, and 20 μm being
common in commercial devices. Each microarray dot has to
be imaged into many pixels. Edge effects and other defects
can be rejected at the quantitation stage. Pixel dimension
should be no larger than one-eighth to one-tenth the diameter
of the smallest microarray dot to be imaged.

 6. Field size. Field size, the area on the substrate that can be
scanned, must match the array-making process. The larger
the scan area, the more dots there are that can be placed on
each sample. Usually a 1- to 1.5-mm border around the
periphery of the slide is not used because it may be clipped or
not flat. Maximum usable area is about 22 × 73 mm.

 7. Uniformity. Uniformity is a measure of the consistency of
fluorescence emission and detection across the field.
Uniformity of light collection throughout the image field is of

 B i o c h i p s 227

particular concern in confocal scanners. Scanner uniformity
within ±10 percent is sought by the users.

 8. Image geometry. Image quantitation software is used for
postprocessing of the image data. The image size, x-y
orthogonality, and pixel placement linearity are important
considerations. Tolerance of ±2 percent in image size and
linearity is allowed. There may be some errors owing to
random geometry. Jitter manifests as vertical lines in the
image.

 9. Throughput. It is a measure of the number of samples scanned
in a day. It depends on the resolution, image field size, and
number of channels. Some CCD camera–based scanners
exhibit high throughput. Dim samples are an important
consideration. Throughput for multichannel scanning can be
increased dramatically by incorporating color-separating
beamsplitters in the emission path. Multiple detectors can
scan multiple colors simultaneously, and multiple signal-
processing modules are used. The specification of first-
generation scanners in a single-color, 20 × 60 mm field is 5 to
15 minutes at 10-μm resolution.

 10. Superposition of signal sources. The image viewed on the
scanner’s monitor is not a simple image of dye fluorescence
in the microarray dots. It is a superposition of several images,
of which only one is desired. The image acquired has to be
postprocessed, and some salient considerations are (1)
fluorescence of the target dye being scanned, (2) photon
statistical noise, (3) fluorescence of the background owing to
other chemicals and the glass, (4) laser light reflection, and (5)
electronic noise.

7.3 Microarray Surfaces
High-quality surfaces are needed for the preparation of microarray
samples. How well the molecules attach to the surface determines the
efficiency of the biochemical reactions, the precision of detection, and
the quality of the resulting data. A microarray experiment is only as
good as the surface used to create it. An ideal microarray surface has
to be (1) dimensional, (2) flat, (3) planar, (4) uniform, (5) durable, (6)
inert, (7) efficient, and (8) accessible.

There exists an optimal target concentration. This is the number of
target molecules per unit volume of printed sample that provides the
strongest signal in a microarray assay. Optimal target density is the
number of target molecules per unit area on a microarray substrate
that provides the strongest signal in a microarray assay. Experiments
were conducted, and microarray signals are plotted as a function of
the target molecule concentration. A 15-base oligonucleotide was

 228 C h a p t e r S e v e n

printed on a microarray substrate at a concentration range of 1 to
100 μM. Hybridization with probe solution containing a fluorescent
15-mer complementary to the target sequence was performed. The
scanning was measured at different target concentrations of 1, 3, 10,
30, 50, and 100 μM. Examination of the results revealed that the
fluorescent intensity increased steadily in the range of 1 to 10 μM
target and reached a peak intensity at 30 μM oligonucleotide, at which
point the signal leveled off and decreased significantly as the target
concentration reached 100 μM. At the optimal target concentration,
the number of target molecules bound to the microarray surface area
can be calculated. Assuming that 30 percent of the printed
oligonucleotide couples to the substrate and that a typical printed
droplet is 300 pL, a 30-μM solution of oligonucleoides gives 2.6 lakh
oligonucleotide molecules per square micron of the substrate. This is
the optimal target density. Additional calculations reveal that 2.6 lakh
molecules/μm2 correspond to 1 oligonucleotide per 400 Å2 or 1 target
molecule per 20 Å in a single dimension. It is interesting that a single-
stranded DNA is 12 Å in diameter. The probe-target duplexes (Fig. 7.4)
would be approximately 24 Å in diameter. Owing to major and minor
grooves, the effective diameter is 20 Å. A spacing of 1 target per 20 Å
defines the optimal target concentration. More material would cause
steric hindrance in the packing. Insufficient target density means too
few molecules available for hybridization. Physical interference at
higher concentrations cause damage and a fall in signal intensity. In a
similar fashion, optimal probe concentration is the number of probe
molecules per unit volume of sample that provides the strongest
signal in a microarray assay.

FIGURE 7.4 Target DNA molecules hybridized with probe molecules with
fl uorescent tags and attached to the substrate via linker molecules.

 B i o c h i p s 229

Probe concentrations greater than the optimal concentration are
useful under certain circumstances. Target (T) molecules on the
microarray surface form productive interactions with probe (P)
molecules in the solution to form probe-target (T-P) pairs. The
generalized biochemical reaction for target-probe binding can be
given as

T + P → T-P (7.1)

The rate of formation of target-probe products depends on the
concentration of the two reactants and can be expressed as the product
of the concentration of T and P times a proportionality constant k:

Rate = –k[T][P] = d[T]/dt = d[P]/dt (7.2)

As indicated by Eq. (7.2), the reaction between target and probe is
a second-order biochemical reaction. The constant k is the rate
constant. Under optimal experimental conditions, the printed
microarray will contain a much larger number of target molecules
than are required to form T-P pairs during the course of the reaction.
Target excess is a kinetic condition in a microarray assay in which the
concentration of target molecules on the surface exceeds the
concentration of probe molecules in solution. Under target-excess
conditions, the concentration of target molecules is relatively constant
and can be lumped with the reaction rate constant term k. Thus

Rate = –k’[P] (7.3)

where k’ denotes the fact that the constant target concentration has
become part of this term. As can be seen by Eq. (7.3), the reaction
rate becomes a pseudo-first-order expression. Integrating with
respect to time,

[P]/[P0] = exp(–k’t) (7.4)

The probe molecules get consumed during the course of the
reaction in an exponential fashion. Doubling the concentration of a
microarray probe solution will double the rate of the reaction. Because
faster rates result in more target-probe pairs per unit time and greater
[T-P] means greater signal, it is desirable to use as much probe
material as possible in any given microarray experiment as long as
the performance of the assay is not compromised. The probe
concentration that gives the strongest microarray signals is known as
the optimal probe concentration. The linear portion of the graph is called
the linear range of the assay. A saturated condition occurs when the
microarray target element in which most or all of the target molecules
are located contains bound probe molecules. Selective target saturation
refers to a microarray assay condition in which a subset of the target

 230 C h a p t e r S e v e n

elements becomes largely or fully bound, leading to a loss of
quantitation. Signal compression is a microarray assay condition in
which the fluorescent readings underestimate the number of
molecules present on the target element or in the probe mixture,
leading to a loss of assay quantitation.

A glass surface is preferred as the substrate because of the low
background fluorescence generated from it. The smoothness of the
glass can be measured using a scratch and dig specification. There
are different types of glass. The structure of the glass is SiO2
tetrahedra. The smoothness of the glass surface can be accessed at
high resolution using atomic force microscopy (AFM). The AFM
technique employs a fine silicon tip that traces back and forth across
the surface, detecting and recording surface irregularities as it
moves. Three-dimensional images are produced in AFM scans. A
typical microarray glass substrate subject to AFM analysis reveals a
maximal roughness of 5.3 nm over a 4-μm2 area, corresponding to a
distance of approximately 40 Si—O bonds or about twice the
diameter of duplex DNA.

Etching refers to a chemical process used to score glass surfaces
for the purpose of labeling and indentification. The glass surface
may be treated by using either amine or aldehyde. Silane reagents
are used for this purpose. The reaction of glass with three-
aminopropyl trimethoxysilane is a typical treatment reaction. The
overall positive charge of amine microarray surfaces allows
attachment of printed biomolecules that carry negative charges.
Attachment occurs primarily via electrostatic interactions or
attractive forces between positive charges on the amine groups and
negative charges on biomolecules such as nucleic acids. Attachment
of nucleic acids to an amine surface occurs via interactions between
negatively charged amine groups. The DNA phosphate backbone
can be attached along the side of the chain with the microarray
glass substrate.

Denaturation is the process of converting DNA into single strands.
Aldehyde surface treatment uses a spacer arm and an amino linker.
The substituted amine attaches by covalent coupling. Covalent
coupling is an attachment scheme that involves electron sharing
between target molecules and the microarray substrate. Molecules
couple to an aldehyde surface in a directional manner such that the
end of the molecule containing the amino linker bonds to the
microarray surface. Proper reaction conditions and blocking agents
all but eliminate background fluorescence with aldehyde surfaces.

Steric availability is a desirable spatial configuration such as end
attachment that maximizes the physical accessibility of target
molecules to incoming probe molecules. Blocking agents are chemical
or biochemical agent such as borohydrate or bovine serum albumin
used to inactivate reactive groups on a microarray substrate to prevent
nonspecific reactivity.

 B i o c h i p s 231

7.4 Phosphoramadite Synthesis
Oilgonucleotides are short chains of single-stranded DNA or RNA.
Single-stranded oligonucleotides provide another common source of
target sequences for nucleic acid microarrays. Microarrays of
oligonucleotides can be prepared using delivery or synthesis methods.
In the delivery strategies, oligonucelotides made offline are prepared
using standard phosphoramadite synthesis, suspended in a suitable
printing buffer, and formed into a microarray using a contact or
noncontact printing technology. In the synthesis approaches,
oligonucleotides are made in situ one base at a time, and many
synthesis cycles are used until the microarrays are complete. Owing
to reduced coupling efficiency and large synthesis time, the length of
the oligonucleotides is only 5 to 25 nucleotides. The main advantages
of oligonucleotide targets are increased specificity and the capacity to
work directly from sequence database information. Two disadvan-
tages of oligonucleotide targets are the requirement for sequence
information prior to manufacture and the loss of signal when using
certain types of fluorescent probes.

The chemistry used in the phosphoramadite synthesis in the
industry was developed by Caruthers in the early 1980s.
Phosphoramadite-based oligonucleotide synthesis underlies most of
the synthetic DNA market. The DNA market includes 75 commercial
vendors worldwide and annual revenues totaling hundreds of
millions of dollars. The oligoncucleotides of any sequence can be
built from the four DNA building blocks. The four DNA bases used
most often are known as cyanoethyl phosphoramidites. Each base is
identical to its natural counterpart except for the presence of several
chemical substituents that protect the phosphoramidites during
synthesis and activate the 3’ phosphate for chemical coupling.

Three of the phosphoramadite bases, A, C, and G, contain a reactive
primary amine on the purine or pyrimidine ring and therefore require
a protecting group on the amine to avoid damaging this position
during synthesis. A benzoyl protecting group is typically used for bases
A and C, whereas an isobutyryl group is usually employed on G. The
fourth base, T, does not contain a primary amine on the pyrimidine
ring and thus does not require a protecting group. All four
phosphoramidite bases also contain a dimethoxytrityl (DMT) group on
the 5’ hydroxyl that blocks the 5’ hydroxyl from chemical coupling
until it is intentionally deprotected during synthesis. Selective
deprotection allows synthesis to proceed in a stepwise manner. The 3’
phosphate is protected against side reaction and activated for
nucleophilic attack by the presence of β-cyanoethl and diisopropyl
groups, respectively. The protecting groups are removed at the end of
synthesis, yielding an oligonucleotide that is identical to native DNA.

The synthesis process proceeds in a 3’ and 5’ direction as follows:
The initial step in oligonucelotide synthesis involves coupling the

 232 C h a p t e r S e v e n

first base to the solid support. Oligonucleotides can be synthesized
on a variety of different supports, but the most common matrix is
controlled-pore glass (CPG). CPG contain pores of identified
diameters inside of which synthesis occurs. A deprotection step in
oligonucelotide synthesis allows the 5’ hydroxyl to act as a
nucleophile, attacking the 3’ activated phosphate group of the second
base that is added to the activated CPG matrix by coupling to the first
base. The result is dinucelotide bond formation in the 3’ to 5’ direction.
After the coupling step, unreacted 5’ hydroxyl groups are inactivated
or capped by acetylation to prevent these bases from reacting with
phosphoramidites in subsequent coupling steps. Capping prevents
the formation of frame-shift oligonucelotides that are missing one or
more bases compared with the full-length product, a process that
occurs if unreacted 5’ hydroxyls are not capped before the next
coupling cycle. After capping, the phosphate trimester of the newly
formed dinucleotide is oxidized to the phosphate form to stabilize
the phosphate linkage.

The four-step process of deprotection, coupling, capping, and
oxidation is the basis of phosphoramidite synthesis and is shown in
Fig. 7.5. An oligonucleotide of a known sequence is synthesized by
repeating the cycles a few times and using the right bases and reagents
efficiently. Each four-step cycle takes 5 to 7 minutes, enabling synthesis
of a synthetic 70-mer in less than 8 hours. Following synthesis, the
nascent oligonucleotides are treated overnight with ammonium
hydroxide to remove the protecting groups from the base and
phosphate groups and to cleave the oligonucelotides from the CPG
support. With coupling efficiencies exceeding 99 percent per cycle,

OH
B1

O—CPG

De-protection

Coupling

NCCH2CH2O

Oxidation

P
N

C

CH3CO

O

Capping
O—CPG

O
DMTO

B2

O

B1
O

O

O—CPG

NCCH2—P=O
CH2O

O

B2DMTO

O

B1

O

FIGURE 7.5 The four-step process of oligonucleotide synthesis on CPG.

 B i o c h i p s 233

a synthetic 70-mer preparation would contain more than 60 percent
full-length product. Full-length oligonucleotides can be purified
away from shorter products using polyacrylamide gel electrophoresis
(PAGE) or high-pressure liquid chromatography (HPLC).

7.5 Microarray Manufacture
New superconductors are prepared using combinatorial mixtures of
components. Combinatorial synthesis programs are the state-of-the-
art mode for discovery of novel drug leads. And in biology, arrays of
unique sequences are used commonly to assay the genetic state of
cells. In all cases, small volumes of liquids must be metered precisely
at high rates of speed. Technology derived from ink-jet printing has
been applied to meet such liquid-handling needs. Ink-jet printing,
mechanical microspotting, and photolithography are the three primary
methods of manufacture of microarray slides.

There are two modes of DNA microarray fabrication using ink-jet
technology. First is the step-step synthesis of DNA by applying
reactive nucleotide monomers to individual surface sites. Second is
the spotting and immobilization of presynthesized DNA. Ink-jet
technology has been used for over 20 years to control delivery of
small volumes of liquid to defined locations on two-dimensional
surfaces. Different droplet-generating devices are available, such as
piezoelectric capillary, piezoelectric cavity, thermal, acoustic,
continuous-flow, etc. Drop diameters of 25 μm at up to 10 kHz can be
readily achieved using piezoelectric devices. Smaller-diameter
droplets and higher frequencies can be generated using piezoelectric
cavity devices, and even higher with thermal devices. No nozzle is
used in the acoustic device, which possess high rates of drop formation
(5 mHz) and small drop diameters (<1 μm). In continuous-flow
droplet-generating devices, stream or liquid is broken into distinct
droplets by oscillatory pressure. A typical device consists of static-
pressure ink reservoir, a small-diameter orifice, and a pressure-
generating element. The orifice plays a significant role in determining
the diameter of the droplets ejected from the device. Drops can be
generated on demand, and ink can be consumed efficiently. Another
method of printing uses a continuous stream of droplets directed via
an electric or magnetic field onto a print area or, alternatively, a gutter
where the ink is recycled. The printing mode is quite robust because
the jet is primed by pressurizing the liquid reservoir. Nozzle-less
acoustic jet is an interesting development in technology. The drop
size can be derived by equating the forces acting on the surface of the
drop from the internal and external pressures:

ΔP(4π)R2 = σ2πR (7.5)

or R = σ/2ΔP (7.6)

 234 C h a p t e r S e v e n

A piezoelectric capillary jet consists of a glass capillary fixed with
an orifice and surrounded by a cylindrical piezoelectric. Droplet
formation with piezoelectric capillary jets is accomplished by
alternately expanding and contracting the piezoelectric element to
generate shock pulses in the fluid chamber. When appropriately
tuned to the characteristics of the liquid, pressure pulses sufficient to
eject droplets from the nozzle can be generated. Drop formation rates
can be up to 10 kHz. Droplet formation is easier at certain frequencies.
The size of droplets from these devices depends on the diameter of
nozzle, the magnitude of the driving force, and the physical properties
of the liquid in use. Care must be taken when manufacturing high-
quality nozzles and in supplying the appropriate waveform to obtain
droplets that are satellite-free and propagating perpendicular to the
nozzle plate. Two commercial instruments that are built using this
concept are the CombiJet and the GeneJet.

The CombiJet can be used to synthesize DNA microarrays by
delivering reagents for phosphoramidite oligonucleotide synthesis to
defined locations on glass substrates. GeneJet is used to manufacture
DNA microarrays by spotting presynthesized DNA fragments. Localized
DNA synthesis is achieved by using jets to deliver reagents for one of
two reactions in the phosphoramidite oligonucleotide synthesis cycle.
The first uses this single-jet device to deliver reagent to deprotect the
5’ hydroxyl position at specific regions on the two-dimensional
surface. Oxidation of the phosphor and coupling of one of the four
bases are done in bulk chemical treatment of the entire surface. The
second method uses five jets, one for each of the four phosphoramidites
and one for the activating reagent. The CombiJet III was designed to
fully automate all steps of DNA microarray synthesis. During in situ
synthesis of DNA, no purification is possible. All the reactant products
have to remain on the surface. The quality of the material in each
locus thus is determined by the stepwise coupling efficiency.

In order to evaluate the coupling yield, a set of 64 spots of identical
sequence was synthesized with a cleavable attachment to the surface.
At the end of 15 cycles, the slide was subjected to a gas-phase base
reaction to disrupt the surface treatment. The oligos were collected by
washing the surface. After complete removal of the remaining
protecting groups, the oligo product was end labeled with
[32P]phosphate and subjected to PAGE. The banding patterns of the
oligo products were analyzed quantitatively to derive an average
stepwise yield of 91 percent.

To increase the efficiency of hybridization and the DNA attach-
ment of the surface, linker molecules can be used. Linkers attach
themselves to the substrate on one of its end and to the target molecule
on the other. One example of a linker molecule is polyethylene glycol
polymers. Solvents that are compatible both with the ink-jet hardware
and the particular chemical reactions desired are difficult to find.
Acetonitrile was used as a solvent for phosphoramidites. For the
deprotection reagent, di- or trichloroacetic acid is common. The

 B i o c h i p s 235

volatility of these solvents makes them less suitable. Less volatile
dibromomethane was used in place of dichloromethane to reduce the
loss of solvent during preparation. This approach offers flexibility
and is low in cost.

To scale up the microarray synthesis into commercial practice,
some technical hurdles have to be overcome. With a cycle time for the
instrument of 10 minutes, an array of 18-mer is printed in 3 hours.
The next-generation instrument will be expected to print more than
one array at a time. Robustness of jetting has to be improved. Jet-to-
jet variability has to be reduced. Sensitivity of drop size to nozzle
characteristics needs to be reduced. Change from a uniform glass
substrate to a patterned region is desirable.

Deposition of presynthesized biologic material is another method
of fabrication. The GeneJet III device can use up to eight jets to aspirate
samples from 384- or 1536-well microtiter plates and apply them to
microarrays. The instrument has five independent axes. The jets are
connected by solenoid valves. Monitoring by video camera can be
used to deliver droplets free of satellites. The equipment is operated
in two modes of printing—start-stop mode and print-on-the fly
mode. Appropriate software is used in the control of the instrument
during its operation. Based on the concentration of material and the
expected amount of cross-linking to the surface, 5 to 50 attomoles of
material are available in each spot. No shearing of DNA strands has
been observed with material up to 2000 base pairs in length. Viscosity
limits the length of the DNA that can be studied. At the desired
concentration, such as 1 μg/μL, DNA of 5 kb and larger likely will be
too viscous for a small-orifice (30-μm) jet. Viscosity reduction by
adding cosolvents may alleviate the problem.

The total time to print a batch of arrays includes the setup time,
the time spent cleaning and loading the liquid deposition devices,
and the print time itself:

Total time = print time + fi ll time + setup time (7.7)

All time associated with movement and deposition of spots is
included in the print time. Fill time includes all wash steps for
deposition device, time for loading the device, and time for testing
the load and getting into position for printing. Setup time includes
the time to load the array substrates and microtitre plates, etc.
containing array element material, as well as time to offload the
instrument when the batch run is complete.

For either the pin or jet instruments, the sum of the print time and
fill time can be expressed in terms of the number of instrument cycles
and the time per cycle for each component:

Print time + fi ll time = number of cycles × (print time/cycle
 + fi ll time/cycle) (7.8)

T = C(P × Tcycle + Tf) + Ts (7.9)

 236 C h a p t e r S e v e n

where T is total time, C is cycles, P × Tcyc is print time per cycle, Tf is
fill time per cycle, and Ts is setup time. For the pin tool,

P × Tcycle = NTc (7.10)

where N is the number of arrays printed and Tc is contact time per
array, including motion

C
G
P

= (7.11)

where G is the number of genes and P is the number of pins.
Combining terms, the total print time for a batch-mode pin device
thus is

Tp = G/P(NTc + Tf,p) + Tsp (7.12)

where R is the number of rows of arrays on a platter, T1 is the print
time per line, and J is the number of jets. By arranging the arrays as a
square, the number of rows can be calculated:

R = (N)1/2 (7.13)

Combining the preceding terms, the total time for batch printing with
the jet approach is

Tj = G/J(RT1 + Tf,j) + Ts,j (7.14)

The time for printing for the jet approach depends on the number
of rows in the arrays, and time for pin printing depends on the
number of arrays. The time grows linearly with the number of arrays
in the pin tool and changes with the square root of the number of
arrays in the jet instrument. For an equal number of jets and pins, the
jet instrument always will have the time advantage. The crossover
point is independent of the number of genes printed.

7.6 Normalization for cDNA Microarray Data
There are many sources of systematic variation in microarray
experiments that affect the measured gene expression levels.
Normalization is the term used to describe the process of removing
such variation, e.g., for differences in labeling efficiency between the
two fluorescent dyes. In this case, a constant adjustment is commonly
used to force the distribution of the log ratios to have a median of
zero for each slide. For cDNA microarrays, the purpose of dye
normalization is to balance the fluorescence intensities of the two
dyes green Cy3 and red Cy5 dye as well as to allow the comparison
of expression levels across experiments. Dye bias can be seen most

 B i o c h i p s 237

obviously in an experiment where two identical mRNA samples are
labeled with different dyes and subsequently hybridized to the same
slide. The bias can stem from a number of factors, including physical
properties of the dyes (e.g., heat and light sensitivity and relative
half-life), efficiency of dye incorporation, experimental variability in
probe coupling and processing procedures, and scanner settings at
the data-collection step. The relative gene expression levels measured
as log ratios from replicate experiments may have different spreads
owing to differences in experimental conditions. Some scale
adjustment then may be required so that the relative expression levels
from one particular experiment do not dominate the average relative
expression levels across replicate experiments.

Speed [9] developed a normalization procedure using gene
expression data from lipid metabolism in mice. He attempted to
identify genes with altered expression in apoliprotein AI knockout
mice with low high-density lipoprotein (HDL) cholesterol levels
compared with inbred C57B1/6 control mice. The normalization
procedure depends on the experimental setup. Three situations are
identified:

 1. Within-slide normalization

 2. Paired-slide normalization

 3. Multiple-slide normalization

A number of considerations influence this decision, such as the
proportion of genes that are expected to be expressed differentially in
the red and green samples and the availability of control DNA
sequences. Three types of approaches were described:

 1. All genes in the array. Frequently, biologic comparisons made
on microarrays are very specific in nature, i.e., only a small
proportion of genes are expected to be differentially expressed.
Therefore, the remaining genes are expected to have constant
expression, and so can be used as indicators of the relative
intensities of the two dyes. Almost all genes on the array may
be used for normalization.

 2. Constantly expressed genes. Instead of using all genes on the
array for normalization, a smaller set of genes called
housekeeping genes has constant expression across a variety of
conditions, e.g., β-actin. Although it is very hard to identify a
set of housekeeping genes that does not change significantly
under any conditions, it may be possible to find sets of
“temporary” housekeeping genes for particular experimental
conditions.

 3. Controls. An alternative to normalization by housekeeping
genes is used to spike controls or a titration series of control

 238 C h a p t e r S e v e n

sequences. In the spiked-controls method, synthetic DNA
sequences or DNA sequences from an organism different
from the one being studied are spotted on the array (with
possible replication) and included in the two mRNA samples
in equal amounts. These spotted control sequences thus
should have equal red and green intensities and could be
used for normalization. In the titration-series approach, spots
consisting of different concentrations of the same gene or
expressed sequence tag (EST) are printed on the array. These
spots are expected to have equal red and green intensities
across the range of intensities. Genomic DNA that is supposed
to have constant expression levels across various conditions
may be used in the titration series. In practice, however,
genomic DNA is often too complex to exhibit much signal,
and setting a titration series that spans the range of intensities
for different experiments is technically very challenging.

The apo AI experiment was carried out as part of a study of
lipid metabolism and artheroscelerosis susceptibility in mice.
Apoliprotein AI is a gene known to play a pivotal role in HDL
metabolism. The treatment group consisted of 8 mice with the apo
AI gene knocked out, and the control group consisted of 8 normal
C57B1/6 mice. For each of these 16 mice, target cDNA was obtained
from mRNA by reverse transcription and labeled using a red
fluorescent dye, Cy5. The reference sample used in all hybridizations
was prepared by pooling cDNA from the 8 control mice and was
labeled with a green fluorescent dye, Cy3. In this experiment,
target cDNA was hybridized to microarrays containing 6384 cDNA
probes, including 200 related to lipid metabolism. Each of the
16 hybridizations produced a pair of 16-bit images that were
processed using the software package Spot. The main quantities of
interest produced by the image-analysis methods are the (R, G)
fluorescence intensity pairs for each gene on the array.

After image processing and normalization, the gene expression
data can be summarized by a matrix X of log-intensity ratios
lg2(R/G) with p rows corresponding to the genes being studied and
n = n1 + n2 columns corresponding to the n1 control hybridizations
(C57BI/6) and n2 treatment hybridizations (apo AI knockout). In the
experiment considered, n1 = n2 = 8 and p = 5548. Differentially
expressed genes were identified by computing t statistics. For genes,
j, the t statistic comparing gene expression in the control and
treatment groups, is

t
x x

s

n

s

n

j
j j

j j

=
−

+

()2 1

1
2

1

2
2

2

 (7.15)

 B i o c h i p s 239

where x1j and x2j denote the average background corrected and
normalized expression levels of gene j in the n1 control and n2
treatment hybridizations, respectively. Similarly, s1j

2 and s2j
2 denote

the variances of gene j’s expression levels in the control and treatment
hybridizations, respectively. Large absolute t statistics suggest that
the corresponding genes have different expression levels in the
control and treatment groups. The statistical significance of the results
was assessed based on p values adjusted for multiple comparisons.

Global normalization methods assume that the red and green
intensities are related by a constant factor. That is R = kG, and in
practice, the center of the distribution of log ratios is shifted to zero:

 log2(R/G)→ log2(R/G) – c = log2[R/(kG)] (7.16)

A common choice for the location parameter c = log2(k) is the
median or mean of the log intensity ratios for a particular gene set.
Global normalization methods are mentioned in the preprocessing
steps in a number of papers on the identification of differentially
expressed genes in single-slide cDNA microarray experiments. In
many cases, the dye bias appears to depend on spot intensity, as
revealed by plots of the log-ratio M versus overall sport intensity A.
An intensity- or A-dependent dye normalization method thus may be
preferable to global methods. A local A-dependent normalization
was performed using the robust scatter plot smoother Lowess from
the statistical software package R7.

log2(R/G)→log2(R/G) – c(A) = log2{R/[k(A)G]} (7.17)

where c(A) is the lowess fit to the M versus A plot. The Lowess (·)
function is a scatter plot smoother that was found to perform robust
locally linear fits. The Lowess (·) function will not be affected by a
small percentage of differentially expressed genes, which will appear
as outliers in the M versus A plot. The user-defined parameter f is the
fraction of the data used for smoothing at each point; the larger the f
value, the smoother is the fit. The M versus A plot amounts to a
45-degree counterclockwise rotation of the log(G), log(R) coordinate
system. Within the print-tip group, normalization is simply a (print
tip + A)–dependent normalization that is

log2(R/G)→ log2(R/G) → ci(A) = log2[R/ki(A)G] (7.18)

where ci(A) is the Lowess fit to the M versus A plot for the ith grid
only, I = 1, 2, . . . , i represents the number of print tips.

Paired-slides normalization applied dye-swamp experiments,
two hybridizations for two mRNA samples with dye assignment
reversed in the second hybridization. The normalized log ratios for
the first slide are denoted by log2(R/G) – c and those for the second

 240 C h a p t e r S e v e n

slide by log2(R’/G’) – c’. Here, c and c’ denote the normalization
functions for the two slides. These could be obtained by any of the
within-slide normalization methods described earlier. If c ≈ c’,

½{log2(R/G) – c – [log2(R’/G’) – c’]}

≈ ½[log2(R/G) + log2(G’/R’)]

 = ½ log2(RG’/GR’) = ½(M – M’) (7.19)

The relative expression levels for the two slides may be combined for
the two slides without explicit normalization by a procedure referred
to as self-normalization. The validity of the assumption can be checked
using housekeeping genes or genomic DNA. Given that the dye
assignments are reversed in the two experiments, one expects that the
normalized log ratios on the two slides are of equal magnitude and
opposite sign, that is,

log2(R/G) – c ≈ log2(R’/G’) – c’ (7.20)

Therefore, rearranging the equation and assuming again that
c ≈ c’, the normalization function c can be given by

c ≈ ½[log2(R/G) + log2(R’/G’)] = ½(M + M’) (7.21)

In practice, c = c(A) is estimated by the Lowess fit to the plot of
½(M + M’) = ½log2(RR’/GG’) versus ½(A + A’), where this time all the
genes are used. Global normalization amounts to a vertical translation
in an M versus A plot and does not allow for spatial- or intensity-
dependent dye biases.

Summary
Microarray techniques can be used to measure gene expression,
understand disease states better, and effect cures by better drug
design. Schena used glass substrates with less background
fluorescence and developed the enzymatic labeling procedure using
fluorescent probes from yeast and plant mRNA. The microarray
industry is expected to grow in a similar fashion as the microprocessor
industry has grown. A microarray is an ordered array of microscopic
elements on a planar substrate that allows the specific binding of
genes or gene products. To qualify as a microarray, the analytical
device must be ordered, microscopic, planar, and specific. The
microarray analysis life cycle consists of five steps: formulation of a
biologic question, sample preparation, biochemical reaction,
detection, and data analysis and modeling. Ten tips were given to
ensure success in microarray analysis. Some of the interesting
applications of microarrays are gene expression, drug delivery,

 B i o c h i p s 241

genetic screening and diagnostics, gene profiling, understanding
mechanism of aging, the study of cancer, etc.

The confocal scanning microscope can be used in microarray
detection that uses fluorescence scanning. The sample is excited by
laser beam, and fluorescence light is emitted from the probe in the
sample and can be detected using the difference in wavelength of
24 nm between excitation and emitted light beams. Epi-illumination
is used in the scanning process. The excitation and emitted beams
pass through the objective lens to and from the sample but in opposite
directions. PMT is used as a detecting element. The instrument
performance measures are number of lasers and fluorescence channels,
detectivity, sensitivity, crosstalk, resolution, field size, uniformity,
image geometry, throughput, and superposition of signal sources.
High-quality surfaces are needed for the preparation of microarray
samples. An ideal microarray surface has to be dimensional, flat,
planar, uniform, inert, efficient, and accessible.

Optimal target concentration occurs at a spacing of 1 DNA target
molecule per 20 Å. The probe duplex is approximately 24 Å. Optimal
probe concentration is the number of probe molecules per unit volume
of sample that provides the strongest signal in a microarray assay.
Microarrays of oligonucleotides can be prepared using delivery or
synthesis methods. The four steps in the process of oligonucleotide
synthesis are deprotection, coupling, capping, and oxidation. The three
manufacturing methods used during microarray manufacture are ink-
jet printing, mechanical microspotting, and photolithography.
Stepwise coupling efficiency can be defined to gauge the quality of
microarray synthesis. Linker molecules can be used to increase the
efficiency of hybridization and DNA attachment at the surface. The
time taken for ink-jet printing when jets or pins are used is compared.

Statistical normalization procedures can be used to remove
systematic variation in microarray experiments that affects the
measured gene expression levels. Speed developed a normalization
procedure using gene expression data from lipid metabolism in
mice. He used housekeeping genes that have constant levels of
expression across a variety of conditions. Differentially expressed
genes were identified by computing t statistics. Global normalization
methods, M versus A plot, paired-slide normalization, within-slide
normalization, and multiple-slide normalization methods are
discussed.

References
[1] M. Schena, Microrrray Analysis. New York: Wiley, 2003.
[2] M. Schena, DNA Microarrays: A Practical Approach. Oxford, UK: Oxford

University Press, 2002.
[3] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring

of gene expression patterns with complementary DNA microarray,” Science.
270 (1995), 467–470.

 242 C h a p t e r S e v e n

[4] M. Schena, R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier and
R. W. Davis, “Microarrays:Biotechnology Discovery Platform for Functional
Genomics”, Trends Biotechnol. 16 (1998), 301.

[5] L. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells “Sickle cell anemia: A
molecular disease,” Science. 110 (1949), 543–548.

[6] K. B. Mullis, “The unusual origin of the polymerase chain reaction,” Sci. Am.
262 (1990), 56–61.

[7] D. Baltimore, “RNA-dependent DNA polymerase in virions of RNA tumour
viruses,” Nature. 226 (1970), 1209–1211.

[8] M. G. Ormerod, “Flow cytometry: a practical approach”. Oxford, UK: IRL
Press at Oxford University Press, 1994.

[9] T. P. Speed, Statistical Analysis of Gene Expression Microarray Data. Boca Raton,
FL: CRC Press, 2002.

Exercises
1.0 Compare the silicon chip with the biochip, including the same three
fundamental principles.

2.0 Describe the four basic criteria for microarray.

3.0 Why are there maxima in intensity versus target concentration?

4.0 Show how the DNA gets attached along the entire length of the molecule
to an amine glass surface.

5.0 Describe the role of blocking agents.

6.0 Describe with a schematic the four-step process of the oligonucleotide
synthesis.

7.0 Discuss the hybridization parameters of probe and target with glass
substrate.

8.0 What is the role of the mirror in the confocal scanning arrangement in a
microarray scanner?

9.0 Show by schematic a geometric beamsplitter in an epi-illuminated
scanner.

10.0 Compare the time taken for jet printing versus pin printing of microarray
dots.

11.0 What is the drop size dispensed by a nanocapillary jet?

12.0 Discuss the protocol for SNP array synthesis with a schematic.

13.0 Elaborate the protocol for short tandem repeat array synthesis.

14.0 How is the student t test used during normalization?

15.0 What are housekeeping genes?

16.0 Discuss k means clustering with an illustration.

17.0 Name two examples of target molecules other than DNA.

 B i o c h i p s 243

18.0 What is the difference between an amine-treated and an aldehyde-
treated surface?

19.0 Discuss the first prototype confocal scanning microscope.

20.0 What is a Stokes shift?

21.0 What is the role of a PMT detector?

22.0 What is the role of hydration in microarray sample preparation?

23.0 Who was the first to discover the correlation between disease and gene
expression?

24.0 Discuss the binding efficiency during hybridization.

25.0 Why is glass a superior choice for a substrate?

26.0 What is a dichroic lens?

27.0 Discuss the instrument performance measures of a confocal scanning
microscope.

28.0 What is the difference between photolithography and ink-jet
printing?

29.0 What should be the considerations for printing a nanoarray?

30.0 What is dye bias?

31.0 Discuss T. P. Speed’s experiments on the lipid metabolism in mice.

32.0 Discuss the pioneering event in the development of the field of
microarray technology and the exploration of the function of transcription
factors in the flowering plant Arabidopsis thaliana.

33.0 Discuss the study of yeast in Brown’s laboratory using microrrrays.

34.0 Discuss the properties of zinc titania glass and the advantages of using
it as a substrate.

35.0 Draw a neat schematic of the confocal scanning microscope.

36.0 Distinguish between global normalization and within-slide
normalization.

37.0 Discuss the key requirements of the microarray substrate.

38.0 Enumerate the 10 tips for sample preparation.

39.0 Distinguish between in situ synthesis and delivery methods of target
preparation.

40.0 What is the optimal probe concentration?

41.0 What are amine- and aldehyde-treated surfaces?

42.0 What is an M versus A plot?

 244 C h a p t e r S e v e n

43.0 What is dendrimer technology?

44.0 Write notes on pharmacogenomics.

45.0 What is the role of the fluorescent probe in sample preparation?

46.0 Discuss the five steps of microarray preparation.

47.0 Name the three methods of manufacture of microarray analysis.

48.0 Why is controlled-pore glass used during the synthesis of
phosphoramidite?

49.0 What are optical requirements of excitation and emittance?

50.0 What is the difference between microarray and macroarray?

51.0 The presence of water is required during the hybridization reactions.
Evaporation rate also increases with temperature. How can the sample be kept
warm and hydrated?

52.0 Given Tuppy’s estimate for sequencing proteins, how long will it
take to sequence a DNA? What would be the reduction in time if microarray
technology were used?

53.0 Why is uniformity among different dots important in microarray
analysis?

CHAPTER 8
Electrophoretic
Techniques and

Finite Speed
of Diffusion

Objectives
The objectives of this chapter are to

• Understand the role of electrophoresis in sequence distribu-
tion measurement.

• Understand the role of molecular diffusion in electrophoresis.

• Understand the limitations of Fick’s laws of diffusion.

• Derive a generalized Fick’s law of diffusion.

• Apply a generalized Fick’s law of diffusion to standard
geometries.

• Apply a generalized Fick’s law of diffusion to electrophoretic
transport.

8.1 Role of Electrophoresis in the Measurement
of Sequence Distribution

As discussed in Chap. 1, the sequence distribution of DNA can be
obtained by the method of gel acrylamide electrophoresis. The
technique of electrophoresis is not described in detail in the current
literature. A similar technique, paper chromatography, is used in the
acquisition of the sequence distribution of polypeptides. In both these
techniques, diffusion plays an important role. Fick’s laws of diffusion

245
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 246 C h a p t e r E i g h t

have limitations, especially in the time frame of the critical events
that take place during measurement of sequence distribution.

The critical events are the migration of molecular fragments
over varying distances depending on their molecular sizes. Usu-
ally, calibration is used to convert the raw measurements to sequence
data. Why are mathematical models not used for interpretation of the
electrophoretic pattern or the paper chromatographic pattern? It is
being realized increasingly among investigators that at short time
scales, Fick’s description of transient diffusion is not an adequate
representation of all the events. This chapter reviews molecular
diffusion principles with particular attention to the limitations of
Fick’s laws of diffusion. A generalized Fick’s law of diffusion is
used to account for all the transient time events that occur during
a real process. The implications on the electrophoretic techniques
and sequence errors and shotgun sequencing cannot be overem-
phasized.

8.2 Fick’s Laws of Molecular Diffusion
Diffusion is the migration of a species from a region of a higher con-
centration to a region of lower concentration under the driving forces
of a concentration gradient in a primary manner. Other forces can
cause such movement in a secondary manner, such as a superim-
posed temperature gradient, as in thermophoresis; a superimposed
concentration gradient of a second species, as in diffusophoresis; a
superimposed electromotive gradient, as in electrophoresis; an
osmotic potential; a steam sweep; a centripetal force; a pressure drop;
a surface tension gradient; a surface force; and so on. The term
molecular diffusion refers to the Brownian motion of molecules from a
region of higher concentration to a region of lower concentration. The
movement of species from a region of lower concentration to a region
of higher concentration would be in violation of the second law of
thermodynamics.

The Clausius inequality states that heat always will flow from a
region of higher temperature to a region of lower temperature. It can
never flow from a region of lower temperature to a region of higher
temperature in a spontaneous fashion. Not all heat can be converted
to work without discarding some heat to the lower temperature
region. In an analogous manner, mass cannot diffuse from a region of
low concentration or low chemical potential to a region of higher
concentration or high chemical potential in a spontaneous manner.
The direction of transfer is to equalize the concentration.

By another analogy between heat and mass transfer, the stipula-
tion of the third law of thermodynamics that the lowest attainable
temperature anywhere in the universe is 0 K translates into the law
that there can exist no negative concentration. The lowest concentra-
tion achievable anywhere in the universe is 0 mol/m3. Diffusion plays

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 247

a pivotal role in the sequence distribution analysis in genome and
proteome projects.

Albert Einstein, one of the best physicists of the twentieth century,
observed that a cube of sugar placed in the bottom of a hot cup of tea
diffused, and a uniform concentration of sugar throughout the entire
cup results at the final state. If a few crystals of potassium
permanganate (KMnO4) are placed at the bottom of a tall bottle filled
with triple distilled water, the pink color will spread slowly throughout
the bottle. At first, the color will be concentrated in the bottom of the
bottle. After a day, it will penetrate upward a few centimeters. After
several years, the solution will appear homogeneous. The process
responsible for movement of the colored material is diffusion.
Diffusion is a molecular phenomenon. In gases, diffusion progresses
at a rate of about 10 cm/min, in liquids its rate is about 0.05 cm/min,
and in solids its rate is about 100 nm/min.

In the middle of the nineteenth century, Fick introduced two
differential equations that provide a mathematical framework to
describe the otherwise random phenomenon of molecular diffusion.
The flow of mass by diffusion across a plane was proportional to the
concentration gradient of the diffusant across the plane. The
components in a mixture are transported by a driving force during
diffusion. The ability of the diffusant to pass through a body depends
on the diffusion coefficient D (m2/s). The solubility of the species in
the body is also a salient consideration in determining the permeation
rates of the species in the body. Fick stated the first two laws of
diffusion in the year 1855. He was the youngest of five children of a
civil engineer. He was very much interested in mathematics in his
high school and was enamored by the work of Poisson. His brother, a
professor of anatomy, persuaded Fick to switch to medicine from
mathematics. Ludwig served as Fick’s tutor. Fick’s thesis was on
visual errors caused by astigmatism. He performed outstanding work
on mechanics in hydrodynamics and hemorheology and in the visual
and thermal functioning of the human body. In his first paper on
diffusion, published in 1855, Fick interpreted the experiments of
Graham with interesting theories, analogies, and quantitative
experiments. He showed that diffusion can be described on the same
mathematical basis as Fourier’s law of heat conduction and Ohm’s
law of electricity. Fick’s first law of diffusion can be written as [1]

J AD

C
x

A= −
∂
∂

 (8.1)

where J is defined as the one-dimensional molar flux. The diffusivity
is the proportionality constant that depends on the material under
consideration, a thin shell of thickness Δx with constant cross-sectional
area A across which the diffusion is considered to occur. A mass
balance in the incremental volume considered AΔx for an incremental

 248 C h a p t e r E i g h t

time Δt, neglecting any reaction or accumulation of the species, can be
written as

 Mass in − mass out ± mass reacted/generated
 = mass accumulated (8.2)

 Δt(Jx − Jx+Δx) = AΔxΔCA (8.3)

Dividing Eq. (8.3) throughout by AΔxΔt and obtaining the limits
as Δx and Δt go to zero gives

− ∂

∂
=

∂
∂

J
x

A
C
t
A (8.4)

Combining Eqs. (8.1) and (8.4), the governing equation for the
diffusing species when the area across which the diffusion occurs is a
constant becomes

D

C
x

C
t

A A∂
∂

=
∂
∂

2

2
 (8.5)

Equation (8.5) is Fick’s second law of diffusion in one dimension.
This is a fundamental equation that described the transient one-
dimensional diffusion of the migrating species. When Fick attempted
to integrate Eq. (8.5), he was discouraged by the numerical effort
needed. He found the second derivative difficult to measure
experimentally, and he ran into the effect of experimental errors
increase by the second difference. Finally, he demonstrated in a
cylindrical cell the steady-state linear concentration gradient of
sodium chloride (NaCl). He uses a glass cylinder containing crys-
talline sodium chloride in the bottom and a large volume of water in
the top. By periodically changing the water in the top volume, he was
able to establish a steady-state concentration gradient in the cylindrical
cell. He confirmed his equation from this steady-state gradient.

The Skylab science demonstration was the first in a series of
investigations designed by Facimire [2] to study low-gravity diffusive
mass transfer. The specific objective of the demonstration was to
photographically document the diffusion of tea in water in spacecraft.
In preparation for the experiment, Skylab pilot Jack Lousma filled a
½-in-diameter, 6-ft-long transparent tube three-quarters full with
water. A highly concentrated tea solution then was delivered to the
water surface (via a 5-cc syringe) through a synthetic fiber wad.
The tube was then capped. The fiber pad was employed to try to
bring the tea and water in contact without entrapped air. Three
attempts to produce the wad were unsuccessful. During the fourth
attempt, an “a good bubble-free interface” was realized. The next day,
Lousma reported that no diffusion of the tea in the liquid had

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 249

occurred. Thus the experiment was initiated again. During this new
experimental run, the wad was removed, and the tea was delivered
on top of the water. After an air bubble between the tea and water
was removed via the syringe, a “smooth, continuous interface” was
achieved. The tea was allowed to diffuse over the next 3 days. After
the flight, 16-mm photographs of the diffusion were analyzed. In
51.15 hours, the visible diffusion front advanced 1.96 cm. It was noted
that the diffusion front become increasingly parabolic during the
demonstration. It also was noted that very little diffusion occurred
near the container wall. A similar ground-based experiment was
performed for comparison with the space investigation. After
45.5 hours, three different zones were visible: (1) a dark area, (2) an
area of medium darkness, and (3) a very light area. The medium-
colored area had advanced 1.6 cm in 45.5 hours.

8.3 Generalized Fick’s Law of Diffusion
Fick’s model of molecular diffusion is not universal. It is analogous to
Fourier’s law of heat conduction, as Fick proposed in his stated laws.
There are seven reasons to seek a generalized Fick’s law of molecular
diffusion:

 1. The theory of Onsager and the contradiction of Fick’s law
of molecular diffusion by the theory of microscopic
reversibility [3].

 2. Nernst [4] found that heat can have inertia in good thermal
conductors at low temperatures, which can lead to oscillatory
discharge. This cannot be fully explained by Fourier and, by
analogy, Fick.

 3. Events at high mass flux rates cannot be described using
Fick’s parabolic equations.

 4. Landau and Lifshitz [5] noted that the speed of heat and,
by analogy, the speed of mass cannot be greater than the
speed of light. That the speed of a moving object has to be
less than the speed of light was examined by Kelly [6] for
diffusion.

 5. Singularities can be found in the solutions to the Fick parabolic
model for industrially important cases:

 a. Blowup of surface flux as time goes to zero during
transient molecular diffusion in a semi-infinite medium
subject to a constant wall concentration in Cartesian
coordinates [7].

 b. Surface flux during transient molecular diffusion within
a finite slab of width 2a subject to a step change in surface
concentration.

 250 C h a p t e r E i g h t

 c. The concentration term in the constant wall flux problem
in cylindrical coordinates in infinite medium is solved for
using the Boltzmann transformation [8], leading to a
solution in an exponential integral [9–15].

 d. In the short time limit, solutions to the parabolic equations
by Boltzmann transformation for an infinite sphere
blowup can be found.

 6. Fick’s law was developed from empirical observations at
steady state, and when used in transient applications, it is an
extrapolation that is not confirmed adequately by systematic
experimental study or molecular theories.

 7. Overpredictions of the theory to experimental observations
were found in gel electrophoresis [16], restriction mapping
[17], adsorption [18], nuclear fuel rods [19], drug delivery
systems [20], and heat transfer systems [21,22] when the Fick
model is used. This indicates that there is another mechanism
that has not been accounted for.

Boley [23] found that addition of the second derivative in time of
temperature to the governing equation is the only way to remove the
singularities in the solution to parabolic heat conduction equations.
Thus a generalized Fick’s law of mass diffusion can be written as

J DA

C
x

A
J
t

A
r= −

∂
∂

− ∂
∂

τ (8.6)

This is a damped-wave diffusion and relaxation equation or a
generalized Fick’s law of molecular diffusion. When the relaxation
time τr is zero, Eq. (8.6) will revert to Fick’s model of molecular
diffusion. Reference to the use of this equation was found in heat
conduction and can be traced back to Maxwell [24], Morse and
Feshbach [25], Cattaneo [26], and Vernotte [27], who postulated this
equation independently. This equation can be used to account for the
finite speed of molecular diffusion and removes the infinite speed
implied in Fick’s model of molecular diffusion. Experimental evidence
in heat conduction has been found, and relaxation times on the order
of 20 seconds have been reported by Mitra and colleagues [28]. During
drying of solids, the relaxation time can be on the order of few
thousand seconds [29]. Tzou [30] found the relaxation times to be on
the order of a few nanoseconds in heat conduction in stainless steel.
A table of relaxation time values is not available in the literature.
More research is needed to tabulate the relaxation-time values for
molecular diffusion for different species that migrate.

The diffusion coefficient depends on a number of parameters,
including the temperature of the medium of migration [31]. One
method of deriving an expression for diffusion coefficient for liquids

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 251

has been reported, and the derived expression is called the Stokes-
Einstein equation to calculate diffusion coefficients.

8.3.1 Derivation of a Generalized Fick’s Law of Diffusion
The Stokes-Einstein equation can be used to calculate diffusion
coefficients in liquids:

D

k T
f

k T
R

B B= =
6 0πμ (8.7)

where kB is the Boltzmann constant, f is the frictional drag coefficient,
T is the temperature, μ is the viscosity of the surrounding medium,
and R0 is the radius of the solute that is diffusing. Equation (8.7) can
be derived as follows: A rigid solute sphere is assumed for the
molecule diffusing in a common solvent. The frictional drag force
acting on the molecule opposing its motion is proportional to the
velocity of the sphere:

 Drag force = fv1 (8.8)

where v1 is the velocity of the molecule. From Stokes law [32] for a
sphere moving in a fluid, f = 6πμR0. The driving force was taken by
Einstein [33] to be the negative of the chemical potential gradient
(–∇μA) defined per molecule:

 –∇μA = (6πμR0)vA (8.9)

Equation (8.9) is valid when the molecule reaches a steady-state
velocity. This occurs when the net force acting on the molecule is zero.
The solution is assumed to be ideal and dilute:

 μA = μA
0 + kBT ln(xA) = μ1

0 + kBT ln CA − kBT ln CB (8.10)

For dilute solutions, the concentration of the second species CB far
exceeds the solute concentration and can be taken as constant. The
gradient at constant temperature, then, is

∇ =

∇
= −μ πμ1 06k T

C
C

R vB
A

A
A() (8.11)

−
∇ = =

k T
R

C C v J AB
A A A6 0πμ

/ (8.12)

Comparing Eq. (8.12) with Fick’s model of molecular diffusion given
in Eq. (8.4), the Stokes-Einstein relationship of Eq. (8.7) results.

 252 C h a p t e r E i g h t

Equation (8.4) is valid only at steady state. Often, in transient
applications, a sudden step change in concentration, i.e., the driving
force, is imposed on the system. The molecule will experience an
accelerating regime prior to reaching steady state. During the
accelerating regime,

 –∇μA − (6πμR0)vA = m
dv
dt

A (8.13)

where m is the mass of the molecule. Then

 mCA dv
dt

A = –(6πμR0)CAvA (8.14)

or − ∇ = ∂
∂

+
k TA

R
C

m
R

J
t

JB
A6 60 0πμ πμ (8.15)

Equation (8.15) is a generalized Fick’s law of diffusion that
accounts for the acceleration regime of the molecule as well as the
steady-state regime. An expression for the relaxation time for
molecular diffusion falls out of the analysis, that is,

τ

πμr
B

m
R

mD
k T

= =
6 0

 (8.16)

In terms of Ptot, the system pressure for ideal gas, the relaxation time
can be written as

τ

ρ
r

mMD
P

=

where ρm is the molar density of the migrating species. The velocity of
mass diffusion is given by

v

D k T
mm

r

B= =
τ (8.17)

Equation (8.17) can be rewritten in terms of the molar gas constant
and molecular weight as

 vm =
D RT

Mrτ
= (8.18)

The kinetic representation of pressure can be written after
observing that a molecule moving in a cube of dimensions l with a
velocity of vx undergoes a momentum change of 2mvx on one collision

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 253

with the wall. The number of collisions on the wall can be estimated
by first calculating the time taken by the molecule to move the round
trip from the wall after a collision to the opposite wall and back as
2l/vx. The number of collisions undergone by a molecule is vx/2l. The
rate of transfer of momentum to the surface from the molecular
collisions then is mvx

2/l. The total force exerted by all the molecules
colliding can be obtained by summing the contributions from each
molecule, and the pressure is obtained by dividing the sum by the
area of the wall and is given by [34]

 Ptot = m
l3

 (vx1
2 + vx2

2 + vx3
2 + …) (8.19)

Let Nm be the number of molecules in the system and n the number
of molecules per unit volume. Then Eq. (8.19) can be rewritten after
multiplying the numerator and denominator by Nm:

 Ptot = mn<vx
2> = ρ<vx

2> = 1/3ρ<v2> (8.20)

Since the molecules treated as particles move in random, there is
no preferred direction in the box. Hence v2 = vx

2 + vy
2 + vz

2. The square
root of v2 is called the root mean squared speed of the molecule and is a
widely accepted average molecular speed. From the ideal gas law,
Ptot = ρRT/M. Combining this with Eq. (8.18) gives

1
3 2< >

= =
v

RT
M

A k T
M

N B (8.21)

Comparing Eqs. (8.21) and Eq. (8.17), it can be seen the velocity of
mass is one-third the root mean square velocity. This could be due to
the fact that only one-dimensional diffusion has been considered.
When all three dimensions are considered, these two velocities would
be identical, although derived from different first principles.

The concentration in Cartesian, cylindrical, and spherical
coordinates, taking into account the generalized Fick’s law of mass
diffusion and relaxation, is given by the following equations:

τmr

A
x

A
y

A
z

AC
t

v
C
x t

v
C
y t

v
C
z t

∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

+
∂
∂ ∂

2

2

2 2 2⎡⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

+
∂
∂

∂
∂

+
⎡
⎣⎢

⎤
⎦⎥

C
t

C
x

v
t

vA A
mr

x
xτ

+

∂
∂

∂
∂

+
⎡
⎣
⎢

⎤
⎦
⎥ +

∂
∂

∂
∂

+
⎡
⎣⎢

C
y

v

t
v

C
z

v
t

vA
mr

y

y
A

mr
z

zτ τ
⎤⎤
⎦⎥

=

∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ +D

C
x

C
y

C
z

RA A A
A

2

2

2

2

2

2 (8.22)

 254 C h a p t e r E i g h t

τ

θ
θ

mr
A

r
A A

z
AC

t
v

C
r t

v
r

C
t

v
C
z

∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

+
∂
∂ ∂

2

2

2 2 2

tt
C
r

v
t

vA
mr

r
r

⎡
⎣⎢

⎤
⎦⎥

+
∂
∂

∂
∂

+
⎡
⎣⎢

⎤
⎦⎥

τ

+

∂
∂

∂
∂

+
⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

∂
∂

+
⎡1

r
C v

t
v

C
z

v
t

vA
mr

A
mr

z
zθ

τ τθ
θ

⎣⎣
⎢

⎤

⎦
⎥ +

∂
∂
C
t
A

= ∂

∂
∂
∂

⎛
⎝⎜

⎞
⎠⎟ +

∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤
D

r r
r

C
r r

C C
z

A A A1 1
2

2

2

2

2θ ⎦⎦
⎥
⎥

+ RA (8.23)

τ

θ θ
θ

ϕmr
A

r
A AC

t
v

C
r t

v
r

C
t

v
r

∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

+
∂2

2

2 2 1
sin

22C
t

C
r

v
t

vA A
mr

r
r∂ ∂

⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

∂
∂

+
⎡
⎣⎢

⎤
⎦⎥ϕ

τ

+

∂
∂

∂
∂

+
⎡
⎣⎢

⎤
⎦⎥

+
∂
∂

∂1 1
r

C v
t

v
r

C v
A

mr
A

mrθ
τ

θ ϕ
τθ

θ
ϕ

sin ∂∂
+

⎡
⎣⎢

⎤
⎦⎥

+
∂
∂t

v
C
t
A

ϕ

= ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ + ∂

∂
∂

D
r r

r
C
r r
A1 1

2
2

2 sin
sin

θ θ
θ

CC
r

C
RA A

A∂
⎡
⎣⎢

⎤
⎦⎥

+ ∂ ∂
∂

+
θ θ ϕ2 2

2

2sin

(8.24)

8.3.2 Taitel Paradox and Final Time Condition
Previous reports by Taitel [34] and Barletta and Zanchini [36] have
raised some concerns about the second law of thermodynamics and
the Cattaneo and Vernotte equation. The Cattaneo and Vernotte
equation is an analogous equation in heat transfer to the generalized
Fick’s law of molecular diffusion. Taitel considered heat conduction
in an infinitely wide parallel slab with thickness 2L such that the
thermal conductivity k, the thermal diffusivity α, the specific heat at
constant volume, and the thermal relaxation time τr of the slab can be
considered constant. He notes that at time zero, ∂T/∂t = 0 and uses it
as one of the time conditions and T = T0 at time zero as the second
time condition. For times greater than zero, the temperature
distribution on the two sides of the slab is kept uniform with a value
Tw ≠ T0. By symmetry, at the center of the slab, ∂T/∂x = 0 is the fourth
space condition. A second-order hyperbolic partial differential
equation (PDE) can be completely described by two space and two
time conditions. On obtaining the transient temperature, Taitel points
out that the absolute value of the temperature change (T − T0) may
exceed |Tw − T0|. Barletta and Zanchini develop a solution for the finite
slab problem by the method of separation of variables. They show by
a plot of 1 − u versus X for Vernotte number 1 (ατr/4L2) and Fourier
number 0.7 (αt/4L2) that |T − T0| may exceed |Tw − T0|, as pointed out

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 255

by Taitel. In another plot of 1 − u versus X for Vernotte number 1 and
Fourier number 0.25, the equilibrium value for the temperature was
attained by an oscillatory process. The parabolic conduction predicts
a continuous increase in temperature from 0 to 1 at any internal
position. The solution obtained by Taitel for the centerline temperature
of the finite slab is given below. He considered a constant wall
temperature, and the initial time conditions included a ∂T/∂t = 0 term
in addition to the initial temperature condition. The exact solution
presented by Taitel is as follows:

u b
n

an
r= −⎛

⎝⎜
⎞
⎠⎟

− −
+⎛∞

∑
0

2 2

22 2
1

4 2 1
exp exp

()τ τ π ατ
⎝⎝⎜

⎞
⎠⎟

+ −⎛
⎝⎜

⎞
⎠⎟

+ −
+∞

∑ exp exp
(

c
n

n

τ τ
2 2

1
4 2 1

0

))2 2

2

π ατr

a

⎛
⎝⎜

⎞
⎠⎟
 (8.25)

Multiplying both sides of the Eq. (8.25) by exp(τ/2) gives

u w
n

a
rexp exp

()τ τ π ατ
2 2

1
4 2 1 2 2

2

⎛
⎝⎜

⎞
⎠⎟ = = − −

+⎛
⎝⎜

⎞
⎠⎟⎟

+ −
+⎛

⎝⎜
⎞
⎠⎟

∞

∞

∑

∑

0

2 2

2
0 2

1
4 2 1

exp
()τ π ατn

a
r (8.26)

At infinite times, the left hand side (LHS) of Eq. (8.26) is 0 times ∞
and is 0. The right hand side (RHS) does not vanish. Thus the expres-
sion given by Taitel and later discussed as a temperature overshoot
may be a result of the growing exponential term in the preceding
expression.

Sharma [7] considered a finite slab of width 2a with an initial
concentration at C0. The sides of the slab are maintained at constant
concentration of CAS. The governing equation in the dimensionless
form is then

∂
∂

+ ∂
∂

= ∂
∂

u u u
Xτ τ

2

2

2

2
 (8.27)

where u
C C
C C

t
X

x

D
A AS

A AS mr mr

=
−
−

= =
()
()

; ;
0

τ
τ τ

The initial condition is given as

 t = 0, u = 1 (8.28)

 256 C h a p t e r E i g h t

The boundary conditions in space are given by

 t > 0, X = 0, ∂u/∂X = 0 (8.29)

 t > 0, X = ±Xa, u = 0 (8.30)

The fourth and final condition in time is

 t = ∞, u = 0 (8.31)

The governing equation was obtained by a one-dimensional mass
balance (in − out + reaction = accumulation). This is achieved by
eliminating J” between the damped-wave diffusion and relaxation
equation and the equation from mass balance (–∂J”/∂x = ∂C/∂t). This
is achieved by differentiating the constitutive equation with respect
to x and the mass balance equation with respect to t and eliminating
the second cross-derivative of J” with respect to x and time. This
equation is then nondimensionalized. The solution is obtained by the
method of separation of variables. Let

 u = V(τ)φ(X) (8.32)

Equation (8.27) becomes

 φ”(X)/φ(X) = [V’(τ) + V”(τ)]/V(τ) = –λn
2 (8.33)

 φ(X) = c1 sin(λnX) + c2 cos(λnX) (8.34)

From the boundary conditions, at X = 0,

 ∂φ/∂X = 0, so c1 = 0 (8.35)

 φ(X) = c1 cos(λnX) (8.36)

 0 = c1 cos(λnXa) (8.37)

 (2n − 1)π/2 = λnXa (8.38)

 λn = (2n − 1)π ()/ατr a2 n = 1, 2, 3, . . . (8.39)

The time domain solution would be

V c cn= −⎛
⎝⎜

⎞
⎠⎟

−
⎛

⎝
⎜

⎞

⎠
⎟ + −exp exp exp

τ τ λ τ λ
2

1
4

1
43

2
4 nn

nV c

2

32
1
4

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

= −or exp exp
τ τ λ22

4
21

4

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

c nexp τ λ (8.40)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 257

from the final condition u = 0 at infinite time. So Vφexp(τ/2) = W, the
wave concentration at infinite time. The wave concentration is that
portion of the solution that remains after dividing the damping
component from either the solution or the governing equation. For
any nonzero φ, it can be seen that at infinite time the LHS of Eq. (8.40)
is a product of zero and infinity and a function of x and is zero. Hence
the RHS of Eq. (8.40) is also zero, and hence in Eq. (8.40), c3 needs to
be set to zero. Hence

u Xn n= −⎛

⎝⎜
⎞
⎠⎟ − −

⎡

⎣
⎢

⎤

⎦
⎥

∞

∑exp exp cos()
τ τ λ λ

2
1
41

2 (8.41)

where λn is described by Eq. (8.39). Cn can be shown using the
orthogonality property to be 4(–1)n+1/(2n − 1)π . It can be seen that
Eq. (8.41) is bifurcated. As the value of the thickness of the slab
changes, the characteristic nature of the solution changes from
monotonic exponential decay to subcritical damped oscillatory. For
a < π ()Dτr , even for n =1, λn > ½ . This is when the argument within
the square root sign in the exponentiated time domain expression
becomes negative, and the result becomes imaginary. Using
Demovrie’s theorem and taking the real part for small width of the
slab,

u c Xn n n= −⎛

⎝⎜
⎞
⎠⎟

−
⎛

⎝
⎜

⎞

⎠
⎟

∞

∑
1

2

2
1
4

exp cos cos()
τ τ λ λ (8.42)

Equations (8.41) and (8.42) can be seen to be well bounded.
Equation (8.42) becomes zero after some time. This would be the time
taken to reach steady state. Thus, for a ≥ π ()D mrτ , the transient
concentration is described by Eq. (8.41), where cn = 4(–1)n+1/(2n − 1)π
and λn = (2n –1)π ()DAB rτ /2a.

The centerline concentration is shown in Fig. 8.1. Eight terms in
the infinite series given in Eq. (8.41) were taken, and the values were
calculated on a 1.9-GHz Pentium IV desktop personal computer. The
number of terms was decided on the incremental change or
improvement obtained by doubling the number of terms. The number
of terms was arrived at a 4 percent change in the dimensionless
temperature. The subcritical damped oscillations can be seen in the
figure. The time taken to steady state can be read from the x intercept.
The figure shows a parametric study of the relaxation time. A small
slab of thickness of 1 cm and binary diffusivity of 10–5 m2/s is
considered. Twelve terms were taken in the infinite series solution,
and four different relaxation times were calculated. The accuracy of
the data was less than 4 percent. For the case where the relaxation
time was small, i.e., when Eq. (8.41) was applicable for the solution,

 258 C h a p t e r E i g h t

the centerline concentration decayed monotonically with the x axis as
its asymptote. When the relaxation time considered was large in such
a fashion that Eq. (8.42) is applicable, the subcritical damped
oscillations can be seen. The time taken to steady state can be read
from the x intercept in such cases. This happens when

τ

πr

a
D

>
2

2
 (8.43)

At infinite relaxation time, the governing equation will revert to
the wave equation [7], and the D’Alambert solution will result. For a
wide range of mass relaxation times, this approach can be seen to be
viable.

The Taitel paradox is obviated by examining the final steady-state
condition and expressing the state in mathematical terms. The W
term, which is the dimensionless concentration on removal of the
damping term, needs to go to zero at infinite time. This resulted in a
well-bounded solution. Use of the final condition may be what is
needed for this problem to be used extensively in engineering
analysis without being branded as violating the second law of
thermodynamics. The conditions that were touted as violations of the
second law are not physically realistic. A bifurcated solution results.
For small slab width, a < π ()D mrτ , the transient concentration is
subcritical damped oscillatory.

An exact well-bounded solution that is bifurcated depending on
the width of the slab is provided. The transient solution to the
damped-wave non-Fick hyperbolic wave propagative and relaxation
equation is obtained by the method of separation of variables.

1

0.8

0.6

0.4

0.2

0

D
im

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n

Dimensionless time

tr 1E-6s

tr 15

tr 10s

tr 5s

0 0.5 1 1.5

FIGURE 8.1 Dimensionless concentration for a fi nite slab at different
relaxation times.

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 259

A well-bounded infinite series expression is provided. The tempera-
ture overshoot identified by Taitel [35] is obviated by examining
the final steady-state condition and expressing the state in mathe-
matical terms. A bifurcated solution results. For small slab width,
a < π ()D rτ , the transient concentration is subcritical damped
oscillatory. In both Taitel [35] and Barletta and Zanchini [36], four
conditions were used for initial and boundary constraints. The two
in the space domain are retained here. The initial concentration at
time zero is also retained. However, the slope with the time domain
of the concentration at time zero is replaced with the final condition
for the time domain, i.e., at steady state, the transient concentration
will decay out to a constant value or to zero in the dimensionless
form. This consideration is shown to change the nature of the solu-
tion considerably to a well-bounded expression that is bifurcated. For
small values of the slab, the transient concentration is subcritical
damped oscillatory. For other values, the Fourier series representa-
tion is augmented by a modification to the exponential time domain
portion of the solution. In this section, use of the final condition at
steady state as the fourth condition to give a bounded solution in
obeyance of the Clausius inequality was achieved.

8.3.3 Relativistic Transformation of Coordinates
The semi-infinite medium is considered to study the spatiotemporal
patterns that the solution of the non-Fick damped-wave diffusion
and relaxation equation exhibit. This kind of consideration has been
used in the study of Fick mass diffusion. The boundary conditions
can be different, such as constant wall concentration, constant wall
flux (CWF), pulse injection, and convective, impervious, and
exponential decay. The similarity or Boltzmann transformation
worked out well in the case of parabolic PDE, where an error function
solution can be obtained in the transformed variable. The conditions
at infinite width and zero time are the same. The conditions at zero
distance from the surface and infinite time are also the same.

Baumeister and Hamill [37] solved the hyperbolic heat conduction
equation in a semi-infinite medium subjected to a step change in
temperature at one of its ends using the method of Laplace
transformation. The space-integrated expression for the temperature
in the Laplace domain had the inversion readily available within the
tables. This expression was differentiated using Leibniz’s rule, and
the resulting temperature distribution was given for τ > X as

u
C C
C C

X
X

pA

AS

=
−
−

= −⎛
⎝⎜

⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠

()
()

exp exp0

0 2 2 ⎟⎟
−

−∫X

I p X

p X
dp

τ 1
2 2

2 2
 (8.44)

 260 C h a p t e r E i g h t

The method of relativistic transformation of coordinates is
evaluated to obtain the exact solution for the transient temperature.
Consider a semi-infinite slab at initial concentration C0 imposed by
a constant wall concentration Cs for times greater than zero at one
of the ends. The transient concentration as a function of time and
space in one dimension is obtained. Obtaining the dimensionless
variables,

u
C C
C C

t
X

x

D
J

J

D
A A

AS A mr mr

r

=
−
−

= = =
()
()

; ; ; *
"0

0

τ
τ τ

τ
(()C CAS A− 0

 (8.45)

The mass balance on a thin spherical shell at x with thickness Δx
is written in one dimension as –∂J*/∂X = ∂u/∂τ. The governing
equation can be obtained in terms of the mass flux after eliminating
the concentration between the mass balance equation and the non-
Fick expression:

∂
∂

+ ∂
∂

= ∂
∂

J J J
X

* * *
τ τ

2

2

2

2
 (8.46)

It can be seen that the governing equation for the dimensionless
mass flux is identical in form with that of the dimensionless
concentration. The initial condition is

 τ = 0, J* = 0 (8.47)

The boundary conditions are

 X = ∞, J* = 0 (8.48)

 X = 0, C = Cs, u = 1 (8.49)

Let us suppose that the solution for J* is of the form w exp(–nτ),
for τ > 0, where W is the transient wave flux. Then, when n = ½,
Eq. (8.46) becomes

∂
∂

− = ∂
∂

2

2

2

24
w w w

xτ
 (8.50)

Equation (8.50) can also be generated from Eq. (8.46) by
multiplying Eq. (8.46) throughout with exp(nτ) and realizing that
w = uexp(nτ) at n = ½. The solution to Eq. (8.50) can be obtained
by the following relativistic transformation of coordinates for τ > X.
Let η = (τ2 − X2). Then Eq. (8.50) becomes

∂
∂

= ∂
∂

+ ∂
∂

2

2
2

2

24 2
w w w

τ
τ

η η (8.51)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 261

∂
∂

= ∂
∂

− ∂
∂

2

2
2

2

24 2
w

X
X

w w
η η (8.52)

Combining Eqs. (8.51) and (8.52) into Eq. (8.50) gives

4 4

4
02 2

2

2()τ
η η

− ∂
∂

+ ∂
∂

− =X
w w w

 (8.53)

η

η
η

η
η2

2

2 16
0

∂
∂

+ ∂
∂

− =w w w
 (8.54)

Equation (8.54) can be seen to be a special differential equation in
one independent variable. The number of variables in the hyperbolic
PDE thus has been reduced from two to one. Comparing Eq. (8.54)
with the generalized form of Bessel’s equation [35], it can be seen that
a = 1, b = 0, c = 0, s = ½, and d = −1/16. The order of the solution is
calculated as 0, and the general solution is given by

w c I

X
c K

X= −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0

2 2

2 0

2 2

2 2
τ τ

 (8.55)

The wave flux w is finite when η = 0, and hence it can be seen that
c2 is zero. c1 can be solved from the boundary condition given in
Eq. (8.49). The expression for the dimensionless mass flux for times τ
> X is thus

J c I X* exp= −⎛

⎝⎜
⎞
⎠⎟ −⎡

⎣⎢
⎤
⎦⎥1 0

2 2

2
1
2

τ τ (8.56)

For large times, the modified Bessel’s function can be given as
an exponential and reciprocal in the square root of time by asymptotic
expansion. Consider the surface flux, i.e., when in Eq. (8.56) X is set
as zero:

J c

c
* exp

exp
= −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=1
1

2
2τ
τ

πτ πτ
 (8.57)

For times when exp(τ) is much greater than the mass flux, it can
be seen that the second derivative in time of the dimensionless flux in
Eq. (8.46) can be neglected compared with the first derivative. The
resulting expression is the familiar expression for surface flux

 262 C h a p t e r E i g h t

from the Fourier parabolic governing equation for constant wall
concentration in a semi-infinite medium and is given by

J* = 1

πτ
 (8.58)

Comparing Eqs. (8.58) and (8.57), it can be seen that c1 is 1. Thus
the dimensionless heat flux is given by

J I

X
* exp= −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

τ τ
2 20

2 2

 (8.59)

The solution for J* needs to be converted to the dimensionless
concentration u and then the boundary conditions applied. From the
mass balance,

− ∂

∂
= ∂

∂
J
X

u*
τ

 (8.60)

Thus, differentiating Eq. (8.59) with respect to X, substituting in
Eq. (8.60), and integrating both sides with respect to τ, for τ > X,

u

I X

X
d c X= −⎛

⎝⎜
⎞
⎠⎟

−

−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ +∫exp (

τ τ

τ
τ

2

1
21

2 2

2 2
)) (8.61)

It can be left as an indefinite integral, and the integration
constant can be expected to be a function of space. The c(X) can be
solved for by examining what happens at the wave front. At the
wave front, η = 0, and time elapsed equals the time taken for a mass
disturbance to reach the location x given the wave speed D mr/ τ .
The governing equations for the dimensionless mass flux and dimension-
less concentration are identical in form. At the wave front, Eq. (8.53)
reduces to

∂
∂

=w w
η 16 or w c c= ='exp '

η
16

 (8.62)

u c c

X= − = −
'exp 'exp

τ
2 2

 (8.63)

Thus c(X) = c’ exp(–X/2). Thus

u X

I X

X
d c

X= − −

−
+ −

∫ exp 'exp
τ τ

τ
τ

2

1
2

2
1

2 2

2 2 (8.64)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 263

From the boundary condition in Eq. (8.49) it can be seen that c’ = 1.
Thus, for τ > X, Eq. (8.64) gives the exact solution for dimensionless
concentration.

It can be seen that the boundary conditions are satisfied by the
Eq. (8.64) and describe the transient concentration as a function of
space and time that is governed by the hyperbolic wave diffusion and
relaxation equation. The flux expression is given by Eq. (8.59).

It also can be seen that expressions for dimensionless mass flux
and dimensionless concentration given by Eqs. (8.59) and (8.64) are
valid only in the open interval for τ > X. When τ = X, the wave front
condition results, and the dimensionless mass flux and concentration
are identical and are

J u

X
* exp exp= = − = −⎛

⎝⎜
⎞
⎠⎟2 2

τ
 (8.65)

When X > τ, the transformation variable can be redefined as η = X2 − τ2.
Equation (8.50) becomes

η

η
η

η
η2

2

2 16
0

∂
∂

+ ∂
∂

+ =w w w
 (8.66)

The general solution for this Bessel equation is given by

w c J c Y=

⎡
⎣⎢

⎤
⎦⎥

+
⎡
⎣⎢

⎤
⎦⎥1 0 2 02 2

η η
 (8.67)

The wave temperature W is finite when η = 0, and hence it can be
seen that c2 is zero. c1 can be solved from the boundary condition
given in Eq. (8.49). The expression in the open interval or the
dimensionless heat flux for times τ smaller than X is thus

J c J

X
* exp= −⎛

⎝⎜
⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥1 0

2 2

2 2
τ τ

 (8.68)

On examining the Bessel function in Eq. (8.68), it can be seen that
the first zero occurs when the argument becomes 2.4048. Beyond that
point, the Bessel function will take on negative values, indicating a
reversal of heat flux. There is no good reason for the mass flux to
reverse in direction at short times. Hence Eq. (8.68) is valid from the
wave front down to where the first zero of the Bessel function occurs.
Thus the plane of zero transfer explains the initial condition
verification from the solution.

By using the expression at the wave front for the dimensionless
mass flux, c1 can be solved for and is found to be 1. Equation (8.68)

 264 C h a p t e r E i g h t

also can be obtained directly from Eq. (8.56) by using I0(η) = J0(iη). The
expression for temperature in a similar vein for the open interval X > τ
is thus

u X

J
X

X
d

X= −⎛
⎝⎜

⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

−
+ −

exp exp
τ

τ

τ
τ

2
2

2
1

2 2

2 2

⎛⎛
⎝⎜

⎞
⎠⎟∫ (8.69)

Consider a point Xp in the semi-infinite medium. Three regimes
can be identified in the mass flux at this point from the surface as a
function of time. Series expansion of the modified Bessel composite
function of the first kind and zeroth order was accomplished using a
Microsoft Excel spreadsheet on a Pentium IV desktop computer. The
three regimes and the mass flux at the wave front are summarized as
follows:

 1. The first regime is a thermal inertia regime when there is no
transfer.

 2. The second regime is given by Eq. (8.68) for the mass flux
and

J J

X
* exp= −⎛

⎝⎜
⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

τ τ
2 20

2 2

 (8.70)

The first zero of the zeroth-order Bessel function of the first kind
occurs at 2.4048. This is when

2 4048

2
23 132

2 2
2. .= − = −X

X
τ τor lag

 (8.71)

Thus τlag is the inertial lag that will ensue before the mass flux is
realized at an interior point in the semi-infinite medium at a
dimensionless distance X from the surface. As a demonstration, one
value of X is used, i.e., 5. Thus, for points closer to the surface, the
time lag may be zero. Only for dimensionless distances greater than
4.8096 is the time lag finite. For distances closer than 4.8096 ατr

, the
thermal lag experienced will be zero. For distances

x mr> 4 8096. ατ (8.72)

the time lag experienced is given by Eq. (8.71) and is X 2
1
24− β ,

where β1 is the first zero of the Bessel function of the first kind and
zeroth order and is 2.4048. In a similar fashion, the penetration
distance of the disturbance for a considered instant in time

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 265

beyond which the change in initial temperature is zero can be
calculated as

X ipen = +23 132 2. τ

 3. The third regime starts at the wavefront and is described by
Eq. (8.59):

J I

X
* exp= −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

τ τ
2 20

2 2

 (8.73)

 4. At the wave front, J* = u = exp(–X/2) = exp(–τ/2).

The expressions for transient concentration derived above need
integration prior to use. More easily usable expressions can be
developed by making suitable approximations. Realizing that for
PDE, a set of functions instead of constants as in the case of ODE
needs to be solved from the boundary conditions, the c in Eq. (8.68) is
allowed to vary with time. This results in an expression for transient
concentration that is more readily available for direct use of the
practitioner. Extensions to three dimensions in space are also
straightforward in this method.

In this section, the exact solution for the constant wall concentra-
tion problem in semi-infinite medium in one dimension is revisited
because of the discussion of the method of Laplace transforms by
Baumeister and Hamill. In this section I attempt to derive an
expression that does not need further integration. Consider a semi-
infinite slab at initial concentration C0 subjected to a sudden change
in concentration at one of the ends to Cs. The mass propagative
velocity is Vm = DAB r/ τ . The initial conditions are

 t = 0, Vx, C = C0 (8.74)

 t > 0, x = 0, C = Cs (8.75)

 t > 0, x = ∞, C = C0 (8.76)

Obtaining the dimensionless variables

u

C C
C C

t
X D

s mr
mr=

−
−

= =
()
()

; ;0

0

τ
τ

τ (8.77)

the mass balance on a thin spherical shell at x with thickness Δx is
written. The governing equation can be obtained after eliminating
J” between the mass balance equation and the derivative with

 266 C h a p t e r E i g h t

respect to x of the flux equation and introducing the dimensionless
variables.

∂
∂

+ ∂
∂

= ∂
∂

u u u
Xτ τ

2

2

2

2
 (8.78)

Suppose that u = exp(–nτ)w(X, τ). By choosing n = ½, the damping
component of the equation is removed. Thus, for n = ½, the governing
equation becomes

∂
∂

− = ∂
∂

2

2

2

24
w w w

xτ
 (8.79)

The solution to Eq. (8.79) can be obtained by the following relativistic
transformation of coordinates for τ > X. Let η = (τ2 − X2). Then
Eq. (8.50) becomes

∂
∂

= ∂
∂

+ ∂
∂

2

2
2

2

24 2
w w w

τ
τ

η η (8.80)

∂
∂

= ∂
∂

− ∂
∂

2

2
2

2

24 2
w

X
X

w w
η η (8.81)

Combining Eqs. (8.80) and (8.81) into Eq. (8.79) gives

4 4

4
02 2

2

2()τ
η η

− ∂
∂

+ ∂
∂

− − =X
w w w

 (8.82)

η

η
η

η
η2

2

2 16
0

∂
∂

+ ∂
∂

− =w w w
 (8.83)

Equation (8.83) can be seen to be a special differential equation in
one independent variable. The number of variables in the hyperbolic
PDE thus has been reduced from two to one. Comparing Eq. (8.83)
with the generalized form of Bessel equation [35], it can be seen that
a = 1, b = 0, c = 0, s = ½, and d = −1/16. The order of the solution is
calculated as 0, and the general solution is given by

w c I

X
c K

X= −⎡
⎣⎢

⎤
⎦⎥

+ −⎡
⎣⎢

⎤
⎦⎥1 0

2 2

2 0

2 2

2 2
τ τ

 (8.84)

The wave temperature w is finite when η = 0, and hence it can be
seen that c2 is zero. c1 can be solved from the boundary condition given
in Eq. (8.75). For X = 0, u is 1. Writing the expression for u at X = 0,

1

2 21 0= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟c Iexp

τ η
 (8.85)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 267

c1 can be eliminated by dividing Eq. (8.84) after setting c2 = 0 by
Eq. (8.85) to yield in the open interval of τ > X

u
I

X

I
=

−⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

0

2 2

0

2

2

τ

τ
 (8.86)

In the open interval X > τ,

u
J

X

I
=

−⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

0

2 2

0

2

2

τ

τ
 (8.87)

It can be inferred that an expression in time is used for c1. A
domain-restricted solution for short and long times may be in order.

8.3.4 Periodic Boundary Condition
Consider a semi-infinite slab at initial concentration C0 imposed by a
periodic concentration at one of the ends by C0 + C1 cos(wt). The
transient concentration as a function of time and space in one
dimension is obtained. Obtaining the dimensionless variables

u
C C

C
t

X
x

Dmr mr

=
−

= =
()

; ;0

1

τ
τ τ

; u = (C − C0)/(C1);

 τ = t/τr; X = x/ D rτ (8.88)

The mass balance on a thin shell at x with thickness Δx is written.
The governing equation is obtained after eliminating J between the
mass balance equation and the derivative with respect to x of the flux
equation and introducing the dimensionless variables. The initial
conditions are

 t = 0, C = C0, u = 0 (8.89)

The boundary conditions are

 X = ∞, C = C0, u = 0 (8.90)

 X = 0, C = C0 + C1 cos(ωt); u = cos(ω*τ) (8.91)

Let us suppose that the solution for u is of the form f(x) exp(–iω*τ),
for τ > 0, where ω is the frequency of the concentration wave imposed
on the surface and the C1 is the amplitude of the wave. Then

 (–iω*)f exp(–iω*τ) + (i2ω*2)f exp(–iωτ) = f” exp(–iω*τ) (8.92)

 268 C h a p t e r E i g h t

 i2f(ω*2 + iω*) = f” f(X) = c exp(–iXω* ω* + i) (8.93)

Then d can be seen to be zero as at X = ∞, u = 0.

u c iX i i= − + −exp(* *)exp(*)ω ω ω τ

 (8.94)

From the boundary condition at X = 0,

 cos(ω*τ) = real part[c exp(–iω*τ)] or c =1 (8.95)

 u = exp[–Xω*(A + iB) exp(–iω*τ)]

 = exp(–Aω*X) exp[–i(BXω* + ω*τ)] (8.96)

where A + iB = i ω* + i . (8.97)

Squaring both sides gives

 A2 − B2 + 2AiB = i2(ω* + i) = –ω* − i (8.98)

 A2 − B2 = –ω* 2AB = –1 or B = –½A

or A2 − ¼A2 = –ω* (8.99)

 A2 = (–ω* ± ω*2 + 1)/2 B = –½A (8.100)

Obtaining the real part

 u = exp(–Aω*X) cos[ω*(BX + τ)] (8.101)

The time lag in the propagation of the periodic disturbance at the
surface is captured by the preceding relation. Thus the boundary
conditions can be seen to be satisfied by Eq. (8.101). In a similar vein
to the supposition of f(x) exp(–iω*τ), the mass flux J” can be supposed
to be of the form J* = g(x) exp(–iω*τ). Thus

g

f
i

=
−

'
(*)1 ω (8.102)

Combining the f from Eq. (8.93) into Eq. (8.102) gives

 J* = –ω*(A + iB) exp[–Xω*(A + iB)] exp(–iω*τ)

 = –ω*(A + iB) exp(–Aω*X) exp[–i(BXω* + ω*τ)]

 = –ω*(A + iB) exp(–Aω*X)[cos(BXω* + ω*τ) + i sin(BXω* + ω*τ)]
 (8.103)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 269

Obtaining the real part

J” =

D

mrτ ω* exp(–Aω*X){B sin[ω*(BX + τ)]

 – A cos[ω*(BX + τ)]} (8.104)

8.4 Electrophoresis Apparatus
The term electrophoresis refers to the movement of a solid particle
through a stationary fluid under the influence of an electric field
(Fig. 8.2). The constituent that migrates under the field can be large
molecules, colloids, fibers, clay particles, and latex spheres.
Electrophoresis is often applied to polymeric and biologic samples. It
is applied frequently in the analysis of proteins and DNA fragment
mixtures. The differences in mobility of different species under an
electric field are used to obtain a separation between two or more

Cooling water
intel

Cathode
buffer

reservoir

Cooling water
outlet

DC supply

Anode
buffer

reservoir

Electrophoretic matrix

FIGURE 8.2 Schematic of an electrophoresis apparatus.

 270 C h a p t e r E i g h t

species. The advancement of biotechnology was in some measure
due to electrophoresis. Variations of this method are used in obtaining
the nucleic acid sequences of DNA; isolating active biologic factors
associated with diseases such as cystic fibrosis, sickle-cell anemia,
myelomas, and leukemia; and establishing immunologic reactions
between samples on the basis of individual compounds. The
technique is sensitive to small differences in molecular charge and
mass. It does not interfere with the species under investigation
during the investigation.

The charge separation between the surface of the particle and the
fluid surrounding it is tapped into in the electrophoresis technique.
The particle is caused to move by the electric force it experiences from
the electric field and resulting charge on the particle. The electric field
also generates heat.

Different types of gel matrices can be employed. These are
agarose, polyacrylamide, paper, capillaries, and flowing buffers. The
gel and capillary modes can be used alone or in combination in the
different matrices listed to achieve the target objectives for a given
application. Over a period of time, a number of different types of
electrophoresis methods have been developed. Some of them
are (1) disk electrophoresis, (2) zone electrophoresis, (3) native zone
electrophoresis, (4) reduced sodium dodecyl sulfate (SDS) elec-
trophoresis, (5) pulsed-field gel electrophoresis, (6) isoelectric focusing,
(7) isotachophoresis, (8) agarose electrophoresis, (9) polyacrylamide
electrophoresis, (10) paper electrophoresis, (11) capillary electrophoresis,
and (12) force-flow electrophoresis.

8.5 Electrophoretic Term, Ballistic Term, and
Fick Term in the Governing Equation

The molar flux after taking into account the electric field effects and
the finite speed of molecular diffusion effects can be written as

− =

∂
∂

+
⎛
⎝⎜

⎞
⎠⎟ +

∂
∂

j D
C
z

zFm
RT

C
j
tA

A
A mr

Aτ (8.105)

zAF is the charge per molecule, and F is the Faraday’s constant in
coulombs per gram. zA is the valency of the species A, and m is its
mass. Lumping the electrophoretic effects as ε = zFm/RT and combin-
ing with the mass balance equation in transient diffusion, the
governing equation for concentration of species A under transient
conditions can be written as

D

C
z

C
z

C
t

C
t

A A
mr

A A∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2 2ε τ (8.106)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 271

Equation (8.106) is a hyperbolic partial differential equation with
four terms in the governing equation. Analytical general solutions to
the equation are not reported in the literature. There have been some
attempts to solve this equation numerically. However, given what is
known about the transient nature of the process, the nature and
salient characteristics of the solution can be examined. This is done as
follows: Equation (8.106) is made dimensionless by the following
substitutions:

u
C C
C C

t
X

z

D
PeA AS

A AS mr mr

=
−
−

= = =
()
()

; ; ;
0

τ
τ τ

ε
elec DD

mrτ

(8.107)

Then the governing equation transforms from Eq. (8.106) into

∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

2

2

2

2

u
X

Pe
u
X

u u
elec τ τ

 (8.108)

The Peclect number (electric) Peelec is given by the ratio of the
electrophoretic velocity and the velocity of mass propagation.
Consider a slab with length l maintained at concentration CAS at
one end at all times. At length l, the gel is impervious to any further
migration, and hence the adiabatic boundary condition of zero
flux at the boundary can be assumed. The time and space conditions
are then

 X = 0, u = 0 (8.109)

X = Xl,

∂
∂

=u
X

0 (8.110)

 τ = 0, u = 1 (8.111)

 τ = ∞, u = 0 (8.112)

It is generally known that problems in transient diffusion have an
exponential decaying time component to their solution. Further, since
the problem is driven by a surface concentration maintained at a
higher concentration at X = 0, and further, since the end of the
apparatus is impervious to diffusion, the species concentration will
have a decaying component in space as well. In order to examine the
salient characteristics of the solution to Eq. (8.108), let the solution be
assumed to take the form

 u n mX w= − −exp()exp()τ (8.113)

 272 C h a p t e r E i g h t

where w is the wave concentration, which is a function of space and
time. It can be shown that at n = ½ and m = ½Peelec, Eq. (8.108)
becomes

∂
∂

= ∂
∂

+ −
⎡

⎣
⎢

⎤

⎦
⎥

2

2

2

2 4
1

1
w

X
w w

Peelecτ (8.114)

It can be seen from Eq. (8.114) that when the Peclect number
(electric) equals 1, Eq. (8.114) reverts to the wave equation. The
solution then would be D’Alembert’s solution, as discussed in
Sharma [35]. When the Peclect (electric) number is equal to 1, the
electrophoretic velocity and the velocity of molecular diffusion are
equal. Equation (8.114) can be solved by the method of separation of
variables. Let

 w = g(X)V(τ) (8.115)

Substituting Eq. (8.115) into Eq. (8.114) and separating the variables
in space and time gives the two differential equations that govern the
solution in space and time:

d g
dX n

2

2
2= −λ (8.116)

d V
d Pen

2

2
2 1

4
1

1
τ

λ= − + −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

elec
 (8.117)

The solution to Eq. (8.116) can be seen to be

 g = c1 sin(λnX) + c2 cos(λnX) (8.118)

From the boundary conditions at X = 0, it can be seen that c2 = 0.
From the boundary conditions at X = Xl, the eigenvalues can be
solved for as

 λnXl = ()2 1
2

n − π n = 1, 2, 3, . . . (8.119)

It can be seen that the solution to Eq. (8.117) depends on the relaxation
time and other parameters of the system. It is a bifurcated solution.
For small eigenvalues,

V c

Pe
c

Pn= − − −
⎛

⎝
⎜

⎞

⎠
⎟ + −3

2
4

1
4

1
4

1
4

1
4

exp expτ λ τ
elec ee nelec −

⎛

⎝
⎜

⎞

⎠
⎟λ2 (8.120)

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 273

In a similar fashion, as discussed in Sec. 8.2.1, at steady state
or infinite time, or from the time condition stated in Eq. (8.112), it
can be seen that w = u exp(τ/2) exp(X/2Peelec) will become 0 times
infinity and equal to 0. Hence the c4 in Eq. (8.120) can be set to 0.
Thus the general solution to the transient concentration can be
written as

u c X

X
Pen n=
−⎡

⎣
⎢

⎤

⎦
⎥

−⎡
⎣⎢

⎤∞

∑ sin()exp expλ τ
2 21 elec ⎦⎦⎥

− − −
⎛

⎝
⎜

⎞

⎠
⎟exp τ λ1

4
1

4
2

Pe n
elec

 (8.121)

The cn can be solved for from the initial condition using the
orthogonality property and be shown to be

8

2 1 2 2

l

n D mr()− π τ

Further, it can be seen that for large eigenvalues, the solution for
the concentration given in Eq. (8.121) becomes damped oscillatory.
Thus, when

λn Pe

2 1
4

1
4

+ >
elec

 (8.122)

u c X

X
Pen n= −⎡

⎣
⎢

⎤

⎦
⎥

−⎡
⎣⎢

⎤∞

∑ sin()exp expλ τ
2 21 elec ⎦⎦⎥

+ −
⎛

⎝
⎜

⎞

⎠
⎟cos τ λn Pe

2 1
4

1
4elec

 (8.123)

The implications of Eq. (8.122) can be seen that when n = 1,

π τ τ
ε

2

2 1
D
l

D

mr mr+ > (8.124)

or l
D

D
mr

mr

<
−⎛

⎝⎜
⎞
⎠⎟

επ τ

ε τ

2

Thus, when the length of the electrophoretic apparatus is less
than a critical length, the concentration of species A will undergo
subcritical damped oscillations. This would be the case for gel
matrices with high relaxation times and low molecular diffusion
velocities.

 274 C h a p t e r E i g h t

Summary
The sequence distribution of deoxyribonucleic acid (DNA) is obtained
by the method of gel acrylamide electrophoresis. The sequence distri-
bution of polypeptide (protein) is obtained by using paper chromatog-
raphy. In both these techniques molecular diffusion phenomena is a
important consideration. At short time scales, such as those associated
with critical events during electrophoresis and paper chromatography,
Fick’s laws of diffusion is not adequate to represent the transient
events. There are seven reasons to seek a generalized Fick’s law of
molecular diffusion. These are the contradiction of Fick’s law with
the theory of microscopic reversibility of Onsager, observation of
Nernst that heat and hence mass possess inertia and in good
conductors and hence in good diffusing media lead to oscillatory
discharge, Landau and Lifshitz’s observation that light possess
speediest velocity, high mass rate applications cannot be described by
Fick’s laws, singularities were found in the description of surface flux
in cartesian, cylindrical, of and spherical coordinates using Fick’s
representation of transient concentration, Fick’s laws were developed
from empirical observations, overprediction of theory to experiment
were found in a number of important industrial applications of
Fick’s laws.

The generalized Fick’s law of diffusion is analogous to the
Cattaneo and Vernotte hyperbolic heat conduction equation. It was
derived by considering the acceleration of a moving molecule under
the Sotkes-Einstein formulation of chemical potential and drag.
Expressions for relaxation time of mass was developed in terms of the
diffusion coefficient of mass. The Taitel paradox of a temperature
overshoot and hence a implied concentration overshoot during
damped wave diffusion and relaxation was re-examined. The use of
the final condition in time leads to well bounded infinite series
solution. No overshoot was found in the solution to damped wave
diffusion and relaxation in a finite slab subject to constant wall
concentration boundary condition. At large relaxation times, the
solution is found to exhibit subcritical, damped oscillations in
concentration of migrating species.

The method of relativistic transformation of coordinates was
developed to obtain physically realistic solutions to the semi-infinite
medium problem subject to constant wall concentration boundary
condition. Three different regimes of solution were identified. A
inertial regime characterized with zero transfer, a second regime
characterized by Bessel composite function of space and time of the
zeroth order and first kind, and a third regime of a modified Bessel
composite function of space and time of the zeroth order and first
kind. Expressions for penetration distance and inertial lag time were
developed. The characteristics of the solution to the damped wave
diffusion and relaxation subject to a periodic boundary condition
were studied using the method of complex temperature.

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 275

A schematic of electrophoresis apparatus was provided. Different
methods of electrophoresis techniques were discussed. The governing
equation for the migrating species subject to finite speed diffusion
and electrophoretic force was developed. A dimensionless group,
Peclect number (electric) was defined. This was the ratio of the
electrophoretic velocity to the finite speed of mass. Well bounded
infinite series solution for the migrating species were developed for a
finite slab subject to a constant concentration boundary condition.
The conditions were the concentration is expected to undergo
subcritical, damped oscillations were derived. The mathematical
model can be used in place of the calibration method used in
electrophoresis methods. This may lead to less errors in the sequence
distribution of DNA and protein molecules.

References
 [1] A. E. Fick, “Uber Diffusion”, Poggendorff’s Annelen der Physik. 94 (1855), 59.
 [2] B. Fascimire, NASATechnical Reports, Skylab Project, NASA Marshall Flight

Center, Alabama, 1973.
 [3] L. Onsager, “Reciprocal relations in irreversible processes,” Phys. Rev. 37

(1931), 405–426.
 [4] W. Nernst, Die Theoretischen Grundalgen des n Warmestazes. Knapp Halle,

Frankfurt, DE, 1917.
 [5] L. Landau and E. M. Liftshitz, Fluid Mechanics. New York: Pergamon

Press, 1987.
 [6] D. C. Kelly, “Diffusion: A relativistic appraisal,” Am. J. Phys. 36 (1968),

585–591.
 [7] K. R. Sharma, Damped Wave Transport and Relaxation. Amsterdam: Elsevier,

2005.
 [8] K. R. Sharma, “Damped Wave Conduction and Relaxation in Spherical and

Cylindrical Coordinates,” J. Thermophys. Heat Transfer. 21 (2007), 688–693.
 [9] K. R. Sharma, “Manifestation of acceleration during transient heat condu-

tion,” J. Thermophys. Heat Transfer. 20 (2006), 799–808.
[10] K. R. Sharma, “Analytical solution of damped wave conduction and relax-

ation equation for a finite sphere and cylinder,” J. Thermophys. Heat Transfer
(accepted).

[11] K. R. Sharma, “Temperature solution in semi-infinite medium under CWT
for Cattaneo and Vernotte non-Fourier heat conduction,” 225th ACS National
Meeting, New Orleans, LA, March 23–28, 2003.

[12] K. R. Sharma, “On the use of final condition in time to obtain solution of
Cattaneo and Vernotte damped wave transport and relaxation equation,”
231st ACS National Meeting, Atlanta, GA, March 26–30, 2006.

[13] K. R. Sharma, “Finite speed diffusion effects in electrophoresis in a finite slab
at large electrophoretic velocities,” AIChE Spring National Meeting, New
Orleans, LA, April 6–10, 2008.

[14] K. R. Sharma, “On the temperature overshoot problem in a cylinder and use
of final condition in time to obtain a bounded solution.” 235th ACS National
Meeting, New Orleans, LA, April 6–10, 2008.

[15] K. R. Sharma, “On the violations of laws of thermodyanics by laws of heat
condution,” AIChE Spring National Meeting, New Orleans, LA, April 6–10,
2008.

[16] K. R. Sharma, “Confounding effect of charge on gel electrophoresis measure-
ments,” 59th Northwest Regional Meeting of the American Chemical Society,
NORM/RMRM, Utah State University, UT, June 2004.

[17] K. R. Sharma, “On the use of cutrices in restriction mapping of three enzymes,”
231st ACS National Meeting, Atlanta, GA, March 26–30, 2006.

 276 C h a p t e r E i g h t

[18] K. R. Sharma, “Removal of arsenic from drinking water by molecular sieve
adsorption,” 226th ACS National Meeting, New York, September, 2003.

[19] K. R. Sharma, “Critical radii neither greater than the shape limit nor less
than cycling limit,” AIChE Spring National Meeting, New Orleans, LA,
March 30–April 3, 2003.

[20] K. R. Sharma, “Acceleration effects during controlled drug delivery to the
brain,” 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008.

[21] K. R. Sharma, “Storage coefficient of substrate in a 2 GHz microprocessor,”
225th ACS National Meeting, New Orleans, LA, March 23–28, 2003.

[22] K. R. Sharma and R. Turton, “Mesoscopic approach to correlate surface heat
transfer coefficients using pressure fluctuations in dense gas-solid fluidized
beds,” Powder Technol. 99 (1998), 109–118.

[23] A. K. Boley, Heat Transfer Structures and Materials. New York: Pergamon Press,
1964.

[24] J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. 157
(1867), 49.

[25] P. M. Morse and H. Feshbach, Methods of Theoretical Physics. New York:
McGraw Hill, 1953.

[26] C. Cattaneo, “A form of heat conduction which eliminates the paradox of
instantaneous propagation,” Comp. Rendu. 247 (1958), 431–433.

[27] P. Vernotte, “Les paradoxes de la theorie continue del’equation de la chaleur,”
C. R. Hebd. Seanc. Acad. Sci. Paris. 246 (1958), 3154–3155.

[28] K. Mitra, S. Kumar, A. Vedavarz, and M. K. Moallemi, “Experimental evi-
dence of hyperbolic heat conduction in processed meat,” J. Heat Transfer. 117
(1995), 568–573.

[29] E. Mitura, S. Michalowski, and W. Kaminski, “A mathematical model of con-
vection drying in the falling drying rate period,” Drying Technol. 6 (1988),
113–137.

[30] D. Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behavior. Boca Raton,
FL: CRC Press, 1996.

[31] K. R. Sharma, Principles of Mass Transfer. New Delhi: Prentice Hall of India,
2007.

[32] R. H. Stokes, “An improved diaphragm-cell for diffusion studies and some
test of the methods,” J Am. Chem. Soc. 72 (1950), 763-767.

[33] A. Einstein, “On the motion of small particles suspended in liquids at
rest required by molecular-kinetic theory of heat,” Annalen der Physik. 7
(1905), 549.

[34] Y. Taitel, “On the parabolic, hyperbolic and discrete formulation of heat con-
duction equation,” Int. J. Heat Mass Transfer. 15 (1972), 369–371.

[35] E. Zanchini, “Hyperbolic heat conduction theories and non-decreasing
entropy,” Phys. Rev. [B] 60 (1999), 991–997.

[36] A. Barletta and E. Zanchini, “Thermal-wave heat conduction in a solid cylin-
der which undergoes a change of boundary temperature,” Heat Mass Transfer
[Warema-und Stoffuebertragung]. 32 (2003), 5383–5386.

[37] K. J. Baumeister and T. D. Hamill, “Hyperbolic heat conduction equation:
A solution for the semi-infinite body problem,” ASME J. Heat Transfer. 93
(1971), 126–128.

[38] K. B. McAfee, Scientific American, 199, 1, (1958), 52.

Exercises
1.0 What is the difference between binary and ternary diffusion
coefficients?

2.0 During Brownian motion, the molecules follow a random zigzag path
and sometimes move in the opposite direction compared with the imposed
concentration difference driving the diffusion. Is this a violation of the second
law of thermodynamics?

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 277

3.0 What is self-diffusivity? Is a concentration difference needed for
movement of the species that defines the self-diffusivity?

4.0 What are the differences between multicomponent diffusion and binary
diffusion?

5.0 What happens to the formula for total flux during equimolar
counterdiffusion compared with that for molecular diffusion?

6.0 Correlations for diffusion in gases, liquids, and solids were discussed.
What would be appropriate for liquid diffusing in a solid or for gases diffusing
in a liquid?

7.0 Explain the effect of temperature on the mass propagation velocity. What
happens to the diffusion coefficient and relaxation time at high pressure?

8.0 Why are insects larger in size in the tropics than insects in the arctic
region?

9.0 Is the force of gravity taken into account in the derivation of the Stokes-
Einstein relationship for diffusivity coefficients?

10.0 Can you expect a plane of zero concentration or null transfer during
drug delivery in the tissue region? How so?

11.0 The diffusion coefficient is a proportionality constant in Fick’s first law
of diffusion independent of concentration. For concentrated solutions, it is said
to vary with concentration. How can this be interpreted?

12.0 State the Onsager reciprocal relations. Show that D12 = D21.

13.0 What was Landau’s observation of infinite speed of propagation?

14.0 What is an overshoot?

15.0 What is the drag force experienced by an electron compared with the
acceleration term?

16.0 What is penetration length?

17.0 What is inertial lag time?

18.0 What is the first zero of the Bessel function of the first order? How is
this used in the derivation of the penetration length and inertial lag time in a
three-dimensional medium?

19.0 What is the physical significance of the maxima in Fig. 8.1?

20.0 What is the physical significance of the x intercept in Fig. 8.1? Can an
expression for the time taken to steady state be derived from these x-intercept
values?

21.0 Examine I0(τ/2)exp(–τ/2) in terms of extremas and asymptotic
limits, and under what conditions can I0(τ/2) be reduced to a simpler
expression?

 278 C h a p t e r E i g h t

22.0 What is the meaning of a negative mass flux? What happens to the ratio
of the accumulation and diffusion terms?

23.0 It was shown that for large relaxation times, the transient concentration
in a finite slab exhibits subcritical damped oscillations. What is the critical size
of the slab below which the oscillations can be seen? What is the value of the
diffusion coefficients when the oscillations can be seen?

24.0 Contrast subcritical damped oscillations with critical and underdamped
oscillations. What does resonance mean for this problem?

25.0 Scale the governing equation and show that when the temporal
derivative of the dimensionless concentration exceeds exp(τ), the hyperbolic
PDE reduces to the wave equation. Further, when exp(τ) is greater than the
temporal derivative, the hyperbolic PDE reverts to the parabolic PDE identical
to that of Fick’s second law of diffusion.

26.0 Why is there a maxima in the dimensionless flux as a function of time?

27.0 Estimate of the diffusion coefficient of argon in hydrogen. Calculate the
diffusion coefficient of argon in hydrogen at 1 atm and 195°C. Compare this
with the experimental values reported in the literature.

28.0 Parabolic law of oxidation. During the corrosion of metals, an oxide layer
is formed on the metal. Assuming that oxygen diffuses through the oxide layer,
show that the thickness of the oxide layer δ can be given by (CbulkDABt/ρm)1/2
using Fick’s law of diffusion. A gentle breeze is blowing at a constant velocity
U over the corroded layer. Is this going to increase the rate of corrosion owing
to the convection contribution?

29.0 Krogh tissue cylinder. Capillaries through which blood flows in the
human anatomy are surrounded by tissue space. The oxygen and other drugs
that are dissolved in the bloodstream need to diffuse through the capillary
walls into the tissues. Write the governing equations for the concentration of
solute in the capillaries and in the tissue as

 –VdC/dz = 2/rcK0(C − CT|rc + tm)

Considering the effects of diffusion in the x direction only in the tissue and
assuming a zeroth order reaction rate,

 DAB∂2CT/∂x2 = R0

Integrating and substituting for the boundary conditions

 x = xc + tm, CT = CT|xc + tm

 x = xT, dCT/dx = 0

show that the concentration profile is

 CT − CT|xc + tm = (R0/2DAB)[x2 − (xc + tm)2] − R0xT/DAB[x − (xc + tm)]

Show that the variation in concentration as a function of z can be calculated as

 C = C0 − R0zAT/VA

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 279

Combine the two equations and show that

 CT − C0 = R0zAT/VA + K0xcR0AT/2A + (R0/2DAB)[x2 − (xc + tm)2]

 – R0xT/DAB[x − (xc + tm)]

Show that at a critical distance from the capillary wall the concentration in the
solute will become zero. This can be solved for from the preceding equations.
At and beyond the critical distance,

 dCT/dx = 0 = CT

Replacing xT with xcritical gives

0 = C0 + R0zAT/VA + K0xcR0AT/2A + (R0/2DAB)[x2 – (xc + tm)2]

 – R0xcritical/DAB[x – (xc + tm)]

 xcritical
2(–R0/2DAB) = C0 + R0zAT/VA + K0xcR0AT/2A – (R0/2DAB)(xc + tm)2

 – R0xcritical/DAB[x – (xc + tm)]

The quadratic equation in xcritical is then

 Axcritical
2 + Bxcritical + C = 0

where A = –(R0/2DAB)

 B = + (xc + tm)R0/DAB

 C = C0 + R0zAT/VA + K0xcR0AT/2A − (R0/2DAB)(xc + tm)2 + R0(xc + tm)/DAB

When the solutions of the quadratic expression for the critical distance in the
tissue are real and are found to be less than the thickness of the tissue, then the
onset of zero concentration will occur before the periphery of the tissue. This
zone can be seen as the anorexic or oxygen-depleted regions in the tissue.

30.0 Sacred pond. Evaporation from ponds is retarded by the introduction of
lotus leaves in sacred ponds at temples. Assume that in a pond of area 9 × 9 m,
4130 leaves each with a diameter of 3 in were placed. Calculate the reduction in
diffusion rate on account of the reduction in area of the path of evaporation.

31.0 Diffusion coefficient of tobacco mosaic virus. Estimate the diffusion
coefficient of tobacco mosaic virus that is shaped as a cylinder of 0.35 μm
length and 9 nm diameter in water at 20°C. Its molecular weight is 42 million
and partial specific volume is 0.53 cm3/g.

32.0 Diffusion of oxygen through spiracles. Many insects breathe through
spiracles. Spiracles are open tubes that extend into the insect’s body. Oxygen
diffuses from the surrounding air, and gas exchange takes place through the
walls. For every mole of oxygen diffusing in, there is one mole of CO2 diffusing
out. To prevent water losses, the walls of the spiracles are coated with cuticle
of 10-μm thickness. The oxygen concentration outside the cuticle is constant
and is 5 percent of the equilibrium concentration. What is the local oxygen flux
in the spiracle to the tissue? Derive an oxygen concentration profile within the
tissue. Is the spiracle an efficient method of respiration?

Spiracle radius: 100 μm

Spiracle length: 9 mm

 280 C h a p t e r E i g h t

Oxygen solubility in tissue Ct = 0.2 mmol/L

D0,cuticle: –3 E-5 cm2/s

D0,air: –0.15 cm2/s

33.0 Scrubbing of SO2. During coal combustion, the emission of sulfur dioxide
from power plants can be reduced by using CaO scrubbers. In the scrubber,

 2CaO + 2SO2 + O2 → 2CaSO4

Consider the diffusion of SO2 into a spherical particle of CaO. Show that the
governing equation can be derived from the shell balance as

 DAB[1/r2∂/∂r(r2∂CA/∂r)] = k”’CA

Show that the concentration profile of SO2 in the spherical lime particle can
be written as

 CA/CAs = X−1/2I1/2[r(k”’/DAB)1/2]/I1/2[R(k”’/DAB)1/2]

The Thiele modulus is φ = R(k”’/DAB)1/2.

34.0 Coextrusion. In the manufacture of the casings of a solid rocket motor
(SRM), the material requirements are bifunctional. They have to have high
hoop strength on one side and high ablation resistance on the other. In order to
prepare such materials, the technology of coextrusion is used. In a twin-screw
extruder, both the materials are coextruded together. During the residence
time of the polymers in the extruder, the interdiffusion of either material in the
other occurs. Calculate the interlayer thickness as a function of the extruder
residence time and diffusivities of the two materials.

35.0 Diffusion coefficient of milk in the refrigerator. Estimate the diffusion
coefficient of lactic acid in the refrigerator. Compare this with the value at
room temperature and that of milk through a plastic container.

36.0 Wilting of lettuce. Lettuce leaves in a salad wilt. The process of wilting is
accelerated if the lettuce is salted. The water droplets on the surface of the leaves
comes from the interior of the lettuce cells. Consequently, the turgor pressure
and internal rigidity of the leaves are lowered, and they wilt. The process of
water transport out of the cells caused by increase in external salt concentration
is an example of osmosis. Dutrochet made systematic observations of osmotic
pressure in the 1800s. He observed that small animal bladders filled with a
dense solution and completely closed and plunged in water became turgid
and swollen excessively. Water flowed into the bladder so as to dilute the
solution inside. Van’t Hoff noted that the osmotic pressure was proportional
to the product of the solute concentration and the absolute temperature with
a constant of proportionality that equaled the molar gas constant R. Darcy’s
law provided the solvent flux as a function of the pressure gradient and the
constant of proportionality called hydraulic permeability:

 Jsolv = −κ∂(p − π)/∂x

where Jsolv is the solvent flux, κ is the hydraulic permeability, and π is the
osmotic pressure, which can be written as RTCsol, where Csol is the solute

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 281

concentration. For the wilting of lettuce, show that the governing equations can
be written assuming the salt can permeate through the lettuce and neglecting
the hydraulic pressure gradient at steady state as

0 = κRT∂2Csolv/∂x2

with the following space conditions:

x = δ, Csolv = 0

x = 0, Csolv = Csolv,0

Show that if the lettuce is a semipermeable membrane, at steady state the
solvent transport can be given by

p − p0 − (π − π0) = –Jsolv/κ(x − x0)

where x0 is the reference location at which the hydraulic and osmotic pressures
are known.

37.0 Restriction mapping. Endonucleases or restriction enzymes cut the
unmethylated DNA at several sites and restrict their activity. About 300
restriction enzymes are known, and they act on 100 distinct restriction sites
that are palindromes. Some cuts leave blunt ends, and others leave them sticky.
The restriction fragment lengths can be measured by using the technique of gel
electrophoresis. The solid matrix is usually agarose or polyacrylamide gel that
is permeated with liquid buffer. Since DNA is a negatively charged molecule,
when placed in an electric field, the DNA migrates toward the positive pole.
DNA migration is a function of its size. Calibration is used to relate the
migration distance as a function of size. Migration distance of DNA under a
field for a set time is measured. The DNA molecule is made to fluoresce and
made visible under ultraviolet light by staining the gel with ethidium bromide.
A second method is to tag the DNA with a radioactive label and then to expose
the x-ray film to the gel. Show that the migration under gel electrophoresis
can be given by

Jfrag = –(zAuAF)*∂E/∂x − Dfrag∂CA/∂x

Show that the governing equation can be written in one dimension as

0 = Dfrag∂
2CA/∂x2 + –(zAuAF)*∂2E/∂x2

38.0 Pheromones and insect control. During insect control, controlled release
of pheromones is used. Pheromones are sex attractants released by insects.
When mixed with an insecticide and applied, it annihilates all of one sex of
a particular insect pest. The pheromone sublimation rate in the impermeable
holder can be given as

S0 = 9 E -16 (1 − 1E6 C1)

where C1 is the concentration in the vapor. The diffusivity through the polymer
is 1.2 E-11 cm2/s. It can be assumed that the pheromone level outside the
chamber is 0. If the polymeric diffusion barrier is 600 μm thick and has an area
of 1.6 cm2, what is the concentration of pheromones in the vapor? How fast is
the pheromone released by the device?

 282 C h a p t e r E i g h t

39.0 Oxygen transport in the eye. The cornea is a unique living tissue and is a
transparent window through which light enters the eye to be focused on the
retina, thus forming the images of our surroundings and enabling sight. When
the eye is open, it receives all its oxygen requirements from the surrounding
air. Other nutrients are likely delivered via the tear duct fluid that bathes the
outer surface of the cornea or the aqueous humor that fills the chamber behind
the cornea and in front of the lens. Some oxygen may enter the aqueous humor
from the vasculature in the muscle at the periphery of the lens. When the eye
is closed, it is cut off from the O2 source in the air. There is a rich microvascular
bed (well perfused with high vascular density on the inner surface of the
eyelid) that supplies the cornea with oxygen (and possibly other nutrients).
What is the PO2 at the surface of the cornea when the eye is closed?

Layer
Thickness,
μm

Diffusion
Coefficient, cm2/s

VO2, mL
O2/mL/s

Epithelium 40 3.8 E-10 2.0 E-4

Stroma 450 3.8 E-10 1.0 E-5

Endothelium 10 3.8 E-4 2.0 E-4

Table of Model Parameters

40.0 Loss from beverage containers. Coca-Cola bottles are made out of plastic.
The contents diffuse at a slow rate through the walls of the container and out
into the air and result in some losses. It has been suggested to coat the inner
wall of the container to reduce the losses. With a coating thickness of 25 μm
and a diffusion coefficient in the coating of 1 E-9 m2/s, what would be the
benefit to the manufacturer? Assume a thickness of 1.5 mm for the plastic
container and a diffusion coefficient of the contents in the plastic container
as 1 E-6 m2/s.

41.0 Dasangam. Dasangam is offered to the gods during special pooja.
Idealize a dasangam into a cone. Consider the reaction between oxygen and
dasangam on ignition to be of first order. As the reaction proceeds, consider
an added ash layer through that the oxygen will have to diffuse. Obtain the
concentration profile of oxygen in the ash layer. Make suitable assumptions
and estimate the time taken for consumption of two dasangams of a cone
height of 3 cm and a diameter of 1.5 cm. Consider the diffusion coefficient of
oxygen in the ash layer to be 1 E-12 cm2/s.

42.0 Reaction and diffusion in a nuclear fuel rod. In autocatalytic reactions such
as during nuclear fission, the neutrons can be studied by a first-order reaction.
The mass balance in a long cylindrical rod with first-order autocatalytic
reaction can be written at steady state as

1/r∂(rJr)/∂r + k”’C = 0

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 283

The long cylindrical rod is at zero initial concentration of autocatalytic reactant
A. The surface of the rod is maintained at a constant concentration Cs for times
greater than zero. The boundary conditions are

 r = 0, ∂C/∂r = 0

 r = R, C = Cs

Show that the steady-state solution can be obtained as follows after redefining
us = C/Cs:

 ∂2us/∂X2 + 1/X∂us/∂X + k*us = 0

 X2∂2us/∂X2 + X∂us/∂X + X2k*us = 0

The preceding equation can be recognized as the Bessel equation. The solution is

 us = c1J0(X√k*) + c2Y0(X√k*)

It can be seen that c2 = 0 because the concentration is finite at X = 0. The
boundary condition for surface concentration is used to obtain c1. Thus

c1 = 1/J0(R√k*/Dτr)

Thus

 us = J0(X√k*)/J0(R√k*/Dτr)

43.0 Grooming hair with oil. In order to keep the hair on the human skull
from becoming dehydrated, it is oiled or hair cream is applied every day.
During the course of the day, estimate the loss of the oil from the human hair
by diffusion. Show that there are two contributions: One is from molecular
diffusion from the head to the atmosphere in the vertical direction, and the
other is by convection from wind blowing in the horizontal direction. Show
that the governing equation can be given by

∂2u/∂z2 = (Udhair/D) ∂u/∂x

Show that the solution for the concentration profile of the oil in the surrounding
region of the human skull at steady state can be given by

 u = 1 − erf Z(Pem/4X)1/2

Assuming that the diameter of the hair is 2 μm, the velocity of air is 1 m/s, and
the diffusivity is 1 E-5 m2/s, estimate the time taken for the layer of cream
of 1 μm to be replaced. Make suitable assumptions, such as a cranial area of
2500 cm2 and a length of the hair of 5 cm.

44.0 Dyeing of the wool. A dye bath at a concentration C0 and a volume V is
used to dye wool that is bathed in it. The dye diffuses into the wool. Measuring
the concentration of the dye in the wool as a function of time, can you (a)
estimate the diffusion coefficient of the dye? If so, how? And (b) can you
estimate the relaxation time?

45.0 Dopant profile by ion implantation. Ion implantation is used to introduce
dopant atoms into a semiconductor material to alter its electrical conductivity.
During ion implantation, a beam of ions containing the dopant is directed
at the semiconductor surface. For example, boron atoms are implanted into
silicon wafers by Lucent Technologies, Murray Hill, NJ. Assume that the

 284 C h a p t e r E i g h t

transfer of boron into the silicon surface is on account of both the convection
and diffusion contributions at steady state. Show that the governing equation
for the transfer of boron at the gas-solid interface is given by

 –∂CA/∂z = DAB∂2CA/∂z2

Given a characteristic length l, show that the equation can be reduced to

 –Pem∂u/∂Z = ∂2u/∂Z2

and the solution is

 u = 1 − J*ss/Pem exp(–PemZ)

46.0 Soot from a steam engine. The steam engine that powers the train that
takes you from Chennai to New Delhi in 31 hours discharges coal dust at
steady rate of 68 kg · mol/h. The train moves at a velocity of 90 km/h. Estimate
the thickness of soot that will deposit on a passenger sitting near the window
of S6 during the entire journey. S6 is about 200 ft from the engine. Assume that
the diffusion coefficient of the soot in air is 1 E-6 m2/s. Repeat the analysis for a
wind speed of 10 km/h. (Hint: Bulk concentration of soot in the surrounding air
can be calculated by considering a basis of time as that taken for a passenger to
move 600 ft to the discharge point in fixed space, and in that time the discharge
amount is calculated from the discharge rate and the dispersed region from
the penetration length in all three directions.)

47.0 Steady diffusion in a hollow sphere. Develop the concentration profile in
a hollow sphere when a species is diffusing without any chemical reaction.
Consider the concentration of the species to be held constant at the inner and
outer surfaces of the cylinder at CAi and CAo, respectively. Show that

(CA − CAi)/(CAi − CAo) = (1 − Ri/r)/(1 − Ri/Ro)

48.0 Determination of diffusivity. Unimolar diffusion can be used to estimate
the binary diffusivity of a binary gas pair. Consider the evaporation of carbon
tetrachloride (CCl4) into a tube containing oxygen. The distance between the
CCl4 level and the top of the tube is 16.5 cm. The total pressure in the system
is 760 mm Hg, and the temperature –5°C. The vapor pressure of CCl4 at that
temperature is 29.5 mm Hg. The area of the diffusion path in the diffusion tube
may be taken as 0.80 cm2. Determine the binary diffusivity of O2–CCl4 when in
an 11-hour period after steady state, 0.026 cm3 of CCl4 has evaporated.

49.0 Helium separation from natural gas. McAfee [38] proposed a method
to separate helium from natural gas. He noted that Pyrex glass is almost
impermeable to all gases but helium. The diffusion coefficient of helium
is 25 times the diffusion coefficient of hydrogen. Consider a Pyrex tubing of
length L and inner and outer radii Ri and Ro. Show that the rate at which helium
will diffuse through the Pyrex can be given by

JHe = 2πLDHe,pyrex(CHe,1 − CHe,2)/ln(Ro/Ri)

50.0 Solid dissolution into a falling film. A liquid is flowing in laminar motion
down a vertical wall. The wall consists of a species that is slightly soluble in

 E l e c t r o p h o r e t i c T e c h n i q u e s a n d F i n i t e S p e e d o f D i f f u s i o n 285

the liquid. Show that the governing equation for the species diffusing into the
liquid from the wall can be written as

 ∂2u/∂z2 = (UL/D) ∂u/∂x

Show that an error function solution results for this PDE.

51.0 Carburizing steel. Low-carbon steel can be hardened to improve wear
resistance by carburizing. Steel is carburized by exposing it to a gas, liquid,
or solid that provides a high carbon concentration at the surface. Given the
percent carbon versus depth graphs for various times at 930°C, how can the
diffusion coefficient be estimated from the graphs?

52.0 Electrophoretic term

− =

∂
∂

− +
∂
∂

⎛
⎝⎜

⎞
⎠⎟j D

C

z
zFm
RT

C
j

tA
A

A mr
Aτ

For some systems, there is a minus sign in the electrophoretic term, as shown
in the equation above. What are the implications of the minus sign in this
equation? How will this manifest in applications?

This page intentionally left blank

APPENDIX A
Internet Hotlinks
to Public-Domain

Databases
$99 Genetrack DNA Test www.genetrackus.com
2D-PAGE Databases for Human
Proteome

http://biobase.dk/cgi-bin

Affymetrix www.affymetrix.com
Alignment tools www.SuccessFactors.

com/FreeTrial
Alscript www.compbio.dundee.

ac.uk/Software/Alscript
American Type Culture Collection www.atcc.org
Applied Biosystems www.appliedbiosystems.

com
Atlas assembler www.hgsc.bcm.tmc.edu
ArrayExpress www.ebi.ac.uk/

arrayexpress
AAT http://genome.cs.mtu.

edu/aat.html
AMAS www.compbio.dundee.

ac.uk/Software/Amas/
AMPS www.compbio.dundee.

ac.uk/Software/Amps/
AVID http://bio.math.berkeley.

edu
BASE http://base.thep.lu.se
Bacillus subtilis http://pbil.univ-lyon1.

fr/nrsub

287
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

www.genetrackus.com
http://biobase.dk/cgi-bin
www.affymetrix.com
www.SuccessFactors.com/FreeTrial
www.SuccessFactors.com/FreeTrial
www.compbio.dundee.ac.uk/Software/Alscript
www.compbio.dundee.ac.uk/Software/Alscript
www.atcc.org
www.appliedbiosystems.com
www.appliedbiosystems.com
www.hgsc.bcm.tmc.edu
www.ebi.ac.uk/arrayexpress
www.ebi.ac.uk/arrayexpress
http://genome.cs.mtu.edu/aat.html
http://genome.cs.mtu.edu/aat.html
www.compbio.dundee.ac.uk/Software/Amas/
www.compbio.dundee.ac.uk/Software/Amas/
www.compbio.dundee.ac.uk/Software/Amps/
www.compbio.dundee.ac.uk/Software/Amps/
http://bio.math.berkeley.edu
http://bio.math.berkeley.edu
http://base.thep.lu.se
http://pbil.univ-lyon1.fr/nrsub
http://pbil.univ-lyon1.fr/nrsub

 288 A p p e n d i x A

BankIt www.ncbi.nlm.nih.gov/
BankIt

Baylor College of Medicine, RNA
Database

http://mbcr.bcm.tmc.
edu/smallRNA

BioConductor www.bioconductor.org
BioMedNet Library http://biomednet.com
BioPerl www.bioperl.org
BLAST www.ncbi.nlm.nih.gov/

blast/Blast.cgi
BLAST2 www.Bork.EMBL-

Heidelberg.DE/Blast2e
BLASTZ http://bio.cse.psu.edu
BLAT http://genome.ucsc.

edu/cgi-bin/hgBlat
BLOCKS http://blocks.fhcrc.org/
BLOSUM substitution matrix www.ncbi.nlm.nih.gov/

Education/BLASTinfo/
Cambridge Structural Database www.ccdc.cam.ac.uk
Carbohydrate Databases www.boc.chem.ruu.nl/

sugabase
CDD www.ncbi.nlm.nih.gov/

Stucture/cdd.cdd.shtml
Center for Applied Genomics www.tcag.ca/
Center for Inherited Disease Research www.cidr.jhmi.edu/

markerset.html
CEPH Genotype Database www.cephb.fr
CHAOS www.molecularstation.

com/bioinformatics/link
Cholinesterase Gene Server www.ensam.inra.fr
Chromosomes and karyotypes www.selu.com/bio/

cyto/human/
CIBEX http://cibex.nig.ac.jp
ClustaL www-igmc.u-strasbg.fr/

BioInfo
CLUSTALW www.ebi.ac.uk
Cooperative Human Linkage Center http://gai.nci.nih.gov/

CHLC
Database of Enzymes and Metabolic
Pathways

www.empproject.com

Database of Protein Structure Domains http://barton.ebi.ac.uk

www.ncbi.nlm.nih.gov/BankIt
www.ncbi.nlm.nih.gov/BankIt
http://mbcr.bcm.tmc.edu/smallRNA
http://mbcr.bcm.tmc.edu/smallRNA
www.bioconductor.org
http://biomednet.com
www.bioperl.org
www.ncbi.nlm.nih.gov/blast/Blast.cgi
www.ncbi.nlm.nih.gov/blast/Blast.cgi
www.Bork.EMBL-Heidelberg.DE/Blast2e
www.Bork.EMBL-Heidelberg.DE/Blast2e
http://bio.cse.psu.edu
http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgBlat
http://blocks.fhcrc.org/
www.ncbi.nlm.nih.gov/Education/BLASTinfo/
www.ncbi.nlm.nih.gov/Education/BLASTinfo/
www.ccdc.cam.ac.uk
www.boc.chem.ruu.nl/sugabase
www.boc.chem.ruu.nl/sugabase
www.ncbi.nlm.nih.gov/Stucture/cdd.cdd.shtml
www.ncbi.nlm.nih.gov/Stucture/cdd.cdd.shtml
www.tcag.ca/
www.cidr.jhmi.edu/markerset.html
www.cidr.jhmi.edu/markerset.html
www.cephb.fr
www.molecularstation.com/bioinformatics/link
www.molecularstation.com/bioinformatics/link
www.ensam.inra.fr
www.selu.com/bio/cyto/human/
www.selu.com/bio/cyto/human/
http://cibex.nig.ac.jp
www.igmc.u-strasbg.fr/BioInfo
www.igmc.u-strasbg.fr/BioInfo
www.ebi.ac.uk
http://gai.nci.nih.gov/CHLC
http://gai.nci.nih.gov/CHLC
www.empproject.com
http://barton.ebi.ac.uk

 I n t e r n e t H o t l i n k s t o P u b l i c - D o m a i n D a t a b a s e s 289

Database for Rice Transcription
Factors

http://drtf.cbi.pku.
edu.cn/

Department of Molecular and
Cellular Biology

http://golgi.harvard.edu

DAVID http://david.niaid.
nih.gov

DIALIGN www.gsf.de/biodv/
dialign.html

Digital gene expression www.NanoString.com
DISULFIND http://disulfind.dsi.

unifi.it
DNA Database of Japan www.ddbj.nig.ac.jp
DNA search www.genomequest.com
DNA sequence assembly www.genecodes.com
DNA sequencing software www.codoncode.com/

aligner
Database of Genome Sizes (DOGS) www.cbs.dtu.dk/

databases/DOGS
Dotlet www.isrec.isb-sib.ch/

java/dotlet/Dotlet.html
Dotter www.cgr.ki.se/cgr/

groups/sonhammer/
Dotter.html

Dottup www.emboss.org
DoubleScan www.sanger.ac.uk/

Software/analysis/
doublescan

Drosophila melanogaster http://flybase.bio.
indiana.edu

EBI Protein Topology Atlas www3.ebi.ac.uk/tops
Ebioinformatics www.ebioinformatics.org
EcoCyc www.ai.sri.com/ecocyc
EMBO structural databases http://xray.bmc.uu.se
EMBOSS http://cbrmain.cbr.nrc.ca
Ensembl www.ensembl.org
EnteriX http://bio.cse.psu.edu
Entrez www.ncbi.nlm.nih.gov/

sites/gquery
ENZYME www.expasy.org/

enzyme/

http://drtf.cbi.pku.edu.cn/
http://drtf.cbi.pku.edu.cn/
http://golgi.harvard.edu
http://david.niaid.nih.gov
http://david.niaid.nih.gov
www.gsf.de/biodv/dialign.html
www.gsf.de/biodv/dialign.html
www.NanoString.com
http://disulfind.dsi.unifi.it
http://disulfind.dsi.unifi.it
www.ddbj.nig.ac.jp
www.genomequest.com
www.genecodes.com
www.codoncode.com/aligner
www.codoncode.com/aligner
www.cbs.dtu.dk/databases/DOGS
www.cbs.dtu.dk/databases/DOGS
www.isrec.isb-sib.ch/java/dotlet/Dotlet.html
www.isrec.isb-sib.ch/java/dotlet/Dotlet.html
www.cgr.ki.se/cgr/groups/sonhammer/Dotter.html
www.cgr.ki.se/cgr/groups/sonhammer/Dotter.html
www.cgr.ki.se/cgr/groups/sonhammer/Dotter.html
www.emboss.org
www.sanger.ac.uk/Software/analysis/doublescan
www.sanger.ac.uk/Software/analysis/doublescan
www.sanger.ac.uk/Software/analysis/doublescan
http://flybase.bio.indiana.edu
http://flybase.bio.indiana.edu
www3.ebi.ac.uk/tops
www.ebioinformatics.org
www.ai.sri.com/ecocyc
http://xray.bmc.uu.se
http://cbrmain.cbr.nrc.ca
www.ensembl.org
http://bio.cse.psu.edu
www.ncbi.nlm.nih.gov/sites/gquery
www.ncbi.nlm.nih.gov/sites/gquery
www.expasy.org/enzyme/
www.expasy.org/enzyme/

 290 A p p e n d i x A

Escherichia coli Database Collection http://susi.bio.uni-
giessen.de

eGenome http://genome.chop.edu
eShadow http://eshadow.dcode.org
euGenes http://iubio.bio.indiana.

edu:8089
European Bioinformatics Institute www.ebi.ac.uk
European Molecular Biology Institute www.embl-heidelberg.de
ExoFish www.genoscope.cns.fr/

proxy/cgi-bin/exofish.cgi
Exon Annotation Database http://hollywood.mit.edu
Exon-Intron Database www.meduohio.edu/

bioinfo/eid/
ExPASy www.expasy.org
FASTA—EBI www.ebi.ac.uk/fasta33/
FASTA—Virginia http://fasta.bioch.

virginia.edu
fGENEH www.bioscience.org/

urllists/genefind.htm
Finishing standards www.genome.wustl.

edu/Overview/
g16stand.php

Flicker 2D gel analysis software www-lecb.ncifcrf.gov/
flicker

FootPrinter http://bio.cs.
washington.edu/
software.html

Free bioinformatics tools www.clcbio.com
GALA http://bio.cse.psu.edu
GenBank www.ncbi.nlm.nih.gov/

Web/Genbank
Gene expression for mouse brain www.brain-map.org/

welcome.do
Gene Expression Omnibus www.ncbi.nlm.nih.

gov/geo
Gene Ontology Consortium http://genome-www.

stanford.edu
Gene Ontology Project http://geneontology.org
GeneBuilder http://125.itba.mi.cnr.it/

~webgene/genebuilder.
html

http://susi.bio.unigiessen.de
http://susi.bio.unigiessen.de
http://genome.chop.edu
http://eshadow.dcode.org
http://iubio.bio.indiana.edu:8089
http://iubio.bio.indiana.edu:8089
www.ebi.ac.uk
www.embl-heidelberg.de
www.genoscope.cns.fr/proxy/cgi-bin/exofish.cgi
www.genoscope.cns.fr/proxy/cgi-bin/exofish.cgi
http://hollywood.mit.edu
www.meduohio.edu/bioinfo/eid/
www.meduohio.edu/bioinfo/eid/
www.expasy.org
www.ebi.ac.uk/fasta33/
http://fasta.bioch.virginia.edu
http://fasta.bioch.virginia.edu
www.bioscience.org/urllists/genefind.htm
www.bioscience.org/urllists/genefind.htm
www.genome.wustl.edu/Overview/g16stand.php
www.genome.wustl.edu/Overview/g16stand.php
www.genome.wustl.edu/Overview/g16stand.php
www.lecb.ncifcrf.gov/flicker
www.lecb.ncifcrf.gov/flicker
http://bio.cs.washington.edu/software.html
http://bio.cs.washington.edu/software.html
http://bio.cs.washington.edu/software.html
www.clcbio.com
http://bio.cse.psu.edu
www.ncbi.nlm.nih.gov/Web/Genbank
www.ncbi.nlm.nih.gov/Web/Genbank
www.brain-map.org/welcome.do
www.brain-map.org/welcome.do
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
http://genome-www.stanford.edu
http://genome-www.stanford.edu
http://geneontology.org
http://125.itba.mi.cnr.it/~webgene/genebuilder.html
http://125.itba.mi.cnr.it/~webgene/genebuilder.html
http://125.itba.mi.cnr.it/~webgene/genebuilder.html

GeneCards http://bioinformatics.
weizmann.ac.il/cards

Genedoc www.psc.edu/biomed/
genedoc

GeneExpress www.mgs.bionet.nsc.ru/
mgs/systems/
geneexpress/

GeneLoc http://genecards.
weizmann.ac.il/cards

GeneMark.hmm http://genemark.biology.
gatech.edu/GeneMark/
hum.cgi

GeneID www1.imim.es/geneid.
html

GeneView http://125.itba.mi.cnr.it/
~webgene/wwwgene.
html

GeneWise www.sanger.ac.uk/
Software/Wise2

GENEMARK http://exon.gatech.edu/
GeneMark

GenePaint www.genepaint.org/
Genetic analysis software http://linkage.

rockefeller.edu/soft
Genie www.fruitfly.org/seq_

tools/genie.html
GenomeScan http://genes.mit.edu/

genomescan
GenomeVista http://pipeline.lbl.gov
Genome programs of the DOE http://genomics.energy.

gov/
Genome Sequence Database www.ncgr.org
Genomics Institute of Novartis
Research Foundation

http://symatlas.gnf.org/
SymAtlas/

GENSCAN http://genes.mit.edu/
GENSCAN.html

GLASS http://groups.csail.mit.
edu/cb/glass/cgi-bin/
glass.cgi

GLIMMER www.cbcb.umd.edu/
software/glimmer

GPCRD www.gpcr.org/

 I n t e r n e t H o t l i n k s t o P u b l i c - D o m a i n D a t a b a s e s 291

http://bioinformatics.weizmann.ac.il/cards
http://bioinformatics.weizmann.ac.il/cards
www.psc.edu/biomed/genedoc
www.psc.edu/biomed/genedoc
www.mgs.bionet.nsc.ru/mgs/systems/geneexpress/
www.mgs.bionet.nsc.ru/mgs/systems/geneexpress/
www.mgs.bionet.nsc.ru/mgs/systems/geneexpress/
http://genecards.weizmann.ac.il/cards
http://genecards.weizmann.ac.il/cards
http://genemark.biology.gatech.edu/GeneMark/hum.cgi
http://genemark.biology.gatech.edu/GeneMark/hum.cgi
http://genemark.biology.gatech.edu/GeneMark/hum.cgi
www1.imim.es/geneid.html
www1.imim.es/geneid.html
http://125.itba.mi.cnr.it/~webgene/wwwgene.html
http://125.itba.mi.cnr.it/~webgene/wwwgene.html
http://125.itba.mi.cnr.it/~webgene/wwwgene.html
www.sanger.ac.uk/Software/Wise2
www.sanger.ac.uk/Software/Wise2
http://exon.gatech.edu/GeneMark
http://exon.gatech.edu/GeneMark
www.genepaint.org/
http://linkage.rockefeller.edu/soft
http://linkage.rockefeller.edu/soft
www.fruitfly.org/seq_tools/genie.html
www.fruitfly.org/seq_tools/genie.html
http://genes.mit.edu/genomescan
http://genes.mit.edu/genomescan
http://pipeline.lbl.gov
http://genomics.energy.gov/
http://genomics.energy.gov/
www.ncgr.org
http://symatlas.gnf.org/SymAtlas/
http://symatlas.gnf.org/SymAtlas/
http://genes.mit.edu/GENSCAN.html
http://genes.mit.edu/GENSCAN.html
http://groups.csail.mit.edu/cb/glass/cgi-bin/glass.cgi
http://groups.csail.mit.edu/cb/glass/cgi-bin/glass.cgi
http://groups.csail.mit.edu/cb/glass/cgi-bin/glass.cgi
www.cbcb.umd.edu/software/glimmer
www.cbcb.umd.edu/software/glimmer
www.gpcr.org/

 292 A p p e n d i x A

GRAIL http://compbio.ornl.
gov/grailexp

GRAILEXP http://grail.lsd.ornl.
gov/grailexp/

Hemophilia A Mutation Database http://europium.csc.
mrc.ac.uk

Haemophilus influenzae Database http://susi.bio.uni-
giessen.de

HIV Immunology Database—
Harvard University

http://hiv-web.lanl.gov/
immuno/index.html

HMMER http://bioweb.pasteur.
fr/seqanal/motif/
hmmer-uk.html

HMMgene www.cbs.dtu.dk/
services/HMMgene

HMMPRO www.bio.net/bionet/
mm/bio-soft/1999-
January

HMMSTR www.bioinfo.rpi.edu/
~bystrc/hmmstr/about.
html

Human Genome Project Information www.ornl.gov/sci/
techresources/Human_
Genome/

HUPO Proteomics Standards http://psidev.
sourceforge.net

IBM Bioinformatics and Pattern
Discovery Group

http://cbcsrv.watson.
ibm.com/Tspd.html

Immunogenetics Database www.ebi.ac.uk
Institute for Genomic Biology www.igb.uiuc.edu/
Institute of Genomic Research www.tigr.org/
InterPro www.ebi.ac.uk
J. Craig Venter Institute,
Rockville, MD

http://rsng.nhlbi.nih.gov

JalView www.jalview.org
Johns Hopkins University
OWL Web Server

www.bis.med.jhmi.edu/

JPRED www.compbio.dundee.
ac.uk/~www-jpred/

Kyoto Encyclopedia of Genes and
Genomes

www.genome.ad.jp/
kegg/

http://compbio.ornl.gov/grailexp
http://compbio.ornl.gov/grailexp
http://grail.lsd.ornl.gov/grailexp/
http://grail.lsd.ornl.gov/grailexp/
http://europium.csc.mrc.ac.uk
http://europium.csc.mrc.ac.uk
http://susi.bio.unigiessen.de
http://susi.bio.unigiessen.de
http://hiv-web.lanl.gov/immuno/index.html
http://hiv-web.lanl.gov/immuno/index.html
http://bioweb.pasteur.fr/seqanal/motif/hmmer-uk.html
http://bioweb.pasteur.fr/seqanal/motif/hmmer-uk.html
http://bioweb.pasteur.fr/seqanal/motif/hmmer-uk.html
www.cbs.dtu.dk/services/HMMgene
www.cbs.dtu.dk/services/HMMgene
www.bio.net/bionet/mm/bio-soft/1999-January
www.bio.net/bionet/mm/bio-soft/1999-January
www.bio.net/bionet/mm/bio-soft/1999-January
www.bioinfo.rpi.edu/~bystrc/hmmstr/about.html
www.bioinfo.rpi.edu/~bystrc/hmmstr/about.html
www.bioinfo.rpi.edu/~bystrc/hmmstr/about.html
www.ornl.gov/sci/techresources/Human_Genome/
www.ornl.gov/sci/techresources/Human_Genome/
www.ornl.gov/sci/techresources/Human_Genome/
http://psidev.sourceforge.net
http://psidev.sourceforge.net
http://cbcsrv.watson.ibm.com/Tspd.html
http://cbcsrv.watson.ibm.com/Tspd.html
www.ebi.ac.uk
www.igb.uiuc.edu/
www.tigr.org/
www.ebi.ac.uk
http://rsng.nhlbi.nih.gov
www.jalview.org
www.bis.med.jhmi.edu/
www.compbio.dundee.ac.uk/~www-jpred/
www.compbio.dundee.ac.uk/~www-jpred/
www.genome.ad.jp/kegg/
www.genome.ad.jp/kegg/

 I n t e r n e t H o t l i n k s t o P u b l i c - D o m a i n D a t a b a s e s 293

LAGAN http://lagan.stanford.
edu/lagan_web/index.
html

Listing of molecular biology databases gopher://gopher.nih.
gov/11/molbio/other

MAFTT www.biophys.kyoto-u.
ac.jp/~katoh/prgrams

Mammalian Genome Size Database www.unipv.it
MAP-O-MAT http://compgen.rutgers.

edu/mapp,at
MASCOT www.matrixscience.com
Mauve http://gel.ahabs.wisc.

edu/mauve/
documentation.php

MegaBLAST www.ncbi.nlm.nih.gov/
BLAST

Meta-Meme http://metameme.
sdsc.edu

MGC http://mgc.nci.nih.gov
Microarray Gene Expression
Data Society

www.mged.org

Molecular diagnostics www.G2Reports.com
Molecular Informatics Resource for
Analysis

www.ifti.org/Mirage.
mirage.html

Molecular modeling servers and
databases

www.rsc.org/lap/
rsccom/dab

Molecular Probe Database www.biotech.ist.unige.it
Molecules R Us http://cmm.info.nih.

gov/modeling/net_
services.html

Molscript www.chemie.fu-berlin.
de/chemnet/use/suppl/
molscript

Mouse Genome Database http://BioMedNet.com/
cgi-bin/mko

Mulan http://mulan.dcode.ord
MUMer http://mummer.

sourceforge.net/
MUSCLE www.drive5.com/muscle
MyHits http://myhits.isb-sib.ch

http://lagan.stanford.edu/lagan_web/index.html
http://lagan.stanford.edu/lagan_web/index.html
http://lagan.stanford.edu/lagan_web/index.html
www.biophys.kyoto-u.ac.jp/~katoh/prgrams
www.biophys.kyoto-u.ac.jp/~katoh/prgrams
www.unipv.it
http://compgen.rutgers.edu/mapp,at
http://compgen.rutgers.edu/mapp,at
www.matrixscience.com
http://gel.ahabs.wisc.edu/mauve/documentation.php
http://gel.ahabs.wisc.edu/mauve/documentation.php
http://gel.ahabs.wisc.edu/mauve/documentation.php
www.ncbi.nlm.nih.gov/BLAST
www.ncbi.nlm.nih.gov/BLAST
http://metameme.sdsc.edu
http://metameme.sdsc.edu
http://mgc.nci.nih.gov
www.mged.org
www.G2Reports.com
www.ifti.org/Mirage.mirage.html
www.ifti.org/Mirage.mirage.html
www.rsc.org/lap/rsccom/dab
www.rsc.org/lap/rsccom/dab
http://cmm.info.nih.gov/modeling/net_services.html
http://cmm.info.nih.gov/modeling/net_services.html
http://cmm.info.nih.gov/modeling/net_services.html
www.chemie.fu-berlin.de/chemnet/use/suppl/molscript
www.chemie.fu-berlin.de/chemnet/use/suppl/molscript
www.chemie.fu-berlin.de/chemnet/use/suppl/molscript
http://BioMedNet.com/cgi-bin/mko
http://BioMedNet.com/cgi-bin/mko
http://mulan.dcode.ord
http://mummer.sourceforge.net/
www.drive5.com/muscle
www.biotech.ist.unige.it
http://mummer.sourceforge.net/
http://myhits.isb-sib.ch

 294 A p p e n d i x A

MZEF http://argon.cshl.org/
genefinder/human.htm

National Institute of Genetics www.nig.ac.jp/index-e.
html

NCBI www.ncbi.nlm.nih.gov
NCBI BLAST Accelerator www.BlastStation.com
Nobel Museum http://nobel.se
NRL_3D, Sequence-Structure Database www.gdb.org
Of Gene Expression, MIRAGE www.ifti.org/
O-GLYCBASE www.cbs.dtu.dk/

OGLYCBASE
OMIM www.ncbi/nlm.nih.gov/

omim
OPAL http://opal.cs.arizona.edu
p53 mutations in human tumors
and cell lines

ftp://ftp.ebi.ac.uk/pub/
databases/p53

PAH mutation analysis www.mcgill.ca
Pairwise sequence alignment http://searchlauncher.

bcm.tmc.edu
PEPTIDESEARCH www.narrador.embl-

heidelberg.de
PFAM www.sanger.ar.uk/

Software/Pfam/
PHDSec www.predictprotein.org/

doc/methodsPP.html
PHYLIP http://evolution.genetics.

washington.edu/
PROCLAME http://prclame.unc.edu
PhyloBLAST www.pathogenomics.bc.

ca/phyloBLAST
Phylogeny programs http://evolution.

genetics.washington.
edu/phylip

PipMaker http://bio.cse.psu.edu/
pipmaker

PIR http://pir.georgetown.edu
PROCRUSTES www-hto.usc.edu/

software/procrustes/
qpn.html

http://argon.cshl.org/genefinder/human.htm
http://argon.cshl.org/genefinder/human.htm
www.nig.ac.jp/index-e.html
www.nig.ac.jp/index-e.html
www.BlastStation.com
http://nobel.se
www.gdb.org
www.ifti.org/
www.cbs.dtu.dk/OGLYCBASE
www.cbs.dtu.dk/OGLYCBASE
www.ncbi/nlm.nih.gov/omim
www.ncbi/nlm.nih.gov/omim
http://opal.cs.arizona.edu
www.mcgill.ca
http://searchlauncher.bcm.tmc.edu
http://searchlauncher.bcm.tmc.edu
www.narrador.emblheidelberg.de
www.narrador.emblheidelberg.de
www.sanger.ar.uk/Software/Pfam/
www.sanger.ar.uk/Software/Pfam/
www.predictprotein.org/doc/methodsPP.html
www.predictprotein.org/doc/methodsPP.html
http://evolution.genetics.washington.edu/
http://evolution.genetics.washington.edu/
http://prclame.unc.edu
www.pathogenomics.bc.ca/phyloBLAST
www.pathogenomics.bc.ca/phyloBLAST
http://evolution.genetics.washington.edu/phylip
http://evolution.genetics.washington.edu/phylip
http://evolution.genetics.washington.edu/phylip
http://bio.cse.psu.edu/pipmaker
http://bio.cse.psu.edu/pipmaker
http://pir.georgetown.edu
www.hto.usc.edu/software/procrustes/qpn.html
www.hto.usc.edu/software/procrustes/qpn.html
www.hto.usc.edu/software/procrustes/qpn.html
www.ncbi.nlm.nih.gov

 I n t e r n e t H o t l i n k s t o P u b l i c - D o m a i n D a t a b a s e s 295

Profile HMMs http://helix.nih.gov/
docs/gcg/hmmanalysis.
html

PROSITE http://expasy.hcuge.ch/
sprot/prosite.html

Protein kinase resource www.sdsc.edu/projects/
kinases

Protein microarrays www.
proteinbiotechnologies.
com

Protein Mutant Database http://pmd.ddbj.nig.
ac.jp/

ProteinProspector http://prospector.
ucsf.edu

Proteins in gene regulation www.access.digex.net
PROWL http://mcphar04.med.

nyu.edu
PSI-BLAST www.ncbi.nlm.nih.gov/

BLAST
PubMed www.ncbi.nlm.nih.gov/

Genbank/index.html
PubMed Central www.pubmedcentral.

nih.gov
PUZZLEBOOT www.tree-puzzle.de
QSAR www.cris.com/

~Hyposoft
RCSB PDB www.rcsb.org/pdb/

home/home.do
Rat Genome Database http://rgd.mcw.edu
ReadSeq http://dot.imgen.bcm.

tmc.edu
REBASE—Restriction Enzymes www.neb.com/rebase
RepeatMasker http://repeatmsaker.

genome.washington.edu
REPuter www,genomes.de
Rfam www.sanger.ac.uk/

Software/Rfam
Ribosomal Database Project http://rdpwww.life.

uiuc.edu
Ribosomal Database Project II www.cme.msu.edu/

RDP/html

http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://helix.nih.gov/docs/gcg/hmmanalysis.html
http://expasy.hcuge.ch/sprot/prosite.html
http://expasy.hcuge.ch/sprot/prosite.html
www.proteinbiotechnologies.com
www.proteinbiotechnologies.com
www.proteinbiotechnologies.com
http://pmd.ddbj.nig.ac.jp/
http://pmd.ddbj.nig.ac.jp/
http://prospector.ucsf.edu
http://prospector.ucsf.edu
www.access.digex.net
http://mcphar04.med.nyu.edu
http://mcphar04.med.nyu.edu
www.ncbi.nlm.nih.gov/BLAST
www.ncbi.nlm.nih.gov/BLAST
www.ncbi.nlm.nih.gov/Genbank/index.html
www.ncbi.nlm.nih.gov/Genbank/index.html
www.pubmedcentral.nih.gov
www.pubmedcentral.nih.gov
www.tree-puzzle.de
www.cris.com/~Hyposoft
www.cris.com/~Hyposoft
www.rcsb.org/pdb/home/home.do
www.rcsb.org/pdb/home/home.do
http://rgd.mcw.edu
http://dot.imgen.bcm.tmc.edu
http://dot.imgen.bcm.tmc.edu
www.neb.com/rebase
http://repeatmsaker.genome.washington.edu
http://repeatmsaker.genome.washington.edu
www.genomes.de
www.sanger.ac.uk/Software/Rfam
www.sanger.ac.uk/Software/Rfam
http://rdpwww.life.uiuc.edu
http://rdpwww.life.uiuc.edu
www.cme.msu.edu/RDP/html
www.cme.msu.edu/RDP/html
www.sdsc.edu/projects/kinases
www.sdsc.edu/projects/kinases

 296 A p p e n d i x A

RNA Modification Database http://medlib.med.
utah.edu

ROSETTA www.rosettabio.com
Rutgers University Linkage
Physical Maps

http://compgen.rutgers.
edu/maps

Saccharomyces cerevisiae www.proteome.com
Sakura http://sakura.ddbj.nig.

ac.jp
SAM www.cse.ucsc.edu/

research/compbio/
sam.html

SAM-T99 www.soe.ucsc.edu/
compbio/HMM-apps/

Sanger Institute www.sanger.ac.uk
SCOP http://scop.berkeley.edu
SEG ftp://ncbi.nlm.nih.gov/

pub/seg
Sequence alignment tool www.Geneious.com
Sequest http://fields.scripps.

edu/sequest
Sequin www.ncbi.nlm.nih.gov
Sequences of tRNA www.uni-bayreuth.de
SLAM http://bio.math.berkeley.

edu/slam
SGP-I www.1.imim.es/

datasets/humanmouse
SNP Consortium GL Maps http://snp.cshl.org/

linkage.maps
Source Database http://source.stanford.edu
STAMP www.compbio.dundee.

ac.uk/Software/Stamp/
Stanford Microarray Database http://genome-www5.

stanford.edu/
STRAP www.charite.de/bioinf/

strap
Structural classification of proteins http://scop/mrc-lmb.

cam.ac.uk
SWISS-2DPAGE www.expasy.org/ch2d/
SWISS-MODEL. http://swissmodel.

expasy.org/repository/
Swiss-Prot (EBI) www.ebi.ac.uk/swissprot

http://medlib.med.utah.edu
http://medlib.med.utah.edu
www.rosettabio.com
http://compgen.rutgers.edu/maps
http://compgen.rutgers.edu/maps
www.proteome.com
http://sakura.ddbj.nig.ac.jp
http://sakura.ddbj.nig.ac.jp
www.cse.ucsc.edu/research/compbio/sam.html
www.cse.ucsc.edu/research/compbio/sam.html
www.cse.ucsc.edu/research/compbio/sam.html
www.soe.ucsc.edu/compbio/HMM-apps/
www.soe.ucsc.edu/compbio/HMM-apps/
www.sanger.ac.uk
http://scop.berkeley.edu
www.Geneious.com
http://fields.scripps.edu/sequest
http://fields.scripps.edu/sequest
www.ncbi.nlm.nih.gov
www.uni-bayreuth.de
http://bio.math.berkeley.edu/slam
http://bio.math.berkeley.edu/slam
www.1.imim.es/datasets/humanmouse
www.1.imim.es/datasets/humanmouse
http://snp.cshl.org/linkage.maps
http://snp.cshl.org/linkage.maps
http://source.stanford.edu
www.compbio.dundee.ac.uk/Software/Stamp/
www.compbio.dundee.ac.uk/Software/Stamp/
http://genome-www5.stanford.edu/
http://genome-www5.stanford.edu/
www.charite.de/bioinf/strap
www.charite.de/bioinf/strap
http://scop/mrc-lmb.cam.ac.uk
http://scop/mrc-lmb.cam.ac.uk
www.expasy.org/ch2d/
http://swissmodel.expasy.org/repository/
http://swissmodel.expasy.org/repository/
www.ebi.ac.uk/swissprot

 I n t e r n e t H o t l i n k s t o P u b l i c - D o m a i n D a t a b a s e s 297

Swiss-Prot (Ex-PASy) www.expasy.org/sprot
T-Coffee www.ch.embnet.org/

software/TCoffee.html
TM4 Software www.tigr.org/

software/tm4
The Better Bradford Assay www.piercenet.com
TPF assembly tool www.ncbi.nlm.nih.gov/

projects/zoo_seq
Tree of Life http://phylogeny.

arizona.edu
TreeView http://taxonomy.

zoology.gla.ac.uk/rod/
treeview.html

TWINSCAN http://genes.cs.wustl.edu
UCSC http://genome.ucsc.edu
UIUC Metabolomics Center www.biotech.uiuc.edu/

centers/
MetabolomicsCenter/

UK Human Genome Mapping Project http://hgmp.mrc.ac.uk
Unimode www.unimod.org
Uniprot www.uniprot.org
UP Patent Citation Database http://cos.gdb.org/

repos/pat/
UW-Madison Server for Virology www.bocklabs.wisc.edu
VBASE www.mrc-cpe.cam.ac.uk
VISTA www-gsd.lbl.gov/vista
VISTA Browser http://pipeline.lbl.gov
WEBPHYLIP http://sdmc.krdl.org.

sg:8080
Washington University Genome
Sequencing Center

http://genome.
wustl.edu

WHS www.cladistics.org/
education.html

Worldwide Protein Databank www.wwpdb.org/
Wormbase www.wormbase.org/
Yeast Homology Databases www.ch.embnet.org
zPicture and multi-zPicture http://zpicture.

dcode.org

www.expasy.org/sprot
www.ch.embnet.org/software/TCoffee.html
www.ch.embnet.org/software/TCoffee.html
www.tigr.org/software/tm4
www.tigr.org/software/tm4
www.piercenet.com
www.ncbi.nlm.nih.gov/projects/zoo_seq
www.ncbi.nlm.nih.gov/projects/zoo_seq
http://phylogeny.arizona.edu
http://phylogeny.arizona.edu
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://genes.cs.wustl.edu
http://genome.ucsc.edu
www.biotech.uiuc.edu/centers/MetabolomicsCenter/
www.biotech.uiuc.edu/centers/MetabolomicsCenter/
www.biotech.uiuc.edu/centers/MetabolomicsCenter/
http://hgmp.mrc.ac.uk
www.unimod.org
www.uniprot.org
http://cos.gdb.org/repos/pat/
http://cos.gdb.org/repos/pat/
www.bocklabs.wisc.edu
www.mrc-cpe.cam.ac.uk
www.gsd.lbl.gov/vista
http://pipeline.lbl.gov
http://sdmc.krdl.org.sg:8080
http://sdmc.krdl.org.sg:8080
http://genome.wustl.edu
http://genome.wustl.edu
www.cladistics.org/education.html
www.cladistics.org/education.html
www.wwpdb.org/
www.wormbase.org/
www.ch.embnet.org
http://zpicture.dcode.org
http://zpicture.dcode.org

This page intentionally left blank

APPENDIX B
PERL for

Bioinformaticists

Practical Extraction and Report Language (PERL) was invented by
Larry Wall in 1986. It is an excellent pattern-matching scripting
language. It is a programming language with good string processing
capabilities and can be used for doing such things as sequence
analysis, database management, etc. It has few data types. The source
code for PERL is free. PERL is distributed under the General Public
License (GPU). It is user-friendly for biologists. Small programs can
be downloaded easily from the Comprehensive PERL Archive
Network (CPAN), as well as from BIOPERL. It is a glue language. It
is superb at common gateway interface (CGI) front. The source code
of programs can contain few lines. The Internet access is at www.perl.
org and www.bioperl.org. PERL is supported on UNIX, MS DOS,
VMS, OS/2, Mac, Windows, and LINUX operating systems. PERL is
made of sed, awk, UNIX shell, and C. It does not need compiling
processes like JAVA. The code can be written in Notepad, available
with Windows. The generated file can be saved with a .pl extension.
Some of the special features of PERL are

• Hashes (or associated arrays). % is used before hashes.

 % translation = (aug => ‘ALA’; caa => ‘CYT’; ctt => ‘GLU’;).
One line of PERL as a hash is used to convert the three-letter
amino acid codons (AUG, GAA, CAT, etc.) to the amino acids
(ALA, GLU, THY, SER, etc.).

 $translation (aug), where PERL will interpret aug as ALA.
There are commands for repeating a sequence and for pattern
finding.

 $pattern = “aaaa”;

 $sequence − agttcgaaaaccggt;

 @result = split/$pattern/$sequence;

 print @result;

299
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

www.bioperl.org
www.perl.org
www.perl.org

 300 A p p e n d i x B

 The program splits the sentence and finds the pattern, and a
gap is inserted to denote its presence.

The function list in PERL is as follows:

• Array Chomp, join, keys, map, pop, push,
reverse, shift, sort, splice, split, unshift,
values

• Database dbmclose, dbmopen

• Directory chdir, closedir, mkdir, opendir, readdir,
rewindir, rmdir, seekdir, telldir

• File binmode, chdir, chmod, chown, chr
close, eof, fnctl, filenxflock, getc, glob,
loctl, link, lstat, open, print, printf, read,
readdir, readlink, rename, rmdir, seek,
select, start, symlink, sysopen, sysread,
syswrite, tell, truncate, umask, unlink,
write

• Group endgrent, getgrent, getgrid, getgrname,
getpgrp, setgrent, setpgrp

• Hash delete, each, exists, keys, values

• Host endhostent, gethostbyaddr, gethostby-
name, gethostent

• Input getc, read, sysread

• Interprocess msgctl, msggct, msgrcv, msgsnd, pipe,
communication semctl, semgct, semop, shmctl, shmget,

shmread, shmwrite

• Math abs, atan2, cos, exp, hex, int, log, oct,
rand, sin, sqrt, srand

• Message queues msgctl, msgget, msgrcv, msgsnd

• Time gmtime, localtime, time

• Unix chnwd, chown, chroot, dump, endgrent,
endhostent, endnetent, endprotent, endp-
went, endservent, fnetl, fork, getgrgrid,
getgrname, gethostent, getlogin, getnetent,
getpgrp

• Miscellaneous bless, defined, do, eval, formline, import,
ref, scalar, syscall, tie, tred, undf, untie,
wantarray

• Network endnetent, getnetbyaddr, getnetbyname,
getnetent, setnetent

• Output die, print, printf, syswrite, write, wavn

• Password endpwent, getpvent, getpwname, getp-
waid, setpwent

• Process alarm, die, dump, exec, exit, fork,
getlogin, getpgrp, getppid, getpriority,
kill, setpriority, sleep, system, times,
unmask, wait, waitpid

• Protocol endprotent, getprotobyname, getproto-
bynumber, getprotent, getservname,
getservbyport, getservent, getprotoent

• Regular grep, pos, quotemeta, rest, split, study
expression

• Scope local, my, culler

• Service endservant, getservbyname, getservbyport,
getservent, setservent

• Socket accept, bind, connect, gethostbyaddr,
gethostbyname, gethostent, getpeername,
getservbyport, getservent, getsocketname,
get sockoporet, listen, reev, select, send,
setsockoport, shutdown, socket, socketpair

• String chop, chr, crypt, hex, index, join, le,
lcfirst, length, oct, pack, q, qq, quotemetr,
qw, reverse, rindex, split, spintf, susbtr,
uc, ucfirst, unpack, vec

 P E R L f o r B i o i n f o r m a t i c i s t s 301

This page intentionally left blank

AA
Acetonitrile, 234
Acetylation capping, 232
Adenine, 12, 18
Adrenergic receptors, 162
Affine gap model, 60–63
Affine gap penalty:

affixation (exercise), 74
exercises, 73, 80
generally, 60–62
with translation, gaps, and transfers

(exercise), 74–75
Affinity chromatography, 11
Affymetrix, 214, 222
AFM (atomic force microscopy), 230
Age-related diseases, 222–223
Age-related macular degeneration

(AMD), 223
Aho-Corasick dictionary automaton, 98
Alanine, 4, 66
Aldehyde surface treatment, 230
Algorithm or shift (exercise), 103–104
Aligned residues, 116
Alignment(s):

approximate, 89
global, 117
multiple, 117, 160–161
number of, 49
optimal, 49
semiglobal, 55
string, 48
(See also Multiple-sequence

alignment; Sequence alignment)
Alignment grading function,

47–50
Alpha value, 31
α-helix structure, 5, 191
α-keratin, 5
Alphabet, 47

Alternating-sequence distribution
(exercise), 172–173

Alternative hydrogen-bond
partners, 199

Alternative hypothesis, 30, 31
Altschul, S. F., 65, 66
AMD (age-related macular

degeneration), 223
Amines, 3
Amino acids, 2–3

change in, 68
DNP, 7
essential, 3
free, 3
L-, 5
negatively charged basic, 3
nonpolar, 4–5
ostrich (exercise), 71
polar, 4
positively charged basic, 3
sequence of, 2, 71

Amir, A., 98
Ammonia, 8
Ammonium hydroxide, 232
Anfinsen, C. B., 47
Angiotensin receptors, 162
Annotate subcellular localization,

201–203
Annotation of the genome, 42
ANNs (see Artificial neural networks)
Anserine, 8
Anticodons, 16
Antidiagonal (exercise), 79
APDs (avalanche photodiodes),

224
Apoliprotein AI gene, 238
Approximate alignment, 89, 188
Approximate match, 96

Index

303
Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use.

 304 I n d e x

Aquifex aeolicus, 186
Arabidopsis thaliana, 184, 213
Archaeoglobus fulgidis, 185, 186
Architecture(s):

BRNN, 201
DAG-RNN, 200–201
feed-forward, 193
HMM, 144
layered, 193
left-right, 144
Markov chain, 135
recurrent, 193

Arginine, 3
Argon in hydrogen (exercise), 278
ArrayIt (TeleChem), 217, 218
Artificial neural networks (ANNs),

193, 195
Asparagine, 4
Aspartic acid, 3, 8, 66
Aspergillus fumigatus, 184
Asymptotic efficiency, 32
Asymptotic lower bound, 32
Asymptotic order of functions,

32–33
Asymptotic upper bound, 32
Asymptotically tight bound, 32
Atomic force microscopy (AFM), 230
Autoimmune disorders, 43–45
Automated sequence alignment, 51
Auxiliary variable, 146
Avalanche photodiodes (APDs), 224
AVID (exercise), 113
Award for matches, 75
Axiomatic definition, of probability, 24

BB
Bacillus cereus chromosome, 21
Bacillus subtilis, 185, 186
Back propagation model, 193
Backbone, of protein, 3
Background distribution, 148
Background fluorescence, 220, 230
Backward variable, 146
Bacterial genome, 1
Bacteriophage ϕX174, 17, 18
Bacteriophages, 21
Baldi, P., 200
Band across diagonal (exercise), 79
Barletta, A., 254, 259
Base pairs:

deletion/insertion of, 48
number of, 42

Bates and Constable algorithm, 182
Bats, 45
Baumeister, K. J., 259

Baum-Welch algorithm (exercise),
172

Bayes’ theorems, 25
Beamsplitter, 224
Bell, John, 24
Bell curve, 30
Bellman, R., 55
Benzoyl protecting group, 231
Berg, Paul, 216–217
Bernoulli, Daniel, 23
Bernoulli’s theorem, 25
Berry-Ravindran algorithm (exercise),

106
Berzelius, Jöns Jakob, 2
Bessel equation, 263
β-hemoglobin, 51
β-keratin, 5
β-pleated-sheet structures, 5–6
β-sheet structures, 191
Bhandary, Raj, 16
Bias, 194
Big O notation, 32
Billeter, M. A., 17
Binding sites, 141–143
Binomial distribution, 26, 27
Binomial heap, 182–184
Biochemical reaction, 219
Biochemistry, 42
Biochips (see Microarrays)
Bioinformatics, 1, 42
Biologic complexity, of organisms,

22
Biologic data bank, 1
Biologic question formulation,

219
Biologic sequence alignment, 190
Biomolecules, 42
Bioseparation techniques, 9–12
BLAST software, 99, 153, 187
Blocking agents, 230
Block-sequence distribution

(exercises), 76, 173
BLOSUM and PAM matrices

(exercise), 74
BLOSUM substitution matrix, 68
BM algorithm (see Boyer-Moore

algorithm)
Boley, A. K., 250
Bone cells, 44
Borrelia burgdorferi, 185
Boundary condition, 267–269
Bounded-phase chromatography, 12
Bovine pancreatic ribonuclease, 51
Boyer-Moore (BM) algorithm, 91,

94–96
Bradykinin, 8

 I n d e x 305

Branched topology, 199
Brasard, G., 190
Bratley, P., 190
Breakers, 192
BRNN architecture, 201
Brookhaven National Laboratory,

192
Brute-force method, 49
Butterflies, 45

 C C
C. elegans, 22
Caenor habditis elegans, 153
Calibration, 246
Calorimetric estimation, 7
Cancer formation, 221
CAP3 software, 99
Capping, 199–200, 232
Carboxylic acid moiety, 3
Carburizing steel (exercise), 285
Carnosine, 8
Carticotropin, 8
Caruthers, M. H., 231
Cats, 21
Cattaneo and Vernotte equation, 254
Cauchy distribution, 28
CCD (charge coupled devices), 224
cDNA (see Complementary DNA)
cDNA microarray data, 236–240
Cell grades during local alignment vs.

global alignment (exercise), 73
Cell shape, 2
Center-star-alignment algorithm,

119–122
Chain sequence distribution, of

copolymers, 6–7
Chang, W. I., 89, 98
Chao, K. M., 63, 64
CHAOS (exercise), 111
Charge coupled devices (CCD), 224
Charge separation, 270
Chargaff's parity rules, 163, 164
Chebychev, Pafnuty, 24
Children, 88
Chimpanzees, 21, 45
Chi-squared distribution, 29
Chothia, C., 116
Chou and Fasman rules, 192
Chromatography, 7–8, 11–12, 245
Chromosome(s):

Bacillus cereus, 21
eukaryote, 1
regional assembly of, 20

Circadian rhythm, 222
Cistron, 21

Classical definition, of probability, 24
Classification:

HMM, 161–162
protein, 47

Clausius inequality, 246
Claverie, J. M., 22
Cleanliness, 219
Cloning, 47
Cloverleaf secondary structure, 16
ClustalW (exercise), 127
Clustering, 154, 161
Clusters, 122
Codons, 12, 13, 15
Coextrusion (exercise), 280
Collisions, number of, 253
Color-separating interference filter, 224
Colussi algorithm (exercise), 104–105
CombiJet, 234
Combinatorial synthesis, 233
Common inheritance, 45
Common prefix property, 98
Competitive learning, 161
Complementarity, 18
Complementary DNA (cDNA), 60,

236–240
Computer mouse, 217
Concentration equalization, 246
Conditional probability, 25, 149–151
Confirmation, 220
Confocal scanning microscope, 219,

224–227
Consensus sequence:

defined, 122
exercise, 84

Consensus-pattern hydropathy
plots, 156

Conservation, 42
Constant wall flux (CWF), 259
Continuous probability distributions,

28–30
Controlled-pore glass (CPG), 232
Cook, Stephen, 118
Copolymers, chain sequence

distribution of, 6–7
COSA (exercise), 127
Coupling, 232
Covalent coupling, 230
CPG (controlled-pore glass), 232
Creutzfeldt-Jakob syndrome, 46
Crick, F. H. C., 12
Crochemore, M., 89, 97
Crosstalk, 226
CRP (Cyclic AMP Receptor Proteins)

binding sites, 181
CWF (constant wall flux), 259
Cyanoethyl phosphoramidites, 231

 306 I n d e x

Cyclic AMP Receptor Proteins (CRP)
binding sites, 181

Cysteine, 4
Cytosine, 12, 18
Cytoskeleton, 2

DD
DAG-RNN (see Directed Acyclic

Graphs and Recursive NN
architecture)

D’Alembert’s solution, 272
Damped oscillations, 273
Dansyl chloride method, 10
Dasangam (exercise), 282
Database(s):

of annotated genes, 180
dBEST, 187
FORESST, 153
HSSP, 196
OWL, 187
Pfam, 153, 154, 202
SMART, 202
Unigene, 64

Database mining, 160
Davis, Ron, 213
DAWG (directed acyclic word graph),

107
DBEST database, 187
De Moivre, Abraham, 23, 30
De Moivre’s theorem, 257
Decoding problem (HMM),

144, 146–147
Degeneracy, of genetic code, 15
Delcher, A. L., 90
Deletion, of base pair, 48
Denaturation, 230
Deposition, 235
Deprotection, 231, 232
Depth, of network, 193
Desaltation, 11
Desorption ionization, 10
Detection, 219, 224
Detection threshold, 155
Detectivity, 226
Determination of diffusivity (exercise),

284
Deviation in standard units, 186
Diabetes, 45
Diagonals search algorithm, 65–66
DIALIGN (exercise), 128
Dibromomethane, 235
Dice game, 23
Dichloroacetic acid, 234
Dichroic interference filter, 224
Dictionary-based gene annotation, 187

Dictionary-matching algorithm, 98
Differential equations, 193, 254
Diffusion:

defined, 246
Fick’s laws of molecular, 246–249
heat, 246
mass, 246, 252
of oxygen through spiracles

(exercise), 279–280
and reaction in a nuclear fuel rod

(exercise), 282–283
steady diffusion in a hollow sphere

(exercise), 284
of tea in water in spacecraft, 248–249
transient, 270–273

Diffusion coefficient:
defined, 247, 250–251
of milk in the refrigerator (exercise),

280
Stokes-Einstein equation to

calculate, 250–251
of tobacco mosaic virus (exercise),

279
Diffusivity, determination of (exercise),

284
Dimensionless concentration, 263
Dimensionless heat flux, 263
Dimensionless mass flux, 260–263
Dimethoxytrityl (DMT) group, 231
Dinitrophenyl (DNP) method, 7
Dinucleotide bond formation, 232
Dinucleotide sequences, repeating, 14
Directed Acyclic Graphs and

Recursive NN (DAG-RNN)
architecture, 200–201

Directed acyclic word graph (DAWG),
107

Discrete probability distributions,
26–28

Discrete update equations, 193
Discrimination tests, 155
Distance metric (exercise), 77
Disulfide bond creation, 6
Disulfide bridges, 7
DISULFIND (exercise), 208
Divide-and-conquer principle, 55–56
DMT (dimethoxytrityl) group, 231
DNA:

determination of nucleotide
sequences in, 17–18

double-helix three dimensional
structure of, 12

number of base pairs in molecule of,
42

transcription/translation/
replication of, 18–20

 I n d e x 307

DNA chips (see Microarrays)
DNA microarray synthesis, 234
DNA polymerase, 17
DNA sequence(s):

geometric distribution
representation of, 135–143

HMM representation of, 134
Jukes–Cantor model for, 150–151
of simian varicella virus (exercise),

77
triplet-code divisions of, 15

DNA sequencing, 216
DNP amino acids, 7
DNP derivatives, 7
DNP (dinitrophenyl) method, 7
DNP-glycine, 7
DNP-phenylalanine, 7
Dogs, 21
Dopant profile by ion implantation

(exercise), 283–284
Double-helix structure (of DNA),

12, 216
Drag force, 251
Driving force, 251
Droplet-generating devices,

233–234
Drosophila fly, 222
Drug design, 46
Drug discovery, 221
Dyes/dyeing:

bias in, 236–237, 239, 240
normalization of, 236, 238–240
of wool (exercise), 283

Dynamic arrays, 56
Dynamic Devices, 218
Dynamic programming:

description of, 55–56
gene annotation by, 187
Needleman and Wunsch algorithm

as, 51–53
optimal MSA by, 117–118
for spliced alignment problem, 191
steps of, 56

Dynamic programming table
(exercises):

for global alignment, 80
for local alignment, 80

Dystrophin gene, 22

EE
Edge labels, 86, 88
Edit distance (e):

defined, 63
exercise, 79

Edman degradation method, 10
Einstein, Albert, 247

Electrophoresis:
apparatus for, 269–270
bioseparation via, 9
defined, 269
gel acrylamide, 17
governing equation for, 270–273
in measurement of sequence

distribution, 245–246
minus sign in term (exercise), 285
polyacrylamide gel, 10
two-dimensional gel, 11
types of, 270

ELM, 202
Emission discrimination, 224
Emission filters, 224
Emission light collection, 223–224
End state, 145
Ensemble method, 198–199
Enzymatic labeling, 214
Enzymes, 2
Epi-illuminated systems, 224
ε-DNP-lysine, 7
Error calculation, 193
Error value, back propagation of, 193
Escherichia coli (E. coli), 19

gene annotation of, 185
promoter sequences (exercise), 75
sequence matching for, 185, 186

Essential amino acids, 3
EST (see Expressed sequence tag)
Estimate of the diffusion coefficient of

argon in hydrogen (exercise), 278
Etching, 230
Eukaryote chromosomes, 1
Eukaryote genomes, 1
Eukaryotic gene, 21
Eukaryotic transcription, 13
Evaluation problem (HMM), 144, 146
Evolution, study of, 45
Evolutionary divergence, 66
Evolutionary tree, 45
Excitation, 223
Excitation beam, 224
Excitation discrimination, 224
Exons, 21, 22
Expressed sequence tag (EST), 180, 238
Eye, oxygen transport in the (exercise),

282

FF
Fabrication, silicon-based, 217
Fairchild Semiconductor, 217
Fast Fourier transformation (FFT), 122
FDNB (fluorodinitrobenzene), 7
Feed-forward architecture, 193
Feng-Doolittle progressive MSA, 121

 308 I n d e x

Fenn, John, 10
Fermat, P. De, 23
FFT (fast Fourier transformation), 122
FGENEH, 158, 187
Fick, Adolf Eugen, 247
Fick’s laws of molecular diffusion,

246–249
first, 247–248
generalized (see Generalized Fick’s

laws of molecular diffusion)
second, 248–249

Field size, 226
Fill time, 235–236
Film, solid dissolution into a falling

(exercise), 284–285
Final time condition, 254
F-index and alignment of sequences S

and T (exercise), 112
Finite automaton, 91, 96–97
First-order Markov model, 135,

137, 140
FITC (fluorescein isothiocynate), 223
Fitch and Margoloash clustering

algorithm, 121
FLASH program, 187
Fluorescein isothiocynate (FITC), 223
Fluorescence:

background, 220, 230
detection of, 223–224

Fluorescence channels, 226
Fluorescence emission wavelength, 223
Fluorescent samples, 214
Fluorodinitrobenzene (FDNB), 7
Flux:

constant-wall, 259
heat, 263
mass, 260–264
molar, 270
surface, 261–262

Focus, 225
FORESST database, 153
Forward algorithm, 146
Forward DAWG matching algorithm

(exercise), 108
Forward sweep, 193
Forward variable, 146
Foxp3 master gene regulator, 45
Fraction A sequence, 8
Fractionation, of 32P-labeled

oligonucleotides, 17
Fragments, sparse dynamic

programming method for LCS
from (exercise), 113

Frame consistent, 159
Franklin, Rosalind, 12
Free amino acids, 3

Fully connected NNs, 194
Functional genomics, 42, 180
Functional regions, 141

GG
G protein–coupled receptors (GPCRs),

153–155
Galil and Giancarlo algorithm

(exercise), 105
Galton, Francis, 30
Gambling, 23
Gamma distribution, 28–29
γ-coil state, 191
Gap model, 60–63
Gap penalty:

affine (see Affine gap penalty)
exercise, 73

Gapped alignment, 152
Gaps:

exercise, 75
in sequences, 42

Gases, 247
Gauss, Carl Friedrich, 30
Gel acrylamide electrophoresis, 17
Gel matrices, 270
Gelfend, M. S., 190, 191
Gel-filtration chromatography, 11
Gels, 9
GenBank, 189
Gene(s):

human, 22
as term, 21

Gene annotation, 187–191
Gene chips (see Microarrays)
Gene expression, 220–223
Gene finding, 46, 158, 179, 187
Gene Locator and Interpolated

Markov Modeler (GLIMMER), 184
Gene number identification, 21, 22
Gene Parser, 158
Gene profiling, 223
Gene regulators, 45
Gene transcription, 19
GeneJet, 234, 235
GeneMark, 187
Generalized Fick’s laws of molecular

diffusion, 249–269
derivation of, 251–254
formula, 250
and periodic boundary condition,

267–269
reasons to seek, 249–250
and relativistic transformation of

coordinates, 259–267
and Taitel paradox/final time

condition, 254–259

 I n d e x 309

Generalized hidden Markov model
(GHMM), 157–160

Generalized normal distribution, 30
Generalized pair hidden Markov

model (GPHMM), 187–188
Generalized suffix tree (GST), 86
Genetic code:

amino acid sequence in, 2
general properties of, 13
structure of, 15

Genetic predisposition for
disease, 222

Genetic screening and diagnostics,
221

Genie program, 158, 160, 187
GenLang, 158
GenMark, 158
Genomes:

annotation of, 42
diversity/size/structure of, 20–23

Genomics:
functional, 42, 180
growth of, 179

GenScan, 187
Geometric distribution:

and DNA sequence, 135–143
exercise, 84
formula for, 28

GHMM (see Generalized hidden
Markov model)

Gibbs sampling method, 181–182
Gilbert, W., 17, 216
GLASS (exercise), 112
Glass chips, 214
Glass substrate, 213–214, 216,

223, 230
GLIMMER (Gene Locator and

Interpolated Markov Modeler), 184
GlimmerM, 184
Global alignment:

to grading scheme (exercise), 83
of pair of sequences, 51–55
of three sequences (exercise), 79

Global classification projects, 160
Global distance, 123–124
Global view, 220
Glutamic acid, 3, 66
Glutamine, 4
Glutathione, 8
Glycine, 4, 66
GPCRs (see G protein–coupled

receptors)
GPHMM (see Generalized pair hidden

Markov model)
Grade of similarity, 42
Gradient-based method (exercise), 172

Grading function:
constructing a good, 51–55
defined, 48
during optimal global alignment

(exercise), 73
GRAIL, 158, 187
Greedy algorithms:

to align DNA sequences (exercise), 77
for multiple-sequence alignment, 123
for pairwise alignment, 63–65
for relative entropy site-selection,

180–181
for SD sites finding, 185

Grooming hair with oil (exercise), 283
GST (generalized suffix tree), 86
Guanine, 12, 18
Guide tree, 121
Gusfield, D., 89

HH
Haemophilus influenzae, 1, 185, 186
Hamill, T. D., 259
Hamming (exercises), 76, 80
Hash table–based tools (exercise), 112
Hash tables:

exercise, 111
in FLASH, 187

Hashing function, 92
HDL metabolism, 238
Heat diffusion, 246
Helicobacter pylori, 185, 186
Helium separation from natural gas

(exercise), 284
Helix capping, 199, 200
Helix state, 196
Hemoglobin, 51, 216
Hen’s egg lysozyme, 51
Hidden Markov models (HHMs), 133–134

architecture of the, 144
classifications using, 161–162
and database mining, 160
decoding problem in, 146–147
evaluation problem in, 146
evaluation/decoding/learning

questions in, 143–145
gene annotation methods based on,

187
generalized, 157–160
learning problem in, 147
multiple alignments derived by,

160–161
with protein families, 153–156
sequence alignment using, 152–153
signal-peptide/signal-anchor

prediction by, 162–163
wheel, 156–157

 310 I n d e x

Hidden states, 143
Higher order networks, 193
Highest-scoring pairs (HSPs), 190
High-performance liquid

chromatography (HPLC), 12
Hirschberg array (exercises):

for global alignment of three
sequences, 80

local alignment, 78
for local alignment of three

sequences, 80
Histidine, 3
HMMR, 165, 175
HMMPRO (exercise), 175
HMMSTR, 199
HMMWE (exercise), 175
Holes, 104
Hollow sphere, steady diffusion in a

(exercise), 284
Homologous proteins, 192
Homologous residues, 116
Homology, 42
Homology-Derived Structure of

Proteins (HSSP) database, 196
Horspool algorithm (exercise),

105–106
Housekeeping genes, 237
HPLC (high-performance liquid

chromatography), 12
HSPs (highest-scoring pairs), 190
HSSP (Homology-Derived Structure of

Proteins) database, 196
Human brain tissue, 220
Human diseases:

genetic predisposition for, 222
onset/progression of, 221

Human genome data analysis, 22
Human Genome Project, 1
Human genomes, rapid global

alignment of mouse and
(exercise), 111

Human microarray data, 214
Humans:

largest known gene in, 22
number of genes in, 22

Hunt, J. W., 57
Hybridization, 219
Hydration, 220
Hydrogen, estimate of the diffusion

coefficient of argon in (exercise),
278

Hydrogen bonding, 5
Hydrogen-bonded capping, 199
Hydropathy plot, 155–156
Hydrophobic interaction, 199
Hypergeometric distribution, 27, 28
Hypothesis testing, 30–31

II
IBM Blue Gene Project, 1
Ideal gas law, 253
Identity, 42, 48
ILP (integer linear programming), 127
Image geometry, 227
IMM (see Interpolated Markov model)
Immune system, 43–45
Immunoglobins, 116
Indels, 42, 48
Independent events, 25
INFO program, 187
Inheritance, common, 45
Initiation codons, 16
Ink-jet printing, 233–236
Insect control (exercise), 281
Insertion, of base pair, 48
Institute of Genomic Research (TIGR),

89, 184
Insulin:

discovery of protein structure of,
2, 42

microstructure of, 9
sequence distribution of, 6–9

Integer linear programming (ILP), 127
Integrated circuits, 217
Integrated Electronics (Intel), 217
Interference filter, 224
Intergenic DNA, 21
Internal nodes, 88
Interpolated Markov model (IMM),

184–185
Interpretation of grade of alignment

(exercise), 73
Intractable problems, 118
Introns, 19, 21
Inverse dynamic programming

(exercises):
for global alignment, 82
for local alignment, 83
for local alignment with affine gap

penalty, 83
Ion-exchange chromatography, 11
Ionization, soft desorption, 10
Ionophoresis, 18
Isobutyryl group, 231
Isoelectric focusing, 10–11
Isoleucine, 4
Iterative pairwise alignment, 122

JJ
JalView (exercise), 129
Johannes, W., 21
Johns Hopkins University, 221
Joint probability function for random

variables, 27

 I n d e x 311

JPRED (exercise), 208
Jukes–Cantor model for DNA

sequences, 150–151
Junk DNA, 23

KK
Karkkainen and Sander’s algorithm

(exercise), 108
Karp, R. M., 118
Kelly, D. C., 249
Kendrew, John, 2
Keratin, 5
Khorana, Har Gobind, 13–16
Kleene closure, 47, 72
KMP algorithm (see Knuth-Morris-

Pratt algorithm)
Knuth, R. E., 55
Knuth-Morris-Pratt (KMP) algorithm,

91–94
Kolmogorov, Andrey, 24
Kornberg, A., 12, 13, 216
Kornberg, Roger, 13, 216
Krogh, A., 162
Krogh tissue cylinder (exercise),

278–279
kth-order Markov chain, 134–135
Kurtosis, 26
Kurtz, S., 89

LL
Labeling:

microarray enzymatic, 214
molecular, 7
pulse, 17

Lactobacillus delbrueckii, 186
LAGAN (exercise), 111
Lam, F., 187, 189, 190
L-amino acids, 5
Landau, E., 32
Landau, G. M., 98
Landau, L., 249
Laplace, P. de, 23, 25, 30
Larger of (2n or n2) problem,

31–32
Las Vegas algorithms, 190
Laser beam, 224
Lasers, 226
Lawler, E. L., 89, 98
Layered architecture, 193
Lazy suffix trees (exercise), 110
LCA (least common ancestor), 98
LCS, sparse dynamic programming

method for (exercise), 113
LCS problems (see Longest common

subsequence problems)

Learning:
in ANN, 195
competitive, 161
machine, 200–201
supervised/unsupervised, 195

Learning problem (HMM), 144, 147
Least common ancestor (LCA), 98
Leder, Philip, 15
LEDs (light-emitting diodes), 223
Left-hand side (LHS), 255
Left-right architectures, 144
Legendre, Adrien-Marie, 30
Lesk, A. M., 116
Lettuce wilting (exercise), 280–281
Leucine, 4
Lexis, Wilhelm, 30
LHS (left-hand side), 255
Life cycle, of microarray analysis,

218–220
Lifshitz, E. M., 249
Light, 225–226
Light-emitting diodes (LEDs), 223
Likelihood functions:

and GHMM, 158, 159
log-likelihood, 147
maximum likelihood, 147

Line geometries, 123
Linear range, 229
Linker molecules, 234
Liquid chromatography, 12
Liquid phase (of paper

chromatography), 11
Liquids, 247
LLR (log-likelihood), 147
LOC3 Dini prediction system,

202–203
LOC3D, 201–203
Local alignment:

with affine gap penalty (exercise), 83
to grading scheme (exercise), 83
of pair of sequences, 59–60, 62–63,

66
of three sequences (exercise), 79

Localization prediction, 201–203
Log-likelihood (LLR), 147
Longest common extension (exercise),

110
Longest common subsequence (LCS)

problems:
exercise, 73
greedy algorithms for solving, 63
subquadratic algorithms for, 55,

57–58
Longest increasing subsequence,

length of, 57–58
Longevity, 46, 221
Look-up tables, 99–100

 312 I n d e x

Loop state, 196
Lorentz distribution, 28
Loss from beverage containers

(exercise), 282
Lousma, Jack, 248–249
Lowess function, 239
Lowest common ancestor (exercise),

110
Low-fidelity enzyme, 47
Lysine, 3
Lysozyme, 51

MM
Machine learning, 200–201
Macular degeneration, 223
Mad cow disease, 46
MAFFT software:

development of, 122
exercise, 128

Malaria parasite, 184
Manhattan networks, 189, 190
Manuals, reading, 219
MAP (Match table-based pruning), 112
Markov, Andrey, 24
Markov assumption, 145
Markov chain:

architecture of, 135
kth-order, 134–135

Markov model(s):
first-order, 135, 137, 140
GHMM, 157–160
GLIMMER, 184
GPHMM, 187–188
hidden (see Hidden Markov models)
IMM, 184–185
of order N, 163, 164
second-order, 135
third-order, 137–139
VLMMs, 188

Masek, W. J., 55
Mass balance, 260, 267
Mass diffusion, 246, 252
Mass flux, 260, 264
Mass propagative velocity, 265
Mass spectrometry (MS), 10
Master gene regulators, 45
Match table-based pruning (MAP), 112
Matched letters, 48
Maxam, A. M., 17, 216
Maximal Multiple Exact Matches

(multiMEMs), 87
Maximal Unique Matches (MUMs), 86
Maximum increasing subsequence,

182–184
Maximum likelihood (ML), 147
Maximum match, 51

Maximum mutual information
(MMI), 147

Maximum mutual information (MMI)
criterion (exercise), 172

Maximum-subsequence problem,
182–184

Bates and Constable algorithm for,
182

binomial heap approach to, 182–184
McCreight’s algorithm for

construction of suffix trees
(exercise), 108

Mean, 26, 135
Mechanical microspotting, 233
Memory usage, 89, 188
Messenger RNA (mRNA), 13, 19
Metabolomics, 42, 180, 221
Meta-MEME (exercise), 175
Methanobacterium thermoautotrophicum,

186
Methanococcus jannaschii, 21, 148,

185, 186
Methionine, 4, 15
MGA (see Multiple Genome Aligner)
Microarray analysis, 214
Microarray analysis life cycle,

218–220
Microarray detection, 223–227

confocal scanning microscope,
224–227

fluorescence, 223–225
Microarray enzymatic labeling,

214
Microarray scanners, objective

lens-based, 224
Microarrayer (NanoPrint),

217–218
MicroarrayManager Software, 218
Microarrays:

applications of, 220–223
defined, 214
development of, 216–218
and disease, 213–218
example of, 215
manufacture of, 233–236
normalization of cDNA microarray

data, 236–240
and phosphoramadite synthesis,

231–233
qualifications for, 215–216
surfaces required for, 227–230

Microprocessors, 217
Microscopic devices, 215–216

(See also Scanning microscopes)
Microscopy, atomic force, 230
Migration, of molecular fragments,

246

 I n d e x 313

Milk in refrigerator, diffusion
coefficient of (exercise), 280

Miller, W., 63
Minimum-heap-ordered, 183
Mismatch, 48
ML (maximum likelihood), 147
MMI (maximum mutual information),

147
Mobile phase (of paper

chromatography), 11, 12
Molar flux, 270
Molecular biology, 2–23

amino acids/proteins, 2–3
bioseparation techniques, 9–12
genomes, 20–23
insulin, sequence distribution of,

6–9
nucleic acids/genetic code, 12–20
protein structures, 3–6

Molecular diffusion, Fick’s laws of,
246–249

Molecular evolution, 45
Molecular labeling, 7
Molecular weight, of proteins, 9
Mononucleotide residues, 17
Monte Carlo algorithms, 190
Moore, Gordon, 217
Moore’s law, 1, 217
“Most likely state sequence,” 146
Mouse genome:

rapid global alignment of human
and (exercise), 111

sequencing completed for, 1
mRNA (see Messenger RNA)
mRNA splicing, 19
MS (mass spectrometry), 10
MSA (see Multiple-sequence

alignment)
Multichroic interference filter, 224
Multichroic lens, 224
MULTI-LAGAN (exercise), 112
MultiMEMs (Maximal Multiple Exact

Matches), 87
Multinomial distribution, 26–27
Multiple alignments, 117,

160–161
Multiple Genome Aligner (MGA),

86, 87
Multiple global alignment, 117
Multiple sclerosis, 44
Multiple-sequence alignment (MSA),

115–125
center-star alignment algorithm for,

119–121
consensus sequence derived from,

122
defined, 41, 115

by dynamic programming,
117–118

geometry of, 123–125
greedy method of, 123
and NP completeness, 118–119
progressive methods for,

121–122
in study of genetic diseases, 47
Wang–Jiang theorem, 118

Multiplicativity, 150
MUMmer, 86–87, 91
MUMmer 1.0, 89
MUMmer 2, 89
MUMmer 2.0, 91
MUMs (Maximal Unique Matches),

86
MUMs during alignment of pair of

sequences (exercise), 108
Mycobacterium bovis, 186
Mycoplasma genitallium, 185, 186
Mycoplasma pneumoniae, 186
Myelin sheath proteins, 44
Myoglobin, 2

NN
NA (numerical aperture), 224
NanoPrint Microarrayer,

217–218
National Center for Biotechnology

Information (NCBI), 64
National Institute of Aging, 46
Natural gas–helium separation

(exercise), 284
NCBI (National Center for

Biotechnology Information), 64
Needleman and Wunsch algorithm,

51–55, 86, 187
Needleman and Wunsch article

(exercise), 81
Negatively charged basic amino

acids, 3
Nernst, W., 249
Neural networks (NNs):

artificial, 193, 195
fully connected, 194
gene annotation methods based on,

187
in localization prediction,

201–203
in secondary-structure prediction,

192–197
Neutron diffraction, 6
Nielsen, H., 162
Nirenberg, Marshall W., 15
Nitrogenous bases, 12–14
NMR (see Nuclear magnetic resonance)
NNs (see Neural networks)

 314 I n d e x

Node(s):
graph, 158
internal, 88
read, 92, 93
root, 121
start, 92
stop, 93

Noholes, 104
Nonaligned sequences (exercise), 77
Nondeterministic polynomial (NP),

118
Nonpolar amino acids, 4–5
Non-self-replicating suborganisms, 21
Normal deviate, 186
Normal distribution, 29–30
Normalization:

for cDNA microarray data, 236–240
in relative entropy comparisons, 180

Normal-phase chromatography, 12
Not-so-naïve algorithm (exercise), 105
Noyce, Robert, 217
Nozzle-less acoustic jets, 233
NP (nondeterministic polynomial), 118
NP complete problems, 118–119, 180
Nuclear fuel rod, reaction and

diffusion (exercise), 282–283
Nuclear magnetic resonance (NMR),

6, 192
Nucleic acid synthesis, 13
Nucleic acids, 12–20

determination of nucleotide
sequences in DNA, 17–18

DNA transcription/translation/
replication, 18–20

and genetic code, 13–16
Nucleotide sequence sites, 141
Nucleotide substitution, 151
Nucleotides:

di-, 14, 232
mono-, 17
oligo-, 17, 215, 231–233
parts of, 12
poly-, 42

Null hypothesis, 30–31
Numerical aperture (NA), 224

OO
Objective lens, 224, 225
Objective lens–based microarray

scanners, 224
Olfactory receptors, 161
Oligonucleotides:

exercise, 76
fractionation of 32P-labeled, 17
synthetic, 215, 231–233

Oncologic studies, 221
Onsager, L., 249
Open reading frame (ORF), 16, 184
OPSD (rhodopsin) sequences, 162
Opsin receptors, 162
OPSR (red-sensitive opsins), 162
Optical requirements, 223–224
Optimal alignment, 49, 190
Optimal global pairwise alignment

(exercise), 72
Optimal local alignment (exercise), 74
Optimal probe concentration, 228, 229
Optimal target concentration, 227–228
Optimal target density, 227, 228
Optimality–time-efficiency tradeoff

(exercise), 79
Ordered arrays, 215
Ordering of functions, 32–33
ORF (see Open reading frame)
ORF analysis, 46
Oryza Sativa, 184
O(n) space, 56
Ostrich, amino acid sequence of

(exercise), 71
O(mn) time, 55
O(mn/K) time taken (exercise), 84
Output independence assumption, 145
Overfitting problem, 198–199
OWL database, 187
Oxidation:

parabolic law of (exercise), 278
in phosphoramidite synthesis, 232

Oxygen diffusion through spiracles
(exercise), 279–280

Oxygen transport in the eye (exercise),
282

Oxytocin, 8

PP
Pachter, L., 187, 189, 190
PAGE (polyacrylamide gel

electrophoresis), 10
Pair of sequences with no repetitions

of characters (exercise), 74
Pairwise alignment:

and affine gap model, 60–63
BLOSUM matrix for, 68
defined, 41
description of, 41–43
diagonals search method for, 65–66
global, 51–55
greedy algorithms for, 63–65
iterative, 122
local, 59–60
PAM matrix for, 66–67

 I n d e x 315

PAM and BLOSUM matrices
(exercise), 74

PAM-120 matrix, 66
PAM-200 matrix, 66
PAM-250 grading matrix (exercise), 74
PAM-250 matrix, 66–68
Paper chromatography, 7–8, 11, 245
Paper ionophoresis, 8
Parabolic law of oxidation (exercise),

278
Parental strands, 18
Parse φ, 159
Partial degradation, 17
Partial differential equation (PDE), 254
Partition chromatography, 7
Pascal, B., 23
Paterson, M. S., 55
Pauling, L., 5, 213, 216
PCR (see Polymerase chain reaction)
PDB (Protein Data Bank), 196
PDE (partial differential equation), 254
Peclect number (electric) (Peelec), 271,

272
Penalty for mismatch (exercise), 75
Penetration distance, 264–265
Pentium IV chip, 217
Peptide bonds, 2, 7
Peptide fractionation, 7
Periodic boundary condition, 267–269
Periodicity, 30, 156–157
Perutz, Max, 2
Pevzner, P. A., 190
PFAM database:

exercise, 175
generally, 153, 154
and LOC3D, 202

PHD (Profilenetwork HeiDelberg)
server, 196

PHDsec (exercise), 208
Phenylalanine, 4
Phenylalanyl chain, 8
Pheromones (exercise), 281
PHMM, 187–189
Phosphoramadite synthesis, 231–233
Photobleaching, 223
Photolithography, 233
Photomultiplier tubes (PMTs), 224, 226
Phylogeny, probabilistic approach to,

149–151
Piezoelectric capillary jets, 234
Piezoelectric cavity devices, 233
Piezoelectric devices, 233
Pitch, 12
Planar substrates, 216
Plasmodium falciparum, 184
Plus and minus method, 17, 18, 45
PMTs (see Photomultiplier tubes)

Point mutations, 42
Poisson, Siméon-Denis, 247
Poisson distribution, 27
Polar amino acids, 4
Pollastri, G., 200
Polyacrylamide gel electrophoresis

(PAGE), 10
Polyethylene glycol polymers, 234
Polymerase, 13
Polymerase chain reaction (PCR), 42,

88, 216
Polymers, 42
Polymorphism:

exercise, 84
level of, 21

Polynomial time solution, 118
Polynucleotides, 42
Polypeptide sequences, 89
Polypeptides:

backbone of, 5
microstructure of, 42, 46
naturally occurring, 8

Position-specific scoring matrix
(PSSM), 175

Positively charged basic amino acids, 3
Posttranslational modification, 2
Praline, 66
Prediction problem, 192
Presynthesized DNA fragments, 234
Primary structure, of proteins, 3–5

information in, 47
measuring, 10
negatively charged basic amino

acids, 3
nonpolar amino acids, 4–5
polar amino acids, 4
positively charged basic amino

acids, 3
Primers, 17, 18
Primitive tandem repeat, 88
Print modes, 235
Print time, 235–236
Prion proteins, 46–47
Pro Dom (Program Domainer), 154
Probabilistic models:

HMM, 133, 134
of phylogeny, 149–151

Probability, 23–31
conditional, 25, 149–151
continuous probability distributions,

28–30
definitions of, 24
discrete probability distributions,

26–28
function for random variables, 27
of independent events, 25
transition (see Transition probability)

 316 I n d e x

Probability distribution(s):
continuous, 28–30
discrete, 26–28
HMM, 143
for sample space, 148

Probability profile, 141
Probability theory, 23
Probe concentration, 228, 229
PROCRUSTES program, 187
Profile HMMs (exercise), 176
Profilenetwork HeiDelberg (PHD)

server, 196
Program Domainer (Pro Dom), 154
Progressive alignment methods, 121–122
Prokaryote genomes, 1
Proline, 4, 5, 66
PROSITE, 154, 202
Protein(s):

biologic specificity of, 8
classification of, 47
in diet, 2–3
discovery of, 2
molecular weight of, 9

Protein chips, 221
Protein Data Bank (PDB), 196
Protein families, 116, 153–156
Protein folding problem, 47
Protein sequences, optimal local

alignment of (exercise), 74
Protein signal, 43–44, 46
Protein structures, 3–6

primary, 3–5
quaternary, 6
secondary, 5–6
tertiary, 6

Protein synthesis, 3, 14
Protein–coupled receptors, G (see G

protein–coupled receptors)
Proteomics, 10, 11, 180
Protfun, 202
Protocols, 219
Prusiner, S. B., 46
PSI-BLAST:

exercises, 128, 175
and Lochomi, 202

PSSM (position-specific scoring
matrix), 175

Ptpn22 master gene regulator, 45
Pulse labeling, 17
Purines, 12
Pyrimidines, 12
Pyrococcus horikoshii, 186

QQ
Qian, N., 192, 195
QUASAR (exercise), 112

Quaternary structure, of proteins, 6
Quick-search algorithm (exercise), 106

RR
R group, 3
Rabin-Karp algorithm, 91, 92
Radial basis function (RBF), 195
Raita algorithm (exercise), 103
Ramachandran, G. N., 7
Random coil, 6
Random variables, joint probability

function for, 27
Random-sequence distribution

(exercise), 173
Rapid global alignment of human and

mouse genomes (exercise), 111
Rat genome, 1
RBF (radial basis function), 195
Reaction and diffusion in a nuclear

fuel rod (exercise), 282–283
Read nodes, 92, 93
Reading frames, 16, 184
Recombinant DNA, 217
Recurrence formula, 59
Recurrent architecture, 193
Red-sensitive opsins (OPSR), 162
Reese, M. G., 157
Reflected light, 225–226
Regional chromosome assembly, 20
Regulatory T cells, 45
Relative entropy, 147–149
Relative entropy site-selection

problem, 180–182
Gibbs sampling approach to,

181–182
greedy approach to, 180–181

Relative-frequency approach to
definition of probability, 24

Relativistic transformation of
coordinates, 259–267

Relaxation times, 250, 252
Repeating dinucleotide sequences, 14
Repeats (exercise), 78, 109
Repetitive sequences, 23
REPfind search engine, 86
REPuter software, 86
Residues:

aligned, 116
homologous, 116
mammalian, 7
mononucleotide, 17

Resolution, 226
Restriction mapping (exercise), 281
Retina, 222–223
Reverse of sequence (exercise), 73
Reverse transcriptase, 60

 I n d e x 317

Reverse-factor algorithm (exercise),
107

Reverse-phase chromatography, 12
Rheumatoid arthritis, 44
Rhodopsin (OPSD) sequences, 162
RHS (see Right-hand side)
Ribosome-binding site, 185
Right-hand side (RHS), 91, 255
Riis and Krough ensemble method,

198
RNA, 16
RNA by transcription, 22
Root list, 183
Root mean squared speed, 253
Root node, 121
ROSETTA, 187–188
Rost, B., 196

SS
Sacred pond (exercise), 279
Salt precipitation, 9
SAM (sequence-alignment modeling)

system (exercise), 174
Sample preparation, 219
Sample space, 148
Sampling, with replacement, 27, 28
SAM-T99 (exercise), 208
Sander, C., 196
Sanger, Sir Frederick, 2, 6–8, 17, 42, 216
Sanger’s method, 10
Saturated condition, 229
Scaffolding, 2
Scaffolds, 20
Scanners, objective lens–based

microarray, 224
Scanning microscopes, 217, 219,

224–227
Scattered light, 225–226
Schena, Mark, 213, 214
Schleiermacher, C., 89
Scratch and dig specification, 230
Scrubbing of SO2 (exercise), 280
SD site finding (see Shine Dalgarno site

finding)
SD sites, 185–186
Secondary structure, of proteins, 5–6,

191–203
and DAG-RNNs, 200–201
and HMMs, 153, 199–200
and LOC3D, 201–203
and neural networks, 193–196
and PHD server, 196–198
prediction of, 192
and Riis–Krogh ensemble method,

198–199
types of, 46

Second-best grade of alignment
(exercise), 73

Second-order Markov model, 135
Sedimentation, 9
Seed alignment, 153
Sejnowski, T. J., 192, 195
Selective deprotection, 231
Selective target saturation, 229–230
Self-normalization, 240
Semiglobal alignment, 55
Sensitivity, 226
Sequence alignment:

automated, 51
biologic, 190
defined, 41
grading function for, 47–50
HMMs for, 152–153, 187
multiple (see Multiple-sequence

alignment)
objective of, 42
pairwise (see Pairwise alignment)
rationale for studying, 43–47

Sequence database searching, 45, 46
Sequence distribution:

electrophoresis in measurement of,
245–246

with high degree of alternation
(exercise), 75

of insulin, 6–9
Sequence distribution microstructure

(exercise), 72
Sequence length, 135
Sequence representation, suffix-tree

(see Suffix tree(s))
Sequence-alignment modeling (SAM)

system (exercise), 174
Sequencing errors (exercise), 83–84
Serine, 4, 8, 66
Sharma, K. R., 30, 65, 255, 272
Sharma distribution, 30
Shift or algorithm (exercise), 103–104
Shine Dalgarno (SD) site finding,

185–187
Shockley, William B., 217
Shockley Semiconductor Laboratories,

217
Shotgun sequencing, 46
SHUFFLE-LAGAN (exercise), 112
Sickle-cell patients, 216
Side chain, 3
Sigma pi networks, 193
Signal anchor model, 162–163
Signal compression, 230
Signal peptide model, 162–163
Significant diagonals, 65
Silane reagents, 230
Silica-gel chromatography, 7

 318 I n d e x

Silicon-based fabrication, 217
Simian varicella virus (SVV), 77
Simon algorithm (exercise), 104
Single-nucleotide polymorphisms

(SNPs), 21
Site finding, 185–187
Site profile, 148
Sites, 141–143
Skewness, 26
Skylab, 248–249
SLAM program, 187–189
SMART database, 202
Smith, T. F., 55
Smith algorithm (exercise), 106–107
Smith and Waterman algorithm, 59–60
Smith and Waterman’s seminal article

(exercise), 81
SNPs (single-nucleotide

polymorphisms), 21
SO2 scrubbing (exercise), 280
“Soft” desorption ionization, 10
Solid dissolution into a falling film

(exercise), 284–285
Solids, 247
Solubility, 247
Sonnhammer, E. L., 200
Soot from a steam engine (exercise),

284
SP (sum-of-pairs) grade, 117
Space efficiency, 56
Space required, 58
Sparse dynamic programming method

for LCS from fragments (exercise),
113

Sparse table (exercise), 80–81
Spatial addressing, 224
Specific binding, 216
Spectrometry, mass, 10
Speech recognition, 134
Speed, T. P., 237
Spiked-controls method, 237–238
Spiracles, diffusion of oxygen through

(exercise), 279–280
Spliced alignment algorithm, 190, 191
Splice-site predictor, 157–158
Spot software, 238
Square, 88–89
Stability (exercises):

of global alignment, 81
of local alignment, 81

Staircase table (exercise), 81–82
STAMP (exercise), 128–129
Start node, 92
Start state, 145
Stationary assumption, 145
Stationary Markov chain, 135

Statistical inference, 30–31
Statistics, 24
Steady diffusion in a hollow sphere

(exercise), 284
Steam engine soot (exercise),

284
Steiner trees, 189
Stepwise coupling efficiency, 234
Stereoisomerism, 5
Steric availability, 230
Stokes shift, 223
Stokes-Einstein equation, 251
Stop codons, 15
Stop node, 93
Straight spaces, 123
Strand state, 196
Streaming sequence, against

suffix tree, 89–91
String(s):

with alternating sequence
distribution (exercise), 76

with block sequence distribution
architecture (exercise), 76

containing pattern P (exercise),
109

defined, 47, 91
String algorithms, 91–97

Boyer-Moore, 94–96
finite automaton, 96–97
Knuth-Morris-Pratt, 92–94
Rabin-Karp, 92
suffix trees in, 97–98

String alignment, 48
String length, 48
String matching, 99–100

automata for, 96–97
KMP algorithm for, 92
preprocessing/matching times for,

91
problem of, 91
with suffix trees (exercise), 110
suffix trees for, 97–98

Struthio camelus, 71
Student t distribution, 29
Subcellular localization, 201–203
Subquadratic algorithms, 57–58
Subsequence(s):

longest common problems, 55,
57–58, 63, 73

maximum problems, 182–184
of strings, 31, 49

Substitution grade, of alignment
matrix, 66

Substitution matrices, 150
Substrates, 213–214
Sucrose density gradients, 9

 I n d e x 319

Suffix forest (exercises), 110, 128
Suffix function, 97
Suffix tree(s), 85–91

description of, 85–86
McCreight’s algorithm for

construction of (exercise), 108
programs based on, 86–87
sequence-representation algorithm

using, 88–89
set of patterns using (exercise), 110
streaming sequence against,

89–91
in string algorithms, 97–98

Sugar-phosphate chain, 12
Sumner, James B., 2
Sum-of-pairs (SP) grade, 117
Superposition of signal sources, 227
Supersequence (exercises):

for global alignment, 77–78
for local alignment, 78

Supervised learning, 195
Surface flux, 261–262
Svedberg, T., 9
Swaroop, Anand, 222–223
Swissprot, 153–155
Swissprot 34, 154
Synechocystis spp., 186
Synonyms, 15
Synthetic oligonucleotides, 215,

231–233
Sze, S. H., 190
Szymanski, T. G., 55, 57

TT
T cells, 44, 45
t score, 186
Taitel paradox, 254–259
Tanaka, Koichi, 10
Tandem array, 89
Tandem repeats, 88–89
Target concentration, 227–228
Target density, 227, 228
Target excess, 229
Target-probe binding, 229
T-COFFEE (exercise) (see Tree-based

consistency objective function for
alignment evaluation (exercise))

Teaching in ANN, 193
TeleChem, 217
Temperature, 220, 264
Temperature distribution, 254–255, 259
Termonomers, 135
Terpolymers, 135
Tertiary structure, of proteins, 6
Tetrapeptides, 192
Tetrapolymers, 135

Theorie Analytique des Probabilities
(P. de Laplace), 23

Thermal devices, 233
Thermatoga maritima, 185
Thieleria parva, 184
Thin-layer chromatography (TLC),

11–12
Third-order Markov model, 137–139
3D protein structure prediction,

200–201
Threonine, 4
Threshold, 194
Throughput, 227
Thymine, 12, 18
TIGR (see Institute of Genomic

Research)
Time analysis, 56, 119–121
Time domain solution, 256
Time efficiency:

formula for, 58
tradeoff between optimality and

(exercise), 79
Time lag, 264, 268
Tiselius, A., 9
TLC (see Thin-layer chromatography)
TMHMM (transmembrane HMM), 200
Tobacco mosaic virus diffusion

coefficient (exercise), 279
Tompa, M., 185
Trace, 48
Tractable problems, 118
Tradeoff between time efficiency and

optimality (exercise), 79
Training, in ANN, 195
Training set, 147, 196
Transcription, 19, 216
Transcripts, 20, 22
Transient concentration, 265
Transient diffusion, 270–273
Transition probability, 134–135, 137,

140, 143, 153
Translation, 12, 19, 22
Transmembrane HMM (TMHMM),

200
Transversions, 151
Tree-based consistency objective

function for alignment evaluation
(T-COFFEE) (exercise),
127–128

Treponema pallidum, 185
Trichloroacetic acid, 234
Triplet codes, 15
Triplets, 13
tRNA structure, 16
Tryptophan, 4, 5
Tuppy, H., 7

 320 I n d e x

Turbo reverse-factor algorithm
(exercise), 107–108

Turing’s halting problem, 118
Two-dimensional gel electrophoresis, 11
Type 1 diabetes, 45
Type I error, 31
Type II error, 31
Tyrosine, 4

UU
UK33-HCMVA, 155
Ukkonen, E., 63, 85
Ultracentrifuge, 9
Uniform distribution, 28, 148
Uniformity, 226–227
Unigene database, 64
Universality, 15
University of Houston, 222
Unsupervised learning, 195
Unweighted pair group method with

arithmetric mean (UPGMA)
(exercise), 127

Uracil, 12
Urease, 2

VV
Valine, 4, 15
Van Emde Boas, P., 58
Variable Length Hidden Markov

Models (VLMMs), 188
Variance, 26, 135
Vasopressin, 8
VEIL, 187
Velocity:

of mass diffusion, 252
mass-propagative, 265

Viruses:
diffusion coefficient of tobacco

mosaic virus (exercise), 279
DNA sequence of simian varicella

virus (exercise), 77
and drug design, 46
genomes in, 21
RNA as genetic material of, 12

Vishkin, U., 98
Viterbi algorithm, 146, 188

Viterbi paths, 154, 160
VLMMs (Variable Length Hidden

Markov Models), 188
Von Mises, Richard, 24

WW
Washington University School of

Medicine, 222
Waterman, M. S., 55
Watson, James D., 12
Wave concentration, 257
Wave temperature, 263, 266
Wavelength difference, 223
Weight matrix, 147
Weight sharing, 198–199
Weighted-average sequence, 124
Weighting, 66
Weiner, P., 85
Wheel HMMs, 156–157
White blood cells, 45
Whole myoglobin, 51
Whole-genome alignment, 86
Whole-genome assembly, 20
Whole-genome shotgun sequencing

method, 20
Wilkins, Maurice, 12
Wilting of lettuce (exercise),

280–281
Window space, 65
Wobble position, 15
Worst-case running time, 32

XX
X-drop algorithm (exercises):

with gap penalty, 78
for global alignment, 78
for local alignment, 78

X-ray crystallography, 6, 192
X-ray diffraction analysis, 2

YY
Yeast phenylalanine tRNA, 16

ZZ
Zanchini, E., 254, 259

	Copyright © 2009 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Preface:
	Acknowledgments:
	1 Preliminaries:
	1:
	1 Molecular Biology:
	1:
	1 Amino Acids and Proteins:
	2 Structures of Proteins:
	3 Sequence Distribution of Insulin:
	4 Bioseparation Techniques:
	5 Nucleic Acids and Genetic Code:
	6 Genomes„Diversity, Size, and Structure:

	2 Probability and Statistics:
	2:
	1 Three Definitions of Probability:
	2 BayesŁ Theorem and Conditional Probability:
	3 Independent Events and BernoulliŁs Theorem:
	4 Discrete Probability Distributions:
	5 Continuous Probability Distributions:
	6 Statistical Inference and Hypothesis Testing:

	3 Which Is Larger, 2[sup(n)] or n[sup(2)]?:
	4 Big O Notation and Asymptotic Order of Functions:

	References and Sources:
	Part 1 Sequence Alignment and Representation:
	2 Alignment of a Pair of Sequences:
	2:
	1 Introduction to Pairwise Sequence Alignment:
	2 Why Study Sequence Alignment:
	3 Alignment Grading Function:
	4 Optimal Global Alignment of a Pair of Sequences:
	5 Dynamic Programming:
	6 Time Analysis and Space Efficiency:
	7 Dynamic Arrays and O(N) Space:
	8 Subquadratic Algorithms for Longest Common Subsequence Problems:
	9 Optimal Local Alignment of a Pair of Sequences:
	10 Affine Gap Model:
	11 Greedy Algorithms for Pairwise Alignment:
	12 Other Alignment Methods:
	13 Pam and Blosum Matrices:

	Summary:
	Further Reading:
	Exercises:
	3 Sequence Representation and String Algorithms:
	Objectives:
	3:
	1 Suffix Trees:
	2 Algorithm for Suffix Tree Representation of a Sequence:
	3 Streaming a Sequence Against a Suffix Tree:
	4 String Algorithms:
	5 Suffix Trees in String Algorithms:
	6 Look-up Tables:

	References:
	4 Multiple-Sequence Alignment:
	4:
	1 What Is Multiple-Sequence Alignment?:
	2 Defenitions of Multiple Global Alignment and Sum of Pairs:
	3 Optimal MSA by Dynamic Programming:
	4 Theorem of Wang and Jiang [2]:
	5 What Are NP Complete Problems?:
	6 Center-Star-Alignment Algorithm [4]:
	7 Progressive Alignment Methods:
	8 The Consensus Sequence:
	9 Greedy Method:
	10 Geometry of Multiple Sequences:

	Part 2 Probability Models:
	5 Hidden Markov Models and Applications:
	5:
	1 Introduction:
	2 kth-order Markov Chain:
	3 DNA Sequence and Geometric Distribution [2…4]:
	4 Three Questions in the HMM:
	5 Evaluation Problem and Forward Algorithm:
	6 Decoding Problem and Viterbi Algorithm:
	7 Relative Entropy:
	8 Probabilistic Approach to Phylogeny:
	9 Sequence Alignment Using HMMs:
	10 Protein Families:
	11 Wheel HMMs to Model Periodicity in DNA:
	12 Generalized HMM (GHMM):
	13 Database Mining:
	14 Multiple Alignments:
	15 Classification Using HMMs:
	16 Signal Peptide and Signal Anchor Prediction by HMMs:
	17 Markov Model and Chargaff's Parity Rules:

	6 Gene Finding, Protein Secondary Structure:
	6:
	1 Introduction:
	2 Relative Entropy Site-Selection Problem:
	3 Maximum-Subsequence Problem:
	4 Interpolated Markov Model (IMM):
	5 Shine Dalgarno SD Sites Finding:
	6 Gene Annotation Methods:
	7 Secondary Structures of Proteins:

	Part 3 Measurement Techniques:
	7 Biochips:
	7:
	1 Introduction:
	2 Microarray Detection:
	3 Microarray Surfaces:
	4 Phosphoramadite Synthesis:
	5 Microarray Manufacture:
	6 Normalization for cDNA Microarray Data:

	8 Electrophoretic Techniques and Finite Speed of Diffusion:
	8:
	1 Role of Electrophoresis in the Measurement of Sequence Distribution:
	2 FickŁs Laws of Molecular Diffusion:
	3 Generalized FickŁs Law of Diffusion:
	4 Electrophoresis Apparatus:
	5 Electrophoretic Term, Ballistic Term, and Fick Term in the Governing Equation:

	A: Internet Hotlinks to Public-Domain Databases:
	B: PERL for Bioinformaticists:
	Index:

