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Preface
Database management systems (DBMS) are designed to manage large and complex
data sets. In the past several decades, advances in computing hardware and soft-
ware and the need to handle rapidly accumulating data archived in digital media
have led to significant progress in DBMS research and development. DBMS have
grown from simple software programs that handled flat files on mainframe comput-
ers, which were prohibitively expensive to all but a few prestigious institutions, into
today’s popular form of specialized software platforms underpinning wide ranges
of tasks, which include business transactions, Web searches, inventory manage-
ment, financial forecasts, multimedia development, mobile networks, pervasive
computing, and scientific knowledge discovery. Technologies of DBMS have also
become increasingly sophisticated, diverging from generic relational DBMS into
object-relational DBMS, object-oriented DBMS, in-memory DBMS, semantic Webs
data store, and specialized scientific DBMS. Given the sustained exponential data
growth rate brought forth by continued adoption of computing in major industries
and new inventions of personal digital devices, one can safely predict that DBMS
development will continue to thrive in the next millennium.

In this book, we want to share with our readers some fresh research perspectives
of post-genome biology data management, a fast-growing area at the intersection of
life sciences and scientific DBMS domains. Efficient experimental techniques, pri-
marily DNA sequencing, microarrays, protein mass spectrometers, and
nanotechnology instruments, have been riding the wave of the digital revolution in
the recent 20 years, leading to an influx of high-throughput biological data. This
information overload in biology has created new post-genome biology studies such
as genomics, functional genomics, proteomics, and metabolomics—collectively
known as “omics” sciences in biology. While most experimental biologists are still
making the transition from one-gene-at-a-time type of studies to the high-through-
put data analysis mindset, many leaders of the field have already begun exploring
new research and industrial application opportunities. For example, managing and
interpreting massive omics data prelude ultimate systems biology studies, in which
one may analyze disparate forms of biological data and uncover coordinated func-
tions of the underlying biological systems at the molecular and cellular signalling
network level. On the practical side, understanding diverse intricate interplays
between environmental stimuli and genetic predisposition through omics evidence
can help pharmaceutical scientists design drugs that target human proteins with
high therapeutic values and low toxicological profiles. With data management tools
to handle terabytes of omics data already released in the public domain, the promise
of post-genome biology looms large.
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Compared with data from general business application domains, omics data has
many unique characteristics that make them challenging to manage. Examples of
these data management challenges are:

1. Omics data tends to have more complex and more fast-evolving data
structures than business data. Biological data representation often depends
on scientific application scenarios. For example, biological sequences such as
DNA and proteins can be either represented as simple character strings or
connected nodes in three-dimensional spatial vectors. Data representation is
an essential first step.

2. Omics data is more likely to come from more heterogeneously distributed
locations than business data. To study systems biology, a bioinformatics
researcher may routinely download genome data from the Genome
Database Center at the University of California, Santa Cruz, collect
literature abstracts from the PubMed database at the National Library of
Medicine in Maryland, collect proteome information from the Swiss-Prot
database in Switzerland, and collect pathway data from the KEGG database
in Japan. Data integration has to be carefully planned and executed.

3. Omics data tends to reflect the general features of scientific experimental
data: high-volume, noisy, formatted inconsistently, incomplete, and often
semantically incompatible with one another. In contrast, data collected from
business transactions tends to contain far fewer errors, is often more
accurate, and shows more consistencies in data formats/coverage.
Meticulous data preprocessing before knowledge discovery are required.

4. Omics data also lags behind business data in standard development. For
example, Gene Ontology (GO) as a standard to control vocabularies for
genes was not around until a decade ago, whereas standards such as
industrial product categories have been around for decades. The ontology
standards and naming standards for pathway biology are still under
development. This makes it difficult to perform mega collaboration, in
which cross-validation of results and knowledge sharing are both essential.

Despite all the challenges, modeling and managing biological data represent sig-
nificant discovery opportunities in the next several decades. The human genome
data bears the ultimate solutions of expanding the several thousand traditional
molecular drug targets into tens of thousands genome drug targets; molecular profil-
ing information, based on individuals using either the microarrays or the proteomics
platform, promises new types of molecular diagnostics and personalized medicine.
As new applications of massive biological data emerge, there will be an increasing
need to address data management research issues in biology.

In this compiled volume, we present to our readers a comprehensive view of
how to model the structure and semantics of biological data from public literature
databases, high-throughput genomics, gene expression profiling, proteomics, and
chemical compound screening projects. The idea of compiling this book, which we
found to be unique, stems from the editors’ past independent work in bioinformatics
and biological data management. While topics in this area are diverse and interdisci-
plinary, we focused on a theme for this book—that is, how to model and manage
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omics biological data in databases. By promoting this theme for the past decade
among ourselves and the contributing authors of this book, we have contributed to
solving complex biological problems and taking biological database management
problems to the next level. We hope our readers can extract similar insights by using
this book as a reference for future related activities.

There are 11 chapters presented in this book. Individual chapters have been
written by selected accomplished research teams active in the research of respective
topics. Each chapter covers an important aspect of the fast-growing topic of biologi-
cal database modeling concepts. Each chapter also addresses its topic with varying
degrees of balance between computational data modeling theories and real-world
applications.

In Chapters 1 through 5, we introduce basic biological database concepts and
general data representation practices essential to post-genome biology. First, bio-
logical data management concepts are introduced (Chapter 1) and major public
database efforts in omics and systems biology studies are summarized (Chapter 2).
Then, biomedical data modeling techniques are introduced (Chapter 3). Next, Gene
Ontology as an established basic set of controlled vocabulary in genome database
annotations is described (Chapter 4). Finally, the latest research on protein ontol-
ogy and the use of related semantic webs technologies are presented to enable read-
ers to make the connection between emerging biological data collection and
integration trends (Chapter 5).

In Chapters 6 through 9, we examine in detail how to develop data manage-
ment techniques to process and analyze high-throughput biological data through
case studies. First, quality control techniques to reduce variations during experi-
mental data collection steps are described (Chapter 6). Then, biological sequence
management experience for a fungi genomics project is discussed (Chapter 7). Next,
data management and data integration methods for microarray-based functional
genomics studies are investigated (Chapter 8). Finally, data management challenges
and opportunities for mass spectrometry based expression proteomics are presented
(Chapter 9).

In Chapters 10 and 11, we delve into the practical aspect, demonstrating how to
apply biological data management for drug discoveries. First, fundamental drug
discovery concepts based on macromolecular structural modeling are introduced
(Chapter 10); then, a data management software system that implements
high-throughput drug compound screenings is discussed (Chapter 11) to conclude
the book.

We hope this book will become a useful resource for bioinformatics graduate
students, researchers, and practitioners interested in managing post-genome biolog-
ical data. By studying the techniques and software applications described in this
book, we hope that bioinformatics students will use the book material as a guide to
acquire basic concepts and theories of post-genome biological data management,
bioinformatics practitioners will find valuable lessons for building future similar
biological data management systems, and researchers will find rewarding research
data management questions to address in the years to come.
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C H A P T E R 1

Introduction to Data Modeling
Amandeep S. Sidhu and Jake Chen

Scientific data is often scattered among heterogeneous data repositories. Exploring
data across multiple data repositories requires the ability to understand and corre-
late their structures (schemas). Such correlations need to address the diversity of
views of the scientific domain represented by different data repositories as well as
the diversity of data modeling languages used for expressing these views. In this
chapter, we introduce the concepts of data modeling and discuss its application to
biological databases.

1.1 Generic Modern Markup Languages

Modern markup languages, such as Standard Generalized Markup Language
(SGML) [1] and eXtensible Markup Language (XML) [2], which were initially con-
ceived for modeling texts, are now receiving increasing attention as formalisms for
data and knowledge modeling. XML is currently establishing itself as a successor of
HyperText Markup Language (HTML) for a better modeling of texts as well as of
other kinds of data. There are several reasons for this evolution. Even though multi-
ple databases may cover the same data, their focus might be different. Modern
markup languages such as SGML and XML are generic in that:

• They serve to specify the semantic structure, not the layout, of documents or
data items.

• They make it possible to freely specify application-dependent document or
data structures.

In the following, the term “data” refers also, but not exclusively, to text data.
Thus, a data item may consist of: (1) text only (such data items are also known as
human-readable documents); (2) nontext only (such data items are also known as
data-oriented documents); or (3) both (such data items are also known as
mixed-model documents). In the terminology of generic markup languages, data
items are called documents. In the following, the term “data item” is used in lieu of
“document” for stressing that not only (structured) texts are meant, but more gen-
erally (structured) data of any kind.
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Widespread specific markup languages such as PostScript or Rich Text Format
(RTF), whose conceptual roots go back to the 1970s, serve to specify the layout of
data items. Here, layout is not exclusively meant as the appearance of a data item
when printed on paper, but more generally as any kind of presentation of a data item
to human perception. Examples of such an extended notion of layout include the
formats of data items as they are displayed on a terminal screen, rendered in the
script on an output device, or presented by any other means on any device.

The family of generic markup languages started in the late 1980s with the con-
ception of its first specimen, SGML. The purpose of a generic markup language is to
specify the semantic—or logical—structure of data items, not their layout. In the fol-
lowing, the term “presentation” is reserved to refer to the layout of a data item in the
extended sense above, while the term “representation” refers to how semantics is
conveyed through structural elements of the underlying data modeling formalism.

The distinction between layout and structure is important, for a layout format is
device or system dependent, whereas a semantic structure should not be. It is desir-
able that the semantic structure of data items be specified independently of any lay-
out. This ensures both:

• Independence of data modeling from data usage;
• Independence of data modeling from presentation devices.

The first property, data independence from usage, is important because data is
rarely used in a single manner only. The second property, data independence from
presentation devices, is important for several reasons. To begin with, different kinds
of presentation devices require different layouts. For example, a structurally com-
plex data item is likely not to be displayed using identical layouts on standard size
screens and on small screens like those of cellular phones. Also, such devices are
likely to become technically obsolete sooner than data. Moreover, a presentation
format does not necessarily fully convey data semantics. For instance, it is common
practice to rely on printed text layout for conveying semantic structure when using
text processing systems or the markup language HTML. This practice often leads to
semantic losses, especially when files are transferred from one text processing sys-
tem to another, because the layout of the one system cannot always be faithfully
mapped into that of the other system.

In order to specify layouts for classes of documents specified in a generic markup
language, so-called style-sheet languages are used in addition. These languages basi-
cally allow the definition of layouts for those structural elements specified with the
markup language. Such definitions do not have to be unique, thus ensuring the desired
independence of the data from their presentations in various contexts.

Generic markup languages (like the XML family of languages) do not impose
any predefined structure, nor any predefined names for the structural elements
occurring in data items. Structure and names can be freely chosen, hence the denom-
ination of generic markup language. Thus, using generic markup languages it is pos-
sible to faithfully model the structure of data items needed in applications and to
name the structural elements of a chosen structure in a way that is natural in the
application context.
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1.2 Modeling Complex Data Structures

Complex structures are essential for they are ubiquitous in data modeling—from
records in programming languages to objects in programming languages, artificial
intelligence, software engineering, databases, and logics for knowledge representa-
tion. The formalisms provided by generic markup languages make it possible to
specify complex structures. Therefore, they are much richer than the data model of
relational databases. They are also richer than the data models of current object
database systems, because they allow optional elements. Optional elements are very
appealing in databases, for they make it possible to express exceptions, which often
occur in practical database applications.

The term “semistructured data” has been coined for emphasizing the possibility
of such exceptions in the framework of structure-conveying data. It is under the
denomination of semistructured data that most database research on using markup
languages for data modeling is currently pursued.

1.3 Data Modeling with General Markup Languages

Data modeling with generic markup languages is an interdisciplinary area of
research at the crossing of four traditionally distinct fields of research:

• Databases;
• Artificial intelligence;
• Information retrieval;
• Document processing.

This convergence is interesting, because each field brings its own focus, meth-
ods, and philosophy.

From databases, the research area of data modeling with generic markup lan-
guages gains an interest for declarative query languages, of which SQL is the most
well-known example. Declarativeness is a loosely defined notion to be understood
here as meaning that the users of such query languages do not have to be aware of
the computation strategy, of the internal organization of the data in memory,
nor—or as little as possible—of termination issues and of efficiency. Indeed, queries
expressed in query languages are automatically optimized. This makes query opti-
mization possible. Query optimization guarantees a predictable “average effi-
ciency,” which is one of the appreciated features of database systems. Also from
databases, the area of data modeling with generic markup languages inherits its
interest for data structures, ensuring an efficient storage, retrieval, and updating of
very large data sets. Conversely, database research itself is enriched by the attention
to text data, to data accessible from the Web, and to richer data models allowing for
exceptions.

From artificial intelligence, the research area gains data and knowledge model-
ing methods that go far beyond the relational or object database models. Artificial
intelligence approaches to knowledge representation have always been driven by
natural language applications, where extremely rich and complex semantics are
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encountered. The need for software interoperability and data interchange in
Web-based applications such as electronic commerce, health care management, and
computational biology (also called bioinformatics) nowadays has led researchers, as
well as practitioners, to express advanced artificial intelligence knowledge represen-
tation formalisms such as description logics by relying upon the generic markup
language XML.

From information retrieval, the research area can learn how to automatically
“grasp” knowledge from the content of—in general, large—texts. The field of infor-
mation retrieval itself gains from the consideration of structured texts, which up
until recently have almost never been considered by the information retrieval
community.

The contributions of the document processing field to the research area of data
modeling with generic markup languages are indeed the generic markup languages
and hyperlink models. Document processing itself might benefit from the interdisci-
plinary approach to data modeling with methods for declarative query answering
and for an efficient storage.

The focus of the research activities described here is on data modeling as it has
emerged from combining techniques and ideas from both databases and artificial
intelligence. As a consequence, issues more specific to one of the fields of databases,
information retrieval, and document processing are likely to receive less attention in
this chapter.

1.4 Ontologies: Enriching Data with Text

Enriching standard data—like the numerical and string data of classical managerial
databases—with more informative texts is an old issue in database research and in
applications known as data dictionaries. Data dictionaries are basically
agreed-upon vocabularies for an application or a class of applications and often tax-
onomies (i.e., classifications of terms).

Recently, the issue has gained new attention and has been enhanced with artifi-
cial intelligence knowledge modeling techniques, leading to so-called ontologies. An
ontology provides a vocabulary whose terms are precisely defined by texts such as
dictionary entries or encyclopedia entries. Further, ontology also defines semantic
relationships between terms using formal modeling techniques, in general taken
from logic-based specification formalisms such as description logics. Thus, ontology
starts from precisely defined basic concepts, building up complex concepts by rely-
ing on relationships that are precisely defined as well. These relationships permit the
construction of taxonomies, but also of richer structures.

With the advent of the World Wide Web and data interchange intensive applica-
tions, ontologies are becoming a key issue. They are used for ensuring software
interoperability and data sharing [3]. In spite of their practical relevance, data dic-
tionaries and ontologies have up until recently not received as much attention from
the database research community as database practitioners might have wished. This
discrepancy clearly reflects the fact that, up until now, textual data was not a central
interest in database research and database system development, nor was the model-
ing of complex semantic relationships as in artificial intelligence knowledge model-

4 Introduction to Data Modeling



ing approaches such as description logics. This seems to be changing now. Argu-
ably, textual data and the modeling of complex semantic relationships are gaining
in importance within database research.

1.5 Hyperlinks for Semantic Modeling

A hyperlink model defines hyperlink types based on semantic relationships between
data items. A browser model defines the behavior of such hyperlinks. The proposed
distinction is analogous to the distinction between a generic markup language,
whose purpose is to model the logical structure of data items, and a style-sheet lan-
guage, whose purpose is to specify the layout for a given logical structure.

A hyperlink model might define the following, semantically characterized,
hyperlink types: (1) hyperlink to new information; (2) hyperlink to alternative
descriptions of the current information; and (3) hyperlink to supplementary infor-
mation. A browser model could then specify that these three types of hyperlinks
behave in the three ways described above. Different browser models may specify the
behavior differently.

It is interesting to investigate different browser models for the same hyperlink
model. There are two reasons. First, in the future many data items are likely to be
browsed using not only standard size screens, but also mini-screens like those of cel-
lular phones or new paper-like electronic output devices like electronic paper
(e-paper), with which browsing will most likely take new forms. Second, if
hyperlinks are to be used for expressing semantic dependencies, which is taken here
as a working assumption, then necessarily browsing along such hyperlinks will not
be uniquely definable. Thus, the distinction between hyperlink model and browser
model proposed here contributes to both independence of data modeling from data
usage and independence of data modeling from presentation devices, which, as
pointed out in Section 1.1, are key issues in data modeling.

A wide class of modeling problems investigated in the areas of artificial intelli-
gence and knowledge representation boils down to defining so-called ontologies.
An ontology is a set of concepts with a set of relationships between concepts. The
concepts represent the basic terms of an application domain, and the meaning of
these basic terms must be precisely specified.

The relationships between concepts are domain independent. A very common
example is the generalization relationship: it relates a more specific concept with a
more general concept, such as rabbit with rodent, rodent with mammal, mammal
with animal, car with vehicle, or house with building. Generalization hierarchies,
so-called taxonomies, can be found in virtually every application domain. Some-
what less obvious is the fact that there are many other domain-independent rela-
tionships, some of them hierarchy-forming. Examples include part-whole
relationships such as component-object (finger/hand, hand/arm), member-collec-
tion (person/family, family/clan), and agent-result (programmer/program, pro-
gram/output) relationships, as well as order relationships and similarity
relationships. A set of such relationships can represent much of the semantics of a
specific domain in a completely domain-independent way.
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It is suggestive to map ontologies to hypertext systems, with data items repre-
senting concepts and hyperlinks representing relationships between concepts. In this
way the hyperlinks are no longer considered as mere contributors to the navigation
infrastructure for a browser, but as constructs of formalism for modeling the
semantics of data.

1.6 Evolving Subject Indexes

Evolution was first identified in biology, but it is one of the fundamental principles
pervading reality. Biology studies a continuously replenished pool of organisms,
classified into species according to certain characteristics which some organisms
have in common. These characteristics may change over time, requiring the defini-
tion of what constitutes a given species to be time dependent and making possible
the emergence of subgroups of organisms of the same species, which may start out as
races or subspecies and eventually split off to become species of their own.

At this level of generality the issue is hard to grasp from the point of view of
knowledge modeling. In most cases it is not even clear which features adequately
describe the members of a “pool” and how such features contribute to the classifica-
tion inside the pool. So let us focus the issue to cases where there is a pool of
semi-structured data items that model members of some pool in reality, and some
parts of these data items correspond to classification features. For example, such a
data item might be a research article with classification features including an author
and a date, a list of keywords, and a list of cited articles. It does not matter whether
the keywords are provided by the author or automatically extracted from the article
using information retrieval methods. Given the classification features, it is possible
to establish relationships between data items. In the example domain of research
articles, straightforward relationships would be written by the same author, written
before, and cited by; and somewhat less straightforward relationships would be sim-
ilar subject and taken up and advanced by.

Appropriate numeric measures of the density of such relationships then allow
the identification of data items that are condensation kernels for classes, and mea-
sures of the distance from those condensation kernels might define the boundaries of
the classes. Taking into account the relationships along the temporal dimension, one
can distinguish condensation kernels at different times and identify metamorphoses
of classes [4]. This sketched approach differs from ontologies in several important
ways: the condensations kernels and classes cannot be predefined, and membership
of data items in classes is fuzzy and time dependent. The research issue would be to
integrate numerical and fuzzy notions into the framework of semi-structured data.

1.7 Languages

There is intense activity on query languages for XML-inspired database query lan-
guages [5, 6]. Recently, XQuery [7] emerged as the query language of choice for
XML. Because XQuery relies upon XPath [8], XQuery is navigational. It is possible
to express in XPath/XQuery queries that express redundant (e.g., back and forth)
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traversals through an XML document tree. Approaches inspired by or related to
logic programming have been proposed, which aim at a more declarative—in the
sense of less navigational—query-answering for XML and semistructured data.
One might call such approaches positional as opposed to navigational. This seems
to be a very promising direction of research.

1.8 Views

Views are an essential feature of databases, for they ensure the conceptual inde-
pendence needed in most applications between the primary data stored in the data-
base and various interpretations, such as partial look-ups, of the stored data. Most
applications based on databases rely on views. Views also make sense in texts, espe-
cially in texts with complex structures and/or contents.

Having different texts for different purposes would present several drawbacks.
First, this would induce redundancies. Second, because of these redundancies, the
approach would be error prone. Third, the consistency between the different texts
giving complementary views of the same content would be difficult to maintain,
which is yet another possible source of errors. For these reasons, it is desirable to
model a notion of view while specifying the semantics of the considered documents.

1.9 Modeling Biological Data

Modern biology, particularly genomic research, is data and computation intensive.
In biology in general and in genomic research in particular, it is a common practice
nowadays to build databases of biological data. Most biological databases
are—freely or not—accessible through the Web.

From the viewpoint of data modeling, especially of data modeling with markup
languages, biological data and biological databases are interesting for several
reasons:

• Biological data is subject to both general building laws, the discovery of which
is a primary objective of biology, and exceptions. (The admittance of excep-
tions distinguishes modern markup languages from traditional data modeling
formalisms.)

• Biological databases are based upon a multitude of data schemes. For most
types of biological data there are no generally accepted data models or
ontologies. (The resulting irregularities in structure are another form of
exceptions and thus a case for modern markup languages.)

• Most biological databases contain data items that are enriched with texts.
Typically such texts explain assumptions made in building up a data item.
(Modern markup languages were designed for text in the first place.)

• Sophisticated querying of biological databases is an essential task in searching
for laws governing biological data and processes. The querying has to take
into account the irregularities because of exceptions, different data models,
and enrichments with text.
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• Generic markup languages, especially XML, are increasingly being used for
modeling biological data.

Note also that most biological databases are, at least potentially, very large. For
this reason, biological databases are also an interesting application from the view-
point of (conventional) database system research and development.

Unfortunately, biological data modeling is rather difficult to understand for
most computer scientists. These databases and the research issues they raise are not
widely known outside computational biology. This is unfortunate because it pre-
vents a fruitful cross-fertilization between application-driven computer science
research, as mostly practiced by biologists and computational biologists, and
method-driven computer science research, as practiced by computer science
generalists.

An interesting research issue is to investigate, from the general computer science
viewpoint, which are the essential aspects of biological data modeling. In this
respect, approaches based on description logics seem especially promising. A further
interesting research issue is to investigate whether specific querying methods are
needed for biological databases.
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C H A P T E R 2

Public Biological Databases for -Omics
Studies in Medicine

Viroj Wiwanitkit

The amount of biomedical information grows day by day. At present, the collection
and systematization of medical information is developed from collections of
hardcopy data in libraries and the collections of electronic data in computers.
Several public bioinformatics databases have been developed in recent years. This
chapter summarizes the application of public databases in genomics, proteomics,
metabolomics, pharmacogenomics, and systomics in medicine.

2.1 Introduction

Computer applications in medicine start from the point of view of the levels of
information processing, as suggested by van Herwijnen, and follow current
research directions [1]. Current applications cover the subjects of communication,
databases, complex calculations (including signal analysis and image analysis
techniques), pattern recognition, and expert systems [1]. It is accepted that the use
of computer technology in medicine is no longer the domain of only a few
gadget-happy high tech aficionados, but rather reflects the rapid pace of medical
progress [2]. With this in mind, the Council on Long-Range Planning and
Development and the Council on Scientific Affairs of the American Medical
Association have developed an informational report on medical informatics [2].
The report states that the technology for producing information about medicine
and patients was current, but that the technology for managing this information
had not kept up, at least to the extent of it being available in medical facilities where
it was needed [2]. The continuing development of the physician as computer user
will create a more efficient work environment for the physician while improving
patient care at the same time [2]. In addition, a system design that addresses this
concern by encouraging information sharing, reducing data duplication, and
creating a database to produce needed statistical and management reports is
important [3]. In this chapter, application of public databases in comparative
genomics, proteomics, metabolomics, pharmacogenomics, and systomics in
medicine is reviewed and presented.
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2.2 Public Databases in Medicine

Presently, there are a number of generated databases in the field of medicine. Some
are accessible to the public, and others are private. The use of public databases in
medicine can enhance quality and effectiveness of patient care and the health of the
public in general. Renschler [4] said that publications could be retrieved and down-
loaded anywhere and any time with the introduction of electronic publishing and full
text databases becoming available. In addition, study groups for practice-based
learning can, by using information technology, prepare themselves for discussions of
their problems or of simulated cases which can be systematically provided by central
organizations [4]. Renschler also mentioned that a pilot study showed great interest
in the application of information technology: 80% of the responding colleagues
showed interest in occasional or regular use of medical or nonmedical full text data-
bases, preferably using their own computers. However, Keller [5] noted that the vari-
ations of medical practice by private doctors could be due to differences in data they
received from public databases. Hence, it is necessary to establish a high-quality
database that will allow for statewide peer review, exchange of practice guidelines,
and promotion of standardization, all of which can improve outcomes and reduce
costs [6]. To solve this problem, what is needed is the development and validation of
a data collection system which could be used to establish a database from general
practice as a means of health needs assessment as well as for performance review [7].
In addition, Dreyer [8] proposed five guiding principles to help outside contractors
facilitate access to third-party data and avoid pitfalls: (1) understand the sponsor’s
objectives by understanding the purpose of the research; (2) identify and approach
data resources that have appropriate information; (3) consider special issues relating
to accessing confidential information; (4) establish terms of the research engagement
with the sponsor; and (5) establish ground rules with the data provider.

Many open access public databases were launched in the past decade. In the
early period, most of public medical databases were designed for literature searching
purposes. Health sciences libraries in the United States use the National Library of
Medicine (NLM) DOCLINE system to request more than 2 million items annually
through interlibrary loan (ILL), and 97% of all ILL requests are for journal articles
[9]. The most well-known medical database provided by NLM is Entrez PubMed or
Pubmed (www.pubmed.com). This database was developed by the National Center
for Biotechnology Information (NCBI) at NLM, located at the National Institutes of
Health (NIH). In addition to PubMed, NCBI presently provides other public
medical databases for several proposes, including nucleotide and protein sequences,
protein structures, complete genomes, taxonomy, Online Mendalian Inheritance in
Man (OMIM), and many others (Table 2.1).

Due to a dramatic increase in genomic and proteomic data in public archives in
recent years, many public databases in bioinformatics have been launched. Data-
bases and expert systems for several diseases, programs for segregation and linkage
analysis, certain DNA and protein sequence databases, and information resources in
general for molecular biology are addressed [10]. These systems can be effectively
used with newly developed techniques of information exchange based on interna-
tional computer networks [10]. A summary of some important applications of the
bioinformatics databases in medicine will be discussed in the following section.
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2.3 Application of Public Bioinformatics Database in Medicine

2.3.1 Application of Genomic Database

Now with the complete genome sequences of human and other species in hand,
detailed analyses of the genome sequences will undoubtedly improve our under-
standing of biological systems, and public databases become very useful tools [11].
However, because genomic sequences are potential sources of profit for the biotech-
nology and pharmaceutical industries, many private companies seek to limit access
to this information [12]. Marks and Steinberg [12] state that some have argued that
this would impede scientific progress and increase the cost of basic research, while
others have argued that the privatization of genetic information was needed to
assure profits and generate the considerable funding necessary to bring therapeutic
products to the market. Controversy over intellectual property rights of the results
of large-scale cDNA sequencing raises intriguing questions about the roles of the
public and private sectors in genomics research, and about who stands to benefit
and who stands to lose from the private appropriation of genomic information [13].
Eisenhaber et al. [13] said that while the U.S. Patent and Trademark Office had
rejected patent applications on cDNA fragments of unknown function from the
NIH, private firms had pursued three distinct strategies for exploiting unpatented
cDNA sequence information: exclusive licensing, nonexclusive licensing, and dedi-
cation to public domain. Bentley [14] stated that genomic sequence information
should be released and made freely available in the public domain. Marks and
Steinberg [12] concluded that both private funding and public access to information
are important in genetic research. In addition, Marks and Steinberg noted that pre-
cedents for compromise are necessary, as is increased dialog between private and
public interests in order to ensure continued advancements in genetic science and
medicine.

Many public tools based on genomic databases have been developed (Table 2.2
[15–19]). As we enter the post-genomic era, with the accelerating availability of
complete genome sequences, new theoretical approaches, and new experimental
techniques, our ability to dissect cellular processes at the molecular level continues
to expand [15]. With newly developed tools, many advances have been realized.
Recent advances include: (1) the application of RNA interference methods to
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Table 2.1 Some Public Medical Databases Provided by NCBI

Database Usefulness

Pubmed Collection of journal literatures

Entrez Genome Collection of genome of organisms

Entrez Protein Collection of protein sequences compiled from several sources including
SwissProt, PIR, PRF, PDB

Entrez Nucleotide Collection of sequences from several sources, including GenBank,
RefSeq, and PDB

Entrez Structure Collection of 3D macromolecular structures, including proteins and
polynucleotides

OMIM Collection of human genes and genetic disorders

GENSAT Collection of expression of genes in the central nervous system of the
mouse, using both in situ hybridization and transgenic mouse techniques



characterize loss-of-function phenotype genes in higher eukaryotes; (2) comparative
analysis of human and other organism genome sequences; and (3) methods for
reconciling contradictory phylogenetic reconstruction [15].

Since sequence databases represent an enormous resource of phylogenetic
information, tools are necessary for accessing that information in order to: (1) assess
the amount of evolutionary information in these databases that may be suitable for
phylogenetic reconstruction and (2) identify areas of taxonomy that are
underrepresented for specific gene sequences [20]. In phylogenetic studies, multiple
alignments have been used [21].

With the explosion of sequence databases and with the establishment of
numerous specialized biological databases, multiple alignment programs must
evolve to successfully rise to the new challenges of the post-genomic era [21]. The
exploitation of multiple alignments in genome annotation projects represents a
qualitative leap in the functional analysis process, bringing the way to reliable
phylogenetic analysis [21]. In 2005, MaM (http://compbio.cs.sfu.ca/MAM.htm), a
new software tool that processes and manipulates multiple alignments of genomic
sequence, was launched by Alkan et al. MaM computes the exact location of
common repeat elements, exons, and unique regions within aligned genomics
sequences using a variety of user identified programs, databases, and/or tables [22].
The program can extract subalignments, corresponding to these various regions of
DNA, to be analyzed independently or in conjunction with other elements of
genomic DNA [22]. In addition, the program could facilitate the phylogenetic
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Table 2.2 Some Bioinformatics Tools on Genomics and Their Application

Tool Application

1. MICheck [16] This tool enables rapid verification of sets of annotated genes and frame shifts in
previously published bacterial genomes. The Web interface allows one easily to
investigate the MICheck results—that is, inaccurate or missed gene annotations: a
graphical representation is drawn, in which the genomic context of a unique coding
DNA sequence annotation or a predicted frame shift is given, using information on
the coding potential (curves) and annotation of the neighboring genes.

2. Pegasys [17] This tool includes numerous tools for pair-wise and multiple sequence alignment, ab
initio gene prediction, RNA gene detection, masking repetitive sequences in genomic
DNA as well as filters for database formatting and processing raw output from
various analysis tools. It enables biologists and bioinformaticians to create and
manage sequence analysis workflows.

3. PartiGene [18] This tool is an integrated sequence analysis suite that uses freely available public
domain software to: (1) process raw trace chromatograms into sequence objects
suitable for submission to dbEST; (2) place these sequences within a genomic context;
(3) perform customizable first-pass annotation of the data; and (4) present the data as
HTML tables and an SQL database resource. It has been used to create a number of
nonmodel organism database resources including NEMBASE
(http://www.nematodes.org) and LumbriBase (http://www.earthworms.org/). This
tool is a Java-based computer application that serves as a workbench for
genome-wide analysis through visual interaction. The application deals with various
experimental information concerning both DNA and protein sequences (derived from
public sequence databases or proprietary data sources) and metadata obtained by
various prediction algorithms, classification schemes, or user-defined features.
Interaction with a graphical user interface (GUI) allows easy extraction of genomic
and proteomic data referring to the sequence itself, sequence features, or general
structural and functional features.



analysis and processing of different portions of genomic sequence as part of
large-scale sequencing efforts [22].

Studies on the phylogenetic of the pathogen virus are a good application in
medicine. For example, genetic analysis of parvovirus B19 has been carried out
mainly to establish a framework to track molecular epidemiology of the virus and to
correlate sequence variability with different pathological and clinical
manifestations of the virus [23]. Gallinella et al. [23] said that most studies showed
that the genetic variability of B19 virus was low, and that molecular epidemiology
was possible only on a limited geographical and temporal setting. They also said
that no clear correlations were present between genome sequence and distinctive
pathological and clinical manifestations, but that, more recently, several viral
isolates had been identified, showing remarkable sequence diversity with respect to
reference sequences [23]. They mentioned that identification of variant isolates
added to the knowledge of genetic diversity in this virus group and allowed the
identification of three divergent genetic clusters [23]. They proposed that these
variant isolates posed interesting questions regarding the real extent of genetic
variability in the human erythroviruses, the relevance of these viruses in terms of
epidemiology, and their possible implication in the pathogenesis of
erythrovirus-related diseases [23]. Many other similar applications are performed
in advance research in infectious medicine. Many reports on genetic epidemiology
of pathogens are based on the application of genomic databases. In 2005, Lee et al.
[24] performed a study to document the prevalence of Ehrlichia chaffeensis
infection in Haemaphysalis longicornis ticks from Korea by PCR sequencing and
performed additional phylogenetic analysis based on 16S rRNA gene. In this study,
genomic DNAs extracted from 1,288 ticks collected from grass vegetation and
various animals from nine provinces of Korea were subjected to screening by
nested-PCR based on amplification of 16S rRNA gene fragments [24]. They found
that E. chaffeensis-specific fragment of 16S rRNA was amplified from 4.2%
(26/611) tick samples, and the comparison of the nucleotide sequence of 16S rRNA
gene from one tick (EC-PGHL, GenBank accession number AY35042) with the
sequences of 20 E. chaffeensis strains available in the database showed that
EC-PGHL was 100% identical or similar to the Arkansas (AF416764), the Sapulpa
(U60476), and the 91HE17 (U23503) strains [24]. Fadiel et al. [25] performed
another study which aimed at exploring genomic changes mandated by organismal
adaptation to its ecological niches. In this study, coding sequences from three
phylogenetically related bacterial species (Mycoplasma genitalium, M.
pneumoniae, and Ureaplasma urealyticum) were subject to in-depth sequence
analyses [25]. They found that clear similarities in transcriptome structure were
identified among the functionally similar species M. genitalium and U. urealyticum,
while no such relationship was identified among the phylogenetically related species
M. genitalium and M. pneumoniae [25]. They concluded that, in these bacterial
species, environmental stimuli might be more influential in shaping sequence
signatures than phylogenetic relationships and suggested that molecular signatures
within the transcriptomes of the species examined were likely to be a product of
evolutionary adaptation to diverse environmental ecological stimuli, and not a
result of common phylogeny [25].
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Indeed, within-species sequence variation data are of special interest since they
contain information about recent population/species history, as well as the
molecular evolutionary forces currently in action in natural populations [26]. This
data, however, is presently dispersed within generalist databases, and is difficult to
access [26]. The variation data of human DNA sequence has become more and more
useful not only for studying the origin, evolution, and the mechanisms of
maintenance of genetic variability in human populations, but also for detection of
genetic association in complex diseases such as diabetes, obesity, and hypertension
[27]. Phylogenetic foot printing, in which cross-species sequence alignment among
orthologous genes is applied to locate conserved sequence blocks, is an effective
strategy to attack this problem [28]. Single nucleotide polymorphisms (SNPs) in
sequence contribute to the heterogeneity and might disrupt or enhance their
regulatory activity. The study of SNPs will help in functional evaluation of SNPs.
Many genomic databases have been launched for study of SNPs. For example, Bazin
et al. [26] recently proposed Polymorphix (http://pbil.univlyon1.fr/polymorphix/
query.php), a database dedicated to sequence polymorphism, containing sequences
from the nuclear, mitochondrial, and chloroplastic genomes of every eukaryote
species represented in EMBL. This tool contains within-species homologous
sequence families built using EMBL/GenBank under suitable similarity and
bibliographic criteria [26]. It is a structured database allowing both simple and
complex queries for population genomic studies: alignments within families as well
as phylogenetic trees can be downloaded [26]. Zhao et al. [28] proposed another
tool, PromoLign (http://polly.wustl.edu/promolign/main.html), an online database
application that presents SNPs and transcriptional binding profiles in the context of
human-mouse orthologous sequence alignment with a hyperlink graphical interface.
This tool could be applied to a variety of SNPs and transcription-related studies,
including association genetics, population genetics, and pharmacogenomics [28]. In
addition, other databases such as dbSNP, CGAP, HGBASE, JST, and Go!Poly have
been developed to collect and exploit data of SNPs in the United States, Europe,
Japan, and China [27].

The massive amount of SNP data stored at public Internet sites provides
unprecedented access to human genetic variation [29]. Since decision rules for the
selection of functionally relevant SNPs are not available, selecting target SNPs for
disease-gene association studies is, at present, usually done randomly. Luckily, Wjst
[29] recently implemented a computational pipeline that retrieves the genomic
sequence of target genes, collects information about sequence variation, and selects
functional motifs containing SNPs. There are some recent studies on SNPs based on
application of genomic database. Ingersoll et al. [30] studied fibroblast growth
factor receptors (FGFRs), of which mutations in FGFR2 cause more than five
craniosynostosis syndromes. They refined and extended the genomic organization
of the FGFR2 gene by sequencing more than 119 kb of PACs, cosmids, and PCR
products and assembling a region of approximately 175 kb [30], and then compared
between their derived sequence and those in the NCBI database. According to this
study, they detected more than 300 potential SNPs [31]. In 2005, Levran et al. [31]
summarized all sequence variations (mutations and polymorphisms) in FANCA
described in the literature and listed in the Fanconi Anemia Mutation Database, and
reported 61 novel FANCA mutations identified in Fanconi anemia patients
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registered in the International Fanconi Anemia Registry (IFAR). In this study, 38
novel SNPs, previously unreported in the literature or in dbSNP, were also
identified [31]. Twenty-two large genomic deletions were identified by detection of
apparent homozygosity for rare SNPs, and a conserved SNP haplotype block
spanning at least 60 kb of the FANCA gene was identified in individuals from
various ethnic groups [31]. Levran et al. [31] mentioned that FANCA SNP data was
highly useful for carrier testing, prenatal diagnosis, and preimplantation genetic
diagnosis, particularly when the disease-causing mutations were unknown.

Wjst [29] found that most of the SNPs were disrupting transcription factor
binding sites but that only those introducing new sites had a significant depressing
effect on SNP allele frequency. Wjst [29] noted that only 10% of all gene-based
SNPs have sequence-predicted functional relevance, making them a primary target
for genotyping in association studies. Genetic fine mapping technique is also
applied for studies of some specific diseases. This would allow scientists to focus
subsequent laboratory studies on genomic regions already related to diseases by
other scientific methods [32]. Indeed, microarray gene expression studies and
associated genetic mapping studies in many diseases would benefit from a
generalized understanding of the prior work associated with those diseases [28].
Ferraro et al. [33] mapped a gene for severe pediatric gastroesophageal reflux
disease (GERD1) to a 9-cM interval on chromosome 13q14 and presented the
results of DNA sequencing and allelic association analyses that were done in an
attempt to clone the GERD1 gene. Using a candidate transcript approach, Ferraro
et al. screened affected individuals for mutations in all transcribed regions of all
genes, putative genes, and ESTs identified within the 6.2-Mb GERD1 locus based
on alignments with the GenBank cDNA databases. In this work, from a total of 50
identifiable genes and 99 EST clusters in the GERD1 locus, we identified 163
polymorphisms (143 SNPs and 20 INDELs) in 21 genes and 37 ESTs [32]. Ferraro
et al. [33] concluded that the patterns of inheritance and/or the high population
frequencies of all polymorphic alleles identified in this study argued against
causative relationships between any of the alleles and the GERD phenotype. Hu et
al. [34] confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped
it to a finely delimited region. In their study, they compared the coding region
sequences of candidate genes between B6 and D2 mice using RT-PCR,
amplification from genomic DNA, and database searching, and discovered 12
brain-expressed genes with SNPs that predicted a protein amino acid variation [34].
They found that the most compelling seizure susceptibility candidate was Kcnj10
[34]. They concluded that the critical interval contained several candidate genes,
one of which, Kcnj10, exhibited a potentially important polymorphism with regard
to fundamental aspects of seizure susceptibility [34].

In order to take full advantage of the newly available public human genome
sequence data and associated annotations, visualization tools that can accommo-
date the high frequency of alternative splicing in human genes and other complexi-
ties are required [35]. The identification and study of evolutionarily conserved
genomic sequences that surround disease-related genes is a valuable tool to gain
insight into the functional role of these genes and to better elucidate the
pathogenetic mechanisms of disease [36]. The visualization techniques for present-
ing human genomic sequence data and annotations in an interactive, graphical for-
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mat include: (1) one-dimensional semantic zooming to show sequence data
alongside gene structures; (2) color-coding exons to indicate frame of translation;
(3) adjustable, moveable tiers to permit easier inspection of a genomic scene; and (4)
display of protein annotations alongside gene structures to show how alternative
splicing impacts protein structure and function [35]. These techniques are illustrated
using examples from two genome browser applications: the Neomorphic
GeneViewer annotation tool and ProtAnnot, a prototype viewer which shows pro-
tein annotations in the context of genomic sequence [35]. Etim et al. [32] developed
a database of prostate cancer–related chromosomal information from the existing
biomedical literature, named ChromSorter PC. In this work, the input material was
based on a broad literature search with subsequent hand annotation of information
relevant to prostate cancer [32]. Etim et al. [32] used this database to present graphi-
cal summaries of chromosomal regions associated with prostate cancer broken
down by age, ethnicity, and experimental method. In addition, Etim et al. [32]
placed the database information on the human genome using the Generic Genome
Browser tool (http://www.prostategenomics.org/datamining/chromsorter_pc.html),
which allowed the visualization of the data with respect to user generated datasets.
Boccia et al. [36] recently created the Disease Gene Conserved Sequence Tags
(DG-CST) database (http://dgcst.ceinge.unina.it/) for the identification and detailed
annotation of human-mouse conserved genomic sequences that were localized
within or in the vicinity of human disease-related genes. The database contains CST
data, defined as sequences that show at least 70% identity between human and
mouse over a length of at least 100 bp, relative to more than 1,088 genes responsible
for monogenetic human genetic diseases or involved in the susceptibility to
multifactorial/polygenic diseases; and this data might be searched using both simple
and complex queries [36]. In addition, this tool includes a graphic browser that
allows direct visualization of the CSTs and related annotations within the context of
the relative gene and its transcripts [36].

2.3.2 Application of Proteomic Database

Proteomics has rapidly become an important tool for life science research, allowing
the integrated analysis of global protein expression from a single experiment [37].
Previously, to accommodate the complexity and dynamic nature of any proteome,
researchers had to use a combination of disparate protein biochemistry
techniques—often a highly involved and time-consuming process [37]. Now,
however, there are many attempts to develop new bioinformatics tools to solve this
problem. The development of high-throughput proteomic platforms, which
encompass all aspects of proteome analysis and are integrated with genomics and
bioinformatics technology, therefore represents a crucial step for the advancement
of proteomics research [37]. One of the most well-known proteomic databases is the
Swiss-Prot protein knowledge base [38]. This database provides manually
annotated entries for all species, but concentrates on the annotation of entries from
model organisms to ensure the presence of high quality annotation of representative
members of all protein families [38]. The numerous software tools provided on the
Expert Protein Analysis System (ExPASy) Web site might help to identify and reveal
the function of proteins [39]. In addition to bibliographic references, experimental
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results, computed features, and sometimes even contradictory conclusions, direct
links to specialized databases connect amino acid sequences with the current
knowledge in sciences [38]. Recently, a single, centralized, authoritative resource
for protein sequences and functional information, UniProt, was created by joining
the information contained in Swiss-Prot, Translation of the EMBL nucleotide
sequence (TrEMBL), and the Protein Information Resource–Protein Sequence
Database (PIR-PSD) [38]. A rising problem, however, is that an increasing number
of nucleotide sequences are not being submitted to the public databases, and thus
the proteins inferred from such sequences will have difficulties finding their way to
the Swiss-Prot or TrEMBL databases [38]. Many other public tools based on
proteomic databases have been developed (Table 2.3) [40, 41]. With these newly
developed tools, many advances are being generated.

Proteomics, which identifies proteins and analyzes their function in cells, is
foreseen as the next challenge in biomedicine, as diseases in the body are most easily
recognized through the function of their proteins [42]. Achieving this recognition,
however, is more difficult than pure gene analysis since it is estimated that 35,000
genes are present in human DNA, encoding more than 1 million proteins [42]. In
medicine, many proteomic databases have been generated. The integration of
genomic and proteomic data will help to elucidate the functions of proteins in the
pathogenesis of diseases and the aging process, and they could lead to the discovery
of novel drug target proteins and biomarkers of diseases [43, 44]. Of the proteomics
for several diseases, cancer proteomics are very important; because of these
proteomics, medical scientists can understand the protein profiles during the
different stages of the tumorigenesis, and this has brought a new hope for discovery
of the tumor-specific biomarkers [44]. Techniques that allow data mining from a
large input database overcome the slow advances of one protein–one gene
investigation and further address the multifaceted carcinogenesis process occurring
even in cell line mutation-associated malignancy [45]. Proteomics, the study of the
cellular proteins and their activation states, has led the progress in biomarker
development for cancers and is being applied to management assessment [45]. Kohn
et al. [46] said that more achievements have been made and many promising
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Table 2.3 Some Bioinformatics Tools on Proteomics and Their Application

Tool Application

1. ProteomIQ [37] This tool is the combination into a single suite of integrated hardware and software
of sample preparation and tracking, centralized data acquisition and instrument
control, and direct interfacing with genomics and bioinformatics databases tools. It
is useful for the analysis of proteins separated by 2D polyacrylamide gel
electrophoresis.

2. BioBuilder [40] This tool is a Zope-based software tool that was developed to facilitate intuitive
creation of protein databases. Protein data can be entered and annotated through
web forms along with the flexibility to add customized annotation features to
protein entries. A built-in review system permits a global team of scientists to
coordinate their annotation efforts.

3. DBParser [41] This tool is for rapidly culling, merging, and comparing sequence search engine
results from multiple LC-MS/MS peptide analyses. It employs the principle of
parsimony to consolidate redundant protein assignments and derive the most
concise set of proteins consistent with all of the assigned peptide sequences
observed in an experiment or series of experiments.



candidates of tumor-markers have been identified, even though most of them have
not yet been affirmed with the recent use of proteomic tools with the laser capture
microdissection (LCM) technique. Sorace and Zhan [47] recently performed a data
review and reassessment of ovarian cancer serum proteomic profiling. They
analyzed the Ovarian Dataset 8-7-02 downloaded from the Clinical Proteomics
Program Databank Web site, using nonparametric statistics and stepwise
discriminant analysis to develop rules to diagnose patients and to understand
general patterns in the data that might guide future research [47]. Le Naour [48] said
that proteomics could allow serological screening of tumor antigens. Le Naour [48]
noted that proteins eliciting humoral response in cancer could be identified by 2D
Western blot using cancer patient sera, followed by mass spectrometry analysis and
database search. Le Naour [48] mentioned that application of this principle to
different types of cancer could allow us to define several tumor antigens and that the
common occurrence of auto-antibodies to certain of these proteins in different
cancers might be useful in cancer screening and diagnosis, as well as for
immunotherapy.

For infectious diseases, the combined technologies of genomics, proteomics, and
bioinformatics has provided valuable tools for the study of complex phenomena
determined by the action of multiple gene sets in the study of pathogenic bacteria
[49]. There are some recent developments in the establishment of proteomic
databases as well as attempts to define pathogenic determinants at the level of the
proteome for some of the major human pathogens [49]. Proteomics can also provide
practical applications through the identification of immunogenic proteins that may
be potential vaccine targets, as well as in extending our understanding of antibiotic
action [49]. Cash [49] noted that there was little doubt that proteomics has provided
us with new and valuable information on bacterial pathogens and would continue to
be an important source of information in the coming years. In additional to bacteria,
other problematic organisms such as fungus have also been studied based on
proteomic database tools [50].

Another interesting application of the public proteomic database in medicine is
its use as a tool for molecular structure studies. Modeling of secondary, tertiary, and
quaternary structures of proteins can be performed based on the data on their amino
acid sequences in the proteomic database. A good example is the structural
modeling for the uncommon hemoglobin disorders. Wiwanitkit [51, 52] recently
reported the secondary and tertiary structures of hemoglobin Suandok from the
structural analysis based on the data from the public proteomic database. According
to these studies, the significant aberration in the secondary [51] and tertiary
structures [52] of hemoglobin Suandok could not be demonstrated.

2.3.3 Application of the Metabolomics Database

Generally, a large proportion of the genes in any genome encode enzymes of primary
and specialized (secondary) metabolism [53]. Not all primary metabolites—those
that are found in all or most species—have been identified, and only a small portion
of the estimated hundreds of thousand specialized metabolites—those found only in
restricted lineages—have been studied in any species [54]. Fridman and Pichersky
[53] noted that the correlative analysis of extensive metabolic profiling and gene
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expression profiling have proven to be a powerful approach for the identification of
candidate genes and enzymes, particularly those in secondary metabolism [55]. It is
rapidly becoming possible to measure hundreds or thousands of metabolites in
small samples of biological fluids or tissues. Arita [55] said that metabolomics, a
comprehensive extension of traditional targeted metabolite analysis, has recently
attracted much attention as the biological jigsaw puzzle’s missing piece because it
can complement transcriptome and proteome analysis. Metabolic profiling applied
to functional genomics (metabolomics) is in an early stage of development [56].
Fridman and Pichersky [53] said that the final characterization of substrates,
enzymatic activities, and products requires biochemical analysis, which have been
most successful when candidate proteins have homology to other enzymes of
known function. To facilitate the analysis of experiments using post-genomic
technologies, new concepts for linking the vast amount of raw data to a biological
context have to be developed [57]. Visual representations of pathways help
biologists to understand the complex relationships between components of
metabolic network [57].

Since metabolomics is new, the associated database tool (Table 2.4) [58], as
well as the application of the metabolomics database in medicine, is still limited.
German et al. [54] noted that the metabolomics made it possible to assess the meta-
bolic component of nutritional phenotypes and would allow individualized dietary
recommendations. German et al. [54] proposed that the American Society for
Nutritional Science (ASNS) had to take action to ensure that appropriate technolo-
gies were developed and that metabolic databases were constructed with the right
inputs and organization. German et al. [54] also mentioned that the relations
between diet and metabolomic profiles and between those profiles and health and
disease should be established.

2.3.4 Application of Pharmacogenomics Database

Pharmacogenomics is defined to identify the genes that are involved in determining
the responsiveness—and to distinguish responders and nonresponders—to a given
drug [59]. Genome sequencing, transcriptome, and proteome analysis are of
particular significance in pharmacogenomics [59]. Sequencing is used to locate
polymorphisms, and monitoring of gene expression can provide clues about the
genomic response to disease and treatment [59]. Thallinger et al. [60] suggested that
the development of a pharmacogenomics data management system that integrates
public and proprietary databases, clinical datasets, and data mining tools
embedded in a high-performance computing environment should include the
following components: parallel processing systems, storage technologies, network
technologies, databases and database management systems (DBMS), and
application services. In pharmacogenomics, several primary databases are being
generated to understand fundamental biology, identify new drug targets, and look
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Table 2.4 A Bioinformatics Tool on Metabolomics and Its Application

Tool Application

MSFACTs [58] This tool is for metabolomics spectral formatting,
alignment, and conversion.



at compound profiling in a new light [61]. Many public tools based on
pharmacogenomics databases have been developed [62] (Table 2.5). Although great
strides have been made in understanding the diversity of the human genome—such
as the frequency, distribution, and type of genetic variation that exists—the
feasibility of applying this information to uncover useful pharmacogenomics
markers is uncertain [63]. The health care industry is clamoring for access to SNP
databases for use in research in the hope of revolutionizing the drug development
process which will be important for determining the applicability of
pharmacogenomics information to medical practice [63–65].

For a few years, molecular pharmacology has focused on the relationship
between patterns of gene expression and patterns of drug activity. Using a
systematic substructure analysis coupled with statistical correlations of compound
activity with differential gene expression, Blower et al. [66] identified two subclasses
of quinones whose patterns of activity in the National Cancer Institute’s 60-cell line
screening panel (NCI-60) correlate strongly with the expression patterns of
particular genes: (1) the growth inhibitory patterns of an electron-withdrawing
subclass of benzodithiophenedione-containing compounds over the NCI-60 are
highly correlated with the expression patterns of Rab7 and other melanoma-specific
genes; and (2) the inhibitory patterns of indolonaphthoquinone-containing
compounds are highly correlated with the expression patterns of the hematopoietic
lineage-specific gene HS1 and other leukemia genes. Blower et al. [66] also noted
that the approach (SAT, for Structure-Activity-Target) provided a systematic way to
mine databases for the design of further structure-activity studies, particularly to aid
in target and lead identification. The application of pharmacogenomics database in
oncology is of interest at present. Indeed, the association of transporter proteins and
cancer drug resistance has been known for approximately 25 years, with recent
discoveries pointing to an ever-increasing number of ATP binding cassette (ABC)
transporter proteins involved with the response of cancer cells to pharmacotherapy
[67]. Microarray-based expression profiling studies in the field of oncology have
demonstrated encouraging correlations between tumor transcriptional profiles and
eventual patient outcomes [68]. These findings bring great interest in the application
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Table 2.5 Some Bioinformatics Tools on Pharmacogenomics and Their Application

Tool Application

VizStruct [64] This tool uses the first harmonic of the discrete
Fourier transform to map multidimensional data to
two dimensions for visualization. The mapping is
used to visualize several published pharmacokinetic,
pharmacodynamic, and pharmacogenomics data sets.
It is a computationally efficient and effective
approach for visualizing complex, multidimensional
data sets. It could have many useful applications in
the pharmaceutical sciences.

Exploratory Visual Analysis
(EVA) [65]

This tool demonstrates its utility in replicating the
findings of an earlier pharmacogenomics study as
well as elucidating novel biologically plausible
hypotheses. It brings all of the often disparate pieces
of analysis together in an infinitely flexible visual
display that is amenable to any type of statistical
result and biological question.



of transcriptional profiling to samples available from real-time clinical trials, and
clinical pharmacogenomics objectives utilizing transcriptional profiling strategies
are becoming increasingly incorporated into clinical trial study designs [68].
Burczynski et al. [68] said that strategic implementation of transcriptional profiling
in early oncology clinical trials could provide an opportunity to identify predictive
markers of clinical response and eventually provide a substantial step forward
towards the era of personalized medicine.

2.3.5 Application of Systomics Database

Systemic biology is a complexion in advance medicine [69]. Systomics is the new
concept in “omic” science. The collections of metabolomics or systomics lead the
next revolution in human biology. The physionomics or combination of molecular
(functional genomics, transcriptomics), biochemical (proteomics), and analytical
(metabolomics) approaches are still particularly discussed at present [70]. The
application of systomics database in medicine is still limited.
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C H A P T E R 3

Modeling Biomedical Data
Ramez Elmasri, Feng Ji, and Jack Fu

Biological data such as protein structure and function, DNA sequences, and
metabolic pathways require conceptual modeling characteristics that are not
available in traditional conceptual modeling, such as in the widely used
entity-relationship (ER) model and its variant, the enhanced-ER (EER) model. In
particular, there are three constructs that occur frequently in bioinformatics data:
ordered relationships, functional processes, and three-dimensional structures. In
addition, biological data modeling requires many levels of abstraction, from the
DNA/RNA level to higher abstraction levels such as cells, tissues, organs, and
biological systems. In this chapter, we discuss some of the concepts that are needed
for accurate modeling of biological data. We suggest changes to the EER model to
extend it for modeling some of these concepts by introducing specialized formal
relationships for ordering, processes, and molecular spatial structure. These
changes would facilitate more accurate modeling of biological structures and
ontologies, and they can be used in mediator and integrative systems for biological
data sources. We propose new EER schema diagram notation to represent the
ordering of DNA sequences, the three-dimensional structure of proteins, and the
processes of metabolic pathways. We also show how these new concepts can be
implemented in relational databases. Finally, we discuss why multilevel modeling
would enhance the integration of biological models at different levels of
abstraction, and we discuss some preliminary ideas to realize a multilevel model.

3.1 Introduction

Large quantities of biological data are being produced at a phenomenal rate. For
example, the GenBank repository of nucleotide sequences, and their encoded
proteins, has an exponential rate of increase for new entries from 1 million
sequences in 1996 to 46 million in 2005 [1]. To our best knowledge, most molecular
biological databases have evolved from legacy systems and they lack many good
practices of modern database systems [2]. Also, biological data is inherently
complicated in its content, format, meaning, and sources [3, 4]. Storing, retrieving,
and analyzing this data requires a suitable data model. However, many traditional
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data models do not contain sufficient concepts to model frequently occurring
phenomena in biological data. Some work has been done on the conceptual
enhancement of data models to accommodate accurate modeling of biological data.
These enhancements are the main focus of this chapter.

In modeling biological data we notice that there are at least three frequently
occurring concepts: sequence ordering, input/output processes, and molecular
spatial structure. Sequence data, such as nucleotides in DNA/RNA and amino acids
in proteins, has this order property in their physical constructs. Important biological
processes such as gene expression, metabolism, cell signaling, and biochemical
pathway regulation all involve ordered events and input/output processes. The
biological functionality of these entities is totally determined by their internal spatial
molecular structures and various external interactions.

Because of the importance of these types of relationships, there is a need to
model them. Database conceptual models, such as the widely used ER and EER
models, do not easily represent these commonly occurring concepts from
bioinformatics. This is because many traditional database applications do not
require these concepts. Although ordering can be incorporated into relationships by
adding one or more relationship attributes, this would complicate the conceptual
schema and would make it difficult to identify the ordered relationships by looking
at the conceptual schema diagram. It is preferable to have explicit and clear
representations of such important and frequently occurring concepts.

In order to accommodate these features, we suggest significant yet minimal
changes to the EER model by introducing three special types of relationships: the
ordered relationship, the process relationship, and the molecular spatial
relationship. In addition, many relationships in bioinformatics require duplication
of instances in ordered relationships, so we also propose extensions to allow
multisets, or bags, of relationship instances, where needed. Although the notational
changes are minimal, they enhance the modeling power to directly capture these
concepts. We also formally specify these constructs. The proposed extensions to the
EER model that incorporate the above-mentioned omnipresent concepts can be used
to direct subsequent implementation activities. These extensions should facilitate
future work on the development of ontology and mediator systems [5, 6] as well as
data mining and processing tools.

There is already some related work in the literature. For example, Keet [7]
discusses the characteristics of biological data and its effect on Entity Relationship
(ER), Object Oriented (OO), and Object Role Modeling (ORM) methodologies.
Chen and Carlis [8] present a genomic schema element data model to capture this
basic biological sequence notion, but there is no special notation for sequence order.
Ram and Wei. [9] also propose a semantic model for 3D protein structure and DNA
sequences, but their enhancements require many additional constructs and
notations. The ONION framework [10] incorporates sequences in Resource
Description Framework (RDF) methodology. Our extensions differ from these
previous works because we achieve the power to represent all the discussed concepts
with minimal changes to the EER model and its diagrammatic representation, thus
adding considerable representation power with a minimum of additional concepts.

Another important characteristic of biological data modeling is that there are
many different abstraction levels. Most biological data sources focus on gene,
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protein, and pathways data. But biological modeling requires many levels of
abstraction, from the DNA/RNA level to higher abstraction levels such as cells,
tissues, organs, and biological systems. In addition, cross-referencing between the
biological data, the references that discuss how this data was discovered and
interpreted, and the experiments that led to these discoveries, are very important for
biological researchers. Hence, it is important to represent and integrate and
cross-reference data at different levels of abstraction. We introduce some
preliminary ideas of multilevel modeling at the end of the chapter.

This chapter is organized as follows. In Section 3.2, we provide several
examples of sequence ordering, multisets, input/output processes, and molecular
spatial structure, and we establish the data modeling needs for these new concepts.
In Section 3.3, we give formal definitions for ordered, process, and molecular
spatial relationships to enhance the modeling features of the ER/EER models.
Section 3.4 summarizes the new EER notations for these relationships. Section 3.5
gives the details of semantic models for the DNA/gene sequence, the protein 3D
structure, and the molecular pathway. Section 3.6 describes mapping techniques
that can be used for the implementations of our new EER constructs using relational
databases.

Sections 3.7 and 3.8 introduce the concepts of multilevel modeling and discuss
how they can be used in biological data applications. We conclude the chapter
with some observations about our methods and directions for future work, in
Section 3.9.

3.2 Biological Concepts and EER Modeling

This section focuses on the biomolecular subset of biological data. Closely related to
these are the familiar concepts of sequence ordering, multisets, input/output
processes, and molecular spatial structure. We illustrate these concepts using
biological examples and present the associated ER conceptual modeling notation.

3.2.1 Sequence Ordering Concept

Molecular structural data includes linear nucleotide sequences of DNA (genes,
intergenic and regulatory regions), as well as the linear amino acid sequences
(proteins) resulting from gene expression. They are internal properties of biological
entities (in contrast to external properties such as environment), and although both
genetic and protein sequences can change slightly (the basis of evolution), for
modeling purposes it is reasonable to treat them as static.

Example 1 Figure 3.1 shows the biological data of DNA sequence, genes, and
their EER conceptual modeling. A DNA is an ordered sequence of bases A, T, C,
and G. A gene is one segment of a DNA sequence. Different genes may or may not
concatenate to each other. Some genes can be repeated in a DNA sequence; hence,
both order and repetition are needed in the model. We model DNA-Base and
DNA-Gene as an ordered bag (multiset) relationship.
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First, the ordering of elements in these sequences is their most important feature
because changes to that order are likely to impact higher levels of structure and
therefore also function. In Example 1, protein-coding genes are segments in a DNA
sequence, as shown in Figure 3.1(a). Boxes and lines denote genes and intergenic
regions, respectively. Each triplet of the bases A, T, C, and G in these genes
determines one amino acid in the proteins they encode; a single change to one base
can dramatically impact protein function (the classic example of this is sickle cell
anemia). Obviously, in order to capture the ordering relation between DNA and
genes, we need a special relationship for ordering features (symbol O denotes
ordering) in EER models. In addition to the ordering of base pairs, ordering of
sequence subsets (genes and intergenic regions) relative to one another is also
important to model. Figure 3.1(b) is the EER schema for DNA, gene, and intergenic
entities in our extended notation. We represent their relationships as binary
relationship type.

A second important characteristic of modeling molecular data is that sequences
may be a bag (or multiset) rather than a set of relationship instances, since the same
gene (or intergenic sequence) may appear multiple times within the same DNA
sequence, such as in gene homologs or tandem repeated DNA sequence blocks. We
use the letter B in OB to denote that the relationship is an ordered bag that allows
repetition.1 Third, we have to specify the direction of ordering, which applies to all
entities of one type related to a single entity (out of many) of another type. The solid
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dot at one end of the relationship in Figure 3.1(b) indicates that related entities on
this side are ordered.2

3.2.2 Input/Output Concept

Figure 3.2 shows the biological concept of a gene expression process and its EER
conceptual modeling. A process such as transcription or translation in Figure 3.2(a)
relates the data of genes, mRNA sequence, or protein sequence in a directed way.
The entities in a process can have three main participating roles: input, output, or
catalyst [i, o, and c, respectively, in Figure 3.2(b)]. We model transcription or
translation as a process relationship.

Molecular interaction is the key to the dynamics of biological processes such as
gene expression, protein folding, metabolic pathways, and cell signaling.

Example 2 A protein is created from its gene through a series of interactions
known as transcription and translation, as shown in Figure 3.2(a). Some entities act
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as inputs, some as outputs (products), and others (typically enzymes) as catalysts to
steer the process in a certain direction. These three roles in the system of a biochemi-
cal interaction are fundamental to molecular biology and important to any model-
ing scheme. It is also important to reflect hierarchy and subsets in such reactions
since a complex process is made up of a sequence of unit processes resembling the
workflows of assembly lines.

Pathway data has these kinds of attributes. A pathway is a linked set of biochemi-
cal reactions. The product of one reaction is a reactant of, or an enzyme that cata-
lyzes, a subsequent reaction [11]. Figure 3.2(b) is the EER schema for the gene
expression process. In this modified EER model we can represent the dynamic behav-
ior of different agents. For example, mRNA is the output of the transcription process
and an input of the translation process as well. Our extension of the EER model
enables us to incorporate this important input/output process concept. In the nota-
tion shown in Figure 3.2(b), the P in the relationship indicates a process relationship;
the edges marked i represent input entities to the process relationship. Edges marked
o and c represent output entities and catalyst entities, respectively. The arrow direc-
tions also indicate the type of the role of each entity in the process relationship.

3.2.3 Molecular Spatial Relationship Concept

Example 3 Figure 3.3 shows the 3D chemical structure of amino acid alanine and
its EER conceptual modeling. Each amino acid (residue) is composed of various
types of atoms. Some atoms form chemical bonds in 3D space between each other.
We model atoms and residues as molecular spatial relationships.

The function of a molecule is partly determined by its three-dimensional spatial
structure; for example, the structure of DNA affects which regions can be read to
make proteins, and the function of enzymes is often altered by minor influences on
their structure due to changes in temperature, or salt concentration. These spatial
structures are experimentally determined by X-ray crystallography or NMR [12],
which generates topographical measurement data such as bond angles or distances
as well as image data. As previously mentioned, a protein is a polypeptide chain
built from 20 possible amino acids, or residues. Each residue is itself structurally
composed of various types of atoms such as C, H, O, and N, shown in Figure 3.3(a).
Each atom can be treated as a point and its position is thus represented by x, y, z
coordinates in space. How those atoms are positioned can affect their fundamental
chemical interactions, because of charge repulsion and proximity needed for break-
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ing and forming new chemical bonds between the atoms. This type of information is
particularly important to biochemistry research, and is applied to pharmaceutical
design since drug interactions are often adjusted at this level of structure and shape
modifying function. Figure 3.3(b) is the EER schema for the 3D structure of resi-
dues. We use the letters Sp to represent the molecular spatial relationship between
residues and atoms.

3.3 Formal Definitions for EER Extensions

We now give a formal definition for our extensions to the relationship concept in
the ER/EER models. The main concepts in these models are entities and entity types,
relationships and relationship types, attributes, and class/subclass inheritance [13,
Chapters 3 and 4]. Entities represent objects, and relationships represent
interactions or associations among objects. Attributes describe properties of entities
or relationships.

A relation type R among n entity types E1, E2, ..., En defines a set of associations
among the participating entities. Mathematically, R is a set of relationship instances
ri, where each ri associates n entities (e1, e2, ..., en) and each entity ej in ri is a member
of entity type Ej, 1 ≤ j ≤ n. A relationship type can be defined as a subset of the Car-
tesian product E1 × E2 × ... × En. A basic binary relationship in the EER model is a set
of the relationship instances, where each pair (ei, ej) has the properties that ei ∈ E1, ej

∈ E2, and R ⊂ E1 × E2. The next three sections describe formally the proposed new
relationships for enhancing the existing EER model to represent biological data.

3.3.1 Ordered Relationships

To model ordering, we must extend the relationship concept in two directions: (1)
allow related entities to be ordered; and (2) allow repetitions of the relationship
instances. This means that the relationship set must be extended to allow duplicates.
Before giving formal definitions of the extensions to the relationship concept, we
show how we propose to extend the revised diagrammatic notation in order to
minimize the changes to the ER/EER. We propose four types of relationships:

1. The original ER model relationship, which is an unordered set of
relationship instances;

2. An ordered set relationship, where each relationship instance is unique (no
duplicate instances are allowed);

3. An unordered bag relationship, which allows duplicate relationship
instances;

4. An ordered bag relationship, which allows duplicates with ordering and can
be used to model the situations discussed earlier.

The notation for these four relationships is shown in Figure 3.4. The letters O,
B, and OB stand for ordered, bag (or multiset), and ordered bag, respectively. An
edge with the filled circle (or solid dot) indicates that the attached entity type is the
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one whose elements are ordered by the relationship instances that are related to a
specific entity from the other entity type.

We now formalize these four types of relationships. We first define the concepts
of unordered set, ordered set, unordered bag, and ordered bag, and then give the
formal definitions of the relationships.

Let E be a set.
Let E E E

n

× ×K1 24 34 be the set of all ordered n-tuples (e1, e2, ..., en) where e1, e2, ..., en ∈

E.
Let E E E

n

⊗ ⊗ ⊗...1 244 344 by ⊗ En be the set of all unordered n-tuples [e1, e2, ..., en],

where e1, e2, ..., en ∈ E. For convenience, we denote by En and E E E
n

⊗ ⊗ ⊗...1 244 344 by ⊗ En.

Definition 1. Unordered Set.
We say that F is an unordered set on a set E if3

F Fn
n N

⊆
∈
U

where

[ ]{ }F e e e E e e i jn n
n

i j= ∈ ⊗ ≠ ∀ ≠1 2, , , ,K

Definition 2. Ordered Set.
We say that F is an ordered set on a set E if

F Fn
n N

⊆
∈
U

where
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n

i j= ∈ ≠ ∀ ≠1 2, , , ,K

Definition 3. Unordered Bag.
We say that F is an unordered bag on a set E if

F En

n N

⊆ ⊗
∈
U

Definition 4. Ordered Bag.
We say that F is an ordered bag on a set E if
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Definition 5. Unordered Set Relationship.
We say that R is an unordered set relationship between E1 and E2 if R ⊆ E1 × E2.

Definition 6. Ordered Set Relationship.
We say that R is an ordered set relationship between E1 and E2 if R ⊆ E1 × E2, and
for each e ∈ E1, {ej (e, ej) ∈ R, is an ordered set on E2.

Definition 7. Unordered Bag Relationship.
We say that R is an unordered bag relationship between E1 and E2 if R is a multiset
of  elements, and for each e ∈ E1, {ej (e, ej) ∈ R, is an unordered bag on E2.

Definition 8. Ordered Bag Relationship.
We say that R is an ordered bag relationship between E1 and E2 if R is a multiset of
(ei, ej) elements, and for each e ∈ E1, {ej (e, ej) ∈ R, is an ordered bag on E2.

When the ordered relationship of Definitions 6 and 8 are represented
diagrammatically, the dot is on the side of E2. For example, suppose that a DNA
sequence entity with identifier X is as follows:

K K123 K123 K123 K123 KA AC CA AG GT T
gene nongene gene nongene gene

123K

Suppose that A…A, A…A, T…T are genes in the sequence, whereas C…C, and
G…G are non-gene sequences. Then, the relationship instances including genes in
sequence X will be the following ordered list:

( ) ( ) ( )( )K K K K K, , , , , , ,X A A X A A X T T

3.3.2 Process Relationships

There are three basic roles in a process relationship:

• Input(s): entities consumed by the process, for example, by being transformed
to some other entities;

• Output(s): entities produced by the process;
• Catalyst(s): entities that are needed for the process to work.

In Figure 3.5(a), E1 represents the input entity, E2 represents the output entity,
and E3 represents the catalyst entity. Symbol i stands for input, o stands for output,
and c stands for catalyst. We use e1 to represent entities in E1, e2 to represent entities
in E2, and e3 to represent entities in E3.

Definition 9. Process Relationship (Basic Type).
A basic process relationship is defined as a set of relationship instances (e1, e2, e3),
where e1 ∈ E1 represents the input entity, e2 ∈ E2 represents the output entity, and e2

∈ E3 represents the catalyst entity. The relationship instance can also be represented
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as { }{ }e ee
1 2

3 →  , where the catalyst is optional and the input, output, and catalyst

entity types do not have to be distinct.

Definition 10. Process Relationship (General Type).
In general, a process can have multiple inputs, outputs, and catalysts. In Figure
3.5(b), Ei1 ... Ei,j represent the input entities. Eo1 ... Eol represent the output entities.
Ec1 ... Eck represent the catalyst entities. The process relationship is a set of relation-
ship instances:

( )e e e e e ei ij o ol c ck1 1 1, , , , , , ,K K K

where

( ) ( ) ( )e E m j e E m l e E m kim im om om cm cm∈ ≤ ≤ ∈ ≤ ≤ ∈ ≤ ≤1 1 1, ,

3.3.3 Molecular Spatial Relationships

Definition 11. Molecular Spatial Relationship.
A molecular spatial relationship is defined to describe the spatial relationships
among a set of atoms in 3D space. Let A be a set of atoms, and let M be a set of mole-
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cules, as shown in Figure 3.6. The molecular spatial relationship instance is a
3-tuple:

( )a x y z a x y z a x y z forumlani ni ni ni1 1 1 1 2 2 2 2, , , , , , , , , , , , , ,K mi

where (a1, a2, ..., ani) is a group of associated atoms forming a molecule, formula
denotes the chemical composition of the molecule, and mi ∈ M. The xni, yni, zni asso-
ciated with each atom ani describe the 3D atom location in the spatial structure. The
molecular spatial relationship bares some characteristics of aggregation (the reverse
is part-of) relationship in which atom entities are part-of a molecule entity. But it
has its own property, which is that these atom entities are connected by some forces
(bonding) that need explicit modeling.

3.4 Summary of New EER Notation

Table 3.1 summarizes the notation of the proposed new relationships. Notice that
we have added considerable modeling and representation power to the basic rela-
tionship concept in ER models. However, the notation to display all these new com-
plex concepts is not overly complex and hence should be easy to utilize.

3.5 Semantic Data Models of the Molecular Biological System

In this section, we provide the details of the EER conceptual schema of our molecu-
lar biological system that utilize the new EER constructs for the new types of rela-
tionships we defined in Section 3.3. The conceptual schema is roughly divided into
three parts: the DNA/gene sequence, the protein structure, and the pathway.
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Table 3.1 New EER Relationships and Their Usage

EER Relationship Comments

Unordered set General relationship, unique instance.

Ordered set Associates entities with ordering features. The relationship
instances are unique.

Unordered bag Associates entities without ordering features. The relationship
instances can be duplicated.

Ordered bag Associates entities with ordering features. The relationship
instances can be duplicated.

Process Associates different entities by the roles they have in a process.
The roles are input, output, and catalyst.

Molecular spatial Associates atom entities with molecule entities in 3D space.

R

Sp

A M

Figure 3.6 EER notation for molecular spatial relationship.



3.5.1 The DNA/Gene Model

As we know, a DNA sequence is made up of four nucleotide bases in a specific order.
A gene is one segment of a DNA sequence with a specific function. Usually, DNA
sequences come from different sources of organisms, which have well-established
phylogenetic classification schema, such as common name, genus, and species. Fig-
ure 3.7 shows the details of an EER conceptual schema for DNA/gene sequence that
utilizes the order and bag (multiset) relationship. Note that we use the binary rela-
tionship type to represent the order relationship between the DNA, gene, and so on.
Practically, we can have several options to model this relationship. Figure 3.8(a)
shows their relations using binary relationship type. Gene and Nongene each have a
m:n binary relation with DNAseq. Figure 3.8(b) shows the EER modeling option
that DNA sequence, gene, and nongene form a ternary relation whenever a relation-
ship instance (DNA, gene, and nongene) exists. Figure 3.8(c) shows a new entity
type Segment that is created to include all entities of both Gene and Nongene, and
this Segment has an order relationship with DNAseq. In Figure 3.8(d) we have a gen-
eral approach to represent the relationship between biological sequence entities.
This model is easy to modify and extend depending on various situations. Because
some instances in DNAseq are Gene type, some are Nongene type, and some are
other type, we could create a union of these types and thus make DNAseq to be a
subclass of it. A recursive ordered relationship Has exists between DNA sequences
themselves. One (long) sequence participates in the supersequence role, and the
other (shorter) sequence in the subsequence role. In Section 3.6 we will discuss the
different models in the ER-to-relational mapping process.

3.5.2 The Protein 3D Structure Model

Usually a structure-determined protein contains one or more chains of residues.
These originally spatial-free linear chains are constrained by various physical or
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chemical forces to form higher levels of 3D structure. They are secondary, tertiary,
and quaternary structure of the protein.

The primary structure is a linear polypeptide chain of residues with specific
order. Secondary structure refers to the general three-dimensional form of local
regions (segments of chains) or overall shape of polypeptide chain. Helix, sheet, and
turn are characteristic structural components. An α-helix is a tight helix formed out
of the polypeptide chain. The polypeptide main chain makes up the central struc-
ture, and the side chains extend out and away from the helix. The CO group of one
amino acid (n) is hydrogen bonded to the NH group of the amino acid four residues
away (n +4). In this way every CO and NH group of the backbone is hydrogen
bonded. They are formed by hydrogen bonding. Multiple hydrogen bonds make a
segment of amino acid chains fold in specific ways.

Tertiary structure is the full three-dimensional folded structure of the
polypeptide chain. It assembles the different secondary structure elements in a par-
ticular arrangement. As helices and sheets are units of secondary structure, so the
domain is the unit of tertiary structure. In multidomain proteins, tertiary structure
includes the arrangement of domains relative to each other as well as that of the
chain within each domain [14].

Quaternary structure is a protein complex assembled by multiple-subunit pro-
teins. Examples of proteins with quaternary structure include hemoglobin, DNA
polymerase, and ion channels. Quaternary structures are stabilized mainly by
noncovalent interactions; all types of noncovalent interactions (hydrogen bonding,
van der Walls interactions, and ionic bonding) are involved in the interactions
between subunits. In rare instances, disulfide bonds between cysteine residues in dif-
ferent polypeptide chains are involved in stabilizing this level of structure.

Figure 3.9 shows the EER conceptual schema of protein 3D structure which uti-
lizes the new types of relationships. We go though these entities and relationships
from the bottom to the top level.

• Atom: This entity type represents the chemical atoms such as C, H, O, N, and
S in the molecular structure. They can be identified uniquely by their atom
serial number and spatial position. Cartesian coordinates (x, y, z) are one such
coordinate model.

• SSBond and HBond: These are typical examples of molecular spatial relation-
ship types denoting the chemical bonding formed among atoms. The spatial
bond relationship can be identified uniquely by its bond type, bond length,
and atoms that participate.

• Residue: This entity type represents the amino acids connecting to each other
in the chains of protein primary sequence. Each residue is a molecule (exists
dependently) composed of atoms via the Molecule-Structure spatial
relationship.

• Molecule-Structure: This type of molecular spatial relationship is defined to
describe the spatial relationship between a set of atoms within a molecule.

• Made-of: This is the ordered bag relationship type. It denotes that a sequence
of residues (some residues can be duplicated) forms a specific chain of protein
primary sequence. The solid dot at one end of the relationship indicates that
related entities of Residue are ordered with respect to a single entity (out of
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many) of Chain. Thus, there exist inherent attributes of Made-of ordered rela-
tionships, such as the length of chain in terms of residue count and the order
number of each residue in this chain.

• Chain: This entity type models the one-dimensional structure of protein
sequence. It is a line of residues without constraint. A single chain can be par-
titioned into one or more segments. These segments make up the central struc-
ture of secondary components. They can form α-helix, α-pleated sheet, or
turn.
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• Helix: This entity type models one type of the secondary structural compo-
nent, α-helix. It is formed by every five consecutive residues via the
Helix-Structure spatial relationship. Its cardinality constrain is 1:5 between
entity type Helix and Residue.

• Sheet: This entity type models another type of the secondary structural compo-
nent, α-pleated sheet. It is a two-dimensional structure. It can be modeled as a
sequence of one-dimensional structures of Strand via the Made-of ordered
relationship. There are several types of sheets, such as circle and bi-fork. One
instance of strands can be shared by several different sheets. So the cardinality
constraint between Strand and Sheet is m:n. Strand is also one segment of a
polypeptide chain, which is formed by consecutive residues via the
Strand-Structure spatial relationship.

• Turn: This entity type models one of the secondary structural component,
turn. There are three types of turns: 3-turn, 4-turn, and 5-turn [15].

• Assemble: This molecular spatial relationship denotes that two or more pro-
tein components can be assembled into a protein complex, thus forming
dimers, trimers, tetramers, and so on. The Type attribute of the relationship
denotes the type of assembly, whether it is composed of the same type of pro-
tein units (homo-multimer) or different types (hetero-multimer).

• Motif/Domain: Usually, a motif consists of a small number of secondary ele-
ments (helices, sheets, and turn), combined in local specific geometric arrange-
ments. These motifs then coalesce to form domains. To simplify modeling, we
do not distinguish between motifs and domains. Note that the Motif-Structure
spatial relationship relates the entity Motif/Domain and SecondStructure.
Many proteins can share the same type of domains, so the cardinality ratio
between Protein and Motif/Domain is m:n.

3.5.3 The Molecular Interaction and Pathway Model

Figure 3.10 shows the EER conceptual schema of the molecular interaction and bio-
logical pathway. In our conceptual model, the entity Bioentity is the high level class
of biological objects that are physical entities with attributes pertaining to their
internal properties (e.g., the nucleotide base sequence of a gene, the molecular
weight of a protein). So it is the union of all types of biological entities, such as genes,
proteins, and cofactors (metal ions or small organic molecules). Another important
entity is the Interaction that relates any pair of biological entities. These interactions
include gene-gene and protein-protein interactions. Some complex formed by
molecular interactions like DNA-protein binding can also be an instance of interac-
tions. There exist three relationships between Bioentity and Interaction in our
design. The Input and Output relationships are for any two pairs of interacting enti-
ties, and the Catalyst relationship is for other helping entities if they exist in the
interaction. Here we name these three relationships using “input,” “output,” and
“catalyst” for the purpose of process relationship representation (discussed in Sec-
tion 3.6). Note that this design can also model the reaction concept with reactant
(input), product (output), and catalyst roles. By definition, a pathway is a linked set
of biochemical interactions (reactions). If we ignore the branch case of the pathway,
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it can be treated as a sequence of unique interactions. So we use the Participate
ordered set relationship to denote the relation between Interaction and Pathway.

3.6 EER-to-Relational Mapping

In this section, we describe the implementation of the above-described new EER
constructs to the relational database. We show how to map the ordered relation-
ship, the process relationship, and the molecular spatial relationship to relational
models. This allows us to implement a conceptual design on a relational database
system, such as ORACLE or MySQL.

3.6.1 Ordered Relationship Mapping

In Section 3.3.1 we defined four types of the ordered relationships, shown in Figure
3.4. The mapping of the unordered set relationship is a standard procedure [13,
Chapter 7]. For the ordered set relationship mapping, we create a new relation R,
including the primary keys of E1 and E2 as foreign keys in R and rename them as
E1Id and E2Id, respectively. The primary key of this relation is the combination of
the attributes E1Id and E2Id. We also include additional OrderNo attribute to indi-
cate the ordering of E2Ids related to the same E1Id value. The following constraint
will hold on the OrderNo attribute: for all tuples with the same value for E1Id, the
values of OrderNo will be distinct and numbered 1, 2, 3… (see Table 3.2).
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For the unordered bag relationship mapping, the relation R includes the primary
key of E1 as E1Id, the primary key of E2 as E2Id, and attribute BagDiscriminator.
The BagDiscriminator is to discriminate the tuples if the values of (E1Id, E2Id) are
the same in the bag relationship, because the elements in the bag can be duplicate.
The primary key of this relation is the combination of the foreign key attributes
E1Id, E2Id, and BagDiscriminator. The following constraint will hold on the
BagDiscriminator attribute: for all tuples with the same (E1Id, E2Id) combination
of values, the values of BagDiscriminator will be distinct (they can be ordered 1, 2,
3). Table 3.3 shows one example of the mapping in relation table.

For the ordered bag relationship mapping, the relation R includes the primary
key of E1, the primary key of E2, and attribute OrderNo. Like the attributes of the
above relations, the OrderNo is to both discriminate and order the tuples with the
same E1Id value. The same constraint on OrderNo for ordered set applies here. The
primary key of this relation is (E1Id, E2Id, OrderNo). Table 3.4 shows one example
of the mapping in relation table.

3.6.2 Process Relationship Mapping

As defined in Section 3.3.2 (Figure 3.5), the entities associated with the process rela-
tionship have three distinct types: i (input), o (output), and c (catalyst). For each pro-
cess relationship, we can have a new relation R with three attributes (i, o, c) whose
values are the primary keys of each participating entities, as shown in Table 3.5.
Each such table holds the relationship instances for one of the process relationships.
Another relation, called ProcessRelationDesc, is needed to describe the participating
entities for all process relationships. Its attributes include Relation, Entity, and Role.
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Table 3.2 EER-to-Relational
Mapping of Ordered Set
Relationship (R)

E1Id E2Id OrderNo

v1 v2 1

v1 v3 4

v1 v5 2

v1 v7 3

…

Table 3.3 EER-to-Relational
Mapping of Unordered Bag
Relationship (R)

E1Id E2Id BagDiscriminator

v1 v2 1

v2 v5 1

v1 v2 2

v1 v3 1

v1 v2 3

…



Relation records the names of the process relationship. Entity records the names of
the entity type that participate in a process relationship, while Role specifies their
acting roles. Table 3.6 shows an example of the mapping results in relation table.

The above mapping works for process relationships that have one input, one
output, and one catalyst only. If we want to map the general case, where there can
be multiple inputs, outputs, or catalysts, we can name the input attributes i1, i2, …,
the outputs o1, o2, …, and the catalysts c1, c2, …. An example is given in Table 3.7.

3.6.3 Molecular Spatial Relationship Mapping

As defined in Section 3.3.3 (EER notation shown in Figure 3.6), the molecular spa-
tial relationship R associates a group of atoms (component objects) spatially with a
molecule entity (a composite object) with specific connectivity among atoms. For
the mapping, we can have a new relation called MolStructure with attributes
(MoleculeId, Atom, Discriminator, X, Y, Z, AtomOId). MoleculeId refers to the
primary key of the Molecule relation in Table 3.8. As described in the ordered rela-
tionship mapping, the attribute Discriminator distinguishes the atoms of the same
type in a molecule. X, Y, Z attributes are the Cartesian coordinates of atoms.
AtomOId is a system-generated unique object id for each instance in this relation.
The primary key of this relation is AtomOId. The alternative keys can be
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Table 3.5 EER-to-Relational
Mapping of Process Relationship
(R1 and R2 of Basic Type)

Input Output Catalyst

v1 v2 v3

v4 v8 v6

…

…
Input Output Catalyst

v7 v2 v13

v6 v9 v5

Table 3.4 EER-to-Relational
Mapping of Ordered Bag
Relationship (R)

E1Id E2Id OrderNo

v1 v2 1

v1 v2 8

v1 v2 2

v1 v3 7

v1 v3 4

v1 v4 3

v1 v4 5

v1 v4 6

…



(MoleculeId, X, Y, Z) or (MoleculeId, Atom, Discriminator). Table 3.9 shows the
mapping example of water and alanine molecules. For the simplicity, H atoms are
deliberately omitted.

To record the bond information, we should have associated connection relation
called Bond with attributes (AtomOId1, AtomOId2). AtomOId1 and AtomOId2
refer to the primary key AtomOId of relation MolStructure in Table 3.9. We can
enforce a constraint that the value of AtomOId1 is always less than the value of
AtomOId2 because the connectivity between atoms (nodes) is undirectional (see
Table 3.10).
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Table 3.7 EER-to-Relational
Mapping of Process Relationship
(R3 of General Type)

i1 i2 o1 o2 o3 c1 c2

v1 v1 v3 v4 v2 v2 v7

v2 v8 v6 v6 v8 v9 v12

…

Table 3.8 EER-to-Relational Mapping of
Molecular Spatial Relationship (Molecule)

MoleculeId Name Formula Isomer

1 Water H2O 0

2 Alanine C3H7O2N 21

…

Table 3.6 EER-to-Relational
Mapping of Process Relationship
(ProcessRelationDesc)

Relation Entity Role

R1 E1 i

R1 E2 o

R2 E3 c

R2 E4 I

R2 E5 o

R2 E6 c

R3 E7 i1

R3 E8 i2

R3 E9 o1

R3 E10 o2

R3 E11 o3

R3 E12 c1

R3 E13 c2

…



3.7 Introduction to Multilevel Modeling and Data Source Integration

Biological and medical researchers create large amounts of data, stored in diverse
databases such as GenBank and PDB, which needs to be processed, integrated, and
organized in order to query them efficiently. Some integration work has been done,
as mentioned in [16, 17], and this work is mainly categorized into warehouse inte-
gration, mediator-based integration, and navigational integration. Most of this
work [15] focuses on horizontal integration that integrates complementary sources.
In the bioinformatics/biomedical research fields, however, some semantic data can
be classified into different levels of abstraction and mapped to different schemas
based on the degree of abstraction. The degree of abstraction of the data determines
the amount of detail of information that is enclosed inside. The higher abstraction
level data contains less detailed information than in lower abstraction levels [18].
Moreover, events occurring at one level can effect and be affected by events at dif-
ferent levels of scale or time. Between the levels, there may be some transitions and
connections, which need what we call a vertical approach to integrate these data
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Table 3.10 EER-to-
Relational Mapping of
Molecular Spatial
Relationship (Bond)

AtomOId1 AtomOId2

1 2

2 3

4 5

5 6

5 7

7 8

7 9

…

Table 3.9 EER-to-Relational Mapping of Molecular Spatial
Relationship (MolStructure)

MoleculeId Atom Discriminator X Y Z AtomOId

1 H 1 −1.4 1.3 0.0 1

1 H 2 1.4 1.3 0.0 2

1 O 1 0.0 0.0 0.0 3

2 N 1 1.6 1.5 0.0 4

2 C 1 0.0 0.6 0.0 5

2 C 2 −1.3 1.4 0.0 6

2 C 3 0.0 −0.6 0.0 7

2 O 1 1.7 −1.6 0.0 8

2 O 2 −1.7 −1.6 0.0 9

…



sources to explore further information. Next, we will briefly describe some of the
concepts of a human body and apply multilevel modeling on these concepts in order
to illustrate what we mean by multilevel modeling.

Cell theory states that all living things are composed of cells, and cells are the
basic units of structure and function in living things [19]. In a multicellular organism
such as a human being, different types of cells perform different tasks. Some cells can
be responsible for extracting nutrients, and others can function as receptors or be
responsible for other functions. Tissues are groups of similar cells specialized for a
single function, such as epithelial tissue which lines the chambers of the heart to pre-
vent leakage of blood and nervous tissue which receives messages from the body’s
external and internal environment, analyses the data, and directs the response [19].
An organ is a group of tissues that work together to perform a complex function. For
instance, the heart is the most important organ inside the human body, which is
mainly composed of epithelial tissues, connective tissues, and nervous tissues. Biolo-
gists classify the human body into 11 organ systems (nervous system, circulatory
system, skeletal system, muscular system, and so on), and each system is a group of
organs that perform closely related functions. As we know, the circulatory system
supports cells throughout the body with the nutrients and oxygen that they need to
stay alive [19]. After we depict the human body, we define five different data
abstraction levels for human biology: molecule, cell, tissue, organ, and system.

In the next section, we propose an extended EER model which incorporates
multilevel concepts and relationships related to the biological field with the purpose
of building a biological data model for further integration work. We give an exam-
ple of why multilevel modeling may be useful in biological conceptual modeling.

3.8 Multilevel Concepts and EER Modeling

Example 1 Figure 3.11 shows the EER conceptual modeling of a cell system [20].
Usually a cell is surrounded by a plasma membrane (entity type Membrane). There
are channels (entity type Pore) embedded within this membrane that allow different
molecules to pass through the membrane. Cell surface membranes also contain
receptor (entity type Receptor) proteins that allow cells to detect external signalling
molecules such as hormones. Cells also have a set of “little organs,” called
organelles (entity type Compartment), specialized for carrying out one or more vital
functions. In every second there are millions of biochemical reactions that happen in
a cell, integrating into diverse types of biological processes (entity type Pathway).
Genetic materials such as DNA are packaged into chromosomes (entity type Chro-
mosome), which are stored in the nucleus (entity type Nucleus) of a cell. Cells grow
through successive cell divisions. Relationship split denotes this cellular metabolism.
The same type of cells can be assembled into a group of cells (entity type Tissue)
executing special functions.

Due to the complexity and huge amount of data stored and processed in a single
cell (not to mention the even higher information density in tissue, organ, and organ-
ism systems), it will be more efficient and easier to integrate if we can classify and
relate data at different abstraction levels.
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In Figure 3.12, we categorize biological data based on their abstraction levels,
concepts, and experimental result/evidences. For each concept or experimental
result/evidence, it can be assigned to certain abstraction level. In addition, each con-
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cept can have several experimental results or evidences related to it. For example, we
may define five different levels (molecule, cell, tissue, organ, and system) for human
anatomical data, and each data source can be classified into a certain level. Figure
3.13 demonstrates the data source integrations from the horizontal and vertical
approaches. The horizontal approach integrates data sources at the same abstrac-
tion level. In contrast, the vertical approach integrates data sources from different
abstraction levels. In order to integrate data in different abstraction levels, we need
to establish connections/interactions between them. It will be necessary to propose
some biological relationships that can describe the relationships and interactions
between data at the different levels as building blocks of vertical data integration.

3.9 Conclusion

In this chapter we introduced three new types of relationships into the EER model:
ordered relationship, process relationship, and molecular spatial relationship. We
also extended the relationships to allow bags (or multisets) of relationship instances,
since many relationships in molecular biology fall into this category. We illustrated
the need for these relationships in modeling biological data and we proposed some
special diagrammatic notation. By introducing these extensions, we anticipate that
biological data having these properties will be made explicit to the data modeler,
which would help direct future biological database implementation. In particular,
our unordered bag relationship can be used for various reaction data, and our

48 Modeling Biomedical Data

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

Data source

LEVEL nth

LEVEL (n-1)th

LEVEL 1

LEVEL 2

LEVEL 3

Horizontal Integration
Vertical Integration

Figure 3.13 Horizontal and vertical integration.



ordered bag should be useful for sequence and genetic features. Our process rela-
tionship would be useful for reaction, interaction, and pathway data. These changes
do not add much complexity to the existing EER model, thus making them easier
for integration. We also gave the formal definitions for these new concepts and sum-
marized their notation and usage. We also showed how these additional concepts
could be mapped into relations for implementation in relational databases such as
ORACLE or MySQL. We are currently implementing these relationships in our
ontology-based mediator. We have already used these concepts to design initial
conceptual schema for parts of GenBank, PDB, and Pathways data [21].

We then briefly introduced the concepts of multilevel modeling that can be uti-
lized in integrating data sources from different abstraction levels.
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C H A P T E R 4

Fundamentals of Gene Ontology
Viroj Wiwanitkit

A main scientific interest in the post-genomic era is gene function. Gene ontology
(GO) provides biological knowledge of a gene product in any organism. This chap-
ter presents an overview of gene ontology. It discusses the design application in bio-
medical sciences and usage of gene ontology.

4.1 Introduction to Gene Ontology

A main scientific interest in the postgenomic era is gene function [1]. The exponen-
tial growth in the volume of accessible biological information has generated a con-
fusion of voices surrounding the annotation of molecular information about genes
and their products [2]. As a new focus, function and other information concerning
genes are to be captured, made accessible to biologists, or structured in a comput-
able form [1]. Since much of biology works by applying prior known knowledge to
an unknown entity, the application of a set of axioms that will elicit knowledge and
the complex biological data stored in bioinformatics databases is necessary. This
often require the addition of knowledge to specify and constrain the values held in
those databases, and a way of capturing knowledge within bioinformatics applica-
tions and databases is by using ontologies [3]. Until recently, the concept of ontol-
ogy has been almost unknown in bioinformatics, and even more so in molecular
biology [4]. Nowadays, many bioinformatics articles mention it in connection with
text mining, data integration, or as a metaphysical cure for problems in standard-
ization of nomenclature and other applications [4]. Efforts in genome annotation
are most often based upon advances in computer systems that are specifically
designed to deal with the tremendous amounts of data being generated by current
sequencing projects [5]. These efforts in analysis are being linked to new ways of
visualizing computationally annotated genomes [5]. It can be said that an ontology
is the concrete form of a conceptualization of a public knowledge of a domain [3].

Since the formation of the Gene Ontology (GO) Consortium, its aim has been
to provide a framework for both the description and the organization of such infor-
mation in the genomics domain [1]. The Gene Ontology Project seeks to provide a
set of structured vocabularies for specific biological domains that can be used to
describe gene products in any organism [2]. The work includes building three
extensive ontologies to describe molecular function, biological process, and cellu-
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lar components, and providing a community database resource that supports the
use of these ontologies [2]. The GO Consortium was initiated by scientists associ-
ated with three model organism databases—the Saccharomyces Genome database
(SGD); FlyBase, the Drosophila genome database; and MGD/GXD, the Mouse
Genome Informatics databases—then other databases were added [2]. The GO
Consortium supports the development of the GO database resource and provides
tools which enable curators and researchers to query and manipulate the vocabu-
laries [2]. Two new databases providing new resources for gene annotation have
been launched: the InterPro database of protein domains and motifs, and the GO
database for terms that describe the molecular functions and biological roles of
gene products [5]. Now, the GO data resources are accessible to the public at
http://www.geneontology.org/, and the GO Web site can be used by the community
both to recover the GO vocabularies and to access the annotated gene product
datasets from the model organism databases [2]. The GO Consortium is presently
concerned with three structured controlled vocabularies which describe the molec-
ular function, biological roles, and cellular locations of gene products [1]. In 2005,
Doms and Schroeder introduced GoPubMed (www.gopubmed.org), a Web server
which allowed users to explore PubMed search results with the GO. GoPubMed
provides the following benefits: (1) it gives an overview of the literature abstracts
by categorizing abstracts according to the GO and thus allowing users to quickly
navigate through the abstracts by category; (2) it automatically shows general
ontology terms related to the original query, which often do not even appear
directly in the abstract; (3) it enables users to verify its classification because GO
terms are highlighted in the abstracts and each term is labeled with an accuracy per-
centage; and (4) exploring PubMed abstracts with GoPubMed is useful as it shows
definitions of GO terms without the need for further look-up [6].

The aim of this chapter is to introduce the reader to the use of GO within
bioinformatics. The concept of the construction process of an ontology as well as the
application of GO in biological and medical science will be presented. Some fallacies
and pitfalls that creators and users should be aware of will also be noted.

4.2 Construction of an Ontology

A large amount of knowledge about genes has been stored in public databases [7].
Detailed classifications, controlled vocabularies, and organized terminology are
widely used in different areas of science and technology [8]. Their relatively recent
introduction into molecular biology has been crucial for progress in the analysis of
genomics and massive proteomics experiments [8]. One of the most challenging
problems in bioinformatics, given all the information about the genes in the data-
bases, is determining the relationships between the genes [7]. The interesting pur-
pose for determining these relationships is to know if genes are related and how
closely they are related based on existing knowledge about their biological roles [7].
A critical element of the computational infrastructure required for functional
genomics is a shared language for communicating biological data and knowledge
[9]. The construction of the ontologies, including terminology, classification, and
entity relations, requires considerable effort including the analysis of massive
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amounts of literature [8]. The GO provides taxonomy of concepts and their attrib-
utes for annotating gene products. As the GO increases in size, its ongoing
construction and maintenance become more challenging [9].

Ontological frameworks can provide a shared language for communicating bio-
logical information and thereby integrate biological knowledge and generalize the
data worldwide. Presently, there is a continuously increasing number of groups
developing ontologies in assorted biological domains. These varied and disparate
efforts can be beneficial if certain standard criteria are met. The general prerequi-
sites are that the ontologies are not overlapping, that they are accepted and used by
the community, and that they are well principled. A short summary of the process of
ontology construction is presented in Table 4.1.

Since present electronic knowledge representation is becoming more and more
pervasive both in the form of formal ontologies and less formal reference vocabular-
ies, the developers of clinical knowledge bases need to reuse these resources [10].
Such reuse requires a new generation of tools for ontology development and man-
agement [10]. To assist users in developing and maintaining ontologies, a number
of tools have been developed [11]. Lambrix et al. [11] tested several ontologies
including Protege-2000, Chimaera, DAG-Edit, and OilEd and found that no system
was preferred in all situations, but each system had its own strengths and weak-
nesses. Of the several mentioned tools, Protege-2000 is the best known. Pro-
tege-2000 (http://protege.stanford.edu) is an open source tool that assists users in
the construction of large electronic knowledge bases [12]. It has an intuitive user
interface that enables developers to create and edit domain ontologies [12]. Numer-
ous plug-ins provide alternative visualization mechanisms, enable management of
multiple ontologies, allow the use of interference engines and problem solvers with
Protege ontologies, and provide other functionality [12]. As a summary, Protege-
2000 is a general-purpose knowledge-acquisition tool that facilitates domain
experts and developers to record, browse, and maintain domain knowledge in
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Table 4.1 Principles of Ontology Construction

Principles Brief Description

Background and fundamental
principles

Delineating the criteria, upon which an ontology is made, is important. It
must first define ontology research and its intersection with computer sci-
ence. In order to reason upon and draw inferences from data to which
ontology has been applied, it is absolutely essential that the relationships
be carefully defined, otherwise the data entry is insecure and the results
are unpredictable.

Survey of existing ontologies Collection of the relevant biological ontologies that are currently available
is necessary. This should include all of those included in the Open Biologi-
cal Ontologies (OBO), the Gene Ontology (GO), the MGED Ontology,
the NCI Thesaurus, eVOC, the Plant Ontology Consortium, the Founda-
tional Model of Anatomy (FMA), Reactome, and the Sequence Ontology
(SO). This should cover the scope of the ontology, the relationships used
and the logical inferences these support, available data sets to which the
ontology has been applied, and the format(s) in which the ontology is
available.

Ontology creation and critique Proper technique for developing high-quality ontologies should be
selected, and then a process of ontology evaluation, in which the construc-
tor can see the relative pros and cons for problematic terms and relation-
ships, must be performed.



knowledge bases [12, 13]. In 2003, Shankar et al. [13] illustrated a knowl-
edge-acquisition wizard that they built around Protege-2000. According to their
presentation, the wizard provided an environment that was more intuitive to
domain specialists for entering knowledge, and to domain specialists and practitio-
ners for reviewing the knowledge entered [13]. In 2001, Tu and Musen reported the
use of the Protege-2000 knowledge engineering environment to build: (1) a
patient-data information model, (2) a medical-specialty model, and (3) a guideline
model that formalizes the knowledge needed to generate recommendations regard-
ing clinical decisions and actions. They also showed how the use of such models
allows development of alternative decision-criteria languages and allows systematic
mapping of the data required for guideline execution from patient data contained in
electronic medical record systems [14]. Jiang et al. [15] performed an interesting
study whose main objective was to explore the potential role of formal concept anal-
ysis (FCA) in a context-based ontology building support in a clinical domain. They
developed an ontology building support system that integrated an FCA module with
a natural language processing (NLP) module, and the user interface of the system
was developed as a Protege-2000 Java tab plug-in [15]. In this work, a collection of
368 textual discharge summaries and a standard dictionary of Japanese diagnostic
terms (MEDIS ver2.0) were used as the main knowledge sources [15]. Jiang et al.
[15] reported that stability was shown on the MEDIS-based medical concept extrac-
tion with high precision. They said that under the framework of their ontology
building support system using FCA, the clinical experts could reach a mass of both
linguistic information and context-based knowledge that was demonstrated as use-
ful to support their ontology building tasks [15]. In 2003, Yeh et al. [9] assessed the
applicability of Protege-2000 to the maintenance and development of GO by trans-
ferring GO to Protege-2000 in order to evaluate its suitability for GO. The graphical
user interface supported browsing and editing of GO. Using Protege-2000, they
tested and proved the ability to make changes and extensions to GO to refine the
semantics of attributes and classify more concepts [9]. In 2002 Kohler and
Schulze-Kremer [16] implemented a system for intelligent semantic integration and
querying of federated databases by using three main components: (1) a component
which enables SQL access to integrated databases by database federation
(MARGBench); (2) an ontology-based semantic metadatabase (SEMEDA); and (3)
an ontology-based query interface (SEMEDA-query). Since SEMEDA is
implemented as three-tiered Web application, database providers can enter all
relevant semantic and technical information about their databases by themselves via
a Web browser [16].

Li et al. [10] said that medical experts with little or no computer science experi-
ence need tools that will enable them to develop knowledge bases and provide capa-
bilities for directly importing knowledge not only from formal knowledge bases but
also from reference terminologies. They said that the portions of knowledge bases
that were imported from disparate resources then need to be merged or aligned to
one another in order to link corresponding terms, to remove redundancies, and to
resolve logical conflicts [10]. In 2000, Li et al. [10] developed a suite of tools for
knowledge base management based on the Protege-2000 environment for ontology
development and knowledge acquisition, an application for incorporating informa-
tion from remote knowledge sources such as UMLS into a Protege knowledge base.
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In 2002, Demir et al. [17] presented the architecture of an integrated environment
named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition),
a composition of a server-side, scalable, object-oriented database and client-side
editors to provide an integrated, multiuser environment for visualizing and manipu-
lating networks of cellular events. Demir et al. [17] said that this tool features auto-
mated pathway layout, functional computation support, advanced querying, and a
user-friendly graphical interface. They noted that Patika would be a valuable tool
for rapid knowledge acquisition, microarray generated large-scale data
interpretation, disease gene identification, and drug development [17].

With the rapid advancement of biomedical science and the development of
high-throughput analysis methods, the extraction of various types of information
from biomedical texts has become critical [18]. The description of genes in data-
bases by keywords helps the nonspecialist to quickly grasp the properties of a gene
and increases the efficiency of computational tools that are applied to gene data
[19]. Since the association of keywords to genes or protein sequences is a difficult
process that ultimately implies examination of the literature related to a gene, a pro-
cedure to derive keywords from the set of scientific abstracts related to a gene is nec-
essary [19]. Because automatic functional annotations of genes are quite useful for
interpreting large amounts of high-throughput data efficiently, the demand for
automatic extraction of information related to gene functions from text has been
increasing [18]. Blaschke and Valencia [8] proposed a method that automatically
generates classifications of gene-product functions using bibliographic information.
Blaschke and Valencia [8] noted that the analysis of a large structure built for yeast
gene-products, and their detailed inspection of various examples showed encourag-
ing properties. They also noted that the comparison with the well-accepted GO
points to different situations in which the automatically derived classification could
be useful for assisting human experts in the annotation of ontologies [8]. In 2004,
Pérez et al. [19] developed a new system based on the automated extraction of
mappings between related terms from different databases using a model of fuzzy
associations that could be applied with all generality to any pair of linked databases.
Pérez et al. [19] tested the system by annotating genes of the Swiss-Prot database
with keywords derived from the abstracts linked to their entries (stored in the
MEDLINE database of scientific references) and found that the performance of the
annotation procedure was much better for Swiss-Prot keywords (recall of 47%, pre-
cision of 68%) than for GO terms (recall of 8%, precision of 67%). In 2005, Koike
et al. [18] developed a method for automatically extracting the biological process
functions of genes/protein/families based on GO from text using a shallow parser
and sentence structure analysis techniques. When the gene/protein/family names
and their functions are described in ACTOR (doer of action) and OBJECT (receiver
of action) relationships, the corresponding GO-IDs are assigned to the genes/pro-
teins/families and the gene/protein/family names are recognized using the gene/pro-
tein/family name dictionaries [18]. Koike et al. [18] noted that a preliminary
experiment demonstrated that this method had an estimated recall of 54% to 64%
with a precision of 91% to 94% for actually described functions in abstracts and it
extracted more than 190,000 gene-GO relationships and 150,000 family-GO
relationships for major eukaryotes when applied to the PubMed.
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In order to aid in hypothesis-driven experimental gene discovery, a computer
application is necessary for the automatic retrieval of signal transduction data from
electronic versions of scientific publications using NLP techniques, as well as for
visualizing representations of regulatory systems. In 2004, Zhou and Cui [7] devel-
oped GeneInfoViz, a Web tool for batch retrieval of gene information and construc-
tion and visualization of gene relation networks. With this tool, users can batch
search for a group of genes and get the GO terms that were associated with the genes
and directed acyclic graphs that were generated to show the hierarchical structure of
the GO tree [7]. To summarize, GeneInfoViz calculates an adjacency matrix to
determine whether the genes are related, and, if so, how closely they are related
based on biological processes, molecular functions, or cellular components with
which they are associated, and then it displays a dynamic graph layout of the net-
work among the selected genes [7]. Schober et al. [20] mentioned a new tool, the
Gandr (gene annotation data representation), an ontological framework for labora-
tory-specific gene annotation which could be visualized as an interactive network of
nodes and edges representing genes and their functional relationships. Basically,
Gandr uses Protege-2000 for editing, querying, and visualizing microarray data and
annotations [20]. With this tool, genes can be annotated with provided, newly cre-
ated, or imported ontological concepts, and annotated genes can inherit assigned
concept properties and can be related to each other [20]. Schober et al. [20] said that
Gandr could allow for immediate and associative gene context exploration.

4.3 General Evolution of GO Structures and General Annotation
Strategy of Assigning GO Terms to Genes

GO is a set of controlled vocabulary modeled in directed acyclic graphs. It is both a
term system by itself, and it is used as the dictionary to annotate other genes. This
duality should be emphasized.

4.3.1 General Evolution of GO Structures

Basically, the three organizing principles of GO are molecular function, biological
process, and cellular component (Table 4.2). For a gene product, it might have one
or more molecular functions and can be used in one or more biological processes.
Also it might be associated with one or more cellular components.
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Table 4.2 The Three Organizing Principles of GO

Principles Brief Description

Molecular function Molecular function is the activity at the molecular level (e.g., transporter,
binding).

Biological process A biological process is series of events accomplished by one or more
ordered assemblies of molecular functions. In one process, there must be
at least one function. It should be noted, however, that the biological
process does not reflex dynamics, and therefore, they are not equivalent
to pathway (e.g., purine metabolism).

Cellular component Cellular component is a part of a large anatomical structure or a gene
product group (e.g., nucleus, endoplasmic reticulum).



In an evolution of a GO structure, identification of the three organizing princi-
ples is necessary. This identification can be a base for further annotation. An exam-
ple of the identification of the three organizing principles in a recent study of human
hemoglobin by Wiwanitkit [21] is presented in Table 4.3. This example is an easy
one since the quoted gene product “human hemoglobin” has only one molecular
function (transporter) and is used in only one biological process (oxygen transpor-
tation). Also, it associates with only one cellular component (cytosol).

4.3.2 General Annotation Strategy of Assigning GO Terms to Genes

As previously mentioned, assigning of GO terms to genes has a lot of benefit in clari-
fying the function of a gene product or gene. This can be applied for comparative
study for the gene expressions of genes. Presently, many collaborating databases
annotate their gene products with GO terms, providing references and indicating
what kind of evidence is available to support the annotations (Table 4.4). By brows-
ing any of the contributing databases, users can find that each gene or gene product
has a list of associated GO terms. In addition, users can predict a function of a gene
product by the GO tools. To simplify and help the reader better understand this, the
author presents an example of using a public GO tool, GoFigure, to study the gene
product of bacterial hemoglobin (cytochrome O: P04252) in a recent study by
Wiwanitkit [21]. First, the known sequence of bacterial hemoglobin is submitted
via GoFigure and the derived results are shown in Figure 4.1. Here, it can be shown
that bacterial hemoglobin has more complicated biological functions and is
involved in more biological processes than human hemoglobin (Table 4.3).

4.4 Applications of Gene Ontology in Biological and Medical Science

4.4.1 Application of Gene Ontology in Biological Science

Gene ontology has several advantages in molecular biology. Basically, molecular
biology has a communication problem in that there are many databases each using
their own labels and categories for storing data objects and some using identical
labels and categories but with different meanings [22]. There are many databases
that use their own labels and categories for storing data objects and some use identi-
cal labels and categories but with a different meaning [23]. Conversely, a concept is
often found under different names [23]. Schulze-Kremer [22] said that this situation
could only be improved by either defining individual semantic interfaces between
each pair of databases (complexity of order n2) or by implementing one agreeable,
transparent, and computationally tractable semantic repository and linking each
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Table 4.3 The Three Organizing Principles of
Human Hemoglobin

Principles Brief Description

Molecular function Transporter

Biological process Oxygen transportation

Cellular component Cytosol



database to it (complexity of order n). Ontology is a means to provide a semantic
repository to systematically order relevant concepts in molecular biology and to
bridge the different notions in various databases by explicitly specifying the meaning
of and relation between the fundamental concepts in an application domain [22].
Several applied GO tools have been developed which are useful for biology and
medicine (Table 4.4).

4.4.2 Application of Gene Ontology in Medical Science

Presently, gene ontology is applied for advance research in medicine. The gene
expressions in many diseases are analyzed based on the gene ontology principle. A
group of diseases, which is widely investigated, is malignancy. There are many
recent publications in cancer research based on the advances in gene ontology. In
2003, Cunliffe et al. [24] studied the gene expression response of breast cancer to
growth regulators. In this study, Cunliffe et al. defined the dynamic transcriptional
effects elicited in MCF7, T-47D, and MDA-MB-436 breast cancer cell lines by nine
regulators of growth and differentiation (17beta-estradiol, antiestrogens
fulvestrant and tamoxifen, progestin R5020, antiprogestin RU486, all-trans-
retinoic acid, epidermal growth factor, mitogen-activated protein/extracellular
signal-regulated kinase 1/2 inhibitor U0126, and phorbol ester 12-O-
tetradecanoylphorbol-13-acetate) and compared the patterns of gene regulation to
published tumor expression profiles. Gene ontology analysis was used to highlight
functionally distinct biological responses to different mitogens and significant cor-
relations were identified between several clusters of drug-responsive genes and
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Figure 4.1 Hierarchies of bacterial hemoglobin derived from GoFigure study. (From: [21]. © 2005
Viroj Wiwanitkit. Reprinted with permission.)
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Table 4.4 Some Examples of Applied GO Tools in Biological and Medical Science

Tools Description

EBI SRS server [25] This server (http://srs.ebi.ac.uk) has become an integration system for both data
retrieval and sequence analysis applications. The EBI SRS server is a primary
gateway to major databases in the field of molecular biology that are produced
and supported at EBI, as well as a European public access point to the
MEDLINE database provided by U.S. National Library of Medicine (NLM). The
new additions include: concept of virtual databases, integration of XML data-
bases like the Integrated Resource of Protein Domains and Functional Sites
(InterPro), Gene Ontology, MEDLINE, and Metabolic Pathways.

Proteomic Investigation
Strategy for Mammals
(PRISM) [26]

This systematic, analytical approach combines subcellular fractionation, multidi-
mensional liquid chromatography-tandem mass spectrometry-based protein shot-
gun sequencing, and two newly developed computer algorithms, STATQUEST
and GOClust, as a means to rapidly identify, annotate, and categorize thousands
of expressed mammalian proteins. Automated clustering of the identified pro-
teins into GO annotation groups allowed for streamlined analysis of the large
data set, revealing interesting and physiologically relevant patterns of tissue and
organelle specificity. Therefore, this tool offers an effective platform for in-depth
investigation of complex mammalian proteomes.

Genome Information Man-
agement System (GIMS)
[27]

This tool is an object database that integrates genomic data with data on the
transcriptome, protein-protein interactions, metabolic pathways and annota-
tions, such as GO terms and identifiers. The resulting system supports the run-
ning of analyses over this integrated data resource and provides comprehensive
facilities for handling and interrelating the results of these analyses.

ToPNet [28] This is a new tool for the combined visualization and exploration of gene net-
works and expression data. It provides various ways of restricting, manipulating,
and combining biological networks according to annotation data and presents
results to the user via different visualization procedures and hyperlinks to the
underlying data sources.

GoFish [29] This is a Java application that allows users to search for gene products with par-
ticular GO attributes, or combinations of attributes. GoFish ranks gene products
by the degree to which they satisfy a Boolean query.

Expressed Sequence Tag
Information Management
and Annotation (ESTIMA)
[30]

This tool consists of a relational database schema and a set of interactive query
interfaces. These are integrated with a suite of Web-based tools that allow a user
to query and retrieve information. Further, query results are interconnected
among the various EST properties. ESTIMA has several unique features. Users
may run their own expressed sequence tag (EST) processing pipeline, search
against preferred reference genomes, and use any clustering and assembly
algorithm.

Gene Ontology Automated
Lexicon (GOAL) [31]

This is a Web-based application for the identification of functions and processes
regulated in microarray and Serial Analysis of Gene Expression (SAGE) experi-
ments. GOAL allows a seamless and high-level analysis of expression profiles.

PeerGAD [32] This tool is a Web-based database-driven application that allows community-
wide peer-reviewed annotation of prokaryotic genome sequences. PeerGAD
incorporates several innovative design and operation features and accepts anno-
tations pertaining to gene naming, role classification, and gene translation and
annotation derivation. The annotator tool in PeerGAD is built around a genome
browser that offers users the ability to search and navigate the genome sequence.

FatiGO [33] This is a Web tool for finding significant associations of GO terms with groups
of genes. FatiGO includes GO associations for diverse organisms (human, mouse,
fly, worm, and yeast) and the TrEMBL/SwissProt correspondences from the
European Bioinformatics Institute.

GOTree Machine (GPTM)
[34]

This tool generates a GOTree, a tree-like structure to navigate the Gene Ontol-
ogy Directed Acyclic Graph for input gene sets. It has a broad application in
functional genomic, proteomic and other high-throughput methods that generate
large sets of interesting genes; its primary purpose is to help users sort for inter-
esting patterns in gene sets.



genes that discriminate estrogen receptor status or disease outcome in patient sam-
ples [24]. Cunliffe et al. concluded that the majority of estrogen receptor status
discriminators were not responsive in their dataset and are therefore likely to reflect
underlying differences in histogenesis and disease progression rather than growth
factor signaling. In 2004, Shi et al. [35] studied effects of resveratrol (RE) on gene
expression in renal cell carcinoma. They profiled and analyzed the expression of
2,059 cancer-related genes in a RCC cell line RCC54 treated with RE [35]. In this
study, biological functions of 633 genes were annotated based on biological process
ontology and clustered into functional categories and 29 highly differentially
expressed genes in RE-treated RCC54, and the potential implications of some gene
expression alterations in RCC carcinogenesis were identified [35]. Arciero et al.
[36] summarized the current literature on selected biomarkers for breast cancer.
They also discussed the functional relationships, and grouped the selected genes
based on a GO classification [36]. They noted that choosing the right combination
of biomarkers was challenging, because (1) multiple pathways are involved and (2)
up to 62 genes and their protein products are potentially involved in breast can-
cer-related mechanisms [36]. In 2004, Sulman et al. [37] reported a study on
genomic annotation of the meningioma tumor suppressor locus on chromosome
1p34. In this study, a high-resolution integrated map of the region was constructed
(CompView) to identify all markers in the smallest region of overlapping deletion
(SRO) and a regional somatic cell hybrid panel was used to more precisely localize
those markers identified in CompView as within or overlapping the region [37].
According to this study, a total of 59 genes were ordered within the SRO and 17 of
these were selected as likely candidates based on annotation using GO Consortium
terms, including the MUTYH, PRDX1, FOXD2, FOXE3, PTCH2, and RAD54L
genes [37]. Sulman et al. [37] noted that this annotation of a putative tumor sup-
pressor locus provided a resource for further analysis of meningioma candidate
genes. In 2003, Ahn et al. [38] profiled differentially expressed transcriptome and
proteome in six-paired leiomyoma and normal myometrium. In this study, screen-
ing up to 17,000 genes identified 21 unregulated and 50 down regulated genes, and
the gene-expression profiles were classified into mutually dependent 420 functional
sets, resulting in 611 cellular processes according to the gene ontology [38]. Also,
protein analysis using two-dimensional gel electrophoresis identified 33 proteins
(17 unregulated and 16 down regulated) of more than 500 total spots, which was
classified into 302 cellular processes. Ahn et al. [38] mentioned that the gene ontol-
ogy analysis could overcome the complexity of expression profiles of cDNA
microarray and two-dimensional protein analysis via its cellular process-level
approach; therefore, a valuable prognostic candidate gene with relevance to
disease-specific pathogenesis could be found at cellular process levels. In addition
to oncology, the applications of the gene ontology for the diseases in other groups
are reported. The application in vaccine development is also noted [39]. The
advances in gene ontology become a useful tool in medicine at present.
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C H A P T E R 5

Protein Ontology
Amandeep S. Sidhu, Tharam S. Dillon, and Elizabeth Chang

Two factors dominate current developments in structural bioinformatics, especially
in protein informatics and related areas: (1) the amount of raw data is increasing,
very rapidly; and (2) successful application of data to biomedical research requires
carefully and continuously curated and accurately annotated protein databanks. In
this chapter, we introduce the concepts for annotating protein data using our pro-
tein ontology. We first describe and review existing approaches for protein annota-
tion. We then describe the advantages of semantic integration of protein data using
Web ontology language, in comparison to annotating using automatic search and
analyzing using text mining. The rest of chapter is devoted to the use of the protein
ontology for the annotation of protein databases. The protein ontology is available
at http://www.proteinontology.info/.

5.1 Introduction

A large number of diverse bioinformatics sources are available today. The future of
biological sciences promises more data. No individual data source will provide us
with answers to all the queries that we need to ask. Instead, knowledge has to be
composed from multiple data sources to answer the queries. Even though multiple
databases may cover the same data, their focus might be different. For example,
even though Swiss-Prot [1–3] and PDB [4–7] are both protein databases, we might
want to get information about sequence as well as structure of a particular protein.
In order to answer that query, we need to get data about the protein from both
sources and combine them in a consistent fashion [8]. In this postgenomic era, iso-
lating specific data from heterogeneous protein data sources has become a major
issue. Extracting relevant protein data without omitting data and without introduc-
ing irrelevant information is a challenge. The main problems lie in interpreting pro-
tein nomenclature and the multitude of synonyms and acronyms, which can be used
to describe a single protein, identifying data provenance, and extracting data from
computationally unprocessed natural language.
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5.2 What Is Protein Annotation?

As biological databases undergo a very rapid growth, two major consequences are
emerging. First, an efficient utilization of databases to provide easy management
and access to this data is continuously developing. A second consequence is a neces-
sary formalization of biological concepts and relationships among these concepts
via the creation of ontologies.

In the context of protein data, annotation generally refers to all information
about a protein other than protein sequence. In a collection of protein data, each
protein is labeled at least by an identifier and is usually complemented by annota-
tions as free text or as codified information, such as names of authors responsible for
that protein, submission date of protein data, and so on. Annotations become a chal-
lenge in proteomics considering the size and complexity of protein complexes and
their structures.

For our purposes, we will mainly deal with two main sources of protein annota-
tions: (1) those taken from various protein data sources submitted by the authors of
protein data themselves from their published experimental results; and (2) those that
we name annotation that are obtained by an annotator or group of annotators
through analysis of raw data (typically a protein sequence or atomic structure
description) with various tools that extract biological information from other
protein data collections.

5.3 Underlying Issues with Protein Annotation

Traditional approaches to integrate protein data generally involved keyword
searches, which immediately excludes unannotated or poorly annotated data. It also
excludes proteins annotated with synonyms unknown to the user. Of the protein
data that is retrieved in this manner, some biological resources do not record infor-
mation about the data source, so there is no evidence of the annotation. An alterna-
tive protein annotation approach is to rely on sequence identity, structural
similarity, or functional identification. The success of this method is dependent on
the family the protein belongs to. Some proteins have a high degree of sequence iden-
tity, structural similarity, or similarity in functions that are unique to members of
that family. Consequently, this approach cannot be generalized to integrate the pro-
tein data. Clearly, these traditional approaches have limitations in capturing and
integrating data for protein annotation. For these reasons, we have adopted an alter-
native method that does not rely on keywords or similarity metrics, but instead uses
ontology. Briefly, ontology is a means of formalizing knowledge; at the minimum,
ontology must include concepts or terms relevant to the domain, definitions of
concepts, and defined relationships between the concepts.

We have built protein ontology [9–17] to integrate protein data formats and
provide a structured and unified vocabulary to represent protein synthesis concepts.
Protein ontology (PO) provides integration of heterogeneous protein and biological
data sources. PO converts the enormous amounts of data collected by geneticists
and molecular biologists into information that scientists, physicians, and other
health care professionals and researchers can use to easily understand the mapping
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of relationships inside protein molecules, interaction between two protein mole-
cules, and interactions between protein and other macromolecules at cellular level.
PO also helps to codify proteomics data for analysis by researchers. Before we dis-
cuss the PO framework in detail, in the next section we provide an overview of vari-
ous protein databanks and earlier attempts to integrate protein data from these data
sources.

5.3.1 Other Biomedical Ontologies

In this section we will discuss various biomedical ontology works related to protein
ontology. Gene ontology (GO) [18, 19] defines a hierarchy of terms related to
genome annotation. GO is a structured network consisting of defined terms and
relationships that describe molecular functions, biological processes, and cellular
components of genes. GO is clearly defined and modeled for numerous other bio-
logical ontology projects. So far, GO has been used to describe the genes of several
model organisms (Saccharomyces cerevisiae, Drosophila melanogaster, Mus
musculus, and others).

RiboWEB [20] is an online data resource for Ribosome, a vital cellular appara-
tus. It contains a large knowledge base of relevant published data and computa-
tional modules that can process this data to test hypotheses about ribosome’s
structure. The system is built around the concept of ontology. Diverse types of data
taken principally from published journal articles are represented using a set of tem-
plates in the knowledge base, and the data is linked to each other with numerous
connections.

Protein Data Bank (PDB) has recently released versions of the PDB Exchange
Dictionary and the PDB archival files in XML format, collectively named PDBML
[21]. The representation of PDB data in XML builds from content of the PDB
Exchange Dictionary, both for assignment of data item names and defining data
organization. PDB exchange and XML representations use the same logical data
organization. A side effect of maintaining a logical correspondence with PDB
exchange representation is that PDBML lacks the hierarchical structure
characteristic of XML data.

PRONTO [22] is a directed acyclic graph (DAG)-based ontology induction tool
that constructs a protein ontology including protein names found in MEDLINE
abstracts and in UniProt. It is a typical example of text mining the literature and the
data sources. It cannot be classified as protein ontology as it only represents rela-
tionship between protein literatures and does not formalize knowledge about pro-
tein synthesis process. Ontology for protein domain must contain terms or concepts
relevant to protein synthesis, describing protein sequence, structure, and function
and relationships between them. While defining PO we made an effort to emulate
the protein synthesis and describe the concepts and relationships that describe it.

There is a need for an agreed-upon standard to semantically describe protein
data. PO addresses this issue by providing clear and unambiguous definitions of all
major biological concepts of protein synthesis process and the relationships
between them. PO provides a unified controlled vocabulary both for annotation
data types and for annotation data itself.
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5.3.2 Protein Data Frameworks

The identification of all the genes that encode proteins in the genome of an organism
is essential but not sufficient for understanding how these proteins function in mak-
ing up a living cell. The number of different fundamental proteins in an organism
often substantially exceeds the number of genes due to generation of protein
isoforms by alternative RNA processing as well as by covalent modifications of pre-
cursor proteins. To cope with the complexity of protein sequence and functional
information, annotated databases of protein sequence, structure, and function with
high interoperability are needed. The major protein databases are the most compre-
hensive sources of information on proteins. In addition to these universal databases
that cover proteins from all the species, there are collections that store information
about specific families or groups of proteins, or about proteins of specific organisms.
Here we will give a brief overview of major protein collections and their correspond-
ing annotations.

5.3.2.1 Worldwide PDB (wwPDB)

The wwPDB [23] represents a milestone in the evolution of PDB, which was estab-
lished in 1971 at Brookhaven National Laboratory as the sole international reposi-
tory for three-dimensional structural data of biological macromolecules. Since July
1, 1999, the PDB has been managed by three member institutions of the RCSB:
Rutgers, The State University of New Jersey; the San Diego Supercomputer Center
at the University of California, San Diego; and the Center for Advanced Research in
Biotechnology of the National Institute of Standards and Technology. The wwPDB
recognizes the importance of providing equal access to the database both in terms of
depositing and retrieving data from different regions of the world. Therefore, the
wwPDB members will continue to serve as deposition, data processing, and distribu-
tion sites. To ensure the consistency of PDB data, all entries are validated and anno-
tated following a common set of criteria. All processed data is sent to the RCSB,
which distributes the data worldwide. All format documentation will be kept pub-
licly available and the distribution sites will mirror the PDB archive using identical
contents and subdirectory structure. However, each member of the wwPDB will be
able to develop its own Web site, with a unique view of the primary data, providing
a variety of tools and resources for the global community.

5.3.2.2 Universal Protein Resource (UniProt)

UniProt [1] joins three major protein databases: PIR-PSD [24], Swiss-Prot [3], and
TrEMBL [2]. The Protein Information Resource (PIR) provides an integrated public
resource of protein informatics. PIR produces the Protein Sequence Database (PSD)
of functionally annotated protein sequences. Swiss-Prot is a protein knowledge base
established in 1986 and maintained collaboratively by the Swiss Institute of
Bioinformatics (SIB) and the European Bioinformatics Institute (EBI). It strives to
provide a high level of annotation, a minimal level of redundancy, a high level of
integration with other biomolecular databases, and extensive external documenta-
tion. The translation of EMBL nucleotide sequence database (TrEMBL), a supple-
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ment to Swiss-Prot, was created in 1996. This supplement contains computer
annotated protein sequences not yet integrated with Swiss-Prot. Together, PIR, EBI,
and SIB maintain and provide UniProt, a stable, comprehensive, fully classified, and
accurately annotated protein knowledge base.

5.3.2.3 Classification of Protein Families

Classification of proteins provides valuable clues of structure, activity, and meta-
bolic role. A number of different classification systems have been developed in
recent years to organize proteins. The various existing classification schemes
include: (1) hierarchical families of proteins, such as the superfamilies or families in
the PIR-PSD, and protein groups in ProntoNet [25]; (2) protein family domains
such as those in Pfam [26] and ProDom [27]; (3) sequence motifs or conserved
regions as in PROSITE [28] and PRINTS [29]; (4) structural classes, such as in
SCOP [30] and CATH [31]; and (5) integrations of various family classifications
such as iProClass [32] and InterPro [33]. While each of these databases is useful for
particular needs, no classification scheme is by itself adequate for addressing all
protein annotation needs.

InterPro is an integrated resource of PROSITE, PRINTS, Pfam, ProDom,
SMART [34], and TIGRFAMs [35] for protein families, domains, and functional
sites. Each entry in InterPro includes a unique name and short name; an abstract,
which provides annotation about protein matching the entry; literature references
and links back to relevant databases; and a list of precomputed matches against the
whole of SwissProt and TrEMBL.

PIR defines closely related proteins as having at least 50% sequence identity;
such sequences are automatically assigned to the same family. The families pro-
duced by automatic clustering can be refined to make groups that make biological
sense. A PIR superfamily is a collection of families. Sequences in different families in
same superfamily have as little as 15–20% sequence identity. The PIR superfamily /
family concept [36] is the earliest protein classification based on sequence similar-
ity, and is unique in providing nonoverlapping clustering of protein sequences into a
hierarchical order to reflect evolutionary relationships.

5.3.2.4 Online Mendelian Inheritance in Man

Online Mendelian Inheritance in Man (OMIM) is a continuously updated catalog
of human genes and genetic disorders. OMIM focuses primarily on inherited or her-
itable, genetic diseases. It is also considered to be a phenotypic companion to the
human genome project. OMIM is based upon the text Mendelian Inheritance in
Man [37], authored and edited by Victor A. McKusick and a team of science writers
and editors at Johns Hopkins University and elsewhere. Mendelian Inheritance in
Man is now in its twelfth edition. The database contains textual information and
references. OMIM is primarily used by physicians and other professionals con-
cerned with genetic disorders, by genetics researchers, and by advanced students in
science and medicine.
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5.3.3 Critical Analysis of Protein Data Frameworks

Semantics of protein data are usually hard to define precisely because they are not
explicitly stated but are implicitly included in database design. Proteomics is not a
single, consistent domain; it is composed of various smaller focused research com-
munities, each having a different data format. Data semantics would not be a signifi-
cant issue if researchers only accessed data from within a single research domain,
but this is not usually the case. Typically, researchers require integrated access to
data from multiple domains, which requires resolving terms that have slightly differ-
ent meanings across communities. This is further complicated by observations that
the specific community whose terminology is being used by a data source is not
explicitly identified and that the terminology evolves over time. For many of the
larger, community data sources, the domain is oblivious, the PDB handles protein
structure information, the Swiss-Prot protein sequence database provides protein
sequence information and useful annotations, and so on. The terminology used in
these major data banks does not reflect knowledge integration from multiple protein
families. The wwPDB is an effort to integrate protein data from PDB and other
major protein databases at EBI, but the work is at too early a stage at the moment to
comment. Furthermore, in smaller community data sources terminology is typically
selected based on functionality of data source or usage model. Consequently, as que-
ries to protein data models discussed in this section can involve using concepts from
other data sources, the data source answering the query will use whatever defini-
tions are most intuitive, annotating the knowledge from various protein families as
needed. This kind of protein annotation will be difficult to generalize for all kinds of
proteins.

5.4 Developing Protein Ontology

One of the major motivations for developing protein ontology was introduction of
the Genomes to Life Initiative [38, 39] close to the completion of Human Genome
Project (HGP), which finished in April 2003 [40]. Lessons learned from HGP will
guide ongoing management and coordination of GTL. The overall objective of the
Protein Ontology Project is: “To correlate information about multiprotein machines
with data in major protein databases to better understand sequence, structure and
function of protein machines.” The objective is achieved to some extent by creating
databases of major protein families, based on the vocabulary of PO.

As technologies mature, the shift from single annotation databases being que-
ried by Web-based scripts generating HTML pages to annotation repositories capa-
ble of exporting selected data in XML format, either to be further analyzed by
remote applications or to undergo a transformation stage to be presented to user in a
Web browser, will undoubtedly be one of the major evolutions of protein annota-
tion process. XML is a markup language much like HTML, but XML describes data
using hierarchy. An XML document uses the schema to describe data and is
designed to be self-descriptive. This allows easy and powerful manipulation of data
in XML documents. XML provides syntax for structured documents, but imposes
no semantic constraints on the meaning of these documents.
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Resource Description Framework (RDF) is a data model for objects or
resources and relations between them; it provides a simple semantics for this data
model, and these data models can be represented in XML syntax. RDF Schema is a
vocabulary for describing properties and classes of RDF resources, with semantics
for generalization hierarchies of such properties and classes.

To efficiently represent the protein annotation framework and to integrate all
the existing data representations into a standardized protein data specification for
the bioinformatics community, the protein ontology needs to be represented in a
format that not only enforces semantic constraints on protein data, but can also
facilitate reasoning tasks on protein data using semantic query algebra. This moti-
vates the representation of the Protein Ontology Model in Web Ontology Language
(OWL). OWL is designed for use by applications that need to process the content of
information instead of just presenting information to humans. OWL facilitates
greater machine interpretability of Web content than that supported by XML, RDF,
and RDF Schema by providing additional vocabulary along with a formal seman-
tics. OWL provides a language for capturing declarative knowledge about protein
domain and a classifier that allows reasoning about protein data. Knowledge cap-
tured from protein data using OWL is classified in a rich hierarchy of concepts and
their interrelationships. OWL is compositional and dynamic, relying on notions of
classification, reasoning, consistency, retrieval, and querying. We investigated the
use of OWL for making PO using the Protégé OWL Plug-in. OWL is flexible and
powerful enough to capture and classify biological concepts of proteins in a consis-
tent and principled fashion. OWL is used to construct PO that can be used for
making inferences from proteomics data using defined semantic query algebra.

5.5 Protein Ontology Framework

The ultimate goal of protein annotator framework or PO is to deduce from
proteomics data all its biological features and describe all intermediate structures:
primary amino acid sequence, secondary structure folds and domains, tertiary
three-dimensional atomic structure, quaternary active functional sites, and so on.
Thus, complete protein annotation for all types of proteins for an organism is a very
complex process that requires, in addition to extracting data from various protein
databases, the integration of additional information such as results of protein
experiments, analysis of bioinformatics tools, and biological knowledge accumu-
lated over the years. This constitutes a huge mass of heterogeneous protein data
sources that need to rightly represented and stored. Protein annotators must be able
to readily retrieve and consult this data. Therefore protein databases and
man-machine interfaces are very important when defining a protein annotation
using protein ontology.

The process of development of a protein annotation based on our protein ontol-
ogy requires a significant effort to organize, standardize, and rationalize protein
data and concepts. First of all, protein information must be defined and organized
in a systematic manner in databases. In this context, PO addresses the following
problems of existing protein databases: redundancy, data quality (errors, incorrect
annotations, and inconsistencies), and the lack of standardization in nomenclature.
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The process of annotation relies heavily on integration of heterogeneous protein
data. Integration is thus a key concept if one wants to make full use of protein data
from collections. In order to be able to integrate various protein data, it is important
that communities agree upon concepts underlying the data. PO provides a frame-
work of structured vocabularies and a standardized description of protein concepts
which help to achieve this agreement and achieve uniformity in protein data
representation.

PO consists of concepts (or classes), which are data descriptors for proteomics
data, and the relations among these concepts. PO has: (1) a hierarchical classification
of concepts, from general to specific; (2) a list of attributes related to each concept, for
each class; and (3) a set of relations between classes to link concepts in ontology in
more complicated ways then implied by the hierarchy, to promote reuse of concepts in
the ontology. PO provides the concepts necessary to describe individual proteins, but
it does not contain individual protein instances. The PO Instance Store contains indi-
vidual instances for protein complex in the Web Ontology Language (OWL) format.

5.5.1 The ProteinOntology Concept

The main concept in PO is ProteinOntology. For each instance of protein that is
entered into PO, the submission information is entered for the ProteinOntology
Concept. The ProteinOntology Concept has the following attributes:
ProteinOntologyID and ProteinOntologyDescription. The ProteinOntologyID has
the following format: PO000000029.

5.5.2 Generic Concepts in Protein Ontology

There are seven subconcepts of the ProteinOntology Concept, called generic con-
cepts, which are used to define complex concepts in other PO classes: Residue,
Chain, Atom, Family, AtomicBind, Bind, and SiteGroup. These generic concepts are
reused for other definitions of complex concepts in PO. Details and properties of res-
idues in a protein sequence are defined by instances of Residue Concept. Instances of
chains of residues are defined in Chain Concept. Three-dimensional structure data
of protein atoms is represented as instances of Atom Concept. Defining chain, resi-
due, and atom as individual concepts has the benefit that any special properties or
changes affecting a particular chain, residue, or atom can be easily added. Family
Concept represents protein superfamily and family details of proteins. Data about
binding atoms in chemical bonds like a hydrogen bond, residue links, and salt
bridges is entered into the ontology as an instance of AtomicBind Concept. Simi-
larly, the data about binding residues in chemical bonds like disulphide bonds and
CIS peptides is entered into the ontology as an instance of Bind Concept. All data
related to site groups of the active binding sites of proteins are defined as instances of
SiteGroup Concept. Representation of instances of residues and chains of residues
are shown as follows:

<Residues>
<Residue>LEU</Residue>
<ResidueName>LEUCINE</ResidueName>
<ResidueProperty>1-LETTER CODE: L; FORMULA: C6 H13 N1 O2;

70 Protein Ontology



MOLECULAR WEIGHT: 131.17</ResidueProperty>
</Residues>

<Chains>
<Chain>D</Chain>
<ChainName>CHAIN D</ChainName>
</Chains>

5.5.3 The ProteinComplex Concept

The root concept for the definition of protein complexes in the protein ontology is
ProteinComplex. The ProteinComplex Concept defines one or more proteins in the
complex molecule. There are six subconcepts of ProteinComplex: Entry, Structure,
StructuralDomains, FunctionalDomains, ChemicalBonds, and Constraints. These
subconcepts define sequence, structure, function, and chemical bindings of the
protein complex.

5.5.4 Entry Concept

Entry Concept specifies the details of a protein or a protein complex which are
entered into the knowledge base of protein ontology. Protein entry details are
entered into Entry Concept as instances of EntrySuperFamily, EntryFamily,
SourceDatabaseID, SourceDatabaseName, SubmissionDate, and Classification.
These attributes describe the entry in the original protein data source from where it
was taken. Entry has three subconcepts: Description, Molecule, and Reference. The
Description subconcept describes data about the title of the entry, the authors of the
entry, the experiment that produced the entry, and the keywords describing the
entry. The second subconcept of Entry is Molecule, which is simply any chemically
distinct molecule or compound in a protein complex. MoleculeID uniquely identi-
fies a molecule. MoleculeName is the chemical name of the molecule.
MoleculeChain refers to the chain description. BiologicalUnit instance describes the
larger biological unit of which the molecule is a part. Engineered identifies whether
the molecule is engineered using recombinant technology or chemical synthesis. A
specific domain or region of the molecule is defined using Fragment. Mutated mole-
cules of the protein have Mutations Information. Details about various mutations
are described in the GeneticDefects Class. A list of synonyms for molecule name are
in Synonyms. OtherDetails describes any other information. The Reference
subconcept lists the various literature citations of the protein or protein complex
described by the instances of CitationTitle, CitationAuthors, CitationEditors,
CitationPublication, CitationReference, and CitationReferenceNumbers. A typical
instance of Entry is as follows:

<Entry>
<ProteinOntologyID>PO0000000007</ProteinOntologyID>
<EntrySuperFamily>HUMAN</EntrySuperFamily>
<EntryFamily>PRION PROTEINS</EntryFamily>
<SourceDatabaseID>1E1P</SourceDatabaseID>
<SourceDatabaseName>PROTEIN DATA BANK</SourceDatabaseName>
<SubmissionDate>09-MAY-00</SubmissionDate>
<Title>HUMAN PRION PROTEIN VARIANT S170N</Title>
<Authors>L.CALZOLAI, D.A.LYSEK, P.GUNTERT, C.VON SCHROETTER,
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R.ZAHN, R.RIEK, K.WUTHRICH</Authors>
<Experiment>NMR, 20 STRUCTURES</Experiment>
<Keywords>PRION PROTEIN</Keywords>
<CitationTitle>NMR STRUCTURES OF THREE SINGLE-RESIDUE VARIANTS OF
THE HUMAN PRION PROTEIN</CitationTitle>
<CitationAuthors>L.CALZOLAI, D.A.LYSEK, P.GUNTERT, C.VON
SCHROETTER, R.ZAHN, R.RIEK, K.WUTHRICH</CitationAuthors>
<CitationPublication>PROC.NAT.ACAD.SCI.USA</CitationPublication>
<CitationReference>V. 97 8340 2000</CitationReference>
<CitationReferenceNumbers>ASTM PNASA6 US ISSN
0027-8424</CitationReferenceNumbers>
</Entry>

5.5.5 Structure Concept

Structure Concept describes the protein structure details. Structure has two
subconcepts: ATOMSequence and UnitCell. ATOMSequence is an example of the
reuse of concepts in PO; it is constructed using generic concepts of Chain, Residue,
and Atom. The reasoning is already there in the underlying protein data, as each
chain in a protein represents a sequence of residues, and each residue is defined by a
number of three-dimensional atoms in the protein structure. Structure Concept
defines ATOMSequence, with references to definitions of Chain and Residues, as:

<ATOMSequence>
<ProteinOntologyID>PO0000000004</ProteinOntologyID>
<Chain>
<AtomChain>A</AtomChain>
<Residue>
<ATOMResidue>ARG</ATOMResidue>
<Atom>
<AtomID>364</AtomID>
<Symbol>HE</Symbol>
<ATOMResSeqNum>148</ATOMResSeqNum>
-23.549</X>
<Y>3.766</Y>
<Z>-0.325</Z>
<Occupancy>1.0</Occupancy>
<TempratureFactor>0.0</TempratureFactor>
<Element>H</Element>
</Atom>
</Residue>
</Chains>
</ATOMSequence>

Protein crystallography data like a, b, c, alpha, beta, gamma, z, and SpaceGroup
is described in UnitCell Concept.

5.5.6 StructuralDomains Concept

Structural folds and domains defining secondary structures of proteins are defined
in StructuralDomains Concept. The subconcepts SuperFamily and Family of generic
concept Family are used for identifying the protein family here. The subconcepts of
StructuralDomains are Helices, Sheets, and OtherFolds. Helix, which is a
subconcept of Helices, identifies a helix using HelixNumber, HelixID, HelixClass,
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and HelixLength Instances. Helix has a subconcept HelixStructure which gives the
detailed composition of the helix. A typical instance of Helices Concept is:

<Helices>
<ProteinOntologyID>PO0000000002</ProteinOntologyID>
<StructuralDomainSuperFamily>HAMSTER</StructuralDomainSuperFamily>
<StructuralDomainFamily>PRION PROTEINS</StructuralDomainFamily>
<Helix>
<HelixID>1</HelixID>
<HelixNumber>1</HelixNumber>
<HelixClass>Right Handed Alpha</HelixClass>
<HelixLength>10</HelixLength>
<HelixStructure>
<HelixChain>A</HelixChain>
<HelixInitialResidue>ASP</HelixInitialResidue>
<HelixInitialResidueSeqNum>144</HelixInitialResidueSeqNum>
<HelixEndResidue>ASN</HelixEndResidue>
<HelixEndResidueSeqNum>153</HelixEndResidueSeqNum>
</HelixStructure>
</Helix>
</Helices>

Other secondary structures like sheets and turns (or loops) are represented using
concepts of chains and residues in a similar way. Sheets has a subconcept Sheet
which describes a sheet using SheetID and NumberStrands. Sheet has a subconcept
Strands which describes the detailed structure of a sheet. A typical instance of Sheets
Class is:

<Sheets>
<ProteinOntologyID>PO0000000001</ProteinOntologyID>
<StructuralDomainSuperFamily>MOUSE</StructuralDomainSuperFamily>
<StructuralDomainFamily>PRION PROTEINS</StructuralDomainFamily>
<Sheet>
<SheetID>S1</SheetID>
<NumberStrands>2</NumberStrands>
<Strands>
<StrandNumber>2</StrandNumber>
<StrandChain>NULL</StrandChain>
<StrandIntialResidue>VAL</StrandIntialResidue>
<StrandIntialResidueSeqNum>161</StrandIntialResidueSeqNum>
<StrandEndResidue>ARG</StrandEndResidue>
<StrandEndResidueSeqNum>164</StrandEndResidueSeqNum>
<StrandSense>ANTI-PARALLEL</StrandSense>
</Strands>
</Sheet>
</Sheets>

5.5.7 FunctionalDomains Concept

PO has the first Functional Domain Classification Model defined using
FunctionalDomains Concept using: (1) data about cellular and organism source in
SourceCell subconcept, (2) data about biological functions of protein in
BiologicalFunction subconcept, and (3) data about active binding sites in proteins in
ActiveBindingSites subconcept. Like StructuralDomains Concept, SuperFamily and
Family subconcepts of generic concept Family are used for identifying the protein
family here. SourceCell specifies a biological or chemical source of each biological
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molecule (defined by Molecule Concept earlier) in the protein. Biological functions
of the protein complex are described in BiologicalFunction. BiologicalFunction has
two subconcepts, PhysiologicalFunctions and PathologicalFunctions, and each of
these has several subconcepts and sub-subconcepts describing various correspond-
ing functions. The third subconcept of FunctionalDomains is ActiveBindingSites
which has details about active binding sites in the protein. Active binding sites are
represented in our ontology as a collection of various site groups, defined in
SiteGroup Concept. SiteGroup has details about each of the residues and chains that
form the binding site. There can be a maximum of seven site groups defined for a
protein complex in PO. A typical instance of SourceCell in FunctionalDomains is:

<SourceCell>
<ProteinOntologyID>PO0000000009</ProteinOntologyID>
<SourceMoleculeID>1</SourceMoleculeID>
<OrganismScientific>HOMO SAPIENS</OrganismScientific>
<OrganismCommon>HUMAN</OrganismCommon>
<ExpressionSystem>ESCHERICHIA COLI; BACTERIA</ExpressionSystem>
<ExpressionSystemVector>PLAMID</ExpressionSystemVector>
<Plasmid>PRSETB</Plasmid>
</SourceCell>

5.5.8 ChemicalBonds Concept

Various chemical bonds used to bind various substructures in a complex protein
structure are defined in ChemicalBonds Concept. Chemical bonds that are defined
in PO by their respective subconcepts are: DisulphideBond, CISPeptide,
HydrogenBond, ResidueLink, and SaltBridge. These are defined using generic con-
cepts of Bind and AtomicBind. The chemical bonds that have binding residues
(DisulphideBond, CISPeptide) reuse the generic concept of Bind. In defining the
generic concept of Bind in protein ontology we again reuse the generic concepts of
Chains and Residues. Similarly, the chemical bonds that have binding atoms
(HydrogenBond, ResidueLink, and SaltBridge) reuse the generic concept of
AtomicBind. In defining the generic concept of AtomicBind we reuse the generic
concepts of Chains, Residues, and Atoms. A typical instance of a ChemicalBond is:

<CISPeptides>
<ProteinOntologyID>PO0000000003</ProteinOntologyID>
<BindChain1>H</BindChain1>
<BindResidue1>GLU</BindResidue1>
<BindResSeqNum1>145</BindResSeqNum1>
<BindChain2>H</BindChain2>
<BindResidue2>PRO</BindResidue2>
<BindResSeqNum2>146</BindResSeqNum2>
<AngleMeasure>-6.61</AngleMeasure>
<Model>0</Model>
</CISPeptides>

5.5.9 Constraints Concept

Various constraints that affect final protein conformation are defined in Constraints
Concept using ConstraintID and ConstraintDescription. The constraints currently
described in PO are as follows: (1) monogenetic and polygenetic defects present in
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genes that are present in molecules making proteins in the GeneDefects subconcept,
(2) hydrophobicity properties in the Hydrophobicity concept, and (3) modification
in residue sequences due to chemical environment and mutations in the
ModifiedResidue concept. Posttranslational residue modifications are comprised of
those amino acids that are chemically changed in such way that they could not be
restored by physiological processes, as well as other rare amino acids that are
translationally incorporated but for historical reasons are represented as modified
residues. The RESID Database [41] is the most comprehensive collection of annota-
tions and structures for protein modifications. The current version of RESID maps
posttranslational modifications to both PIR and Swiss-Prot. Data in the
GeneDefects class is entered as instances of GeneDefects class and is normally taken
from OMIM [37] or scientific literature. A typical instance of a Constraint is:

<Constraints>
<ProteinOntologyID>PO0000000001</ProteinOntologyID>
<ConstraintID> 3 </ConstraintID>
<ConstraintDescription> MODIFICATION OF RESIDUES DUE TO
GLYCOSYLATION</ConstraintDescription>
</Constraints>

The complete class hierarchy of PO is shown in Figure 5.1. More details about
PO are available at the Web site: http://www.proteinontology.info/.

5.5.10 Comparison with Protein Annotation Frameworks

In this section we compare the frameworks of our PO with PRONTO and PDBML.

5.5.10.1 PRONTO and PO

Machine-generated protein ontology generated by PRONTO is just a set of terms
and relationships between those terms. PRONTO-generated ontology does not
cover and map all the stages of the proteomics process from protein’s primary struc-
ture to protein’s quaternary structure. PRONTO uses iProLink literature-mining
ontology to search and identify protein names in the MEDLINE database of biolog-
ical literature. It then cross-references EBI’s UniProt database to define relationships
between these terms. PO, on the other hand, integrates data representation frame-
works of various protein data sources—PDB, SCOP, RESID, and OMIM—to pro-
vide a unified vocabulary covering all the stages of proteomics process. PRONTO
represents only two relationships between the terms of the ontology: is-a relation
and part-of relation. Whereas PO represents five different relationships between
the terms used in the ontology definition. They are: SubConceptOf, PartOf,
AttributeOf, InstanceOf, and ValueOf.

5.5.10.2 PDBML and PO

PDBML is a XML Schema mapping the PDB Exchange Dictionary. In 2004, we did
quite similar work [15–17] to PDBML by creating a XML Schema and RDF Schema
mapping of PDB, Swiss-Prot, and PIR databases. PDBML lacks the hierarchical
relationships as it is linked to the logical representation of PDB. The semantics of
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data is preserved and translation from PDB to XML Schema is simple, but it cannot
be used to process the content. PO with the power of OWL has no limitations in
processing the content.

5.6 Protein Ontology Instance Store

The Protein Ontology Instance Store is created for entering existing protein data
using the PO format. PO provides a technical and scientific infrastructure to allow
evidence-based description and analysis of relationships between proteins. PO uses
data sources including new proteome information resources like PDB, SCOP, and
RESID, as well as classical sources of information where information is maintained
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• Bind
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• ProteinComplex

• ChemicalBonds
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• SourceCell
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• HelixStructure
• OtherFolds

• Turn
• TurnStructure

• Sheets
• Sheet

• Strands
• Structure

• ATOMSequence
• UnitCell

• Residues
• SiteGroup

Figure 5.1 Concept hierarchy of protein ontology.



in a knowledge base of scientific text files like OMIM and various published scien-
tific literature in various journals. The PO Instance Store is represented using OWL.
The PO Instance Store at the moment contains data instances of following protein
families: (1) Prion Proteins, (2) B.Subtilis, and (3) Chlorides. More protein data
instances will be added as PO becomes more developed. All the PO instances are
available for download (http://proteinontology.info/proteins.htm) in OWL format
which can be read by any popular editor like Protégé (http://protege.stanford.edu/).

5.7 Strengths and Limitations of Protein Ontology

PO provides a unified vocabulary for capturing declarative knowledge about pro-
tein domain and for classifying that knowledge to allow reasoning. Information
captured by PO is classified in a rich hierarchy of concepts and their interrelation-
ships. PO is compositional and dynamic, relying on notions of classification, rea-
soning, consistency, retrieval, and querying. In PO the notions classification,
reasoning, and consistency are applied by defining new concepts from defined
generic concepts. The concepts derived from generic concepts are placed precisely
into the concept hierarchy of PO to completely represent information that defines a
protein complex.

As the OWL representation used in PO is an XML-Abbrev based (i.e., Abbrevi-
ated XML Notation), it can be easily transformed to the corresponding RDF and
XML formats without much effort using the available converters. The PO Instance
Store currently covers various species of proteins from bacterial and plant proteins
to human proteins. Such a generic representation using PO shows the strength of
PO format representation.

We will provide a specific set of rules to cover these application-specific seman-
tics over the PO framework. The rules use only the relationships whose semantics
are predefined to establish correspondence among terms in PO. These rules will help
in defining semantic query algebra for PO to efficiently reason and query the under-
lying instance store.

For protein functional classification, in addition to the presence of domains,
motifs or functional residues, the following factors are relevant: (1) similarity of
three-dimensional protein structures, (2) proximity to genes (this may indicate that
the proteins they produce are involved in same pathway), (3) metabolic functions of
organisms, and (4) evolutionary history of the protein. At the moment, PO’s func-
tional domain classification does not address the issues of proximity of genes and
evolutionary history of proteins. These factors will be added in the future to com-
plete the functional domain classification system in PO. Also, the constraints
defined in PO are not mapped back to the protein sequence, structure, and function
they affect. Achieving this in the future will interlink all the concepts of PO.

The limitations of PO in terms of defining new concepts for protein functions
and constraints on protein structure do not limit the use of generalized concepts in
PO to define any kind of complex concept for proteomics research in the future.
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5.8 Summary

Our protein ontology is the first ever work to integrate protein data based on data
semantics describing various phases of protein structure. PO helps to understand
structure, cellular function, and the constraints that affect protein in a cellular envi-
ronment. The attribute values in the PO are not defined as text strings or as set of
keywords. Most of the values are entered as instances of generic concepts defined in
PO which provide notions of classification, reasoning, and consistency when
defining new concepts.
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C H A P T E R 6

Information Quality Management
Challenges for High-Throughput Data

Cornelia Hedeler and Paolo Missier

In postgenomic biology, high-throughput analysis techniques allow a large number
of genes and gene products to be studied simultaneously. These techniques are
embedded in experimental pipelines that produce high volumes of data at various
stages. Ultimately, the biological interpretation derived from the data analysis
yields publishable results. Their quality, however, is routinely affected by the num-
ber and complexity of biological and technical variations within the experiments,
both of which are difficult to control.

In this chapter we present an analysis of some of these issues, conducted
through a survey of quality control techniques within the specific fields of
transcriptomics and proteomics. Our analysis suggests that, despite their differ-
ences, a common structure and a common set of problems for the two classes of
experiments can be found, and we propose a framework for their classification. We
argue that the scientists’ ability to make informed decisions regarding the quality of
published data relies on the availability of metainformation describing the experi-
ment variables, as well as on the standardization of its content and structure. Infor-
mation management expertise can play a major role in the effort to model, collect,
and exploit the necessary metainformation.

6.1 Motivation

With several genomes of model organisms now being fully sequenced and with the
advent of high-throughput experimental techniques, research in biology is shifting
away from the study of individual genes, and towards understanding complex sys-
tems as a whole, an area of study called systems biology [1]. Instead of studying one
gene or protein at a time, a large number of genes or proteins are monitored simulta-
neously. Different kinds of experimental data are integrated and analyzed to draw
biological conclusions, state new hypotheses, and ultimately generate mathematical
models of the biological systems.

A single high-throughput experiment may generate thousands of measure-
ments, requiring the use of data-intensive analysis tools to draw biologically signifi-
cant conclusions from the data. The data and its biological interpretation are then
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disseminated through public repositories and journal publications. Once published,
this can be used within the scientific community to annotate gene and protein
descriptions in public databases, and to provide input to so-called in silico experi-
ments—that is, “procedures that use computer-based information repositories and
computational analysis tools to test a hypothesis, derive a summary, search for
patterns, or demonstrate a known fact” [2].

In the recent past, research into the quality of information available in public
biology databases has focused mainly on the issue of data reconciliation across mul-
tiple and heterogeneous data sources [3, 4]. In this area, it has been possible to adapt
techniques and algorithms for which a largely domain-independent theoretical
framework exists, notably for record linkage [5] and for data integration in the pres-
ence of inconsistencies and incompleteness [6, 7].

Data reconciliation techniques, however, largely fail to address the basic prob-
lem of establishing the reliability of experimental results submitted to a repository,
regardless of their relationships with other public data. This is a fundamental and
pervasive information quality problem1: using unproven or misleading experimental
results for the purpose of database annotation, or as input to further experiments,
may result in the wrong scientific conclusions. As we will try to clarify in this chap-
ter, techniques and, most importantly, appropriate metadata for objective quality
assessment are generally not available to scientists, who can be only intuitively
aware of the impact of poor quality data on their own experiments. They are there-
fore faced with apparently simple questions: Are the data and their biological impli-
cations credible? Are the experimental results sound, reproducible, and can they be
used with confidence?

This survey offers an insight into these questions, by providing an introductory
guide for information management practitioners and researchers, into the complex
domain of post-genomic data. Specifically, we focus on data from transcriptomics
and proteomics (i.e., the large-scale study of gene2 and protein expression), which
represent two of the most important experimental areas of the post-genomic era.

We argue that answering the scientists’ questions requires a thorough under-
standing of the processes that produce the data and of the quality control measures
taken at each step in the process. This is not a new idea: a generally accepted
assumption in the information quality community [9, 10] has been to consider infor-
mation as a product, created by a recognizable production process, with the implica-
tion that techniques for quality control used in manufacturing could be adapted for
use with data. These ideas have been embedded into guidelines for process analysis
that attempt to find metrics for measuring data quality [11, 12].

While we subscribe to this general idea, we observe that an important distinc-
tion should be made between business data, to which these methodologies have been
applied for the most part (with some exceptions; see, for example, [13] for an analy-
sis of data quality problems in genome data), and experimental scientific data. Busi-
ness data is often created in a few predictable ways—that is, with human input or
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1. The term “information” is often used in contrast with “data,” to underline the difference between the ability
to establish formal correctness of a data item, and the ability to provide a correct interpretation for it. In this
sense, assessing reliability is clearly a problem of correct interpretation, hence of information quality.

2. The term “gene expression” refers to the process of DNA transcription for protein production within a cell.
For a general introduction to the topics of genomic and proteomics, see [8].



input from other processes (this is the case, for example, in banking, public sector,
and so on), and it has a simple interpretation (addresses, accounting information).
Therefore, traditional data quality problems such as stale data, or inconsistencies
among copies, can often be traced to problems with the input channels and with
data management processes within the systems, and software engineering
techniques are usually applied to address them.

The correct interpretation of scientific data, on the other hand, requires a pre-
cise understanding of the broad variability of the experimental processes that pro-
duce it. With research data in particular, the processes are themselves experimental
and tend to change rapidly over time to track technology advances. Furthermore,
existing quality control techniques are very focused on the specific data and pro-
cesses, and are difficult to generalize; hence the wealth of domain-specific literature
offered in this survey.

This variability and complexity makes the analysis of quality properties for
scientific data different and challenging. In this domain, traditional data quality
issues such as completeness, consistency, and currency are typically observed at
the end of the experiment, when the final data interpretation is made. However, as
the literature cited in this chapter shows, there is a perception within the scientific
community that quality problems must be addressed at all the stages of an
experiment.

For these reasons, we focus on the data creation processes, rather than on the
maintenance of the final data output. We concentrate on two classes of experi-
ments: microarray data analysis for transcriptomics, and protein identification for
proteomics. In these areas, the quality of the data at the dissemination stage is deter-
mined by factors such as the intrinsic variability of the experimental processes, both
biological and technical, and by the choice of bioinformatics algorithms for data
analysis; these are often based on statistical models, and their performance is in turn
affected by experimental variability, among other factors. A brief background on
these technologies is provided in Section 6.2.

As a matter of method, we observe that these two classes can be described using
the same basic sequence of steps, and that the corresponding quality problems also
fall into a small number of categories. We use the resulting framework to structure a
list of domain-specific problems, and to provide references for the techniques used
to tackle them. This analysis is presented in Section 6.3.

Although the quality control techniques surveyed are rooted in the context of
post-genomics, and this survey does not discuss specific techniques or solutions in
depth, a few general points emerge from this analysis regarding technical
approaches to quality management: (1) the importance of standards for accurately
modeling and capturing provenance metadata regarding the experiments (i.e.,
details of the experimental design and of its execution), and (2) the standardization
of their representation, in order to deal with heterogeneity among different labora-
tories that adopt different experimental practices. These points are discussed in
Section 6.4.

A further potentially promising contribution offered by the information quality
community is the study of information as a product, already mentioned [9, 10].
However, to the best of our knowledge, no general theory of process control for
these data domains has been developed.
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6.2 The Experimental Context

We describe the general steps of a rather generic biological experiment, starting
from the experimental design, leading to a publication, and further, to the use of
published literature for the functional annotation of genes and proteins in data-
bases. An overview of this abstraction is shown in Figure 6.1.

The experiment begins with the statement of a scientific hypothesis to be tested;
along with constraints imposed by the laboratory equipment, this leads to the choice
of an appropriate experimental design. The so-called wet lab portion is executed by
the biologist, starting from the preparation of the sample, and usually leading to the
generation of some form of raw data.

It is common to build elements of repetition into the experiment, to take into
account both technical and biological variability, specifically:

1. Technical repeats: After preparation, the sample is divided into two or more
portions and each portion is run through exactly the same technical steps,
leading to separate measurements for each portion. This is done to account
for the variability of the technical process.

2. Biological repeat: Two or more samples are obtained from different
individuals studied under exactly the same conditions. These samples are
then prepared using the same protocol and run through the same technical
process. These repeats allow for the estimation of biological variability
between individuals.

The raw data generated in the lab is then analyzed in the so-called dry lab, a
computing environment equipped with a suite of bioinformatics data analysis tools.
The processed data is then interpreted in the light of biological knowledge, and sci-
entific claims can be published. A growing number of scientific journals explicitly
require that the experimental data be submitted to public data repositories at the
same time [14].

The result of data analysis and interpretation is processed data, which can
include not only the experimental data in analyzed form, but also additional infor-
mation that has been used to place the data into context, such as the functional
annotation of genes and proteins or pathways the proteins are involved in.

The repetition of this process for a large number of high-throughput experi-
ments and over a period of time results in a body of literature about a particular gene
or protein. This knowledge is used by curators as evidence to support the annotation
of genes and proteins described in public databases, such as MIPS [15] and
Swiss-Prot [16]. A protein annotation typically includes a description of its function,
a description of the biological processes in which it participates, its location in the
cell, and its interactions with other proteins.

Reaching conclusions regarding protein function requires the analysis of multi-
ple pieces of evidence, the results of many experiments of different natures, and may
involve a combination of manual and automated steps [17]. In this chapter, we con-
centrate on two classes of experiments, microarray analysis of gene expression and
protein identification; they share the general structure outlined above, and are rele-
vant for their contribution to the knowledge used by the curation process.
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We now briefly review some definitions regarding these experiments.

6.2.1 Transcriptomics

Transcriptome experiments use microarray technology to measure the level of tran-
scription of a large number of genes (up to all genes in a genome) simultaneously, as
an organism responds to the environment. They measure the quantity of mRNA
produced in response to some environmental factor, for instance some treatment, at
a certain point in time, by obtaining a snapshot of the gene activity at that time.3

Here we only provide a brief introduction to the experimental steps involved
and the data analysis. For recent reviews on this topic, see [18–20]. In addition,
[21–23] provide reviews of methods to normalize and analyze transcriptome data.

An array is a matrix of spots, each populated during manufacturing with known
DNA strands, corresponding to the genes of interest for the experiment. When a
sample consisting of mRNA molecules from the cells under investigation is depos-
ited onto the array, these molecules bind, or hybridize, to the specific DNA tem-
plates from which they originated. Thus, by looking at the hybridized array, the
quantity of each different mRNA molecule of interest that was involved in the tran-
scription activity can be measured.

Among the many different array technologies that have become available within
the last few years, we focus on the two that are most common: cDNA [24] and
oligonucleotide arrays [25]. The choice between the two is dictated by the available
equipment, expertise, and by the type of experiment. An oligonucleotide array
accepts one sample and is suitable for measuring absolute expression values.
Whereas cDNA arrays accept two samples, labeled using two different fluorescent
dyes, which may represent the state of the organism before and after treatment; they
are used to measure ratios of expression levels between the two samples. To obtain
ratios using oligonucleotide technology, two arrays are necessary, and the ratios are
computed from the separate measurements of each. This difference is significant,
because the technical and biological variability of these experiments plays a role in
the interpretation of the results.

The measurements are obtained by scanning the arrays into a digital image,
which represents the raw data from the wet lab portion of the experiment. In the dry
lab, the image is analyzed to identify poor quality spots, which are excluded from
further analysis, and to convert each remaining spot into an intensity value (the
“raw readings” in Figure 6.2). These values are normalized to correct for back-
ground intensity, variability introduced in the experiment, and also to enable a
comparison between repeats.

In the subsequent high-level data analysis, the normalized data is interpreted in
the light of the hypothesis stated and the biological knowledge, to draw publishable
conclusions. Typically, the goal of the analysis is to detect genes that are differen-
tially expressed after stimulation, or to observe the evolution of expression levels in
time, or the clustering of genes with similar expression patterns over a range of con-
ditions and over time. Statistical and machine learning approaches are applied in
this phase [22, 26, 27].
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Each of these process steps involves choices that must be made (e.g., of technol-
ogy, of experiment design, and of low-level and high-level data analysis algorithms
and tools), which are interdependent and collectively affect the significance of the
final result. We survey some of these factors in the next section.

6.2.2 Qualitative Proteomics

The term “proteomics” refers to large-scale analysis of proteins, its ultimate goal
being to determine protein functions, and includes a number of areas of investiga-
tion. Here we only consider the problem of identifying the proteins within a sample,
a problem of qualitative proteomics; this involves determining the peptide masses
and sequences of the proteins present in a sample, and matching those against theo-
retically derived peptides calculated from protein sequence databases. For in-depth
reviews of the field, see [28–30].

This technology is suitable for experiments in which the protein contents before
and after a certain treatment are compared, ultimately leading to conclusions
regarding their function, the biological processes in which they are involved, and
their interactions. The main steps of the experimental process are shown at the bot-
tom part of Figure 6.2.

A sample containing a number of proteins (possibly of the order of thousands)
undergoes a process of separation, commonly by two-dimensional electrophoresis
(2DE), resulting in the separation of the proteins onto a gel based on two orthogonal
parameters: their charge and their mass. The separated proteins spotted on the gel
are then excised and degraded enzymatically to peptides. An alternative technique
for peptide separation involves liquid chromatography (LC) (see [31, 32] for
reviews). LC is used to purify and separate peptides in complex peptide mixtures
and can be used without the extra step of protein separation on a gel before diges-
tion [29]. Peptides are separated by their size, charge, and hydrophobicity.

To identify the proteins, mass spectrometry (MS) is used to measure the
mass-to-charge ratio of the ionized peptides. The spectrometer produces mass spec-
tra (i.e., histograms of intensity versus mass-to-charge ratio). For single-stage exper-
iments, these are called peptide mass fingerprints (PMF). Additionally, a selection of
these peptides can be further fragmented to perform tandem MS, or MS/MS experi-
ments, which generate spectra for individual peptides. From these spectra the
sequence tag of the peptide can be derived. Using sequence information of several
peptides in addition to their masses is more specific for the protein identification
than just the masses.

The key parameters for this technology are sensitivity, resolution, and the ability
to generate information-rich mass spectra. The issue of resolution arises when one
considers that every cell may express over 10,000 genes, and that the dynamic range
of abundance in complex samples can be as high as 106. Since 2DE technology can
resolve no more than 1,000 proteins, clearly only the most abundant proteins can be
identified, which creates a problem when interesting proteins are much less abundant
[29]. Techniques have been developed to deal with these issues [33]; in general, how-
ever, limitations in the technology translate into inaccuracies in the resulting spectra.

Finally, in the dry lab the mass spectra are compared with masses and sequences
of peptides in databases. Here the experimenter is confronted with more choices: a
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number of different algorithms (e.g., Mascot [34], SEQUEST [35]) exist to compute
a score for the goodness of the match between the theoretical peptide sequences in
the database and the experimental data. Also, these algorithms may be applied to
different reference databases, and provide different indicators to assess the quality
of the match. Examples of indicators are the hit ratio (the number of peptide masses
matched, divided by the total number of peptide masses submitted to the search),
and the sequence coverage (the percentage of the number of amino acids in the
experimental sequence, to those in the theoretical sequence).

The quality of the scoring functions in particular is affected by experimental
variability, and statistical and computational methods have been proposed to deal
with the uncertainty of the identification process (see [36] for a review).

6.3 A Survey of Quality Issues

We begin our analysis by presenting a common framework, illustrated in Figure
6.2. At the top and the bottom are the main steps of the protein identification and of
the microarray experiments, respectively. The figure shows their common structure
in terms of the general wet lab, dry lab, and dissemination steps, and highlights the
key quality concerns addressed by experimenters at each step. We use this high-level
framework to provide structure for the analysis of domain-specific issues, and the
current techniques and practices adopted to address them.

In Section 6.3.4, a separate discussion is devoted to the problem of annotating
information after it has been submitted to proteomic databases; this has only been
addressed in the past by relatively few and isolated experiments.

6.3.1 Variability and Experimental Design

Both transcriptome and proteome experiments consist of a number of steps, each of
which can introduce factors of variability. However, it is not only the variability
introduced in the experimental process (the so-called technical variability) that can
affect the quality of the results, but also biological variability. Systematic analyzes
of variability in transcriptome studies [37, 38] and proteome studies [39] have
shown that biological variability may have a greater impact on the result.

6.3.1.1 Biological Variability

This form of variability affects the results of both transcriptome and proteome
experiments; it is of rather random nature and is hard to estimate. Examples
include:

1. Variability between individuals studied under the same experimental
condition [37, 40] due to genetic differences [39], minor infections resulting
in inflammatory and immune responses of varying intensities [38],
environmental stress, or different activity levels, but can also be due to tissue
heterogeneity (varying distribution of distinct cell types in tissues);
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2. Variability between individuals due to random differences in the
experimental conditions, such as growth, culture, or housing conditions
[39–41];

3. Variability within individuals and within the same tissue due to tissue
heterogeneity [23, 37];

5. Variability within individuals in different tissues or cell types [41]—in this
case the differences are more distinct than within the same tissue.

These variabilities can obscure the variation induced by the stimulation of the
organism [40], leading to results that are meaningless in the context of the stated
hypothesis. Biological variability can be addressed in part at the early stages by
proper experimental design, for example by a sufficient number of biological repeats
[21, 38, 40] that can be used to average over the data and validate the conclusions
over a range of biological samples. For further validation of the results, they should
be confirmed using alternative experimental techniques on a number of biological
samples [40].

6.3.1.2 Technical Variability

This usually represents some kind of systematic error or bias introduced in the
experimental process and once known can be corrected for in the data analysis, such
as normalization. It can also be reduced by appropriate experimental design. Exam-
ples are mentioned in Table 6.1 [42–45]. To reduce technical variability, experimen-
tal protocols that result in reproducible, reliable results can be identified and then
followed meticulously [40]. Dye swap cDNA microarray experiments, in which the
labeling dye of the samples is reversed in the repeat [23, 43], are used to account for
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Table 6.1 Examples of Technical Variability Introduced in Transcriptomics and Proteomics

Wet Lab Dry Lab

Sample preparation Experimental process Data analysis

Variation in sample collection and
preparation

Variation in experimental data col-
lection processes

Variation in data processing and
preparation analysis

RNA extraction and labeling [21,
37, 40–42]. Variability in the sam-
ple preparation can result in change
of the gene expression profile.
Sample contamination [23].
Dye-based bias (i.e., one dye might
be “brighter” than the other dye)
[23, 43].

Variation in hybridization process
[21, 38, 40–42]. Variations intro-
duced in the process can obscure
changes caused by the stimulation
of the organism (i.e., changes that
the experiment actually seeks to
determine).

Different data processing
approaches [41, 42]. The wide
range of available analysis
approaches make it hard to assess
the performance of each of them
and to compare the results of
experiments carried out in different
labs.

Variability in sample preparation
and processing for LC/MS/MS can
lead to differences in the number of
low intensity peaks measured [44].
This can result in the identification
of fewer peptides and proteins.

Variability in tandem mass spectra
collection (LC/MS/MS) [44, 45].
Variability introduced here can
lead to errors in search algorithms
and ultimately to false positives in
peptide identification.
Quantitative variation between
matched spots in two 2D-gels and
fewer spots that can be matched in
repeated gels [39].

Variability in tandem mass spectra
processing (LC/MS/MS) [44, 45].
Some of the search algorithms used
to identify peptides might be more
or less sensitive to the variability
introduced during the collection of
mass spectra [45], resulting in a dif-
ferent number of identified peptides
in the same spectra using different
algorithms.



dye-based bias. To estimate the influence of technical variability on results of both
transcriptome and proteome experiments, technical repeats can be used [21, 23, 39,
40]. Formulae have been devised to determine the number of repeats and samples by
taking into account the effects of pooling, technical replicates, and dye-swaps [46].

6.3.1.3 Experimental Design

Experimental design not only includes the decision about the number of biological
and technical replicates, it also includes all the decisions about sample preparation
methods, experimental techniques, and data analysis methods. All these decisions
should be made to ensure that the data collected in the experiment will provide the
information to support or reject the scientific hypothesis. Badly designed experi-
ments might not only not provide the answers to the questions stated, but might also
leave potential bias in the data that might compromise the analysis and interpreta-
tion of the result [38]. Reviews of experimental design of transcriptome and
proteome experiments can be found in [21, 38, 43, 47].

The number of variabilities that affect the outcome of an experiment make it
hard to assess the experiment’s quality. As we argue in the next section, an accurate
record of the experimental design and of the environmental variables involved is a
necessary, but hardly sufficient, condition to provide objective indicators that can
be used to assess confidence in the experimental results.

6.3.2 Analysis of Quality Issues and Techniques

Results of our survey analysis are presented in Tables 6.2 and 6.3 for
transcriptomics and proteomics experiments, respectively. Each group of entries
corresponds to one of the general quality concerns from Figure 6.2 (first column in
the table); for each group, specific problems are listed in the third column, and in the
last column there is a summary of associated current practices and techniques,
including examples that illustrate the need to address the issues using those practices
and techniques. An additional grouping of these issues by type of artifact produced
during the process (second column) is provided where appropriate. For instance,
“repeatability and reproducibility” (second group) in Table 6.2 maps to two prob-
lems: general adequacy of the process description for future reference, and control
of variability factors. For the latter, the issues are sufficiently distinct to suggest
grouping them by artifact (hybridized array, raw data, interpretation of normalized
data).

These tables, along with the selected references associated to the entries, are
designed as a sort of springboard for investigators who are interested in a deeper
understanding of the issues discussed in this chapter.

Quality issues that are not addressed in the process of the experiment may result
in poor data quality in the form of false positives or false negatives and may lead to
incorrect conclusions. Since these high-throughput experiments are frequently used
not only to test hypotheses, but also, due to their scale, to generate new hypotheses,
these new hypotheses might be wrong and follow-up experimental expenses and
time to test these hypotheses may be wasted.
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Table 6.2 Quality Issues in Transcriptomics Experiments

Common Quality
Issues Artifact Specific Issues Examples, Techniques, and References

Quality of sample Biological
assay

RNA contamination
control biological
variability

Technical assessment of RNA quality [48];
low quality RNA may compromise results of
data analyses

Process repeatability
results
reproducibility

(General) Adequate process
description

Provenance, metadata capture standards and
techniques for fine-grain process description
[2, 49]

Raw data
(image)

Biological variability
[37]
Technical variability:
consistancy of image
quality control
parameter

Review [23, 50]
Experimental design [43, 46]

Normalized
data

Significant of
interpertation given
biological and technical
variability

See “significance of data interpertation”

Data comparability (General) Reproducibility across
platforms, technologies,
and labaratories

Methods to accommodate variability across
platforms and labs [51, 52]
Consistency of results across platforms [53,
54]

Significance of data (General) Variability control Quantification of measurement errors [55]

Raw data Image accuracy: inter-
pretation spots and their
intensity levels nonuni-
form hybridization

Image analysis and quality control [23, 50];
bad spot detection, background identification,
image noise modeling, manual inspection of
spots; poor image quality may require costly
manipulations and decrease the power of the
analysis

Normalized
data

Choice of normalization
algorithms

Review: [23]; choosing an inadequate normal-
ization algorithm may lead to an incomplete
removal of systematic errors and affect the
power of the downstream analysis; low-level
data analysis [21]; statistical error analysis,
dye-bias control and reduction [56]; algo-
rithms to control signal-to-noise ratios [57]

Significance of data
interpertation

Data
interpertation

Validity of data analysis
techniques and tools;
robustness of analysis
with respect to
variabilities

Review on design and selection of clustering
algorithms: [26, 58]; computational methods
to take variabilities into account [37, 41];
algorithm performance analysis by cross-
validation [59]; identification of significant
differences in gene expression: statstical analy-
sis of replicated experiments [27]; analysis of
threshold choice of characterise disease versus
normality [23, 60]; use of false discovery rate
for generating gene expression scores [61, 62]

Quality of reference
data

(General) Accuracy, completeness,
specificity, current of
reference databases
functional annotations
in reference DBs

Mostly based on practitioners’ personal per-
ception; systematic studies are needed (see
Section 6.3.4)

Uniformity of
representation
reusability of results

Output data,
publication

Heterogeneity of
presentation

Data and metadata standardization of content
and presentation format [14, 23]
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Table 6.3 Quality Issues in Protein Identification Experiments

Common Quality
Issues Artifact Specific Issues Examples, Techniques, and References

Quality of sample Biological
assay

Biological variability,
contamination control

Sample contamination with, for example,
human proteins from the experimenter may
obsure the results of downstream analysis

Process repeatability
results
reproducibility

(General) Adequate process
description

Data modelling for capturing experiment
design and execution results [63]
Also see uniformity, below

Raw data
(image)

Technical and biological
variability

Analysis of reproducibility [64]
Quantitative assessment of variability [65]

Data comparability (General) Reproducibility across
platforms, technologies,
and labaratories

Review [66]

Significance of data (General) Variability control Review on statistical and computational
issues across all phases of data analysis [67]
Review on analysis of sensitivity [68]

Raw data
(mass spectra)

Sensitivity of spectra
generation methods,
dynamic range for rela-
tive protein abundance
Technical and biological
variability
Limitations of technol-
ogy for generating
spectra

Review on strategies to improve accuracy and
sensitivity of PI, quantification of relative
changes in protein abundance [69]
Studies on scoring models, database search
algorithms, assessment of spectra quality
prior to performing a search, analysis of vari-
ables that affect performance of DB search
[36] (review) [70]
Review on limitations of 2DE technology for
low-abundance proteins [33]

Significance of data
interpertation

Match results Significance and accu-
racy of match results,
limitations of technol-
ogy for accurate
identification

Definition [71] and validation of scoring
functions
Review on limitations of technology: [72]
Statistical models [73]
Studies on matching algorithms [36] (review),
[74]

Quality of reference
data

(General) Redundancy of reference
DB (same protein
appears under different
anmes and accession
numbers in databases)
Accuracy, completeness
specificity, currency of
reference databases

Criteria for the selection of appropriate refer-
ence DB [64]: using a species-specific refer-
ence datatbase will result in more real protein
identifications than using a general reference
database containing a large number of organ-
isms; using the latter may result in a large
number of false positives

Uniformity of
representation
reusability of results

Output data,
publication

Heterogeneity of
presentation

Need for represntation standards [75]
The PEDRO proteomics data model [64]
Guidelines for publication [76]
Standards for metadata [66]

6.3.3 Specificity of Techniques and Generality of Dimensions

Most of the techniques mentioned in Tables 6.2 and 6.3, on which we will not elab-
orate due to space constraints, are specific and difficult to generalize into a reusable
“quality toolkit” for this data domain. While this may be frustrating to some qual-
ity practitioners in the information systems domain, we can still use some of the
common terms for quality dimensions, provided that we give them a correct inter-
pretation. A good example is the definition of “accuracy”: in its generality, it is
defined as the distance between a data value and the real value. When applied to a
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record or a field in a relational database table, this definition is specialized by intro-
ducing distance functions that measure the similarity between the value in the record
and a reference value, for instance by computing the edit distance between strings.
Further distinctions are made depending on the type of similarity that we seek to
measure.

In the experimental sciences, the abstract definition for accuracy is identical
(see, for instance, [42]); however, for a value that represents the numeric output of
an experimental process, accuracy is interpreted in statistical terms, as a measure of
systematic error (e.g., background noise in the experiment). Consequently, tech-
niques for estimating accuracy (i.e., the equivalent of “distance functions”) are
grounded in the nature of the process, and are aimed at measuring and controlling
noise. In [56], for example, a novel statistical model is proposed for the analysis of
systematic errors in microarray experiments. Here, errors that lead to low accuracy
are detected and corrected by introducing different normalization techniques,
whose effectiveness is compared experimentally; different statistical models are
applied depending on the specific microarray experiment design used.

Information quality practitioners will probably be on more familiar ground
when quality concepts like accuracy, currency, and timeliness are applied to refer-
ence databases used in the experiments, for example, for protein-peptide matches,
or to the last phase of our reference pipeline, when the differently expressed genes in
a transcriptome experiment are functionally annotated. In this case, “accuracy”
refers to the likelihood that a functional annotation is correct (i.e., that the descrip-
tion of the function of the gene or gene product corresponds to its real function
[77].4 As mentioned, annotations may be done either by human experts, based on
publications evidence, or automatically by algorithms that try to infer function from
structure and their similarity with that of other known gene products. In the first
case, measuring accuracy amounts to supporting or disproving scientific claims
made in published literature, while in the second, the predictive performance of an
algorithm is measured.

In general, we observe a trade-off between the accuracy of curator-produced
functional annotations, which have a low throughput, and the timeliness of the
annotation (i.e., how soon the annotation becomes available after the gene product
is submitted to a database). A notable example is provided by the Swiss-Prot and
TrEMBL protein databases. While in the former, annotations are done by biologists,
with great accuracy at the expense of timeliness, TrEMBL contains proteins that are
automatically annotated, often with lower accuracy, but are made available sooner
[78]. This gives the scientist a choice, based on personal requirements. For
well-curated database such as UniProt, claims of nonredundancy (but not of
completeness) are also made [79].

6.3.4 Beyond Data Generation: Annotation and Presentation

To conclude this section, we now elaborate further on the topic of functional anno-
tations and their relationship to quality. The aim of annotation is, in general, to
“bridge the gap between the sequence and the biology of the organism” [80]. In this
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endeavor, three main layers of interpretation of the raw data are identified: nucleo-
tide-level (where are the genes in a sequence?), protein-level (what is the function of
a protein?), and process-level (what is the role of genes and proteins in the biological
process and how do they interact?). The information provided by high-throughput
transcriptomics and proteomics contributes to functional and process annotation.
Thus, it participates in the cycle shown in Figure 6.3: publications are used by cura-
tors to produce functional annotations on protein database entries, which in turn
may stimulate the proposal of new experiments (automatic annotations use
information from other databases, as well).

Although a bit simplistic, this view is sufficient to identify the critical issue with
annotation: erroneous functional annotation based on biased results and conclu-
sions due to unaccounted variabilities in experiments can propagate through public
databases and further lead to wrong conclusions.

Most of the studies on the percolation effects of annotation errors have
focused on automated annotations, in which protein function is determined
computationally, based on sequence similarity to other proteins in the same domain
[81–85]. However, the issue of validating curated annotations that are based on pub-
lished literature is more subtle. One approach is based on the observation that, when
standard controlled vocabularies are used for annotation, the consistency of use of
the terminology offered by these vocabularies in multiple independent annotations
of the same data can be used as an indicator of annotation accuracy.

As an example, consider the Gene Ontology (GO), a well-known standard
ontology for describing the function of eukaryotic genes [86]. GO is maintained by
a consortium of three model organism databases, and it consists of three parts:
molecular function, biological process, and cellular component (the subcellular
structures where they are located). Up to the present, GO annotations have been
used to annotate almost two million gene products in more than 30 databases.
UniProt is the most prominent, accounting for almost 50% of the annotations.

The adoption of such a standard in biology has allowed researchers to investi-
gate issues of annotation consistency. We mention two contributions here. The first
[87] has studied measures of semantic similarity between Swiss-Prot entries, based
on their GO annotations. The authors hypothesize that valid conclusions about
protein similarity can be drawn not only based on their sequence similarity (as
would be done, for instance, by BLAST), but also from the semantic similarity of the
annotations that describe the biological role of the proteins. The latter is described
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by metric functions defined on the GO structure (GO is a directed acyclic graph).
Based on statistical evidence, the authors conclude that the hypothesis is valid for
various specific assumptions, for example, that the data set is restricted to those pro-
teins whose annotations are supported by published literature, as opposed to being
inferred from some indirect data source.

The second contribution has studied the consistency of annotations among
orthologues5 in different databases [88]. Experiments on sets of mouse and human
proteins resulted in a useful classification of annotation errors and mismatches, as
well as in effective techniques for their detection.

These studies offer a partial, but quantitative, validation of the main claim that
standardization of terminology improves the confidence in the annotation process
and facilitates the retrieval of information.

6.4 Current Approaches to Quality

Partly to dominate the complexity of the domain and the broad variability of avail-
able techniques, the information management community has been adopting a gen-
eral approach towards standardization based on: (1) modeling, capturing, and
exploiting metadata that describes the experimental processes in detail, known as
provenance; and (2) creating controlled vocabularies and ontologies used to
describe the metadata.

Information quality management may benefit greatly from this approach.

6.4.1 Modeling, Collection, and Use of Provenance Metadata

Throughout this chapter, we have mentioned a number of variability factors that
affect the outcome of an experiment. The metainformation about these variables
and their impact (i.e., the experimental design and details of experiment execution)
is known as provenance. The importance of capturing provenance in a formal and
machine-processable way has been recognized in the recent past, as a way to pro-
mote interoperability and uniformity across labs. The role of provenance in address-
ing quality issues, however, has not yet been properly formalized. Recent research
efforts have been focusing on using provenance and other types of metadata, to
allow scientists to formally express quality preferences (i.e., to define decision proce-
dures for selecting or discarding data based on underlying quality indicators) [89].

Standards for capturing provenance are beginning to emerge, but much work is
still to be done. Within the transcriptomic community, one initial response comes
from the Microarray Gene Expression Data (MGED) society, which has proposed a
standard set of guidelines called MIAME [90], for Minimal Information About a
Microarray Experiment, prescribing minimal content for an acceptable database
submission. Along with content standardization, the Microarray and Gene Expres-
sion (MAGE) group within MGED in collaboration with the Object Management
Group (OMG) also defines MAGE-OM, an object model describing the conceptual
structure of MIAME documents. The model has been mapped to MAGE-ML, an
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XML markup language for writing MAGE-OM documents, resulting in a complete
standard for the preparation of MIAME-compliant database submissions.

Furthermore, MAGE prescribes that experiment descriptions be annotated
using the MGED ontology, a controlled vocabulary for the gene expression domain.
MGED is currently being redesigned, with the goal of encompassing a broader
domain of functional genomics, and will hopefully include a structure and terminol-
ogy for experimental variables, which is currently missing. Writing complete
MAGEML documents is a lengthy process for nontrivial experiments. At present,
adoption of the standard by the research community is driven mostly by the require-
ment that data submitted to major journals for publication be MIAME-compliant.

Similar efforts are under way in the proteomic field [91], although accepted
standards do not yet exist for data models and format (although some proposed
data models like PEDRo are being increasingly adopted by the community [92]).

The Human Proteome Organisation (HUPO) provides updated information on
its Proteomics Standards Initiative (PSI).

The challenge for these standardization efforts is the rapid development of func-
tional genomics. This requires these standards to be specific enough to capture all
the details of the experiments, but at the same time to be generic and flexible enough
to adapt and be extended to changes in existing or evolving experimental tech-
niques. Furthermore, these standards need to cater for different communities within
the large and diverse biological community. Examples of this diversity include the
study of eukaryotes or prokaryotes, model organisms that have already been
sequenced or nonmodel organisms with only limited amount of information avail-
able, inbred populations that can be studied in controlled environment, or outbred
populations that can only be studied in their natural environment.6

To allow a systems biology approach to the analysis of data from different
kinds of experiments, a further effort is undertaken by a number of standardization
bodies to create a general standard for functional genomics (FuGE).7 This effort is
based on the independent standards for transcriptomics and proteomics mentioned
above and seeks to model the common aspects of functional genomics experiments.

One of the practical issues with provenance data is that, in the wet lab, the data
capture activity represents additional workload for the experimenter, possibly
assisted by the equipment software. The advantage in the dry lab is that extensive
information system support during experiment execution is available, in particular
based on workflow technology, as proven in the myGrid project [2, 49]. In this case,
provenance can be captured by detailed journaling of the workflow execution.

6.4.2 Creating Controlled Vocabularies and Ontologies

The second approach for a standardized representation of data and metadata is the
development of controlled vocabularies and ontologies. A large number of
ontologies are being developed, including ontologies to represent aspects of func-
tional genomics experiments, such as the MGED ontology for transcriptomics8 or
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the PSI ontology for proteomics,9 both of which will form part of the Functional
Genomics Ontology (FuGO, part of FuGE).

As for the development of standardized models for metadata, the development
of standardized controlled vocabulary faces similar challenges, such as the rapid
development of the technologies that are described in the ontology or the knowledge
presented in a controlled vocabulary. Furthermore, the representation of the
ontologies varies, ranging from lists of terms to complex structures modeled using
an ontology language, such as OWL.10

6.5 Conclusions

We have presented a survey on quality issues that biologists face during the execu-
tion of transcriptomics and proteomics experiments, and observed that issues of
poor quality in published data can be traced to the complexity of controlling the bio-
logical and technical variables within the experiment.

Our analysis suggests that, despite their differences, a common structure and a
common set of quality issues for the two classes of experiments can be found; we
have proposed a framework for the classification of these issues, and have used it to
survey current quality control techniques.

We argued that the scientists’ ability to make informed decisions regarding the
quality of published data relies on the availability of metainformation describing the
experiment variables, as well as on standardization efforts on the content and struc-
ture of metadata.

The area of information management can play a major role in this effort, by pro-
viding suitable information management models for metadata, and tools to exploit
it. Although the literature offers many more results on these topics that can be pre-
sented here, we have offered a starting point for in-depth investigation of this field.
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Data Management for Fungal Genomics:
An Experience Report

Greg Butler, Wendy Ding, John Longo, Jack Min, Nick O’Toole, Sindhu Pillai,
Ronghua Shu, Jian Sun, Yan Yang, Qing Xie, Regis-Olivier Benech, Aleks
Spurmanis, Peter Ulycznyj, Justin Powlowski, Reg Storms, and Adrian Tsang

Data management for our fungal genomics project involves the development of four
major databases, numerous analysis pipelines, and their integration. The project is
vertically integrated—that is, it covers the stages from gene discovery to enzyme
classification, including the construction of cDNA libraries, EST sequencing and
assembly, gene annotation, microarray transcription profiling, gene expression,
and enzyme assays. We describe our bioinformatics platform and our issues, chal-
lenges, and priorities. Two primary concerns have been the ease of collecting data
and the tracking of the quality and provenance of data.

7.1 Introduction

Over the last 3 years we have been developing a bioinformatics platform to support
a comprehensive project on fungal genomics for the discovery of novel enzymes
with industrial or environmental applications. This is a large-scale, 3-year project
employing more than 40 personnel, with 10 investigators and six collaborators
across four institutions in Montreal. The total budget was more than $7 million.

Enzymes are protein catalysts that perform a wide range of chemical reactions.
They drive the metabolic activities of microbes that have been used for thousands of
years in the production of food and alcohol, and are commonly used food additives
today. Enzymes are specific in their action and can be used efficiently and safely to
modify fats, carbohydrates, and proteins in the production of specialized foods and
in other industrial processes (see Table 7.1 for a small sample). Applications of
enzymes include the decomposition of wood, bleaching of wood fibers, deinking of
used paper for the paper industry, the production of bioethanol and biodiesel, and
the biodegradation of toxic chemicals.

All organisms make enzymes which support their lifestyles. Most fungi adopt a
nutritional strategy in which they secrete extracellular enzymes to break down com-
plex substrates and then transport the resulting nutrients into the cells for consump-
tion. To accommodate this way of life, fungi have evolved effective, diverse, and

103



comprehensive arrays of catalytic activities. We search for new enzymes using a
functional genomic approach to identify fungal genes that encode extracellular
proteins.

Our project is not a genome sequencing project; rather, it samples mRNA tran-
scripts of expressed genes and sequences so-called expressed sequence tags (ESTs).
The project is comprehensive in that it is vertically integrated (see Figure 7.1). In
essence, it is several major subprojects each carried out on several fungal species and
many genes and enzymes, namely: (1) a sequencing project which constructs cDNA
libraries, sequences ESTs, assembles ESTs into unigenes, and analyses unigenes; (2)
a microarray project which constructs cDNA microarrays for each species and car-
ries out transcription profiling experiments; (3) a curation project where selected
target genes and enzymes are manually curated and resequenced to obtain the
full-length genes; (4) a gene expression project where full-length genes are spliced
into host organisms in order to secrete the selected enzyme; (5) an enzymology pro-
ject which biochemically assays the enzymes; and (6) an applications testing project.
Where the project differs from many other genomic projects is in its vertical integra-
tion, the focus on industrial enzymes, and the breadth of species under investigation.

The bioinformatics platform supports data collection and analysis across the
entire project. Our aim was to use existing best practice, adopt widely used soft-
ware, and minimize our internal efforts at software development. Nevertheless,
there were several significant systems developed as they had to be customized to our
genomics project and its complexity. This being our first project of this scale and
breadth, and also our first bioinformatics platform, it was very much a learning pro-
cess. We are now in the process of reassessing our first version, learning from our
experience and mistakes, and designing version 2 of the platform.

The fungal genomics project [1] at Concordia University is identifying novel
enzymes in 14 species of fungi shown in Table 7.2. The species were selected to meet
the following criteria: (1) available from the American Type Culture Collection
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Table 7.1 Some Industrial Applications of Enzymes

Industrial Process Enzymes Applications

Household and
industrial detergents

Proteases, lipases,
amylases, cellulases

Cleaning laundry and dishes at a wide
range of temperatures

Textile Cellulases, proteases,
amylases, catalases

Dye removal, desizing of starch,
improve color brightness and smooth-
ness, degradation of hydrogen peroxide,
degumming

Brewing Alpha-acetolactate
decarboxylases,
betaglucanases,
cellulases, xylanases,
proteases

Reduce beer maturation time, improve
yield and filterability, extract protein to
give desirable nitrogen level

Baking Alpha-amylases, glucose
oxidases, lipases,
lipoxygenases,
xylanases, proteases

Maximize fermentation, oxidize
sulfhydryl groups, dough conditioning,
bleaching and strengthening dough

Personal care Proteases,
glucoamylases, glucose
oxidases, catalases

Toothpaste, cleaning solution for
contact lens



(ATCC); (2) able to be cultivated (easily); (3) known to have interesting activity;
and (4) be a diverse selection.

The general structure of the project is to grow the fungi under a range of condi-
tions of interest, and then sample the mRNA present in the organisms under these
conditions. From this, we expect to sample 18,000 cDNA clones per species (equals
252,000 in total). These clones, allowing for duplicates, should provide representa-
tives of approximately 70,000 genes, of which at least 30% will be new genes. From
these genes we expect to identify about 3,000 target genes of interest using similar-
ity and using the gene expression studies. Those targets identified by similarity will
be the “easy” ones with known relatives amongst the enzyme families. They should
be easier to characterize, but will offer lower potential payback in terms of commer-
cialization because they will need to be superior (in some way) to existing known
enzymes. Those targets without any known homologues will be more difficult to
characterize, but are guaranteed to be novel in some sense, and likelier to have new
means of activity and higher commercial payback.

The bioinformatics platform supports five main activities:

1. Creation of a Web site with information on fungal genomics for use by the
project researchers, to link to external data, and to provide a focus for
dissemination of results of the project;

2. Automated data management and analysis facilities to support the project
activities in sequencing, microarray development and gene expression
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experiments, wet lab chemical assays and characterization of selected
enzymes, and the sequencing of genomic DNA for selected enzymes;

3. Environment to support the work of annotation that selects, presents, and
links the available data on sequences and genomes;

4. Data quality monitoring across the range of activities that generate data:
sequences, microarrays, and assays;

5. General project management.
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Table 7.2 The 14 Species of Fungi

Phanerochaete
chrysosporium white-rot
fungus

Lignin peroxidase and manganese peroxidase were first iso-
lated from nitrogen-limited static cultures of this white-rot
fungus. It is known to mineralize polycyclic aromatic hydro-
carbons and polychlorinated biphenyls.

Trametes versicolor
white-rot fungus

It is able to bleach kraft pulp, solubilize coal, detoxify wood
extractives, and degrade synthetic polymers. It is a prolific
producer of laccases and peroxidases associated with
delignification and degradation of polycyclic aromatic hydro-
carbons.

Lentinula edodes shiitake
mushroom

It is a selectively ligninolytic white-rot fungus known to pro-
duce Mnperoxidase and laccase and to biodegrade chlori-
nated phenolics in soil and phenolics in wastewaters.

Gloeophyllum trabeum
brown-rot fungus

It is involved in wood decay, and produces peroxidases and
laccases. Lignin modifying enzymes are poorly characterized
in brown-rot fungi compared to white-rot fungi.

Ophiostoma piliferum
Blue-stain fungus grows on
and discolors wood.

It is used as a source of enzymes that remove pitch, which
causes various problems in papermaking. It has been shown
to detoxify wood extractives.

Coprinus cinereus This mushroom synthesizes many peroxidases and laccases
that have found application in a variety of industrial pro-
cesses.

Chrysosporium pannorum A moderately cellulolytic fungus identified in temperate soils
including those of tundra with a minimum growth tempera-
ture of –5ºC and involved in meat spoilage.

Cryptococcus laurentii A freeze-tolerant fungus with killer activity which is indige-
nous to both deciduous and coniferous forests.

Thermomyces lanuginosa This thermophilic composter, known to produce xylanases
and lipases, is one of the most ubiquitous thermophilic fungi.
It has been shown to grow at temperatures up to 60ºC.

Sporotrichum thermophile A thermophilic composter isolated initially from straw and
leaf matter with an optimum temperature for growth around
50ºC.

Aureobasidium pullulans A black yeast that grows at the expense of aromatics, pro-
duces xylanases and antifungals, and colonizes plastic sur-
faces.

Amorphotheca resinae
“kerosene fungus”

Strains of this species grow vigorously in jet fuel.

Leucosporidium scottii This is one of the most common yeasts of the forest floor and
can grow at the expense of a variety of lignin-derived
aromatics.

Cunninghamella elegans This is a nonligninolytic fungus that has been extensively
used to study metabolism of aromatic compounds, especially
polyaromatic hydrocarbons.



In terms of hardware, there is a mirrored file server with 2.3-TB capacity, a ded-
icated Web server, several compute servers, a small cluster, and numerous
workstations. We use public domain software for database and Web infrastructure
(Apache, mySQL, PHP, Perl); applications in Perl and Java; critical algorithms in
C++; data communication in XML; and visualization in Java.

In many scientific databases [2–4], the data is stored in specialized formats in
files, and the database tracks these files, their contents, and the associated metadata.
Metadata records descriptions of data such as the who, when, where, what, and
why of data capture, interpretation, and analysis. This is also true in part of
bioinformatics [5]. The raw data in terms of chromatograms of sequences, or TIFF
image files of microarray scans, are kept as files. The databases store the interpreted
data (i.e., sequences and image intensity values), as well as the metadata.

There are four major databases (see Figure 7.2):

1. A materials tracking database records physical entities such as microtiter
plates, membranes, slides, and so on, their contents, their location, and
tracks the material transfer between them. It tracks the construction of
cDNA libraries up to the stage where template plates are physically sent to
the sequencing centre (marked “S&T” in Figure 7.2). This is a Laboratory
Information Management System (LIMS) custom built in-house for our
project.

2. An annotation database records information about sequences (ESTs,
unigenes, genes, and proteins). It stores the results of EST base calling and
assembly, as well as annotations derived from tools for sequence analysis.
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3. A microarray database, the BASE system [6] from Lund, Sweden, is
MIAME-compliant [7]. It records all the metadata, data, and data analysis
results for microarray experiments.

4. A target curation database records information about potential and selected
target genes and enzymes. It also supports the work on the expression of
genes in hosts, the biochemical assays of enzymes, and the manual curation
of targets.

The processing of bioinformatics data can conceptually be thought of as several
processes, though each of them contributes to each other, and to the overall infor-
mation available to the curators:

1. To process EST sequences by performing base calling, quality control, and
assembly;

2. To annotate sequences with GO terms [8] and collect information about
sequences using a range of widely used tools;

3. To identify potential target genes and enzymes based on sequence
information;

4. To support full-length resequencing of selected target genes by designing
primers, processing sequences, and reassembly;

5. To transfer gene information from the annotation DB to the microarray DB
when designing a cDNA microarray for a species;

6. To create data warehouses for our partners to access;
7. To create data warehouses for the public;
8. To submit sequence data to the Genbank archive at NCBI;
9. To create tables, figures, and supplementary material in preparation for

common types of publications.

Several important tasks are done manually or semimanually. The transfers to
the sequencing center are done physically for the actual microtiter plates, and via ftp
for information about the plate contents. The resulting chromatograms are down-
loaded via ftp from the sequencing center. The analysis of microarray data is done
interactively within BASE using tool plug-ins and following a standard protocol.
The interpretation of the microarray results for identifying potential target genes
and enzymes is done manually. The selection and curation of targets is done
manually.

The focus of this chapter is to report on the data management aspects of the fun-
gal genomics project. Data management for our fungal genomics project involves
four major databases: we describe each of these in turn and the related work. The
data models are not described in detail due to lack of space. However, we do provide
pointers to descriptions of typical data models for each database. In [9] we address
issues of data modeling for genomics based on our experience and offer a set of
guidelines. Current best practices for modeling and data integration are discussed
there. Here we discuss our experience in overall data management, primarily two
key issues and challenges: the ease of collecting data and the tracking of the quality
and provenance of data.
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The development and use of our bioinformatics databases follows three phases:
(1) data entry, (2) data access, and (3) data analysis. The first phase begins with trial
entry of data during system development and test, followed by high volume data
entry as the wet lab processes achieve full production. The second phase begins with
the generation of reports which are used to monitor the productivity and quality of
the lab processes, followed by queries to help diagnose problems, and then more
general ad hoc queries to study the results. The third phase incorporates existing
data analysis tools, statistical packages, and data mining techniques which other
research groups have demonstrated to be useful for analysis of the particular data in
the database. We have gone through all three phases with each of our four
databases, except for the target curation DB.

We provide high-level descriptions of the requirements and design of our data-
bases, system components, and pipelines. We believe that these are sufficient to set
the context for the experience report. In any case, the details will vary for another
research project. Requirements for LIMS track closely the actual procedures and
techniques used in the wet lab, and these are highly project specific. Annotation
databases are now well described, for example, for Ensembl [10] which annotates
the human genome, for the Saccharomyces Genome Database (SGD) [11] which
annotates the yeast genome, and for Pedant [12] which annotates many genome and
EST projects. Microarray databases have an enormous literature: we use the BASE
system. A full description of the target curation DB will be forthcoming. We are
only now at high volume data entry, and initial data querying. We need a few more
months before we have the requisite experience with data analysis of enzyme assays.

7.2 Materials Tracking Database

Genomics takes advantage of high-throughput, small-scale procedures. In the gene
discovery process, individual cDNA clones are produced. Each is placed in one well
of a 96-well or 384-well microtiter plate. As each clone is studied, portions of the
material in a well may be transferred to a well on another plate. After a series of
steps, a plate will be sent to the sequencing center (marked “S&T” in Figure 7.2).
Each well will correspond to a chromatogram ?le containing the sequence of nucleo-
tides in the cDNA clone. From the analysis of the sequence, we identify interesting
cDNA clones—our targets—so we have to be able to track back from the sequence
to the well that holds the cDNA clone. This is the purpose of our material tracking
DB: it is a LIMS for the manipulation of cDNA clones.

While the general purpose of the system is clear, it seems that each LIMS is
highly customized to its lab setting. There are many commercial LIMS systems
available, but we could find no open source LIMS. The commercial products were
for unrelated lab work such as pathology labs or cancer labs handling tissue and
fluid samples or for sequencing centers. The latter recorded the sequencing results
but did not cover the front-end processes in gene discovery.

Our development took 8 months initially, followed by continual refinement due
to full-length resequencing of clones during the curation, cloning, and expression of
targets. The initial development focused heavily on modeling the domain of gene
discovery—that is, the lab processes and materials. Then there was refinement of
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data entry interfaces and procedures to eliminate errors and make data entry more
efficient. One key aspect to this refinement of data entry concerned the use of
membranes.

Membranes are large sheets, about 9 inches by 9 inches, which you can spot
with clones. A membrane is large enough to hold colonies from 24 384-well plates.
The spots on a membrane are read using digital cameras or CCDs to record fluores-
cence or intensity of transmitted light (i.e., from an X-ray image of a membrane
where the spots have been labeled with radioactive isotopes). In gene discovery, the
membranes are used in the selection of clones for sequencing. There are three sets of
data that each membrane can provide under our lab protocols: growth information,
virtual subtraction information, and direct subtraction information. These may be
used separately or together in the selection process.

Initial automation of the use of membranes cut the time to process the data for
one membrane from 3 or more days to 1 day. Further improvements to the data
entry interfaces, including tuning of the database transaction for data entry, and the
analysis of the data reduced the time to 3 hours or less.

7.3 Annotation Database

The term “annotation” has a slightly different meaning when discussing EST anno-
tation and genome annotation. Genome annotation is first concerned with predict-
ing which segments of the genome are genes and what are the coding sequences
within the gene. Only then does genome annotation seek to understand the role of
the gene product: in our case, the enzyme. In an EST project, you immediately have
the (partial) coding sequence within the gene, so the only focus is on annotating the
role of the gene product. As a result, many systems related to genome annotation
were not at all useful. But many of the principles were, and the domain was now an
in silico domain.

The needs of an annotation database keep growing because our ability to ana-
lyze sequence data and predict the function of an enzyme is so limited. As each new
analysis tool comes along, there are cases where it helps understand a sequence, and
so an argument is made to include the tool in the annotation pipeline and the results
in the annotation database.

The initial pipeline [13] for base calling and assembly uses “standard” software
tools phred, Lucy, and phrap. The annotation pipeline [14] uses a set of common
software tools and databases as well as two in-house tools. Our in-house tool
TargetIdentifier [15] matches our sequences against a database of known enzymes
and checks whether our cDNA is full-length or not. Our in-house tool OrfPredictor
[16] translates the nucleotide sequence to a sequence of amino acids in any of the six
frames.

The design of the annotation database [14] is influenced by the Gene Indices of
TIGR [17] and the decoupling of sequence and annotation found in the Distributed
Annotation System (DAS) [18]. The following systems have excellent descriptions of
their data models: Ensembl [10], the Saccharomyces Genome Database (SGD) [11],
and Pedant [12]. Pedant includes a comprehensive list of the annotation tools it uses.
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When this work began, there were few systems available for EST processing,
EST annotation, and curation. Since then, several systems for EST processing and
initial annotation have become available [19–24].

7.4 Microarray Database

Finally, there was a system that we did not have to develop ourselves. Just prior to
our project there was an enormous interest in the new technology of microarrays,
particularly the concern to be able to archive and share the experimental data in a
meaningful way. This led to a standard (MIAME) for recording data, several open
source systems, and an open source effort (Bioconductor) for statistical analysis
tools [25]. We adopted the BASE system [6] from Lund, Sweden, which is
MIAME-compliant [7]. It records all the metadata, data, and data analysis results
for microarray experiments. There is a plug-in architecture for adding new analysis
tools: we have added several from the MEV suite from TIGR [17], from
Bioconductor, and our own.

The metadata requirements of MIAME are extensive. They cover the design
and production of the microarrays themselves, the source and preparation of sam-
ples, and the protocols for the extraction, labeling, hybridization, scanning, and
analysis steps of the experiment. Quality control data as well as experimental
results are collected (see Figure 7.2).

A microarray provides information about the expression level of every gene of
the organism under a particular condition: in our case a condition of growth for the
fungi. Basic data analysis up to the determination of the set of genes which have sta-
tistically significant changes in expression is well understood now. Other techniques
include clustering [26] and pathway analysis [27]. However, the interpretation of
the biological reasons for these changes is extremely hard, and varies from experi-
ment to experiment. The interpretation relies heavily on the annotation of the genes
for the species: typically there are 30% of the genes which are well annotated, 30%
of the genes with no annotation, and 20% of the genes in a gray area where much
may be known yet the role of the gene is not truly understood.

7.5 Target Curation Database

The potential target enzymes are further investigated. First, the sequence for the
complete enzyme is required: a cDNA sequence gives about the first 800 base pairs,
and assembly of several cDNA sequences can yield up to 3,000 or more base pairs,
but there is no guarantee it is complete. Knowing the full-length sequence allows
more accurate in silico analysis to predict the function of the enzyme, and is
required for subsequent cloning, expression, and hence assaying.

We could find no examples of existing systems to record the activities and
results of the enzyme assay process. Most biochemical labs use lab notebooks,
spreadsheets, and math software for curve fitting. The high-throughput approach
we were taking with microtiter plates made our requirements unique.
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Again, we went through extensive domain analysis. This time we had the luxury
of starting this analysis with master’s-level students [28] about 18 months before the
lab work began. Our experience with the metadata requirements mandated for
microarray data allowed us to readily see similar needs here to record protocols, per-
sonnel, batches of reagents, and batches of enzyme and purified enzyme, as well as
the actual results of the assays.

Even so, the nature and variety of assays evolved, and we changed strategy from
only screening enzymes on those substrates as indicated by in silico analysis to
broader screening of enzymes across all assays. This translates to some 20,000
assays in a 4- to 6-week period when we process a batch of enzymes.

As indicated in Section 7.1, we are only at phase 1 of the development and
deployment of the target curation DB. We expect it to undergo modifications as we
learn more about the data access requirements, especially in sharing data with our
partners, and in analyzing the data and utilizing it to improve our in silico annota-
tion. In due course, a full description will be published.

7.6 Discussion

We adopted an iterative development process for each of our databases. The initial
version typically took one developer about 4 months, including intensive discussions
with scientists and lab technicians to define the requirements. Once deployed, there
were one or two further versions developed in response to the experience of the lab
personnel. Ease of data entry and the minimization of errors in data entry were the
focus of most improvements. One situation required extensive database tuning in
order to speed up the data entry of large data files containing some 10,000
datapoints, but in general we did not need to tune the databases. The lab practices
evolved as a result of the data management systems being in place. Data was col-
lected differently; more data could be collected and analyzed; analysis was faster;
and feedback on the quality of the lab work was more timely.

The project overall was a pipeline where different platforms came into play over
a 2-year period. This allowed us to concentrate on one new data management sys-
tem at a time. As the project involved a significant learning curve for all the
bioinformatics personnel, this was a good thing. Having built all the platforms, now
is the time to review our experience, redesign the systems, and consider how best to
integrate them.

Basic data management was impacted once later platforms came online. These
often demanded variations on existing features that we did not foresee. For example,
the expression platform involved determining the full-length sequence of a gene.
Now each clone was associated with many reads; these were both three and five
reads; the assembly process required modification; and we had to track plates con-
taining templates from multiple species. On the positive side, having a full-length
gene allowed us to infer more during the annotation process.

The target curation DB differed from the others in that it was planned as a multi-
stage implementation. Stage 1 covered the management of the collection of potential
targets with links to the annotation data. It allowed the selection and prioritization
of targets for full-length sequencing, including the design of primers, the clone-based
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assembly, and further curation of the full-length gene. Stage 2 managed the data for
the expression platform. Stage 3 managed the assay results.

In all cases, there was organizational resistance to adopting the data manage-
ment systems at the level of the lab personnel. The acceptance of the lead scientists
was always there. Often the solution was to explain the needs and benefits more fully
to the lab personnel, though there was more than one occasion when the lead scien-
tists simply had to mandate the use of the systems. Once they were in use, the resis-
tance disappeared within 4 to 6 weeks. One reason for the resistance is that most of
the benefits accrued to either supervisory staff or to scientists analyzing the final data
rather than to the lab personnel themselves. So we had to encourage lab personnel to
identify with the project as a whole and not just with their piece of the work.

A key issue from the beginning was data integrity and data quality. We knew
the issue of data integration would arise, but we also saw that we could defer its
consideration until we had the big picture: that is, each platform had its own data
management support. Our approach to data integration in the short term was to
either link across databases using well-defined identifiers (e.g., for clones,
sequences, and unigenes), or to replicate subsets of data (e.g., the target curation DB
is incrementally loaded with batches of newly identified target sequences from the
annotation DB).

One issue that we had hoped to avoid was the open-ended scope of research. We
did not want to have to support any and all kinds of data analysis that creative sci-
entists might desire. The project was already large enough, and we hoped was well
defined enough so that the deliverables were clear: manage the data, ensure quality
and integrity, and provide analysis to identify targets and record their assay results.
Even for the microarray platform, we had a well-defined deliverable: identify the
differentially expressed genes, as this sufficed to highlight some targets with
unknown function and potential application. However, our view of scope omitted
the need to write publications and the fact that most scientific publications need to
explain the data: in our case, tell the biological story behind the results of the analy-
sis. This has led to sustained pressure to support more analysis tools, more integra-
tive views of the data, and seek information on metabolic pathways, secretion, and
regulation from the data (and the literature). These are open questions in
bioinformatics research rather than issues of data management for genomics.

7.6.1 Issue of Data and Metadata Capture

Data entry is a time-consuming and error-prone activity in any field. Much of the
effort of user interface design is to minimize the amount of manual data entry, espe-
cially data entry that requires typing. When first introducing automation to any set-
ting—and laboratory settings are no exception—there is a cultural change required
before technicians and scientists fully adopt centralized data collection and analysis.
We have found that the adoption of data entry proceeds faster than the adoption of
metadata entry, primarily because the need and benefit of the former is more obvi-
ous to the technicians and scientists. This has also been the experience of groups
implementing the MIAME standards [7] for metadata of microarray experiments.
Yet the capture of metadata for data provenance is critical in science [2, 3]. It is vital
to know the history of the data: that is, the source of the data, the data manipula-

7.6 Discussion 113



tions carried out, and the analysis and interpretation of the data. This history is what
we call the provenance of the data.

One purpose of our redesign is to have lab workers follow a uniform work pat-
tern so that the capture of metadata can occur behind the scenes. This will make the
capturing of metadata on the provenance of data unobtrusive to the users, thus over-
coming a major hurdle to its collection.

Provenance metadata includes the context of the laboratory work which pro-
duces the data, the source of materials and data from outside the laboratory, the
quality of the data, the workflow process description, and the confidence in compu-
tational results and manual interpretations.

The context of the lab work is described in terms of people, projects, roles, and
activities. The capture of such data can be achieved through activity-based access.

The history of data collection, manipulation, and analysis can be achieved
unobtrusively by adopting an activity-based initiation of tasks and having the imple-
mentation of those tasks pass through a wrapper that records the metadata.

The quality of the data requires each activity to be able to associate a measure of
quality with its results. For consistency, comparison, combination, and interpreta-
tion, there needs to be a common measurement system with a well-understood cal-
culus. Similarly, there needs to be a measure of confidence in the results. For a
scientist to truly have confidence in a set of results, there needs to be facilities which
allow the scientist to see how the results were obtained.

7.6.1.1 Activity-Based Access

Access control is a must for us, as we have a mixture of public and private data, and
we have several academic and industrial partners. The Role-Based Access Control
(RBAC) approach [29–31] provides a framework based on users and their roles in a
project, and the permissions to access data and perform operations on data are asso-
ciated with the roles. In its full generality, RBAC organizes roles into a role hierar-
chy and includes conditions which constrain the permissions under certain contexts.
In an object-based system, we can view the data in units of objects. In a
workflow-based system, we can view the operations on data as activities.

Users access the bioinformatics platform by logging on to the portal. The user
database records the roles that a user plays in the projects. It also records the activi-
ties associated with each role and the permissions. Users select an activity to per-
form. This sets the context for subsequent interactions of this user session with the
bioinformatics platform. Henceforth, a user session carries along this context.

Each activity is associated with underlying software which performs the opera-
tions and data manipulations. Typically this is a script executing mySQL com-
mands. The portal provides a Web interface to drive that activity and provides a
wrapper which automatically records the desired metadata. The Web interface is
typically a form where users input or select values into fields and/or upload files.

Activities are parts of workflows. Scientists think of workflow in terms of exper-
imental protocols. These are the descriptions for their work processes in the lab and
on the computer. They typically do not make a distinction between manual steps
and computer-based steps, as even “manual” lab work involves the use of various
instruments (i.e., machines) both large and small. At a basic level, the description of
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a workflow can be captured as text, as is the standard practice for representing lab
protocols. Essentially we just need identifiers for protocols and activities, and to be
able to relate activities to protocols. We do not require a formal process description.
Each protocol has an identifier and a (human-readable) description. An activity is
also described by an identifier and a description. A protocol is associated with a
sequence of activities.

This simplistic view is sufficient. Note that we are not regarding a protocol as a
sequential composition of activities, though this may be the typical case. The
sequence of activities implies a general flow of work, but allows for activities to be
skipped, or repeated, or performed in parallel.

Of course, versioning of protocols and activities is required. This is explicit in
their identifiers: the full identifiers distinguish between different versions of the
same protocol or activity.

7.6.1.2 Life Cycle of Files and Data

The material tracking DB tracks physical entities within our lab adequately. How-
ever, it needs to track the external movement of material and also track digital enti-
ties (i.e., files and data) in order to fully capture data provenance. This comes about
in several situations due to use of ftp and archiving.

In our transfers to the sequencing center, we physically transfer microtiter
plates, and transfer by ftp a spreadsheet documenting the plates and download the
set of chromatogram files. At intervals we archive the chromatogram files from our
hard disk. All files are archived actually, but there is no easy access to information in
the archive or about the archive for users.

Some compute-intensive steps for sequence annotation are off-loaded to facili-
ties at BioNEQ in Montreal or Canadian Bioinformatics Resource (CBR) at Halifax
and Calgary. These are done by ftp-ing data files and scripts to the facility within
our account there, and later retrieving the result files.

We download software and data from various sites. Data download is generally
regular for those data archives that update periodically but software download is
not. Often they are done manually.

It is important that these manipulations be captured as metadata for two rea-
sons. First, they are steps within the data processing and need to be fully and accu-
rately recorded so that data provenance is clear. Second, the versioning of databases
and software tools requires capturing those downloads and reinstallations. Proper
recording of versions of tools and their associated data resources is important for
correctly recording data analysis using those tools.

Data integrity can be affected by archiving since datafields may refer to file
names as the source of raw data or input to a processing step. Yet archiving may
remove the file.

Data integrity can be affected also by references to external data via URLs or
other identifiers such as Genbank accession numbers for sequences. These external
identifiers are not under our control. They may disappear, or they may no longer
refer to the same content. Even Genbank allows submitters of sequence data to edit
a submission at a later date.
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For these reasons, the metadata must include tracking of files and external
identifiers.

7.7 Conclusion

Data management for our fungal genomics project is a large-scale, domain-specific
task that faces many of the same challenges of other large-scale database systems.
Understanding the goals of the project, the processes in the labs, and the capabilities
of the personnel are some of the common challenges. The common solutions to the
challenges include an iterative development approach, intensive discussion with lab
personnel, and a focus on delivering useful systems. We aimed for many small suc-
cesses to build a connection with the lab personnel and to ease our own learning
curve and doubts. “Big bang” delivery of a complete system would just not have
worked: we still do not understand all the requirements for data analysis, even
though we are on top of data collection, data integrity, data quality, and data
provenance.

Here we have emphasized the need for managing metadata to capture the prove-
nance of scientific data. We have encountered several obstacles which we plan to
address in the next version of our data management systems. We have discussed
those issues and plans in Section 7.6.

Bioinformatics has developed novel techniques to support the evolution of data
models and the integration of data [32], particularly the approach of the Distributed
Annotation System (DAS) [18]. We have used these ideas for decoupling data from
annotation to good effect [9]. In other work, we are exploring how best to provide
access to genomics data either using visual queries [33] or XML form-based queries
and reports [34]. Another major need is to move beyond data management to
knowledge management. We are exploring the role of the semantic Web with formal
ontologies, software agents, and AI tools in the FungalWeb project [35] to assess
how well the semantic Web meets this need.
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C H A P T E R 8

Microarray Data Management: An
Enterprise Information Approach

Willy A. Valdivia-Granda and Christopher Dwan

The extraction of information from high-throughput experiments is a key aspect of
modern biology. Early in the development of microarray technology, researchers
recognized that the size of the datasets and the limitations of both computational
and visualization techniques restricted their ability to find the biological meaning
hidden in the data. In addition, most researchers wanted to make their datasets
accessible to others. This resulted in the development of new and advanced data
storage, analysis, and visualization tools enabling the cross-platform validation of
the experiments and the identification of previously undetected patterns. In order to
reap the benefits of this microarray data, researchers have needed to implement
database management systems providing integration of different experiments and
data types. Moreover, it was necessary to standardize the basic data structure and
experimental techniques for the standardization of microarray platforms. In this
chapter, we introduce the reader to the major concepts related to the use of con-
trolled vocabularies (ontologies) and to the definition of Minimum Information
About a Microarray Experiment (MIAME), and provide an overview of different
microarray data management strategies in use today. We summarize the main char-
acteristics of microarray data storage and sharing strategies including warehouses,
datamarts, and federations. The fundamental challenges involved in the
distribution and retrieval of microarray data are presented, along with an overview
of some emerging technologies.

8.1 Introduction

A microarray is a high-density, two-dimensional matrix where thousands of nucleic
acid, proteins, or tissues are immobilized on the surface of a glass slide, nylon filter,
or silicon wafer. The primary purpose of a microarray is to perform biological
screening experiments at the whole genome scale. Each spot represents a single bio-
chemical assay probe against a particular object of biological interest, perhaps mea-
suring the expression level of a gene, or the binding efficiency of a genomic
regulatory element. Using this technology, researchers effectively perform tens of
thousands of measurements in parallel.
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There are many ways to perform the spotting process by which samples are
placed on a microarray. In contact printing, mechanical pins can be used to
robotically transfer micrograms of probe from storage trays onto slides or mem-
branes. In noncontact printing, ink-jet style printing techniques spray various
amounts and configurations of probe. Finally, in situ synthesis using
photolithographic methods can build cDNA or RNA strands, residue by residue.
Because of the distinction between sample spotting and photolithography, the latter
are sometimes referred to as DNA chips. For the purposes of this chapter, we refer to
both techniques as microarrays. Both contact and noncontact printing give spots of
100 µm in diameter, while photolithography spots are about 20 µm. These processes
produce microarrays with spot densities from 10,000 to 250,000 spots per cm2.

Because the spots printed on an array surface are typically less than 200 mm in
diameter, microarrays need to be read by specialized scanners. Most commercially
available microarray scanners are inverted florescent microscopes that acquire data
at two wavelengths (generally used to record a test and a control signal) using
532-nm (17 mW) and 635-nm (10 mW) lasers. The output of this process will be an
image file (∼ 5 Mb) and a text file (∼ 1.5 Mb). The text file provides primary data on
the intensity ratios of the two wavelengths, averaged over the area of each spot. In
order to assess the contribution of experimental noise and error inherent in this new
technology, it has become standard process, in contact and noncontact array manu-
facture, to place an abundance of replicates of each probe on a single microarray. In
addition, most experiments involve multiple copies/instances of each microarray. A
single microarray experiment might involve measuring the expression of a particu-
lar set of genes at 1-hour intervals during the 24 hours following exposure to some
environmental stress. This would produce, with even modest experimental redun-
dancy, nearly half a gigabyte of primary data.

In less than a decade, microarrays have become a widespread technology used for
the exploration of molecular activity of biological systems. Since their development,
more than 12,000 publications have relied on them for primary experimental results.
This demonstrates their impact on biological sciences. The wide use of microarrays is
the result of two factors: the decreasing cost of reagents and instruments, and the fact
that they are so effective as an experimental technique. Today, the end cost to a
researcher to measure the expression of a gene is approximately $0.05 [1]. Of course,
this assumes that the researcher is willing to measure gene expression in batches of
tens of thousands. The high number of probes permits the exploration of complete
genomes, including noncoding regions [2, 3]. The diversification of microarray tech-
nology to include tissues [4–6], proteins, and peptides permits interrogation of the
molecular activity of the cell at many levels of resolution [1, 7].

An increasing number of laboratories are using microarray-based analysis for
disease fingerprinting, toxicological assessment, single nucleotide polymorphism
(SNP) analysis, reconstruction of signal transduction pathways, and phylogenomic
and epigenetic analysis [8–12]. Microarrays are also ideal for fast, sensitive, specific,
and parallelized detection and diagnosis of microorganisms [13] and infection
biomarkers. Several researchers have used microarrays for the genotyping of influ-
enza viruses [14, 15]; drug resistant HIV-1 [16]; polioviruses [16]; human papiloma
[17]; RNA respiratory viruses [18, 19]; hepatitis B and C [20]; and African swine
fever [17, 21]. These applications in primary research and clinical medicine make
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microarray technology one of the most progressive approaches to understanding
living systems.

In the early stages of microarray technology development, researchers recog-
nized that, due to the size of the datasets involved, computational analysis would be
required to properly exploit the information. Early microarrays were very expen-
sive, and for this reason several researchers restricted themselves to analyzing
datasets published by others. At this stage, the sharing of microarray data was
mainly accomplished by exchanging flat files. This enabled progress, despite the
lack of standards to exchange genomic information. The key to this success, how-
ever, was the personal communication between the researcher who had done the
physical experiment and the one doing the analysis. The use of flat files coupled
with the lack of direct communication has several limitations. The primary problem
is in the exchange of experimental parameters, the metadata without which the raw
data is meaningless. Most microarray experiments are composed of many different
gene expression data files. To understand the biological significance of its content, it
is necessary to integrate several types of genomic information (e.g., the assignment
of the molecular function of genes, the history of the samples used on the
microarray, the batch and lot numbers of the slide, the settings of the scanner, and
so on). There is also difficulty involved in retrieving a subset of genes and expression
values from flat files without extensive script programming information. Nonethe-
less, a main advantage of the use of flat file format is that microarray data could be
provided as is.

Spreadsheets are another file format used to store and share microarray data.
This format not only allows sorting and filtering, but makes it possible to perform
basic calculations and to produce graphical representations using add-ins and col-
lections of macros developed specifically to analyze microarray data [22–24].

Unfortunately, spreadsheets are difficult to update or manage remotely. More-
over, the proprietary format of this platform has limited impact in the extensive
exchange of microarray data. For this reason, researchers typically link spread-
sheets with Web pages in the context of their publication. While requiring little
effort to implement, the content and quality of the information contained within the
spreadsheets is dependent on the algorithms used for normalizing, filtering, and
analyzing. Of course, the above mentioned limitations of metadata transfer apply
just as much to spreadsheets.

The wide availability of microarray data has fueled the development of explor-
atory research and the generation of new hypotheses about specific biological pro-
cesses based on the analysis of large amounts of data. A typical example is the
dataset published by Golub et al. [25]. It has been analyzed by different researchers
using a variety of statistical and computational methods [26–34]. Because different
algorithms applied to the same data can provide new insights about a particular bio-
logical process, the integration of different experiments through automated data-
base management systems can have a significant impact on understanding/
interpretation. This phenomenon has already been seen with databases storing
genomic and protein sequence data. With the emergence of the study of biological
systems in a holistic manner (also known as biocomplexity or systems biology), the
analysis of microarray data is placed in conjunction with that of the other omic
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datasets [18, 35–37]. This has enabled the development of multiresolution
molecular maps of specific biological processes.

Currently, around 3% of more than 400 biological databases store microarray
data [35, 38, 39]. However, many researchers performing microarray experiments
are unfamiliar with database concepts and perceive data management systems as
black boxes for data input and retrieval. With this in mind, the objective of this
chapter is to introduce the reader to the basic concepts related to the storage, use,
and exchange of microarray data including:

• A description of the use of ontologies to provide a structured vocabulary for
cataloging molecular biological components and details about microarray
experiments;

• An overview of different data models to exchange genomic information,
including the minimum information about a microarray experiment
(MIAME);

• A description of different microarray database management systems and the
main characteristics of microarray data integration projects, including data
warehouses, datamarts, and federated databases;

• An overview of new developments in data storage, exchange, and high-
performance computing for the implementation of enterprise data and
microarray knowledge management systems;

• A highlight of the main challenges and opportunities related to the develop-
ment of new exchange systems and the access to data streams.

8.2 Microarray Data Standardization

The issue of data standards, integration, and interoperability has long been of inter-
est to biologists. DNA and protein sequence formats like those used by Genbank,
Swiss-Prot, and PDB reflect such need. The structure of this information allows
researchers to write specific parsers to retrieve subsets of information which are in
an XML or flat file format. When analyzing nucleic or amino acid sequences,
researchers are interested in obtaining information other than the sequence data.
For example, they might want to know about genomic context: the length of the
open reading frame, the frequency and location of known introns, the chromosomal
location, and any putative molecular function. In most cases, this information is
stored in separate databases.

Because most microarray experiments measure the transcriptional activity of
genes, the information about a particular gene is very relevant. Additionally, since
the variability and reliability of the experiment is affected by multiple factors,
microarray analyses require detailed information about the experiment itself before
the raw data can be interpreted at all.

A typical experiment using microarrays involves a team of researchers. Each
member has skills in a particular process: from tissue preparation, microarray pro-
duction (or selection from a corporate provider), RNA extraction and cDNA dye
labeling, operation of the microarray scanner, normalization and data analysis.
Some of these steps may even be outsourced to external sources. During each step,
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different sources of noise and variability are introduced. As a result, missing data,
outliers, and variability across replications and laboratories is very common. A
researcher integrating different microarray datasets must know the strengths and
weaknesses of each, as well as their relative level of appropriateness for the current
investigation.

To integrate different databases, we must establish points of reference in the
metadata and compare the data from various experiments in light of those reference
points. Comparing free text definitions is very difficult. Different research groups
may come up with different definitions for a particular experiment or biological
process. They also may use very similar words to describe fundamentally different
processes. For instance, a researcher might use the term DAG to mean directed acy-
clic graph, but for most cell biologists it will be the shorthand for diacylglycerol, a
key intracellular signaling component in the calcium transduction cascade. There-
fore, when integrating genomic information, the reader should be very aware that
biology is a massive and dynamic field of experimental study. Word meanings are
not stable between experimental domains, and as new discoveries are made, new
data definitions of genes, genomes, and biological systems emerge.

To facilitate the retrieval of genomic information and the exchange of
microarray data, researchers recently have begun to agree on a common set of ter-
minologies and a minimum set of parameters that should be used to describe experi-
ments involving this technology. The formation of government initiatives for the
standardization of protocols and reagents, as well as the use of microarrays in clini-
cal studies and for the diagnosis of pathogens, has prompted this need. In order to
provide the reader with the overall understanding of the significance of these imple-
mentations, we will review concepts related to the gene and microarray ontologies
and the MIAME standard.

8.2.1 Gene Ontologies

The abstraction of real-world concepts is very important in the creation of informa-
tion exchange systems and the management of knowledge. Most applied mathemat-
ics is based on this fundamental truth. In the early 1990s the artificial intelligence
community developed a framework for the use of controlled vocabularies to cap-
ture and formalize the knowledge in a particular domain. Ontologies specify the
terms or concepts and relationships among terms and their intended correspon-
dence to objects and entities that exist in the world. Domain ontologies are special-
ized collections of names for concepts and relations organized in a particular order.
These descriptions and rules are accepted by a community in an interdependent
fashion. They allow computer-generated queries to filter and retrieve information
based on user-defined constraints [40–42].

The implementation of ontologies can be accomplished using specialized devel-
opment environments, including the Knowledge Interchange Format (KIF),
Ontolingua, WebOnto, µKosmos, Cyc, and Protégée. However, ontologies vary in
their coverage, quality, and resolution. From an implementation point of view,
three main types of knowledge representation can be distinguished:
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1. Upper ontologies, also called high-level, core, or reference ontologies,
describe common general concepts across different communities (e.g.,
SUMO and WorldNet).

2. Intermediate ontologies are shared ontologies among domains that allow for
scalability and join domain and upper ontologies.

3. Domain ontologies are restricted in their scope and coverage to the interest
of a particular domain (e.g., plant ontology, human anatomy ontology, gene
ontology, microarray ontology). Domain ontologies join and leave
intermediate and upper ontologies and are in constant development.

The sequencing of genes and genomes led to the proliferation of many biological
databases. The information contained in these repositories was designed to be popu-
lated and accessed by humans, rather than by computers, and was littered with
inconsistencies. The functional role of genes tended to be annotated as free text
phrases. Many of these where classified into arbitrary categories. At the very least,
competing spellings of common terms made simple text searching unwieldy. As a
result, it was difficult to search the databases for the function of a particular gene or
biological process. Integrating these repositories was a herculean task, usually only
undertaken within a fairly small community surrounding a particular area of
research.

To address these issues, Schulze-Kremer [40] proposed the use of ontologies to
provide a standardized description of objects and process related to molecular biol-
ogy. An ontology for the molecular function, biological process, and cellular com-
ponents of genes was proposed by The Gene Ontology Consortium (GOC) [43].
Their effort lead to the implementation of independent terminologies for species, as
well as classifications related to genes.

The gene ontology (GO) now has approximately 17,000 terms and several mil-
lion annotated instances describing how gene products behave in a cellular context.
A particular term is linked directly to some datum in a public database. The GO is
used by at least 30 major bioinformatic databases serving researchers interested in
more than 140 organisms. Each term in the gene ontology is accessible by a unique
identifier (GO ID) and every annotation must be attributed to a source which may
be a literature reference or a computer-generated annotation.

In a relatively short time, the GO has been adopted by the biological commu-
nity. Its impact is due to the strictness and expressiveness that allows software archi-
tectures to compute and associate biological information from disparate databases.
The GO has also gained considerable credibility for simply starting with a large,
overlapping set of definitions, rather than haggling over an exact data modeling
standard. For these reasons, the GO has become the de facto standard for biological
database ontologies [44].

The graphical representation of the gene ontology is made as a semantic net or
conceptual graph—both of which are instances of a directed acyclic graph (DAG). A
DAG consists of a set of nodes, and a set of edges. An edge is a pair of nodes, and the
order of the nodes in the edge makes a difference—that is, the edge (a,b) is different
from the edge (b,a). This type of representation is ideal for path analysis and for
understanding the relationships between different hierarchical categories of GO.
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8.2.2 Microarray Ontologies

An effective microarray database should allow researchers involved in data analysis
to pose a query in terms used by an experimentalist, and retrieve a unified dataset
from multiple sources. This, however, requires knowledge of the experimental
parameters affecting the reliability and the quality of a particular microarray exper-
iment. To properly join the concepts and definitions describing these experiments
and to facilitate automated querying and exchange of this microarray data, a group
of public and private researchers formed the MGED Ontology Working Group
[45]. This effort is standardizing the terminology required to publish a microarray
experiment. The MGED Ontology Working Group is composed of computer scien-
tists, developmental biologists, toxicologists, and the whole microarray commu-
nity. This group is collaborating on the makeup of a microarray ontology (MO)
using each member’s knowledge for their area of expertise. MO uses the Protégée
development environment and is divided into two parts [46]. The core layer is a
static ontology describing only essential concepts about microarray experiments.
This layer is intended to be relatively static. The extended layer describes concepts
related to microarray experiments and changes as biological knowledge and
microarray platforms evolve.

MO and GO are the first attempts to formalize in a consistent way the descrip-
tion of experiments and the molecular components of the cell. Although the design
and implementation of these integration infrastructures is still under development,
Soldatova and King [46] have pointed out several awkward linguistic issues in the
naming policy and the design of the GO and in particular, the MO. The fact that
GO and MO do not contain enough terms to describe actual microarray experi-
ments or biological processes limits its mapping, alignment, and merging to inter-
mediate and upper ontologies. Also in several instances MO uses the same name at
different levels of abstraction and allows multiple inheritances of properties.
Despite the obvious limitations, MO and GO avoid subjective interpretations of the
meaning of microarray experiments and gene descriptions. However, as new exper-
iments become available, the need for its redesign or reconstruction is becoming
obvious.

8.2.3 Minimum Information About a Microarray Experiment

To achieve the integration of microarray datasets, researchers need to agree not
only on the GO (what we are using or observing) and MO (what data we are collect-
ing), but also on the manner in which the experiment is being conducted. There is a
considerable variability in both reagents and reference controls, and therefore, it is
difficult to compare microarray data generated by different laboratories [7, 47].
The MIAME strictly defines each of the parameters that should be reported in order
to provide sufficient information to allow an outsider to interpret the experiment
[48]. Most importantly, the MIAME is facilitating microarray applications in clini-
cal and diagnostic settings. The MIAME annotation has six major sections:

1. Experimental design;
2. Array design;
3. Samples;
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4. Hybridization;
5. Measurements;
6. Normalization.

An updated summary of the MIAME guidelines is available in the MGED soci-
ety Web site. In addition, the MIAME is also serving as a blueprint for the standard-
ization of specific type of experiments [49, 50]. MIAME-Tox includes descriptors
for the inclusion of cell types, anatomy terms, histopathology, toxicology, and
chemical compound nomenclature in the context of toxicogenomics and
pharmacogenomics research [51–53].

8.3 Database Management Systems

The storage, exploration, and exchange of microarray data require computer sys-
tems capable of handling many simultaneous users, performing millions of data
transactions, and transferring many terabytes of data in a secure and reliable way.
Fortunately, there is a robust field of software development known as database
management systems (DBMS) dedicated to exactly this task. DBMS tools are fre-
quently referred to as “databases,” which leads to confusion between the software
infrastructures used to manage the data (the DBMS) and the collection of data being
managed. In this section, we are discussing DBMS software. Examples include prod-
ucts such as Oracle, Sybase, DB2, and MySQL. The use of a DBMS can provide
many benefits: secure access to both journal published and unpublished data, the
elimination of redundant, inconsistent and outdated information, reliable data stor-
age and retrieval, data provenance, and historical recovery.

There is no reason to limit a DBMS to storing only primary data. It is also possi-
ble to use DBMS to store data about data, or metadata. However, metadata require-
ments must be identified a priori, and should include scientific, computing, and
administrative considerations. Using the metadata, researchers can compose queries
that incorporate the quality, condition, or even physical location. From an imple-
mentation point of view, we can divide metadata into the following types:

• Technical metadata: This information is primarily used to support the work of
the staff that is deploying and implementing a particular DBMS. Technical
metadata describes the physical organization of the database, the access poli-
cies, user accounts, and the integrity constraints that allow the system to
operate effectively.

• Microarray metadata: In the context of this document, is the data annotated
using the MIAME and GO standards, including the use of the MO.

Using a DBMS, one can vastly accelerate the process of data exchange and anal-
ysis and therefore, researchers can improve their understanding of specific biologi-
cal processes. However, in contrast to data shared via flat files, data stored in a
DBMS must conform to specific rules within a mathematical framework known as
the data model. A data model is a conceptual representation of the mathematical
rules that define the relationships between different components of a database. In
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other words, the data model defines what data is required, and how it should be
organized. Over the years, database researchers have proposed six main data mod-
els: file processing, hierarchical, network, relational, object-oriented, and the
object-relational. In this document, we focus in on the last three data models which
are commonly used to exchange microarray information.

8.3.1 Relational Data Model

The relational data model (R-DM) was developed by Codd (1970). The main idea
behind this approach is the representation of data in two-dimensional tables. This
data structure in many ways drove the enterprise adoption of computers in finan-
cial, business, and research applications. The basic elements of the relational data
model are the table (or relation) that is composed of rows (tuples) and columns
(attributes). Each table has a unique attribute known as the primary key that identi-
fies a tuple. Relationships between two tables are made by matching their primary
key values. While the primary key of each table can never be a null value, a foreign
key permits the association of multiple tables defined by a schema. The term schema
is often used to refer to a graphical depiction of the database structure and defines
the fields in each table, and the relationships between fields.

8.3.1.1 Notation of the Relational Model

Whether the implementation of a relational database is intended to serve the needs
of a large number of researchers or small workgroup, the planning of its design is an
important step ensuring future performance of the database. Notation is a logical
and graphical design technique often used to allow designers, implementers, and
users to understand in advance the relationships encoded by the database. The nota-
tion is also a valuable graphical representation that facilitates the redesign and
update of the database.

The relational model is simple to understand and use, even for those who are
not experienced programmers. However, the use of the R-DM is poorly suited to
the integration of microarray experiments with other types of genomic information.
The relational model does not handle well certain forms of data. This includes
images (a key component of microarray experiments), sequence data, and digital
documents. These limitations can restrict the scalability and interoperability of a
relational microarray database or the type of services that the implementation can
provide.

Since most microarray experiments are very complex, the design of the rela-
tional database needs to consider the possibility of creating or updating new tables.
As the number of tables increase, more complex phrasing becomes necessary. As
this information grows and scatters across relations, the query process becomes
dependent on the scalability of the system. Because adding and updating tables may
be cumbersome, a single very large table with many attributes may be generated.
Many of these tables might contain empty tuples which affect the performance of
the database and applications reading the output of these files.

Another main disadvantage of the R-DM is the separation of the schema from
the application software. This makes updating the schema difficult. This is further
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complicated due to the constant evolution of biological databases and their respec-
tive schemas. To change the schema, the user needs to understand, at some level, the
entire set of tables and the intricate relations of whole design. Since schemas are
more valuable when they represent a clear view of the components of the database,
schemas should not be affected by implementation considerations, such as limits on
the number of classes, tables, or attributes. Therefore, while constructing global
schemas it is necessary to detect semantic conflicts among existing tables (such as
naming inconsistencies and identical entities entered multiple times).

8.3.2 Object-Oriented Data Model

Object-oriented programming languages originated to overcome some of the
scalability limitations of relational databases and quickly become one of the domi-
nant forms for the development of data environments with relatively large-scale
software systems. Beginning in the 1980s, the Object Oriented Data Model
(OO-DM) was proposed to scale the access of biological and genomic information
and to address some of the limitations of the relational data model [55–65]. Many
sequencing and genome projects acquired a considerable amount of data in a short
period of time. The OO-DM associates actions and functional information along
with data. It has been referred to as “data with attitude.”

The OO data model encapsulates each tuple as an object into a single unit called
class. Since the underlying details of a class are masked behind access methods,
objects from radically different implementations can be combined in a single query.
This allows the OO-DM to provide access to the data via methods or functions
which can conceal a certain amount of complexity. This leads to increased portabil-
ity and interoperability, since interfaces, rather than direct access to underlying data
model features, are used. Since the OO-DM provides a more intuitive structure for
human access, and because of its inherently modular structure, OO systems tend to
be easier to maintain and reuse than purely relational ones. Also the use of object
identifiers (OIDs) used to reference the accession methods in objects makes the code
more scalable. This can lead to significant performance improvements over
relational databases.

Generally speaking, objects have three features: state, identity, and extensibility.
Identity assures that we are accessing the correct object. The state is characterized by
a set of attributes (the data contained in the object) as well as any history of modifi-
cation or ownership. Behavior is characterized by a set of methods that are applica-
ble to the object. Extensibility is an especially powerful concept in software
development and refers to the ability to add functionality to an existing system with-
out fundamentally changing it. Most important is the idea that old methods of
accessing the data should continue to work, even if new features are added. An
object-oriented approach to programming provides extensibility in two ways:
behavioral extension and inheritance. Objects may be extended by simply adding
additional methods. This is tremendously valuable because developers can rely on
existing behaviors in building tools that reference the information in the object. An
OO approach further promotes extensibility through reuse or inheritance. It is
important to note that while the terminology of the OO-DM is inspired in part by
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biology, the analogy is limited at best, and the biological metaphors should be taken
with a grain of salt.

8.3.2.1 Notation of the OO-DM

Object-oriented notation and modeling is one of the key aspects in the development
of an OO database. During this process the use case scenarios, class/object diagrams
which represent the main functionality as well as the structural aspects of the sys-
tem, are presented in an intuitive manner. The procedural control flow of the whole
OO database is represented schematically using standardized stereotypes.

8.3.2.2 The eXtensible Markup Language

XML is derived from the Standard Generalized Markup Language (SGML), the
international standard for defining descriptions of the structure and content of dif-
ferent types of electronic documents [60]. The XML is a data source in that its pre-
sentation is separate from its structure and content. The manipulation of genomic
information using XML represents an interesting alternative and is currently imple-
mented in different bioinformatic applications including microarray data
integration efforts.

XML not only allows information in different representations to be exchanged
between applications in a generic format, but also offers an opportunity to access
information managed by heterogeneous DBMSs. The XML data defines the struc-
ture and content, and then a stylesheet is applied to it to define the presentation.
Since XML data is stored in plain text format, XML provides a software and hard-
ware-independent way of sharing data. Furthermore, XML can be used to represent
the query results as datagrams, and Extensible Style Language Transformation
(XSLT) provides a mechanism for transforming the datagrams into XML.

The relevance of the XML framework is particularly useful for the reordering of
microarray gene expression data. XML provides a framework for tagging struc-
tured data that can be used for specific tag sets and therefore for defining standard
specifications. An XML document is either well formed, obeying the syntax of
XML, or XML valid, conforming to the logical structure defined by document type
description (DTD) [60, 66]. The DTD is the classification system that defines the
different types of information in any XML document. Any Web page that indicates
the DTD to which it conforms will instantly allow the user of an XML-enabled
search engine to restrict queries to that DTD-defined space.

The Extensible Markup Language/Resource Description Format (XML/RDF)
was developed by the W3C to enhance the XML model and encode metadata con-
cerning Web documents. Instead of defining a class in terms of the properties its
instances may have, the RDF vocabulary describes properties in terms of the classes
of resource to which they apply. XML/RDF as is, without a higher level formalism
that encompasses the expressivity present in frame-based languages, does not go far
enough to allow the kind of modeling needed in the bioinformatics community.
Three main elements are part of an XML file.
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• XML tag: A start tag is an element type name enclosed in angle brackets that
opens an element. Every start tag must have a corresponding end tag. An end
tag finishes the content of an element, comprised of an angle slash and then the
element type name, all enclosed by angle brackets.

• XML attribute: Attributes are name value pairs that are associated with an ele-
ment type. They follow the element type name inside the start tag. They can be
thought of as the “adjectives” of XML.

• XML element: An element consists of a start/end tag pair, some optional
attributes defined as key/value pairs, and the data between the tags.

8.3.2.3 The Microarray Gene Expression Markup Language

Microarray Gene Expression Object Management (MAGE-OM) is a data-centric
Universal Modeling Language (UML) that contains 132 classes grouped into 17
packages, containing in total 123 attributes and 223 associations between classes
reflecting the core requirements of MIAME [45]. MAGE-OM is a framework for
describing experiments performed on all types of DNA-arrays. It is independent of
the particular image analysis and data normalization algorithms, and it allows rep-
resentation of both raw and processed microarray data. Since MAGE-OM defines
the objects of gene expression data independent of any implementation, it allows
users to describe the experimental process using free-text descriptions. There are
three abstract classes in MAGE-OM from which all the classes in the model derive
from: extendable, describable, and identifiable.

The MGED Society implemented the Microarray Gene Expression Markup
Language (MAGE-ML) as an XML representation of the MAGE-OM. A major
advantage of the MAGE-ML format is that while it supports information from a
variety of gene expression measurements including related data collection method-
ologies; it does not impose any particular data analysis method [45, 67, 68].
MAGE-ML also has advantages in the sense that many laboratories can verify
microarray experiments with other methodologies such as real-time PCR.
MAGE-ML is organized into subvocabularies in such a way that the
subvocabularies are independent of each other. These subvocabularies are driven by
the packages and identifiable classes of the MAGE-OM. The MAGE software
toolkit (MAGEstk) is well developed for Perl and Java applications.

8.3.2.4 Limitations of the OO-DM

OO-DMs often assume a network of computers, with processing on the back or
front end, as well as intermediate tiers, caching on each level of the database. How-
ever, there are very few software systems capable of implementing a full-scale
object-oriented data model. While the OO-DM offers scalability, there are more
requirements to identify accurately different classes. Therefore, the initial design is
important in ensuring the future performance of the database. Without a proper
management of each class, the design will not work as per specification and the
database will be severely impaired.
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8.3.3 Object-Relational Data Model

Databases with an Object-Relational Data Model (OR-DM) were developed with
the aim of extending the relational information with three key features of the
OO-DM: inheritance, behavior, and extensibility. This functionality not only per-
mits the management of native SQL data types, but also the handling of object-ori-
ented multimedia information (e.g., sequences, images, and video). The OR-DM is
still relational because the data is stored in relations, but, loosely organized into OO
hierarchical categories. As a result, the OR-DM extends the R-DM by transforming
the tuple as object and the table as class. While column holds primitive data types,
the class can hold data of any type of data. This allows attributes of tuples to have
complex types, including nonatomic values such as nested relations while preserv-
ing the declarative relational access to data. This results in a very complex data
structures known as LOBs (large objects).

Databases designed with the OR-DM are very attractive for the integration of
genomic and microarray information. They are frequently used in Web applications
and specialized data warehouses; although a more significant impact can be seen in
data federations. A database with OR-capabilities can execute complex analytical
and multimedia data manipulations (i.e., images, normalized microarray data, as
well sequence information) and transform these manipulations into new, complex
objects, making OR-DMs ideal for a research enterprise. An OR-DBMS is repre-
sented by the PIR database [69], ooTFD (object-oriented Transcription Factors
Database) [59]. OR vendors provide products such Oracle, Informix, FirstSQL/J,
OpenODB DB2, and Postgre Object-relational mapping.

8.3.3.1 Limitations of the OR-DM

One of the challenges in the implementation of OR-DM is the design of a modular
schema capable to allow the reuse when dealing with complex structures. More-
over, the translation layer between relational and object oriented can be slow, inef-
ficient, and very costly. This can result in programs that are slower and use
considerable memory.

8.4 Microarray Data Storage and Exchange

Once microarray experiments are in digital format, all the components can be
shared, copied, processed, indexed, and transmitted from computer to computer,
quickly and flexibly. The development of new technologies to store digital informa-
tion is transforming the life sciences and enabling scientists to record vast quantities
of data. These advances and the improvement in the sensitivity of microarray tech-
nology have motivated the development of a considerable number of specialized
databases. As the relevance of microarray experiments increases, the use of this
technology for diagnostics and clinical research present a new paradigm in the stor-
age of this information. The scientific community has been enthusiastic about
microarray technology for pharmacogenomic and toxicogenomic studies in the
hope of advancing personalized medicine and drug development. The U.S. Food
and Drug Administration (FDA) is proactive in promoting the use of
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pharmacogenomic data in drug development. This progress means that in the
future, microarray data related to clinical studies and diagnostics needs to comply
with regulations mandating data preservation and access.

The scope of different databases provides users with a variety of services while
maintaining specific types of information associated with microarray experiments.
These databases can store at least five levels of information: (1) the scanned images
(raw data), (2) quantitative outputs from image analysis, (3) normalized data, (4) a
list of important genes after the analysis process, and (5) the metadata associated
with each experiment.

Microarray raw data (images) are the starting point of the analysis process. Stor-
ing this information, however, poses practical limitations including the size of and
access to the image files. Nonetheless, considering the ongoing development in
image analysis software, the storage of any processed form of the original image,
without keeping the original image itself, can lead to the argument that the data is
outdated as new image analysis methods become available. In early 2001, there was
considerable discussion about who should maintain original microarray images and
if this was the responsibility of journals, public repositories, or research institutes.
Despite the intense debate, no consensus has been reach about whether or not it is
cost-effective to store all this information, and, at this point, the publishing authors
themselves are responsible for storing (and providing on request) original image
files. Certainly, no decision has been made regarding if this task should be ensured
by public repositories or the institutions hosting the author of a particular paper [35,
67].

Sharing the extracted (but not normalized, i.e., CEL, GPR) files solves some of
the practical limitations related with raw images. This level of data level sharing is
well suited for many microarray public and local databases. However, it requires the
implementation of appropriate DBMS as well preprocessing tools. Another
approach to store microarray data consists of the sharing of normalized expression
ratios or summarized values such as signal intensities. In this form, much informa-
tion about the experiment is lost because the diversity of microarray data normaliza-
tion and probe level analysis techniques. The last form of microarray data exchange
consists of providing a list of genes that significantly differ between experimental
samples. Due to the wide variability in accuracy across different analysis methods,
this information should be limited only to publications. Finally, the sharing of
microarray metadata is another component of the data exchange process; however,
it has not received considerable attention.

Considering that microarray experiments are done by different communities
and have different scope, we can classify these implementations as:

• Public: These types of microarray DBMSs cover different microarray experi-
ments by single or different researchers, and allow users to query, retrieve, and
analyze both unpublished and published microarray information.

• Institutional: The configuration of this type of microarray DBMS resembles
public databases but is built around a particular organism and/or restricts the
access to a limited number of researchers depending on some set of permis-
sions that are defined by the institution.
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• Private: These microarray DBMSs are limited to researchers within a research
group and are not available to other researchers.

8.4.1 Microarray Repository

Microarray data repositories are data collections that, in general, are implemented
by one institution to serve a research community [61]. These storage and exchange
systems allow the submission of data from both internal and external investigators
[70, 71]. Although often used synonymously with “data warehouse,” a repository
does not have the analysis functionality of a warehouse. The maintenance and
curation of data repositories has made these data exchange systems of considerable
value to specific research communities. Since repositories need to be able to store,
access, filter, update, and manipulate large data sets quickly and accurately, the
information requires systematic knowledge management, proper representation,
integration, and exchange.

8.4.2 Microarray Data Warehouses and Datamarts

Data warehouses are databases devoted to storing relevant information from other
sources into a single accessible format [72]. These systems have the advantage that
they can import and analyze data that cannot otherwise communicate with each
other. Since they incorporate a time factor, data warehouses can present a coherent
picture of heterogeneous genomic sources integrated at different time points. In
fact, very often, their requirement is to capture the incrementally changed data
(delta) from the source system with respect to the previous extract.

Data warehouses are populated from the primary data stores in three main steps
often through sophisticated compression and hashing techniques. First, data are
extracted from the primary data sources. This process uses monitors/wrappers that
are capable of both collecting the data of interest and sending it to the warehouse.
The monitor is also responsible for identifying changes in external databases and
updating the warehouse automatically. Second, the data are transformed and
cleaned. Specific logic for data standardization or for resolving discrepancies
between data can be implemented in this step. Third, the data are loaded into the
database, and indexes are built to achieve optimum query performance. This con-
figuration facilitates the direct access of microarray data for analysis, allowing for
both good performance and extensive analysis and visualization capabilities.

In order to standardize data analysis, data warehouses are organized as prob-
lem-driven small units called datamarts. These implementations are subsets of
larger data warehouses and contain data that has further been summarized or
derived from a main data warehouse. Datamarts are an attractive option because
they take less time to implement than a centralized data warehouse and initially cost
less. However, datamarts can be more costly in the long run because they require
duplicated development and maintenance efforts, as well as duplicated software
and hardware infrastructure. Additionally, scattered data marts can hinder enter-
prise performance because they often store inconsistent data, making one version of
“the truth” impossible to obtain.
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The development of data warehouses like MaxD and DataFoundry, which inte-
grated Swiss-Prot, PDB, Scop, Chat, and dbEST in a unified schema, represent a
clear success of genomic data warehousing [72, 73]. First, it must obviate the need
for the conversion and migration of data and must require no change to the local
database system. Second, it must allow users to interact in such a way that both
users and applications are shielded from the database heterogeneity. Third, allowing
the interoperability of heterogeneous databases must allow reads and updates of
these databases without introducing changes to them. By their nature, data federa-
tions (datamarts) do not modify the primary data sources and a great effort must be
paid in the cleaning and transformation before their placement in the warehouse.
Since data are drawn directly from the primary data stores, detection and cleaning of
redundant data is not easily incorporated [74, 75].

Microarray data warehouses have two costly drawbacks: (1) considerable effort
is required for planning the integration; and (2) a great deal of investment is required
for data cleaning and transformation. This situation affects reliability and overall
system maintenance of the system.

8.4.3 Microarray Data Federations

Most microarray databases are specialized collections of information for a particu-
lar organism or biological process. They are scattered in different locations and
managed under difference policies. In order to integrate this information, a data fed-
eration schema seeks to join isolated, heterogeneous repositories into a single virtual
main database. This process is accomplished without modifying the primary data
sources and by avoiding the creation of a large warehouse. Their use is motivating
the emergence of “virtual organizations” which take advantage of the standardiza-
tion of microarray protocols and the use of reference probes. In addition, federa-
tions rely on the development of GO, MO, MIAME, and MAGE-ML standards
which permit the development of wrappers that explore and query multiple data
sources and may have different characteristics including:

• Public data: Data from public sources, such as ArrayExpress and NCBI-GEO;
copies of raw data may be held locally for performance reasons or shared
throughout the federation.

• Processed public data: Public data that has additional annotation or indexing
to support the analyses needed by different analysis algorithms. This informa-
tion can serve as the common link for joining different databases within the
federation.

• Sensitive data: In many cases, an individual user will be generating data which
remains to be analyzed or is unpublished. This requires careful enforcement of
privacy and may be restricted to one site, or even part of a site.

• Personal research data: Data specific to a researcher, as a result of experiments
or analyses that that researcher is performing. This is not shared even among
the local team. It may later become team research data.

• Team research data: Data that is shared by the team members at a site or
within a group at a site. It may later become consortium research data (e.g.,
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when the researchers are confident of its value or have written about its cre-
ation and implications).

• Consortium research data: Data produced by one site or a combination of
sites that is now available for the whole consortium.

While data federations could accelerate the development of data standards, tra-
ditional federations might be too rigid and labor-intensive to adapt to an open envi-
ronment where new sources are integrated dynamically. Therefore, before
implementing or joining a data federation, researchers interested in this possibility
need to address issues related with the design, interoperability, and security of each
transaction and the transfer of high volumes of information.

In most cases, member databases are geographically distributed, hosted on a
variety of platforms, and administered independently according to differing poli-
cies, which might be independent of the federation policies. This means that the fed-
erated system must be designed under the assumption that not all resources will be
available and consistent at all times. This makes the quality control very difficult.
Because data federations perform a considerable number of data transformations,
query performance is one of the main concerns.

8.4.4 Enterprise Microarray Databases and M-KM

From an institutional perspective, the information generated by microarray experi-
ments can be interpreted as data, values, and relations generated by different
researchers with a shared common and main institutional goal [76, 77]. In this con-
text, enterprise systems can be defined as computer architectures designed as
intranet systems capable of performing pipeline operations. Using specific hard-
ware, software, database management systems, agent software, analysis, and visu-
alization algorithms, enterprise systems integrate information and find patterns and
relations over large periods of time. The result of this process is the constant trans-
formation of data into an intellectual asset. The implementation of enterprise
microarray data management systems is being enhanced by the development of
semantic Web, grid computing, and Internet-2.

The implementation of enterprise microarray data management systems is
resulting in a new generation of infrastructures known as knowledge management
(KM) systems. The KM concept evolved from information management tools, not
only to integrate data, but to integrate many aspects of computer-supported collab-
orative environments including blogs and wikies. Microarray KM tries to consoli-
date knowledge that is not easily codified in digital form, such as the intuition of key
individuals, with considerable experience interpreting data from a particular bio-
logical process, organism, or cellular process. These individuals and/or their collec-
tive thinking might recognize various patterns of gene expression profiles that
individuals may not recognize. While promising, microarray KM implementation
requires a series of standards to enable genomic information to be captured, ana-
lyzed, understood, and reapplied in new contexts. Therefore, the implementation of
an enterprise analysis system requires:
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• Technical integration: Use nonproprietary platforms, open standards, and
methodologies in the design of the system architecture which ensure long-term
scalability, robustness, performance, extensibility, and interoperability with
other systems and platforms.

• Semantic integration: Use all levels of linked biological concepts and their
dependencies in biological, genetic, and microarray ontologies. Manual inter-
vention to map data between different data sources should not be required.

• Interoperability: Provide users with the ability to directly import and export
gene expression data as a single flat files derived from separate microarray
DBMSs.

• Allow configurable combinations of data sources: It should be possible to inte-
grate and combine different sources of biological information.

8.5 Challenges and Considerations

Microarray technology has added an important dimension and depth to the analysis
of different and dynamic biological processes. The scientific value of this technology
is enormous; however, the quality of this information is highly variable. Problems in
data quality have been observed from analyzing published datasets, and many labo-
ratories have been struggling with technical troubleshooting rather than generating
reliable datasets. Therefore, it is important to recognize that not all datasets are suit-
able for storage and distribution. Unless a clear description of the experimental
design and quality experiment itself is provided (i.e., technical and biological repli-
cates, and the use of appropriate protocols), the query and retrieval of datasets
should be limited to published results. The fact that many of these datasets do not
provide appropriate metadata makes difficult the incorporation of quality assess-
ment methods. Therefore, it is necessary to implement semiautomated approaches
that score the level of reliability of the data. Developing better systems for collecting
metadata, either manually or automatically, is one of the most urgent issues needing
attention.

Several microarray databases and analysis software overcome national bound-
aries. This is particularly true in the sharing of microarray data, where scientists on a
global basis deposit and retrieve data irrespective of who funded the information
production. Some microarray databases have already surpassed a terabyte scale.
The implications of the accumulation of this information has been not fully recog-
nized. There are several critical design issues in databases which affect how new
databases and analysis systems are implemented. Performance and efficiency not
only needs to be measured by query response time, but by the time it takes a scientist
to extract knowledge from the data. Adopting standards which are likely to survive
and/or are well described for the future is difficult. Therefore, it is necessary to moti-
vate the reuse of software and the development of approaches to decrease the risk of
data loss or the expense of data resurrection.

Large data repositories, computationally intensive data analysis, and visualiza-
tion tools pose difficult problems for the implementation of open access enterprise
microarray data management and KM systems. Commonly, database schemas are
changed without any notification, explanatory documentation, or appropriate nota-
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tion. This makes the maintenance and improvement of these systems difficult. These
challenges are complicated by the fact that Internet bandwidth and data compres-
sion technologies have not kept pace with the growth of scientific data sets. Many
data repositories still provide data access primarily via FTP. While FTP-based data
sharing is a valuable starting point, we need to encourage more robust interfaces,
capable of retrieving specific datasets automatically. This is perhaps a main bottle-
neck in the automatic retrieval of databases since there is poor communication on
the part of the resource maintainers. Moreover, large data archives are becoming
increasingly “isolated” in the network sense.

In order to work with large datasets, it might be necessary to send computations
to the data, rather than copying or moving the data across the Internet. A limiting
aspect in the development of microarray data storage and exchange systems is
related to the complexity and dynamics of the data itself. Complexity arises from
the lack of unique spot identifiers and the existence of a large number of
many-to-many relationships among clones, accession numbers, chromosomal loca-
tion, mutation types, and so on. In addition, microarray datasets derive the treat-
ment of biological samples (with different genetic background) to multiple
experimental conditions and time courses. The dynamics of microarray data result
from the terminology used for the description of a biological sample and the func-
tional role for a particular gene or its transcriptional variants. These attributes can
change as new discoveries update this information. As a result, the interpretation of
a particular microarray dataset is highly dependent on ever-growing and dynamic
annotation information. Although the use of microarray data analysis tools is
beyond the scope of this chapter, the reader should be aware that the annotation of
unknown genes using ontologies depends on analysis algorithms and the amount of
information used in the analysis process. It is now more evident that the “guilt by
association” is not always true.

The reader must be aware that deciding on appropriate terms that could be used
in the development of microarray ontologies and mapping them to other middle and
upper ontologies entails main decision points. First, the implementation of a large
and comprehensive ontology versus several smaller task-oriented ontologies is still a
subject of discussion. One alternative (large ontologies) presents challenges regard-
ing agreement across subdisciplines. Second, coordination between different small
ontologies could be very expensive. In both situations, it is necessary to consider
how the dynamics of the ontology will affect a database. This is important in bio-
logical ontologies because they do not remain static; they evolve as new discoveries
are made. By restricting access to or simplifying assumptions about a particular
dataset in order to accommodate it to a particular ontological definition, the user
risks the trivializing the queries and results.

The annotation of new genes based on combined gene expression values using
an integrated view of different microarray datasets can lead to a “transitive catas-
trophe” or “data poisoning,” in which one piece of inaccurate information can cor-
rupt a large number of derived results. This legacy issue is becoming more
significant since the functional inference of genes and transcriptional interactions
changes with time and is not straightforward. As more microarray data becomes
available, it is becoming evident that biological systems are organized as
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transcriptional networks with specific modular components, rather than in a partic-
ular class or cluster of similar gene expression values.

8.6 Conclusions

Since the early 1990s, when scientists first began using microarray devices to study
gene expression, they have widened the use of this technology to studying how genes
interact at the transcriptional, proteomic, and metabolomic levels. The rapid
increase in the size and diversity of this type of information has highlighted the need
for efficient computational techniques for data storage and exchange. The Internet
has made it possible to access large amounts of information from multiple
microarray databases distributed across the world. This is stimulating a growing
demand for analysis and visualization systems of multiple and heterogeneous bio-
logical data sources. However, even when a global network infrastructure provides
the foundation for the microarray data sharing and exchange, the location, retrieval,
and the combination of disparate and poorly annotated microarray datasets has
proven to be a complex and a time-consuming task.

Researchers recognize the benefits of integrating microarray with other genomic
information. Investing in these efforts not only saves time, but also makes more
effective experimental designs and reduces experimental resource expenses. Due to
the large number of data points and since the analysis of the same data using differ-
ent computational techniques can lead to a better understanding of the biological
process, different microarray data repositories are playing a vital role in biological
sciences. Data exploration research is now impacting traditional wet lab experi-
ments from hypothesis generation to experimental design and data analysis. How-
ever, how good genomic data mining is made depends on the time and care that is
spent when designing and implementing a data storage and exchange system, espe-
cially now that a new generation of researchers no longer “do” wet lab experiments.
Instead they “mine” available microarray databases, looking for new patterns and
discoveries.

The integration of data is an active research field in the computational sciences.
However, as new technologies collect large amounts of genomic information in a
near real-time fashion, the storage and exchange of data streams will continue to
challenge a new generation of researchers. Therefore, important questions in data-
base design will need to be addressed. The inclusion of different data types and the
communication with other very large databases will be one of the most important
challenges for an integrated initiative toward the understanding of complex
biological systems.
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C H A P T E R 9

Data Management in Expression-Based
Proteomics

Zhong Yan, Jake Chen, Josh Heyen, Lee W. Ott, Cary Woods,
Maureen A. Harrington, and Mark G. Goebl

This chapter introduces the current status of data management in expression-based
proteomics studies. Proteomics studies generate a tremendous volume of data that
must be processed, stored, analyzed, and interpreted. Data management is of criti-
cal importance in proteomics studies. Existing data management approaches
include file management, simple database systems developed in-house, public data
repositories, and integrated data management tools. The challenges that still exist
include the unification of different data formats, the creation of a database that
allows the capture of experimental parameters to describe proteomics experiments,
and the development of more sophisticated data management tools to facilitate
proteomic studies. This chapter also describes the need to develop a customized
infrastructure for systematic studies of proteomics in the context of systems biol-
ogy. A relational data model that allows intensive data analysis for proteomics is
introduced. The data model design is based on mass spectrometry proteomics data
collected from variety of experimental systems. It focuses on the analysis of
processed data from mass spectrometry proteomics experiments and microarray
experiments.

9.1 Background

The rapid advances in high-throughput microarray and proteomics analysis have
introduced a new era of research. While microarray analysis has the ability to inves-
tigate changes in the relative levels of gene expression, proteomics has a distinct
application in unraveling the levels of protein abundance, posttranslational modifi-
cations (e.g., phosphorylation), and protein-protein interactions, which are the for-
mative drive in a cell. Proteomics creates opportunities to identify target proteins
that are differentially regulated under different conditions, for example, in health
and disease. It helps biologists elucidating the dynamics of signaling and regulatory
networks important in disease progression, which will ultimately lead to the devel-
opment of novel strategies for the treatment of human disease.
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Proteomics, in general, falls into two categories: expression proteomics and
cell-mapping proteomics. Cell-mapping proteomics studies how proteins interact
with each other. Expression proteomics focuses on global changes in protein expres-
sion: what proteins are expressed under a specific condition and at a certain time [1,
2]. Since protein expression is dynamically controlled, the quantitative information
is also important to address the function of proteins. Different labeling methods
have been developed for quantitative proteomics in recent years [3–5], for example,
isotope coded affinity tags (ICAT) and the cultured isotope tags (BISCUIT) method.
Nana-scale liquid chromatography coupled with tandem mass spectrometry (nano
LC/MS/MS) is one of the analytical approaches developed for quantitative
proteomics [5].

Proteomic studies generate enormous volumes of data that need to be managed.
In this chapter, the data management in proteomics studies will be introduced with a
specific emphasis on expression-based proteomics. To enable a better understanding
of the need for data management in expression-based proteomics, we will begin
with an introduction of the background information about the expression-based
proteomics.

Expression-based proteomic profiling is carried out in what can be considered a
modular configuration where a wide variety of separation techniques, ionization
sources, mass spectrometers, and analysis platforms can be combined in many dif-
ferent ways to optimize for specific analyses (Figure 9.1). Any global proteomic
expression analysis begins with a complex mixture of either protein or peptides.
This mixture can be directly introduced into a mass spectrometer and analyzed;
however, the simplicity of this system is tremendously inefficient, resulting in large
sample and data loss. In order to more effectively analyze the constituents of these
complex mixtures, a separation system must be employed first. Methods of separa-
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tion include two-dimensional gel electrophoresis [6], high performance liquid chro-
matography (HPLC) [7], capillary electrophoresis (CE) [8], and one day chips [9].

The separation of proteins or peptides is usually followed by their subsequent
ionization. Though it is more than possible to ionize and analyze whole proteins
using the appropriate system, usually proteins are digested into fragment peptides
to facilitate most analyses. Ionization sources convert peptides or proteins into gas
phase ions that can then be manipulated by the mass spectrometer. Two of the most
popular ionization sources available include matrix assisted laser desorption ioniza-
tion (MALDI) [10] and electrospray ionization (ESI) [11]. Each of these two ioniza-
tion sources possesses distinctively unique qualities that are exploited to enhance
analyses. Following the separation and ionization steps, the mass-to-charge ratio of
each ion is measured by the mass spectrometer of choice. Mass spectrometers vary
in robustness, resolution, sampling rate, mass accuracy, cost, and so on, and thus
certain types of mass spectrometers are more suited for specific types of analysis.
Types of mass spectrometers include the quadrupole time of flight (Q-TOF), the lin-
ear trap–Fourier transform mass spectrometer (LT-FTMS), magnetic sectors, the
MALDI time of flight (MALDI TOF) [12, 13]. Despite the plethora of possible mod-
ular configurations employable, the bulk of global protein expression studies are
performed utilizing two robust methodologies termed peptide mass fingerprinting
[14] and “shotgun” proteomics [12]. Since these two methodologies are utilized
most often, the modularity of proteomics systems will be discussed while outlining
the process that these two systems encompass.

Traditionally, experiments determining global protein expression have been
performed by utilizing two-dimensional gel electrophoresis as a separation strategy,
MALDI as an ionization source, and a TOF or TOF-TOF as the mass spectrometer.
Briefly, whole proteins are separated by 2DGE, visualized by staining, extracted
from the gel, and the isolated protein(s) is then fragmented using a protease (typi-
cally trypsin). Whole proteins are first separated by mass and pI utilizing
two-dimensional gel electrophoresis. The proteins are then visualized by staining
them with silver stain or Coomassie [13]. At this point, relative quantification is
achieved by comparing the staining intensities of conserved spots between two gels
representing two different samples. There are a number of analysis tools that facili-
tate this function, including PD Quest, Delta 2-D, Melanie, and Z3 [15]. Each of
these software programs utilizes digitized images of the 2D gel to compare spot
intensities and produce various data output formats [15]. Protein identification is
achieved by excising stained protein spots from the gel followed by the protein’s
digestion with a sequence-specific protease (usually trypsin). Digestion of the pro-
tein produces many sequence-specific peptide fragments with varying masses. This
subset of masses is then analyzed simultaneously by ionizing the digested peptide
mixture using either ESI or MALDI and analyzing this mixture in any number of
mass spectrometer types (usually TOF or TOF-TOF instruments). The resulting
data is in the form of a mass spectrum where many mass-to-charge ratios can be
determined for the protein-specific peptides. The resulting mass spectra are the pep-
tide mass fingerprints. These fingerprints, the molecular mass of the protein, and the
pI of the protein are then used to search against sequence databases in which each
protein sequence entry from the database is theoretically fragmented with trypsin.
The best match between the experimental and the theoretical “peptide mass finger-
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prints” would thus identify the protein. MASCOT (http://www.matrixscience.com)
and Protein Prospector (http://www.prospector.ucsf) are just two of the programs
that can carry out database searches for peptide mass fingerprinting and each
employs its own proprietary data output format.

The term “shotgun” proteomics is used to define a global protein expression
analysis where a complex mixture of peptides is separated by HPLC, ionized, and
analyzed in a totally automated fashion [12]. Typically, whole cell lysates are first
digested with a protease (usually trypsin) to attain a complex mixture of peptides.
This peptide mixture can then be separated using a number of HPLC-based separa-
tion techniques. Most often one-dimensional or two-dimensional liquid chromatog-
raphy is used since these methods offer high resolution separation and separated
peptides can be ionized and analyzed by ESI-MS as they elute from the column [16].
Shotgun proteomics employs the use of collision-induced dissociation to generate
peptide-specific fingerprints as opposed to protein-specific peptide fingerprints. As
in peptide mass fingerprinting, the mass-to-charge ratio is determined for all the
peptide ions that enter the mass spectrometer at a given time. Unlike peptide mass
fingerprinting, peptide-specific fingerprints can be generated by isolating the peptide
of interest, inducing this peptide to fragment, and collecting the mass-to-charge
ratios of the peptide-specific fragments; this process is known as collision-induced
dissociation or MS/MS [17]. The original mass-to-charge ratio of each ion as well its
specific fragment spectrum is used to search a database of theoretical peptide frag-
mentation spectra often resulting in unambiguous peptide identification. The data
from each of these methodologies is represented as output peak files adherent to a
specific file format that is dependent on the instrument used for analysis. Programs
such as SEQUEST [18] and MASCOT correlate the experimentally acquired
MS/MS spectra to the computer-generated MS/MS spectra and produce various
scores used to assess the validity of this correlation. Each correlation program uses
different algorithms to assign peptides and thus each program produces overlapping
but variable outputs. Various laboratories have used different approaches to exploit
the advantages of both software algorithms [19] and to validate more thoroughly
the results of these algorithms individually [20, 21]. It is apparent that no one
analysis system has been universally accepted.

Quantification in shotgun proteomic systems has been performed using label
free techniques [22], but most analyses still employ the use of metabolic or chemical
labeling techniques [23]. In this type of analysis, the two samples to be compared are
mixed before separation, and then subjected to the shotgun analysis described previ-
ously. The measurement of differences in protein expression between two samples is
facilitated by labeling one of the samples with a mass tag. This mass tag can be
applied in vivo using methods such as SILAC [24], or after protein or peptide extrac-
tion using ICAT [25] or GIST [26]. Utilizing one of these mass tagging technologies,
peptides of the same sequence but from different samples can be discerned in the
mass spectrometer, since the labeled peptide would have a greater mass. All pro-
cesses described previously can be performed in this analysis, but now the full mass
spectra are used over a specific time frame to generate a chromatographic elution
profile for the peptide of interest and its heavy-labeled partner. Relative quantifica-
tion of peptides from different samples is then achieved by comparing the integrated
chromatographic elution profile of the peptide of interest and its heavy partner.
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Software programs that automate peptide quantification and calculate the protein
expression differences between samples include ASAPRatio [27], Xpress [28], and
RelEx [29]. Each of these uses different algorithms to determine the elution profile
of the peaks and calculate the relative expression changes, and thus each possesses
its own subset of strengths and weaknesses. The variability inherent in these types of
analysis is best exemplified at this level and stresses a need for an integrative
analysis platform that can combine these results to arrive at a more accurate
expression level calculation.

9.2 Proteomics Data Management Approaches

Mass spectrometry based proteomics studies produce tremendous amounts of data
that need to be stored, processed, and correctly interpreted. Data management is of
critical importance in proteomics studies. Currently there are four types of
approaches for proteomics data management including:

1. File management. The files are usually stored in personal computers or
archived to compact discs. The data can be easily accessed by individual
researchers who keep and maintain the files. A major drawback of the file
system approach is that it is very difficult to keep track of many experiments
at the same time, especially when doing comparative analysis. A typical
mass spectrometry experiment can generate many intermediate files and
final output files. The total size of the files for just one experiment is usually
very large, which can reach up to several gigabytes. It is not practical to use a
file system to manage data if the data is to be manipulated and to be
reanalyzed by other investigators.

2. Simple in-house developed database systems. Simple in-house developed
database systems have the advantage of customized design to support
existing workflow, but their scalability is an issue. The system may not be
suitable for comprehensive analyses which may involve the integration of
numerous large datasets from different biological perspectives. The
maintenance of in-house database systems also relies on effective
collaborations between the developer and the biologist.

3. Public data repositories. (See Section 9.4 for details.) Data repositories are
databases used for data storage purposes. Public data repositories not only
serve as sites of data storage, but also play a key role in data dissemination
and exchange. The repositories also promote the development of new
computational algorithms leading to new discoveries. There is a need for
public proteomics repositories [30].

4. Integrated data management tools. (See Section 9.5 for details.) Mass
spectrometry based proteomic studies generate large volumes of different
types of data including gel image data, mass spectrometry spectra (peak list),
and protein identification data. Simple data storage and retrieval
approaches become difficult for data analysis when different types of data
need to be integrated. Smart tools are urgently needed to meet the needs of
the fast growing and evolving field of proteomics. Ideally these tools will
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facilitate the discovery of underlying biological connections. Robust
integrated proteomics data management tools will provide the ability to
store large scale experimental data, mimic experimental data flow, and
perform comprehensive analysis. The data management tools will need to
integrate multiple modules and technologies including database, data
visualization module, a statistical analysis module, and a powerful query
interface.

Proteomics data management is still in its infancy. Many challenges exist in the
proteomics field. These challenges are typically reflected in the following two
aspects:

1. Diverse data formats. The different types of mass spectrometers have
different designs, which produce data in different formats [31]. For example,
the Micromass Q-TOF mass spectrometer is run by MassLynx software,
whereas ThermoFinnigan LCQ or LTQ mass spectrometers are run by
Xcalibur. The use of different software creates problems for data
comparisons even within a single laboratory. The diverse spectra data
formats also complicate the integration of new instruments into the existing
infrastructure. In addition to the diverse data formats for mass spectrometer
spectra files, the assignment of peptides to MS/MS spectra, and the inference
of protein identification from lists of peptides also generate different output
formats [32]. All these complexities hinder the analysis, exchange,
comparison, and publication of results from different laboratories, and
prevent the bioinformatics community from accessing data sets required for
software development. The biologists and computer scientists must account
for the differences in techniques, equipments, and data formats, and
overcome the challenges of accessing and sharing large datasets. Initiatives
have been launched by Human Proteomics Organization (HUPO) towards
data standards in the proteomics field. (See Section 9.3 for details.)

2. Databases integration and software infrastructure. The integration of
proteomic databases with other biological databases such as genetic and
genomic databases to allow cross-database queries and perform
comprehensive analysis is another major challenge of proteomics data
management. Successful integration of all these databases will involve the
assignment of standard terms across databases, mechanisms for periodic
updates, and provisions for standardizing data acquisition across different
database management systems. These needs will also require software
infrastructure. Software infrastructure is recognized as a critical component
and major bottleneck for current proteomics data management. While
methods and infrastructures have been well established to determine the
response of genes to various conditions by microarray analysis and genomic
phenotyping analysis, infrastructure for proteomic data management to
allow for systematic analyses is still at an early stage (see Sections 9.5 and 9.6
for details).
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9.3 Data Standards in Mass Spectrometry Based Proteomics Studies

We need common standards within the proteomics field to promote data comparison,
exchange, and verification. The Proteomics Standards Initiative (PSI) was founded at
the Human Proteome Initiative Workshop on April 29, 2002, that was held at the
National Institutes of Health, Bethesda, Maryland. The goal of PSI is to develop stan-
dards for data representation, in collaboration with the users, instrumentation and
software manufacturers, journals, and database producers. So far, much effort has
been made in mass spectrometry (PSI-MS) standards, protein-protein interaction
(PSI-PPI) data standards, and general proteomics standards (PSI-GPS). In mass spec-
trometry proteomics, significant progress has been made in the last 2 years [33–38].

Due to the unique features of XML technology—which is extensible and plat-
form neutral—the PSI mass spectrometry group is currently producing two
XML-based data formats [33, 35]:

1. mzData standard allows the capture and interchange of peak list
information by unifying the large number of current formats (pkl, dta, mgf)
into one mzData. mzData has been released in a stable production version
(v1.05). A detailed XML schema documentation, annotated XML schema,
and some complete mzData example files are available online
(http://psidev.sourceforge.net/ms/index.html). An example of an mzData
file is shown in Figure 9.2. Software supporting the mzData standard are
Mascot (in release 2.1), Proteios, Phenyx, and open source projects X!
Tandem and The GPM. There are many other companies and organizations
currently working on the implementation of mzData, such as Bruker
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<?xml version=”1.0” encoding=”UTF-8”?>
<mzData version=”1.05” accessionNumber=”00001” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<description>
<cvLookup>. . . </cvLookup>
<admin>

. . .
</admin>
<instrument>

. . .
</instrument>
<dataProcessing>

. . .
</dataProcessing>

</description>
<spectrumList count=”2513”>

<spectrum id=”1”>
. . .

</spectrum>
.

.

.
<spectrum id=”2513”>

. . .
</spectrum>

</spectrumList>
</mzData>

General information
About the location, name, version, et al.

Sample, source file, contact

Data for individual spectrum

All mass spectra

Default processing

Mass spectrometer instrument

Figure 9.2 An example mzData file. This figure shows only a part of the data. “…” means
subelements, and data in the terminal branches were omitted here.



Daltonics and Kratos. A number of converters are available to convert peak
files generated by MS instruments into mzData standard files. The
converters will be required until manufacturers have implemented the
function into their software to export data directly in mzData format [33].

2. mzIdent standard captures parameters and results of search engines such as
Mascot and Sequest. The mzIdent standard describes both protein identity
and the corresponding peptides from which the identification was made. The
mzIdent file can potentially be treated as an input file to a search engine since
search parameters are described in mzIdent. It is still in a conceptual phase.
The draft mzIdent XML schema and schema documentation are available at
the Web site (http://psidev.sourceforge.net/ms/index.html).

In 2004, the Institute for Systems Biology (ISB) published another solution to
standardize data formatting, mzXML (Figure 9.3), which is also an XML-based
technology that provides a universal data interface between mass spectrometers and
data analysis pipelines. Similar to mzData, mzXML unites the heterogeneous spec-
tra data formats generated by different MS instruments by creating instrument-spe-
cific converters which can convert peak files into the common mzXML format [31,
32]. In a separate publication from ISB, a MS/MS analysis platform, the
Trans-Proteomic Pipeline (Figure 9.4), was described. The Trans-Proteomic Pipeline
uses XML-based pepXML and protXML (Figure 9.5) file standards to unite the file
formats for the analysis pipeline [32].

Several pilot projects, including the liver, plasma, and brain proteome initiatives
[33, 39], have already been adopted in several HUPO Proteomics Initiatives.

The pilot studies of the HUPO Brain Proteome Project (BPP) are nearly finished
now (http://www.hbpp.org/). In the two pilot studies of the HUPO BPP, mouse
brains of different age stages and human brain autopsy versus biopsy samples are
being analyzed. One purpose is to elaborate the common data standards. Most of
the participating laboratories used ProteinScape bioinformatics platform as the
local database system to manage the data [39]. The data generated by the HUPO tis-
sue initiative is available in the PRIDE mzData-compatible database (http://www.
ebi.ac.uk/pride) from where it can be downloaded for subsequent reanalysis.

A future plan for data file standardization is a possible merging of HUPO-MS
mzData and ISB mzXML. The merger would be designed to adopt the Functional
Genomics Experimental Model (FUGE) concept. A possible merger between
HUPO-MS mzIdent and pepXML/protXML from the ISB is also expected. The
PSI-MS group and the ISB developers will work together to ensure the first analysis
standard, analysisXML (formerly mzIdent), and later the two peak list standards
can be merged [35, 40].

With several HUPO proteome pilot projects being analyzed and many other
large-scale projects about to disseminate their data, it is essential to establish stan-
dards for minimum information to describe the proteomics experiments. However,
the publication mechanism of these experiment results has been left behind. Descrip-
tions of sample acquisition, preparation, and storage vary enormously. Protein iden-
tities are often confusing [41, 42].

In early 2003, the PEDRo proteomics data model was released. PEDRo is an
object model described in Unified Modeling Language (UML). The PEDRo can cap-
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ture parameters about mass spectrometry, chromatography, or two-dimensional gel
electrophoresis. It also allows the storage of general information about samples and
experiments, information about peaks, database search parameters, peptide hits,
and protein hits. The data model can be divided into four sections: sample genera-
tion, sample processing, mass spectrometry, and result analysis. The release of the
PEDRo data model stimulated the development of the data standards for minimum
information to describe a proteomics experiment [43].

PEDRo has been accepted as the working model of PSI for protein separation
based experiments. The PSI-GPS group is working on generating a document about
minimum information to describe a proteomics experiment (MIAPE). MIAPE
(http://psidev.sourceforge.net/gps/carros/) represents a subset of the total informa-
tion available from any proteomics experiment, containing just enough information
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Information
about MS
instrument

<?xml version="1.0"encoding="ISO-8859-1"?>
<mzXML
xmlns="http://sashimi.sourceforge.net/schema_revision/mzXML_2.0"
xmlns:xsi="http://www.w3.org/2001/XML_Schema-instance"
xsi:schemaLocation="http://sashimi.sourceforge.net/.../mzXML_ldx_2.0.xsd">
<msRun scanCount="1232"startTime="PT5.001835"endTime="PT59.971S"

<parentFile fileName=file://Rdf3/data2/search/ppatrick/sshimi_repository/LCQ/AD0BDB.RAW
fileType="RAWData"fileSha1="9a930a1400d4a08ff401e00c7efa878f31cc1253"/>

<msInstrusment>
<msManufacturer category="msManufacturer"value="ThermoFinnigan"/>
<msModel category="msModel"value="LCQ Deca"/>
<mslonisation category="mslonisation"value="ESI"/>
<msMassAnalyzer category="msMassAnalyzer"value="lon Trap"/>
<msDetector category="msDetector"value="EMT"/>
<software type="acquisition"name="Xcalibur"version"1.3 alpha 8"/>

</msInstrument>
<dataProcessing centroided="1">

<software type="conversion"name="Thermo2mzXML"version="1"/>
</dataProcessing>
<scan num="1"msLevel="1"peaksCount="0"polarity="+"retentionTime="PT300.11S"

lowMz="400"highMz="1800"basePeakMz="0"basePeakIntensity="0"totlonCurrent="0">
<peaks precision="32"byteOrder="network"pairOrder="m/z-int">AAAAAAAAAAA=</peaks>

</scan>
.

.

.
<scan num="1231"msLevel="1"peaksCount="1405"polarity="+"retentionTime="PT3595.94S”

lowMz="400"highMz="1800"basePeakMz="870.541"basePeakIntensity="2.7515e+006"totIonCurrent="2.11785e+008">
<peaks precision="32"byteOrder="network"pairOrder="m/z-int>O8g04EgPulB...BAAAA=</peaks>

</scan>
<scan num="1232"msLevel="2"peaksCount="61"polarity="+"retentionTime="PT3598.26S"

collisionEnergy="35"lowMz="224"highMz="1755"basePeakMz="795.083"basePeakIntensity="13910"totionCurrent="156025"
<precursorMzpresursorIntensity="147170">870.54</precursorMz>
<peaks precision="32"byteOrder="network"pairOrder="m/z-int">Q4FZDk...EScYAA=</peaks>

</scan>
</scan>

</msRun>
<index name="scan">

<offset id="1">1196</offset>
.

.

.

<offset id="1232">12269539</offset>
<index>
<indexOffset>12270666</indexOffset>
<sha1>26613fba29a69da7bf10410925111ceb2c66eecf</sha1>
</mzXML>

Spectrum
data

Figure 9.3 An example mzXML file. (This figure was created based on the downloaded data from
http://sashimi.sourceforge.net/repository.html.)



to assess the relevance of experimental methods, results, and conclusions. PSI-GPS is
also working on developing a consensus object model (PSI-OM) and producing an
XML format (PSI-ML) for data exchange which will be compatible with the stan-
dard data formats. The HUPO PSI-GPS and PSI-MS groups are starting to build the
ontology to support all formats generated by the various PSI projects.

9.4 Public Repositories for Mass Spectrometry Data

To meet the demands of the fast growing proteomics field, building centralized pub-
lic proteomics data repositories is critical. Recently, a proteomics identifications
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Figure 9.4 Trans-Proteomic Pipeline. (This picture was redrawn based on the picture in [5]. The
literature in parenthesis is data file format for each step.)

<protein_group group_number=“301” probability=“1.00”>
<protein protein_name=“IP100010154” n_indistinguishable_proteins=“1” probability= “1.00” percent_coverage=“7.60626”>
<annotation protein_description=“&gt;IP|00010154 IPI;IP100010154.1|SWISS-PROT:P31150|REFSEQ_NP:NP_001484|

ENSEMBLE:ENSP0000002 Tax_Id=9606 GDP dissociation inhibitor 1”/>
<peptide peptide_sequence=“SPYLYPLYGLGELPQGFAR” charge=“2” initial_probability=“1.00” nsp_adjusted_probability=“1.00”

weight=“0.59” is_nondegenerate_evidence=“N” n_tryptic_termini=“2” n_sibling_peptides_bin=“3” n_instances=“2”>
<peptide_parent_protein protein_name=“IP100031461”/>
</peptide>
<peptide peptide_sequence=“TDDYLDQPC”LETVNR charge=“2” initial_probability=“1.00” nsp_adjusted_probability=“0.99”

weight=“1.00” is_nondegenerate_evidence=“Y” n_tryptic_termini=“2” n_sibling_peptides_bin=“0” n_instances=“2”>
</peptide>
</protein>

</protein_group>

Figure 9.5 A part of an example ProtXML file. This figure shows only a single identified protein
and the associated peptides, along with the detailed information such as protein probability, anno-
tations, and peptide sequences.



(PRIDE) database (http://www.ebi.ac.uk/pride) has been developed jointly by the
European Bioinformatics Institute at Hinxton near Cambridge, United Kingdom,
and Ghent University in Belgium. The PRIDE Proteomics IDEntification database is
a centralized, HUPO standards compliant, public repository for protein and peptide
identifications and related evidence (e.g., example, peptide sequence, start and end
location, and score). General information about the experiment such as protocols,
samples, instrument, database searched, and search engine name can also be stored
and retrieved. As this chapter was being written, the PRIDE contained 1,627 experi-
ments, 178918 protein identifications, and 501296 supporting peptide identifica-
tions. The PRIDE was developed in Java 2 and J2EE, and uses many open source
tools, components, and libraries. XML was chosen to form the basic data structure
for the project. The infrastructure and XML schema of PRIDE can be accessed from
its Web site. During the development, it used MySQL as the database management
system, which was ultimately ported to Oracle. The PRIDE database, source code,
and support tools are freely available either through Web access or downloading for
local installation. The future development of PRIDE is closely linked to HUPO PSI
[44].

Open Proteomics Database (OPD) is another public repository for storing and
disseminating mass spectrometry based proteomics data (http://bioinformatics.
icmb.utexas.edu/OPD/). Information stored includes detailed descriptions about
the experiment, settings, sample processing, raw mass spectrometry data, raw anal-
ysis files, parameters used to generate the analysis files, and summarized report files
[30]. As this chapter was being written, the database contained roughly 1.2 million
spectra representing experiments from four different organisms. The OPD imple-
mentation and database schema is not publicly available from their Web site.

The Peptide Atlas Raw Data Repository contained 168 mass spectrometry
experiment datasets for download (http://www.peptideatlas.org/repository/) as of
July 2007. These datasets have been either published or released by the data produc-
ers. It is expected that many more datasets will become available to the public upon
publication. The downloadable files for a dataset include spectra data in their
native format or in mzXML format, database search result files, and ProteinProphet
files. PeptideAtlas builds are a multiorganism, publicly accessible compendium
of peptides identified in a large set of LC-MS/MS proteomics experiments
(http://www.peptideatlas.org/builds/) [45, 46]. For example, the human
PeptideAtlas contains samples from human tissues, cell lines, and fluids. The April
2005 build contains 35,391 distinct peptides above p>=0.9 from 90 samples.
PeptideAtlas builds are available for download in three different file formats:
FASTA format (containing PeptideAtlas peptide accession number and amino acid
sequence), CDS coordinates file (containing peptides accession number and the
position of the peptide relative to the protein start), and CDS and chromosomal
coordinate file (containing CDS information and chromosomal location). The
PeptideAtlas database schema can be found at the Web site (http://www.
peptideatlas.org/dbschema.php).

The UAB Proteomics Database was developed by the University of Alabama
(http://proteomics.biosccc.uab.edu/Proteomics/servlet/proteinmenu). This database
focuses on annotated gel data with limited details on mass spectrometry or analysis
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[47]. As this article was being written, the searching and browsing for the datasets
was not supported for the public, as queries returned only SQL script.

The Sashimi Data Repository currently stores eight datasets about mass spec-
trometry spectra in both native format and mzXML format (http://sashimi.
sourceforge.net/repository.html).

9.5 Proteomics Data Management Tools

The scale and complexity of proteomics data require software tools to facilitate data
management. Compared with microarray data management tools, there are few
tools available for mass spectrometry proteomics studies.

PEDRo database tool (http://pedro.man.ac.uk) is an open source tool for
proteomics data entry and modeling. However, it is not a comprehensive query and
analysis tool. The PEDRo tool implemented the PEDRo data model (refer to Section
9.3) which was released early in 2003. The schema of the PEDRo data model is
available at the Web site. PEDRo supports an ontology service. It stores the XML
directly in an open-source XML storage system, Xindice. The data are presented to
the users by gathering Web pages from the stored XML using XSLT [43, 48].

SBEAMS-Proteomics (http://www.sbeams.org/Proteomics/) is one of the mod-
ules of SBEAMS integrated platform developed by ISB that is used for proteomics
experimental data storage and retrieval. These experiments can be correlated later
under the same framework. The integrated open source system SBEAMS adopts a
relational database management system backend and a Web interface front end.
Information about the quality of identification can be stored with the data; peptides
which could not be properly identified from mass spectra can be flagged and
reanalyzed with additional searches. The database schema for SBEAMS-Proteomics
is available at the Web site (http://www.sbeams.org/Proteomics/).

ProteinScape is a commercial client-server platform for proteomics data man-
agement (http://www.bdal.com/proteinscape.html). It organizes data such as gel
data, mass spectra, process parameters, and search results. It can manage gel-based
or LC-based workflows, as well as quantitative proteomics. ProteinScape also
enables automated analysis through interactions with database search engines such
as Mascot, Phenux, and Profound. ProteinScape’s relational database system can be
Microsoft SQL or Oracle 9.1.

Proteios (http://www.proteios.org/) is an mzData-compliant open source cli-
ent-server application that implements mass spectrometry data storage, organiza-
tion, and annotation [49]. The server is a relational database that can be MySQL or
Oracle, and it can utilize other alternatives. The client side runs as a Java applica-
tion. One of the main objectives of Proteios is to provide a GUI that enables queries
based on experiment data and annotation data. The schematic diagram is available
at the Web site. Currently the input data files must be in XML format. It is working
on imports of tab-separated files.

PROTICdb is a Web-based proteomics data management tool used for plant
proteomics data storage and analysis [50]. The data can come from 2D-GEL and
MS. The data stored can also be in the form of quantitative measurements. To sup-
port data interpretation, PROTICdb allows the integration of information from the
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user’s own expertise and other sources into a knowledge base. It also provides links
to external databases.

ProDB is an open source tool (http://www.cebitec.uni-bielefeld.de/groups/brf/
software/prodb_info/index.html) that can handle data conversion between different
mass spectrometer software, automate data analysis, and allow the annotation of
MS spectra (i.e., assigning gene names or storing data on protein modifications).
The system is based on an extensible relational database to store the mass spectra
together with the experimental setup [51]. The first release will be available to the
public soon.

There are several other proteomics data management tools not described here,
such as PROTEUS [52], Proteomics Rims (developed by Bruker BioSciences),
Xome, and Mass Navigator [5].

9.6 Expression Proteomics in the Context of Systems Biology Studies

Proteomic expression profiling offers enormous hope for the study of gene regula-
tion and biological pathways. With data standards established or being established,
and more and more proteomics data available to the public, integrating proteomics
data with microarray data and public annotation data is paramount for the system-
atic study of biological processes. Systems biology is an emerging cross-disciplinary
science that aims to understand global cellular changes in response to mutational or
conditional perturbations. As large-scale studies rely heavily on information tech-
nology to interpret complex biological systems, future trends need to emphasize the
development of integrated data management tools to link the findings across
mRNA, protein, and phenotypic datasets. Several initial studies have been started
[53–55]. The infrastructure of these systems emphasizes generic support for mass
spectrometry data processing. To provide customized support for systematic data
analysis, the development of a system that can integrate multiple data sets, both
from large scale experiments and public biological annotation databases, and that
has a broad coverage for processed data to facilitate the analysis is needed. For this
purpose, we are developing a customized infrastructure that will initially combine
datasets from proteomic experiments, microarray datasets, and genotyping datasets
related to cell stress. This infrastructure will allow cluster and network analyses of
proteins and genes, which will ultimately lead to cell stress related systems biology
discoveries. To develop this customized platform, we have initially designed a rela-
tional data model. The data model defines the grammar and vocabulary required to
facilitate data exchange and knowledge discovery. The following focuses on the
introduction of the data model.

The data model was designed based on several large-scale experimental datasets
collected by several of the authors. It can be integrated with our existing knowledge
base and visualization tool [56]. Similar to genomic data modeling [57], modeling
proteomics data should consider representing intermediate and derived data—a
practice frequently underemphasized by data modelers to support biological discov-
eries. In our data model, processed data such as paired group analysis results will be
stored, since they are more meaningful from a biological point of view, and can be
directly used for discovery analyses. Both single group analyses results and paired
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group analyses results have been captured in the data model so that the performance
will be optimized in comprehensive studies. The trade-off is faster retrieval at the
cost of more storage and more expensive updating. Its implementation into an inte-
grated proteomics data mining and analysis platform will enable us to track the
presence and relative abundance of globally expressed proteins in a given condition
in parallel. It will help us organize new findings based on known protein functions
or related signaling pathways. It will help us identify protein functions and path-
ways important for a cellular condition in one organism and compare this response
to that seen in other organisms. These capabilities are essential to creating new
hypotheses in systems biology studies. Figure 9.6 shows the schema of the data
model.

The Entity–Relationship Diagram (ERD) data modeling approach was used to
describe the relational data model. The diagram uses Information Engineering nota-
tion [57]. The data model captures proteomics experimental data (blue), microarray
data (yellow), genotyping data (orange), and mappings to the public annotation
databases. The stored data allows comparative analysis between the groups under
different experimental conditions. For example, by comparing the results between a
gene knock-out sample and a wild-type sample, we may find the regulatory path-
ways affected by this mutation. The entity AnalysisProject holds information about
the analysis goal. It is associated with the entity SingleGroupExperiment through an
intermediate entity ProjGroup to reflect their many-to-many relationships.
SingleGroupExperiment has two subtypes, one is for microarray studies, and the
other is for proteomics studies. A few standalone tables can be created later by
acquisition from public annotation databases, such as EBI Protein Identification
Index (IPI), which can provide the mappings between a collection of genes and pro-
teins. This allows for comparative studies between microarray and proteomics
experiments. For example, studying the context of gene regulation: Does regulation
occur at the transcriptional level? A detailed explanation about the proteomics
component is given in the following (see Figure 9.7).

At the top of Figure 9.7, there are four entities created to store different mass
spectrometry experimental conditions:

1. PreSamplePreparation stores chemical label identification, as well as
chemical or proteolytic cleavage information specific for the sample and
additional descriptions.

2. SampleInduction stores information regarding the instrument used for
sample separation prior to introduction into the mass spectrometry, for
example, 2DGE or a specific type of chromatography. It also stores the
separation parameters associated with sample. The additional information
can be stored in the field “Notes.”

3. MS_Machine stores data for the mass spectrometer types, software, and
parameters associated with each part of the instrument.

4. AnalysisPipeline stores information about the software pipelines used for the
spectra analysis.

For some experiments, samples will be labeled and mixed before the separation
process. PreSample and MSSample were created to store information regarding the
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samples before and after they are combined, respectively. If a sample is not going to
be mixed with another sample before peptide separation, the field
SecondaryPreSampleID can simply be set. By merging similar situations in the same
set of tables, the data model can be kept compact and more efficient for future que-
ries. Each sample may be present in multiple experiments or runs, the entity Run
stores the information about this type of data.

The entities MSSingleGroupExp and MSPairedGroupExp are used to store
experiment group related information, for example, group treatment descriptions.
SGEProteinIntensity stores protein identification data along with the protein proba-
bilities in the experiment group. PGProteinIntensity stores paired group compari-
son information, for example, protein intensity fold change between two groups
and p values for statistical significance. ProteinExpression is associated with a spe-
cific analysis project, and contains the summarized information for the identified
proteins for that analysis project. The latter allows for a global comparison between
different analysis projects. For example, by comparing the differences of expressed
proteins in different diseases, we may identify disease markers.

9.7 Protein Annotation Databases

The identification of a protein from peptides identifications derived from mass spec-
tra has been facilitated by the annotated information extracted from protein data-
bases, such as UniProt, Protein Information Resource (PIR), Protein Research
Foundation (PRF), and Protein Data Bank (PDB).

The UniProt knowledge base consists of two sections: Swiss-Prot, a curated pro-
tein sequence database which strives to provide a high level of annotation (such as
the description of the function of a protein, its domains structure, post-translational
modifications, variants, and so on); and TrEMBL, a computer-annotated supple-
ment of Swiss-Prot that contains all the translations of EMBL nucleotide sequence
entries not yet integrated in Swiss-Prot. PIR is another excellent protein database
but it is not well integrated with other databases. Protein sequence annotations in
PIR are not as rich as those in Swiss-Prot. PRF collects information related to amino
acids, peptides, and proteins. The PDB is the single worldwide repository for the
processing and distribution of 3D structure data of large molecules of proteins and
nucleic acids.

9.8 Conclusions

Proteomic studies routinely produce enormous amounts of data. Management of
this data involves data acquisition, storage, modeling, integration, and interpreta-
tion. It is important that data standards be created to facilitate data exchange and
dissemination and allow maximal acquisition of data from different experiments or
laboratories. Several standards have been established and published. More stan-
dards will be established in the future. Centralized public repositories will provide a
valuable mechanism for others to search for novel factors in existing analyses.
However, there are limited public repositories currently available for mass spec-
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trometry proteomics data. As large-scale studies rely heavily on information tech-
nology, integrated data management tools should be emphasized. In this regard,
several proteomics data management tools have been developed in the last 2 years.

The future of proteomics data management will be in developing integrated
tools that capture proteomics expression data, link it to gene expression data and
public annotation data, which provide powerful query interface and flexible visual-
ization choices with correct statistical summaries, and perform comprehensive anal-
yses. Data models are essential to achieve this goal. In this chapter a relational data
model focusing on integrated analysis of proteomics experimental data was intro-
duced. The implementation of this data model into an integrated proteomics data
management and analysis platform will provide opportunities for new discoveries.
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C H A P T E R 1 0

Model-Driven Drug Discovery: Principles
and Practices

Karthik Raman, Yeturu Kalidas, and Nagasuma Chandra

The science of drug discovery has been witnessing paradigm shifts in the recent past.
The new directions can be attributed to several factors such as availability of
genome sequences, development of system-level models, significant growth of data-
bases in the public domain that host functional and structural data of
macromolecules, as well as adaptation and application of computational methods
to biological problems.

Traditionally, computational tools to aid drug discovery have been focused on
statistical or chemical models such as QSAR and SAR, used by medicinal chemists,
primarily using the ligand data. Enhancement of our knowledge about the mecha-
nisms of drug action facilitated by the in-depth understanding of the target
macromolecules has led not only to the evolution of improved models, but also to
the development of newer methods, shifting the focus from the lead to the target,
and thus leading to the emergence of 4D/5D QSAR, structure-based design models,
system-level models, and virtual cell models, some of which are still in their infancy.
The promises and limitations of these methods in context of the levels of abstraction
they encode are discussed in this chapter along with appropriate examples from lit-
erature. Perspectives for future development in these areas and their potential for
tackling the existing challenges are presented. Tackling the problem from multiple
angles, as is increasingly becoming the trend, has the advantage of leveraging the
latest advances from several areas, leading to the genesis of integrated models.

10.1 Introduction

Despite the fact that the beginnings of drug discovery can be traced back to 4,000 to
5,000 years ago, with the first texts of Vedas from India or those from ancient Chi-
nese medicine, we still do not have a “magic strategy” for designing drugs, let alone
“magic bullets” or super-drugs that have most of the desirable drug properties.
Drug discovery, in addition to having many uncertain phases, is also an extremely
laborious and expensive process, requiring millions of dollars and about 12 to 15
years for a drug to reach the market from its initial discovery stage. This is not sur-
prising in the least, especially when one considers the complexity of biological sys-

163



tems, most of which is only now beginning to be understood. Until the recent few
decades, the science of drug discovery has relied heavily upon serendipity or system-
atic screening, with the entire system between the disease and the drug being treated
as a black box (see the American Chemical Society Pharmaceutical Century Supple-
ment at http://pubs.acs.org/journals/pharmcent/index.html for an account of the
history of drug discovery). This eventually gave way to increased usage of medicinal
chemistry and allied disciplines wherein the chemistry of the potential drugs were
understood and exploited in great detail to design more effective molecules. In fact,
there are a number of drugs in current clinical use which have emerged out of tradi-
tional medicinal chemistry approaches involving organic synthesis of potential drug
candidates and pharmacological testing. The scenario, however, is changing rapidly
and the science of drug discovery has witnessed several paradigm shifts [1, 2]. Many
of these can be attributed to advances in molecular biology, delineation of the
molecular bases of pathological processes, as well as those of drug actions in many
cases, leading to a shift in the discovery focus—from a ligand (lead) to the target
molecule (Figure 10.1).

The genomics and the postgenomics eras, with the parallel advances in
high-throughput experimental methods and screening techniques to analyze whole
genomes and proteomes, are witnessing an explosion in the types and amount of
information available, not only with respect to the genome sequences and protein
structures but also with respect to gene-expression, regulation and protein-protein
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interactions. The availability of such information in publicly accessible databases
(Table 10.1) and the advances in both computing power as well as in computational
methods for data mining, have led to the emergence of several in silico approaches
to systematically address several questions in biology, with an obvious impact on
drug discovery [3, 4].

The emergence of computational models appears to have followed almost auto-
matically, given the sheer size and complexity in content of the different types of
information available. Comprehension of large volumes of complex information
and its application in a higher order understanding of the biological systems has
necessitated the use of systematic mathematical analyses, leading to evolution of
models from ligand-driven statistical models that have been in vogue in the last
decade or so, to target-enriched structural and simulation models. The growth of
pathway databases and the dawn of model databases, coupled with enhancements
in ligand and chemical structure databases are of immense assistance in the drug dis-
covery process, due to the enormous predictive power they confer. This chapter pro-
vides an overview of the different types of models used in drug discovery and how
they have been and can be converted into predictive models. The emphasis is on
recent developments in target-based and system-based models, while the older
ligand-based models are also briefly discussed.

10.2 Model Abstraction

Models are created to simulate a process or a set of processes observed in the natural
world in order to gain insights into process mechanisms and predict outcomes for a
given set of specific input parameters. Conceptual and theoretical modeling con-
structs are expressed as sets of algorithms and implemented as software packages.
What constitutes a model depends upon what is understood about a given process
and how best it is computationally tractable. Thus, in drug discovery, a model can
refer to the relationship of the structure of a target molecule to its ability to bind a
certain type of ligand at one end of the spectrum, while at the other end, it can refer
to a statistically derived relationship of a set of ligands to a particular biological
activity, with no explicit consideration of the mechanism or the basis of such activi-
ties. The advantages of having a model are manifold: (1) it gives the precise defini-
tion of the components of a given system (or) the genotype; (2) it allows performing
simulations and monitoring the end-effect, which may be the given phenotype in
this context; (3) it helps in dissecting the role of every component in the system
through the analysis of perturbations; (4) it helps both in designing minimal systems
that can result in a particular phenotype, as well as analyzing the effect of the addi-
tion of newer components into the framework; and (5) it is highly amenable for
high-throughput simulations, useful especially in applications such as drug discov-
ery. Thus, models not only provide significant insights into the underlying biology
and application opportunities, but also enable the efficient study of what may be
highly impractical, or even impossible through biochemical and molecular biology
experiments. It must be pointed out, however, that a model is only as good as our
understanding of what constitutes a system or how to build it. Model building is
thus a critical step in in silico analysis and is often iterated and refined with valida-
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tion steps. It is therefore important to understand the abstraction levels of the
models, so that conclusions are drawn at appropriate levels from the analyses.

Given that biological systems and processes are understood at many different
levels (Figure 10.2) and in many different aspects, it is no wonder that many differ-
ent kinds of models should exist in practice. These are used at different stages of
drug discovery, as will be discussed in the following sections. Figure 10.2 illustrates
that models span a wide range, emanating from the organizational hierarchy in
which biological systems are understood. On one hand, we have structural models
at atomic levels implying certain functions, whereas on the other hand, we have
whole genome-based mathematical models of either pathways or entire organisms
implying functions at very different levels. We also have several statistical models,
which correlate symbolic molecules or systems with generalized functions, such as
those used in quantitative structure–activity relationship studies.

10.2.1 Evolution of Models

Until about two decades ago, the knowledge of the target macromolecules involved
in drug action was sketchy, if it existed at all. Medicinal chemistry, on the other
hand, was significantly advanced and the structure–activity models that were used
extensively concerned themselves with the structure of the ligand molecule. There-
fore, a majority of the effort was concentrated only on the knowledge of the ligand
and its chemical modifications.

As biochemical and molecular biology experiments began to provide details
about proteins involved in various diseases, it became apparent that inhibiting or
modulating the activities of such proteins were useful strategies in drug design. The
models, therefore, were simple and pertained to the ability of a ligand to inhibit that
particular protein, based on a hypothesis that the target protein was responsible for
a particular pathological process and that inhibiting it would alleviate that particu-
lar disease. Typically, the structures of a number of ligand molecules (analogs)
designed over a parent scaffold were tested experimentally for inhibition of that pro-
tein. These methods were used in conjunction with biochemical and biological
assays to evaluate the therapeutic potential in the context of the change in the ligand
chemical structure. Various parameters, which were commonly referred to as
“descriptors” of the ligand were then used to train statistical learning algorithms
that could correlate individual or sets of descriptors to the inhibition capability.
Such algorithms can subsequently be used for prediction of the inhibition potential
for a new analogue. Since these parameters are derived quantitatively, the methods
are referred to as quantitative structure–activity relationship (QSAR) or quantita-
tive structure–property relationship (QSPR) methods, which are used extensively in
the pharmaceutical industry to date. However, these models have not been adequate
to aid in the design process in a number of cases, quite possibly because they con-
sider only one part of the system—the target in these approaches is still an elusive
entity and there is no direct application of any target-related information.

This scenario has changed considerably, with the growth of protein sequence
databases and a concomitant development of sequence analysis methods, leading to
the wide usage of “sequence-to-function” models, where the sequence of a particu-
lar protein is compared with other related sequences in databases to infer their basic
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function and apply in the drug design process. With the complete sequencing of sev-
eral genomes, comparative genomics became feasible, leading to direct clues about
sets of proteins unique to a pathogenic organism or even virulence determinants,
hence assisting in the rational identification of possible drug targets. In parallel, the
successes of structural genomics projects and the overall growth of protein structure
databases have: (1) enabled comparison of protein molecules at a structural level,
leading to the annotation of proteins in some cases; (2) led to the understanding of
structural basis for function in some other cases; and (3) led to derivation of struc-
ture–function relationships in yet other cases—“structure” here referring to the
macromolecular “target” structure. Combined with the medicinal chemistry knowl-
edge from traditional structure–activity data, this has also led to the evolution of
QSAR models, resulting in 4D and 5D QSAR methodologies.

Though these QSAR models have been successful to an extent, they still fail to
take into account the complete picture of the system of the host and pathogen and
their interactions. Systems biology, on the other hand, attempts to take a holistic
view of systems and attempts to integrate data on metabolic pathways, gene regula-
tion, and protein–protein interactions, to build more complete and even
genome-scale models of systems. Systems approaches provide a global view of drug
action and can yield more reliable hypotheses for experimental evaluation.

10.2.1.1 Model Validation

Models are routinely built from a variety of sources, which vary in the degree of
accuracy of experiments recorded and often depend on the interpretation of data
available. Model validation is a critical quality control step that endorses the results
obtained through simulation of the model. Typical model validation involves com-
parison of model predictions against known biochemical and genetic evidences
obtained by various experiments, particularly when models are not fit to data [5–7].
Stoichiometric analyses on a network can yield conservation laws, which may be
examined for feasibility. Any absurd conservation laws that emerge should point to
the incompleteness and loopholes in the curated model. Model validation is thus a
critical step in model building itself, where such examinations may be used to
iteratively refine models.

10.3 Target Identification

Fundamental to all aspects of drug action, as for any biological process, are the
molecular recognition events such as the specific binding of a substrate or a metabo-
lite to a cellular macromolecule. Knowledge of the relevant macromolecules is a cru-
cial requirement in the process of drug design. Two of the main components of drug
discovery, therefore, are: (1) the target macromolecule of interest, which is often an
enzyme or a receptor; and (2) the ligand, which is itself the molecule that has the
potential to interact with the target and manipulate its function to alter the
pathological process beneficially.

Advances in molecular pharmacology have led to the understanding of specific
target molecules for many drugs in current clinical practice. With the availability of
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sequence and structural data that are ever-increasing and high-throughput experi-
mental methods, it is now more realistic to identify targets on a rational basis [8, 9].
Information about sets of protein molecules involved in diseases is also being accu-
mulated rapidly, leading to identification of potential targets that can be explored
for designing more efficient and safer drugs. This section presents computational
methods and concepts used for target identification, characterization, and valida-
tion. A schematic summary of the different levels at which target identification can
be carried out is depicted in Figure 10.3, and these are discussed in detail in the
following sections.
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Figure 10.3 A schematic diagram representing different strategies for identifying targets. Differ-
ent methods are illustrated with FabH from M. tuberculosis, as an example. The individual icons
refer to the genome sequence of M. tuberculosis; its difference plot with the genome of Escherichia
coli; the architecture of the FabH gene in the tuberculosis genome; identification of the FabH
domain in another protein of M. tuberculosis; a multiple sequence alignment to identify key resi-
dues; the crystal structure of FabH from M. tuberculosis; a structural bioinformatics study with its
neighbors to identify the binding site residues (a homologue bound to malonylCoA can be seen)
and an analysis of its binding site (surface representation). A diagram of the mycolic acid pathway
containing FabH is shown, along with an illustration of a network. Network analyses can also be
very useful in target identification.



10.3.1 Sequence-to-Function Models

These models are based on the fundamental concepts used in bioinformatics, that of
sequences containing all the necessary information to dictate the structure and more
importantly the function of protein molecules. Given the facts that sequence infor-
mation is much more abundant than the structure information in a number of cases
and also that sequence comparison is a much simpler and faster task than structural
comparison, sequences have often been used directly to gain insights into the func-
tion, by mining sequence patterns from databases and correlating them with experi-
mentally determined functions. The term “function” can have many meanings,
ranging from the basic function of binding a substrate, for example, to a larger func-
tion of being responsible for processes such as genetic recombination. Depending on
the experimental data available for a given protein, the level of detail of functional
annotation also varies. It is important to note that any clue at all, obtained with rea-
sonable certainty, is helpful in identification and characterization of that protein
molecule. The power of these methods has led protein characterization to become
largely a data-driven science. Integrated databases and knowledge bases now exist
that contain functional annotations and gene ontologies of several entire genomes
[10, 11]. Some examples of such resources are presented in Table 10.1. The first
functional characterizations of proteins have, in a number of instances, emerged
from genome sequencing and analysis. Identification of cyclin proteins in
Plasmodium falciparum is one such example. Three of four cyclin-like sequences
identified have biochemical properties of typical cyclins, to include association with
kinase activity, the latter being an attractive drug target [12].

10.3.2 Sequence Alignments and Phylogenetic Trees

Alignments are fundamental tools for analyzing protein or nucleic acid sequences.
When two sequences are similar to each other over a certain threshold, they are gen-
erally considered to have similar fold and similar functions. Many sophisticated
algorithms are available for aligning pairs of sequences as well as for sets of
sequences. Some examples are the Smith and Waterman algorithm for pair-wise
alignment [13, 14] for multiple sequence alignment, and [15] for profile-based data-
base searching. These usually form the first steps of characterization of a protein
molecule, given its sequence. The clues obtained from this can be further refined
using known sequence motifs [16] and fingerprints [17], especially to analyze active
sites and other functionally important regions in the proteins. Several algorithms
also exist for computing phylogenetic relationships [18], which further enrich
protein characterizations.

10.3.2.1 Comparative Genomics

The availability of complete genome sequences has enabled comparison of entire
organisms systematically. Comparing whole genomes has several advantages, the
most significant being its ability to identify proteins unique to a particular organism.
Such data would be invaluable for identifying antibacterial drug targets. This
method can provide information, not only on individual proteins that are unique to
an organism, but also on entire pathways that may be unique to an organism [19].
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Some examples of unique proteins in M. tuberculosis are those involved in mycolic
acid synthesis and the PE/PPE families of proteins [20]. Typically, these analyses are
carried out by comparing a genome with all other genomes, which at present run
into several hundreds (Sequence Resources from Table 10.1). At the same time, sets
of proteins common to a group of organisms such as several Gram positive bacteria,
can also be obtained from this type of analysis. Such analyses provide inputs that
facilitate the pursuit of rational strategies for designing broad-spectrum antibiotics
(e.g., [21]). It is also possible to profile several genomes simultaneously and identify
proteins characteristic to a particular organism or species. Thus, this analysis can be
used to generate hypotheses for identifying different types of targets.

Several high-throughput technologies have also emerged in the recent past, such
as DNA microarrays, Serial Analysis of Gene Expression (SAGE), and large-scale
Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). These experiments
often provide a wealth of data that is complementary to that obtained by pure
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Table 10.1 Examples of Online Database Resources Useful for Target-Based Drug Discovery

Sequence Resources

NCBI Genome Database http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=Genome

MicroBial Genome DataBase (MBGD) http://mbgd.genome.ad.jp/

PEDANT http://pedant.gsf.de/

SwissPROT http://us.expasy.org/sprot/

Genomes OnLine Database (GOLD) http://www.genomesonline.org/

Structure Resources

PDB CATH SCOP Cambridge Structural
Database Pathway Resources

http://www.rcsb.org/pdb/
http://cathwww.biochem.ucl.ac.uk/latest/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.ccdc.cam.ac.uk/products/csd/

KEGG BioCyc EMP aMAZE BRENDA
Pathway Hunter Tool

http://www.genome.ad.jp/kegg/ http://www.biocyc.org/
http://www.empproject.com/
http://www.amaze.ulb.ac.be/
http://www.brenda.uni-koeln.de/ http://pht.uni-koeln.de/

Protein–Protein Interaction Databases

Database of Interacting Proteins (DIP) http://dip.doe-mbi.ucla.edu/

Biomolecular Interaction Database
(BIND)

http://bind.ca/

Modeling Tools

E-Cell http://www.e-cell.org/

Virtual Cell http://www.nrcam.uchc.edu/

BioSPICE https://www.biospice.org/

Systems Biology Workbench http://sbw.kgi.edu/

Systems Biology Markup Language http://www.sbml.org/

Model Resources

Biomodels.NET http://www.biomodels.net/

KEGG Models http://www.systems-biology.org/001/001. html

BioCyc Models http://genome.dfci.harvard.edu/˜zucker/ BPHYS/
biocyc-open/



sequence analyses, making their integration highly useful in target identification and
validation [22]. Temporal DNA microarray data give an indication of the variation
of gene expression levels with time. It is possible that a particular protein that is
involved in the disease process manifests abruptly at the onset of the disease, as in
case of some neurodegenerative disorders. By examining the gene expression data
computationally, through clustering, or by using metrics such as entropy, it is possi-
ble to identify the corresponding genes, which may be possible drug targets [23].
Differential gene expression analysis between infected and uninfected samples may
also reveal possible targets of interest. Methodologies also exist for performing sys-
tematic gene-deletions, which again provide very useful information for target
identification.

10.3.2.2 Similarity Analysis with the Human Proteome

A special case of comparative genomics which is very important in target identifica-
tion is the comparison of either the individual target or sets of potential targets iden-
tified from pathogenic organisms with that of the human proteome [24]. It is
important that the chosen target in the pathogenic organism does not have close
homologues in the human proteome, so that the drug does not exhibit unforeseen
adverse effects. This is, in fact, a first-level feasibility measure of the usefulness of the
identified protein as a good target and can be a step in target validation. This is par-
ticularly important in the design of antibacterial or antiviral drugs. High rates of
attrition and failure at this stage, due to such adverse effects, can prove very expen-
sive to the design process in a pharmaceutical industry.

10.3.3 Structure-to-Function Models

These models strive to capture the structure–function relationships, following the
same fundamental assumptions as in the sequence models, but have the advantage of
utilizing higher resolution data provided by three-dimensional structures of protein
molecules. Though sequence analysis can help in identifying homologies and simi-
larities, function can be better appreciated by analyzing protein structures. It is also
often said that structure is more conserved than sequence during evolution and
hence can provide better frameworks for functional annotation. It is therefore desir-
able to analyze molecules at a structural level, wherever appropriate data is avail-
able. Besides providing functional clues, the structures also provide a framework to
understand the molecular basis of recognition, which is required both for lead
design (as discussed later), as well as for analyzing the feasibility of the target
molecule [25, 26].

10.3.3.1 Fold-Based Annotation

On a number of occasions, structures of the protein are determined before they are
fully biochemically characterized. Structural genomics projects too often lead to the
derivation of structures of proteins whose functions are yet to be identified. Owing
to the growth in structure databases, a wealth of data about the functional catego-
ries that proteins of particular folds exhibit has also accumulated (Structure

172 Model-Driven Drug Discovery: Principles and Practices



Resources from Table 10.1). It is therefore possible to carry out structural compari-
sons and match whole or part structures to those in the database and infer functions
from such similarities [27]. Many sophisticated algorithms have also emerged for
this purpose. A number of instances of fold-based functional annotations are found
in the literature. For example, the active site of barley endochitinase involved in
plant defense against chitin-containing pests could not be identified by site-directed
mutagenesis, but its fold was identified to be related to that of lysozymes from ani-
mals and phages [28] through a database search, which provided clues about its
ability to hydrolyze complex carbohydrates. Recently, fold recognition methods
have been applied to the prediction of the structure and catalytic mechanism of two
potential drug targets, arginine succinyltransferase and succinylarginine
dihydrolase [29].

10.3.3.2 Use of Homology Models

Apart from the experimentally determined protein structures, structures of a large
number of proteins can be predicted using homology modeling techniques, based on
the sequence–structure equations that we have come to understand. In these cases,
apart from the sequences, the modeled structures can also provide significant clues
about the functions of such proteins. A classic example of utilizing homology and
structural information in drug discovery is the design of Captopril and its ana-
logues, which are inhibitors of Angiotensin converting enzymes [30], for use in
treating hypertension. Molecular models have also provided clues about functions
that are significantly different as compared to that in their sequence or structure
homologues, due to the differences in detail in the active site or other functionally
important regions, despite having the same overall fold. For example, bacterial luci-
ferase and triose phosphate isomerase have the same fold, but the differences in
their fine structure lead them to have significantly different function [31]. A detailed
comparison of such structural pairs provides the first clues about differences in
functions. There are numerous examples where protein homology models have sup-
ported the discovery and the optimization of lead compounds with respect to
potency and selectivity. One such case is the use of a homology model of Thrombin
activatable fibrinolysis inhibitor (TAFI), an important regulator of fibrinolysis and
hence an attractive drug target in thrombolytic therapy, in order to design appropri-
ately substituted imidazole acetic acids, which were subsequently found to be
potent and selective inhibitors of activated TAFI [32].

10.3.4 Systems-Based Approaches

Systems biology has the potential to address several important issues that arise in
drug discovery such as interaction between the drug, the target, and the system as a
whole, possible side effects, and causes of drug toxicity [3]. A complete knowledge
of metabolic reactions in an organism helps to analyze all possible interactions
between the drug and the system and helps narrow down possible causes for adverse
effects and drug toxicity. Targeting multiple points in a metabolic pathway can also
be a useful strategy in drug design and this is thought to be the reason for the success
of several “natural” crude drugs [33]. Given the fact that cellular systems are
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extremely complex, a systematic analysis of all reactions taking place in a cell across
various biochemical pathways is a challenging task. With an increased popularity
for systems-based approaches in biology, a wide spectrum of techniques have been
applied for the simulation and analysis of biochemical systems. These include
stoichiometric techniques that rely on reaction stoichiometry and other constraints,
kinetic pathway modeling techniques that rely on a comprehensive mechanistic
model, interaction-based analyses, Petri nets, and qualitative modeling formalisms.

10.3.4.1 Kinetic Modeling and Flux Analysis

It has been said that drug design has often not included the following basic idea:
what cells do is metabolism, and a major thing drugs are supposed to do is to alter
metabolism. Of the 500 well-known targets, 30% are enzymes and 45% are recep-
tors [34]. Metabolic analysis can yield profound insights into the behavior of a cell
and would be of immense importance in drug design. Eisenthal and
Cornish-Bowden [35] have used pathway modeling to identify drug targets in the
African trypanosome Trypanosoma brucei. Based on stoichiometric and kinetic
analyses, they have proposed inhibition of pyruvate export as a potential strategy
for inhibiting trypanosomal activity. In silico gene deletion studies help in identify-
ing those enzymes in a metabolic network, which when deleted, adversely affect the
fluxes across the entire network. Large-scale gene deletion studies for organisms
such as Saccharomyces cerevisiae [36, 37] and E. coli [38] have been reported in lit-
erature. Deletions that are lethal serve as a first list of putative drug targets, which
can be further characterized by sequence analyses and structural studies. Recently,
we have carried out a flux balance analysis on the mycolic acid biosynthesis path-
way in M. tuberculosis, which led to the identification of seven new possible targets,
apart from InhA, an already well-known target [39]. Systems level modeling of
microbial systems is on the rise [38, 40–42] and a centralized repository for such
models can prove to be of great assistance in drug discovery.

10.3.4.2 Pathway Models

A pathway model is the lowest level of abstraction in system-based models. It looks
at only the reactions in the metabolome of an organism and accounts for several of
the interactions between the gene products of an organism and its metabolites.
However, this is a significant improvement on the mere sequence data that is often
employed for modeling and analysis. Several paradigms exist for pathway modeling
and they are reviewed in literature [43–46]. Based on the availability of data, a suit-
able paradigm can be chosen for modeling; this affects the accuracy of the
simulations performed on the systems.

10.3.4.3 Network-Based Analysis

Barabási and Oltvai [47] have shown that tools from network theory may be
adapted to biology, providing profound insights into cellular organization and evo-
lution. Hubs or heavily connected components in a graph may be identified and tar-
geted to “knock out” a system. In a typical interaction-based modeling of metabolic
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pathways, connections between the various proteins and metabolites in a system are
obtained. When further analyzed, specific hubs emerge to be more connected; bio-
logical networks typically display a power-law degree distribution. These hubs may
serve as interesting targets as they have the potential to affect several other connec-
tions in the system. The advantage of interaction-based modeling is that the amount
of data required is relatively less and it is possible to generate interaction networks
from existing databases [48]. There is a need for such derived databases, which
would be of immense use in drug discovery.

10.3.4.4 Virtual Cells

This is the next level in the modeling hierarchy. In addition to the pathways and
regulatory networks in systems, it is often very important to consider the localiza-
tion of various system components (proteins/metabolites) as well as several trans-
port processes that exist in a cell. A number of efforts have been initiated in the past
few years to create models of entire cells and even entire organs, at various levels of
abstraction. Metabolic models of cells, where biochemical reactions are repre-
sented mathematically and their behavior analyzed in terms of reaction kinetics or
fluxes, have been developed for a number of prokaryotes [38, 40, 42] and for yeast
cells [41]. Significant concepts in organ modeling are exemplified by models of car-
diac cells describing cell signaling events, mitochondrial metabolism, pathways
such as that of purine metabolism, flow of ionic currents, and muscle excitation
and contraction. These could be further integrated into tissue-level descriptions of
action potential propagations and myocardial mechanics and further with whole
ventricular anatomic models and circulatory system dynamics, with links to sys-
tem-level neurohumoral regulation [49]. Models of different cell types in the heart
have led to the creation of the first virtual organ, which is being used in drug dis-
covery and testing and in simulating the action of devices such as cardiac
defibrillators [50].

10.3.4.5 Virtual Organisms and Patients

The culmination of systems modeling lies in the modeling of complete systems,
accounting for all component reactions, the localization of these components and
their interactions. The interaction between these organelles or compartments and
the interface with the physical world, in terms of external temperature, pH, and
other effects becomes more relevant in the final layer of hierarchy. Computational
models of human physiology come into play both to relate to whole animal models
used in traditional pharmacology and more importantly to build integrated
data-driven models that can be refined to mimic the human physiology more
closely.

The Physiome project (http://www.physiome.org/) is a project that is aimed at
describing the human organism quantitatively in order to understand key elements
of physiology and pathophysiology. The salient features of the project are the
databasing of physiological, pharmacological, and pathological information on
humans and other organisms, and integration through computational modeling.
Models span a wide range, from diagrammatic schema suggesting relationships
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among system components, to fully quantitative computational models describing
the behavior of physiological systems and the response of an organism to environ-
mental change. Each mathematical model is an internally self-consistent summary
of available information and thereby defines a working hypothesis about how a sys-
tem operates. Predictions from such models are subject to tests, with new results
leading to new models. The goal is to understand the behavior of complex biological
systems through a step-by-step process of building upon and refining existing
knowledge [51].

Efforts are underway to extend these concepts further to virtual patients.
Entelos’ PhysioLab (http://www.entelos.com/) has developed models of human
physiology that supplement animal model systems. For example, Entelos’ Diabetes
PhysioLab has more than 60 virtual patients, each one representing a hypothesis of
the pathophysiology of diabetes, constrained by the pathway networks and consis-
tent with validation experiments. Such models have the potential for performing
patient profiling, classifying patient types, and even tailor-designing treatment
regimes, with a long-term pharmacogenomics goal of personalized medicine.

10.3.5 Target Validation

Validation is an essential step of the target identification process, just as in any
model building exercise. It is often integrated with the identification step itself. Tra-
ditionally, validation of targets has been achieved through experimental techniques
such as animal experiments, gene knock-out, or site-directed mutagenesis that lead
to loss-of-function phenotypes. The need for systematic and large-scale validation in
the post-genomic era has led to the usage of computational methods for validation.
At the sequence level, potential targets can be analyzed to assess their feasibility for
manipulating their function with a drug [52]. Comparison with the human (host)
proteome can be useful in filtering out those targets that have detectable homo-
logues in the human cells, in order to reduce the risk of adverse effects. Besides over-
all homology, a detailed analysis of the target sequence can be performed to gain
additional insights into the functional motifs and patterns. A higher-level feasibility
analysis can be achieved by considering the structural information of the proteins
either through experimental methods or through structure predictions in order to
identify and analyze “druggable” sites in the target molecule. One such example is
the study of the aurora kinases, a novel oncogenic family of mitotic serine/
threoninekinases, which are over-expressed in a number of solid tumors such as in
pancreatic and colorectal cancers. Molecular dynamics and docking simulations tar-
geting the ATP binding site of aurora2 with adenylyl imidodiphosphate (AMPPNP),
staurosporine, and six small molecular kinase inhibitors, identified active-site resi-
dues that interact with these inhibitors differentially, validating the choice of targets
[53]. In some situations, a target molecule that has a homologue in the host, but
exhibits sufficient structural differences in the functional sites may still be explored
for druggability [54]. Broader insights about the appropriateness of a potential tar-
get can be obtained by considering pathways and whole-system models relevant to
that disease. For example, an enzyme that may be identified as a good target for a
particular disease may not actually be critical or essential when viewed in the con-
text of the entire metabolism in the cell. Analyzing system-level models can help in
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assessing criticality of the individual proteins by studying any alternate pathways
and mechanisms that may naturally exist to compensate for the absence of that pro-
tein. In some other situations, especially for metabolic disorders, where the target
protein is also from the human proteome, it is important to consider if inhibition of
that target will lead to effects other than the intended one, owing to the involvement
of that target in additional processes that may be important for maintaining normal
health. System-level models will prove to be invaluable in such validations.

10.4 Lead Identification

A “lead” is generally defined as representative of a compound series with sufficient
potential to progress into a full drug development program [55]. Lead compounds
have been derived from diverse sources, ranging from clues from natural medicinal
compounds to those specifically designed with the knowledge of target structures.
From the times of total reliance on the intuition of the medicinal chemist, the meth-
ods available for lead identification have come a long way. Computational methods
used widely for this purpose can be classified based on two scenarios: (1) where the
target macromolecular structure is known either through experiment or through
prediction; and (2) where either such structural information about a target is not
available or the target molecule is not even identified. For the first class, struc-
ture-based design algorithms exist, which utilize the detailed information about the
precise geometry and chemistry that exist at binding sites of protein molecules,
while for the second class, the methods are predominantly based on statistical corre-
lations between the properties of a series of ligand molecules with a testable biologi-
cal activity. This section describes some of the concepts and methods used for this
purpose. A schematic overview of the lead identification strategies is illustrated in
Figure 10.4. Some of the well-recognized resources useful for lead identification are
listed in Table 10.2.

10.4.1 Target Structure-Based Design

Knowledge of the structure of the target macromolecule facilitates computational
docking of the ligand molecule into its binding site. Some examples of drugs
designed by structure-based methods are Zanamivir and Oseltamivir (against influ-
enza neuraminidase), Nelfinavir, Amprenavir, and Lopinavir (targeting HIV prote-
ase) [25]. Prior to docking, it is important to identify the binding site in the target
protein, information for which is available many times through the structures of the
complexes of the protein with its natural substrate. Chemical modification or
site-directed mutagenesis data of the target protein can also provide clues about the
binding site residues, where structures of complexes are not known. Several methods
also exist for computationally predicting the binding sites—the α-shapes, Delaunay
triangulation, and evolutionary trace methods being good examples [56, 57].

Docking refers to the optimal positioning of a ligand molecule with respect to
the binding site of a target structure. Many methods have been developed to per-
form ligand docking. The simplest is the rigid-body docking, which includes
clique-based searches, geometric hashing and pose clustering, which are fast but do
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not consider the conformational flexibility in either the target or the ligand mole-
cules. This drawback has been overcome to varying extents by the development of
flexible docking methods such as place-and-join techniques, incremental construc-
tion (e.g., FlexX [58]), molecular dynamics simulations, stochastic search tech-
niques such as simulated annealing and Monte Carlo simulations, and evolutionary
algorithms (e.g., AUTODOCK [59]).The strength of binding of the ligand to the tar-
get is usually determined by considering the intermolecular energies contributed by
the interaction forces arising from electrostatic, hydrogen-bond, van der Waals, and
hydrophobic interactions [60, 61]. The contribution of the solvent in ligand binding
can also be explicitly considered. Quantum chemical models for evaluating interac-
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Figure 10.4 Broad strategies for lead identification in drug discovery. This figure illustrates the
different approaches that can be adopted for identifying lead compounds, depending on the
extent of information available for a particular case. The upper half of the figure largely refers to
the ligand-based method, while the lower half indicates techniques used in target-based design.
Minimal requirements in each case are also shown.



tion potential are also available [62, 63]. Figure 10.5 illustrates examples of drugs
designed based on the target structures.

10.4.2 Ligand-Based Models

These are also often referred to as “analog-based” models and are usually carried
out when there is no adequate knowledge of the target molecules, but where the
class of ligands has been shown to exhibit the required biological effect. Such effects
are usually measured through animal experiments or whole-cell biochemical assays,
which indicate a final pharmacological effect but do not have the resolution of
information at the molecular level. Series of analogs are usually synthesized and
tested for activity using the same assay method. Data from these experiments can be
exploited to mine various patterns that might reflect their biological properties, as
described below.

10.4.2.1 Pharmacophore Models

A pharmacophore is defined as the specific three-dimensional arrangement of func-
tional groups within a molecular framework that are necessary to bind to a
macromolecule [64]. These models capture the geometric and chemical features of
those portions of the ligand, which are sufficient to relate to a given function.
Pharmacophore detection is carried out by comparing a series of analogues
designed over a parent scaffold and identifying common features among those that
exhibit similar functional profiles. Newer molecules are either designed to fit the
identified pharmacophores, or a chemical database of existing compounds is
screened to identify those that contain the required pharmacophore (e.g., D2 antag-
onists). Pharmacophore models have been particularly useful in identifying ligands
for targeting G-Protein Coupled Receptors (GPCRs) [65]. Pharmacophores can be
based on shape, size, topology, and chemical nature of the fragments; they may also
include three-dimensional distance constraints among the different fragments that
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Table 10.2 Examples of Online Ligand-Database Resources Useful for Drug Discovery

Ligand Databases

PubChem http://pubchem.ncbi.nlm.nih.gov/

ChemDB http://www.bioscreening.com/db/

KEGG LIGAND Database http://www.genome.ad.jp/kegg/ligand.html

Daylight Fingerprints http://www.daylight.com/

Available Chemicals Directory (ACD) http://cds.dl.ac.uk/cds/datasets/orgchem/isis/acd.html

Ligand Structure Resources

The Cambridge Structural Database (CSD)
PDB-Ligand Maybridge Database NCI
Ligand Property Resources

http://www.ccdc.cam.ac.uk/ http://www.idrtech.com/
PDB-Ligand/
http://www.maybridge.com/
http://cactus.cit.nih.gov/ncidb/

RELIBASE Hetero-compound Information
Centre (HICCUP) WOMBATDatabase
PRODRG2 MolInspiration ALOGPS

http://relibase.ebi.ac.uk/ http://alpha2.bmc.uu.se/hicup/
http://sunsetmolecular.com/
http://davapc1.bioch.dundee.ac. uk/programs/prodrg/
http://www.molinspiration.com/ http://vcclab.org/



make up a pharmacophore, or even with the target residues [66]. A recent report
describes a pharmacophore model for the main proteinase of severe acute respira-
tory syndrome coronavirus (SARS-CoV), which when used to search the NCI 3D
database, identified 30 existing drugs containing the pharmacophore query. Six of
these were found to be experimentally known SARS-CoV protease inhibitors, thus
demonstrating the usefulness of the pharmacophore approach [67]. A number of
methods exist to represent ligand molecules, each with its own set of merits and
demerits. SMILES strings, adjacency and distance matrices, and graphs are some
common examples. Based on the mathematical representation of the ligand, various
methods are used for searching, such as correlation vectors, feature trees, structural
keys, and fingerprints [68].
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Figure 10.5 Snapshots of structures of protein-drug complexes. (a) Cartoon representation of
influenza virus neuraminidase with Zanamivir (PDB:1A4G). (b) Interactions of dihyrdofolate
reductase with methorexate—LIGPLOT diagram (PDB:1AO8). (c) Surface representation of HIV
Protease with tripeptide (EDL) inhibitor (PDB:1A30). (d) An example of a pharmacophore model.



10.4.2.2 QSAR Models

QSAR models are quantitative regression methods that attempt to relate various
physical and chemical properties to biological activity. QSAR models have
attracted broad scientific interest particularly in the pharmaceutical industry, since
it could be used without the explicit knowledge of the target molecule or even the
explicit knowledge of the mechanism of action. Physical and chemical properties
such as size, shape, solubility, hydrophobic, electronic, and steric properties,
derived from a series of compounds can be correlated with activity through statisti-
cal methods. Recent years have seen the development of 3D QSAR models, which
incorporate knowledge from the ligand structures as well as 4D and 5D QSAR,
which in addition incorporate target structures and target conformational flexibil-
ity where such information is known. Many applications and review articles are
available in literature, for example [69]. Comparative Molecular Field Analysis
(CoMFA) and Comparative Analysis of Molecular Similarity Indices (CoMSIA)
[70], where fields of different physicochemical and structural properties are
computed, compared and correlated with biological activities, have also been used
extensively.

10.4.2.3 Virtual Screening

A common requirement in the drug discovery process is to screen large libraries of
compounds for identifying an appropriate lead compound. The libraries can be
made of all available chemicals, or corporate libraries containing classified com-
pounds or even combinatorial libraries, designed virtually. A typical library can
contain over a million molecules necessitating computationally efficient methods
for screening. A large variety of computational tools to select potentially active and
even bio-available compounds from libraries are available. These tools range from
fast filter criteria and crude molecular similarity measures to sophisticated molecu-
lar docking and scoring techniques [68, 71]. Virtual high-throughput screening
(vHTS) applies in silico approaches such as docking and alignment to large virtual
molecular databases, to enrich biologically active compounds in order to yield lead
structures [72, 73]. Novel inhibitors targeted at the catalytic domain of ABL tyro-
sine kinase by using three-dimensional database searching techniques have been
identified through virtual screening in order to overcome the problem of drug resis-
tance that is beginning to be seen for the classic anticancer drug Gleevec. Two
promising compounds identified exhibited significant inhibitions in further ABL
tyrosine phosphorylation assays. It is anticipated that those two compounds can
serve as lead compounds for further drug design and optimization [74].

10.4.2.4 Lead Optimization

Lead optimization is the process of modifying the lead compound in order to
enhance properties such as specificity and bio-availability. Once a lead is identified,
its closer structural analogs can be tested either for improvement in activity, or even
for other practical considerations such as higher solubility, lower cost of synthesis,
stability, and pharmacokinetic parameters. This can be carried out by a finer sam-
pling of the libraries or by using more focused scoring functions. Pyrrole derivatives
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with good in vitro activity against mycobacteria have been used to build a four-point
pharmacophore model. Molecular modeling and SAR studies were performed to
rationalize their activity in terms of superposition onto a pharmacophore model for
antitubercular compounds in terms of their lipophilic properties. These studies sug-
gest the design of new derivatives bearing the thiomorpholinomethyl moiety and dif-
ferent aryl substituents at N1 and C5, which were found to exhibit significantly
enhanced activity profiles [75].

Structural information of the target molecules can also be used for lead optimi-
zation, as has been demonstrated in [76], for the design of influenza neuraminidase
inhibitors. Several other examples are featured in the recent literature, some exam-
ples of which are the successes in optimization of inhibitors of several protein kin-
ases, HIV protease [25], reverse transcriptase [77], and thymidylate synthase [78].

10.5 Lead to Drug Phase

A lead compound, to progress to a drug, usually has to traverse a long and bumpy
path. In fact, several lead compounds fail at this stage, leading to a high attrition in
the pipeline of drug discovery. This is because, for a compound to be a useful drug,
besides exhibiting the required biological activity, it should also exhibit: (1) specific-
ity to the target, so as to minimize the risk of adverse effects; (2) predictable
dose–response relationships; (3) acceptable pharmacokinetics; (4) no undue
pharmacodynamic effects with common drugs or food substances, or transforma-
tion into substances that may be toxic to the system; and (5) stability in the appro-
priate formulation. Besides these, there are also cost factors and other practical
considerations that need to be met. The computational models that are applied in
this phase of drug discovery are geared towards predicting drug-likeness of a com-
pound and also its absorption, distribution, metabolism, elimination, and toxicity
properties, collectively referred to as ADMET properties.

10.5.1 Predicting Drug-Likeness

One of the extensively used concepts to predict drug-likeness is through the analysis
of the physico-chemical properties of the drug, followed by statistical correlations
through the use of machine learning methods against databases of known drugs.
The most well-known effort in this respect is Lipinski’s rule of five, based on the
observation that most orally administered drugs have (1) not more than five hydro-
gen bond donors, (2) not more than 10 hydrogen bond acceptors, (3) a molecular
weight under 500, and (4) a LogP under five [79]. Lipinski’s work has since been
extended to include properties such as the number of rings and rotatable bonds.

10.5.2 ADMET Properties

Unfavorable ADMET properties have often caused the failure of leads in drug devel-
opment. There is an increasing need for good predictive tools of ADMET properties
to serve two key aims: first, at the design stage of new compounds and compound
libraries so as to reduce the risk of late-stage attrition; and second, to optimize the
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screening and testing by looking at only the most promising compounds. Several
approaches exist for in silico modeling of ADMET properties and these have been
reviewed in [80–83]. Two of the main classes of approaches use:

1. Data modeling and QSAR techniques, which typically use statistical tools to
search for correlations between a given property and a set of molecular and
structural descriptors of the molecules in question;

2. Molecular models, which use quantum mechanical methods to assess the
potential for interaction between the small molecules under consideration
and proteins known to be involved in ADME processes, such ascytochrome
P450s.

A recent report shows a successful classification of CNS active/inactive com-
pounds through the use of a topological substructural molecular approach. The
model has also been able to identify a potential structural pharmacophore, showing
its usefulness in the lead generation and optimization processes [84].

Molecular level understanding of the processes involved in the pharmacokinetics,
bio-availability, and toxicity are still very poor. Development of comprehensive sys-
tem-level models that encode most of the features of a system will enable a better
understanding of drug toxicity and hence eliminate poor candidates early in the dis-
covery pipeline.

10.6 Future Perspectives

The enormous progress in the development of new methods in different branches of
biology and their abstraction through computational models that we are currently
witnessing has already shown enormous potential, both for understanding biologi-
cal processes at a better level, as well as for any application opportunities. These
opportunities, which are expected to increase even more in the coming years, prom-
ise to make the mission of creating data-driven models and simulations a reality,
leading to fundamental changes in the way we discover drugs. The predictive power
provided by data-driven computation has long been a critical component in product
development and safety testing in other industries, from aerospace engineering to
circuit design.

Similarly, data-driven modeling will have a great impact in transforming bio-
medical research and pharmaceutical drug development into a more predictive sci-
ence. In particular, substantial growth in pathway databases and a paradigm shift
from annotations of genes to annotations of entire pathways or processes can be
expected. The improvements in databases such as the KEGG and BioCyc indicate
this trend. The new resource, Biomodels.net, which provides system models that
may be exploited for various purposes, is another effort in this direction. Develop-
ment of systematic methods to measure interactions between molecules and indeed
between different cells will play a crucial role in the availability of reliable data at
such levels and will directly influence the types and quality of the computational
models that can be built. Thus, in some sense, generation and curation of
higher-order data hold the key to future applications.
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On the computational front, development of high performance methods for
computationally intense tasks such as docking, could lead to the routine use of struc-
ture-based methods in virtual screening of millions of compounds for lead design.
With the current rate of advances in systems biology, we can also expect significant
enhancements in pathway models, process models, and indeed in entire system mod-
els, both in terms of mathematically representing such complex phenomena as well
as in terms of mimicking and simulating the biological events. The success of the vir-
tual heart project and the creation of virtual patients representing different
pathophysiologies are suggestive of this trend. We can also envisage that the use of
pharmacogenomics, and tailor-made medicines could be distinct possibilities in the
near future. Systems biology approaches are also likely to impact development of
molecular level pharmacokinetic and pharmacodynamic models for individual
drugs, to provide comprehensive profiles of drug actions. In short, the stage is set for
the integration and application of skills from mathematics and computer science to
address complex problems in biology and medicine, in a big way.

Acknowledgments

The use of facilities at the Bioinformatics Centre and Interactive Graphics Based
Molecular Modeling Facility (both supported by the Department of Biotechnology)
and the Supercomputer Education and Research Centre are gratefully acknowl-
edged. We also thank Preethi Rajagopalan and Nirmal Kumar for assisting in the
preparation of the manuscript.

References

[1] Searls, D. B., “Data Integration: Challenges for Drug Discovery,” Nature Reviews Drug
Discovery, Vol. 4, January 2005, pp. 45–58.

[2] Reiss, T., “Drug Discovery of the Future: The Implications of the Human Genome Project,”
Trends in Biotechnology, Vol. 19, December 2001, pp. 496–499.

[3] Apic, G., et al., “Illuminating Drug Discovery with Biological Pathways,” FEBS Letters,
Vol. 579, No. 8, March 2005, pp. 1872–1877.

[4] Claus, B. L., and D. J. Underwood, “Discovery Informatics: Its Evolving Role in Drug Dis-
covery,” Drug Discovery Today, Vol. 7, September 2002, pp. 957–966.

[5] Hopkins, A., “Are Drugs Discovered in the Clinic or the Laboratory?” Drug Discovery
Today: TARGETS, Vol. 3, October 2004, pp. 173–176.

[6] Chen, J. Y., and J. V. Carlis. “Genomic Data Modeling,” Information Systems, Vol. 28,
June 2003, pp. 287–310.

[7] Balant, L. P., and M. Gex-Fabry, “Modelling During Drug Development,” European Jour-
nal of Pharmaceutics and Biopharmaceutics, Vol. 50, 2000, pp. 13–26.

[8] Roses, A. D., et al., “Disease-Specific Target Selection: A Critical First Step Down the Right
Road,” Drug Discovery Today, Vol. 10, February 2005, pp. 177–189.

[9] Cunningham, M. J., “Genomics and Proteomics: The New Millennium of Drug Discovery
and Development,” Journal of Pharmacological and Toxicological Methods, Vol. 44, July
2000, pp. 291–300.

184 Model-Driven Drug Discovery: Principles and Practices



[10] Chalker, A. F., and R. D. Lunsford, “Rational Identification of New Antibacterial Drug
Targets That Are Essential for Viability Using a Genomics-Based Approach,” Pharmacol-
ogy and Therapeutics, Vol. 95, July 2002, pp. 1–20.

[11] Attwood, T. K., “The Quest to Deduce Protein Function from Sequence: The Role of
Pattern Databases,” The International Journal of Biochemistry and Cell Biology, Vol. 32,
February 2000, pp. 139–155.

[12] Geyer, J. A., S. T. Prigge, and N. C. Waters, “Targeting Malaria with Specific CDK Inhibi-
tors,” Biochimica et Biophysica Acta—Proteins and Proteomics, Vol. 1754, No. 1–2,
September 2005, pp. 160–170.

[13] Smith, T. F., and M. S. Waterman, “Identification of Common Molecular Subsequences,”
Journal of Molecular Biology, Vol. 147, 1981, pp. 195–197.

[14] Chenna, R., et al., “Multiple Sequence Alignment with the Clustal Series of Programs,”
Nucleic Acids Res., Vol. 31, No. 13, July 2003, pp. 3497–3500.

[15] Altschul, S. F., et al., “Gapped BLAST and PSI-BLAST: A New Generation of Protein Data-
base Search Programs,” Nucleic Acids Res., Vol. 25, No. 17, 1997, pp. 3389–3402.

[16] Sigrist, C. J., et al., “PROSITE: A Documented Database Using Patterns and Profiles as
Motif Descriptors,” Briefings in Bioinformatics, Vol. 3, No. 3, September 2002,
pp. 265–274.

[17] Scordis, P., D. R. Flower, and T. K. Attwood, “FingerPRINTScan: Intelligent Searching of
the PRINTS Motif Database,” Bioinformatics, Vol. 15, No. 10, 1999, pp. 799–806.

[18] Kumar, S., K. Tamura, and M. Nei, “MEGA3: Integrated Software for Molecular Evolu-
tionary Genetics Analysis and Sequence Alignment,” Briefings in Bioinformatics, Vol. 5,
No. 2, June 2004, pp. 150–163.

[19] Galperin, M. Y., and E. V. Koonin. “‘Conservedhypothetical’ Proteins: Prioritization of
Targets for Experimental Study,” Nucleic Acids Res., Vol. 32, No. 18, 2004,
pp. 5452–5463.

[20] Camus, J. -C., et al., “Re-Annotation of the Genome Sequence of Mycobacterium Tubercu-
losis H37Rv,” Microbiology, Vol. 148, No. 10, 2002, pp. 2967–2973.

[21] Moir, D. T., et al., “Genomics and Antimicrobial Drug Discovery,” Antimicrobial Agents
and Chemotherapy, Vol. 43, No. 3, 1999, pp. 439–446.

[22] Bajorath, J., “Rational Drug Discovery Revisited: Interfacing Experimental Programs with
Bio- and Chemo-Informatics,” Drug Discovery Today, Vol. 6, October 2001, pp. 989–995.

[23] Fuhrman, S., et al., “Target Finding in Genomes and Proteomes,” in Bioinformatics: From
Genomes to Drugs, Vol. 14(II) of Methods and Principles in Medicinal Chemistry,
T. Lengauer, (ed.), Weinheim, Germany: Wiley-VCH, 2002, Ch. 5, pp. 119–135.

[24] Sanseau, P., “Impact of Human Genome Sequencing for In Silico Target Discovery,” Drug
Discovery Today, Vol. 6, March 2001, pp. 316–323.

[25] Congreve, M., C. W. Murray, and T. L. Blundell, “Keynote Review: Structural Biology and
Drug Discovery,” Drug Discovery Today, Vol. 10, No. 13, July 2005, pp. 895–907.

[26] Hillisch, A., L. F. Pineda, and R. Hilgenfeld, “Utility of Homology Models in the Drug Dis-
covery Process,” Drug Discovery Today, Vol. 9, No. 15, 2004, pp. 659–669.

[27] Mizuguchi, K., “Fold Recognition for Drug Discovery,” Drug Discovery Today,
TARGETS, Vol. 3, February 2004, pp. 18–23.

[28] Holm, L., and C. Sander, “Structural Similarity Between Plant Endochitinase and
Lysozymes from Animals and Phage: An Evolutionary Connection,” FEBS Letters,
Vol. 340, 1994, pp. 129–132.

[29] Shirai, H., and K. Mizuguchi, “Prediction of the Structure and Function of AstA and AstB,
the First Two Enzymes of the Arginine Succinyltransferase Pathway of Arginine Catabo-
lism,” FEBS Letters, Vol. 555, December 2003, pp. 505–510.

[30] Ondetti, M. A., B. Rubin, and D. W. Cushman, “Design of Specific Inhibitors of Angiotensin-
Converting Enzyme: New Class of Orally Active Antihypertensive Agents,” Science,
Vol. 196, No. 4288, 1977, pp. 441–444.

Acknowledgments 185



[31] Fisher, A. J., et al., “The 1.5-A Resolution Crystal Structure of Bacterial Luciferase in Low
Salt Conditions,” Journal of Biological Chemistry, Vol. 271, No. 36, September 1996,
pp. 21956–21968.

[32] Barrow, J. C., et al., “Synthesis and Evaluation of Imidazole Acetic Acid Inhibitors of Acti-
vated Thrombin-Activatable Fibrinolysis Inhibitor as Novel Antithrombotics,” Journal of
Medicinal Chemistry, Vol. 46, November 2003, pp. 5294–5297.

[33] Csermely, P., V. Agoston, and S. Pongor, “The Efficiency of Multi-Target Drugs: The Net-
work Approach Might Help Drug Design,” Trends in Pharmacological Sciences, Vol. 26,
2005, pp. 178–182.

[34] Cornish-Bowden, A., and M. L. Cardenas, “Metabolic Analysis in Drug Design,” C. R.
Biologies, Vol. 326, 2003, pp. 509–515.

[35] Eisenthal, R., and A. Cornish-Bowden, “Prospects for Antiparasitic Drugs: The Case of
Trypanosoma Brucei, the Causative Agent of African Sleeping Sickness,” The Journal of
Biological Chemistry, Vol. 273, No. 10, 1998, pp. 5500–5505.

[36] Duarte, N. C., M. J. Herrgard, and B. O. Palsson, “Reconstruction and Validation of
Saccharomyces Ccerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic
Model,” Genome Research, Vol. 14, 2004, pp. 1298–1309.

[37] Forster, I., et al., “Large-Scale Evaluation of In Silico Gene Deletions in Saccharomyces
Cerevisiae,” OMICS, Vol. 7, No. 2, 2003, pp. 193–202.

[38] Edwards, J. S., and B. O. Palsson, “The Escherichia Coli MG1655 In Silico Metabolic
Genotype: Its Definition, Characteristics, and Capabilities,” Proc. Natl. Acad. Sci. USA,
Vol. 97, No. 10, 2000, pp. 5528–5533.

[39] Raman, K., P. Rajagopalan, and N. Chandra, “Flux Balance Analysis of Mycolic Acid Path-
way: Targets for Anti-Tubercular Drugs,” PLoS Computational Biology, Vol. 1, 2005,
pp. 349–358.

[40] Becker, S. A., and B. O. Palsson, “Genome-Scale Reconstruction of the Metabolic Network
in Staphylococcus Aureus N315: An Initial Draft to the Two-Dimensional Annotation,”
BMC Microbiology, Vol. 5, 2005, p. 8.

[41] Forster, J., et al., “Genome-Scale Reconstruction of the Saccharomyces Cerevisiae Meta-
bolic Network,” Genome Research, Vol. 13, No. 2, 2003, pp. 244–253.

[42] Edwards, J. S., and B. O. Palsson, “Systems Properties of the Haemophilus influenzae Rd
Metabolic Genotype,” The Journal of Biological Chemistry, Vol. 274, No. 25, 1999,
pp. 17410–17416.

[43] Stelling, J., “Mathematical Models in Microbial Systems Biology,” Current Opinion in
Microbiology, Vol. 7, 2004, pp. 513–518.

[44] Wiechert, W., “Modeling and Simulation: Tools for Metabolic Engineering,” Journal of
Biotechnology, Vol. 94, 2002, pp. 37–63.

[45] Cascante, M., et al., “Metabolic Control Analysis in Drug Discovery and Disease,” Nature
Biotechnology, Vol. 20, 2002, pp. 243–249.

[46] Covert, M. W., et al., “Metabolic Modeling of Microbial Strains In Silico,” Trends in Bio-
chemical Sciences, Vol. 26, No. 3, 2001, pp. 179–186.

[47] Barabási, A. L., and Z. N. Oltvai, “Network Biology: Understanding the Cell’s Functional
Organization,” Nature Reviews Genetics, Vol. 5, No. 2, February 2004, pp. 101–113.

[48] Hongwu, M., and A. -P. Zeng, “Reconstruction of Metabolic Networks from Genome Data
and Analysis of Their Global Structure for Various Organisms,” Bioinformatics, Vol. 19,
No. 2, 2003, pp. 270–277.

[49] Hunter, P. J., P. Kohl, and D. Noble, “Integrative Models of the Heart: Achievements and
Limitations,” Philosophical Transactions of the Royal Society of London A, Vol. 359,
2001, pp. 1049–1054.

[50] Noble, D., “Modelling the Heart: Insights, Failures and Progress,” BioEssays, Vol. 24,
2002, pp. 1155–1163.

186 Model-Driven Drug Discovery: Principles and Practices



[51] Bassingthwaighte, J. B., “Strategies for the Physiome Project,” Annals of Biomedical Engi-
neering, Vol. 28, No. 8, August 2000, pp. 1043–1058.

[52] van Duin, M., et al., “Genomics in Target and Drug Discovery,” Biochemical Society
Transactions, Vol. 31, No. 2, 2003, pp. 429–432.

[53] Vankayalapati, H., et al., “Targeting Aurora2 Kinase in Oncogenesis: A Structural
Bioinformatics Approach to Target Validation and Rational Drug Design,” Molecular Can-
cer Therapeutics, Vol. 2, No. 3, March 2003, pp. 283–294.

[54] An, J., M. Totrov, and R. Abagyan, “Comprehensive Identification of ‘Druggable’ Protein
Ligand Binding Sites,” Genome Informatics Series: Workshop on Genome Informatics,
Vol. 15, 2004, pp. 31–41.

[55] Valler, M. J., and D. Green, “Diversity Screening Versus Focussed Screening in Drug Dis-
covery,” Drug Discovery Today, Vol. 5, No. 7, July 2000, pp. 286–293.

[56] Binkowski, T. A., S. Naghibzadeh, and J. Liang, “CASTp: Computed Atlas of Surface
Topography of Proteins,” Nucleic Acids Res., Vol. 31, No. 13, 2003, pp. 3352–3355.

[57] Lichtarge, O., H. R. Bourne, and F. E. Cohen, “An Evolutionary Trace Method Defines
Binding Surfaces Common to Protein Families,” Journal of Molecular Biology, Vol. 257,
No. 2, March 1996, pp. 342–358.

[58] Rarey, M., et al., “A Fast Flexible Docking Method Using an Incremental Construction
Algorithm,” Journal of Molecular Biology, Vol. 261, No. 3, August 1996, pp. 470–489.

[59] Morris, G. M., et al., “Automated Docking Using a Lamarckian Genetic Algorithm and an
Empirical Binding Free Energy Function,” Journal of Computational Chemistry, Vol. 19,
No. 14, 1998, pp. 1639–1662.

[60] Muegge, I., and Y. C. Martin. “A General and Fast Scoring Function for Protein-Ligand
Interactions: A Simplified Potential Approach,” Journal of Medicinal Chemistry, Vol. 42,
No. 5, 1999, pp. 791–804.

[61] Sobolev, V., et al., “Automated Analysis of Interatomic Contacts in Proteins,”
Bioinformatics, Vol. 15, No. 4, 1999, pp. 327–332.

[62] Xiang, Y., D. W. Zhang, and J. Z. H. Zhang. “Fully Quantum Mechanical Energy Optimi-
zation for Protein-Ligand Structure,” Journal of Computational Chemistry, Vol. 25,
No. 12, 2004, pp. 1431–1437.

[63] Zoete, V., O. Michielin, and M. Karplus, “Protein-Ligand Binding Free Energy Estimation
Using Molecular Mechanics and Continuum Electrostatics. Application to HIV-1 Protease
Inhibitors,” Journal of Computer-Aided Molecular Design, Vol. 17, No. 12, December
2003, pp. 861–880.

[64] Neamati, N., and J. J. Barchi, Jr., “New Paradigms in Drug Design and Discovery,” Cur-
rent Topics in Medicinal Chemistry, Vol. 2, No. 3, 2002, pp. 211–227.

[65] Klabunde, T., and G. Hessler. “Drug Design Strategies for Targeting G-Protein-Coupled
Receptors,” ChemBioChem, Vol. 3, No. 10, 2002, pp. 928–944.

[66] Bleicher, K. H., et al., “Ligand Identification for G-Protein-Coupled Receptors: A Lead
Generation Perspective,” Current Opinion in Chemical Biology, Vol. 8, June 2004,
pp. 287–296.

[67] Zhang, X. W., Y. L. Yap, and R. M. Altmeyer, “Generation of Predictive Pharmacophore
Model for SARScoronavirus Main Proteinase,” European Journal of Medicinal Chemistry,
40, No. 1, January 2005, pp. 57–62.

[68] Stahl, M., M. Rarey, and G. Klebe, “Screening of Drug Databases,” in Bioinformatics:
From Genomes to Drugs, Vol. 14(II) of Methods and Principles in Medicinal Chemistry,
T. Lengauer, (ed.), Weinheim, Germany: Wiley-VCH, 2002, Ch. 6, pp. 137–170.

[69] Perkins, R., et al., “Quantitative Structure-Activity Relationship Methods: Perspectives on
Drug Discovery and Toxicology,” Environmental Toxicology and Chemistry, Vol. 22, No.
8, August 2003, pp. 1666–1679.

[70] Klebe, G., U. Abraham, and T. Mietzner, “Molecular Similarity Indices in a Comparative
Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity,”
Journal of Medicinal Chemistry, Vol. 37, No. 24, 1994, pp. 4130–4146.

Acknowledgments 187



[71] Waszkowycz, B., et al., “Large-Scale Virtual Screening for Discovering Leads in the
Postgenomic Era,” IBM Systems Journal, Vol. 40, No. 2, 2001, pp. 360–376.

[72] Lengauer, T., et al., “Novel Technologies for Virtual Screening,” Drug Discovery Today,
Vol. 9, January 2004, pp. 27–34.

[73] Markus, H., et al., “Virtual High-Throughput In Silico Screening,” Drug Discovery Today
Biosilico, Vol. 1, September 2003, pp. 143–149.

[74] Peng, H., et al., “Identification of Novel Inhibitors of bcr-abl Tyrosine Kinase Via Virtual
Screening,” Bioorganic and Medicinal Chemistry Letters, Vol. 13, November 2003,
pp. 3693–3699.

[75] Biava, M., et al., “Antimycobacterial Compounds: Optimization of the BM 212 Structure,
the Lead Compound for a New Pyrrole Derivative Class,” Bioorganic and Medicinal Chem-
istry, Vol. 13, February 2005, pp. 1221–1230.

[76] Stoll, V., et al., “Influenza Neuraminidase Inhibitors: Structure-Based Design of a Novel
Inhibitor Series,” Biochemistry, Vol. 42, No. 3, 2003, pp. 718–727.

[77] Jorgensen, W. L., et al., “Computer-Aided Design of Non-Nucleoside Inhibitors of HIV1
Reverse Transcriptase,” Bioorganic and Medicinal Chemistry Letters, Vol. 16, No. 3,
November 2006, pp. 663–667.

[78] Shiying, L., et al., “The 3DQSAR Analysis of 4(3H)-Quinazolinone Derivatives with
Dithiocarbamate Side Chains on Thymidylate Synthase,” Bioorganic and Medicinal Chem-
istry, Vol. 14, No. 5, March 2006, pp. 1425–1430.

[79] Lipinski, C. A., et al., “Experimental and Computational Approaches to Estimate Solubility
and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery
Reviews, Vol. 23, No. 1-3, January 1997, pp. 3–25.

[80] Bugrim, A., T. Nikolskaya, and Y. Nikolsky, “Early Prediction of Drug Metabolism and
Toxicity: Systems Biology Approach and Modeling,” Drug Discovery Today, Vol. 9, No. 3,
2004, pp. 127–135.

[81] Yu, H., and A. Adedoyin. “ADME-Toxin Drug Discovery: Integration of Experimental and
Computational Technologies,” Drug Discovery Today, Vol. 8, No. 18, September 2003,
pp. 852–861.

[82] Butina, D., M. D. Segall, and K. Frankcombe, “Predicting ADME Properties In Silico:
Methods and Models,” Drug Discovery Today, Vol. 7, No. 11, May 2002, pp. S83–S88.

[83] Eddershaw, P. J., A. P. Beresford, and M. K. Bayliss, “ADME/PK as Part of a Rational
Approach to Drug Discovery,” Drug Discovery Today, Vol. 9, September 2000,
pp. 409–414.

[84] Perez, M. A. C., and M. B. Sanz, “In Silico Prediction of Central Nervous System Activity of
Compounds, Identification of Potential Pharmacophores by the TOPS–MODE Approach,”
Bioorganic and Medicinal Chemistry, Vol. 22, November 2004, pp. 5833–5843.

188 Model-Driven Drug Discovery: Principles and Practices



C H A P T E R 1 1

Information Management and
Interaction in High-Throughput
Screening for Drug Discovery

Preeti Malik, Tammy Chan, Jody Vandergriff, Jennifer Weisman, Joseph DeRisi,
and Rahul Singh

High-throughput screening (HTS) assays provide a way for researchers to simulta-
neously study interactions between large numbers of potential drug candidates with
a target of interest. Significant volumes of data are generated as a consequence of
conducting HTS experiments, making it very difficult to store, interact, and thor-
oughly mine the data for biological significance. Thus management of HTS infor-
mation is one of the key challenges for drug discovery data management and
retrieval. In this chapter, we present our research towards the development of an
information management, interaction, and visualization system for HTS data. Our
goal is to provide a solution to this challenge that addresses many issues associated
with HTS including managing and storing vast amounts of data, controlling process
flow, and providing intuitive, highly interactive interfaces for analysis and visual
mining of large datasets. We have developed a prototype system, called
FreeFlowDB, specifically to meet these challenges and validate our methodologies
in the context of antimalarial drug discovery research.

11.1 Introduction

The recent past in therapeutic drug discovery has been witness to several significant
events in the evolution of science and technology. These include among others, the
sequencing of the human genome and mapping of genomic DNA [1], as well as the
somewhat simultaneous, recent developments in industrial robotics, combinatorial
chemistry, and high-throughput screening. Taken together, these factors promise
to provide a proliferation of targets, leading to newer or improved therapeutics
and a significantly increased number of lead compounds synthesized in pharmaceu-
tical drug-discovery settings [2, 3]. The process of drug discovery is a complex and
multistage one. Generally, but not exclusively, a drug is a small molecule that inter-
acts with a target, typically a protein or an enzyme, in a therapeutically benefi-
cial manner. The primary stages of a standard drug discovery process are shown in
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Figure 11.1. This process begins by determining potentially interesting targets. The
identification of a target for drug discovery is done by screening gene databases
using homology (sequence similarity) to known targets, colocation (which organ/tis-
sue the gene is expressed in), or other criteria, like similar expression profiles that
can indicate a biological connection between the gene and targeted symptoms or
phenotypes. Once identified, the target is validated using molecular biology tech-
niques like gene-knockouts and/or computational approaches like expression analy-
sis along with pathway elucidation. A validated target is then screened against
a large number of small molecules (potentially millions) to determine which
of (called hits) interact with the target. The hits are further analyzed and opti-
mized in terms of properties like binding potency, pharmacokinetics (PK),
pharmacodynamics (PD), and efficacy, to come up with the molecules that are most
suited to undergo clinical trials. In typical settings, the number of hits against a tar-
get represents a two to three order of magnitude reduction in the number of mole-
cules being considered at the start. During the lead optimization stage, the initial
focus is on maximizing potency by minimizing the concentration at which the
drug-target interaction occurs. This further reduces the candidate list of molecules
to (typically) a few hundred. Of these, after testing for PK/PD, only tens of molecules
or fewer may remain to be considered for clinical trials.

Within the above process, high-throughput screening is a recent technique that
has been aggressively adopted in academic and pharmaceutical drug discovery [4]. It
involves miniaturized biochemical assays that are performed to enable researchers
to test a large number of compounds at a fixed known dosage for binding activity or
biological activity against the target molecule. These assays are often conducted in
parallel in multiwell plates. Positive or active results are then collected for the next
round of detailed testing to locate the optimal concentration and structure. The key
advantage of HTS lies in its ability to study the interactions between large numbers
of possible drug candidates with a target of interest. This not only significantly
reduces the time and cost associated with lead discovery, but also allows exploring
the ligand structural space at fine granularities.

The significant volume of information generated as a consequence of conduct-
ing an HTS experiment is easy to discern. The data volume constitutes the primary
motivation for designing information management systems for HTS data. However,
an analysis of the HTS process highlights further critical challenges an information
management approach needs to address in this domain. These include:

1. Developing efficient techniques for data processing and analysis;
2. Capturing and presenting a process or workflow-centric view of the

information as well as an information-centric view of the information;
3. Modeling heterogeneity in the information arising possibly due to the

presence of different data types (physical heterogeneity) or different ways of
organizing various parts of the available information (logical heterogeneity);
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4. Modeling evolutionary data as experimental logic changes;
5. Developing novel paradigms that combine visualization and querying to

support interactions (query-retrieval) as well as assimilation of the data.

At the current state of the art, industrial research and development in the area of
drug discovery data management has lead to a few systems [5–7] that can store large
volumes of drug discovery data, potentially involving millions of molecules tested
across hundreds of high-throughput screens as well as data from later stages. In con-
trast, the scope of academic research has typically been limited. For instance, there
exists a marked paucity of publicly available systems for management of drug dis-
covery information. Furthermore, in spite of the obvious scientific importance and
broad impact of drug discovery, there is little computer science research in issues
associated with high-throughput drug discovery data processing, data management,
and paradigms for user-data interaction.

Towards addressing this goal, in this chapter, we present our investigations
towards the development of an information management system for managing
high-throughput screening data from drug discovery. Within this research, we con-
sider three key aspects of the information management problem: data processing,
data modeling for storage and retrieval, and paradigms for user-data interaction.
Based on our research, we have developed a prototype information management
system for high-throughput screening, which is validated through its application in
antimalarial drug discovery. While we use the context of antimalarial drug discov-
ery to describe our research, it should be noted that our research results extend to
management of information in other disease-oriented settings. We begin this chap-
ter in Section 11.2 with an overview of the current research in designing informa-
tion management systems for drug discovery. A brief description of antimalarial
drug discovery is presented in Section 11.3, which is intended to provide readers
with the necessary biological background and motivate the ensuing description in
light of a specific context. Next, Section 11.4 presents an overview of the system
architecture. Using the context of antimalarial drug discovery, Section 11.5
describes a typical HTS workflow and discusses details of data formats and data
preprocessing algorithms. Section 11.6 describes the data model that lies at the
heart of the proposed system and shows how its design is motivated by the key
information management challenges in HTS. This is followed by a description of
the user interface that acts both as an information visualization tool as well as an
interface mediating user-data interactions in Section 11.7. We conclude this chapter
in Section 11.8 by discussing the contributions of this research and future goals.

11.2 Prior Research

The development of information management systems for drug discovery has been
the focus of researchers in both academia and industry. The problem of small-mole-
cule query retrieval and structure-activity modeling has received considerable atten-
tion both in academic and industrial research (see, for example, [8, 9] and references
therein). From the information management perspective, an anticancer drug discov-
ery database has been developed that screens a large number of compounds in vitro
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against 60 human cancer cell lines from different organs of origin, and each tested
compound is characterized by its “fingerprint” values [10]. Various statistical and
artificial intelligence methods, including component analysis, hierarchical cluster
analysis, multidimensional scaling, neural network modeling, and genetic function
approximation, can be used to analyze this large activity database. Also, researchers
have employed data automation using a multitier scheme (HTDS). In such architec-
tures, the data processing tier produces reports and deposits the results into a data-
base. The next tier is centered on a structure-property database and operations
related to data mining or analyses can also be performed. Techniques for processing
data from biological screens have also been the focus of software tools [11]. Among
industrial research and development in this area, IDBS solutions provide a platform
for information management across the full spectrum of drug discovery activities,
starting from initial data capture, to long-term data management including results
analysis and reporting [6]. MDL’s Chemscape Server and Chime-Pro family of prod-
ucts are an integrated set of tools for chemical structure illustration, communica-
tion, and database searching [7]. Accelrys offers CombiMat, a data management
system for materials science high-throughput experimentation (HTE) that supports
the high-throughput design, characterization, testing, and analysis of materials sam-
ples that can be shared throughout an organization [5]. BACIIS uses a semantic
data model to integrate dynamic, heterogeneous, autonomous, geographically
distributed, and semistructured Web databases focusing on total data source
transparency [12, 13].

11.3 Overview of Antimalarial Drug Discovery

Malaria is a devastating disease that claims more than 1 million lives annually. The
majority of these deaths occur in children under the age of 5 in Sub-Saharan Africa.
The most prevalent and lethal form of human malaria is due to the protozoal para-
site, Plasmodium falciparum. P. falciparum has three distinct life-cycle stages: sex-
ual reproduction occurs in Anopheles mosquitoes; a transition stage of asexual
reproduction occurs in the human liver; and long-term asexual reproduction occurs
in human erythrocytes. The parasite is transmitted to humans via a bite from its
insect host, proceeds to the liver where it multiplies, and then exits the liver and
enters the bloodstream. Methods of reducing the number of deaths caused by
malaria include control of the insect vector (use of DDT), prevention of transmission
to humans (vaccines), and rapid clearance of the parasite once transmitted
(antimalarial drugs). Mosquito control successfully eradicated malaria from North
America, however the disease is still endemic in tropical regions, including Africa,
Central and South America, and Southeast Asia. Despite significant efforts, no com-
mercial vaccine exists for widespread use in endemic regions. The burden, therefore,
falls on antimalarial drugs to limit the death and suffering caused by the disease.

Chloroquine has been the mainstay of malaria treatment for the past several
decades. Unfortunately, the emergence of chloroquine-resistant strains of the para-
site has made this cheap and previously effective therapy practically useless in many
regions of the world. Resistant strains of the parasite are also developing for
other currently used therapy alternatives, such as mefloquine and sulfadoxine/
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pyrimethamine. The need for novel antimalarial therapeutics is critical, and the
drug discovery process is long and difficult. Potential malaria drugs must show
antimalarial inhibition activity in a series of model systems before human clinical
trials are undertaken. The first system that potential drugs are tested in is
Plasmodium falciparum cultured in human erythrocytes. Compounds that inhibit
growth of the parasite in culture at low concentrations are then candidates to test in
rodent models of malaria. Rodents are not susceptible to infection by Plasmodium
falciparum, but are susceptible to malaria infection by other species of the genus
Plasmodium. Following favorable behavior of the potential drug compounds in
rodent models, various larger animal models must be pursued before human clinical
trials. Our work focuses on the identification of potential new antimalarial
therapeutics at the preanimal model stage.

There are three main strategies of antimalarial drug discovery and development
at the preanimal stage. One strategy is to synthetically alter the chemical structures
of known antimalarial drugs (e.g., chloroquine) in order to recover efficacy
[14–16]. Another strategy is to develop small molecule compounds that inhibit the
normal action of specific parasite enzymes required for survival. A third strategy is
to perform large-scale screening of small molecule libraries against the parasite cul-
tured in human red blood cells to identify completely novel potential drugs with
unknown mode of action. This third strategy is particularly important for identify-
ing completely new chemical scaffolds for antimalarial drug design. Large com-
pound libraries can be tested for inhibition activity against malaria cultured in
erythrocytes with a high-throughput screening assay. One assay that is well suited
for high-throughput screening of blood cells is a flow cytometry-based inhibition
technique that is outlined in Section 11.5.

11.4 Overview of the Proposed Solution and System Architecture

Our research in data management for high-throughput drug discovery centers
around the development of a system called FreeFlowDB (enabling the “free flow” of
information between different stages/aspects of drug discovery). The proposed sys-
tem takes a multiple perspective view of the problem and supports data processing,
data storage, and highly intuitive interactions with the data. FreeFlowDB has been
implemented as a Web-based application running on an Apache Web server. The
data is persisted in the backend using MySQL and Berkeley DB XML databases.
The system is organized using a three-tier methodology such that the Web tier (pre-
sentation), business logic, and data access layers are loosely coupled.

The Web tier primarily consists of the presentation logic. The middle tier is
responsible for handling all the calls from the Web tier and it encapsulates the busi-
ness logic for the application. The data access layer is responsible for persistence of
data. This layered approach serves well from a maintenance and scalability
perspective.

For the process flow, FreeFlowDB is materialized using custom modules built
on open source tools. Figure 11.2 depicts a high-level representation. The open
source components are comprised of: (1) Apache Web server configured for PHP for
hosting dynamic Web content; (2) Java bridge for PHP to enable communication
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from PHP to Java; (3) Tomcat servlet container; (4) MySQL open source relational
database; and (5) Berkeley DB XML open source database. The custom modules
developed for FreeFlowDB (described in the following sections) are comprised of the
following:

• Data Loader and Data Processor: This is an important component of the Web
tier and is implemented in PHP.

• Plate Builder/Viewer: This is implemented as a Java applet in order to provide
a much richer set of GUI controls and client-side dynamic behaviors.

• DB Interface: Serving as the middle tier of FreeFlowDB, it acts as the control-
ler in the process flow of the system. It is responsible for all the business logic
and delegates database calls to the appropriate DB module.

• Data Access Modules: These comprise the data access layer and are imple-
mented using Java JDBC and Java-on-XML technologies.

11.5 HTS Data Processing

11.5.1 Introduction to HTS

High-throughput screening is a key step to reduce cost and time in the drug discov-
ery process. A large number of compounds in a chemical library, ranging in size
from 25,000 to 500,000, can be simultaneously screened for efficacy against a bio-
logical target in a multiwell tissue culture plate. A single plate can consist of 96, 384,
1,536, or more wells in which the biological target, reagents, and drug compound
are placed for screening. An example of a 96-well tissue culture plate is shown in
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Figure 11.3. With automated technology, several hundred plates can be screened
each day [17]. Intuitively, the number of raw data files generated by HTS can accu-
mulate rapidly and thus creates challenges for the storing and processing of data for
further analysis. Therefore a system to provide an efficient way to capture and pro-
cess data collected from these high-throughput drug screening experiments is
necessary to facilitate drug discovery research.

11.5.2 Example of HTS for Antimalarial Drug Screening

Researchers screen hundreds of new compounds against various malaria strains and
use flow cytometry to detect the effectiveness of these compounds. The process for
doing so involves plating malaria-infected and uninfected red blood cells in 96-well
plates. Growth inhibition of malaria strain P. falciparum cultures may be quantified
using a fluorescent-active cell sorting (FACS) assay [18, 19]. Cultures of P.
falciparum are grown in purified human erythrocytes and supplemented RPMI
1640 media. The erythrocytic lifecycle of P. falciparum is 48 hours. Synchronous
cultures of parasite of known parasitemia and hematocrit are incubated for 72
hours in the presence of potential drug compounds. After incubation, the erythro-
cytes are fixed and stained with a fluorescent DNA-intercalator, or a fluorescent
DNA binding molecule. The fixed and stained cells are then analyzed on a flow
cytometer, which detects single cell fluorescence. Since erythrocytes do not have
DNA, the dye will stain only those cells infected with the parasite. Counting the
number of infected versus uninfected cells by flow cytometry allows for quantitative
determination of drug-treated parasite growth relative to control cultures without
the drug. All of this is done in high-throughput using a 96-well plate format.

The flow cytometer produces a series of binary files, each representing raw data
collected for one well of a multiwell plate. Data contained in the binary files
includes a record of each event, or cell, and the properties that were recorded for
that event. Properties such as cell size, cytoplasmic granularity, cell shape and
aggregation, and fluorescent intensity are all recorded. In the context of this particu-
lar assay, the fluorescent intensity of each cell is of greatest interest to researchers
because it is the quantifiable measure of inhibition of parasite growth.

The processing of raw data files from HTS screening involves a data loading
and processing step. This step is performed by the three modules described next.
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Data Loader Module The Data Loader module provides an efficient mechanism
for a user to upload binary files generated from a flow cytometer. The user creates a
compressed data file containing all the binary data files generated by the flow
cytometer and a mapping file that specifies the association of these binary files to
their well location on the plate. In the Data Loader user interface, shown in Figure
11.4, a researcher can specify the following information related to the uploaded zip
file:

• Plate name;
• Plate description;
• The location of the zip file selected either through a drop down menu (if the

data file is preuploaded) or through a file chooser.

The Data Loader module ensures that the plate name is unique in the database.
The binary data files in the zip file are then extracted and stored in a designated
directory on the server. Only the file pointer of each binary file is stored in the data-
base. Since an accurate association of the binary files and their respective well loca-
tions is important for later data analysis, the Data Loader will check if the number
and name of the binary files uploaded to the system match the information stated in
the mapping file.

Plate Configuration Module After storing the binary data files from the flow
cytometer via the Data Loader module, it is essential to collect and track the experi-
mental data of each well for the corresponding raw data files. For this antimalaria
drug screening assay, experimental data such as drug ID, drug concentration,
malaria strain grown, and the cell type is captured. The Plate Builder module dis-
cussed in Section 11.6 illustrates a powerful virtual plating environment for users to
provide such experimental data to the system for later analysis.

Data Processor Module Once both experimental data and binary data files of a
plate are entered in the system, the Data Processor module can be used to analyze the
data. In the context of the antimalarial assay, the indicator of interest is called the
Parasitemia value and is defined as the percentage of the infected cells that survive in
the presence of the drug compound. The reader may note that this value is directly
correlated to the effectiveness of a drug. Computing the Parasitemia value involves
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analyzing the fluorescence intensity of cells infected with malaria and subsequently
filtering the data using quality control parameters defined for the assay.

It should be noted that the Data Processor module can hold different algo-
rithms, each designed for a specific assay. For instance, in a cancer drug discovery
setting, an algorithm can be designed to calculate the ratio of live and dead tumor
cells after a potential drug is supplied. Subsequently, the mean and standard devia-
tion of data points from the control assay and the experiment can be analyzed using
Z-factor analysis [20]. Next, this algorithm can be uploaded in the Data Processor
Module and appropriately applied to the data.

The selection of parameters for analyzing a given assay is done using the Data
Processor interface shown in Figure 11.5. In context of the antimalarial assay, for
example, a user can specify two types of parameters:

1. Process parameters, which include: the window size and the threshold, used
for data filtering;

2. Quality control (QC) indicators, including the minimum number of events
captured per well and the percentage of allowable filtered data.

In the following, we present detailed description of the data processing steps
involved in the antimalarial assay. Three major components of this processing step
are:

• Calculating the gating value;
• Calculating the Parasitemia value;
• Displaying the QC indicators.

Calculating the Gating Value(s) Fluorescent intensity (FI) values are captured by
the flow cytometer for every event. In this context, an event is defined as the passing
of a single cell through the cytometer. The FI value is often noisy and high, espe-
cially during the starting and ending phase of the measurements, as shown in Figure
11.6. The data is therefore preprocessed and filtered before calculating the gating
value. The data is first censored by the window size and threshold factor specified so
that outlier FI data are filtered out. The overall median FI value of all events in the
binary file is calculated next. A shifting window of size “m” (meaning “m” number
of consecutive FI readings) is then used to analyze the FI values. If the average FI
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value within the window size is greater than the value of overall median FI multi-
plied by the threshold factor, all events, or cells, within that window are eliminated.

In order to determine an FI value cutoff, a gating on the FI reading is used. If the
FI value of a particular event is higher than the gating value, it means that an
infected cell is recorded. Ideally, an uninfected cell should have an absolute zero FI
value. However, it is not easy to achieve an exact calibration of the measuring equip-
ment and avoid an autofluorescence problem. In reality, an uninfected cell can gen-
erate a very small measure of fluorescence. In order to minimize the effect of
background noise, the gating value is determined empirically as the FI value at the
lowest 5% among all recorded events when arranged in descending order. Usually,
the FI gate is calculated based on redundant uninfected control wells to enhance
accuracy.

To summarize, the gating value is calculated only on uninfected control wells,
which are specified in the plate configuration step by the Plate Builder. The FI values
in each control well are sorted in descending order. The gating value of a control
well is then computed as the FI value that is in the (0.005 * number of events in well
+ 1) position of the sorted list. The final FI gating value of the experiment is the aver-
age FI gate value obtained in all control wells.

Calculating the Parasitemia Value The Parasitemia value is computed as the
percentage of the number of infected cells over the total number of cells in a well.
With the average gating value computed from multiple control wells, the number of
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infected cells in a particular well is obtained by counting the events of all FI values,
after filtering the data points that are greater than the gating value. The resulting
Parasitemia value of that well is then stored in the database. Intuitively, a
higher Parasitemia value is an indication of a less effective drug. The formula to cal-
culate Parasitemia is:

( ) ( )
Parasitemia

Number of events that FI value FI gate

Total
% =

≥
number of events after data cleaning

× 100%

Displaying the QC Indicators The QC indicators simply serve as a way for the
user to specify acceptable cutoff values so that the data outside the range can be
flagged. For each well, the QC indicators are calculated and displayed alongside the
Parasitemia value to show the validity and trustworthiness of that measurement. If
the number of events collected in a well is less than the requirement specified by the
user, the Parasitemia value is highlighted to alert the user of the fact that it was com-
puted based on insufficient data. Similarly, the percent of data that has been filtered,
or removed from consideration, provides clues to the user about the reliability of the
instrumental readings for a well. A user can then either decide to tolerate the defi-
ciency or discard the data.

Once all three processing steps are finished, the number of events and the
Parasitemia value for each well of the plate are stored in the database. Such infor-
mation can be used to detect trends in the data during plate analysis. Figure 11.7
shows an example of the processed data.

11.6 Data Modeling

The key challenges facing database design for HTS include:

• Schema extensibility: Different HTS assays have different data organization
logic, requiring different schemata. Further, changing a research approach
even within a specific HTS assay can lead to changes in the experimental
parameters (e.g., assays, organism to be researched). Schemata for storing
such data should therefore be inherently extensible.

• Data heterogeneity: A drug-discovery project often involves different assays.
This introduces heterogeneity in the data that needs to be tackled. Here, our
notion of heterogeneity includes both physical heterogeneity [21], since the
data elements present in the databases are stored as different data types (e.g.,
numbers, images, structures, visualizations), as well as logical heterogeneity
due to possibly different logics of data organization inherent to each assay.

• Support for data interaction: Owing to the complexity in the data, there exists
a need to provide user-information interaction paradigms that are focused not
just on interactive query retrieval, but also on aiding information visualiza-
tion, visual-data analysis, and assimilation.

• Supporting a dual data model: There is a need to support a data model that is
both workflow-centric and data-centric owing to the volatile nature of data.
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In order to address the database extensibility issue in the current setup, an XML
database was implemented in conjugation with the relational database. An XML
database is not constrained by the static structure used by any relational database
like fixing the characteristics (columns) as well as the data types of any particular
entity (table). This is a requirement owing to the reasons discussed earlier.

The problem of heterogeneity was solved using the generic APIs (to serve the UI
demands) and wrapper classes over the two databases being used (to query the data-
bases separately). For example, a call for getting plate information can be serviced
by the database interface by delegating the call to appropriate database(s). Finally,
FreeFlowDB was designed support a workflow-oriented environment rather than
simply being data-centric. This environment is described in the following.

The FreeFlowDB database is designed to reflect the user workflow and aid in
workflow-dependent data management. To ensure this, the system was designed to
support different stages of the HTS workflow as described here:

• A user creates an experimental plate by uploading the raw data to the
FreeFlowDB server and subsequently doing the virtual plating using the GUI
provided by FreeFlowDB. This step stores the complete plate information into
the database which includes the plate metadata and the configuration infor-
mation for each well inside the plate (well metadata). The raw data related to
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each well is persisted in the file system along with any associated pointers or
metadata.

• The user can then use the system to process the plate by providing the process-
ing parameters (e.g., window size, percentage of plate data that has been fil-
tered out, threshold value). The processed data as well as the processing
parameters are subsequently stored in the database. The processing parame-
ters are stored as plate metadata, while the processed results are stored as well
properties in the database. These are used to visualize the information at the
plate level.

The process can be described diagrammatically in Figure 11.8 which shows: (1)
data entry from the flow cytometer; (2) storage of the experimental data input dur-
ing plate configuration; and (3) data generation by preprocessing the plates. In addi-
tion to its workflow orientation, FreeFlowDB is also designed to support a
data-centric perspective. In this context, the key data in HTS experiments include:

• Descriptive experimental plate-related information;
• Information related to each well in any experimental plate;
• Experimental protocols;
• Processed plate results;
• Miscellaneous auditing information like time and owner for an experiment.
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11.6.1 The Database Design

The database is designed such that most of the data specific to the experiments is
stored in the database itself (see Figure 11.9 for the UML diagram). Additionally,
the actual binary result files are stored in the file system with pointers to them stored
in the database. The binary files are owned by the Web application and permissions
are set such that they cannot be modified outside of the Web application. This is
done to reduce the volume of raw data in the database, which does not need index-
ing. The sources for data input include: (1) binary result files; (2) plate configuration
files; and (3) data processing parameters entered via the user interface. Furthermore,
the data is output as: (1) processed plate visuals for drug sensitivity in each well
within the plate; (2) QC reports for each plate consisting of event counts, data pro-
cessing statistics, and gate calculations; and (3) visualization of raw data in the form
of histograms and dot plots.

The main entities in the database schema are:

• Experiment: a high-throughput screening experiment that consists of a single
or multiple experimental plate(s);

• Plate: an experimental plate that consists of 96 (or 384) wells;
• Well: a particular well in an experimental plate;
• Protocol: an entity to store complete information for each of the different

assays that are being used;
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• Strain: an entity to store information about the strain of the organism over
which research is being conducted;

• Drug: an entity to store drug details for the drugs that are being tested;
• User: an entity to store researcher information.

The process of data persistence into the database is materialized with the user
actions. A registered user has the options to create and process a new experimental
plate, examine other experimental plates (that have already been processed), create
or examine protocols (or assays) to be used in an experiment, and change the
personal information.

In order to create a new experiment, the user is asked to give details for the new
plate and upload a zip file that contains a set of binary files obtained from the flow
cytometer (which contain valuable information about the experiment conducted
that needs to be processed). Once this has been done, the plate information is stored
as relational data as a Plate entity and simultaneously some well data of the 96-well
plate is stored as a Well entity. The zip file uploaded usually contains 96 binary files
with the file extension .fcs, which are stored in the file system with pointers to them
in the relational database as an FCS_ptr entity.

The Plate entity contains a unique plate id, plate name, plate type (96 or 384),
plate description, and some statistical information about the plate that will be
stored and used when the plate is being processed later. Such statistical information
includes window size for the events, threshold value(s), the upper bound on the
number of events captured by the flow cytometer, and the percentage of noisy data
that needs to be filtered out.

The Well entity has a unique well ID for each well, well row, well column, date
of RBC culture, drug ID, drug concentration, strain ID, the binary file pointer ID,
and some other well-dependent biochemical properties of interest.

Once the user has created the experimental plate, the plate then needs to be con-
figured. The drug information, strain information, and other information such as
well dependent properties (mentioned in the earlier point) are added to the data-
base. These properties are stored in an XML database. The semistructured nature of
the XML database allows the addition of well properties, such as cell type and
malaria strain, are added by the user at the time of plate configuration. Other prop-
erties, such as the Parasitemia values, are saved after processing the plate data. It
should be noted that the use of a semistructured data model, in this context,
enhances database extensibility.

After configuring the plate, the user can proceed with the task of processing it.
The parameters to process the plate are stored in the Plate entity while the processed
results are stored as read-only well properties in the XML database, since it is
unknown beforehand what kinds of results may be expected. A sample format of
how well properties are persisted in XML is shown in Figure 11.10.

Once the processing is completed, the user is ready to view the results. This is
achieved using color gradients overlaid on the plate GUI as well as displaying data
in simple tables.
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11.7 User Interface

User experience is often undervalued in scientific applications where most of the
emphasis is placed on storing and processing data. Recently, however, with the
growing number of publicly available molecular biology Web servers [22], the
importance of usability and user experience is becoming very clear [23]. Most bench
biologists do not have the database know-how to explore their data directly. So,
they are limited by the options presented to them on the interface. For this reason,
developing scientific applications requires close collaboration between scientists and
software engineers; otherwise, important patterns in the data may be missed. This
problem is compounded as the data volume grows. Here, we explore intuitive inter-
faces for aiding in high-throughput screening experiments where a huge amount of
data needs to be addressed.

Our goal in developing the FreeFlowDB interfaces was to provide a highly inter-
active and intuitive environment for interacting with large amounts of HTS data.
The Plate GUI component of the FreeFlowDB application provides a rich graphical
interface serving two main purposes. First, it provides an intuitive interface for cap-
turing details of the experimental design, known as Plate Builder. Second, it provides
a unique method for visualizing both the input data (experimental parameters, such
as drug and drug concentrations) and the output data (numeric values calculated by
the flow cytometer), known as Plate Viewer.

An extensive amount of metadata related to the experimental protocol and
design needs to be captured in order to fully explore the generated data. For
instance, in the high-throughput antimalarial assays using 96-well tissue culture
plates, the configuration of experimental samples and controls need to be captured
so that the data generated from laboratory automation equipment can be associated
for more advanced data analysis and mining. Lab Information Management Sys-
tems (LIMS) are commonly used to track samples, experimental design, and results,
but these are usually developed to generically handle laboratory information and are
oftentimes difficult to integrate with specific laboratory instruments [24]. Providing
an intuitive interface, modeled after the laboratory techniques being conducted,
would greatly enhance user experience, thereby promoting accurate and thorough
data entry.

Plate Builder provides an intuitive interface for the user to convey experimental
parameters directly to a relational database. The interface provides a graphical rep-
resentation of a 96-well plate, allowing the researcher to use a similar workflow for
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data entry as what is used for the tissue culture experiment. Figure 11.11 shows the
Plate Builder interface in “configuration” mode, which allows the input of four key
parameters in this experiment: drug ID, drug concentration, malaria strain grown,
and the presence or absence of red blood cells. Selection of an entire row or column
of “wells” is available for quick and intuitive data entry.

On the other hand, Plate Viewer provides a unique approach for visualizing the
data collected from the flow cytometer. Generated, numeric data, such as events
(the number of cells collected in the well) and Parasitemia calculations (a measure of
the degree of parasite infection in the sample) can be visualized on the 96-well plate
interface. The advantage of doing this is that positional patterns can be quickly
detected. For instance, Figure 11.12 illustrates the Plate Viewer interface in “analy-
sis” mode. The events (or cell counts) are normally given as a gradient of the color
red, not shown here. From this view, it is very apparent that there is a correlation
between the number of living cells present in a well and the position of the well on
the plate. The measure of events in this particular experiment is used primarily as a
quality control check for the cell growth conditions and this view of the data is a
quick and efficient way to detect problems.

In assessing efficacy of a particular drug compound against the malaria para-
site, the Parasitemia values are the most important piece of data collected. These
values can also be displayed in Plate Viewer using a color gradient that corresponds
to the degree of parasitized red blood cells. Visualizing data in this manner provides
a very quick way to screen samples at a superficial level, which can then be used to
conduct more extensive analysis or experimentation.

In addition to providing visual clues about the data, Plate Viewer also allows
the biologist to directly and intuitively interact with the experimental results at a
level that would otherwise be impossible. A user can select a well of interest, and the
corresponding numeric value is highlighted. For instance, in Figure 11.12, well E7
looks particularly pale shade when compared with surrounding wells. This is an
indication that cells in this well did not grow as well as expected over the 4-day
incubation period, even though they were exposed to the same reagents and parasite
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as other wells on the plate. Selecting this well scrolls to and highlights the corre-
sponding value for the number of events. The well remains selected as the user tog-
gles between other important parameters, such as the drug ID that was added to this
well, the drug concentration, and the Parasitemia values. Since many factors affect
biological responses such as cell growth, it is critical to be able to quickly compare
various factors in the given system. Many times, much of this analysis is done pro-
grammatically using empirically determined thresholds, but human interaction is
almost always required or otherwise, important clues would be missed. Plate Viewer
provides an efficient way to do this.

11.8 Conclusions

The FreeFlowDB architecture aims to solve the problem of information manage-
ment in HTS-based drug discovery. The current prototype solves many issues associ-
ated with high-throughput screening data including controlling process flow,
managing and storing data, and providing intuitive, initial phase analysis of large
amounts of data.

Our research in this area attempts to comprehensively address the information
processing, storage, and query retrieval issues involved in high-throughput screen-
ing. While this research is presented in the specific context of antimalarial drug
screening in this book chapter, our implementation is generic and can be extended to
drug discovery directed against other diseases. Our future research is directed at
extending FreeFlowDB through novel indexing techniques as well as providing a
broader class of visualization and data interaction mechanisms. We also plan on
introducing the drug compound structures into the database and data visualization
interfaces in order to provide a complete picture of the HTS data.
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