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Preface 

Scientific disciplines evolve and mature into different areas of specialization 
to accommodate new knowledge and methods that are being developed by 
the research community. The last decade has seen a dramatic change in most 
fields and the information technology has revolutionized several fields. 
Bioinformatics is the perfect marriage between computer science and 
advanced biology. Complex biological processes, macromolecular 
components and their functional interplay define the basis of living cells. 
Biological experiments that aim to reveal the complexity of cellular systems 
and biomolecular functions produce huge volumes of data or information 
that needs to be efficiently handled for tangible results. Exponential increase 
in genome sequences, protein sequences, protein interactions and biological 
networks/pathways information has created a demand for efficient 
information handling. This led to the birth of the field of Bioinformatics that 
aims to handle biological information using computational methods and 
algorithms. Bioinformatics is evolving into a mature field with an ever-
increasing participation from the scientific community. The past five years 
have seen a rapid increase in the number of scientific journals in this field. It 
is impossible to include all the topics of Bioinformatics in a book and still 
cater to the needs of newcomers attracted to this field. This is an 
introductory book that provides a balance between computational methods 
and biological information. Instead of delving in depth, for each topic we 
provide a broad but necessary content that will benefit readers with different 
levels of expertise. 
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Chapter 1  

Introduction to Biological Systems 

Claude-Henry Volmar, Nikunj Patel, Amita N. Quadros, Daniel Paris, 
Venkatarajan S. Mathura, and Michael Mullan 
Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA 

Abstract: Living organisms are composed of macromolecules like DNA, RNA, proteins, 
and carbohydrates that dictate various processes. This chapter provides a 
glimpse of biological macromolecules and their interplay resulting in 
biological process or pathways. 

Key words: Proteins, Amino acids, DNA, RNA, Cell signaling, Biological systems 

1. Molecules of Life 

Biochemical molecules such as deoxy ribo nucleic acid (DNA), ribo nucleic 
acid (RNA), proteins, carbohydrates, and lipids are fundamental for cellular 
organization and their complex interplay with each other dictates various 
aspects of living things. They enable a systematic execution of numerous 
biological processes in a defined manner to maintain life at the cellular level 
(Kitano, 2002; Noble, 2002). The genetic materials (DNA and RNA) are 
tightly regulated in organisms. At any given moment, organisms have to deal 
with different pressures (internal or external) by controlling various 
biochemical molecules thus maintaining a balance or in other terms, 
homeostasis. The proper function of biochemical molecules is crucial to the 
survival of any given organism. Since mutations and other modifications 
caused by selective pressures are sometimes irreparable, organisms often 
have to adapt in order to survive and pass on their genes to the next 
generation. Organisms, therefore, evolve. The mechanisms involved in such 
a difficult task as maintaining the basic life of an organism are very 
complex. Regulation at the molecular level is essential for the maintenance  
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of life at the cellular level. Problems at the molecular level often result in 
physiological alterations that in turn affect homeostasis of the whole 
organism. 

The life of an organism is mapped in its genome, a long sequence of 
nucleic acids that consists of the entire set of chromosomes of the organism. 
Genes are a stretch of nucleic acids, which represent a functional aspect of 
the genome. Each gene codes for a limited set of proteins. The same genes 
may be found in very distant animals such as a cow and a jellyfish, but their 
regulation (control of the activity of those genes) may be different and 
appears to be of utmost importance. Cellular processes such as apoptosis or 
programmed cell death are encoded within the genome of individual 
organisms in a complex manner. With the recent sequencing of the human 
genome, mankind has for the first time the opportunity to attempt to 
understand the involvement of the genes in sequence of events involved in 
the development of an organism (ontogenesis) as well as in the etiology of 
various diseases. RNA is the product of the transcription of DNA and is then 
translated into polypeptide, which folds into a functional form called protein. 
Any mutation in DNA, if not repaired by the various polymerases, may 
result in the transcription of faulty RNA resulting in a wrong protein being 
translated lacking its original activity. This may cause major problems such 
as protein aggregation and misfolded proteins, which are not degradable and 
result in fatal diseases. Naturally occurring single nucleotide polymorphism 
(SNP) among human population may influence gene function and expression 
in individuals. Functional variants or genetic changes like SNPs that alter 
amino acids in proteins, gene expression, and gene splicing are of great 
interest. The first step of regulation is trying to fix problems at the DNA 
levels. The next step is to mend at the RNA level through gene splicing and 
then at the protein level via proteosome/ubiquitin pathways. In eukaryotes, 
higher-level organism, DNA is transcribed to RNA (Pre-mRNA) that 
consists of introns and exons. The exons possess the codes that will be 
translated into proteins whereas the introns are eventually cut out through 
gene splicing. The resulting RNA is referred to as messenger RNA (mRNA). 
This messenger RNA may or may not get translated into peptide that folds 
into a functional protein. 

2. Nucleic Acids: DNA Versus RNA 

Nucleic acids are made of long chains of nucletotides that consist of 
nitrogenous base, a sugar moiety, and phosphodieseter connections. 
Deoxyribonucleic acid (DNA) is basically a sequence of nucleic acids that  
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This knowledge was crucial in understanding the process of heredity. 
DNA has a semi-conservative replication (Meselson and Stahl, 1958). The 
double helix opens up (in a fork-like fashion) and each strand serves as a 
parental template for replication of the DNA. The replication occurs from 5’ 
to 3’ by DNA polymerase. Each daughter strand ends up being the 

 
exists as a double helix. It consists of the nitrogenous bases adenine (A), 
thymine (T), cytosine (C), and guanine (G) (Watson and Crick, 1953). 
Adenine and guanine are purines whereas Thymine and Cytosine are 
pyrimidines (Figure 1.1). In the DNA double helix, purines always pair 
with pyrimidines by weak hydrogen bonds. This pairing is based on the 
Watson and Crick complementation of A-T and G-C. This pairing results in 
a double helix with a constant diameter of 20 Angstrom (Å), with a 
complete helical turn every 34 Å, and consists of 10 bases per turn. Each 
branch of the DNA double helix consists of a stretch of nucleotides 
(nitrogenous bases attached to a sugar phosphate backbone). The two 
branches are then held together via hydrogen bonds between purines and 
pyrimidines that are on opposite sides. 

Figure 1.1 Nitrogenous bases and nucleotides in DNA. 
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3. Understanding Proteins: Sequence–Structure–Function 

Understanding a protein involves understanding its sequence, structure, and 
function. Primary sequence of a protein can be represented by 20 unique 
alphabets. Individual properties and standard residue codes for each of these 
amino acids can be obtained from the following website: http://www.imb-
jena.de/IMAGE_AA.html#Properties. Studies have shown that amino acids 
can be exchanged with each other without compromising changes in the 
structure (Azarya-Sprinzak et al., 1997; Benner et al., 1994; Gonnet et al., 
1992; Johnson and Overington, 1993; Jones et al., 1992; Naor et al., 1996). 
Such exchanges are possible because amino acids share similar physico-
chemical properties, and changes within similar groups are tolerated (Taylor, 
1986). The degree of substitution at a particular residue position depends on 
the functional role and the environmental location of the residue in the 
folded form of the protein (Azarya-Sprinzak et al., 1997). Due to this, a 
number of slightly different sequences may adopt similar structure 
(divergent evolution) and function. If sequence, structure, and function of a 

complement of a parental strand. Subsequently, each replicated DNA 
fragment has one parental strand and one daughter strand, hence the term 
semi-conservative. The genetic make-up of an individual is termed 
genotype. Most of the DNA sequences among individuals are conserved but 
genetic variation in 0.1% of DNA influences disease risk, metabolic activity, 
and drug response. It is important to map occurrence of variation in the 
human genome, which can help to identify allelic polymorphisms that result 
in disease. Computational techniques that can rapidly compare entire 
genome and genes will help to identify polymorphism among population. 
Comparative genomics is a field in which DNA sequences across several 
genomes are compared to understand evolutionary aspects of biological 
processes. 

RNA consists of the nitrogenous bases adenine (A), uracil (U), cytosine 
(C), and guanine (G) and can fold into a complex tertiary structure with 
hair-pin bends that have unpaired bases. Recurring RNA structural motifs 
have been observed and attributed to biological function. Some of the 
conformationally recurring motifs include GNRA-like tetraloop, S1, S2, 
kink turns. Comparative Algorithm to Discover Recurring Elements of 
Structure (COMPADRES) is an automated approach to identify such 
recurrent motifs (Wadley and Pyle, 2004). Some of these motifs may 
contact residues in proteins that are essential for biological function, for 
example, a pi-turn motif is found on RNA that interacts with ribosomal 
protein L2. 
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set of related proteins are already known then inference rules can be derived. 
These rules can be applied to classify a new sequence for which no structure 
or function is known. Such inference rules can be a set of conserved residues 
like sequence motifs or structural motifs that is present in all the members in 
a related set of proteins (Falquet et al., 2002; Guruprasad and Shivaprasad, 
2000; Hofmann et al., 1999; Hutchinson and Thornton, 1996). The effective 
means of understanding sequence information coming out of genomic 
projects will require assigning structure and function. Protein sequences that 
have evolved from a common parent share similar structure and function. If 
the parent protein structure is known then one can apply comparative 
modeling techniques to obtain the geometric information for the unknown 
protein. Hence, relating protein sequences to their structural parent or to a 
known fold using computational techniques will be critical to handle 
biological information effectively. 

4. Biological Systems, Signals, and Pathways 

Many genes are regulated at a given time inside a cell. Regulatory proteins 
switch these genes on or off based on internal or external cue. A complex 
network of proteins, small organic molecules, and ions facilitates this 
regulatory process. For a cell to receive stimuli from the surrounding 
environment and to devise appropriate responses, signaling pathways are 
essential. Biological systems have evolved with robust dynamic response to 
a wide variety of stimuli. Wide positive and negative feedback networks 
orchestrate such a complex level function. If one considers the multitude of 
factors which are capable of eliciting cellular responses, it is not surprising 
that cellular signaling pathways are likely to be extremely complex and 
diverse. Proteins present in the extracellular environment can come from 
different sources. Those that are secreted by cells surrounding the 
“recipient” cell are known as paracrine signals, those that are released by 
organs distant from the recipient cell are known as endocrine signals, and 
those released by the cell itself are known as autocrine signals. The proteins 
in the extracellular milieu can be divided into three broad categories, based 
upon their effects in the cell: (a) those causing an immediate change in 
cellular metabolism, (b) those eliciting changes in gene transcription, and (c) 
those causing fluctuations in electrical conductivity across the plasma 
membrane. One key aspect of protein binding to the cell surface is 
specificity. Since the particular molecules binding to the cell surface are 
intended to elicit specific responses, they must be very selective in the 
pathways that they initiate. At the same time, it is equally important to 
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consider interactions between different cellular pathways, as the cell must 
respond collectively to a variety of stimuli at any one time. 

Protein signaling pathways are extremely broad and encompass many 
different signal transduction pathways. For example the Notch signaling 
pathway is critical in developmental processes co-ordinated by signal 
transducer proteins and transcriptional activators, leading to changes at the 
gene transcription level. The Notch pathway is activated upon contact with 
neighboring cells expressing Notch ligands. In humans, the ligands that are 
capable of activating notch are Delta and Serrate. These ligands are 
membrane bound; therefore, close cell proximity is required for activation of 
Notch pathways. In some ways, Notch signaling can be considered a 
“classical” pathway; the binding of Notch ligand to Notch receptor 
ultimately results in the translocation of the Notch intracellular domain to 
the nucleus and effects upon gene transcription. Notch ligands are single- 
pass transmembrane proteins, which contain multiple epidermal growth 
factors like repeats in the extracellular domain. There are several such 
signaling pathways that are responsible for widely observed biological 
processes. A large catalog of such signaling pathways is available at 
BioCarta pathway listing (http://www.biocarta.com/). Metabolic systems, 
immune response systems, protein transport, cell cycle and development are 
some of robust processes that are fundamental to complex biological systems 
facilitated by macromolecular interactions occurring at different 
compartments or organelles in the cell.  

One of the crucial events during evolution that was responsible for the 
formation of a cell was the development of an outer membrane. With further 
evolution and selection, the cells of the present day all have a plasma 
membrane mainly comprised of phospholipids. Classification of cells as 
prokaryotes and eucaryotes is based on the absence or presence of a 
functional nucleus that contains DNA. Most cells have a plasma membrane 
and other organelles such as golgi apparatus, endoplasmic reticulum, 
nucleus, mitochondria. The first organisms on earth were unicellular such as 
bacteria and protozoa. So the question that arises is what led to the evolution 
of multicellular organisms. With our current knowledge of biology, we can 
explain the origin and importance of cell–cell interactions. Cell–cell 
interactions are crucial and are part of every aspect of the cell in eukaryotes. 
These interactions were responsible for the evolution of multicellular 
organisms. When we define cell–cell interaction it means communication of 
cells for division, differentiation, reproduction, migration, apoptosis, contact 
inhibition, etc. There are over 200 types of cells in the human body broadly 
classified on the basis of the tissue they are present in, namely epithelia, 
connective tissue, nervous tissue, and muscle. Cooperation among cellular 
processes is required for the induction of an antibody response in B cells as 
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well as for the sensitization of T cells. In addition, the action of activated T 
cells on target cells is cellular interaction. Macrophages are an essential 
participant in some of these interactions. The body’s ability to replace dead 
cells and repair damage is by two distinct processes namely regeneration of 
injured tissue by parenchymal cells and replacement by connective tissue. 
The mechanism in both of these processes involves cell growth and 
differentiation as well as cell–matrix interactions. Several proteins control 
the timing of the events in the cell cycle, which is tightly regulated to ensure 
that cells divide only when necessary. The loss of this regulation is the 
hallmark of cancer, which is also due to loss of control in contact inhibition. 
Major control switches of the cell cycle are cyclin-dependent kinases. Each 
cyclin-dependent kinase forms a complex with a particular cyclin, a protein 
that binds and activates the cyclin-dependent kinase. The kinase part of the 
complex is an enzyme that adds a phosphate to various proteins required for 
progression of a cell through the cycle. These added phosphates alter the 
structure of the protein and can activate or inactivate the protein, depending 
on its function. There are specific cyclin-dependent kinase/cyclin complexes 
at the entry points into the G1, S, and M phases of the cell cycle, as well as 
additional factors that help prepare the cell to enter S phase and M phase. 
Normal mammalian cells show contact inhibition; that is, they respond to 
contact with other cells by ceasing cell division. Therefore, cells can divide 
to fill in a gap, but they stop dividing as soon as there are enough cells to fill 
the gap. This characteristic is lost in cancer cells, which continue to grow 
after they touch other cells, causing a large mass of cells to form.  

5. Technological Advances and Their Benefits to Biology 

Technological advances have helped in elucidating the sequence and 
structure of macromolecules. In 1977, Gilbert and Sanger developed a DNA 
sequencing method, enzymatic chain termination procedure, and reported the 
complete genome sequence of bacteriophage fX174 (Sanger et al., 1977). In 
1986, Leroy Hood and his co-workers designed the first semi-automated 
DNA sequencer using Sanger’s chain termination method. Commercial 
manufacture of DNA sequences by Applied Biosystems® and its later 
improvements enabled rapid sequencing capacity. Scale-up of automated 
high-throughput DNA sequencing has enabled rapid accumulation of DNA 
sequence information. In 1990, human genome and in parallel other genome 
projects that aimed to sequence the genomic information in organisms 
completely were planned (Cantor, 1990; Watson, 1990). Owing to the 
importance of information from scientific projects that determine sequence 
and structure of biological macromolecules, submission of biological 
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sequence and structure information into central databanks has become 
mandatory. National Center for Biological Information maintains genetic 
sequence database GenBank. As of August 2005 it contained approximately 
47 million sequences (Benson et al., 2005). This excludes many of the on-
going genomic sequences that are yet to be submitted. The discovery of 
double-helical structure of DNA by Watson and Crick in 1953 using X-ray 
diffraction patterns led to the understanding of its function and replication 
mechanism (Watson et al., 1953). This revolutionized biology and basically 
created the field of molecular biology. Breakthrough in protein X-ray 
crystallography came with the solution of the phase problem by Perutz and 
his co-workers in 1954 by applying isomorphous replacement technique 
(Green et al., 1954). In 1960, John Kendrew and his co-workers solved the 
first X-ray structure for myoglobin at 6 Å resolution (Kendrew et al., 1958). 
NMR was later applied to obtain the solution structures of biomolecules 
(Wagner and Wuthrich, 1979). Protein structures are deposited in the Protein 
Data Base (PDB) and currently it hosts 32,045 (as of November 2005) 
protein structures (http://www.rcsb.org) representing thousand unique folds, 
and 8625 sequences share 50% identity (Berman et al., 2000). Genomic 
sequencing has resulted in copious amounts of sequence data. DNA 
sequence alone will not be useful and understanding the complete picture 
requires annotation of these sequences. Using sampling techniques and 
extrapolation from the EST experiments, mRNA from known genes, and 
cross-species gene density comparison, it has been predicted that human 
genome consists of at least 25,000 genes (Fields et al., 1994; Liang et al., 
2000; Roest Crollius et al., 2000; Smaglik, 2000). The information content 
in genome sequence alone has limited application. Given a DNA sequence 
gene prediction and gene modeling (Reese et al., 2000) can help in 
understanding the protein that it codes for in terms of its primary sequence. 
With the expansion of sequence information it becomes essential to 
understand the structure, function, interaction, and regulation of proteins in 
order to understand cellular processes. Microarrays and proteomic 
technologies enable large-scale study of transcriptome and the proteome, 
respectively. In this century, technology development has enabled scientists 
to have necessary tools to study complex biological systems and process. 
Such studies will shed more light into the complex process underlying every 
living organism. 

6. The Role of Bioinformatics in Big Picture 

In the above sections, we provided a glimpse of biological organization and 
complexity. Scientific community is still unraveling many features of life 
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using advanced technologies. In recent years, biological science has seen 
two fields emerge, genomics and proteomics. These fields are rapidly 
advancing, and bioinformatics provides the tools to analyze and interpret the 
vast amount of data that is surging. Handling and analyzing biological 
information is the subject of computational biology and bioinformatics. 
Computational tasks faced in biology can be broadly divided into selection 
and classification problems. Classification involves assigning a member to a 
set or subset that has some defined properties. For example, given a DNA 
sequence, the classification algorithms attempt to address whether the 
protein it codes for is a tyrosine kinase. On the other hand, selection 
algorithms are involved in data mining for example, identifying a DNA 
repair-related protein or a serine protease from genomic sequence. To deal 
with these types of problems first of all we need data sets that are 
accumulated and curated by experts. Next we need algorithms and specific 
software tools that can provide necessary search, score, and analyze 
biological information. Chapter 2 defines some of the widely used 
algorithms. In order to design tools, a bioinformaticist is expected to write 
effective and deliverable programs. We describe in Chapter 3 scripting 
languages and database programs that can be used to design simple 
programs or prototypes that can be delivered over the web. Chapter 4 
describes some of the widely available biological information collection in 
public databases. Chapters 5, 6, and 7 provide details of biological sequence 
and structure analysis with emphasis on proteins. Chapters 8 and 9 briefly 
give overview of genomics and proteomics field. With vast amount of 
information available in journals, biological text mining, and semantic 
ontologies for organizing this information is gaining importance. Chapter 10 
provides text-mining methods. Chapters 11, 12, 13, and 14 describe practical 
applications and biological problems that can be studied using 
bioinformatics tools. 

7. Exercises 

1. Molecular circuits and electronic circuits have feedback controls. 
Identify biological signaling pathways and electronic circuits that have 
positive- and negative-feedback. Predict what will happen if such 
feedback regulations are perturbed. 

2. Identify five different signaling pathways and discuss their importance. 
3. What are viruses? Name few viruses that infect bacteria. How do viruses 

replicate? Describe some perturbations caused on a biological system due 
to virus infection. 
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4. Proteins or peptides can function as hormones, enzymes, and 

transporters. Identify examples for each of them. Compare and contrast 
glycoproteins and proteoglycans. 

5. Describe how proteins are translated and sorted to different organelles in 
eukaryotes. Compare and contrast this with protein synthesis in 
prokaryotes.. 

6. Orthologs are genes that have evolved across organisms that generally 
have conserved function. Paralogs are genes that have evolved within 
organism due to duplication events. Identify orthologs and paralogs in 
globin gene. 
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Abstract: This chapter introduces programming methods and languages that help 
beginners to learn essentials of computer programming. Two interpreted 
languages: Perl and PHP are introduced with examples. A popular open source 
database, MySQL is also included. Additional web-pointers are provided. 

Key words: Perl, PHP, MySQL, RDBMS 

1. Purpose 

These days most modern curricula include computer programming concepts 
and fundamentals. Not to warrant this assumption about all readers, this 
chapter is included as a way to pick up techniques for those who haven’t 
done programming. We introduce two interpreted scripting languages that 
are widely used in developing bioinformatics applications and MySQLTM 
database. Scripting languages are powerful yet easy to learn. We outline two 
scripting languages: Perl and PHP. Pointers are provided to set up a web-
server on a Linux platform. After reading and working through all the 
exercises in this chapter, a reader will be able to roll out their database-
driven bioinformatics web application! 

2. Learning Objective 

• Data types, operators, and routines in Perl or PHP 
• Simple scripts to say ‘Hello World!’ 

V.S. Mathura, P. Kangueane, Bioinformatics: A Concept-Based Introduction,
DOI 10.1007/978-0-387-84870-9_2, © Springer Science+Business Media, LLC 2009 
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• Database design with MySQLTM 
• A simple database-driven web application 

3. Perl Programming 

Perl stands for Practical Extraction and Report Language developed by Larry 
Wall. It is a powerful language that can be written in a lucid style. The 
concepts of the language and the syntax are very easy to learn and do not 
require prior programming experience to start. As a Bioinformatician, you 
will be expected to be a programmer who can get things done quickly and 
effectively. Nevertheless, Perl can be used to achieve complex tasks and 
build an entire application. There are many bioinformatics tools that have 
been written in Perl and it is a widely used prototyping language to try out 
your rough sketch or proof of principle. In short, it is a language that will get 
your job done quickly and effectively. Perl has rich pattern matching and 
regular expressions that enable text processing effectively, making it 
attractive for developing bioinformatics applications. It is essential to learn 
core of the language that includes variables, operators, control structures, 
functions, and subroutines. 

3.1 Variables 

In Perl, data-structures include scalar, array, and hash. Scalars are 
represented by a ‘$’ prefix. Scalars can store numeric or string literals. For 
example, 
 

$pH=7.5; 
$Sequence=”ACCTCCAGAA”; 
$moltype=’DNA’; 

 
String literals are enclosed in either single or double quotes. Strings 

literals that have double quotes are interpreted. Numerical literals can be 
integer or a float. Subtype conversion takes place automatically depending 
on the context or the operator. For example, 

$resPos=’5’; 
$newPos=$resPos+12; 

$newPos contains value 17. The string value is automatically converted into 
a numerical type before addition. Unlike in C or C++, where one needs to 
specify the variable types and conversions, Perl provides an easy way to 
define scalar variables. Arrays contain several scalars and can be 
multidimensional. Arrays are prefixed with the symbol ‘@’. For example, 

@protein_symbols=(“BCL2”,”APE”,”DAF”); 
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Thus, the variable protein_symbols contain a list of three protein names 
indexed by a number 0, 1, and 2. One can retrieve individual values stored in 
an array by using the scalar form of the array. 

print $protein_symbols[0]; 

will print ‘BCL2’. The index starts from 0; hence, the first array element 
stored is defined as the scalar with index 0. The last index of a one-
dimensional array can be obtained using special symbol ‘$#’. For example, 

print $#protein_symbols; 

will print 2. In case of arrays, the index is a numerical key. Perl provides a 
sophisticated data structure called hash that can index a value based on any 
key. Hashes are defined using symbol ‘%’ before the variable name.  
 

%proteinhash=( 
               “BCL2”=>”B cell lymphoma 2”, 
               “APE”=>”AP endonuclease”, 
               “DAF”=>”Decay accelerating factor” 
               ); 

 
Individual values can be retrieved by defining a scalar as: 
print $proteinhash{‘APE’}; 
This will print ‘AP endonuclease’. Special functions are available for 

manipulating both arrays and hashes. In order to obtain all the keys in a hash 
and store it in an array, one can use the keyword keys. For example, 

@proteinsymbols=keys %proteinhash; 

The above code creates a new array @proteinsymbols using the keys 
from the hash. Alternatively, if one uses the keyword ‘values’, actual 
values can be extracted from the hash. 

3.2 Operators 

 
$a=”hello”; 
$a.=” world”; 
print $a; 

 
This will print ‘hello world’. Auto increment or decrement can be performed 
by prefixing or suffixing of a variable with ++ or --. Logical operators 
include And (&&), Or (||), Not (!). Comparison operators are equal (== for 
numeric, eq for string), less than equal (numeric <=, le for string), not equal 

Standard mathematical operators like addition (+), subtraction (−), 
multiplication (*), modulus (%), and exponentiation (**) are available. If a + 
or . operator is used in the context of two strings, then it performs 
concatenation. Assignment operator = is used to assign a value for variables. 
If an arithmetic or string concatenation operator is present before the 
assignment operator, the left side value is operated with the right side value 
and a new left side value is computed. For example, 
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(numeric !=, ne for string), greater than (numeric >, gt for string), less than 
(numeric <, lt for string), or comparison (numeric <=>, cmp for string). 

3.3 Control Structures 

Perl provides various control structures like if..elsif, unless, 
while, until, foreach, and for. These commands provide 
conditional structure, looping, or cycles. There are breaking out commands 
like next, last, and exit which, if executed, breaks out of the loop or 
the program. The if structure executes if a condition is satisfied. Multiple 
if can be combined using elsif. For example, 
 

if($molecultype eq “DNA”){ 
 print “It is a DNA\n”; 
}elsif($molecultype eq “RNA”){ 
 print “It is an RNA\n”; 
} 

 
If a block of code is required to be executed while a condition is false, 

then the choice should be unless command. While and until 
statements can be applied where looping over a condition is required. The 
for statement can be used for looping some structure for a specified 
number of times. The structure of a for statement includes a starting value, 
an exit condition, and an increment operator. For example, to print 1 to 100: 
 

for($i=1;$i<101;$i++){ 
   print $i,”\n”; 
} 

 
If you have an array and would like to loop through the array values, 

foreach statement should be used. 
 
#!/usr/bin/perl 
#define a hash 
%proteinhash=( 
               “BCL2”=>”B cell lymphoma 2”, 
           “APE”=>”AP endonuclease”, 

       “DAF”=>”Decay accelerating factor” 
       ); 

#loop through an array of keys present in the hash 
foreach(keys %proteinhash){ 
 
#push command is used to push a value into an array 
#{$_} represent current element while looping an array 

push(@newproteinsymbols,$_); 
push(@newproteindescp, $proteinhash{$_}); 

} 
 
for($j=0;$j<=$#newproteinsymbols;$j++){ 

if($newproteinsymbols[$j] eq “BCL2”){ 
print $newproteinsymbols[$j],”\n”; 

} 
} 

The above code will print ‘BCL2’.  
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3.4 Regular Expressions 

Perl is a powerful program for regular expression matching. It has UNIX 
style regular expression and pattern matching. Pattern matching in Perl can 
be learned best by practising and trying to construct complex expressions. 
Matching operator evaluates the presence of a pattern or word in a given line 
and can be used in conditional statements. For example, 

$present_line=~ m/BIOINFO/; 

The above evaluates whether the word ‘BIOINFO’ occurs at any location 
in a sentence (including partial matches). If you like to find the occurrence in 
the start then: 

$present_line=~ m/^BIOINFO/; 

or to find a word at the end of a sentence 
$present_line=~ m/BIOINFORMATICIAN$/; 

The above will find the occurrence of a complete word (in this case 
BIOINFORMATICIAN at the end of the line). If you would like to identify 
poly-glutamine repeat of exactly 20, one can use special repetitive operators. 
For example, {n} that follows ‘Q’ in the pattern operation will match 
repetitive ‘Q’s exactly ‘n’ times. 
 

$present_line=”KLQVQQQQQQMMEF”; 
if($present_line=~ m/Q{6}/){ 

print “Found a trivial poly Q match”; 
} 

 

Other repetitive operators include ‘*’ (none or more), ‘.’ (any), {n,m} 
atleast n occurrences, and not more than m. Escape characters like ‘\n’ for 
new line, ‘\t’ for tab are available. Additionally, ‘\w’ represents a word, 
‘\s’ space character, and ‘\d’ for digit character. Grouping of patterns is 
possible using () or [] operators. Patterns that are present inside () will be 
matched and made available in a special variable $1, $2, and so forth 
depending on the occurrence of () in the pattern. The [] type brackets can 
be used for ‘or’ operators. For example, [ATE] means residues A, T, or E 
should occur at a position and (ATE|ALK) means the seqlet ATE or ALK 
should be present. Let’s write a motif-identifying program that detects 
phosphorylation site of Caesin II kinase. The pattern of phosphorylated site 
as documented in PROSITE (PDOC00006) should have an acidic residue 
(either Asp or Glu), which must be present within three residues from the C-
terminal of the phosphate acceptor site. The acceptor site is Ser or Thr. The 
motif can be represented in regular expression as [ST].{2}[DE]. This 
expression means that the first position (acceptor site) should have either S or 
T, followed by exactly any two residues, and finally acidic residues D or E. 

 
$seq=”AKKLVFLSDLEMMMMQQQPR”; 
if($seq= ~m/[ST].{2}[DE]/){ 

print “Possible Caesin II Kinase site is found”; 
} 
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3.5 File Handling 

available in the directory in which the program is being executed: 
open(INP,”input.txt”); 

This command will pass the input as file handle INP which can be read 
and stored in an array: 
 

@data=<INP>; 
#To close the filehandle 
close(INP); 

 
and to open a file for writing one should use the symbol ‘>’. For example, 
 

open(OUT,”>output.txt”); 
print OUT “hello world!\n”; 
close(OUT); 

3.6 Subroutines and Functions 

Subroutines can be written in Perl by passing variables or reference to 
variables. Each subroutine starts with the word subroutine followed by a 
unique name. The return command at the end of the subroutine passes back 
the values to main program. The variables passed into subroutine can be 
accessed using a special variable @ and local variables that are initialized 
within subroutine can be defined using ‘my’. 
 

($add_val,$prod_val)=operatemynum(1,7); 
print $add_val,” “,$prod_val,”\n”; 
subroutine operatemynum { 
my ($firstnum, $secondnum, $sumofnum, $prodofnum); 
$firstnum=@_[0]; 
$secondnum=@_[1]; 
$sumofnum=$firstnum+$secondnum; 
$prodofnum=$firstnum*$secondnum; 
return ($sumofnum, $prodofnum); 
} 

 
The subroutine operatemynum returns a sum and product of two 

numbers. Arrays and hash can be passed as a reference into the subroutine. 
For example, 

operateonarrayofnum(\@arrayofnum1,\@arrayofnum2); 

 

To dereference the values one should prefix the variable with ‘$’. For 
example, to access the value of the first array in firstnums: 

$value=$$firstnums[0]; 

Similarly, arrays created inside the subroutine can be passed to main 
program as a reference. 

 

‘open’ and a handler keyword. For example, to open a file ‘input.txt’ 
Files in Perl can be opened for reading or writing using the command 
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So far, a glimpse of Perl language is covered here. Readers who are not 
familiar with Perl can obtain more information at Comprehensive Perl 
Archive Network website (http://www.cpan.org). Advanced topics like Perl 
modules, classes, and other object-oriented subjects are left to the users to 
learn further.  

4. PHP Programming 

PHP (recursive acronym for PHP: Hypertext Preprocessor) is an open-source 
scripting language used (but not limited to) web development and generating 
HTML content (http://www.php.net). The idea of PHP was originally 
conceived by Robert Lerdorf, but has since been subjected to various 
changes. The current version of PHP is 5.2.1 (March, 2007). The main 
feature of PHP is that, it can be embedded into existing HTML documents 
and can turn a static page into a dynamic data-driven web application. In 
addition, PHP has a rich array of functions for pattern matching, database 
connectivity, graphics, image manipulation, XML, etc. PHP can be used in 
three different ways: 
 
•  Server-side scripting: Creating dynamic web content including forms, 

XML documents, graphics, Flash animations, PDF files, etc. 
•  Command-line scripting: Similar to Perl or the Unix shell, PHP can be 

used to perform system administration tasks, backups, parsing, etc. 
•  Client-side GUI applications: Using the PHP-GTK module, cross 

platform GUI applications can be created. 
 
In the following section, we detail about: 
 

4.1. PHP Language syntax and data types 
4.2. Creating Web Interfaces 
4.3. Accessing data from an RDBMS – MySQL 
4.4. Creating a full fledged data-driven web application using PHP and 

MySQL 
 
The examples in this text would be specific to a web application. Command 
line scripting examples would be specified otherwise. 

4.1 Language Syntax and Data Types 

Since PHP can be embedded into HTML contents, the PHP interpreter needs 
to know which of the lines of code are PHP and which are not. In general, 
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anything which is enclosed within <?php and ?> tags is assumed to be PHP 
content. Of course, the syntax of the PHP language would be checked at run 
time. Consider the following piece of code: 
 

<center>HTML code begins<br></center> 
<?php 
echo “PHP code<br>”; 
echo “Why should all programs begin with Hello World<br>”; 
// This is a comment 
/* This is also a comment */ 

?> 
<center>HTML code ends<br></center> 

 
This code instructs the PHP interpreter to consider the code between the 

PHP tags as PHP code. The result would be: 
 
 HTML code begins 
 PHP code 
 Why should all programs begin with Hello World 
 HTML code ends 
 

Now that we have seen our first PHP script in action, let us proceed to 
discuss some of the data types available in PHP. Akin to all normal 
programming languages, basic data types include Boolean, integers, floating 
point numbers, strings, arrays, and objects. PHP also has a data type called 
‘resource’ which can hold a reference to an external resource such as a 
database connection, ftp/ldap operation, etc. To quickly go through these 
data types, consider the following code snippets 
 
Boolean: Variables that hold either ‘True’ or ‘False’ values. Mainly used for 
testing truth values of certain conditions. 
 

$a_flag = True; 
if ($a_flag) 
{  // do something; } 

 
Integer and floats: Integers are signed/un-signed whole numbers (can be in 
accord with the decimal, octal, or the hexadecimal number system). Octal 
numbers need to be preceded with a 0 and hex numbers with a 0X. There are 
various functions for type conversions to and from integers.  
 

$a = 10; // un-signed integer 
$b = -23; // signed integer 
$o = 012; // octal number 
$h = 0X123; // hexadecimal number 

 
Floats can be used in the same way as integers. Data types need not be 
declared explicitly (as in C or Java). 
 

$complicated_float_number = 1.3; // float example 
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Strings: Strings are a sequence of characters (unlimited in size). A variable 
can be specified as a string in  two main ways: single-quoted or double-
quoted strings. 
 

$string1 = ‘example string’; 
echo ‘$string1’; //  
$string2 = “box of”; 
echo “I got a {$string2} chocolates”;  
// double quotes allow string parsing with variables 
echo “I got a {$string2} papers”; 
echo “where are the \”islets of langerhans\”?\n”; 
// outputs: where are the “islets of langerhans”? and a line feed. 
//Note that double quotes within double quotes need to be escaped. 

 
Similar to PHP code being embedded into HTML, the opposite is also 
possible: HTML code embedded within PHP. This is a special kind of a 
string specification called ‘heredoc’. 
 

<?php 
      // some PHP code 

print<<<HTML 
     <hr><br> 
     <table align = center border = 1> 
     <tr><td>1</td></tr> 
     <tr><td>2</td></tr> 
     </table> 
     <br> 

HTML; 
     // some PHP code 

?> 
 

 
Arrays: Perhaps the most commonly used data structure in programming is 
the array. An array holds a list of values, which can be identified by an index 
(or position). An array can either have just values or keys associated with 
values. 
 

$array1 = array(‘a’,’e’,’i’,o’,’u’); // creates an array of vowels 
$array1[0] = ‘a’; // creates the same array, although laboriously 
$array1[1] = ‘e’; 
$array1[2] = ‘i’; 
$array1[3] = ‘o’; 
$array1[4] = ‘u’;  
print_r($array1); //prints the contents “index =>value” format.  
$array2 = array(‘Japan’ => ‘Tokyo’, ‘Italy’ => ‘Rome’); 
// the above array is an associative array, similar to a hash. 
foreach ($array2 as $country => $capital){ 
     echo “The capital of $country is $capital”, “<br>”; 
}// would print each country in the array and its capital. 
for ($i=0;$i<count($array1);$i++){ 
     echo “$array1[$i],”<br>”; 
} // would print vowels.  

Accessing individual array members is possible by specifying the index of 
that value. Functions are available to sort, merge, reverse, search, etc. on 
arrays.  
 

Note that ‘print’ can be used in all occasions as ‘echo’ but not vice 
versa.  
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Objects: PHP also supports object-oriented programming. For using the 
object data type, first a class has to be created. Once that is done, any 
number of objects can be made using the ‘new’ keyword. 
 

class sqs 
{ 
     var $name =’’; 
     function name ($name1 = NULL) 
     { 
          $this->name = $name1; 
          return $this->name; 
     } 
} // once the class has been defined, objects can be created. 
$n1 = new sqs; 
$n1->name(‘ABCD’); 
echo “Welcome, $n1->name”; 

 
Resources: Communicating to an external resource can be done by using the 
resource data type. For instance, in our text, we would be providing 
examples where a database connection is needed and data is transferred back 
and forth. Depending on what kind of a database is being used, the 
connection method and the parameters to be passed would differ. For 
example, 
 

$db=mysql_connect("localhost","username","password"); 
mysql_select_db("sampledb",$db); 

 
This code creates a connection to a MySQL database using the given user 

name and password. It specifically establishes a connection to the database 
named ‘sampledb’. On successful connection, the user would be able to 
access individual tables, make joins, etc. Hence,  
$result = mysql_query(“select PROT_NAME from pdbase where PROT_ID = 

‘23228’”,$db); 

can be executed. We would discuss about database connectivity in more 
detail in 4.3.  

4.2 Creating Web Interfaces 

One of the main uses of PHP is its ability to create dynamic web content. 
PHP can be used to access form values, upload files, send cookies, set/unset 
sessions, etc. Consider the following simple HTML form: 
 
<html> 
<head><title>Simple form1</title></head> 
<body> 
<center><h4>Enter Information</h4></center> 
<form action = ‘sform1.php’ method=’POST’> 
<table align = center border = 1> 
<tr><td>Enter your name:</td><td><input type = text name = 
NAME_FIELD size = 10/></td></tr> 
<tr><td>Select favorite color</td><td><select name = FAV_COLOR> 
     <option value = red selected>Red</option> 



2 Computer Programming Fundamentals and Concepts 23
 

     <option value = green>Green</option> 
     <option value = blue>Blue</option></select> 
     </td> 
</tr> 
</table><br> 
<center><input type = 'submit name = SUBMIT1 value = 
Submit></center> 
</form> 
</body> 
</html> 

 
This code produces a form with a text field, a drop down menu, and a 

submit button. When the user enters information and clicks on submit, this 
form would look for a PHP script named ‘sform1.php’ and passes the form 
values using the POST method. But not yet! We have not created the 
‘receiving’ PHP script for this form. PHP can access form parameters (or 
values) using either the POST method or the GET method. When the form is 
submitted using the GET method, the form values are encoded in the URL. 
This is the same as the query string, which one sees in the URL (address bar) 
after a search result has been completed. In contrast, the POST method 
leaves the URL clean and passes the information in the body of the HTTP 
request. But the important difference of these two methods is that the GET 
method is idempotent and the POST is not. In simple terms, the GET method 
should be used in cases where the response page is not going to change 
(since the user can bookmark a search result URL along with the form 
values), and the POST method should be used when the content in the 
response pages changes over time – like our dynamic data-driven web 
applications.  

So, in the above example, there are  three form parameters being passed: 
the name field, color field, and the submit event. Considering the submit event 
as a form parameter may be counter-intuitive, but makes sense when there are 
several submit buttons in the same page (and they occur all the time!). Thus, a 
PHP script needs to be written which would receive the POST values and do 
something with it. The following is the sform1.php script. 
 

<?php 
if (true == isset($_POST['SUBMIT1'])) 
{ 
        $name_f = ''; $color_f = ''; 
        $name_f = $_POST['NAME_FIELD']; 
        $color_f = $_POST['FAV_COLOR']; 
 
        if (strlen($name_f) > 0) 
        { 
                echo "<b>$name_f</b> selected <font color =  
                  $color_f>$color_f</font><br>"; 
        } 
        else 
        { 

echo “<b>Anonymous</b>  
selected <font color = $color_f>$color_f</font><br>"; 

        } 
} 
?> 
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The code is enclosed within the PHP tags. First, we need to make sure 
that the user clicked the SUBMIT1 button. This check is needed if there 
were multiple forms in our HTML code, but even so, it is good practice to 
make this check. $name_f and $color_f would store future values of the 
NAME_FIELD and FAV_COLOR. Since we use the POST method, we 
need to receive the form values using the $_POST. If the user had entered a 
User1 as the name and selected green color, ‘User1 selected green color’ 
would be displayed on the browser. If there was no name specified, 
‘Anonymous’ is used instead. This is just to demonstrate that one could 
perform virtually any kind of checks and conditions here. This kind of error-
checking is inevitable, since most of the time the PHP script continues to 
take the data from the form and proceeds to populate a database table. Also 
note that in this case, the nameless HTML code was saved as a separate 
entity, as was the sform1.php file. However, one can also combine both of 
them into one file (in fact that is the common way) and execute it as a PHP 
file. Notice that we liberally used HTML tags inside our PHP code. In this 
text, we have studied about PHP, a popular programming language, and its 
utility in building web applications. This is only an introduction and a quick 
start guide to PHP for building data-driven web applications. If one is more 
interested, www.php.net and www.mysql.com have detailed function listings 
and examples. 

5. Basic RDBMS and SQL 

Relational Database Management Systems (RDBMS) have three kinds of 
statements to maintain data. They are: 

5.1 Data Definition Language (DDL) 

They are used to define data structures in the database. Examples are: 
 

a. Create: Creating databases or tables 
b. Drop: Deleting databases or tables 
c. Alter: Change structure of a table – changing columns, renaming 

columns, etc. 
d. Describe: Display the structure of a table 
e. Use: Choose and use a particular database/table 
Usage: 
 

  // create a database 
  create database employee;  
 
  // create a table 
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create table project (PROJ_NAME varchar(20), PROJ_NO 
int(4), PROJ_DATE date, PROJ_MANAGER varchar(45), 
PROJ_STATUS blob); 

 
// delete a table 
drop table project; 

 
// delete a database 
drop database employee; 
 
// delete a column 
alter table project drop column PROJ_DATE; 
 
// add new columns 
alter table project add column PROJ_START_DATE date, 

PROJ_END_DATE date 
 
// change the type of a particular column 
alter table project modify PROJ_NO int(5); 
 
// change the table name 
alter table project rename project_1; 
 
//change column names 
alter table project_1 change PROJ_NAME PROJECT_NAME 

varchar(20); 
 

5.2 Data Manipulation Language (DML) 

They are used to manipulate data in the database. Examples are: 
 

a. Insert: Add a new record (row) to a table 
b. Select: Select a group of records from one or more tables with or 

without conditions 
c. Update: Change values of a particular record based on a 

condition 
d. Delete: Remove records based on a condition 

 
Usage: 
 

// insert new record in a table 
insert into project values (‘PROJECT 1’, 20, 

‘2005/06/06’,’MANAGER123’,’XYZ’); 
// select particular rows based on a condition 
select PROJ_NAME, PROJ_NO from project where PROJ_NO 

> 20; 
// select – using foreign keys 
select a.EMP_NO, b.PROJ_NO from employee_details a, 

project b where a.PROJ_NO = b.PROJ_NO group by 
a.EMP_NO; 

//update a row 
update project set PROJ_MANAGER = ‘TEMP_MAGR123’ 

where PROJ_MANAGER = ‘MANAGER123’; 
// delete a row 
delete from project where PROJ_NO = 20; 



26 D.N. Kolippakkam et al.
 
5.3 Data Control Language (DCL)  

They are used to administer permission and control access of data in the 
database. Examples are: 
 

a. Grant and Revoke: Grant and Revoke are used to create 
accounts and grant/revoke specific rights to a user 

Usage: 
 

// create a new user 
grant all on *.* to ‘username’@’hostname’ identified 

by ‘pass123’ with grant options; 
 
// revoke rights 
revoke all privileges from ‘username’; 

6. Web-Pointers 

 

CPAN (http://www.cpan.org) has the official and additional links to user 
contributed Perl codes and modules. ActiveState (http://www. 
activestate.com/Products/activeperl/) website contains binary distribution of 
Perl for windows. 

PHP (http://www.php.net) official home page contains directions to 
install PHP executable and configuration under different servers. Detailed 
documentation is available at the site with examples. 

MySQL (http://www.mysql.org) official homepage has the link for 
program download and complete documentation. In addition to database 
server and client programs, one can also find query browser interface. 
PHP/MySQL tutorial is available at: http://hotwired.lycos.com/webmonkey/. 
Quick reference cards for commands in PHP, MySQL, Linux, Perl can be 
obtained from http://www.digilife.be/quickreferences/quickrefs.htm.  

Bio-Perl project (http://www.bioperl.org) is an open source project that 
develops Perl based modules, classes, and routines for bioinformatics 
research. Some of the modules/classes include biological sequence analysis, 
database access, search tools, alignment, phylogenetic tree constructions (a 
dendrogram representing evolution of sequences), gene structure prediction, 
protein structure retrieval, etc. Bio-java (http://www.biojava.org) is a project 
that develops bioinformatics tools and APIs in Java framework. 

EMBOSS (http://emboss.sourceforge.net) is an open source 
bioinformatics software project that has collection of programs to facilitate 
computational molecular biology. 

Bio-linux (http://www.biolinux.org) distributes pre-compiled linux rpms 
of several bioinformatics packages for installation in linux operating system. 
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1. Introduction 

Systematic solutions to complex problems are highly desirable and 
algorithms are designed to efficiently solve them in a finite time. Rigorous 
data-analysis and computer science problems use computer programs that 
implement suitable algorithm to arrive at a solution. These include 
recursive/iterative methods, graph search algorithms, dynamic programming, 
greedy algorithms, etc. A thorough discourse on computational algorithms is 
out of scope for an introductory book but we provide here some of the term 
definitions of widely used computational methods that are frequently applied 
in the forthcoming chapters in bioinformatics. 

1.1 Classification 

The process of dividing a dataset into mutually exclusive groups such that 
the members of each group are as “close” as possible to one another, and  
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different groups are as “far” as possible from one another, where distance is 
measured with respect to specific variables or class labels (for predicting) is 
known as classification. For instance, determining whether a protein binds to 
DNA or not based on sequence and structural motifs, cancer type 
classification based on micro array expression are good examples of 
classification problems. Classification falls under the category of 
“supervised learning”. Some of the classification methods widely applied in 
bioinformatics is Decision trees, Support-vector machine based classifier, 
Bayesian Classifiers, Neural Network Classifiers, etc.  

1.2 Hypothesis Testing 

Hypothesis tests are statistical procedures for making rational decisions 
about the reality of effects. It is an inference technique where either one 
accepts a null hypothesis (Ho, e.g.: no difference between control and 
treatment group) or rejects it (that is accepting the alternative). Either one is 
true, but not both (mutually exclusive and exhaustive). Hypothesis testing is 
carried out on the observed sample data that represents characteristic 
population using test statistics. The test statistic quantifies the difference 
between normally distributed (in case of t-test) hypothetical population and 
the observed data, which can be used to obtain a p-value. The p-value is the 
probability to observe sample data assuming null hypothesis is true. A p-
value of 0.01 means that the chance of observing sample data is only 1/100 
while there is no effect or null is true (no effect on treatment). Since the 
chance of such observation is very small, we reject null hypothesis and 
conclude that there is a difference between control and the treatment group. 
Several statistics exist: t-statistic is for testing mean, F, or Chi-test for testing 
variance. Hypothesis testing is used in micro array data analysis, sequence 
analysis, etc. 

1.3 Decision Tree 

Decision trees are a simple approach to the problem of learning from a set of 
independent instances. Every node in the decision tree (except the leaf 
nodes) involves testing of a particular attribute. In most cases, the test at a 
node compares an attribute value with a constant. Sometimes, the test may 
be between the values of a set of attributes too. Leaf nodes give the 
classification labels or the probability distribution over all possible 
classifications. Decision trees are used in protein secondary structure 
prediction (Selbig et al., 1999), protein sorting signal prediction, etc.  
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1.4 Clustering 

Clustering is applicable when there is no “class-label” to predict, but rather 
when the instances need to be divided into groups. The clusters formed 
would then reflect some mechanism in the domain, which causes the 
instances to bear a strong resemblance to one another (within its cluster) than 
they do with the remaining instances (in other clusters). Since there is 
nothing to “learn” from the instances, clustering is a type of “Unsupervised 
Learning”. Clustering of genes based on expression profiles is widely used 
to interpret micro array data. 

1.5 Principal Component Analysis 

PCA is a technique that is used to simplify a dataset. For instance, one would 
be interested in reducing the dimensionality of a dataset. PCA is a linear 
transformation which chooses a new co-ordinate system for the data such 
that the greatest variance by any projection of the dataset comes to lie on the 
first axis (also called as the first principal component), the second greatest 
variance in the second axis, and so on. Essentially, a set of correlated 
variables is transformed into a set of uncorrelated variables, which are 
ordered by reducing the variability. The uncorrelated variables are linear 
combinations of the original variables and the last of these variables can be 
removed with minimum loss of information. PCA is also known as 
Karhunen-Loeve transformation. 

1.6 Multidimensional Scaling 

Multidimensional scaling can detect meaningful underlying dimensions, 
which can help explain observed similarities and dissimilarities (distances) 
between the investigated data points. Hence multidimensional scaling can 
provide a visual representation of the observed patterns in the objects under 
study. For instance, given a distance table between cities, a multidimensional 
scaling procedure can produce a map showing the relations between the 
cities in terms of distance. Multidimensional scaling has been applied to 
analyze gene correlation in micro array experiments (Taguchi and Oono, 
2005), to correlate similarity matrices with physical-chemical properties, to 
derive descriptors for amino acids (Mathura et al., 2003), etc. 

1.7 Regression Analysis 

Regression is another model extraction method in which the predicted values 
are continuous valued function rather than discrete class labels. It is a 
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statistical technique, which is used to determine the parameters of a function 
that cause the function to best-fit a set of observations (data). For example, 
dependence of blood pressure Y on the age X of a person is called as 
regression of Y on X. Regression mostly produces an optimal solution, 
where the error would be kept at a minimum.  

1.8 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a classification technique that makes 
use of a weighted sum. For each object to be classified, LDA takes a 
weighted sum of values of variables that determine the classification. For 
example, a financial institution can offer a bank loan, after determining the 
risk of default by the customer, taking salary, credit history, financial 
commitments into considerations.  LDA is mainly used for two-class 
classifications, where the data is assigned to one of the classes based on its 
characteristics.  In the previous example, a customer is either offered a loan 
or not after evaluating the above-mentioned list of criteria. Mathematically, a 
linear discriminant equation can be represented as follows: 
 

Yi = a1X1 + a2X2 + a3X3 + ……. + anXn + C 
 

1.9 Fuzzy Logic 

Fuzzy Logic is a problem-solving control system methodology which 
incorporates a simple rule based IF X and Y then Z approach, rather 
than solving the problem by mathematical modeling. It is empirically based 
and mimics how a person makes decisions. The rate of error is usually very 
low, since the system can correct itself by using a simple feedback 
procedure.  

Fuzzy logic most aptly mirrors the uncertain world by including a shade 
of “gray” whereas the binary logic of a computer by definition can 
understand only “black” and “white”.  For this reason, fuzzy logic is more 
appropriate to model non-discrete, continuous systems, which are plentiful 
in a number of fields.   Apart from control systems, where fuzzy logic finds 

 
where there are “n” number of predictor variables, “i” can take two values 
representing the two classes, and “C” is a constant. 

One good example of application of LDA in biology is the analysis of 
microarray data (Hakak et al., 2001), provided the need is a simplistic 
classification of data into two groups.  An online demonstration of this 
approach for gene classification can be found at http://www.biostat.harvard. 
edu/complab/dchip/lda.htm 
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its main application (Hayward and Davidson, 2003), it is being increasingly 
used in medicine and biology (Ibbini and Masadeh, 2005; Phuong and 
Kreinovich, 2001).   Some recent examples from the literature include the 
use of fuzzy logic in prognosis of cancer (Seker et al., 2003), tumor marker 
profiling (Schneider et al., 2003a; Schneider et al., 2003b), and gene 
expression data analysis (Ressom et al., 2003). 

1.10 Pattern Recognition 

Pattern recognition is an art of identifying patterns within previously learned 
data (a priori) or by statistical information extracted from the patterns. A 
complete pattern recognition system consists of a sensor (for gathering 
observations – data acquisition), a feature extraction module that computes 
numerical or statistical information from the observed data and a classifier 
that does the actual job of describing the features. 

The most straightforward application of pattern recognition in biology is 
to deduce similarities either at the level of DNA or amino acid sequences.  In 
fact, it was shown recently that this technique performs very well for 
analysis of gene promoter sequences (http://promoterplot.fmi.ch/) (Di Cara 
et al., 2005).  Other uses of pattern recognition include functional site 
prediction in proteins (Yang et al., 2005), gene expression analysis 
(Coberley et al., 2004; Szabo et al., 2002; Valafar, 2002), and protein 
secondary structure prediction (Oldfield, 2002). 

1.11 Bayesian Statistics 

Bayesian statistics use the rules of probabilities to make inferences about a 
parameter (Berry, 1996).  Conditional probabilities are especially used to 
describe a phenomenon in a Bayesian model.  Bayes’ theorem can be 
represented by the following equation: 

 
p(A|B) = p(B|A) x p(A)/p(B) 

 
where p(A|B) is the probability of an event A occurring knowing event B, 
p(B|A) is the probability of event B occurring knowing A, p(A) and p(B) are 
the respective individual probabilities of events A and B. The main 
advantage of Bayesian methods lie in their robustness even with partial 
information and poorly determined parameters as inputs (Eddy, 2004; 
Shoemaker et al., 1999).  Bayesian statistics have a number of applications, 
especially in genetic analysis tasks such as molecular evolution (Sinsheimer 
et al., 1996; States and Botstein, 1991), quantitative trait locus (QTL) 
mapping (Satagopan et al., 1996; Uimari et al., 1996), and linkage mapping 
(Suh et al., 2003). 
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1.12 Neural Networks 

Artificial Neural Network (ANN) is an information processing model which 
imitates the biological nervous system. The Network consists of a large 
number of inter-connected nodes called neurons, which work together in 
solving a problem. The main idea behind ANNs is learning by example. 
Every ANN is designed specifically to solve a particular problem – such as 
Data classification, Pattern Recognition, Image Understanding, etc. ANNs 
can perform adaptive learning (ability to do tasks based on training or 
experience), self-organizing (creates its own representation of the 
information it processes), and fault tolerance. ANNs are particularly suited 
for solving complex problems with non-linear relationship, which are 
plentiful in biology. For instance, ANNs have been used for elucidating drug 
mechanisms (van Osdol et al., 2000; Weinstein et al., 1992), finding active 
antisense oligonucleotides (Giddings et al., 2002), predicting tertiary 
structure of proteins (Stolorz et al., 1992), etc.  A recent interesting example 
illustrates the feasibility of using ANNs for designing genome-wide short 
interfering RNAs (siRNAs) (Huesken et al., 2005).   

Several resources, both free and commercial are available, that aid in the 
development of ANNs.  For example, the Stuttgart neural network simulator 
(SNNS at http://www-ra.informatik.uni-tuebingen.de/SNNS/) is a widely 
used software simulator with graphical network editing and visualization 
tools for developing neural networks on unix systems.  Also, the mathworks 
neural network toolbox (http://www.mathworks.com/products/neuralnet/) for 
MATLAB is a commercially available set of functions for the design, 
implementation, visualization, and simulation of neural networks. 

1.13 Hidden Markov Model 

Hidden Markov models (HMMs) are normally used to find patterns that 
appear over a space of time. For instance, if we are interested in deducing 
the weather from a piece of seaweed – “soggy” seaweed implies wet weather 
and “dry” seaweed implies dry weather. If the seaweed is in an intermediate 
state, say, “damp”, we are not sure. Another consideration (basis), which can 
be used to deduce the current weather, would be the weather on the previous 
day (previous state). So in this example, we have two states – the observed 
state (seaweed) and the hidden state (weather). Hence by combining the 
previous state with the current state, we may be able to predict the next state. 

HMMs have been used widely in pattern recognition in strings of 
indeterminate length, the prime examples of which include the DNA and 
protein sequences.  More specifically, HMMs have been successfully 
applied for homology detection in proteins, trans-membrane helix 



3 Introduction to Algorithms 33

1.14 Support Vector Machines 

2. Exercises 

1. Most of the machine learning methods defined above often results in 
a slightly different classification of the same data. Furthermore, one 
may need to optimize parameters/ weights used for setting up 
calculation. Sensitivity, Specificity, ROC curve, Cross-validation, 
Boot-strap are some of the metrics/methods one can adopt to 
understand performance of different classification methods. Define 
these and provide example of how these can be used for 
performance comparison. 

2. You are interested in an automated text classifier that will read 
abstracts of publications by an individual and classify him into one 
of the fields “Bioinformatician”, “Biologist”, “Mathematician”, or 
“Computer Scientist”. To do this, you need abstracts of publications 
(in relevant field) that can be obtained from different journals over 

 
predictions (Krogh et al., 2001), gene predictions (Birney and Durbin, 2000), 
detection of CpG islands (Pachter and Sturmfels, 2004) and even for 
predicting phosphorylation sites on proteins (Senawongse et al., 2005).  A 
number of online resources are available which use HMMs to solve 
important biological problems. For instance, HMMER (http://hmmer.janelia.org/) 
is a package that can be useful for protein sequence analysis, TMHMM 
(http://www.cbs.dtu.dk/services/TMHMM/) for prediction of trans-
membrane helices, and HMM genie (http://www.fruitfly.org/seq_tools/ 
genie.html) for gene prediction.   

Support vector machines (SVMs), a supervised learning method, was 
originally proposed by Vapnik in the late 1970s (Vapnik, 1979) and has been 
receiving increasing attention in the recent years (Vapnik and Chapelle, 
2000).  Given a set of data points that belong to two classes, an SVM 
attempts to find a hyperplane such that maximum possible numbers of points 
of the same class remain on the same side and concomitantly maximizing the 
distance of either class from the hyperplane.  Understandably, training an 
SVM on a large dataset with many classes can be slow.  SVMs have found a 
number of applications (Yang, 2004), some of which include classification 
of high throughput gene expression data (Brown et al., 2000), prediction of 
subcellular localization of proteins (Yu et al., 2006), predicting protein 
stability changes (Capriotti et al., 2005), enzyme family classifications, (Cai 
et al., 2004), etc. List of useful URLs related to data mining in bioinformatics 
provided in Table 3.1. 
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3. Useful Web-Pointers 

Table 3.1 Useful URLs for data mining and statistical methods used in bioinformatics 
 
Comments URL 
Data mining 
concepts and 
tutorials 

http://www.thearling.com/text/dmwhite/dmwhite.htm 

Statistical 
concepts, data 
mining techniques, 
machine learning 
methods 

http://www.statsoft.com/ 

Hidden-Markov 
model introduction 

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/
html_dev/main.html 

General math & 
statistics 

http://mathworld.wolfram.com 

Electronic statistic 
book 

http://www.xplore-stat.de/ebooks/ebooks.html 

Open source 
Statistical 
programming 
package 

http://lib.stat.cmu.edu/R/CRAN/ 

Open source 
numerical 
computation package 

http://www.octave.org 

Free encyclopedia 
with detailed links to 

http://www.wikipedia.org 

 
the web: Journal of Biological Chemistry (http://www.jbc.org), 
PubMed (http://www.ncbi.nlm.nih.gov), Bioinformatics Journal 
(http://bioinformatics.oxfordjournals.org), Citeseer (http://citeseer. 
ist.psu.edu), etc. Implement a naïve Bayes text classifier that can be 
trained using abstracts from these fields. Use your own publication 
or your friends to automatically interpret your field of study. 
(Sample implementation in Perl is available at http://www.ddj.com/ 
development-tools/184406064). 

3. You are interested in identifying closely related amino acids in terms 
of their physical-chemical property. So you would like to perform a 
cluster analysis. Using the different properties for amino acids 
available at APDBase (http://www.rfdn.org/bioinfo/APDbase/ 
index.html) and the software tool for clustering HCE (http://www.cs. 
umd.edu/hcil/hce/) perform analysis using different methods 
available in the tool. What amino acids are similar in their physical-
chemical properties?  
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Comments URL 
Bioinformatics 
methods, statistical, 
and other 
computational 
methods 
Genetic algorithm 
tutorial 

http://samizdat.mines.edu/ga_tutorial/ 

Data analysis methods 
and definitions 

http://www.itl.nist.gov/div898/handbook/index.htm 

Support vector 
machine program and 
theory 

http://svmlight.joachims.org 

Kernel Machines, 
theory, and links to 
programs 

http://www.kernel-machines.org 
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Abstract: Biological data available today surpasses information content in several fields. 
It is critical to logically organize and disseminate these contents to end users. 
In this chapter, we learn about biological databases that serve as the gateway 
for researchers. 
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1. Purpose 

Biological portals and databases are important sources of sequence, 
structure, and other relevant information. Understanding contents of these 
databases will help in extracting knowledge relevant to your projects in an 
efficient way. In this chapter, we will detail some of the major biological 
databases and their contents. 

2. Learning Objective 

• Identify major biological databases and portals 
• Understand their information content 
• Perform structured queries and derive biological information 

3. Introduction 

The past few decades have witnessed a widespread application of computers 
for analysis and modeling of biological data. This currently has a huge 
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impact on the practice of molecular biology and already gave birth to a new 
discipline called “Bioinformatics”. A major aspect of this revolution is the 
storage, retrieval, and analysis of biological datasets maintained by 
centralized resources worldwide. Advancement in molecular biology 
techniques and high throughput methods has resulted in a dramatic increase 
in genomic and proteomic data. These include a wide range of information, 
such as macromolecular sequences and structures; genetic and physical 
genomic maps, polymorphisms; bibliographic information; molecular 
chemical properties, etc. Simultaneously, the rapid expansion of biomedical 
knowledge, reduction in computing costs, spread of internet access, and the 
recent emergence of high throughput structural and functional genomic 
technologies has led to a rapid growth of electronically available data. 
Submission of such data into public archives has led to numerous biological 
databases that can be accessed for querying and retrieving of necessary 
information by the scientific community. These databases store molecular 
information of multiple organisms and are, thus, reflections of the cellular 
and molecular organization of life. This chapter summarizes few such 
databases and their content. The Molecular Biology Database Collection by 
Micheal Galperin is a compendium of several databases (Galperin, 2005). 
All databases included in the Collection are freely available to the public. 
The 2005 update includes 719 databases. The databases are organized in a 
hierarchical classification that simplifies the process of finding the right 
database for any given task. The growing number of databases related to 
immunology, plant, and organelle research has been accommodated by 
separating them into three new categories. Almost all of these databases can 
be searched and retrieved by using high-quality bioinformatics tools based 
on several features for example sequence homology, map location, keyword, 
accession number, and other features in the records. Biological databases are 
constantly being updated and re-engineered to allow more powerful data 
query methods. A majority of these tools and databases are maintained in a 
highly integrated form by major organizations such as National Center for 
Biotechnology Information (NCBI) (Wheeler et al., 2005), European 
Molecular Biology Laboratory Nucleotide Sequence Database (EMBL) 
(Kanz et al., 2005), and DNA Data Bank of Japan (DDBJ) (Tateno et al., 
2005).   

Protein sequences were the first to be assembled into databases and made 
freely available. In the 1960s and 1970s, Margaret Dayhoff’s pioneering 
work on protein evolution led to the distribution of the Protein Sequence 
Database, now well-known as the international Protein Information 
Resource (PIR) (George et al., 1986). Concurrently, in 1980, the first public 
releases of SWISS-PROT sequence database took shape (Bairoch and 
Boeckmann, 1991). Simultaneously, the first nucleic acid sequence 
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databases began to prosper in order to cope with the increasing quantities of 
sequence data being generated worldwide (e.g. GenBank, EMBL, and 
DDBJ) (Benson et al., 2005; Kanz et al., 2005; Tateno et al., 2005). The 
accumulated data was stored in the first genomic databases such as 
GenBank, EMBL, and DDBJ and novel computational methods were 
developed for further analysis of the collected data (e.g. sequence similarity 
searches, functional, and structural predictions).  

Databases in general can be classified in to primary, secondary, and 
composite databases. A primary database contains information of the 
sequence or structure alone. Examples of these include SWISS-PROT and 
PIR (Wu et al., 2003) for protein sequences, GenBank, EMBL ,and DDBJ 
for Genome sequences and the Protein Databank PDB (Berman et al., 2000) 
for protein structures. 

A secondary database contains derived information from the primary 
database. A secondary sequence database contains information like the 
conserved sequence, signature sequence, and active site residues of the 
protein families arrived by multiple sequence alignment of a set of related 
proteins. A secondary structure database contains entries of the PDB in an 
organized way. These contain entries that are classified according to their 
structure such as all alpha proteins, all beta proteins, etc. These also contain 
information on conserved secondary structure motifs of a particular protein. 
Some of the secondary database created and hosted by various researchers at 
their individual laboratories include SCOP (Lo Conte et al., 2000), 
developed at Cambridge University, CATH (Pearl et al., 2005), developed at 
University College of London, PROSITE (Hulo et al., 2004) of Swiss 
Institute of Bioinformatics, and eMOTIF (Huang and Brutlag, 2001) at 
Stanford and the conserved domain database search, CDART (Geer et al., 
2002), and protein interactions at NCBI. 

Several secondary databases use data from various primary databases and 
generate new data that may be organism specific or interest specific. These 
databases provide an integrated and panoramic view for the sequence of 
interest. A few secondary databases on molecular evolution are listed in later 
sections. 

3.1 Genomic Sequence Databases – GenBank, EMBL, DDBJ 

GenBank, (Benson et al., 2005) was built by the National Center for 
Biotechnology Information (NCBI), is part of the International Nucleotide 
Sequence Database Collaboration, along with its two partners, the DNA 
Data Bank of Japan (DDBJ, Mishima, Japan) and the European Molecular 
Biology Laboratory (EMBL) nucleotide database from the European 
Bioinformatics Institute (EBI, Hinxton, UK). GenBank is a comprehensive 
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database that contains publicly available DNA sequences for more than 
165,000 named organisms, obtained primarily through submissions from 
individual laboratories and batch submissions from large-scale sequencing 
projects. Daily data exchange with the EMBL Data Library in the UK and 
the DNA DataBank of Japan helps to ensure worldwide coverage. GenBank 
is accessible through NCBI’s retrieval system, Entrez, which integrates data 
from the major DNA and protein sequence databases along with taxonomy, 
genome, mapping, protein structure, and domain information, and the 
biomedical journal literature via PubMed (McEntyre and Lipman, 2001). 
BLAST provides sequence similarity searches of GenBank and other 
sequence databases. Nearly 45 million sequences are available and it’s 
growing exponentially. GenBank releases new sequences every two months 
and can be downloaded from ftp://ftp.ncbi.nih.gov. Incremental updates are 
also available that can be obtained from ftp://ftp.ncbi.nih.gov/genbank/daily-
nc.  Each sequence is annotated that contains information about the literature 
reference, size, organism, sequence features, and protein translations, if 
available. The sequences are arranged under several divisions like ENV, 
EST, Genome survey sequences (GSS), Plant sequences (PLN), rodents 
ROD, Sequence tagged site (STS), etc. GenBank provides an interface to 
authors who would like to submit new sequences. BankIt and SEQUIN are 
two programs that can be used for submitting author-annotated sequences, 
which are then automatically indexed to be included in the GenBank. Entries 
under different divisions are indexed using symbols, for example EST 
sequences can be found in gbest*.seq files and GSS sequences in gbgss*.seq. 

3.2 Protein Sequence Databases 

The most significant protein databases include the Swiss Protein Databank 
(SWISS-PROT) (Boeckmann et al., 2003), the translation of the DNA 
sequences in EMBL (TrEMBL), Protein Information Resource (PIR), the 
Munich Information Center for Proteins (MIPS) (Mewes et al., 2004), and 
the 3D structures in the Protein DataBank (PDB) (Berman et al., 2000). The 
rate of growth of the protein databases has been more linear compared to the 
DNA databases. 

 
 

GenBank entry includes a concise description of the sequence, the scientific 
name, and taxonomy of the source organism, bibliographic references, and a 
table of features (http://www.ncbi.nlm.nih.gov/collab/FT/index.html) listing 
areas of biological significance, such as coding regions and their protein 
translations, transcription units, repeat regions, and sites of mutations or 
modifications. Table 4.1 lists major sequence databases and Table 4.2 lists 
different sequence divisions in GenBank. 
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Table 4.1 List of URL for major biological databases 
 

Biological database Major components URL 
National Center for 
Biological Information 

Pubmed, CDD, COG, 
OMIM, Genomes, CGAP, 
dbEST, dbGSS, dbMHC, 
dbSNP, dbSTS, GenBank, 
Genes, HomoloGene, 
MeSH, MGC, MMDB, 
OMSSA, OMSSA, 
PubCHEM, RefSeq, 
UNIGENE, VAST, GEO 

http://www.ncbi.nlm.nih.gov 
http://www.ncbi.nlm.nih.gov/
Sitemap/AlphaList.html 

European Bioinformatics 
Institute 

BioMart, ChEBI, EMBL-
SVA, UniProt, 
ArrayExpress, ASD, CSA, 
GOA, IntAct, IntEnz, 
DALI, MSD, MSDchem, 
MSDlite, RESID 

http://www.ebi.ac.uk/services 

http://www.expasy.org PROSITE, SWISS-
2DPAGE, SWISS-
3DIMAGE, Ashbya, 
ENZYME, Biolinks 

http://www.expasy.org 
http://www.expasy.org/links.

http://www.ensembl.org Genome database http://www.ensembl.org 
http://www.genome.jp/ KEGG, DBGET 

GLYCAN, BRITE, 
CYORF, BSORF, 
LIGAND 

http://www.genome.jp 

Table 4.2 Different division under which sequences are made available in GenBank 
 

CODE Description 
PRI  primate sequences 
ROD  rodent sequences 
MAM  other mammalian sequences 
VRT  other vertebrate sequences 
INV  invertebrate sequences 
PLN  plant, fungal, and algal sequences 
BCT  bacterial sequences 
VRL  viral sequences 
PHG  bacteriophage sequences 
SYN  synthetic sequences 
UNA  unannotated sequences 
EST  EST sequences (expressed sequence tags)  
PAT  patent sequences 
STS  STS sequences (sequence tagged sites)  
GSS  GSS sequences (genome survey sequences)  
HTG  HTGS sequences (high throughput genomic sequences)  
HTC  HTC sequences (high throughput cDNA sequences)  
ENV  Environmental sampling sequences 

html#Proteins 
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3.2.1 SWISS-PROT 

SWISS-PROT is a protein sequence knowledgebase and has direct links to 
specialized databases with minimal redundancy (Boeckmann et al., 2003). 
The data consists principally of the amino acid sequence, the protein name 
(description), taxonomic data, and citation information. SWISS-PROT 
provides cross-references to external data collections such as the underlying 
DNA sequence entries in the DDBJ/EMBL/GenBank nucleotide sequence 
databases, 2D and 3D protein structure databases, various protein domain 
and family characterization databases, posttranslational modification (PTM) 
databases, species-specific data collections, variant databases, and disease 
databases. SWISS-PROT is gradually being enhanced by the addition of a 

number of features that are specifically intended for researchers working on 
human genetic diseases, such as links to human gene databases: OMIM 
(Hamosh et al., 2005), GeneCards (Safran et al., 2002), GeneLynx (Lenhard  
et al., 2003), Genew (Wain et al., 2004) as well as to many gene-specific 
mutation databases. SWISS-PROT and TrEMBL can be obtained by 
anonymous FTP from the ExPASy server ftp.expasy.org and EBI server 
ftp.ebi.ac.uk/pub/. Further information as how to obtain weekly updates and 
complete data sets in various formats is available at 
http://www.expasy.org/sprot/download.html. 

3.2.2 PIR 

The Protein Information Resource (PIR) serves as an integrated public 
resource of functional annotation of protein data to support 
genomic/proteomic research and scientific discovery (George et al., 1986). It 
is a non-redundant, expertly annotated, fully classified, and extensively 
cross-referenced protein sequence database. The PIR anonymous FTP site 
(ftp://nbrfa.georgetown.edu/pir_databases) provides direct file transfer. 

3.2.3 PDB 

The PDB is the single worldwide repository for the processing and 
distribution of 3-D structure data of large molecules of proteins and nucleic 
acids (Berman et al., 2000). It is available at: http://www.pdb.org/. The PDB 
contains 31123 structures as of 31 May 2005. 

3.3 Secondary Databases on Molecular Evolution 

3.3.1 EXINT 

With the accumulation of sequence data, information on the exon/intron 
organization of eukaryotic genes is becoming widely available. However, 
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the retrieval of this information, particularly on a large scale basis, is a 
difficult task. ExInt (Sakharkar et al., 2000) is a database of all intron-
containing genes from eukaryotes present in GenBank. It collects 
information about the exon/intron organization of eukaryotic genes present 
in GenBank and organizes the data in a retrieval form available on the 
WWW. ExInt has been divided into four subsets: predicted entries, 
experimental entries, organellar, and nuclear genes. The database is available 
at: http://sege.ntu.edu.sg/wester/exint/. 

3.3.2 MIDB 

MIDB is a database containing discordant intron positions in homologous 
genes (Sakharkar et al., 2000). Discordant intron positions are those that are 
either closely located in homologous genes (within a window of 10 
nucleotides) or an intron position that is present in one gene but not in any of 
its homologs. The MIDB database aims at systematically collecting 
information about mismatched introns in the genes from GenBank and 
organizing it into a form useful for understanding the genomics and 
dynamics of introns thereby helping understand the evolution of genes. 
MIDB allows examining of intron movements and allows mapping of intron 
positions from homologous proteins onto a single sequence. The database is 
of potential use for molecular biologists in general and for researchers who 
are interested in gene evolution and eukaryotic gene structure. Partial 
analysis of this database allowed us to identify a few putative cases of intron 
sliding. The database is available at http://sege.ntu.edu.sg/ wester/midb/. 

3.3.3 GSEGE 

Eukaryotic genes are either “intron containing” or “intronless”. Eukaryotic 
“intronless” genes are interesting datasets for comparative genomics and 
evolutionary studies. Genome SEGE is a database for “intronless” genes in 
completely sequenced eukaryotic genomes (Sakharkar and Kangueane, 
2004). Eukaryotic “intronless” genes are extracted from nine completely 
sequenced genomes (four of which are unicellular and five of which are 
multi-cellular). The database provides information on the distribution of 
“intronless” genes in different genomes together with their length 
distributions in each genome. Additionally, the search tool provides pre-
computed PROSITE motifs for each sequence in the database with 
appropriate hyperlinks to InterPro. A search facility is also available through 
the web server. GSEGE is available at http://sege.ntu.edu.sg/wester/intronless. 
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Abstract: Protein and genomic sequence analyses helps in understanding the structure, 
function, and organization of cellular systems. Important features of genes 
include identifying promoter regions, protein-coding regions, and intron-exon 
boundaries. Protein sequence analysis involves identifying functional motifs 
and patterns. Sequence search tools help in identifying similar sequences in 
protein and genomic databases. Here, we will discuss bioinformatics tools that 
help in biological sequence searches and analyses.   

Key words: BLAST, Dynamic programming, CLUSTALW, Sequence Motifs 

1. Purpose 

Proteins that are coded by genes, achieve complex functions in biological 
organisms. The DNA is composed of four different nucleotides and can be 
represented as a string. Similarly, proteins can be represented as a string 
composed of 20 amino acid alphabets. Studying protein and DNA sequences 
involve analyzing these strings. This chapter mostly deals with studying 
protein sequence features using different software tools. 

2. Learning Objectives 

• Sequence search algorithms and tools 
• Multiple sequence alignment tools 
• Sequence motif identification 
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3. Introduction 

3.1 Similarity Matrices and Alignment 

Sequence search programs take a candidate sequence and searches a 
database. Such tools use a scoring function to align a query sequence 
globally or partially with a member in the database. Sequence alignment 
involves mapping corresponding positions in two sequence strings. If two 
strings are identical then the alphabet at every position will match the 
alphabet in another string. Aligning two biological sequences is not as 
simple as aligning two strings due to degeneracy among constituting 
alphabets. For example, during evolution of a protein, a particular position 
may be replaced by a similar amino acid (e.g. isoleucine replaces leucine), 
which has a different alphabet. So, one must have a quantitative measure for 
the chance of a particular amino acid or nucleotide to be replaced by another. 
Further biological sequence alignment should accommodate insertions or 
deletions of positions, which are likely during evolution. Thus, an alignment 
of two biological strings involves mapping positions that have identical or 
similar alphabets and accommodating gaps at positions where insertion or 
deletion events have occurred. Biological sequences can be of unequal 
lengths and their a priori equivalent positions are unknown. Thus, aligning 
two sequences is a complex task that attempts to compare every position and 
trace a path that has a high score. 

The similarity matrix (also called substitution matrix) is constructed based 
on the observed exchange frequencies among amino acids. It is a 20×20 
matrix with entries for pair-wise exchanges. Protein sequences that are 
closely evolved conserve both structure and function (Wilson et al., 2000). If 
two sequences evolve from a common parent then they are called 
homologous sequences or related by homology. Homologous sequences need 
not be 100% identical and can have equivalent positions occupied by a 
similar amino acid (Abagyan and Batalov, 1997; Rost, 1999). Core residues 
that are important for their structure and function are conserved. If one can 
identify a family of such closely related sequences, then it is possible to 
calculate a substitution score from the observed exchange frequencies 
among amino acids. Let Qij

 represent the frequency of exchange between 
amino acids i and j, and the background or natural frequency of amino acids 
i and j be Pi and Pj, respectively. Then, the substitution score Sij is related to 
Qij and the background frequencies by the formula (Lipman et al., 1984): 

Sij = 1/λ * ln (Qij/Pi*Pj)                                              Eq. (1) 
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where λ represents the scaling factor and is generally set to log value of 2 
(Sij is expressed in bits) or to 1 (Sij is expressed in nats). 

3.1.1 Mutation Data Matrix or PAM Matrix 

Margaret Dayhoff derived the first substitution matrix from the naturally 
observed frequency of residues (Dayhoff and Schwartz, 1978). She manually 
constructed the alignments of several protein families that have nearly 
identical sequences and phylogenetic trees from which she calculated the 
substitutions that occurred at each diverging branches. Thus, from observed 
mutations she scored the relative frequency in which two amino acids are 
exchanged. She introduced point-accepted mutation (PAM) as a unit of 
evolutionary divergence. One PAM unit is defined as 1 amino acid 
replacement among 100 positions in a protein sequence. Substitution matrix 
constructed based on such sequence sets were (PAM1 matrix) extrapolated 
further for higher evolutionary divergence (by multiplying lower order 
PAMs). Such extrapolation was possible after an assumption of a Markov 
model or independent mutations among residue positions. Thus, PAM250 
corresponds to exchanges that can be expected among highly divergent 
sequences.  Highly divergent sequences generally require a longer alignment 
to infer homology compared to closely related sequences. PAM250 is 
preferred to identify divergent protein sequences that have weaker 
similarities and generally require longer alignments. Lower order PAM 
matrices are preferred for aligning short regions with higher similarity. PAM 
matrices are derived based on extrapolation of observed frequency of 
exchanges using a global alignment of closely related sequence families. 
Although such extrapolation is valid under a model for evolutionary process, 
this method has a limitation as it assumes an even pressure for mutation 
along the entire length of a protein sequence. 

3.1.2 BLOSUM 

Steven and Jorja Henikoff constructed BLOSUM (Blocks Substitution 
Matrix) set of matrices (Henikoff and Henikoff, 1992). Instead of deriving 
exchange frequency of amino acids based on the global alignment of a 
protein family, they used an un-gapped local alignment or blocks. These 
blocks represent conserved segments within the protein family. For an 
exchange of an amino acid i with another amino acid j, they calculated 
frequency of exchange Qij and individual background frequencies Pi and Pj. 
The individual scores were calculated as log odds as in Equation (1). By 
restricting the count of amino acid exchanges among sequences that shared 
62% identical residues, they were able to derive BLOSUM62 matrix. Highly 
divergent sequences that share few identical sequences were modeled using 
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a lower identity cutoff. Thus, BLOSUM30 matrix should be used instead of 
BLOSUM62 when dealing with highly divergent sequences. Thus, 
BLOSUM series is constructed using the observed exchanges among protein 
sequences rather by an extrapolation technique as followed in building PAM 
matrices.  

3.1.3 Other Substitution Matrices 

Several substitution matrices were derived based on the original PAM or 
BLOSUM concepts. Many of them used an exhaustive set of sequence 
alignments and protein families to calculate the log-odds. Gonnet et al. used 
an exhaustive list of available sequences to derive a substitution matrix 
called GONNET (Gonnet et al., 1992). Alignments of highly divergent 
sequences are hard to construct solely based on sequence similarity. If 
structures of proteins are available, one can use the co-ordinates to align 
these sequences. Such alignments can be accurate even if the aligned 
sequences are highly divergent or have low homology. Substitution 
matrices derived using structural alignment includes Overington (Johnson 
and Overington, 1993), SDM by Sippl et al. (Prlic et al., 2000), Sub-
structural matrix (Naor et al., 1996), etc. Amino acids that share similar 
physical-chemical properties often exchange with higher frequencies. 
Physico-chemical based substitution matrices or similarity matrices have 
been attempted. Such methods derive a distance metric based on several 
properties for individual amino acids. The individual scores are derived by 
inverting distances and used as a measure of similarity. Limitations of these 
methods include inclusion of sufficient number or properties and selecting 
appropriate weights. A multidimensional scaling method was applied to 237 
properties that eliminated redundancy among different properties resulting 
in five orthogonal descriptors (Venkatarajan and Braun, 2001). Euclidean 
distances calculated using these descriptors could be used as a measure of 
dissimilarity to compare protein sequences. A large collection of 
substitution matrices are available at AAindex website 
(http://www.genome.jp/aaindex/). 

3.2 Sequence Search and Pair-Wise Alignment 

As mentioned previously, sequences that have evolved from a common 
ancestor share similar amino acids at equivalent residue positions. These 
positions cannot be interpreted in a straight forward manner because of the 
insertion and deletion of amino acids during the evolution of the daughter 
sequences. By pair-wise alignment, we mean arranging sequences of two 
proteins/genes with one-to-one correspondence of equivalent residue  
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positions that are evolutionarily conserved. If one considers amino acids as 
alphabets then alignment is equivalent to matching substrings within two 
sets of words. If an identity matrix is used, then identical residues aligned 
will have a score of one and the number of identical positions will be 
equivalent to a score. For example, 

Sequence1     AAKLV--AKKL 
Sequence2     AAKLVQQAKKL 
 

Here we aligned two sequences that match nine equivalent positions. In 
general, scores based on identical matrices are trivial and are not sufficient 
to properly align two protein sequences.  Amino acids can be exchanged 
without affecting its function. For example, a hydrophobic amino acid Ile 
can be replaced with another hydrophobic amino acid Val at a higher 
frequency, than by a charged residue Arg. Our previous notes on 
substitution matrix convey that pair-wise entries for amino acids may have 
positive or negative values. Positive scores mean a favorable substitution or 
in other words higher frequency of observed exchanges. Hence, optimal 
alignment using a substitution matrix becomes a complex task involving 
scoring several position equivalents (or amino acid pairs) and identifying 
the best arrangement. Such tasks can be handled by dynamic programming 
methods that involve integrating optimal solutions for sub problems and 
arriving at a solution in a more efficient manner. Sequence alignment 
methods implement dynamic programming that enables to divide complex 
sequence alignment tasks into manageable subtasks. Such divide and 
conquer methods enable optimal solution in an efficient runtime. A simple 
method to understand and visualize alignment is a dot plot. Graphically, it’s 
a dot matrix of different shades reflecting scores (or average score over 
sliding windows). A continuous diagonal dot represents regions of high 
similarity. A dot plot can be generated using an applet available at 
http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html. By connecting regions 
of continuous dots, one can find an optimal alignment along the sequence. 

 

3.3 Global Alignment Using Needleman-Wunsch Algorithm 

Global alignment involves an arrangement of two sequences with their 
equivalent evolutionarily conserved residue positions along the entire length. 
Needleman-Wunsch developed a global alignment method using dynamic 
programming (Needleman and Wunsch, 1970). In this method, alignment of 
two sequences Xi=1..m and Yj=1..n of length m and n respectively involve an 
initialization of matrix of size m+1 and n+1. The first row and column are  
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each filled with gap penalties. Each cell in the matrix has a score, which is 
filled using the following function: 
 

 
                           Mi-1, j-1 + Sij 
 
Mi,j  = max          Mi, j-1 + G 
 
                           Mi-1, j + G 
 

Mij is the score at a matrix cell (i,j) and Mi-1, j-1 is the score at the upper 
diagonal cell. Sij is the score for amino acids Xi and Yj from the substitution 
matrix like PAM or BLOSUM. G is a gap-opening penalty. Gaps are 
indicated by ‘-’ in an alignment and represent insertion or deletion (in-del) 
event occurred in one of sequence. A penalty factor is added to open new 
gaps and this is set to –8 for protein sequence alignment using BLOSUM62 
matrix. The gap open penalty depends on the type of matrix used. Penalties 
for extending gaps in a sequence are set to –2 and are modeled by 
multiplying the number of contiguous gaps found after opening by 1. Such a 
model for gaps is referred by affine gap penalty model. The global alignment 
uses a gap-opening penalty G. Mi, j-1 is the score of the adjacent cell present 
on the top of the current cell whereas Mi, j-1 is the score of adjacent cell 
present in the right side of the current cell. If a maximum value is found to 
be Mi, j-1+G then the residue Yj is aligned with a gap. Every time the 
maximum value is identified, a pointer is stored that maps the current cell to 
any of the three cells that gave rise to the current cell value. If all three 
values are equal, then all possible combinations of alignment are possible at 
that particular residue position. The final step is tracing the path that gave 
rise to the highest score starting with the bottom-left (representing C-
terminal). This is recursively done at every cell and a final alignment is 
made. It is possible to obtain several possible alignments for two sequences, 
if there are cells along the trace back in the matrix contributed equally by all 
three adjacent cells. Let’s align sequence A (RHEEIIIKVFFI) and sequence 
B (HHQKLVFF) using BLOSUM62 scoring matrix and a linear gap model 
with a gap penalty of –8 using Needleman-Wunsch algorithm. The optimal 
alignment is: 
 

RHEEIIIKVFFI 
HHQKL---VFF- 

 
and the matrix is given in Figure 5.1. 
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Figure 5.1 Global alignment of two sequences (RHEEIIIKVFI, HHQKLVFF). The trace back 
is shown in shaded blocks.  

3.4 Sequence Search Tools 

Given a query sequence, we would like to know information about related 
sequences in protein or nucleic acid sequence databases. In order to infer 
homology relationship, one may need an alignment between the query 
sequence and a candidate sequence in the database. This alignment can be 
used for scoring similarity and can be used in ranking sequences based on 
similarity score. In order to efficiently search millions of sequences and 
produce results in a fast manner, several tools have been developed. Some of 
the tools are covered below. 

3.4.1 Basic Local Alignment Search Tool (BLAST) 

BLAST is a popular search tool designed by Alstchul et al. at NIH (Karlin 
and Altschul, 1990). It uses statistical methods to evaluate hits for their 
significance. In the first step, the program identifies sequences in the 
database that share common words of a pre-set size (k-tuple) and these 
matching words are extended to identify un-gapped common segments 
between two sequences. Segment pairs are extended only if they score 
higher than a pre-defined threshold, thus reducing time on trivial non-
informative segments. Each of these segments (maximum in size) is scored 
using one of the substitution matrices as described above (BLOSUM62 is 
default) and the highest scoring segments or maximal scoring segment pairs 
(MSPs) are evaluated for their statistical significance by comparing MSPs 
with possible scores in a randomly generated sequence database. 

An extreme value statistical distribution was used by Karlin and Altschul 
to model the HSPs (High Scoring Segment Pairs) during local alignment. If 
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m and n are the string sizes of two sequences then a score of S can be 
calculated over the block of local alignment (obtained from summation of 
corresponding substitution matrix scores over the alignment, please refer to 
the alignment section above). The expected number of sequences that can 
score better than or equal to S is given by 

 
E = kmne–λS                Eq. (2) 

 
The expected number of HSPs that can score above or equal to a given score 
S increases with length of the sequences and exponentially decreases with 
the score (Lipman et al., 1984; Karlin and Altschul, 1990).  If the E-value 
cutoff is set very low, then trivial hits may be reported. The default value for 
E-value is 0.001 (with BLOSUM62 matrix). The parameters, k and λ, are 
constants representing the scoring system. BLAST scores are reported as bit 
scores which is a normalized raw score obtained using the formula 

S’ = (λS – lnk)/ln 2  Eq. (3) 

The probability of finding atleast one HSP with a score equal to or greater 
than S is given by 

P = 1 – e –E  Eq. (4) 

A concise note on the alignment statistics and implementation of the BLAST 
search method is available at National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html). The web-
interface for BLAST program can be accessed at http://www.ncbi.nlm. 
nih.gov/BLAST/. There are many variants to BLAST that can effectively 
search DNA sequence or translated sequences (blastx or tblastn). As a rule 
of thumb, BLAST search should be used to collect closely related sequences 
that show high similarity. Higher order PAM (PAM250) or lower order 
BLOSUM (BLOSUM40) should be used if one likes to identify divergent 
sequences and in cases where an initial search produces no or very few hits. 
PSIBLAST is an efficient search tool that can detect weaker similarities 
using an iterative position specific scoring matrix. PSIBLAST search is 
similar to BLAST search during the first iteration. Once sequences with 
specified E-value cutoff are identified a position specific scoring matrix 
(PSSM) can be calculated. The PSSM is used for identifying other related 
sequences in the next iteration and if any sequence satisfies the statistical 
criteria, then it is included to modify the profile. A more elegant note on the 
implementation algorithm is described at the website http://www.ncbi.nlm. 
nih.gov/BLAST/tutorial/Altschul-3.html.  
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3.4.2 FASTA 

FASTA is a program that can rapidly identify shared regions in two 
sequences and score sequences in a database for homology (Pearson, 1998). 
The final output consists of a rank ordered list of sequences and alignment 
between sequences. Regions of high similarity among sequences are 
identified by segments with high frequency of conserved letters (ktup). A 
ktup value of 2 will look for pairs of conserved alphabets, a general value set 
for protein sequence search. In the initial step, a lookup table is created 
which is used for scoring a group of identities between two sequences. In the 
second step, a local alignment is constructed in the region of high density of 
identical alphabets using a similarity matrix. If there are nearby local 
alignments with scores greater than a preset cutoff, then initial regions are 
joined to produce an approximate alignment. An optimized score is 
calculated using Needleman-Wunch-Sellers algorithm. FASTA can be used 
for DNA and protein sequence search. A web interface to FASTA tool that 
can search sequence database is available at http://fasta.bioch.virginia.edu/. 
Major sequence databases like PDB (http://www.rcsb.org) and GENOME 
DB (http://fasta.genome.jp) also provide FASTA search facility. 

3.5 Pair-Wise and Multiple-Sequence Alignment Tools 

Given two sequences, pair-wise alignment produces an optimal alignment 
using a scoring matrix. On the other hand the main objective of multiple 
sequence alignment is to optimally align several related sequences such that 
evolutionarily constrained residues are aligned under the same column. Each 
column represents a residue position and can have gaps depending on 
insertion or deletion. BLAST or FASTA in principle can identify closely 
related sequences and do not provide information about conserved blocks of 
residues in a protein family. Creating a multiple sequence alignment of 
several protein sequences helps one to identify regions of significant 
conservation and in many cases to understand function. Multiple global 
sequence alignments are produced using heuristic methods based on 
progressive-alignment (ClustalW, TCOFFEE), simultaneous alignment of all 
sequences (MSA), or by using iterative strategies (Prrp).  

3.5.1 ClustalW 

ClustalW is a popular tool that uses several protein or DNA sequences as 
input to produce a multiple sequence alignment (Thompson et al., 1994). 
The algorithm implements progressive alignment in which sequences that 
are closely related are aligned to which more evolutionarily diverged 
sequences are added. The steps to produce a complete multiple alignment 
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can be broken into: (1) Identify closely related sequences among the input, 
(2) Order these sequences based on pair-wise similarity score, (3) Seed an 
alignment using those sequence pairs that have the highest similarity score, 
(4) Add sequences following a tree-order to create alignments in a 
progressive manner. The first step is similar to BLAST or FASTA where a 
fast approximate method is used to calculate pair-wise alignment scores for 
all sequences to create a distance matrix. Latest version of ClustalW has a 
choice of having a more rigorous approach of including a fully dynamic 
alignment and calculating scores at this step. A neighbor-joining method is 
used to construct a tree using distance scores (dissimilarity score). This tree 
is used for computing weights for sequences (this avoids bias due to higher 
number of identical or closely related sequences in the input) and also 
provides order of a sequence for progressive inclusion in the multiple 
alignment. The gap patterns introduced in the earlier stage of alignment are 
preserved during the addition of more divergent sequences subsequently. 
This is due to the fact that the alignment produced at the early stage using 
highly similar sequences has a high confidence. A web interface with help is 
available at EMBL website http://www.ebi.ac.uk/clustalw/. Stand alone 
versions of ClustalW program (and other variants of Clustal program like X-
window based ClustalX) can be downloaded and installed 
(http://www.biolinux.org/). JalView is an applet that can be used to display 
multiple alignments, highlight physico-chemical properties and manually 
edit alignments. It can be accessed at http://www.ebi.ac.uk/jalview/. 

3.5.2 TCoffee 

TCoffee is a multiple alignment tool that has a progressive-alignment 
strategy to align multiple sequences based on a scoring matrix (Notredame et 
al., 2000). At every step of a progressive-alignment, information contained 
in the entire target sequences are considered during the alignment step, thus 
reducing bias suffered in the early steps of ClustalW. In TCoffee, a global 
and local pair-wise alignment of all sequences is created as a first step and 
weights for individual residue pairs are assigned based on the % identity of 
aligned residues. Using this library of primary alignments, an extended 
library of alignments is produced by considering all possible primary 
alignments among participating sequences that lead to produce a position 
specific library. A correct alignment is obtained using dynamic 
programming. A correct multiple alignment of sequence should represent a 
structural alignment among participating sequences. TCoffee was tested for 
accuracy of alignment using BaliBase (Thompson et al., 1999). Balibase is a 
collection of multiple sequence alignments constructed by structural 
superposition. TCoffee was found to produce alignments with 89.7% 
accuracy compared to ClustalW with 85.6%. A web interface for T-Coffee 
program can be accessed at http://www.igs.cnrs-mrs.fr/Tcoffee/ 
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tcoffee_cgi/index.cgi. A downloadable version is available for Windows and 
Unix platforms from the same website. Both TCoffee and Clustal methods 
are included in the BioPerl package (http://www.bioperl.org). 

3.5.3 JAligner 

JAligner implements the Smith-Waterman algorithm for local pair-wise 
alignment with Gotoh’s improvement for computing the weight of the gaps 
using the affine gap penalty model (Smith and Waterman, 1981; Gotoh, 
1982). The implementation of JAligner improves the space complexity over 
the original algorithm from O (n2) to O (n) by using only the last row (n) of 
working matrices instead of the whole two-dimensional matrices (n2); 
however, the overall space complexity is O (n2) for storing the trace back 
directions. As a standalone application, JAligner provides a friendly user 
interface (UI) – both graphical and command line. The graphical mode can 
be launched either online through a web browser or offline as a regular 
desktop application. As a Java library, JAligner provides reusable and 
extendable application programming interface (API). JAligner aligns 
sequences in FASTA or plain formats and generates alignments in FASTA 
and CLUSTAL formats. JAligner accepts user-defined scoring matrices; this 
is in addition to the set of already included scoring matrices (PAM and 
BLOSUM matrices). The source code and binaries are available for free at 
http://jaligner.sourceforge.net under the GNU Public License (GPL). 
JAligner is used as: 

a. A simple cross-platform open source tool for biological local pair-
wise sequence alignment with the affine gap penalty model. 

b. A sample and educational implementation of the classic Smith-
Waterman algorithm. 

 
JAligner expects the following set of input parameters: two sequences in 
FASTA or plain formats, gap open, and gap extend penalties, Scoring matrix 
(e.g. PAM or BLOSUM), and output format (FASTA, CLUSTAL, and Pair). 
It generates the output that contains statistics about the generated alignment 
showing the percentage of the similarities, identities, gaps, and the score of 
the alignment and an alignment of the input sequences. 

3.6 Sequence Motifs 

Conserved patterns of nucleotides or residues that occur in a related set of 
sequences may possess specific functions. Such conserved patterns are 
defined motifs. In DNA sequences, transcription factors may bind to specific  
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nucleotide motifs. Identifying a sequence motif starts with collecting a set of 
sequences with common function. These sequences may belong to the same 
protein family or may be diverse with some common function, for example, 
Calcium binding or ATP binding. In order to identify motifs, one can first 
arrange all equivalent residue positions into a multiple alignment and look 
for conserved amino acid alphabet blocks. A regular expression can be used 
to express such conserved blocks of alphabets. Often it is impossible to 
identify a block of 100% conserved alphabets. This may be due to 
degeneracy among amino acids to substitute each other without disturbing 
the function. An expression or term widely used for description of protein 
sequence motifs follow regular expressions conventions used in UNIX. 
PROSITE is a widely used database of patterns or motifs with details of 
function and sequence that contain these patterns (Falquet et al., 2002; 
Gattiker et al., 2002; Sigrist et al., 2002). It currently contains (release 19.19) 
1329 patterns. Commonly occurring patterns are expressed using regular 
expression terms with IUPAC single letter amino acid code. Positions where 
more than one amino acid can occur (or possibilities) are represented in a 
square bracket. Curly braces are used for excluding a set of amino acids at a 
particular position. The numbers inside a bracket represents minimum and 
maximum repetition of residues. The pattern (PA2_ASP, PS00119) for 
phospholipase A2 aspartic acid active site is given by: [LIVMA]-C-
{LIVMFYWPCST}-C-D-{GS}-x(3)-{QS}-C. This pattern means sequence 
that contains specific aspartic acid protease active site contains any of the 
amino acids LIVMA in the first position with an absolutely conserved 
cysteine in the second position and fourth position. Sixth position can 
contain any amino acid other than small amino acids G or S. From seventh 
position, sequences that contain phospholipase A2 aspartic acid active site 
may have any 3 residue insertion represented by x(3). Thus, such expression 
patterns are used for enumeration of conserved amino acid alphabets among 
related sequences. Identifying such motifs is a non-trivial task, since shorter 
motifs may occur often and hence false positives are high. (In other words, 
the probability of random occurrence of a short sequence pattern is high.) 
Also, if the length of the pattern is extended, it may result in true negatives. 
PROSITE patterns can be downloded from ExPasy website 
http://www.expasy.ch/prosite/. ScanProsite is a search engine to scan 
PROSITE database for identifying patterns in a given sequence. 
Conservation of residues in a particular position can also be scored in terms 
of physical-chemical properties or by scoring the occurrence of amino acids 
with higher rate of substitution. Position-specific scoring matrices (PSSM) 
are probabilistic substitution frequencies or profiles calculated using a 
multiple alignment. Conserved motifs can also be represented by PSSM or 
profiles. Physico-chemical conservation is quantitatively expressed in motif 
identification tools like PCPMer and MASIA (Venkatarajan and Braun,  
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2001; Mathura et al., 2003). The PCP-motif implementation in MASIA 
(http://born.utmb.edu/masia/) converts the multiple alignments of protein 
alphabets into a numerical matrix using a property component vector. Highly 
conserved regions show relative entropy distribution of the property vectors 
different from a natural distribution with small standard deviation. Thus, 
MASIA/PCPMer can identify property motifs and provide a quantitative 
profile. Sequence alignment databases like BLOCKS, Pfam, PRINTS 
(Attwood et al., 2000) can provide input or the starting point for deriving 
profiles which can be subsequently used to identify sequences with related 
function or family. InterPro (http://www.ebi.ac.uk/interpro/) is an exhaustive 
collection of protein families, domains and functional sites of known 
proteins (Biswas et al., 2002; Kanapin et al., 2002; Mulder and Apweiler, 
2002). Release 11.0 of InterPro contains 12294 entries covering 77.5% of 
UniProt. BLOCKS (http://blocks.fhcrc.org/blocks/) v 14.1 consists of 28,337 
blocks based on InterPro entries with sequences from SWISSPROT and 
TrEMBL (Henikoff et al., 2000; Henikoff et al., 2000 b). Pfam 
(http://pfam.janelia.org) is a collection of annotation and alignment of 
protein sequences that belong to different families (Finn et al., 2006). It is 
manually annotated with details about structure/function of members and the 
seed alignments are done manually. This seed alignment is further used to 
build Hidden Markov Model profiles (using the tool HMMER 
http://hmmer.janelia.org) for subsequent searching in the translated protein 
database to identify homlogs. Pfam currently contains 8183 sequences 
(release 19) derived from Swissprot and TrEMBL database. Cross-
references to PROSITE, PRINTS, and Pfam entries are available. InterPro 
provides cross-reference to PRINTS, Pfam, and PROSITE patterns. For 
example, the entry for Bcl-2, an anti-apoptotic protein, IPR000712 contains 
sequence signature cross-references: Pfam (PF00452), PROSITE pattern 
(PS01080, PS01258, PS01259), BLOCKS (IPB000712). There are three 
entries in PROSITE corresponding to three different conserved domains 
BH1, BH2, and BH3. The entire family of Bcl-2 sequences just has one 
entry in Pfam. Other useful features of InterPro entries are: Taxonomic 
coverage, structural links, etc. InterPro also cross-links to PRINTS database, 
for example, the entry for TUBBY protein in InterPro is IPR000007 with 
cross-reference to PRINTS (http://umber.sbs.man.ac.uk/dbbrowser/sprint/) 
database id PR01573. The PRINTS database is a compendium of protein 
motif fingerprints iteratively refined by sequence database scanning.  

3.6.1 Generating Protein Sequence Motifs 

In order to discover sequence motifs among a family of protein sequences, 
one can use tools like: GIBBS motif sampler (Thompson et al., 2003),  
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eMOTIF (Huang and Brutlag, 2001), PCPMer/MASIA (Mathura et al., 
2003), Meta-MEME (Grundy et al., 1997; Grundy et al., 1997 b), and 
PRATT.  GIBBS uses a Gibbs-motif sampling method that identifies 
conserved pattern among unaligned sequences using expectation 
maximization model. Highly conserved patterns occur at a higher probability 
in a set of sequence input. The method builds a list of conserved motif 
blocks using evolving data structures that track sequence segments and 
probability of such segments using bayesian statistics. A web-based GIBBS 
motif sampler program can be accessed at 
http://bayesweb.wadsworth.org/gibbs/gibbs.html. The web interface has 
three options: site-sampler, motif-sampler, and recursive sampler. Recursive 
sampler looks for multiple occurrences as a criterion for detecting motifs and 
motif sampler provides a list of motif hits. Gibbs motif sampler can take a 
list of upstream sequence for a list of co-regulated genes and identify 
transcriptional binding sites and other conserved regions. MASIA/PCPMer 
can be accessed at (http://born.utmb.edu/masia/) that takes CLUSTALW 
format multiple alignment as an input to identify different conserved motifs 
or blocks based on physical-chemical properties. The PCP macro 
implemented in MASIA program uses a five dimensional descriptor for 
amino acids to create a quantitative profile. Using relative entropy 
calculation using background frequency, the program identifies conserved 
regions in protein sequence. Meta-MEME is a motif discovery program that 
builds a Markov model for conserved regions in a set of training sequence 
(http://metameme.sdsc.edu). The HMM profile is built using expectation-
maximization algorithm based on two component mixture model (MEME 
program). In mixture models, the probability density is represented as the 
sum weighted by fraction of total occurrence. The first component represents 
the probability of block of a sequence being a motif in the given list of 
sequence and the second component describes the background noise. MEME 
can be accessed at http://meme.nbcr.net/. MEME can be used as a general 
motif identification tool in both protein and DNA sequences. Another motif 
discovery tool is the eMOTIF program developed by the Brutlag group at the 
Stanford University. Using this tool one can create motifs from input of 
multiple-aligned sequences, search for motifs in a given sequence based on 
the motif library created using BLOCKS and PRINTS database or search a 
regular pattern in the protein sequence database. Pratt implements a branch-
and-bound heuristics to search for patterns in a set of sequences (Jonassen et 
al., 1995). The output is a set of motifs with corresponding regular 
expressions. Pratt can be accessed at http://www.ebi.ac.uk/pratt/. 

V.S. Mathura
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Protein Structure Prediction 
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Abstract: Genomic projects have provided large number of sequence information. In order 
to obtain tangible benefit of this information, structural and functional annotation 
of the sequences is a must. Understanding the structural basis for protein 
function enables rational drug design and novel interventions for various 
diseases. This chapter describes protein-modeling packages and services that 
integrate various tools to facilitate rapid large-scale modeling of proteins. 

Key words: Comparative modeling, Homology, CASP, MPACK, SP3, LiveBench, 
MODELLER 

1. Introduction 

With the completion of human genome projects (Cantor, 1990; Watson, 
1990; Liang et al., 2000; Waterston et al., 2002), protein tertiary structure 
prediction from primary sequence is gaining tremendous importance (Finkel, 
1997; Fischer and Eisenberg, 1997; Andrade et al., 1998; Sali, A 1998; 
Burley et al., 1999; Salamov et al., 1999). Experimental 3D structure 
determination methods such as NMR spectroscopy and X-ray 
crystallography produce currently ~250 structures per month compared to 
roughly half a million sequences submitted per month in the NCBI database. 
Tertiary structure prediction on a genomic scale is needed to understand 
complex biochemical functions of many proteins from a structural 
perspective (Andrade et al., 1997; Dandekar and Argos, 1997; Fetrow and 
Skolnick, 1998; Gerloff et al., 1998; Andrade et al., 1999; Koehl and Levitt, 
1999; Rison et al., 2000; Norin and Sundstrom, 2002). Understanding the 
structural basis for protein function enables rapid progress in systems 
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biology that aims at identifying functional networks of proteins at a large 
scale from genomics and proteomics projects (Koehl and Levitt, 1999). 
Rational drug design heavily relies on the structural knowledge of a protein 
(Hol, 1989; Verlinde et al., 1994; Gait and Karn, 1995).  

Given a protein sequence, one can apply secondary structure prediction 
methods to assign secondary structural elements like helices, strands and 
coils. A higher-level structure prediction is to model the three-dimensional 
structure of the protein or fold. As described in the introductory chapter 
secondary structural elements are formed due to periodic weak hydrogen-
bonds between donor and acceptor groups in protein. Such bonds are formed 
in a specific pattern only when specific residues are present. Thus, secondary 
structure of a protein can be predicted based on amino acid propensity to 
form helices or sheets. 

Tertiary structure of proteins can be modeled using comparative 
modeling or ab initio methods (Forster, 2002). In comparative modeling, a 
related template is selected that provides a geometrical framework for 
modeling the unknown sequence. A template structure can be selected by 
searching (homologous sequence search) a structural database for sequences 
that share identical residues (at least 30%) with the target sequence.  

The coverage of sequence space by proteins with the known 3D structure 
is currently not high enough to infer potential 3D fold from sequence 
similarity searches for all genomic sequences (Rost, 1997; Jaroszewski et al., 
2002). Difficult targets that do not show obvious homology for sequences 
with structure can be modeled by selecting a structural template to which the 
target sequence can fit using threading algorithms or fold-recognition 
methods (Rost, 1997). Threading techniques employ structural profiles to 
infer the degree to which a query sequence would fit into a known fold. 
Threading can identify suitable templates even when the sequence alignment 
identity is as low as 15% (Twilight region) (Rost, 1997). Homology search 
or threading identify suitable template that can be used by comparative 
modeling tools to model the unknown protein. Structural genomic projects 
aim to increase the coverage of sequence space by determining new 3D folds 
(Gerloff et al., 1998; Burley et al., 1999; Koehl and Levitt, 1999; Lo Conte 
et al., 2002; Schonbrun et al., 2002), which will increase the reliability of 
templates identified by homology sequence search methods and threading 
techniques. In those cases where homology search or fold-recognition 
methods fail to provide a reliable template and where the target sequence is 
short (less than 150 residues), a pure physics based approach called ab initio 
method or a combination of physics and knowledge based method called 
new fold detection technique, can be applied (Orengo et al., 1999; Bonneau 
et al., 2001; Bonneau et al., 2002; Kihara et al., 2002; Srinivasan and Rose, 
2002). 
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2. Secondary Structure Prediction 

Secondary structure prediction methods rely on the frequency of observed 
amino acids in the secondary structural elements of proteins for which 
tertiary structure has been experimentally determined. Periodic occurrence 
of amino acids with specific physicochemical properties has been observed 
in different secondary structural elements. For example, in amphipathic helix 
(one with both hydrophobic and hydrophilic surface) periodic occurrence of 
hydrophobic residues occur at every 3–4 residues due to its packing nature 
(hydrophobic surface packs together to form a core while hydrophilic 
surface contacts with the external solvent). In the case of sheets, the packing 
of two beta-sheet forms a pleated structure that requires alternating 
hydrophobic and hydrophilic residues or complete stretch of hydrophobic 
residues. Helix breakers, like proline do not occur in the middle due to its 
restriction in forming hydrogen-bond. One of the earliest methods to predict 
secondary structure is based on Lim’s stereochemical prediction rules that 
use the observed periodicity of hydrophobic residues at every 3–4 residue 
positions for helix and an alternating hydrophobic residue stretch for beta-
sheet. Chou and Fasman used known tertiary structures of proteins to 
calculate residue propensity in helix, betasheet and coil. They used 
propensity values to assign secondary structure to residue stretches. GOR 
method uses a conditional probability to assign secondary structure using a 
window-based approach. In this method, residue frequencies of amino acids 
in a 17 residue window are used to calculate conditional probability of the 
mid residue (8th) for three different secondary structures. Advanced 
secondary structure prediction methods use neural networks to predict or 
assign secondary structural elements for each amino acid in a given 
sequence. For example, NNPredict (http://alexander.ucsf.edu 
/~nomi/nnpredict.html) based on a two layer feed forward neural network 
assign either “H” (for helix forming residues) or “E” (extended or sheet 
forming residues) to an input sequence. If a closely related structure 
(homologous) is available then the secondary structure of conserved or 
highly similar residues can be assigned based on structural template. PHD is 
a neural network based method that uses a multiple alignment of an input 
sequence to calculate probability of secondary structure. Among 
homologous proteins, secondary structure will be conserved; hence, 
distribution of amino acids at a residue position can be useful to assign 
probability of secondary structural state. PHD server uses BLAST to search 
for homologous sequences and creates a multiple alignment before feeding 
the distribution of amino acids at every position into a neural network. JPred 
(http://www.combio.dundee.ac.uk/jpred_v2/) is meta-service which assigns 
residue secondary structure based on the consensus of several independent 
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methods. It includes NNSSP (based on nearest neighbor environment profile 
in multiple alignments), PHD, linear discrimination based DSC, hydrogen-
bonding propensity based PREDATOR, and combination of statistical 
weight based single sequence method MULPRED. It also includes a neural 
network based method, JNet that uses PSIBLAST and HMM profiles for a 
given input sequence. Several secondary structure prediction servers are 
listed in Table 6.1. A higher confidence can be obtained in secondary 
structure prediction if different methods are used before concluding 
assignments. Consensus based approaches like JPred-consensus and profile 
based JNet are found to have higher performance with the prediction 
accuracy (given as Q3 score, defined as the percentage of correctly assigned 
secondary structure states of helix, betasheet, or coil) greater than 75%. 
PSIPRED uses a feed forward neural network to predict secondary structure. 
There are four neural networks used in this method and an average of these 
four network are used for assignment. 

Table 6.1 Secondary-structure prediction servers 

3. Comparative Modeling 

Comparative modeling involves identifying a structural parent to an 
unknown sequence and the use of geometric constraints derived from the 
known structure to model the unknown sequence. A structural parent can be 
identified either by inferring homology between the target sequence and the 
structural parent or by measuring the fitness of a given sequence to all 
known folds. The term “homology” implies a common evolutionary origin 
among proteins. In an evolutionary tree, daughter proteins are evolved by 
gene duplication, random mutation, and selection, which create a net drift 
from parent or ancestral proteins (Aszodi and Taylor, 1996; Abagyan et al., 
1997; Yu et al., 1998; Kitson et al., 2002; Reddy et al., 2002; Thornton, 
2002). Daughter proteins, to a large extent share identical sequences with 
little residue variation and a common function with their immediate parent. 
Selection process allows residue changes only at positions that are 
structurally and functionally less important. Many studies have shown that 
amino acids can be interchanged with each other without compromising 

 
Server URL 
JPRED www.combio.dundee.ac.uk/jpred_v2/ 
NNSSP www.softberry.com/berry.phtml?topic=nnssp&group=programs&subgroup=propt
PHD cubic.bioc.columbia.edu/predictprotein/ 
NNPredict alexander.ucsf.edu/~nomi/nnpredict.html 
PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ 
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changes in the structure (Swanson, 1984) (Henikoff and Henikoff, 1992). 
Such exchanges are possible among amino acids that have similar physical-
chemical properties. As a result, exchanges within similar groups will be 
tolerated. Thus, protein structures are more resilient to changes in amino 
acids during evolution. The degree of substitution at a particular residue 
position depends on the functional role and the environmental location of the 
residue in the folded protein. Similar structure or geometry of a set of 
unrelated sequences might also have evolved independently due to 
convergent evolution. Threading or fold-recognition methods apply 
structural information in measuring a fit between a given fold and a 
sequence. Such methods can detect similarity even when the sequence 
identity is very low, that is, less than 30%. Experimental structure 
determination procedures like X-ray and NMR have accumulated 
information in the form of a databank called PDB (protein databank). 
Comparative modeling uses either homologous sequence search or fold-
recognition methods to identify a suitable fold or structural parent. 

3.1 Steps Involved in Comparative Modeling 

Various steps involved in homology modeling of a protein are 
1. Identify suitable template for modeling: 

• Infer homology between target sequence and template by 
comparing their sequences using a similarity matrix or use fold-
recognition algorithms. Use loop library to identify templates for 
modeling loop regions. 

• Align two sequences such that structurally equivalent regions 
match. 

2. Construct a 3D model for the sequence based on the template: 
• Extract geometrical constraints from parent. 
• Apply these geometrical constraints to the target.  
• Energy refine the crude model, use side-chain library to optimize 

side chain locations 

3.2 Homologous Sequence Search Using Sequence 
Comparison Tools 

Protein sequences have been deposited in databases like SWISSPROT-
TREMBL (Bairoch and Apweiler, 1999), PIR (Barker et al., 1999), 
GenBank (Benson et al., 2002), and EMBL (Emmert et al., 1994). The oldest 
of search comparison tools is FASTA, which matches words or k-tuples 
between two sequences and obtains a similarity score based on the number 
of matches. BLASTP (Altschul et al., 1990) is another sequence search tool 
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that uses similarity matrix like BLOSUM (Henikoff and Henikoff, 1992) or 
PAM (Dayhoff and Schwartz, 1978) to compare a query sequence with 
subject sequences in sequence databases. BLAST is a heuristic based 
program that tries to find maximum segment pairs between the query 
sequence and subject sequences using a local alignment made with modified 
Smith-Waterman algorithm. For every pair-wise comparison BLAST 
produces a bit-score (by adding log-odd bit for every matching pairs during 
comparison) and an E-value (Expected value evaluates the probability that 
an observed similarity score occurred randomly). PSI-BLAST (Altschul et 
al., 1997) is a modified version of BLAST in which a position-specific 
scoring matrix is created and iteratively updated as new sequences above a 
certain E-value threshold are found. PSI-BLAST is more sensitive in 
identifying distantly related homologues compared to BLAST or FASTA 
(Schaffer et al., 2001). A BLAST/PSI-BLAST search may result in one or 
more sequence hits that have their structure previously determined 
experimentally. More advanced sequence based methods include profile-
HMM (Martelli et al., 2002) that uses probabilistic models to model 
observed amino acid distribution at a particular position in related sequences 
and use it for identifying remote homologs. Packages like meta-MEME 
(Grundy et al., 1997) or PROBE (Neuwald et al., 1997) can be used for 
creating profile-HMMs and can be applied for searching sequences. If 
sequence based search methods fails to locate a suitable template, more 
effective methods like fold-recognition for identifying remote homologs can 
be used. 

3.3 Identifying Remote Templates Using Fold-Recognition 
Methods 

Protein sequence adopts a structure from a limited repertoire of folds. 
Sequence comparison methods do not include structural information. Fold-
recognition methods try to match a given sequence with encoded 
information about a structure or, more specifically, a fold by determining the 
goodness of fit to a particular fold type. Most fold-recognition methods 
convert structural or environmental information of a particular fold into a 
profile and score a given sequence against the profile. 1D-3D profile method 
attempts to describe a 3D fold into 1D string that describes the 
environmental state (Bowie et al., 1991; Gribskov and Veretnik, 1996). The 
states include secondary structures (alpha, beta, or coil), solvent accessibility 
(buried, partial, or exposed), and residue charges (polar or apolar). Each 
position in the fold can fall into any one of 18 structural states. A scoring 
method includes a fit-function to measure goodness of fit of a given 
sequence against a priori distribution of amino acids in 18 states studied 
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using known folds. Fold-recognition servers like 123D+, BIOINBGU 
(Fischer, 2000), 3D-PSSM (Kelley et al., 2000) are profile-based methods. A 
threading method treats a fold as sets of interactions and any sequence that 
fits into a given fold must satisfy these interactions favorably. Pair wise 
interactions among amino acids are converted into contact potentials or 
interaction energies that describe suitability of interactions among all 
possible pairs of amino acids. GenThreader (Jones et al., 1999), and 
PROSPECT (Xu et al., 2001) servers use threading methods and 
sophisticated neural network based algorithms for selection of templates. 
The output of fold-recognition servers are templates that are ranked based on 
their scores and corresponding alignments. 

3.4 Selection of the Alignment 

If a target sequence shows high homology to a structural parent with a 
unique template the modeling procedure becomes straightforward. Partial 
regions or domains of a target sequence may match with different templates. 
Fold-recognition methods often return more than one possible template and 
corresponding alignment for the target sequence. A selection procedure that 
will identify the best template from multiple possible templates and an 
optimal alignment is necessary to model difficult targets. Evaluating 
alignment quality in the conserved regions of target sequence can be applied 
to select among multiple possible templates and alignments. A weighing 
scheme that uses simple voting to identify best template is available in a 
meta-server, which evaluates different alignments based on potential mean 
field scores computed using TITO (Labesse and Mornon, 1998). PCONS is 
an advanced neural network based consensus predictor that selects best 
template using output from different fold-recognition methods (Lundstrom et 
al., 2001). Both PCONS and TITO follow a jury scheme without collecting 
more information about the target sequence or refining alignment. In both 
the methods the information of sequence conservation in the target sequence 
family is not taken into account.  

3.5 Construction of 3D Models Using Modeling Programs 

Once suitable template(s) is identified and alignment is derived, the next step 
in modeling will be to obtain a 3D model. In general, most methods extract 
geometrical constraints like distance and dihedral angles using the template. 
The dihedral angles are defined by phi, psi, and omega angles for the 
backbone. Distance constraints are defined between conserved atoms in the 
target and the template. MODELLER uses an automated approach to 
comparative modeling by satisfying spatial restraints (Sali, 1998). The 
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objective function in MODELLER includes CHARMM (Brooks et al., 1983) 
force field terms and spatial restraints that are optimized in cartesian space. 
COMPOSER (Johnson et al., 1994) automatically constructs protein models 
using constraints derived from structurally conserved regions (SCRs). 
MPACK (Modeling Package) is an integrated protein-modeling suite 
designed to handle modeling of proteins effectively.  

3.6 Protein Modeling Package – MPACK 

Modeling Package (MPACK) currently handles both comparative and ab 
initio modeling procedures. The objective of this suite is to systematically 
bring different steps (or programs) under one roof in order to facilitate rapid 
model generation with minimal user effort and to create a biological data-
flow pipeline for large scale modeling of protein sequences from genomic 
projects. This suite was created with the geometry extraction program 
EXDIS (Soman et al., 2000) that extracts distance and dihedral constraints, 
specified using one or more structural parents. Inside/outside, secondary 
structure predictions from MASIA (Zhu et al., 2000) and other knowledge 
based topological constraints can be used directly to convert into suitable 
distance constraints using TRANSLATE (Soman et al., 2000). Geometric 
constraints generated are directed as input into the distance geometry 
program DIAMOD (Mumenthaler and Braun, 1995) that optimally 
calculates structures by either starting from a random conformation or from 
approximate models produced by EXDIS. The program also has an option 
for generating models with disulphide bonds and appropriate switches for 
self-correcting distance geometry procedures when approximate constraints 
(like constraints from MASIA predictions) are used. The package is robust 
and efficient in handling situations wherein a user intends to model a target 
based on multiple template fragments. MPACK is a user-friendly tool that 
increases modeling efficiency by automating most data exchanges among 
different software components. Additional modules like template search and 
alignment procedures can be easily added and the entire modeling procedure 
can be completely automated. 

3.7 SP3 – A Web-Based Structure-Prediction Tool Using 
Known Protein Structures as Templates 

3.7.1 Introduction 

Template-based modeling of protein structures (comparative modeling and 
fold recognition) attempts to recognize structural similarity of two proteins 
with (comparative modeling) or without (fold recognition) significant 
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sequence identity. One way to detect structural similarity is to identify 
remote sequence homology via sequence comparison. Advances have been 
made from pair-wise to multiple sequence comparison, from sequence-to-
sequence, sequence-to-profile to profile-to-profile comparison. Another way 
to detect structural similarity is via sequence-to-structure threading. More 
recent work attempts to optimally combine the sequence and structure 
information for a more accurate/sensitive fold recognition. For a recent 
review, see Godzik (2003) (Godzik, 2003). SP3 (Zhou and Zhou, 2005) is a 
profile-based method that provides sequence to structure alignment based on 
the sequence as well as the structure information of templates. 

3.7.2 Algorithm  

The algorithm of SP3 for a pair-wise alignment between a query sequence 
and a structural template is shown in Figure 6.1. The details are as follows. 
First, the program PSIBLAST (Altschul et al., 1997) is used to search 
homologous sequences of a query sequence from the NCBI non-redundant 
(NR) database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz). As in 
PSIPRED (Jones, 1999), the NR database was filtered to remove low-
complexity regions, transmembrane regions, and coiled-coil segments before 
being searched by PSIBLAST. This homolog search is conducted with an E-
value cutoff of 0.001 and completed after three iterations. Homologous 
sequences found by PSIBLAST are then filtered by keeping only those 
sequences that have less than 98% identity with the query sequence and an 
E-value of less than 0.001. Filtered homologs are used to produce the 
 

 

Figure 6.1 The flow chart of SP3 that uses structural information of templates without 
threading. Two sequence profiles (sequence-based and structure-based) generated per 
template were used to match the sequence-based profile generated for the query sequence. 
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sequence profile that characterizes evolutionary-derived probability of a 
residue type at a given query sequence position. Similarly, the sequence 
profiles of template sequences are also obtained. Second, PSIPRED (Jones, 
1999) is used to predict the secondary structure of a query sequence. The 
secondary structures of templates were obtained by H-bonds (DSSP-like) 
criteria (Kabsch and Sander, 1983). Three states (helix, strand, and coil) are 
used for all secondary structures.  

Third, a structure-based sequence profile is generated using template 
structure. Each template structure is divided into nine-residue fragments in 
the SP3 method. Each fragment structure is compared to the fragment 
structures in a structural fragment library. The structures in the fragment 
library will be ranked according to similarity to the structure and 
environment (residue depth) of the template fragment. The sequences of top 
ranked fragments (based on structural and residue-depth alignment) are used 
to calculate a structure-based sequence profile for the template structure. 
Fourth, two sequences (query and template) are aligned with a total 
matching score characterized by scoring the fitness between two sequence 
profiles generated from multiple sequence alignment program PSI-BLAST, 
the fitness between the query sequence profile and structure-derived 
sequence profile based on the template structure, and the fitness between 
predicted secondary structure of the query sequence and the actual secondary 
structure of the template. The highly efficient local–local dynamic 
programming method is used to optimize the total raw score for the best 
alignment between the query and template sequences. In SP3, we also used a 
gap penalty that depends on secondary structures (Zhou and Zhou, 2005). 
Finally, the matching scores between the query sequence and all templates 
stored in the template library are obtained. An empirical method based on 
raw score, normalized scores, and their Z-scores (a measure of relative score 
difference between one template from the rest of templates) is used for 
ranking the templates. The top ranked templates are used to build the 
structure model of the query sequence by using MODELLER (Marti-Renom 
et al., 2000). SP3 is one of the most accurate and sensitive servers in 
structure prediction based on testing on various benchmarks (Zhou and 
Zhou, 2005), including LiveBench (Bujnicki, 2001). SP3 is also among the 
best servers for comparative modeling targets and among the top single-
method servers for all targets in the CASP 6 meeting that assessed 49 
automatic web-servers (Zhou and Zhou, 2005).  

3.7.3 Input and Output  

The input for SP3 is the query sequence in the FASTA format and the 
number of structure models to be built based on top ranked templates. The 
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output (in html format) contains the links to PSIBLAST output for sequence 
profile, PSIPRED output for the secondary structure prediction, the top 10 
sequence-to-structure alignments and the structure models (in PDB format) 
built based on the alignments. The significance of the sequence-to-structure 
alignment is indicated by the Z-score for each alignment. An alignment is 
significant if Z-score > 6.3. The threshold was obtained from LiveBench 8 
(Bujnicki et al., 2001) for predicted models with MaxSub score (Siew et al., 
2000) > 0.01 when compared to their respective native structures. The output 
is now reported in a table format for easy understanding. Sample input and 
output with detailed line-to-line explanations are available online. The 
servers and executables are available for academic users at the “services” 
and “downloads” sections of http://sparks.informatics.iupui.edu/.  

3.8 Modeling Servers 

Web-based services for structure prediction and modeling are available. 
ESyPred3D (http://www.fundp.ac.be/urbm/bioinfo/esypred/) (Lambert et al., 
2002) uses neural network to improve sequence alignment from several 
multiple alignment methods and the final model is obtained using 
MODELLER. The FFAS03 (Jaroszewski et al., 2005) is a fold-recognition 
server that uses profile-profile alignment of target sequence with sequences 
in a non-redundant protein sequence database (http://ffas.ljcrf.edu/ffas-
cgi/cgi/ffas.pl). This profile is compared with sequences in PDB, Pfam, 
SCOP, etc. Initial profile is generated using PSI-BLAST. Hidden Markov 
based sequence alignment and modeling tool SAM-T02 produces template 
hits for query input (http://www.soe.ucsc.edu/compbio/HMM-apps/T02-
query.html). It consists of a library of Markov models for known protein 
sequences and family. A query is searched across the library to identify 
suitable hits. Another related server is SUPERFAMILY, which uses HMM 
library of protein sequence family for which structure is known. 
SUPERFAMILY is very helpful in annotation of genome sequences and to 
identify homologous templates even if the identity is low 
(http://supfam.org/SUPERFAMILY/) (Gough et al., 2001; Gough and 
Chothia, 2002; Madera et al., 2004). Fold-recognition server INUB 
(http://inub.cse.buffalo.edu/) is based on sequence derived properties and 
profiles (http://inbu.cse.buffalo.edu/) (Fischer, 2000; Fischer, 2003; Sasson 
and Fischer, 2003). The fold-recognition server FUGUE 
(http://tardis.nibio.go.jp/fugue/) is based on profile library search against 
HOMSTRAD, a database for structural alignment of homologous sequences 
(de Bakker et al., 2001; Shi et al., 2001). PHYRE is a protein 
homology/analogy search engine, which is an improvement of the 3D-PSSM 
fold-recognition method (http://www.sbg.bio.ic.ac.uk/~phyre/) (Kelley et al., 
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3.9 Critical Assessment of Structure Prediction  

Dr. John Moult of University of Maryland established CASP experiments in 
1992 with the aim of identifying the state of the art of protein structure 
prediction methods, disorder region prediction, and the progress made in 
function assignment (Moult et al., 1995). It is a biennial experiment in which 
scientific groups working in the field of structure prediction participate. 
CASP provides an objective way of testing the performance of modeling 
methods and tools (Moult et al., 1999). It is a double blind experiment where 
both the organizers of the competition and the participants do not know the 
3D structure of the protein sequence that they provide to the modeling 
community until the prediction period. In CASP4, 160 research groups 
participated and submitted 11,136 models for 43 targets. In CASP5, 188 
groups participated and submitted 28,728 models for 67 targets. The recent 
CASP6 had 201 human experts and 65 prediction servers that predicted 
models for 64 targets. Nearly 41,283 models were submitted under different 
categories. Please visit CASP homepage at http://predictioncenter.org for 
more information. 

3.10 Objective Testing of Modeling Tools in CASP 

The comparative modeling category consists of targets for which a template 
can be identified by BLAST or PSI-BLAST search. The evaluation of the 
models includes structural alignment between the model and the 
experimental structure to obtain the number of residues that fit well (AL0 
score). A Global Distance Test (GDT) is used to measure number of residues 
within a distance-cutoff after performing structural alignment of the model 
and the experimental structure. In CASP6, a combined score of GDT_TS 
(average percentage of residues that were predicted correctly within 1, 2, 4, 
and 8 Å) and AL0 (alignment registered correctly) were used to identify the 
best group. The best modeling group was Krysztof Ginalski at University of 
Texas. This group submitted 150 models for 64 3D targets using a consensus 
fold-recognition method called 3D-Jury and a profile-alignment method 
called Meta-BASIC. In the fold-recognition category, the targets evaluated 
were those for which sequence search using PSI-BLAST does not find a hit 
but a structural template could be identified based on structure-structure 
alignment in the entire PDB. Homologous fold-recognition (FA/H) category 
consisted of targets for which homologous templates were present. Targets 

 
2000). mGenThreader is a fold-recognition server that uses the sequence 
profiles of a protein family to assign the fold (http://bioinf.cs.ucl.ac. 
uk/psipred/) (Jones et al., 1999). 
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that did not have any homologous templates but have atleast a template with 
similar fold, were included in the analogous fold-recognition (FR/A) 
category. The best group in the FR/H category in CASP6 was Krysztof 
Ginalski and Bakers group ranked first in FR/A category. New fold category 
includes target with no homologous templates or similar fold in the PDB. 
Both FR/A targets and the six additional targets for which there were no 
structural templates or folds were scored under this category. Bakers group 
ranked the best followed by Bujnicki and Ginalski group.  
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Abstract: Large-scale prediction and understanding of protein–protein interaction is 
important to elucidate biological function. Protein interactions play a key role in 
signaling pathways, transportation, and other structural/functional roles in a cell. 
Several experimental and theoretical methods have been developed to predict a 
protein’s interacting partners. Protein–protein docking is also gaining importance. 
A brief introduction to visualization tools for proteins is provided here. 
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1. Introduction 

The fundamental goal of molecular biology is to obtain a comprehensive 
understanding of the intricate workings of the cell, to explain the systems 
within the cell, their organization and interactions with one another, and the 
order and complexity derived from the interplay between these systems. The 
concerted development of experimental techniques and computational 
methods has provided us with a new set of tools to tackle these questions. 
These efforts have been fairly successful in providing insights into the inner 
workings of the cell. The complicated cellular milieu is composed of 
macromolecules and metabolites that carry out diverse functions. 
Macromolecular interactions, which include DNA, protein, lipid, and 
carbohydrates in all permutations, are fundamental to biological systems. 
Protein interactions play a major role in maintaining normal cell functions 
and physiology.  
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Multi-protein complexes are emerging as important entities of biological 
activity inside cells that serve to create functional diversity by contextual 
combination of gene products and, at the same time, organize the large 
number of different proteins into functional units. Many a time, when 
studying protein complexes rather than individual proteins, the biological 
insight gained has been fundamental, particularly in cases in which proteins 
with no previous functional annotation could be placed into a functional 
context. The advances in technology made over the past few years now 
enable the study of protein complexes on a proteomic scale, and it can be 
anticipated that the knowledge gathered from such projects will fuel drug 
target discovery and validation pipelines, and that the technology will also 
prove valuable in the emerging field of systems biology. 

Over the past several years there has been tremendous improvement in 
both experimental techniques for data generation using yeast two-hybrid 
technology (Ito et al., 2001; Uetz et al., 2000), affinity chromatography/mass 
spectrometry (Gavin et al., 2002), synthetic lethal assays (Tong et al., 2001; 
Tong et al., 2004), and computational methods for obtaining new data using 
genome context methods (Eisenberg et al., 2000; Mellor et al., 2002; 
Rzhetsky et al., 2004). 

2. Experimental Methods 

2.1 Yeast Two-Hybrid 

The yeast two-hybrid assay is an elegant means of investigating protein–
protein interactions. The yeast two-hybrid technique uses two protein 
domains that have specific functions: a DNA-binding domain (BD), that is 
capable of binding to DNA, and an activation domain (AD), that is capable 
of activating transcription of the DNA. In order for DNA to be transcribed, it 
requires a protein called a transcriptional activator (TA). This protein binds 
to the promoter, a region situated upstream from the gene that serves as a 
docking site for the transcriptional protein. Once the TA has bound to the 
promoter, it is then able to activate transcription via its activation domain. 
Hence, the activity of a TA requires both a DNA binding domain and an 
activation domain. If either of these domains is absent, then transcription of 
the gene will fail. The binding domain and the activation domain do not 
necessarily have to be on the same protein. In fact, a protein with a DNA 
binding domain can activate transcription when simply bound to another 
protein containing an activation domain; this principle forms the basis for 
the yeast two-hybrid technique. 
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In the two-hybrid assay, two fusion proteins are created: the protein of 
interest (X), which is constructed to have a DNA binding domain attached to 
its N-terminus, and its potential binding partner (Y), which is fused to an 
activation domain. If protein X interacts with protein Y, the binding of these 
two will form an intact and functional transcriptional activator. This newly 
formed transcriptional activator will then go on to transcribe a reporter gene, 
which is simply a gene whose protein product can be easily detected and 
measured. In this way, the amount of the reporter produced can be used as a 
measure of interaction between the protein of interest and its potential 
partner. 

Generally, the yeast two-hybrid assay can identify novel protein–protein 
interactions. By using a number of different proteins as potential binding 
partners, it is possible to detect interactions that were previously 
uncharacterized. Secondly, the yeast two-hybrid assay can be used to 
characterize interactions already known to occur. Characterization could 
include determining which protein domains are responsible for the 
interaction, by using truncated proteins, or under what conditions 
interactions take place, by altering the intracellular environment. 

2.2 Affinity Tagging 

The purification of protein complexes has been accomplished by a multitude 
of different techniques ranging from classical methods such as size exclusion 
or ion exchange chromatography, to different varieties of affinity 
chromatography. The common theme of these is the use of an inherent 
interaction (affinity) of two biomolecules. If one of the molecules is 
immobilized on a solid support, the interacting molecule can be purified 
from cell lysate along with associated proteins. The classic co-
immunoprecipitation (IP) experiment using antibodies is probably the most 
frequently employed method for testing whether two proteins are associated 
in vivo, but the method can also be successfully used for the discovery of 
novel interacting partners in a protein complex. Antibodies can be used in a 
more generic way for the isolation of protein complexes that circumvents the 
need for producing specific antibodies. For this purpose, bait proteins can be 
fused to an epitope-tag and an antibody, directed against the tag instead of 
the bait protein, is used for complex retrieval. As a result, many different 
cDNAs can be fused to the same tag in parallel and complexes retrieved 
using the same antibody. 
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2.3 Computational Methods 

Computational methods for discovering specific protein interactions fall into 
three broad categories: (i) the identification of specific protein sequence or 
structural features indicative of protein interaction partners, such as sequence 
signatures (Sprinzak and Margalit, 2001), correlated mutations (Lockless 
and Ranganathan, 1999; Pazos and Valencia, 2002), and surface patches 
(Jones and Thornton, 1997; Lichtarge et al., 1996); (ii) the use of genomic 
context (Huynen et al., 2000) to identify interaction partners, exploiting 
information such as gene order (Dandekar et al., 1998; Overbeek et al., 
1999), gene fusions (Enright et al., 1999; Marcotte et al., 1999), and 
phylogenetic profiles (Pellegrini et al., 1999), and (iii) the use of 
phylogenetic trees to account for the co-evolution of interacting proteins 
(Fryxell, 1996; Goh et al., 2000; Hughes and Yeager, 1999; Koretke et al., 
2000; Pazos and Valencia, 2001) 

Computational methods that use sequence data can be broadly classified 
into homology-based and non-homology-based methods. Homology-based 
methods refer to the inference of protein interactions and protein functions 
from direct comparison of protein sequences based on sequence similarity 
using the BLAST algorithms. There is no doubt that homology analysis 
remains the central methodology of genomics, that is, the one that produces 
the bulk of useful information. However, a group approaches in comparative 
genomics goes beyond sequence or structure comparison. These methods 
have become collectively known as genome context analysis. The notion of 
“context” here includes all types of associations between genes and proteins 
in the same or in different genomes that may point to functional interactions. 
If gene A is involved in function X and there is evidence that gene B 
functionally associates with A, then B could also be potentially involved in 
function X. More specifically, context in comparative genomics pertains to 
phylogenetic profiles of protein families, domain fusions in multidomain 
proteins, gene adjacency in genomes, and gene expression patterns. Indeed, 
genes whose products are involved in closely related functions (e.g. form 
different subunits of a multisubunit enzyme or participate in the same 
pathway) should all be either present or absent in a certain set of genomes 
(i.e. have similar if not identical phylogenetic patterns) and should be 
coordinately expressed (i.e. are expected to be encoded in the same operon 
or at least to have similar expression patterns). This simple logic gives us a 
potentially powerful way to assign genes that have no experimentally 
characterized homologs to particular pathways or cellular systems. Although 
context methods usually provide only rather general predictions, they 
represent a new and important development in genomics that explicitly takes 
advantage of the rapidly growing collection of sequenced genomes. 
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2.4 Co-evolution 

Protein interaction specificity is vital to cell function, but the maintenance of 
such specificity requires that it persists even through the course of strong 
evolutionary change, such as the duplication and divergence of genes. 
Binding specificities of duplicate genes (paralogs) often diverge, such that 
new binding specificities are evolved. Given that such paralogous gene 
families abound, such as the >560 serine-threonine kinases in the human 
genome (Pruitt and Maglott, 2001), predicting interaction specificity can be 
difficult, especially when paralogs exist for both interaction partners. In 
these cases, the number of potential interactions grows combinatorially. This 
ambiguity can easily complicate the matching of ligands to specific 
receptors, and for such reasons, identification of ligands for orphan receptors 
is an important, but largely unsolved, problem (Chambers et al., 1999; Hsu 
et al., 2002; Saito et al., 1999). The hypothesis underlying this approach is 
that interacting proteins often exhibit coordinated evolution, and, therefore, 
tend to have similar phylogenetic trees. Goh et al. (Goh et al., 2000) 
demonstrated this by showing that chemokines and their receptors have very 
similar phylogenetic trees, as do individual domains of a single protein such 
as phosphoglycerate kinase. Detailed phylogenetic studies of the two-
component signal transduction system (Koretke et al., 2000) show that a 
phylogenetic tree constructed from two-component sensor proteins has a 
similar structure to that from two-component regulator proteins. 

2.5 Structure Based Methods 

A structural perspective on protein–protein interactions (Russell et al., 2004) 
gives a good overview of all the methods. Protein–protein interactions occur 
at protein surfaces and are biophysical phenomena, governed by interface 
geometrical properties (interface size, planarity, sphericity, and 
complementarity) and chemical properties (the types of chemical groups in 
amino acids, hydrophobicity, electrostatic interactions, and hydrogen bonds). 
Towards the common goal of understanding how proteins interact, these 
properties have been studied using different dataset of protein structures by 
numerous groups (Ippolito et al., 1990; Janin and Chothia, 1990; Korn and 
Burnett, 1991; Stickle et al., 1992). These studies are influenced by dataset 
size and their characteristics. It should also be noted that these studies are 
based on limited dataset consisting of heterogeneous (mixture of 
homodimers and hetero-complexes) data. 
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2.5.1 Interface Size 

Interface size is an important property used to describe protein interfaces and 
is usually characterized by interface area or the number of interface residues. 
The number of interface residues is shown to be linearly correlated to 
interface area (correlation coefficient: 96.0≥r ) (Bahadur et al., 2003; 
Chakrabarti and Janin, 2002). Jones & Thornton (Jones and Thornton, 1996) 
showed that homodimer interface area ranges from 368 Å2 to 4746 Å2 (based 
on a dataset of 32 dimers) and hetero-complex interface area ranges from 
639 Å2 to 3228 Å2 (based on a dataset of 27 hetero-complexes). They also 
showed that, in general, interface area is often proportional to the total 
protein size. Dasgupta (Dasgupta et al., 1997) showed that the interface area 
per subunit ranges from 670 to 5540 Å2 based on a sample of 23 oligomeric 
proteins. Lo Conte (Lo Conte et al., 1999) noted that most of the protein–
protein complexes have an interface area in the range of 1200–2000 Å2 and 
defined their interfaces as “standard size.” For all the dataset (used a dataset 
of 75 hetero-complexes), the interface area varies from 1140 Å2 to 4660 Å2 
with the mean value of 1940 Å2. Jones (Jones et al., 2000) studied the 
differences between protein domain interfaces and oligomeric protein 
interfaces. The interface area in 46 monomeric two domain proteins ranges 
from 260 Å2 to 3580 Å2 and the interface area derived from 105 oligomeric 
or protein complexes ranges from 95 Å2 to 2813 Å2. Valdar & Thornton 
(Valdar and Thornton, 2001) showed that the residue conservation can help 
identify biologically relevant crystal contacts using a dataset of 53 families 
of homodimers and 65 families of monomers. The biological contact is 
shown to have 53.7 residues on average and this account for 25.9% of the 
protein surface residues. In contrast, the average non-biological contact has 
only 7.6 residues and covers 4.2% of the surface. Chakrabarti & Janin 
(Chakrabarti and Janin, 2002) studied 70 hetero-complexes and refined the 
identity of a typical interaction ‘patch’ (having an area of at least 800 Å2, 
involving somewhat more than 20 residues and somewhat less than 100 
atoms). These patches are composed of a core and a rim. Only the core 
residues are shown to have a composition distinct from that of the rest of the 
surface. The rim is interpreted as mainly isolating the core of the patch from 
the solvent, recalling the ‘O-ring’ theory (Bogan and Thorn, 1998). Single 
patch interface contains 47±11 residues or 23 residues per recognition site. 
The average interface area per subunit is 1906 Å2 and the average number of 
interface residues is 57. Nooren & Thornton (Nooren and Thornton, 2003) 
analyzed the characteristics of transient protein–protein interactions using a 
dataset of 16 homodimers and 23 heterodimers. The interface area in 
homodimers is shown to range between 478 and 926 Å2, which is 7–18% of 
the monomer surface. As compared to homodimers, the heterodimer 
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interface area ranges between 570 Å2 and 2213 Å2. Bahadur (Bahadur et al., 
2003) showed that the range of interface area extends from 500 to 7000 Å2 
with the mean value of 1970 Å2. Interfaces bury 16% of the subunit surface 
on average, but this fraction varies from 3 to 44% for a dataset of 122 
homodimers. The average interface is shown to contain 52 residues per 
subunit. Although the smaller proteins obviously cannot form very large 
interfaces, the correlation with size is mediocre. Caffrey (Caffrey et al., 2004) 
used a dataset to study protein–protein interface conservation. The dataset 
consists of 42 chains that form homodimers, 12 chains that form 
heterodimers, and 10 chains that form transient complexes. The interface 
area is showed to range from 415 to 3568 Å2 for heterodimers, 550–4718 Å2 
for homodimers, and 423–2361 Å2 for transient complexes. The average 
number of interface residues is 44.4 (in homodimers) and 42.2 (in 
heterodimers). As we have seen from the above mentioned studies, interface 
sizes obtained can vary and this can be due to different datasets and their 
features, such as resolutions, size, or type these dataset. 

2.5.2 Hydrogen Bonds 

A hydrogen bond is a polar interaction between two electronegative atoms, 
one of which acts as a donor and the other as an acceptor (Jones and 
Thornton, 1995). The donor attracts the electron on the hydrogen with the 
result that the electron’s orbit is more towards the donor itself. This leaves a 
partial positive charge on the hydrogen, which is electro-statically attracted 
towards the electronegative acceptor. The interaction is energetically 
favorable in a number of ways, including in terms of the polarization energy 
and the covalent energy, and particularly the electrostatic energy. Generally 
speaking, there are three main types of hydrogen bonds in protein structures, 
which are formed between main-chain and main-chain, main-chain and side-
chain, side-chain and side-chain, apart from the solvent and hetero-atoms 
mediated hydrogen bonds (Ippolito et al., 1990; Janin and Chothia, 1990; 
Stickle et al., 1992). Although the energy of an average inter-molecular 
hydrogen bond is small, 20 KJ/mol (5 Kcal/mol) compared to 200 KJ/mol 
(Kcal/mol) in the case of a covalent bond, a great number of hydrogen bonds 
play an important role in protein–protein interactions. Studies show that 
there is a complementarity of hydrogen bond donor/acceptor sites (Janin and 
Chothia, 1990) and that having two or more intermolecular hydrogen bonds 
is intrinsic (Meyer et al., 1996). The numbers of inter-subunit hydrogen 
bonds found vary in different studies (Bahadur et al., 2003; Janin and 
Chothia, 1990; Jones and Thornton, 1995; Lo Conte et al., 1999; Nooren and 
Thornton, 2003; Xu et al., 1997) Janin & Chothia (Janin and Chothia, 1990) 
showed that there are 8–13 hydrogen bonds and a mean value of 10 
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hydrogen bonds per complex using 15 protease-inhibitor complexes, and 4 
antibody-antigen complexes determined by x-ray crystallography. In 
protease-inhibitor complexes, there are two-thirds of hydrogen bonds 
involving main-chain atoms. In contrast, in antibody-antigen complexes 
most hydrogen bonds involve side-chain atoms. Jones & Thornton (Jones 
and Thornton, 1995) showed that there are 0–46 hydrogen bonds base on a 
dataset of 32 homodimers. On average, there are 0.88 hydrogen bonds per 
100 Å2 interface area with an r value of 0.77 between hydrogen bonds and 
interface area. Xu (Xu et al., 1997) showed 11 hydrogen bonds per subunit 
with an r value of 0.89 between hydrogen bonds and interface area based on 
the studies using a dataset of 319 protein–protein interfaces. They also 
showed that the estimated number of hydrogen bonds is sensitive to the 
geometric parameters of the bonds. The geometrical distribution of hydrogen 
bonds across the interfaces is non-optimal and is different from that of 
protein interior. The reason for this difference may be that there are more 
hydrophilic side-chains buried in the binding interfaces than in the protein 
interior. When folding, proteins are completely free to attain their optimal 
configurations. But when binding each other, protein molecules are already 
folded and have limited freedom of six degrees of translation and rotation 
available to achieve the most favorable configuration (Archakov et al., 2003; 
Xu et al., 1997). Lo Conte (Lo Conte et al., 1999) showed there are 1–34 
hydrogen bonds with the mean value of 10.1 hydrogen bonds based on the 
study using a dataset of 75 hetero-complexes. However, there are nine 
hydrogen bonds in standard interfaces (defined by them with interface area 
range of between 1200 and 2000 Å2). They also analyzed effects on the 
number of hydrogen bonds caused by dataset resolution. Study showed that 
there is one hydrogen bond per 170 Å2 interface area and a r value of 0.84 
between hydrogen bonds and interface area for 36 complexes (resolution 
≤ 2.4 Å). For studies using structures with lower resolution, there were 
fewer hydrogen bonds and the correlation with interface area vanishes, 
which suggests that errors in atomic co-ordinates mask existing hydrogen 
bonds. Bahadur (Bahadur et al., 2003) (used a dataset of 122 homodimers) 
showed an average 9.0 hydrogen bonds per homodimer interface with a r 
value of 0.75 between hydrogen bonds and interface area. On average, there 
is one hydrogen bond per 210 Å2 and the correlation is better with the polar 
interface area ( 83.0=r ). These findings suggest that the number of 
hydrogen bonds and the correlation with interface area are influenced by 
dataset size and their characteristics, especially the structure resolution of the 
dataset used. 
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2.5.3 Hydrophobicity 

It has been demonstrated that the hydrophobic forces play an important role 
in protein–protein interaction (Bahadur et al., 2003; Korn and Burnett, 1991; 
Lijnzaad and Argos, 1997; Tsai et al., 1997; Tsai and Nussinov, 1997; Wells, 
1996). The average values of contact surface hydrophobicity usually 
represent the mean of the hydrophobicity of the protein core and its surface 
(Jones and Thornton, 1996). Also, the ratio between buried hydrophobic and 
buried hydrophilic residues is used to measure the hydrophobic effect (Tsai 
and Nussinov, 1997). Studies showed that hydrophobic residues (except 
ALA) and the charged residue ARG are found to have an increased presence 
at protein–protein interfaces (Bahadur et al., 2003; Brinda et al., 2002; 
Dasgupta et al., 1997; Lijnzaad and Argos, 1997; Lo Conte et al., 1999; Ma 
et al., 2003; Zhou and Shan, 2001). Especially, TYR and TRP are found to 
have the highest propensity to stay at the interfaces. It has even been 
suggested that the binding energy of two proteins derives from the burying 
of hydrophobic surface areas (Chothia and Janin, 1975). Jones & Thornton 
(Jones and Thornton, 1996) also assumed that proteins will associate with 
each other by hydrophobic patches. They calculated the mean hydrophobic 
value for all interface residues of each complex. In all of the calculated 
complexes, the interface hydrophobicity is intermediate between that of the 
interior and the exterior. Generally speaking, the protein has a hydrophobic 
core in the interior and a more hydrophilic surface (Hirakawa et al., 1999). 
When comparing the interface hydrophobicity between homodimers and 
hetero-complexes, it is found that the homodimer interfaces are more 
hydrophobic. The difference in hydrophobicity may originate from the roles 
of two types of complexes (Janin et al., 1988). The hetero-complexes often 
function as monomers in solution and their interfaces cannot be as 
hydrophobic as homodimer interfaces. In contrast, the homodimers usually 
function in dimer forms. Hence, they have hydrophobic interfaces 
permanently buried within the inter-subunits. It is energetically unfavorable 
to have a large exposed hydrophobic area on the proteins. Tsai (Tsai and 
Nussinov, 1997) studied the hydrophobic effect in protein–protein 
interactions using a dataset of 362 protein–protein interfaces and 57 
symmetry-related oligomeric interfaces. The hydrophobic effect was 
measured by the buried non-polar surface area or percent burial of residue 
types. Studies showed that the ratio between buried hydrophobic and buried 
hydrophilic residues is approximately 1.5. The interior of the interfaces 
appear to constitute a compromise between the stabilization contributed by 
the hydrophobic effect on the one hand and avoiding patches on the protein 
surfaces that are too hydrophobic on the other. The overriding conclusion is  
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that the hydrophobic effect plays a dominant role in protein–protein 
interfaces (Dill, 1990). However, it is not as strong as that observed in 
protein folding (Tsai et al., 1997). Nevertheless, there are exceptions, where 
there is no sign of a significant hydrophobic contribution at the interface 
(Tsai et al., 1997). Most studies analyzed the average hydrophobicity over a 
diverse set of protein–protein interfaces. It suffers the drawback that it blurs 
information on how individual interfaces are stabilized and cannot show how 
hydrophobic feature is distributed over the individual interfaces. Larsen 
(Larsen et al., 1998) studied the hydrophobic features of each protein–
protein interface and highlighted them with images. Although all the 
interfaces are formed between two globular subunits, the hydrophobic 
distribution pattern over the interfaces is quite variable: (1) some interfaces 
show a recognizable hydrophobic core, with a single large, continuous, 
hydrophobic patch surrounded by a ring of inter-subunit polar interactions; 
(2) some interfaces do not have a single hydrophobic core; instead, they 
have many small hydrophobic patches which consist of 1–3 amino acids. 
These small hydrophobic patches are not discrete, they are linked with inter-
subunit hydrogen bonds and water molecules and all patches are distributed 
across the interface. Moreover, the scattered hydrophobic patches do not 
dominate the interface character like the single large hydrophobic core; (3) 
there is still a small portion of the interfaces formed by extensive inter-
digitation of the two subunit chains. These interfaces are highly hydrophobic 
similar to the hydrophobic cores inside the folded domain. They are usually 
associated with proteins that are quite stable and internally symmetric. From 
the studies on proteins folding path, they may be formed through two-state 
folded theory. Hydrophobic effect is important to protein–protein 
interactions. So, understanding it will help unveil the nature of protein–
protein interactions, and help build the prediction model of protein 
interaction sites. 

2.5.4 Amino Acid Composition at Interfaces 

Many studies analyzed amino acids composition at protein–protein 
interfaces (Dasgupta et al., 1997; Jones and Thornton, 1996; Lijnzaad and 
Argos, 1997; Lo Conte et al., 1999). Different studies found that the amino 
acid distributions differ in different protein complexes. In small globular 
proteins the interface consists of 57% non-polar residues, 24% neutral polar 
residues, and 19% charged residues (Miller et al., 1987). While in the 
oligomeric proteins it consists of 65% non-polar residues, 22% neutral polar 
residues, and 13% charged residues, respectively (Janin et al., 1988). It 
indicates that the amino acid composition at the protein–protein interface is  
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more similar to that of the protein surface than protein interior. Jones & 
Thornton (Jones and Thornton, 1996) studied residue propensities at the 
interfaces. The results showed that the charged and polar residues, especially 
ARG and ASP, show an increased affinity for the interface. In addition, the 
hydrophobic residues MET and PRO show a slightly increased affinity for 
the interface. On average, the interface comprises 56% non-polar carbon-
containing groups, 29% neutral polar groups, and 15% charged groups 
(Jones and Thornton, 1996). Lijnzaad & Argos (Lijnzaad and Argos, 1997) 
showed that aliphatic and aromatic residues as well as PRO are the largest 
contributors to interface. LEU, ILE, PHE, VAL, and PRO occur 
progressively more often in the larger patches, whereas the contributions of 
TRP and TYR roughly depend on the patch size. And hydrophobic residues 
were abundant in large interfaces while polar residues were more abundant 
in small interfaces (Glaser et al., 2001; Zhou and Shan, 2001). ALA and 
MET are intermediate contributors. Charged residues are shown to have less 
affinity to the interface, especially as the patch size grows. Dasgupta 
(Dasgupta et al., 1997) showed that hydrophobic interactions at oligomer 
interfaces favor aromatic amino acids and MET over aliphatic amino acids. 
However, ARG is the top residues appearing at the oligomeric interfaces. 
This suggests that ARG might be very helpful to inter-subunit interactions. 
Musafia (Musafia et al., 1995) showed that ARG is especially adaptable to 
the formation of multiple salt bridge interactions, which may explain its 
structural role at oligomer and crystal interfaces. Lo Conte (Lo Conte et al., 
1999) showed that interfaces are much richer in aromatic residues HIS, TYR, 
PHE, and TRP than the average protein surface (21% versus 8%), and 
somewhat richer in aliphatic residues LEU, ILE, VAL, and MET (17% 
versus 11%). They are depleted in the charged residues ASP, GLU, and LYS, 
but not ARG (Zhou and Shan, 2001), which is the only residue that makes 
the largest overall contribution to interfaces (10%). Some variations are seen 
between different types of complexes, but the largest contribution of ARG 
and depletion in LYS are general conclusions. Chakrabarti & Janin 
(Chakrabarti and Janin, 2002) showed using a dataset of 70 protein–protein 
complexes that TRP and TYR have the highest propensity for the core of 
recognition sites, and SER and THR have a negative propensity. ARG is the 
most abundant core residue but also generally abundant on the protein 
surface. Brinda (Brinda et al., 2002) analyzed 20 homodimer interfaces 
using graph-spectral methods. ARG, HIS, PHE, TYR, and GLU are found to 
be the most preferred residues in the interface clusters. There is also a 
significant contribution from TRP and MET in the interface clusters when 
compared with the other amino acids. It is clear that the charged and 
aromatic residues prefer to stay interface clusters. In contrast, GLY, ALA,  
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VAL, and CYS are rarely found in the interface side chain clusters. Ma (Ma 
et al., 2003) studied structurally conserved residues between binding sites 
and exposed protein surfaces. The results showed that conservation of TRP 
on the protein surface indicates a highly potential binding site. To a less 
extent, conservation of PHE and MET also implies a binding site. For all 
three residues, there is a significant conservation in binding sites, whereas 
there is no conservation on the exposed surface. Bahadur (Bahadur et al., 
2003) studied subunit interfaces using a dataset of 122 homodimers. LEU 
was shown to be the most abundant residue at the homodimer interfaces, 
which contributed about 10% of the interface area. Other aliphatic residues, 
ILE, VAL, and MET are also main contributors to interfaces. Aromatic 
residues, PHE, TYR, and TRP are a little more abundant at the interface than 
at the protein surface. Charged residues, ASP, GLU, and LYS are depleted at 
the interface. But ARG is the second largest contributor to homodimer 
interfaces after LEU. Neuvirth (Neuvirth et al., 2004) counted TYR, MET, 
CYS, and HIS as the most favored to be at the interface. While residues, 
THR, PRO, LYS, GLU, and ALA, were least commonly found at the 
interfaces. In this study, ARG was not found to be abundant at the interfaces. 
Rajamani (Rajamani et al., 2004) showed a particularity of protein interfaces 
which is the existence of so-called ‘anchor’ residues. These residues can 
bind to specific pockets in the target protein and create a weak intermediate 
state that can rapidly convert to the final complex. Molecular dynamic 
simulations suggest that anchor residues adopt similar conformations in the 
complex and in the corresponding isolated protein, although this may not be 
reflected by their conformations in protein crystal structures due to packing 
or environmental effects. Another well-characterized property of protein 
interfaces is the existence of ‘hot-spot’ residues (Halperin et al., 2004; 
Keskin et al., 2005; Ma et al., 2003). These residues are found to make a 
significant thermodynamic contribution to the complex formation in so-
called ‘alanine scanning’ experiments. It has been shown that polar residue 
occur at binding interfaces and are correlated with residue conservation. The 
number of such residues appears to be proportional to the size of the 
interface. In conclusion, hydrophobic residues (except ALA) showed an 
increased affinity to protein–protein interfaces. Moreover, aromatic residues 
are a little more abundant at the interfaces than aliphatic residues. TYR and 
TRP are found to have the highest propensity at the interfaces. Hydrophilic 
and charged residues (except ARG) are found to be depleted at the 
interfaces. Most studies showed that ARG is among the top contributors to 
the interfaces.  
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2.5.5 Other Properties of Protein–Protein Interfaces 

Besides the properties discussed above, there are also some other features 
characterizing protein–protein interfaces. These features include: (1) 
interface shape (Chakrabarti and Janin, 2002; Hurley et al., 1989; Jones and 
Thornton, 1996), (2) geometrical complementarity (Harpaz et al., 1994; 
Jones and Thornton, 1996; Lawrence and Colman, 1993; Lo Conte et al., 
1999), (3) secondary structures of interface residues (Dasgupta et al., 1997; 
Jones and Thornton, 1996; Neuvirth et al., 2004; Tsai et al., 1997), (4) 
electrostatic complementarity (Janin and Chothia, 1990; Nicholls et al., 1991; 
Novotny and Sharp, 1992; Roberts et al., 1991), (5) water molecule effect on 
protein–protein interactions (Davies and Cohen, 1996; Guinto and Di Cera, 
1996; Stites, 1997), and (6) conformational changes upon protein–protein 
association (Davies and Cohen, 1996; de Vos et al., 1992; Stanfield et al., 
1993; Wilson and Stanfield, 1994).  

3. Protein Structure Visualization 

There are several commercial and free tools (for academic purposes) 
available for protein visualization. Using visual tools provides necessary 
perspective to understand the orientation of molecules and their arrangement 
in three-dimensional space. RASMOL (http://www.umass.edu/microbio/ 
rasmol/) is a free renderer that can display proteins and organic molecules. It 
has a powerful scripting language and simple visual display. One can 
visualize proteins in wireframe, ribbons, cartoons, or space-fill mode. 
MOLMOL (http://www.mol.biol.ethz.ch/groups/wuthrich_group/software) 
is a powerful and more advanced visualization system in which a user can 
display several proteins at the same time. It can be used for visual docking, 
backbone fitting, and RMSD calculations. It can also calculate electrostatic 
potentials and map them on a surface representation. PyMOL 
(http://pymol.sourceforge.net) is python-based molecular visualization 
program that can be used to visualize proteins, ligands, and surfaces. Several 
of these visualization programs share common functionalities. In-depth 
understandings on how to use these tools are available at their web sites.  

4. Databases 

Protein–protein interactions and information on complexes are still being 
developed. Thus, there are only a few databases created based on large-scale 
binding experiments, literature reports, and submission from experimental 
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community. MINT is a database of functional interactions between 
biological molecules like proteins, RNA, and DNA (Zanzoni et al., 2002). 
Experts curate protein–protein interactions or other biological 
macromolecular interactions reported in the scientific literature and the 
information is stored in a rational database that can be queried over the 
internet. Presently MINT contains 4568 interactions including genetic 
interactions (Protein-DNA). The BIND (Bader et al., 2003) database is 
designed to store descriptions of interactions, molecular complexes, and 
pathways. This database can be queried over the web for interaction records. 
The interaction records are submitted by users with details of interaction 
sites, and sub-cellular location of the complex. The DIP database also 
contains details of protein–protein interactions and provides paralogous 
verification score based on putative interaction. The DIP database linked to 
SWISSPROT annotation can be queried using the DIP node id. All three 
databases are provided as online service and some (BIND) can be 
downloaded as structured file. Other useful protein interaction databases 
include Protein–Protein Interaction Database (PPID, http://www.anc.ed. 
ac.uk/mscs/PPID/) and Human Protein Reference Database (HPRD, 
http://www.hprd.org. Useful urls for databases and tools are listed in  
Table 7.1. 

Table 7.1 List of useful URLs 
 

Tool URL 
Bioverse http://bioverse.compbio.washington.edu 
In silico two hybrid  http://ecid.bioinfo.cnio.es/ 
InterDom http://datam.i2r.a-star.edu.sg/interdom/ 
Magic http://genome-www.stanford.edu/magic 
ProtFun http://www.cbs.dtu.dk/services/ProtFun 
ProteinFunction http://www.aber.ac.uk/compsci/Research/bio/Protein

PLEX http://bioinformatics.icmb.utexas.edu/plex 
STRING http://www.bork.embl-heidelberg.de/STRING 
Gene Neighbors  http://bioinformatics.icmb.utexas.edu/operons 
WIT  http://wit.mcs.anl.gov/WIT2 
InParanoid http://inparanoid.cgb.ki.se 
Clusters of Orthologs (COGs)  http://www.ncbi.nlm.nih.gov/COG 
Bind http://www.bind.ca 
BRITE http://www.genome.ad.jp/brite 
Database of Interacting 
Proteins  

http://dip.doe-mbi.ucla.edu 

GRID http://www.thebiogrid.org/ 
MIPS http://mips.gsf.de/proj/yeast/CYGD/db/index.html 
PIMRider http://pim.hybrigenics.com 
REACTOME http://www.reactome.org 

Function 
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Abstract: Genes are defined regions of DNA that codes for proteins and forms the 
blueprint of living organisms. While classical molecular biology experiments 
attempt to characterize genes, modern large-scale analysis of gene expression 
techniques provides clue about regulations and control systems underlying 
biological process. DNA Microarray experiments attempts to capture snapshot 
of transcriptome. Currently high density oligonucleotide and spotted cDNA 
microarray are widely used for probing genomic markers. Normalized 
intensity values are used to identify significantly regulated genes. Biological 
pathways and networks that contain several regulated genes are identified 
further for higher-level interpretation.  

Key words: Microarray, DNA chip, Oligonucleotides, Biological pathways 

1. Introduction 

Genomics is the study of genes, gene content, gene regulations, and 
transcriptome or mRNA copy numbers that characterizes biological process 
(McKusick, 1997). The sequence of the human genome was only the first 
milestone towards understanding the information coded in the DNA. The 
next stage of the genomic research is to drive significant knowledge from 
several genome projects (O'Brien et al., 1997). Even with basically all of the 
human genome sequence availability, the number of protein–coding genes 
can still only be estimated (currently 20,000–25,000). Furthermore, the 
specific functions of all these genes remain to be determined. The challenge 
is to interpret and learn how to use that information to drive a meaningful 
understanding of the biology of human health and disease. Much work is 
required to determine the function and the elements that regulate these genes 
throughout the genome, find variations in the DNA sequence among people 
(like Single Nucleotide Polymorphisms or SNPs), and determine their 
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significance (Schimenti and Bucan, 1998). These variations may one day 
provide information about an individual’s disease risk and adverse reactions 
to certain medications, develop and apply genome-based strategies for the 
early detection, diagnosis, and treatment of diseases. Transcription of DNA 
to RNA results in increase in the copy number of mRNA that may finally 
result in abundance of specific proteins by translation. Transcriptome refers 
to set of all available mRNA transcripts in a cell at a given time or in a 
biological state (like a cancer cell). Large-scale RNA expression studies use 
microarray experiments to identify differential regulation of genes, identify 
sequence variants, or nucleotide polymorphisms. Gene expression signatures 
can then be used to infer and further hypothesize candidate networks, 
pathways, or identify gene lists involved in a diseased state (Ait-Ghezala et 
al., 2005). Such expression signatures can also be used as diagnostic 
biomarker for specific disease. Recently large-scale analysis of DNA 
sequencing arrays has made genome scale SNP analysis possible. The first 
section of this chapter describes some details regarding gene characterizing 
methods and techniques. The second half deals with microarray data 
analysis. 

2. Gene Identification and Characterization 

2.1 Identifying Human Genes and Cloning 

There are four strategies for identifying human genes:  

•  Functional cloning: information about the function of an unidentified 
gene is used to isolate the gene – either a gene product or a functional 
assay is required. This method has very limited application. Examples 
include genes identified for diseases like Phenyl Ketonuria (PKU) and 
Hemophilia type A (Clos and Choudhury , 2006).  

•  Candidate gene approach: requires sufficient information about the 
molecular basis of pathogenesis or the existence of a suitable animal or 
human model where the gene is already known to be able to make an 
educated guess.  

•  Positional cloning: isolation of a gene knowing only its chromosomal 
location, which is typically identified by linkage analysis. Construct 
physical and genetic map of candidate region, identify the genes within 
the region, and investigate each candidate gene until the disease gene is 
identified.  

•  Positional candidate approach: combines the positional and candidate 
gene approaches. Candidate region identified, usually by linkage. Genes 
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known to map to this region are then considered as candidates. The 
positional candidate approach is increasingly the method used to clone 
genes (Karayiorgou and Gogos, 2006). Examples include Marfan 
syndrome and DFNA13. 

2.1.1 Physical Mapping of the Candidate Gene Interval 

Once a gene has been localized to a small region of a chromosome, the task 
of isolating it begins. Currently this entails the construction of a physical 
map across the chromosomal region carrying the gene, the identification of 
all genes within that region and gene characterization/mutation analysis to 
associate a particular gene to a trait or characteristic. Physical map 
construction is the ultimate step in refining the region of interest and requires 
the construction of a “contig” overlapping cloned DNA fragments which 
spans the region of interest. In many cases, this will initially involve using 
very large clones such as Yeast Artificial Chromosome (YACs, up to two 
mega bases in size), Bacterial, or Phage P1 artificial chromosomes (BACs, 
PACs respectively, up to several hundred kilobases in size). 

The two current approaches to high-resolution physical mapping are 

(resulting in a contig map). With either strategy, the maps represent ordered 
sets of DNA fragments that are generated by cutting genomic DNA with 
restriction enzymes. The fragments are then amplified by cloning or by 
polymerase chain reaction (PCR) methods. Electrophoretic techniques are 
used to separate the fragments according to size into different bands, which 
can be visualized by direct DNA staining or by hybridization with DNA 
probes of interest.   

A number of strategies can be used to reconstruct the original order of the 
DNA fragments in the genome. Many approaches make use of the ability of 
single strands of DNA and/or RNA to hybridize—to form double-stranded 
segments by hydrogen bonding between complementary bases. The extent of 
sequence positional homology between the two strands can be inferred from 
the length of the hybridized double-stranded segment. Physical mapping 
uses restriction data to determine which fragments have a specific sequence 
(fingerprint) in common and, therefore, overlap.  

The bottom-up approach involves cutting the chromosome into small 
pieces, each of which is cloned, ordered, and the ordered fragments form the 

clones varies in size from 10,000 bp to 1 Mb. An advantage of this approach 
is the accessibility of these stable clones to other researchers. The order of 
the clones constructed can be verified by FISH, which localizes cosmids to 
the specific regions within chromosomal bands.  

termed “top-down” (producing a macrorestriction map) and “bottom-up” 

contiguous DNA blocks (contigs). Currently, the resulting “library” of 
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Contig maps, thus, consist of a linked library of small overlapping clones 
representing a complete chromosomal segment. While useful for finding 
genes localized to a small area (under 2 Mb), contig maps are difficult to 
extend over large stretches of a chromosome because all regions are not 
easily clonable. DNA probe techniques can be used to fill in the gaps, but 
they are time- consuming. 

Technological improvements now make possible the cloning of large 
DNA pieces, using artificially constructed chromosome vectors that carry 
human DNA fragments as large as 1 Mb. These vectors are maintained in 
yeast cells as artificial chromosomes (YACs). (For more explanation, see 
DNA Amplification.) Before YACs were developed, the largest cloning 
vectors (cosmids) carried inserts of only 20–40 kb. YAC methodology 
drastically reduces the number of clones to be ordered; many YACs span 
entire human genes. A more detailed map of a large YAC-insert can be 
produced by subcloning, a process in which fragments of the original insert 
are cloned into smaller-insert vectors. Because some YAC regions are 
unstable, large-capacity bacterial vectors (i.e. those that can accommodate 
large inserts) are also being developed. 

2.1.2 Isolation and Analysis of Candidate Genes 

The final stage of the gene discovery process, identifying causative genes 
within the candidate interval generally relies on knowledge of the biology of 
the disease being studied. Various methods including cDNA library 
screening, cDNA selection, CpG island identification, exon trapping, 
sequence analysis are used. Exon trapping is a special technique used to 
search for exons (protein–encoding sequences) in genomic clones. This 
involves construction of expression cloning vectors containing DNA 
sequences that are used to transfect a modified cell line. The inserted DNA 
will be transcribed into RNA and undergo splicing as normal. If the inserted 
DNA results in an abnormal-sized splice product, it may indicate that this 
DNA is likely to contain a coding sequence or gene. 

In cDNA selection (complementary DNA), DNA is synthesized to 
complement the bases in a strand of mRNA. This reaction requires the action 
of reverse transcriptase (an RNA dependent DNA polymerase). The cDNA 
is representative of the exons or parts of a gene that are expressed to produce 
a protein in a cell as it is synthesized from mRNA that has had any introns 
spliced out. Accumulation of evidence that the candidate gene is involved in 
the disease will be based on: 

• Appropriate expression pattern  
•  Homology to a gene implicated in an animal model of the disease or to a 

human gene with a similar disease phenotype  
• Presence of mutations, which segregate with the disease. 
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Genes within the candidate interval will be prioritized for further study 
based on expression pattern and/or homologies to known genes. If a link 
between these characteristics and the biology of the disease exists, the gene 
becomes a stronger candidate. It is possible, however, that the disease 
associated gene(s) will have no homology to any known gene and, thus, no 
proposed function. In this case, any gene within the interval becomes a 
candidate for disease association. One way of assessing candidate genes is to 
look for differences in a gene between affected and unaffected individuals. 
Polymorphisms (the occurrence in a population (or among populations) of 
several phenotypic forms associated with alleles of a gene or homologs of 
one chromosome) within genes are examined to determine if they are found 
to preferentially associate with the affected population (TDT analysis). This 
approach can be used for genes with no known homologies as well as for 

“susceptible” alleles. Polymorphisms may be identified from existing 
databases, but in many cases, it will be necessary to establish new 
polymorphisms within the candidate genes. This is done most commonly by 
restriction fragment length polymorphism (RFLP) or single-strand 
conformation polymorphism (SSCP) analysis, or by direct sequencing of 
DNA from affected and unaffected individuals. 

Genes that emerge as strong candidates from the above analysis will be 
subject to mutation analysis to identify any differences, which may encode 
the actual etiological mutation. Having identified a susceptibility gene, a 
range of initial analyses can be undertaken, including gene expression 
analysis by northern blotting and in situ hybridization, antibody production 
and protein expression studies, transgenic/knockout mice, structural 
modeling, mutagenesis, and in vitro biochemical analyses. Such 
investigations are aimed at producing a range of molecular tools appropriate 
for probing the function of the gene product and examining its role in the 
generation of pathology. 

2.1.3 Genome Mapping 

Genomic maps serve as a scaffold for orienting sequence information. A few 
years ago, a researcher wanting to localize a gene, or nucleotide sequence, 
was forced to manually map the genomic region of interest, a time-
consuming and often meticulous process. Today, thanks to new technologies 
and the influx of sequence data, a number of high-quality, genome-wide 
maps are available to the scientific community for use in their research, 
Human genome Database “GDB” (http://gdbwww.gdb.org/ gdbhome.html), 
Ensemble (http://www.ensembl.org/index.html), EMBL (http://www.ebi.ac. 
uk/embl/), NCBI, DDBJ. 

previously identified candidate genes, and may detect “protective” or 
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Table 8.1 DNA or Oligonucleotide Microarray analysis softwares and links 
 

Source Details URL 
General Links http://ihome.cuhk.edu.hk/~b400559/array.html 
CAMDA http://www.camda.duke.edu/ 
BioConductor http://www.bioconductor.org/ 
NetAffx http://www.affymetrix.com/analysis/index.affx 
GEO http://www.ncbi.nlm.nih.gov/geo/ 
ArrayExpress http://www.ebi.ac.uk/arrayexpress/ 
HuGEIndex http://zlab.bu.edu/HugeIndex/welcome.htm 
dChip http://www.dchip.org 
GENE@WORK http://www.research.ibm.com/FunGen/FGDownloads.htm 

 
Computerized maps make gene hunting faster, cheaper, and more 

practical for almost any scientist. In a nutshell, scientists would first use a 
genetic map to assign a gene to a relatively small area of a chromosome. 
They would then use a physical map to examine the region of interest close 
up, to determine a gene's precise location. In light of these advances, a 
researcher's burden has shifted from mapping a genome or genomic region of 
interest to navigating a vast number of web sites and databases (Table 8.1). 

3. Microarray Experiments 

Simultaneous measurement of several gene expressions has been made 
possible with the advent of photolithographic methods and robotic spotters. 
Advanced technologies are being used to coat glass or silica plate with 
synthesized DNA probes in a specific array patterns. These arrays feature 
regions or spots of DNA probes that measure a few micrometers for specific 
genes or mRNAs. A sample containing complementary strands of nucleic 
acids that are tagged to fluorescent label are hybridized to the microarray 
and this results in the detection of fluorescent intensity. The raw intensity is 
scaled and normalized to obtain quantitative information about the 
abundance of specific mRNAs or DNA. Using replicate samples from 
control and treatment cases one can obtain relative abundance of gene 
products. There are two types of microarrays based on the type or size of the 
probe: (1) probe cDNA spotted microarray that has probes >500 base long, 
(2) High density oligonucleotide arrays (e.g. GeneChip from Affymetrix Inc) 
with multiple short probes of 20–80 base. Microarray experiments involve 
(1) Sample preparation and labeling, (2) Array Hybridization (3) Readout 
and higher-level data-analysis. Each chip may feature probes for several 
genes and recently higher density arrays have been released for whole 
genome (e.g. Affymetrix U133 2.0 arrays for Human). Typically expression 
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arrays are used for measuring mRNA abundance, while sequencing or 
genome hybridization type arrays are used for detecting single-nucleotide 
polymorphism (SNPs) or other genomic instability. Expression arrays are 
widely used for understanding genetic regulation underlying a disease or 
genetic response to external stimulation from chemical or biological agents.  
Low-level analysis of expression array involves assigning expression or 
intensity index for the entire set of genes present on the array. In spotted 
array, this index is a ratio between two different fluorescent probe intensity 
(Cys 3’/Cys 5’) corresponding to control and test samples. In GeneChip 
(Affymetrix), individual samples are hybridized to a specific oligo probe set; 
hence, a separate intensity index is assigned for each oligo probe. 
Affymetrix chip design uses a perfect match (PM) probe of 25-mer (or 
bases) and a mismatch (MM) probe (13th mismatch base) for a single region 
of a gene. Several such region or probe set are used for querying expression. 
The raw intensity value is the average of PM–MM over several probe pairs. 
The average intensity of each is set to a fixed value and a scaling factor is 
calculated to obtain an expression intensity index. Several software tools can 
assign expression index based on different statistical models which 
systematically corrects for backgrounds, adjusts, or normalizes expression 
values to facilitate comparison across different chips. Affymetrix software 
MAS5.0 uses average of intensity differences between Perfect and Mismatch 
probes within a single chip to assign expression index. Softwares like dCHIP 
or RMA uses probe intensity distribution across multiple or replicate chip to 
extract background and assign intensity index that can provide excellent 
sensitivity compared to MAS5.0. The open source BioConductor package 
developed in R provides implementation of different algorithms and also 
additional tools for low-level analysis. Microarray low-level analysis 
produces a statistically significant list of genes that may be regulated. 
Several concerns do exist in the field relating to the false-discovery rates 
(FDR), adequacy of sample sizes, and reproducibility of expression indexes. 
A false-discovery rate is the expected percentage of the final list of 
significant genes as measured by statistical criteria that may not be truly 
significant. Most FDR discovery tools use some kind of corrections for 
multiple testing or permutations of samples/genes labels to estimate the 
significance of multiple testing. Several FDR-based multiple testing 
procedures are widely used in the field of microarray like Benjamini and 
Hochberg or Storey (Storey 2002; Jung and Jang, 2006). One can use 
Significance Analysis of Microarray (SAM) to estimate FDR. Higher level 
analysis of microarray data involve gene-clustering, extraction of functional 
patterns, and identification of networks or pathways that are significantly 
altered (Tusher et al., 2001). Two-way clustering of genes and samples are 
generally performed using a normalized expression index across genes. The 
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distance metric generally used is the inverse of Pearson-correlation. Gene 
clustering can be performed using dCHIP, Affymetrix DataMinerTool 
(DMT), TreeView, GeneCluster (http://www.broad.mit.edu/cancer/ 
software/software.html), or in BioConductor. Both supervised (e.g. K-mean 
clustering, Pearson correlation analysis, nearest shrunken centroids analysis, 
etc.) and unsupervised clustering (Hierarchical, Self-Organizing Maps) can 
be performed to group related gene expression across different chips. If a set 
of functionally related gene is statistically enriched under a node, one can 
infer biological significance of such functions (e.g. DNA repair enzymes). 
Genes are annotated and grouped according to function using standard 
ontologies in publicly available GO databases. Clustering based on gene 
ontology is applied to identify significantly altered biological functions 
(Please refer to Section 3.2).  

3.1 Microarray Databases 

Microarray data can be submitted to public repositories like Gene-
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and 
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) that also contain other 
tools to perform wide list of analysis. GEO is a MIAME (Minimum 
Information About a Microarray Experiment)–compliant microarray data 
repository developed at NCBI. As of March 2007, GEO contains 
information about 133152 samples. It is the largest public repository of 
microarray data. User friendly query interface is available that can be used to 
retrieve raw and processed files for specific samples, platform, or species. 
GEO also provides information about gene profiles where a user can query a 
gene of interest to see differential expression pattern within an experiment 
set. ArrayExpress is another MIAME–complaint public database that curates 
microarray data. It also provides query interface for gene expression profile. 

3.2 Gene Annotations, Ontology, and Pathway Databases 

Once a list of genes with interesting expression profile is identified, the last 
step in microarray experiment is to infer the result in terms of biological 
context. If several members of a biological pathway or function are 
significantly regulated, then a hypothesis can be developed that can be tested 
with new experiments. A repository containing annotated genes in terms of 
their function, cellular location, and the pathway involved is used to identify 
biological process. Since common biological function can be represented by 
different keywords, a scoring under specific functional keyword requires 
declarative representation using a controlled vocabulary. Ontologies specify 
uniform controlled vocabulary from a specific discipline. GeneOntology 
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(http://www.geneontology.org/) contains a hierarchical arrangement of gene 
members based on controlled vocabulary to describe their attributes. It is 
widely used for scoring and identifying process specific regulation (e.g. 
Copper Ion homeostasis) from the gene annotation. A gene can be annotated 
under several terms. The terms are arranged hierarchically based on their 
relationship. The terms are further classified under different ontologies: 
biological process, cellular component, and molecular function. There are 
several ontology projects that are of interest to biomedical community 
(http://obo.sourceforge.net/). Pathway databases represent a defined set of 
gene products (proteins) that forms a network to achieve metabolism (e.g. 
Glycolysis), cell-signaling (e.g. VEGF pathway), or a disease (e.g. 
Alzheimer’s pathway). A biological network is formed by a protein–protein 
interaction, protein–lipid, protein–RNA, or protein–DNA interactions. 
Commerical databases like Ingenuity (http://www.ingenuity.com) use 
literature/experimental interactions of proteins to create insilico networks. 
They also contain well-defined pathways. A list of protein or gene id can be 
scored to obtain significantly regulated networks or pathways.  The Database 
for Annotation, Visualization, and Integrated Discovery (DAVID) at 
(http://david.abcc.ncifcrf.gov/home.jsp) is public tool that can be used for 
scoring significantly altered function or to identify biological process. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/ 
kegg/) is a public repository of biological pathways that also contains tools 
like KegArray, which can be used in microarray data analysis. 
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Chapter 9  

Introduction to Proteomics 
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Abstract: Proteome is defined as the total set of proteins expressed in a given cell or 
biological sample at a given time. The study of proteome is termed 
“proteomics”. Proteomics research includes the separation, identification, 
qualitative, quantitative, and functional characterization of the entire protein 
profile of a given cell, tissue, and/or organism. In this chapter, we describe the 
processes of commonly used proteomics techniques like gel-based separation 
and mass-spectrometry. 

Key words: 2D-gel electrophoresis, Mass-spectrometer, Post-translational modification 

1. Introduction 

 

Proteins govern most biological processes and functions. Recently, much 
attention has been paid to study the entire protein sets available in a cell. 
While genomics attempts to reveal genes and mRNA content, proteomics 
studies the protein complement.  Before proteomics, most study on protein is 
limited by the availability of the antibody (Lauderback et al., 2001). 
Although this one–at–a–time method is commonly used and accepted still, it 
is impractical to use this method to study enormous proteome. The study of 
proteome is termed “proteomics”. Proteomics research includes the 
separation, identification, qualitative, quantitative, and functional 
characterization of the entire protein profile of a given cell, tissue, and/or 
organism. Studying proteome also includes the profiling of isoforms, splice 
variants, mutants, post-translational modifications, and protein–protein 
interactions (Dove, 1999; Schoneich, 2003). 
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2. Sample Preparation 

Proteomics research involves several steps: (1) sample preparation (2) 
peptide/protein separation, (3) peptide/protein identification. The samples 
for proteomics research usually contain high concentration of ions due to 
lysis buffer usage while extracting proteins from the cell.  The high level of 
ions in the buffer can cause variation of voltage and current during 
isoelectric focusing (IEF), thereby preventing successful isoelectric 
separation of proteins of interest. This phenomenon usually manifested by 
horizontal smearing of the protein spot during electrophoretic separation. 
This can be avoided by using chemicals, such as trichloroacetic acid (TCA) 
to precipitate the protein and subsequently use organic solvents to wash the 
pellet. Commercial spin ion-removal columns (Sigma and Pierce) are also 
available to remove ion from samples prior to IEF. Once the protein samples 
are extracted and purified, it should be separated before identification step. 
Separation reduces the complexity of protein to be analyzed. Most widely 
used methods for separating proteins are 2D gel electrophoresis and liquid 
chromatography. 

3. Two-Dimensional (2D) Gel Electrophoresis 

2D gel electrophoresis is commonly used to separate a mixture of proteins 
into single detectable protein spots. The 2D separation of proteins on gel is 
usually achieved according to their isoelectric point and molecular weight. 
In the first dimension, proteins are separated according to their isoelectric 
point by IEF on an immobile pH gradient strip. The resulting strips are then 
treated with dithiothreitol and iodacetamide to avoid cysteine–cysteine 
interaction, which will decrease the resolution of the second step of 
separation. In the second dimension, proteins are separated according to their 
molecular migration rate as determined by their molecular weight. Finally, 
the gel is stained. 

The resulting 2D map allows comparison within and between groups of 
samples for statistical analysis. The advantages of the 2D gel electrophoresis 
are its consistency and high resolution. However, some caveats of this 
technique are still present; for example, the insolubility of membrane 
proteins is still a main obstacle for 2D-electrophorsis. The ionic detergents 
used for solubilization of membrane proteins can interfere with the focusing 
process. Additionally, the mass range and the detection limits also represent 
technical limitations of 2D-electrophoresis method. Moreover, identification 
of low abundant protein in a sample is usually limited by the sensitivity of 
the stain used for protein detection (Soreghan et al., 2003). 
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3.1 Image Analysis and Statistical Analysis 

The proteins that are separated on 2D gels traditionally are stained by 
classical methods, including Coomassie blue and silver staining. However, 
these detection methods remain problematic due to low sensitivity (for 
Commassie) or poor reproducibility and dynamic range (for silver). The 
recent development of fluorescent dyes, namely SYPRO™ Ruby, overcame 
these problems with its sensitive (1–2 ng) detection limits and linear 
dynamic range over three orders of magnitude (Molloy and Witzmann, 
2002). The resulting 2D map is then analyzed by software designed for 
image analysis, which allows gel–to–gel comparison. These software usually 
generate a large amount of data accumulated from multiple 2D gels. Widely 
used 2D gel analysis software are like PDQuest (Biorad), ImageMaster 
2D/Melanie (http://expasy.org/melanie), etc. Some of these software were 
evaluated in a recent survey (Righetti et al., 2004). These software enable 
investigator in matching and analysis of protein spots among differential gels 
and blots. The principle involved in the intensity measurement of protein 
spots in 2D electrophoresis is similar to those of densitometric measurement. 
After completion of spot matching, the normalized intensity of each protein 
spot from individual gels is compared between groups using statistical 
analysis. Although the software use raw-image patterns for automatic 
alignment, additional methods like neighboring spot patterns or landmark 
matching, automatic image warping, and hands-on or manual processing is 
still necessary for accurate results. 

3.2 In-Gel Digestion and Mass Spectrometry 

Following 2D image analysis, the protein spot of interest is excised and 
treated with ammonium bicarbonate and acetonitrile to remove detergents 
that may interfere with the protease activity step of in-gel digestion. The 
excised spots are then in-gel-digested with a protease (trypsin is commonly 
used) in an optimal buffer for its activity. The digested peptides are then 
easily eluted from the gel to undergo mass spectrometry analysis. In-gel 
digestion not only reduces the mass of a protein into small peptides ideal for 
mass spectrometry, but also forms a collection of proteolytically sequence-
specific peptides that enables the identification of the protein. 

4. Mass Spectrometry 

Mass spectrometry is a technique where the mass of an ion is measured for 
the characterization of the molecule of interest.  Mass spectrometry is 
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composed of a sample inlet, an ionization source, a mass analyzer, and a 
detector: 

 
• Sample Inlet 

 Sample inlet is where the sample is delivered to the mass 
spectrometry.  The sample inlet could be a liquid chromatography (LC), 
gas chromatography, or a capillary electrophoresis instrument.  In 
proteomics application, the most commonly used sample inlet is an LC 
for its solvent compatibility with the ionization source. 
 
• Ionization source 

 In mass spectrometry, the molecules have to be converted into their 
ionized form to be measured.  There are many kinds of ionization source 
that are used for the ionization of different compounds.  The commonly 
used ionization sources for proteomics applications are electrospray 
ionization (ESI) and matrix assisted laser disorption ionization (MALDI).  
ESI and MALDI are soft ionization techniques and hence there is less 
fragmentation of the peptides or proteins during ionization. However, 
peptides or proteins can be further fragmented by collision with inert 
gases to get sequence information.  ESI is commonly used with different 
separation techniques including reverse phase liquid chromatography, 
which is used for separation of peptides based on their hydrophobicity. 
 
• Mass Analyzer 

  The ions formed in the ionization source have to be separated 
depending on their mass to charge values in order to be detected.  The 
commonly used mass analyzers are ion trap, quadrupole mass filter, 
time–of–flight and hybrid forms.  The ion trap and quadrupole mass 
analyzers separate ions by applying rf and dc voltages that isolate 
specific mass to charge value of the ion of interest while ejecting the 
other ions.  The time of flight separates the ions by the time it takes the 
ions to move from the ionization source to the detector, which is 
inversely proportional to the mass to charge value of the ions. 

4.1 Mass Spectrometry in Proteomics 

Mass spectrometry facilitates rapid identification and characterization of 
thousands of protein in a sample. The traditional ionization fragmentation  
of peptides do not provide accurate peptide mass. However, development of 
two Nobel prize-winning ionization methods, MALDI (matrix assisted laser 
desorption/ionixation) and ESI (electrospray ionization), enabled the 
ionization of large biological macromolecules without fragmentation 
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required for the identification of proteins (Beavis and Chait, 1989). The 
peaks detected by mass spectrometer results in a mass spectrum (mass to 
charge m/z in x-axis and ion count or intensity in the y-axis) that represent 
the peptide ions mass, which can be used for protein identification. 

In MALDI, the peptide samples are mixed to an acidic matrix and 
condensed on a metal plate. This plate is subjected to laser radiation. The 
peptides are incorporated into the crystal lattice of the matrix during the 
condensation process.  Various compounds are used as the matrices for laser 
absorption. One of the widely used matrices for peptides is α-cyano-4-
hyroxy cinnamic acid, which provides high sensitivity, and negligible matrix 
adducts formation during the laser absorption. When the high-energy laser is 
strikes the matrix, the peptides along with the matrix particles are vaporized. 
In order to ensure the sublimation of the matrix-peptides, high vacuum are 
generally applied during this process. The positive ions of the peptides are 
formed in gas phase due to the acidic nature of the matrix. The ions are then 
accelerated into the mass analyzer. Since MALDI is a pulsed ionization 
technique, it is generally couple with TOF (time-of-flight) mass analyzer. 

In ESI, the peptide in the solution is sprayed at atmospheric pressure 
through an outlet with high electric-potential difference between the outlet 
and the mass spectrometer. This potential difference generates a repulsive 
coulombic force among like charge droplets that extends to form a cone 
(Taylor cone) from the outlet, causing the solution to disperse into fine 
droplets. The solvent continuously evaporates while the charges of the 
droplets remain constant. Droplet fission occurs when the coulumbic 
repulsion exceed the surface tension of the droplets. This process continues 
until nanometer sized droplets are produced to form a single peptide ion for 
the mass spectrometer. The charges on the single peptide are statistically 
distributed over the peptide. Multiply charged ions are possible during this 
process.  ESI offer significant advantages for the analysis of peptides with 
large molecular weight. 

5. Bioinformatics Applications for Identification 

Since the peaks of the resulting mass spectrum represent the peptide ion’s 
mass in the sample of interest, the peaks can be back correlated to the mass 
of the peptides produced by protease digestion from a larger protein. 
Databases are available for theoretical digests of all known proteins. 
Matching the peptide-mass data obtained from sample of interest to 
theoretically digested protein database can be used to successfully identify 
unknown proteins. This process, peptide mass fingerprint (PMF) matching, 
must account for several factors such as molecular weight, pI, and the 
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probability of a similar peptide occurrence in the whole database, for the 
identification of a protein. Many software search engines can perform this 
matching process automatically. Such engines output a probability score for 
each theoretically digested protein indicating the certainty of the 
identification. The threshold score, which indicates whether the experimental 
mass spectrum significantly matches the in silico digested protein spectrum, 
is calculated by mathematical algorithms specific to each search. Although 
false identification is possible, it can be avoided by applying molecular 
weight and pI of the protein spot obtained from the 2D map as additional 
filter. Other means of validation and confirmation are usually necessary for 
correct protein identifications. PMF obtained after processing raw signals 
can be searched using several online or standalone softwares. Most widely 
used search engine is MASCOT (http://www.matrixscience.com). Several 
protein sequence databases can be queried (MSDB, NCBI nr, SwissProt, and 
dbEST) by MASCOT. The search produces a list of protein hits with scores 
above a significant threshold. The protein score is a logarithmically scaled 

the search. Additional criteria of protein mass and pI can be specified to 
narrow protein hit. Apart from searching for protein hit using PMF, 
MASCOT can also be used for MS/MS search using datafile format from 
several vendors. MS-Fit is another web tool from UCSF that can search for 
protein hits using PMF. It is part of useful mass-spectrum search tools called 
ProteinProspector (http://prospector.ucsf.edu/). Using tandem mass-
spectrometer one can collect MS/MS that can be used to search for peptide 
sequence or perform de novo sequencing using different ions (e.g. X, Y, Z, 
a, b, c). SEQUEST, orginally developed at University of Washington, is a 
software tool that can be used for processing/searching peptide sequences 
using MS/MS. To understand more about peptide identification and 
fragmentation pattern, please visit http://www.proteomesoftware.com/ 
Proteome_software_pro_ protein_id.html. GPMDB is a database of MS/MS 
spectra for different peptides that can be used for assignment validation. 
PeptideAtlas is a public database of peptides observed during tandem mass 
spectrometry (http://www.peptideatlas.org). Currently, it contains 
information about peptides from Yeast and Human. PRoteomics 
IDentification Database (PRIDE) is a public repository of peptide and 
protein identified using mass spectrometry. One can compare protein/peptide 
hits across experiments. For each experiment, it provides details about the 
experiment, sample information, peptides or protein identified, type of 
instrument, and its settings. 

probability of the observed hit to be a random event in a given database  
(–10*log(P)). Several fixed or variable modifications can be selected during 
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6. Conclusion 

The technology to perform proteomics has improved rapidly over recent 
years. Many high- throughput methods and software are being developed in 
order to improve sensitivity and detection limit of 2D gel electrophoresis, 
and new algorithms to search or process mass-spectrum that will enable 
researchers to detect low abundant proteins. When such techniques mature, a 
large body of information will become available to better understand 
diseases and to develop biomarkers for diagnosis. Moreover, information 
from proteomic experiments may lead to new hypotheses that can bring an 
in-depth understanding of pathogenesis and develop therapy for many 
diseases.  Collaboration among physicians, biological chemists, and software 
engineers will be necessary to accomplish this. 
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Abstract: A hurdle of large-scale genomic studies is to incorporate existing knowledge 
from published literature. This is accomplished by human experts but suffers 
from the heavy labor and the difficulty to keep knowledge up to date. 
Biomedical literature mining provides a potential solution to extracting and 
integrating useful information from literature automatically, which can lead to 
new discoveries. 
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1. Introduction 

In this post-genomic era, the focus of genomic research has been shifting 
from sequencing to annotating gene functions (Watson, 1990; Venter et al., 
2001; Cavalli-Sforza, 2005). High-throughput experimental technologies 
developed in the last decade now permit us to assay the whole genome in 
various aspects (Lockhart et al., 1996; Emili and Cagney, 2000; Impey et al., 
2004; Kim et al., 2005; Yuan et al., 2005). These progresses have promoted 
the study of “systems biology”, which aims to deciphergener regulatory 
networks at the genomic scale. (Aderem, 2005; Kirschner, 2005; Liu, ET 
2005). The characteristic of these genome-wide studies is the huge amount 
of data. New scientific discoveries depend largely on the incorporation of 
existing knowledge. Comprehensive understanding of scattered knowledge 
seemingly unrelated can shed new light to future research.  

Every piece of knowledge, which marked important discoveries in the 
past, is presumably documented in published literature in the form  
of unstructured or semi-structured text. With the exponential growth of 
publications, however, manually tracking literature is beyond the ability of  
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Figure 10.1 PubMed abstracts searched by keywords “prostate cancer,” limiting the date of 
publication. The number of reviews was obtained by limiting the type of article. 
 
any individual. For example, the most widely used biomedical literature 
database, NCBI’s PubMed, has included over 15 million abstracts back to the 
1950s. Even in a particular field like “prostate cancer”, there have been more 
than 50,000 abstracts, including 7,000 reviews, and these numbers increase at 
the rate of 4000 abstracts and 600 reviews each year (Figure 10.1).  

To facilitate effective explorations and reuse of existing knowledge, 
NCBI’s GenBank associates a list of references to each sequence in the 
feature table. Various databases collect existing knowledge from literature 
and relate it to genes, for example, GeneRIF, GeneCards (Safran et al., 
2002), and GeneLynx (Lenhard et al., 2001); proteins, for example, 
SwissProt (Boeckmann et al., 2003); molecular interactions,  for example, 
DIP (Salwinski et al., 2004), BIND (Bader et al., 2001), KEGG (Kanehisa 
and Goto, 2000); and diseases, for example, OMIM (Hamosh et al., 2002). 
Other approaches, such as Gene Ontology (GO), create controlled 
vocabularies to annotate genes (Ashburner et al., 2000). However, the 
manual curation process is very laborious and, thus, difficult to keep up to 
date. Furthermore, these resources do not provide tools which can be readily 
used to interpret data generated by high-throughput experiments. 

On the other hand, biomedical literature mining (BioLM) provides a 
potential solution by extracting and organizing useful information from 
online literature in an automatic and timely manner. In the past few years, 
significant efforts have been made to apply this technology to a variety of 
tasks, such as automatic gene/protein name recognition (Fukuda et al., 1998; 
Collier et al., 2000; Shen et al., 2003; Zhou et al., 2004; Shi and Campagne, 
2005), abbreviation dictionaries of biomedical terms (Adar, 2004; Wren et 
al., 2005), reported gene locations on chromosomes(Leek, 1997), improving 
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homology searches (Chang et al., 2001), gene group coherence 
(Raychaudhuri et al., 2003), gene or protein interaction networks (Jenssen et 
al., 2001; Stephens et al., 2001; Hoffmann and Valencia, 2004), and the 
relation between genes and disease (Stephens et al., 2001; Matsunaga and 
Muramatsu, 2005). 

In this chapter, we introduce major issues in BioLM, with an emphasis 
on the automatic discovery of gene functions and interactions. Interested 
users are encouraged to read reviews by (Hirschman et al., 2002) for 
technical challenges of BioLM, (Shatkay and Feldman, 2003) for connection 
of BioLM with general literature mining, and (Krallinger and Valencia, 2005) 
for online resources. 

2. Literature Sources for Mining 

Most journals are now available online and provide the opportunity to 
perform full text analysis [see e.g. ref (Wilkinson and Huberman, 2004)]. 
However, the abstracts of biomedical articles are more readily available 
from NCBI’s PubMed, the largest biomedical literature database. Currently, 
PubMed has included over 15 million abstracts. While it is true that full text 
articles provide more complete information, we can expect that the most 
important results of an article are usually summarized in the abstracts 
(Schuemie et al., 2004). 

Other useful sources are the semi-structured annotation information in 
GenBank feature tables as well as the meta-databases mentioned in the 
introduction. These databases usually have manually curated information 
from literature along with references linking genes to previous studies. A lot 
of tools are available to analyze the enrichment of GO terms in a list of 
genes (http://www.geneontology.org/GO.tools.shtml). Recently, (Rubinstein 
and Simon, 2005) used GeneRIF as well as PubMed abstracts to annotate 
microarray results. The benefit of using manual annotations lies in the 
accuracy. However, they do not guarantee the completeness of coverage. 
Therefore, a lot of literature mining systems use PubMed abstracts as 
literature sources. 

Most tasks focus on literature of a particular subject in order to reduce 
computational costs and noise (Zhang and Li, 2004). The step to retrieve a 
collection of literature relevant to a particular field (e.g. prostate cancer) is 
information retrieval (IR). IR can be based on keywords (Boolean) or 
example. In a keywords-based method, a query is a list of terms related to 
the field of a study. All documents with the query terms are then returned. 

 



118 C. Zhang and M.Q. Zhang
 

In contrast, the example based method works by asking users to provide 
an example article of their interest. Then the system returns articles similar 
to the example. The main point here is to measure the similarity of two 
articles. This is done by representing an article with a vector, 
w(k)=[w1(k),w2(k),...,wm(k)]T, where k=1,2,...,D is the index of each article 
and each element wi(k), i=1,2,...,D is the weighted occurrence of word i in 
article k. For example, in the Term Frequency, Inverse Document Frequency 
(TFIDF) method, 
 

wi(k)=TFi(k)●IDF(i), IDFi=log(D/DFi) 
 
where ( )iTF k  is the number of occurrences of word i in article k and iDF  is 
the number of articles containing word i. This measure is straightforward in 
that uncommon words particularly enriched in an article are good 
representatives of the article and, thus, assigned greater weights. With this 
vector representation, the similarity of two articles j and k can be measured 
by the cosine of the angle between the two vectors: 
 

S(k,l)= w(k)●w(l)/(|w(k)|●|w(l)|) 
 
PubMed Entrez is the most widely used IR system to get interested articles. 
It allows users to use both Boolean and example search. Besides the web 
interface, it also provides a set of tools called E-Utilities 
(http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html) for users 
to retrieve documents in a batch mode. 

3. Recognition of Biological Terms 

After a collection of literature is prepared, the next step is to index 
biological terms such as gene and protein names. In some other applications, 
keywords related to molecular interactions, biological process, disease, etc., 
are also indexed (Stephens et al., 2001; Temkin and Gilder, 2003; 
Rubinstein and Simon, 2005). This task is not trivial because both 
synonymy (multiple words having same meaning) and polysemy (words 
having multiple meanings) are very common for biological terms. 
Synonyms should be appropriately mapped to a unique identifier while 
ambiguities should be removed. The noise introduced in this step can 
greatly affect the accuracy of later steps. Since gene names and protein 
names are often used equivalently, the disambiguity of the two is extremely 
difficult and depends largely on context. Therefore, we do not distinguish 
them deliberately in our discussion. 



10 Biomedical Literature Mining 119
 
3.1 Gene/Protein Name Recognition 

While great success has been achieved in name entities recognition of 
human names and addresses from news articles (~95% in accuracy), the 
recognition of gene or protein names seems to be more difficult (Fukuda et 
al., 1998). The gene nomenclature has not been standardized. Once names 
and symbols of new genes were published in journal articles and got fixed, 
they will not be affected by later corrections. Therefore, the name space 
representing a gene can become quite large. A gene usually has a standard 
symbol, a full name, and several non-standard symbols or aliases. For 
example, in the dictionary of human gene names by Human Gene 
Nomenclature Committee (HGNC), a gene has three symbols or names in 
average, including one standard symbol. In some cases, the commonly used 
name is not necessarily the standard one (e.g. p53 vs. TP53). Obviously, it is 
fundamental to map synonyms of a gene to a unique identifier, such as the 
HGNC approved symbol. 

As a practical approach, the gene name dictionaries provided by genomic 
databases can be readily used to match gene names in the text. A summary 
of commonly used dictionaries is listed in Table 10.1. 

Complementary to using existing gene name dictionaries, studies of ab 
initio gene or protein name recognition have been motivated by two reasons. 
First, the dictionaries do not include recently discovered genes. This is 
common because of the fast development of molecular biology and genetics. 
Second, a lot of gene names or symbols have several variations. Not all of 
them are included in dictionaries. For example, REST (RE1-silencing 
transcription factor) is also called NRSF, neuron-restrictive silencer factor, 
neuron-restrictive silencing factor, NRSE-binding factor, etc.  

 
Table 10.1 Databases providing gene name dictionaries 

 

Database Species URL Ref 
Entrez Gene 
/LocusLink 

Multiple 
species 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 
 

HGNC Human http://www.gene.ucl.ac.uk/nomenclature/ 
GDB Human http://www.gdb.org/ 
OMIM Human http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=omim 
SwissProt Multiple 

species 
http://us.expasy.org/sprot/ 

SGD Yeast http://www.yeastgenome.org/ 
Flybase Fly http://fbserver.gen.cam.ac.uk:7081 
Wormbase Worm http://www.wormbase.org/ 
RGD Rat http://rgd.mcw.edu/ 
MGD Mouse http://www.informatics.jax.org/ 
DogMap Dog http://www.dogmap.ch/ 
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Ab initio recognition methods generally fall into two categories: rule-
based or machine learning-based. Rule-based methods use a set of manually 
created rules which characterize patterns of gene or protein names (Fukuda 
et al., 1998). In contrast, machine learning approaches try to learn statistical 
features from protein names and their context from a training set (Collier et 
al., 2000; Shen et al., 2003), then use these features to calculate the 
probability if a new string of text contains gene or protein names. The 
accuracy of these approaches varies greatly from 20 to 95%, partly because 
of the lack of benchmark datasets used for training and cross-validation 
(Fukuda et al., 1998; Collier et al., 2000; Zhou et al., 2004; Cohen et al., 
2005). 

3.2 Removing Gene/Protein Name Ambiguities 

A gene symbol can be the abbreviation of different genes. In the HGNC 
gene name dictionary, more than 500 symbols have ambiguities. This is even 
more serious when multiple species are in consideration (Chen et al., 2005). 
For example, the string ‘CAT’ represents different genes in cow, chicken, fly, 
human, mouse, pig, deer, and sheep. 

Baring this in mind, more rigorous recognition strategies must be 
employed to remove or reduce ambiguities. Simple rules can be very 
effective here. One can use case sensitive matches for gene symbols, remove 
all common words and/or terms that are too short, remove terms with 
abnormally high occurrences, or require the co-occurrence of short symbols 
and full names (Jenssen et al., 2001; Rubinstein and Simon, 2005). 
Algorithms for automatic gene/protein name recognition and abbreviation 
dictionary construction can also be used to filter false positives (Temkin and 
Gilder, 2003; Wilkinson and Huberman, 2004). 

3.3 Collecting Other Keywords 

To characterize gene functions or gene relationships, related keywords also 
have to be indexed. In some cases, these keywords can be submitted by users. 
For example, two web applications, MILANO and PubMatrix, accept both 
gene names and keywords from user input, and search pair-wise gene-
keywords co-occurrences (Becker et al., 2003; Rubinstein and Simon, 2005). 
In other cases, (Stephens et al., 2001; Temkin and Gilder, 2003) collected 
keywords to describe gene interactions. OMIM includes terms related to 
diseases (Hamosh et al., 2002). Gene Ontology (GO) contains a limited 
vocabulary related to gene annotations (Ashburner et al., 2000), which are 
manually linked to genes. MeSH terms are a controlled vocabulary used to 
summarize PubMed abstracts. The association between these keywords and 
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genes or abstracts can provide rich information. They can be incorporated 
into the discovery of gene functional annotation, gene interactions, and other 
implicit relationships (see next section for more discussion). 

4. Mining Biological Relationships 

Since the literature covers every aspect of existing discoveries, there is 
almost no limit of the types of information which can be extracted. Here we 
focus on using literature mining to build gene interaction networks, extract 
gene functional annotations, and evaluate functional coherence of gene 
groups. 

4.1 Detecting Gene Interactions by Co-occurrence 

Building gene interaction networks from literature was pioneered by the 
work of Jenssen and Stephens et al. (Jenssen et al., 2001; Stephens et al., 
2001). The basic assumption underlying these studies is that two genes cited 
in the same article must be related in certain aspects. The network 
integrating scattered relationships can provide a holistic view of the gene 
network. 

(Jenssen et al., 2001) indexed all named human genes in all PubMed 
abstracts at the time of the work. They found that the co-occurrences of 
genes can reflect real biological relationships, which can facilitate the 
interpretation of microarray experiments. By comparison with a manually 
curated database, they estimated that 50% of gene pairs with co-occurrence 
have real meaningful biological relationships at a recall of 50%. PubGene is 
a web tool that allows users to query a gene and retrieve the sub-network, 
which is displayed graphically (http://www.pubgene.org/).  

In contrast, (Stephens et al., 2001) selected only a set of abstracts and 
genes related to a particular field. The authors also used a more quantitative 
measure of relations, derived from TFIDF weight, 
 

Aij=∑kwi(k)●wj(k) 
 
This measure assigns more weight if two genes are always co-cited in 
articles and a smaller weight if genes are ubiquitous individually. 

Interestingly, the gene co-occurrence network shares very similar 
properties with other biological and social networks, which are scale free 
(Jeong et al., 2000). This also suggests the validity of the gene co-occurrence 
network. 
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While it is true that a co-cited gene pair often has certain biological 
relations, these relationships are not necessarily explicit. Therefore, co-
occurrence in abstracts alone is often insufficient to define a gene interaction 
for those databases annotating gene functions. For those tasks, gene 
interactions should be accurately and explicitly presented. 

(Ding et al., 2002) compared the effect of different text units (abstract, 
sentences, phrases), where co-occurrence is defined, to the performance of 
gene interaction extraction. They found that the text unit in sentences gives 
the best balance between precision (85%) and recall (65%). In the study of 
(Stephens et al., 2001), the authors require the co-occurrence of predefined 
keywords with two genes in the same sentence. 

Further performance improvement may be achieved by deeper lexical 
analysis (e.g. see ref Temkin and Gilder, 2003). However, this is generally 
more difficult to implement and more computationally intensive. As far as 
we know, there is no automatic system which can detect gene interactions 
with comparable performance of manual annotation. Therefore, some 
databases use computational programs to do a pre-screening (Zanzoni et al., 
2002; Donaldson et al., 2003), before a further examination by expert 
annotators. 

4.2 Inferring Implicit Relationships 

In contrast to database annotations, which require accurate extraction of 
explicit relationship between genes, another direction of study is to identify 
implicit relationship. Although two genes do not co-occur in the same 
articles, they might have implicit relationship if they share certain properties, 
such as neighbor genes (Wren et al., 2004), and annotation terms from GO, 
MeSH, and OMIM (Jenssen et al., 2001) (Figure 10.2). Of course, this 
implicit relationship is not necessarily a molecular interaction, but can also 
be similarity in function, cellular localization, homology, molecular pathway, 
etc.  

The objects served as intermediate to bridge the two genes may vary, 
but the underlying method is almost the same. The basic idea is to measure 
the overlap of objects linked with gene A and those linked with gene B. 
This can be done by calculating the expected overlap simply by chance, 
which follows a hypergeometric distribution (Ramani et al., 2005). More 
formally, suppose gene A links with m  objects whereas gene B links with 
n  objects, the total number of objects which can potentially link with gene 
A or B is N.  
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Figure 10.2 Implicit relationship of two genes. A. Connected by neighbor genes. B. 
Connected by keywords. 

Then the probability that gene A and gene B share l or more links by 
chance is 
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measures the significance of the implicit relation. When multiple pairs are 
examined, multiple-test correction can be applied as described previously 
(Reiner et al., 2003; Storey and Tibshirani, 2003). 

4.3 Identifying Sub-networks of Communities 

If the literature collection of genes are not specific enough for a specific 
field, the resulting gene network can be very large and extremely difficult to 
be manually explored. Algorithms have been developed to identify 
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potentially important sub-networks or communities (Girvan and Newman, 
2002; Wilkinson and Huberman, 2004; Palla et al., 2005).  

There is no strict definition of a “community”, but generally speaking, a 
community should have more (or heavier) links between members inside and 
fewer (or lighter) links with members outside. With a quantitative measure 
of link weights, we can partition the whole network into smaller sub-
networks by selecting a threshold of link weights. All links below the 
threshold are removed. However, this simple approach can suffer from the 
intrinsic incompleteness of gene relationship and inaccuracy of the link 
weights derived from literatures. Further more, gene networks, as well as 
other biological and social networks, have recursive and overlapping 
communities in nature, which could not be characterized by simple network 
partition. Here we introduce a definition of community recently proposed by 
(Palla et al., 2005), which aims to uncover overlapping structures. Using 
clique analysis (a k-clique is a fully connected sub-network of size k), they 
define a community as a collection of k-cliques that can be reached from 
each other through adjacent k-cliques. Adjacency of two k-cliques here 
means that they share 1k −  nodes. This definition was successfully applied 
to identify meaningful communities in co-authorship, word association and 
protein interaction networks. Their results also confirm that overlap is a 
significant and universal feature of many real world communities, including 
gene networks. 

4.4 Evaluating Functional Coherence of Gene Group 

As a last example of BioLM, a natural extension of pair-wise relationship is 
to evaluate whether a group of genes have coherent functions, for example, 
if they are related to the same disease or in the same pathway. This is 
particularly useful to interpret gene lists generated from clustering analysis 
of high-throughput experimental data or network partition. Several literature 
mining tools allow users to submit a gene list as well as keywords list 
(Becker et al., 2003; Rubinstein and Simon, 2005). The co-occurrences of 
genes and keywords are tabulated with genes in rows and keywords in 
columns. The functional coherence of the gene group is measured by the 
enrichment of a keyword or several related keywords.  Chi-square test can 
be applied to test the significance of association by comparison with a 
random gene list (Sokal and Rohlf, 1995).  
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Abstract:  HLA molecules are immune proteins that play an important role in T-cell 
mediated immune response. They bind short 8–20 residues long peptides from 
antigen proteins to induce immune response. Therefore, the binding of short 
antigen peptides to HLA molecules is the rate limiting step in T-cell mediated 
immune response. Several constructs of overlapping short peptides can be 
designed from a given protein antigen sequence. The number of overlapping 
peptides is large for systematic experimental testing. Moreover, HLA 
molecules are highly polymorphic and more than 1500 HLA alleles are known 
among the human population. Thus, the binding of short peptides to HLA is 
combinatorial and specific. The binding can be studied using expensive and 
laborious competitive binding assays. Alternatively, prediction of peptide 
binding to HLA molecules is highly useful. Efficient prediction models enable 
systematic scanning of candidate peptides in an effective manner. Here, we 
describe some commonly used prediction models. 

Key words: HLA, Polymorphism, Binding, Prediction, Epitope, Vaccine candidates 

1. Background 

An important goal of computational immunology is to design peptide 
vaccine candidates. Considerable efforts have been focused on designing T-
cell epitopes. These are short antigenic peptides (8–20 residues long) 
capable of inducing immune response by binding to HLA molecules (Pamer 
and Cresswell, 1998). In this process, short peptides from antigen bind HLA 
molecules and the HLA-peptide complex bind T-cell receptors (TCR) in  
T-cells. Hundreds of naturally processed peptides of varying length are  
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produced during intracellular antigen fragmentation and only a fraction bind 
specific HLA molecules to elicit immune response. HLA molecules are 
highly polymorphic and more than 1,500 HLA alleles are found among 
different ethic groups (Robinson et al., 2003). Due to high HLA 
polymorphism and peptide combinations, the binding of peptides to HLA 
molecules is specific and sensitive. The possible combinations of HLA-
peptide complexes are extremely large. Therefore, it is of interest to predict 
HLA-peptide binding using mathematical models. This phenomenon is 
technologically exploited to design short epitopes from pathogen proteomes 
capable of specifically binding a maximum number of HLA molecules 
representing wider ethnic population. HLA-peptide binding prediction finds 
application in antigenic peptide selection, degeneration and discrimination 
during T-cell mediated immune response (Disis et al., 1996; Kawashima et 
al., 1998; Sarobe et al., 1998; Cooper et al., 1999; Ishioka et al., 1999; Viret 
and Janeway, 1999). Application of HLA-peptide prediction models in the 
design of vaccine candidates and immuno-therapeutics (Iwasaki and Barber, 
1998; Morgan et al., 1998) is economically advantageous. Prediction is 
economically advantageous because HLA-peptide binding specificity is 
generally determined by competitive binding assay of overlapping peptides 
in antigen sequence. This is laborious, time consuming and expensive to 
identify highly specific peptides that are recognized by T-cell receptors 
(Sette et al., 1994; van der Burg et al., 1996). HLA genes are present at 
different loci in human chromosomes. The HLA class I and HLA Class II 
genes are known to be associated with CD8+ and CD4+ T-cells respectively, 
during cell mediated immune response. These two types of HLA molecules 
have distinctly different structural architectures. However, they both have a 
structurally similar peptide binding groove. Class I molecules bind peptides 
of length 8–10 residues and class II molecules bind peptides of length 12–20 
residues. Peptide binding to class I molecules are well defined and peptide 
binding to class II molecules are less well defined. Therefore, prediction of 
HLA-peptide binding is not generally trivial. However, prediction can be 
performed using two different types of mathematical models. The first type 
uses known HLA binding peptides for deriving quantitative matrices and to 
train non-linear models such as ANN (artificial neutral network), HMM 
(hidden Markov model), and SVM (support vector machine) for prediction. 
This approach requires HLA allele specific peptide data and their application 
is also allele specific and the method is thereafter referred as `HLA 
BINDING PEPTIDE BASED METHOD`. The second type uses energy 
functions for building molecular models. This approach requires protein 
structural templates for model building and the method is thereafter referred 
as `MOLECULAR STRUCTURE BASED`. This chapter describes these 
two types of HLA-peptide binding methods. 
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2. HLA Molecules 

Two classes of HLA molecules are commonly known to be associated with 
the immune function. Class I HLA molecules are 270 residues long arranged 
in a single monomer α chain (stabilized by a 99 residues long β2-
microglobulin chain). Class II HLA sequences are 360 residues long 
arranged in two chains (α & β) of 90–100 residues each. HLA sequences are 
highly polymorphic (sequence variations) among different ethnic population. 
The different HLA sequences can be obtained from the IMGT/HLA database 
(http://www.ebi.ac.uk/imgt/hla/). The HLA nomenclature committee reviews 
these sequences on a regular basis and represents these sequences using 
specific HLA allele names (e.g. HLA-A*0201). The sequence for HLA-
A*0201 allele from the IMGT/HLA database is given in Figure 11.1. The 
formation of HLA peptide structural complex is shown for class I molecules 
in Figure 11.1. However, the formation of HLA-peptide complex is highly 
combinatorial given the number of known alleles and possible natural 
peptide constructs. 

The HLA class I molecule consists of four distinct domains. These 
include the a1, a2, a3, and b-2 microglobulin (b2m). The a1, and a2 function as 
the peptide-binding domain. There is a groove formed between the alpha 
helices of the a1 and a2 domains. The floor of the groove is composed of beta 
sheets derived from the same domains. The size of the binding site is  
 

 
Figure 11.1 Formation of HLA-peptide (PDB: 1MHE) complex is shown. A: HLA molecule 
surface model, with binding region in dark shade B: HLA-peptide complex in ribbon with 
peptide depicted in wireframe. Figure generated using pyMOL. 
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approximately 25 Å long, 10 Å wide, and 5 Å deep. If this groove acted as 
the lock in the very common “lock and key” model of many proteins, each 
HLA molecule could only bind to a single selected peptide. The HLA 
molecule binds to peptides tightly. The groove consists of various pockets. A 
pocket is defined as the unit having an affinity for a corresponding peptide 
side chain. Some pockets have a well-shaped structure with an affinity for 
only one side chain. Other pockets have an affinity for a group of side 
chains, and sometimes the boundaries between the pockets are not 
clear. Hydrogen bonding between HLA class I residues and the peptide NH2 
and COOH termini allow for a “peptide sequence-independent” binding for 
short peptides. Pockets A and F play key roles in this binding. They are 
located at the ends of the groove and accommodate the NH2 and COOH 
termini, respectively. The side chain of the first residue points upwards 
towards the solvent. Therefore, there is little restriction on the type of amino 
acids that can be accommodated by Pocket A. Pocket F consists of a 
hydrophobic floor and a hydrophilic entrance. Unlike the residues 
accommodated by Pocket A, these amino acid side chains point toward the 
floor of the groove. Therefore, bulky aromatic residues are restricted from 
Pocket F. Peptides recognized by the HLA class I molecules tend to be eight 
or nine amino acids long. The ends of the peptide are bound to Pockets A 
and F, and some anchor residues may bind to the middle of the groove. 
Depending on the length of the peptide, a prominent bulging from the 
groove will occur. Longer peptides will have a more pronounced bulging 
from the middle of the groove. This bulging may allow for recognition and 
direct interaction with the T-cell receptors. The HLA class I molecule can 
bind to a variety of peptides, because it binds to the region that is common 
among peptides—the backbone, and it ignores the varying side chains of the 
peptides. 

3. HLA Binding Peptide Based Methods 

Several models have been developed using peptide data in large databases 
derived from naturally bound peptides (Kubo et al., 1994; Meister et al., 
1995; Rammensee et al., 1995; Rammensee et al., 1999) or synthetic peptide 
libraries (Parker et al., 1994; Stryhn et al., 1996). These methods depend on 
the amount of HLA allele specific peptide binding data. This data is 
available in several published papers. This data represents information on 
HLA binding peptides and non-binding peptides. Brusic and Harrison 
collected such information from published papers and developed a database 
called HLAPEP in 1998. This is a pioneering work of data collection on 
HLA binding peptides which later led to the development of prediction 
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models by Brusic and colleagues (Brusic et al., 1998). Following this several 
authors have developed similar databases for HLA binding and HLA non-
binding peptides. These datasets were regularly reviewed and updated. This 
data is the basis for the development of a number of HLA-peptide binding 
prediction models listed below. 
 
• Binding motif model (Kubo et al., 1994; D'Amaro et al., 1995; Meister 

et al., 1995; Rammensee et al., 1995; Rammensee et al., 1999) 
• Artificial Neural Network model (Adams and Koziol , 1995; Brusic et 

al., 1998; Milik et al., 1998) 
• Stepwise Discriminant Analysis (Mallios, 1999) 
• Hidden Markov Model Based Methods (Mamitsuka, 1998; Brusic et al., 

2002; Noguchi et al., 2002) 
• Support Vector Machines (Donnes and Elofsson, 2002) 
• Quantitative Matrix Based Methods (Parker et al., 1994) 
• Positional Scanning (Udaka et al., 2000) 
• Profile Motifs (Gribskov et al., 1987; Thompson et al., 1994) 
• Additive Method (Free and Wilson, 1964; Doytchinova et al., 2002) 

3.1 Sequence Based Prediction Models 

HLA bound peptides are generally restricted at some primary positions 
(second or fifth and last positions) of the peptides. These residues are known 
as anchor residues and positions are known as anchor positions. Allele 
specific sequence motifs can be identified by studying the frequencies of 
amino acids in anchor positions. For example, a simple motif based-
prediction method is based on the observation that the peptides binding to 
HLA A*0201 are often nonamers, and frequently have two anchor residues, 
a lysine in position 2 and a Valine in position 9 (Rammensee et al., 1995). 
Besides the anchor residues, there are also weaker preferences for specific 
amino acids in other positions. One method to include this information is to 
use a profile, in the form of a matrix, where each type of amino acid in each 
position is given a score. The scores can be calculated from observed amino-
acid frequencies in each position or be set manually. The sum of 
contribution by all the residues gives predicted binding value. These 
methods are easy to implement, and are one of the most popular methods 
applied to HLAp binding prediction. One frequently used profile based 
prediction method is SYFPEITHI (Rammensee et al., 1999). These methods 
are based on the assumption that different peptide positions contribute in an 
additive manner to the overall binding affinity, the contribution of each 
peptide residue to the binding affinity is independent of other neighboring 
amino acid residues. The interactions between different positions are not 
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taken into account. Furthermore, their real predictive power is directly 
dependent on the amount of experimental data used to interpolate HLA 
binding properties. Thus, HLA alleles for which rather few (or no) 
experimental data are available are unsuitable for these sequence based 
prediction methods.  

Besides, these methods do not consider information from non-binding 
peptides. This information can be used by machine learning methods. In the 
meantime, the predictive power of machine learning methods is not affected 
by the interactions among peptide residue positions. Prediction of MHC-
peptides has been made by using machine learning approaches such as 
artificial neural network (ANN) (Adams and Koziol, 1995; Brusic et al., 
1998; Milik et al., 1998), stepwise discriminant analysis (Mallios, 1999), 
hidden Markov model (HMM) (Mamitsuka, 1998; Brusic et al., 2002; 
Noguchi et al., 2002), and Support Vector Machine (SVM) (Donnes and 
Elofsson, 2002). Gulukota et al. (Gulukota et al., 1997) showed that one 
advantage of machine learning algorithms compared to profile methods 
seems to be that they have a higher specificity. This is possible due to the 
inclusion of non-binding data in the training. A machine learning approach 
extracts useful information from a large amount of data and creates a good 
probabilistic model. In the case of MHC-peptide prediction, a data set of 
known binders and known (or supposed) non-binders is used. This set is then 
used to build a model that discriminates between binding peptides and non-
binding peptides. This model can then be used to predict whether a novel 
peptide binds or not. Besides these methods, there are other methods that can 
be considered as an extension form the sequence based methods like profile 
motifs (Reche et al., 2002) and additive method (Doytchinova et al., 2002), 
as they also consider the influence of the structure of the HLAp complexes. 

3.1.1 Binding Motif-Based Methods 

Binding motif-based methods determine peptide binding property by 
identifying general position based pattern of amino acids in favor of HLA 
peptide binding (Rammensee et al., 1995; Rammensee et al., 1999). The 
binding of a peptide to an allele is examined on the basis of occurrence of 
specific residues at specific position. The presence of motifs will determine 
whether a peptide will bind to specific allele or not. HLA bound peptides are 
generally restricted at two primary positions (second or fifth and last 
positions). These residues are known as anchor residues and positions are 
known as anchor positions. Based on these anchor positions (Rammensee et 
al., 1995), simple binding motifs have been defined for specific HLA alleles. 
Thus, position based patterns of recurrent amino acids in a known dataset are 
identified and generated. However, the compliance of a peptide sequence to 



11 Computational Immunology 135
 
such a binding motif is neither sufficient nor necessary to ensure binding 
(Ruppert et al., 1993; Townsend et al., 2006). The usefulness of the motifs is 
further diminished due to the presence of the secondary anchor residues at 
the non-conserved positions (Ruppert et al., 1993). This method has been 
proved to be too simple, as the binding ability of a peptide to a given HLA 
molecule cannot be explained exclusively in terms of the presence or 
absence of a few anchor residues.  

Obviously, it is not enough to consider only the contribution of amino 
acid on anchor positions to the overall binding affinity. Weaker preferences 
for specific amino acids in other positions should be taken into account to 
improve the predictive power of these methods. In some profile based 
methods, a score is given for each type of amino acid in each position. The 
scores can be calculated from observed amino acid frequencies in each 
position or be set manually. The sum of the scores for a given peptide is then 
used to make predictions. 

An example of this category of methods is the method developed by 
Parker et al. (Parker et al., 1994), which predicts the relative binding 
strengths of all possible nona-peptides to the HLA class I molecule based on 
experimental peptide binding data. The method is based on the observation 
that each side-chain of the peptide contributes a certain amount to the 
stability of the HLA complex that is independent of the sequence of the 
peptide. These contributions is quantify based on the binding data from a set 

positions) is generated, each of which represents the contribution of one 
particular amino acid residue at a specified position within the peptide to 
binding to HLA. A web-based HLA peptide binding prediction service based 
on this work is maintained by BIMAS (BioInformatics & Molecular 
Analysis Section) at NIH with the URL: http://bimas.cit.nih.gov/molbio/ 
hla_bind/, which ranks potential 8-mer, 9-mer, or 10-mer peptides for a 
limited set of HLA alleles according to predicted binding affinity. Another 
web site for predicting HLA binding peptides is SYFPEITHI (Rammensee et 
al., 1999) (http://www.syfpeithi.de/), which is primarily a database for HLA 
binding peptides and peptide motifs. It also provides motif-based HLA 
binding peptide prediction. The matrices in SYFPEITHI were adjusted 
manually, by assigning a high score (10) for frequently occurring anchor 
residues, a score of eight to amino acids that occur in a significant amount 
and a score of six to rarely occurring residues. Preferred amino acids in other 
positions have scores that range from one to six and amino acids regarded as 
unfavorable have scores ranging from –3 to –1. SYFPEITHI prediction can 
be done for 13 different HLA class I types.  

It has been shown that profile based methods are correct in about 30% of 
the time, meaning that one-third of the predicted binders actually bind 

of 154 peptides. A table containing 180 coefficients (20 amino acids × 9 
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(Gulukota et al., 1997). Prediction models based on binding motifs are 
mostly all-or-nothing algorithms with very high false negative rates. Both 
motifs and matrix models present only one sequence pattern in the given set 
of data that will bind to an HLA molecule. They cannot extract multiple 
sequence patterns hidden in a given set of data separately, even if each of 
them has sufficient binding ability. 

3.1.2 Artificial Neural Network Based Methods 

Artificial Neural Networks (ANNs) are complex, non-linear, and self-
training systems that are able to extract and retain patterns hidden in the 
training data and recognize them in an input dataset (Adams and Koziol, 
1995; Brusic et al., 1998; Milik et al., 1998). Neural networks are excellent 
at classifying non-linear data. In the case of HLA binding peptide prediction, 
it can utilize the information form both binders and non-binders. The 
training data of peptide sequences have to be properly aligned. ANN-based 
models have proven very effective for the prediction of class-I (A*0201, Kb) 
(Milik et al., 1998) and class II HLA (DRB1*0401) binding peptides (Brusic 
et al., 1998). Gulukota et al. (Gulukota et al., 1997) reported that the 
performance of the back propagation neural networks exceeds those of 
matrix models and motifs in discriminating peptides that bind to an HLA 
molecule from other peptides (Figure 11.2). 

Input Layer

Hidden Layer

Output Layer

(Yes/No)  

Figure 11.2 The architecture of the neural network is shown. There are three layers’ of nodes 
connected in a defined topology, where each node has input and output connections to other 
nodes. In general, a neural network will receive an input pattern (e.g. an amino acid sequence 
whose secondary structure is to be predicted), which sets the values of the nodes on the first 
layer (the input layer). These values are propagated according to transfer functions (the 
connections) to the next layer of nodes, which propagate their values to the next layer, until 
the output layer is reached. The pattern of activation of the output layer is the output of the 
network. 
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The application of ANN on prediction of HLA binding peptide is based 
on the assumption that the binding can be influenced by the amino acids on 
all the positions of the peptide. An ANN has the ability to simultaneously 
analyze the influence of all the amino acids of the peptide and, thus, may 
improve binding predictions. Adams and Koziol (Adams and Koziol, 1995) 
applied Neural Networks to predict the binding capacity of peptides to HLA-
A*0201. With a large set of binding data from 552 nonamers and 486 
decamers, the neural networks achieve a predictive hit rate of 0.78 for 
classifying peptides as good or intermediate versus weak or non-binders. 
The neural nets also depict specific motifs for different binding capacities. 
ANN is theoretically applicable to all HLA class molecules, given a suitable 
training dataset of known binding affinities. The trained networks can then 
be used to perform a systematic search through all pathogen or tumor 
antigen protein sequences for potential cytotoxic T-lymphocyte epitopes. 

The major drawback of ANN based methods is that the ANN models 
require large training set with known binding data. In addition, promiscuous 
prediction is not feasible since data for one allele cannot be extrapolated to 
other alleles. An interesting approach is a combination of neural networks 
and evolutionary algorithm (Brusic et al., 1998). An evolutionary algorithm 
is used to evolve a scoring matrix during preprocessing and the combined 
approach is shown to perform better, which achieved a correct classification 
percentage for both binders and non-binders in excess of 80% (Brusic et al., 
1998). 

3.1.3 Stepwise Discriminant Analysis 

Stepwise discriminant analysis (SDS) is another data-driven algorithm. The 
results are data dependent and change when the data sets change. However, 
as the data sets grow, the sample space is better represented and the 
influence of individual peptides decreases. Mallios (Mallios, 1999) applied 
an iterative SDA on a large molecular database to derive quantitative motifs 
for peptide binding (Figure 11.3). From two mutually exclusive sets, 
stepwise discriminant analysis builds a Bayesian discriminant function that 
classifies each element into one of the two sets (Mallios, 1999). Specifically, 
an element is assigned to a set if the Bayesian posterior probability of 
belonging to that set exceeds the probability of belonging to the 
complementary set. Arguments for the function are selected from a list of 
potential predictor variables. 

In the case of HLA binding motifs determination, the two mutually 
exclusive sets are the binding data set of subsequences and the non-binding 
data set of subsequences. The potential predictor variables for each case 
(subsequence) describe the biochemistry and position of each amino acid  
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Figure 11.3 Superimposed HLAp structures. The picture shows the conserved structure of 
HLA class I-peptide complexes, and how peptides of different sequences bind to the same 
HLA molecule. The structures reveal that residues at anchor positions of the peptide fit into 
corresponding pockets in the HLA groove, and that the peptide backbone is hydrogen bonded 
to several side-chains of the MHC. A conserved form therefore binds a multitude of different 
peptides, which rearrange themselves within the imposed constraints. The structural 
information can be used as the basis for modeling studies. 

residue. The decision rule for classification is based on the probability of set 
membership. The resultant model is quantitative and can be used to predict 
peptide binding. Mallios (Mallios, 1999) produced four closely related 
models for HLA-DR1. Each model correctly classifies >90% of the peptides 
in the database. 

3.1.4 Hidden Markov Model Based Methods 

The major problems in the Motif, Matrix, or ANN based methods is that all 
these methods assume that the size of peptides that bind to HLA molecules 
is fixed, though actually the length of peptides that bind to HLA molecules is 
variable. Thus, these methods cannot predict the binding ability of a peptide 
whose length is longer or shorter than that of the peptides used in training, 
and thus, available training and test data are extremely limited. Specifically, 
although ANN are able to learn multiple sequence patterns in a given set of 
data automatically, the network parameters are given only as real-valued 
weights attached to edges connecting nodes in the network. Consequently, 
the weights cannot present any understandable training results. 

Mamitsuka et al. (Mamitsuka, 1998) applied supervised learning of a 
hidden Markov model (HMM) to overcome these shortcomings. HMMs are 
suitable for representing time-series sequences (strings) having flexible 
lengths. They used a fully connected HMM, which can automatically divide 
multiple sequence patterns hidden in a given set of data into separate 
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patterns and is able to rep resent more than one sequence pattern hidden in a 
set of given training data. Besides, a trained HMM can be presented as a 
comprehensible form, just like a sequence profile derived from multiple 
sequence alignment. Their HMMs were trained for HLA-A2, HLA-DR1, 
and HLA-DR4. Two experiments were performed. Compared with a 
backpropagation neural network, the average discrimination accuracy of the 
HMMS is approximately 2–15% better.  

Brusic et al. (Brusic et al., 2002) applied HMM for the prediction of 
peptide binding to the HLA-A2 supertype. Combined with a representation 
of peptide/HLA interactions in which the specific HLA–peptide interaction 
by combining each amino acid of the peptide with the variable amino acids 
of its positional environment, their system, called MULTIPRED, showed 
high accuracy of peptide-binding predictions for HLA-A*0201, A*0204, and 
A*0205 alleles, good accuracy for A*0206 allele, and marginal accuracy for 
A*0203 allele. Noguchi et al. (Noguchi et al., 2002) applied HMM with 
successive state splitting (S-HMM) on prediction of peptides binding to a 
class II HLA, HLA-DRB1*0101). In the relative operating characteristic 
(ROC) analysis, the S-HMM prediction had values of ROC>0.85, which is 
better than other machine learning methods. In addition, the S-HMM may be 
trained on positive binding data only, and the preprocessing of training data, 
such as peptide alignment and the selection of binding cores, is not required. 
Thus, the method is simpler to implement. 

3.1.5 Support Vector Machines 

Support vector machines (SVM) are supervised classifiers that try to find a 
linear separation between different classes of points in a high-dimensional 

this separating surface is called a hyperplane. Support vector machines have 
two special features. First, instead of just finding any separating hyperplane, 
they are guaranteed to find the optimal one, or the one whose placement 
yields the largest separation between the two classes. The data points nearest 
the frontier between the two classes are called the support vectors, which 
refer to the coordinates of the data points. Second, although SVMs are linear 
classifiers, they can classify non-linearly separable sets of points by 
transforming the original data points into a higher dimensional space in 
which they can be separated by a linear surface. 

Donnes and Elofsson (Donnes and Elofsson, 2002) presented a novel 
approach, called SVMHC, based on support vector machines to predict the 
binding of peptides to HLA class I molecules. Their result shows that the 
method seems to perform slightly better than profile based methods. SVHLA 
currently provides prediction for 26 HLA class I types from the HLAPEP 

space. In a 2D space, this separator is a line; in 3D, it’s a plane. In general, 
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database or alternatively 6 HLA class I types from the higher quality 
SYFPEITHI database. The method is easy to apply to a large number of 
HLA class I types as more peptide data are available. 

3.1.6 Quantitative Matrix Based Methods  

Quantitative matrices provide a detailed linear model which is easy to 
implement (Sette et al., 1989; Parker et al., 1994; Gulukota et al., 1997). In 
this category of methods, the contribution to binding at each peptide position 
within the binding groove is quantified (Parker et al., 1994). This method 
involves producing a matrix in which every entry (X, Y) represents a score 
associated with amino acid residue X at position Y. The position-specific 
amino acid values reflect the structural properties of HLA alleles, therefore 
representing a fingerprint for HLA binding domains. Summing the scores for 
every residue in a given peptide yields a predicted binding score. The 
method has been extensively tested for HLA-A2.1 binding predictions. A 
recent implementation of matrix method is ProPred1 which allows 
prediction for 47 class-I alleles using co-efficient matrixes and empirical 
equations. 

The matrix method enables prediction for a wide pool of peptides in a 
high-throughput manner unlike motif based approaches. However, a serious 
obstacle is in the generation of binding co-efficient matrix for each HLA 
allele which requires the experimental testing of hundreds of peptides. 
Another clear limitation of this method is that it assumes that every amino 
acid residue in a certain position influences binding independently of its 
neighbors. Matrix methods can give fast predictions on the basis of simple 
patterns, but they have less capacity to encode non-linear dependencies. This 
limitation does not yield matrix-based methods completely useless as there is 
certain simple generalization about amino acid preferences at specific 
positions influencing binding.  

3.1.7 Positional Scanning 

Udaka et al. (Udaka et al., 2000) analyzed the specificities of three mouse 
HLA class I molecules, Kb, Db, and Ld, positional scanning using synthetic 
combinatorial peptide libraries. Graded concentrations of peptides were 
tested for HLA binding. Peptide concentrations that stabilized a half-maxi-
mal number of peptide-receptive HLA class I molecules (SD50) were 
calculated from the mean fluorescence intensities acquired in an 
arithmetric scale. Correlation between MHC-binding scores and 
experimentally measured SD50 values was analyzed. By comparing the 
MHC-binding capacities of sublibraries with the completely random library as 
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reference, the impact of a given amino acid at the position was evaluated. By 
scanning all nine positions, the profiles of amino acid preference by Kb, Db, 
and Ld were obtained. Each HLA molecule exhibited a distinct profile. The 
library scanning yielded a quantitative measure of the impact of every 
amino acid on HLA binding. The result of the analysis was used to create a 
scoring program to predict MHC-binding peptides in proteins. 

The scoring program was then tested with a number of peptides by 
comparing the prediction with the experimental binding. The score and the 
experimental binding exhibited a linear correlation but with substantial 
deviations of data points. Statistically, for approximately 80% of randomly 
chosen peptides, MHC-binding capacity could be predicted within one log 
concentration of peptides for a half-maximal binding. Known cytotoxic T-
lymphocyte epitope peptides could be predicted, with a few exceptions. 
Although the positional scanning data are only informative about an additive 
component of the binding energy supplied from individual amino acids on 
peptide, they still provide better information than anchor amino acids alone. 

3.1.8 Profile Motifs 

This method is an extension from the motif matrix methods (Stryhn et al., 
1996). The most simple sequence patterns that are usually extracted from 
large numbers of existing known peptides, or from pool sequencing 
experiments, has been proved to be too simple. Motif matrices have been 
developed to overcome these limitations by accounting for the preference of 
every amino acid type at every position in the peptide (Rammensee et al., 
1999). Coefficients in these matrices relate to the strength of the amino acid 
signals in a pool sequence of peptides eluted from a given MHCI molecule, 
or to the occurrence of an amino acid in a set of binding peptides.  

However, it is well established that position specific scoring matrices 
(PSSM) or profiles created from a set of aligned sequences provides a better 
way for defining and recognizing sequence motifs (Gribskov et al., 1987). 
There are several methods to generate PSSM from aligned sequences, 
usually including distinct sequence weighting methods (Thompson et al., 
1994). In all cases, profile coefficients relate to the observed frequency of 
every amino acid at the position column of the alignment, corrected by the 
expected frequency of that amino acid in the background using a reference 
database. Thus, in this approach the binding potential of any peptide (query) 
to a given HLA molecule can be obtained by comparing the query to a 
PSSM created from a set of aligned MHC-specific peptides. 

Reche et al. (Reche et al., 2002) have derived alignments and profiles 
from a collection of peptides known to bind two specific class I MHC, Kd , 
and Db, compatible with the structural and molecular basis of the HLAp 
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interaction. A search algorithm, RANKPEP, which ranks all possible 
peptides from a test protein using PSSM coefficients, was developed to 
automate the screening process. It was shown that for Kb and Db molecules, 
that profiles created from aligned peptides are very sensitive in identifying 
MHCI-restricted epitopes. The predictive power of the method was 
evaluated by running RANKPEP on proteins known to bear Kb- and Db-
restricted T-cell epitopes. Analysis of the results indicates that > 80% of 
these epitopes are among the top 2% of scoring peptides. 

These profiles are guided by structural data indicating differences in 
binding residues involving peptides of distinct length. Prediction of peptide-
HLA binding using a variety of MHC-specific PSSMs is publicly available 
on line (Reche et al., 2002). This method is data driven, thus, heavily 
depends on the quality of the binding data, while available binding data are 
collected from different sources with different experimental conditions and 
with peptide sequences of biased amino acid composition, which is a 
limitation of all data driven prediction method. 

3.1.9 Additive Method 

This method is developed to overcome the above limitations 
(Doytchinova et al., 2002), which is based on the assumption that the 
binding affinity of a peptide depends on the contributions from each amino 
acid as well as on the interactions between the adjacent and every second 
side-chain. In this method, the partial least squares (PLS) were implemented 
for the multiple linear regression analysis between the different residue 
interaction terms and the binding affinity. (PLS) method belongs to so-called 
projection methods. These methods handle data matrixes with more 
variables than observations very well, and the data can be both noisy and 
highly collinear. In this situation, conventional statistical methods such as 
multiple regression produce a formula that fits the training data but is 

This method further developed the additivity concept, developed by Free and 
Wilson (Free and Wilson, 1964) whereby each substituent makes an additive 
and constant contribution to the biological activity regardless of substituent 
variation in the rest of the molecule. The values of the individual group 
contributions are calculated by multiple linear regression (MLR) analysis. 
The models based on the additivity concept are simple to perform and easy 
to interpret. Because of that they have found a wide application in molecular 
design over the years. However, it has been shown that the conformation of 
a certain amino acid side chain at a certain position strongly depends on  
the neighboring amino acids (Fremont et al., 1995). This means that the 
additivity hypothesis is not sufficient to explain the binding abilities of the 
peptides. 
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unreliable for prediction. PLS forms new variables as linear combinations of 
the old ones and then uses them as predictors of the biological activity. 

Doytchinova et al. applied this method on class I molecule HLA-
A*0201, using a training set of 420 experimental IC50 values (Doytchinova 
et al., 2002). The predictive power of the method was assessed by a “leave-
one-out” cross-validation with an independent test set of 89 peptides. The 
mean value of the residuals between the experimental and predicted pIC50 
values was 0.508 for this test set. The additive method for quantitative 
binding affinity prediction is easy and fast to use and gives a quantitative 
value for the binding affinity with very good predictive powers. It can also 
give a quantitative assessment of individual amino acid contributions at any 
position in the peptide. The additive method has been implemented in a 
program for rapid T-cell epitope search. The method is universal and can be 
applied to any peptide-protein interaction where binding data is known. 
However, due to its nature as a sequence-based method, the prediction 
power will eventually depends on the quality of the binding affinity data of 
the training set. 

3.1.10 Summary 

The application of any of the detailed models above is restricted to either 
one or few HLA alleles depending on the availability of training set. As 
shown in Table 11.1, these models have been tested for H-Db (D'Amaro et 
al., 1995; Udaka et al., 2000), H-Kb (D'Amaro et al., 1995; Udaka et al., 
2000), H-Ld (Udaka et al., 2000), HLA-A2 (Brusic et al., 1998), DR1 
(Mallios, 1999), DRB1*0101 (Noguchi et al., 2002), and another 26 alleles 
(Donnes and Elofsson, 2002). It has been shown that their prediction 
accuracy varies from 90 to 100% for these datasets. It should be noted that 
the size of the training set is different in different cases. It is worth 
mentioning that the sizes of negative and positive data used in such 
developments are also variable and these factors play an important role in 
the overall estimation of their accuracy and predictive power. It will be 
interesting to compare the usefulness of these techniques either individually 
or combined and check their prediction efficiencies using the same set of 
training and prediction dataset. 

3.2 Molecular Structure Based Predictions 

The second category of prediction methods uses known three-dimensional 
structures of HLAp complexes. The current release of Protein Data Bank 
(Berman et al., 2000) contains a number of unique HLA structures. These 
structures enable a better understanding of the structural principles  
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Table 11.1 Tools for predicting MHC peptide 
 

Tool URL 
CTLPRED http://www.imtech.res.in/raghava/ctlpred/ 
PROPRED http://www.imtech.res.in/raghava/propred1/ 
MAPPP http://www.mpiib-berlin.mpg.de/MAPPP/binding.html 
NHLAPRED http://www.imtech.res.in/raghava/nhlapred/ 
HLABIND http://thr.cit.nih.gov/molbio/hla_bind/ 
LPPEP http://zlab.bu.edu/zhiping/lppep.html 
SVMHC http://www-bs.informatik.uni-tuebingen.de/Services/SVMHC 
NetMHC http://www.cbs.dtu.dk/services/NetMHC/ 
MHCPred http://www.jenner.ac.uk/MHCPred/ 
MMBPRED http://www.imtech.res.in/raghava/mmbpred/ 
MHCBIND http://margalit.huji.ac.il/Teppred/mhc-bind/index.html 
SYFPEITHI http://www.syfpeithi.de/ 
PROPRED http://www.imtech.res.in/raghava/propred/ 
EPIPREDICT http://www.epipredict.de/Prediction/prediction.html 
HLADRPRED http://www.imtech.res.in/raghava/hladr4pred/ 
MHC2PRED http://www.imtech.res.in/raghava/mhc2pred/ 
TED http://www.bioinformation.net/ted/ 

 
governing peptide recognition by HLA molecules (Batalia and Collins, 
1997) (Figure 11.3). HLA molecules bind peptides of diverse sequence with 
great affinity and long half-life. Most peptides selected by class-I molecules 
are 8–10 residues long and conserved amino acids bind the invariant 
portions of the peptides, presenting anchoring backbone atoms at positions 2 
and C, N termini (Madden et al., 1992; Guo et al., 1993). Auxiliary anchors 
at P1 and P3 usually fine tune peptide recognition (Madden et al., 1992; 
Ruppert et al., 1993). Each anchoring side chain interacts with one of the six 
polymorphic HLA pockets (Saper et al., 1991; Guo et al., 1993), whose 
structural fold is conserved in evolution with physicochemical diversity for 
allele specificity (Falk et al., 1990). Through a set of hydrogen bonds to the 
main chain of the peptide, the termini of the peptide are oriented into 
specific pockets that are designed to accommodate the chemical nature of 
the peptide residues. Thus, the orientation (amino to carboxyl) of the 
antigenic peptide is fixed for all HLA molecules. However, this arrangement 
is affected by peptide length. Longer peptides may zigzag (Madden et al., 
1993) or bulge (Guo et al., 1992; Collins et al., 1995) to allow peptides of 
greater length to maintain the relative position of the termini. In addition, 
longer peptides may bind and maintain original binding at the N terminal 
end with appropriate structural adjustments at C terminal to allow for 
peptide extension outside the binding groove.  
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The following alleles are presented, superimposed by the HLA a1 and a2 
domains. HLA-A2 with a nonamer and a decamer (1hhiand 1hhh, 
respectively), HLA-Aw68 with a nonamer (aw68), HLA-B27 with a 
nonamer (b27), HLA-B35 with an octamer (1a1n), HLA-B53 with a 
nonamer (1a1m), HLA-B8 with an octamer (1agd), H2-Kbwith an octamer 
and a nonamer (2vaa and 2vab, respectively), H2-Dbwith a nonamer (1hoc), 
and H2-M3 with a nonamer (1mhc). The peptide Cα and Cβ atoms are shown 
within the trace of the HLA structure. The first and last positions of the 
peptide are labeled as P1, and PΩ, respectively. 

Various methods calculating binding free energy of HLAp complexes, 
based on different energy scoring functions have been developed. Since 
binding free energy of MHC-peptide complex is related to the affinity of 
MHC-peptide binding, binders and no-binders can be discriminated and the 
approach produces absolute or relative peptide binding affinity. Free energy 
calculation is either based on statistical pair-wise potentials tables or free 
energy scoring functions. A recent approach based on free energy involved 
threading of the peptides using known templates followed by evaluation of 
their binding by statistical pair wise potentials (Altuvia et al., 1995; Altuvia 
et al., 1997; Schueler-Furman et al., 1998; Schueler-Furman et al., 2000). 
However, it does not allow the direct prediction of binding affinity values 
unlike methods capable of calculating the absolute binding free energies 
from three-dimensional homology models. Although, it is difficult to 
develop a universal free energy function for HLAp binding, attempts have 
been made towards this goal (Rognan et al., 1999). 

The backbone conformations of bound peptides are not generally 
conserved in the binding groove. The bound peptides are flexible and the 
middle part of the peptides usually bulges out the binding groove. This 
bulging part allows the backbones to take different patterns at the groove. 
The generic peptide structure determination methods using Monte Carlo, 
molecular dynamics simulations, dynamic programming, free energy 
mapping, or threading are suited for binding free energy calculations, but 
they all have difficulty in predicting the conformation of the peptide in the 
groove. Another method uses computational combinatorial ligand design 
(CCLD) (Zeng et al., 2001) for placing amino acids in specific pockets. A 
method based on three-dimensional quantitative structure affinity 
relationship (3D QSAR) of HLAp complexes (Doytchinova and Flower, 
2001; Doytchinova et al., 2002) has also been developed. Most approaches, 
except for threading (Altuvia et al., 1995), are not generally suitable for 
systematic high-throughput genome scanning. However, the TEPITOPE 
software developed by Hammer and colleagues uses pocket profiles 
generated using structural data (Sturniolo et al., 1999). This method is shown 
effective for HLA-DR alleles. 
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3.2.1 MDS 

The first approach based on molecular dynamics simulation (MDS) of HLAp 
complexes (Rognan et al., 1994) allowed a crude discrimination of binders 
from non-binders. The approach produced change in free energy during 
simulation of the HLA-B*2705 complex with six different peptides in 
AMBER force field. The result exhibited unexpected structure-activity 
relationships. Various structural and dynamical properties of the solvated 
protein–peptide complexes (atomic fluctuations, solvent-accessible surface 
areas, hydrogen bonding pattern) were found to be in qualitative agreement 
with the available binding data. The molecular dynamics method could be 
used as a complementary tool to T cell-epitope predictions, as crystal 
structures of HLA proteins available. This method is not suitable for high-
throughput predictions due to extensive computational requirements in 
capturing the simulation trajectory. 

3.2.2 Threading with Knowledge Based Free Energy Scoring 

The knowledge based scoring method based on pair-wise contacts uses 
solved or modeled structure for HLAp binding calculations. The physical, 
chemical compatibility between peptide and HLA groove is estimated using 
pair-wise potential matrix. The binding score is obtained by adding all pair-
wise values for residues in the pocket with the corresponding peptide 
residues at every position. This enables the ranking of peptides for HLAp 
binding (Altuvia et al., 1995; Altuvia et al., 1997; Schueler-Furman et al., 
1998; Schueler-Furman et al., 2000). The structure based approach is based 
on two main determinants: (1) The availability of appropriate peptide 
structural template; (2) the choice of a pair-wise potential table. 

Various knowledge based pair-wise potentials have been derived from 
known protein structures (Jernigan and Bahar, 1996; Jones and Thornton, 
1996; Skolnick et al., 1997). A basic approximation underlying these 
potentials is that total “free energy” of a protein can be expressed as a sum 
of independent pair-wise interactions. The frequencies of residue pairs in the 
structures are assumed to represent the interaction preference between 
different types of residues. This interaction preference between two amino 
acids is expressed by its comparison with their affinity to a “reference state.” 
Various matrices have been published using distinct reference states 
(Skolnick et al., 1997). Miyazawa and Jernigan used solvent as reference 
state and developed a matrix with emphasis on hydrophobic interactions 
(Miyazawa and Jernigan, 1985; Miyazawa and Jernigan, 1996). Betancourt 
and Thirumalai (Betancourt and Thirumalai, 1999) modified the table by 
changing the reference state from solvent to a defined, single solvent-like 
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molecule. The resulting matrix represents hydrophilic interactions. Altuvia et 
al. used the potential tables of Miyazawa and Jernigan to rank modeled 
HLAp structures (Altuvia et al., 1995; Altuvia et al., 1997). However, the 
procedure failed to predict hydrophilic interactions (Altuvia et al., 1997). 
The pair-wise potential table of Betancourt and Thirumalai (Betancourt and 
Thirumalai, 1999) successfully selected hydrophilic interactions (Schueler-
Furman et al., 2000).  

3.2.3 Free Energy Scoring Function Based Methods 

These methods aim is to determine ligands capable of binding from a series 
of candidate ligands by calculating binding free energy. They generally do 
not require predetermined experimental data for model development and can 
produce relatively accurate binding affinity. HLAp binding or non-binding 
data is not enough to predict whether the peptide can induce immune 
response. Accurate calculation of HLAp binding free energy difference 
using 3D- structures by simple free energy scoring functions is CPU 
intensive.  

In recent years, a number of free energy scoring functions has been 
developed for different purposes and these functions are used for HLAp 
binding predictions. One of the recent approaches for class I HLAp binding 
prediction is a tailor-made free energy scoring function (FRESNO) 
combined with homology modeling (Rognan et al., 1999; Logean et al., 
2001; Logean and Rognan, 2002). Starting from the primary sequence of the 
protein antigen, individual 3D structures of all possible class I MHC-peptide 
(8-, 9-, and 10-mers) complexes are constructed by homology modeling. The 
critical issue in this approach is identification of peptide templates for 
structure prediction. The FRESNO scoring function is then used to calculate 
binding free energy of HLAp interactions. The approach allows for the 
prediction of absolute binding affinities in a high throughput manner. An 
extension to this work is EpiDock (Logean and Rognan, 2002) which is (1) 
shown to predict potential T-cell epitopes from viral proteomes (2) used to 
roughly predict still unknown peptide binding motifs for novel class I HLA 
alleles. 

3.2.4 Virtual Matrix Based Methods 

Virtual matrices, like quantitative matrices, provide a detailed model in 
which binding of each peptide residue with HLA pockets is quantified using 
pocket profiles (Sturniolo et al., 1999). Virtual matrices are derived by 
assigning and combining pocket-specific binding properties using structural 
features or homology principles from known HLA structures and 
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extrapolating to other alleles, while quantitative matrices are obtained using 
peptide data with known allele specific binding data. The advantage over 
quantitative matrices is that the method is generic and can be applied to any 
given allele. One implementation of the algorithm is the software package 
TEPITOPE (Sturniolo et al., 1999). Its capacity has been demonstrated for 
11 HLA-DR alleles. Furthermore, they have been successfully applied to 
predict T-cell epitopes in oncology, allergy, and autoimmune diseases 
(Rognan et al., 1994; Hammer et al., 1995; Gross et al., 1998; Cochlovius et 
al., 2000; Stassar et al., 2001). 

3.2.5 CCLD 

Computational combinatorial ligand design (CCLD) is a computational tool 
used to assist drug design, by clustering compounds in classes of drug-like 
and non-drug-like molecules. The method selects fragments that bind 
favorably to a macromolecular target of known three-dimensional structure. 
Optimal positions and orientations of functional groups on the surface of the 
macromolecule are exhaustively searched, and then sorted according to an 
approximated binding free energy. The CCLD method allows the fast and 
automatic generation of a multitude of highly diverse compounds, by 
connecting in a combinatorial fashion the functional groups in their 
minimized positions. The fragments are linked as two atoms may be either 
fused, or connected by a covalent bond or a small linker unit. To avoid the 
combinatorial explosion problem, pruning of the growing ligand is 
performed according to the average value of the approximated binding free 
energy of its fragments. 

The CCLD method uses the 3D information from the crystal structure of 
the molecule. It can generate both sequence and structure of predicted 
ligands. Zeng et al. (Zeng et al., 2001) applied the method on the prediction 
of peptides that bind a HLA molecule with known crystal structure. Using 
chemical fragments as models for amino acid residues, a set of sequences for 
peptides predicted to bind in the HLA peptide-binding groove were 
produced. The probabilities for specific amino acids occurring at each 
position of the peptide were calculated based on these sequences. Their 
results show the CCLD approach is a sensitive method that can capture the 
important features of both sequence and structural data. 

3.2.6 3D-QSAR 

Three-dimensional quantitative structure-affinity relationship (3D QSAR) 
studies have been applied to explore the molecular interactions between 
HLA and peptides. They provide easily interpretable coefficient contour 
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maps identifying the areas of the peptides that require a particular 
physicochemical property to increase binding. One of the 3D QSAR 
methods, Comparative Molecular Similarity Indices Analysis (CoMSIA), is 
a very reliable method for investigating the structure-activity trends within 
sets of biological molecules. It has been successively applied in 
pharmaceutical discovery of small molecule drugs. It is a statistic approach 
that seeks to correlate relative differences in molecular descriptor values to a 
dependent property (e.g. the binding affinity). In that respect, CoMSIA is a 
method able to map similarities or dissimilarities between molecules. The 
explanatory power of CoMSIA methods is considerable, manifest not only in 
their ability to accurately predict binding affinities, but also in their capacity 
to display advantageous and disadvantageous 3D interaction potential 
mapped onto the structures of molecules being investigated.  

CoMSIA method have been applied on peptide-HLA binding prediction 
with class I HLA molecule HLA-A*0201 and 200 and 66 nonamer peptides 
(Doytchinova and Flower, 2001; Doytchinova et al., 2002). CoMSIA uses 
the interaction potential around aligned sets of 3D peptide structures to 
describe the contributions to binding. The relationship between physico-
chemical properties and the affinities of peptide binding was investigated. 
The X-ray structure of one nonameric viral peptide was used as a starting 
conformation, on which the structures of the remaining peptides were built. 
Five types of similarity index (steric bulk, electrostatic potential, local 
hydrophobicity, hydrogen-bond donor, and hydrogen-bond acceptor 
abilities) were calculated, using a common probe atom with 1 Å radius, 
charge +1, hydrophobicity +1, hydrogen-bond donor, and acceptor 
properties +1. Since only the combination of all fields provided a complete 
insight, only an all-fields model was analyzed further. The same parameters 
as for the additive method were used to assess the predictive power of the 
final model. Three types of cross validation were performed. 

One difficulty of the application of the CoMSIA on peptide prediction is 
that peptides size is large compared to small molecules and the diversity of 
the physico-chemical properties associated with each position being 
examined. However, good agreement was found between the results 
generated by other techniques (Doytchinova and Flower, 2001). 

CoMSIA can predict the binding affinity of a peptide with an amino acid 
not presented in the initial training set, but it cannot assess the contribution 
of each amino acid at each position and the interactions between them. 
Another advantage of the CoMSIA method is that it returns 3D 
representations of the analysis for visual investigation, which indicate where 
adding particular kinds of functionality to the peptides would contribute to 
activity, either positively or negatively. However, because the method is also 
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data driven, the predictivity of this method is also dependent on the quality 
of binding data. 

3.2.7 3D-Additive Method 

HLAp binding method (Zhao et al., 2003; Kangueane and Sakharkar, 2005) 
was recently developed using structural information gathered from class-I 
HLAp crystal structures. In this method, nine virtual pockets are defined and 
the binding affinity between HLA and peptide is given by the sum of 
residue-residue compatibility between peptide residues and corresponding 
virtual pockets. The quantification of the interaction between the HLAp 
residue pair is calculated by the application of the Q matrix, which 
quantified the interaction between the 20 amino acids based on 237 physico-
chemical properties. The prediction method was intensively verified using 
ROC analysis based on large quantity of HLAp binding data. The method 
produces high efficiency (average 60%) with good sensitivity (50–73%) and 
specificity (52–58%), although the accuracy is moderate (60%). The method 
is simple, effective and most important applicable to all HLA allele whose 
sequence is clearly defined. 

4. Conclusion 

The HLAp binding prediction model should be suited for high throughput 
scanning of a pathogen proteome with high sensitivity capable of covering 
maximum number of HLA alleles. The method that requires very few 
experiments in the identification of vaccine candidates is technologically 
advantageous. In this chapter we discussed the merits and demerits of 
several tools and techniques such as BIMAS-HLA_BIND, ProPred1, 
SYFPEITHI, EPIMATRIX, EPIPREDICT, PREDICT, MDS, CCLD, 3D-
QSAR, TEPITOPE, FRESNO, EpiDock, and virtual pockets for HLAp 
binding predictions. We hope that this review provides a comparison of 
different available methods on this subject. A list of useful tools to predict 
MHC binding peptides is available in Table #11.1. We conclude that the 
choice of the tools and their mode of development are critical to their 
application in immunology and users of such tools should be aware of such 
limitations. Other coupled parameters such as peptide processing, transport, 
loading, TCR repertoires, and subsequent immune elucidation factors have 
to be clearly modeled for appropriate application of HLAp binding 
prediction models in immuno-therapeutics and vaccine design. The next few 
years promise many such prediction tools for use in immuno-biology. 
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Abstract: In this chapter, we describe the comparison of gene numbers in different 
eukaryotic genomes. Unlike prokaryotes, eukaryotic genes are often split into 
exons (coding sequence segments) and introns (non-coding sequence 
segments). However, the number of exons and introns vary in different genes 
across diverse genome species. It is found that the intron number varies from 0 
to >100 in different eukaryotic genes. This results in SEG (Single exon genes) 
and MEG (multi exon genes). Thus, SEG have 0 intron and MEG have at least 
one intron. Consequently, we compared the SEG and MEG fraction across 
different eukaryotic genomes. The comparison helped to discuss the 
evolutionary selection of SEG and MEG fraction in eukaryotic genomes. 

Key words: Introns, Genes, Exons, Eukaryotes 

1. Introduction 

The number of genes in eukaryotes varies between genomes. Eukaryotic 
genes are broadly classified into intron (non coding sequence segment) 
bearing MEG (multi exon genes) and intronless SEG (single exon genes). 
The ExInt (Sakharkar et al., 2000) database contains MEG sequences and 
the SEGE (Sakharkar et al., 2002) database contains SEG sequences from 
GenBank (Benson et al., 2000). SEG sequences are uninterrupted by introns 
and are similar to prokaryotic genes in structure. Recently, SEG sequences 
were derived from completely sequenced eukaryotic genomes led to the 
development of Genome SEGE (Sakharkar et al., 2004). The differential 
selection of SEG and MEG in eukaryotic genomes is interesting. Hence, it is 
important to study the origin and evolution of SEG and MEG in eukaryotes.  
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To study their evolution on a genomic scale is resource intensive, 
information demanding and extremely complex. We undertook the first 
initiative of identifying and counting SEG and MEG for nine eukaryotic 
genomes. Here, we compare the proportional selection of SEG and MEG in 
different genomes. 

2. Methodology 

2.1 Identification of SEG 

 
• Contain the word “DNA” in the LOCUS line at positions 48–53 as per 

the new locus line format. 
• Contain the pattern “CDS” in the FEATURES. 

 
The “CDS” line in the FEATURES should contain a continuous span of 
bases indicated by the number of the first and the last bases in the range 
separated by two periods (e.g. 23..78). If symbols “<” or “>” are indicated at 
the end points of the range, the entry is discarded because the range is 
beyond specified base number in such cases. When operators such as 
“complement (location)” are used in the “CDS” line, the feature is read as 
complementary to the location indicated and, therefore, the complementary 
strands are read from 5’ to 3’. 

2.2 Identification of MEG 

GenBank format files in genome banks (ftp://ftp.ncbi.nih.gov/genomes) 
were used to create a dataset containing entries that are reservedly 
considered as ‘‘Multi exonic’’ genes according to the “CDS” FEATURE 
convention. By definition, we consider an entry to be putatively ‘‘Multi 
exonic’’ in gene structure if it contains the following description patterns in 
the corresponding GenBank lines.  
 
 

GenBank format files in genome banks were used to create a dataset 
containing entries that are reservedly considered as “single exonic” genes 
according to the CDS FEATURE convention. By definition, we consider an 
entry to be putatively “single exonic” in gene structure if it contains the 
following description patterns in the corresponding GenBank lines. 
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1. Contain the word “DNA” in the LOCUS line at positions 48–53 as per 
the new locus line format. 

2. Contain the pattern “CDS” in the FEATURES. 
3. The “CDS” line in the FEATURES should contain `join` followed by 

a continuous span of bases indicated by the number of the first and the 
last bases for each exon in the range separated by two periods within 
parenthesis (e.g. join(23..78,123..180)). The exons are separated by `,`. 
If symbols “<” or “>” are indicated at the end points of the range, the 
entry is discarded because the range is beyond specified base number 
in such cases. When operators such as “join(complement(location))” 
are used in the “CDS” line, the feature is read as complementary to the 
location indicated and, therefore, the complementary strands are read 
from 5’ to 3’. 

2.3 Pseudogenes 

Data processing and cleaning is an essential part of biological knowledge 
discovery. Hence, we eliminated all identifiable processed pseudogenes by 
scanning for polyadenylation signal (AATAAA) and polyadenylation tail 
using a modified procedure of Harrison and colleagues (Harrison et al., 
2002). In this procedure, by definition, we consider a sequence to represent a 
pseudogene if it contains a polyadenylation tail (>15A) within 1000 
nucleotides from the stop codon with a preceding polyadenylation signal.  

2.4 Caveats 

Genome annotation is an inherently dynamic process in which it is necessary 
to use many different sources of data, which are not updated in a rigorous 
fashion. It should also be noted that annotation is not generally uniform and 
consistent because various procedures are used by different groups for 
genome annotation. During genome annotation, a gene may have been 
annotated with a SEG or MEG CDS in the FEATURE for three main 
reasons: (1) the gene is truly SEG or MEG, (2) SEG is of retroposition origin 
(Fink, 1987; Brosius, 1999), (3) false positive prediction by gene finding 
algorithms. False positives are not removed from the current dataset due to 
lack of a methodology. Nevertheless, the gene finding algorithms are 
reasonably optimized to find SEG and MEG. 

It should also be noted that our approach does not include a small 
fraction of eukaryotic SEG and MEG that do not follow the “CDS” feature 
convention. We also do not consider entries that are annotated as NA, RNA, 
mRNA, tRNA, rRNA, uRNA, snRNA, or snoRNA in the LOCUS line at 
positions 48–53, and in the UTR (un-translated regions of the genome).  
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2.5 Total Genes 

The sum of SEG and MEG counts is considered as the total gene count in 
each genome for this analysis. 

3. Results and Discussion 

3.1 Utility of SEG and MEG Sequences to the Study of 
Evolution 

The proportions of MEG and SEG in eukaryotes complement each other in 
different species. The varying proportion is related to the degree of genome 
complexity. The subtle interplay between their proportions might aid in 
efficient genome organization during evolution. A wealth of information can 
be obtained by comparing MEG and SEG sequences between two or more 
genomes to identify features conserved or diverged during evolution. 
Comparison of more closely related genomes can reveal similarities in gene 
order. Such analysis could also shed light on genome architecture and help 
understand why the genome is arranged the way it is and how its structure 
affects function. A systematic mapping between functional genes and their 
SEG/MEG paralogs can provide a matrix for genomic rearrangement and 
gene duplication. Different SEG/MEG gene sets available in the ExInt 
(Sakharkar et al., 2000), SEGE (Sakharkar et al., 2002), and Genome SEGE 
(Sakharkar et al., 2004) databases will provide an opportunity to perform 
many–to–many comparison between genomes. Such analysis will provide 
information on paralogy and orthology at a molecular level. Analysis of the 
datasets using non-linear probabilistic models may provide acceptable 
evidence for molecular evolution of SEG and MEG.  

3.2 Selection of SEG and MEG in Different Eukaryotic 
Genomes 

Table 12.1 shows total gene, SEG, and MEG count in nine eukaryotic 
genomes. Data shows MEG and SEG complement each other in each other. 
The differences reflect inherent variations in different genome architectures 
and evolutionary divergences. Although, this trend is not surprising, the 
actual estimates are interesting in the sense that their proportions in some 
genomes are distinctly greater than others. Mere comparisons of these counts 
provide valuable insight towards genome selection. We note from Table 12.1  
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Table 12.1 An estimate of total gene count, SEG, and MEG count in different eukaryotic 
genomes is given. The SEG fraction is defined as the percentage ratio of SEG count and gene 
count. Pseudo = processed pseudo genes that are SEG. SEG (a) = SEG count after eliminating 
processed pseudo genes. SEG and MEG fraction adds up to 100 in each genome. 
 

Genomes Size 
(Mb) 

Genes # Single Exon Genes (SEG) SEG 
(%) 

MEG 
(%) 

   Total Pseudo SEG   
E. cuniculi 2.9 2,028 1,981 0 1,981 97.7 2.3 
S. cerevisiae 12.1 6,004 5,551 60 5,491 92.5 7.5 
P. falciparum 23 5,544 2,471 991 1,480 44.6 55.4 
S. pombe 13.8 5,213 2,585 17 2,468 49.6 50.4 
C. elegans 97 24,607 654 3 651 2.7 97.3 
A. thaliana 125 29,483 5,920 84 5,836 20.1 79.9 
D. melanogaster 180 11,357 2,049 29 2,020 18.0 82.0 
M. musculus 2500 26,771 4,218 105 4,113 15.8 84.2 
H. sapiens 2900 27,675 3,408 103 3,305 12.3 87.7 

 
that unicellular (45–98%) and multi-cellular (3–20%) genomes are 
distinguished by SEG proportion in them. Generally, the SEG fraction is 
greater in unicellular than multi-cellular genomes. This implies that 
unicellular genomes with very short generation times have larger fraction, 
while multi-cellular genomes with long generation times have smaller 
fraction. The Pearson correlation co-efficient (r) between SEG count and 
genome size is 0.2. This is much weaker than the Pearson correlation co-
efficient between total gene count and genome size (r = 0.61). The r value 
between SEG count and gene count is 0.3. However, the r value between 
SEG fraction and genome size is –0.45. This suggests that SEG fraction 
decreases with genome size. Interestingly, the r value between SEG fraction 
and gene count is –0.80 (Figure 12.1). Thus, SEG fraction strongly decreases 
with total gene count in these genomes. In other words, genomes with high 
gene count contain low SEG fraction. We also found that the r value 
between SEG fraction and gene density (total gene count/Mb genome size) 
is 0.88. This relationship is strong and SEG fraction increases linearly with 
increase in gene density in these genomes (Figure 12.2). These patterns are 
very interesting and subsequent analysis is required to gain further insight 
into their selection and genome design. However, the bits and pieces of 
derived information have to be bridged together to signify the trend between 
SEG fraction and genome content. We hope to compare and contrast 
estimates from different genomes of distant phylogeny. 
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Figure 12.1 Relationship between SEG fraction and gene count is given. 

 

Figure 12.2 Relationship between SEG fraction and gene density is given. EC = E. cuniculi, 
SC = S. cerevisiae, SP = S. pombe, PF = P. falciparum, CE = C. elegans, AT = A. thaliana, 
DM = D. melanogaster, MM = M. musculus, HS = H. sapiens. The MEG fraction 
complements the SEG fraction for each genome. 

3.3 Mechanism of SEG Origin 

Table 12.2 shows that multi-cellular genomes contain about 12–20% SEG. 
This is not true for C. elegans and it contains only 2.7% SEG. The latest 
update (October, 2003) of the human genome contains 3,408 SEG sequences 
(about 12% of total genes). These estimates are relatively large and their 
mere existence in many intron-rich genomes demands further investigations. 
It has been suggested that a significant fraction of human SEG have been 
generated by retro-transposition (Brosius,1999). Therefore, the presence of 
SEG can be explained by the mechanism of retro-position. This occurs by 
homologous recombination between the genomic copy of a gene and an 
intronless cDNA (Fink, 1987). The later is produced by reverse transcription 
of the corresponding mRNA, a mechanism that produces SEG genes in 
eukaryotes. In an independent experiment by sequence comparison, we  
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Table 12.2 URLs of Intron and Exon databases 
 

Database Name URL 
ExInt http://sege.ntu.edu.sg/wester/exint/ 
SEGE http://sege.ntu.edu.sg/wester/sege/ 
Genome SEGE http://sege.ntu.edu.sg/wester/intronless/ 
Human SEGE http://sege.ntu.edu.sg/wester/intronless/human 

 
found that about 20% (366) of unique SEG (purged at 40% sequence 
identity) show (MEG) correspondence with at least 40% sequence identity 
(data not shown). This strongly supports the hypothesis that human SEG 
arose by retro-transposition. 

The human genome team suggested that a very small fraction of total 
human genes (<1%) is exclusively homologous to bacterial genes (Lander et 
al., 2001). Therefore, we compared human SEG with 430,011 prokaryotic 
protein sequences derived from 135 prokaryotic genomes. About 99% of 
human SEG lack homology with prokaryotic sequences. This suggests that 
human SEG did not evolve by gene transfer from bacteria to human. 
Nonetheless, the absence of homology between human SEG and prokaryotic 
proteins supports the hypothesis that SEG probably arose by retro-position. 
Additional data on paralogous SEG may provide further evidence towards 
the possible mechanism of their origin by retro-position. 

4. Conclusion 

The differential selection of SEG and MEG in the genomes of higher 
organism is perplexing. Different eukaryotic genomes have varying 
proportions of SEG and MEG, and a sizeable fraction of SEG are found in 
many intron-rich multi-cellular genomes. We believe that these estimates 
will improve our understanding on the differential selection (as a process or 
force) of SEG and MEG in different eukaryotic genomes. The biological 
role of SEG and MEG in the genomes of higher organism is not 
completely understood. Here, we show that different eukaryotic genomes 
have varying SEG and MEG fraction, and a sizeable portion of SEG is 
found in many intron-rich multi-cellular genomes. This report provides 
an overview of SEG and MEG count and fraction. This shows their 
relationship to genome size, gene count, and gene density. It is also 
interesting to note that a large proportion of SEG are associated with 
unicellular organisms with very short generation times, while a small 
proportion of SEG is common in relatively complex multi-cellular 
organisms with long generation times. We hope that these estimates will 
help to probe into the biological role of SEG and MEG towards genome 
design.  
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Bioinformatics Application: Predicting Protein 
Subcellular Localization by Applying Machine 
Learning 
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Abstract:  The subcellular localization of a protein is closely correlated with its function. 
Automatic prediction of subcellular localization based on protein sequence 
properties remains a challenging problem. Here, we propose a proteomic 
screening-based machine learning approach for interpreting differential 
detection of proteins in isolated organellar compartments by high-throughput 
mass spectrometry. The method deals with some core limitations existing in 
previous approaches, such as multi-compartmental ambiguity. When applied 
to a global-scale proteomic study, our method achieved an excellent overall 
accuracy of 80.5% and precision 75.1% for four major organellar 
compartments (cytosol, membranes, mitochondria, and nucleus). The 
classifiers were able to predict the subcellular localization of 2390 previously 
uncharacterized proteins, 1370 of which were assigned to one or more 
compartments with at least 80% confidence. 

Key words: Subcellular localization, Multi-compartment, Proteomics, Protein expression 
profiling, Machine learning, Automatic prediction 

1. Introduction 

Determining the subcellular localization of a protein in a cell is a key to 
understanding its function and can facilitate biochemical experiments aimed 
at characterizing additional biological properties, such as purification. 
However, traditional experimental methods for examining subcellular 
localization are generally time-consuming and costly, and are currently not 
practical on a genome-wide scale. Given the rapidly expanding plethora of 
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uncharacterized proteins identified by the many ongoing genome-sequencing 
projects, it is highly desirable to predict a protein’s subcellular localization 
automatically (Lu et al., 2004). Currently, most of the automatic protein 
subcellular localization prediction methods fall into one of three categories 
(Scott et al., 2004). The first one is prediction based on amino acid 
composition, as originally suggested by Nakashima and Nishikawa (1994). 
Different machine learning algorithms have been developed that make use 
amino acid composition information towards this end, including neural 
networks (Reinhardt and Hubbard, 1998), support vector machines (SVM) 
(Hua and Sun, 2001), covariant discrimination (Chou and Elrod, 1998) and 
augmented covariant discrimination methods (Chou, 2000) as well as SVM 
incorporating quasi-sequence-order effects (Cai et al., 2002). The second 
major approach is prediction based on calculating a set of sequence-derived 
parameters and comparing these with a representation of a number of 
localization rules that have been collated from the literature. The most 
widely used algorithm in this category is the popular PSORT algorithm 
(Nakai and Kanehisa, 1992), which is a commonly-used bioinformatics tool. 
The key idea of this approach is to decide the presence of various sequence 
motifs that enable proteins to be localized to a certain compartment. 
Different types of prior knowledge are required for this determination, which 
are, actually, hard to get for uncharacterized proteins. The third category of 
prediction is the homology-based prediction (Mott et al., 2002; Chou and 
Cai, 2005; Lu et al., 2004), wherein the inferences are based on transference 
of knowledge from characterized to unknown homologous proteins. 

One of main limitations in most of these studies is that their principle 
methods focus on mono-compartment prediction (that is, a protein is 
presumed to localize to a single organelle only). For example Lu et al. 
(2004) constructed a parser to extract a simple ontological representation for 
proteins assigned to multiple compartments, without exploiting the 
information encoded by multi-localizations. Similarly, while Scott et al. 
(2004) built a Bayesian-based tool for subcellular localization prediction 
which can integrate multi-source information to assign a protein to multiple 
compartments, essentially it does not consider or exploit the multi-
compartment issue during the building of the predictors. 

As an alternate to sequence- or homology-based predictions, proteomic 
methods based on subcellular fractionation in combination with high-
throughput protein mass spectrometry have emerged as a powerful 
alternative experimental platform for assessing subcellular localization 
directly. Indeed, substantive recent technical advances now make this the 
preferred approach for genome-wide protein identification and quantification 
with high sensitivity and accuracy (Yates, 2004). Compared with previous 
sequence information-derived prediction methods, these newer proteomic 
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profiling-based screening methods are also proving to be more effective for 
resolving ambiguous or difficult localization problems (Schirmer et al., 
2005). However, current procedures involving biochemical methods for 
subcellular fractionation are still far from perfect, and artifacts due to cross-
contamination can create misleading results. 

The present study not only is devoted to addressing the multi-
compartment problem, but also provides a new strategy for automatic 
prediction of protein’s subcellular localizations based on differential 
detection of proteins in isolated organellar compartments by high-throughput 
mass spectrometry.  

2. Methods 

2.1 Data Sets and Preprocessing 

In this global-scale mouse proteomic study, healthy adult brain, heart, 
kidney, liver, lung, and embryonic placenta were excised from euthanized 6–
8 week old ICR female mice. The tissues were gently disrupted and 
fractionated into four major subcellular compartments (cytosol, microsomes, 
mitochondria, and nuclei) using differential ultracentrifugation. The proteins 
were identified by tandem mass spectrometry followed by database searches 
of the acquired spectra using the multidimensional protein identification 
technology (MudPIT) (Yates, 2004). The procedures for processing, 
searching, and rigorously evaluating the proteomic expression profiles have 
been detailed by Kislinger and Emili (2003) and Kislinger et al. (2003). A 
total of 4768 proteins were confidently identified in this analysis. We 
estimated protein relative abundance in the respective fractions based on the 
ratio of the cumulative number of spectra matching to any given protein in 
each sample (Liu et al., 2004). The experimental variance in the recorded 
protein expression levels proved to be quite large, making interpretation of 
the data more difficult. Hence, we normalized the data to have a 
standardized mean of zero and variance of one across each subcellular 
compartment. 

In order to generate a suitable supervised learning approach for predicting 
protein subcellular localizations, we needed to obtain a reference set of 
proteins with known subcellular localizations. For this, we obtained the 
annotations for 1558 proteins from the SWISS-PROT database 
(http://ca.expasy.org/sprot/). These proteins were used to construct training 
and testing sets. Additionally, we compiled an independent test set of 820 
proteins that had been independently identified in a single highly purified 
organelle in a previous proteomic study (Andersen et al., 2005; Beausoleil et 
al., 1997; Krapfenbauer et al., 2003; Mootha et al., 2003; Nielsen et al.,  
 



166 P. Hu et al.
 

Table 13.1 Number of proteins per subcellular location 
 

Subcellular localization No. Seq. used 
in training 

Number used 
in tests 

Number of 
predictions 

Cytosol 672 69 
Membranes 769 283 
Mitochondria 188 217 
Nucleus 570 251 
Total # of compartment specific proteins 1558 820 
Total # of multi-labeled proteins 641 0 

2390 

 
2005; Schirmer et al., 2005; Wu et al., 2003; Wu et al., 2004). All of the 
remaining uncharacterized proteins without labels in SWISS-PROT or not 
belonging to the gold-standard test set were used for prediction. Table 13.1 
show a summary of the number of proteins per subcellular compartment 
used for training, test, and prediction. 

As we can see from the table, more than one-third of training proteins are 
multi-labeled. Since there are no good measures to evaluate classifiers 
trained on multi-labeled data, we removed all the multi-labeled proteins 
from gold standard test data to training data so that we kept all the test data 
as single-labeled. 

2.2 Learning Algorithm 

Many learning algorithms, such as K-nearest neighbors (KNN) (Huang and Li, 
2004; Cai and Chou, 2004), support vector machines (SVM) (Park and 
Kanehisa, 2003), and Bayesian methods (Lu et al., 2004; Scott et al., 2004), 
have been used for subcellular localization prediction. Dudoit et al. (2002) 
have reported an extensive comparison of the effectiveness of different 
supervised statistical learning methods for cancer classification using genomic 
data like gene expression profiles measured by DNA microarrays. They 
demonstrated that the simpler methods, such as KNN, often produce better 
results using a number of performance measures. In this study, we evaluated 
some advanced learning algorithms, such as SVM, but likewise in our hands 
these methods did not outperform the simple methods such as KNN (P.H.; 
unpublished observations). Therefore, we applied the KNN learning method to 
our proteomic datasets to better infer subcellular localization. KNN is a 
supervised non-parametric learning algorithm (Ripley, 1996; Hastie et al., 
2001). Given a protein of unknown or uncertain subcellular localization, the 
algorithm finds the KNN in the training set based on minimum distance (in 
Euclidean distance, as used by Dudoit et al. (2002) of the target protein to the 
reference training set and assigns a subcellular localization according to a 
majority vote based on the subcellular localizations of these K neighbors. The 
optimal number of neighbors (K) used in generating the classifier is chosen by 
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the standard procedure of cross-validation. That is, for a given training set, the 
performance of the KNN for a set of K is determined by cross-validation, and 
the K that produces the smallest error is used. The prediction confidence 
(probability) is then determined based on the proportion of votes for the 
preferred subcellular localization. 

2.3 Evaluating Performance of the Learning Algorithm 

We rigorously evaluated the performance of our machine learning algorithm 
in two different ways. The first approach involved the standard method of 
10-fold cross-validation (Mitchell, 1997). In this procedure, we randomly 
divided the training set associated with each subcellular compartment into 10 
sub-groups ( 1G , 2G , …, 10G ), keeping the number of proteins in the 
localization class approximately the same across each training category. We 
then constructed 10 different classifiers ( 1C , 2C , …, 10C ), where iC use all 
of the training proteins from all of the groups except iG . Proteins in group 

iG were used for testing classifier iC . The second way, and more stringent 
means of assessing classifier performance was based on an independent test 
set, using a gold standard reference dataset to evaluate the classifiers built 
with all of the training data. 

For each of the two methods, we used the following statistical terms 
(Hastie et al., 2001) to assess performance. 
 

Accuracy: the rate of correct predictions compared to all predictions for a 
given subcellular localization ((TP+TN)/(TP+FN+TN+FP)).  
Precision: The portion of true positive with respect all predicted positive for 
a given subcellular localization (TP/(TP+FP)), 
 

Where TP, FP, TN, FN denote the total number of true positives, false 
positives, true negatives, and false negatives, respectively. We also defined 
overall classifier accuracy and precision as the average accuracy and 
precision calculated for each of the four subcellular localizations, together 
with a measure of classifier sensitivity (=TP/(TP+FN)) and specificity 
(=TN/(TN+FP)). 

2.4 Strategy for Multi-class/Multi-label Classification 

One of the main objectives of this study was to confidently assign at least 
one subcellular localization to each uncharacterized protein based on the 
properties learned from the proteomic profiles of a set of proteins with 
known subcellular localizations, which can be formulated to be a multi-class 
supervised classification problem. A common approach for dealing with 
multiple classes is to transform the multi-class learning problem into a set of 
binary classification problems, which is also known as a “one-against-
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others” method (Yeang et al., 2001). For the binary classification, the 
proteins are associated with a specified subcellular localization are labeled as 
positive and all others as negative. As shown in Table 13.1, many of the 
proteins in our training set were annotated in several different subcellular 
localizations. So far, there are no effective computational procedures that 
can be used to treat this difficult multiplex (i.e., multi-label, multi-
localization) problem (Chou and Cai, 2005). Indeed, in previous studies of 
proteins subcellular localization (Park and Kanehisa, 2003; Huang and Li, 
2004; Cai and Chou, 2004 and Lu et al., 2004), this multiplex challenge was 
not directly considered. As a first step towards resolving this, we applied a 
method called “cross-training” (Boutell et al., 2004), which has been applied 
with some success as a means of rationalizing pattern recognition as applied 
to multi-label semantic scene classification. In our implementation of this 
approach, we used the multi-labeled proteins as positive examples for each 
of the four associated localization classes during training. For example, if a 
protein was annotated as both nuclear and mitochondrial, it was considered 
as a positive example during training of both the nuclear and mitochondrial 
classes, but never as a negative example of either category. 

2.5 Optimal Sampling Methods for Imbalanced Data Sets 

When we applied the so-called “one-against-others” method to deal with 
multi-label classification, another serious problem emerged in that the 
positive examples of a subcellular localization tend to be under-represented 
relative to the far larger number of proteins (negative examples) in the other 
compartment classes (alternate organelles). A recent compelling analysis by 
Weiss and Provost (2003) concluded that the natural class distribution is 
generally not the best distribution for learning a classifier. Indeed, the excess 
of negative examples in the training dataset poses several pitfalls for 
classical machine learning systems. These limitations include that we will 
build either trivial classifiers that completely ignore the minority class or 
classifiers with many small (specific) disjunctions that tend to overfit the 
training samples. Recently, some attempts have been proposed in the 
machine learning community to overcome imbalanced training data set 
during binary classification. The newer methods are primarily focused on 
optimizing sampling over the training examples, and involve either (i) 
under-sampling – reducing the negative class by randomly removing a 
subset of the negative examples from the training set, or (ii) over-sampling – 
increasing the positive class by replicating the positive examples. 
Unfortunately, over-sampling with replication does not always improve the 
effectiveness of minority (positive) class prediction. This deficiency is due 
to the classifier becoming very specific in the minority class decision region, 
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leading to over-fitting of the examples. In contrast, the under-sampling 
approach forces the learning algorithm to focus on different degrees of the 
class distribution while at the same time increasing the presence of the 
minority class in the training examples, which can lead to the generation of a 
more robust classifier. Therefore, we opted for the under-sampling method, 
which is also known as asymmetric bagging strategy (Tao and Tang, 2004), 
to deal with this data imbalance problem. The bagging strategy incorporates 
the benefits of both bootstrapping (i.e. repeat random sampling of the 
training samples) and aggregation (i.e. combine the classifiers trained on 
bootstrap samples). Multiple classifiers are generated by training on multiple 
sets of samples produced by bootstrapping. Aggregation of the generated 
classifiers can then be implemented by majority voting rule. Experimental 
and theoretical results have shown that bagging can improve the 
performance of a good but unstable classifier significantly (Breiman, 1996). 
However, directly using the bagging procedure for protein subcellular 
localization prediction was not appropriate since we had only a relatively 
small number of positive examples. Since there are far more negative 
samples than the positive samples, we applied the asymmetric bagging 
strategy, which executes bootstrapping only on the negative samples to 
overcome this limitation. In this way, each generated classifier will be 
trained on a more balanced number of positive and negative samples.  

2.6 Algorithm of Asymmetric Bagging Strategy 

A starting assumption is that there are a set number of classes that define a 
proteins possible subcellular localization. When building a training model 
for a given localization class, we treated the examples (proteins) belonging 
to that class as positive training set, S+, and associated all others as the 
negative training set, S-. However, the multi-labeled proteins (that is, those 
that were linked to more than one subcellular localization in the literature) 
were considered only in the positive training set.  The algorithm is described 
in Table 13.2. 
 

Table 13.2 Algorithm of asymmetric bagging KNN 
 
 

Input: positive training set +S , negative training set −S , weak classifier I (KNN), integer T 
(number of generated classifiers based on bootstrap samples), and x is the test protein. 

(1)  For i=1 to T { 
(2) −

iS =bootstrap samples from S-, with | −
iS |=| +S |. 

(3)  iC =I( −
iS , +S ) 

(4)  } 
(5)  C*(x)=aggregation { iC (x, −

iS , +S ), Ti ≤≤1 }. The aggregation is  
based on majority voting rule. 

Output: classifier C* 
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3. Results 

We derived an optimal K (the number of neighbors) based on 10-fold cross-
validation using the training set for a set of values of K (K=1, 2 , …, 20). A 
value of K=8 produced the highest overall accuracy and precision.  
Table 13.3 shows the 10-fold cross validation results for training data using 
8NN learning method. As can be seen, the combined overall prediction 
accuracy and precision of the learning approach was 80.4% and 75.4%, 
respectively. The precisions of the four subcellular localizations were quite 
similar, although the accuracies associated with each compartment were 
more varied. For example, the accuracy of cytosolic predictions was only 
72.7%, whereas that of mitochondria was more impressive at 92.0%. 

Table 13.4 shows the test results based on the independent test set of gold 
standard reference proteins using the same 8NN learning method. Although 
the overall prediction accuracy and precision was nearly identical to that 
achieved by 10-fold cross-validation of the training set, it seems that the 
classifiers trained on all training data exhibited relatively poor performance 
for the cytosol and membrane fractions. As shown in Table 13.1, the method 
generated 641 multi-labeled proteins from the training set in that these 
proteins were assigned to at least two subcellular localizations. The statistics 
shown in Table 13.5 indicate that more than half of these multi-labeled 
proteins are linked to cytosol and membranes. Therefore, it is very possible 
that the ineffective performance is due in large part to incomplete resolution 
of the multi-labeled training problem. 

 
Table 13.3 10-fold cross-validation performance on training data 

 
Subcellular location Precision Accuracy 
Cytosol 72.9 72.7 
Membranes 75.1 76.1 
Mitochondria 75.6 92.0 
Nucleus 78.1 80.6 
Overall Performance 75.4 80.4 

 
 

Table 13.4 Prediction performance on testing data 
 

Subcellular localization Precision (%) Accuracy (%) 
Cytosol 63.3 92.6 
Microsomes 52.7 66.2 
Mitochondria 91.8 82.2 
Nucleus 92.7 80.9 
Overall Performance 75.1 80.5 

 
 



13 Bioinformatics Application 171
 

Table 13.5 Single/multi-labeled training set for each subcellualr localization 
 

Subcellular  
localization 

Number of  
training 

Number of 
single labeled 

Number of 
multi-labeled 

Cytosol 672 232 440 
Microsomes 769 357 412 
Mitochondria 188 36 152 
Nucleus 570 353 217 

 
As a last measure to performance, we also explored the use of Receiver 

Operating Characteristics (ROC) curves to evaluate the power of different 
classifiers for predicting protein subcellular localization. ROC curves have 
been used to depict the pattern of sensitivity and specificity observed when 
the performance of a classifier is evaluated at different thresholds (Bradley, 
1997). Since the prediction confidence (probability) from 8NN classifiers 
varies between zero and one, we created 100 thresholds of equal interval 
across the range of prediction confidence. For each of the 100 thresholds, we 
calculated classifier specificity, sensitivity, accuracy, and precision based on 
the gold standard independent test data. Overall, the classifiers of cytosol, 
mitochondria, and nucleus showed similar performance, whereas the 
membrane fraction was notably worst. On the left- most side of the ROC 
curves, where the highest specificity was reached, mitochondria and nucleus 
exhibited the best better performance. These data may again hint to problems 
associated with multiple labels during multi-class training. 

When the accuracy and precision value calculated from the 100 
thresholds defined above is plotted against the confidence (results not 
shown), from the curve slop, it is clear that confidence and precision 
increase monotonically. Higher stringency yields a sparse lowering of the 
accuracy due to an enhanced rate of false negatives. The simple relationship 
between classifier precision and confidence can be used for evaluating the 
precision and accuracy of new predictions. 

Using the trained classifiers derived for the four fractions, we applied the 
methods outlined above to our complete set of proteomic data. In this 
manner, we were able to assign 2390 of the proteins to at least one the four 
compartments, many of which were previously uncharacterized with respect 
to their subcellular localization. Given a minimum confidence threshold 
equal to 80%, where the highest overall accuracy was reached for each of the 
four classifiers, 1332 of the proteins were predicted to be associated with 
one compartment, while 38 were assigned to two or more organelles. These 
results point to the potential of machine learning as applied to proteomics 
data to make significant new biological inferences. We still have 1020 
proteins which can not be assigned to any of the four subcellular 
localizations with at least 80% confidence. 
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4. Discussion 

In this study, we have proposed a new framework for predicting protein 
subcellular localization on a genome-wide scale. The framework addresses 
some of the key problems associated with predicting multiple organellar 
compartments given proteins of uncertain association. Using large-scale 
proteomics data as a building block, the method achieved an overall 
accuracy 80.5% and precision 75.1% over the four major cellular 
compartments. We have confidently predicted the organellar localizations of 
more than 1,000 orphan proteins without previously described localizations 
in any of the major public annotation databases. 

It should be noted that there are still some limitations to our 
methodology. First, we have just addressed the complex multiplex issue 
(multi-class) in the first training step of the learning process. We chose to 
simplify the problem in test step into a series of binary single localization 
calculations. This is clearly suboptimal from both a biological and a 
theoretical perspective. Second, we were unable to confidently assign more 
than 1,000 proteins to any one organelle, suggesting that more efficient 
algorithms need to be developed. 

Scott et al. (2004) have previously reported that the incorporation of 
knowledge concerning the presence or absence of protein structural domains 
of motifs (such as InterPro motifs), as well as sequence signal peptides, and 
the number of putative trans-membrane regions, into a Bayesian machine 
learning framework can produce good prediction performance. As noted 
previously, the combination of amino acid composition and sequence-order 
information can also produce solid performance in subcellular localization 
prediction (Cai et al., 2002). Since these sequence-based approaches are 
quite different from, and indeed are even orthogonal to, our experimentally-
based approach, logically integration of these various algorithms may allow 
for even better prediction power. 
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Abstract:  Gene fusion is an important evolutionary phenomenon. Human fusion proteins 
consisting of two or more fusion partners of bacterial origin exhibit accreted 
(enhanced or novel) function. These proteins mimic operons, simulate protein 
subunit interfaces in bacteria, exhibit multiple functions, and show alternative 
splicing in humans. They are also associated with metabolites having greater 
connectivity in complex networks. 
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1. Introduction 

A fusion gene in one species consists of fusion partners from one or more 
species.  The transfer of genes and bringing together of genes from two 
genomes into a single gene (gene fusion) has long been identified as a 
potentially important evolutionary phenomenon (Long, 2000). Gene fusion 
has been identified across various phylogenetic groups and this suggests that 
there exist processes other than vertical inheritance during evolution 
(Genereux and Logsdon, 2003). In recent years, databases have been 
constructed to identify fusion events across distant phylogenies. These 
databases contain fusion proteins between human and yeast (Truong and 
Ikura, 2003); human and bacteria (Yiting et al., 2004), and among bacteria 
(Suhre and Claverie , 2004). 

An interesting relational algebra approach has been demonstrated to 
identify fusion proteins across different phylogenetic distances (Truong and 
Ikura, 2003). Yanai and colleagues used gene fusion to establish links 
between fusion genes and functional network of their involvement (Yanai et 
al., 2001). Fusion genes gain added advantage in higher organisms by 
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coupling biochemical/signal transduction reactions through tight regulation 
of fusion partners, compared to individual fusion partners in lower 
organisms (Tsoka and Ouzounis , 2001). Thus, fusion genes produce 
proteins with novel or enhanced function. Gene fusion has also been used to 
illustrate protein subunit interactions (Marcotte et al., 1999), enhanced 
substrate specificity (Katzen et al., 2002), and multi-functional enzyme 
specificity (Berthonneau and Mirande,  2000). 

The human genome contains a small fraction of genes (<1%) exclusively 
homologous to bacterial genes (International Human Genome Seqeuencing 
Consortium, 2001). Though, lateral gene transfer and differential loss of 
genes (Andersson et al., 2001) have been described to account for the 
presence of bacterial genes in the human genome, the frequencies of these 
occurrences remain a subject of conjecture (Salzberg et al., 2001). Two 
opposing forces work in palindrome: one that shuffles the genome and the 
other that prevents the shuffle by gene fusion. Thus, fusion genes are treated 
as one unit, working in synergy to achieve optimal functionality. Here, we 
report human fusion genes consisting of two or more fusion partners of 
bacterial origin. We describe examples of fusion proteins mimicking 
bacterial operons, simulating bacterial subunit interfaces, exhibiting multiple 
functions, and showing alternative splicing. They are also associated with 
metabolites in complex networks. 

2. Identification of Fusion Proteins 

We used two datasets of protein sequences for this analysis. The first dataset 
consists of 37,490 human proteins and the second dataset consists of 
223,676 bacterial proteins from 71 completed bacterial genomes. A 
comparison was performed after removing homologous sequences in each 
dataset at 40% sequence identity cut-off (homologous proteins share a 
common fold at > 40% identity) using the purging program CD-HIT (Li et 
al., 2001). We compared the human proteins (non homologous set of 26673) 
with the bacterial proteins (non homologous set of 102135) using BLASTP. 
All matches with an E-value (expectation value) < 10–10 were further 

proteins. By definition, each fusion protein should match two or more fusion 
partners of bacterial origin. This procedure identified 141 human fusion 
proteins consisting of two or more fusion partners of prokaryotic origin. 
Information on these proteins is made available at http://sege.ntu.edu.sg/ 
wester/fusion. Molecular functions were assigned for 29 of the fusion 
proteins using data collected from literature. They mimic operons, simulate 
protein subunit interfaces in bacteria, exhibit multiple functions, and show 
alternative splicing in humans. 

processed using in house Perl scripts for the identification of human fusion 
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2.1 Human Fusion Proteins Mimicking Bacterial Operons 

Bacterial genes involved in a related pathway are arranged as operons 
(cluster of genes that are juxtaposed next to each other and are transcribed as 
one unit). This is also true in the unsegmented worm C. elegans that is 
shown to have operons (von Mering and Bork, 2002). Fusion is a way of co-
regulation as efficiently as operons with two or more juxtaposed genes in a 
single unit. Here we describe an example of a fusion protein mimicking 
genes in a bacterial system. This could be a potent indicator of optimal 
design. The fusion protein pyrroline-5-carboxylate synthetase (P5CS) 
catalyzes ATP and NAD(P)H dependent conversion of L-glutamate to 
glutamic γ-semialdehyde (GSA) in proline biosynthesis. The P5CS protein is 
bi-functional with γ-glutamate-5-kinase (γ-GK) and γ-glutamyl phosphate 
reductase (γ-GPR) activities required for proline biosynthesis (Aral et al., 
1996). N terminal γ-GK and C terminal γ-GPR match prokaryotic GK and 
GPR proteins, respectively. In T. thermophilus, these two proteins operate as 
one operon with GK preceding GPR (Kosuge et al., 1994). This suggests 
that two or more partners form fusion proteins in human. 

2.2 Human Fusion Proteins Simulating Bacterial Subunit 
Interfaces 

Some fusion proteins simulate protein subunit interfaces in bacteria. For 
example, the human fusion protein acetyl co-enzyme A carboxylase β 
simulates the dimer of propionyl co-A carboxylase α subunit and propionyl 
co-A carboxylase β subunit in Mycobacterium smegmatis. Thus, two 
domains in acetyl co-enzyme A carboxylase β simulate a subunit interface 
formed by propionyl co-A carboxylase α subunit and propionyl co-A 
carboxylase β subunit in Mycobacterium smegmatis. This suggests that 
fusion events select subunit interfaces by fusing two fusion partners into a 
single polypeptide chain. Marcotte and colleagues identified human fusion 
proteins succinyl Co-A transferase and δ-1-pyroline-5-carboxylate 
synthetase made up of fusion components that are known or predicted to 
interact in E. coli (Marcotte et al., 1999). Interestingly, our approach 
identified these two fusion proteins. It should also be noted that these two 
proteins not only simulate protein–protein interfaces in E. coli but also 
mimic operon like structures in T. thermophilus and M. barkeri, respectively.  

2.3 Fusion Proteins Exhibiting Multiple Functions 

Many human multi-functional proteins catalyze successive reactions in 
biochemical/signal transduction pathways. The reaction rate is maximally 
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optimized in these cases because the subsequent reaction centers (active 
sites) are physically placed side by side. This facilitates the easy capture of 
reaction intermediates from one reaction center to another as substrates 
(circumventing diffusion effects). Clustering of active sites for catalyzing a 
reaction sequence has several potential advantages: the catalytic activity can 
be enhanced because the local substrate concentrations are increased 
significantly. By sequestering reactive intermediates, their conversion by 
undesired chemical reactions is prevented as substrates are channeled from 
one catalytic site to the next (Perham, 1975). A covalently linked 
multifunctional protein is likely to be more stable than non-covalently 
formed protein subunit interfaces containing reaction (or active) centers. 
Thus, fusion of two or more mono-functional bacterial proteins into a single 
polypeptide in a higher organism is certainly under selective advantage in 
evolution. The fusion protein GARS-AIRS-GART exhibits multiple 
functions in human. Each of GARS, AIRS, and GART proteins are mono-
functional and part of the pur operon in B. subtilis and E. coli (Ebbole and 
Zalkin, 1987). The GARS-AIRS is a bifunctional protein in S. cerevisiae and 
GARS-AIRS-GART is tri-functional in Drosophila. In human, it is found 
that GARS-AIRS-GART is tri-functional and is formed by the fusion of 
three mono-functional enzymes. Thus, human fusion proteins exhibit 
expanded function by physical co-existence of two or more mono-functional 
fusion partners.  

2.4 Fusion Proteins Showing Alternative Splicing 

A classic example of a fusion protein exhibiting alternative splicing is the 
GARS–AIRS–GART gene that produces two spliced variants, namely: (1) a 
tri-functional GARS–AIRS–GART; (2) a mono-functional GARS. The 
mono-functional GARS protein is produced by differential use of an intronic 
poly-adenylation signal located in the intron separating the last GARS exon 
from the first AIRS exon. Separate GARS and GARS–AIRS–GART 
mRNAs have been observed in human, mouse, chicken, and D. 
melanogaster. 

3. Remarks on Fusion Proteins 

Modular organization of proteins has been postulated as a widely used 
strategy for protein evolution. Analysis of human fusion proteins suggests 
that these proteins exhibit enhanced or novel functions in human compared 
to their fusion partners (which are physically separated) in bacteria. These 
fusion proteins are found to mimic operons and simulate bacterial protein 
subunit interfaces. They are also found to exhibit multiple functions and 
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alternative splicing in humans. Our findings strongly suggest that, by the 
acquisition of additional active domains, fusion proteins expand their 
substrate specificity, and evolve functional novelty.  

Protein evolution is extremely efficient in generating systems that are 
optimally adapted in cellular environment. Optimality can be achieved by 
changing the topology of metabolic networks by tuning enzymatic or 
regulatory materials. Here, we show that metabolites like oxaloacetate, 
acetyl co-A, succinyl co-A, succinate, and glutamate are products of fusion 
proteins. These metabolites have high connectivity index, suggesting their 
greater degree of involvement within networks. This observation implies the 
association of fusion proteins with complex metabolic networks. The 
association between human fusion proteins and metabolites with high 
connectivity is intriguing. Detailed analysis of fusion proteins highlights the 
transition from a ‘protein–protein interface’ to either a ‘domain–domain 
interface’ or an operon structure (a group of genes all controlled by the same 
regulatory element). This evolutionary transition is interesting and it is 
important to systematically investigate the functional link between fusion 
partners and fused proteins using thermodynamics calculations. The 
transition may be thermodynamically favorable as fusion proteins acquire 
reduced entropy compared to their physically separated fusion partners. 
Therefore, it is envisaged that fusion proteins confer selective advantage in 
the evolution of regulating metabolic dynamics. This is specifically 
advantageous for multi-enzyme complexes as fusion proteins select kinetic 
advantage over fusion components by increasing connectivity with 
metabolites. It is also reported that fusion of components into a single 
polypeptide ensures stability between physically connected domain 
structures and active sites for a balanced stoichiometric production of 
intermediates in complex networks. The physical proximity of multiple 
active centers in the same metabolic pathways alleviates molecular diffusion 
and reduces side reactions in cellular environment. Our data for the six 
metabolic enzymes having fusion structures aligns well with these 
observations. This enables fusion proteins to catalyze sequential steps in a 
biochemical pathway because association of two active sites enhances the 
efficiency of two consecutive reactions. Thus, fused protein architecture 
illustrates an evolutionary strategy for maintaining complex stoichiometric 
balance. Physical connection between fused domains increases structural 
propensity between active centers for the regulation of material balance. 
Since fusion proteins help in the evolution of complex networks, even a 
modest addition of domains could significantly increase interactions. This 
strategy helps to maintain equilibrium in a dynamic network with huge 
nodes. Thus, large networks of molecular interactions are regulated by 
relatively few genes in some organisms. 
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The hypothesis underlying this analysis is that a fusion gene in human 
can indicate an association between the independent genes in bacteria, 
assuming that orthologous genes have parallel functions in both human and 
one or more bacteria. Linking genes by way of fusion events, as proposed 
earlier can hint at direct physical interactions between proteins or a more 
general functional association such as between sequential members in a 
metabolic pathway. One of many possible mechanisms of fusion events is 
lateral gene transfer and this hypothesis remains as speculation due to lack of 
sufficient genome data of distant evolutionary origin. The idea of gene 
transfer from a prokaryote to human is intriguing. However, the significant 
mechanical barriers, as well as constraints to natural selection, warn caveats 
when considering inter-kingdom gene transfer.  
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